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ABSTRACT 

This thesis reports on the design, simulation and implementation of a novel 

Implementation for a Wavelet-based Broadband Signal Detection System.  

There is a strong interest in methods of increasing the resolution of sonar systems for 

the detection of targets at sea. A novel implementation of a wideband active sonar 

signal detection system is proposed in this project. In the system the Continuous 

Wavelet Transform is used for target motion estimation and an 

Adaptive-Network-based Fuzzy inference System (ANFIS) is adopted to minimize the 

noise effect on target detection. A local optimum search algorithm is introduced in this 

project to reduce the computation load of the Continuous Wavelet Transform and make 

it suitable for practical applications.  

The proposed system is realized on a Xilinx University Program Virtex-II Pro 

Development System which contains a Virtex II pro XC2VP30 FPGA chip with 2 

powerPC 405 cores. Testing for single target detection and multiple target detection 

shows the proposed system is able to accurately locate targets under 

reverberation-limited underwater environment with a Signal-Noise-Ratio of up to -30db, 

with location error less than 10 meters and velocity estimation error less than 1 knot. 

In the proposed system the combination of CWT and local optimum search algorithm 

significantly saves the computation time for CWT and make it more practical to real 

applications. Also the implementation of ANFIS on the FPGA board indicates in the 

future a real-time ANFIS operation with VLSI implementation would be possible. 
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CHAPTER I 

INTROCUTION 

This thesis presents the results of a research project into the application of 

Wavelet-based Broadband Signal Detection techniques for high resolution sonar system. 

The development of an end-to-end simulation of wideband active sonar is presented, 

along with the analysis of the effects of unknown target motion and techniques for 

accurately estimating sonar target movement. The active sonar techniques are discussed. 

The Wavelet Transform, originally for data analysis of seismic survey in oil and mineral 

exploration, was proven to be highly suited for sonar imaging. Several enhancements to 

the wavelet transform algorithm are presented in this thesis. Techniques for adaptive 

noise cancelling are demonstrated and a new strategy for reducing computation 

complexity of wavelet transform is presented in the context of this thesis. Real sonar 

data has been made available to the project, enabling the performance of the developed 

techniques to be demonstrated both analytically and practically. 

 This chapter begins with the introduction of the concepts of sonar imaging and the 

principles of active sonar system. The motivation for this project along with the 

discussion of the need to use the wavelet transform is then described. The contributions 

made by this work and the thesis layout are presented. 
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1.1. Overview of Active Sonar System 

SOund NAvigation and Ranging (SONAR) covers a broad range of techniques for 

detecting and imaging objects using sound. Sonar is one of the most commonly used 

techniques for forming images of objects underwater; this is mainly due to the much 

lower attenuation of sound compared to electromagnetic radiation of a comparable 

wavelength, which makes optical and radar systems unusable over large distances. 

Sonar systems range in complexity from simple passive listening devices to 

sophisticated active systems, the subject of this work. 

Active side-scan sonar is commonly used for forming high resolution images of 

underwater scenes. Side-scan systems form an image of a target scene by transmitting a 

succession of sound pulses (referred to as „pings‟) and recording the echoes from the 

target scene using a very narrow beam width receiver. An image of a target scene is 

built up a line at a time by moving the transmitting / receiving platform past the target 

area. The azimuth resolution of a side-scan sonar system can be increased by using a 

higher pulse frequency and / or a larger physical aperture. The attenuation of sound in 

water increases with frequency, creating a tradeoff between azimuth resolution and 

maximum range of side-scan sonar systems. The maximum physical length of the sonar 

array is limited by practical constraints. 

The advantage of side-scan sonar is that it is able to provide a through image for 

underwater scenes in a certain area, however, this image cannot provide any velocity 

information for a certain target and post-processing of imaging is required to extract 
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certain target motion information. The wavelet-based active sonar applications, on the 

other hand, provide another way to examine target motion parameters. Following the 

principles of active sonar, a succession of sound pulses is transmitted and echoes from 

the target scene are recorded with a receiver. With the similar representation form 

between the returned echo in a wideband sonar system and the transformed signal by the 

Continuous Wavelet Transform (CWT), the seeking of target motion parameters can be 

achieved by finding parameters of returned echo through CWT. The thesis presents a 

wavelet-based active sonar system using both real and simulated data. 

A requirement for very accurate knowledge of the position of the sonar system, and 

high computational complexities present a number of problems for a wavelet-based 

sonar system. This thesis discusses, and proposes solutions to some of these problems.   

1.2. Motivation 

There is a strong interest in methods of increasing the resolution of sonar systems 

for the detection of targets at sea. Systems currently used by the Royal Navy to detect 

targets are based on conventional side-scan and forward looking sonar systems. Such 

systems require post-processing on imaging of sonar scenes to identify location of 

mines or fish torpedoes, and are unable to provide the velocity of targets. Wavelet-based 

active sonar system can provide a solution for extracting target location and velocity 

information at the same time.  

The detection of low- and zero-Doppler signals in real-time is computationally 

expensive if we are to use the optimum technique using the correlation matrix in a active 
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sonar system in reverberation-limited enviroment. Previous reseach on narrowband case 

shows an Adaptive Noise Canceller can be useful and computationlly efficient. The 

proposed research aims at investigation of the broadband case, in which doppler-shift 

model, used in the narrowband case, is no longer valid. In particular, since the family of 

scaled wavelets better models the behaviour of pulses in a reverberation-limited 

broadband and shallow-water environment, the use of wavelets is proposed. Furthermore, 

the proposed method allows the possibility of designing a customized wavelet to 

minimize the noise effect on target detection. Therefore, the proposed active sonar system 

is able to provide an alternative method of side-scan sonar system to extract target motion 

parameters more efficiently.   

1.3. Layout of this Thesis 

The thesis starts with an introduction to wavelet-based wideband active sonar system, 

this project, the motivation and requirement of this thesis. (This chapter) 

 

Chapter 2: introduces the basic principles of sonar relevant to the proposed sonar 

system, along with a number of signal processing techniques used to extract target 

motion parameters in this work. Previous research on related techniques adopted in this 

project is also introduced. 

 

Chapter 3: The chapter introduces necessary background theory for understanding the 

project. First of all it introduces the specifications and expectations for this sonar 
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detection system and then it illustrates respectively why specific techniques such as 

wavelet transform, ANFIS and Local Optimum Search are adopted in the proposed 

system and how these techniques work. The chapter also shows the integration of all 

these techniques into a complete system. 

 

Chapter 4: The theoretical model of the proposed system is presented and the design 

details of the high-level system are explained. The simulation results in Matlab for the 

high level system are used to estimate the performance of the proposed system. 

 

Chapter 5: This chapter gives the details of the hardware implementation of the 

proposed system. At the beginning of the chapter the hardware structure is introduced. 

The system is composed of two major functions:  Adaptive Noise Canceller (ANC) 

and target Motion Estimation (TME). The chapter introduces the implementation of 

both functions sequentially as well as the presentation of hardware implementation; 

simulation results are presented to justify design alternatives. 

 

Chapter 6: The chapter presents the testing environment of the proposed sonar 

detection system. The hardware platform is introduced and details of the platform are 

given. Afterwards two different tests, single target detection and multiple target 

detection, of the proposed system on a hardware platform are described. The test results 

are used to evaluate the performance of the proposed system. 
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Chapter 7: The high-level simulation results, hardware application simulation results 

and the testing results on the hardware platform are examined and compared to 

characterize the performance of the system developed in this work. 

 

Chapter 8: presents conclusions and suggestions for future work. 

 

1.4 Contributions made by this Thesis 

Few studies on actual hardware implementation of active sonar system have been 

mostly theoretical; this work has not only developed new target detection techniques but 

also demonstrated their real world potential using generated, as well as real, sonar data. 

A principal contribution of this project is a demonstration that the continuous 

wavelet transform can be used in a sonar system to detect targets with a computation 

time that is applicable for real time systems. Continuous Wavelet Transform is well 

known for its high resolution as well as its high data redundancy and computation 

complexity. It reduces the chances of CWT utilization in real applications. With the 

proposed system in this thesis, the computation complexity is reduced to a level that 

makes the real time implementation is possible. 

 An Adaptive-Network-based Fuzzy inference System (ANFIS) is adopted in the 

proposed system as the algorithm for Adaptive Noise Canceller. ANFIS is utilized in 

various theoretical systems for its ability to work with the chaotic nature of the 
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impulsive noise, but seldom in real work due to its heavy computation load. 

Implementations of ANFIS on a single FPGA chip in this project demonstrated the 

possibility to employ this algorithm in real applications, even in real time under certain 

circumstances. The hardware working frequency is increased so that in a unit time the 

hardware can complete more computations and therefore reduce the processing time. 

The FPGA has more hardware resources such as multipliers and adders, making parallel 

computation more applicable.   

 The combination of local optimum search algorithm and Continuous Wavelet 

Transform presented in this thesis is a novel method to reduce the computation 

complexity of its CWT. The simulation results also show this method is able to reduce 

the computation load of CWT by 8 to 10 times and enable CWT to be utilized in real 

time applications.   

A final contribution is the publication of a large number of real sonar results for 

target detection using a number of data sets contributed by the Defense Science and 

Technology Laboratory (DSTL) of Ministry of Defense (MOD) in the project. Many 

previous studies into wavelet-based sonar system have been mostly theoretical, and 

have not concentrated on forming images with real sonar data. 

Publications resulting from this work are listed below: 

1. Sheng Cheng, Chien-Hsun Tseng and Marina Cole, “An Efficient and Effective VLSI 

Architecture for a Wavelet-based Broadband Sonar Signal Detection System”, ICECS 

07, pp593-596 
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2. Sheng Cheng, Chien-Hsun Tseng and Marina Cole,” A Novel FPGA Implementation 

of a Wideband Sonar System for Target Motion Estimation”, ReConfig‟08, Mexico 
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CHAPTER II 

 

LITERATURE REVIEW 

This chapter will introduce previous research on active sonar systems and outline the 

rationale behind techniques adopted in this thesis. First the background of the underwater 

sonar system is described, and research in this area will be briefly introduced. Then the 

reason why an adaptive noise canceller is proposed in the system is demonstrated and the 

chosen algorithm for it is presented. Finally an investigation in the wavelet transforms 

area is described to demonstrate the suitability of the continuous wavelet transform for 

application in an active sonar system. 

2.1 Underwater Sonar Detection 

 Sight and hearing are two primary sources we use to get information from 

surroundings. The two types of radiant energy related to these two senses, sound and light 

travel well in air. However, in an underwater environment, sound propagates over longer 

distances than any other source of radiant energy [1]. Therefore, SOund NAvigation and 

Ranging (SONAR) systems are primarily adopted for gathering information in an 

underwater environment. Systems that use acoustic echoes for detection are known as 
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sonar systems [2].  

The detection, classification and localization performance of sonar systems depends 

on the environment and the receiving equipment, as well as the transmitting equipment. 

2.1.1 Sound propagation 

Sonar operation is affected by variations in sound speed, particularly in the vertical 

plane. Sound travels slower in fresh water than in sea water, though the difference is small. 

The speed is determined by the water's bulk modulus and mass density. The bulk modulus 

is affected by temperature, dissolved impurities (usually salinity), and pressure. The 

density effect is small. The speed of sound is approximately: 

(4388 + (11.25 × temperature (in °F)) + (0.0182 × depth/0.3048) + salinity (in 

parts-per-thousand))/0.3048. 

This empirically derived approximation equation is reasonably accurate for normal 

temperatures, concentrations of salinity and the range of most ocean depths.  

Water pressure also affects sound propagation: higher pressure increases the sound speed, 

which causes the sound waves to refract away from the area of higher sound speed. The 

mathematical model of refraction is called Snell's law [3]. 

If the sound source is deep and the conditions are right, propagation may occur in the 

'deep sound channel'. This provides extremely low propagation loss to a receiver in the 

channel. This is because of sound trapping in the channel with no losses at the boundaries. 

Similar propagation can occur in the 'surface duct' under suitable conditions. However in 

this case there are reflection losses at the surface. 
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In shallow water propagation is generally by repeated reflection at the surface and bottom, 

where considerable losses can occur. 

The energy of sound will be absorbed as long as it travels through sea water. Sound 

propagation is affected by absorption in the water itself as well as at the surface and 

bottom. Absorption of low frequency sound is week. Viscosity is the main cause of sound 

attenuation at high frequency in sea water. Sound may be absorbed by losses at the fluid 

boundaries. Near the surface of the sea losses can occur in a bubble layer or in ice, while 

at the bottom sound can penetrate into the sediment and be absorbed. 

 2.1.2 Scattering 

The major difficulty in detecting a specific target underwater is the presence of other 

objects. When the pulse is emitted into the water, it not only strikes the target but also 

other objects underwater. The pulse is reflected off these objects and is retrieved by the 

receiver. The signal from these objects underwater is known as reverberation and the 

objects are called scatters [4, 5]. 

The scattering of sound underwater can be described either by Rayleigh‟s law or by 

geometrical acoustic scattering [6]. Rayleigh scattering (named after the British physicist 

Lord Rayleigh) is the elastic scattering of electromagnetic radiation by particles much 

smaller than the wavelength of the pulse, which may be individual atoms or molecules. 

Rayleigh scattering is a function of the electric polarizability of the particles. Therefore, 

Rayleigh‟s law only applies when the size (d) of particles is much smaller than the 

wavelength (λ) of the incident sound. Geometric acoustic scattering, on the other hand, is 

http://en.wikipedia.org/wiki/Viscosity
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valid when d is much larger than λ. Therefore, when d<<λ, the pressure of scattered sound 

is proportional to the square of acoustic frequency and to the volume of scatterer, 

regardless of its shape (Rayleigh‟s law). If d is similar to λ, the pressure of scattered sound 

is combination of functions of sound frequency, acoustic properties of scatterer and 

characteristics of the underwater medium or boundaries. However, if d>>λ, the scattering 

of sound is only dependant on acoustic properties of scatterer and its cross-section, not on 

sound frequency anymore (Geometrical acoustic scattering). 

This situation leads to the development of two different approaches for reverberation 

modeling underwater: cell-scattering and point-scattering models. 

In cell-scattering models, it is assumed that the scatterers are uniformly distributed 

through the ocean. The ocean then can be divided into cells, each containing a large 

number of scatterers. Summing up the contribution each cell makes together leads to the 

reverberation form. 

In point-scattering models, the scatterers are assumed to be randomly distributed 

throughout the ocean. The reverberation waveform is calculated by summing the echoes 

from each individual scatterer. It is a statistical based approach. 

Simplifying assumptions are often necessary to make reverberation models feasible. 

“These assumptions may seem to set the results to pure idealized situations, however, the 

resulting expressions for reverberation have been found to be practical for many sonar 

design and predictions“[6]. The assumptions are [7]: 

1. Straight-line propagation paths. All sources of attenuation other than spherical 
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spreading are neglected.  

2. A pulse length short enough to ensure propagation effects over the range extension of 

the elemental volume or area can be neglected. 

3. An absence of multiple scattering. (I.e. the reverberation produced by reverberation is 

negligible) 

In cell-scattering models, the reverberation usually is combined with three scatterings: 

surface scattering, volume scattering and bottom scattering, which are reverberation from 

ocean surface, scattering in ocean and ocean bottoms. Detail equations can be found in [6]. 

Cell-scattering is widely used in sonar modelling, and lots of experimental models are 

built based on it, such as DOP (Doppler Content), BAM (bidirectional associative 

memory), MAM (monostatic associative memory), PERVE (Tappert‟s PE Reverberation 

model), etc [6]. 

Point-scattering models are based on a statistically approach which assumes the scatterers 

are randomly distributed in the ocean. The scatters from each individual object are then 

summed up to compute the reverberation level. It is not widely used as cell-scattering 

models; however, when processing scatterers with dimensions comparable to the acoustic 

wavelength, the point-scattering models are probably preferred alternative. Due to the use 

of modem, high resolution, wideband sonar systems, the characteristics of individual 

scatterers become increasingly important. Therefore, non-Rayleigh point-scatter models 

attract more and more researchers and lots of researches have been done in this area such 

as [8-11], etc. 
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Reverberation models are typically combined with environmental, propagation, noise and 

signal processing models to form a new class of models referred as active sonar models 

[6]. Reverberation and ambient noise are usually jointly considered as background noise 

against target pulse which must be detected in sonar model evaluation. It is important to 

understand which of them, ambient noise or reverberation, is most responsible for 

creating the interference background. 

 

2.1.3 Sonar Detection System 

 Sonar systems fall into two categories known as passive and active sonar systems [3, 

4]. Passive sonar systems detect objects by detecting the acoustic echoes emitted from the 

object being looked for. In the case of active sonar systems, a pulse whose characteristics 

are known is transmitted. The pulse is then reflected back to the transmitter from the 

target to be detected. From the returned pulse it is possible to compute the range and 

speed of the target. 

 Sonar systems have been used for more than a century to detect underwater objects 

using sound. Probably the first recorded use of the sonar principle (although not referred 

to as sonar at the time) was by Leonardo da Vinci in 1490:  

 If you cause your ship to stop, and place the head of a long tube in the water and 

place the outer extremity to your ear you will hear ships at a great distance. 

The system described can be considered to be a very basic passive sonar system. 

Although simple, the system has a number of important features such as covert 

operation (the system is passive) and, with user training, the ability to classify target 
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type (a large ship will sound different to a small boat). The design of this system is 

based purely on empirical observation. Given a modern knowledge of the physics of the 

propagation of sound through water, Leonardo da Vinci may have been able to predict 

the likely sounds of different vessels under different ocean conditions. 

 Issac Newton made the first theoretical prediction of the speed of sound in water in 

Book II of the Principia, showing that the speed of sound is related to the density of the 

medium through which it is travelling. 

 Due to the development of transducter technology after World War II, which 

converts underwater acoustic energy into electrical signals (and vice versa), and the 

ability to implement signal processing algorithms with digital computers, the use of 

underwater sound for target detection has also been progressed [1].  

 The major problem for sonar systems is to identify pulse bounced back from target 

within all received pluses containing background noises, which includes reverberation 

from scatterers in ocean, ocean surface and bottoms, and ambient noises [6]. Usually the 

amplitude of background noises is much larger than pulse reflected back from the target, 

which is the signal the system must detect. Therefore it is hard for sonar system to 

abstract desired signal from received pulses directly. Signal processing algorithms such 

as convolution, wavelet transform, adaptive noise canceller, etc, is then required to 

extract desired signal out of received signals. 

 Digital signal processing algorithms developed fast for active and passive sonar 

systems since 1960‟s. Much of the work in 1960‟s was based on concepts brought by 
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Vic Anderson such as DELTIC correlator, Digital multibeam steering beamformer [12], 

and the adaptive array processor[13]. In the 1970‟s and early 1980‟s, adaptive and high 

resolution underwater acoustic signal processing became the focus of research. Works 

from Howells [14], Anderson [15], Widrow [16], Griffiths [17] etc contributed a lot for 

the research in this area. 

 Maximum likehood forms the basis for high-resolution signal processing. Results 

of work by many authors including Slepian [18], Youla [19] and Schweppe [20] point it 

out. Tuefs and Kumaresan [21-24] reduce computation load for extract exact maximum 

likehood by implicit substitution of linearly entering parameters. 

 Driven by tremendous technical development on computation capacity and speed, 

which allows computationally intensive techniques to be implemented, research on 

adaptive signal processing algorithms to sea test data, wideband processing on both 

active and passive sonar, detection on transient signals with unknown parameters, 

reverberation processing and etc developed very fast since 1980‟s to present. 

 The use of continuous wavelet transforms to detect transient signals, proposed in 

this project, in the application of active sonar system has been investigated by various 

researchers such as A.C. Dubey, C.Yan and M.R.Azimi-Sadjadi[27] and Lora.G.Weiss 

[28,29]. The work of A.C, Dubey, C.Yan and M.R.Azimi-Sadjadi investigated the 

application of the Discrete Wavelet Transform (DWT) [27]. They used an application 

known as wavelet shrinkage which proposes that if a signal f(t) contains the echo of a 

target (i.e. target to be detected) and environment noise, the noise will contribute to 
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most of the wavelet coefficients while the target echo contributes to only a few 

coefficients. Therefore by making the smaller coefficients zero in an appropriate method, 

the noise can almost be eliminated whist preserving the target echo. The results from 

their work showed that this method worked well but as they stated and as seen in their 

work the method only works well in environments where the effects of reverberation are 

not severe. 

 Their subsequent work using DWT in underwater acoustic signal recognition is 

reported in [30, 31, 32]. Their work shows the wavelet transform is a powerful method 

for underwater sonar recognition. 

  The work carried out by Lora.G, Weiss [29] is very beneficial since it looks at 

the application of wavelets to wideband processing. Although her work does not focus 

directly on their applications in active sonar it provides a good introduction into 

wideband signals and their properties and at the same time shows how wavelets can be 

easily fitted into this model. In her work a wideband model is used to model the target 

echo and good insight to the effects of the target echo shift when it is modelled on the 

wideband equation is given. The paper investigates both active and passive methods of 

sonar and describes both deconvolution and convolution in order to determine the 

motion parameters of several targets. The method presumed that there is more than one 

target to be detected and a cross wavelet transform is performed in order to gain and 

estimate the parameters of the targets. Moreover, in this paper the Continuous Wavelet 

Transform is preferred to the Discrete Wavelet Transform due to its ability to provide 
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high resolution in both the frequency and time domains. 

 Though the work on the application of wavelets to active sonar is still not well 

established there has been a number of works carried out on target detection of 

underwater objects. One of the well established processes of detecting targets can be 

accredited to Harry L.Van Trees [33]. He proposes the idea of a correlation matrix also 

referred to as a correlation process. However, the methods seem complicated and 

cumbersome, the heavy computation load makes it is hard for real-time application. 

 

2.2 Wavelet Transform 

Wavelet transform is a mathematical method to decompose signals into different 

frequency components, and then study each component with a resolution matched to its 

scale. The word wavelet means “small wave”, referring to the fact that the window 

function is of finite length [32]. Wavelet theory is seen as an extension of Fourier 

analysis.  

The basic idea of wavelet transform is to analyze target signals according to scale. It 

uses functions which satisfy certain mathematical requirements to represent target signals. 

However, the representation methods using superposition of certain functions which is 

used in wavelet transform is not original. In the early 1800‟s, Joseph Fourier had already 

discovered that he can superpose sines and cosines to represent other functions and this 

representation method is now well known as the Fourier Transform. The wavelet 

Transform is similar to the Fourier Transform in the sense that both of them decompose 
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the target signals into their constituent parts for analysis. Whereas the Fourier Transform 

breaks signals into sine waves and cosine waves, the Wavelet Transforms breaks signals 

into their wavelets, the dilated and translated versions of mother wavelet. However, when 

compared with Fourier Transform, wavelet transform can provide the possibility to 

acquire a 2D plot of the time and scale (1/Frequency) information in a signal via 

translations and dilations of the mother wavelet. Thus it has advantages over traditional 

Fourier methods in analyzing physical situations where the signal contains discontinuities 

and sharp spikes that need to be localized in time. Wavelet transform is widely used in the 

fields of data compression, signal and image processing, acoustics, radar, human vision, 

etc. O. Rioul et .al give more details about wavelet transform features in [35, 36]. 

A wavelet w is a function with zero average: 

( ) 0w t dt





 ,          (2.1) 

which is dilated with a scale parameter s, and translated by u: 

,

1
( ) ( )u s

t u
w t w

ss


 .       (2.2) 

The wavelet transform of f (t) at the scale s and position u is computed by correlating f (t) 

with a wavelet atom [14] 

*1
( , ) ( ) ( )

t u
Wf u s f t w dt

ss






  .   (2.3) 

O. Rioul and M. Vetterli introduce the DWT (Discrete Wavelet Transform) and CWT 

(Continuous Wavelet Transform) in [35], which are two different kinds of wavelet 

transform. In DWT, the signal is broken into dyadic blocks where only specific scale 
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values can be used [35]. In the CWT implementation, the discrete sample data is also used, 

however the scaling range can be defined as any value by the user, thus giving much 

better resolution for target analysis. Also the CWT is shifted along the analyzed signal 

smoothly and therefore the CWT is highly redundant in both time and scale. The trade off 

is between improved resolution and increase in computational time and required memory 

to calculate the redundant wavelet coefficients. 

The main idea of the CWT is to obtain time-scale digital signals using digital filter 

techniques by correlating wavelets at different scales with target signals at the scale to 

measure the similarity. The Continuous Wavelet Transform is computed by changing the 

scale of the analysis window, shifting the window in time, multiplying by the signal, and 

integrating over all times as shown in Eq. 2.3 [37]. In order to implement the CWT by 

computer methods, discretely sampled data are used for CWT. In this case, filters of 

different cutoff frequencies are used to analyze the signal at different scales. Theoretically 

researchers can obtain any scale they want by using the CWT; however this will also 

bring heavy computation loads. CWT provides very fine details of target signals but in 

some applications not all of them are needed. The discrete wavelet transform (DWT), on 

the other hand, provides sufficient information both for analysis and synthesis of the 

original signal, with a significant reduction in the computation time [38]. Generally DWT 

coefficients are samples from the CWT in dyadic grids. i.e., s0 = 2 and u0 = 1, yielding 

s=2
j
 and u =k*2

j
, where j is usually called the number of octave. Also, DWT is considered 

easier to implement when compared to CWT. 
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Fast wavelet Transform algorithms are widely investigated to reduce the computation 

complexity of WTs (Wavelet Transforms) and to make the WT implementations realistic. 

The Mallat Algorithm [40], also known as PA (Pyramid Algorithm), is one of the best fast 

DWT algorithms and is widely adopted for orthogonal wavelets. In this algorithm, the 

DWT coefficients at any stage can be calculated from the DWT coefficients of previous 

stages as follows: 

( , ) ( , 1) ( 2 )L L

m

W n j W m j h m n       (2.4) 

( , ) ( , 1) ( 2 )h L

m

W n j W m j g m n       (2.5) 

where ( , )LW p q  and ( , )hW p q  is the pth scaling coefficient and wavelet coefficient at 

qth stage, respectively, and h(n), g(n) are the dilation coefficients corresponding to the 

scaling and wavelet functions, respectively [39]. In practice, h (n) and g (n) represent a 

low pass and high pass filter, respectively. The computation complexity is O (N) each 

octave instead of ( log )O N N  each octave. Recursive Pyramid Algorithm (RPA) is 

introduced in [40]. This algorithm reduces the words of storage from O (N) to 

(log 1)L N   when compared with traditional PA, where L is the length of wavelet filter. 

This is achieved by reformulating the classical Pyramid Algorithm. The order of N 

outputs is rearranged so that an output can be scheduled at the earliest time slot. Several 

VLSI architectures for 1-D DWT based on RPA are proposed in [41], which include 

systolic, semisystolic and RAM-based architectures. The difference between these 

architectures is only in their routing network architectures. Also M-band DWT and 2-D 

DWT architecture are also discussed in the paper. VLSI architecture for 2-D DWT which 
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is also based on RPA is proposed in [42]. However, Several VLSI architectures which are 

lifting-based are discussed in [43] [44]. The lifting-based architecture uses less hardware 

resources than RPA but have relatively long critical path. A detailed analysis of different 

VLSI architectures for 1-D and 2-D DWT is given in [45]. 

Though the Mallat Algorithm is very successful in DWT, it is not perfect for CWT. 

First of all, it can only be used for WT on a dyadic grid, but the scaling and shifting of 

CWT could be any value. Secondly, the translation invariance is lost due to the 

decimation in the Mallat Algorithm. Thirdly, the decimation (reduction in the number of 

samples) reduces the redundancy provided by CWT, which is also used as finer details of 

the target signal. In [46] a fast WT algorithm, the “A Trous” algorithm is proposed. This 

algorithm is proposed for DWT at first, but is widely used as a basis for fast WT 

transforms of CWT. It is similar to the Mallat Algorithm but with no decimation after 

filters at each octave and the lowpass filter should be an a trous filter by 

satisfying 2 ( ) / 2kf k  . Thus the product of this algorithm is 2N, which is the double 

the size of the input signal. Reorganization of the “A Trous” computational structure is 

proposed in [47] and is used for CWT. The filters which are used in “A Trous” are usually 

Lagrange interpolators [48]. However, there is no evidence that this filter is most suitable 

for all applications. Thus the filter design for “A Trous” is also an interesting topic to 

investigate. K.C.Ho and Y.T.Chan proposed several filters for “A Trous” in [49] and give 

a detailed comparison in [50]. However, generally the octave-by octave computation of 

the DWT is not enough in signal analysis. A method which can provide better resolution 



23 

 

 

is proposed in [51] [52]. It over samples the discretization to obtain “M voice per Octave” 

[51] [52], that is /2 j m Ms  instead of 2
j
, m=0, 1…M-1, where m is called “voice”, and 

this is achieved by applying octave-by-octave computation M times with different dilated 

wavelets 

( / )/2 ( / )2 (2 ( 2 )),

, , 0, , 1

j m M j m M jt k

j k m M

    

  
.      (2.6) 

Obviously this method requires about M times the computation load of the 

octave-by-octave algorithm. In fact precision and computation workload is always a 

trade-off. 

Another CWT algorithm called the Bertrands and Ovarlez algorithm is proposed in 

[53]. It uses the scaling property of the wavelet instead of the convolution form. It needs 

pre-computation of the whole Fourier Transform of the input signal, and it is difficult to 

estimate the approximation error. To overcome the disadvantage of this algorithm that it 

is not suitable to handle continuous data flow, a variation of the Bertrands and Ovarlez 

algorithm is also introduced in [53]. Assume the signal and wavelet are casual, (i.e., 

supported by t>=0), and assume lnT t , One can obtain a convolution in lna a : 

/2 ( )/2 *

{ ( ); , }

( ) ( )
a aT T T T

CWT x t s u

e x e b e e dT
 

  
    (2.7) 

In this algorithm the computation load will be higher than in the algorithms described 

previously. But on the other hand, it gives a required resolution of ln a. This property is 

useful if high resolution is needed in applications.  

M. Unser et al introduce another CWT algorithm which provides fast CWT in integer 
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scales [48] [54]. In this method the input signal and the wavelet are represented by 

polynomial splines. A combination of moving sum and zero-padding filters is adopted in 

this method and a computation complexity of O (N) per scale is provided by this 

algorithm. However, scales in integer may not be sufficient for some applications which 

require very good resolutions. 

In [55] two architectures for 1-D CWT are introduced, one is a parallel filter architecture, 

and the other is a Single Instruction Multiple Data (SIMD) linear array. These two 

architectures are also discussed in [56], which also provides a detailed comparison for 

several other architectures of 1-D CWT and 2-D CWT implementations. From these 

comparisons it is hard to tell which architecture has the best performance. The decision of 

which implementation architecture will be used bases on the specific application and 

requirements.  

Most of the architectures mentioned above can be categorized into 

convolution-based, lifting-based, and B-spline based. RPA and “A Trous” are convolution 

–based; VLSI architectures mentioned in [43] [44] are based on the lifting-scheme, and M. 

