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Abstract

This thesis is concerned with the use of intelligent system techniques (IST) within
a large distributed software system, specifically the ATLAS TDAQ system which
has been developed and is currently in use at the European Laboratory for Parti-
cle Physics(CERN). The overall aim is to investigate and evaluate a range of ITS
techniques in order to improve the error management system (EMS) currently used
within the TDAQ system via error detection and classification. The thesis work
will provide a reference for future research and development of such methods in the
TDAQ system.

The thesis begins by describing the TDAQ system and the existing EMS, with a
focus on the underlying expert system approach, in order to identify areas where
improvements can be made using IST techniques. It then discusses measures of
evaluating error detection and classification techniques and the factors specific to
the TDAQ system.

Error conditions are then simulated in a controlled manner using an experimental
setup and datasets were gathered from two different sources. Analysis and process-
ing of the datasets using statistical and ITS techniques shows that clusters exists in
the data corresponding to the different simulated errors.

Different ITS techniques are applied to the gathered datasets in order to realise an
error detection model. These techniques include Artificial Neural Networks (ANNs),
Support Vector Machines (SVMs) and Cartesian Genetic Programming (CGP) and
a comparison of the respective advantages and disadvantages is made.

The principle conclusions from this work are that IST can be successfully used to
detect errors in the ATLAS TDAQ system and thus can provide a tool to improve
the overall error management system. It is of particular importance that the IST can
be used without having a detailed knowledge of the system, as the ATLAS TDAQ
is too complex for a single person to have complete understanding of. The results
of this research will benefit researchers developing and evaluating IST techniques in
similar large scale distributed systems.
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Chapter 1

Introduction

This thesis is concerned with investigating how Intelligent System Techniques (IST)

may be applied to improve the overall Error Management (EM) capabilities within

a large distributed computing system, specifically the ATLAS TDAQ system cur-

rently in use at the European Laboratory for Particle Physics (CERN). A number

of different techniques were used in order to create error detection systems based

on data available from different sources in the TDAQ system. The results of these

error detection systems are then analysed and different ways in which to utilise those

results are investigated. This could potentially produce a better understanding of

the system which again enables better EM systems to be built.

Section 1.1 provides a short background to the ATLAS TDAQ system and the

context of the thesis work. Section 1.2 then provides an introduction to the problem

before the thesis objectives are described in Section 1.3. Section 1.5 describes the

contributions to knowledge made throughout the thesis.

1.1 Background

This section provides a very brief introduction to CERN, the LHC and the ATLAS

TDAQ system.

1.1.1 CERN (Conseil Europen pour la Recherche Nuclaire)

CERN was originally established as a provisional body in 1952. After the actual

foundation of CERN in 1954 by 12 European states, the provisional council was
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dissolved, but the original acronym was kept. In its early days the research was

concentrated on nuclear physics, but has since then focused increasingly more on

particle physics and is now commonly referred to as the “European Laboratory for

Particle Physics”. Today 20 European member states collaborate to run CERN,

although contributions are made from countries around the world, including USA,

Russia, Japan and China among others, making it a truly global collaboration. In

addition to the approximately 2500 staff permanently at CERN, more than 8000

scientists visit and perform part of their work at CERN.

Currently, the main effort at CERN is to operate and maintain a new particle

accelerator, namely the Large Hadron Collider (LHC). The LHC is currently in

operation and has already broken previous records by similar experiments.

1.1.2 CERN and the Large Hadron Collider (LHC)

CERN hosts a number of different experiments, both theoretical and experimental

although the main efforts are concerned with the construction and operation of

particle accelerators. CERN contains a number of accelerators where particles are

successively accelerated to higher and higher energies as shown in Figure 1.1 where

the last stage of this acceleration is the Large Hadron Collider (Evans, 2007).

The LHC accelerates protons and lead ions to higher energies than any previ-

ous experiment, and will eventually collide particles every 25ns with a centre-of-mass

energy of 14 TeV. This makes it possible to study physics phenomena that have pre-

viously never been observed in a controlled experimental environment.

Four main experiments are connected to the LHC; ATLAS, CMS, LHCb and

ALICE. An overview of the LHC and the location of the 4 experiments is shown in

Figure 1.2 (please refer to Table 1.1 for the complete list of abbreviations). Each of

the 4 experiments are designed to fulfill specific goals. The Alice experiment is con-

cerned with studying lead-ion interactions while the LHCb experiment is concerned

with studying matter and anti-matter. The ATLAS and CMS are both general pur-

pose detectors designed to cover the widest possible range of physics phenomena.

While the two experiments have the same goal in mind, they are built using different
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Figure 1.1: Schematic overview of the main accelerators at CERN.

technical solutions and design.

The LHC itself is located in a 27km tunnel 100m underground on the border

of Switzerland and France (Figure 1.2). It was first switched on the 10th of Septem-

ber 2008 and the initial operation was considered a huge success. Unfortunately,

after just a short time in operation complications arose and it was shut down for

repairs. The main repairs were finished during the summer 2009 and the LHC is

at the time of writing (April 2010) operational. Initially, it will be operating at

a relatively ‘low’ energy to ensure the safe operation of the LHC and the collision

energy will only later be increased to its full potential of 14 TeV.
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Figure 1.2: Overview of the main LHC experiments. Please refer to Table 1.1 for the

list of abbreviations.

Table 1.1: Abbreviations of the LHC related experiments.

Abbreviation Full name

ATLAS A Toroidal LHC ApparatuS

ISOLDE Isotope Separator on Line

AD Antiproton Decelerator

PS Proton Synchrotron

LEIR Low Energy Ion Ring

LINAC LINear ACcelerator

n-TOF neutron Time Of Flight

CNGS CERN Neutrinos to Gran Sasso

SPS Super Proton Synchrotron

ALICE A Large Ion Collider Experiment

CMS Compact Muon Solenoid experiment

LHCb The Large Hadron Collider beauty experiment
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1.1.2.1 A Toroidal LHC Apparatus (ATLAS)

ATLAS is the largest particle detector ever built and its scope is to determine which

particles are produced during collisions of the high energy protons accelerated in the

LHC. ATLAS is at the very forefront of particle physics research and incorporates

a large number of custom hardware and software modules. It consists of a large

cylinder (43m length x 25m diameter) of detecting devices, placed around one of

the beam collision points of the LHC. The ATLAS is built and funded by the ATLAS

collaboration, which consists of approximately 2500 scientists originating from 37

different countries and 169 universities.

Figure 1.3: A schematic view of the ATLAS detector.

The work for this thesis has been conducted within the context of the Trigger

and DataAcQusition (TDAQ) system of the ATLAS experiment. The TDAQ system

is described in more detail in the following section.
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1.1.2.2 The ATLAS TDAQ system

The ATLAS TDAQ system is a large heterogeneous system consisting of a wide

variety of software and hardware components. Its overall goal is the gathering of

‘interesting’ physics data from the ATLAS detector. The TDAQ system is based on

three levels of on-line triggering/filtering of the data; Level-1 trigger, Level-2 trigger

and Event filter. Each level will further refine the results of the previous one only

keeping those parts of the data which may be of interest for further analysis. In total

the data is filtered from 40 MHz at the detector level to 300Hz at the output of the

system. The amount of data is reduced from 10s of TB/s to 100s of Mb/s (the exact

rate depends on a variety of factors such as the operational energy of the LHC and

the configuration of the TDAQ system). The whole system comprises approximately

3000 computers ranging from ‘off-the-shelf’ 8-core processing nodes to computers

containing custom made hardware modules linked directly to the ATLAS detector.

The majority of the nodes take part in the filtering of the data. A schematic overview

of the different parts of the TDAQ system is shown in Figure 1.4.

A detailed description of the design and implementation of the TDAQ system

can be found in (Collaboration, 2003) and (Vermeulen and et al., June 2006).

1.2 Introduction to the problem

While considerable time and effort have been devoted to the design and development

of the ATLAS TDAQ system, there has not been any significant effort devoted to

the area of error detection, handling and prevention; collectively referred to as error

management. As the system has moved increasingly into an operational phase the

need for a global error management system has become evident and automatic

error detection and handling have become increasingly important and is therefore

receiving more and more attention by the system designers and developers. Due

to the very high costs of operation of the TDAQ system, both economically and in

terms of manpower, reducing the amount of ‘downtime’, here meaning the time when

the system is not performing its main tasks at its full potential, is very important.
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Figure 1.4: Overview of the ATLAS TDAQ system architecture.

The total downtime consists of two periods of time:

Time-to-detection: The time from when an error occurred in the system until

the error is detected. This clearly depends on the effectiveness of the error

detection system available, the skill of the human operator involved or a com-

bination of the two.

Time-to-recovery: The time from when the error is detected until appropriate

actions have been performed and the system has been restored to a functional

state. This also depends on the available recovery system and/or on the skill

of the human operator.

The overall goal is to reduce the downtime as much as possible. This can be

achieved in three main ways:
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(i) Early detection of errors: By detecting the errors as soon as possible the time

from when the error occurred until it is detected can be reduced. This enables

the system to perform the recovery measures sooner and thus reduces the

overall downtime.

(ii) Fast and efficient handling of and recovery from errors: By reacting as swiftly

as possible to errors after they have been detected the down-time will be

reduced. This can also reduce the likelihood of further errors occurring as a

result of the initial one(s).

(iii) Preemptive measures to try to reduce the number of errors occurring in the

system: If a thorough understanding of the causes of an error can be deter-

mined, it might be possible to prevent the error from happening. This can

include not only changes to applications and the system configuration, but

also early warning systems indicating situations where errors could occur (for

example where network or other infrastructure is severely strained).

1.3 Thesis objectives

The overall objective of the thesis is to investigate ways of improving the top-

level EM system currently used in the TDAQ system. The main focus is on error

detection as this forms the basis for both error recovery and preemptive measures.

Error detection in a system such as the ATLAS TDAQ is very difficult due to a

number of factors including:

(i) The very complex nature of the system means that no one person can gain a

full understanding of all the sub-systems let alone all the interconnections and

dependencies between the different parts.

(ii) The constant ongoing development of the system means that detection tech-

niques must constantly be adapted in order to meet new requirements and/or

the changing behavior of the system.
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(iii) Naturally, a large number of data sources exist in such a system, but it is

not clear which parts are the most useful or how to best process this data.

Identifying and extracting useful parts of the data that may contain valuable

information about the system is therefore also of key importance for both error

detection and handling, and to realise a better understanding of the system

as a whole.

The approaches considered in this thesis may be divided into three parts and

focus mainly on researching and developing new ways of detecting and understanding

the errors that may occur in the TDAQ system. The strategies which will be applied

to achieve the objectives are to:

(i) Develop techniques to help understand and visualise the data available from

the system to both be able to predict its behavior and to better understand

error situations that have arisen or may arise. The first step is to identify

which parts of the available data sources in the system are of interest in the

context of error detection.

(ii) Develop methods for error detection. A number of different IST techniques will

be investigated and compared to each other in order to determine which are

the most suitable to be utilised in the TDAQ system. These methods should

ideally be easily repeatable and adaptable to any changes that are made to

the system.

(iii) Extract knowledge from the developed error detection techniques. This could

potentially be in the form of rules to be incorporated in the existing expert

system as described in Chapter 3. Extracting knowledge is fundamental to

both developing error handling and recovery techniques (one must understand

why the problem happens to be able to fix it) and to be able implement

preemptive measures.
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1.4 Thesis outline

Chapter 2

Provides an overview of the ATLAS TDAQ system in order to give the reader back-

ground information to better understand the choices made in subsequent chapters.

It describes the different components of the TDAQ that are of relevance to EM

systems.

Chapter 3

The existing expert system approach used in the TDAQ system is presented and its

overall design and implementation is described. The limitations of the system are

discussed and the areas best suited for improvements are identified together with

ways of extending and improving the system. The expert system is at the heart

of the TDAQ EM and is likely to be operational for years to come. It is therefore

important that the reader has an adequate understanding of the system as any tech-

niques investigated in this thesis must be integrated to it.

Chapter 4

Provides an overview of the main factors concerning error detection in the TDAQ

system and presents different ways to measure effectiveness of such error detection

systems. These measures are used in order to evaluate detection methods in subse-

quent chapters.

Chapter 5

Here, the experimental setup which was used for the work in this thesis is described.

It includes a description of the applications taking part in the test setup and its

topology. It also describes how errors were simulated in the system and how data

was gathered and stored for subsequent analysis. The datasets are then visualised

and analysed in this chapter. The analysis is performed in order to evaluate whether

error detection techniques can be applied based on the available datasets. The vi-

sualisation can also be used to gain insight into the system and thus contributes to
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improving the overall error management process.

Chapter 6

In this chapter a number of different artificial neural networks (ANNs) are described

and are then applied to detect errors based on the previously gathered datasets. The

results of the different network types are discussed and compared. An ensemble of

the ANNs is then designed and implemented using a genetic algorithm (GA) ap-

proach. The results are then compared to the results achieved using single ANNs.

Ultimately, the use of a new technique for variable selection, namely the genetic

neural mathematical method (GNMM), is applied in order to reduce the complexity

of the datasets and thereby making it easier for the ANNs to process the data.

Chapter 7

This chapter introduces support vector machine (SVM) theory and applies SVMs

using the same datasets as in the previous chapter. Different kernels are tested and

the results are compared to the ANN results. The advantages and disadvantages of

SVM are then discussed and compared to the ANN approach.

Chapter 8

Here, a new evolutionary programming approach is developed and investigated.

Cartesian genetic programming (CGP) is presented together with a comparison to

standard genetic programming (SGP). It also investigates the usefulness of the Hi-

erarchical Fair Competition (HFC) evolutionary model used together with CGP. A

new form of crossover is also presented before CGP is then applied in ordered to

evolve a program to perform error detection. The program is analysed and com-

pared to the previously achieved results and the advantages and disadvantages of

this approach are discussed.

Chapter 9

In this final chapter the results are summarised, discussed and the final conclusions
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are made. Possible future work is also discussed.

1.5 Contributions to knowledge

This thesis aims to provide significant contributions to knowledge by showing that

IST can be used to successfully detect and classify errors within the ATLAS TDAQ

system. Such techniques have not previously been utilised within the TDAQ system

nor previous system of similar design. In particular, contributions have been made

in the following ways:

• Clustering and visualisation of data gathered from several sources in the AT-

LAS TDAQ system provides further insight into the system in the context

of error detection and management. The techniques used in this thesis have

not previously been applied within the context of the TDAQ system and the

datasets analyzed have previously not been utilised within the context of error

management.

• The expert system approach described in Chapter 3 provides a novel approach

to error handling and error management in the ATLAS TDAQ and similar

systems and the results have lead to publications in peer reviewed journals(Poy

et al., Nov. 2006; Sloper et al., 2008; Kazarov et al., June 2007).

• A number of different ISTs have been investigate in order to develop error

detection systems based on data available in the ATLAS TDAQ system. The

thesis shows that these techniques can be successfully applied and that they

can produce prediction and classification of errors with a high level of accuracy.

These techniques therefore provide further ‘tools’ for developers aiming to im-

prove the error detection capabilities of systems such as the ATLAS TDAQ. A

paper describing the application of a subset of these techniques was published

in (Sloper and Hines, 2009).

• Also, the use of HFC together with CGP has not previously been investigated

prior to this thesis. In addition, a new form of crossover has been developed
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and is shown to provide better results for a number of problems compared to

other crossover techniques.

It is the opinion of the author that the work reported here represents a

‘significant and original contribution to knowledge’.

1.6 Conclusions

This chapter has provided a background to the workplace where the thesis work was

conducted in order to put it into the proper context. The problem that the thesis

investigates has been introduced and the thesis methodology and objectives have

been presented. The outline of the thesis which was then presented should give the

reader an overview of the thesis as a whole.
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Chapter 2

Overview of the ATLAS TDAQ

system

This chapter provides a description of the key components in the TDAQ system

with a particular focus on those that are related to error handling and detection

and provides the reader with an introduction to the TDAQ system and how it

is organised. Naturally, the organisation and composition of the TDAQ system

dictates the choices that can be made when developing an error management (ER)

system and it is therefore important that the reader has an overview of the system

in order to understand the choices made in subsequent chapters.

2.1 The TDAQ system

As outlined in Section 1.1.2.2 the TDAQ system is a vast heterogenous system

consisting of a large number of both software and hardware components. The system

is connected to the ATLAS detector and its main purpose is to read the data from

the detector, filter out the subset of data which may be of interest for further analysis

and ultimately storing the data. This data is then later used for the so called ‘off-

line’ analysis. The system gathers the data as it is produced by the detector and

is therefore subject to strict efficiency requirements. The LHC produces collisions

every 25ns (i.e. at a rate of 40MHz) the system is therefore massively parallel in

order to be able to perform both the gathering and filtering of the data at the
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required rate. At each stage of the filtering the data rate is reduced and more

thorough filtering can be done. The filtering is divided into three stages; Level-1

filtering which reduces the rate to a few hundred kHz, Level-2 filtering where the

rate is reduced to around 2kHz and finally, the event filtering reduces it to a few

hundred hertz. At each stage of the filtering a more and more complete set of the

detector data is considered, hence making the filtering more complex. An overview

of the TDAQ system and the rate of data at the various stages is shown in Figure 2.1.

Figure 2.1: An overview of the TDAQ system and the data rates at each stage of the

filtering.

The system comprises approximately 3000 computers of different types de-

pending on the type of operation the processes running on it performs. The network

connecting these computers is divided into two separate networks, one for distribut-

ing the data and a separate network for controlling the various processes. In total
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there will be of the order of 50000+ processes running in the TDAQ system. At such

a size errors must be expected and they do indeed frequently occur in the system

today. It is therefore of great importance that the system is able to deal with and

recover from these errors, should they occur.

In addition to the processes directly taking part in the flow of data there

are also a number of services available providing functionality in order to monitor

the system, store application errors and warnings, provide means of communication,

enabling data quality monitoring, etc. There also exists a control framework pro-

viding control, command distribution to and synchronisation of all the processes in

the system.

2.1.1 Key components

This section focuses on the subset of components that are of particular relevance in

the context of the EM system.

2.1.1.1 Configuration Database

The configuration of the TDAQ system is based on an object oriented database

containing a description of the TDAQ system. These descriptions cover the control-

oriented configuration of all ATLAS applications which can be running during data

taking. It includes all the information needed to configure the system, such as:

• which parts of the ATLAS systems and which detectors are participating in a

given data taking session.

• where processes shall be started and when. It also contains information about

which run-time environment is to be created for each of the processes.

• how to check the status of running processes and to recover run-time errors.

• when and in what order to shut down running processes.

In addition, the configuration database provides configuration parameters

for many applications such as the overall DAQ data-flow configuration, online mon-

itoring configuration and connectivity, configuration parameters for various DAQ
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systems and for detector modules and channels. The configuration database is

available to all applications in the system through a database service hierarchy and

is accessible by all applications that request it.

The configuration database will contain one or more partition objects which

also includes the complete description of the system from a control point of view.

This description contains all information needed to configure the system for a data

taking session. Such partitions may for example contain the configuration informa-

tion needed to test and calibrate a specific part of the ATLAS detector, or it may

contain information for a complete data taking session including all parts of the

detector.

A partition object contains a set of segment objects, typically representing

a subsystem or a collection of applications with similar functionality, e.g. a set of

Readout modules. Each segment contains a set of applications and resources, and

may also contain other (sub-)segments. Each of the segments is associated to a

controller application (see Section 2.1.1.2) which is responsible for all applications

contained in that segment. In this manner a hierarchical structure is used to build

the system as shown in Figure 2.2.

Figure 2.2: A schematic view of the control part of the configuration database.
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The author has contributed to the work on the configuration database and

a paper was published describing further details and challenges of the configuration

database (Almeida et al., April 29 2007-May 4 2007).

2.1.1.2 TDAQ RunControl

The TDAQ RunControl system is responsible for distributing commands from the

operator(s) throughout the system. It starts, stops and monitors all applications in

the TDAQ system and ensures that the system is in a coherent state. The system

comprises of a number of ‘controller’ applications organised in a tree structure.

In addition, there are a number of services based on the client-server model.

The most important services will be discussed in the following sections. In order to

synchronise operations throughout the system, Finite State Machine (FSM) princi-

ples are used. Figure 2.3 shows the FSM used for the TDAQ system. In addition to

the states shown in the diagram it can also go into an error state indicating that the

application cannot continue its function. The RunControl is constructed using the

configuration database with controllers arranged in a tree structure in which each

controller is responsible for a segment. Normally, commands are only sent to the

topmost controller and are then propagated throughout the control tree. Interaction

with the RunControl is performed through a graphical interface which among other

things displays the RunControl tree, including the current state and any errors.

Figure 2.4 shows the logical layout of the RunControl.

2.1.1.3 Inter Process Communication (IPC)

Communication between the processes in the TDAQ system is realised using the

dedicated IPC package. The package is built on top of third party solutions, Om-

niOrb(Grisby) (C++) and JacOrb (Brose, 1997)(JAVA), which are implementations

of the CORBA (Group) standard, a widely used standard for interprocess commu-

nication. Very briefly, the IPC allows applications to make themselves available as

named services in the system and makes it possible for processes to communicate

without taking into account ‘low-level’ issues such as machine names, protocols,
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Figure 2.3: The finite state machine used by the RunControl system.

Figure 2.4: The logical layout of the RunControl.

20



port numbers, sockets, and so on. Hence, when communicating with another pro-

cess one simply has to know the name that process is published with and one can

then communicate with it using the IPC API.

2.1.1.4 Message Reporting System (MRS)

The MRS is a service for passing messages between different applications using a

subscription-notification model. It provides a means of passing messages between

the applications in the system and is designed to be scalable in order to sustain

any needed message rate. Tests have been conducted showing that the system is

capable of sustaining message passing between more than 50000 processes. The

MRS is the general way of passing messages in the system outside the ‘point-to-

point’ communication provided by the IPC. The difference between the IPC and

the MRS communication model is illustrated in Figure 2.5.

Figure 2.5: Illustrates the difference in communication model using IPC versus MRS.
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2.1.1.5 Information Service (IS)

The IS is a general way of sharing information in the system without using any

one-to-one communication. The IS allows applications, referred to as providers in

the context of the IS, to publish information which will be stored on a server. Other

applications, called receivers, can then actively retrieve the data they are interested

in, or subscribe to changes of a particular information set. The information made

available (i.e. published) by a provider can be updated or deleted and receivers

can retrieve the latest copy or be notified that it no longer exists. The IS provides

a number of basic types which dictate which types of information can be stored

(integers, floats, strings, etc) and can also store an array of any of this. It also

allows the users to create new data types which can be stored in the server. The IS

also supports meta-information which can be used to describe the information that

is published in the service.

Many of the applications publish statistics about their own performance using

this service, and it is therefore of interest when doing error detection. For example,

a reduction in the processing rate for a number of applications may be an indication

that something has gone wrong in the system.

2.1.1.6 Error Reporting Service (ERS)

The ERS provides several services, including a common format and a fixed range

of severity levels for all errors reported in the TDAQ system. It is possible to

configure global settings that define the behavior of error reporting, such as where

errors are sent, amount of information for each error, etc. This common framework

also makes it possible to collect errors into classes/groups to be reused by other

applications. For example, in the case of a ‘file not found’ or a ‘connection not

possible to establish’, different applications developed by different developers can

use the same ‘error class’ (or sub-classes thereof) to report the issue. In order to

pass ERS messages between applications the ERS relies on the MRS package in

order to pass error messages between different applications and also to allow for

subscriptions to different messages.
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2.1.1.7 LogService

The TDAQ system also includes a ‘log service’ which gathers all errors reported

through ERS by all applications in the TDAQ system and stores them in a common

database. This is relatively easy to do as all messages are transported over MRS

and it is therefore a matter of subscribing to all messages. As all the messages are

stored in a single database this makes it easy to browse them and retrieve parts of

it based on any combination of parameters such as the level of severity, application

type, application name, time, host and message contents. The operation of the

LogService is illustrated in Figure 2.6.

Figure 2.6: The LogService stores all messages in a database which can subsequently

be queried.

A detailed description of the LogService is available in (Murillo-Garcia and

Miotto, 2007).
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2.1.1.8 Process ManaGer (PMG)

This package handles all communication with the operating system related to start-

ing processes, monitoring them, signalling them and so on. It allows applications

to start processes on any machine without dealing with low-level calls or operating

system interfaces. The PMG also provide call-back mechanisms for notifying ap-

plications of any changes in other processes. For example, a controller is notified

whenever a child application is terminated and also what was the cause of the ter-

mination. Applications are identified using a unique handle constructed based on

the configuration information. This handle is therefore identical between different

executions of the same application, as opposed to for example an operating system

process id. Having a fixed handle for each application makes it possible for a control-

ling application to re-connect to any ‘child’ processes if it for some reason has lost

contact with it. This extra level of indirection makes the system much more fault

tolerant and makes a number of recovery actions possible which otherwise would

not have been possible.

As an example consider the case where a controller application was restarted.

It is now possible for the controller to find out which of its child processes are still

running and regain complete control of them. It can then start applications that are

missing or otherwise bring its part of the system back to the state in which it should

be. Also, using the PMG service, it allows for other applications (e.g. some part of

the EM system) to query the process manager about the status of any application in

the system. This can be used in order to obtain further information about the actual

status of an application. An example is the case where an application is reported as

not responding to requests. It is then possible to query the PMG service in order to

find out whether the application is indeed running and not responding or whether

it is actually not running anymore.

24



2.2 Conclusions

This chapter has provided an overview of the ATLAS TDAQ system and its main

component and provides the reader with an introduction to how the system is or-

ganised and how the main components work and interact, and thus provides some

context for understanding choices made in subsequent chapters. In particular, this

provides a context via which to evaluate many of the design and implementation

choices made when developing the current error management system as described

in Chapter 3.

The focus has been on the components that are directly relevant to a EM

system while less relevant components in this context have been left out. It is

meant purely as an overview of the system and for a more complete description of

the system please refer to (Collaboration, 2003).
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Chapter 3

Error Management in ATLAS

TDAQ: The Expert system

approach

This chapter describes in detail the existing expert system (ES) approach used to

build an efficient error management system (EMS) that has been implemented and

is currently in use in the ATLAS TDAQ system. First, the concept of ESs in general

is introduced before the requirements of the EMS for TDAQ are presented together

with a description of how it has been designed and implemented. The EMS with

the ES at its core forms a basis for any further development of, and extensions to,

error detection and recovery in ATLAS TDAQ and it is therefore very important to

have a complete understanding of it. Finally, the known limitations of the system

are discussed together with how it performs for different types of error situations in

order to find areas that are suitable for improvement using ISTs.

3.1 Introduction to expert systems

Expert systems (ESs) are a subfield of Artificial Intelligence (AI) which deals with

complex problems within a well defined specialised field or domain. An ES is usually

realised by encoding the knowledge of an expert in the field/domain in question

(hence the name expert system) in such a way that this knowledge can be reproduced
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by an automated system. Some of the typical applications of an ES are:

(i) to offer advice to a non-expert user. The system can act in the place of an

expert and make the expert knowledge widely available to non-expert users.

(ii) automatically try to solve given problems using the encoded knowledge. For

example, an ES can be used to control the traffic lights at a junction (or over

a larger area) in order to optimise the flow of traffic. This is then done with-

out any user interaction, but automatically by the system using the encoded

knowledge.

(iii) be used as a tool for the expert themselves for either verifying their work

or possibly increase their efficiency. For example, a car technician can use a

diagnostic ES in order to verify his/her own diagnostic, or alternatively run

the diagnostic program in the first place in order to save time.

ESs are used within a wide range of fields including fields such as flow and

water quality modeling (Chau et al., 2002), finance (Nedovic and Devedzic, 2002),

engineering (Starek et al., 2002) and others and is still an evolving field with nu-

merous practical applications (Liao, 2005).

3.1.1 Rule based expert systems

The most widely used form of ESs are the so called rule based expert systems

(RBES). In an RBES the encoded expert knowledge is usually referred to as the

knowledge base (KB) and consists of rules in an IF-THEN form. Rules consist of

two parts, namely:

Antecedents: One or more conditions that must be fulfilled for a proposition/rule

to be true. Hence, in a rule in the IF-THEN form it is the part that follows

the IF statement and precedes the THEN statement.

Consequents: is the second half of a proposition (i.e. the rule). In a rule in the

IF-THEN form, the consequent is that part that follows the THEN statement.
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An example of a rule with two antecedents and one consequents would therefore be:

“IF A is black AND A flies THEN A is a raven”.

In this statement the antecedents are “A is black” and “A flies”, while the conse-

quent is “A is a raven”. While the logic is unsound it demonstrates the difference.

In addition, it contains a short-term memory containing factual information (e.g.

current pressure of a valve is 20 bar) usually referred to as facts. These facts usually

represent the antecedents of a rule. The RBES then relies on an inference engine

in order to drive the system and automatically activate/fire rules that are relevant

to the current situation. That is, it will match the rules from the knowledge-base

to the facts in its current working memory. Inference engines usually follow one of

two approaches:

Forward chaining: This is an approach where the working memory is matched

with the available rules so that if all the antecedents of a rule are fulfilled the

consequent part is added to the working memory. An example of a system

using forward chaining is CLIPS (see Section 3.2.3.1 for further detail).

Backward chaining: As opposed to forward chaining this approach starts with a

consequent and attempts to find antecedents that fulfills that rule. An example

of a system that uses backward chaining is the logic programming language of

Prolog(Shapiro and Fuchi, 1988).

Forward chaining is typically referred to as a data-driven method as it continuously

updates its working memory as new rules are fired. It is often employed in expert

systems where the working memory is often changing. Backward chaining in contrast

is a goal-driven approach.

An explanation facility may also be of importance (and sometimes crucial)

depending on the application of the ES. For example, an ES providing a medical

diagnosis must be able to provide an explanation for its results, while an ES control-

ling the temperature of a bakery oven does not necessarily have such requirements.
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A system using backward chaining makes it easier to create an explanation facility

as the full chain of reasoning exists for each goal. Using forward chaining on the

other hand one can not necessarily deduce how a particular goal was achieved.

RBESs also typically include a user interface in order to present the results to

the user. Such an interface can also be used to input new information into the system

dynamically. Alternatively, or in addition, the system can gather information itself

as a result of its execution. For example, a rule could be executed which actively

gathers more information (e.g. runs an external test program). The information

gathered in that way may then trigger new rules and so on. The different components

of a typical RBES and their interactions are shown in Figure 3.1.

The data structures typically available in a RBES are shown in Figure 3.2

and can be summarised as follows:

Rule: expert knowledge written in an IF-THEN form containing antecedents and

consequents.

Fact: A single factual statement representing some information, for example that

a valve is open or closed, or that the current speed limit is 60mph.

Object: representation of some entity usually containing one or more facts describ-

ing that entity. For example, an object representing a car may contain facts

such as the cars make, its speed, its weight, the current amount of fuel left,

etc. The concept of objects should be well known to anyone with experience

from object oriented programming languages (Stroustrup, 1991).

Facts and objects are typically a part of the working memory and change as

further input is given to the ES (or gathered by it), or as rules are fired that change

the state of the objects or the facts.
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Figure 3.1: Overview of a typical RBES.
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Figure 3.2: The different types of data structures used in a typical ES

3.2 Error Management in ATLAS TDAQ using an ES

Given the size and complexity (see Section 2.1) of the ATLAS TDAQ system, errors

are bound to happen and must be dealt with. Due to the modular and distributed

nature of the system it is normal practise to create a dedicated EMS to deal with

this. An alternative would be to create separate error management systems for the

different components and sub-systems. However, this would mean that error han-

dling efforts would be duplicated in each sub-system. It would also complicate efforts

to deal with cross-system errors as each sub-system may have been based on dif-

ferent technologies and designs making communication between the different EMSs

difficult. Such an approach would also make understanding and maintainability of

the system as a whole more difficult.

An ES approach to creating a dedicated EMS was first attempted more than

6 years ago (Liko et al, 2004) and is still being developed to deal with the changing

requirements of the TDAQ system. The initial ES encompassed a much broader re-

quirement set including the top-level control (see RunControl in Section 2.1.1.2) of

the entire system. Error management was therefore only a sub-set of the functional-

ity of the ES. The size and complexity of the ES became very hard to maintain and
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the functionality of the RunControl was separated out and the ES was redesigned to

deal exclusively with error management related functionality. The new requirements

and design choices of the new ES are described in the following sections.

3.2.1 Requirements

There are a number of main requirements that have underpinned the general design

of the EMS. The following is a brief overview of the most important ones.

3.2.1.1 Error handling

The EMS should be able to:

(i) react to errors reported in the system. This entails error detection and is the

basis for all further action.

(ii) analyse the errors. The EMS must be able to recognise different types of errors

and find (as far as possible) the root cause of them.

(iii) take appropriate actions to ensure that the system returns to or stays in an op-

erational state. This entails automatic error recovery operations which could

include a number of operations such as restarting applications, reverting pre-

vious actions, switching to fail-over mechanisms or simply ignoring the error.

If automatic recovery is not possible the system must support interaction with

a human operator.

The errors and situations detected and dealt with by the EMS should be well defined

and known to the operators of the system. This is important as one does not want

the EMS to take recovery actions at the same time as another component or a human

user intervenes. Such ‘double’ actions could thus lead to confusion and potentially

cause problems for the system, thus leading to situations where valuable operational

time could be lost.
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3.2.1.2 Customizability

It must be possible to ensure that different behavior will take place in response to

similar, or indeed identical, problems arising in different types of sub-systems. For

example, if an application which is a part of one of the filtering sub-systems (see

Section 2.1) stops working this might have no overall effect on the system other than

a slight reduction in computing power as there are potentially thousands of other

applications performing the same task. However, if an application in the ReadOut

System (ROS) dies, this will have considerable impact on several other sub-systems,

and must therefore be distinguishable and be dealt with differently.

3.2.1.3 Configurability

It must be possible to easily change and configure the behavior of the recovery

system. There are three main reasons for this:

(i) As error management was largely overlooked in early stages of the system

development all the requirements are not yet identified. Sub-systems are still

requesting new functionality which must be taken into account.

(ii) The TDAQ system is still under development and it must therefore be able to

accommodate for both new components being added and changes being made

to existing ones. Such additions and changes to the system might lead to new

error scenarios that need to be accommodated for by the ER system.

(ii) In the final system there will be a relatively large number of different configu-

rations of the TDAQ system. This depends on which detectors are currently

taking part in the data collection process, machine availability, current goals

for the experiment, etc. It must therefore be possible to configure the ER

system to accommodate the different sets of needs in terms of functionality.

All these factors mean that the EMS must be as flexible as possible and it must be

possible to add, change and remove functionality within a relatively short timescale

(weeks or even days).

34



3.2.1.4 Abstractability

The EMS should, as far as possible, be built in a modular way such that any parts

can be replaced without the need to change any other components. This would

make it possible to change one part of the system, for example a module detecting a

certain error, without the need to change the recovery part of the system. It should

also offer an interface to the reporting applications without exposing any details or

mechanisms of the EMS. For example, applications should be able to report errors

through a fixed interface without knowing anything about details such as where

the EMS is located, or whether it exists at all! This will also help to minimise

the need for change by developers of other components in the system. This is very

important because the EMS is being introduced relatively late in the development

of the TDAQ system and there might be limited possibility for changing application

code. Such a process can be tedious and error prone and it is difficult to ensure that

all developers have implemented the correct changes.

3.2.1.5 Maintainability

As the TDAQ system is a very large and complex system with a large time span

(decades), code maintenance is a serious issue that must be taken into account. The

EMS, or at least the core part of it, must be implemented in such a way and using

techniques and technologies which facilitates future maintenance of the system. This

means that while new techniques may be introduced, the core of the system must

be implemented using relatively well known technologies which future developers of

the system are likely to, or can be expected to, know. This includes using commonly

known programming languages.

3.2.1.6 Performance

The EMS should be able to analyse the errors and reach a decision within a rea-

sonable time span, usually in the order of seconds or even faster, depending on the

type of error. The longer these decisions take, the longer the TDAQ system will

remain in an error state causing a loss of data taking capability. Also errors in one
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part of the system can lead to errors in other parts and so on creating a ‘cascade’

of errors in the system. Fast recovery from the early errors will help to prevent

such situations from arising. This is of importance as such situations can be very

difficult to deal with for the EMS and can greatly increase the time the system is

not operational.

3.2.2 Design

In the following section we will consider in more detail how the EMS was designed

taking into account the requirements presented in the previous section.

The design of the EMS is divided into two main parts; a local unit and

a global unit. Each of these units have a distinct set of responsibilities and the

collection of all units compose the overall EMS. Considering the RunControl as

shown in Figure 2.4 in Section 2.1.1.2 the local unit exists at the level of each

controller, while there exists a single global unit independent of the control tree. An

overview of this is shown in Figure 3.3.

Figure 3.3: The local and global unit in relation to the RunControl tree.

Both the global and local units have access to the configuration database
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and uses it to build maps of the connections in the system, infer which applications

are dependent on each other, read default recovery actions and determine which

tests are associated with the different components. In the following section there is

a more detailed consideration of the specifics of the local and the global units in turn:

Local unit: The main goal of the local recovery unit is to handle errors that can be

dealt with at a segment level, that is, errors that do not have an immediate impact

on the rest of the system. It is integrated with each controller in the control tree and

has access to information about all the applications within the associated controller’s

segment. Any changes in the applications status are immediately reported to the

EMS by the controller. In this way the EMS can react as soon as possible to any

problems within that particular segment. It will then analyse any problems taking

into account information such as the current configuration, the overall state of the

system, the state of the controller and any other errors already present.

It can set the error state of the controller if needed, but is also able to perform

more advanced actions such as restarting applications or notifying other applications

if necessary. In addition to receiving errors directly from the controller it can also

receive errors directly from applications through the ERS/MRS and it subscribes

to relevant information in the IS which may be needed for the recovery procedure.

All errors gathered by the local unit will be reported to the global unit, including

information such as whether the action has been taken and if the problem has been

solved by the local unit or if further action is needed.

In general the local unit should be able to deal with the most common errors

in the TDAQ system. Each local unit may also be specialised to perform specific

actions depending on which sub-system it is connected with (see Figure 3.3). Hence,

this helps fulfill the requirement of customizability (see 3.2.1.2), at least for errors

which can be dealt with at the level of that sub-system.

As an example consider an application, e.g. an L2PU application, within

a given segment which silently stops working. This is detected by its supervising
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application, and L2SV application, which then reports the problem using the ERS.

The local unit is notified through its ERS subscription. Depending on its config-

uration it can then take a decision whether the problem can be handled locally,

i.e. without affecting other parts of the system. If it can be dealt with locally the

appropriate actions are taken by the local unit, e.g. restarting the application and

notifying its supervisor if and when it has successfully reached its running state. If

it cannot be handled locally the global unit is notified.

Global unit: The global unit handles errors that have a system-wide impact. For

such errors there will be applications in different segments that are affected by the

recovery actions and they can therefore not be dealt with by the local unit. As the

global unit keeps track of all errors in the system, including the ones reported by

the local units, this allows for more general decisions to be made based on factors

such as frequency of errors within a segment and/or the system as a whole.

Let us consider an example of recovering from faulty Readout drivers (RODs).

The RODs are both part of the trigger hierarchy, but are also connected to Readout

subsystems (ROSs) which are located in a different part of the control tree. The local

unit does not have any knowledge of other parts of the system and can therefore not

deal with this problem. Instead there are some applications monitoring the RODs

which, whenever a ‘faulty’ ROD is detected, send a predefined ERS issue. The global

unit receives the issue through the ERS framework (using the ERS extension). The

issue is then parsed and the global unit can take action. Depending on the overall

state of the TDAQ system and its current configuration the global unit will then take

appropriate actions informing all affected applications and storing the information

in a conditions database so that any later analysis of the ATLAS data have full

knowledge of the system at any given point in time.

3.2.2.1 Inter-operation with external systems

In addition to handling errors from the TDAQ system, the EMS must also be able to

handle errors from systems outside of TDAQ such as the Detector Control System

(DCS), networking, farm monitoring tools and so on. This is realised by integrating a
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proxy application representing the external system into the control tree and passing

error messages through the proxy. A detailed description of this interaction in the

case of the DCS can be found in (Poy et al., Nov. 2006). The information gained

in this way allows the ES both to deal with a wider range of errors, and also to

correlate or add information to existing problems.

3.2.2.2 Active testing

The EMS is designed to interface with relevant components available in the TDAQ

system such as the Diagnostics and Verification System (DVS) which is described

in detail in (Kazarov et al., June 2007). The DVS allows the ER to actively test

components in the system, which is especially useful in cases where the actual fault

is not immediately apparent or when further evidence should be gathered. For ex-

ample, if an application is reported to be ‘not responding’ the recovery system can

test the network connections or the host of that application to see if the error is in

fact a hardware problem. The DVS has a number of well defined tests for different

hardware objects and applications which can be used by the recovery system to

properly identify different types of problems.

Asynchronous recovery: Due to the distributed nature of the system it is, in most

cases, not practical to perform a synchronous recovery of errors. Even though the

system does support synchronous communication between applications (through

the IPC package), the recovery system is designed to perform the recovery in an

asynchronous manner. There are several reasons for this:

(i) First of all to ensure the abstraction requirement is not violated (see Sec-

tion 3.2.1.4) , it is better not to have a direct connection between applications

which are reporting errors and the EMS. The system is designed so that appli-

cations can report errors without needing any extra logic to deal with or wait

for response from the EMS, or indeed have any knowledge about it at all.

(ii) Also due to time constraints it might not be practical for some applications
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to wait for an answer from the ER system before continuing its operation.

For example, an application might report that another application is not re-

sponding to its requests, but it may still be able to continue its own operation.

Hence, the problem is a minor one for the reporting application and using an

asynchronous recovery model the application does not need to wait for any

response to its report, but may simply continue working.

3.2.3 Implementation

This section describes how the EMS was implemented based on the design presented

in the previous section. As the core parts of the local and global units are the same,

they will be described first. The specifics of each unit will then be described in more

detail.

3.2.3.1 Expert system implementation

An expert system is used at the core of the EMS and is implemented using the

CLIPS framework which is a free open source ES framework developed by NASA

(Riley et al., 1991). Some of the main features of the CLIPS framework are:

• An inference engine supporting forward chaining.

• Supports both procedural and object oriented programming in addition to the

declarative rule programming

• Represents expert knowledge in an IF-THEN form which is human readable

• It is easy to extend using the C++ programming language

CLIPS uses the Rete (Forgy, 1982) algorithm for driving the inference engine.

The Rete algorithm is best used in situations with many rules/many objects and

is therefore well suited for representing the TDAQ system. The forward chaining

approach also suits the EMS well as one is not usually trying to diagnose, but rather

detect errors. Also, the system is changing very often meaning that new information

must constantly be updated in the ES memory. Hence, the data-driven approach
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is easier to use for this particular system. CLIPS has been used successfully for a

number of different projects ranging from robot control (Spelt et al., 1989) to on-line

diagnostic systems (Lauriente et al., 1992). CLIPS has also been used for a number

of years at CERN and in the TDAQ group in particular and was therefore a natural

choice as an implementation framework.

3.2.3.2 Organisation of the knowledge base

At the core of the ES is naturally the knowledge base containing the necessary rules

to effect the EMS. As CLIPS supports an object oriented paradigm, this has been

extensively used in the implementation. Information about the different applica-

tions, computers and other hardware is represented in the ES using ‘proxy’ objects.

These objects correspond to the actual applications and hardware in the system and

are updated as soon as any changes affecting their state happens in the system. Fig-

ure 3.4 shows a UML class diagram of all classes defined within the ES. In addition

to the classes, a number of facts describing either global variables or other simple

information are used. This can include information such as global time-outs, or in-

formation that is not persistent or is only used for a set period of time. For example,

certain facts are used to keep track of the recovery procedure of an application and

are removed after the procedure is completed. Hence, the knowledge-base consists

of both the rules and the facts and class definitions.

Whenever the ES is started it is populated with relevant information such

as class instances representing all the applications in the controllers segment (in the

case of the local unit). This information can then trigger rules in the expert system.

The matching or facts and objects to the rule base is performed by the inference

engine.
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Figure 3.4: A UML diagram of the classes used in the CLIPS implementation.
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3.2.3.3 Extensions

The ES can be extended using C++ modules, thereby adding functionality to the ES

framework. This allows for an easy and flexible way of extending the functionality of

the CLIPS framework and to provide integration with the rest of the TDAQ system.

Figure 3.5 shows a schematic overview of the key components of the implementation.

As an example of an extension let us consider the ERS extension. This extension

makes it possible to use ERS functionality from within the CLIPS environment.

This includes both subscriptions to errors coming from the ERS and the reporting

of errors through it, both of which are used extensively. For example, subscriptions

to particular error types are created using functionality provided by the extension.

Then whenever such an error is received a corresponding object (an instance of the

ERS-issue class) is created in the ES memory. This might then trigger rules within

the system which may cause actions to be taken by the EMS.

Figure 3.5: The key components common to both the local and global unit.

Another example of an extension is the IPC extension which enables commu-

nication with the rest of the system through the IPC services (see Section 2.1.1.3).

This allows the EMS to send information or commands directly to any application

running in the system based on a handle constructed from configuration information.
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The local and global unit contain much of the same core components and

mainly differs in the knowledge bases (expert rules and facts). The global unit also

includes some additional extensions in order to fulfil its extra responsibilities, such

as dealing with system wide errors. In the following sections the details of both the

local and the global unit are described.

Local unit: In accordance with the design there should be a local unit connected

to each controller. This is realised by the means of a plug-in library loaded by the

controller (see Figure 3.6). The controller passes on configuration parameters to the

plug-in when it is loaded. This facilitates further configurability of the EMS and

this configuration information could for example be extra rules to be loaded by this

plug-in in particular. This is the main method with which custom rules are loaded

for specific sub-systems, i.e. the controller associated with a particular sub-system

tells the plug-in to load the rules specific to that sub-system.

Figure 3.6: The local unit is implemented as a plug-in to the controller
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Global unit: The global unit is implemented as a service using the IPC package to

expose its interface to the rest of the system. It has both an interface for receiving

messages from the local units, and also the possibility of interacting directly with

a user/expert. This direct interaction is used in order to configure the behavior of

the global unit while it is running and also to retrieve a variety of statistics from it

such as number of errors per sub-system, the cause and resolution of each error etc.

The global unit mainly deals with errors whose impact extends beyond the

scope of a single segment and thus cannot easily be dealt with by the local unit. It

receives information directly from the local unit and also through the ERS. This is

achieved by subscribing to certain predefined issues which are sent by sub-systems

whenever certain conditions are detected or specific types of errors occur. The

global unit is then able to communicate with the sub-systems and issues commands

to the sub-system controllers or directly to the affected applications. This way

the global unit is able to notify applications across the sub-system boundaries and

thus effectively deal with errors outside the local units’ scope. Figure 3.7 shows a

schematic view of the recovery server’s interaction with the rest of the system.

45



Figure 3.7: Communication with the recovery server is achieved either directly using

IPC/CORBA or by sending ERS messages to which the server is subscribed.
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3.2.4 Known limitations and possible extensions

As the ES is likely to stay at the core of the ER system for the foreseeable future

(especially due to maintainability reasons) it is natural to look at ways of extending

it, rather than replacing it. This has been taken into account when exploring new

techniques for error detection and handling.

The current implementation does allow extensions to the CLIPS system using

C++ extensions and this provides the best route for adding new techniques which

can then interact with or be interrogated from the ES. By connecting new techniques

with the existing ES this will yield a high degree of flexibility where for example

some new techniques are only activated whenever certain conditions are present in

the system. It does however mean that one should mainly be looking at dealing

with problems which are currently not handled by the EMS, or situations where the

current performance is limited or inaccurate.

The ES has some notable limitations that must be taken into account when

developing techniques to improve it. These include:

Error detection: The system is built upon a discreet framework (either something

is in error or not). It relies heavily on notifications from external components,

such as the controllers, the process management system and specialised ap-

plications in order to detect errors in the system. While this is sufficient for

the basic operation of the TDAQ system it does leave room for significant

improvement, particularly in the area of actively detecting and dealing with

error situations. This area will be investigated in this thesis. Specifically, the

data is analysed and visualised in Chapter 5 and various ISTs are investigated

in Chapters 6, 7 and 8 in order to detect errors.

Generalisation: The current system is designed to deal with a number of specific

error scenarios. This means that the generalisation ability of the system is

very limited. While it can react to and deal with a number of errors very well,

it is not able to detect or handle slightly different or similar errors. Currently,

such errors must be dealt with by a human operator. This is a major weakness
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in the current system and is an important factor when evaluating new ISTs in

Chapters 6, 7 and 8.

Adaptation: Due to the fact that the system relies on a rule based ES approach

this means that all knowledge must be coded into the ES knowledge base.

In order to do this experts of a particular problem must be consulted and

information gathered from them. There is no possibility to train or adapt the

system to new problems or error scenarios without adding or modifying the

existing rules. This means that the system needs to be updated by an expert

developer and subsequently re-tested which is both time consuming and error

prone. Overcoming this problem is another aspect that must be taken into

account when evaluating the new techniques that are developed.

3.3 Discussion and conclusions

The ES approach has been used in the TDAQ system for more than 6 years and

provides a solid base for an error detection and handling system. The implementa-

tion has been based on CLIPS which was chosen mainly due to the knowledge and

experience of the developers in the TDAQ group with this particular technology.

The TDAQ project has a large timescale (at least until 2020), and as no re-design

or implementation is currently planned this means that the current solution will be

continuously updated for the foreseeable future of the project. Maintainability is

therefore an very important factor and it is unlikely that any large changes will be

made in the underlying implementation.

Also for reasons of maintainability and consistency it is very important that

new functionality can be added while maintaining the current functionality and

without substantial changes to the existing implementation. The current design

and implementation using the CLIPS framework is well suited for realising this.

The EMS is an ongoing work and will continue to be used in the ATLAS

TDAQ system for the foreseeable future. However, adding to it and/or incorporat-

ing new techniques, such as those investigated in subsequent chapters, is of great
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interest and provides a promising way forward in order to increase the usefulness

and effectiveness of the system. There are a number of areas which can be improved

and where functionality can be extended as discussed in Section 3.2.4. This thesis

provides the first step in this direction and provides an insight into a number of

approaches that can deal with the limitations of the current system. As new meth-

ods and functionality are developed they must be integrated with the ER system

and tested on a large scale. As experience with this process is gained there may be

new opportunities for improvement and extension of the system which may not be

apparent at this time.
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Chapter 4

Error detection in ATLAS

TDAQ - A theoretical overview

and analysis of governing factors

4.1 Introduction

This chapter presents background information about the theoretical consideration

of error detection in the context of machine learning and looks at different ways

of evaluating the effectiveness of an error detection system. It also discusses some

different error detection models before considering the specifics of the ATLAS TDAQ

system and which factors are most relevant when implementing error detection in

that system.

4.2 Error detection and measures of effectiveness

This section provides a brief overview of error detection from a machine learning

(ML) perspective and discusses the general approaches to developing and adapting

different error detection models. It also defines different ways with which to evaluate

the effectiveness of various error detection models.
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4.2.1 Error detection from a machine learning perspective

The process of detecting errors can, in a simple form, be compared with pattern

classification where the goal is to classify a pattern as being of a given class or not.

An error detection system is therefore a ‘machine’ which is able to classify input data

into errors and non-errors. More formally we can define it as follows. Given a vector

x of k observations where each observation has an associated correct classification

of yi being either −1 or 1.

xi∈Rn, i = 1, . . . , k (4.1)

If there exists an unknown probability density P (x, y) from where our x observations

are drawn from; assuming there exists a machine whose task it is to learn the

mapping xi→yi. Then if the machine is defined by a set of possible mappings

x→f(x, α) where α are the configurable parameters of the machine then a choice

of α will be what one refers to as a ‘trained machine’. One can then define the

expected error of the trained machine on any test set as

R(x) =

∫
1

2
|y − f(x, α)|dP (x, y) (4.2)

However, one will often not know the distribution P (x, y) and hence we will normally

operate with an empirical risk:

Rempirical(x) =
1

2k

k∑

i=1

|y − f(x, α)| (4.3)

As can be seen from (4.3) this is merely the mean of the sum of the machine output

minus the expected output.

4.2.2 Training

This section provides a general overview of different approaches to training and

common problems that can occur independently of the underlying model that is

being trained. It also discusses how to best test and choose between the different

models that are being developed.
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4.2.2.1 Supervised learning

Supervised learning is a type of ML where known target values are used to control

the learning process. Typically each set of input data is associated with a set of

output data, so that for a given number of inputs xi, i = 1, . . . , n there exists a

corresponding known output value yi, i = 1, . . . , n. This output is then used in

order to drive the learning process. A typical approach is to use the output value

in order to calculate the empirical risk and then use this calculated risk to drive the

learning process. This approach is used to train the different ANNs in Chapter 6,

to find the optimal SVMs in Chapter 7 and in the fitness function used in the CGP

approach in Chapter 8.

4.2.2.2 Unsupervised learning

Unsupervised learning, in contrast to supervised learning, has no associated target

for the input values. Unsupervised learning is normally used to perform some kind

of compression (e.g. dimensionality reduction) and/or clustering of the data. An ex-

ample where unsupervised learning is used is Self Organised Maps (SOMs)(Kohonen,

1982); a type of ANNs often used for classification and data visualisation (see Sec-

tion 5.2.3).

4.2.2.3 Semi-supervised learning

A third method exist where a mixture of supervised and un-supervised learning is

used. This method is not used in this thesis, however an overview of the approach

can be found in (Zhu, 2005).

4.2.2.4 Over-fitting

One problem that can often occur when training different types of learning machines

is that the developed model fits too closely to the training data. This can lead to

poor generalisation performance as the model is biased towards the training samples.

An example of over-fitting is shown in Figure 4.1 where a model has been trained

using the available samples. The samples have been created using the function
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y = x2+x and some white noise has been added. One can see that the trained model

interpolates all the sample points, but does not represent the underlying model very

well. For an in-depth look at over-fitting the reader is referred to (Hawkins, 2004).

Figure 4.1: A model suffering from over-fitting.

4.2.2.5 Model selection

The ultimate goal of our models is to predict errors based on future unseen input

data. In other terms we wish to maximise the generalisation performance of our

dataset. In order to estimate the generalisation performance of the developed mod-

els one must test the model using some input data. Training and testing with the

same dataset will yield a poor estimation of the true generalisation performance

and will likely yield a heavily biased results being overly optimistic of the perfor-

mance(Bishop, 2007). Instead, it is common to separate the dataset into a training

set and a test set. The model can then be trained using the training set. The

generalisation performance can then be estimated using the test set.

Often a model may contain different parameters that can be adjusted and

one would like to choose the optimal one for a given application. Furthermore, one

might wish to compare different models in order to evaluate which is better for the

particular application. One approach would be to train the range of models using
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the training set and then choose the model which achieves best results using the

test set. However, this may lead to some over-fitting to the test set, especially if the

model design is repeated a number of times. In such cases it may be necessary to

introduce a third set often referred to as the validation set. The models are then

chosen based on their performance on the validation set instead. The generalisation

performance of the final model is then evaluated using the test set.

Note that in the literature the meaning of the terms validation set and test

set are often exchanged. In this thesis the validation set is used for intermediate

tuning of the model performance while the test set always refers to the set which is

used to estimate the final generalisation performance.

4.2.3 Classification measures

This section presents different measures which can be used to evaluate and compare

different classification models.

4.2.3.1 Classification accuracy

Classification accuracy is the basic measure of effectiveness and is simply the per-

centage of correctly classified samples:

ClassficationAccuracy =
Correct

(Correct+ False)
(4.4)

Alternatively one could use classification error:

Classficationerror =
False

(Correct+ False)
(4.5)

However, merely using the classification accuracy or error is not sufficient in most

cases.

4.2.3.2 Alternative measures

Given that one operates with binary outputs (either something is class A or not),

one can introduce some common measures of effectiveness for different classification

methods. Each classification result can be labeled in one of four ways:
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True positive (TP): a positive classification output that is correct.

True negative (TN): a negative classification output that is correct.

False negative (FN): a negative classification output that is incorrect.

False positive (FP): a positive classification output that is incorrect.

Based on these labels we can now define some more advanced measures of effective-

ness:

Sensitivity: Sensitivity gives a measure of how well positive cases are correctly clas-

sified. Sensitivity is defined as:

Sensitivity =
TP

(TP + FN)
(4.6)

A sensitivity of 100% indicates that the all ‘positive’ cases are correctly classified.

Specificity: Specificity gives a measure of how well our test correctly classifies neg-

ative cases. Specificity is defined as:

Specificity =
TN

(TN + FP )
(4.7)

A specificity of 100% indicates that all ‘negative’ cases are correctly classified.

However, sensitivity and specificity are in themselves not enough to provide

an adequate measure of the performance of a classifier. Let us consider a hypo-

thetical situation where we have 100000 samples where 99000 belongs to class A

(negative) and 1000 belongs to class B (positive). We have trained a classifier which

correctly classifies 990 samples as positives, but misclassifies 900 true negative sam-

ples as positive as shown in Table 4.1.

Table 4.1: Example result of a classifier

Positive Negative

Positive result 990 900

Negative result 10 98100
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From Table 4.1 we have that sensitivity = 990/(990+10) = 99% and a speci-

ficity of 98100/(98100+900) = 99.1%. Looking only at specificity and sensitivity

one could assume that this is an excellent classifier. However, looking closer it is

apparent that just over 50% of the positive classifications are correct. In order to

better understand such cases we introduce the positive predictive value and the neg-

ative predictive value as further measures of a classifier’s effectiveness.

Positive predictive value (PPV)

PPV =
TP

(TP + FP )
(4.8)

A high positive predictive value indicates that a positive result from the network is

likely to be correct.

Negative predictive value (NPV)

NPV =
TN

(TN + FN)
(4.9)

A high negative predictive value indicates that a negative result from the network

is likely to be correct.

For the example discussed earlier we can see that PPV is just 52.38% while

the NPV is 99.98%. So we see that a positive classification result is not much more

than 50% likely to be correct. Clearly, one should strive to maximise the PPV and

the NPV as well as sensitivity and specificity.

In general, when performing error detection in the TDAQ system it is more

important to have a high NPV than a high PPV. This is due to the fact that a

positive result is usually followed by further tests which can eliminate the false

positive results.

4.3 Error detection in distributed systems

A lot of research has been done related to dealing with errors in distributed sys-

tems and the following is a brief overview of some different error models that are
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commonly used in computer systems.

4.3.1 The Byzantine model

The Byzantine error model originates from the Byzantine generals problem (Lam-

port et al., 1982). The general problem describes a situation where n generals must

agree on a specific action. Messages can only be passed between the generals by a

messenger. However, some of the generals may be traitors attempting to sabotage

the other generals. In a computer system this would mean that a component in

the system can exhibit arbitrary and/or malicious behavior, i.e. a component may

actively attempt to sabotage the overall system. However, the Byzantine model is

quite general and many systems may not encounter such situations in reality. We

will therefore look closer at two more error models in the following sections.

4.3.2 Fail-stop model

Another popular model is the fail-stop model (Schneider, 1990). In this model

applications are modeled using a state machine, and will upon failure enter an error

state that permits other components to detect this error. The ATLAS TDAQ system

is to a large extent modeled using this approach, where the local units are responsible

for detecting the errors of the applications in its segment (see Section 3.2.2 for

more details). However, the approach has some general limitations. For example,

if a failure is manifested, not as a wrong result or a halt of operation, but as a

degradation of performance the application will not necessarily move to an error

state and hence the error cannot be detected. The system will therefore not be

able to deal with such problems or will only deal with them when they become very

severe (e.g. when the performance degrades completely). Such situations are indeed

very possible in the TDAQ system where the throughput of different components

may be affected by a number of factors. Depending on the state of the component

and the system, such degradations should be considered an error and it is therefore

clear that the Fail-stop model is not enough to deal with systems such as the ATLAS

TDAQ.
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4.3.3 Fail-stutter model

In order to deal with performance degradation situations Arpaci-Dusseau (Arpaci-

Dusseau and Arpaci-Dusseau, 2001) introduced the ‘fail-stutter’ model which takes

into account these kinds of factors. He argues that performance faults should be

separated from ‘correctness’ faults. A correctness error is here referred to the sit-

uation where a component is no longer operating according to its specification. A

performance error on the other hand occurs when a component has not absolutely

failed, but is no longer performing at a level according to its performance specifi-

cation. This naturally entails specifying the acceptable performance levels for each

component something that is typically an ongoing process and the specifications

may change as the system evolves. This is also true for the TDAQ case, which has

the added complexity that what is considered acceptable performance changes with

a number of configuration parameters. Still it is important that the error model

used in the system has the possibility of dealing with such errors.

4.4 Error detection in the ATLAS TDAQ system

Performing error detection in a system such as the ATLAS TDAQ is a potentially

complex and difficult tasks. As the TDAQ system consists of a variety of distinct

parts and sub-systems, each behaving in specialized ways, it is not likely that a

single general way of performing error detection exists. One must first define the

scope of the error detection, both in terms of parts of the system to consider and

which kind of errors one should attempt to detect.

As mentioned in Section 4.3.2 the use of the fail-stop model is at the basis

of the current error detection and handling in the TDAQ system. However, this is

no longer adequate and in order to move to a fail-stutter model new error detec-

tion techniques must be developed in order to detect performance degradation of

components.
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4.4.1 Types of errors

There are many different types of errors that can occur in a large distributed system

such as the ATLAS TDAQ. Following is a classification of the most common types

of errors:

Crashing software: This is by far the most common problem in the system.

Crashing is for these purposes defined as an unexpected stop of the process in

question. Software may stop working for a number of reasons including mem-

ory violations (usually leading to a segmentation fault), uncaught exceptions,

etc. These situations are almost without exception caught by the PMG and

its controller is notified. It therefore fits well in the fail-stop model and can

usually be dealt with quite easily.

Non-responding processes: Some processes stop responding to requests arriving

over IPC. Experience with the system shows that there is no easy way of

determining whether the process actually stopped working or if there is a

problem with the communication. For example, the process could be still

performing its operation, but the part handling communication might have

problems. Also there could be a problem with the network, either permanent,

or simply a transient problem. Hence, the non-response does not necessarily

mean that the process is not working any more, but may be due to another

problem which is not immediately obvious.

Hardware failures: Hardware failures are not unlikely to happen in the system,

especially considering the amount of custom hardware used in a physics ex-

periment such as the TDAQ. Such errors may be detected immediately by

the software, but could also be much more subtle and manifest themselves

only as slight corruption of data without the controlling software ever detect-

ing it. This could ultimately lead to problems further ‘downstream’ or when

analysing the data at a later time.

Network problems: A number of network problems may arise. This could lead

to situations where one or more applications are not reachable. Also, as the
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TDAQ system has a separate data-flow and control network, a process may

be reachable on one network and not the other and vice versa, making the

situation more complex.

Operating system problem: A number of operating system related problems

have been observed. Limitations such as number of file descriptors, TCP

limitations, applications being terminated due to excessive memory consump-

tion, and so on. These problems are sometimes easy to detect, but other times

they may lead to ‘obscure’ situations where the problem appears to be caused

by other factors or seems to reside in a different place than what is actually

the case.

4.4.2 Available data sources

The current way of detecting errors in the system is based on information received

from the PMG and/or by specific error messages sent by applications. The current

system is well equipped to deal with such errors, and does so with very good results.

However, the system is not capable of detecting the more ‘subtle’ types of errors such

as applications not meeting their performance requirements or otherwise stopping

working without any immediate indication that something has gone wrong. In order

to deal with such errors we need to look at new sources of information for performing

the error detection. There are two particular sources of information available in the

system; namely error messages and IS data published by or about the different

applications or sub-systems. They are currently vastly unused for the purpose of

errors detection and it is therefore of interest to ‘tap into’ this reservoir of potentially

useful information. Let us consider each data source in turn:

Error messages : There are two main services in the TDAQ system facilitating

the gathering of error messages from the applications; ERS and the LogService.

These services are described in Section 2.1.1. All messages reported through

ERS use a common format which greatly simplifies the analysis and processing

of these messages. The LogService subscribes to all ERS messages produced

61



in the system and stores them in an Oracle database. The LogService stores

the ERS messages in a specific format keeping the information for each of

the attributes shown in Table 4.2. The fact that the messages are kept in a

database means that they can be accessed independently of the TDAQ system

which allows for ‘post-mortem’ analysis of errors.

IS data : Data is published in a central information service. This can be, for

example, data about the performance of the different components such as

CPU rates, buffer levels, throughput, the amount of data processed by the

different sub-systems, etc. However, one should note that there are no limits

to the type of information that can be published in the IS. The data published

in the IS system are available while the system is running and can relatively

easily be gathered and subsequently analysed.

Table 4.2: The available attributes of an ERS message.

Attribute Description

Message id This is a unique name assigned to a certain error type.

Machine name The name of the machine the application sending the error is

located on.

Application name Name/identifier of the application sending the error (as set in

the configuration database).

Severity Severity of the error message ranging from ‘for information’ to

fatal.

Message A text description of the problem. Usually for human readabil-

ity, but they are in some cases parsed by the system automat-

ically.

Time The date and time the error message was created.

Parameters A number of other parameters such as file name and line num-

ber where the issue was raised, the user running the process,

etc.

Some examples of ERS messages gathered during tests are listed in Table 4.3.

Note that the ERS parameters field has been left out for brevity.
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Table 4.3: Example ERS messages.

Message Id Machine

name

Application

name

Severity Message Time

L2Process::checkTimeout lnxatd61.cern.ch L2PU-8190 Warning L2PU-8190: Incomplete RoI received for

LVL1ID=63818: 0 of 1 ROS replies re-

ceived

1211210124

ers::Message pcatd133 monitoring-

conductor

Warning Event Sampler ReadoutApplication:ROS-

1 not responding. Removing its subscrip-

tion.

1211210144

onasic oks2cool2::Info lnxatd43.cern.ch onasic oks2cool Information onasic oks2cool2::started onasic archiver

to cool...

1211210013

4.4.3 Uncertainty

As in the case of most datasets there are a number of factors that can lead to

uncertainty. Let us consider ERS and IS data in turn:

4.4.3.1 ERS data

• First of all, it is not obvious how to choose which features of the data is of

real importance. In our example there are a number of features for each error

message, such as the machine and the application it originated from, as well

as time, severity, etc. To be able to analyse the data as efficiently as possible

some of these fields might be discarded, modified or converted when the data

is pre-processed. For example, fields containing text, such as the application

name, might have to be converted into numerical values depending on the

method of analysis used.

• Another problem is identifying which sub-set(s) of the data is of relevance

to a particular analysis. In such a large system there will be a lot of ‘noise’

which may not be relevant to the particular problem one is considering. As an

example, for a system containing 50000 applications there will be a significant

number of messages (potentially thousands) from applications which are not

related to a particular problem being investigated. Indeed, even for the smaller

systems currently being used the number of messages gathered over a few days
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is in the order of millions.

• Due to the distributed nature of the system another form of uncertainty arises.

Applications will send error messages based on individual conditions such as

lost connections, missing events, etc. There might be a number of factors

determining the time when these conditions arises, such as current bandwidth,

CPU scheduling, etc. Identical error conditions can therefore produce different

sets of error messages even if all configuration options available to be set by

the user are identical.

4.4.3.2 IS data

• As for the ERS data it is not trivial to determine which part of the data is

relevant. This is even more difficult for the IS data as the type of information

available varies from application to application. Each type of application in

the system may publish a completely different set of information about itself

or information related to its operation. This makes it more difficult both to

choose the information that may give indications of errors in the system and

also the processing of the data must take into account the different structure

for each application type.

• Determining the correct sub-set of information is also a problem when consid-

ering the IS data. The final system will comprise more than 50000 applications.

The information published by or about some of these applications will not be

relevant in terms of performing error detection. However since the system is

highly interconnected it might not be obvious how to best filter the IS data.

For example, the information published by a seemingly unrelated application

may indeed contain information that indicates the error (through interactions

that are not necessarily obvious). Similarly, an application directly related

to an error might not reflect this in the information it publishes in the IS.

Thus, identifying the ‘correct’ subset leads to some uncertainty about the

final dataset.
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4.4.4 Incompleteness

There are two main aspects of incompleteness to be considered. Let us again consider

the ERS and IS data in turn:

4.4.4.1 ERS data

• Since we are analysing messages sent by applications the available data clearly

depends on the developers of each application. We are assuming that there

exists a pattern of messages indicating a certain error (for example, warning

of full buffers, delayed responses, etc). However, there are no guarantees that

an application raises the correct cause of the malfunction (or any at all) for a

specific problem. It is up to the developers of each application to put in place

appropriate mechanisms for handling errors in a consistent way and raise the

correct ‘alarm’ in order to represent the error in the most appropriate way.

As there are tens of developers working on the ATLAS TDAQ system this

suggest that mistakes on the developers parts are likely to occur. Clearly, the

data may therefore be incomplete and this must be taken into account.

• The influence the different components have on each other is not necessarily

fully understood. This is made even more difficult due to the distributed

nature of the system, and also the possible effects of having a large number

of developers and a relatively frequent release cycle (about two releases each

year). In addition, since all the components have a highly specialised behavior

it is very difficult for any single person to have complete knowledge of all

the parts of the system and how they interact. Thus, the implications of some

errors on the rest of the system are near-impossible to deduce without actually

running the system and gathering empirical data which can then be analysed.

4.4.4.2 IS data

• The available IS data depends almost solely on the developers of the individual

applications. Relevant information in terms of detecting errors may or may
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not be published in the IS. The relatively large number of developers in the

system makes it relatively likely that some useful information is not published.

4.4.5 General factors

In addition to these main concerns there are some other general factors which impact

both datasets that should be considered. These are:

4.4.5.1 Continuous Development

Although the operation of the ATLAS experiment has started there is still ongoing

development of, and changes made to, the software of the TDAQ system. This

directly affects any effort to do error detection and recovery in several ways:

Information changes: The available data gathered may change or be removed

in subsequent versions of the system. Even for the exact same situations and

overall configuration of the system, the information produced may differ. Also,

new information might be added which was not previously available and which

may be useful for error detection.

Application behavior: The behavior of the different components and applica-

tions might also change as the development of the system proceeds. This is

especially important when considering error handling methods, but also for

error detection as the different applications might react differently to error

situations and thus influence the detection procedure.

Recovery procedure: The ‘correct’ recovery actions might be different as the ap-

plications or components change or are added/removed from the system. It

is therefore important that the error detection and handling techniques devel-

oped are flexible, adaptable or otherwise easily reproduced so that they can

be applied to future versions of the TDAQ system.
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4.4.5.2 Maintainability and available expertise

Due to the relatively long lifespan of the TDAQ system, in the order of tens of years,

it is very important that any error detection and handling techniques or technologies

are available and maintainable throughout its lifetime. This is especially the case in

terms of the ‘core’ parts of the system which should be as ‘simple’ as possible and

use techniques and technologies that are commonly used. This will make it more

likely that future users and more importantly experts working with the system will

have some knowledge of and experience with the techniques used to implement the

system.

4.5 Conclusions

This chapter has provided a brief overview of machine learning theory and has pre-

sented ways of evaluating the effectiveness of error detection systems. The available

data in the TDAQ system has then been discussed and possible factors that must

be taken into account have been described. These considerations can then be taken

into account when analysing the data in Chapter 5.
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Chapter 5

Data gathering, preprocessing

and preliminary analysis and

visualisation

This chapter first describes the experimental setups used to gather data from the

TDAQ system and includes a description of the topology of the test system and

an overview of the different components and applications that are involved. A

number of preprocessing and preliminary analysis and visualisation techniques are

then described in detail before these techniques are applied to the datasets gathered.

The results are then discussed together with the possible usefulness of the datasets

in the context of developing error detection techniques using the datasets as inputs.

5.1 Experimental setup

Due to availability problems it was not possible to perform the tests on the real

ATLAS system at the site of the experiment. However, the TDAQ software is

designed to be able to run independently of the real detector and can therefore be run

on appropriate test systems. Two different setups have been used in order to gather

data from the TDAQ system; a single-host setup where all applications are running

on a single host and a multi-host setup running on a dedicated computer cluster

utilising 36 computers and including 57 different applications. The single-host setup
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was used for initial tests and to verify the proof-of-principle. Subsequently, the

multi-host setup was used to verify the results in a setup more similar to the real

TDAQ system. Let us consider the two different setups in turn:

5.1.1 Single-host-setup

For the first setup data are gathered from a simple configuration of the TDAQ sys-

tem. This configuration includes all parts of the data gathering chain; starting with

detector readout through filtering and finally storing data on disks. The total num-

ber of applications/processes in this particular configuration is approximately 30,

though 7 of them are not directly involved in the ‘data chain’. A simple description

of each component can be found in Table 5.1 and a schematic view of the experi-

mental system is shown in Figure 5.1. All the processes are, as the name implies,

running on a single computer.

This is naturally not comparable to the actual system which runs on 3000+

computers, but it is representative of the key components and will give some initial

indications of how the system behaves in different scenarios. There are several

reasons for starting with a simple configuration:

(i) First of all, it is easier to control the behavior and environment surrounding

the setup. This is important as one must be able to induce different types

of errors in the system at specific times. This can then form a basis for

developing error detection techniques and/or to measure the effectiveness of

clustering and analysis methods.

(ii) Secondly, it allows for an easier assessment of the overall status of the sys-

tem, ranging from 100% functional through partially functional to 100% non-

functional.

(iii) Thirdly, it provides a base reference for further tests. By comparing the results

gained using this setup with those using a larger system one can compare

how the system reacts to the same scenarios. This may then give a better
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understanding of how different errors affect the system taking into account

the scale and topology.

Figure 5.1: The flow of information (dashed arrows) and data (bold arrows) in the

experimental setup. Please refer to Table 5.1 for a description of the different appli-

cations.

71



Table 5.1: Description of the components in the experimental setup

Abbreviation Name Description

ROS Read out System A part of the system responsible for receiving
data from the detector electronics.

L2SV Level 2 supervisor Responsible for distributing data within the level
2 system and communicating accept/reject deci-
sions to the DFM.

L2PU Level 2 processing
unit

L2PUs are assigned tasks by the L2SV. Data is
then requested from a ROS, processed and the
result is communicated back to the L2SV.

L2N Level 2 network Data network passing information and data be-
tween level 2 system applications. Information
from the L2SV is also passed on to the DFM
(through the EBN network).

DFM Dataflow manager Receives information from the L2SV and orches-
trates the correct flow of data between ROSs and
SFIs.

SFI Sub-farm input The part of the event building system where data
from the entire detector is collected into single
units called events.

EFB Event builder net-
work

Data network passing all information in the event
builder sub-system.

EFD Event filter
dataflow

Responsible for dataflow within the event filter
where further filtering of the data is conducted.

EFN Event filter network Data network passing all information in the event
filter sub-system.

PT Processing Task Part of the event filter. Responsible for making
an accept/reject decision for a single event.

SFO Sub-farm output Receives the final events and forwards them to
mass storage.

5.1.2 Multi-host-setup

In the second setup the TDAQ system was configured to utilise one of the available

computing clusters at CERN which are specially designed for testing the TDAQ

system. One can therefore ensure that no other processes are influencing the tests.

The process types involved in this setup were the same as in Section 5.1.1, but the

scale of the system is larger with a total of 36 computers involved and the number

of applications were 57. Given that the real TDAQ system will ultimately contain

3000 computers and tens of thousands of applications this may seem insignificant

or rather unrepresentative. However, there are several characteristics of the real

system and the multi-host-setup that justifies the use of the multi-host-setup for

testing. These are:
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(i) Most of the applications in the TDAQ system are identical and are involved

in the different stages of filtering. For example, 1500 of the 3000 computers

are all dedicated to the Event Filter sub-system and are all running identical

processes. Similarly, a large number of the computers and applications are

involved in the other stages of the filtering process. Hence, the biggest differ-

ence between the test setup and the real system is in the rate of which data

can flow through the system and not the actual behavior as such.

(ii) The multi-host-setup has a well defined network topology. This means that

there are dedicated hosts for running different sub-systems. This is important

both in terms of the behavior of the system as a high load in one sub-system

will not affect another part. It also means that any information gathered

from the system containing the computer/host name will implicitly carry some

information about which sub-system it is relevant to.

(iii) The multi-host-setup has separated control and dataflow networks as in the

real TDAQ system. This ensures that activity and/or failures in one of the

networks will not affect the other.

However, some situations are not easily reproducible. Some of these are:

(i) Information from external systems. In the real TDAQ system information is

received from external systems such as the detector control system (controlling

voltage, gas temperatures, etc), the accelerator (beam status, configuration

parameters) and the networking system (operational status of switches and

network).

(ii) The size of the real ATLAS system is of such a scale the some errors that are

normally very rare, e.g. disk failures, will occur frequently.

Overall the system is still sufficiently similar in behavior, and the data resulting

from the use of the multi-host setup should be sufficiently similar to the real AT-

LAS system so that different techniques may be tested using data from this setup.
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Ultimately, the methods developed must naturally be incorporated and tested in

the real ATLAS system in due course.

The data gathered using the single-host-setup formed the basis for the work

in (Sloper et al., 2008). Since then the work has progressed to the use of the multi-

host setup and this forms the basis for the work presented in this thesis.

5.1.3 Error scenarios

There are naturally a vast number of possible error scenarios one could investi-

gate, however in this thesis focus will be dedicated to situations where one or more

applications are not producing data that is expected. Note that as mentioned in

Section 4.4.1, if an application actually terminates this will be detected immediately

by its controller and can be dealt with appropriately. This type of error was chosen

due to the fact that such situations are relatively common in the real TDAQ system

and are frequently observed by operators. There are a number of underlying reasons

for this kind of error and they include:

(i) Internal failure in the process. This could lead to the process not producing

data or producing corrupted data or simply operating at a lower rate.

(ii) Network problems could hinder the transmission of data between the processes.

While this is not a problem for the process itself, the effect is in some cases

the same as if a process stopped producing data.

(iii) Problems related to the operating system could stop a process from executing

as expected. This could be anything from lack of memory or disk space to

problems with process scheduling and priority.

In order to simulate this type of error POSIX signals were utilised. POSIX is

an IEEE standard (ISO/IEC 9945) for user and software application interface to the

operating system and is supported by the UNIX systems we use for our experiments.

Among others, it defines an interface that allows us to send signals/commands to

any running process. There are a number of signals available, however the ones most
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useful in terms of simulating errors are SIGSTOP and SIGCONT. SIGSTOP will

temporarily stop the execution of the process while SIGCONT will resume it. Using

these two signals it allows us to simulate the situation where a process is no longer

working properly (or rather not at all) without actually terminating the process.

We can then resume its operation whenever we choose, thus simulating a situation

where they are not producing any data for a given period of time or with reduced

efficiency.

This process was repeated for three different types of applications, namely

the ROS applications, L2PU applications and SFO applications (choosing a different

application each time). These applications all take part in the dataflow and are

therefore good candidates for determining whether error detection based on ERS

and IS data is viable. In total 23 different applications were temporarily stopped

and restarted. Hence, there are 23 time periods in which the system is in error, each

period representing one of three possible error types. For simplicity these errors will

from now on be referred to as TypeI, TypeII and TypeIII error respectively.

5.1.4 Datasets

As discussed in Section 4.4.2 there are two main sources of information, the ERS

messages stemming from the applications in the system and the information pub-

lished1 in the IS. Throughout the error simulations all ERS messages were recorded

by the LogService and stored in a database from where they are subsequently re-

trieved. All information published to the IS by the applications shown in Figure 5.1

were also recorded. As the different application publish information at different

intervals this naturally puts a limit to the frequency of which the IS data can be

sampled/recorded. The IS data was therefore recorded at intervals of 2 seconds

as this accounted for the fastest rate of updates from any single application and

therefore ensured that no information was missed. As the information is recorded

at specific time intervals this means that the IS dataset naturally take the form of

1Publishing here refers to the action of sending information to the IS service were it can be

accessed by other application (see Section 2.1.1.5 for further details of the IS system)
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time series.

The ERS and IS datasets cover the same time frame and error scenarios.

The ERS dataset consisted of 4258 messages stemming from a variety of applica-

tions in the system. The IS dataset consisted of 978 measurements of 107 different

structures/datasets published by differnet applications. Concatenating all the IS

information this meant 978x1588 though many of the variables are repeated in dif-

ferent datasets. The IS and ERS datasets are presented in further detail, then

preprocessed and analysed in Section 5.3.1 and Section 5.3.2 respectively.

In the following section we will look more closely at some methods for

analysing and visualising these datasets.

5.2 Analysis methods

This section gives an introduction to the background theory of the preprocessing,

analysis and visualisation methods used in subsequent sections.

5.2.1 Principal component analysis

Principal component analysis (PCA) is a mathematical method that reduces the

number of dimensions in a dataset while retaining as much of the variance as possible.

The method has a wide range of uses including utility in areas such as data mining,

dimensionality reduction and de-correlation, pattern recognition and (lossy) data

compression (Liu et al., 2006; Tien et al., 2-6 Nov. 2004). It will in this chapter be

used to help identify the key components of the dataset, and allow for the elimination

of redundant information and to filter out noise.

PCA is realised by projecting the original M dimensions of data into a D

dimensional space where D <= M . This D dimensional space consists of orthogonal

vectors called principal components. The principal components are chosen in such a

way that a maximum of variance is achieved and they are ordered by the amount of

variance explained by each one. In this way the first principal component explains

more variance than the second and so on. By choosing D < M one can therefore
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project the data into a lower dimensional space while retaining as much variance

as possible. PCA is purely based on the variance in the data and is therefore an

unsupervised method.

There exist a number of variants of PCA (Wei-min and Chein-I, 23-28 July

2007) (Tien et al., 2-6 Nov. 2004), however the initial tests were performed us-

ing the standard form as explained in this section. As can be seen through the

analysis Section 5.3 the results gained through PCA correspond well to that of the

other approaches. There were therefore no obvious need to test other variants of

PCA. Unless otherwise stated the MATLAB R© implementation of PCA was used

throughout this thesis.

5.2.1.1 PCA visualisation

There are a number of ways to visualise the results of the PCA. In this chapter two

main approaches are used:

1. After the PCA has been performed the data are plotted in the principal com-

ponent space. This can be done in two or three dimensions as shown in

Figure 5.2 where the ERS data is plotted. The first three subplots show the

data projected onto respectively the 1st and 2nd, the 1st and 3rd and the 2nd

and 3rd principal components. The 4th plot shows a 3-dimensional plot of

the data using the first three principal components. Such plots facilitates the

inspection of the data and can be used to identify any clusters in the data.

2. The data are plotted by using the 1st and 2nd principal component as for the

approach described above. However, the original variables are also projected

onto the same dimensions. This is a good way of visualising how the different

original variables ‘take part’ in the final results. An example of this plot is

shown in Figure 5.3 where again the ERS data has been plotted.
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Figure 5.2: Principal component plot of example data.

Figure 5.3: Principal component plot of data with the original dimensions projected

onto the principal component plane.
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5.2.2 Fuzzy C-Means clustering

Clustering, in general, is a method for dividing a set of data into two or more groups

and is accomplished by identifying similarities between the individual data points

and categorising groups where data points in that group exhibit some similarities.

FCM clustering was first proposed in 1973 by J.C. Dunn (Dunn, 1973) and was

further developed by Bezdek (Bezdek, 1981). It is a method where a data point is

allowed to belong to two or more clusters according to a fuzzy membership function

for each cluster.

More formally we can define it as follows: Given a set of points xi, i = 1, . . . , n

then for each point xi, there exists a degree of membership to a cluster j represented

as Uij . Each cluster centre Cj is calculated using (5.1). Membership of a value in a

cluster is computed using (5.2).