Unser proposes a B-spline based architecture in [48] [54]. The Table 1 below shows the 

performance of different algorithms and VLSI architectures mentioned above. The 

contents of the tables are based on 1-D Wavelet transforms on dyadic grids. The table 

shows that B-spline based architectures can provide the smallest area, and lifting-based 

algorithms can use fewest registers with a relatively short critical path. However, the 

hardware complexity of convolution based architecture is better than those two. It shows 
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the tradeoff between speed, hardware complexity and area. For different applications and 

requirements the most suitable architecture will be different. Using different methods 

such as introducing M-voice in each octave or represent the input signal and wavelets in 

different splines, a better resolution and finer details can be achieved. The exact 

expressions of critical path or area will differ when these modifications are made, but the 

relations of these architectures will not change.  

 

 Convolution Based Lifting-based B-Spline based 

Implementation 

Method 

Parallel Filter Serial 

Filter 

Conventional Flipping Parallel 

Filter 

Serial Filter 

Critical Path Tm+(log2F)Ta Tm+2Ta F/2(Tm+2Ta) Tm+(F/2)Ta Tm+(F/2+ 

log2F)Ta 

Tm+(F/2)Ta 

Registers F FH+FG F/2 F/2 FH+FG FH+FG 

Multipliers FH+FG (FH+1)/2 +( FG+1)/2 +3 (FH+FG)/2 

Adders FH+FG-2 (FH+1)/2 +( FG+1)/2 +1 3(FH+FG)/2-2 

Table 1  Approximation of performances of 1-D WT algorithms [50] 

 FH and FG  are filter lengths of high-pass filter and low-pass filter, respectively.  

 Tm and Ta are logic delays of multipliers and adders, respectively 

 F= max (FH  FG) 

 

There are various forms of non-orthogonal wavelets from the well known Morlet 

wavelet, Car wavelet, Difference of Gaussian wavelet, and Mexican hat wavelet [57].The 

choice of wavelets is vast. 

Many functions can be used as wavelets as long as they satisfy two conditions, which 

are: 
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1) The function is continuous and has an exponential decay; 

2) The integral of the function is zero, i.e., shown in Equation 2.1. 

These conditions can be easily satisfied and therefore the choice of mother wavelet 

can be very flexible and allow users to define their own wavelets to suit their application 

environment best. Research on wavelets applications on active sonar signal processing 

has been carried out, but most of them investigate the Discrete Wavelet Transform, which 

has very limited success in reverberation limited environments [27]. Therefore, the 

Continuous Wavelet Transform is chosen for this project, enabling motion parameters 

extraction of the target including range and velocity to be assessed in this research. 

 

2.3 Adaptive Noise Canceller 

As mentioned previously in Chapter I, the motivation of this project is to build an 

active sonar system which is able to identify accurate motion information of targets 

from received echoes and in a reverberation-limited environment. The received echoes 

contain the target echo as well as noise, which normally are composed of reverberation 

noise and white Gaussian noise. Convolution based digital signal processing algorithms 

can give satisfactory results for cancelling noise effects from white Gaussian noise, but 

the performance is limited regarding to reverberation noises due to the similarity 

between target echo and reverberation noises. Therefore, algorithms which are efficient 

on removing reverberation noises are required in order to minimize the effect of noise 

during target extraction. Therefore, Adaptive Noise Cancelling algorithm is introduced 
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in the proposed project. 

   Although various work have been done on ANC, very few researches has been done 

on ANC implementation on underwater sonar detection. Alexandrou and De Moustier 

[82] used Least-Square Lattice filter to reject sea beam sidelobe interference in building 

reference models. Lawson [83] investigated the performance of a simple ANC in 

narrowband signal detection in reverberation-limited environment by using 

Least-Squares Lattice filter again. 

The conventional way to detect a target buried in additive noise is to feed whole signals 

into a filter which is designed to suppress noise while leaving the target relatively 

unchanged [58-62]. The filter could be fixed or adaptive. The fixed filter is build based 

on prior knowledge of the target and noise; the adaptive filter on the other hand, can 

adjust its parameters automatically, and with little or no prior knowledge of target or 

signals [63]. Adaptive noise cancelling has been successfully applied to a number of 

additional problems, including some aspects of electrocardiography, to the elimination 

of periodic interference in general [64], and to the elimination of echoes on 

long-distance telephone transmission lines [65, 66].  

 For white Gaussian Noise, Adaptive Noise Cancelling with linear filtering can give 

a satisfactory performance on removing it [67-69]. However, for non-linear noises like 

reverberation noise, an Adaptive Noise Canceller with linear filtering is no longer 

effective to suppress noise and keep the target echo unchanged at the same time. 

Therefore, an Adaptive-Network-based Fuzzy Inference Systems (ANFIS) is introduced 
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in the system described in this thesis due to its ability of working with the chaotic nature 

of the impulsive noise. It is the combination for Fuzzy logic and neural network and it 

has advantages of both techniques. Therefore, more accurate results are expected from 

ANFIS than least-square Lattice filters used in [82] [83].  

An ANFIS is proposed by J.S. Roger Jang in [70, 71]. It is a combination of Fuzzy 

inference system and adaptive networks. It proposes a class of adaptive networks which 

are functionally equivalent to fuzzy inference systems. It serves as a basis for 

constructing a set of fuzzy if-then rules with proper membership rules to generate the 

stipulate input-output pairs [70].  

 Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A 

THEN B, where A and B are labels of fuzzy sets [72] characterized by appropriate 

membership functions. Due to their concise form, fuzzy if-then rules are often employed 

to capture the imprecise modes of reasoning that play an essential role in the human 

ability to make decisions in an environment of uncertainty and imprecision. 

 In 1985 Takagi and Sugeno propose a non-linear fuzzy inference system, which is 

known as Takagi and Sugeno‟s model [73]. It combines the advantage of both a fuzzy 

inference system and a neural network to improve the traditional fuzzy inference 

system‟s design. Traditionally in fuzzy inference system the parameters are required to 

be updated manually to minimize error rate. In Takagi and Sugeno‟s model, the 

parameters are undated automatically through a hybrid learning algorithm [73]. 



29 

 

 

 ANFIS represents Sugeno & Tsukamoto fuzzy models based on neural network, 

which is a multi-layer forward pass network, as shown in Fig 2.1: 

 

Fig 2.1 ANFIS network Structure 

Fig 2.1 shows a two-input and 2 membership for each input ANFIS structure. There are 

five layers in the system. X and Y represent input data for the system and Z is the 

estimate output of ANFIS. Ai and Bi represents membership functions under different 

parameters. The details of ANFIS will be described in Chapter III. 

 ANFIS is capable to provide satisfactory noise reduction performance under a 

severe non-linear noisy environment and is adopted in many areas such as noise 

cancelling, signal analysis, behaviour prediction or modelling, etc [74-81]. However, 

most of them only investigate the implementation of ANFIS theoretically. Also little 

research has been done on utilizing ANFIS in an active sonar system. Therefore the 

system proposed in this thesis combing ANFIS along with the Continuous Wavelet 
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Transform to realize an active sonar system on a hardware platform is a new challenge 

and an exploration in a new direction. 

 

2.4 Conclusion 

 The history of underwater sonar system is introduced in this chapter, and the 

development of researches on wavelet theory is given. In literature the continuous 

wavelet transform is shown to have an advantage in sonar target detection for its 

capability of providing high resolution analysis in both frequency domain and time 

domain. Then research relative to implementation of wavelet transform is also reviewed. 

It shows that due to the high computation redundancy, Continuous Wavelet Transform 

is seldom adopted in practical applications. Therefore, the simplification of the 

computation process for Continuous Wavelet Transform is the first and new challenge 

in the proposed system. The Adaptive Noise Canceller is also introduced into the 

proposed system to minimize the noise effect for target detection. The development of 

Adaptive-Network-based Fuzzy Inference Systems used as Adaptive Noise Canceller is 

given afterwards. Literatures shows ANFIS is a powerful way to reduce noises in sonar 

signals, however, the efficiency of implementation of ANFIS is also a major concern in 

practical applications. All the relative research works indicates the proposed active sonar 

system is a new challenge to solve. 
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CHAPTER III 

 

 

 

 

THEORETICAL BACKGROUND 

 

 

 

 

 

3.1 Introduction 

The chapter introduces necessary background theories for understanding the project. 

The specifications and expectations for this sonar detection system will be introduced 

and together with specific techniques relevant to the project such as the wavelet 

transform, ANFIS and the Local Optimum Search adopted in the proposed system. 

Finally this chapter shows an integration of all these techniques into a complete system. 
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3.2  Introduction & Specification of the system 

The purpose of this project is to seek an optimum solution for sonar signal detection 

in a reverberation-limited broadband and shallow-water environment.  Given a specific 

enviroment, the Signal-Noise-Ratio(SNR) is expected to be less than -20dB. Therefore, 

the proposed system should be able to deal with signals buried in severe noise. Also in  

real life situations such as the requirement of the MOD, the system should be able to 

determine the speed of a moving target up to 50 knots with the resolution of 1 knot .  

Since the family of scaled wavelets model the behavior of sonar pulses in a 

reverberation-limited broadband enviroment better than other signal detection 

techniques as explored in Chapter II[1,2], the use of a wavelet is proposed. However, 

reverberation noises have similar forms to the target pulses of the system, and previous 

research shows reverberation poses a serious problem in many active sonar applications. 

This is especially true in shallow water environments [3, 4, 5]. Therefore, an 

Adaptive-Noise-Canceller is also proposed in this system to filter unwanted noise and 

make the enviorment suitable for a wavelet transform to process target motion 

parameters. 

   To address the above considerations, the system shown in Fig 3.1 is proposed. The 

system sends out a sonar pulse at certain time inteveals, and the pulse will be bounced 

back from a moving target. The returned signal, which is shown in Fig 3.1 as primary 

channel, composed of target return pulses, reverbertion noises and white noise will be 

recorded by the receiver. The returned signal will be used as the input of the ANC first 
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to remove most of the noise by ANFIS operation as shown in Fig 3.1, then the wavelet 

transform will examine the remainder of the signals with the family of scaled wavelets, 

which is the sonar pulse the sytem sent out, to determine which signal is the right target 

as shown in Fig 3.1 as TME(Target Motion Estimator). When the reflected pulse is 

extracted from background noise, the location of the target relative to the receiver and 

the speed of the target can be calculated based the travel time to the target and the scale 

information from the wavelet transform result. The following paragraphs will introduce 

the theoritical background of the system. 

Fig 3.1  System Overview 
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3.3 Wideband Sonar Detection  

The basic concept of transmitting and receiving signals and processing them to identify 

and localize objects is known as active echo location [1]. The processing is called sonar 

when the sound waves are used, which stands for Sound Navigation and Ranging. 

Systems used sound waves for detection are known as sonar systems [1]. 

There are two categories of sonar systems: passive and active [6, 7]. Passive sonar 

systems estimate objects by detecting the acoustic waves emitted from the object which 

is being looking for. In active sonar systems, a pulse whose characteristics are already 

known is transmitted and then this pulse is reflected back from the target to be detected 

and recorded by a receiver. Active sonar systems will then compute the velocity and the 

location of the target from the returned pulse as shown in Fig 3.2. In the Figure it is 

clear that on the receiver side the received signals contains reverberation from all 

scatters, including target which must be detect, in the ocean and ambient noise.  

 

Fig 3.2  Active Sonar System 

In this project an active sonar system is investigated and implemented. The active 

sonar system is more flexible since it can choose a pulse whose characteristics are most 
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suitable to describe the characteristics of target. 

Methods used to identify and localize objects are commonly known as correlation 

processing or matched filter processing [8, 9, 10, 11], which measures the range and 

Doppler (frequency) components of the target echo by the cross-correlation operation of 

overlapping segments of the returned signal with a set of stored references 

(hypothesized signals). Narrowband model and the wideband model are two commonly 

used models for representing returned signal in cross-correlation. Which model should 

be selected for processing the signal can be decided based on applications for which 

characteristics of the received signal are assumed. Assuming that the object is moving 

with constant velocity v relative to the speed of sound c and for the duration T, the 

signal transmitted has bandwidth B. For the narrowband model, the main constraint is 

then subject to the assumption of 

 

2 1v

c TB
            (3.1) 

which is called the narrowband condition [12, 13, 14]. A typical TB product in active 

sonar would be around 800 and c is of the order of 1500m/s, therefore Eq. 3.1 would 

give v << 0.9m/s (≃ 1.8knots) as the narrowband condition [15]. Even for slow moving 

objects, the narrowband condition would be violated. Removing the narrowband 

restrictions thus allows for wideband processing, which possesses several advantages 

including greater gain, better noise immunity and increased range resolution. Therefore 

the wideband model of underwater signal detection is adopted in the system described 

in the thesis. 
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The returned emitted signal after it strikes the target is referred to as the target echo, 

which can be defined mathematically in wideband model as [7]: 

( ) ( ( )) ( )g t S S t n tf           (3.2) 

Where  

   g (t)  =  Target Echo 

S   =    Normalization term keep the transmitted signal and  

received Signals at the same energy. 

   ( ( ))S tf  =   Scaled and delayed version of transmitted pulse 

   n (t)   =  noises 

 The target echo is scaled and delayed in Eq 3.2. This is due to the fact that when a 

pulse is transmitted and reflects off an object (target) the received signal is created. It 

differs from the transmitted signal because of the speed and position of the object. In 

Equation 3.2 g (t) presents the returned signal from one single object in the ocean. In 

practical there are much more scatterers in the environment and therefore the signals 

received at the receiver will contain all g (t)s from different scatters with different scales 

and delays. Apart from the target echo from real target, all other g (t)s are categorized as 

reverberation noises. As introduced in Chapter II, reverberation and ambient noises are 

jointly considered as the background noises in wideband active sonar system. In most 

situations the background noises is dominating and therefore the major concern of a 

wideband sonar detection system is to extract the desired target echo out of the received 

signals. It is obvious that the form of reverberation noises is very similar to the target 
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echo. Understandings on similarity and difference between desired signal and noises 

would be huge benefit for sonar system development. As introduced in Eq 3.2, the target 

echo which is reflected off the target is what a sonar system wants to extract. Amplitude, 

nature of function of the signal, frequency and time are parameters which can affect a 

signal. In a sonar model, there are many factors which can affect amplitude of target 

echo, such as characteristics of scatters, ocean bottom or surface, nature of water, 

pressure or temperature, etc. However, there is little relation between amplitude and 

target‟s speed and location which are the two desired parameters the sonar system wants. 

Therefore, even we retrieve the amplitude of reflected signal, there are too many 

variables on this parameter and it is hard to identify any target motion parameters from 

it. In the mean time, the nature of the signal would not be changed during reverberation 

process; the frequency of target echo only relates to the velocity of the target scatter, and 

the arrival time only relates to the underwater acoustic propagation speed and the 

location of the target. In shallow water environment, the speed of acoustic propagation 

can be treated as a constant value. Therefore, the arrival time in equation 3.2 is only 

related to the location of the target. By extracting these two parameters-speed and 

location the target‟s speed and velocity can be easily obtained. Details of reverberation 

noise models can be found in Chapter II, and in the following text the characteristics of 

signal reflected from target are presented. 

When a transmitted signal, f (t), reflects off a single object (a point scatterer), the 

received signal, g (t), is created. These signals differ due to the position and motion 
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between the receiver and the object [16]. If the transmitter/receiver and object are 

motionless, and if the distance between them is R, then the time for the signal to travel 

the distance R is R/c, and the roundtrip travel time, τ, is 

τ=2R/c           (3.3) 

In this case, the received signal is ( ) ( )g t f t   . When the object and/or the 

transmitter/receiver are moving, the roundtrip travel time is expressed by the 

time-varying time-delay, ( )t  . The received signal is then ( ) ( ( ))g t f t t  . If R (t) is 

the time-dependent range between the receiver and the object at time t, then the signal 

received at time t is reflected from the object at time  ( ) / 2t t  . At that time, the 

object was at range ( ( ) / 2)R t t .Therefore, the roundtrip time delay is [2]: 

2 ( )
( ) [ ]

2

t
t R t

c


           (3.4) 

When the target is moving with a velocity of v, the round trip time in Eq. 3.4 can be 

expressed by the time-varying delay, 

τ (t) = τ0 + (2v/c+v) (t-τ0),  τ0=2R/c    (3.5) 

Where: 

   τ  = Time taken for pulse to travel to target and back 

   R = Range from transmitter to target 

   c  = Speed of sound in water (m/s) 

 If the target is moving relative to the transmitter/receiver then the transmitted pulse 

will experience a scaling factor, which will either compress or dilate the transmitted 

pulse. The scaling factor is calculated with the following formulae [17]: 
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c v
s

c v





         (3.6) 

Where: 

    s = scaling factor 

    v = speed of target (m/s) 

 If v is positive, it indicates the target is moving apart from the transmitter/receiver 

and vice versa for a negative target speed. If the scaling factor is less than 1 the pulse will 

be dilated and if it is greater than 1 the pulse will be compressed.  

 From Eq 3.5 and Eq 3.6 it is possible to calculate the range and the velocity of the 

target with the knowledge of the time taken for the pulse to travel from the receiver to the 

target and back to the receiver as well as the scaling factor. 

Active echo localization techniques seek to identify and localize targets from 

received signals. This can be accomplished by cross correlation processing, which 

correlates the received signal, g (t), with a collection of hypothesized replicas of 

transmitted signal f (t). The hypothesized replicas serve as templates to which the 

received signal is matched. The peak value of correlated results arises when the received 

signal is correlated with the matched template. From the template which provides highest 

correlating results the estimated values of the parameters of the received signals can be 

obtained. In the wideband model, the outputs of the correlation process are [2]: 

*( , ) | | ( ) ( ( ))
1

WC s g t f s t dt
s
 


 


          (3.7) 

Where ∗ denotes complex conjugation. Detection is accomplished if ( , )
1

WC
s
 exceeds 
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a preset threshold, and target parameters ( , )
1

s
  are estimated in terms of 

maximizing ( , )
1

WC
s
 . In general, the correlator output gives a measure of how well the 

hypothesized signal matches the received signal as a set of parameters usually 

representing the target range and velocity. This processing has been shown to be an 

optimal technique especially for signals corrupted by an additive, Gaussian white noise 

where the output SNR is maximized [18, 19]. 

3.4 Wavelet Transform 

The wavelet transform is a mathematical method to decompose signals into different 

frequency components at different times, and then study each component with a 

resolution matched to its scale. The basic idea of the wavelet transform is to analyze the 

target signals according to time and scale. It uses functions which satisfy certain 

mathematical requirements to represent target signals. It transforms a function by 

integrating it with modified versions of some kernel function [2]. The kernel function 

generally is called the mother wavelet, and the modified versions are time-shifted and 

dilated replicas of mother wavelets.  For a given mother wavelet function f(t), the 

wavelet transform of a function g(t)∈L
2
(R) with respect to f(t) is: 

1 *
( , ) ( ) ( )

| |

t
WT s g t f dt

ss




 
 


        (3.8) 

Where L
2
(R) is the set of all square integrable or finite energy signals, and R denotes 

real numbers. 

By comparing Eq. 3.7 with Eq. 3.8, it is obvious that if denote s→1/s, the output of the 
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wideband correlation can be represented as wavelet transform of the received signal g(t) 

with respect to the transmitted signal, f(t). Therefore, the seeking of optimum values of 

parameters of received signal can be solved by seeking the maximum values of the 

Continuous Wavelet Transform (CWT) coefficients. 

The main idea of the CWT is to obtain time-scale digital signals using digital filter 

techniques by correlating wavelets at different scales with target signals at the scale to 

measure the similarity. The Continuous Wavelet Transform is computed by changing the 

scale of the analysis window, shifting the window in time, multiplying by the signal, and 

integrating over time. In order to implement the CWT by computer methods, discretely 

sampled data are used for CWT. In this case, filters with different cutoff frequencies are 

used to analyze the signal at different scales. The advantage is that the CWT can provide 

very fine details of target signals. Theoretically any scale can be obtained by using CWT; 

however this will also bring a heavy computation load.  

Taking the equations above as an example, for each desired (s, τ), the output of 

wavelet transform can be considered as the output of a matched filter, which has 

coefficients corresponding to particular f(s, τ).  Outputs from such matched filters then 

constitute a bank of filter outputs. Applying filter concepts, the maximum CWT 

coefficient at certain scale s can be obtained from a Finite impulse response (FIR) 

filtering of the received signal with the corresponding FIR coefficients[2,20].  

Finite Impulse Response (FIR) filters are widely used in digital signal processing for 

cross-convolution operation. An N-tap FIR filter is defined by the following input-output 
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equation: 

1

0

( ) ( ) ( )
N

i

out n X N i h i




        (3.9) 

where {h(i): i = 0,…, N-1} are the filter coefficients. Making h(i) in Eq 3.9 as a 

wavelet function at certain (s, τ), and X(n) as the returned echo samples, the output of this 

FIR filtering gives the continuous wavelet transform results for the returned echo at 

certain (s, τ). As mentioned before, the Continuous Wavelet Transform is computed by 

changing the scale of the analysis window, shifting the window in time, multiplying by 

the signal, and integrating over all times. The N-tap FIR filter, which represents a wavelet 

function at certain scale s, is the analysis window used for Continuous Wavelet Transform. 

By feeding returned signals into this FIR filter, the Continuous Wavelet Transform at 

certain scale s on returned signal is performed. By extracting maximum value from CWT 

coefficients of different scales in filter output bank the optimum value of scale s is 

determined, and used to estimate another target parameter time-delay, τ,. 

As mentioned above, CWT provides very good resolution of target signals; 

however it requires a heavy computation time and resources. The discrete wavelet 

transform (DWT), which O. Rioul and M. Vetterli introduced in [21], on the other hand, 

provides sufficient information both for analysis and synthesis of the original signal, with 

significant reduction in the computation time. 

The basic theory behind DWT and CWT is the same - a time-scale representation of a 

digital signal is obtained using digital filtering techniques. However, The DWT analyzes 

the signal at different frequency bands with different resolutions by decomposing the 
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signal into a coarse approximation and detail information. In the discrete case, filters of 

different cutoff frequencies are used to analyze the signal at different scales. The signal is 

passed through a series of high pass filters to analyze the high frequencies, and it is passed 

through a series of low pass filters to analyze the low frequencies. Scaling functions and 

wavelet functions, which correspond to low-pass filter and high-pass filter, respectively, 

are two major functions employed in DWT. By successive high-pass and low-pass 

filtering of the time domain signal the decomposition of the input signal into different 

frequency bands is achieved. After filtering, the data samples can be sub-sampled by 2 

according to the Nyquist‟s rule since the frequency range is halved after high-pass 

filtering and low-pass filtering. One level of decomposition can be expressed as: 

( ) [ ]* [2 ]

( ) [ ]* [2 ]

h

n

l

n

y k X n g k n

y k X n h k n

 

 




                       (3.10) 

where yh[k] and yl[k] are the outputs of the high-pass and low-pass filters, respectively, 

and g[n] and h[n] presents half band high-pass filter and low-pass filter. 

The time resolution is also halved by decomposition since only half of each filter output 

represents the signal. However, frequency resolution is doubled because each filter halves 

the frequency band of its input. For example, the frequency domain representation of a 

signal with a frequency range from 0 to fn, and 3 levels of decomposition are shown in 

the Fig 3.3 and Fig 3.4. 

The decomposition is repeated by decomposing approximation values from previous 

decomposition level with high-pass filter and low-pass filter and down-sampled the 
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outputs. Fig 3.4 shows the signal process of 3-level decomposition. 

 

Fig 3.3  Frequency domain representation of the DWT 

 

Fig.3.4  3-level DWT Decomposition 

The Inverse Discrete Wavelet Transform (IDWT) reconstructs the DWT coefficients 

into the original signal format by inverting the steps of the DWT decomposition. It 

up-samples the DWT wavelet coefficients and convolves the results with reconstruction 

high-pass filter and low-pass filter. Fig 3.5 gives an example of the signal process of a 

3-level reconstruction. The IDWT is usually used along with the DWT in real 

applications such as image compression, digital watermarking, data de-noising, etc. In 

these applications the DWT is used to decompose original data into different scales, and 

then these DWT coefficients will be processed according to the application requirements. 

At last these processed DWT coefficients will be reconstructed into the original signal‟s 
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format by the IDWT. 

 

Fig.3.5  3-level IDWT Reconstruction 

The discrete wavelet transform has a huge number of applications in science, 

engineering, mathematics and computer science for its ability to capture frequency and 

location information, its relatively good resolution and affordable computation time and 

resources. However, in situations which requires high resolution on both frequency and 

location information, for example, sonar detection, CWT is still a better choice than 

DWT. In order to achieve high resolution of detection the redundancy introduced by the 

CWT is necessary. 

 

3.5 Local Optimum Search 

The CWT operation obtains high resolution by producing highly redundant 

information when it convolves with so many scaled signals. Therefore a heavy 

computation time and resources are required for CWT implementation. This heavy 

resource consumption limits the uses of CWT operation in real applications. In order to 

reduce the computation load of the CWT operation, and to keep its resolution advantage, 

a Local Optimum Search algorithm is introduced in the system described in this thesis. 
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Traditionally in order to find an optimum result from numerous possible solutions, 

all possibilities will be examined using a certain algorithm. Since this result is the 

optimum result among all possible solutions, it is called a global optimum result and 

this method is called global optimum search. The advantage of this algorithm is its 

precision. It can guarantee the final result is the best among all possibilities. However, if 

the number of all possible solutions increases, the computation load of this algorithm 

increases linearly as well. When the number of possibilities reaches at certain level, the 

implementation of a global optimum search will be very costly either on hardware 

resources or on time. Therefore a local optimum search is introduced into our 

implementation. 

A local optimum of a combinatorial optimization problem is an optimal solution 

within a neighboring set of solutions instead of all solutions. The result may not be the 

best result among all solutions, but this algorithm can give a relatively good result 

within an acceptable time period. Instead of seeking a global optimum result from all 

possible solutions in a predefined range of target motion parameters, the local 

optimization search will start from a candidate solution and iteratively move to a 

neighboring solution until the time bond is reached or the best solution found has not 

been improved for a certain number of steps. Without going through all possible 

solutions in the range the local search will generally give a reasonable solution and 

therefore the computation load is significantly reduced.  Brent‟s search method [22] is 

adopted in this thesis to produce local optimum results.  
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Brent's search is a linear search that is a hybrid of the golden section search and a 

quadratic interpolation [22]. The detailed steps of Brent‟s search are shown in figure 

3.6: 

 

Fig 3.6  Brent‟s Search 

Step-0.: Set effective search interval [a, b], the final evaluated point u. Use golden 

section search to set internal points x (recent evaluation point), w (previous evaluation 

point of x), and v (previous evaluation point of w); 

Step-1:  Check stopping criterion and compute the turning point;  

Step-2: Choose approximation step by examining whether this minimum of the 

quadratic function is within the appropriate interval of uncertainty. If it is, it is used in 
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the next stage of the search and a new quadratic approximation is performed. If the 

minimum falls outside the known interval of uncertainty, then a step of the golden 

section search is performed.  

Step-3: Update parameters based on bisection and go to Step-1 until the termination 

criterion is satisfied. 

 

 3.6 Adaptive Noise Canceller 

Cross-correlation is optimal for signals buried in additive, Gaussian, white noise [18].  

However, the specification for the proposed system is target detection in 

reverberation-limited broadband and shallow-water environment.  

Therefore difficulty in detecting a specific target in the ocean due to the presence of other 

objects [23]. When the pulse is emitted by the transmitter to the ocean, it not only strikes 

the target but also other bodies in the ocean such as the surface and the bottom of the 

ocean, fish, and plankton, etc. The pulse is reflected off these bodies and is picked up by 

the receiver as well. The signal from these bodies in the ocean is known as Reverberation 

and the bodies are called scatters [24, 25].The Reverberation waveform causes a lot of 

problems in detecting the target echo simply because the pulse that strikes the target is the 

same pulse that strikes the scatters; therefore the target echo and the reverberation 

waveform have a very high correlation. This is undesirable and makes it hard to detect the 

target echo from the received signal at the transmitter. Therefore, an ANC is introduced to 

eliminate reverberation noise as described at the beginning of this chapter as a solution 
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for the proposed system. Though various noise cancellers are available, the nature of 

reverberation noise, unpredictable frequency and amplitude, makes most fixed 

amplitude threshold or fixed cutting frequency noise cancellers not suitable for this 

project. Therefore, Adaptive Noise Canceller was proposed for the system. In addition 

Adaptive Network-based Fuzzy Inference System (ANFIS) is adopted in the system as 

ANC due to its ability to work with the chaotic nature of impulse noises. 

Adaptive-Network-based Fuzzy inference System, which is proposed by Jyh-Shing 

Roger Jang in [26], is a combination of a Fuzzy inference system and an adaptive 

network. It serves as a basis for constructing a set of fuzzy if-then rules with proper 

membership rules to generate the stipulate input-output pairs [26]. 

 

3.6.1 Fuzzy Inference System 

Fuzzy if-then rules or fuzzy conditional statements are expressions of the form IF A 

THEN B, where A and B are labels of fuzzy sets [27] characterized by appropriate 

membership functions. Due to their concise form, fuzzy if-then rules are often employed 

to capture the imprecise modes of reasoning that play an essential role in the human 

ability to make decisions in an environment of uncertainty and imprecision. For 

example, the following expression describes a simple if-then rule: 

If temperature is high, then ice is thin; 

Where temperature and ice are linguistic variables and high and thin are linguistic 

values which are known as membership functions. 

A Fuzzy inference system is a system to process a corresponding mapping from given 
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input to an output using fuzzy logic. This mapping then provides a basis for decision 

making or pattern reorganization.  The use of membership functions, fuzzy if-then 

rules and logic operations are essential in the process. 

 
3.6.2Adaptive Network 

An adaptive Network is a network that consists of nodes and directional links which 

connect all the nodes. Among the nodes in the network part or all of the nodes are 

adaptive, which means their outputs depend on the parameter(s) pertaining to these 

nodes, and the learning rule specifies how these parameters should be changed to 

minimize a prescribed error measure[28].  

Fig 3.7 shows an example of an adaptive network structure. It is a multi-layer feed 

forward network consisting of adaptive nodes which perform different functions on 

input signals and parameters pertaining to each node. The function of each node 

depends on the specific task this network is supposed to perform. To reflect different 

adaptive capabilities, both circle and square nodes are used in an adaptive network. A 

square node (adaptive node) has parameters while a circle node (fixed node) has none. 

The parameter set of an adaptive network is the union of the parameter sets of each 

adaptive node. In order to achieve a desired input-output mapping, these parameters are 

updated according to given training data and a gradient-based learning procedure. It 

should be noticed that though it is not shown in Fig 3.7, ANFIS will need a set of 

training data to evaluate the performance of the system by comparing outputs with the 

training data. Training data is not used in forward-pass shown in Fig 3.7(b), but it is 
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essential in learning procedure afterwards to modify premise parameters by 

back-propagation. 