Cj =

∑n
i U

m
ij∑n

i Uij
(5.1)

Uij =
1

∑l
k=1

(
||xi−Cj ||
||xi−Ck||

) 2
m−1

(5.2)

5.2.2.1 FCM algorithm

Algorithm 5.1 describes the general FCM algorithm. By adjusting the parameter

m one can change the extent to which degree the distance from a centre affects the

degree of membership. If m is closer to 1 the function behaves more like k-means

clustering (MacQueen, 1967) (i.e. membership in one cluster only).

5.2.3 The Self Organised Map (SOM)

The utilisation of SOMs is another technique which has widespread use in data

mining, classification and data visualisation. The SOM was first introduced by

Kohonen (Kohonen, 1982) and is thus sometimes referred to as a Kohonen network.

SOM is based on unsupervised learning, meaning that it does not use any a priori

knowledge about the data to be clustered. It is capable of finding classes/clusters
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Algorithm 5.1 FCM algorithm

1: Choose a number of clusters l, a convergence threshold ε and the factor 1 <

m <∞.

2: Assign randomly the membership of each point to the different clusters.

3: while ||U t+1 − U t|| > ε do

4: Compute cluster centers using (5.1).

5: Update the membership vector using (5.2).

6: end while

inherent in the data, though depending on the dataset this might not always be

true.

SOM is a type of ANN, consisting of an input layer and a map layer. All

nodes in the map layer are connected, using weighted connections, to each of the

nodes in the input layer. The SOM algorithm works by iteratively finding the map

nodes that are the most ‘similar’ to a given input and updating its weights so that

it fits the input better. Similarity is measured using the Euclidean distance between

the data points.

5.2.3.1 SOM topology

The number of nodes in the input layer corresponds to the number of dimensions in

the dataset to be clustered. The number of nodes in the map layer can be defined to

adjust the granularity of the clustering. A number of possible SOM topologies exist,

however the one used in this chapter is one where the map units are organised using

a hexagonal lattice structure as can be seen in Figure 5.4. In this topology each

adjacent unit is considered a neighbour giving an intuitive neighbourhood model

which is used during the training of the network (see Section 5.2.3.2).

Before training the map units are organised in a two-dimensional grid as

shown in Figure 5.5a. However, after training the map is capable of retaining the

topology of higher dimensional input data. An example of a trained grid is shown

in Figure 5.5b. The SOM was in this case trained using some example data and the

grid and input data have been projected into a three dimensional space using PCA.
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Figure 5.4: A SOM organised using a hexagonal lattice structure.
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(a) Untrained SOM

(b) Trained SOM

Figure 5.5: The SOM grid before and after training. In a) an untrained SOM map is

shown and b) shows the trained SOM projected into the input space together with the

input data.
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5.2.3.2 SOM algorithm

Algorithm 5.2 describes the general SOM algorithm. Each of the input data is

iteratively presented to the SOM and the map-node closest to the input in terms of

Euclidean distance is referred to as the Best Matching Unit (BMU). All nodes in the

neighborhood are then updated in order to be more similar to the input that was

presented. Determining neighbors can be done in a number of ways. One common

method is to choose map nodes that directly neighbor the BMU according to the

map topology. Hence for a hexagonal structure there are 6 immediate neighbours.

The neighbourhood size can be adjusted to affect the learning process of the map.

Variants of the algorithm include the popular ‘batch’ algorithm which presents

a group or batch of inputs to the map. For each of the input records in the batch the

algorithm keeps track of the corresponding best matching unit (BMU). Then the

map units are updated by using the average of the input vectors in its neighborhood.

This is repeated for a number of batches. This training method is less computa-

tionally expensive than the iterative one, but has still been shown to produce good

results, hence it will be used in the subsequent work.

Algorithm 5.2 The iterative SOM algorithm

1: Initialise the map unit weights.

2: while more input vectors exists do

3: Choose an input vector.

4: Iterate over all map units and find the one closest to the input in terms of

Euclidean distance. This node is referred to as the best matching unit (BMU).

5: Update the BMU and its neighbors (as defined by the neighborhood function)

by adjusting their weights to make them more similar to the input vector.

6: end while
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5.2.3.3 SOM visualisation

There exist a number of visualisation methods for presenting a SOM. The most

common is the Unified distance matrix (U-matrix) which displays a number of cells,

where each cell corresponds to a unit in the SOM map. The U-matrix displays the

distance between the map units, usually using a color coding. This can be done for

the entire map as in Figure 5.6, or per dimension/attribute in the input data; as in

Figure 5.7.

Figure 5.6: Unified distance matrix of a trained SOM.

5.2.4 Mann-Kendall trend detection and Sen slope

Mann-Kendall is a statistical test for trend detection (Mann, 1945; Kendall, 1975).

The algorithm essentially proceeds as follows: For a given dataset of size n

T = x1, x2, . . . , xn

calculate the statistics S using (5.3).

84



Figure 5.7: Unified distance matrix of the map and of each dimension in the input

data.

S =

n∑

i=1

n∑

j=i+1

yji, where yij =





1 if xj > xi

0 if xj = xi

−1 if xj < xi





(5.3)

S is then used to calculate the statistic Z as shown in (5.4) which is then used in a

Z-test with [H0: No trend] and [H1: A trend exists]. Hence the result of the test will

always be 1 or 0 representing that a trend is present or not respectively. V ar(S) is

the normal approximation of variance and gives good results as long as the number

of samples n is greater than 10.

Z =





(S−1)√
V ar(S)

, S > 0

(S+1)√
V ar(S)

, S < 0




, V ar(S) =

(n(n− 1)(2n+ 5))

18
(5.4)
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5.2.4.1 Sen slope

The Sen slope of a dataset is a measure of the slope of the trend, i.e. the rate

at which the data is changing. Given a dataset of n observations it is found by

calculating the values Qji between all points in the sample as shown in 5.5. The

Sen slope is then defined as the median of the set Q.

Qij = (xj − xi)/(j − i), i < j < n (5.5)

5.3 Analysis of the datasets

In order to understand the data and to investigate whether error detection is likely

to be successful based on the dataset preprocessing, analysis and visualisation of the

data has been performed. In the following sections the two datasets, IS and ERS,

are investigated in turn.

5.3.1 IS data

The IS datasets consists of 107 message structures published by 37 different appli-

cations, hence some applications publish more than one information structure (here

meaning a set of information). All these applications take part in the flow of data in

the experimental setup. The information published by each application was stored

periodically throughout the experimental tests and the corresponding time series

were then created.

Figure 5.8 shows an example of the information published by one of the L2PU

application taking part in the experimental setup. The figure shows a time series

plot for each piece of the information published by that particular L2PU application.
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Figure 5.8: Example data published in the Information Service (IS) by an application

in the TDAQ system.
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5.3.1.1 Pre-processing

In order to work with the IS data some pre-processing was necessary. While most

of the data is available as numerical values, some exceptions exist where the data is

available only as text. These need to be transformed into numerical values which was

accomplished using a simple hash function. The pseudocode for the hash function

is shown in Algorithm 5.3. This particular hash functions was chosen for several

reasons:

(i) The algorithm is simple and fast. This may be of particular importance if

preprocessing is to be performed ‘on-line’ and a limited amount of time is

available.

(ii) The algorithm puts emphasis on the leading characters. Typical hash func-

tions aim to provide random numbers even if the initial string values are very

similar and no emphasis is put on any parts of the strings. Using the algo-

rithm described here means that text values that start similarly will produce

numerical values that are close. This is important as much of the textual

data contains a structure which encodes some information about the under-

lying system. An example is the computer/host name which is created using

a specific pattern. Consider the host name ‘pc-TDAQ-one-01’. In this case

the ‘pc’ indicates that it is a computer, ‘TDAQ’ indicates that it is a part of

the TDAQ system and ‘one’ specifies that it is a part of the online software.

Hence, using the outlined hash function computers within the online part of

the TDAQ system will all correspond to very similar numerical values. As

each sub-system is assigned to a specific group of hosts and is named corre-

spondingly this means that the numerical values will maintain this inherent

‘grouping’ in the textual data.

Based on these factors this algorithm is better suited for this particular type

than an algorithm that produces more randomly distributed numbers, something

that many (if not most) hash functions are designed to do.
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Algorithm 5.3 Calculate hash value of string S

1: HashV alue = 0;

2: k = 1;

3: for all characters c in string S do

4: HashV alue+ = ascii value(c) ∗ 2(24−k)

5: k + +

6: end for

7: return HashValue;

5.3.1.2 Applying PCA to the IS data

After converting the textual data into numerical ones a total of 978 measurements

exists for the IS data containing a total of 1588 variables. A number of these

variables are of no interest. In particular observations that are constant or in-

creasing/decreasing with a constant value throughout the measurements do not

contribute to the variance of the data and will therefore not provide any important

information.

In order to reduce the amount of variables PCA analysis was performed

for each of the 107 information structures retaining only the three most significant

principal components. This resulted in a dataset of size 978x321. All constant

values and values which are monotonically changing are then removed leaving a

final dataset of size 978x234. Again, we remove those values that are linear as they

do not contribute to the variance of the dataset.

This dataset was then further reduced again using PCA. Figure 5.9 shows

that virtually all the variance in the data can be explained by retaining just the 3

most significant principal components. However, following further inspection of the

resulting datasets some problems were found. Figure 5.10 shows the dataset plotted

using the 3 most significant principal components. The observations corresponding

to the different types of errors do not form any obvious clusters in the dataset.

Indeed they are interleaved with observations corresponding to non-error situations.

Based on this it is not likely that error detection techniques could be developed to
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predict these types of errors based on this dataset.

Figure 5.9: Cumulative variance explained by the first 3 principal components.

Figure 5.10: Principal component analysis of the IS data.

In order to improve upon this a different approach to processing the data was

taken. As the IS data is inherently time-series using a trend detection algorithm

could lead to better results. Such an approach also has the advantage that it does

not rely on the actual values contained in the dataset, but rather the trends and

relative changes within the dataset. Utilising such an approach will therefore be
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more robust in terms of handling different datasets gathered using other forms of

setups of the TDAQ system. The dataset was preprocessed as before but each of the

observations were analysed using the Mann-Kendall algorithm and the Sen slope was

calculated as described in Section 5.2.4. The trend and Sen slope were calculated

using 10 seconds intervals. This interval was chosen as the delay in detection must

not be too large while still containing enough relevant information to determine

whether a trend is present or not. In order to verify that the ‘correct’ interval was

chosen a visual inspection was performed comparing the result of the Mann-Kendall

algorithm to the observed values over a number of different intervals. 10 seconds was

found to give a good tradeoff giving a good measure while being within a reasonable

time-limit to allow error detection to take place.

After calculating the trend and Sen slope for all the observations PCA was

again applied in order to reduce the dataset. The first 25 principal components

were kept which explained 80% of the variance in the data. These were chosen as

each component beyond 25 accounts for less than 0.5% of the variance in the data.

Hence, the limit was set in order to keep the number of variables limited so that the

supervised learning procedures applied in Chapters 6, 7 and 8 can operate efficiently.

Figure 5.11 shows the resulting dataset plotted in terms of the first 3 principal com-

ponents. It can be seen that the observations corresponding to the error situations

are better grouped and easier to separate from the other observations. This data

was therefore utilised for the following analysis and in the subsequent chapters.

5.3.1.3 SOM analysis and visualisation

In order to identify possible clusters in the data a SOM was trained using the

entire 978x234 dataset. The U-matrix of the trained map is shown in Figure 5.12a.

The SOM map was then clustered using FCM. The clustering was performed using

between 2 and 12 clusters and for each number of clusters FCM was run a number

of times and the best result was recorded. The FCM is run multiple times as the

results can vary due to random initialisation of the FCM. Running the clustering

5 times for each cluster number was found to be a reasonable trade-off in terms of
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Figure 5.11: Principal component analysis of the IS data processed using the trend

detection approach.

efficiency and accuracy. An optimal of 5 clusters were obtained using the Davies-

Bouldin (DB) index (Davies and Bouldin, 1979). The DB index has been shown to

compare well to other methods of choosing clusters (Bezdek and Pal, 1998). The

result of the FCM clustering of the SOM map is shown in Figure 5.12b, and the

DB index and Sum Squared Error (SSE) for the clustering process are shown in

Figure 5.13.

5.3.1.4 Observations

There appears to be some distinct clusters in the data. While it is not trivial to draw

any conclusions based on the analysis so far, it does seem likely that some of these

clusters could correspond well to the different error scenarios that were introduced

while gathering the dataset. In Chapter 6, 7 and 8 different ITS techniques will

be trained to learn from these datasets showing whether or not there are indeed

patterns corresponding to the error scenarios.
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(a) U-Matrix (b) FCM clustering of U-Matrix

Figure 5.12: In a) the U-matrix of the trained SOM for the IS data is shown. In b)

the FCM clustering of the trained SOM.

Figure 5.13: Davies-Bouldin index and SSE for the FCM clustering of the SOM map.
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5.3.2 ERS data

The ERS dataset consists of 4258 messages produced by all applications in the setup.

As all messages are by default stored in an database the messages could be easily

retrieved after the experiments where concluded.

5.3.2.1 Initial overview

Looking first at how the messages are distributed in time several observations can be

made. There are some distinct periods where a large number of messages are being

sent. These periods correspond well with the times when the TypeI errors where

introduced into the system. However there are few or no messages corresponding to

the TypeII and TypeIII errors. The message distribution is shown in Figure 5.14

where the start and end time of the introduced errors are marked with vertical lines.

Figure 5.15 shows the number of messages per application. One can see that

the majority of messages originate from the L2PU type applications. Also a number

of messages arrived from the EFD, SFI and SFO applications. All these applications

play a major part in the chain of data in the system, and are therefore affected by the

introduced errors. Hence it is to be expected that a majority of messages originates

from these applications.

5.3.2.2 Pre-processing

In order to perform the different types of data analysis such as PCA and SOM the

data must first be pre-processed. The ERS data consists of a number of textual

values which must be converted into numerical values. This was achieved, as for

the IS data, by using the custom hash function described in Algorithm 5.3. The

algorithm was chosen for that same reasons as described in Section 5.3.1.1 as the

ERS data also contains textual information built using a specific structure which

should be retained in the numerical data. After converting the textual values the

data was then normalised so that all input lie in the range of [0,1].

After applying pre-processing the variance of the different variables can be

determined as shown in Figure 5.16, though for some of the variables this depends
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Figure 5.14: Number of messages in time. The vertical lines indicate the start and end

time of the introduced errors.

Figure 5.15: Number of messages sent by each application type.
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Figure 5.16: Variance in the ERS data after pre-processing

on how the mapping from textual to numerical values is done. In the figure the box

lines represent the lower quartile, the median and the upper quartile. Outliers are

defined as values larger than q3+1.5(q3−q1) where q3 is the upper quartile and q1 is

the lower quartile. The outliers are marked with a cross in the figure. For example,

looking closely at the TIME variable one can observe that the majority of messages

are grouped together with an upper quartile at approximately 0.75 and a lower

quartile at 0.68. Hence, 50% of the messages are located within this range. There

are also some outliers towards the end of the range. Looking back at Figure 5.14

one can see that this seems like a reasonable result as the majority of messages are

grouped together (corresponding to the TypeI errors) and also contain a burst of

messages towards the end.

5.3.2.3 Principal component analysis

PCA was performed using the dataset after the initial pre-processing. As can be

seen from Figure 5.17 the first three components explain 91% of the variance in the

dataset. With such a high percentage explained by the 3 most significant principal

components one should be able to identify any clusters in the data by plotting the
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data projected into these dimensions. Figure 5.18 shows the data projected into

the first 3 principal components, first in pairs and then finally in a 3d plot with

the first three principal components represented on the axes. Clearly, there are

some clusters in the data. However, due to the dimensionality reduction that was

performed combined with the discreet nature of the dataset there may be several

observations corresponding to the same points in the plot. In order to visualise such

cases in a better way, a plot where the marker size corresponds to the number of

observations at the given point is shown in Figure 5.19. From this figure it can be

seen that some of the points correspond to a large number of messages. This makes

the clusters in the data even more evident and the fact that a single point in the

PCA plot corresponds to a number of messages may indicate that a number of very

similar messages where issued, for example only differing slightly in time.

Figure 5.17: Variance explained by the 4 first principal components

By investigating which messages corresponds to the different points in the

PCA plot it is evident that one of the larger clusters correspond to L2PU applications

while another one corresponds to SFI applications. This is visualised by labeling

the data points as shown in Figure 5.20. Note that some points are left unlabeled

in order to maintain the readability of the figure.
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Figure 5.18: The ERS data projected onto the three first principal components
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Figure 5.19: A principal component plot of the ERS dataset for the first two com-

ponents. A larger marker indicates a greater number of observations at the given

point.

Figure 5.20: A principal component plot of the ERS dataset for the first two compo-

nents with points labeled with the corresponding application name.
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5.3.2.4 SOM analysis and visualisation

In order to verify and add to the result of the PCA, SOM analysis and visualisation

was also performed. A SOM was created using default parameters in the MATLAB R©

implementation of SOM using a hexagonal lattice structure and the training was

performed using the ‘batch’ training algorithm as described in Section 5.2.3.2.

The U-matrix for the trained SOM including maps of how the different at-

tributes correspond to the map units are shown in Figure 5.21. From this it can

be seen that some clusters exist in the data and it is possible to visualise how the

different parameters take part in the clusters. For example, if one considers the

cluster on the top right side of the U-matrix, one can observe that a correspond-

ing area is present in each of the attribute maps hence the cluster corresponds to

messages with the same name, severity, message id, machine name and name space.

They are however, as can be seen from the corresponding attribute map, distributed

somewhat in time. Similar interpretation could be made for the other clusters in the

map, though the question as to how to determine a cluster will necessarily arise. In

order to deal with this problem in an automated way, the identification of clusters

in the SOM was done using FCM clustering (see Section 5.2.2 for more details) of

the map units. FCM clustering was chosen as it provides an easy and automatic

way of doing the clustering. FCM has been shown to give better results than that

of other clustering techniques such as K-clustering (MacQueen, 1967). An optimum

of 8 clusters was found using the DB index, and the clustering of the map can be

seen in Figure 5.22.

5.3.2.5 ERS data for error detection

As discovered in Section 5.3.2.1 it is clear that for TypeII and TypeIII error types

there are no or very few ERS messages being sent/issued in the system. It is

therefore very unlikely that any error detection for these types of errors will currently

be possible based on the ERS data. However, for the TypeI error there are some

clusters in the data that seem to correspond very well to the time when the errors

were introduced/simulated. By closer analysis it is evident that a large number of
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the messages are being sent from the applications taking part in the data flow in the

system. Based on this it is likely that such errors could be detected and classified

by using the available ERS data.

Figure 5.21: U-matrix and attribute maps for the SOM trained using the ERS data.
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Figure 5.22: Result of clustering of the SOM using FCM.
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5.4 Discussion and conclusions

Overall the presented techniques provide several ways to preprocess, analyse and

visualise the datasets. The main aim of this chapter was to determine whether

the datasets are suitable for training and testing different types of error detection

systems. However, the techniques presented here may also be of use in other contexts

and could provide a way to gain better knowledge of the effects of errors in the

system.

For the IS data better results were achieved by first applying trend detection

techniques to the data. After applying trend detection the clusters in the data were

more clear and the observations corresponding to the error times were easier to

separate, compared to the case where no trend detection was performed. PCA and

SOM analysis both confirmed that there are clusters in the data and hence error

detection is likely to be possible using the IS dataset.

For the ERS dataset, as discovered in Section 5.3.2.1, it is likely to be useful

for detecting only one of the three introduced errors. This is not the expected

behavior for the system and could be due to any number of reasons, which may

include:

(i) The applications affected by the errors may not be detecting that anything is

wrong, and are hence not issuing any errors or warnings.

(ii) The applications are indeed noticing something is wrong, but are not issuing

any errors or warnings. This could be by choice of the developer or possibly by

mistake. This can only be discovered by discussion with the developer and/or

close inspection of the code.

(iii) The relevant applications may rely on information from other components

to discover the problem. If for some reason this information is missing, the

error might not be discovered and hence no messages will be issued by the

application.

The exact reason can only be discovered through consultation with the relevant

103



system/application expert. While it is of course of importance to find out, it is

not covered in the thesis work. This is due to the fact that such an investigation

involves a large number of people and is an ongoing process. The author also does

not have the ‘authority’ to enforce such a review and any time scales are therefore

very difficult to estimate.

To summarise it is likely that error detection is possible based on the gathered

datasets. In the following chapters several methods for developing error detection

and classification systems will be investigated based on the datasets analysed in this

chapter. In Chapter 6 different types of ANNs are investigated in order to detect and

classify the different types of errors. In Chapter 7 a SVM approach using the same

datasets will then be investigated and compared to the ANN approach. Finally, in

Chapter 8 a CGP approach is investigated and compared to the results obtained

using both the ANN and SVM approaches.
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Chapter 6

Classification of errors using

Artificial Neural Networks

In the previous chapter the data gathered from the experimental setup were analysed

using a number of different visualisation and clustering techniques. Clusters were

identified which corresponded well with the error situations that had been introduced

into the system. In order to confirm this correlation, artificial neural networks

(ANNs) were trained in order to detect the different types of errors based on the

two datasets gathered.

This chapter provides an introduction to ANNs in general in Section 6.1.

Section 6.2 then describes how the different ANNs were applied to the datasets

gathered from the experimental setup as described in Chapter 5. The results are

discussed and the application of ANNs are evaluated in the context of the TDAQ

system. As this is the very first attempt at detecting errors in the TDAQ system

using ANNs a number of different network types have therefore been applied.

In Section 6.2.3 an ensemble of the ANNs is then developed in order to try to

improve upon the results obtained using a single ANN. The previously trained ANNs

were combined using a genetic algorithm in order to find the optimal combination.

Finally, in Section 6.3.1 a new method named Genetic Neural Mathematical

Method (GNMM) is applied in order to identify variables that may not be needed

when training the ANNs. After identifying the variables that are not needed or

contain redundant information, they are removed and the ANNs are retrained using
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only the remaining variables. The results are then compared to the results obtained

previously using all the available variables and the results are discussed.

6.1 Introduction to Artificial Neural Networks (ANNs)

This section will provide an introduction to the concepts of ANNs. It then moves

on to describe the four types of network used in this chapter, namely the multilayer

perceptron (MLP) network, the time delay neural network (TDNN), the radial ba-

sis function network (RBFN) and the probabilistic neural network (PNN). It also

includes the reasoning for choosing each of the ANNs described. Unless otherwise

stated the MATLAB R© implementation of the ANNs was used throughout the chap-

ter.

6.1.1 ANN background

The idea behind ANNs is to mimic the way the biological brain operates. The basic

computational unit in the nervous system is the nerve cell commonly referred to as

a neuron. A neuron, in general terms, consists of:

• Dendrites (inputs)

• A cell body

• Axon (output)

A neuron receives input from other neurons (typically many thousands)

through its dendrites. All the inputs are ‘summed’ and if this sum exceeds a certain

threshold level, the neuron discharges an electrical pulse that travels down the axon,

to the next neuron(s) and so on. A schematic view of a biological neuron can be

seen in Figure 6.1.
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Figure 6.1: Schematic representation of a biological neuron. Adapted from (Carlson,

1992).

6.1.1.1 The artificial neuron

The artificial neuron was first proposed by McCulloch and Pitts in 1943 (Mcculloch

and Pitts, 1943). It is based on the biological neuron, but uses a simplified mathe-

matical model. As in the case of the biological neuron, the artificial neuron usually

consists of 3 main components:

• Xm - m number of weighted inputs corresponding to the dendrites of a bio-

logical neuron. This is equivalent to the dendrites in the biological neuron.

• f(x) - an activation function of the accumulated input. This simulates the cell

body and the activation threshold in the biological neuron.
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• y - the accumulated output y as shown in 6.1. This is equivalent to the

electrical charge passing through the axon in the biological neuron.

y = f(
∑

xiwi) (6.1)

In addition to the sum of individual weights wi it is common to use an

arbitrary bias α such that:

y = f(
∑

xiwi − α) (6.2)

Figure 6.2: Schematic representation of the artificial neuron

A schematic representation of the artificial neuron is shown in Figure 6.2.

The activation function can vary depending on implementation, but the sigmoid

function:

y(x) =
1

1 + e−x
(6.3)

where x is the input, is a popular choice due to the fact that it is continuously

differentiable, something that is useful in the learning process as discussed in Sec-
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tion 6.1.3.3. Another common choice of activation function is the radial basis func-

tion (RBF) which is a function where the value depends only on the distance from

the origin, so that f(x) = f(||x||). A common type of RBF is the Gaussian:

f(x) =
1

e−βx2
, β > 0 (6.4)

where x is the input and β controls the width of the function as shown in Figure 6.3.

(a) β = 4 (b) β = .5

Figure 6.3: Shows the effect of changing β for function (6.4).

By interconnecting a number of artificial neurons, and by varying the activa-

tion functions, one can build variants of ANNs. There are no limits on the variants

of ANNs that can be created in this way, but some common ‘classes’ exist and the

ones used in this work will be described in the following section.

6.1.2 ANN variants

This section presents the different variants of ANNs used in this thesis work. The

training of ANNs in general is then discussed before the specifics of training each

of the presented ANN variants is described. Finally there is a comparison between

the different variants of ANNs presented in this section.

6.1.2.1 Multi Layer Perceptron (MLP)

MLP is a variant of ANN where there is one or more hidden layers between the input

and output layers. The MLP nodes include non-linearity in their output usually

110



represented by a logistic function. Normally each node in a layer is connected to

every node in the next layer. This connection between the neurons is weighted and

can be modified when training the MLP. Figure 6.4 shows a schematic overview of

an example MLP consisting of an input layer, a hidden layer and an output layer

containing a single output.

Figure 6.4: A simple MLP with one hidden layer and a single output

The MLP was chosen as it is the most commonly used ANN (Haykin, 1998)

and provides the basis for many of the other techniques such as the TDNN described

below. It has been shown that an MLP, provided that there are sufficient neurons

in the hidden layer and sufficient data available, can approximate almost any con-

tinuous function (Valiant, 1988; Cybenko, 1989). Its applications are wide, ranging

from atmospheric science (Gardner and Dorling, 1998), vision problems (Khotanzad

and Chung, 1998) and classification problems (Ritschel et al., 1994) to name a few.
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6.1.2.2 Radial Basis Function Network (RBFN)

RBFNs (Orr, 1996) are a variant of ANNs using a radial basis function as the

activation function of the neurons. The topology of a RBFN is usually similar to

that of the MLP, in that it consists of input nodes, one or more hidden layers of

neurons and an output layer. The hidden neurons have a (usually) non-linear radial

basis activation function while the output neuron is linear. The output of a RBFN

can therefore be described as:

F (x) =
N∑

i=1

Wiφ(||x− ri||) (6.5)

where N is the number of neurons in the hidden layer, φ is the radial basis function

with a centre at ri and W are the weights of the linear output neuron. A schematic

view of a RBFN is shown in Figure 6.5.

Figure 6.5: A simple RBFN with one hidden layer and one output. The neurons in the

hidden layer all uses a RBF as the activation function.

The RBFN was chosen as it is capable of universal approximation (Park and

Sandberg, 1991) and has been successfully applied to a wide range of problems such
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as obtaining dispersion coefficients (de Almeida et al., 2000), forecasting (Mori and

Awata, 2007) and importantly for the classification of faults (Leonard and Kramer,

1991; Meng et al., 2010).

6.1.2.3 Probabilistic Neural Network (PNN)

PNNs were first introduced by Specht (Specht, 1990) and further developed in

(Specht, 1992). The PNN can be thought of as a type of normalised RBF net-

work. It consists of three layers; namely the input layer, a hidden layer and the

output layer. Let us consider each in turn:

Input layer: This layer consists of one unit per variable/dimension in the training

data.

Hidden Layer: The hidden layer consists of n hidden units, where n is the number

of training cases. The hidden units usually use some sort of probability density

function, such as the Gaussian, as the activation function. The activation

function of each unit is centred at a corresponding training case.

Output layer: The output layer consists of k nodes, where k corresponds to the

number of classes in the training set. The weight between a hidden unit and an

output unit is 1 if the training case corresponding to the hidden unit belongs

to that output class, otherwise it is 0. Alternatively, prior known probabilities

of class memberships may be used instead, in particular, in cases where the

actual probabilities are known to differ from the relative representation in the

training set.

PNNs have been shown to work very well in a number of classification related

applications such as fault diagnosis (Danfeng et al., 2009; Liang et al., 2007; Yang

et al., 2006), credit risk assessment (Huang and Tian, 2008), speech recognition

(Ganchev et al., 2004) and satellite image classification (Tian et al., 2000).
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6.1.2.4 Time-Delay Neural Network (TDNN)

TDNNs were first introduced by Waibel in 1987 for use in speech recognition (Waibel

et al., 1989). TDNNs are able to learn temporal patterns in the dataset. This is

achieved by utilising a number of delayed inputs, such that the same input patterns

are presented several times to the network. Compared to the regular MLP (as

described in Section 6.1.2.1) each unit in the first hidden layer is modified to be

presented with n delayed input vectors in addition to the un-delayed input. If we

consider an input vector to be of size i = 3 and a delay of n = 2 the hidden units

will each have 9 weighted inputs. An example TDNN is shown in Figure 6.6.

Figure 6.6: A TDNN with 2 time delays.

As each input vector is presented to the hidden units at n+1 different points

in time with a delay of δt, this allows the TDNN to correlate any temporal changes

in the input data. It is also possible to introduce delays at any subsequent hidden

layers using the same approach, but in this work only the form of TDNN with delays

at the input layer was used.
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6.1.3 Training ANNs

This section describes the various training algorithms used to train ANNs. First

the general algorithms and approaches to training ANNs are presented. It then

presents the specific training approaches used for the different ANNs presented in

the previous section.

6.1.3.1 Batch and incremental training

Two major types of training methods exists for ANNs; batch training and incremen-

tal training. The basic algorithm for batch training is as described in Algorithm 6.1

and the algorithm for incremental training is described in Algorithm 6.2. Incremen-

tal training presents a single training record to the ANN at a time and updates all

weights using the single record. A new record is then presented and so on. The

batch approach on the other hand presents a subset of the dataset at a time and

uses the average error for all samples in the subset in order to update the weights.

Both algorithms continue until a predefined criteria is reached. This criteria can be

defined in a number of ways, though some common ones include a combination of

the following:

(i) The number of training epochs have reached some defined limit

(ii) The average ANN error is below some defined tolerance limit

(iii) The gradient of the average ANN error is relatively small (i.e. below a defined

limit)

6.1.3.2 On-line vs off-line training

In on-line training an input record is presented to the network and used for training

and then discarded after it has been processed. Hence, each record can only be

accessed once and only once. On-line training is always incremental.

In off-line training on the other hand all the training records can be consulted

multiple times. This enables the use of more advanced training algorithms. Among
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Algorithm 6.1 Batch training algorithm

1: Initialise the weights

2: while Predefined criterion is not reached do

3: Present a subset (may be the entire set) of the training data to the ANN and

calculate average of the error

4: Update all the weights using the calculated error

5: Choose a new subset of the training data

6: end while

Algorithm 6.2 Incremental training algorithm

1: Initialise the weights

2: while Predefined criterion is not reached do

3: Present a single record of the training data to the ANN and calculate the

error

4: Update all the weights using the calculated error

5: Choose a new input record

6: end while

other things one can perform multiple random initialisations of the network in order

to for example overcome the possible problem of being stuck in a local minima.

Throughout this chapter off-line training will be used unless stated otherwise.

6.1.3.3 Training algorithms

There exist several algorithms for updating the weights when training ANNs, how-

ever by far the most popular is the Back Propagation Algorithm (BPA) (Rumelhart

et al., 1986) or some variant of it. The goal of the algorithm is to minimise the

difference between the network output and the target output. This difference is

referred to as the estimated error which is usually calculated as the Sum-Squared

Error (SSE). Let opi be the output of the ith neuron in the output layer for a given

input pattern p and let tpi be the corresponding target output. The SSE Ep is then

given by:
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Ep =
1

2

n∑

i

(tpi − o
p
i )

2 (6.6)

The BPA makes two passes through the network. First the output at each

node is calculated by feeding input data through the network in what is usually

referred to as the forward pass. The output is then compared to a known cor-

rect/desired value and the error is calculated. A backward pass is then performed

where the derivative of this error is propagated back through the network and all

weights are updated so as to minimise the error.

It is important to note that the BPA does not guarantee that the network

finds an optimal solution. It is possible for the algorithm to become stuck in a local

minimum in the error surface. This is due to the fact that the algorithm uses a

gradient descent method (Rumelhart et al., 1986).

A popular variation of the back-propagation is the Levenberg-Marquardt

Algorithm (LMA) (Levenberg, 1944; Marquardt, 1963). This algorithm is generally

faster than the BPA while achieving similar results. The LMA is therefore used

throughout this work unless stated otherwise.

6.1.3.4 Training MLPs

MLPs are usually trained using the BPA or variants of it such as the LMA as

described in the previous section. Both the batch and the incremental training

methods can be used in order to train MLPs.

MLPs are prone to over-fitting (see Section 4.2.2.4) if the model is trained

for a very large number of steps. However, determining what is the optimal number

of training steps is non-trivial and often application specific. In order to avoid this

problem a validation set (see Section 4.2.2.5) may be used in order to help determine

when to stop the training. Such an approach is often referred to as early-stopping.

The exact approach may vary, but a common method is to test the performance of

the MLP on the validation set at each step of the training. If the performance on

the validation set does not improve for a fixed number of generations the training

is stopped and the current value is accepted to be the best result.
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Alternatively, one can keep track of the epoch in which the validation error is

the lowest and utilise those weights for the final network, though such an approach

does not actually constitute early-stopping, it may reduce the chance of over-fitting.

It is also not prone to natural fluctuations in the error value which may cause the

previous approach to stop the training prematurely.

Note that in all cases the validation set must be different from the test set or

one is effectively training using the test set which would lead to a overly optimistic

measure of the generalisation performance.

6.1.3.5 Training RBFNs

The training of RBFNs differs from that of MLPs and is usually performed in two

passes; first by adjusting the parameters of the radial basis functions and then by

optimising the weights of the second layer. The first step is realised in an unsuper-

vised manner (using only the input data), while the second step is performed using

both input and output data. The computational cost of training RBFNs is quite

low compared to that of the BPA. However, if the input dataset is large, the number

of neurons might become very large leading to slow training and execution speed.

For RBFNs it may be possible to find a ‘perfect’ interpolation of the training data

using one neuron in the hidden layer per record in the input data. That such an

interpolation is possible can be shown as follows:

Given a set of N distinct points xi, i = 1, 2, .., N and a corresponding point yi, find

a function F such that

F (xi) = yi, ∀i ∈ N

By creating a RBFN using N neurons in the hidden layer and choosing a centre for

each neuron to correspond to a distinct input value, xi, we have that:

gij = φ(||xj − xi||) (6.7)

118



By evaluating g, for all points and substituting for (6.6) we have that:

∣∣∣∣∣∣∣∣∣

gij . . . giN
...

. . .
...

gNj . . . gNN

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣

Wi

...

WN

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣

yi
...

yN

∣∣∣∣∣∣∣∣∣
(6.8)

Equation (6.7) can be solved using linear algebra and thus the selection of weights

constituting a perfect interpolation of the training samples is determined.

However, if the input data is noisy the RBFN may be over-fitting the problem

(see Section 4.2.2.4), something that can lead to a much degraded generalisation

performance. The problem can be illustrated as follows:

Let us consider a dataset generated using the function f(x) = sin(x). Noise

is then added to the dataset and the RBFN is ‘solved’ for the input using 6.8. The

RBFN output will pass through every data point as shown in Figure 6.7, and one

can see that the generalisation performance is not very good. The RBFN fits the

data perfectly, but does not follow the underlying function very well. If we then

create a RBFN using just 4 nodes in the hidden layer and train it using the same

input data, then this leads to a much better generalisation performance as shown in

Figure 6.8. In this case the output of the RBFN is more closely matched to that of

the underlying function. This however, raises the question of how many nodes one

should use in the hidden layer?

In order to overcome this possible problem an approach referred to as con-

structive RBFN is often used. This method starts out with a single neuron in the

hidden layer and performs the training of the network. If the error is within a pre-

defined tolerance, the RBFN is considered complete and no further action is taken.

If the training error is larger than the predefined tolerance a single neuron is added

to the hidden layer and the network is retrained. This process continues until the

error is low enough or the number of neurons have reached a limit as described in

Algorithm 6.3. This training method was used throughout the training of the RBFN

in this chapter unless stated otherwise.
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Figure 6.7: Exact interpolation using a RBF network. This leads to very bad general-

isation performance.

Figure 6.8: RBFN using just 4 nodes in the hidden layer.
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Algorithm 6.3 Constructive RBFN

1: Create network with 1 neuron

2: Train the network

3: Error ← Calculate average error of network

4: while Error < error tolerance AND #neurons ≤ maxNeurons do

5: Add a neuron to the hidden layer

6: Retrain the network

7: Error ← Calculate average error of network

8: end while

6.1.3.6 Training PNN

The weight connections in PNNs are either 1 or 0 depending on the corresponding

class of the input data. The number of neurons corresponds to the number of

training records and the centre of the hidden units are determined by the values

of the individual training records. This means that the only parameter to be set

during training is the width of the radial basis function. Hence, the training of the

PNN can be quite fast, though determining the ‘correct’ width can potentially be

rather time consuming. Incremental training is naturally not possible using PNNs

(at least not using the most common algorithms) as all input cases are needed in

order to determine the size and parameters of the network.

6.1.3.7 Training TDNNs

TDNNs normally use the BPA for training, modified to take into account the delayed

inputs. As the delayed inputs are copies of previous ones, the weights corresponding

to each time shift are constrained to be the same. In practice this is achieved by first

determining the error gradient using the BPA for each time shifted input separately.

The corresponding connections are then all modified by the average of the individual

values. Hence the training is very similar to that of the MLP though somewhat more

computationally expensive. Methods such as batch and incremental learning also

apply to TDNNs.
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6.1.4 Comparison of the presented ANNs

Each of the different variants of ANNs presented have some possible advantages

and disadvantages. Table 6.1 provides a summary of the main points for each of the

ANN variants.

6.2 Applying ANNs for error detection

As described in Chapter 5 data have been gathered from two different sources, and

thus two separate datasets exists, namely the ERS dataset and the IS dataset. The

following is a description of how the different ANNs were applied to detect errors

using the two available datasets. Each of the datasets will be considered in turn:

6.2.1 Applying ANNs to the IS data

In this section the different ANNs will be applied to the IS data in order to detect

and classify the three different error types. A measure to compare the performance

of the different ANNs is first presented. The data are then prepared before the

different ANNs are applied in turn.

6.2.1.1 Comparing ANN performances

In order to make it easier to compare the overall performance of the classifiers an

overall performance measure was calculated. The performance measure was defined

as the product of classification accuracy, Sensitivity, Specificity, PPV and NPV.

Hence the performance of a ANN classifier for class i is given by:

Perfi(ANN) = Accuracyi ∗ Specificityi ∗ Sensitivityi ∗ PPVi ∗NPVi;

Using this measure a classifier achieving good results in all categories will achieve a

better performance rating compared to a classifier which achieves a higher accuracy

in some categories, but lower in others. This is of importance in cases where the

number of samples in one category are much larger than in the other as in the case of
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the IS dataset. Indeed a classifier always reporting a negative result would achieve a

classification accuracy of 95+%, but would clearly not do as good a job of classifying

the errors!

Also, the execution time of a given ANN may be of importance if it is to be

used in an online system. As execution time largely depends on implementation and

which hardware it is running on the relative execution time was calculated. This

was done by calculating the average execution time for each ANN and dividing by

the lowest average execution time among all the different ANNs.

6.2.1.2 Data preparation

As one can recall from Section 5.3.1.2 the IS dataset was processed using a trend

detection algorithm which was applied over intervals of 10 seconds. The correspond-

ing target vector was created by noting the time intervals for each of the input data

rows and if the system was in an error state for the majority of that interval (i.e.

more than 5 of the 10 seconds) the target vector is set as positive. Hence the target

vector is a binary vector containing 3 dimensions, one for each class of errors. The

dataset is of relatively limited size containing 974 observations and in particular a

limited number of positive cases containing just 33 positive samples divided over

the three error types.

Noisy replicates of the input data were therefore added to the dataset. This

has been shown to be beneficial to the generalisation error of the network (Koistinen

and Holmstrom, 1991; An, 1996) in particular in cases of binary classification where

the samples are eschewed (i.e. the majority of samples are of one class) (Lee, 2000)

as is the case for the IS dataset. As the problem concerns dealing with binary

classification the target vectors were left unchanged and simply replicated. This

addition of noise is in general possible due to the fact that ANNs gives a similar

output for very similar input values. A mathematical justification of the addition

of noise is given in (Holmstrom and Koistinen, 1992). The process of adding noisy

replicates is also referred to in the literature as jitter.

Addition of noise was found to be beneficial for the IS data and a comparison
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of the results with and without noise is given in Section 6.2.1.7. Each input value

was replicated twice with a signal-to-noise ratio (SNR) of 15, hence a total of 200%

of noisy replicates was added to the dataset. A relatively high value of SNR was

chosen to keep the input values similar for the same target (as described above

the ANNs while produce similar output for very similar input values) while still

producing different enough values so as to reinforce the ANN learning. However

a detailed study of the effects of adjusting the SNR is left for future work. The

dataset was then randomly split into a training, a validation set and a test set,

using 50% of the observation for the training set, 25% for the validation set and the

remaining 25% for the test set. Four different types of ANNs were trained to detect

errors based on the IS data, namely MLP, TDNN, RBFN and PNN. The training

procedure and the results of each of these will be considered in turn:

6.2.1.3 MLP results

As the datasets contains 25 dimensions an input layer of 25 neurons was used.

Similarly, as there exists 3 different classes of errors to be detected, 3 neurons where

used in the output layer. Unfortunately there does not exist any general method for

determining the optimal size of the hidden layer. Some ‘rules-of-thumb’ exist, such

as:

• the size of this hidden layer to be somewhere between the input layer size and

the output layer size.

• The number of hidden nodes is calculate using a general rule of: (Number of

inputs + outputs) * 2
3 .

• The hidden layer should never be more than twice as large as the input layer.

Though usually different approaches work well on different types of problems. Hence,

a trial and error approach is usually required and was performed in this work as

follows:

MLPs with a hidden layer ranging from 1 to 25 neurons were tested, and each

MLP was trained 10 separate times and the average performance was calculated
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using the validation set. The results of the these tests are shown in Figure 6.9

where a higher performance is better. As a result of these tests the model using 21

neurons in the hidden layer is the best. Hence a MLP of 25-21-3 was chosen as the

final model.

Figure 6.9: Performance of the MLP for different numbers of neurons in the hidden

layer.

The MLP was then trained using the LMA algorithm on the validation

dataset to avoid over-fitting as described in Section 6.1.3.4. Given that the out-

put y of the MLP lies in the range of [0, 1] a ‘cut-off’ point α was used such that

any output greater than α is considered a positive classification while any value

below this point was considered a negative classification. A different cut-off point

was chosen for each of the outputs of the network, hence the outputs for class i are

given by (6.9).

yi =





0 if yi < αi

1 if yi >= αi
(6.9)

By varying α the classification performance of the MLP will also vary. The

impact of varying the cut-off point for Type III error for the training data is shown

in Figure 6.10. Naturally, one cannot optimise the cut-off point using the test

data as this would mean that the network is trained/optimized using the test data
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and the generalisation performance would therefore be biased. Also, optimising the

cut-off point for the training data might lead to the problem of over-fitting as an

optimised value for the training data might not correspond to the optimal value for

the general case. In order to overcome this problem the validation set was used in

order to calculate the optimal cut-off point α which was found to be at 0.26, 0.73

and 0.44 for the TypeI, TypeII and TypeIII errors respectively.

Figure 6.10: Performance of the MLP for Type III errors by varying the cut-off value

for the output.

After determining the cut-off point the MLP performance was calculated us-

ing the test set and is summarised in Table 6.2. Overall the MLP achieves a very

good generalisation performance, as estimated using the test set, achieving a classi-

fication accuracy of 99.18%, 98.63% and 99.04% for the TypeI, TypeII and TypeIII

errors respectively. It is worth noting that for the TypeII error the sensitivity is at

50% meaning that only half of the positive cases are detected making it less useful

for detecting such errors.

Table 6.3 shows the relative performance and execution time compared to

the other ANNs. One can note that the MLP does not match the best ANNs, but

does have the fastest execution time. This could be of importance depending on
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the exact constraints for the final application of the classifier which could include a

strict performance requirement in terms of speed.

Table 6.2: Results of the application of ANNs to the IS data

Network type Error Type dataset Accuracy FN FP Specificity Sensitivity PPV NPV

MLP

Type I
Training 99.38 0 9 99.35 100 89.16 100

Test 99.18 2 4 99.41 95.83 92.00 99.71

Type II
Training 99.79 3 0 100 88.46 100 99.79

Test 98.63 10 0 100 50.00 100 98.61

Type III
Training 99.93 0 1 99.93 100 97.56 100

Test 99.04 0 7 99.02 100 68.18 100

TDNN

Type I
Training 98.77 9 9 99.35 87.84 87.84 99.35

Test 99.32 3 3 99.71 93.75 95.74 99.56

Type II
Training 98.91 13 3 99.79 50.00 81.25 99.10

Test 98.49 11 0 100 45.00 100 98.47

Type III
Training 99.66 3 2 99.86 92.50 94.87 99.79

Test 99.86 0 1 99.86 100 93.75 100

RBFN

Type I
Training 98.70 0 19 98.63 100 79.57 100

Test 98.63 2 8 98.83 95.83 85.19 99.70

Type II
Training 99.73 0 4 99.72 100 86.67 100

Test 99.18 0 1 99.86 100 95.24 100

Type III
Training 98.91 1 15 98.95 97.50 72.22 99.93

Test 98.36 1 11 98.46 93.33 56.00 99.86

PNN

Type I
Training 100 0 0 100 100 100 100

Test 99.73 2 0 100 95.71 100 99.71

Type II
Training 100 0 0 100 100 100 100

Test 99.86 1 0 100 95.50 100 99.86

Type III
Training 100 0 0 100 100 100 100

Test 99.59 0 3 99.58 100 83.33 100

6.2.1.4 TDNN results

As for the MLP network, determining an optimal network topology was realised on

a trial and error basis using the validation dataset. In addition to the number of

neurons in the hidden layer one also needs to determine the ideal number of delayed

inputs, and hence grid search was performed. TDNN topologies ranging from 1 to 3

delayed inputs and 1 to 30 neurons in the hidden layer was tested. Delayed inputs

was presented with a time-delay of 5 seconds compared to the previous input. This
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Table 6.3: Overall performance for the IS data with and without the addition of noise.

Also shows the relative execution time of the ANNs.

Network type Error Type Performance (w/noisy replicates) Performance (wo/replicates) Execution time (w/noise)

MLP

TypeI 86.67 61.48

1TypeII 48.63 27.84

TypeIII 66.87 58.60

TDNN

TypeI 88.49 64.91

1.3645TypeII 43.65 38.46

TypeIII 93.49 51.01

RBF

TypeI 79.34 41.49

4.8376TypeII 94.97 49.97

TypeIII 50.54 37.12

PNN

TypeI 95.29 50.54

36.12TypeII 94.74 43.49

TypeIII 82.64 58.60

value was chosen as the errors should be detected within a reasonable amount of

time. A large time delay would mean that the TDNN will react too slow, while

very short delays might make it unable to detect any temporal patterns in the data.

A detailed investigation of the effect of changing the time delay is left for future

research. Each topology was tested 15 times and the average value was used as an

estimate of the performance. The resulting TDNN had 2 delayed inputs and 14

hidden units.

As each input is presented three times to the network the training of the

TDNN was markedly slower than for the MLP, increasing the training time by

a factor of 4 compared to the 25-21-3 MLP network. The execution time of the

network is also a factor of 1.36 slower compared to the MLP as can be seen from

Table 6.3. The cutoff point was determined using the validation dataset and found

to be optimal at 0.57, 0.40 and 0.40 for the TypeI, TypeII and TypeIII errors

respectively. The overall results of the TDNN network for each error type are shown

in Table 6.2.

One can observe that the TDNN achieves a classification accuracy ranging

from 98.49% for the TypeII problem to 99.86% for the TypeIII problem. As for the

MLP approach the TDNN does not achieve a very good result for the TypeII error
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with a Sensitivity value of 45.00%. However, it does achieve excellent results for the

TypeIII problems with all classifications correct save a single false positive. Con-

sulting Table 6.3 one can note that the TDNN achieves a similar performance to the

MLP for TypeI and TypeII errors while the TDNN achieves the best classification

results for the TypeIII errors for all the ANNs.

6.2.1.5 RBFN results

In order to determine the number of RB neurons the constructive approach was used

as described in Section 6.1.3.5. In this approach neurons are iteratively added to

the network until a predefined goal is reached, in this case that is that the training

error is below some threshold. Hence, there are two parameters to be defined while

training the RBFN using this method; the goal which defines the error tolerance

and the width of the radial basis function which determines how smooth the output

is. In order to find the optimal choice for these values a grid of each combination of

variables in the range [10−8, 100] for the goal and [1, 15] for the width was performed.

The performance was then evaluated using the validation set. Figure 6.11 shows

the performance for each value of goal and width. As can be seen the optimal

performance is achieved when goal = 10−3.5 and width = 8. These values were then

used for the final model. The RBFN was then trained resulting in a RBFN network

consisting of 128 nodes. The cut-off point α were determined as in the case of MLP

and TDNN by finding the optimal cut-off point for the validation set and was found

to be at 0.11, 0.23 and 0.23 for the TypeI, TypeII and TypeIII errors respectively.

The results of the final RBFN are summarised in Table 6.2. It achieves

classification accuracies of 98.63%. 99.18% and 99.36% for the TypeI, TypeII and

TypeIII errors respectively. Looking at the overall performance from Table 6.3

one can see that the RBFN achieves the best performance of all ANNs for the

TypeII error with a performance rating of 94.97 with only a single misclassified

value. However, one should note that the execution time is a factor of 4.84 slower

compared to the MLP.
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Figure 6.11: Performance of the RBFN for different combination of goal and width

values.

6.2.1.6 PNN results

As mentioned in Section 6.1.3.6 the size of the PNN is determined solely by the size

of the training dataset. In this case the training set consisted of 1462 values and

hence the PNN consists of 1462 neurons in the hidden layer and 3 output nodes,

one for each class. The only value that needs to be determined for the PNN is

the width of the radial basis function σ. This was done through trial-and-error for

values ranging from σ = 0 to σ = 4. The results are shown in Figure 6.12 and the

optimal value was found to be 0.4. As the output of the PNN is 0 or 1 no cut-off

point needs to be determined.

The PNN results are summarised in Table 6.2. One can note that the PNN

achieves very good results in all categories achieving a classification accuracy for

the test set of 99.73%, 99.86% and 99.59% for TypeI, TypeII and TypeIII error

respectively and it achieves the best results of all the ANNs for TypeI errors as

shown in Table 6.3. One should note that the PNN is significantly slower to execute

being a factor of 36.12 slower than the MLP. This is due to the fact that the PNN

includes a neuron per training sample. Indeed, as noisy replicates were added to the
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Figure 6.12: Performance of PNN for different values of σ.

data this further worsens the execution speed of the PNN.

6.2.1.7 Results without addition of noise

The results presented so far were obtained using the dataset including noisy repli-

cates, which was found to provide better results. The results obtained without

the addition of noisy replicates are shown in Table 6.4. One can observe that the

overall results are very similar in terms of classification percentage, though if one

investigates the other measures one can note a clear difference.

As an example let us consider the first PNN, trained using noisy replicates.

This PNN has a classification accuracy of 99.59% for the TypeIII problem while

the second PNN, trained using the original dataset, has a classification accuracy of

99.23%. The difference is seemingly insignificant. However, looking at the PPV the

first PNN has a value of 83.33% while the second has only 71.43%, a clear difference.
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Table 6.4: Results of the application of ANNs to the IS data without addition of noise

Network type Error Type Data set Accuracy FN FP Specificity Sensitivity PPV NPV

MLP

Type I
Training 99.32 4 0 100 88.57 100 99.28

Test 97.94 3 5 98.65 84.21 76.19 99.18

Type II
Training 98.97 6 0 100 53.85 100 98.96

Test 98.71 5 0 100 28.57 100 98.71

Type III
Training 97.61 14 0 100 26.32 100 97.59

Test 99.23 1 2 99.48 83.33 71.43 99.74

TDNN

Type I
Training 99.15 5 0 100 85.71 100 99.10

Test 98.2 3 4 98.92 84.21 80.0 99.19

Type II
Training 99.49 1 2 99.65 92.31 85.71 99.82

Test 98.46 2 4 98.95 71.43 55.56 99.47

Type III
Training 100 0 0 100 100 100 100

Test 98.97 1 3 99.22 83.33 62.5 99.74

RBFN

Type I
Training 100 0 0 100 100 100 100

Test 96.66 6 7 98.11 68.42 65.00 98.37

Type II
Training 100 0 0 100 100 100 100

Test 98.97 2 2 99.48 71.43 71.43 99.48

Type III
Training 100 0 0 100 100 100 100

Test 98.71 2 3 99.22 66.67 57.14 99.48

PNN

Type I
Training 100 0 0 100 100 100 100

Test 96.91 3 9 97.57 84.21 64.00 99.18

Type II
Training 100 0 0 100 100 100 100

Test 98.71 2 3 99.21 71.43 62.5 99.48

Type III
Training 100 0 0 100 100 100 100

Test 99.23 1 2 99.48 83.33 71.43 99.74
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6.2.2 Applying ANNs to the ERS data

Similarly, as for the IS data the ERS data was preprocessed prior to training the

ANNs. The dataset consists of 4258 messages gathered from the system during

its operation. As shown in Section 5.3.2.1 it is already known that only one of the

types of errors can be detected based on the ERS dataset. Naturally the information

contained within a single message is not sufficient to detect errors within the system.

The data is therefore grouped in blocks of n messages. In order to determine a good

value for n different MLPs were trained using different values for n ranging from 1 to

10. Using this approach the best value was found to be at n = 5. As each message

includes 6 fields, this results in a dataset consisting of 851 inputs with 30 dimensions.

One should note that as the system size increases the number of messages produced

overall will also increase. The number of messages needed to determine any patterns

in the system may therefore increase as well in future systems.

An initial test of adding noisy replicates to the ERS data was not successful.

Table 6.5 shows the effect on the training of an MLP network with an addition of

0%, 25%, 50% and 100% of noisy replicates. As one can see, for the ERS data this

had no positive effect and did in many cases lead to worse results. The dataset was

therefore left in its original state for the following experiments. It was divided into

a training, a validation and a test set using 50%, 25% and 25% of the messages

respectively.

Table 6.5: The effect of the addition of noisy replicates to the ERS data.

Percentage of noisy replicates 0% 25% 50% 100%

MLP classification accuracy 81.73% 81.73% 79.37% 71.1%

As for the IS data four types of ANNs were trained, namely the MLP, TDNN,

RBFN and PNN. Let us consider each in turn:
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6.2.2.1 MLP

As for the IS data the optimal network size was found using a trial and error ap-

proach. The classification error was estimated using the validation dataset. MLPs

with 1 to 30 hidden neurons were each tested 15 times in order to obtain a good

indication of the average performance. The MLP with the highest average perfor-

mance for the validation dataset was then selected. Figure 6.13 shows the average

performance of each of the MLP sizes.

Figure 6.13: Performance of the MLP for different numbers of neurons in the hidden

layer.

An 30-27-1 MLP was then trained and the optimal cut-off value α was de-

termined using the validation set and was found at α = 0.44. The MLP achieved a

classification accuracy of 93.84% and 92.16% for the training and the test datasets

respectively as is shown in Table 6.6. For the test set, the network achieved sensi-

tivity and specificity of 92.71% and 91.82%, together with PPV and NPV of 95.42%

and 87.25%.

Table 6.7 shows the comparison with the other ANNs. The overall perfor-

mance of the MLP is worse than that of the TDNN and RBFN, but achieves a
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better results than the PNN.

6.2.2.2 TDNN results

As for the MLP the optimal size was determined by trial and error using the vali-

dation set in order to estimate the performance. A grid search was performed as for

the IS data as described in Section 6.2.1.4. The results are shown in Figure 6.14 and

one can observe that the optimal performance is achieved using 2 delayed inputs

and 17 hidden neurons.

Figure 6.14: Performance of the TDNN for different combinations of delays and number

of neurons in the hidden layer.

The TDNN using 2 delayed inputs and 17 neurons in the hidden layer was

then trained and the optimal cut-off value was determined to be at α = 0.47. The

results are summarised in Table 6.6.

The TDNN achieved an overall better performance for the test set compared

to the MLP with a classification accuracy of 94.51% though the specificity was

slightly lower with a value of 88.54% as opposed to 92.71% for the MLP. One can

see from Table 6.7 that the TDNN achieves a better overall performance using the

measure introduced in Section 6.2.1.1 with a value of 74.08 compared to 65.32 as

achieved by the MLP.
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6.2.2.3 RBFN results

As noted in Section 6.2.1.5 we need to determine the width, σ, of the radial basis

function and the goal error value used to stop the training. As before this was

determined using a grid-search of a combination of σ and goal error values and the

result of this search is shown in Figure 6.15. Using these values a RBFN was trained

using the constructive algorithm.

Figure 6.15: Performance of the RBFN for different combinations of width and goal

values.

The final RBFN consisted of 96 neurons in the hidden layer with a cut-off

value of α = 0.27. The RBFN achieved the results as summarise in Table 6.6. The

overall classification accuracy was 94.51%, identical to that of the TDNN. It does

however achieve slightly better overall performance with a value of 74.66 compared

to the 74.08 achieved by the TDNN as seen in Table 6.6. The execution time of the

RBFN is also nearly identical to that of the TDNN.
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6.2.2.4 PNN results

For PNN the only value to determine is the width, σ, of the radial basis function.

As for the IS data σ was determined using a brute force search testing values within

the range σ = e−15 to σ = e4.5. The result of this search is shown in Figure 6.16 and

the optimal value was found to be σ = e−4.5. The PNN uses one node per training

value, hence the final PNN consisted of 341 neurons in the hidden layer. The results

are summarised in Table 6.6 where one can see that the results are significantly

worse than for the other approaches achieving a classification accuracy for the test

set of 82.75%. There can be a number of reasons for this, such as a bad choice

of σ (despite the testing using the validation data). Alternatively, the PNN could

suffer from over-fitting and is known to be unable to ignore irrelevant or duplicated

inputs, even more so due to the fact that it uses all the training inputs to create its

hidden layer.

Figure 6.16: Performance of the PNN for different values of width.
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Table 6.6: Results of the application of ANNs to the ERS data

Network type Error Type dataset Accuracy FN FP Specificity Sensitivity PPV NPV

MLP Type I
Training 98.53 1 4 97.20 99.49 98.01 99.29

Test 92.16 13 7 92.71 91.82 95.42 87.25

TDNN Type I
Training 95.01 2 15 89.51 98.99 92.89 98.46

Test 94.51 3 11 88.54 98.11 93.41 96.59

RBFN Type I
Training 97.65 3 5 96.27 98.55 97.61 97.73

Test 94.51 6 8 92.23 96.05 94.81 94.06

PNN Type I
Training 96.77 6 5 96.50 96.97 97.46 95.83

Test 82.75 26 18 81.25 83.65 88.08 75.00

Table 6.7: Overall performance and relative execution time of the ANNs for the ERS

data

Network type Error Type Classifier performance Relative execution time

MLP TypeI 65.32 1.1367

TDNN TypeI 74.08 1

RBF TypeI 74.66 1.0015

PNN TypeI 37.15 1.8714

6.2.3 Ensemble approach

In order to try to improve upon the results achieved using single individual ANN an

ensemble approach will be explored. It has been shown that the error can be reduced

by combining a number of networks in an ensemble (Webb and Zheng, 2004). A

number of different methods for constructing such ensembles exists (Torres-Sospedra

et al., 2005), though in this work the ‘weighted average’ method was used as it

was found to give good results while keeping the approach relatively simple. The

weighted average method works by calculating the average of the weighted output

of all the networks in the ensemble. Such an ensemble is shown in Figure 6.17.

In order to determine the weights in the best possible way one must do a

multivariate optimisation. A brute force search may not be ideal as even if only n

different values are tested for each weight the number of combinations that must be

tested would be n4, which leads to the curse-of-dimensionality and is impractical or
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Figure 6.17: Ensemble of ANNs using weighted sum.

even infeasible for a large n. A number of techniques exists to solve such problems,

such as simulated annealing (Kirkpatrick et al., 1983), Powell’s method (Powell,

1964) and various hill climbing algorithms to name a few. However, the optimisation

was effected using a Genetic Algorithm (GA) approach as GAs have been shown to

be very effective for such problems and has also been previously used in order to

combine ANNs in an ensemble (Osowski et al., 2009).

The following is a short introduction to Genetic algorithms in general before

the technique is applied to the determine the optimal ensemble of the previously

developed ANNs.
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6.2.3.1 Introduction to Genetic Algorithms

GAs were first developed by John Holland (Holland, 1962, 1992) in 1962 and have

since become popular in a variety of fields. GAs are an optimisation technique based

on the natural selection and genetics as we know it from nature (Goldberg, 1989).

GAs work by first creating a number of candidate solutions to a given problem

called a population. Each candidate solution is evaluated using a ‘fitness function’

which is a measure of how well the particular solution solves the problem at hand.

New generations of the populations are then created using so called evolutionary

operators, also inspired by nature. The most common evolutionary operators include

crossover, mutation and reproduction. A brief description of these operators follows:

Crossover : Two individuals from the populations are selected as parents. These

are then recombined resulting in children individuals which can be used in the

new generation. There exists a number of ways to perform crossover, often

dependent on the representation used.

Mutation : A part of the individual is randomly changed leading to a slightly dif-

ferent individual. The new individual can then be used in the new generation.

Reproduction : An individual is copied into the new generation without any

changes.

The basic principle behind GAs is that a fit chromosome, or parts of it, has a

greater chance of surviving within a population and take part in future generations.

The population should therefore converge towards an optimal or near-optimal solu-

tion. Having many candidate solutions together with random changes (mutation)

avoids the problems of getting ‘stuck’ at local minima/maxima. The basic algorithm

for GAs is visualised using a flow chart in Figure 6.18. GAs are particularly useful

when the solution space is any combination of the following:

Very large : This makes exhaustive searches unfeasible. This includes for exam-

ple NP-hard problems (for an in-depth explanation of NP-hard problems the

reader is referred to Garey and Johnson (1979)).
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Contains local maxima/minima : Many local hills/valleys in the solution land-

scape can cause a number of conventional approaches to get stuck.

Discrete : GAs do not need a differentiable solution space to work. In this sense

it differs from the gradient approaches.

Figure 6.18: Flowchart of a conventional GA
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6.2.3.2 Choosing GA parameters

Perhaps a natural question is how to choose the different parameters of a GA;

the population size, the rate of mutation and crossover and any other parameters

that may be available (different implementations offer a different set of configurable

parameters). The fact that GAs are usually applied to problems where the fitness

landscape is unknown makes the problem harder as the fitness landscape determined

by the parameter tuning has the same unknown properties (Lobo et al., 2007). As

the GA parameters are not independent choosing good parameters can be a very

time-consuming process and, if one are not careful, lead to combinatorial explosion

as the possible number of combinations of parameters becomes to large. There is

also no guarantee that the optimal parameters have been found even if a significant

effort has been made in the search. However it has been shown that it is often

not necessary to find the exact optimal values, but that a range of values yields a

sufficiently good performance (Lobo et al., 2007). Different implementations of GAs

therefore often come with standard values that have been shown to work well for a

number of problems.

On the other hand, the No Free Lunch Theorem (NFLT) (Wolpert and

Macready, 1997) states that no algorithm is more efficient on average than any

other for all possible problems. One must therefore be careful to accept such de-

fault values for GAs. Still, if optimal performance is not of the essence one can

usually use values found in the literature with good results.

The values chosen throughout the thesis are all based on similar problems

found in the literature, unless otherwise stated. Typical ranges of parameters, as

found in (Prieto and Prez, 2008) and (Digalakis and Margaritis, 2002), are shown

in Table 6.8. The choice of GA parameters may or may not be optimal, however a

detailed study of the effects of parameter tuning for the problems in this thesis is

left for future research.
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Table 6.8: Typical GA parameters as found in the literature.

Parameter Value

Population size [50− 400]

Crossover probability [0.6− 0.95]

Mutation probability [0.001− 0.10]

6.2.3.3 Applying GAs to determine ensemble weights

One of the important questions is how to represent/encode the different solutions

as individuals in the population. It has been decided to use a ‘straightforward’

approach in which each individual consists of n bits and the weight of each network

is represented using m bits such that n = 4 ∗m. In order to decode the individual

one simply converts the corresponding bits for each into a decimal value. This was

done such that the value lies in the range of [0, 3] which is achieved by setting

val = decimaleV alue ∗ 3
2m−1 . The process of encoding an individual is visualised in

Figure 6.19. The fitness value was calculated as follows: First the weighted output

of the 4 ANNs was calculated based on the individual encoding. The cut-off point

was then determined as for the other ANNs using the validation set. The fitness

value was then set to Fit = 1 − Perf where Perf is the performance as calculated

in Section 6.2.1.1.

Figure 6.19: Encoding and translation of GA
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The ensemble approach was used both for the ERS and the IS data. 6 bits

were used for each weight such that 26 = 64 different values for each weight was

possible (and hence 224 different combinations exists). For each of the error types

the GA was run using the parameters listed in Table 6.9.

Table 6.9: GA parameters used for the ensemble approach.

Parameter Value

Population size 50

Generations 500

Crossover probability 0.7

Mutation probability 0.02

6.2.3.4 Ensemble results

The final ensemble for the IS data was unable to improve significantly on the per-

formance of the best single ANN (the PNN) achieving a classification accuracy of

99.73%, 99.86% and 99.32% for the TypeI, TypeII and TypeIII errors respectively.

For the ERS data the ensemble provides a small improvement over the best

ANN (the RBFN) with one less FN and otherwise identical results. Again as the

results using single ANNs were so good it makes it difficult for an ensemble approach

to make significant improvements. Table 6.10 shows the results of the ensemble

approach for the ERS data.

6.3 Utilising the Genetic Neural Mathematical Method

In this section a method called Genetic Neural Mathematical Method (GNMM)

was used to select variables for training neural networks. The approach is compared

to the results achieved using all available variables. Section 6.3.1 provides a brief

introduction to GNMM before it is applied to the data from the TDAQ system.
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Table 6.10: Results of the ensemble approach for the ERS data

Network type Error Type dataset Accuracy FN FP Specificity Sensitivity PPV NPV

Ensemble for IS data

Type I
Training 100 0 0 100 100 100 100

Test 99.73 2 0 100 95.83 100 99.71

Type II
Training 100 0 0 100 100 100 100

Test 99.86 0 1 99.86 100 95.24 100

Type III
Training 99.86 0 2 99.86 100 95.24 100

Test 99.32 1 4 99.44 93.33 77.78 99.86

Ensemble for ERS data Type I
Training 97.65 3 5 96.27 98.55 97.61 97.73

Test 94.90 5 8 92.23 96.71 94.84 95.00

6.3.1 Introduction to Genetic Neural Mathematical Method

Genetic Neural Mathematical Method (GNMM)(Yang et al., 2008b,a) is a data

driven method which optimises the input selection for neural network. This both

simplifies the network structure and accelerates the training procedure.

GNMM uses GAs as a variable selection tool in order to determine the op-

timal set of variables to be used as input for an MLP network. Individuals in the

GA are encoded using bit strings, where a 1 indicates that a variable is used while

a 0 indicates that it is not used. The fitness of each individual is found by training

MLPs networks based on the individuals using only the variables as given by the

individual’s encoding. The performance of the MLP is then used as the fitness value

of the individual.

The initial step of the GNMM therefore follows the regular GA model:

1. Initialise a population of randomly chosen individuals.

2. For each individual, train a MLP network using the input determined by the

individual. The result of the trained network constitutes the fitness of that

individual.

3. Apply evolutionary operators and create a new generation.

4. This is repeated for n generations and the best individual for each generation

is stored.
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After the GA has completed, the concept of appearance percentage is used

to determine the optimal set of input variables. The appearance percentage of a

variable is defined as the percentage of winning individuals within a given run of the

GA which contains that particular variable. Depending on the population size and

number of generations used in the GA, it might be necessary to re-run the process

until a clear distinction in appearance percentages becomes evident. An MLP can

then be trained using just the variable set identified through the use of GA. This

allows for faster training and can also lead to better performance compared to using

all the available variables.

GNMM also incorporates the possibility of rule extraction through a math-

ematical model. It is presumed that the hyperbolic tangent (tanh) function (6.10)

is being used as an activation function for the hidden neurons in the MLP. It has

been shown in (Tsaih and Lin, 2004) that the tanh function can be approximated

as shown in (6.11) where β1 = 1.0020101308531, β2 = −0.251006075157012 and

k = 1.99607103795966. The output of the hidden neurons can therefore be approx-

imated using this function and the corresponding rules can be extracted.

f(t) =
2

1 + e−2t
− 1 (6.10)

g(t) =





1 t >= k

β1t+ β2t
2 0 <= t <= k

β1t− β2t2 −k <= t <= 0

−1 t <= −k

(6.11)

6.3.2 Applying GNMM to the TDAQ data

The GNMM was applied to both the ERS and IS datasets. Let us consider each one

in turn:
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6.3.2.1 IS data

The IS data contains 25 variables, hence an encoding using 25 binary values was

used. The GA was run for 1000 generations using 200 individuals in the population.

The mutation rate was 80%.

Appearance percentage: The appearance percentage of each of the 25 variables were

then calculated and are shown in Figure 6.20. All variables with a percentage above

80% were selected leaving a dataset with 14 variables.

Figure 6.20: Appearance percentage for the IS data. All variables with an appearance

percentage of above 80% were selected.

Results: Using only the 14 variables identified using the appearance percentage

the four ANNs were re-trained. The input layers were updated to account for the

reduction in variables while all other topologies were kept identical. The results of

the new networks are summarised in Table 6.11. The overall performance, using the

performance measure from Section 6.2.1.1 before and after dimensionality reduction,
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is shown in Table 6.12. The MLP, TDNN and RBFN all achieve better results for

TypeI and TypeII errors, while worse results were achieved for the TypeIII errors.

The PNN achieves identical performance except for a reduction for the TypeII errors

mainly due to a reduction of Specificity from 95.50% to 85.50%.

Table 6.11: Results of the application of ANNs to the IS data after variable selection

using GNMM

Network type Error Type Dataset Accuracy FN FP Specificity Sensitivity PPV NPV

MLP

Type I
Training 99.52 3 4 99.71 95.95 94.69 99.78

Test 98.90 7 1 99.85 85.42 97.62 98.98

Type II
Training 99.04 4 10 99.30 84.62 68.75 99.72

Test 98.22 4 9 98.73 80.00 64.00 99.43

Type III
Training 98.97 12 3 99.79 70.00 90.32 99.16

Test 98.77 4 5 99.30 73.33 68.75 99.44

TDNN

Type I
Training 99.79 1 2 99.86 98.65 97.33 99.93

Test 99.45 3 1 98.85 93.75 97.83 99.56

Type II
Training 99.18 10 2 99.86 61.54 88.89 99.31

Test 98.90 7 1 99.86 65.00 92.86 99.02

Type III
Training 98.70 15 4 99.72 62.50 86.21 98.95

Test 97.67 7 10 98.60 53.33 44.44 99.02

RBFN

Type I
Training 99.52 1 6 99.57 98.65 92.41 99.93

Test 98.77 4 5 99.27 91.67 89.80 99.41

Type II
Training 99.86 0 2 99.86 100 92.86 100

Test 99.86 0 1 99.86 100 95.24 100

Type III
Training 99.59 3 3 99.79 92.50 92.50 99.79

Test 98.49 2 9 98.74 86.67 59.09 99.72

PNN

Type I
Training 100 0 0 100 100 100 100

Test 99.73 2 0 100 95.71 100 99.71

Type II
Training 100 0 0 100 100 100 100

Test 99.59 3 0 100 85.00 100 99.58

Type III
Training 100 0 0 100 100 100 100

Test 99.59 0 3 99.58 100 83.33 100

Discussion The improvement in performance after reducing the number of vari-

ables indicates that some variables in the dataset may be redundant. However, the

improvement was limited to the TypeI and TypeII errors while decreasing the per-

formance for the TypeIII errors. The variable selection may have been dominated
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Table 6.12: Comparison of ANN performance before and after variable selection using

GNMM

Network type Error Type Before GNMM After GNMM

MLP

TypeI 86.67 81.51

TypeII 48.63 49.37

TypeIII 66.87 49.17

TDNN

TypeI 88.49 90.68

TypeII 43.65 59.03

TypeIII 93.49 22.60

RBF

TypeI 79.34 80.23

TypeII 94.97 94.97

TypeIII 50.54 49.66

PNN

TypeI 95.29 95.29

TypeII 94.74 84.29

TypeIII 82.64 82.64

by the first two error types, leading to a ‘better’ overall performance at the cost of

decreasing the performance for the TypeIII error. Still the improvements for the

first two types of errors show that improvements of the overall performance can be

made by using a sub-set of the available parameters.

6.3.2.2 ERS data

There are 30 available parameters in the ERS data, hence each individual consists of

30 binary fields each representing one of the available parameters. The GA stage of

GNMM was run for 1000 generations using 200 individuals in the population. The

mutation rate was 80%. The exact GA parameters are of less importance as we are

not trying to converge on an optimal solution, but rather evaluating the impact of

the different variable combinations.

Appearance percentage: The appearance percentage of the 30 available parameters

were then calculated and are shown in Figure 6.21. While there is not a 100% clear

distinction of variables some are definitely more used than others. All variables with

an appearance percentage of more than 60% were kept, while the other 20 variables
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were discarded and a new training set was created.

Figure 6.21: Appearance percentage. The utilised variables are marked in a lighter

color.

Results: Using the variables found through the GA stage of GNMM, the four differ-

ent ANNs were re-trained. The ANN sizes were kept the same with the exception

that the input layer is adjusted to the reduced dimensions in the input data (10 vs

30). The results of the new ANNs are shown in Table 6.13. An overall comparison

of the performance before and after variable selection is shown in Table 6.14. One

can note that for MLP, TDNN and PNN the results surpass those obtained using all

the variables in the ERS data while for the RBFN network the results are slightly

worse.

Discussion The improved results indicates that some of the dimensions in the dataset

do not provide useful information and can be removed without a loss in performance.

Reducing the number of dimensions leads to a smaller input set which means that

the training of the ANNs is faster and the resulting ANNs will be simpler and thus
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Table 6.13: Results of the application of ANNs using the simplified ERS data

Network type Error Type Dataset Accuracy FN FP Specificity Sensitivity PPV NPV

MLP Type I
Training 95.89 1 13 90.85 99.50 93.84 99.23

Test 92.55 6 13 87.13 96.10 91.93 93.62

TDNN Type I
Training 96.48 1 11 92.25 99.50 94.74 99.24

Test 95.69 2 9 91.09 98.70 94.41 97.87

RBFN Type I
Training 95.67 6 8 96.11 96.97 96.46 95.83

Test 92.16 9 11 88.54 94.34 93.17 90.43

PNN Type I
Training 98.63 4 3 98.58 98.66 98.99 98.12

Test 93.82 6 15 88.72 97.10 93.06 95.16

Table 6.14: Comparison of ANN performance on the ERS data before and after variable

selection using GNMM

Network type Error Type Before GNMM After GNMM

MLP TypeI 64.86 66.70

TDNN TypeI 74.08 79.49

RBF TypeI 76.66 64.84

PNN TypeI 37.15 71.57

faster to execute as well.

6.4 Advantages and Disadvantages of an ANN approach

This section describes some of the overall advantages and disadvantages of ANNs in

general. This allows for a general comparison with other techniques investigated in

this thesis. Let us first look at the potential advantages of ANNs:

• Most of the ANNs are easy to set up and train and examples and literature is

readily available.

• Execution time of trained ANN is usually very fast, though some exceptions

can occur for large networks especially for RBFNs and PNNs or similar net-

works.

• ANNs are a black box approach. By this it is meant that there is no need to
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Table 6.15: A comparison of performance values for each of the approaches explored

IS data ERS

Approach Network TypeI TypeII TypeIII TypeI

Regular

MLP 86.67 48.63 66.87 65.32

TDNN 88.49 43.65 93.49 74.08

RBFN 79.34 94.97 50.54 74.66

PNN 95.29 94.74 82.64 37.15

Weighted ensemble Ensemble 95.29 94.97 71.59 76.26

Using GNMM

MLP 81.51 49.37 49.17 66.70

TDNN 90.68 59.03 22.60 79.49

RBFN 80.23 94.97 49.66 64.84

PNN 95.29 84.29 82.64 71.57

know the underlying model of the system being modelled.

Likewise, following is a list of some of the potential disadvantages of ANNs:

• There exists no explanation facility for ANNs. This means that the results are

not necessarily easy to understand and interpret. It can also make the process

of incorporating an ANN into an existing system more difficult.

• ANNs can be time consuming, in particular the training, but also the execution

in some cases.

• There does not exist a ‘fool-proof way of determining the optimal topology of

the networks, leading to the use of trial-and-error approaches.

• Some networks such as PNN suffer from the ‘curse-of-dimensionality’ making

them difficult to use when the number of inputs is very high.
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6.5 Discussions and conclusions

In this chapter it has been shown that errors in the TDAQ system can be detected

based on both the IS and ERS data.

For the IS data the best overall results are achieved by the PNN network

achieving 100% classification accuracy for all errors using the training data and a

worst case of 99.59% using the test data. Though it is worth noting that all the

different network types achieve very good results in achieving classification accura-

cies of above 98% for all error types. The fact that all the networks achieve such

a high classification rate indicates that there are very clear patterns in the data

corresponding to the error scenarios we have investigated. It has also been shown

that the addition of noisy replicates to the dataset improved the overall classification

rates.

The situation in the case of the ERS data is a bit different. The ERS data

are only suitable for the TypeI error scenario (see Section 5.3.2.1). It does however

show that a very high detection rate can be achieved using this type of data as

well. The best results were achieved by the TDNN and the RBF both achieving

a classification accuracy of 94.51% for the test set. However the RBF achieves

better results using the performance measure introduced in Section 6.2.1.1 and can

therefore be considered a slightly better overall classifier.

The ensemble approach shows that even better results can be obtained for

both datasets by combining the outputs of the individual ANN approaches. The

ensemble was not able to improve the classification rates for the IS data, but provided

some improvements for the ERS data achieving a classification accuracy of 94.90%

for the test dataset. The overall performance was also increased to 76.26 compared

to 74.66 achieved using the RBFN. Naturally the ensemble approach will require

more computational resources in order to train it, and hence it is often better used

after other networks have been applied. In cases where training time is not a major

factor the tradeoff of using an ensemble could be beneficial. The execution time of

the ensemble will always be equal to the slowest component that is a part of it and

thus the ANNs, or other classifiers, taking part in it should be chosen with care.
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In the following chapter different SVM approaches will be explored using the

same data as was used for the different ANNs. This is done in order to validate

the results found so far using ANNs and to compare the ANN and SVM approaches

in order to determine whether one of the two approaches is more suitable than the

other to be used within the context of the ATLAS TDAQ system.
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Chapter 7

Classification of errors using

Support Vector Machines

This chapter provides an introduction to the theory of Support Vector Machines

(SVMs). It shows how non-linear and non-separable data can be dealt with by

using SVMs and also presents approaches for dealing with multi-class data. SVMs

are then applied to detect errors in the TDAQ system using the same input data

as was used in the previous chapters. The results are compared to that of the

ANN approach in Chapter 6 and the advantages/disadvantages of a SVM approach

are then discussed along with conclusions. SVMs where chosen as the technique

is particularly useful for sparse and/or imbalanced datasets. This is true for the

TDAQ data where the number of positive cases are low compared to the total size

of the dataset.

7.1 Introduction to support vector machines (SVMs)

This section provides a brief overview of SVM theory. For a complete description

the reader is advised to consult (Burges, 1998).

SVMs are generalised linear discrimination machines that take advantage of

operating in a transformed, typically higher dimensional, space in order to best dis-

criminate classes of data (Vapnik, 1995). SVMs are an area of considerable research

and has a range of applications including image classification (Chapelle et al., 1999),

161



novelty detection (Schölkopf et al., 2000), protein folding (Rangwala and Karypis,

2005), face recognition (Osuna et al., 1997), speech recognition (Ganapathiraju

et al., 2000), video classification (hao Lin, 2002) and robotic control (Pelossof et al.,

2004) to name a few.

Let us first consider the core concepts of SVMs before moving on to consider

nonlinear and non-separable data:

7.1.1 Separating hyperplanes

A hyperplane in an m dimensional space can be defined by

a1x1 + · · ·+ amxm = b (7.1)

This hyperplane will divide the feature space into two halves:

a1x1 + · · ·+ anxn <= b

and

a1x1 + · · ·+ anxn > b

hence providing some classification of the feature space. A separating hyperplane

can then be defined as follows:

Given a set of data [xi, yi], i = 1, . . . , n where all the data points belong to

either one of two classes. The labeling of the classes is set to −1 or 1 for practical

reasons and without loss of generality so that yi ∈ [−1, 1]. A separating hyperplane

is a hyperplane such that all data points of the same class are on the same side of

the hyperplane and all points of the other class are on the other side. A separating

hyperplane is therefore a hyperplane subject to the constraint of:

yi(w · xi + b) > 0, i = 1, . . . , n (7.2)

If a hyperplane satisfying (7.2) exists, the dataset is said to be linearly separable.

In such cases it is always possible to re-scale w such that:

min
1≤i≤n

yi(w · xi + b) ≥ 1, i = 1, . . . , n (7.3)
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The distance from a hyperplane to the closest data point is called the margin. The

hyperplane with the largest possible margin is referred to as the Optimal Separating

Hyperplane (OSH) and is always unique. Hence the OSH can be found by maximis-

ing the margin. This is equivalent to minimising 2
||w||2 subject to (7.3) and can be

solved using Quadratic Programming (QP). The hyperplanes found while maximis-

ing the margin are called support vectors, hence the name of the method as a whole.

As an example consider a dataset of points, (x1, y1), . . . , (xn, yn), belonging to one

of two separate classes as shown in Figure 7.1. The OSH can then be calculated and

is shown together with the support vectors in Figure 7.2.

Figure 7.1: An example dataset where the points belong to two separate classes.

7.1.1.1 Nonlinear SVM

In many, or perhaps even most, practical problems the data is not linearly separable.

An example of such a dataset is shown in Figure 7.3. If one attempts to classify

the data using a linear kernel the results will usually be unsatisfactory as shown in

Figure 7.4.

In order to deal with this problem one can use nonlinear SVMs. Nonlinear

SVMs are based on the idea that the input data can be mapped to a high-dimensional

feature space and the optimal separating hyperplane can be constructed in this
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Figure 7.2: Shows the optimal separating hyperplane and the corresponding support

vectors for an example dataset containing points belonging to two separate classes.

feature space instead. Consider a mapping of:

Φ : Rd → H (7.4)

From (7.3) we have that only the dot product xi · xj is needed for training, hence

only the dot products in H would be needed to calculate the OSH, i.e. Φ(xi) ·Φ(xj).