 

Fig 3.7 Fuzzy Inference System and ANFIS Structure 

There are two types of learning procedure for adaptive networks. With the batch 

learning (offline) procedure, the parameters for adaptive nodes will be updated only 

after the whole training data is presented. On the other hand, if we want the parameters 

to be updated right after each input-output pair, the pattern learning procedure should be 

introduced. 
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3.6.3 Adaptive-Network-based Fuzzy Inference System 

The architecture of the Adaptive-Network-based Fuzzy Inference System is designed to 

combine a hybrid learning procedure of a neural network with reasoning capacities of 

fuzzy logic to find a model or mapping that correctly associate with the stipulated 

input-output pairs. The ANFIS operation implements the first or zero order Takagi and 

Sugeno‟s fuzzy if-then rules [30], which are designed to formalize a systematic 

approach for generating fuzzy rules from a given input-output data set. In the following, 

the ANFIS architecture is described in terms of the Sugeno-type model of fuzzy 

inference systems followed by its hybrid learning algorithm. 

A typical fuzzy rule in a first-order Sugeno-type model has a format 

If x is in A and y is in B then z = px + qy + r 

where A ⊆ X and B ⊆ Y are fuzzy sets in the premise with input variables (or objects 

collected) x ∈ X,and y ∈ Y , respectively, and X, Y are space of objects; z is a crisp 

output function linearly combining input variables with constant weights p and q plus a 

constant term r in the consequent. For an adaptive network, which is a multi-layer 

feed-forward network, the final crisp output is then the weighted average of each rule‟s 

output. For simplicity, a first-order Sugeno fuzzy inference system is described as a 

example, which has two inputs x and y and one output f. Suppose that two bell-shaped 

membership functions are provided on each of the two inputs, four together, so the input 

space of the generated FIS structure is partitioned into 4 fuzzy subspaces, each of them 
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is governed by fuzzy if-then rules: 

Rule 1: If x is in A1 and y is in B1, then f1 = p1x + q1y + r1 

Rule 2: If x is in A1 and y is in B2, then f2 = p2x + q2y + r2 

Rule 3: If x is in A2 and y is in B1, then f3 = p3x + q3y + r3 

Rule 4: If x is in A2 and y is in B2, then f4 = p4x + q4y + r4. 

Here Ai (and Bi) is fuzzy sets describing the degree of chosen membership functions 

(MFs) μAi (x) and μBi (y) to which the given input x (and y) satisfying Ai (and Bi). 

Thus, the fuzzy sets are defined as 

Ai = {(x, μAi (x))|x ∈ X},Bi = {(y, μBi (y))|y ∈ Y }. 

The chosen membership function, in a statistical sense, must form a bell-shape in the 

range [0, 1] and usually can be the generalized bell function, such as: 

i A

1
( )

21 [ / ] i
i i

x
bx c a

 
 

     (3.11) 

Or the Gaussian function 

2(x) exp[ ( ) ]
x c

a



          (3.12) 

where {a, b, c} (or {a, c} in the latter case) is the parameter set controlling various 

forms of the membership functions on fuzzy sets Ai or Bi. 

The topology of the proposed ANFIS operation is depicted in Fig. 3.7 where Fig. 3.7(a) 

shows graphically the fuzzy reasoning mechanism to derive an output f from a given 

input training data set {x, y}, while the adaptive network represented by the ANFIS 

architecture in Fig. 3.7(b) is functionally equivalent to a fuzzy inference systems in Fig. 

3.7(a). The ANFIS architecture contains the following five layers: 
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Layer–I. Every node i in this layer is an adaptive node containing node function (or 

membership function) 
i A ( )x defined above whose parameters {ai, bi, ci} or {ai, ci} 

are called premise parameters. During the learning phase, these parameters change 

continuously resulting in various forms of membership functions on each fuzzy set. 

These exhibited membership functions are then compared with input variables to obtain 

the membership values. 

Layer–II. Every node in this layer is a fixed node labeled II whose output is the product 

of all incoming signals. The output of the node represents the firing strength of a rule, 

for example, given below: 

i i A B( ) ( ), 1,2; 1, ,4jw x y i j          (3.13) 

 Layer–III. Every node i in this layer is a fixed node labeled N. The node i gain the ratio 

of the i – th rule‟s firing strength to the sum of all rules‟ firing strengths: 

4

1
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, 1, ,4i

jj

w i
w

 


        (3.14) 

Layer–IV. Every node i in this layer is an adaptive node with a set of consequent 

parameters {pi, qi, ri} pertaining to it to result in a weighted node function 

( ), 1, ,4i i i i i iwf w p x q y r i          (3.15) 

The set of consequent parameters is awaited to be determined. 

Layer–V. The single node in this layer is a fixed node labeled V, which computes the 

overall outputs as the summation of all incoming signals.  

4 4
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       (3.16) 
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An overview of the adaptive network suggests that ANFIS is a hybrid learning 

algorithm, which combines the gradient decent method to upgrade the premise 

parameters and least-squares method to identify the consequent parameters. More 

specifically, in each epoch of this hybrid learning procedure, given input data with 

premise parameters fixed, functional signals go forward to gain each node output until 

the layer-IV and the consequent parameters are identified by the sequential least squares 

estimator. This procedure has formed a forward pass. 

After the parameters have been identified, the functional signals keep going 

forward to calculate the error measure E of the training set: 

2

1

( )
n

m m

m

E R O


         (3.17) 

Where Rm is the m-th target output and Om is the m-th estimated output, and n is the 

total number of input-output pairs of training set.  

In [26] details of using error rate to update parameters in adaptive networks are 

described. Suppose that a given adaptive network has L layers and the kth layer has #(k) 

nodes, the node in the i-th position of the k-th layer can be denoted by (k,i) and its node 

function (or node output) by k

iO .Defining error rate for p-th training data and for each 

node output O is /pE O  , The error rate for the output node at (L,i) can be calculated 

as: 
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p L

i p i pL

i p
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
  


       (3.18) 

Where L is the number of layers adaptive networks has. 
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For the internal node at (k,i), the error rate can be derived by the chain rule: 

1#( 1)
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1, , ,

kk
p p m p
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
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

  
        (3.19) 

Where 1 1k L   .That is, the error rate of an internal node can be expressed as a 

linear combination of the error rates of the nodes in the next layer. 

If α is a parameter of the given adaptive network, the error rate can be represented as: 

*

*

*
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        (3.20) 

where S is the set of nodes whose outputs depend on α. Then the derivative of the 

overall error measure E with respect to α is: 
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         (3.21) 

Accordingly, the update formula for the generic parameter α is: 

E
 




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
        (3.22) 

in which   is a learning rate which can be further expressed as: 
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        (3.23) 

Where k is the step size, the length of each gradient transition in the parameter space. 

Since the error rates apparently propagate backward from the output end toward the 

input end, for a given set of fixed consequent parameters, the premise parameters can be 

updated by the gradient decent method as a result of the minimization of the error 

measure for each input-output pair. This forms a backward pass which is exactly the 

same as the back-propagation learning rule commonly used in the feed-forward neural 
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networks [29]. 

3.7 Conclusion 

This chapter introduces the specifications and working environments for the proposed 

system. Then the general introduction of underwater sonar detection is presented 

afterwards. Due to the ability to capture both frequency and location information of 

target signals and providing high resolution in both the frequency domain and time 

domain, the continuous wavelet transform is chosen as the target detection technique. In 

order to reduce the computation load of CWT and keep the resolution advantage, a local 

optimum search is introduced into the system. At last the ANC is proposed to reduce 

reverberation noises and make the received signals more suitable for CWT to operate 

on. 

 

 

 

 

 

 

 

 

 

 



69 

 

 

 

3.8 References 

1. R.A.Altes, “Detection, Estimation, and Classification with Spectrograms.”  JASA, 

(4) pp. 1232-1246, Apr. 1980. 

2. Lora G. Weiss, “Wavelet and Wideband Correlation”, IEEE Signal Processing 

Magazine, pp 13-32, Jan 1994. 

3. R. B. Mitson, Fisheries Sonar. Farnham, Surrey, England: Fishing News Books, Ltd., 

1983. 

4. D. V. Holliday, “Doppler structure in echoes from schools of pelagic fish,” Journal of 

Acoustical Society of America., vol. 55, pp. 1313-1322, 1974. 

5. D. G. Pincock and N. W. Easton, “The feasibility of Doppler sonar fishing counting,” 

IEEE J. Ocean. Engineering, vol.3, pp 37-40, 1978 

6. Coates Rodney F.W., “Underwater Acoustic Systems”, Macmillan, 1990 

7. Richard O. Nielsen, “Sonar Signal Processing”, Norwood: Artech House, 1990 

8. M. J. Jacobson, “Space-time correlation in spherical and circular noise fields”, JASA. 

vol. 34, no. 7, pp 971-978, 1962. 

9. T. H. Glisson, C. I. Black, and A. P. Sage, “On digital replica correlation algorithms 

with applications to active sonar,” IEEE Trans. Audio and Elect, vol. 17, no. 3, pp. 

190-197, 1969. 

10. P. M. Schulthesis and E. Weinstein, “Estimation of differential doppler shifts”, 

JASA,vol. 66, no. 5, pp. 1412-1419, 1979. 



70 

 

 

11. E. J. Kelly and R. P. Wishner, “Matched-filter theory for high-velocity targets,” 

IEEE Trans. Military Elect., vol. 9, pp. 56-69, 1965. 

12. J. L. Stewart and E. C. Westerfield, “A theory of active sonar detection,” Proc. IRE, 

pp. 872-881, 1959. 

13. C. E. Cook and M. Bernfeld, “Radar Signals, An Introduction to Theory and 

Applications”, Academic Press, 1967. 

14. D. A. Swick, “A review of wideband ambiguity functions,” NRL Report 6994, 

1969. 

15. Jason Tseng,” Application of Adaptive Neuro-Fuzzy Inference Systems to Active 

Wideband Signal Detection in a Reverberation-Limited Environment-Part I: Single 

target environment”, Research Report, University of Warwick, 2006 

16. E. J. Kelly and R. P. Wishner, “Matched-Filter Theory for High-velocity Targets,” 

IEEE Trans. Militmy Elect, pp. 56-69, 1965. 

17. William C. Knight et al., “Digital Signal Processing for Sonar”, Proceedings of the 

IEEE, vol. 69, no. 11, November 1981 

18. H. Van Trees, Detection, Estimation, and Modulation Theory, Parts I, 11, Ill, Wiley, 

1968. 

19. M. I. Skolnik, Introduction to Radar Systems, McGraw-Hill, New York, 1980. 

20. Rabiner, Lawrence R., and Gold, Bernard, “Theory and Application of Digital Signal 

Processing”, Prentice-Hall, 1975 

21. O. Rioul and M. Vetterli, “Wavelets and Signal Processing”, Signal Processing 



71 

 

 

Magazine, IEEE, Volume 8, Issue 4, pp14 – 38, Oct. 1991 

22. R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, 

Englewood Cliffs, New Jersey, 1973 

23. Paul C, Etter, “Underwater Acoustic Modeling”. E&FN SPON, 1996 

24. William S, Burdic, “Underwater Acoustic System Analysis”. Prentice Hall, Second 

Edition, 1991 

25. Pierre Faure, “Theoretical Model of Reverberation Noise”. The Journal of the 

Acoustical Society of America, vol 36(2), pg 256-266, 1964 

26. Jyh-Shing Roger Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System”, 

IEEE Transctions on Systems, man, and Cybernetics, Vol. 23, No. 3, June 1993 

27. L. A. Zadeh. “Fuzzy sets”, Information and Control, pp 338-353, 1965. 

28. S. Cben, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning 

algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2, no. 

2, pp. 302-309, Mar. 1991. 

29. D. E. Rumelhart, G. E. Hinton, and R. J.Williams, “Learning internal representations 

by error propagation.” In D. E. Rumelhart and J. L. McClelland, editors, Parallel 

Distributed Processing: explorations in the microstructure of cognition, vol. 1, chapter 8, 

pp. 318-362, MIT Press, Cambridge, MA, 1986. 

30. M. Sugeno, “Industrial applications of fuzzy control,” Elsevier Science Pub. Co,1985. 

 

 



72 

 

 

 

 

CHAPTER IV 

 

 

 

HIGH-LEVEL SYSTEM ARCHITECTURE AND SIMULATION 

RESULTS 

 

 

 

4.1 Introduction 

As described in Chapter III, the proposed system is based on Adaptive Network-based 

Fuzzy Inference System (ANFIS) for Adaptive Noise Canceller and Continuous 

Wavelet Transform (CWT) to determine the target echo‟s motion parameters. Local 

Optimum Search is adopted to reduce the computation load for wavelet transform. 

In this chapter the theoretical model of the proposed system is presented as well as the 

design details of the high-level system. The Matlab simulation results for the high level 

system are illustrated to demonstrate the performance of the proposed system. 
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4.2 High level System Architecture 

The High level system architecture of the proposed active sonar system is presented in 

Fig 4.1. The system consists of two function blocks: Adaptive Noise Canceller (ANC) 

and Target Motion Estimator (TME). The ANC part adopts an Adaptive Network-based 

Fuzzy Inference System to minimize noise effects and then TME will extract target 

motion parameters using the Continuous Wavelet Transform (CWT).  

 

Fig.4.1 Hybrid System (a) Adaptive Noise Canceller    (b) TME 

The primary channel for Adaptive Network-based Fuzzy Inference System (ANFIS), 

shown in Fig 4.1(a), is the combination of target signal and interference noise, which is 

composed of reverberation noise and white-Gaussian noise, in practice is the received 
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signal at the receiver. The interference noise is used as the reference channel for ANFIS 

so that the ANFIS will adjust its parameters to identify noise in the primary channel. 

Two sets of interference noises, shown in Fig 4.1 (a) as ambient noise and reverberation 

noise, are used as two inputs for ANFIS model, corresponding to input X and input Y in 

Fig 4.2. The primary channel, which in practice is the received signal at receiver, is used 

as training data for ANFIS model. As described in Chapter III, ANFIS model generates 

estimated outputs by feeding inputs into its non-linear filters and adjusting the filters‟ 

parameter through its five-layer structure to achieve better results. This process is called 

forward-pass. Once input data are passed trough five layers and the output data of 

forward-pass is obtained, the ANFIS model compares the output of forward-pass with 

training data, which in this case is the received signal. Then the ANFIS back-propagates 

the parameters from layer 5 to layer 1 to modify non-linear filters according to 

evaluation results based on comparison, as described in chapter III through Eq3.18 to 

Eq 3.23. In next epoch, the input data is passed through ANFIS‟ five layers again with 

parameters modified in previous epoch and back-propagate parameters again when 

forward-pass is finished. As the number of iterations increases, the estimated output 

from ANFIS will become more and more similar to the training data. As the end result 

of these iterations the output of ANFIS will produce an estimated background noise 

similar to the one present in the primary channel. By subtracting the estimated noise 

signals from the primary channel the reflected target signal will be extracted from the 

primary channel, which is shown in Fig 4.1 (a) as ANC output. 
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Output from the ANC is then fed into the Target Motion Estimator (TME) block to 

identify the motion parameters of the target. As shown in Fig 4.1 (b), the output of ANC 

is fed into a DWT denoising block to further reduce noise in the low frequency range. 

The the optimization block and the CWT function block are then used to obtain a set of 

most appropriate coefficients to extract target motion parameters from the received 

signal as described in Chapter III. 

4.3 ANFIS modelling 

As described in Chapter III, ANFIS operation is adopted for the ANC architecture for 

its ability of offering a best solution to fast track linearity and nonlinearity between 

signals in the multidimensional input space. The architecture of ANFIS is to combine a 

hybrid learning procedure of a neural network with the reasoning capacities of fuzzy 

logic to find a model or mapping that correctly associates with the stipulated 

input-output pairs [2, 3]. The ANFIS operation implements the first or zero order 

Takagi and Sugeno‟s fuzzy if-then rules [2], which were originally developed to 

formalize a systematic approach for generating fuzzy rules from a given input-output 

data set [3]. 

The topology of the ANFIS operation is depicted in Fig. 4.2 where Fig. 4.2(a) shows 

graphically the fuzzy reasoning mechanism to derive an output from a given input 

training data set {x, y}, while the adaptive network represented by the ANFIS 

architecture in Fig. 4.2(b) is functionally equivalent of a fuzzy inference systems in Fig. 

4.2(a). However, Fig 4.2(b) only shows the forward pass described in Chapter III. Once 
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forward pass is finished, the premise parameters are modified by back propagation 

through layer 5 to layer 1 with the same topology according to performance evaluation. 

 

Fig 4.2  Fuzzy Inference System and ANFIS Structure 

Assume N to be the number of inputs for ANFIS operation and M to be the number of 

membership functions for each input, the number of fuzzy rules in the architecture can 

be easily calculated as M
N
, since each rule represents a combination of membership 

functions, one from each input[3]. Due to this exponential dependency on the number of 

inputs, the value of N should be kept as low as possible, or the complexity of the 

receiver could be significantly increased. 

Fig 4.2 shows the architecture of ANFIS operation with 2 inputs and 2 membership 
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functions for each input. As mentioned previously in this chapter, interference noise is 

used as input for ANFIS. As described in chapter II, reverberation noise and ambient 

noise constitute background noises in active sonar system. Therefore one of these two 

inputs will be ambient noises and the other will be reverberation noises, which can be 

considered as x and y in Fig 4.2.  

In Fig 4.2, there are 4 fuzzy rules in the network since M=2 and N=2. In order to reduce 

complexity, the final solution for this project uses 2 inputs and 4 membership functions 

for each input. Therefore, an ANFIS network of 16 fuzzy rules is generated. As 

described in Chapter III, there will be 3 consequent parameters for each fuzzy rule 

under 2- input network. In total 48 consequent parameters exist in the proposed 

network. 

The chosen membership function, in a statistical sense, forms a bell-shape in the range 

[0, 1] generalized by the bell function  

i A (x)
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or the Gaussian function 
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Where {a,b,c} (or {a, c} in the latter case) is the parameter set controlling various forms 

of the membership functions on fuzzy sets[4]. In the current project, the Gaussian 

function is chosen since it only needs 2 instead of 3 parameters to determine the form of 

the membership function. It is easy to conclude there are 2*2*4=16 premise parameters 

in the network. The shape of initial membership functions is shown in Fig 4.3. The 
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connections of the ANFIS network are shown in Fig 4.4. 

 

Fig 4.3 Initial Membership functions 
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Fig 4.4 ANFIS model Structure 

In order to examine the performance of the ANFIS network, extensive simulations were 

carried out to verify the functionality of proposed ANC system.  

Figure 4.5. (a). Transmitted Signal (b) Received Signal  

A 2ms long Morlet wavelet signal depicted in Fig. 4.5(a) is adopted as the transmitted 

signal.  Fig. 4.5(b) illustrates the returned composite signal where the contact signal is 

buried in the noise with the target strength of approximately -24dB at the position of 

0.8359s with velocity of 20 knots. Since the noise amplitude is much higher than contact 

signal, it is not possible to see contact signal in Fig 4.5 (b). The noise, which is provided 

by Defense Science and Technology Laboratory (DSTL) of Ministry of Defense(MOD) 
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to simulate the real underwater environment, is constituted by white Gaussian noise and 

reverberation waveform with the following environment settings: sea depth (=100m), 

sonar depth (=50m) wind speed (=6m/s ∼ sea state 3), seabed type (=medium sand). 

DSTL provides two sets of data for simulation. One set is the received signals with 

different SNR (Signal Noise Ratio) at receiver end, which contain target echo, 

reverberation noises and ambient noises; and the other set is signals received at the 

receiver under the same environment with different SNR, but no target in the environment. 

The second set of data is used as input y for ANFIS model as reverberation noises in the 

proposed project. Since the reverberation noise is sampled without target in it, it would 

not have information of signals reflected from target, and it also would not have 

information of secondary reverberations such as reverberations from target to seabed to 

receiver or from seabed to target to receiver, etc. Therefore, besides the reflected target 

signal, it is unlikely for ANFIS to eliminate these secondary reverberation signals from 

received signals based on the reverberation noise given. However, as mentioned 

previously in introduction of reverberation modelling in Chapter II, simplifying 

assumptions are often necessary for reverberation modelling. These assumptions may 

seem ideal but it has been found practical in many sonar modelling and designs [11]. One 

of the assumptions is that reverberation produced by reverberation can be negligible. 

Energy absorption underwater may be the cause of this assumption. Once sound is 

reflected by target, seabed, water surface or even just travels in sea water, the energy will 

be absorbed. Therefore, the energy of multiple scattering (reverberation of reverberation) 
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will be much less than reverberation travels direct from target back to receiver. Therefore, 

even it is unlikely for ANFIS to remove secondary reverberations in the received signal; it 

would not undermine the performance of TME. 

 

 

Fig 4.6.  Input data for ANFIS 

All these signals are sampled at 100 kHz in the maximum time range [0, 1] sec. Fig 4. 6 

shows two input data sets, ambient noise and reverberation noise for ANFIS network, 

which are corresponding to two inputs x and y of ANFIS model shown in Fig 4.4. It also 

presents the primary channel shown in Fig 4.2 (a), which is the received signal. The 

received signal is used in ANFIS as training data. While Fig 4.7 illustrated what the 

signals like after ANFIS operation. Fig 4.7 (a) is the output of ANFIS block in Fig 4.1(a). 
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This signal is the estimated noise signal in the received echo as shown in Fig 4.5(b). By 

subtracting these estimated noises from the received echo the signal in Fig 4.7(b) shows 

the estimated target signals after the ANFIS operation. 

The SNR of the signals in fig 4.7 (b) is -1.83 dB. Comparing the SNR before ANFIS 

–24dB and after ANFIS- -1.83dB, it is clear that the majority of noise is removed by 

ANFIS. However, the amplitude of noise is still much larger than target signal and in 

this case further processing such as wavelet transform is necessary. In the simulation the 

ANFIS runs 14 epochs to get the result. 

Fig 4.8 shows the final version of membership functions for input 1shown as x in Fig 

4.4 and input 2 shown as y in Fig 4.4. Comparing Fig 4.8 with the initial membership 

functions shown in Fig 4.3, it is obvious the parameters for the membership function 

formula in Eq. 4.2 have been modified during ANFIS operation. Especially in the 

membership functions for input 1, the changes of shape of the membership functions 

can be easily observed from the figures. The changes of shape of membership functions 

means the parameters of membership function, a and c in Eq 4.2 are modified during the 

ANFIS process by back-propagation and it indicates the ANFIS adjusts its filters to 

simulate the background noise according to the two input data sets. 
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Fig 4.7 Output of ANFIS 
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Fig 4.8  Membership Functions after ANFIS 

As shown in Fig 4.1, interference noises are used as reference channels for ANFIS 

block and received signal is used as primary channel for ANFIS block. When looking 

into the ANFIS block diagram as shown in Fig 4.2(b) and Fig 4.4, the interference 
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noises are input signals for ANFIS and the received signal is used as training data. As 

mentioned in introduction of reverberation models in Chapter II, ambient noise and 

reverberation noises are jointly considered as background noises in active sonar system. 

Therefore, a set of randomly generated ambient noise is used as one input data set for 

ANFIS and one set of reverberation noises is used as the other input data for ANFIS, as 

shown in Fig 4.6. This set of reverberation noise has been given by DSTL simulating 

reverberations under the same environment as the received signal but with no target in it. 

As described in Chapter III, ANFIS adjust the weights of each input data through five 

layers and then combined the ambient noise and reverberation noise together through 

non-linear filters to try to simulate the background noise in the received signal, which is 

used as training data in ANFIS. The ANFIS model will compare the simulated output, fk 

of forward pass of ANFIS as shown in Fig 4.2 (b), with the training data- received 

signal at receiver end in practice and shown as primary channel in Fig 4.1. According to 

the error rate from comparison results, parameters of non-linear filters are modified 

through back-propagation described in Chapter III to adjust non-linear filters. When 

back-propagation is over, the ANFIS tries again to simulate the background noise with 

two input reference noises in order to achieve better results. The process will be carried 

on repeatly until the error rate reaches satisfactory limit, which means ANFIS 

successfully simulates the background noise. By subtracting the simulated background 

noise from received signal, theoretically only target echo is left. Though reverberation 

noise used as input for ANFIS is sampled under the same environment as the received 
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signal, the background noise will not be the same due to the presence of the target in the 

received signal and possible different positions of the scatterers. Therefore, non-linear 

filters are needed to simulate background noises in received signal using reverberation 

noises. In real detection scenario the receiver samples signals all the time. Returned 

signals sampled before desired target appears can be used as the reference reverberation 

noise. Alternatively, simulated noise models defined by environment parameters such as 

seabed type, sea depth and wind speed, etc can also be used as one of the input for 

ANFIS. Fig 4.9 shows how ANFIS gradually improves SNR. Fig 4.9 (a) shows the 

estimated target echo after the first epoch, Fig 4.9 (b) shows the estimated target echo 

after 5 epochs and Fig 4.9 (c) shows the estimated target echo after 10 epochs. It is 

obvious the SNR performance of estimated echo improves gradually. 

 Besides this set of input data with an SNR of -24 dB, other versions of returned 

signals with different SNR ranging from 0dB to -30dB have also been simulated 

through the proposed ANFIS. Fig 4.10 presents the results for simulations under 

different SNR. The results indicate the proposed system performs efficiently to 

minimize the noise effect in the returned signals by reducing SNR from -30dB to -2dB. 

However, since the input data X and Y used in ANFIS model are theoretical ambient 

noise and experimental reverberation noise, both of which would not be exactly the 

same as the composition of background noise in received signal. Therefore, it is hard for 

ANFIS to proceed further. Experiments have been done on letting ANFIS run for 1000 

epochs where the SNR was still -1.8dB. In this case other digital signal processing 
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algorithms in TME block are introduced to further minimize the noise effect and try to 

estimate the target parameters.   

 

Fig 4.9 Different Stages during ANFIS operation 

 

Fig4.10 ANFIS performance 
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4.4 TME algorithm 

As shown in Fig 4.1, the TME block contains three major functional parts: DWT 

denoising block; Optimization block and CWT block. The DWT denoising block is 

introduced to further reduce noise in the estimated signals. It uses the discrete wavelet 

transform to decompose signals into different octaves and remove those coefficients 

which are lower than a set threshold. In this step, the wavelet decomposition is 

implemented as a lowpass-highpass filter pair (band pass filtering structure) [4, 5]. The 

low-pass filter yields approximation (or scaling) coefficients, while the high-pass filter 

produces detail (or wavelet) coefficients [4]. More specifically, an orthogonal mother 

wavelet is chosen to decompose the noisy data set at the scale N. This has resulted in N 

+ 1 sets of coefficients including N sets of detail coefficients and one set of 

approximation coefficients. The approximation coefficients contain the basic structure 

(or information) about the signal, while the detail coefficients contain sharp transition 

details and the noise components [3]. If the sampled signal is of length n, the DWT 

decomposition will consist of log2 (n) scales at the most. Increasing scale not only 

makes the signals more correlated but also can suppress the noise to a greater extent in 

the frequency domain. The drawback is that as scale increases, the discrete time 

resolution is halved at each scale due to subsampling. The resolution in the time domain 

will be less and less accurate. Also increasing scaling will lead to increasing 

computation load and extra storage requirements for partial results. The Daubechies 

wavelet [5] of order 20 was used to perform the DWT decomposition to N = 10 levels. 
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Fig 4.11 Daubechies wavelet DB-20 

Since the detail coefficients contain noise components, one way to remove these 

unwanted details is to omit them if they are small enough. For example, to set for all 

coefficients those are less than a particular threshold to zero. Thresholding wavelet 

coefficients can use hard or soft thresholding rules [6]. The hard threshold rule can be 

described as the usual process of setting to zero the elements whose absolute values are 

lower than the threshold. On the other hand, the soft threshold rule is an extension of the 

hard thresholding by shrinking all the coefficients towards the origin. In the proposed 

work, the soft threshold rule is adopted with a universal fixed form threshold 

2log( )n   according to [6] where n is the sample size of the signal. When all the 

approximation coefficients are processed by the thresholding algorithm, these 

post-processed coefficients are reconstructed through the IDWT as described in Chapter 

III. 

As described in the previous chapters, the idea provided for the target localization and 
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identification is straightforward and commonly known as correlation processing [1, 7], 

which cross correlates the received signal with a set of references that are hypothesized 

replicas of the incident signal. The hypothesized signals technically serve as template 

functions or basis functions to which the received signal is matched and results in high 

correlation. As the template function is shifted in time over the whole signal and 

consecutive correlations are performed, the highest correlation is achieved, which 

provides an estimate of the desired parameters of the received signal. This type of 

similarity measurement between the known signal and the basic functions is a CWT 

when wavelets are defined as basis function [7, 8, 9]. Due to the similarity of the 

wideband sonar model and continuous wavelet transform representation, the seeking of 

the highest correlation coefficients leads to the seeking of the scaling functions of the 

CWT. The optimization block will choose the scaling factor for CWT block and then the 

CWT block will get the highest correlation coefficient at the current scale and compare 

it with the previous ones. The optimization block will decide which scale suits the 

returned target echo signal most and theoretically the signal which the CWT coefficients 

represent at this scale has the same frequency information as the returned target and thus 

the velocity parameter can be determined by Eq 3.3 in Chapter III. Also by determining 

the time-domain information of the highest coefficient the location of the target can be 

extracted by Eq 3.2 in Chapter III. Since this system is proposed to detect a target 

underwater, and the speed of objects underwater do not exceed 15 m/s [10], which is 30 

knots, it is safe to arrange the searching area for local optimum algorithm search from 
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scales corresponding from -60 knots to 60 knots, where -60 knots means the target is 

moving toward the observer at 60 knots and 60 knots means the target moves away 

from the observer at 60 knots.  

With the output signals of the ANFIS operation as the stimulus for TME block, the performance 

and the functionality of TME is examined in Matlab. 

 

Fig 4.12 Output from CWT 

Input signal into the TME block is shown in Fig 4.7(b), while the output signal is as 

shown in Fig 4.12. From the Figure 4.12 it is clear that the highest correlation 

coefficient appears at 0.8367s,and this represents the target, which only has 0.0008s 

error in time domain. Since the sonar travels at around 1500m/s underwater, the error of 

round-travel time can only cause a distance error of around 0.6m. Also according to the 
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scaling information, the speed is 19.374 knots, which is only less than 1 knot away than 

the actual velocity.  