It has been shown in (Vapnik, 1995) that an old trick first presented by Aizerman

in (Aizerman et al., 1964) can be used to solve the problem. By choosing a kernel

function K such that K(xi, xj) = Φ(xi) ·Φ(xj), then it follows that only K is needed

in order to train the SVM. There is no need to actually map the data into the feature

space, nor indeed is there a need to know the mapping function at all. Figure 7.5

shows how a nonlinear SVM using a gaussian kernel can classify data which is not

linearly separable in the input space.
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Figure 7.3: Example of a dataset which is not linearly separable in the input space.

Figure 7.4: A linear SVM is unable to classify the data.
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Figure 7.5: Example of how a non-linear SVM can classify data which is not linearly

separable.
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7.1.2 Non-separable data

Also for many cases the data might not be separable at all. For example the addition

of noise can lead to data where there exists an overlap of the different classes. In

this case the regular training using the data would try to map to this noise and

lead to a poor generalisation performance. In order to deal with this problem it is

common to introduce an error margin as described in more detail below:

7.1.2.1 Error margin

An error margin, also referred to as a soft margin, can be introduced in order to

allow some samples of the data to violate the constraint in 7.2. Each variable is

assigned an error margin ξi:

yi(w · xi + b) ≥ 1− ξi, i = 1, . . . , n (7.5)

It therefore follows that any sample with ξ > 1 is misclassified and hence
∑
ξi is

an upper bound on the number of misclassified points. QP can now be used to

minimise:

C
∑

ξi +
2

||w||2 (7.6)

where the constant factor C controls the penalty for misclassification. The factor

C can be configured by the user, and a larger value of C will yield a higher penalty

for each misclassification. One of the benefits of using a soft margin is that this also

reduces the impact of outliers in the data, ensuring a better generalisation ability of

the trained SVM in cases where outliers exist. However, it must be chosen carefully

as too high a value of C means that any misclassified result will dominate (7.5)

and may therefor ‘force’ the SVM to fit the data too closely leading to overfitting.

Similarly, a very low value for C will mean that only a very low penalty is given for

misclassified sample something that could lead to a poor generalization performance

as the SVM separates the data too ‘loosely’. Figure 7.6 illustrates the effect of

changing the parameter C for an example single class problem. The data has been

generated using a Gaussian distribution to create two clusters of points at the centers

[−.3,−.5] and [.3, .5] with the width of the Gaussian function of σ = 0.3. As can
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be seen in Figure 7.6a a high value of C (e9) leads to a good fit of the sample

data, but does not separate well the actual underlying distribution (represented by

the coloured circles). Hence, it would achieve a high classification accuracy for the

training data, but a poorer performance for the general dataset (i.e. data drawn

from the Gaussian distribution around the centers [−.3,−.5] and [.3, .5]) compared

to a choice of C = e3 as shown in Figure 7.6c.

(a) C = e9 (b) C = e6

(c) C = e3 (d) C=1

Figure 7.6: The performance of a SVM classifier trained with different values for C.
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7.1.3 Strategies to deal with multi-class problems

The basic SVM approach as described above are intrinsically binary (Melgani and

Bruzzone, 2004) and thus ill-suited when the data contains multiple classes. This

is a very common situation and is also present in the data from the TDAQ system

where a number of different error types should be recognised. There exist several

approaches as to overcome this problem in order to classify multiple classes. Let us

consider the two most common approaches in turn:

7.1.3.1 One-against-one (OAO)

In OAO classification a separate SVM is trained per class pair. That is, given a

dataset of n classes the data are divided into all possible class pairs and one SVM is

trained to distinguish each such pair. In order to determine the class of a given data

sample a voting system is used where the class getting the most number of votes is

chosen. The number of SVMs needed for this technique will increase quickly given

by:
(
N
2

)
= n!

2!(n−2)! = (n(n−1))
2 , where N is the number of classes. Hence, this

approach is more computationally expensive compared to that of One-Against-All

(OAA) (see below) and might be unfeasible if the number of classes to be classified

is very large. As an example consider a dataset containing 6 different classes. In

that case there would be needed
(
6
2

)
= 6!

2!(6−2)! = 15 different SVM classifiers. For a

dataset containing 10 classes the number of classifiers would be
(
10
2

)
= 10!

2!(10−2)! = 45

and so would quickly becoming unmanageable.

The result of an example OAO classification is shown in Figure 7.7. Each

line represents the decision boundary of a single SVM.
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Figure 7.7: ‘One-Against-One’ algorithm.

7.1.3.2 One-against-all (OAA)

In the OAA, one SVM is used to distinguish each class from all the other classes.

So given a dataset of n classes, n SVMs will have to be trained. An illustration of

this technique is shown in Figure 7.8 where three different SVMs each classify one

class of the data as distinct from all the others. Note that this method might leave

a region of feature space ‘unclassified’ in the sense that all of the SVMs will reject

it and no class will therefore be assigned to the sample. Still, the computational

effort increases linearly with the number of classes in the dataset and is therefore

significantly computationally cheaper then OAO when the number of classes is high.

7.1.4 Determining SVM kernel and parameters

Two main parameters must be determined when using SVM. First of all, a kernel

must be chosen before any parameters specific to the kernel are chosen. Let us

consider each in turn:
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Figure 7.8: ‘One-Against-All’ algorithm.

7.1.5 Choosing kernel function

An important parameter when training SVMs is the choice of kernel function. A

number of possible kernels for SVM exist, including the Gaussian (7.7), polynomial

(7.8) and sigmoidal (7.9) kernels, respectively

e−
||x−y||2

2σ (7.7)

((x · y) + β)d (7.8)

tanh(δ(x · y) + β) (7.9)

There is no general way to choose the correct kernel for a given application (ichi

Amari and Wu, 1999). Often, prior knowledge about the dataset in question is

needed by an expert user, something that often is not possible. However the kernels

listed above are commonly used in the literature and work well for a large number

of problems.

7.1.5.1 Kernel parameters

Depending on the kernel used there will be one or more parameters that must be

selected by the operator. If an error margin is used this must also be determined.
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Naturally one would aim to choose these parameters in such a way as to optimise

the generalisation error of the SVM. Sometimes the parameters can be estimated

by an expert user, but often this is not the case. In such cases other approaches

to determining the parameters are needed. While the straightforward approach

of doing a simple grid-search, wherein a range is set for each parameter and each

combination of parameters are subsequently tested, is still popular a number of

better approaches have been proposed. The area is of great interest as grid-search is

intractable if the number of parameters are any more than two. Some of the possible

extensions include the use of GAs (Rojas and Fernandez-Reyes, 2005; Frölich et al.,

2003; Liu et al., 2005) and the calculation of the inter-cluster distance in the feature

space (Wu and Wang, 2009). Chapelle proposes a gradient descent methods using

various bounds of the generalisation error with respect to the kernel parameters

(Chapelle et al., 2002) and shows very promising results as an automatic way of

selecting the parameters. Hence a number of different approaches exists and their

usefulness depends to some extent on the particular application. Grid search is

therefore still widely used in current literature.

7.2 Applying SVM to error detection in TDAQ

In the following section we will apply SVMs in order to detect errors in the TDAQ

system as was done in Chapter 6 using the ANN approach. The exact same data

was used as for the ANNs, both training and testing, in order to properly compare

the methods. An SVM implementation by Canu et al. (2005) was used throughout

this chapter.

7.2.1 SVM using the IS data

As mentioned in Section 7.1.5 there is no foolproof way of choosing a kernel beyond

experimental tests on a particular problem. However the polynomial and Gaussian

kernels are common choices in literature and were therefore used in this work. The

parameters for each of the kernels were determined using the grid-search approach.
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The grid search was performed by evaluating all combinations of a range of values

for C and the kernel parameter σ. σ represents the polynomial order when using the

polynomial kernel and the width of the radial basis function when using the Gaussian

kernel. While this is computationally expensive it was used for the sake of simplicity

in the implementation, especially considering that we are working with multi-class

SVMs. Computational time was not a key consideration during these initial tests

of SVMs, but might have to be considered if an SVM approach is attempted on a

large scale or within an online learning system in the future.

The OAA algorithm was used with both the polynomial and the Gaussian

kernel. As there are 4 different classes (TypeI, TypeII, TypeIII and no error), this

results in 4 distinct SVMs being trained. The specifics of the two approaches will

be discussed in turn:

7.2.1.1 Polynomial kernel

There are two parameters to be set for the polynomial kernel, namely the error

bound C and the polynomial order σ. Figure 7.9 shows a contour plot of the results

of the grid search for the polynomial kernel. One can observe that the best results

are obtained for value of C = 10−3 and σ = 2. These values were then used resulting

in 4 SVMs with 208, 44, 77 and 116 support vectors respectively.

Figure 7.9: Result of grid search for the polynomial kernel parameters.
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7.2.1.2 Gaussian kernel

For the Gaussian kernel the parameters to be determined are the error bound C

and the width σ of the radial basis function. A grid search was performed as for the

polynomial kernel and the results are shown in Figure 7.10. Based on these tests

the optimal values were determined to be at C = 102.5 and σ = e2. The SVMs

were trained using these values resulting in 4 SVMs consisting of 744, 728, 95 and

68 support vectors. It is important to note that the first two SVMs has a very high

number of support vectors (744 and 728 out of 1461 observations in the dataset).

This might indicate that the approach is unsuitable for larger datasets as SVMs do

not handle a large number of support vectors very well due to the use of QP.

Figure 7.10: Result of grid search for the Gaussian kernel parameters.
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7.2.1.3 IS results

The results of the trained SVMs are shown in Table 7.1. One can immediately

observer that the Gaussian kernel SVM achieves perfect results for all three error

types, correctly classifying all samples. The Polynomial kernel also achieves excellent

results with a classification accuracy ranging from 99.45% for the TypeI error to

100% for the TypeII error.

By using the same performance criteria as in Section 6.2.1.1, we can compare

the SVM results with that achieved using the various ANN approaches. The result

of this comparison can be seen in Table 7.2. One can note that the SVMs are in

general better classifiers than the ANNs. The PNN is closest in overall performance

achieving results close to that of the polynomial kernel SVM.

Table 7.1: Results of the application of SVMs to the IS data

SVM kernel Error Type dataset Accuracy FN FP Specificity Sensitivity PPV NPV

Gaussian

Type I
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 100.0 0 0 100.0 100.0 100.0 100.0

Type II
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 100.0 0 0 100.0 100.0 100.0 100.0

Type III
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 100.0 0 0 100.0 100.0 100.0 100.0

Polynomial

Type I
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 99.45 1 3 99.57 97.22 92.11 99.86

Type II
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 100.0 0 0 100.0 100.0 100.0 100.0

Type III
Training 100.0 0 0 100.0 100.0 100.0 100.0

Test 99.73 0 2 99.72 100.0 90.48 100.0
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Table 7.2: Comparison of performance of ANN and SVM models

Network type TypeI TypeII TypeIII

MLP 86.67 48.63 66.87

TDNN 88.49 43.65 93.49

RBF 79.34 94.97 50.54

PNN 95.29 94.74 82.64

Gaussian SVM 100.0 100.0 100.0

Polynomial SVM 88.55 100.0 89.98

7.2.2 SVM using the ERS data

As for the IS data two different kernels were utilised; the Gaussian and the poly-

nomial. The parameters were again determined using a grid-search approach. The

ERS data consist of just two error classes (TypeI or no error) and hence it is enough

to train a single SVM.

7.2.2.1 Polynomial kernel

There are two parameters to be set for the polynomial kernel, namely the error bound

C and the polynomial order σ. The same approach was taken as in Section 7.2.1.1

which identified C = 10−1 and σ = 1.5 as optimal values. These values were then

used to train the final SVM resulting in a SVM with 259 support vectors.

7.2.2.2 Gaussian kernel

For the Gaussian kernel the parameters to be determined are the error bound C

and the width σ of the radial basis function. A grid search was performed as for

the polynomial kernel identifying the optimal values as C = 1 and σ = e−1. The

final SVM was then trained using these values and the final SVM uses 281 support

vectors.
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7.2.3 ERS results

The results of the Gaussian and polynomial kernel SVMs are summarised in Ta-

ble 7.3, while the comparison to the ANN results are shown in Table 7.4. One can

note that the Gaussian kernel SVM again achieves the best results with a test set

classification accuracy of 92.64% as compared to 92.35% for the polynomial kernel

SVM. Compared to the ANNs the two SVM achieves good results performing bet-

ter than the MLP and PNN, but slightly worse than that of the TDNN and RBFN

approaches.

Table 7.3: Results of the application of SVMs to the ERS data

SVM kernel Error Type Dataset Accuracy FN FP Specificity Sensitivity PPV NPV

Gaussian Type I
Training 94.32 5 24 88.84 98.31 92.38 97.45

Test 92.64 5 20 84.62 97.62 91.11 95.65

Polynomial Type I
Training 93.93 7 24 88.84 97.64 92.33 96.46

Test 92.35 4 22 83.08 98.10 90.35 96.43

Table 7.4: Comparison of performance of ANN and SVM models for the ERS data

Network type TypeI

MLP 65.32

TDNN 74.08

RBF 74.66

PNN 37.15

Gaussian SVM 66.69

Polynomial SVM 65.58

7.3 Advantages and disadvantages of SVM

Following is an overview of the disadvantages and advantages of SVMs in general

and in particular in comparison to ANNs as presented in the previous chapter.

Advantages:
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• The SVM problem is convex and therefore contains no local minima. Hence

the same solution will be derived regardless of ‘starting point’. This is, for

example, not true for ANNs where a different starting point might yield a

different solution.

• The SVM automatically determines their model size (support vectors) while

solving the QP, while for ANNs the model size must be determined by the

user.

• Good generalisation can be achieved quite easily, especially with the use of

soft margins.

• SVMs contain very few parameters to be determined after the kernel has been

chosen.

Disadvantages: Burges (Burges, 1998) presents 4 main limitations to SVMs and are

summarised below:

• According to Burges trying to find the best choice of kernel for a given problem

is still very much a research issue.

• The training and testing of a SVM can be slow, especially for large datasets,

though the same is true in general for ANNs.

• Discrete/categorical data present problems while training the SVM as the

algorithm operates on continuous data. However this can be largely solved

using suitable re-scaling.

• Optimal design for multi class problems is still a matter of research. Though

it should be mentioned that for problems where a limited number of classes

are present, the OAA method obtains very good results. Still as the more

error types are taken into consideration this could become a real problem.
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7.4 Discussions and conclusions

Due to the excellent results and generalisation ability of the SVMs, they are a

promising avenue for further tests and research. The results match that of ANNs

and even surpasses them in the case of the IS data where the Gaussian SVM achieves

a perfect classification accuracy of 100% for both test and training set. The Polyno-

mial kernel also achieves very good results with a classification accuracy of 99.45%

to 100% matching the performance of the best ANN method, the PNN.

For the ERS data the performance of the SVMs is slightly worse than those

of the ANNs, but does provide good generalisation results nonetheless achieving a

accuracy for the test set of 92.64% using the Gaussian kernel and 92.35% using the

polynomial kernel.

In the following chapter an evolutionary approach will be explored utilising

CGP in order to automatically develop the error detection program. Unlike the

ANN and SVM approaches, which are to a great extent ‘black-box’ approaches,

the CGP programs can be easily studied and modified by human experts. Such an

approach is therefore of great interest for use within the ATLAS TDAQ system.

The results achieved using the CGP approach are compared to that of the ANNs

and SVMs and the advantages and disadvantages of the different approaches are

discussed.
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Chapter 8

Classification of errors using

Cartesian Genetic Programming

This chapter presents a description of Cartesian Genetic Programming (CGP) and

describes how it can be applied to evolve programs capable of performing error de-

tection within the ATLAS TDAQ system. Section 8.1 gives an introduction to CGP

and describes how it compares to Standard Genetic Programming (SGP). It also

introduces a new new type of crossover and compares it to the approach commonly

used in the literature. Section 8.2 applies CGP in order to evolve programs capable

of detecting errors in the TDAQ system. The approach is compared to the results

found in previous chapters and the relative merits of the different approaches are

discussed.

An important benefit of the CGP approach is that a program can be auto-

matically developed to perform the error management. The developed solution is

also easily modifiable by a human developer, something that is not always the case

with ANNs and SVMs.

8.1 Introduction to Cartesian Genetic Programming

Cartesian Genetic Programming (CGP) was first introduced by Julian F. Miller in

1998 and subsequently presented in (Miller, 1999) and later in (Miller and Thomson,

2000). Although it is based on the same concepts as evolutionary programming and
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Standard Genetic Programming (SGP) (Koza, 1998), it does differ in some funda-

mental ways. The most important difference is the representation of the programs

which is realised using a directed indexed graph, as opposed to the tree representa-

tion normally used in SGP. As initially presented by Miller, the nodes in CGP are

organised in a grid structure of x rows and y columns, hence the name Cartesian. A

parameter ‘levels-back ’ is an integer ranging from 1 to the total number of columns.

If levels-back is set to 1, a node may only connect to nodes in the previous layer and

so on. If the number of rows are set to 1 and levels-back equals the number of nodes

the program becomes a general directed graph where a node may be connected to

any of the previous nodes.

As in the case of SGP evolutionary operators such as mutation and crossover

are applied to the individuals. CGP uses a fixed number of nodes, but due to the

connection structure used in CGP the actual program developed will usually consist

of a sub-set of these nodes. This mapping between genotype and phenotype allows

for neutrality where a number of individuals have the same program representation

(phenotype) and fitness, but may contain differences which are currently not con-

tributing to the output. It has been argued that this kind of neutrality may be

beneficial in evolutionary computing, but results are somewhat unclear (Galvanes-

Lopez and Poli, 2006). CGP has been shown so far to perform at least as well as

SGP in some applications (Miller, 1999; Walker and Miller, 2006; Miller and Thom-

son, 2003; Harding and Miller, 2005). Figure 8.1 shows a CGP individual and the

corresponding program (phenotype).

Another significant difference in using CGP as opposed to SGP is that it offers

the possibility to have multiple outputs from a single program. This is achieved by

retrieving the output from the last n nodes in the last column where n is the number

of required outputs. Also, the problem of ‘bloat’ normally seen in SGP (Blickle and

Thiele, 1994) has been shown not to be a problem when using CGP (Miller, 2001).

The main differences between SGP and CGP are summarised in Table 8.1.

Note that extensions to CGP have been presented by Miller, in particular

the automatic acquisition of modules (Walker and Miller, 2007; Miller and Harding,
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Figure 8.1: Shows a CGP individual (on the left) and the corresponding program tree

on the right. Some nodes do not contribute to the actual program.

2008) a technique similar to that of automatically defined functions in SGP. However,

the use of modules was not available in the implementation used for this work. This

should not be of great importance as the main advantage of modules is that good

solutions are found quicker, not that better solutions are found. Computational

efficiency, while an important aspect, was not one of the key considerations in this

work.
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8.1.1 Structure of a CGP individual

Each individual consists of N nodes. N is, in standard CGP, chosen at the start

of the evolution and is never altered by any operators. Each node consists of a

function F and C inputs which each represents a connection to another node with

the corresponding number. Each node can therefore be coded as a string consisting

of node number, inputs and function. Figure 8.2 shows a possible encoding of a

CGP program consisting of 6 nodes and two inputs organised in a grid layout with

3 nodes in each layer. As can be seen the numbering of the nodes and their inputs

take into account the number of values in the input vector, though this is really a

matter of implementation.

Figure 8.2: A possible encoding of a CGP individual and the corresponding graphical

representation.
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8.1.2 Evolutionary operators

8.1.2.1 Mutation

Mutation is an evolutionary operator where the structure of a single individual is

altered. A mutation of a node is realised in one of two ways:

(i) by changing one of the inputs, i.e. connections to other nodes or input vector,

so that it points to another randomly chosen and legal node.

(ii) by changing the function of the node by replacing it with a randomly chosen

function taken from the available list of functions.

An example of mutation is shown in Figure 8.3 where the input of a node and the

function of another node are mutated. Mutation is normally applied to each node

in the individual with a probability set at the start of the experiment. A high

mutation rate means that each node has a large chance of changing between each

generation and the average fitness of the population will therefore fluctuate more.

The advantage of having a large mutation rate is that potential solutions have less

chance of being stuck at local minima in the fitness landscape. A small rate of

mutation on the other hand is better when converging on the optimal solution and

small changes are needed in order to achieve a better fitness. Some approaches will

therefore start with a high mutation rate and lower it as the population converges

on a solution.

Figure 8.3: An example of mutation in CGP.
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8.1.2.2 Crossover

Crossover is an evolutionary operator where two individuals are combined to pro-

duce one or more ‘offspring’. First two individuals referred to as parents are chosen

from the population using some selection strategy (see Section 8.1.2.4). The selec-

tion strategy is in most cases based on the fitness of the individuals. Crossover is

then performed and the resulting individual(s) can be used in the next generation.

The traditional crossover for CGP is described below:

Traditional crossover: Crossover in CGP is traditionally realised by choosing two

points representing crossover limits in the chromosome of the individuals. These

crossover points are the same for both individuals. All nodes between these limits

are then swapped creating two new individuals. This crossover process is illustrated

in Figure 8.4.

It is worth noting that crossover in CGP differs from SGP in that two iden-

tical parents will lead to identical offspring; this is generally considered to be a

weakness of CGP.

Figure 8.4: Traditional crossover in CGP.

In an attempt to improve upon the traditional crossover techniques, a new

type of crossover has been developed by this author, called Graph crossover. Fol-

lowing is a description of this new crossover method before an empirical comparison

with the traditional approach is performed.
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Graph crossover: The idea behind the new crossover method is that functionality

is coded in the ‘sub-graphs’ of the program. The traditional way of performing

crossover will often copy nodes that have no connection with each other and are

therefore not likely to contain any useful functionality. Instead, the aim is to copy

sub-graphs of the program when performing crossover. The graph crossover is de-

scribed in Algorithm 8.1. Using the algorithm a sub-graph of the individual is copied

and thus it guarantees that the copied nodes are all connected, something which is

not the case with the standard crossover approach. By always copying connected

nodes this should increase the chance that some useful functionality is transferred

when performing crossover. The full crossover process is illustrated in Figure 8.5.

Algorithm 8.1 Graph crossover

1: Given two Parents; P1 and P2.

2: Choose a node Ns at random in the individual P1 and mark this for crossover.

3: Randomly choose a number j representing number of ‘recursive’ steps.

4: Traverse the sub graph down to a depth of j starting at Ns by following the in-

puts of each node recursively. Mark all nodes traversed in this way for crossover.

5: Copy all nodes marked for crossover into P2 in the corresponding position (over-

writing the existing nodes). This constitutes the new individual.

An experimental comparison between the new crossover approach and the

standard one will be performed in the following section.
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Figure 8.5: New crossover method called Graph crossover

Comparison of crossover approaches: Both crossover approaches were used on 4

different problems, two symbolic regression problems and two even parity problems.

These types of problems were chosen as they are relatively commonly investigated

in literature. First, we will note the effect on the overall fitness of the population

and the best individual for both the crossover approaches to see if there is an over-

all difference between the two. In addition we will look at the statistics of every

crossover made throughout the experiment and note how many crossover operations

lead to a better, a worse or an equally fit offspring. The CGP parameters used for

the experimental runs are shown in Table 8.2.

Table 8.2: Parameters for the crossover tests

Parameters Symbolic regression Even parity

Individuals 50 50

Generations 200 500

Mutation probability 10% 10%

Crossover probability 80% 80%

Nodes 12 20

Backwards connections 8 12

Functions +,−, ∗, / AND, OR, NAND, NOR, NOT
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Results: Figure 8.6 shows the result of CGP using the new crossover method versus

that of the traditional one for two symbolic regression problems (y = x2−2x+1 and

y = x6−2x4+x2) while in Figure 8.7 the performance for two even parity problems (3

and 4 bits) are compared. The graphs show the fitness value of the best individual

for each generation averaged over 200 runs for the symbolic regression problems

and 100 runs for the even parity problems. From the results it is evident that the

new crossover method leads to better results compared to that of the traditional

approach, in particular for the even parity problems. One can in general observe

a faster convergence using the graph crossover and for the even parity problems it

also achieves significantly better fitness of the best individual. The fact that graph

crossover achieves so much better results for the even parity problems is likely to

be due to the fact that such problems rely more on developed sub-graphs which are

more likely to be transferred using the new crossover approach.

Table 8.3 shows the percentage of crossovers which lead to a better, worse

or equally fit offspring for each of the test problems. One can see that the new

graph crossover more often leads to a better individual, however for the symbolic

regression problems the difference is not very large; e.g. 3.48% vs 3.16% for the

y = x2 − 2x + 1 problem. Still, if one considers the number of crossovers leading

to worse fitness the difference is greater with 2.54% vs 8.23%. However one should

note that the lower rate of crossovers leading to worse individuals may not always

be beneficial. A very low value could mean that the crossover is not leading to

significantly different individuals, meaning that it could more easily become stuck

at a local minimum. Thus, while the standard crossover technique may lead to less

fit individuals, it may indeed be exploring a broader area of the fitness landscape

as compared to the graph crossover and may therefore perform better for other

problems. This is however only a theory and a full investigation is not covered in

this thesis, but is recommended for future research.
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(a) x2 − 2x+ 1

(b) x6 − 2x4 + x2

Figure 8.6: The performance of the new crossover type. The graphs show the best

individual for each generation averaged over 200 runs. a) shows the results for the

symbolic regression problem of x2 − 2x + 1 and in b) the results for the problem

x6 − 2x4 + x2 are shown.
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(a) Even parity 3 bits

(b) Even parity 4 bits

Figure 8.7: The performance of the new crossover type. The graphs show the best

individual for each generation averaged over 100 runs. Figures a) shows the results for

the 3 bit even parity problem and in b) the results for the 4 bit even parity problem

are shown.
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Table 8.3: Effect of crossover operations on the offspring fitness

Problem Crossover type Better fitness Worse fitness Equal fitness

y = x2 − 2x+ 1
Graph 3.48% 2.54% 93.98%

Regular 3.16% 8.23% 88.61%

y = x6 − 2x4 + x2
Graph 9.95% 1.38% 88.68%

Regular 7.58% 15.40% 77.02%

Even parity: 3 bit
Graph 13.92% 2.51% 83.57%

Regular 5.62% 10.90% 83.48%

Even parity: 4 bit
Graph 24.36% 2.58% 73.16%

Regular 10.11% 22.12% 67.77%

8.1.2.3 Reproduction and elitism

An important form of evolutionary operator is reproduction. In this operation an

individual is selected from the existing population and copied into the new popula-

tion. Depending on the selection strategy used (see Section 8.1.2.4) the individuals

are chosen for reproduction based on their fitness value. This means that ‘good’

genes are more likely to be transferred to subsequent generations.

If a very high reproduction rate is used the evolution is often referred to as a

‘steady-state’ evolution as there will only be small fluctuations in the average fitness

of the population.

A special case of the reproduction approach is called elitism where the fittest

individual is always transferred without changes to the next generation. By doing

this one guarantees that the best solution thus far is never lost or altered by the other

evolutionary operators. However, elitism can cause the population to be dominated

by a single very fit individual and may therefore converge prematurely.

8.1.2.4 Selection strategies

In order to select individuals for the evolutionary operations some strategy must

be employed. There exists a number of different strategies with the commonality
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that they are (almost) all dependent on the fitness of the individuals. Following

is a description of the selection strategies available in the implementation of CGP

used here. These strategies have been implemented as they are some of the most

common forms of selection strategies used in the literature.

Tournament selection: In tournament selection a number of individuals are selected

at random and they then ‘compete’ in a tournament where the best fit individual is

considered the winner or has a greater probability of winning. This continues until a

single individual is left as the winner. The winner of the tournament is then used for

evolutionary operations. The overall selection pressure can then easily be adjusted

by changing the size of the tournament. A higher number of individuals taking part

in the tournament means that a less fit individual has a smaller chance of being

selected. If a tournament size of 1 is used the selection procedure is equivalent to

random selection.

Roulette selection: In roulette selection the individuals are selected based on their

relative fitness. That is each individual is assigned a piece of a ‘cake/roulettewheel’

corresponding to their fitness. An individual is then selected randomly with a prob-

ability corresponding to its share of the wheel. As an example consider a population

of 13 individuals with fitness given by

Fitness = [10, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2]

where a higher fitness is better. The corresponding probabilities using roulette se-

lection is shown in Figure 8.8. One can observe that a highly fit individual will

potentially have a very high chance of being selected. Care must therefore be taken

when assigning fitness, such that the values are properly scaled to avoid the problem

where a single or a few individuals dominate the selection procedure.

Rank selection: Rank selection is similar to roulette selection, but instead of assign-

ing probabilities based on the actual fitness of the individuals the probabilities are

assigned based on the relative rank of an individual as compared to the rest of the
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Figure 8.8: Selection probabilities for an example population using roulette selection.

population. The ranking is determined based on the fitness of the individuals and

each individual is therefore assigned a rank ranging from 1 to n where n is the num-

ber of individuals in the population. If one ranks the individuals in ascending order

(i.e. worst first) the probability of being selected is then given by Pselect = i
n∗(n+1)/2

where i is the rank of the individual. Using the same example population as in

the previous section one gets selection probabilities as shown in Figure 8.9. Rank

selection ensures that a single very fit individual does not dominate the selection

procedure as might be the case when using roulette selection. Indeed the selection

probability is independent of the absolute fitness value, but rather depends on the

relative fitness value of an individual as compared to the rest of the population.

However the least fit individuals have an increasingly small chance of being selected

as the population size increases, even though their fitness may be very close to better

ranked individuals.
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Figure 8.9: Selection probabilities for an example population using rank selection.

8.1.3 Evolution

CGP evolution is realised in the same way as for GA (see Section 6.2.3.1) or SGP.

There are many variations to the basic algorithm which may be used though the

core concepts are usually kept identical. The algorithm used in this work is outlined

in Algorithm 8.2. This variant of the algorithm is commonly used in the literature

and was therefore chosen for this work. Further investigation of the impact of the

evolution algorithm is left for future work.

8.1.4 Hierarchical fair competition

Hierarchical fair competition (HFC) is a relatively new model for evolutionary com-

putation introduced by Hu and Goodman in 2002 (Hu and Goodman, 12-17 May

2002; Hu et al., 2005). The idea behind the HFC model is that the traditional evolu-

tionary model is susceptible to premature convergence, and will often become stuck

(or at least delayed) at a local minimum. Convergence is of course key to evolu-

tionary models in general, but should be controlled in order to avoid the possibility
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Algorithm 8.2 CGP evolution

1: Create initial population

2: Evaluate fitness of each individual

3: while End criteria is reached (predefined fitness or max generations) do

4: while New population smaller than old do

5: Choose individual according to selection strategy

6: Apply evolutionary operators

7: Insert into new population

8: end while

9: New population replaces the old one

10: Evaluate fitness of new population

11: end while

that solutions get stuck at a local minima. In the traditional approach a high fitness

individuals may to a large degree take the place of lower ranked individuals and may

dominate the evolutionary process. The idea behind HFC is to make the competi-

tion fairer in the sense that similarly ranked individuals should compete only with

each other. This is achieved by sub-dividing the population into several classes,

usually referred to as demes. The individuals are assigned to a deme according to

their fitness ranking and each deme has an associated admission threshold. The

selection and application of evolutionary operators are then constrained to a single

deme so that individuals only compete with individuals within the same deme.

If an individual through evolution achieves a higher fitness it is moved to a

corresponding deme if it passes that deme’s admission threshold. The HFC concept

is illustrated in Figure 8.10. Note that individuals are never moved to a lower level

deme, hence the migration between demes are unidirectional. It is therefore clear

that the entry level deme (lowest fitness) can send individuals to any other deme,

while the highest ranked deme can only receive individuals. If a deme receives more

individuals than it exports, the lowest ranking individuals are replaced. Similarly,

if a deme is lacking individuals after a migration, new ones are created randomly

to replace them. New individuals are therefore continuously created and supply the
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population with new genetic material.

Figure 8.10: An illustration of the HFC evolutionary model. Adapted from (Hu et al.,

2005).

Note that it is not a requirement that migration is performed at every gen-

eration step. Indeed, in the implementation used in this work (see Appendix B)

it is a configurable parameters which can be tuned by the operator. This provides

a tradeoff in terms of computational costs and may indeed be beneficial as each

deme is allowed to ‘mature’ and spread new genetic material within the deme before

passing on new individuals to higher demes.
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8.1.4.1 Empirical tests of HFC in conjunction with CGP

A number of tests were performed in order to evaluate the effectiveness of HFC

in conjunction with CGP. HFC was first tested on an even parity problem using 5

bits/inputs. The initial tests were performed using 32 individuals over 2000 gener-

ations and the results where averaged over all runs. The population size was set to

a low value in order to conduct a large number of tests. The generation value was

chosen to be relatively large in order to allow the population to converge, though

the exact value is not likely to impact such a direct comparison.

The initial tests showed that HFC seemingly has a negative impact on the

results. The reason for this discrepancy is likely to be due to the fact that the deme

sizes are too small when using only 32 individuals and therefore does not contain

enough genetic material to work properly. The tests were therefore re-run using a

larger population size of 1024 individuals for 100 generations. In this case HFC had

a positive effect on the overall results leading to a faster convergence to the best

individual. However, the population average converges somewhat slower which is

due to the fact that new individuals are continually inserted into the population (to

replace individuals leaving the lowest deme). This shows that one must take care to

choose the parameters when using HFC in order to get the best possible effect. The

result of the two tests are shown in Figure 8.11 while the parameters used are shown

in Table 8.4. Further study on the impact of HFC for different types of problems is

left for future work, though one can conclude that it has the potential of improving

upon the regular evolutionary model at least for some types of problems, though the

impact has at least some correlation to other parameters such as population size.
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(a) Population size: 32

(b) Population size: 1024

Figure 8.11: The performance obtained using HFC vs the regular CGP model. The

graph shows the fitness of the best individual and of the population averaged over all

runs.
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Table 8.4: Parameters for HFC tests

Parameters Even parity 5 bits - I Even parity 5 bits - II

Individuals 32 1024

Generations 2000 100

Mutation probability 5% 5%

Crossover probability 80% 80%

Nodes 20 20

Backwards connections 12 12

Functions AND, OR, NAND, NOR, NOT AND, OR, NAND, NOR, NOT
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8.1.5 Determining CGP parameters

As for other evolutionary approach the determination of the available parameters is

important and can greatly affect how effective the CGP is. In Section 6.2.3.2 this

problem was investigated in the context of GAs, though most of the arguments are

general for all evolutionary algorithms. Importantly, it has been shown that finding

a ‘window’ of good parameters also applies for genetic programming approaches

(Piszcz and Soule, 2007). Since the parameters are dependent and interact in a

non-linear manner an exhaustive search of parameters may be too computationally

expensive in many cases.

It is also likely that changes to the test set used to evolve the programs will

affect the optimal set of parameters. In the case of the TDAQ data the work de-

scribed in this thesis is a first attempt to apply evolutionary algorithms in order

to automatically evolve error detection programs using this type of data. However,

as the techniques are further explored the data used to evolve these programs may

change. This can be either due to a better understanding of the system and its

interactions allowing one to remove or add different parts of the dataset, or it could

be due to the TDAQ system itself changing and thus producing different datasets.

Based on this, and due to the computational cost, the optimisation of CGP param-

eters were therefore left for future work. Instead values similar to those found in the

literature have been used throughout this chapter unless stated otherwise. Table 8.5

shows the range of parameters used based on (Miller and Thomson, 2003; Walker

and Miller, 2005; Miller and Thomson, 2000; Clegg et al., 2007).

Table 8.5: Typical CGP parameters as found in the literature.

Parameter Value

Population size [5−]

Crossover probability [0.6− 0.95]

Mutation probability [0.02− 0.10]

Number of generations [1000− 100000]
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8.2 Applying CGP for error detection in the TDAQ

system

In this section CGP is applied to automatically evolve programs to detect and

classify the different errors present in the data. First the fitness function used to

evaluate the different solutions is presented, before CGP is applied using IS and

ERS data in turn.

8.2.1 Fitness function

A crucial part of utilising CGP or any related evolutionary model is to determine the

fitness function. An inappropriate choice of fitness function may negatively affect

the evolution or indeed cause the process to fail. For the error detection problem

the initial approach was to use the number of misclassified samples (i.e. the error

rate) as shown in (8.1). However, if the datasets contain a large majority of positive

or negative samples, such a classification can be misleading. For example, if 95%

of the data points are negative samples, then a function which is always returning

0 would classify 95% correct values and will be considered a highly fit individual,

something that is not the case. It might even outperform other classifiers that are

actually correctly classifying some of the positive samples as well.

In order to avoid these problems a fitness function based on the measures

introduced in Chapter 4, namely Sensitivity, Specificity, PPV and NPV was chosen.

A similar function was used in Chapter 6 and 7 in order to compare the different

ANNs and SVMs, though some small modifications were made. As the problem

is defined as a binary classification problem all the outputs were, for the purpose

of calculating fitness, modified so that any output ≥ 0.5 was considered a positive

output while any output < 0.5 was considered negative. TP, TN, FP and FN can

then be calculated and the fitness function is given using the product of Sensitivity,

Specificity, PPV and NPV shown in (8.2). This is achieved by modifying PPV and
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NPV such that:

PPV =





0 , TP = 0

TP
(TP+FP ) , TP > 0

and

NPV =





0 , TN = 0

TN
(TN+FN) , TN > 0

Hence the fitness will always be in the range [0, 1] with an optimal fitness of 0; i.e.

the goal is to minimise the fitness function. This ensures that the evolved program

must correctly classifies at least one negative and one positive sample to achieve

anything but the worst possible fitness.

Fit = (FP + FN) (8.1)

Fit = 1− Sensitivity ∗ Specificity ∗ PPV ∗NPV (8.2)

8.2.2 IS data

In this section CGP is applied in order to evolve an error detection program based on

the IS dataset. Two different approaches were explored. First, separate programs

were evolved for each of the error types. Hence, three different programs were

evolved each predicting the different error types based on the same input data. As

CGP supports multiple outputs (as compared to SGP which supports only a single

output) the evolution of a single program in order to detect all types of errors in

the system was then explored. This program has 3 output values each representing

the prediction of an error type.

8.2.2.1 Data preparation

The IS dataset as used consists of 974 observations with 25 variables/dimensions.

The high number of dimensions in the input data could make the evolution of a

program more difficult. PCA was therefore applied in order to reduce the number
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of dimensions. However, as can be seen from Figure 8.12 the first 10 principal com-

ponents explain only approximately 50% of the variance in the data. Even the first

20 principal components explain less than 90% of the variance. It is therefore likely

that any attempt of reducing the number of dimensions could lead to a significant

loss of variance and potentially a loss information that could be important to the er-

ror detection. Based on this the PCA results were not used and the dataset was left

as is using all 25 dimensions. One therefore has to rely on the evolutionary process

to select the appropriate inputs and discover any relationships between them.

White noise was not added to the data in these tests in order to keep the

computational costs within reason. Hence, the data set is not identical to the

one used in Chapters 6 and 7. However, in Table 6.3 in Chapter 6 the results

of applications of ANN to the exact same dataset is presented and will therefore

provide a more accurate reference when comparing the results.

Figure 8.12: Variance explained by the first 10 principal components of the IS dataset.
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8.2.2.2 Choosing functions

All functions defined in Table 8.6 were available during the evolution of the pro-

grams. Hence, any node in the potential solutions might represent any one of these

functions. Note that some of the functions accept a different number of parameters,

so that if a function changes due to mutation this might also affect the inputs to

that particular node.

No selection of functions was made prior to the tests as there may be different

optimal sets of functions for each of the error types (TypeI, TypeII and TypeIII).

Such a selection therefore becomes complex and time consuming, and is left for

future research; see Section 9.2.

Table 8.6: Functions available while evolving the CGP individuals.

Terminal Inputs Description/output

+ a,b Addition y = (a+ b)

- a,b Subtraction y = (a− b)
* a,b Multiplication y = (a ∗ b)
/ a,b Division y = a

b

OR a,b logical or y = (a ∨ b)
AND a,b logical and y = (a ∧ b)
NAND a,b logical not-and y = ¬(a ∧ b)
NOR a,b logical not-or y = ¬(a ∨ b)
XOR a,b logical exclusive or y = (a⊕ b)
NOT a logical not y = ¬a
gt a,b Greater than: returns 1 if (a > b), otherwise 0.

lt a,b Less than: returns 1 if (a < b), otherwise 0.

lif a Logical if: returns 1 if a > 0, otherwise 0.

sif a,b Simple if: returns b if a > 0, otherwise returns 0.

sign a Sign: returns sign(a).

min a,b minimum of a and b.

max a,b maximum of a and b.

double a double of a (a ∗ 2)

Constant Returns a constant number between 0 and 1.
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8.2.2.3 Multiple program approach

In this approach a separate program was evolved for each of the three error types;

TypeI, TypeII and TypeII. 20 runs were conducted for each of the three error types.

The normal evolutionary process was chosen due to two main factors:

1. The result of using HFC for the ERS dataset did not conclusively show a

positive effect.

2. The normal evolutionary process requires less computational effort.

None of the CGP parameters were changed between any of the runs. The full list

of parameters that were used are listed in Table 8.7.

Table 8.7: Parameters for the multiple program approach using IS data

Parameters Value

Evolutionary model Normal

Individuals 20

Generations 1000

Mutation probability 10%

Crossover probability 90%

Layout Directed graph

Rows * columns 50

Backwards connections 49

Selection strategy Rank

The overall results for the three different error types are all summarised in

Table 8.8. The specific results for each of the error types, including the best solutions

achieved for each type, are discussed in more detail in the next sections.
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TypeI error

The average best fitness at each generational step is shown in Figure 8.13 together

with ± 1 standard deviation. This shows that CGP is able to consistently produce

good solutions relative to the particular problem. The programs are also relatively

simple with an average length of 8.8 nodes. From Table 8.8 one can see that the best

individual achieves a classification accuracy of 98.29% and 97.94% for the training

and test sets respectively. The CGP evolved program achieves a performance rating

of 61.48. If one compares this to the results listed in Table 6.3 one can see that the

results match the best performances of ANNs for the same dataset (without noise).

Figure 8.13: Fitness of the best individual at each generational step averaged over all

runs for the TypeI error type. The gray area indicates ± 1 standard deviation as a

measure of how consistently CGP finds a good solution.

The best solution is visualised in Figure 8.14. The program is very simple

consisting of only 11 nodes out of 50 and utilising only 8 of the 25 available inputs.

This indicates that there are enough nodes to effectively solve the problem at hand.

Indeed one could experiment with a smaller number of nodes to possibly reduce

the time it takes to converge on a good solution though this is left for future work.

Another observation is that there are 6 ‘levels’ of nodes in the program, here meaning

that the longest path of nodes from output to input consists of 6 nodes. This

information could be useful if using the grid model for the CGP individuals in order

to ensure that sufficient columns are available in the grid.
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Figure 8.14: Best program found for the TypeI error. The program utilises only 8 of

the 25 available inputs and consists of 11 nodes.
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TypeII error

Figure 8.15 shows the fitness of the best individual averaged over all runs together

with ± 1 standard deviation. One can observe that the results are less consistent

than for the TypeI error. The best individual achieved a classification accuracy

of 99.15% and 98.46% for the training and test set respectively. The overall per-

formance rating is at 38.46 also matching the performance of ANNs for that same

dataset.

Figure 8.15: Fitness of the best individual at each generational step averaged over all

runs for the TypeII error. The gray area indicates ± 1 standard deviation as a measure

of how consistently CGP finds a good solution.

The best program is visualised in Figure 8.16 and one can observe that only

9 of the 25 inputs are being utilised. The program consists of 12 nodes out of the

maximum 50, hence 38 nodes are unused in the program. This again indicates that

a sufficient number of nodes were available during the evolution of the program.

The longest path is between output and input is again 6.
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Figure 8.16: Best program found for the TypeII error.
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TypeIII error

Figure 8.17 shows the fitness of the best individual averaged over all runs together

with ± 1 standard deviation. The results are more consistent than for the TypeII

error, though still not as good as for TypeI. This is to be expected, especially con-

sidering the fact that the clusters found in Chapter 5 were more prominent for the

TypeI error than for the other two error classes. The best individual achieved a

classification accuracy of 98.29% and 99.20% for the training and test set respec-

tively. Though it is worth noting that the Sensitivity is quite low for both training

and test sets with values of 47.37% and 66.67% respectively. This means that many

positive cases may go unnoticed. This is reflected in the overall performance for the

test set which has a score of 28.85. This is lower than all the ANNs for the same

dataset.

Figure 8.17: Fitness of the best individual at each generational step averaged over

all runs for the TypeIII error. The gray area indicates ± 1 standard deviation as a

measure of how consistently CGP finds a good solution.

The best program is visualised in Figure 8.18 and one can observe that in

this case 12 of the 25 inputs are being utilised and the program consists of 17 nodes,

still well within the maximum of 50.
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Figure 8.18: Best program found for the TypeIII error.
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8.2.2.4 Single program approach

Clearly evolving a single program to predict all types of errors is a more difficult

problem. The fitness function was modified so that Sensitivity, Specificity, PPV

and NPV was calculated for each error type and then multiplied. Hence, the fitness

function was:

Fit = 1−SensitivityTypeI ∗SensitivityTypeII ∗SensitivityTypeII ∗ · · · ∗NPVTypeIII

As was discovered using the multiple program approach in the previous sec-

tion 50 nodes were more than sufficient to evolve good solutions to the problem.

Indeed most solutions used around 10 nodes for each of the problems. The single

program approach was therefore attempted using 60 nodes which should provide a

healthy margin and allow for neutrality to exist within an individual. The parame-

ters used in this experiment are summarised in Table 8.9.

Table 8.9: Parameters for the single program approach using IS data

Parameters Value

Evolutionary model HFC

Individuals 100

Generations 5000

Mutation probability 10%

Crossover probability 90%

Layout Directed graph

Rows * columns 60

Backwards connections 59

Selection strategy Rank

Results: 3 runs were made using the parameters shown in Table 8.9. The results

of the best individual is summarised in Table 8.10. Overall the results are similar

to those achieved using a single program per error type. The results range from

95.12% for the TypeIII test set to 97.69% for the TypeII test set, showing that a

good generalisation performance was achieved. However, the solution is not really
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satisfactory because for example in the case of the TypeIII error the PPV is only

15.79% due to a relatively large numbers of false positives. Even so, in overall terms

the results show that it is indeed possible to evolve a single program to detect all

three types of errors based on the IS data.

Table 8.10: Results of CGP using the single program approach.

Network type Error Type Dataset Accuracy FN FP Specificity Sensitivity PPV NPV

CGP (Normal)

Type I
Training 97.94 7 5 99.09 80.00 84.85 98.73

Test 97.94 3 5 98.65 84.21 76.19 99.18

Type II
Training 99.48 3 0 100 76.92 100 99.48

Test 97.69 5 4 98.95 28.57 33.33 98.69

Type III
Training 97.61 3 11 98.06 84.21 59.26 99.46

Test 95.12 3 16 95.82 50.00 15.79 99.19

Looking more closely at the final solution as illustrated in Figure 8.19, several

observations can be made. In total 22 nodes are used out of the 60 available. This

was to be expected taking into account the results achieved in the multiple program

approach. However an important observation is that only a single intermediate node

(circled in the figure) is used in more than one of the output results. All other nodes

contribute only to a single output. The reason for this is likely to be related to the

fact that the errors are not correlated. The patterns in the data corresponding to

each error type is likely quite different and the CGP fails to evolve any sub-program

that can be reused for all the errors. Thus, the individual evolves three separate

sub-programs each detecting one of each type of error. The input data however does

contain several variables that contribute to several or indeed all of the outputs.
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Figure 8.19: Best program found using the single program approach.
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8.2.3 ERS data

In this section we will apply our CGP to develop a program to detect errors based

on the ERS data. The goal is to establish whether CGP can be used to evolve error

detection programs using this type of data.

8.2.3.1 Data preparation

One of the initial questions that must be answered is how to prepare the data in

order to use CGP effectively. In Chapter 6 the messages were grouped into blocks

of 5 leading to 30 dimensions in the input data. Using so many parameters might

be difficult when developing CGP programs as one would need a very large program

and hence the evolutionary process might become very time consuming.

In order to avoid this problem the data was further processed. PCA, as

described in Chapter 5, was chosen in order to reduce the number of dimensions

in the dataset. PCA was applied to the ERS data, thus reducing the number of

dimensions in the data to 3. As can be seen in Figure 8.20 this still retains 85%

of the variance in the dataset. The resulting dataset was then used for subsequent

evolution of error detection programs.

Figure 8.20: Variance explained by the first 8 principal components of the ERS dataset.
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8.2.3.2 Initial test

In order to evaluate the feasibility of the CGP approach a number of relatively

short runs with a limited population size were attempted. A population size of

96 individuals was used and evolved for 200 generations. This was repeated 100

times. All the CGP parameters are presented in Table 8.11. The different functions

available during program evaluation are shown in Table 8.6.

Table 8.11: Parameters for initial testing using the ERS data

Parameters Value

Evolutionary model HFC

Individuals 96

Generations 200

Mutation probability 5%

Crossover probability 80%

Layout Grid

Rows * columns 4*7

Backwards connections 3

Selection strategy Rank

Figure 8.21 shows the results of the 100 runs. It shows the mean of the best

individuals averaged over all populations including the standard deviation at each

generation step. The results of these initial tests were quite promising. The optimal

program achieved a classification accuracy of 80% on the training data and 61% on

the test data. While this is quite a bit worse than that of ANN or SVM, a number

of factors should be considered:

• The final solution uses just 12 nodes which is far less than that of the other

approaches. The best solution is shown graphically in Figure 8.22. The figure

also includes a program listing for a simple C++ routine corresponding to the

program.

• As the nodes are all simple functions and thus the program can be evaluated

practically ‘instantly’.
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• A third and very important factor is that the program can be easily read and

understood by a human operator. This can give further insight into the data

and possibly it can be improved upon by human operators. This also means

that it is straightforward to transform the program into rules that can be used

in the existing expert system and can be effected with minimal effort.

Taking these factors into consideration the initial results very promising. It should

be possible to use CGP in order to develop fast and effective error detection pro-

grams.

Figure 8.21: Mean and standard deviation for the best individual at each generation

averaged over 200 runs.
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Figure 8.22: Best program found through initial test runs.
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8.2.3.3 Selecting functions

In order to choose the optimal set of functions for this particular problem the concept

of appearance percentage is ‘borrowed’ from GNMM as described in Section 6.3.

250 runs were conducted using a small population size of 100 individuals for 200

generations. All the functions listed in Table 8.6 were available during the runs. The

functions used in the best individual for each run was recorded. Note that, as we are

using CGP, only active nodes in the program were considered, i.e. those functions

that contribute to the final output of the individual. The appearance percentage

of each function was then calculated in order to determine if some functions were

significantly more often used in the final solution. The results of the appearance

percentages are shown in Figure 8.23. As can be seen from the figure there are some

functions that seem to be more useful for the solution, in particular gt and lt. This

comes as no surprise as the problem is basically a classification problem and one

would expect such functions to be very useful.

Figure 8.23: Appearance percentage of all functions

In order to verify the results the tests were repeated for 100 runs using only

the top 6 functions. The results were then averaged over all runs and compared to

those achieved while using all the available functions. The results can be seen in
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Figure 8.24. As expected it is clear that using only a subset of the functions enables

the population to converge faster and to a better solution on average. However, care

should be taken not to select too few functions as this might lead to fast convergence

and a good solution, but it might be missing a ‘crucial tool’ to achieve even better

performance.

Figure 8.24: Average fitness at each generation when using just selected functions vs

the use of all functions.

8.2.3.4 Evolving an error detection program

After determining the best set of functions, CGP was used to evolve a program to do

error detection. The parameters for the CGP are shown in Table 8.12 together with

the functions which were available during the evolution. In order to evaluate further

the overall usefulness of HFC for this problem 30 runs using the normal evolutionary

model were performed; 20 individuals were used over 1000 generations. Then 30

runs using HFC were performed, with 100 individuals used over 200 generations.

The difference in population size was based on the results in Section 8.1.4.1 where

we found that HFC works best when the population is larger. The number of

generations is therefore less in order to have approximately the same amount of

total computational effort for the two approaches.
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Table 8.12: CGP parameters for the ERS runs

Parameters Batch #1 Batch #2

Evolutionary model Normal HFC

Individuals 20 100

Generations 1000 200

Mutation probability 5% 5%

Crossover probability 90% 90%

Layout Directed graph Directed Graph

Nodes 30 30

Backwards connections 29 29

Selection strategy Rank Rank

Available functions lt, gt, +, −, /, ∗, min, max, double, sif, lif, constant, and

Table 8.13 summarises the results of the two different evolutionary approaches.

Both approaches produce a best individual which performs similarly to the best in-

dividual found using the normal evolutionary model achieving 77.06% classification

accuracy and the best found using HFC achieves 77.65%. On average HFC achieves

slightly better solutions for the test cases with 72.17% accuracy versus 68.49% for

the normal model. However this might be due to the probabilistic nature of evolu-

tionary approaches and further studies should be conducted before drawing a final

conclusion.

Table 8.13: CGP results using the ERS data.

Network type Solution Dataset Accuracy FN FP Specificity Sensitivity PPV NPV

CGP (Normal)

Best Ind
Training 79.84 67 36 82.09 78.39 87.10 71.12

Test 77.06 42 36 75.00 78.57 81.05 72.00

Average
Training 79.75 70.9 32.6 83.78 77.13 88.17 70.43

Test 68.49 45.3 61.9 57.05 76.89 73.07 N/A

CGP (HFC)

Best Ind
Training 81.21 63 33 83.58 79.68 88.21 72.73

Test 77.65 46 30 79.17 76.53 83.33 71.25

Average
Training 79.30 69.2 36.5 81.82 77.67 86.96 70.47

Test 72.17 59.7 34.9 75.76 69.52 80.19 66.80
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Graphical representations of the best individual found using the normal and

the HFC model are shown in Figure 8.25 and Figure 8.26 respectively. One can

see that the HFC solution contains less nodes and has a simpler structure. It is

of course possible that the individual found using the normal approach could be

further simplified taking into account the constraints on the input data (i.e. some of

the nodes might always evaluate to the same value), hence this should not be given

too much importance at this point.

Figure 8.25: Best program found using the normal evolutionary model.
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Figure 8.26: Best program found using the HFC evolutionary model.

Overall the results show that it is possible to develop an error detection

program based on the ERS data achieving good results, though it is unable to

match the performance of the ANNs and SVM approaches presented in Chapter 6

and Chapter 7. Though one should take into account that the test data were used

after first reducing the dimensionality of the dataset using PCA. This means that
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some information is likely to have been lost. However, the approach was taken in

order to keep the computational effort within a reasonable limit. For future tests it

would be of interest to perform evolution using all the available data in order to see

whether better results can be achieved.

8.3 Discussions and conclusions

The results for the ERS data were encouraging and show promise for the use of CGP

to evolve error detection programs achieving a classification accuracy of 81.21% and

77.65% for the training and test set respectively. While it did not match the results

achieved using ANNs and SVMs it is still a promising avenue for further research.

The CGP used a simplified input set and the resulting programs are small, and

therefore easy to analyse and incorporate into the existing system. It should be

noted that while the CGP is relatively easy to analyse it is not trivial to infer any

general observations about the system from the CGP programs. As the input data

has been preprocessed including reducing the dimensionality of the data one cannot

directly see which values of the initial datasets are included and how they are utilized

in the CGP programs. This reduces the transparency of the CGP evolved programs

and makes rule extractions (at least at a general level) very hard.

For the IS dataset excellent results are achieved which are in most cases

comparable to the results achieved using ANNs and SVMs in Chapter 6 and 7 re-

spectively. The best individuals achieved a classification rate for the test set of

97.94%, 98.46% and 99.20% for the TypeI, TypeII and TypeIII problems respec-

tively. The programs were able to perform an automatic input variable selection in

each case using only a subset of the available parameters. The size of each program

was also automatically determined through evolution and stayed well within the

maximum number of nodes available in an individual. These excellent results make

CGP a good choice for quickly developing error detection programs based on the

available IS data. Especially taking into account the fact that the programs can

very easily be ported into the existing EMS framework.
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The overall results show that CGP can be used to evolve error detection

programs in the context of the ATLAS TDAQ system. The simplicity and portability

of the evolved rules make this approach a promising one and, importantly, one which

can easily be tested within the actual system.
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Chapter 9

Conclusions and further work

This chapter summarises the results and presents the main findings of the research

presented in this thesis. Final conclusions are drawn before some possible avenues

of future research are outlined.

9.1 Summary of main findings

This thesis focuses on the development of new techniques, using a ITS approach,

within the context of the Error Management system of the ATLAS TDAQ system

at CERN. Chapter 1 provides an introduction to the problem and presents the

thesis objectives. Chapter 2 then provides the background of the ATLAS TDAQ

system and outlines some of the key components in the system in the context of

error management. In Chapter 3 the existing ES approach to error management is

described. The main limitations are identified in Section 3.2.4 which include:

(i) The current system lacks adequate error detection capabilities. More specif-

ically only explicit errors such as applications crashing or stopping are dealt

with. There is no detection of errors that occur ‘silently’.

(ii) Due to the rules based nature of the system adaptability to new error scenarios

is difficult, often requiring significant time and effort from experts.

(iii) The generalisation ability of the system is also not sufficiently good.

This thesis has attempted to overcome these limitations in the following ways:
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(i) An ITS approach has been taken where error messages from the applications

(ERS data) and other information published by the applications themselves

(IS data) are first analysed and then used in order to detect errors in the

system. Hence if there are any patterns in the ERS or IS data it would be

possible, using the described ITS techniques, to train/evolve a system that

is able to detect and classify those patterns. This would greatly increase the

error detection and classification capabilities of the system.

(ii) The ITS approach taken, from analysis through pre-processing and train-

ing/evolution of error classifcation systems, can be fully automated. This

means that in order to detect new problems one only needs to gather data

corresponding to those scenarios. While this step would require both insight

into the system and significant human intervention it does not necessarily in-

volve system experts. It should also in most cases be easier than defining new

rules covering all the different scenarios.

(iii) The ITS approaches are all robust to noise or minor variations in the input

data. All the approaches search for overall patterns in the data as opposed to

reacting to a specific set of conditions. Hence, the system should be able to

deal with small variations in the input data (such as some applications sending

different ERS messages) while still correctly detecting and classifying errors.

Note that some limitations remain. As all the input data are heavily pre-

processed it is not easy to extract any general rules from the ITS systems developed,

whereas ideally one would like to understand the root causes of the errors and

potentially prevent them from occurring in the first place.

The overall approach was presented in two main parts:

9.1.1 Part one

Chapter 4 describes error detection from a theoretical point of view. Different

measures of the effectiveness of error detection systems are presented before the

specifics of the TDAQ system in the context of error detection are described.
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The experimental setup is then described in Chapter 5 together with a de-

scription of how error situations were induced in order to simulate real errors in

the system. It then describes the analysis and visualisation techniques that were

subsequently used. These techniques were then applied and it was shown that there

are some clusters in the data corresponding to the times the errors were induced.

9.1.2 Part two

The second part of the thesis then investigates different techniques for developing

error detection systems based on the two datasets gathered in the second part.

Chapter 6 applied ANNs in order to learn from the two datasets. 4 different

types of ANNs were trained using the datasets and the results were compared.

For the IS dataset the best results were achieved using a PNN which achieved

a generalisation performance ranging from 99.59% to 99.86% on the test set for

the three error types, though all the different ANN types achieved relatively good

performance. For the ERS dataset the best performance was obtained using a

constructive RBFN which achieved a classification rate of 94.51% on the test set.

An ensemble approach was then attempted using the output of the four

networks as input to the ensemble. The ensemble output was the weighted sum

of the 4 ANN outputs. The weights were found using a genetic algorithm as the

search space is too large to perform a brute force search and too complex to use any

hill-climbing algorithms. The ensemble achieved better results than that of any of

the single ANN for the ERS dataset with a generalisation performance of 94.90%.

The ensemble approach thus improved upon the result, but at the cost of higher

complexity and computational effort. For the IS data the ensemble was not able to

improve upon the results of the PNN. This is however to be expected as the PNN

already achieved near optimal results and an ensemble approach might therefore be

a useful approach also for the IS data if the classification task is harder and thus

not solvable by a single ANN.

In Chapter 7 a support vector machine approach was investigated. SVMs

were chosen as they are especially efficient when the data is sparse and/or imbalanced
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making them a good fit for the TDAQ data. The theory of SVMs was described

including some possible approaches for dealing with multi-class data. SVMs were

then applied to the ERS and IS datasets using a brute force algorithm in order to

determine the parameters. Two different kernels, Gaussian and polynomial, were

tested. While both kernels achieved very good results, the Gaussian kernel obtained

the best results for both problems achieving a generalisation accuracy of 100% for

the IS data thus showing that a perfect classifier is possible based on that particular

dataset. The SVM also achieved very good results for the ERS dataset with a

classification accuracy of 92.64%.

Finally, in Chapter 8 an evolutionary approach was taken. Cartesian Genetic

Programming was introduced and compared to the standard genetic programming

approach. A new form of crossover was introduced and compared to the standard

one, achieving better results for several types of problems. The evolutionary model

of Hierarchical Fair Competition (HFC) was also tested with CGP and compared to

the regular approach showing better results for some types of problems while being

detrimental for others. CGP was then used to evolved error detection programs

using the same datasets as was used for the ANNs and SVMs as input values.

The CGP results were slightly worse than that of the ANN and SVM approaches

achieving a generalisation accuracy ranging from 97.94% to 99.20% using the IS

dataset and 77.65% for the ERS dataset. The IS performance is only slightly worse

than that of the ANN and SVM approaches while for the ERS data the performance

is significantly worse.

It should be noted that the classification rates achieved by the different tech-

niques in Part two are very high and might indicate that the initial datasets was too

‘easy’ to classify. It is likely that simpler approaches could have achieved similarly

good results for the dataset. However, the main goal of the thesis was to establish a

framework for extending the existing TDAQ EMS something that has successfully

been achieved.
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9.2 Future research

There are a number of ways forward in order to build upon the work presented

in this thesis. The following is a consideration of some of the main points before

specific research is suggested grouped by the relevance to sections of the thesis.

9.2.1 General points

At some point the techniques investigated in this thesis must be implemented in

the actual ATLAS TDAQ system in order to evaluate how well they will be able to

perform and of how much use they actually are to the operators. This includes the

integration with existing components and how to best incorporate the developed

techniques is still a question to be addressed. Integration with the existing EMS

system and the expert system core is a natural way forward.

Further tests should be performed using different configurations of the TDAQ

system both software and hardware-wise, ideally using a larger experimental setup.

More and other types of errors could be simulated providing a larger dataset on

which to test the techniques. Furthermore, only a small number of techniques

have been investigated in this thesis, though an attempt was made to choose the

techniques that are most relevant and commonly used for such problems. Other

techniques could be investigated and compared to the ones presented in this thesis

and the results could be compared. Two promising approaches include ANFIS

(Jang, 1993) and Fuzzy ARTMAP (Carpenter et al., 1992).

9.2.2 Analysis

Some new promising methods of clustering exist which could give further insight

into the data or used to verify the results presented in this thesis. One particularly

interesting approach is clustering using affinity propagation (Frey and Dueck, 2007)

which claims to be better and faster than many other clustering methods.

As methods are being developed and further understanding of both the tech-

niques involved and the TDAQ system itself is gained, it will be possible to use this
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knowledge to improve the techniques. For example, it would be possible to filter

out irrelevant information from the dataset as part of the preprocessing of the data.

Efficient methods for automatically filtering the data could therefore be of great

interest.

9.2.3 The ANN approach

Further ANN topologies should be tested in order to find the optimal choices. This

includes further parameter tuning of each ANN. Potentially one could use different

ANNs to detect and classify different types of errors in the system.

Rule extraction techniques such as described in (Towell and Shavlik, 1993)

provides a way of extracting rules from the trained ANN. This can both provide fur-

ther insight into the reasons and implications of the errors, and could be integrated

into the existing expert system approach described in Chapter 3 which remains at

the core of the ER system.

9.2.4 The SVM approach

While the initial results are indeed very good, there are still a number of issues

to address. As mentioned the determination of kernel parameters automatically

is currently performed using a grid search algorithm and could be improved upon

considerably. This together with the automatic determination of model size inherent

to SVMs means the approach is one of the most promising attempted so far.

Also other types of kernels should be compared in order to find the optimal

choice for this particular type of data. This might of course be different for the IS

and ERS datasets, but further research must be done in order to determine this.

9.2.5 The CGP approach

There are a number of potential ways forward using CGP of which just some are

mentioned below:

Studies of the impact of evolutionary parameters such as mutation rate,

crossover rate, population size, individual size, evolutionary model, available func-
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tions, etc could be made in order to find an optimal solution for each problem. As

one attempts to solve different problems, or possibly using different data sources, it

might be prudent to test different fitness functions as well.

Furthermore, one could use the existing developed programs and combine

them in an ensemble approach in order to achieve better results at the cost of

further complexity of the solution.

A more ambitious approach would be to directly evolve rules to be used in

the expert system core of the EMS. One would naturally need to ensure that syntax

restraints are kept and that the rules operate on parameters available in the expert

system working memory.

Further research on the use of HFC in conjunction with CGP should be

conducted. In particular, its impact on different problems could be explored to

better understand when it is and when it is not an advantage to use the model.

Population size also seems to be of importance when using HFC and a detailed

study of the impact of population and deme sizes could be conducted.

9.3 A final word

As stated in Chapter 1, developing an effective EMS system is of great importance

to the ATLAS experiment. This thesis has investigated some potential techniques

for improving the error management system that is in place today and has shown

that many of the techniques presented in this thesis could very well be included in

the TDAQ system in the future. It has been shown that clustering and analysis

techniques can provide insight into datasets gathered from the system providing

both a means of gaining better understanding of the system and to visualise key

aspects of the different datasets.

Much of the work will also translate to similar large, distributed software

systems and could therefore be of use to researchers who are working on similar

problems. It is recommended that error management is given a serious role early

in the development of such systems and that the development of an EMS is facili-
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tated throughout the system. This is especially important in large systems where

development of the individual sub-systems is often done by different groups and the

integration of the system as a whole only happens at a later stage. This was not

the case for the TDAQ system where an overall EMS was only developed very late

in the project and with some severe restrictions (e.g. with a minimal of change to

the existing code) hence making it less effective than it could have been. Given the

importance of error detection and management in such large scale system the au-

thor would strongly advice that designers of future systems to include the facilities

needed to develop a proper EMS from the start.
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Abstract—This paper describes how neural networks and
support vector machines can be used to detect errors in a
large scale distributed system, specifically the ATLAS Trigger
and Data AcQuisition (TDAQ) system. By collecting, analysing
and preprocessing some of the data available in the system it is
possible to recognize and/or predict error situations arising in
the system. This can be done without detailed knowledge of the
system, nor of the data available. Hence the presented methods
could be used in similar system without significant changes.

The TDAQ system, and in particular the main components
related to this work, is described together with the test setup
used. We simulate a number of error situations in the system
and simultaneously gather both performance measures and error
messages from the system. The data are then preprocessed and
neural networks and support vector machines are applied to try
to detect the error situations, achieving classification accuracy
ranging from 88% to 100% for the neural networks and 90.8%
to a 100% for the support vector machines approach.

I. INTRODUCTION

The ATLAS experiment[1] is at the very forefront of particle
physics research and incorporates a large number of custom
hardware and software modules. It consists of a large cylinder
(43 m length x 25 m diameter) of detecting devices, placed
around one of the beam collision points of the Large Hadron
Collider [2]. Its scope is to determine which particles are
produced during collisions of high energy protons every 25
nano seconds. The High-Level Trigger and DataAcQuisition
(TDAQ) system of the ATLAS experiment is a large het-
erogeneous system consisting of a wide variety of software
and hardware components. The final production system will
consist of approximately 3000 nodes running more than 50000
processes. The system is divided into a number of sub-systems
each performing a well defined task. A detailed description of
the ATLAS TDAQ system can be found in [3].

II. BACKGROUND AND MOTIVATION

The ATLAS TDAQ system is a vast and complex distributed
system, a characteristic that makes it very difficult for any
single human user to gain a complete understanding of the
system, or indeed even of a sub-system. The sheer number of
applications and the interconnectivity between them, makes
any analysis or prediction of the system behaviour difficult
using classical techniques and monitoring approaches. For
example, the applications running in the ATLAS TDAQ system

may produce a large number of error messages of various
levels of severity. After a typical week of running the system,
several million of these messages may have been issued
and subsequently gathered and stored in the ‘log database’.
Analysing all the messages, or even browsing through them,
is non-trivial for a human user, especially as the number of
messages grows. Thus while the database is indeed very useful
when investigating a particular problem, the only overall anal-
ysis of the data currently being performed are simply statistical
measures. Introducing different techniques for automating the
analysis process, including different visualization techniques,
would be very useful and would allow us to benefit further
from the gathered messages.

In addition it is of great value to be able to detect errors
occurring in the system. The existing methods of error de-
tection largely focuses on discrete events such as processes
exiting/dying, machines no longer responding, etc. The TDAQ
system already has methods and components to detect those
cases and is able to deal with, and recover from, most errors of
that kind. However, scenarios where the system, or parts of it,
is still partly or periodically operational are more complicated.
These scenarios are often difficult to detect and it is often
not trivial to understand exactly why they occur or what is
the cause. There exist however a great deal of ’meta-data’ in
the system, that is data such as performance measure, error
messages etc. This data is produced by all the applications in
the system and is readily available. However, as these datasets
may contain thousands or even millions of observations and
due to the complexity of the system, they are not easily
analysed nor understood. In this paper we will investigate how
some of this data can be automatically processed and it can
be determined if patterns exist in the data corresponding to
different error scenarios. We will then try to detect these error
situations using neural networks (NNs) and support vector
machines (SVMs). In [4] the application of NNs to detect
errors in the TDAQ system based on error messages alone
was investigated achieving promising results.

III. THE TDAQ SYSTEM

In this section a brief overview of the TDAQ system is given
and the data which have been gathered from the system during
our experiments are described.



The TDAQ system consists of a number of sub-systems
performing different tasks ranging from reading data from the
detector, to filtering and transporting the data to mass storage.
Figure 1 shows a schematic view of the main components
in the TDAQ system. In addition to the components shown
in the schematic view, there also exists a number of services
providing functionality such as inter process communication,
process control, error reporting and information sharing.

Fig. 1. Schematic view of the TDAQ system.

A. Message production

The TDAQ system is a vast and heterogeneous system and
will ultimately consist of more than 50000 processes running
simultaneously. The development has been realized by a large
group of software developers developing close to 200 software
packages. However, in order to have a uniform means of both
creating and distributing errors in the system a package called
the Error Reporting Service (ERS) has been created and is
used by all applications. The ERS provides several features
including a common format for the errors, a fixed range of
severity levels and a uniform way of reporting and transporting
the errors. This allows for easy configuration of both the
amount of information contained in each error message and
how they are distributed in the system.

In order to pass ERS messages between applications, the
ERS relies on the Message Reporting Service (MRS). The
MRS is a service for passing messages between applications
using a subscription-notification model. The ERS marshals the
errors, transports them using the MRS and can recreate them
on the receiving end. The underlying means of transportation is
completely transparently to the applications issuing the errors.

B. Message logging

To store the ERS messages produced in the TDAQ system a
‘logger’ application is used. This application receives all error

messages issued by all applications in the system (or rather all
messages that are passed using the MRS) and stores them in
an Oracle database. The standard format of all error messages
simplifies this task significantly. As all messages are stored
in a common location, this allows us to easily retrieve the
messages for later analysis. We can also take advantage of the
typical database features such as indexing and queries in order
to make these operations efficient. Details of the log service
mechanism can be found in [5].

C. Performance measures

The TDAQ system provides an Information Service (IS)
which allows any application to both publish any kind of in-
formation and to subscribe to changes in information published
in the service. Any type of information can be published and
most applications provide some information about itself, be it
rate of data processing, CPU utilization, number of threads,
amount of used memory, etc. All this data can easily be
gathered while running the system. Figure 2 shows an example
of performance data produced for one of the applications in
our test setup.

Fig. 2. Example information published by a single application. The graphs
shows the values in time as our test setup is being run and errors are
introduced.

IV. EXPERIMENTAL SETUP

Naturally the new error detection methods cannot be devel-
oped on the actual ATLAS TDAQ system, as this is now being
phased into an operational stage and is not readily available for
development of new functionality. In order to perform our tests
we utilized a test lab available at CERN specifically designed
to perform tests of the TDAQ software. The software itself is
also designed and developed so that it is possible to test it in a
number of environments and it is not dependent on the actual
ATLAS detector. The test setup used in this paper includes
the ’full chain’ of the TDAQ system including the majority
of applications types that will be used for the experiment. Of
course all physics data and other variables that would normally
originate from the detector were simulated. The setup consists



of 30 machines running approximately 50 processes, and to a
large extent follows the layout shown in Figure 1. Though the
size of our test setup is much smaller than that of the actual
TDAQ system, it nevertheless exhibits similar behavior and
does therefore provide a good base for testing and performing
‘proof-of-concept’ experiments while keeping the system to a
manageable size.

A. Simulating errors

As with any system of its size, a wide range of problems
may occur in the TDAQ system. In the scope of this paper
we will focus on a well defined problem. We have chosen to
consider the case in which an application has silently stopped
working, though it is still running. This is a fairly likely
scenario, and could happen due to a number of reasons such
as an internal failure or some system related problems. We
will simulate this situation by using POSIX signals. POSIX
is an IEEE standard (ISO/IEC 9945) for user and software
application interface to the operating system and is supported
by the UNIX systems we use for our experiments. Among
other things, it defines an interface that allows us to send
signals/commands to any running process. There are a number
of signals available, but we used the SIGSTOP signal, which
according to the standard should stop a computer program for
later resumption. Thus by sending this signal to an application
it will silently stop doing its task and we can then monitor
how the system responds. The applications are resumed after
a time-out varying from 10-15 seconds. We do this in order
to see if a transparent error can be detected using NNs and
SVMs. Being able to detect transient errors is important as
such errors might be an indication of more severe problems
in the system.

The procedure is performed for 8 different applications
of two different types. We will refer to errors related to
applications of the first type as Type-1 errors, and errors
induced in the second type of applications as Type-2 errors.
Throughout the tests all ERS messages and all IS information
from processes taking part in the chain of data from readout
to storage has been gathered.

B. Gathering and preprocessing the datasets

As described in III-B, all ERS messages are stored together
in a single Oracle database. Messages corresponding to our
tests were therefore retrieved from the log database a posteri-
ori; eliminating the need for ‘online’ gathering of the messages
which, while feasible, is slightly more complicated. The data
include timestamps, making it easy to correlate the messages
to the time of the induced errors. A total of 1645 messages
are retrieved from the database. In addition we gather the
information published in the IS. This is done in real time and
the information are stored as time series in a number of files
corresponding to each application.

Naturally the datasets gathered must be pre-processed to
make it possible to apply NNs and SVM techniques. It is
important to note that the preprocessing is done without using
any knowledge of the logical meaning of the data, but it

is simply transformed into a numerical form suited to the
application of the techniques in question. The reasoning for
this is as follows:

While it is possible and in many cases useful to understand
the logical meaning of the data (for example a message could
correspond to the fact that a connection has timed out), we
have not attempted to perform such analysis in this work.
Instead we rely on the fact that certain patterns in the datasets
may correspond to certain error conditions in the system. This
has the advantage that we do not need to perform any parsing
of the data nor build up a knowledge base of the ‘actual’ reason
for errors or conditions, something that would be extremely
time consuming to do given the size and complexity of the
TDAQ project.

The disadvantage is that one relies totally on the fact that
errors will cause a distinct pattern in the data. Also it might
be very difficult to distinguish some error types as they may
lead to similar patterns in the processed data. The difference
between such errors may however be obvious if one had
parsed all the messages and had access to a knowledge base
as described above.

V. DATA MINING AND VISUALIZATION TECHNIQUES

A. Self organized maps

Self organized map (SOM) is one of the techniques we will
use for clustering and data visualization. It has widespread
use in data mining, classification and data visualization. The
SOM was first introduced by Kohonen [6]. SOM is based on
unsupervised learning, meaning it does not use any a priori
knowledge of the data to be clustered. It is capable of finding
classes/clusters inherent in the data (though depending on the
dataset this will not always be true).

B. Principal Component Analysis

Principal component analysis (PCA) is a mathematical
method that reduces the number of dimensions in a dataset
while retaining as much of the variance as possible. The
method has a wide range of uses including data mining,
dimensionality reduction and de-correlation, pattern recogni-
tion and (lossy) data compression [7][8]. We will use it to
simplify our dataset and to eliminate redundant information
and filter out noise. PCA is realized by projecting the original
M dimension data into D dimensional space where D ≤ M .
This D dimensional space consists of orthogonal vectors called
principal components. The principal components are chosen in
such a way that a maximum of variance is achieved and are
ordered by the amount of variance explained by them. In this
way the first principal component explains more variance than
the second and so on. By choosing D < M one can therefore
project the data into a lower dimensional space while retaining
as much variance as possible. There exist a number of variants
of PCA [9], though we will use the regular form in this paper.

C. Fuzzy C-means clustering

Fuzzy C-means (FCM) clustering was first proposed in 1973
by J.C. Dunn[10] and was further developed by Bezdek[11].



It is a method where a data point is allowed to belong to two
or more clusters according to a fuzzy membership function
for each cluster. For each point xi, there exists a degree of
membership to a cluster j represented as Uij . Each cluster
centre Cj is calculated using:

Cj =

∑n
i U

m
ij xi∑n

i U
m
ij

The algorithm then iteratively updates these memberships
until a predefined error tolerance is reached.

VI. PRELIMINARY OBSERVATIONS

When analysing the datasets it immediately becomes clear
that for the Type-2 errors there are no, or very few, ERS
messages being sent in the system. There may be various
reasons for, and they may even be related to bugs in the
software and should therefore be subject to further analysis.
However this will not be discussed here, but it does mean that
it will not be possible to detect errors using our techniques
based on the ERS data for the Type-2 errors.

Also it should be mentioned that the IS information is
only updated approximately every 5 seconds, while ERS
messages can be continuously sent and received in the system.
This means that an approach based on ERS messages will
potentially be able to detect the errors earlier. However this
is not necessarily the case. Consider a situation where an
application is waiting for some data and will not report any
error until a given time-out is reached. In a such a case the IS
information might immediately, or at least within the 5 seconds
delay, show a degradation in the applications throughput or
efficiency while the error message(s) is dependent on the
given time-out. There is therefore no obvious rule as to which
approach would be the best, and it is likely that a combination
of the two could yield even better results.

VII. CLUSTERING RESULTS

Both the ERS and IS datasets were processed using both
PCA and SOMs. The result of the PCA of the ERS data can
be seen in Figure 3. As can be seen from the figure there
are some distinct clusters in the data. This can be verified by
looking at the result of the SOM applied to the same data. The
U-matrix and the individual component planes of the trained
SOM are shown in Figure 4 and Figure 5. Also for the IS
dataset there were some immediately obvious clusters, though
not as distinct as for the ERS data. The U-matrix for the SOM
trained with the IS data is shown in Figure 6.

By applying FCM clustering of the results of PCA and
SOM we find 6 main clusters in the ERS data and 7 clusters
in the IS data. The number of clusters were automatically
determined using the Davies-Bouldin index [12]. By further
investigating the messages contained in each cluster we find
that two particular clusters correspond well to the time when
the error situations where simulated. This leads us to believe
there exists a pattern of messages corresponding to the error
situations, which can consequently form the basis for the
development of an error detection system/technique. NNs and

Fig. 3. ERS data projected onto the first two principal components.

then SVMs will be applied to the two datasets in the two
following sections; VIII and IX and the results of the two
approaches will then be compared.

Fig. 4. SOM U-matrix for the ERS data.

VIII. NEURAL NETWORK APPROACH

This section describes the types of networks used, and how
they were applied to classify the datasets gathered during our
tests. Two main types of neural networks were tested in this
work:

• Feed forwards back propagation (FFBP) - this is the
‘classic’ multi layer perceptron (MLP) network consisting
of an input layer, a hidden layer and an output layer. The
network is trained by feeding input through the network
and propagating errors back in order to train the weights.

• Time Delay Neural Network (TDNN) - TDNNs were
first introduced by Waibel in 1987 for use in speech
recognition [13]. By utilizing a number of delayed inputs,
this method allows the network to learn temporal patterns



Fig. 5. Component planes of the trained SOM for the ERS data.

Fig. 6. SOM U-matrix for the IS data.

in the data. Compared to a regular MLP each unit in the
first hidden layer is modified to be presented with DN
delayed input vectors in addition to the un-delayed input.
If we consider an input vector to be of size I=5 and a
delay of N=2 the hidden units will have 15 weighted
inputs. As each input vector is presented to the hidden
units at N+1 different points in time, it allows the TDNN
to correlate temporal changes in the input data. It is
possible to introduce delays at subsequent hidden layers,
but we will use the simple form of delays only at the
input layer in the following work. TDNNs normally use
the back propagation algorithm for learning, modified to
take into account the delayed inputs.

We use the same approach for both the ERS data and the
IS data using 70% of the dataset as training data and the

remaining for test. The FFBP network achieved 96.9% and
90.8% accuracy for the training and test set respectively. The
TDNN achieved 92.9% and 82.7% classification accuracy. The
overall results from classifying the ERS and IS data are shown
in Table I and Table II respectively.

Note that all the introduced error scenarios were detected
at some point before the process was resumed (as described
in section IV-A).

IX. SVM APPROACH

SVMs are generalized linear discrimination machines that
take advantage from operating in a transformed, typically
higher dimensional, space in order to best discriminate classes
of data[14]. The basic idea behind SVMs, which was originally
developed for classification, is to select the optimal class
separating hyper plane having the maximum distance/margin
from the classes’ convex hulls. One can find motivation for
this choice in the framework of statistical learning theory
and intuitively lead to enhanced generalization properties.
Subsequently, SVMs have been generalized for regression and
functional approximation problems and in this formulation are
also known as Support Vector Regressors (SVRs).

We use a regular SVM approach to identify the error
conditions using the ERS data achieving 94.7% and 90.8%
classification rate for the training and test data respectively.
This is slightly worse than that of the MLP, but better than
the TDNN.

For the IS data we use the ‘one-against-all’ algorithm for
classifying the data as there are more than one class to
be identified. The ‘one-against-all’ algorithm creates a SVM
classifier for each class, attempting to separate data of that
class from all the others. The IS data classification rates of
100% for the training data and 92.9% for the test data is best
of all approches. The overall results are shown in Table I and
Table II.

As for the NN approaches, the SVM is able to detect all
error scenarios at some point before the error was cleared from
the system.

X. CONCLUSIONS

In this paper we have shown how NNs and SVMs can
be successfully applied to error detection problems using
ERS and IS data gathered from the TDAQ system. We have
performance ranging from 88% classification accuracy in the
worst case to 100% accuracy in the best case, while detecting
all introduced errors at some point in time. This detection was
based on data which currently is largely unused and promises
new ways of adding to or complementing existing methods of
error detection.

Both SVMs and NNs are relatively easy to (re)train, which
is of great importance to us as the system is still under
development and can therefore change behaviour relatively
often, something that might affect existing classifiers.