To characterize the performance of the proposed system, simulations are performed 

using 16 different sets of input data with different SNR ranging from 0dB to -30dB. Fig 

4.13 shows the location error rate and the speed error rate under different SNR 

conditions. The error rate is calculated by comparing the measurement error against the 

total range and velocity. It is clear that the location error rate is less than 0.6% and the 

speed error is less than 4%. In Fig 4.13 it can be observed that at some point, when SNR 

increases, the performance of TME decreases. Theoretically when SNR increases, it 

means the noise is getting weaker, and the performance should be increased. However, 

since the chaotic nature of reverberation noise, it is possible that even the reverberation 

noise is weaker; it may cause more interference on target detecting because the 

frequency is closer to the target signal. By observing the trend of performance in Fig 

4.13, in general when the SNR decreases, it is more possible for the error to increase 

and the trend fits the theory. Therefore, it is safe to conclude, based on Matlab 

simulations, the proposed system can fulfil the specifications for this project for single 

target detection. 
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Fig 4.13 Location & Speed Error Rate for Single Target 
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Fig 4.14 Target Signals 

Simulation for multiple target detection was also carried out. As shown in Fig 4.14, 

there are two target signals at 0.333s and 0.775s.  The target signals are buried in a 

combination of reverberation and white Gaussian noises with a SNR of -20dB. Fig 4.15 

shows the 2 input data sets, ambient noise and reverberation noise, as input X and input 

Y for ANFIS block to simulate the background noise, and one training data, which is 

the received signal at receiver shown in Fig 4.1 (a) as primary channel, for ANFIS block 

to train and validate results. Fig 4.16 gives the estimated noises from the ANFIS block 

and the processed returned echo after processing by the ANC part.  
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Fig 4.15 Training Data for ANFIS 
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Fig 16 Output from ANFIS 



97 

 

 

Fig 4.17 Output from TME 

Fig 4.17 shows the output after the DWT block and the final coefficients from CWT 

block. After the first TME operation, two target signals are extracted at 0.336s and 

0.774s as shown in the middle figure of Fig 4.17. It is obvious the signal at 0.774s has a 

stronger response with the TME operation and according to the process of the proposed 

system signal at 0.774s is determined as the first target. Then this signal is removed so 

that the system can examine other targets without influence from the first one. As 

shown in the bottom figure in Fig 4.17, after removing the first signal at 0.774s, the 

signal at 0.334s gives the strongest response for the TME operation. Therefore the 
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signal at 0.334s is recorded as the second target. Based on calculation of Eq 3.2 and 3.3 

in Chapter III, the location error is less than 1 meter and the speed error is less than 1 

knot, in terms of error ratio against total range, the velocity error ratio is less than 4% 

and location error ratio is less than 1%. Fig 4.18 gives all the results from the different 

SNR ranges from 0 dB to -30dB. From the figure it is clear that under different SNR 

situation range from 0dB to -30dB the speed error rate is less than 4.5% and the location 

error is less than 0.6%. Therefore based on these simulations the proposed system is 

able to work in a severe noisy underwater environment and give a satisfactory 

performance. 
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Fig 4.18 Speed Error & Location Error from 0dB to -30dB for multiple target detection 
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4.5 Conclusion 

In this chapter the high level system architecture is described first. Following the 

implementation details of the ANFIS network, the design considerations of the TME 

block are also explained. In order to verify the functionality and the performance for 

each block and the whole proposed system, Matlab simulations for single and multiple 

target detection under different SNR environments are carried out and the results are 

presented. The noise which simulates the real underwater environment was provided by 

MOD amid the following environment settings: sea depth (=100m), sonar depth (=50m) 

wind speed (=6m/s ∼ sea state 3), seabed type (=medium sand). The system is tested 

under this environment with SNR ranging from 0 to -30dB. The results for single target 

detection and multiple target detection are satisfactory are shown above and the 

proposed system gives a satisfactory performance by locating the target accurately with 

speed error within 1 knots and location error within 2 meter in all simulations, and the 

speed error rate against total range is less than 5% and location error rate against total 

range is less than 0.6%. The simulation results explain the system‟s ability to fulfil the 

specifications for the project as mentioned in Chapter III. 
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CHAPTER V 

 

 

 

HARDWARE IMPLEMENTATION 

 

 

 

 

 

5.1 Introduction 

This chapter gives the details of the hardware implementation of the proposed 

broadband sonar system. As described in the previous chapter, the system is composed 

of two major components:  Adaptive Noise Canceller (ANC) and Target Motion 

Estimation (TME) component. This chapter will introduce the implementation of both 

functions respectively. The simulation results of the proposed system will be presented 

to justify the design choices. 
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5.2 Hardware Structure 

The system is composed of two major parts: Adaptive Noise Canceller (ANC) with 

Adaptive Neuro-Fuzzy Inference System (ANFIS) and Target Motion Estimation (TME) 

block using continuous wavelet transform as described in Chapter IV. The system is 

illustrated in Fig 5.1. The hardware platform used in this project is the Xilinx XUP 

Virtex II Pro Development System. It contains a Virtex II pro XC2VP30 FPGA chip 

with 2 powerPC 405 cores. The board provides a comprehensive collection of 

peripheral components that can be used to communicate with PCs. The overview of the 

hardware platform is shown in Fig 5.2. 

 

Fig 5.1 Hardware Implementation Block Diagram 

As shown in Fig 5.1, the received signals are fed into the system from the PC through a 

serial port RS-232 to the 256MB DDR RAM on the test board. The ANFIS will perform 

a noise reduction process as described in Chapter IV on the received signal and then 
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feed it back to the memory, which in turn will feed it to the TME block for further 

processing and final detection of the target motion parameters using Continuous 

Wavelet Transform is performed. After all the processes are finished, the PC will fetch 

the processed data from the memory and stored it. 

 

Figure 5.2: XUP Virtex-II Pro Development System Board Photo [6] 

5.3 ANFIS Implementation 

The purpose of introducing the ANC into the system is to reduce the noise in the received 

signals and provide a better environment for TME to extract target parameters. Adaptive 

Neuro-Fuzzy Inference System (ANFIS) is a combination of neural network and fuzzy 

logic techniques. As described in chapter IV, the ANFIS operation is designed to find a 
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model or mapping that correctly associates the stipulated input-output pairs by combining 

a hybrid learning procedure of a neural network with the reasoning capacity of fuzzy 

logic. Based on Sugeno‟s fuzzy if-then rule [1], an output of the ANFIS can be obtained 

from a given input training data set being weighted by the firing strength of the rule. 

Taking advantage of the ANFIS operation, the fuzzy detector is able to track both the 

nonlinear and linear relations among signals without any prior knowledge of the noise 

waveform. In the proposed system the ANFIS is implemented in C code in XILINX EDK 

10.1 and the embedded DSP chip-POWERPC 405 is used to calculate all parameters. 

As shown in Chapter III, there are five layers for the input signals to go through in 

ANFIS. Fig 5.3 is the structure of the proposed ANFIS as described in Chapter IV. 

In order to simplify the design complexity and reduce ANFIS iteration time, a 

typical Takagi-Sugeno type network [1] ANFIS with 2 inputs with 4 membership 

functions for each input are adopted in this proposed system, as shown in Fig 5.3. In Fig 

5.3 a square node (adaptive node) has parameters while a circle node (fixed node) has 

none. 
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Fig 5.3 Fuzzy Inference System and ANFIS Structure  

As described in Chapter III, the two inputs are two sets of noise data and membership 

functions are Gaussian functions with the formula as shown below [1]: 

2(x) exp[ ( ) ]
x c

a



       (5.1) 

To implement this formula, several divide and several square operations are required to 

get a result for one input data, which is more expensive in terms of computation time 

than add and multiply operation. For example, for PowerPC 405, it only takes 4 cycles 

to multiply but 35 cycles to divide operation. For the proposed system, there will be 

100k input data for a training set, and this computation time for only membership 

functions is not affordable. Therefore, an alternative method is adopted in our system. 

Each membership function, with different parameters of a and c will be discretely 

sampled and the values of the membership functions will be stored as a lookup table in 
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the on-board DDR RAM. Assuming the resolution of the input data is 0.001 and the 

range of input data is from -4 to 4, it only needs an 8k storage unit for one membership 

function. In order to simplify the addressing problem for a PC to fetch coefficients from 

RAM, each value of the membership function is represented with 8 bit 2‟s complement 

format in the hardware implementation. Therefore, only 8k bytes is needed for 

implementing one membership function with a certain a and c. Since the RAM is 

256MB, there is enough room for storage of the membership functions. When the input 

data is fed in, the system will look up the corresponding value according to input data‟s 

value in the look-up table and will automatically give the output. In this way the 

computation time for membership values is significantly reduced to only several cycles 

of data communication from the RAM and the chip. 

When all membership function values are given, the second layer multiplies the 

output of the selected membership function and the third layer will normalize those 

weights. As stated in Chapter III, it is easy to calculate the number of rules from the 

network scheme, as each rule represents a combination of membership functions, one 

from each input. There will be F
N
 rules, where F is the number of membership functions 

of each input and N is the number of inputs. Since there are 2 inputs for the ANFIS 

system and 4 membership functions for each of the inputs, there will be 16 fuzzy rules 

and therefore there will be 16 nodes in layer 2 and layer 3. All weights in Layer 2 and 3 

are stored as an 8-bit signed integer and 16 byte buffer for storage of weights in Layer 2 

and 3 are created. 
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After all weights for each fuzzy rule are prepared through layer 2 and layer 3 according 

to Eq.3.13 and Eq.3.14 in Chapter III, layer 4 will give a linear combination of the 

inputs for each fuzzy rule as shown in the equations below [1]: 

r r,1 r,2 rf  = x * p  + y * p  + + s      (5.2) 

where there are N + 1 parameters to adjust, N being the number of inputs and r indicates 

the index of the fuzzy rule. In this case, N=2, therefore, there are 3 parameters left for 

adjustment for each fuzzy rule. Therefore, 48 parameters are required for data process at 

this layer. Each parameter is stored as 8 bit integer. These parameters are determined 

through Least Square Method. As the last step, the final layer sums up all the 

contributions of the rules to calculate the output. 

The process described above is the forward pass for one input data to go through all five 

layers in the ANFIS system. The consequent parameters (from the fifth layer) are 

updated with a sequential algorithm in a first forward pass, once this is accomplished 

and the output calculated, the premise parameters (from the first layer) should be 

updated with the Back-Propagation algorithm. 

After the parameters have been identified, the functional signals keep going forward to 

calculate the error measure. Each epoch of this hybrid learning procedure is composed 

of a forward pass and a backward pass. In the forward pass, we supply input data and 

functional signals go forward to calculate each node output until every parameter in 

each node is identified. After identifying parameters, the functional signals keep going 

forward till the error measure is calculated by comparing the estimated output with the 
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Fig 5.4  Block Diagram of TME Hardware Implementation  

 

 

 

output data contained in the training data. In the backward pass, the error rates 

propagate from the output end toward the input end, and the parameters are updated by 

the gradient method. Then according to the updated parameters the lookup table for 

membership functions is updated for next iteration. 

All these procedures are realized on the FPGA board using XILINX EDK 10.1. It 

allows designers to use an embedded DSP core PowerPC 405 to run complex 

algorithms without translating to a hardware description language. All these five layers 

are described in the C language in the EDK environment. All input data are stored in the 

on-board RAM and the DSP core communicates with the RAM through a local bus. 

50% of input data is used as training data and 50% is used for checking data.  

5.4 TME Implementation 

The output of the ANC is used as an input in the TME block for final target parameter 

estimation. In this section the hardware implementation of the TME operation used in the 

hybrid algorithm is presented [2]. The system is composed of three parts: Noise 

Reduction block based on the Discrete Wavelet Transform (DWT) used for further noise 

reduction, Optimization used to determine an appropriate set of filter coefficients for 
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Continuous Wavelet Transform (CWT) computation, which is in turn used for the final 

target parameter (distance and velocity) estimation. Fig.5.4 shows the block diagram of 

the TME hardware implementation. In view of the diagram, the input signal is the output 

from the ANC operation in which the total signal reflected from the target was 

pre-filtered by the ANFIS operation, in order to minimize spurious returns such as 

background noise and reverberation from the ocean surface or bottom.  

The output from the ANC is fed as an input into the DWT noise-reduction block to 

reduce the coefficients related to noise. Following the process of noise reduction, the 

Optimization block will choose the best set of filter coefficients from a pre-defined 

collection of filter coefficients which characterize different replicas of the transmitted 

signal and send it to the CWT computation unit for target motion parameters extraction. 

The target parameters will be extracted from CWT part by examining similarities 

between filter coefficients and input data samples. According to the peak value extracted 

by the CWT, the Optimization block will continue to choose different sets of filter 

coefficients and run the CWT again to obtain a local optimum solution in a pre-defined 

area so that the most similar replica of the transmitted signal compared to the received 

data can be found and the motion parameters of the target can be calculated according to 

the frequency of the replica. 

 
5.4.1 DWT Denoising filter bank 

The functionality of this block is to decompose input data using the DWT and hence 

remove unwanted wavelet coefficients according to threshold value. The wavelet 
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coefficients are then reconstructed into signal data again using the IDWT.  

 

Figure 5.5  DWT Denoising Block 

For DWT implementation a pair of FIR filters is used based on the pyramid algorithm 

developed by Mallat [3]: one low-pass filter for the scaling function, g (n) and one 

high-pass filter for wavelet function, h (n) [3]. Fig. 5.5 gives the block diagram of the 

DWT implementation, where the DWT Decomposing Block decomposes input signals; 

the denoising Block is employed to remove low DWT coefficients according to 

pre-defined thresholds; and the IDWT Reconstruct Block is used to rebuild denoised 

signals.  

For the DWT filter design the first task is to choose an appropriate mother wavelet 

for the specific situation. The most commonly used set of discrete wavelet transforms was 

formulated by the Belgian mathematician Ingrid Daubechies in 1988. This formulation is 

based on the use of recurrence relations to generate progressively finer discrete samplings 

of an implicit mother wavelet function. Named after Ingrid Daubechies, the Daubechies 

wavelets are a family of orthogonal wavelets defining a discrete wavelet transform and 

characterized by a maximum number of vanishing moments for some given support. 

With each wavelet type of this class, there is a scaling function (also called father 

wavelet) which generates an orthogonal multiresolution analysis. Daubechies 
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Fig 5.6  Daubechies 20 tap wavelet Coefficeints 

orthogonal wavelets D2-D20 are a widely used mother wavelets in many DWT 

applications. The index number refers to the number of coefficients N. The halving of the 

coefficients number of each wavelet gives the number of vanishing moments that each 

wavelet has, which limits the wavelet‟s ability to represent the polynomial behavior or the 

information in a signal. D20 has 10 vanishing moments and has the ability to represent 

complex signals containing constants, linear, quadratic or even higher order components. 

Therefore, D20 is chosen as the mother wavelet for DWT implementation in this project 

due to the complexity of the received sonar signals. The coefficients for the D20 wavelet 

are shown in Fig 5.6, in which scaling function refers to low-pass filtering and wavelet 

function refers to high-pass filtering. 

 

From Fig 5.6 it can be observed that the original coefficients for the high-pass and 

low-pass filters are all between -1 to 1. In a hardware implementation fractional number 

computation is more complex than integer number computation. Therefore, the original 

filter coefficients are all multiplied by 1024, which corresponds to left-shifting by 10 bits 
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in the hardware representation. The modified filter coefficients are then represented by 

signed 2‟s complement format in 11 bits. When all the computation is completed, the 

result is then right-shifted back by 10 bits to compensate for the amplitude change of 

filter coefficients. 

The coefficients for the high-pass and low-pass filters are determined by the chosen 

mother wavelet; however, the architecture for filters is still a major factor in performance 

characterization.  

As mentioned in Chapter III, the maximum CWT coefficient at a certain scale s can be 

obtained from the Finite impulse response (FIR) filtering of the received signal with the 

corresponding FIR coefficients. Also DWT coefficients at a certain scale can also be 

obtained from an FIR filter with the correct coefficients.  

Finite Impulse Response (FIR) filters are widely used in digital signal processing. An 

N-tap FIR filter is defined by the following input-output equation: 
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where {h(i): i = 0,…, N-1} are the filter coefficients. 

 

     Fig 5.7 Data Flow Diagram of N-tap FIR  

The function of an FIR filter is to implement a convolution operation. The basic hardware 

architecture of an FIR filter is shown above in Fig 5.7. Since the VLSI architecture we are 

http://en.wikipedia.org/wiki/Finite_impulse_response
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currently investigating is convolution-based, FIR filters are the primary elements for 

wavelet transform implementations. 

There are numerous types of FIR filters and each has their own advantages. Serial 

architecture is an area-saving method by reusing adders and multipliers sequentially; 

meanwhile parallel architecture performs better at speed. Most improvements of FIR 

architectures are based on the architectures of multipliers or adders and rescheduling of 

outputs. The purpose of FIR design investigation in this work is to find a good trade-off 

between speed and area and most importantly to fit the requirements of this project.  

Three types of FIR filter architectures have been built and functionality test have been 

performed. The first one is an FIR filter with parallel multipliers. The basic architecture is 

shown below in Fig 5.8 

Fig 5.8  FIR filter with parallel multipliers 

It uses several multipliers working in parallel to calculate the results. This 
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architecture has good working speed, but requires many more multipliers and the area 

cost is also great.  

The second architecture investigated uses a Canonic Signed Digit (CSD) code 

multiplier instead of normal multipliers. Canonic Signed Digit code is used to represent 

the coefficients of the FIR filters and can reduce the number of none zero digits (1 or -1) 

significantly. With this code CSD multiplier can reduce the hardware cost of the FIR filter 

significantly. At its maximum a CSD multiplier uses only half of the hardware resources 

of a normal multiplier. However, this approach is costly in terms of design timing and is 

less flexible since each CSD multiplier should be designed individually for each 

coefficient.  

In the third FIR architecture pipelining is introduced in the design and adopted for the 

current project. At its minimum only 1 multiplier and 1 adder are needed for a FIR filter 

design. The basic idea is to feed appropriate filter coefficients to multipliers and adders 

according to the time slot and reuse the multiplier and the adder several times during the 

whole computation process. This method heavily reduces the hardware cost of the FIR 

filter but the computation delay will be much longer than for the other two architectures. 

Since the two filters each have 20-taps, using a traditional parallel multiplier-tree would 

require 40 multipliers working in parallel. Taking a second set of high-pass and low-pass 

filter for IDWT into consideration, these four filters will consume 80 multipliers. In 

implementation of the CWT operation which is also realized by FIR filter more 

multipliers will be needed. Considering the limited multiplier resources in the FPGA 
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Figure 5.9.  DWT Decomposition architecture 

environment this imposes a huge consumption of hardware. Therefore, reusing 

multipliers is taken into consideration and adopted here. 

An extreme area-saving design is proposed for filters in the DWT implementation as 

shown in Fig 5.9. Only one multiplier is used for the high-pass filter and only one is 

assigned to the low-pass filter. A FIFO (First In First Out) register of size 20 samples is 

build to store the data samples needed for the filter computation. At each clock cycle of 

the sample frequency, a new data sample is fed into the FIFO and the sample fed into the 

FIFO 20 cycles before is shifted out. Then both filters get samples from the FIFO in turn. 

These are multiplied by the corresponding filter coefficients at a frequency, namely the 

filter frequency that is 20 times faster than the sample frequency. Working at the filter 

frequency, the high-pass and low-pass filter are able to provide computation results 

during one clock period of sample frequency. 

As described previously, the output from the low-pass filter is down-sampled and 

used for next-level decomposition. A register file is build to store those outputs from the 

low-pass filter.  

The longer the input sample sequence is, the more area for the register file is needed.  



117 

 

 

For example, if the sample frequency is 100 kHz and a sample sequence of 1s 

samples is fed into the denoising filter bank, the register file will be 50k samples long to 

store the output of the low-pass filter for first decomposition level if no action is taken. 

In order to save the area consumption for the register file, a RPA (Recursive Pyramid 

Algorithm) [4] is adopted in this project. According to the characteristics of FIR 

computation, when computing the second level coefficients, only the first K outputs from 

the first level low-pass filter outputs are needed, where K is the length of the wavelet filter 

taps. Therefore, by scheduling the feeding sequences of two filters, the first output of the 

second level decomposition can be obtained right after the Kth output of the first level 

decomposition. For the following level decomposition, coefficients also can be obtained 

before the previous level decomposition is finished. Therefore, the register file is no 

longer required to store the whole output sequences from the previous decomposition, 

instead only a K*J sized space is needed for register file, where J is the decomposition 

level. 

The decomposition level is also an issue for performance measurement. Increasing 

the decomposition level will improve the performance; however the hardware cost and 

the computation time are also increased. In the first place, for the simplicity of hardware 

implementation, the level of decomposition is set to 5. However, during the simulation 

process, it was found that at this decomposition level the TME block cannot meet the 

accuracy requirement due to the noise affect. After several design iterations and 

simulations, the decomposition level was set to 7 and the final output of the TME is then 
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acceptable for target motion parameter extraction. In the simulation explained in Chapter 

VI several simulation results from the design iterations for decomposition will be 

presented. 

As shown in Fig 5.10, After the DWT processing, all DWT coefficients are fed into 

the denoising block to remove the coefficients representing noises according to the 

denoising threshold value. Then the DWT coefficients are reconstructed through the 

IDWT. 

 

Fig 5.10  DWT Denoising Block Diagram 

 

 

Figure .5.11  IDWT Reconstruction architecture 

As described in chapter II, high-pass and low-pass filter are still two main functions 
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in IDWT implementation. The architecture of the IDWT is almost the same as the DWT 

implementation, sharing the same filter pair, except these two filters are fed with different 

wavelet coefficients. The Details are shown in Fig 5.11. 

 

5.4.2 Optimization Block 

The purpose of this function block is to reduce the computation time of the TME 

without sacrificing too much resolution accuracy for target detection. As described in 

Chapter II, in order to extract the accurate target parameters, the FIR filter coefficients, 

which have the characteristics of the dilated mother wavelets that are used for similarity 

detection between received signals and dilated mother wavelets, should be as similar to 

the received signal as possible. Since the target information cannot be predicted before 

the computation, different filter coefficients corresponding to different dilated mother 

wavelets should be prepared before the target detection takes place. Theoretically the 

received signal should be examined by every set of prepared dilated wavelets to 

determine which one is the most similar one and then the corresponding target 

parameters will be extracted from corresponding dilated wavelet parameters. However, 

there will be 121 sets of dilated mother wavelet if the resolution of the velocity 

estimation is 1 knot in the range of -60 knots to 60 knots, where a negative number 

indicates the target is moving toward the receiver and a positive number indicates the 

target is moving away from the receiver. The system will not be capable of working in 

real time if every set of dilated wavelets is examined due to the long computation time of 

the convolution operation. Therefore this optimization block is introduced into the 
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system for saving computation time, while keeping the accuracy of the target motion 

parameters extraction. 

As described in Chapter III, The Brent's optimum search algorithm is employed in 

this optimization block. The main purpose of this algorithm is to choose the most suitable 

set of filter coefficients from all 121 sets to extract the target motion parameters. 

Therefore, the search intervals in the algorithm are [1,121] if all the sets of coefficients 

are sorted by frequencies. The evaluation point is then easily determined by the given 

intervals range. The golden ratio is pre-computed and defined as a constant for the ease of 

computation. Once an evaluation point is chosen, the control unit will prompt the CWT 

convolver to convolute the input data samples with the corresponding filter coefficients, 

and the values obtained through the convolution represents the values of the CWT 

operation for the current evaluation point. When those values are fed back by the CWT 

convolver, step-1 and step-2 described in Chapter III will be carried out to determine the 

position of next evaluation point. All the parameters are then updated and the next 

computation iteration begins unless the termination criterion is met.  
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Fig 5.12  Finite-State-Machine of Optimization 

The algorithm is implemented as a Finite State Machine (FSM) depicted in Fig 5.12. 

From the beginning, the start-state will determine the initial evaluation point and move to 

state-I, which will move the evaluation point toward to the end of the interval range. If the 

result from the computation matches the rule of state-I, the process will stay in state-I, 

otherwise, the process will go to State-II to move the evaluation point towards to the start 

of the search interval. The state in which the process stays will determine whether the 

computation process will go on or not after every computation. If the stop criteria are 

matched, the process will go to the final state to report the final result. 
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This process will go on until the local optimal filter coefficients are found or the time 

limit is met. The time limit is essential in this function block because it not only affects 

the precision of the optimum search algorithm, but also determines the system‟s real-time 

working ability. If the time limit is too long, the local optimum search will not able to find 

a good result in most cases before the time limit expires and therefore the precision of the 

algorithm is undermined. However, if the time limit is set too wide, the algorithm might 

spend too much time on searching for the optimal result and cannot finish the process. In 

this project, the computation iteration number is limited to 20 to make sure the system can 

work in real time. The simulation results presented later also illustrate that this limit does 

not undermine the precision of the system. By looking for a local optimal result instead of 

a global optimal result, this method reduces the computation time 10 times in most cases 

without sacrificing resolution accuracy. 

 

5.4.3 CWT convolver 

As shown in Chapter III, the CWT operation is achieved by employing matched FIR 

filters in the system. By feeding input signals into FIR filters with coefficients which 

represent the characteristics of the dilated mother wavelet, the CWT convolution is 

achieved at the hardware level. 

The advantage of the CWT for high resolution and precision is the main reason for 

adopting it as target parameter extraction method in the system. As explained in chapter 

III, numerous FIR filters are required to attain its advantage. Each FIR filter is 

corresponding to one set of dilated mother wavelets. 121 sets of FIR filters are found 
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sufficient for the target extraction process to extract target motion parameters with high 

resolution.  

Dilated mother wavelets used for target parameter comparison are realized by 

corresponding filter coefficients. Obviously the tap number of the filter coefficients will 

determine how precisely those dilated wavelets are represented. Filter coefficients with 

larger tap numbers will give more details of the dilated mother wavelets leading to more 

precise match results. However, this also takes more computation time for the system to 

get the result. Since a 2 ms transit pulse is used in all simulations and the sample 

frequency at the receiver is 100 kHz, the tap number is approximately 200 taps for a 

dilated version of the wavelet when discretely sampled at the sample frequency.  

The tap number indicates how many multiply operation the system needs to perform 

on the CWT coefficients for every data sample. Obviously with such large tap numbers 

the multiply operations cannot be performed serially in the allowed frequency range of 

FPGA chip to ensure the system works in real time. Parallel multiplier architecture is 

therefore required in the system. However, the multiplier resources in the FPGA chip are 

also limited. Besides, the bandwidth of input and output ports for the memory are 

limited; more parallel multipliers means that more fractional memory units are needed 

and more time is needed to arrange memory mapping and timing relocation arrangement 

for each multiplier. Therefore, large multiplier bank architecture is not a solution, either. 

In the proposed architecture a novel, extreme area-saving design algorithm is 

adopted. Only five multipliers and five adders are used to implement FIR filters with 
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adaptable taps. All the filter coefficients for different versions of wavelets are stored in a 

storage unit at different pre-located blocks. When the input signals are fed into the CWT 

convolver to obtain CWT coefficients, the control unit will determine which set of filter 

coefficients is going to be fed into the FIR filter according to the optimization block. At 

every system cycle, five input data samples and five filter coefficients are read from the 

corresponding storage unit into the FIR filter. Then the parallel multipliers in the FIR 

filter will give the multiplication result for each set of input data and corresponding 

coefficients. Next, these results are then loaded into the adder together with the addition 

result from the last cycle. This partial result is then stored into the register for the next 

loop until all data and coefficients are processed. The working clock frequency of the FIR 

filters should be set much higher than the sample frequency, which provides the input data, 

in order to get the final convolution result of the current input data sample before next 

input data sample is fed into the filter. If the CWT computation is only required once for 

the whole data processing the working frequency can be set to n/5 times higher than the 

sample frequency, where n is the maximum tap number for the filter coefficients. 

However, before the exact target motion parameters are obtained several iterations are 

needed for the CWT computation. Therefore, the working frequency of the FIR filter is 

set to m*n/5  times of the sample frequency so that it satisfies the word-serial model and 

operates correctly in real time, where m is the maximum allowed number of  iterations of 

the CWT operation . 

Since the entire range of possible filter coefficients are pre-stored, and taking the large tap 
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numbers and large number of different versions of the filter coefficients into 

consideration, the coefficients storage unit is the major area consumption unit in the 

hardware design. How many bits are used to represent the filter coefficients is then not 

only a factor of computation precision, but also a major factor of area consumption. 

Traditionally the filter coefficients are in the range of [-1, 1]. However, these fractional 

numbers might lead to unnecessary data post-processing for multiplication, i.e., for 

determining the rounding and truncation algorithm. Therefore, all coefficients are 

multiplied by 2048 and transferred into 12 bits signed 2‟s complement representation 

before being stored. This corresponds to left-shifting the fractional numbers by 11 bits. 

Therefore, all the filter coefficients can be considered as integer numbers which avoids 

data post-processing of fractional number multiplication. After the multiplication, right 

shifting the computation results by 11 bits and simply truncating the unnecessary bits, the 

width of the output results will be kept the same as the input data samples. The simulation 

process shows that 12 bit representation will not affect the computation precision and 

neither will lead to heavy hardware resource consumption. Other solutions are also 

adopted to save the area further. Since the mother wavelet chosen for simulation is 

symmetric, the filter coefficients which represent dilated mother wavelets are also 

symmetric, and therefore the size of the storage unit which contains all the possible 

versions of filter coefficients can be halved, but care must be taken when fetching data 

sequences in the control unit. Overall the hardware cost is significantly reduced.  
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Figure 5.13.  CWT Computation Unit architecture  

 

 

From all the design considerations described above, the final CWT convolver is 

implemented as shown in Fig 5.13. The optimization block shown in Fig 5.4 will give the 

control unit (which is shown in Fig 5.13 as CTRL Block) indication signals of which set 

of filter coefficients should be used for the current computation iteration. Then the control 

unit (CTRL Block shown in Fig 5.13) will determine which block of input data samples 

are going to be fed into the parallel multipliers during the current working cycle. The final 

result will be fed back to the optimization block to determine whether more iteration is 

required. 

In the proposed design it is assumed the input data samples are 16 bits wide each and 

presented as 2‟s complement format and are sampled at 100k Hz. The sample window 

width is assumed to be 1 second. By deciding the sample frequency and window width of 

the input data, the size of the most area-consuming block, the data buffer between the 
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DWT denoising block and the CWT convolver is decided. Therefore the Xilinx FPGA 

chip XC2V30P was chosen as the implementation platform for its sufficient built-in block 

RAMs. Due to the area-saving algorithm implemented in this design, the whole design 

only required 9 of out 136 18x18 bit multipliers, 32% slices and 69% block RAMs on the 

XC2V30P chip. 

As mentioned above, the working frequency of the CWT convolver is set to m*n/5 

time of the sampling frequency, where m is the maximum allowed number of iterations of 

the system and n is the maximum number of taps of filter coefficients. Since the 

maximum iteration number is already set to 20 in the Optimization block and the 

maximum tap numbers is around 200 during all sets of pre-defined filter coefficients, the 

working frequency of the CWT convolver is set to150 MHz to ensure that the TME works 

in real time at the current sample frequency. The layout of the hardware is also specified 

to reduce the transmit delay between each function block in order to improve the system 

working speed. The data storage unit is placed at the center of the FPGA and all 

functional blocks are laid surrounding this. This layout algorithm reduces the transmit 

time between each functional blocks and therefore increases the working speed of the 

system. 

5.5 Simulation Results 

The proposed system is simulated in Modelsim XE 6.1e block by block in order to verify 

the functionality of the system. 

As the first step, the functionality of the TME block is tested. A transit 2 ms long morlet 
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wavelet [1] depicted in Fig. 5.15(a) is adopted as the transmitted signal.  Fig. 5.15(b) 

illustrates a returned echo signal where the target signal is buried in the noise with a SNR 

of -20dB.  This signal is sampled at 32 kHz in the time range [0, 1] sec. The received 

signal processing is firstly performed using the ANFIS offline in the ANC operation. The 

output of the ANC part is then used as the input signal for the proposed hardware 

implementation. In the fig. 5.16 the first signal is the input signal fed into the hardware 

system, which is the output of the ANC with a reduced SNR of -1.8539 dB. 

 

Figure 5.15.  (a)Transit signal; (b) Received signal; 

The input samples are represented in two‟s complement format with 16-bit width. The 
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following graphs in fig. 5.16 represent the output signal after the first, the second and the 

fourth TME iteration where the stop algorithm for TME has not been added into the 

system. It is clear that after each iteration the position of the target is more and more 

apparent; the target signal is extracted from the noise and its amplitude boosted 

afterwards. However, in the hardware only 16 bits are used to represent the coefficients, 

and the amplitude would eventually exceed the hardware limit. In order to prevent this, 

the output amplitude is deliberately decreased after every other iteration. In the graph 

shown above, the peak coefficient appears at the time 0.6809 s after only 4 iterations, 

which compares favorably with the theoretical result of 0.6794 s.  Using the equations 

3.5 and 3.6 in Chapter III, the calculated location of target is 475.93 meters away which 

compares favorably with the theoretical location of and the velocity of the detected target 

is 475 meters; and the calculated velocity is 19.5 knots towards to the receiver, which 

compares favorably with the theoretical velocity of 20 knots towards to the receiver. 

From the simulation results we can conclude that the hardware system is able to work 

correctly in a noisy environment [5]. 
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Figure 5.16.   Signals after TME Operation  

The hardware architecture was slightly modified as the result of the system simulation. 

Initially, the DWT decomposition level was set to 5 in order to simplify the hardware 

implementation. However, during the simulation process it was found that at this 

decomposition level the performance of the DWT denoising block cannot meet the 

requirement. As shown in Fig 5.17, the target is at 0.6918s. However, a false alarm at 

0.2653s is not well suppressed by the DWT denoising block and the target cannot be 

detected. When the decomposition level was set to 7, the performance was significantly 

improved as shown in Fig 5.18, the noise was significantly suppressed by the DWT 

denoising block and the computation load was increased by less than 3% and only 40 
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more samples in the register files are needed for 2 more decomposition levels due to the 

description in chapter III. Therefore, the decomposition level is set to 7 for this particular 

hardware implementation. 

 

Figure 5.17.   Signals after TME Operation J=5   SNR=-1.9 dB after ANC operation 
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Figure 5.18.   Signals after TME Operation J=7  SNR=-1.9 dB after ANC operation 

 

Then the Local Optimum Search block was added into the system to reduce the target 

extraction time. For this simulation a transit 2ms long Morlet wavelet signal depicted in 

Fig. 5.19(a) was adopted as the transmitted signal.  Fig. 15(b) illustrates the composite 

signal where the target signal is buried in the noise with the target strength of approximate 

-24dB at the position of 0.8359s.  This signal is sampled at 100 kHz in the maximum 

time range [0, 1] sec. 
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Figure 5.19.   (a).Transmitted Signal(b)Received Signal  

The simulation results are shown in Fig. 5.20 where the first signal is the input signal into 

the FPGA system, which is actually the output of the ANC. The input samples are 

represented in two‟s complement format with a 16-bit width. The graphs in Fig. 5.20 

represent the output signal after the first, the second and the third TME loop. It is clear 

that the position of the target in each TME loop moves in a range of less than 0.001s, and 

in that case the position of the target can be found.  In the graph shown in Fig 5.20, the 

peak coefficient takes only 3 loops of the TME to appear at the time axis 0.8359 s that is 

favorably compared to the theoretical result at 0.8368 s.  By detecting the position of the 

peak coefficient, motion parameters can be determined. In this data set the target is 
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located in 585 meters away from the receiver and with velocity of 30 knots towards the 

receiver. According to the location and scale output from TME the detected target is 

584.6 meter away from the receiver and the velocity is 19.5 knots towards the receiver. 

The error ratio against total range of speed is less than 4% and the location error ratio is 

less than 1%. Therefore the simulation results indicate that the system is capable to work 

under severe reverberation noisy environment. 

 

Figure 5.20.   Signals after TME Operation  SNR=-24dB before ANC Operation, -1.83dB after ANC 

Finally, the ANFIS block was introduced into the simulation and the stop criterion 

for TME is proposed. The system was tested under 16 sets of single target data with a 

SNR range from 0dB to -30dB with intervals every 2dB. The noise constituted of white 



135 

 

 

Gaussian noise and a reverberation waveform which is provided by the MOD to simulate 

the real underwater environment amid the following environment settings: sea depth 

(=100m), sonar depth (=50m) wind speed (=6m/s ∼ sea state 3), seabed type (=medium 

sand). Received signal is sampled at 100 kHz in the maximum time range [0, 1] sec. 

A transit 2ms long morlet wavelet signal is adopted as the transmitted signal for 

simulation under environment above.  A returned echo signal is buried at the place of 

0.6908 s in the noise with SNR (signal-noise ratio) of -30dB. 

As shown in the fig. 5.21, the first signal is the input signal fed into the TME block, 

which is the output of the ANFIS. The ANFIS has already reduced the SNR from -30dB 

to -2.65 dB after 47 epochs. As explained in Chapter IV, it is hard for ANFIS to go further 

since the input data used for ANFIS model are simulated ambient noise and experimental 

reverberation model. The following graphs in fig. 5.21 represent the output signal after 

the TME operation. In the graph shown in Fig 5.21, the peak coefficient appears at the 

time 0.6914 s, which compares favorably with the theoretical result of 0.6908 s. By 

detecting the position of the highest coefficient the time delay τ in Equation 3.1 is known. 

Also the corresponding scale s can be determined by examining which set of filter 

coefficients produces the highest CWT coefficient. Therefore, the motion parameters 

such as position and velocity can be determined using the definition of τ and s outlined in 

Eq. 3.2 and 3.3 in chapter III, which in this simulation the location of detected target is 

483.28 meters away from receiver with velocity of 29 knots away from the receiver, 

which compares favorably with the theoretical result of 481.76 meters away in location 
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and 30 knots in velocity.  

 

Fig 5.21 Signals after TME Operation SNR=-30dB before ANC Operation, -2.65dB after ANC 

Fig 5.22 shows the performance of ANFIS model under each different SNR environment. 

The SNR achieved after ANFIS operation is -2.65 dB, a little less than results from high 

level simulation, which is -2.45dB in Chapter IV. However, this change is expected 

because by transferring high level model into practical implementation, some data 

precision will be scarified to ensure the platform has enough resources for computation. 

Fig 5.23 shows the error rate of simulation results for different sets of input signal data. In 

the figure it shows the maximum error rate in position estimation is less than 1% and the 
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error range of velocity estimation is from -1 knots to 1 knot. It is no surprise to see that the 

maximum location error appears at the environment with SNR of -30dB. Because under 

this environment with a lower SNR the noise has more effect on the target detection than 

in the other environments with a larger SNR. From the simulation results above it can be 

concluded that the hardware system‟s functionality is what is expected and the system is 

able to work correctly in real applications. 

Fig 5.22 ANFIS performance 
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Fig 5.23 Position Error & Speed Error for Single Target 
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5.6 Multiple Target Detection 

Following the single target detection, multiple target detection was investigated 

using the proposed system. For multiple target detection simulation, the composition of 

noise and the environment settings was the same as in single target detection test. The 

transmitted signal also remained unchanged. However, one more target signal is added 

and the returned echo signals therefore contain 2 targets with different location and 

different velocity. Fig 5.24 shows an example of a multiple target detection process. 

The first graph shows the received signals after the ANFIS operation. After TME 

processing two target signals stand out. One positioned at 0.371s and the other at 0.751s. 

The amplitude of the first signal is stronger and is marked as the first target. This signal 

is removed and the TME operation will be executed again so that the information of the 

second target can be extracted more precisely. The last graph shows that the second 

target has also been extracted. Then this target is also been marked as a target and 

removed. Then the TME operation will examine the rest of received signals for the next 

target until no signal is beyond the amplitude threshold and then the system decides to 

stop target seeking and report information of previous two targets. In order to achieve 

the amplitude threshold for stop criteria of multiple target detection, signals without any 

target is fed into the sonar system and the results are examined. The maximum 

amplitude of the output of sonar system will be used as reference of the threshold. Fig 

5.25 shows the result of this operation. Simulation results from other different sets of 

input data, as presented in fig 5.26, shows even under the severe noisy environment 
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with SNR of -30dB, the position error rate for both targets is still within 1% and the 

estimation speed error rate is still within 5%. Therefore, the system fulfills the original 

specifications in the case of multiple target detection as well. 

Fig 5.24 Multiple Target Detection under SNR=-26dB before ANC operation, -1.7 dB after ANC 

Fig 5.25 Multiple Target Detection with no target 
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Fig 5.26 Error rate of Speed and Position Estimation 
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5.7 Conclusion 

This chapter introduces the implementation details of the proposed system. The 

hardware block diagram is firstly presented. The hardware platform is the Xilinx XUP 

Virtex II Pro Development System which contains a Virtex II pro XC2VP30 FPGA chip 

with 2 powerPC 405 cores and a comprehensive collection of peripheral components 

that can be used to communicate with PCs. Then the ANFIS implementation using the 

Xilinx EDK 10.1 and ISE 10.1 environment is described. Following the design 

considerations and tradeoffs during the implementation, the TME block is also 

presented in detail. In total the whole design only occupied 9 of out 136 18x18 bit 

multipliers, 32% slices and 79% of the block RAM on the XC2V30P chip. At last, 

simulation results for functionality verification are given. Single target detection and 

multiple target detection are both investigated and simulated on the proposed system. 

The noise used in the simulation is provided by the DSTL of MOD to simulate the real 

underwater environment. Simulations are carried out under reverberation-limited 

underwater environments with different SNR ranging from 0 to 30dB. The simulation 

results for a single target detection show the maximum location error appears at the 

lowest SNR environment. In simulations for single target detection, the maximum 

location error is 6 meters and the speed error is 1 knot. In terms of error rate against 

total range for speed and location, the location error rate is less than 1% and the speed 

error rate is less than 5%. Therefore the proposed system satisfactory fulfils the 

specifications for this project. In multiple target detection the maximum location error is 
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10 meters and the speed error is 1 knot, still with error rate less than 1% for location and 

5% for velocity. The simulation results clearly show the proposed system is able to fulfil 

the specifications of this project. 
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CHAPTER VI 

 

 

 

TESTING OF HARDWARE SYSTEM 

 

 

6.1 Introduction 

At the beginning of this chapter the testing environment of the proposed sonar detection 

system will be presented. The hardware platform will be introduced and details will be 

given. Two different tests of the proposed system on the hardware platform will be 

described. The first set is testing for single target detection, where input data only 

contains one single target buried in noise with different SNR ratios. The system will be 

tested under 16 sets of single target data with SNR ranging from 0dB to -30dB with 

intervals of every 2dB. Then the system will also be tested for its ability for multiple 

target detection. The input data contains 2 target signals and also the system will be 

tested for 16 sets of testing data with SNR ranging from 0dB to -30dB. Finally the 
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results of testing will be presented. 

6.2 Testing Environment and Hardware Platform 

The proposed system is implemented on a Xilinx University Program Virtex-II Pro 

Development System. It contains a Virtex II pro XC2VP30 FPGA chip with 2 powerPC 

405 cores. The board provides a comprehensive collection of peripheral components 

that can be used to communicate with PCs. The block diagram is shown in Fig 6.1: 

 

Fig 6.1 XUP Virtex-II Pro Development System Block Diagram 

The on-board system clock is 100MHz. In the XC2VP30 FPGA chip on board there are 

13969 slices, 428Kb distributed RAMs, 136 18bit multipliers, 2448Kb block RAMs, 8 

Digital Clock Manager (DCM) and 2 embedded PowerPC 405 RISC cores. A 256MB 

DDR RAM is added to the DDR SDRAM DIMM socket on the board. This RAM is 
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used to store the input data for ANFIS block such as received signal as training data, 

ambient noise and reverberation noise, etc, output results from ANFIS block and TME 

block, membership function parameters for ANFIS, if-then rule parameters for ANFIS 

block and partial computation results from ANFIS and TME. All implementations are 

compiled, synthesised, placed and routed on the XCV2P30 using XILINX ISE 10.1 and 

XILINX EDK 10.1.  

The test board is connected to a PC using a single RS-232 port. The PC will first send 

the input data into the onboard RAM through the RS-232 port, and then the ANFIS 

program compiled in instruction RAM on the FPGA chip will give instructions to the 

embedded RISC core-PowerPC 405 to fetch input data from the onboard RAM and 

perform the ANFIS operation. When the ANFIS operation is finished, all the data will 

be saved in the RAM, a LED light will be turned on and the TME logic will start 

working on the post-ANFIS data. When the target motion parameters are extracted, all 

information will be stored into the RAM and the output will be printed on the 

Hyper-terminal on the PC screen via the RS-232 port. 
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6.3 Single Target Detection Test 

In order to characterize the performance of the system the transit 2ms long morlet wavelet 

signal is adopted as the transmitted signal.  A returned echo signal where the target signal 

is buried at time of 0.4315 s in the noise with a SNR (signal-noise ratio) of -28dB is used 

as received signal.  The noises are constituted of white Gaussian noise and a 

reverberation waveform to simulate the real underwater environment amid the same 

environment settings as used in simulation in Chapter IV and V. This signal is sampled 

at 100 kHz in the maximum time range [0, 1] sec. Besides the returned echo signal with 

SNR of -28dB, another 15 sets of returned echo signal with different SNR range from 

0dB to -30dB are also tested on the hardware platform. 

 

Fig 6.2  Signals after TME Operation SNR=-28dB before ANC operation, 2.16 dB after ANFIS 

As shown in the fig. 6.2, the first signal is the input signal fed into the TME block, which 
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is the output of ANFIS with SNR reduction from -30dB to -2.16 dB. The following 

graph in fig. 6.2 represent output signal after the TME operation. In the graph shown 

above, the peak coefficient appears at the time 0.4328 s, which compares favorably with 

the theoretical result of 0.4315 s. By detecting the position of the highest coefficient, the 

time delay τ in Equation 4.2 is known. Also the corresponding scale s can be determined 

by examining which set of filter coefficients produces the highest CWT coefficient. 

Therefore, the motion parameters such as position and velocity can be determined using 

the definition of τ and s outlined in chapter IV. In this simulation, the calculated target 

location is 323.85 meters away, and velocity is 34 knots apart from the receiver, which 

compares favorably with real location of 322.85 meters away and 33 knots apart from the 

receiver. Furthermore, 15 more sets of input signals with different SNR range from 0 dB 

to -30dB are examined through hardware architecture. Fig 6.4 shows the error of testing 

results of different sets of input signal data. In the figure it shows the maximum error rate 

in position estimation is below 1% and the error rate of velocity estimation is below 5%. 

As shown in Fig 6.3, with the decrease of SNR the location error increases. This is 

because when the SNR decreases, the noise is increasing compared to the target signal. 

Therefore it is harder for the proposed system to eliminate the noise effect on target 

detection. However, with only 1% error rate in location error and less than 5% error in 

speed estimation it can be concluded that the hardware system is able to work correctly in 

real applications in an underwater environment for single target detection. 
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Fig 6.3  (a).Position Error (b) Speed Error 
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In Fig 6.4 shows for how much iteration the Optimization Block runs.  As the SNR 

gets lower and lower, the iteration numbers increases. However, even at the lowest SNR, 

-30 dB, the optimization block only runs for 18 times, which is almost 10 times less than 

traditional method by examining all the possibilities. Therefore, the computation load is 

almost 10 times less than for the global search algorithm. 

Fig 6.4  Optimization Iteration Numbers 

Fig 6.5 shows how many ANFIS epochs have been executed at noise with different 

SNR. It is clear that when the SNR is high, it will take no time for the ANFIS to remove 

noise. However, when the SNR decreases, the computation iterations will increase to 

deal with this.  
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Fig 6.5  ANFIS Epochs 
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6.4 Multiple Target Detection Test 

The noise still constitutes a white Gaussian noise and a reverberation waveform. The 

environment settings are still the same as in the single target detection test. The 

transmitted signal also remains unchanged. However, the returned echo signals will 

contain 2 targets with different locations and different velocity. Fig 6.6 and Fig 6.7 

shows an example of a multiple target detection process in an environment of SNR of 

-20dB. 

In Fig 6.6 two target signals without noise are shown. These two targets are assumed to 

be recorded by the receiver at 0.333s and 0.775s, respectively. In Fig 6.7 the first graph 

shows the output of the ANFIS operation. Then after the TME processing the two target 

signals stands out. One is at 0.336s and the other at 0.772s. The amplitude of the signal 

at 0.772s is stronger and then it is marked as the first target and this signal is removed. 

The TME operation will be executed again so that the information of the second target 

can be extracted more precisely.  

 

Fig 6.6  Original Target Position 
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Fig 6.7  Multiple Target Detection under SNR=-20dB before ANC Operation, -1.7 dB after ANC 

The last graph shows that the second target has also been extracted. Then this target has 

also been marked as a target and removed. Then the TME operation will examine the 

rest of received signals for next targets. If no signal is beyond the amplitude threshold as 

shown in Fig 6.8, then the system decides to stop target seeking and report the 

information of the previous two targets. Therefore, the two targets are estimated to be 
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Fig 6.8  TME results for no target signal 

at 0.772s and 0.335s, respectively. According to Eq 4.2, the location information can be 

easily computed. Since the sound speed underwater is 1500m/s, and the time estimation 

error is 0.003s, therefore the location error in this simulation is only around 2 to 3 

meters. 

Fig 6.9 and Fig 6.10 show the Location Estimation Error and Velocity Estimation 

Error rate of the system under different SNR environments for multiple target detection. 

It is clear that the speed error rate for both targets less than 5% and the location error 

rate is less than 1%. Therefore it is safe to claim the proposed sonar detection system for 

multiple target detection can fulfill the original specifications mentioned in Chapter III. 
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Fig 6.9 Position Error for Multiple Target Detection 

 

Fig 6.10 Speed Error for Multiple Target Detection 
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6.5 Conclusion 

This chapter introduces specifications of hardware design platform for implementation 

of the hybrid algorithm. It gives a general test flow from generating stimulus data for 

hardware testing to data processing during the test. The single target detection is 

analyzed on the first instance. With the noise data provided by the DSTL (Defense 

Science and Technology Laboratory) of MOD (Ministry of Defense), real underwater 

environment with different SNR ranging from 0dB to -30dB is tested on the hardware 

platform. The proposed system gives satisfactory performance for target detection with 

a maximum location estimation error rate less than 1% and velocity error rate less than 

5%. In absolute values, the error of location is within 10 meters and a velocity 

estimation error within 1 knot. The computation time is increased when the decrease in 

SNR because more iterations are required for the ANC to minimize the noise effect. The 

multiple target detection is also presented and simulated under same conditions for 

single target detection. The simulation results have demonstrated that the performance 

of the system is better than the original specifications given in chapter III. 
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CHAPTER VII 

 

 

ANALYSIS & DISCUSSIONS 

7.1 Introduction 

During the design complete process, the system undergoes three design stages. Firstly, 

the high level system model is built in Matlab and high level simulation on the proposed 

system for single target detection and multiple target detection under real underwater 

environment is carried out to verify the performance of the system. The proposed 

system is then implemented on a hardware platform in the Xilinx design environment 

through XILINX ISE 10.1 and XILINX EDK 10.1. The hardware code is tested in 

Mentor Graphics Modelsim XE 6.4b using the same stimulus as the simulations used 

for the Matlab model for both single target detection and multiple target detection. The 

last step of design process is to test the proposed system on real hardware platform. The 

system is tested on the Xilinx University Program Virtex-II Pro Development System. 

For three levels of simulation and testing, the input data used are the same 16 sets of 

single target data with SNR ranging from 0dB to -30dB with intervals of every 2dB, and 

the same 16 sets of multiple target data with SNR range from 0 to -30dB. In this chapter, 
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the simulation results for single target detection achieved in the order of high level 

simulation, hardware simulation and hardware testing will be discussed. The simulation 

results of multiple target detection will be analyzed in the same order following the 

discussion of single target detection. 

7.2 Single Target Detection 

 There are 16 sets of input data for single target detection with different SNR 

ranging from 0 to -30dB. The transit 2ms long morlet wavelet signal depicted in Fig. 7.1 

is adopted as the transmitted signal. The sample frequency is 100 kHz and the central 

frequency is 20 kHz. Fig 4.5 illustrates the composite signal where the contact signal is 

buried in the noise with the target strength of approximate -24dB at the position of 

0.8359s with velocity of 20 knots. This signal is sampled at 100 kHz in the maximum 

time range [0, 1] sec. The noise consists of white Gaussian noise and reverberation 

waveform to simulate the real underwater environment, which is provided by the MOD, 

for the following environment settings: sea depth (=100m), sonar depth  

Fig 7.1 Transmit Signal 
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 (=50m) wind speed (=6m/s ∼ sea state 3), seabed type (=medium sand).  

As explained in Chapter IV, the returned echo is fed into an Adaptive Noise 

Canceller to minimize the noise effect. To characterize the performance of the proposed 

system, the system is tested by 16 different sets of input data with different SNR 

ranging from 0dB to -30dB. The statistics of the location error and the speed error under 

different SNR conditions are shown in Fig 4.11 in Chapter IV. It is clear that the 

location error is less than 2 meters and the speed error is less than 1 knot. Since the 

original specification only requires the system to be able to determine the speed of a 

moving target up to 50 knots with the resolution of 1 knot . In terms of error rate against 

total range for velocity and location, the numbers are within 4% and 0.5%, correspondly. 

Therefore, it s safe to conclude that based on the Matlab simulations the proposed 

system can fulfil the specifications for this project for single target detection. 

These 16 sets of data are also simulated in Modelsim to verify the functionality and 

performance of the proposed hardware-based system. The transmit signal remains the 

same as shown in Fig 7.1, and all the returned echoes are buried in severe noise. The 

statistics of all 16 simulation sets are presented in Fig 5.23 in Chapter V. In the figure it 

shows the maximum error in position estimation is below 6 meters and the error range of 

the velocity estimation is from -1 knots to 1 knot. It is no surprise to see that the maximum 

location error appears at the environment with SNR of -30dB. In environments with 

lower SNR, the noise amplitude is larger and it will be harder to remove the noise effect 

on target detection. It should also be noticed that even the speed resolution remains under 
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1 knot in the hardware based simulation; the resolution of speed estimation is decreased 

to 0.5 knot because there are only 121 sets of the filter coefficients to represent the 

velocity range from -60 knots to 60 knots, where negative velocity indicates the target is 

moving away from the receiver and positive velocity means the target is moving toward 

the receiver. In general the location error in the hardware-based simulations is bigger than 

the location error of simulations in matlab because in hardware the precision of the 

computation is compromised due to hardware limitations. Taking the TME 

implementation as an example, in matlab simulations there are 10000 versions of dilated 

mother wavelets for target detection. However, the hardware cost will not be affordable if 

all versions of dilated mother wavelets are transplanted into hardware platform. 

Therefore, only 121 versions of dilated mother wavelets are introduced in the proposed 

system. Same tradeoffs happen in implementations of membership functions in the 

ANFIS operation as described in Chapter V. Therefore, computation errors are inevitably 

increased. 

 The same test data are used for hardware testing on the real development board. The 

proposed system is realized on a Xilinx University Program Virtex-II Pro Development 

System. In chapter VI, the testing results are presented. The statistics of all 16 sets of 

testing data is shown in Fig 6.4. Most of the testing data fits the simulations on hardware 

codes in Modelsim.With only less than 1% error rate in location and 4.5% error rate in 

velocity, which in absolute values are 8 meters in the location error and 1 knot error in 

speed estimation, it can be concluded that the hardware system is able to work correctly 
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in real applications in an underwater environment for single target detection. 

7.3 Multiple Target Detection  

 Multiple target detection is first simulated in Matlab on the high-level system.  

The overall simulation results for multiple target detection in Matlab are shown in 

Fig 4.16, Chapter IV. The location error is still within 1 meters and velocity estimation 

error is still less than 1 knot for both targets. 

The same simulations are carried out in Modelsim for functionality and 

performance verification of the proposed hardware implementation and in the testing 

procedure of hardware itself. The simulation error statistics are shown in Fig 6.10 in 

Chapter VI. The testing results fit the results in the Modelsim simulation very well. 

From Fig 6.10 it is clear that the speed error for both targets is less than 1 knot and the 

location error are less than 10 meters. The error rate for speed is within 5% and location 

error rate is within 1%. Therefore it is safe to claim the proposed sonar detection system 

for multiple target detection can fulfill the original specifications mentioned in Chapter 

III. 

7.4 Discussions 

As mentioned in previous chapters, Active side-scan sonar [1-4] is also commonly 

used for forming high resolution images of underwater scenes. Side-scan systems form 

an image of a target scene by transmitting a succession of sound pulses (referred to as 

„pings‟) and recording the echoes from the target scene using a very narrow beam width 

receiver. An image of a target scene is built up a line at a time by moving the 
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transmitting / receiving platform past the target area. The azimuth resolution of a 

side-scan sonar system can be increased by using a higher pulse frequency and / or a 

larger physical aperture. The attenuation of sound in water increases with frequency, 

creating a tradeoff between azimuth resolution and maximum range of side-scan sonar 

systems. The maximum physical length of the sonar array is limited by practical 

constraints. 

The advantage of side-scan sonar is that it is able to provide a through image for 

underwater scenes in a certain area, however, this image cannot provide any velocity 

information for a certain target and post-processing of imaging is required to extract 

certain target motion information such as location and velocity. The proposed 

wavelet-based active sonar system, on the other hand, provides another way to examine 

target motion parameters. With the similar representation form between the returned 

echo in a wideband sonar system and the transformed signal by the Continuous Wavelet 

Transform (CWT), the seeking of target motion parameters can be achieved by finding 

parameters of returned echo through CWT. Therefore, the proposed sonar system can 

get the target motion parameters more quickly than side-scan sonar and less resource are 

required because no array of receivers is needed. 

Cross-correlation techniques [5-8] are also widely used in target parameter 

extraction in sonar system. Although cross-correlation technique works well dealing 

with ambient noise; its performance on reverberation noises is limited due to the 

similarity between reverberation noises and target echo. Therefore in environment with 
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severe reverberation cross-correlation is seldom used alone. With combination of 

Adaptive noise canceller and wavelet transform the proposed system can deal with both 

ambient noise and reverberation noises.  

Fig 7.2 shows how many ANFIS epochs have been executed at noise with different 

SNRs. ANFIS is the most time consuming function block in the proposed system. 

Therefore, the process time of the ANFIS will determine the speed of the proposed 

system. It is clear that when the SNR is high, it will take no time for ANFIS to remove 

the noise. However, when the SNR decreases, the computation iterations will increase to 

deal with more complex noises. When the SNR reached -30dB, it took 47 epochs for the 

ANFIS to finish the process. In hardware testing, it takes up to 50 seconds to finish the 

processing. Therefore, reducing the process time is the key factor to improve the speed 

of the proposed system.  
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Fig 7.2 ANFIS Epochs 

Under -30dB, it takes 2 minutes to complete the whole process on PC but only 58 

seconds on FPGA platform. It is obvious FGPA implementation is faster than running 

the proposed system on PC. However, there are other platforms which can improve the 

performance of the system. Improving the hardware working frequency is helpful to 

accelerate the performance in terms of speed. The highest clock frequency of the 

embedded core for current platform is 300MHz. However, the highest frequency of 

DSP can reach 900MHz to 1100MHz and if this design is transplanted to platform with 

advanced DSP chip, the performance of the ANC will be increased significantly. The 

reason for choosing FGPA platform is the tradeoff between price and performance. The 

expense of highest performance DSP platform is 10 times higher than current FPGA 
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platform, but the performance improvements will not reach10 times. Meanwhile, 

FPGA implementation is closer to ASIC platform implementation, which gives higher 

speed and less cost. The working frequency of ASIC design can easily reaches 

1000MHz or higher, in the meantime the cost is close to the cost of FPGA platform. 

Considering the possibility of moving proposed design into ASIC platform in the 

future is one reason to choose FPGA implementation as well. 

Besides the ANFIS operation, though the local optimum search algorithm reduces 

the computation time of the CWT almost by half in this novel hybrid system, the CWT 

operation is still the most time-consuming block in the TME. As described in Chapter V, 

the CWT operation is implemented using only five multipliers. The initial aim is to 

reduce the area consumption as well as the power consumption. However, the 

synthesized results show that there are still tens of multipliers that have been saved. In 

order to increase the performance of the CWT, adding some parallel multipliers would 

be the most convenient method. However, more parallel multipliers mean more power 

will be required and more area is consumed. Also the hardware complexity is increased. 

The timing for memory access would become more complex. Some trade-offs can be 

introduced to increase the performance. 

One possible solution and trade-off would be to transfer the hybrid system into ASIC 

platform. On ASIC platform the cost of the system would be lower and more 

importantly, the performance of the system will increase because the ASIC platform has 

faster working frequencies. However, transporting the design from FPGA platform to 
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ASIC platform would require some changes to the existing design. First of all the 

memory descriptions in the FPGA design should be changed according to the 

fabrication factory and fabrication technique since each technique or factory has its own 

memory libraries. Secondly since the ANFIS part is written in C and compiled by 

XILINX EDK 10.1, the ANFIS part should be rewritten into HDLs so that it can be 

used with the ASIC platform. Additionally all layouts of each functional block should 

be reconsidered to fit into the fabrication process. In the meantime, the design flow of 

the ASIC platform is more complex than the FPGA design since the functionality cannot 

be tested on real chips but only simulated in EDA tools. Therefore, the design flow of 

the ASIC platform requires more care and it might take considerable time to move the 

FPGA design to the ASIC platform. However, the performance of the current system 

would be improved significantly on ASIC platform.  
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CHAPTER VIII 

 

 

CONCLUSIONS AND FUTURE WORK 

 

 

8.1 Aimed Reviewed 

A novel hybrid algorithm developed for underwater active sonar echolocation system has 

been proposed, implemented and tested based on an FPGA technique on a Xilinx 

University Program Virtex-II Pro Development System. The test results clearly state 

that the proposed system is capable of extracting exact target location and velocity 

information under reverberation-limited and shallow-water environment.  

A review of the aims of the project, given at the end of Chapter I, shows a positive view 

on the acheivements. In fact, not only are all the original goals satisfactionary reached, 

some additional possibilities were also investigated during the implementation of the 

proposed system.  