TABLE I
PERFORMANCE OF THE DIFFERENT NETWORKS AND OF SVM USING ERS DATA (ONLY TYPE-1 ERRORS)

Dataset Overall Error type 1 No error False Negative False Positive

FFBP Training 96.9% 100% 94.8% 0 7
Test 90.8% 100% 84.5% 0 9

TDNN Training 92.9% 97.8% 91.0% 2 12
Test 82.7% 97.5% 72.4% 1 16

SVM Training 94.7% 94.6% 94.8% 5 7
Test 90.8% 95% 87.9% 2 7

TABLE II
PERFORMANCE OF NETWORKS AND SVM USING IS DATA.

Dataset Overall Error type 1 Error type 2 No error False Negative False Positive

FFBP Training 99.5% 100% 92.7% 100% 1 0
Test 89.4% 100% 50.0% 92.1% 3 6

TDNN Training 100% 100% 100% 100% 0 0
Test 88.2% 100% 100% 86.8% 0 10

SVM Training 100% 100% 100% 100% 0 0
Test 92.9% 50.0% 66.7% 94.7% 4 2

XI. FURTHER WORK

Further tests will be conducted to ensure the best possible
choice in data preprocessing and network architectures. Other
types of NNs and SVM approaches will be investigated and
their effectiveness evaluated. Especially Fuzzy ARTMAP [15]
is of interest as it may be particularly useful in on-line
learning, where the developed system does not have to re-
learn data already used for training.

Ultimately the techniques and approaches used in our test
setup must be validated and tested on the full scale system and
be made available to users and developers through simple to
use libraries and tools so as to be incorporated in the ATLAS
TDAQ system.
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Dynamic Error Recovery in The ATLAS TDAQ
System

John Erik Sloper, Student, IEEE, Giovanna Lehmann Miotto and Evor Hines

Abstract— This paper describes the new dynamic recovery
mechanisms in the ATLAS Trigger and DataAcQuisition (TDAQ)
system. The purpose of the new recovery mechanisms is to
minimize the impact certain errors and failures have on the
system. The new recovery mechanisms are capable of analyzing
and recovering from a variety of errors, both software and
hardware, without stopping the data gathering operations. An
expert system is incorporated to perform the analysis of the
errors and to decide what measures are needed. Due to the wide
array of sub-systems there is also a need to optimize the way
similar errors are handled for the different sub-systems.

The main focus of the paper is to consider the design
and implementation of the new recovery mechanisms and how
expert knowledge is gathered from the different sub-systems and
implemented in the recovery procedures.

Index Terms— ATLAS,TDAQ, Error Recovery, Expert System

I. INTRODUCTION

THE ATLAS High-Level Trigger and DataAcQuisition
(TDAQ) system is a large heterogeneous system consist-

ing of a wide variety of software and hardware components.
The final production system will consist of approximately
3000 nodes running more than 20000 processes. The system
is divided into a number of sub-systems each performing a
well defined task. A detailed description of the TDAQ system
can be found in [1].

II. BACKGROUND AND MOTIVATION

The TDAQ system has been under development for more
than a decade. Even so the development of an advanced
Error Recovery (ER) system has not been a priority. Previous
error recovery systems have been simple and thus were only
able to handle trivial cases such as restarting or ignoring
a dead process, or putting the system into an error state.
As we approach the start-up of the experiment, larger and
larger system configurations are being used. Ideally the system
should gather data from the detector over long periods of time
(several days) without interruption. Due to the very large time
frames and volumes of data to be collected, errors will most
certainly occur and it is important that it is possible to recover
from these errors without the need to restart the particular stage
of the experiment. It should also be possible to perform this
recovery with the need for as little user interaction as possible.
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The various sub-systems will have their specific requirements
for handling errors and errors might have different impact
depending on the state of the sub-system or the system as
a whole.

III. REQUIREMENTS

There are a number of main requirements that have guided
the general design of the ER system:

• Error handling - The ER should be able to react to errors
reported in the system, analyze them and take appropriate
actions to ensure that the system returns to or stays in an
operational state.

• Customizable - It must be possible to ensure that dif-
ferent behavior will take place in response to similar,
or indeed identical, problems arising in different sub-
systems. For example a dying application within one of
the computing farms might have no overall effect on the
system other than a slight reduction in computing power.
However, if an application in the ReadOut System (ROS)
dies, this will have considerable impact on several other
sub-systems.

• Configurable - It must be possible to easily change the
behavior of the recovery system. The TDAQ system is un-
der development and it must therefore, when completed,
be able to accommodate for new components. Even in
the final system there will be a relatively large number
of different configurations to run. It must therefore be
possible to configure the ER system to accommodate any
needs that may arise.

• Abstraction - The ER should be such that any parts
can be replaced without the need to change any other
components. For example applications should be able to
report errors through a fixed interface without knowing
anything about the mechanisms of the recovery system.
This will also help to minimize the need for change
in user implementation. This is very important because
the ER system is being introduced relatively late in the
development of the TDAQ system.

• Performance - The ER should be able to analyze the
errors and reach a decision within reasonable time span,
usually in the order of seconds. The longer these deci-
sions take, the longer the TDAQ system will remain in
an error state causing a loss off data taking capability.

IV. DESIGN AND IMPLEMENTATION

The ER system is closely related to the TDAQ RunControl
system and naturally design and implementation choices are



guided by this. The following sections will first give a brief
overview of the TDAQ system, including some of the most
important components. We will then move on to consider the
RunControl system in detail before discussing specific design
and implementation choices for the ER system.

A. The TDAQ System Structure

Applications in the TDAQ system are organized in a tree
structured manner. In addition there are a number of ser-
vices which are provided using a classic client-server model.
Communication is realized using a dedicated Inter Process
Communication (IPC) package based on CORBA [2]. The
most important services in the context of the recovery system
are the Message Reporting System (MRS) and the Error
Reporting Service (ERS). The MRS is a service for passing
messages between different applications using a subscription-
notification model. The ERS provides several services, includ-
ing a common format and a fixed range of severity levels for
all errors reported in the TDAQ system. The ERS relies on
the MRS in order to pass error messages between different
applications.

B. Configuration Database

A common database stores the configuration of the TDAQ
system. It contains everything from command line parameters
to the overall organization of both hardware and software
connections. The database defines a set of segment objects,
typically representing a subsystem or a collection of applica-
tions with similar functionality, e.g. a set of Readout modules.
Each segment contains a set of applications, resources and
other segments. The configuration database is available to all
applications through a database server.

C. TDAQ RunControl

The TDAQ RunControl system is responsible for distribut-
ing commands from the operator(s) throughout the system.
It starts, stops and monitors all applications in the TDAQ
system and ensures that the system is in a coherent state. To
synchronize operations Finite State Machine (FSM) principles
are used. Fig. 1 shows the FSM used for the TDAQ system. In
addition to the states shown it can also go into an error state
indicating that the application cannot continue its function.

The RunControl is constructed using the configuration
database with controllers arranged in a tree structure where
each controller is responsible for a segment. Normally com-
mands are only sent to the topmost controller and are then
propagated throughout the control tree. Interaction with the
RunControl is performed through a graphical interface which
among other things displays the RunControl tree, including the
current state and any errors. Fig. 2 shows the logical layout
of the RunControl.

D. Design

There are two main parts of the dynamic error recovery
system; a local unit and a global unit. The local unit is
integrated with each controller in the control tree. It has

Fig. 1. The TDAQ FSM

Fig. 2. A TDAQ control tree

a complete ’map’ of the applications within its controller’s
segment. Any changes in the applications status are reported
to the ER system by the controller. The main goal of the local
recovery unit is to handle errors that can be dealt with at a
segment level. That is, errors that don’t have an immediate
effect on the rest of the system. The local recovery unit
receives information directly from the controller it is integrated
with. It will then analyze any problems taking into account
information such as the configuration, system state, other
errors and so on. It can set the error state of the controller,
but will also be able to perform more advanced actions such
as restarting applications or notifying other applications. In
addition to receiving errors directly from the controller it
can also receive errors directly from applications. All errors
gathered by the local unit will be reported to the global unit,
including information such as whether the action has been
taken and if the problem has been solved or not.

The global unit handles errors that have a system-wide im-
pact, where applications in different segments will be affected
by the recovery actions. It should also be able to take actions
based on information received from the local units. The server
keeps track of all errors in the system, including the ones
reported from the local units. This allows for more general
decisions to be made, based on parameters such as frequency
of errors within a segment and/or the system as a whole.

Both the global and local unit has access to the configuration



database and uses it to build maps of the connections in
the system, read default recovery actions, which tests are
associated with the different applications, etc.

In addition to handling errors from the TDAQ system, the
ER must also be able to handle errors from systems outside
of TDAQ such as the Detector Control System (DCS), net-
working, farm monitoring tools and so on. This is realized by
integrating a proxy application into the control tree and passing
error messages through the proxy. A detailed description of
this interaction in the DCS case can be found in [3].

The ER system is designed to interface with related compo-
nents such as the Diagnostics and Verification System (DVS)
[4]. This allows it to actively test components in the system.
This is especially useful in cases where the actual fault is
not immediately apparent. For example if an application is
reported not to be responding the recovery system can test the
network connections or the host of that application to see if the
error is in fact a hardware problem. There are well defined tests
for different hardware objects and applications which can be
used by the recovery system to properly identify the problem.

Due to the distributed nature of the system it is in most cases
not practical to perform a synchronous recovery. Even though
the system does support synchronous communication between
applications, the ER is designed to perform the recovery in
an asynchronous manner. There are several reasons for this.
First of all to ensure the abstraction requirement is fulfilled, it
is better not to have a direct connection between applications
which are reporting errors and the ER system. Also due to
time constraints it might not be practical for some applications
to wait for an answer from the ER system before continuing
its operation. For example, an application might report that
another application is not responding, but it may still be able
to continue its own operation.

E. Implementation

The two parts of the system are implemented in a similar
way. Fig. 3 shows a diagram describing the building blocks of
both the local and the global ER units. The main difference
between them is that the local unit is directly integrated with
a controller and can communicate directly with it. The global
unit on the other hand is a standalone server completely
outside the control tree. The global ER server also has a
simple interface both for reporting errors to it (used by the
local recovery systems) and for retrieving information about
errors that have been reported and actions taken. This is mainly
used for monitoring purposes, but can be a useful tool for a
human expert as a help to identify problems in the system.

Both the local and the global ER units rely on a rule-based
expert system, also known as a knowledge based system, to
analyze errors and decide on appropriate recovery actions.
The main advantages of a rule-based expert system are that
it is simple to implement in the first place and that changes
and additions can be easily made as the need arises. It is
very difficult to predict a priori all the different errors that
might occur and what appropriate actions should be taken. It
is therefore very important that the expert system can be easily
changed and customized as more data is gathered and a better

Fig. 3. General structure of both local and global ER units

understanding of the system is gained through experience. The
main disadvantage with using a rule-based system is that it
can be difficult to manage such systems as the size of the
knowledge base increases. Experience suggests that when the
number of rules grow it becomes increasingly difficult to keep
track of the impact each change will have on the system. This
not withstanding we find that with careful implementation this
problem can be avoided and the flexibility of the approach
makes it a good choice for our system.

The expert system is being implemented using CLIPS [5].
The CLIPS technology was chosen for several reasons. First of
all it has been used for many years in the ATLAS experiments,
both in the controllers [6] and in the DVS framework, and there
exists therefore considerable experience among the developers.
Another reason is the ease with which the system can be
extended and interfaced with C++ which is the main language
used in TDAQ development. C++ extensions are used to
interface the CLIPS environment with other parts of the system
such as IPC, ERS, DVS, etc.

The CLIPS system consists of a knowledge base and an
inference engine. The knowledge base consists of a number
of text files where expert knowledge can be encoded as
IF-THEN rules. CLIPS also supports procedural and object
oriented programming and this is used to build a class hier-
archy representing proxies of the applications and hardware
in the system. These proxy objects are created dynamically
using the information from the configuration database and the
information about the objects can then be used in the recovery
rules.

CLIPS parses the knowledge base at runtime. This allows
the behavior of the ER unit to be easily customized by
supplying different sets of files ,describing the knowledge
base and rules, as arguments to the application. Fig. 4 shows
an example of a simple knowledge base rule. This simple
rule detects the case where an application has died and it
notifies the associated supervisor and the controller to ignore
the application from now on.

We will now look in detail at the different steps of the recov-
ery procedure and how each step is handled and implemented
in the ER system:



if
system state is running, and
application App1 status is absent, and
application App1 has supervisor S1, and
application App1 membership in
then
notify S1 ignore App1
notify controller ignore App1
set membership App1 out

Fig. 4. Sample rule

1) Error Detection: The recovery system itself does not
do any direct error detection. It relies on the applications
themselves and the controllers to notify whenever an error
occurs. However the recovery system might perform tests as a
consequence of reported errors. These tests may then discover
problems that have not been reported directly.

2) Error reporting: Applications report errors to the re-
covery system using the ERS. This system is being used
for all error reporting in the TDAQ system, and there is
therefore no specific need for changes to be made for these
applications. However, to ensure that all errors are sent using
the same format a set of error classes is defined to be used
for specific types of errors. The recovery system (both local
and global) subscribes to a set of these classes, depending on
its configuration. The applications reporting the error do not
need to have any direct knowledge of the recovery system, but
merely reports the error using one of the predefined classes.
The error can then be picked up anywhere in the system and
handled appropriately. Note that the recovery units in different
segments might subscribe to different classes of problems and
some classes are only handled by the global unit and will never
be picked up by the local units and vise versa. One example
is a faulty front-end driver. This is known to have impact on
several parts of the system and is therefore only picked up by
the global server. Errors can also be reported from the local
units directly to the global one using the IPC framework. Fig. 5
shows how the global recovery server interacts with the system
as a whole.

In addition to the messages reported through ERS, the local
unit receives error notifications directly from the controller.
This includes notifications such as dead applications (in that
segment), errors, timeouts, etc. It also receives updates about
the state of the applications and the controller and can use this
information to decide on what action to take.

3) Error Analysis: There are two main types of errors that
can occur in the TDAQ system. The first type is transient,
meaning that the error will not necessarily persist in the system
if a full restart is performed. Most software errors/failures are
of this type. The other type consists of non-transient errors
which will be present even if the system is restarted. Most
hardware errors are non-transient and therefore need to be
dealt with differently. In many cases it is likely that hardware
errors will not be reported, but might cause a software error
instead (e.g. an application cannot contact a machine due
to a malfunctioning cable). It is therefore important that the

recovery system is able to recognize as many of these cases as
possible. The DVS is very useful in this respect allowing the
recovery system to automatically test a piece of hardware as
a consequence of certain error reports. Also, the configuration
database provides some information about how to deal with
different errors. The configuration database defines a default
behavior in case of an application dying, going into error, etc.
However this is clearly limited as decisions need to be taken
based on dynamic parameters such as system state and other
errors.

One of the most difficult challenges is handling situations
where one error leads to an error in a different part of the
system; and so on, creating an ’avalanche’ of errors. To solve
this it is important to classify which applications are depended
upon by others and are likely to cause avalanche errors. One
should then try to identify which specific applications will send
errors in this case. In this regard the configuration database is
extremely important as it must be possible to automatically
retrieve information about how the applications are intercon-
nected, what hardware is being used by which applications
and so on. Though a human expert might have the knowledge
and experience to track down the real error, it is not trivial for
a computer program to do the same. It is therefore important
to gather knowledge about the consequence of different errors
so as to be able to build a system which will be as effective
as possible.

The ER system is able to recognize cases where the system
is likely to be non-functional and no recovery is possible. In
this case the run should be stopped, but the general policy is
that there should not be a means whereby the execution of
the system will be stopped automatically. Hence the recovery
system will therefore need to notify a human operator who
can then make the final decision.

4) Recovery Actions: Both the local and the global recovery
unit can send commands to all applications in the system
through IPC. All controllers and applications share the same
command interface which helps simplifying the recovery pro-
cedures. The most important commands are enable and dis-
able. These commands are used to notify affected components
whether an application is operational and should be a part of
the system or not. For example if a processing application
in the trigger system is malfunctioning the recovery system
can tell its supervisor and its controller to ignore it using the
disable command, effectively removing the application from
the system. It can then try to restart the application and bring it
back to the correct state. If the recovery actions are successful
the ER can notify the supervisor and controller again, this time
to enable it.

In the case of a non-transient error the recovery system can,
if appropriate, make changes to the configuration database. For
example if a connection is known to be malfunctioning it can
be disabled in the database so at the next reconfiguration of
the system applications will not use it. This type of action is
available in addition to the standard recovery procedures.

V. GATHERING KNOWLEDGE

Gathering knowledge is a crucial point for all expert sys-
tems. A large number of developers are involved in the TDAQ



Fig. 5. Overview of interaction with the global recovery server

project making the task of gathering knowledge even more
demanding. As a first step the ideas for the new recovery
mechanism and especially the reporting mechanisms, have
been presented at several ATLAS and TDAQ meetings and
conferences in order to make sure the sub-system developers
are aware of the system.

Due to the size and complexity of the system, recovery
analysis and actions must be customized for each sub-system.
The knowledge of what errors might occur and what actions
to take are often held by the individual sub-system experts.
A series of discussions have been held with some of the sub-
system detector experts to try do define the most effective
recovery behavior possible. Even though the knowledge base
is written in a human-readable language it is still too complex
for a regular user to modify it. All changes to the knowledge
base should be done by a system expert.

As for any computer program it is very difficult to prove its
correctness and this is extra complex with rule-based programs
where the execution is done by the inference engine. Testing
and feedback from users is therefore an invaluable means by
which to both ensure that the system behaves as intended and
to further develop the knowledge base. The system is regularly
run on test-beds using some standard configurations. Additions
to the knowledge base are tested using these setups before
being made available for use in the experiment.

VI. PERFORMANCE AND SCALABILITY

In a system of the size of TDAQ scalability can be a real
issue. As the local recovery units are mapped to each controller
they will scale with the control tree as the system grows. The
global unit on the other hand is implmented using a single
instance per partition. However, as the recovery unit deals
with errors there is a natural limit to the number of messages

that need to be processed. If error messages are too frequent
it is unlikely that any recovery is possible. Performance is
still an issue as the recovery mechanism should be able to
analyze the errors and reach a decision within reasonable time
span, that is within a few seconds after the error has been
reported. The longer these decisions take, the longer the TDAQ
system might be nonoperational. In addition the likelihood of
an error causing an avalanche throughout the system increases
as time goes by. This may be due to timeouts on connections
or multiple requests to the component in error and so on. Also
as the knowledge base grows the execution time of the CLIPS
inference engine will increase. Regular performance tests will
therefore be performed to ensure that an acceptable level of
performance can be maintained.

If performance proves to be a problem the global unit can
be divided into several units which perform dedicated tasks.
This will both reduce the number of errors to be handled by
each unit and also reduce the size of the knowledge base and
hence increase performance. However, one must be careful to
do this for well separated tasks or one would loose the benefit
of having a server with a global view of the system.

VII. CONCLUSIONS

While the dynamic error-recovery system is still in the early
stages of development the current experience of the system is
positive. Several sub-systems have started defining recovery
scenarios and customized recovery units have been designed.
It is already possible to keep the system running in cases where
it previously would have had to be stopped or manually fixed
by an operator.

The extendible design and the use of a knowledge based
system means we are able to add or change the behavior of
the recovery system in a simple way without affecting other



components. This is very important, especially since many of
the error scenarios are not yet identified or documented and
as feedback is received additions, modifications and improve-
ments must be made.

VIII. FURTHER WORK

The Error recovery system is a work in progress. Focus over
the next year will be concerned with expanding functionality
to include more recovery scenarios for dealing with failures in
all the sub-systems. As feedback is received the system will
be modified, improved and new rules will be added to the
knowledge base. There is also an ongoing investigation to try
to identify related technologies which may play a significant
role in the development of the system. For example fuzzy
logic is being investigated as a possible means via which to
deal with unknown errors and other such situations.
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Abstract
In order  to meet  the  requirements  of ATLAS data  taking,  the 
ATLAS  Trigger-DAQ  system  is  composed  of  O(10000)  of 
applications running on more than 2600 computers in a network. 
With such system size, s/w and h/w failures are quite frequent. 
To  minimize  system  downtime,  the  Trigger-DAQ  control 
system  shall  include  advance  verification  and  diagnostics 
facilities.  The  operator  should  use  tests  and  expertise  of  the 
TDAQ  and  detectors  developers  in  order  to  diagnose  and 
recover from errors, if possible automatically.
The  TDAQ  control  system  is  built  as  a  distributed  tree  of 
controllers,  where  behaviour  of each controller  is  defined in a 
rule-based  language  allowing easy  customization.  The  control 
system also includes verification framework which allow users 
to develop and configure tests for any component in the system 
with different  levels  of complexity. It can be used as a stand-
alone test facility for a small detector installation, as part of the 
general  TDAQ initialization procedure,  and for diagnosing the 
problems which may occur during the run time.

The system is currently being used in TDAQ commissioning 
at  the  ATLAS  pit  and  by  subdetectors  for  stand-alone 
verification of the hardware before it is finally installed.
The  paper  describes  the  architecture  and  implementation  of 
TDAQ control system with more emphasis on the new features 
developed for the verification framework, features requested by 
users during it's exploitation in real environment.

INTRODUCTION
The paper describes components of the Run Control and 

Verification framework, the core of the ATLAS Trigger-
DAQ (TDAQ) Control system, one of subsystems building 
the TDAQ system .The key feature of these components is 
that they are based on the expert-system technology and 
they should help the TDAQ operator to minimise system 
down time and to control it smoothly by using the expertise 
of the system developers.

In the first part we describe the motivation, the design 
principles,  the  architecture  and  some  details  of  the 
implementation  of  DVS  (Diagnostic  and  Verification 
System), Run Control and Setup components. In the second 
part, DVS component is described in more details including 
recent developments and examples of its usage for ATLAS 
commissioning.

DESIGN AND ARCHITECTURE OF RULE-
BASED CONTROL COMPONENTS

Motivation and objectives
ATLAS  (A  Toroidal  LHC  ApparatuS) Trigger-DAQ 

system [1] transfers and filters data from the detector front-
end electronics to the mass-storage for the offline analysis. 
It is composed of a big number of hardware and software 
components, as summarized below:

 1800 read-out VME boards
 1800 fiber links
 150 ROS PCs each hosting 4 ROB-IN cards
 500 LVL2 PCs
 90 SFI PCs
 ~2000 EF PCs
 ~30 SFO PCs
 ~50 infrastructure PCs (file servers)
 ~200 Ethernet switches
 and  O(10000)  applications  running  on  the  listed 

above hardware
The T/DAQ control system shall be capable to smoothly 

control this number of various components, meeting some 
requirements [1]. The size of the system under control and 
the number of components make the probability of a failure 
very high. The typical failures we are facing every day are 
PC components failures and applications crashes. Keeping 
in mind the life-time of the experiment (around 10 years) 
and the high cost of its down-time and as well the fact that 
the system will be operated by a non-expert shift crew, it is 
very  important  to  have  system  verification,  failure 
diagnostics and recovery facilities embedded in the Control 
system of  the  TDAQ.  These  facilities  should  allow the 
Operator to
 Detect problems as early as possible by means of 

probing the system.
 Make  use  of  the  system’s  developers  expertise 

(knowledge).
 Automate verification of a large system.
 Minimize  system  down-time  using  recovery 

procedures based on problem diagnosis.

Framework approach
Another  important  aspect  of  the  TDAQ  system  which 
makes  important  contribution  to  the  design,  is  the 
geographical decentralization of the experiment and a big 
number  of  users  all  over  the  world  participating  in  the 
system development. In order to build the full-scale TDAQ 
system  its  software  will  be  used  by  all  ATLAS 
subdetectors each providing specific functionality, whereas 
the  'core'  software  should  join  all  pieces  together  and 
guarantee their coherent functioning. This brings the idea 
of the 'core'  framework components providing dedicated 
services  and  well-defined  interfaces  for  users  and 
developers.

Design principles
To fulfil the above requirements it was decided to design 

the system following these principles:
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 Framework approach:  a  system  shall  be 
configurable and extensible by the experts and users 
also during the experiment life-time.

 Expert system approach: the system’s behaviour is 
described  in  a  rule-based  language  to  allow 
accumulation of  expert’s  knowledge and  an  easy 
adaptation to changing conditions.

 Hierarchical distributed architecture  of  the  Run 
Control system reflecting the tree structure and the 
scale of the experiment.

Architecture
On  the  UML  diagram  below  (Figure  1)  the  actual 

architecture of the ATLAS Control subsystem is presented.
It is composed of a number of modules or components, 

implementing particular functionality and interacting with 
other components via public interfaces.  In this paper we 

briefly describe Run Control, DVS and Setup components, 
all  sharing  expert  system  technology  provided  by  the 
CLIPS package.

Both Setup and Run Control components use verification 
functionality  provided  by  DVS  framework  in  order  to 
verify the relevant subset of the system under control.

The  TDAQ Operator  interacts  with  the  system via  a 
human-friendly Integrated Graphical User Interface.

Control  subsystem  interacts  with  other  T/DAQ 
subsystems, especially with Configuration and Monitoring 
ones (not shown on the figure for simplicity).

Run Control
Run Control  is  a distributed framework allowing each 

subsystem in TDAQ to define the behaviour of a particular 
controller and to  join all controllers in a distributed tree 
structure,  in  order  to  guarantee  synchronous  and 
homogeneous execution of Operator commands through the 
whole system. The top-level Run Controller represents the 
status  of  the  system  to  the  Operator  and  accepts  his 
commands,  while  leaf  controllers  deal  with  applications 
which directly control the TDAQ hardware. Intermediate 
controllers  represent  statuses  of  different  subsets  of  the 
T/DAQ.

Each controller is responsible for:
 distributing commands to its children

 receiving  children's  statuses  and  analysing 
(diagnosing) errors

 determining its own state
 undertaking possible recovery actions
 passing status and error information to its parent
The general picture of the Run Control tree is presented 

in Figure 2.

Each  controller  is  an  application  running  on  some 
machine in the system. The controller implements a pre-
defined  Finite  State  Machine  skeleton  (common for  all 
controllers), defining its all possible states and transitions; 
and a small expert system (i.e. an expert system engine and 
a  set  of  rules  or  a  Knowledge Base,  KB)  defining his 
behaviour. The details of the implementation are described 
in  [2].  The  default  rules  included  in  the  framework 
implementation are very simple, like:  ”if all my children  
controllers are in state 'A', then change my state to 'A'”, or 
“if just one o my children is in 'error' state (e.g. timed-out  
in transition,  reported an error or become unavailable),  
then change my state to 'error' ”

More  sophisticated  recovery  rules  should  analyse  all 
available data and make decisions like disabling a sub-tree, 
executing  pre-defined  recovery  actions  or  reporting  an 
unrecoverable error to the parent controller, so it could take 
over the problem.

The concrete recovery policies is to be defined when the 
final  system will  be  put  in  operation so  the  framework 
should  allow  easy  adaptation  of  controller's  behaviour 
during experiment run-time.

DVS (Diagnostics and Verification System)
DVS is a framework which allows to:
 Configure a test for any component in the system
 Have a testable view on the particular configuration 

of a system in a user-friendly GUI
 Automate testing of the system 
 Make diagnostics conclusion in case of a problem 

detected during testing (provided some knowledge 
put in the Knowledge Base)

More details on DVS are presented in the following section 
and in [3].

Figure 1. Architecture of the Control subsystem

Figure 2. Tree of Run Controllers
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Setup component
Setup  component  is  a  ‘boot-strap  controller’  for  the 

initial infrastructure of a particular TDAQ configuration. It 
brings  the  system  to  a  state  where  it  can  accept  RC 
commands. It uses DVS to verify in depth system’s h/w, 
used by the particular  TDAQ configuration used for the 
current  run.  At  this  stage,  specific  tests  developed  by 
particular  subsystems  are  executed  in  order  to  detect 
potential  problems and to confirm the system’s integrity 
before launching any process.  If  some tests  fail,  user  is 
provided with  some options,  like  'ignore  and  continue', 
'retry' or  'abort'.  For  the  final  system  some  automatic 
recovery rules should be defined.

Setup KB contains additional rules to start, restart and 
verify applications and diagnose related problems. Most of 
the infrastructure applications have back-up capabilities, so 
they are restarted automatically if they crash or even if the 
host machine goes down. In the latter case a back-up host is 
chosen and  applications restarted there.

The  functionality  of  applications  under  supervision  is 
also confirmed by the execution of tests.

On  the  Figure  3,  the  initial  GUI  window of  T/DAQ 
software is  shown.  On the  right  side  one can see setup 
panel with the tree of h/w components (a rack of PCs in this 
case) being tested, where one PC did not pass test.

CLIPS: an expert system shell
The behaviour of the Run Control components which are 

mostly  data-  and  event-driven  is  described  naturally  in 
terms of rules, rather then in a procedural language. It is 
also  necessary  to  have  an  easy  way  to  update  the 
knowledge  about  behaviour  of  the  system  during 
experiment lifetime, saving expert knowledge and detailed 
information  about  recovery  procedures  applied  by  the 
experts. So it was decided to use expert system technology 
as  the  base  for  all  core  run control  components.  Some 
evaluations ([2]) have been done, and CLIPS expert system 
shell [4] was selected. It can be shortly characterized in the 
following:
 CLIPS  stands  for  ‘C ’-Language  Integrated 

Production System

 Produced by NASA
 Free, open (written in ‘C’) and well- documented
 Embeddable in other s/w products as a library
 Programming capabilities:  rule-base  programming 

paradigm  (rules and facts),  OO language (classes 
and objects), conventional procedural constructs

DVS: AN OVERVIEW AND RECENT 
DEVELOPMENTS

Use Cases
On the  Figure 4,  the 

use  cases  for  DVS 
framework  are 
presented.  First,  a 
TDAQ Expert (typically 
a  developer  of  the 
system)  contributes  to 
the  framework  by 
developing specific tests 
and  providing  some 
diagnostic  knowledge. 
Afterwards, TDAQ Operator can reuse Expert's expertise 
by  verifying  any  subset  of  the  system  and  diagnosing 
detected errors. The verification functionality is also used 
by non-human bodies, like Controllers in order to check the 
functionality of the subsystem under control.

Architecture
Architecture of the DVS framework is shown on Figure 

5. Its  core components are the Test  Repository database 
describing  all  test,  and  expert  system filled  with  some 

knowledge by an expert. The functionality is available to 
end-users via C++ and Java API and via a user-friendly 
GUI.

Tests configuration
A  test  is  a  binary  running  on  a  particular  host  in  a 

system. It  verifies  a  particular  functionality of  a  TDAQ 
component  and  returns  a  single  result  value:  PASSED, 
FAILED,  UNRESOLVED,  TIMEOUT  and  some  text 
output.  For a single component a  number of tests can be 
associated which can be organized in sequences, executed 
synchronously  or  asynchronously.  Tests  and  their 
relationships  are  fully  described  in  a  database.  The 
following  attributes  are  available  for  test  description: 

Figure 4 Use Cases for DVS

DVS

Controller 

Operator

Expert

Verify 
Component

Diagnose 
Errors

Delevop & 
Configure  

Test

Browse 
Testable 

Components

Figure 5 DVS architecture

DVS

Expert Operator

Test 
Repository

Knowledge 
Base

Expert 
System shell

dvs GUIC+ API

Run Controller

Java API

Figure 3. Setup GUI window with hardware infrastructure 
being tested.



parameters,  host,  dependencies,  timeouts,  scope, 
complexity and mask. Any test can be associated either to a 
particular  object  in  the  configuration  database  or  to 
allobjects  of  a  particular  type.  In  the  latter  case  test's 
parameters and host can be parametrized by attribute values 
of the concrete objects when the test is launched.

In  Figure  6,  right  side,  database  editor  windows  are 
shown, one with the list of tests defined in the configuration 
and another one with the parameters of a particular test.

GUI
On the Figure 6 you one can see DVS GUI in action. In 

its left side the tree of testable components is displayed. 
User can select a single component or a group in the tree 
and run all defined tests by clicking a single button. As 
tests finish, components icons change colour reflecting the 
result. On the right panel the test output is dumped.

Recent developments
DVS was developed and made available for the end users 

in 2003 [3]. A number of improvement requests appeared 
as constant feedback from the users. Many of them were 
implemented in recent T/DAQ s/w releases:
 Tests  levels  and  masks for  more  precise  test 

selection  which  allow to  promptly  configure test 
repository without  editing the  database.  User  can 
select  a  subset  of  tests  with a  particular  level  of 
complexity or satisfying some regular expression.

 Asynchronous and synchronous mode for execution 
of tests for complex objects.

 Test  scope to prevent conflicting tests from being 
executed when system is taking data.

 Tests verbosity can be defined globally in runtime.
 Test’s  runtime  output for long-running tests:  user 

can see output of a test as it executes in real time, 
even before it finishes.

 Test  output  produced by all  children components 
can be combined in one panel and then saved in a 
file.

 New type of interactive tests, called ‘actions’, were 
introduced to allow users to execute more complex 
test scenarios requiring some input. This also allows 
to  reuse  already  existing  console  utilities  in  the 
framework. An action is configured as a test, but it 
is launched in a separate terminal window.

USE OF DVS FOR ATLAS 
COMMISSIONING

DVS is currently used by different ATLAS subdetectors 
and  T/DAQ  subsystems  in  the  ATLAS  commissioning 
activities. A number of tests were developed for different 
detector and DAQ components, so they can be extensively 

tested before being installed at the final position. One good 
example  is  'MobiDAQ'  system  developed  by  the  Tile 
calorimeter group [5]. Defferent tests for detector front-end 
electronics  and  for  ROD  (Read-Out  Drivers)  VME 
modules were developed. On Figure 6 you can see DVS 
GUI with a number of detector tests being executed.

Another  set  of  tests  was  developed  for  ROB-IN PCI 
modules commissioning.

LARGE-SCALE TESTS
All  Control  components  are  a  subject  for  scalability 

tests, regularly performed on a cluster of PCs. Papers [6] 
and [7] describes results of the tests in details.
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Abstract  —  The overall control of the ATLAS experiment 
includes the supervision of the hardware in the 
experimental set-up and the common experimental 
infrastructure, as well as the supervision of all processes 
involved in the event readout. This functionality is 
provided by two independent, although complementary 
and interacting systems: control for Trigger and Data 
AcQuisition (TDAQ), and the Detector Control System 
(DCS).   The size and complexity of both systems suggest a 
hierarchical structure as the natural way to organize the 
control of the detector. The hierarchical control of both 
systems is driven by two independent Finite State 
Machines. This paper mainly discusses the hierarchical 
control of ATLAS, how the use of FSMs is approached, and 
the coordination between the two systems to ensure a 
coherent operation. In addition, the interfaces to DCS and 
TDAQ that will be used in the future ATLAS control room 
are shown.  

I. INTRODUCTION 

ATLAS [1] is a general-purpose particle detector 
designed to study p-p collisions at the Large Hadron 
Collider (LHC) at CERN, which will start operation in 
2007. It will be the largest particle detector ever built, 
distributed over a cylindrical volume of 42 m length and 
11 m radius. It is composed of three detector systems, 
the tracker, the calorimeter, and the muon system. These 
are divided into 12 different specialized sub-detectors 
that perform different tasks such as track reconstruction 
and particle identification. 

The data from the detector is read out through the 
Trigger and Data AcQusition (TDAQ) system which is a 
large and heterogeneous system and contains a wide 
variety of components to be controlled.  These items are 
typically clustered according to the detector topology.  
They range from readout modules connected to the 
detectors to nodes in the computer farms used for data 
selection.  The Run control (RC) for TDAQ is in charge 
of controlling the hardware and software elements 
involved in the data taking process. The RC is built in a 
hierarchical and distributed manner.  

On the other hand, the Detector Control System 
(DCS) [2] supervises the hardware in the experimental 
set-up including all the detector services (e.g. high 
voltage, cooling) and the common experimental 
infrastructure (e.g. racks, environmental conditions). 

DCS also serves as interface to external systems such as 
the CERN technical services (e.g. electricity, 
ventilation) and most notably to the LHC accelerator 
(e.g. for beam conditions and backgrounds). The DCS 
consists of a distributed Back-End (BE) running on PCs 
and of the Front-End (FE) instrumentation.  The 
associated data volume to be treated by DCS is very 
large, in total, around 200.000 channels will be 
supervised. The magnitude of the ATLAS DCS, in 
terms of system complexity and collaboration effort, 
suggests also a hierarchical structure as the natural way 
to organize the detector control.   

The interaction between TDAQ and DCS is handled 
by the DAQ-DCS Communication (DDC) software 
package [3].   

This paper discusses the hierarchical control of 
ATLAS using finite state machines (FSMs) and the 
coordination during the operation between TDAQ and 
DCS. It presents also the top level user interface to 
monitor and control the detector conditions. Section II 
describes how the FSM concept is applied in the two 
major systems for governing ATLAS, DAQ and DCS. 
Section III discusses the coordination during operation 
of both systems with focus on the DDC package. The 
interfaces between the hierarchical control and the 
operators on shift are discussed in section IV. 

II. THE FINITE STATE MACHINE APPLICATIONS 
The two major systems for governing the ATLAS 

detector, TDAQ RC and DCS, are based on the same 
concept of FSM. This allows for the sequencing and 
automation of operations. Even though both systems are 
based on the same concept, they have different 
requirements and use different technologies for 
implementing it.  The TDAQ control is governed by a 
single global FSM for all components in its control tree.  
This guarantees that the same sequencing is followed by 
all its different components during the read out process.  
In contrast, the DCS is composed of many different 
systems with different behaviours that need to be 
automated, for example High Voltage (HV), Low 
Voltage (LV), cooling, etc.  As a result, the DCS control 
is composed of many FSMs arranged in a hierarchy with 
rules of the parent – child interaction defined. 
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Fig. 2: A simple TDAQ control tree showing the concept of 
partition and segments 

Some parts of the detector should operate 
continuously since any interruption could be very costly 
in time and money or may even be detrimental to the 
performance of the detector. Hence supervision by the 
DCS is needed at all times.  The TDAQ system in 
contrast is required only while physics data are being 
taken or during specific monitoring, calibration, or 
testing runs. Therefore the DCS system must be able to 
run completely independent of the TDAQ. 

An essential requirement of both, DCS and TDAQ 
systems, which is particularly important in the 
commissioning and installation phases, is the ability to 
partition the system into several independent, but fully-
functional subsets. It must be possible for several 
detectors and/or several parts of a given detector to be 
triggered and to take data in parallel and independently 
of each other. Thus, to allow partitioning while keeping 
interaction between the two systems, at a certain level, 
both hierarchies are a mirror of each other. This 
simplifies the communication between the systems as 
the TDAQ RC can always interact with a corresponding 
part of the DCS.  

 
A. The TDAQ Run control hierarchy 

The TDAQ RC system is responsible for 
initialization and supervision of the full TDAQ system.  
This encompasses starting/stopping of processes, the 
distribution of commands given by the operator (human 
user) and monitoring and handling of any errors and 
faults that may occur.  The RC system implementation 
is based on the CLIPS programming language [4] with 
heavy use of C++ extensions.  CLIPS was chosen due to 
its flexibility and previous positive experience with the 
language. More information on the evaluation and 
choice of technologies can be found in [5].  

The TDAQ system is naturally divided into sub-
systems (sub-detectors, event building farms, etc).  The 
system configuration is therefore divided into segments 
typically representing a sub-detector, crates of readout 
modules or similar.  A segment contains a set of 

applications, and possibly, other segments.  The top-
level segment is called a partition and may or may not 
represent the entire TDAQ system.  The RC builds a tree 
of controllers where each controller corresponds to a 
segment.  The controllers are then in charge of all the 
applications contained by the segment (as specified in 
the configuration database) and possibly other sub-
segments.  Figure 1 shows an example of a simple 
control tree.  

To keep a status of all the applications in the control 
tree and to ensure a coherent execution of commands a 
Finite State Machine (FSM) has been implemented for 
the RC system.  The applications are subdivided into 
two groups: 

1. State aware applications.  These follow the 
state machine and receive and confirm 
commands from their controller.  Examples: 
ReadOut System (ROS), Event building 
applications, etc. 

2. Stateless applications.  These are the 
applications that run independent of the state 
machine, but do still belong to a controller and 
report any errors to it. Example: monitoring 
applications, etc. 

All controllers and state-aware applications follow 
the same global FSM.  This is necessary to ensure that 
certain systems are started and stopped in a well-defined 
way and that dependencies across the system are taken 
into account.  To allow for a more flexible structure, the 
possibility of hidden sub-states for any controller (and 
thus its sub-tree) has been implemented in the system.  
Figure 2 shows the state machine currently used for the 
experiment.  

Whenever a controller receives a transition 
command it sends it to all the applications and 
controllers in its segment.  Any child controllers 
propagate the command and so on throughout the 

Fig. 2: The state machine currently used for the 
TDAQ system 
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system. A controller confirms the transition only when 
all the children have confirmed the new state, so any 
errors while performing a state change is effectively 
propagated to the root controller. 

 

B. The DCS control hierarchy 
The commercial Supervisory Control And Data 

Acquisition (SCADA) package PVSS-II [6] has been 
chosen by the Joint COntrols Project (JCOP) [7] at 
CERN to implement the BE system of the four LHC 
experiments. 

The FSM tool forms part of a software framework 
developed in the context of JCOP and it is based on both 
PVSS-II and SMI++ (State Management Interface) [8]. 
SMI++ is a tool for developing control systems and it is 
based on the FSM concept. Complex systems can be 
broken down into simple FSM units that are 
hierarchically controlled by other FSMs. The detector 
can be decomposed and described in terms of SMI++ 
objects, which behave as FSMs. These objects can 
represent device entities, like a pump or a high-voltage 
crate, or logical groups of such devices, like a sub-
detector or a gas system. Each object can automatically 
make decisions based on changes in its own internal 
status and on those of other components in the 
hierarchy.  