The hybrid algorithm combing neural network, fuzzy logic, local optimum search and 
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cross-correlation techniques for underwater sonar echo detection is propsed in a 

theortical platform,  simulated and verified in Matlab, and then implemented on a 

commonly used FPGA hardware platform. The details of each stage of implementation 

are descirbed in previous chapters. 

As put forward from the aims of the project, simulation results in Matlab and test results 

feeding back from the hardware platform all indicate this proposed system can exactly 

extract the target location and velocity information under severe noisy underwater 

conditions. The ANFIS succesfully removes the majority of noise and significantly 

increases the SNR. The noises left did not affect the efficiency of target extraction by 

wavelet transform. The requirement of resolution of target information on location and 

velocity was then easily satisfied.  

Furthermore, the combination of a continuous wavelet transform and local optimum 

search algorithm kept the resolution advantage of the CWT and signicantly reduces the 

traditonal heavy computation time and resource requirements. This novel 

implementation of CWT is able to reduce by around 8 to 10 times the computation load 

compared to the conventional design. 

In the meanwhile, besides the original project specifications, multiple target detection 

has also been investigated. Once target information is extracted, the target signal will be 

removed from received echo signals and the TME function block will process the rest of 

the signal again to examine whether there is another target signal buried in it. If another 

target is found, then the target information will be stored and this target signal will also 
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be removed before executing the TME on rest of the signal to check for other target 

information. These iterations will go on and on until all wavelet coefficients of the rest 

of the signals are below the threshold, which is defined according to the amplitude of 

the wavelet coefficients of pure noise. 

The implementation of the ANFIS on the hardware system is also an exploration of a 

new area. The ANFIS is very effective for dealing with the chaotic nature of impulse 

noise; however, the heavy computation load limits its use in practical applications. In 

this proposed design, the ANFIS system is implemented using the embedded RISC core 

in the FPGA chip. 2 inputs and 4 membership functions are adopted in the design. The 

ANFIS function is written in the C-language, compiled by XILINX EDK 10.1 and 

stored in instruction rams for the embedded RISC cores. Once the hardware system is 

processing the input signals, these instructions will direct embedded RISC cores to 

operate the arithmetic operations needed for the ANFIS and feed back the results to the 

hardware system. In this way, the translation time for the ANFIS hardware 

implementation from a high-level language to a hardware language is reduced by the 

compiler of the XILINX EDK 10.1. Since the embedded RISC cores take most of the 

ANFIS computations, it will not consume the ordinary FPGA resources. Therefore, the 

hardware consumption is reduced. Following this method, if the technique of embedded 

DSP core develops to a certain scale, a real time implementation of the ANFIS on a 

FPGA would be feasible.  

In general, the implementation of the proposed novel hybrid algorithm for an 
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underwater active sonar echo location system presented in this project, demonstrated the 

following benefits: 

 The novel implementation of CWT by combining CWT with local optimum search 

algorithm significantly saves computation time for CWT and makes it more feasible 

to practical applications and real time applications. 

 

 The implementation of the ANFIS on an FPGA board indicates in the future a 

real-time ANFIS operation VLSI implementation would be possible. 

 

 The hybrid system explore the possibility of using ANFIS and CWT in practical 

applications and the test results supports the capability of the hybrid system and it is 

a new way to adopt computation-consuming algorithms such as ANFIS and CWT 

in practical applications. 

 

 The test for multiple target detection shows the proposed system is not only be able 

to capture the information of a single target, it can also detect multiple targets under 

severe noisy system precisely. 

 

 The implementation on a commonly used hardware system indicates the cost of this 

proposed system is affordable for most institutions. Therefore resource cost would 

not be a limit to turn this proposed system into real applications. 
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 The test results show with limited hardware resources, the proposed hybrid sonar 

system is still able to produce satisfactory target information. 

 

8.2 Future Work 

Although the proposed system fulfills all the specifications, there are still some 

areas that can be investigated to improve the performance of the hybrid system. 

 

8.2.1 Performance improvement of ANFIS 

Though the embedded RISC cores take most of the operation load of the 

ANFIS，the huge computation load for ANFIS operation still eliminates the 

possibility for ANFIS to finish the task in real time . The highest core frequency 

of the embedded core is 300MHz. However, as discussed in Chapter VII, the 

latest technology already raises the working frequency of DSP chip to 900MHz 

to 1100MHz. Therefore, if the hybrid system is transferred to the latest DSP 

platform and interleaving the data process with parallel process flows, the 

performance of the system will be increased significantly. 

 

8.2.2 Improving the speed for CWT operation 

Though the local optimum search algorithm reduces the computation time of 

the CWT almost by half in this novel hybrid system, the CWT operation is still 

the most time-consuming block in the TME. As mentioned in Chapter V, the 

CWT operation is implemented using only five multipliers. The initial purpose 



175 

 

 

is to reduce the area as well as the power consumption. As discussed in Chapter 

VII, there are still some multipliers not used. Adding parallel multipliers into 

the system would be the most convenient method to improve the performance. 

However, more parallel multipliers mean more power consumption and more 

area cost. Also the hardware complexity is increased such as the coefficient 

addressing for each multiplier. Some trade-offs would be introduced to increase 

the performance. 

 

8.2.3 ASIC implementation of proposed design 

Though the FPGA board which this project is based on is already affordable for 

most institutions, the most efficient implementation of proposed system would 

be based on ASIC (Application Specific Integrated Circuits) platform. However, 

transporting the design from FPGA to ASIC platform will require modifications 

of hardware code. First of all the memory descriptions in the FPGA design 

should be changed according to the fabrication factory and fabrication 

technique since each technique or factory has its own memory libraries. 

Secondly since the ANFIS part is written in C and compiled by XILINX EDK 

10.1, the ANFIS part should be translated into HDL (hardware Description 

Language) so that it can be incorporated onto the ASIC platform. Additionally 

all layouts of each functional block should be reconsidered to fit into the 

fabrication process. In the meantime, the design flow of the ASIC platform is 

more complex than the FPGA design since the functionality cannot be tested on 
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real chips but only simulated in the EDA tools. Therefore, the design flow of the 

ASIC platform requires more workload.  

Taking all considerations above, it might take considerable time to move the 

FPGA design to the ASIC platform. However, the performance of current 

system would be improved significantly on the ASIC platform. Thus if possible, 

the following work should be carried out. 
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APPENDIX A DESIGN AND SIMULATION ENVIROMENT AND 

TOOLS 

Software 

Purpose Software Package Used 

High level System Modelling& Simulation Matlab, 7.5 

RTL design Xilinx ISE 10.1 

RTL simulation Modsim XE III 6.4b 

ANFIS implementation Xilinx EDK 10.1 

Communication between PC and 

development board 
Xilinx EDK 10.1& Matlab 

 

Hardware 

Xilinx University Program Virtex-II Pro Development System 
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SOURCE CODE 
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function [estimated_gwave,SNR_new,t_anfis,anfis_para]=... 

    

anfis_wideband(gwave,noise_data,disp,resp,wave,SNR,m_type,anfis_para,t

me) 

global save_dir main_dir 

% adaptive noise cancellation using the Fuzzy Toolbox functions ANFIS and 

% GENFIS1 

  

%% Building the ANFIS (adaptive neuro-fuzzy inference system) model to 

% identify the nonlinear relationship between n1 (original noise source) 

and n2 (unknown). Though 

% n2 is unknown, we can take the 'P_sig=gwave+n2' as a 'contaminated' version 

of n2 

% for training. Thus, the noise-free 'gwave' is treated as 'noise' in this 

% kind of nonlinear fitting. 

% Since the order of the nonlinear channel set to D, we can use 

% the number of D-input ANFIS for training.  

% We assume 2 membership functions (default choice) per input, so the total 

% number of fuzzy rules for learning is D^2=16.  

% The FIS membership function parameters are trained based on a combination 

of least-squares  

% and backpropagation gradient descent methods to a given set of 

% input/output data. The step-size for these optimization methods are set 

% to 0.2 (default = 0.01) 

% STEPSIZE: step size of LSE 

% epoch.anr: maximum epoch number to run the training process 

% EPOCH_FL: final epoch number to stop the training process 

% ERROR_G: noise training error goal 

% 

fprintf('\nMaximum training epoch No. = %g.',anfis_para.epoch); 

fprintf('\nInitial step-size = %g.',anfis_para.int_ss) 

fprintf('\nThe noise training error goal = %g.',anfis_para.err_g); 

fprintf('\nANFIS data training rate: %g%%, ANFIS data checking 

rate: %g%%',anfis_para.data_rate(1),anfis_para.data_rate(2)); 

% 

tic 

Data=[noise_data gwave.gwave_map_total']; 

trn_data=Data(1:floor(end/100*anfis_para.data_rate(1)),:); % training 

data sets 

chk_data=Data(floor(end/100*anfis_para.data_rate(2))+1:end,:); % 

checking data sets 

% generating the initial FIS using GENFIS1 
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inmf_type=anfis_para.mf.inmf; 

outmf_type=anfis_para.mf.outmf; 

mf_n=anfis_para.mf_n; 

in_fismat=genfis1(trn_data,mf_n,inmf_type,outmf_type); % generating the 

initial FIS applying the generalized bell function (gbellmf) or  

                                            % the Gaussian membership function 

(gaussmf) 

% using ANFIS to fine-tune the initial FIS 

trn_opt=[anfis_para.epoch,anfis_para.err_g,anfis_para.int_ss]; 

if disp==0 

   disp_opt=[0,0,0,0]; 

else  

   disp_opt=[1,1,1,1]; 

end 

[out_fismat1,rmse_trn,stepsize,out_fismat2,rmse_chk]=anfis(trn_data,in

_fismat,trn_opt,disp_opt,chk_data); 

% using EVALFIS to simulate the FIS 

estimated_n2=evalfis(noise_data,out_fismat2); 

% esimation of the noise-free return signal 

estimated_gwave=gwave.gwave_map_total-estimated_n2'; 

% time consumption 

t_anfis=toc; 

diff_n2=estimated_gwave-gwave.gwave_map_m; 

% 

SNR_new=10*log10(max(abs(gwave.gwave_map_m).^2)/var(diff_n2)); 

I=find(rmse_trn>0); 

epoch_fl=I(end); 

anfis_para.epoch=epoch_fl; 

fprintf('\nThe SNR is increased to %g dB.\n',SNR_new); 

if disp==1 

   % plot the input/out membership functions 

   [x11,y11]=plotmf(in_fismat,'input',1); 

   [x12,y12]=plotmf(in_fismat,'input',2); 

   % 

   [x21,y21]=plotmf(out_fismat2,'input',1); 

   [x22,y22]=plotmf(out_fismat2,'input',2); 

   % 

   char_s=['-.','--','. ',': ']; 

   j=1; 

   figure, 

   subplot(221) % membership functions corresponding to the first input data 

   for i=1:mf_n 
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       plot(x11(:,i),y11(:,i),char_s(j:j+1),[0 0],[0 1]); 

       hold on 

       j=j+1; 

   end 

   title('(a)Initial MFs on x'); 

   xlabel('x'); 

   hold off 

   % 

   j=1; 

   subplot(222) % membership functions corresponding to the second input 

data 

   for i=1:mf_n 

       plot(x12(:,i),y12(:,i),char_s(j:j+1),[0 0],[0 1]); 

       hold on 

       j=j+1; 

   end 

   title('(b)Initial MFs on y'); 

   xlabel('y'); 

   hold off 

   % 

   j=1; 

   subplot(223) % membership functions corresponding to the first output 

data 

   for i=1:mf_n 

       plot(x21(:,i),y21(:,i),char_s(j:j+1),[0 0],[0 1]); 

       hold on 

       j=j+1; 

   end 

   title('(c)Final MFs on x'); 

   xlabel('x'); 

   hold off 

   % 

   j=1; 

   subplot(224) % membership functions corresponding to the second output 

data 

   for i=1:mf_n 

       plot(x22(:,i),y22(:,i),char_s(j:j+1),[0 0],[0 1]); 

       hold on 

       j=j+1; 

   end 

   title('(d)Final MFs on y'); 

   xlabel('y'); 
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   hold off 

   % plotting the results 

   figure, 

   subplot(211), % RMSE of training and checking data 

   semilogy(I,rmse_trn(I),'--',I,rmse_chk(I),'-'); 

   title('RMSE of interference'); 

   xlabel('Epoch number'); 

   ylabel('RMSE') 

   legend('RMSE_{trn}','RMSE_{chk}'); 

   % 

   subplot(212), % LSE step size 

   plot(I,stepsize(I)) 

   title('Step-size for LSE'); 

   xlabel('Epoch number'); 

end 

% save data into a file 

  

if resp.saveMode=='y' 

    cd(save_dir);  

    if tme.epoch>=1 

       switch resp.noise_type 

           case 'rever'                

                 

save(strcat('rever_anfis_full_',m_type,'t_',wave.name,num2str(wave.tim

e*1.0e3),'_',num2str(SNR),'db'));              

           case 'gauss'                

                 

save(strcat('gauss_anfis_full_',m_type,'t_',wave.name,num2str(wave.tim

e*1.0e3),'_',num2str(SNR),'db'));                 

           case 'rever_n_gauss'               

                 

save(strcat('rng_anfis_full_',m_type,'t_',wave.name,num2str(wave.time*

1.0e3),'_',num2str(SNR),'db'));               

       end 

    else 

       switch resp.noise_type 

           case 'rever'               

                 

save(strcat('rever_anfis_ANR_',m_type,'t_',wave.name,num2str(wave.time

*1.0e3),'_',num2str(SNR),'db'));              

           case 'gauss'                 
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save(strcat('gauss_anfis_ANR_',m_type,'t_',wave.name,num2str(wave.time

*1.0e3),'_',num2str(SNR),'db'));                 

           case 'rever_n_gauss'                

                 

save(strcat('rng_anfis_ANR_',m_type,'t_',wave.name,num2str(wave.time*1

.0e3),'_',num2str(SNR),'db'));                

       end 

    end         

    cd(main_dir); 

end 

clear genfis1 anfis evalfis % clear up anfis, i.e. initialize anfis 

 

function [coefs,filter_opt,scale_opt,it_no,dF] = cwt_s(SIG,opt_cwt) 

%   computes the optimal continuous 

%   wavelet coefficients of the vector S at real, positive 

%   SCALES. 

%   The signal S is real, the wavelet can be real or complex.  

% 

%   COEFS = CWT(S,SCALES,'wname','plot') computes 

%   and, in addition, plots the continuous wavelet 

%   transform coefficients. 

% 

  

val_SIG   = SIG(:)'; 

lenSIG=length(SIG); 

  

if ~isnumeric(SIG) 

    errargt(mfilename,'Invalid Value for Signal !','msg'); 

    error('*') 

end 

% calculate the optimal scale 

cum_WAV=opt_cwt.P_opt.cum_psi; 

xval=opt_cwt.P_opt.xval; 

xWAV=xval-xval(1); % starting from 0 

xMaxWAV = xWAV(end); 

% 

cwt_options=opt_cwt.options; % options from fminbnd 

cwt_scale=[opt_cwt.scale_bnd(1),opt_cwt.scale_bnd(2)]; 

switch opt_cwt.method 

    case 'fminbnd' 

        [scale_opt,fval,exitflag,output]=fminbnd(@(scale) 

cwtfun_scale(scale,SIG,cum_WAV,xWAV),cwt_scale(1),cwt_scale(2),cwt_opt
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ions); 

    otherwise '' 

end 

opt_tap = 

[1+floor([0:scale_opt*xMaxWAV]/(scale_opt*xMaxWAV)*(numel(xWAV)-1))]; % 

generate a scaled index      

if opt_tap(end)>length(cum_WAV) 

   op_tap=wkeep1(opt_tap,length(cum_WAV),'c');    % keep the central part 

   op_tap=op_tap-(op_tap(end)-length(cum_WAV));   % shift to the left 

   zo_idx=find(op_tap<=0); 

   if ~isempty(zo_idx) 

      op_tap=op_tap(zo_idx(end)+1:end);       % keep the positive index 

   end 

else 

   op_tap=opt_tap; 

end 

if length(op_tap)==1 ,  

    op_tap = [1 1];  

end 

% calculate the optimal filter coefficients 

filter_opt = -sqrt(scale_opt)*diff(fliplr(cum_WAV(op_tap))); % filter 

coefficients where cumsum(phi(l))dl=cumsum(Z(-l))dl 

coefs = wkeep1(conv2(val_SIG(:)',filter_opt(:)','full'),lenSIG,'c'); 

% pad the filter with zero 

tap_no=numel(filter_opt); 

it_no=output.iterations; 

dF=gradient(coefs.^2); 

fprintf('\nThe maximun iteration = %g.\n',it_no); 

fprintf('\nThe optimal scale = %g.\n',scale_opt); 

fprintf('\nThe number of FIR filter taps = %g.\n',tap_no); 

%---------------------------------------------------------------------

----- 

% subfunction 

%  

function [F] = cwtfun_scale(scale,SIG,cum_WAV,xWAV) 

% subfunction of fminbnd.m used to generate the least square cost 

  

val_SIG = SIG(:)'; 

lenSIG  = length(val_SIG); 

xMaxWAV = xWAV(end); 

  

Jt = [1+floor([0:scale*xMaxWAV]/(scale*xMaxWAV)*(numel(xWAV)-1))];      
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if Jt(end)>length(cum_WAV) 

   J=wkeep1(Jt,length(cum_WAV),'c');   % keep the central part 

   J=J-(J(end)-length(cum_WAV));       % shift to the left 

   zo_idx=find(J<=0); 

   if ~isempty(zo_idx) 

      J=J(zo_idx(end)+1:end);             % keep the positive index 

   end 

else 

   J=Jt; 

end 

if length(J)==1 ,  

   J = [1 1];  

end 

fir_filter = -sqrt(scale)*diff(fliplr(cum_WAV(J))); % filter coefficient 

where cumsum(phi(l))dl=cumsum(Z(-l))dl 

coefs = wkeep1(conv2(val_SIG(:)',fir_filter(:)','full'),lenSIG,'c'); 

F=-norm(coefs)^2; % pick the maximum value in the scale axis of CWT 

coefficients for each sampling time point 

% 

function [F] = cwtfun_s(scale,SIG,val_WAV,xWAV) 

% subfunction of fminbnd.m used to generate the least square cost 

  

val_SIG = SIG(:)'; 

lenSIG  = length(val_SIG); 

xMaxWAV = xWAV(end); 

%coefs     = zeros(1,lenSIG); 

  

j = [1+floor([0:scale*xMaxWAV]/(scale*xMaxWAV)*(numel(xWAV)-1))];      

if length(j)==1 ,  

   j = [1 1];  

end 

fir_filter = -diff(sqrt(scale)*fliplr(val_WAV(j))); % filter coefficient 

where cumsum(phi(l))dl=cumsum(Z(-l))dl 

coefs = wkeep1(conv2(val_SIG(:)',fir_filter(:)','full'),lenSIG,'c'); 

F=-norm(coefs)^2; % pick the maximum value in the scale axis of CWT 

coefficients for each sampling time point 

%F=-max(abs(coefs).^2); 

if nargout >1 

  DF=gradient(F); 

end 

% 
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function coefs=fcwt(SIG,scales,wname) 

% CWT Real or Complex Continuous 1-D wavelet coefficients. 

% COEFS=FCWT(F,SCALE,'WNAME') 

% fast computation of the continuous wavelet coefficient of the input signal 

f(t) based on the given mother wavelet.  

  

% Check signal. 

%-------------- 

val_SIG = SIG; 

lenSIG  = length(val_SIG); 

xSIG    = (1:lenSIG); 

stepSIG = 1; 

  

% Check wavelet. 

%--------------- 

val_WAV = WAV; 

lenWAV  = length(val_WAV); 

xWAV = linspace(0,1,lenWAV); 

stepWAV = 1/(lenWAV-1); 

xMaxWAV = xWAV(end); 

val_WAV = stepWAV*cumsum(val_WAV); 

%---------------------------------------------------------------------

----- 

val_SIG   = val_SIG(:)'; 

nb_SCALES = length(scales); 

coefs     = zeros(nb_SCALES,lenSIG); 

ind  = 1; 

for k = 1:nb_SCALES 

    a = scales(k); 

    a_SIG = a/stepSIG; 

    j = [1+floor([0:a_SIG*xMaxWAV]/(a_SIG*stepWAV))];      

    if length(j)==1  

        j = [1 1];  

    end 

    f            = fliplr(val_WAV(j)); % flip matrix (or vector) left/right 

    % keep central part of the vector, 1D convolution of val_SIG and f 

    coefs(ind,:) = -sqrt(a)*wkeep1(diff(wconv1(val_SIG,f)),lenSIG,'c');  

    ind          = ind+1; 

end 

% 

function [npf,zz,xx,yy]=noise_functions(noise_fun,dn,domain) 

% 
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% noise functions applied to the noise path filters 

% 

[xx,yy]=meshgrid(domain(1,:),domain(2,:)); 

x1=dn(1,:); % first parameter 

x2=dn(2,:); % second parameter 

nstr=strfind(noise_fun,' '); 

if nstr~[] 

   noise_fun=noise_fun(1:strfind(noise_fun,' ')-1); 

end 

switch noise_fun 

    case 'rbf' 

        npf=100*(x2-x1.^2).^2+(1-x1).^2; % rosenbrock banana function 

        zz=100*(yy-xx.^2).^2+(1-xx).^2; % desampling         

    case 'sine' 

        npf=4.*x1.^2.*x2.^2.*(sin(x1+x2)+4*x2); 

        zz=4.*xx.^2.*yy.^2.*(sin(xx+yy)+4*yy); 

    case 'exp' 

        npf=exp(x1).*(4*x1.^2+2*x2.^2+4*x1.*x2+2*x2+1); 

        zz=exp(xx).*(4*xx.^2+2*yy.^2+4*xx.*yy+2*yy+1); 

end 

 

function [mcwt]=optimal_scale(SIG,mwave,options) 

  

cum_WAV=mwave.cum_psi; 

xWAV=mwave.xval; 

% 

  

if ~isnumeric(SIG) 

    errargt(mfilename,'Invalid Value for Signal !','msg'); 

    error('*') 

end 

  

xMaxWAV = xWAV(end); 

% 

scale_ub=mwave.scale_ub;  % local upper bound of scale (34 for 10ms) 

scale_lb=mwave.scale_lb;  % local lower bound of scale  

  

[scale_opt,fval,exitflag,output]=fminbnd(@(scale) 

cwtfun_s(scale,SIG,cum_WAV,xWAV),scale_lb,scale_ub,options); 

%fprintf('\nThe optimal scale = %g.\n',scale_opt); 

  

tap_range = 
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[1+floor([0:scale_opt*xMaxWAV]/(scale_opt*xMaxWAV)*(numel(xWAV)-1))]; % 

generate a scaled index      

if length(tap_range)==1 ,  

    tap_range = [1 1];  

end 

mcwt.tap_range=tap_range; 

mcwt.scale=scale_opt; 

% 

function 

[map_coefs_den,time_hbd,filter_opt,scale_filter,tme,tar_ss,pflag_tme,t

arget,SIG_wdenX]=map_wden(varargin) 

% postprocessing de-noising scheme: combination of CWT and WDeN to process 

the noisy signal 

% SNG: input signal 

  

echo=varargin{1}; 

wden_options=varargin{2}; 

SIG=varargin{3}; 

tme=varargin{4}; 

%mwave=varargin{5}; 

t_N=varargin{5}; 

N=length(t_N); 

target=varargin{6}; 

opt_map=varargin{7}; 

anfis_para=varargin{8}; 

pflag_tme=varargin{9}; 

tar_ss=varargin{10}; 

psd_total=varargin{11}; 

resp=varargin{12}; 

prange=varargin{13}; 

wave=varargin{14}; 

  

% WDEN options 

if tme.epoch>0 

   tptr=wden_options.tptr; 

   sorh=wden_options.sorh; 

   scale_th=wden_options.scale_th; 

   dec_level=wden_options.dec_level; 

   wav=wden_options.wav; 

end 

  

fs=echo.fs; 
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psi_step=t_N(2)-t_N(1); 

tar_ss.test_failure=1; 

% 

ct=0; % count for WDen at the first and last loop 

SIG_seg=numel(SIG)/echo.seg; 

if isempty(target.locations_t) 

    target.locations_t=target.locations(end); 

end 

     

psd_den=sqrt(sum(abs(SIG).^2.*psi_step)); 

psd_den_rate=(1-psd_den/psd_total); % power cut in percentage 

fprintf('\nThe power cut rate: %g%%.\n',psd_den_rate);          

rp100_alpha1(1)=tme.rp100; % TM-alpha 1 

t1_anr=clock; 

% 

if resp.cross_test=='y' 

    switch wave.name % scaled transmitted signal 

        case 'morl' 

            [psi_w]=morlet_wave(prange,echo,1,0); 

        case 'mexh' 

            [psi_w]=mexihat_wave(prange,echo,1,0); 

        case 'glfm' 

            [psi_w]=gauss_wlfm(prange,echo,1,0); 

        otherwise 

            errargt(mfilename,'Unknown transmitted signal!','msg'); 

            error('*'); 

    end 

end 

% 

for j=1:echo.seg 

    range=(j-1)*SIG_seg+1:j*SIG_seg; 

    coefs_sig0=SIG(range);     

    % ANC 

    tme_count=1; 

    if resp.cross_test=='n' 

        % CWT 

        [coefs,filter_opt,scale_opt,it_no,dF]=cwt_s(coefs_sig0,opt_map); 

    else 

        % cross correlation 

        

[coefs,filter_opt,scale_opt,it_no]=xcross(coefs_sig0,opt_map,psi_w);         

    end 
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    % collect data 

    map_coefs_den(tme_count,range)=coefs; 

    scale_filter(1,tme_count)=scale_opt; 

    scale_filter(2,tme_count)=numel(filter_opt);  

    scale_filter(3,tme_count)=it_no; 

    peak_anc=find(map_coefs_den(1,:)==max(map_coefs_den(1,:)),1); 

    target_abs=abs(peak_anc-target.locations_t); 

    ind_target=find(target_abs==min(target_abs),1); 

    anc_accuracy=target_abs(ind_target); 

    dFM(1,range)=dF; 

    d2F=gradient(dF); % 2nd order derivative     

    d2FM(1,range)=d2F; 

    F2(1,:)=abs(d2FM(1,:)-dFM(1,:));          % find active points 

    max_peak_F2(1)=find(F2(1,:)==max(F2(1,:)))    % find the most active 

point 

    % TME 

    if tme.epoch>0 

        t1_tme=clock; 

        tme_tr_count=1; 

        redo_TM1=1;  

        current_loc=[]; 

        if target.count>target.no 

           tme.tm_alpha1=1; 

           tme.tm_alpha2=1; 

        end 

        while redo_TM1==1 

            redo_TM2=1; 

            tme_count=1; 

            tme_accuracy=tme.accuracy_eps+1; % points accuracy 

            rp100_alpha2=rp100_alpha1(tme_tr_count); 

            fprintf('\nThe basic threshold value: %g.\n',rp100_alpha2); 

            coefs_sig=coefs_sig0; 

            map_coefs_den=map_coefs_den(tme_count,:); 

            scale_filter=scale_filter(:,tme_count); 

            target_pM=[];  

            dFM=dFM(1,:); 

            d2FM=d2FM(1,:); 

            max_peak_F2=max_peak_F2(1);; 

            peak_tme=[]; 

            while redo_TM2==1 %tme_accuracy>tme.accuracy_eps 

                % wavelet denoising: WDeN                     

                SIG_wden_old=wavelet_denoise(coefs_sig,tme); 
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                % TM normalization                             

                fprintf('\nThe threshold value: %g.\n',rp100_alpha2);                 

                SIG_wden=noise_gauge(SIG_wden_old,psi_step,rp100_alpha2); 

                if resp.cross_test=='n' 

                   % CWT 

                   

[coefs,filter_opt,scale_opt,it_no,dF]=cwt_s(SIG_wden,opt_map);                    

                else 

                   % cross correlation 

                   

[coefs,filter_opt,scale_opt,it_no]=xcross(SIG_wden,opt_map,psi_w);                 

                end 

                % collect data 

                map_coefs_den(tme_count+1,range)=coefs; 

                scale_filter(1,tme_count+1)=scale_opt;  

                scale_filter(2,tme_count+1)=numel(filter_opt); 

                scale_filter(3,tme_count+1)=it_no; 

                peak_tme(tme_count)=find(coefs==max(coefs),1) 

                target_abs=abs(peak_tme(tme_count)-target.locations_t); 

                ind_target=find(target_abs==min(target_abs),1); 

                tme_accuracy=target_abs(ind_target)   

                dFM(tme_count+1,range)=dF;  

                d2F=gradient(dF); % 2nd order derivative                     

                d2FM(tme_count+1,range)=d2F;   

                

F2(tme_count+1,:)=abs(d2FM(tme_count+1,range)-dFM(tme_count+1,range));  

                

max_peak_F2(tme_count+1)=find(F2(tme_count+1,:)==max(F2(tme_count+1,:)

)) % find the most active point                                

                %                 

                etarget_region1=peak_tme-floor(0.1*echo.fs/2); 

                etarget_region2=peak_tme+floor(0.1*echo.fs/2); 

                if target.count<=target.no 

                    ntarget_region1=1:etarget_region1-1; 

                    ntarget_region2=etarget_region2+1:N; 

                    ntarget_region=[ntarget_region1,ntarget_region2]; 

                else 

                    ntarget_region=1:N; 

                end 

                if max(map_coefs_den(tme_count+1,ntarget_region)) < 

map_coefs_den(tme_count+1,peak_tme(tme_count))... 

                        & 
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abs(max_peak_F2(tme_count+1)-peak_tme(tme_count))<=tme.accuracy_eps 

                    redo_TM2=0; 

                    redo_TM1=0; 

                    tar_ss.test_failure=0; 

                    current_loc=target.locations_t(ind_target); 

                    target.locations_t(ind_target)=0; 

                    target.locations_t=nonzeros(target.locations_t)';                    

                end 

                if tme_count==1 

                    SIG_wdenX(1,range)=SIG_wden; % collect the first 

iteration of WDeN 

                end                 

                % update data 

                coefs_sig=coefs; 

                %peak_tme=peak2_tme;%peak2_tme=peak1_tme;                 

                tme_count=tme_count+1; 

                rp100_alpha2=1-(1-rp100_alpha2)/2^(tme_count); % TM-alpha 2 

                if tme_count>ceil(tme.tm_alpha2)                 

                    fprintf('\nWarning: TME epoch has reached its 

maximum: %g.\n',tme.tm_alpha2); 

                    redo_TM2=0; 

                end 

            end % end while loop 

            % data collection            

            tme.epoch=tme_count-1; 

            SIG_wdenX(2,range)=SIG_wden; % collect the last iteration of 

WDeN 

            t2_tme=clock; 

            time_hbd=etime(t2_tme,t1_tme); % time consumption for TME 

operations           

            % calculate the true peak             

            if ~isempty(current_loc) 

                estimate_current_loc=current_loc; 

            else 

                estimate_current_loc=target.locations_t(ind_target); 

            end 

            fprintf('\nThe overall TME epoch: %g.\n',tme.epoch); 

            %for tk=1:tme.epoch+1                

                target_pM=max_peak_F2; 

            %    find(map_coefs_den(tk,:)==max(map_coefs_den(tk,:)),1); 

            %end 

            fprintf('\nThe nearest true current 
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location: %g.',estimate_current_loc);             

            fprintf('\nThe estimated location(s):\n');target_pM'  

            fprintf('\nTME 

accuracy: %g.\n');abs(estimate_current_loc-target_pM(:)) 

            % data update and check-up             

            if tme_tr_count<tme.tm_alpha1  

                

rp100_alpha1(tme_tr_count+1)=rp100_alpha1(tme_tr_count)*(1-tme.rp100_r

TR*1.0e-2); % TM-alpha1 update (moving up) 

                fprintf('\nWARNING: The %g-th trial with threshold 

rate: %g.',tme_tr_count+1,rp100_alpha1(tme_tr_count+1));             

            else 

               redo_TM1=0; 

                % force to reduce the target number when reaching the maximum 

                if (target.count<=target.no) & ... 

                        

(anfis_para.redo_count(target.count)==anfis_para.redo_count_eps|anfis_

para.epoch>=anfis_para.epoch_max)  

                    errargt(mfilename,strcat('The ANFIS redo loops has 

reached maximum. Target detection failed.'),'msg'); 

                    tar_ss.test_failure=0;                                        

                end               

            end 

            tme_tr_count=tme_tr_count+1; 

        end 

    else % ANC operation 

        if (anc_accuracy>tme.accuracy_eps) 

            tar_ss.test_failure=1; 

            target.locations_t 

            peak_anc 

        else 

            target.locations_t(ind_target)=0; 

            target.locations_t=nonzeros(target.locations_t)'; 

        end 

        t2_anr=clock; % time consumption for ANR operations 

        time_hbd=etime(t2_anr,t1_anr); 

        % calculate the true peak  

        target_absx=abs(peak_anc-target.locations); 

        true_peak_loc=find(target_absx==min(target_absx),1); 

        % data update 

        SIG_wdenX=[]; 

    end 
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end 

% 

if (pflag_tme.flag==1) && (tar_ss.test_failure==0) 

    figure, 

    subplot(2,1,1), 

    

plot(t_N(target.locations(true_peak_loc)),SIG(target.locations(true_pe

ak_loc)),'ro:',t_N,SIG,'b-'), 

    ylabel('Amp.'); 

    title(strcat('ANC output of 

[',num2str(target.no-numel(target.locations_t)),']-th target with ANFIS 

epoch number [',... 

        num2str(anfis_para.epoch),']')); 

    axis tight; 

    % 

    subplot(2,1,2), 

    

plot(t_N(target.locations(true_peak_loc)),map_coefs_den(1,target.locat

ions(true_peak_loc)),'ro:',t_N,map_coefs_den(1,:),'b-'), 

    hold on 

    plot(t_N(peak_anc),map_coefs_den(1,peak_anc),'gd:'), 

    title('ANC + CWT'); 

    ylabel('CWT coefs.'); 

    axis tight; 

    xlabel('Time (sec)'); 

    hold off 

    % 

    if tme.epoch>0 

        figure, 

        if tme.epoch==1 

            plot_tme=2; 

        else 

            plot_tme=4; 

        end 

        for i=1:plot_tme 

            subplot(plot_tme,1,i), 

            if i==1 

                

plot(t_N(target.locations(true_peak_loc)),SIG_wdenX(1,target.locations

(true_peak_loc)),'ro:',t_N,SIG_wdenX(1,:),'b-'); 

                ylabel('Amp.'); 
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title(strcat('[',num2str(target.no-numel(target.locations_t)),']-th 

target, 1st-WDeN with TM-\alpha_1 = [',... 

                    num2str(rp100_alpha1(1)),']')); 

            elseif i==2 

                

peak1_tme=find(map_coefs_den(i,:)==max(map_coefs_den(i,:)),1); 

                

plot(t_N(target.locations(true_peak_loc)),map_coefs_den(i,target.locat

ions(true_peak_loc)),'ro:') 

                hold on 

                

plot(t_N(peak1_tme),map_coefs_den(i,peak1_tme),'gd:',t_N,map_coefs_den

(i,:),'b-'), 

                title('1st-TME'); 

                ylabel('CWT coefs.'); 

            elseif i==3 

                

plot(t_N(target.locations(true_peak_loc)),SIG_wdenX(2,target.locations

(true_peak_loc)),'ro:',t_N,SIG_wdenX(2,:),'b-'); 

                ylabel('Amp.'); 

                title(strcat('[',num2str(tme.epoch),'] * WDeN with 

TM-\alpha_1 = [',num2str(rp100_alpha1(end)),']')); 

            else 

                %peak2_tme=find(map_coefs_den(end,range)==max(map_coefs_d

en(end,range))); 

                

plot(t_N(target.locations(true_peak_loc)),map_coefs_den(end,target.loc

ations(true_peak_loc)),'ro:'), 

                hold on 

                

plot(t_N(peak_tme),map_coefs_den(end,peak_tme),'gd:',t_N,map_coefs_den

(end,:),'b-'), 

                title(strcat('[',num2str(tme.epoch),'] * TME')); 

                ylabel('CWT coefs.'); 

            end 

            axis tight; 

            hold on 

        end 

        % PSD calculattion 

        figure, 

        

[y_g1,f_g,t_g,psd_ge1]=spectrogram(SIG_wdenX(1,:),128,120,128,fs); 
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[y_g2,f_g,t_g,psd_ge2]=spectrogram(SIG_wdenX(2,:),128,120,128,fs); 

        subplot(211), 

        surf(t_g,f_g,10*log10(abs(psd_ge1)),'EdgeColor','none'); 

        axis xy; axis tight; %colormap(jet); view(0,90); 

        title(strcat('PSD (dB) of 

[',num2str(target.no-numel(target.locations_t)),']-th target, 1st-WDeN 

with TM-\alpha_1 = [',... 

            num2str(rp100_alpha1(1)),']')); 

        xlabel('Time (sec)'); 

        ylabel('Frequency (Hz)'); 

        colorbar, 

        subplot(212), 

        surf(t_g,f_g,10*log10(abs(psd_ge2)),'EdgeColor','none'); 

        axis xy; axis tight; %colormap(jet); view(0,90); 

        title(strcat('PSD (dB) of 

[',num2str(target.no-numel(target.locations_t)),']-th target',', 

[',num2str(tme.epoch),... 

            ']-WDeN with TM-\alpha_1 = [',num2str(rp100_alpha1(end)),']')); 

        xlabel('Time (sec)'); 

        ylabel('Frequency (Hz)'); 

        colorbar, 

    else 

        subplot(2,1,1), 

        %Apeak_tme=find(map_coefs_den(end,:)==max(map_coefs_den(end,:)),

1); 

        

plot(t_N(target.locations(true_peak_loc)),map_coefs_den(end,target.loc

ations(true_peak_loc)),'ro:') 

        hold on 

        

plot(t_N(peak_anc),map_coefs_den(1,peak_anc),'gd:',t_N,map_coefs_den(1

,:),'b-'); 

        if anfis_para.epoch>0 

            

title(strcat('[',num2str(target.no-numel(target.locations_t)),']-th 

target with ANFIS [',... 

                num2str(anfis_para.epoch),'] epoch(s)')) 

        else 

            title('Noise free test') 

        end 

        ylabel('CWT coefs.'); 
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        axis tight 

        % 

        subplot(2,1,2), 

        plot(), 

        title('Optimal FIR filter'); 

        ylabel('Amp.'); 

        axis tight 

    end 

    xlabel('Time (sec)'); 

    hold off 

end 

xval=opt_map.P_opt.xval; 

xWAV=xval-xval(1); 

if min(opt_map.scale_bnd)>1 

    % CWT filter coefficients where cumsum(phi(l))dl=cumsum(Z(-l))dl 

    

filter_opt=[filter_opt(:)',zeros(1,max(opt_map.scale_bnd)*xWAV(end)+1-

numel(filter_opt))]; 

else 

    % cross correlation 

    

filter_opt=[filter_opt(:)',zeros(1,max(1./opt_map.scale_bnd)*xWAV(end)

+1-numel(filter_opt))]; 

end 

% 

%if tme.epoch>0 

%   test_print 

%end 

% 
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/* 

 * 

 * Xilinx, Inc. 

 * XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A  

 * COURTESY TO YOU.  BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS 

 * ONE POSSIBLE   IMPLEMENTATION OF THIS FEATURE, APPLICATION OR  

 * STANDARD, XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION  

 * IS FREE FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE  

 * FOR OBTAINING ANY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION 

 * XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO  

 * THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO  

 * ANY WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE  

 * FROM CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY  

 * AND FITNESS FOR A PARTICULAR PURPOSE. 

 */ 

 

/* 

 * Xilinx EDK 10.1 EDK_K.15 

 * 

 * This file is a sample test application 

 * 

 * This application is intended to test and/or illustrate some  

 * functionality of your system.  The contents of this file may 

 * vary depending on the IP in your system and may use existing 

 * IP driver functions.  These drivers will be generated in your 

 * XPS project when you run the "Generate Libraries" menu item 

 * in XPS. 

 * 

 * Your XPS project directory is at: 

 *    D:\Work\EDK_ANFIS\ 

 */ 

 

 

// Located in: ppc405_0/include/xparameters.h 

#include "xparameters.h" 

#include "math.h" 

#include "stdio.h" 

#include "xio.h" 

#include "xutil.h" 

#define Input_length 0x00019000 

#define Mn_n 4 

#define Step 1 
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#define Rule_n 16 

#define Epoch_n 50 

#define norm 128 

 

 

//==================================================== 

 

Xint16 *input_X= (Xint16 *)XPAR_DDR_SDRAM_MPMC_BASEADDR; 

Xint16 *input_Y= (Xint16 *)XPAR_DDR_SDRAM_MPMC_BASEADDR+2*Input_length; 

Xint16 *Reference_data = (Xint16 

*)XPAR_DDR_SDRAM_MPMC_BASEADDR+4*Input_length; 

Xint16 *ANFIS_out=(Xint16 *)XPAR_DDR_SDRAM_MPMC_BASEADDR+6*Input_length; 

Xint8 *weight = (Xint8 *)XPAR_DDR_SDRAM_MPMC_BASEADDR+8*Input_length; 

Xint8 *mem_fun_addr=(Xint8 

*)XPAR_DDR_SDRAM_MPMC_BASEADDR+10*Input_length;; 

Xint16 trn_error; 

Xint16 trn_error_last; 

Xint8 step_size; 

Xint16 Layer_2[Rule_n]; 

Xint16 Layer_3[Rule_n]; 

Xint8  Mem_para_X[4][2]; 

Xint8  Mem_para_Y[4][2]; 

Xint8  de_dp_x[4][2]; 

Xint8  de_dp_y[4][2]; 

Xint8  Conse_para[48]; 

Xint8  LSE_data[49]; 

Xint16 de_dout; 

Xint8  mem_fun_add[20][20]; 

 

Xint8 In_X,In_Y,Ref_data,AN_out; 

 

Xint8 Membership_fun(Xint16 input,Xint8 para[2]) 

{   int a,c; 

 Xint8 temp; 

 Xint8 addr; 

 a=para[0]+norm; 

 c=para[1]+norm; 

 addr=mem_fun_add[a][c]; 

 temp=*(mem_fun_addr+addr); 

 return (temp); 

} 
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get_LSE_data(kalman_data, target) 

Xint8 kalman_data[49]; 

Xint8 target; 

{ 

     int i, k, j=0; 

 for (i = 0; i < 16; i++) { 

  

    kalman_data[j++] = Layer_3[i]*In_X; 

    kalman_data[j++] = Layer_3[i]*In_Y; 

    kalman_data[j++] = In_X; 

         

 } 

 

 LSE_data[j] = target; 

} 

 

 

 

 

 

int main (void) { 

  

  

    int i,k,j,weight_norm,ep_n; 

    void forward(double anfis_out); 

    void update_parameter(int step_size);   

    weight_norm=0; 

  for (ep_n=0;ep_n<Epoch_n;ep_n++){ 

    

    for (i=0;i<Input_length;i++) 

      { In_X=*(input_X+i); 

        In_Y=*(input_Y+i); 

        Ref_data=*(Reference_data+i); 

        

Layer_2[0]=Membership_fun(In_X,Mem_para_X[0])*Membership_fun(In_Y,Mem_

para_Y[0]); 

        

Layer_2[1]=Membership_fun(In_X,Mem_para_X[0])*Membership_fun(In_Y,Mem_

para_Y[1]); 
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Layer_2[2]=Membership_fun(In_X,Mem_para_X[0])*Membership_fun(In_Y,Mem_

para_Y[2]); 

        

Layer_2[3]=Membership_fun(In_X,Mem_para_X[0])*Membership_fun(In_Y,Mem_

para_Y[3]); 

        

Layer_2[4]=Membership_fun(In_X,Mem_para_X[1])*Membership_fun(In_Y,Mem_

para_Y[0]); 

        

Layer_2[5]=Membership_fun(In_X,Mem_para_X[1])*Membership_fun(In_Y,Mem_

para_Y[1]); 

        

Layer_2[6]=Membership_fun(In_X,Mem_para_X[1])*Membership_fun(In_Y,Mem_

para_Y[2]); 

        

Layer_2[7]=Membership_fun(In_X,Mem_para_X[1])*Membership_fun(In_Y,Mem_

para_Y[3]); 

        

Layer_2[8]=Membership_fun(In_X,Mem_para_X[2])*Membership_fun(In_Y,Mem_

para_Y[0]); 

        

Layer_2[9]=Membership_fun(In_X,Mem_para_X[2])*Membership_fun(In_Y,Mem_

para_Y[1]); 

        

Layer_2[10]=Membership_fun(In_X,Mem_para_X[2])*Membership_fun(In_Y,Mem

_para_Y[2]); 

        

Layer_2[11]=Membership_fun(In_X,Mem_para_X[2])*Membership_fun(In_Y,Mem

_para_Y[3]); 

        

Layer_2[12]=Membership_fun(In_X,Mem_para_X[3])*Membership_fun(In_Y,Mem

_para_Y[0]); 

        

Layer_2[13]=Membership_fun(In_X,Mem_para_X[3])*Membership_fun(In_Y,Mem

_para_Y[1]); 

        

Layer_2[14]=Membership_fun(In_X,Mem_para_X[3])*Membership_fun(In_Y,Mem

_para_Y[2]); 

        

Layer_2[15]=Membership_fun(In_X,Mem_para_X[3])*Membership_fun(In_Y,Mem

_para_Y[3]); 
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        for (j=0;j<Rule_n;j++) 

        { weight_norm+=Layer_2[j]; 

        } 

         for (j=0;j<Rule_n;j++) 

        { Layer_3[j]=Layer_2[j]/weight_norm; 

        } 

       get_LSE_data(LSE_data, Ref_data); 

       get_LSE_para(LSE_data,Conse_para);        

          forward(AN_out); 

          de_dout = -2*(Ref_data - AN_out); 

         calculate_de_do(de_dout); 

         update_de_dp(); 

         } 

         

         

         trn_error_last=trn_error; 

          training_error_measure(Reference_data, 

ANFIS_out, 

   Input_length, trn_error); 

    

       if (trn_error_last<trn_error) 

        step_size=-step_size;     

         update_parameter(step_size); 

                

  } 

                     } 

 

 

 

void 

 forward(double anfis_out) 

 

 { double p, q, r, wn, x, y; 

  int i,j; 

  x = In_X; 

  y = In_Y; 

  anfis_out=0; 

 for (i=0;i<16;i++) 

  { j=3*i; 

    

   p=Conse_para[j]; 

    q=Conse_para[j+1]; 
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    r=Conse_para[j+2]; 

    wn=Layer_3[i]; 

    anfis_out+=wn*(p*x+q*y+r);    

} 

  } 

   

 

void 

update_parameter(step_size) 

int step_size; 

{ 

 int i,j; 

 double length ; 

 double gradient_vector_length(); 

 length = gradient_vector_length(); 

 if (length == 0) { 

  

  return; 

 } 

 for (i=0;i<4;i++) 

    for (j=0;j<2;j++){ 

     Mem_para_X[i][j]+=step_size*de_dp_x[i][j]/length; 

  Mem_para_X[i][j]+=step_size*de_dp_y[i][j]/length; 

 } 

} 

 

double 

gradient_vector_length() 

 

{ 

 int i,j; 

 double total = 0; 

 for (i=0;i<4;i++) 

    for (j=0;j<2;j++){ 

   total += de_dp_x[i][j]*de_dp_x[i][j]; 

 } 

  

  for (i=0;i<4;i++) 

    for (j=0;j<2;j++){ 

   total += de_dp_y[i][j]*de_dp_y[i][j]; 

 } 
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 return(sqrt(total)); 

} 

#include "math.h" 

#include "xparameters.h" 

#include "math.h" 

#include "stdio.h" 

#include "xio.h" 

#include "xutil.h" 

 

training_error_measure(Reference_data, anfis_output, data_n, error_rmse) 

double *Reference_data, *anfis_output; 

int data_n; 

double error_rmse; 

{ 

 double RMSE, NDEI, ARV, APE; 

 int i; 

 static double target_total, abs_target_total, target_mean; 

 static double target_VAR, target_STD, tmp; 

 static int initialization; 

 double total_abs_error, total_squared_error; 

 double diff; 

  

  

 /* initialization for the first call of this function */ 

 if (initialization != 7527474) { 

  initialization = 7527474; 

  target_total = 0; 

  abs_target_total = 0; 

  target_VAR = 0; 

  target_STD = 0; 

  for (i = 0; i < data_n; i++) { 

   target_total += *(Reference_data+i); 

   abs_target_total += abs(*(Reference_data+i)); 

  } 

  target_mean = target_total/data_n; 

  tmp = 0; 

  for (i = 0; i < data_n; i++) 

   tmp += (*(Reference_data+i) - target_mean)* 

    (*(Reference_data+i) - target_mean); 

  target_VAR = tmp/data_n; 

  target_STD = sqrt(target_VAR); 
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 } 

 

 total_abs_error = 0; 

 total_squared_error = 0; 

 tmp = 0; 

 for (i = 0; i < data_n; i++) { 

  diff = *(Reference_data+i) - *(anfis_output+i); 

  total_abs_error += abs(diff); 

   

  total_squared_error += (diff*diff); 

  tmp += (abs(diff)/(*(Reference_data+i))); 

 } 

 RMSE = sqrt(total_squared_error/data_n); 

 NDEI = RMSE/target_STD; 

 ARV = NDEI*NDEI; 

 APE = total_abs_error/abs_target_total; 

 error_rmse=RMSE; 

 /* 

 error_index[3] = tmp/data_n; 

 */ 

} 
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library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

--use UNISIM.all; 

 

 

entity TME IS 

port (  reset:     in  std_logic; 

    fpga_0_RS232_Uart_RX_pin : IN std_logic; 

  sys_clk_pin : IN std_logic; 

  sys_rst_pin : IN std_logic;     

  fpga_0_DDR_SDRAM_DDR_DQS : INOUT std_logic_vector(7 downto 0); 

  fpga_0_DDR_SDRAM_DDR_DQ : INOUT std_logic_vector(63 downto 0); 

  fpga_0_LEDs_4Bit_GPIO_IO_pin : INOUT std_logic_vector(0 to 3);       

  fpga_0_DDR_SDRAM_DDR_Clk_pin : OUT std_logic_vector(2 downto 0); 

  fpga_0_DDR_SDRAM_DDR_Clk_n_pin : OUT std_logic_vector(2 downto 0); 

  fpga_0_DDR_SDRAM_DDR_Addr_pin : OUT std_logic_vector(12 downto 0); 

  fpga_0_DDR_SDRAM_DDR_BankAddr_pin : OUT std_logic_vector(1 downto 

0); 

  fpga_0_DDR_SDRAM_DDR_CAS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_CE_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_CS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_RAS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_WE_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_DM_pin : OUT std_logic_vector(7 downto 0); 

  fpga_0_RS232_Uart_TX_pin : OUT std_logic; 

  fpga_0_net_gnd_pin : OUT std_logic; 

  fpga_0_net_gnd_1_pin : OUT std_logic; 

  fpga_0_net_gnd_2_pin : OUT std_logic; 

  fpga_0_net_gnd_3_pin : OUT std_logic; 

  fpga_0_net_gnd_4_pin : OUT std_logic; 

  fpga_0_net_gnd_5_pin : OUT std_logic 

    clk:      in std_logic;  

    

     

        

 

); 

end TME; 
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architecture TME of TME is 

 

 

COMPONENT system 

 PORT( 

  fpga_0_RS232_Uart_RX_pin : IN std_logic; 

  sys_clk_pin : IN std_logic; 

  sys_rst_pin : IN std_logic;     

  fpga_0_DDR_SDRAM_DDR_DQS : INOUT std_logic_vector(7 downto 0); 

  fpga_0_DDR_SDRAM_DDR_DQ : INOUT std_logic_vector(63 downto 0); 

  fpga_0_LEDs_4Bit_GPIO_IO_pin : INOUT std_logic_vector(0 to 3);       

  fpga_0_DDR_SDRAM_DDR_Clk_pin : OUT std_logic_vector(2 downto 0); 

  fpga_0_DDR_SDRAM_DDR_Clk_n_pin : OUT std_logic_vector(2 downto 0); 

  fpga_0_DDR_SDRAM_DDR_Addr_pin : OUT std_logic_vector(12 downto 0); 

  fpga_0_DDR_SDRAM_DDR_BankAddr_pin : OUT std_logic_vector(1 downto 

0); 

  fpga_0_DDR_SDRAM_DDR_CAS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_CE_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_CS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_RAS_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_WE_n_pin : OUT std_logic; 

  fpga_0_DDR_SDRAM_DDR_DM_pin : OUT std_logic_vector(7 downto 0); 

  fpga_0_RS232_Uart_TX_pin : OUT std_logic; 

  fpga_0_net_gnd_pin : OUT std_logic; 

  fpga_0_net_gnd_1_pin : OUT std_logic; 

  fpga_0_net_gnd_2_pin : OUT std_logic; 

  fpga_0_net_gnd_3_pin : OUT std_logic; 

  fpga_0_net_gnd_4_pin : OUT std_logic; 

  fpga_0_net_gnd_5_pin : OUT std_logic; 

  user_input:     input std_logic_vector(15 downto 0); 

  user_output:    output std_logic_vector(15 downto 0); 

  enable:      output std_logic 

  ); 

 END COMPONENT; 

 

component data_exchange is 

port ( clk: input std_logic; 

   data_in: input std_logic_vector(15 downto 0); 

   data_out: output std_logic_vector(15 downto 0); 

   enable: input std_logic; 
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   dwt_input: output std_logic_vector(15 downto 0); 

   dwt_output: input std_logic_vector(15 downto 0); 

   dwt_enable: output std_logic; 

    

   cwt_input: output std_logic_vector(15 downto 0); 

   cwt_output: input std_logic_vector(15 downto 0); 

   cwt_enable: output std_logic 

 

); 

end component; 

 

component S_to_P IS 

port (  reset:  in  std_logic; 

     

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

     

        data_out: out std_logic_vector(79 downto 0) 

 

); 

end component; 

 

component coeff_mem 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(79 downto 0); 

 addra: IN std_logic_VECTOR(12 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(79 downto 0)); 

end component; 

 

component convolution IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(79 downto 0); 

    coeff_in: in  std_logic_vector(79 downto 0); 

        data_out: out std_logic_vector(15 downto 0); 

   data_enable: in std_logic 

 

); 

end component; 
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component control_CWT IS 

port (  reset:     in  std_logic; 

     

    clk:      in std_logic;  

 

    data_in:     in std_logic_vector(15 downto 0); 

    start:     out std_logic; 

    reset_conv:   out std_logic; 

    address_data:  out std_logic_vector(14 downto 0); 

    we_data:    out std_logic; 

    address_coeff: out std_logic_vector(12 downto 0); 

     

    data_out:    out std_logic_vector(15 downto 0) 

     

        

 

); 

end component; 

 

component dwt_denoising is 

port( clk: in std_logic; 

  data_in: in std_logic_vector(15 downto 0); 

  data_out: out std_logic_vector(15 downto 0); 

  reset: in std_logic; 

  data_enable: in std_logic 

 

); 

end component; 

 

signal data_to_dsp: std_logic_vector(15 downto 0); 

signal dsp_to_data: std_logic_vector(15 downto 0); 

signal data_enable: std_logic; 

signal dwt_enable : std_logic; 

signal cwt_enable : std_logic; 

signal data_to_dwt:std_logic_vector(15 downto 0); 

signal data_to_cwt:std_logic_vector(15 downto 0); 

signal data_out_DWEN: std_logic_vector(15 downto 0); 

signal we_data:   std_logic_VECTOR(0 downto 0); 

signal reset_conv:  std_logic; 

signal address_data: std_logic_vector(14 downto 0); 

signal address_coeff: std_logic_vector(12 downto 0); 
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signal start:     std_logic; 

 

signal dina:     std_logic_vector(79 downto 0); 

signal data_pa_CWT:  std_logic_vector(79 downto 0); 

signal coeff:     std_logic_vector(79 downto 0); 

signal data_out_buff: std_logic_vector(15 downto 0); 

signal data_out_temp: std_logic_vector(15 downto 0); 

 

 

begin 

 

 

Inst_system: system PORT MAP( 

  fpga_0_DDR_SDRAM_DDR_Clk_pin =>fpga_0_DDR_SDRAM_DDR_Clk_pin , 

  fpga_0_DDR_SDRAM_DDR_Clk_n_pin => fpga_0_DDR_SDRAM_DDR_Clk_n_pin, 

  fpga_0_DDR_SDRAM_DDR_Addr_pin => fpga_0_DDR_SDRAM_DDR_Addr_pin, 

  fpga_0_DDR_SDRAM_DDR_BankAddr_pin 

=>fpga_0_DDR_SDRAM_DDR_BankAddr_pin , 

  fpga_0_DDR_SDRAM_DDR_CAS_n_pin => fpga_0_DDR_SDRAM_DDR_CAS_n_pin, 

  fpga_0_DDR_SDRAM_DDR_CE_pin => fpga_0_DDR_SDRAM_DDR_CE_pin, 

  fpga_0_DDR_SDRAM_DDR_CS_n_pin =>fpga_0_DDR_SDRAM_DDR_CS_n_pin  , 

  fpga_0_DDR_SDRAM_DDR_RAS_n_pin =>fpga_0_DDR_SDRAM_DDR_RAS_n_pin , 

  fpga_0_DDR_SDRAM_DDR_WE_n_pin =>fpga_0_DDR_SDRAM_DDR_WE_n_pin , 

  fpga_0_DDR_SDRAM_DDR_DM_pin =>fpga_0_DDR_SDRAM_DDR_DM_pin , 

  fpga_0_DDR_SDRAM_DDR_DQS => fpga_0_DDR_SDRAM_DDR_DQS, 

  fpga_0_DDR_SDRAM_DDR_DQ => fpga_0_DDR_SDRAM_DDR_DQ, 

  fpga_0_RS232_Uart_RX_pin =>fpga_0_RS232_Uart_RX_pin , 

  fpga_0_RS232_Uart_TX_pin => fpga_0_RS232_Uart_TX_pin, 

  fpga_0_LEDs_4Bit_GPIO_IO_pin =>fpga_0_LEDs_4Bit_GPIO_IO_pin , 

  fpga_0_net_gnd_pin => fpga_0_net_gnd_pin, 

  fpga_0_net_gnd_1_pin => fpga_0_net_gnd_1_pin, 

  fpga_0_net_gnd_2_pin => fpga_0_net_gnd_2_pin, 

  fpga_0_net_gnd_3_pin => fpga_0_net_gnd_3_pin, 

  fpga_0_net_gnd_4_pin => fpga_0_net_gnd_4_pin, 

  fpga_0_net_gnd_5_pin => fpga_0_net_gnd_5_pin, 

  sys_clk_pin => sys_clk_pin, 

  sys_rst_pin =>sys_rst_pin; 

  user_input =>data_to_dsp; 

  user_output=> dsp_to_data; 

  enable=> data_enable 

   

 ); 
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data_change: data_exchange 

port map 

(clk,dsp_to_data,data_to_dsp,data_enable,data_to_dwt,data_out_DWEN, 

dwt_enable,data_to_cwt,data_out_temp,cwt_enable); 

 

coeff_unit : coeff_mem 

  port map ( 

   clka => clk, 

   dina => dina, 

   addra => address_coeff, 

   wea => we_data, 

   douta => coeff); 

 

DWEN: dwt_denoising port 

map(clk,data_to_dwt,data_out_DWEN,reset,dwt_enable); 

 

s_to_p_0: S_to_P port map(reset, clk, data_to_cwt,data_pa_CWT); 

 

conv_0: convolution port map 

(reset_conv,start,clk,data_pa_CWT,coeff,data_out_temp,cwt_enable); 

 

control_cwt_0: control_CWT port 

map(reset,clk,data_out_temp,start,reset_conv,address_data,we_data(0),a

ddress_coeff,data_out); 

 

end TME; 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

-- synthesis translate_off 

Library XilinxCoreLib; 

-- synthesis translate_on 

ENTITY coeff_mem IS 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(79 downto 0); 

 addra: IN std_logic_VECTOR(12 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(79 downto 0)); 
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END coeff_mem; 

 

ARCHITECTURE coeff_mem_a OF coeff_mem IS 

-- synthesis translate_off 

component wrapped_coeff_mem 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(79 downto 0); 

 addra: IN std_logic_VECTOR(12 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(79 downto 0)); 

end component; 

 

-- Configuration specification  

 for all : wrapped_coeff_mem use entity 

XilinxCoreLib.blk_mem_gen_v2_7(behavioral) 

  generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_prim_type => 1, 

   c_sinita_val => "0", 

   c_read_width_b => 80, 

   c_family => "virtex2p", 

   c_read_width_a => 80, 

   c_disable_warn_bhv_coll => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "WRITE_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_mem_output_regs_b => 0, 

   c_load_init_file => 0, 

   c_xdevicefamily => "virtex2p", 

   c_has_mem_output_regs_a => 0, 

   c_write_depth_b => 6144, 

   c_write_depth_a => 6144, 

   c_has_ssrb => 0, 

   c_has_mux_output_regs_b => 0, 

   c_has_ssra => 0, 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 13, 

   c_addrb_width => 13, 



213 

 

 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 80, 

   c_write_width_a => 80, 

   c_read_depth_b => 6144, 

   c_read_depth_a => 6144, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_use_ramb16bwer_rst_bhv => 0, 

   c_common_clk => 0, 

   c_wea_width => 1, 

   c_has_enb => 0, 

   c_web_width => 1, 

   c_has_ena => 0, 

   c_sinitb_val => "0", 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_use_default_data => 0); 