The architecture of the BE system is organized in 
three functional horizontal layers [9] and FSM engines 
run in order to ensure a coherent operation of the whole 
detector (see Figure 3).  

Fig. 3: DCS BE Architecture 

At the top layer, there will be Global Control 
Stations (GCSs) which are in charge of the overall 
operation of the detector. They provide high level 
monitoring and control of all sub-detectors, while data 
processing and command execution are handled at the 
lower levels. The GCS will be able to access all stations 

in the hierarchy. In section IV the main operator 
interface to the control hierarchy is introduced. 

The Sub-detector Control Stations (SCSs) form the 
middle level of the hierarchy. Each sub-detector has its 
own station and an additional one handles the Common 
Infrastructure Controls (CIC). Each SCS allows the 
complete local operation of a sub-detector by means of 
dedicated graphical interfaces (see section IV). At this 
level of the hierarchy, the connection with the TDAQ 
system takes place in order to ensure that detector 
operation and physics data taking are synchronized. The 
interaction between DCS and TDAQ is described in 
more detail in section III. 

The bottom level of the hierarchy is made up of the 
Local Control Stations (LCSs), which handle the low 
level monitoring and control of instrumentation and 
services belonging to the sub-detector. The LCSs 
execute the commands received from the SCS at the 
layer above, but also trigger predefined actions 
autonomously following the FSM procedure. 

III. INTERACTION DAQ-DCS DURING OPERATION  

Interaction between TDAQ and DCS is needed in 
order to enable the coherent operation of the experiment 
as a whole. The control interface between DCS and 
TDAQ is arranged with the assumption that the latter is 
the master when the experiment is taking data.  Thus, 
the TDAQ control applications are able to drive the 
DCS by sending commands and getting feedback about 
the result. Furthermore, the DCS should inform 
asynchronously TDAQ about any failure on the detector 
preventing incorrect data taking.   

The interaction is done by means of the command 
transfer application DDC-CT of the DAQ-DCS 
Communication (DDC) software package [3], after 
called the DDC controller.  Like any other leaf 
controller, the DDC controller is responsible for 
receiving commands from the parent TDAQ controller 
and transferring these commands to the domain under its 
control, which is a DCS subsystem. It also receives error 
signals from the corresponding DCS FSM and passes 
them to the TDAQ. The mapping between the TDAQ 
transition commands and the FSM commands on DCS is 
defined by the DDC controller configuration [3]. 

The number of DDC controllers running for a sub-
detector corresponds one-to-one to the number of 
Trigger and Timing Control (TTC) partitions [1] of that 
sub-detector [10].  A TTC partition is the minimal part 
of a detector that can be controlled autonomously for 
data taking.  By running one DDC controller for each 
partition we achieve the finest common possible 
granularity to both systems.  On the DCS control 
hierarchy each DDC controller corresponds to a DDC 
Device Unit (DDC_DU) (see Figure 4) [11]. The 
DDC_DU uses the FSM functionality to execute the 
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commands sent by TDAQ and inform about a change of 
state. 

The interaction between RC and DCS is performed 
at the supervisory level; there is no direct interaction 
between TDAQ and the DCS front-end. A typical 
example would be when the DAQ operator sends the 
command “prepare for run” to a certain sub-detector or 
part of it. This command implies a set of actions to be 
performed at the DCS side by means of the FSM (i.e. 
goto_ready means ramp up HV, switch on LV, etc). The 
assignment of DAQ commands to the relevant DCS 
commands is done through the DDC controllers; the 
DDC_DU applies these commands within the DCS 
hierarchy of FSMs. Moreover, in case of any failure that 
could damage the quality of the data taking (i.e. error 
while ramping up HV), DCS at the TTC level in its 
hierarchy informs TDAQ through the DDC mechanism. 

From the TDAQ system point of view a DDC 
controller is treated as a normal leaf controller in the 
control tree.  It accepts all transition commands and 
follows the global TDAQ FSM.   If a DDC controller 
enters an error-state (for example due to a problem 
within the DCS) this state is propagated up the TDAQ 
control tree.  
 

 
Fig. 4: Interaction TDAQ-DCS 

IV. INTERFACE FOR THE OPERATION 

The ATLAS experiment will be controlled from a 
central control room.  A large number of displays and 
interfaces will be available in the control room including 
the interfaces to TDAQ and DCS.  The TDAQ interface 
gives access to the RC, but also interfaces with a variety 
of other systems necessary for the operator.  The DCS 
system on the other hand gives an in-depth view of the 
DCS and provides tools and functionality to monitor and 
operate the system and also locate, identify and fix 
errors that may occur.  As mentioned in Section III, the 
TDAQ controls the DCS while data taking.  The two 
interfaces might be located at different stations within 
the control room so efficient coordination is therefore of 

importance both for security reasons and to obtain high-
quality data.  An access management system will be put 
into place to ensure that contradictory actions are not 
taken (e.g. the DCS operator changes the voltage set 
while data taking). 

A. DCS Operator Interface 
The ATLAS Operator Interface (OI) is the principal 

human-machine tool for control of the detector 
equipment and related infrastructure. It interfaces to the 
hierarchical control of the DCS. Each node in the 
hierarchy corresponds to a process controlled by an 
FSM that has an associated display called workspace 
(i.e. SCS, HV, LV or a cooling system). In total, around 
1200 different workspaces will be accessible from the 
OI. 

In order to support the operator in controlling the 
detector, maintain integration of the displays, and 
support efficient navigation, a frame integrating the 
displays of the control hierarchy with navigation 
facilities, has been developed [11]. This is the ATLAS 
OI (see Figure 5).  

In order to navigate across the control hierarchy, a 
main and a secondary module are available. Thus, the 
operator can keep an overall view of the detector while 
studying in detail a problem deeper in the hierarchy. In 
addition, alarms and messages are displayed in two 
separate modules. Given the appropriate access rights, 
the operator is able to command the entire detector. 
From the OI the operator can send commands to the 
children in the hierarchy and include/exclude a certain 
part of the control hierarchy. For instance, the shift 
operator in could exclude a certain part of the detector 
that has a problem (i.e. a full barrel, the HV system, the 
cooling system, a single sensor, etc), and then, the 
control can be taken by an expert for intervention. After 
solving the problem the expert returns the control to the 
operator). 

 

 
Fig. 5: Common OI Layout 

 B. TDAQ Operator Interface 
The Integrated Graphical User Interface (IGUI) is the 
main interface to the TDAQ system.  The IGUI is a 
JAVA based application and provides the operator with 
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all tools needed to successfully control and monitor the 
data taking.  The main functionality is to configure the 
TDAQ system and to send commands to the RC, but it 
also provides a series of monitoring and other necessary 
functionality.  The interface is based on tabbed 
browsing, and a framework is provided to easily create 
new tabs for the display.  This is used to present 
different configuration screens, to interface with other 
TDAQ systems (such as message-reporting) and, by 
monitoring groups, to integrate their displays with the 
IGUI.  Figure 6 shows a screenshot of the IGUI.  

V. CONCLUSIONS 
This paper has shown the organization, 

implementation and coordination of two of the main 
systems for the ATLAS detector, namely TDAQ and 
DCS.  We have looked closely at the use and 
implementation of the FSM concept in both systems and 
pointed out similarities and differences between the two.  

The ATLAS detector, together with the DCS, is 
currently being built (first operation will take place in 
2007) and the top level OI has been in use since 
February 2006 with satisfactory results. The first control 
hierarchy included was the Common Infrastructure 
Controls (CIC) and the integration of the rest of sub-
detectors will be realized in the coming months. For the 
commissioning period the OI has been installed both, 
underground in the electronics room next to the 
equipment, and in the ATLAS control room. 

The TDAQ RC has been operational for several 
years, though it is still undergoing development and 
testing.  It is being used throughout the commissioning 
of the ATLAS detector.  However, the interaction with 
the DCS has naturally been limited, but becomes 
increasingly important as the detector nears completion 
and is controlled through the DCS.  Close interaction 
between DAQ and DCS will be of prime importance 
both for safety reasons and in order to obtain good-
quality data.   
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Abstract - This paper describes challenging requirements on
the configuration service for the ATLAS experiment at CERN. It
presents the status of the implementation and testing one year
before the start of data taking, providing details of:

* the capabilities of the underlying OKS object manager to
store and to archive configuration descriptions, its user and
programming interfaces;

* the organization of configuration descriptions for different
types of data taking runs and combinations of participating
sub-detectors;

* the scalable architecture to support simultaneous access to
the service by thousands of processes during the online
configuration stage ofATLAS;

* the experience with the usage of the configuration service
during large scale tests, test beam, commissioning and
technical runs.

The paper also presents pro and contra of the chosen object-
oriented implementation compared with solutions based on pure
relational database technologies, and explains why after several
years of usage we continue with our approach.

I. INTRODUCTION

The configurations database service described in the paper
is a part of the ATLAS High-Level Trigger, Data Acquisition
(DAQ) and Controls system [1]. It is used to provide the
overall description of the DAQ system and partial description
of the trigger and detectors software and hardware. Such
descriptions cover the control-oriented configuration of all
ATLAS applications running during data taking (including
information such as: which parts of the ATLAS systems and
detectors are participating in a given run, when and where
processes shall be started, what run-time environment to be
created for each of them, how to check status of running
processes and to recover run-time errors, when and in what
order to shut down running processes, etc.) and provide
configuration parameters for many of them (overall DAQ
data-flow configuration, online monitoring configuration,
connectivity and parameters for various DAQ, trigger and
detector modules, chips and channels).

The configurations database is used by many groups of
developers from various systems and detectors. Each group is
responsible for preparing their own part of the configuration

and for writing the code configuring their applications using
common configuration service tools.

The configuration service is accessed simultaneously by
thousands of processes during the boot and configuration
phases of the run. If the configuration is changed during a run,
the configuration service is responsible for notifying and
reconfiguring affected processes.
And finally, the configuration service archives all

configurations used during data gathering, so they can be
browsed later by experts and accessed by programs
performing events processing.

The use cases and requirements listed above for the
configuration service result into several challenges discussed
in the following section.

II. CONFIGURATION SERVICE CHALLENGES

A. Data Model
The database schema used by the configuration service for

descriptions mentioned in the previous section includes
approximately three hundreds classes. The classes are
designed by different DAQ, trigger and detector groups. To
speak in a common language across all of them, it is desirable
to have a so-called core database schema describing common
data types, which are extended by the groups. In the resulting
schema all classes are interconnected via inheritance and
relation links.
As an example of the schema extension, consider the core

Application class, which contains several tens of generic
properties to describe parameters of a process such as unique
identity, command line parameters, various timeouts, actions
to be taken in case of errors, environment variables, the
application's binary file and host, initialization and shutdown
dependencies, etc. Then each group takes the base
Application class and extends it providing their specific
properties e.g. trigger groups derive TriggerApplication
classes to add specific parameters, the data-flow groups derive
DataFlowApplication classes having data-flow specific
parameters, etc. The important thing is that the instances of all
these classes can still be considered as applications and be
handled in the same manner, e.g. by the code of the control
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software.
So, the first challenge requires the configuration service to

support a sophisticated data model able to describe complex,
extendable and interconnected pieces of data.

B. Data Access Programming Interface
The configuration data are accessed by code written by

developers from different groups. In many cases the code has
to retrieve the same configuration information and it is
important that this is done in a consistent way. This becomes
essential, if calculation of the configuration information
requires several accesses to the database and the access to
further parameters depend on the results of previous accesses.
For example, to calculate some configuration parameters one
has to execute a database query; then an algorithm is applied
to the data returned by the query and the algorithm's result is
used as parameters for the next query, etc. Or, the
configuration information is a result of calculations on top of
the data returned by several independent queries. Ideally, such
code should be implemented as a function available to any
developer and the queries themselves should not be used by
developers explicitly.
As well, most of the developers who need to read the

configuration information stored in the database, are not
database experts. It is therefore desirable that the code to
access the database data is completely hidden behind some
high-level API of the programming language they are using.
This allows users of the configuration service to effectively
develop their application code instead of spending time on
learning the low-level API of the database implementation
and debugging various problems caused by the inefficient
usage of the database or by database version changes.

The mechanism used to hide the low-level database
implementation and to provide a configuration data access
API using data types of a programming language is called the
data access library (DAL). A DAL maps database data types
on the types supported by the programming languages (e.g.
relational table is mapped on C++, Java or Python class). A
DAL is also responsible for instantiating database data as
instances of the programming languages types (e.g. for each
row of the relational table it creates a corresponding C++
object) or to save any changes to the database, if the instances
have been modified or new ones have been created. A DAL
can also provide functions (called the DAL algorithms) to
calculate data based on the result of several database queries,
as it was explained in the previous paragraph.
A DAL can be written by hand or automatically generated

from the database schema. The latter is useful, if the database
schema contains a large number of classes, or it is simply
changing often. The DAL generation is absolutely necessary
to implement the ATLAS DAQ configuration service because
of the high degree of complexity of the schema, its parallel
development by several groups and the frequent changes
during development cycles. For example, the configuration
schema defined by the ATLAS DAQ-HLT (high level
trigger) development release was changed at least once per

week during last year.
Thus, the second challenge requires that the configuration

service provides automatically generated DALs for
programming languages used by the ATLAS software (C++,
Java and Python).

C. Database Population
To prepare a configuration description for a data taking

session one has to put into the database all the data describing
the software releases, the online infrastructure, the data-flow,
monitoring, trigger and detector applications, the hardware
they use, trigger and detector specific parameters; furthermore
all elements need to be organized into a controllable
hierarchy. Even a minimal configuration for the online
infrastructure test is composed of hundreds of configuration
objects. It is expected, that the final configuration for the
complete ATLAS will contain in the order of ten thousand
configuration objects. It is clear that the database describing
such configurations cannot be filled manually. Special tools to
create, compare or copy configurations and to test their
completeness and consistency should therefore be provided.

At the same time, many configurations prepared for
different types of runs (cosmic, physics, calibration, etc.) and
for different sets of participating trigger and detector parts
should co-exist.
To avoid duplication of information belonging to different

co-existing configurations it is reasonable to share common
configuration data. Note, the sharing of configuration data not
only saves the space used by the database, but also improves
maintenance of the data in case of changes, since
modifications will have to be done only once. This approach
is first of all applicable to the software releases descriptions,
which are updated only when new releases or patches are
installed. In a similar way, the description of all hardware
elements needs to be updated only when there are
corresponding changes in the physical world such as
installation of new computers, changing cables between
modules, network reconfiguration, etc.
Many parts of configuration data can be and have to be

generated automatically. For example, the description of a
software release can be generated by analyzing it's installation
area and CMT requirements files' used for the build. It
contains all binary files with their supported platforms, the
run-time environment they need (e.g. paths to shared libraries
including used external packages, their specific environment
variables, etc.). Another example is the generation of the
hardware description. This can be done analyzing the ATLAS
technical coordination installation databases containing
information about installed hardware organized by ATLAS
systems and detectors, or even by reading simple ASCII file
containing list of hosts. Based on this information the
configuration tool checks the state of the installed hardware,
extracts missing parameters (e.g. network or module
addresses) and saves the configuration description. Note, that

1 CMT is a tool to build ATLAS software releases; the requirements file is
an analogue of a make file
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the automatically generated data described in this paragraph
can be shared between configuration descriptions for different
runs.

The rest of the configuration data should be built using
tools which have a detailed knowledge about the architecture
of the ATLAS DAQ, trigger and detector systems. Such tools
can be used for different purposes, e.g. to prepare a database
configuration to test DAQ read-out or event builder systems
on test beds of the ATLAS experiment, to test high-level
trigger algorithms with pre-loaded event data on a computer
farm of an external institute, to test newly commissioned
hardware at the experiment site, or to describe the full
ATLAS configuration. A generation tool will on the one hand
be used by experts, who need the capability of redefining any
configuration parameters they would like to test; on the other
hand it shall also be usable by non-experts, who only know
the type of configuration they want to run: for those such a
tool needs to be able to set default configuration parameters.

Summarizing, the third challenge requires the configuration
service to provide a set of tools for automatic generation of
configuration descriptions for the software releases, for
various hardware installations and for the different data taking
configurations.

D. Performance and Scalability
One of the goals of any ATLAS online service is to

minimize the experiment's downtime during the physics data
taking period. The configuration service is used by thousands
of processes during the boot and configuration stages of the
data taking, and it has a significant influence on the overall
time needed to setup a data taking session. By this reason it
has to assure a scalable architecture to guarantee that this time
does not depend too much on the number of clients of the
configuration service. An acceptable time requirement for us
would be that if a single client gets the configuration data in a
few tens of seconds then all clients should be able to do the
same in less than one minute.

Another important requirement is effective usage of the
configuration service in case of small modifications of settings
between data taking runs. In this case the affected clients
should be able to read from the configuration service the
changes since the previous run instead of re-reading the
complete configuration: this is especially true for clients
which are re-reading an unmodified configuration.

Most of the developers using the configuration service are
not database experts. One cannot guarantee that they are using
the service in an optimal way, e.g. their code is reading any
configuration parameter only once. In addition, the
configuration data can be read by several libraries developed
by different groups and used within a single process, which
even more increases probability of code accessing the service
in non-optimal way. So, to achieve optimal performance the
configuration service has to support caching of configuration
data on the client's side and to read the data from the service
only when this is really needed.

The forth challenge requires the configuration service to

have a scalable architecture and performance in order to meet
the demanding experiment's requirements. In case of small
changes between runs the service has to support partial
reconfiguration. As well, whenever possible, the service has to
cache information at the level of client's process to prevent
multiple requests to the configuration service for information
which was already read.

E. Archiving
Once the configuration data were used for data taking, they

have to be safely archived by the configuration service. The
archived data can be used later for processing of event data, to
be browsed by experts or to be retrieved for preparing a new
configuration. The configuration service has to guarantee, that
once archived, the data will not be removed or unintentionally
corrupted, e.g. during a modification of the configuration for
the next run. This requirement addresses the fifth
configuration service challenge.

F. Easy Usage

The configuration service is a part of the TDAQ software
releases. They are used not only at CERN, but also in many
ATLAS collaborating institutes around the world. To be used
the configuration service has to be easily available there. In
many cases the institutes cannot use the CERN-based remote
configuration service because of various reasons (e.g. slow or
unreliable network or even lack of internet connections for
certain test-beds, various local software policies) and
therefore need to support the configuration databases
themselves. At the same time one should not expect, that there
will be knowledgeable database administrators or simply
advanced database users at any site.

The last configuration service challenge is the requirement
to be easily accessible or installable for all ATLAS
collaborating institutes.

III. CONFIGURATION SERVICE IMPLEMENTATION

The trigger and DAQ system and its predecessors (CERN
R&D 13 group [2], ATLAS DAQ Prototype-I Project [3])
had evaluated several shareware and commercial candidates
for the configuration service, including persistent object
managers, object and relational databases, but no system
satisfying all the requirements was found [4]. Therefore it was
decided to use as a prototype the existing object manager
OKS [5] and make it capable of fulfilling the DAQ
configuration service needs.

Initially, the OKS has used the Rogue Wave object
persistency [6] storing objects in cross-platform binary files.
At that time the Rogue Wave library was used as the base
general purpose library within the DAQ system. The library
was then replaced by the C++ Standard one and instead of
Rogue Wave persistency the OKS started to use human
readable XML files (the possibility to easily browse, modify
and distribute these files was one of the key points of its
success). Then, to satisfy the DAQ needs the OKS was
extended to implement remote access, to provide an abstract
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API layer using several OKS access implementations and to
realize the OKS database archiving. These features are
described in more details in the rest of this section.

A. The OKS Persistent Object Manager
The OKS is a set of tools to provide objects' persistency. It

is based on the following object data model:
* the basic entity is an object with unique object identifier;
* objects with common properties and behavior are

described by a class, defining attributes (primitive
types), relationships (links with objects) and methods to
act on the object properties;

* classes support inheritance (multiple inheritance is
allowed) with polymorphism (overloading of inherited
object properties in a child class);

* composite objects (i.e. a parent object built from
dependent child objects via aggregation relationships);

* integrity constraints (i.e. type and value restrictions on
attributes and relationships).

The OKS classes and objects can be created and modified
dynamically, put into a persistent storage and read back. The
native OKS API for this is C++.

For effective data selection there is a query language. OKS
allows active notification on data changes as well (i.e. call
user callbacks when an object is created/deleted/modified).

The OKS supports several advanced functions to work with
persistent schema and data: the schema evolution allows
modifications to the schema as the user applications evolve,
and the data migration permits data to be accessed by
successive versions of a schema.

The main persistent storage for OKS is XML files. There
are two types of them: the schema ones define classes and the
data files store database objects. An XML file can include
other files to build a complete database from several well
defined files and to share them between different OKS
databases.

Another persistent storage for OKS data are relational
databases. OKS uses the LCG CORAL [7] library that allows
transparent usage of several relational database back-ends
such as Oracle, MySQL and SQLite. This type of storage is
oriented for archiving purposes: to check-in OKS files, to
browse archives, and to check-out archived files. The
archiving supports incremental versioning to store only
differences between a complete base version of a database and
its last version. As an example the modification of an object's
attribute will be stored in the database as a new row of
relational table and not as a complete copy of object. This
feature drastically reduces space used by OKS archives.
OKS provides distant access to the databases via remote

database servers (RDB), developed on top of CORBA [8].
The RDB server is used to access a single database from
different clients running on computers without a common file
system. It also helps solving scalability problems, when access
is required by a huge number of clients, by caching the results
ofOKS queries.

B. OKS User Utilities
OKS provides several graphical applications. The schema

editor is UML-like graphical editor to browse and to modify
the database schema, see Fig. 1 as example:

Fig. 1. Example of OKS Schema Editor view.

The data editor is a graphical editor to browse and to
modify the database data. It allows customizing appearance of
the user-defined views presenting relations between objects.
An example is shown on Fig. 2. Alternatively the data can be
accessed in a tabular format.

Fig. 2 Example of OKS Data Editor view: a fragment of partition object for
ATLAS February 2007 Phase 2 commissioning run.
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The data editor has a graphical query constructor. Once a
query is constructed, it can be saved and used for future data
retrieval using the editor or OKS API.

The OKS provides utilities to print out the contents of a
database, to compare schema and data files, to merge
databases, to insert and to extract the OKS databases from the
archive and to list its contents. The OKS archive Web
interface is shown on Fig. 3:

inserted into DAL classes to implement sophisticated
algorithms on top of the config objects. The DAL is
automatically generated from the OKS schema for the above
mentioned programming languages by the genconfig tool,
which is a part of the configuration service. The generated
DALs are used by all ATLAS online processes which need to
get the configuration description.

Fig. 4 presents the relations between databases interfaces
and users of the configuration service (the Partition Maker
tool is used to generate configuration descriptions and it will
be described in one of following subsections).

OKS schema editor

text editors
scripts

reaa ..- .
schema DAL generation

developer

user

online
processes

Fig. 3. Example of Web interface to OKS archive

One can select the archived data by release name, by time
intervals, and by user, host and partition masks. The result can
be presented with different level of details and sorting
policies. The archived data can be compared and extracted
from the archive as OKS data files.

C. Configuration Service Programming Interface Layers
The code ofATLAS programs never uses the OKS or RDB

APIs directly. Instead there are two layers of configuration
service API to avoid any dependencies on the database
implementations.

The first config layer provides an abstract interface to work
with databases and to access configuration objects. This
interface exists for C++, Java and Python programming
languages. The implementations of this interface are available
as plug-ins for OKS XML files, OKS relational archives and
for the RDB server. The user's code does not depend at all on
the implementation used. This layer is used to work with an
arbitrary database schema for reading its description, loading
or creating new databases, querying them to get configuration
objects, accessing their properties and for subscribing on
database changes. The config layer is normally used by the
ATLAS control and infrastructure applications which are
working with not known at compilation time user classes.

The second DAL layer uses the above abstract config one to
map database schema on C++, Java and Python classes and to
instantiate the database data as appropriate objects of such
classes. When necessary, user-defined methods can be

Fig. 4. Configuration service interfaces and users

As mentioned, the user's code does not depend on the
database implementation; in the most frequent case of DAL
usage it deals with high-level generated classes only. An
example of such code is shown in Fig. 5. The generated
classes and their methods are shown in bold.

// (1) initialize configuration object
Configuration db("oksconfig:partitionsltest.xml");

// (2) find partition executing a DAL algorithm
const Partition * p = db.get_partition("test");

// (3) read partition's default host
const Computer * h = p->get_DefaultHost();

// (4) print out hostname
std::cout << "Default host: " << h->UID() << \n";

// (5) get pointer on new host
const Computer * h2 = db.get<Computer>("pc-onl-2");

// (6) set new partition's default host
p->set_Defau1tHost(h2);

// (7) commit database changes
db.commito;

Fig. 5. Simplified example of C++ code using generated DAL

Line 1 shows how to create a configuration service object.
The argument of its constructor defines the implementation
that will be used and its parameters. In this example the oks
xml file will be used. If one wants to use RDB or relational
archive, just this argument needs to be changed; there is no
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need to recompile or re-link the program. Line 2 shows how
to use an algorithm. The getpartitiono one is written by hand
and is integrated into the DAL generated class. Line 3 shows
how to access another configuration object referenced by a
DAL object using the generated method for the relation
"DefaultHost" defined in the database schema. Line 4
demonstrates how to print the unique identity of a
configuration object. Line 5 shows how to retrieve from
configuration service an object of a certain class knowing its
identity. The line 6 sets new value for the relation. The last
line saves changes to the persistent storage, i.e. in our
example into the xml file.

D. Configuration Schema
The structure of any configuration object is defined by the

database schema. The DAQ defines a common database
schema agreed with trigger and detector groups, which extend
it to introduce properties of their specific configuration
objects. The common schema contains an order of hundred
classes and defines several domains:

* The software releases including programs, libraries,
supported platforms, external software packages they use
and the variables they need.

* The hardware including racks, computers, crates,
modules, interfaces, cables, links, networks and their
composition into hardware systems.

* The control including applications (an application
corresponds to a process to be started under certain
conditions; it points to a computer and program and
defines their parameters), resources (a hardware object
or an application which can be temporary disabled in the
scope of given configuration), resource sets (group of
closely coupled resources) and segments (an individually
controlled container object, that is composed of
resources, applications and nested segments).

* The configuration including partition object (contains
parameters and segments for given run). The partition
object is used as the root of the tree of other objects,
describing the configuration. Via segments, their nested
segments, resources, applications and their relations with
parameters the partition object implicitly references
other objects participating in the configuration
description. This makes it possible to find any piece of
configuration data by simply navigating between objects
instead of execution of queries. It also makes it possible
to pre-load a configuration description into the client's
cache and thereby avoid later requests from those clients
to the configuration service. This is a clear benefit in
regard to performance and scalability issues.

The DAQ data-flow and monitoring groups extend the
common schema and define another hundred classes to
provide the overall description of their configuration
parameters. The trigger and several detectors also extend the
schema to introduce classes describing their specific
configuration parameters. The total number of configuration
classes used for last detector commissioning run was about

three hundred.

E. Organisation ofDatabase Repositories

The oks xml files are stored as database repositories. To
make a repository visible for configuration service it is
enough to add it to the special colon-separated environment
variable (like the PATH variable on UNIX). Then an oks file
can be referenced relative to the value of this variable.

Each repository is versioned, when the database schema is
modified. Usually this happens together with the installation
ofnew software releases.
A repository contains folders assigned to different groups

of users. A folder has a predefined structure for schema
extension, software, hardware, segments and stand-alone
partitions. Each group has write access permissions for its
folder and is responsible for preparing segments, which can be
inserted into combined ATLAS partitions.

There are several repositories across CERN sites. One of
them is dedicated for development and is available on the afs
file system. Its latest version corresponds to the last release
(rebuilt each night). The software and hardware descriptions
are automatically regenerated together with the release build.

Another one is the ATLAS production repository. It is
available at ATLAS experiment site and contains
configurations for the detector technical and commissioning
runs.

F. Generation ofConfigurations
To generate descriptions prepared for different tests and

participating systems the Partition Maker tool has been
developed. It contains embedded ATLAS DAQ system and
trigger expert knowledge in order to guide a user through the
configuration process, minimizing the risk of configuration
errors.

The architecture is organized into three distinct layers,
where each level uses resources from lower levels. The lowest
layer is responsible for representing trigger or DAQ
components as classes and ensures correct configuring of
them. The middle level creates segments composed of objects
built from previous level and guarantees their correct
interaction within each segment. The highest level links
together segments and certifies that they result in a meaningful
configuration.

The Partition Maker allows the user to work in any of the
three levels. Novice users can work in the highest level only,
in order to quickly generate a configuration with minimal
input information. The users with more experience can use
resources from lower levels to prepare specific configurations.

The Partition Maker is written in the Python programming
language. This allows easy development of scripts using it
and integration of user configuration knowledge.

G. Scalable Online Access at ATLAS Point-I
The programs using configuration service are running on

computers inserted into racks, separated by ATLAS systems
and detectors. So, the programs belonging to a rack require
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similar configuration data. To achieve the best possible
performance we are running one RDB server on the rack's
local file server (LFS). Such RDB server reads master copy of
configuration data from central file server and provides access
to them for all processes running inside the rack as shown on
Fig. 6:

Rqrk I R _rk9 Rnrk XX

Fig. 6. Schema of the RDB-based scalable access on Point-I

The maximum number of clients served by one RDB is
approximately 240 (30 high-level trigger computers per rack,
8 processing tasks per computer). To achieve better
performance, the number of clients per RDB server can be
reduced by running more RDB servers per rack or using
dedicated racks for online services.

H. Offline Access
When a new data taking run is started, the configuration

data are automatically archived into relational database and
relevant record referencing archived configuration is added to
the ATLAS conditions database. Later one can access
configuration data using programming interfaces or to browse
and restore them using graphical user interfaces.

I. Experience with OKS Usage
The OKS-based configuration service has been used since

the very beginning by the ATLAS online software. It has been
exploited in combined test beams [9] [10], large scale tests
[11], recent technical and commissioning runs. The service
was actively used to prepare the configuration descriptions of
the test runs and to provide access to them for the online
processes. It always met the functionality and performance
requests of the users.

IV. THE CURRENT OBJECT-ORIENTED APPROACH:
ADVANTAGES AND DRAWBACKS

In the past we have tested many candidates for the
implementation of the configuration service for ATLAS. The
object database management systems seemed to be the best
suited choice, since they have the data model and
programming interfaces satisfying our needs and they
supported data versioning that is useful for data archiving.
However we have failed to a find scalable and reliable
implementation. This was the main reason, why we have

started our own persistent object manager prototype project
ten years ago. Since then we are keeping an eye on
technologies used by other groups and experiments to
implement configuration databases. Most frequently such
solutions are based on the usage of relational database
management systems. This can be explained by several
reasons including their prevalence and maturity in the
database world, the availability of commercial and freeware
systems, a suitable data model for certain types of
configuration data. Another important booster for this choice
is that relational database specialists are very requested on the
employment market also in non-science sectors: this makes
their study appealing for young scientists without an already
well defined career path. Below we summarize why the usage
of relational databases does not give to us benefits comparing
with existing solution.

In the beginning we listed several challenging requirements
to the configuration service. A pure relational technology does
not address any of them and cannot be used without tools
developed on top of it.
To populate databases one has to use special utilities. It is

unrealistic to put all data by hand for both, the existing OKS-
based implementation and the relational one. The prototyping
of such utilities is a bit simpler with current implementation,
since XML files can be produced by simple scripts, easily
taken into account by configuration service tools, editable and
removable. In case of relational databases such prototyping
requires more complicated actions dealing with relational
storage especially if tables are shared with other developers.

The installation and support of relational databases requires
a qualified support. Many users from external institutes
installing trigger and DAQ releases, whenever possible, are
trying to avoid programs using relational databases.

The classical relational data model does not support
inheritance playing one of the key roles in the data model used
by the configuration service. One cannot create a new table
and mark it as derived from an already existing table, so that
existing queries would take this new table into account. As
well, the relational data model does not support arrays. To
implement them one has to create extra tables or encode them
as BLOBs, and then provide special functions to calculate
values of a "multi-value" column. Without a layer built on top
of the relational data model it cannot satisfy our requirements.

The relational databases do not provide a DAL. Instead a
developer using relational databases has to learn the SQL
language and the database API allowing using it. A DAL for a
relational database can only be designed, when the relational
data model extension discussed above is known. In our case
this means development of own tools or usage of third-party
ones, which do not satisfy all our needs (e.g. user-defined
algorithms, mapping on all used programming languages).

The advanced relational database management systems
provide scalable solutions. However even an Oracle farm
composed of several servers cannot handle in an acceptable
time simultaneous requests coming from tens of thousands
clients. To achieve the required performance one has to
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develop tools similar to our RDB servers, which serves a set
of relational database clients and caches the results of SQL
queries for them [12]. Such tools access the relational
database server only when a query coming from a client was
never performed.
On the client side the results of SQL queries can also be

cached. However when the same data or parts of them are
retrieved by different SQL queries, such caching mechanism
cannot help. This is different from the DAL and config
objects created using our configuration service, where the
effectiveness of the cache mechanism does not depend on the
relations used to access the object.
And finally, the safe archiving of configuration data is one

of the most difficult problems arising for users of the
relational databases. Since configuration data are changed
quite often (e.g. pieces of ATLAS systems and detectors may
be enabled / disabled before each new run), it is not enough
just to modify existing relational data. In such case their
history of usage will be erased. Thus, the relational data used
for a run have to be archived and some versioning mechanism
has to be provided. Using a true relational model such
mechanism cannot be easily implemented, since any single
change of data results in the necessity to version all data
having relations to it; in turn all data having relations on data
versioned during the previous step have to be versioned also
and so on. The requirement to archive data complicates the
relational tables storing configuration data and especially the
tools modifying them. Differently, the OKS archiving
provides incremental versioning and any single modification
of OKS data results into a single record in the archive (i.e. one
new row in OKS relational table describing value of object's
attribute or relationship). This is possible due to fact that OKS
relational tables used for archiving store values of OKS
entities like class, object, and value of attribute or
relationship. One should not expect to find in the OKS archive
a table with name "Module" or "Application". Their
descriptions will be stored into several OKS tables allowing to
deal with arbitrary database schemas and their evolutions, and
to implement space-preserving archiving.

V. CONCLUSIONS

In this paper we have shown how the present
implementation of the configuration service for the ATLAS
experiment is capable of meeting all the challenging
requirements posed to it.
A comparative analysis with other approaches such as the

usage of relational databases has been performed showing
that, despite the power and maturity of relational databases, it
would not be possible to use them directly without
implementing several layers on top of them for the purpose of
the experiment's configuration. Especially the requirement of
providing data access libraries in an environment of still
frequently changing database schema and the need for
efficient archiving of different configuration versions remain
very hard to meet.

Therefore we consider that the choice of basing the
configuration service on a homemade persistent object
manager, OKS, is still justified and is, at present, the best way
to satisfy all requirements put forward by the ATLAS
experiment.
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Appendix B

Design and implementation of

the CGP framework

Following is an high level design and implementation overview of the CGP framework

used in this thesis. The program was designed and developed by myself and as

always when designing computer software there are a myriad of choices to be made

and many ways of accomplishing the same functionality. The design presented here

is how I did it and may indeed contain many sub-optimal choices, but is presented

in order to give the reader an understanding of the CGP implementation used in

the thesis.

The entire program is available in the CD accompanying this thesis and

online at www.github.com/jesloper/CGP.

B.1 Overall remarks

The CGP is designed with two main components: the actual CGP implementation

and a graphical user interface (GUI) used to interact with the program. I will

describe only the CGP part as the GUI is very much a matter of personal choice

and preference and has no real impact on the results. This is a truth with some

modifications as a good GUI can present results in such a way as to give the operator

a better insight into the problem, inspire new ideas, etc hence it can be an important

part of a framework. Still now further details of the GUI will be given in the following
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Abstract

This document provides the design and implementation of the Cartesian Genetic
Programming (CGP) software developed by John Erik Sloper for his PhD thesis.
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1 Introduction

This document provides a high-level overview of the Cartesian Genetic Program-
ming framework. It explains all major components of the framework and their
interconnections. It is assumed that the reader has a good knowledge Genetic
Programming (GP) in general and CGP in particular.

2



2 Goals and guidelines

The main goal while designing and developing the system has been to learn and
gain an insight into CGP as an evolutionary approach. The choices made are
therefore not optimised neither for speed nor memory usage.

3 Architectural Strategies

The underlying strategy was to create a framework for CGP capable of solving
any type of problem. Emphasis was therefore made on making the system
extensible. It should be possible to de�ne new problems and easily implement
them for use in the CGP framework.

The system was built using C++ mainly due to the experience of the devel-
oper and the availability of good graphical libraries with which user interfaces
can be built.

Note that no focus has been made on concurrency at this time and this is
therefore left for future extensions of the framework.

4 System Architecture

There a four main components in the system as described below:

4.1 Problem

Describes a particular problem to be solved by the CGP. The problem also
incorporates functionality in order to provide test cases to a population and to
evaluate the output of candidate solutions.

4.2 Individual

Represents a candidate solution to a problem. Each individual consists of a
number of interconnected nodes/genes each encoding a speci�c function and
which inputs to use.

4.3 Population

This represents a population/collection of Individuals/candidate solutions to
the problem at hand. It supports the basic operations one would expect to be
able to perform on a population such as retrieving the best individual, retrieving
�tness statistics (best, average, worst), etc. It also supports the functionality
of creating a new generation including all common evolutionary operators. It
also encompasses functions to evolve the next step generational step. In order
to evaluate the �tness of the individuals the Population retrieves inputs and
�tness function from the Problem (see 4.1).
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The population stores the results of each generational step using the RunInfo
(see 4.4).

4.4 RunInfo

The RunInfo stores all information about the current evolutionary process in-
cluding parameters to the CGP. It keeps a record of the best individual and all
relevant statistics at each generational step.

5 Detailed System Design and implementation

In this section a more detailed overview of the design and implementation of
the core parts will be presented. Figure 1 shows a class diagram of the imple-
mentation. In the following sections each of the major classes are discussed:

5.1 Problem

The problem contains all relevant information about a given problem. The
framework provides an abstract base class called Problem from which all problem
implementations should inherit. Each problem must hold information such as
the number of �tness cases, the number of inputs and outputs for the particular
problem etc. The problem class also de�nes methods to retrieve all �tness cases
and to calculate �tness for a given output; i.e. it de�nes the �tness function.

5.1.1 Constraints

The �tness function should provide a numerical value as a �tness measure. A
lower �tness value should be used to represente a better �t individual as the
framework will attempt to mimize the overall �tness.
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Figure 1: Class diagram
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5.1.2 Composition

The Problem is not composed of any other classes.

5.1.3 Uses/Interactions

The Problem class is utilized by the Population in order to retrieve �tness cases
and to calculate the �tness value for a given output.

5.2 Individual

An individual represents a candidate solution to a particular problem. Each
Individual consists of a number of interconnected Genes in the manner of a
directed graph. The last n nodes represent the output of the individual, where
n is the number of outputs needed by a particular problem. The Individual class
provides methods to access the Genes, retrieve the output of the individual, etc.
Some of the methods availble in the Individual class can be seen in the program
listing below:

5.2.1 Constraints

An Individual can currently only consist of Genes. Future plans to incorporate
other types of building blocks, e.g embedded components, are planned.

5.2.2 Composition

An Individual consists of a set of Genes organized as described above.

5.2.3 Uses/Interactions

The Individual is used by the Population class or its derived classes.

5.3 Gene

The gene represents a single node in a candidate solution. It consists of a
number of inputs, a function and a single output. The inputs to the Gene are
either the problem inputs, or outputs generated by other genes. The function
will utilize the input values as its parameter in order to calculate its output
which can then be utilized by other nodes (or potentially as the output of the
candidate solution).

6



5.3.1 Constraints

Currently a Gene can only be connected to 3 other Genes and/or inputs. This
will be extended so that any number of connections can be used.

5.3.2 Composition

A Gene is composed by inputs in the form of integer values indicating the
connection to other Genes or to inputs. It also contains a pointer to a Function
object which represents the function associate with this node.

5.3.3 Uses/Interactions

The Gene is used internally by the Individual class in order to represent a
candidate solution.

5.4 Population

The population encomasses both the set of potential solutions and all methods
for generating subsequent generations including all evolutionary operators.

The framework provides an abstract base class called PopulationInterface
from which all implementations myst inherit. By default two di�erent types of
Populations are provided in the framework:

Regular Implements the typical evolutionary model found in literature.

Hierarchical-Fair-Competetion Implements an hierarchical fair competition
(HFC) approach which includes a number of sub-populations (demes).
This implementation controls all

The population utilizes the Problem in order to retrieve inputs and to evalute
the �tness of the Individuals.

The population consitsts of a set of Individuals.
The population encompasses methods to generate a new generation, retrieve

best individual etc.
An population interface de�nes all methods that must be determined by any

population implementation.

5.4.1 Composition

The Population is composed of a list of Individuals (see5.2).

5.4.2 Uses/Interactions

The Population interacts with the Problem class in order to evaluate the �tness
of each Individual. It also interacts with the RunInfo in order to access the
di�erent parameters of the CGP and in order to store the progress at each
generation.
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5.5 RunInfo

The RunInfo contains all parameter about the current run. This includes all
CGP speci�c parameters such as mutation and crossover rate, population size,
number of nodes, selection strategy, etc. The results of each generational is
stored with the RunInfo which thus contains the complete information about
a single run, both the parameters used and the results at each stage of the
evolution.

5.5.1 Constraints

The RunInfo currently stores all values as integer and/or real numbers.

5.5.2 Composition

The RunInfo class is composed of 3 interal classes representing CGP parameters,
selection parameters and the data for each generation.

5.5.3 Uses/Interactions

The RunInfo is used both by a user interface to set the parameters of the run,
and by the Population in order to retrieve this data and to store the results.

5.6 Interaction

Figure 2 shows a complete interaction diagram for a typical execution using the
CGP framework.
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Figure 2: Basic �ow diagram
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