-- synthesis translate_on 

BEGIN 

-- synthesis translate_off 

U0 : wrapped_coeff_mem 

  port map ( 

   clka => clka, 

   dina => dina, 

   addra => addra, 

   wea => wea, 

   douta => douta); 

-- synthesis translate_on 

 

END coeff_mem_a; 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

entity dwt_denoising is 

port( clk: in std_logic; 

  data_in: in std_logic_vector(15 downto 0); 
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  data_out: out std_logic_vector(15 downto 0); 

 

  reset: in std_logic 

 

); 

 

end dwt_denoising; 

 

architecture DWT_WDen of dwt_denoising is 

 

component high_pass_filter_reconstruct 

port (  reset:  in  std_logic; 

  start:  in std_logic; 

  clk:   in std_logic;  

  data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end component; 

 

 

component high_pass_filter IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end component; 

 

component low_pass_filter IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end component; 
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component low_pass_filter_reconstruct  

port (  reset:  in  std_logic; 

  start:  in std_logic; 

  clk:   in std_logic;  

  data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end component; 

 

component selector_2 is 

port(clk: in std_logic; 

 select_sig: in std_logic; 

 data_in_0: in std_logic_vector(15 downto 0); 

 data_in_1: in std_logic_vector(15 downto 0); 

 

 data_out:  out std_logic_vector(15 downto 0) 

 ); 

end component; 

 

component selector is 

port(clk: in std_logic; 

 select_sig: in std_logic_vector(2 downto 0); 

 data_in_0: in std_logic_vector(15 downto 0); 

 data_in_1: in std_logic_vector(15 downto 0); 

 data_in_2: in std_logic_vector(15 downto 0); 

 data_in_3: in std_logic_vector(15 downto 0); 

 data_in_4: in std_logic_vector(15 downto 0); 

 data_in_5: in std_logic_vector(15 downto 0); 

 data_in_6: in std_logic_vector(15 downto 0); 

 

 data_out:  out std_logic_vector(15 downto 0) 

 ); 

end component; 

 

component decimator  

port (  clock:   in  std_logic; 

   reset:   in  std_logic; 

   data_in: in std_logic_vector(15 downto 0); 

   data_out: out std_logic_vector(15 downto 0) 
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); 

 

end component; 

 

component clock_gen  

port (  reset:   in std_logic; 

  clk:   in  std_logic;      

        clk_out_fast: out std_logic; 

  clk_out_slow: out std_logic 

 

); 

end component; 

 

component denoising_block  

port( clk: in std_logic; 

  data_in: in std_logic_vector(15 downto 0); 

  data_out: out std_logic_vector(15 downto 0); 

  reset: in std_logic; 

  start: in std_logic 

 

); 

 

end  component; 

 

 

component controller_1 is 

 

port( 

 clk: in std_logic; 

 reset:     in std_logic; 

 ctrl_high_pass:  out std_logic; 

 ctrl_low_pass:  out std_logic; 

 ctrl_selector_1:  out std_logic; 

 ctrl_selector_2:  out std_logic_vector(2 downto 0); 

 enable_denoising: out std_logic; 

 input_addr:   out std_logic_vector(13 downto 0); 

 memory_read:  out std_logic; 

 memory_write_0:  out std_logic; 

 memory_write_1:  out std_logic; 

 memory_write_2:  out std_logic; 

 memory_write_3:  out std_logic; 

 memory_write_4:  out std_logic; 



217 

 

 

 memory_write_5:  out std_logic; 

 memory_write_6:  out std_logic 

  

 

 

); 

 

end component; 

 

component controller_2 is 

 

port( 

 clk: in std_logic; 

 reset:     in std_logic; 

 ctrl_high_pass:  out std_logic; 

 ctrl_low_pass:  out std_logic; 

 ctrl_selector_1:  out std_logic; 

 ctrl_selector_2:  out std_logic_vector(2 downto 0); 

 

 input_addr:   out std_logic_vector(13 downto 0); 

 memory_read:  out std_logic; 

 memory_write_0:  out std_logic; 

 memory_write_1:  out std_logic; 

 memory_write_2:  out std_logic; 

 memory_write_3:  out std_logic; 

 memory_write_4:  out std_logic; 

 memory_write_5:  out std_logic; 

 memory_write_6:  out std_logic 

  

); 

 

end component; 

 

component FIFO is 

generic(size: integer range 0 to 140); 

port(clk_in: in std_logic; 

data_in: in std_logic_vector(15 downto 0); 

data_out:  out std_logic_vector(15 downto 0); 

clk_out: in std_logic; 

read_en:  in std_logic; 

reset:  in std_logic 

 ); 
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end component; 

 

 

 

component combination is 

    Port ( clk : in  STD_LOGIC; 

           data_high_pass : in  STD_LOGIC_VECTOR (15 downto 0); 

           data_low_pass : in  STD_LOGIC_VECTOR (15 downto 0); 

           data_out : out  STD_LOGIC_VECTOR (15 downto 0)); 

end component; 

 

component up_sampler is 

port (clock:   in  std_logic; 

   reset:   in  std_logic; 

   data_in: in std_logic_vector(15 downto 0); 

   data_out: out std_logic_vector(15 downto 0) 

    

); 

 

end component; 

 

component buffer_input 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(15 downto 0); 

 addra: IN std_logic_VECTOR(13 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

 

 

 

signal clk_internal_fast:  std_logic; 

signal clk_internal_slow:  std_logic; 

signal wea: std_logic_vector(0 downto 0); 

signal data_external:  std_logic_vector(15 downto 0); 

signal data_selector:  std_logic_vector(15 downto 0); 

signal data_selector_idwt:  std_logic_vector(15 downto 0); 

signal data_selector_2:  std_logic_vector(15 downto 0); 

signal data_selector_idwt_2:  std_logic_vector(15 downto 0); 
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signal data_decomosing: std_logic_vector(15 downto 0); 

signal data_denoised: std_logic_vector(15 downto 0); 

 

signal data_low_pass: std_logic_vector(15 downto 0); 

signal data_high_pass: std_logic_vector(15 downto 0); 

signal data_low_pass_reconstruct: std_logic_vector(15 downto 0); 

signal data_high_pass_reconstruct: std_logic_vector(15 downto 0); 

 

signal data_buffed:  std_logic_vector(15 downto 0); 

signal data_filtered:  std_logic_vector(15 downto 0); 

signal data_cont:   std_logic_vector(15 downto 0); 

signal data_combined:   std_logic_vector(15 downto 0); 

 

signal data_decimated_low_pass: std_logic_vector(15 downto 0); 

signal data_decimated_high_pass: std_logic_vector(15 downto 0); 

 

signal data_upsampled_low_pass: std_logic_vector(15 downto 0); 

signal data_upsampled_high_pass: std_logic_vector(15 downto 0); 

 

signal ctrl_selector_1: std_logic; 

signal ctrl_selector_2: std_logic_vector(2 downto 0); 

signal ctrl_selector_idwt_1: std_logic; 

signal ctrl_selector_idwt_2: std_logic_vector(2 downto 0); 

 

signal ctrl_low_pass: std_logic; 

signal ctrl_high_pass: std_logic; 

 

signal ctrl_low_pass_reconstruct: std_logic; 

signal ctrl_high_pass_reconstruct: std_logic; 

 

signal ctrl_denoising: std_logic;  

signal memory_read_dwt: std_logic; 

signal memory_write_0_dwt: std_logic;    

signal memory_write_1_dwt: std_logic;   

signal memory_write_2_dwt: std_logic;              

signal memory_write_3_dwt: std_logic;   

signal memory_write_4_dwt: std_logic;   

signal memory_write_5_dwt: std_logic;   

signal memory_write_6_dwt: std_logic;   

 

signal memory_read_idwt: std_logic; 

signal memory_write_0_idwt: std_logic;    
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signal memory_write_1_idwt: std_logic;   

signal memory_write_2_idwt: std_logic;              

signal memory_write_3_idwt: std_logic;   

signal memory_write_4_idwt: std_logic;   

signal memory_write_5_idwt: std_logic;   

signal memory_write_6_idwt: std_logic;  

 

signal mem_out_0_dwt: std_logic_vector(15 downto 0); 

signal mem_out_1_dwt: std_logic_vector(15 downto 0); 

signal mem_out_2_dwt: std_logic_vector(15 downto 0); 

signal mem_out_3_dwt: std_logic_vector(15 downto 0); 

signal mem_out_4_dwt: std_logic_vector(15 downto 0); 

signal mem_out_5_dwt: std_logic_vector(15 downto 0); 

signal mem_out_6_dwt: std_logic_vector(15 downto 0); 

 

signal mem_out_0_idwt: std_logic_vector(15 downto 0); 

signal mem_out_1_idwt: std_logic_vector(15 downto 0); 

signal mem_out_2_idwt: std_logic_vector(15 downto 0); 

signal mem_out_3_idwt: std_logic_vector(15 downto 0); 

signal mem_out_4_idwt: std_logic_vector(15 downto 0); 

signal mem_out_5_idwt: std_logic_vector(15 downto 0); 

signal mem_out_6_idwt: std_logic_vector(15 downto 0); 

 

signal input_signal: std_logic_vector(15 downto 0); 

signal input_signal_idwt: std_logic_vector(15 downto 0); 

 

signal input_addr: std_logic_vector(13 downto 0); 

signal input_addr_idwt: std_logic_vector(13 downto 0); 

 

 

 

begin 

 

high_pass_reconstuct: high_pass_filter_reconstruct  port 

map(reset,ctrl_high_pass_reconstruct,clk_internal_fast,data_selector_idwt_2,data_high_pass_reconstruct)

; 

low_pass_reconstruct: low_pass_filter_reconstruct  port 

map(reset,ctrl_low_pass_reconstruct,clk_internal_fast,data_selector_idwt_2, data_low_pass_reconstruct); 

 

 

high_pass: high_pass_filter  port 

map(reset,ctrl_high_pass,clk_internal_fast,data_selector_2,data_high_pass); 
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low_pass: low_pass_filter  port 

map(reset,ctrl_low_pass,clk_internal_fast,data_selector_2,data_low_pass); 

 

 

decimator_high_pass: decimator port map(clk_internal_slow, reset, data_high_pass, 

data_decimated_high_pass); 

decimator_low_pass: decimator  port map(clk_internal_slow, reset, data_low_pass, 

data_decimated_low_pass); 

 

upsampler_high_pass: up_sampler port 

map(clk_internal_fast,reset,data_filtered,data_upsampled_high_pass); 

upsampler_low_pass: up_sampler port 

map(clk_internal_fast,reset,data_selector_idwt,data_upsampled_low_pass); 

 

controller_dwt:   controller_1   port 

map(clk,reset,ctrl_high_pass,ctrl_low_pass,ctrl_selector_1,ctrl_selector_2,ctrl_denoising,input_addr,mem

ory_read_dwt,memory_write_0_dwt,memory_write_1_dwt,memory_write_2_dwt,memory_write_3_dwt,

memory_write_4_dwt,memory_write_5_dwt,memory_write_6_dwt); 

controller_idwt: controller_2   port 

map(clk,reset,ctrl_high_pass_reconstruct,ctrl_low_pass_reconstruct,ctrl_selector_idwt_1,ctrl_selector_id

wt_2,input_addr_idwt,memory_read_idwt,memory_write_0_idwt,memory_write_1_idwt,memory_write_

2_idwt,memory_write_3_idwt,memory_write_4_idwt,memory_write_5_idwt,memory_write_6_idwt); 

 

clock_generator: clock_gen  port map(reset,clk,clk_internal_fast, clk_internal_slow); 

 

denoising_block_0:denoising_block  port map(clk_internal_slow,data_decimated_high_pass, 

data_denoised,reset,ctrl_denoising); 

 

selector_dwt_1: selector_2 port 

map(clk_internal_fast,ctrl_selector_1,data_decimated_low_pass,input_signal,data_selector); 

selector_dwt_2: selector port 

map(clk_internal_fast,ctrl_selector_2,mem_out_0_dwt,mem_out_1_dwt,mem_out_2_dwt,mem_out_3_d

wt,mem_out_4_dwt,mem_out_5_dwt,mem_out_6_dwt,data_selector_2); 

 

selector_idwt_1: selector_2 port 

map(clk_internal_fast,ctrl_selector_idwt_1,data_combined,input_signal_idwt,data_selector_idwt); 

selector_idwt_2: selector port 

map(clk_internal_fast,ctrl_selector_idwt_2,mem_out_0_idwt,mem_out_1_idwt,mem_out_2_idwt,mem_o

ut_3_idwt,mem_out_4_idwt,mem_out_5_idwt,mem_out_6_idwt,data_selector_idwt_2); 

 

fifo_0_dwt: FIFO generic map (20) port 

map(memory_write_0_dwt,data_selector,mem_out_0_dwt,clk,memory_read_dwt,reset); 
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fifo_1_dwt: FIFO generic map (20) port 

map(memory_write_1_dwt,data_selector,mem_out_1_dwt,clk,memory_read_dwt,reset); 

fifo_2_dwt: FIFO generic map (20) port 

map(memory_write_2_dwt,data_selector,mem_out_2_dwt,clk,memory_read_dwt,reset); 

fifo_3_dwt: FIFO generic map (20) port 

map(memory_write_3_dwt,data_selector,mem_out_3_dwt,clk,memory_read_dwt,reset); 

fifo_4_dwt: FIFO generic map (20) port 

map(memory_write_4_dwt,data_selector,mem_out_4_dwt,clk,memory_read_dwt,reset); 

fifo_5_dwt: FIFO generic map (20) port 

map(memory_write_5_dwt,data_selector,mem_out_5_dwt,clk,memory_read_dwt,reset); 

fifo_6_dwt: FIFO generic map (20) port 

map(memory_write_6_dwt,data_selector,mem_out_6_dwt,clk,memory_read_dwt,reset); 

 

fifo_0_idwt: FIFO generic map (20) port 

map(memory_write_0_idwt,data_selector_idwt,mem_out_0_idwt,clk,memory_read_idwt,reset); 

fifo_1_idwt: FIFO generic map (20) port 

map(memory_write_1_idwt,data_selector_idwt,mem_out_1_idwt,clk,memory_read_idwt,reset); 

fifo_2_idwt: FIFO generic map (20) port 

map(memory_write_2_idwt,data_selector_idwt,mem_out_2_idwt,clk,memory_read_idwt,reset); 

fifo_3_idwt: FIFO generic map (20) port 

map(memory_write_3_idwt,data_selector_idwt,mem_out_3_idwt,clk,memory_read_idwt,reset); 

fifo_4_idwt: FIFO generic map (20) port 

map(memory_write_4_idwt,data_selector_idwt,mem_out_4_idwt,clk,memory_read_idwt,reset); 

fifo_5_idwt: FIFO generic map (20) port 

map(memory_write_5_idwt,data_selector_idwt,mem_out_5_idwt,clk,memory_read_idwt,reset); 

fifo_6_idwt: FIFO generic map (20) port 

map(memory_write_6_idwt,data_selector_idwt,mem_out_6_idwt,clk,memory_read_idwt,reset); 

 

 

 

 

input_buffer_dwt : buffer_input 

  port map ( 

   clka => clk, 

   dina => data_in, 

   addra => input_addr, 

   wea => wea, 

   douta => input_signal); 

 

input_buffer_idwt : buffer_input 

  port map ( 

   clka => clk, 
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   dina => data_denoised, 

   addra => input_addr_idwt, 

   wea => wea, 

   douta => input_signal_idwt); 

 

 

combine:   combination port 

map(clk_internal_fast,data_high_pass_reconstruct,data_low_pass_reconstruct,data_combined); 

 

data_out<=data_combined; 

 

end DWT_WDen; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

 

 

entity high_pass_filter IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end high_pass_filter; 

 

architecture db_20_high_pass of high_pass_filter is 

 

 

constant coeff_0:std_logic_vector(15 downto 0) := conv_std_logic_vector(0, 16); 

 

constant coeff_1:std_logic_vector(15 downto 0):=conv_std_logic_vector(0, 16); 

 

constant coeff_2:std_logic_vector(15 downto 0):=conv_std_logic_vector(0, 16); 

 

constant coeff_3:std_logic_vector(15 downto 0):=conv_std_logic_vector(4, 16); 
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constant coeff_4:std_logic_vector(15 downto 0):=conv_std_logic_vector(12, 16); 

 

constant coeff_5:std_logic_vector(15 downto 0):=conv_std_logic_vector(-8, 16); 

 

constant coeff_6:std_logic_vector(15 downto 0):=conv_std_logic_vector(-47, 16); 

 

constant coeff_7:std_logic_vector(15 downto 0):=conv_std_logic_vector(-21, 16); 

 

constant coeff_8:std_logic_vector(15 downto 0):=conv_std_logic_vector(192, 16); 

 

constant coeff_9:std_logic_vector(15 downto 0):=conv_std_logic_vector(171, 16); 

 

constant coeff_10:std_logic_vector(15 downto 0) := conv_std_logic_vector(-413, 16); 

 

constant coeff_11:std_logic_vector(15 downto 0):=conv_std_logic_vector(-539, 16); 

 

constant coeff_12:std_logic_vector(15 downto 0):=conv_std_logic_vector(738, 16); 

 

constant coeff_13:std_logic_vector(15 downto 0):=conv_std_logic_vector(-1135, 16); 

 

constant coeff_14:std_logic_vector(15 downto 0):=conv_std_logic_vector(-1447, 16); 

 

constant coeff_15:std_logic_vector(15 downto 0):=conv_std_logic_vector(-1629, 16); 

 

constant coeff_16:std_logic_vector(15 downto 0):=conv_std_logic_vector(3988, 16); 

 

constant coeff_17:std_logic_vector(15 downto 0):=conv_std_logic_vector(-3053, 16); 

 

constant coeff_18:std_logic_vector(15 downto 0):=conv_std_logic_vector(1090, 16); 

 

constant coeff_19:std_logic_vector(15 downto 0):=conv_std_logic_vector(-155, 16); 

 

 

 

 

type data_buff is array (integer range <>) of std_logic_vector(15 downto 0); 

type multi_buff is array(integer range<>) of std_logic_vector(31 downto 0); 

 

signal data_in_buff:  data_buff(19 downto 0); 

signal multi_out: std_logic_vector(33 downto 0); 

signal coeff_vector : data_buff(19 downto 0); 

signal i: integer range 0 to 31; 
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begin 

 

process(clk, reset) 

 

begin 

if reset='0' then 

 data_out<=(others=>'0'); 

 data_in_buff<=(others=>"0000000000000000"); 

 multi_out(15 downto 0)<=(others=>'0'); 

 multi_out(33 downto 16)<=(others=>'0'); 

 i<=0; 

 data_in_buff(0)<=data_in; 

 coeff_vector(0)<=coeff_0; 

 coeff_vector(1)<=coeff_1; 

 coeff_vector(2)<=coeff_2; 

 coeff_vector(3)<=coeff_3; 

 coeff_vector(4)<=coeff_4; 

 coeff_vector(5)<=coeff_5; 

 coeff_vector(6)<=coeff_6; 

 coeff_vector(7)<=coeff_7; 

 coeff_vector(8)<=coeff_8; 

 coeff_vector(9)<=coeff_9; 

 coeff_vector(10)<=coeff_10; 

 coeff_vector(11)<=coeff_11; 

 coeff_vector(12)<=coeff_12; 

 coeff_vector(13)<=coeff_13; 

 coeff_vector(14)<=coeff_14; 

 coeff_vector(15)<=coeff_15; 

 coeff_vector(16)<=coeff_16; 

 coeff_vector(17)<=coeff_17; 

 coeff_vector(18)<=coeff_18; 

 coeff_vector(19)<=coeff_19; 

 

  

 

   elsif clk'event and clk='1' then 

  if start='1' then 

 if i<19 then  

  i<=i+1; 

  multi_out<=multi_out+ (data_in_buff(i)* coeff_vector(i)); 

  elsif i=19 then  
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  for j in 19 downto 1 loop 

  data_in_buff(j)<=data_in_buff(j-1); 

  end loop; 

   

  data_in_buff(0)<=data_in; 

  

  data_out<=multi_out(31 downto 16); 

  multi_out(15 downto 0)<= (others=>'0'); 

  multi_out(33 downto 16)<=(others=>'0'); 

   

  if start = '1' then 

  i<=0; 

  end if; 

   

end if; 

 

end if; 

 

end if;  

 

end process; 

 

end db_20_high_pass; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

 

 

entity low_pass_filter IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end low_pass_filter; 
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architecture db_20_low_pass of low_pass_filter is 

 

 

constant coeff_0:std_logic_vector(15 downto 0) := conv_std_logic_vector(155, 16); 

 

constant coeff_1:std_logic_vector(15 downto 0):=conv_std_logic_vector(1090, 16); 

 

constant coeff_2:std_logic_vector(15 downto 0):=conv_std_logic_vector(3054, 16); 

 

constant coeff_3:std_logic_vector(15 downto 0):=conv_std_logic_vector(3988, 16); 

 

constant coeff_4:std_logic_vector(15 downto 0):=conv_std_logic_vector(1629, 16); 

 

constant coeff_5:std_logic_vector(15 downto 0):=conv_std_logic_vector(-1447, 16); 

 

constant coeff_6:std_logic_vector(15 downto 0):=conv_std_logic_vector(-1135, 16); 

 

constant coeff_7:std_logic_vector(15 downto 0):=conv_std_logic_vector(738, 16); 

 

constant coeff_8:std_logic_vector(15 downto 0):=conv_std_logic_vector(539, 16); 

 

constant coeff_9:std_logic_vector(15 downto 0):=conv_std_logic_vector(-413, 16); 

 

constant coeff_10:std_logic_vector(15 downto 0) := conv_std_logic_vector(-171, 16); 

 

constant coeff_11:std_logic_vector(15 downto 0):=conv_std_logic_vector(192, 16); 

 

constant coeff_12:std_logic_vector(15 downto 0):=conv_std_logic_vector(21, 16); 

 

constant coeff_13:std_logic_vector(15 downto 0):=conv_std_logic_vector(-47, 16); 

 

constant coeff_14:std_logic_vector(15 downto 0):=conv_std_logic_vector(8, 16); 

 

constant coeff_15:std_logic_vector(15 downto 0):=conv_std_logic_vector(12, 16); 

 

constant coeff_16:std_logic_vector(15 downto 0):=conv_std_logic_vector(-4, 16); 

 

constant coeff_17:std_logic_vector(15 downto 0):=conv_std_logic_vector(0, 16); 

 

constant coeff_18:std_logic_vector(15 downto 0):=conv_std_logic_vector(0, 16); 
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constant coeff_19:std_logic_vector(15 downto 0):=conv_std_logic_vector(0, 16); 

 

 

 

type data_buff is array (integer range <>) of std_logic_vector(15 downto 0); 

type multi_buff is array(integer range<>) of std_logic_vector(31 downto 0); 

 

signal data_in_buff:  data_buff(19 downto 0); 

signal multi_out: std_logic_vector(33 downto 0); 

signal coeff_vector : data_buff(19 downto 0); 

signal i: integer range 0 to 31; 

 

begin 

 

process(clk, reset) 

 

begin 

if reset='0' then 

 data_out<=(others=>'0'); 

 data_in_buff<=(others=>"0000000000000000"); 

 multi_out(33 downto 16)<=(others=>'0'); 

 multi_out(15 downto 0)<=(others=>'0'); 

 data_in_buff(0)<=data_in; 

 i<=0; 

 coeff_vector(0)<=coeff_0; 

 coeff_vector(1)<=coeff_1; 

 coeff_vector(2)<=coeff_2; 

 coeff_vector(3)<=coeff_3; 

 coeff_vector(4)<=coeff_4; 

 coeff_vector(5)<=coeff_5; 

 coeff_vector(6)<=coeff_6; 

 coeff_vector(7)<=coeff_7; 

 coeff_vector(8)<=coeff_8; 

 coeff_vector(9)<=coeff_9; 

 coeff_vector(10)<=coeff_10; 

 coeff_vector(11)<=coeff_11; 

 coeff_vector(12)<=coeff_12; 

 coeff_vector(13)<=coeff_13; 

 coeff_vector(14)<=coeff_14; 

 coeff_vector(15)<=coeff_15; 

 coeff_vector(16)<=coeff_16; 

 coeff_vector(17)<=coeff_17; 
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 coeff_vector(18)<=coeff_18; 

 coeff_vector(19)<=coeff_19; 

  

 

   elsif clk'event and clk='1' then 

 if i<19 and start = '1' then  

  i<=i+1; 

  multi_out<=multi_out+ (data_in_buff(i)* coeff_vector(i)); 

  elsif i=19 then  

   

    for j in 19 downto 1 loop 

   data_in_buff(j)<=data_in_buff(j-1); 

  end loop; 

 

  data_in_buff(0)<=data_in; 

  

  data_out<=multi_out(31 downto 16); 

  multi_out(15 downto 0)<=(others=>'0'); 

  multi_out(33 downto 16)<=(others=>'0'); 

   

  if start = '1' then 

  i<=0; 

  end if; 

   

end if; 

 

end if;  

 

end process; 

 

end db_20_low_pass; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_signed.all; 

 

entity decimator is 

port (clock:   in  std_logic; 

   reset:   in  std_logic; 

   data_in: in std_logic_vector(15 downto 0); 

   data_out: out std_logic_vector(15 downto 0) 
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); 

 

end decimator; 

 

architecture dec_2 of decimator is 

 

signal i: integer range 0 to 3; 

 

 

begin 

 

process(reset, clock) 

begin 

if reset='0' then 

i<=0; 

data_out<=(others=>'0'); 

elsif clock'event and clock='1' then 

 if i=1 then 

   data_out<=data_in; 

   i<=0; 

 else i<=i+1; 

  end if; 

end if; 

 

end process; 

 

 

end dec_2; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_signed.all; 

 

entity up_sampler is 

port (clock:   in  std_logic; 

   reset:   in  std_logic; 

   data_in: in std_logic_vector(15 downto 0); 

   data_out: out std_logic_vector(15 downto 0) 

    

); 
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end up_sampler; 

 

architecture upsample_2 of up_sampler is 

 

signal i: integer range 0 to 3; 

 

 

begin 

 

process(reset, clock) 

begin 

if reset='0' then 

i<=0; 

data_out<=(others=>'0'); 

elsif clock'event and clock='1' then 

 if i=1 then 

   data_out<=data_in; 

   i<=0; 

 else i<=i+1; 

   data_out<=(others=>'0'); 

  end if; 

end if; 

 

end process; 

 

end upsample_2; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

entity controller_1 is 

 

port( 

 clk: in std_logic; 

 reset:     in std_logic; 

 ctrl_high_pass:  out std_logic; 

 ctrl_low_pass:  out std_logic; 

 ctrl_selector_1:  out std_logic; 
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 ctrl_selector_2:  out std_logic_vector(2 downto 0); 

 enable_denoising: out std_logic; 

 input_addr:   out std_logic_vector(13 downto 0); 

 memory_read:  out std_logic; 

 memory_write_0:  out std_logic; 

 memory_write_1:  out std_logic; 

 memory_write_2:  out std_logic; 

 memory_write_3:  out std_logic; 

 memory_write_4:  out std_logic; 

 memory_write_5:  out std_logic; 

 memory_write_6:  out std_logic 

  

 

 

); 

 

end controller_1; 

 

architecture controller_DWT of controller_1 is 

 

 

signal count_selector: integer range 0 to 6; 

signal count_sample: integer range 0 to 10240; 

signal count_loop: integer range 0 to 20400; 

signal count_level_0: integer range 0 to 1; 

signal count_level_1: integer range 0 to 2; 

signal count_level_2: integer range 0 to 3; 

signal count_level_3: integer range 0 to 4; 

signal count_level_4: integer range 0 to 5; 

signal count_level_5: integer range 0 to 6; 

signal count_memory:  integer range 0 to 6; 

 

 

begin 

 

process (clk,reset) 

 

begin 

 

if reset='0' then 

count_selector<=0; 

count_sample<=0; 
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count_loop<=0; 

count_memory<=0; 

count_level_0<=1; 

count_level_1<=2; 

count_level_2<=3; 

count_level_3<=4; 

count_level_4<=5; 

count_level_5<=6; 

 

 

 

 

elsif clk'event and clk='1' then 

 count_sample<=count_sample+1; 

    ctrl_high_pass<='1'; 

     ctrl_low_pass<='1'; 

 if count_loop=20400 then 

   memory_read<='0'; 

   ctrl_selector_2<="111"; 

   enable_denoising<='0'; 

   ctrl_high_pass<='0'; 

   ctrl_low_pass<='0'; 

    

 else 

   ctrl_high_pass<='1'; 

   ctrl_low_pass<='1';         

 case count_loop is 

     when 0 to 19=> ctrl_selector_2<="000"; 

      

     when 20 to 40=>ctrl_selector_2<=conv_std_logic_vector(count_level_0, 3); 

                     

count_level_0<=count_level_0+1; 

                     

count_memory<=count_level_0; 

                     if count_level_0=0 

then 

                      

                     

enable_denoising<='1'; 

                     else 

enable_denoising<='0'; 

                     end if; 
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     when 41 to 101=>ctrl_selector_2<=conv_std_logic_vector(count_level_1, 3); 

                     

count_level_1<=count_level_1+1; 

                     if count_level_1<2 

then 

                     

enable_denoising<='1'; 

                     else 

enable_denoising<='0'; 

                     end if; 

                     

count_memory<=count_level_1; 

                      

     when 102 to 182=>ctrl_selector_2<=conv_std_logic_vector(count_level_2, 3); 

                     

count_level_2<=count_level_2+1; 

                     if count_level_2<3 

then 

                     

enable_denoising<='1'; 

                     else 

enable_denoising<='0'; 

                     end if;       

        

                     

count_memory<=count_level_2;                  

          

     when 183 to 283=>ctrl_selector_2<=conv_std_logic_vector(count_level_3, 3); 

                     

count_level_3<=count_level_3+1; 

                  if 

count_level_3<4 then 

                     

enable_denoising<='1'; 

                     else 

enable_denoising<='0'; 

                     end if; 

                     

count_memory<=count_level_3; 
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     when 284 to 404=>ctrl_selector_2<=conv_std_logic_vector(count_level_4, 3); 

                     

count_level_4<=count_level_4+1; 

                     if count_level_4<5 

then 

                     

enable_denoising<='1'; 

                     else 

enable_denoising<='0'; 

                     end if; 

                     

count_memory<=count_level_4; 

     when 405 to 10239=>ctrl_selector_2<=conv_std_logic_vector(count_level_5, 3); 

                     

count_level_5<=count_level_5+1; 

                     

enable_denoising<='1'; 

                      

count_memory<=count_level_5; 

                     

    when others=>null;                        

                         

                         

         

  end case; 

    if count_memory=0 then 

 count_sample<=count_sample+1; 

 input_addr<=conv_std_logic_vector(count_sample, 14); 

 end if; 

  end if; 

 

end if; 

 

end process; 

 

memory_write_0<=clk when count_memory=0 else 

      '0'; 

memory_write_1<=clk when count_memory=1 else 

      '0'; 

memory_write_2<=clk when count_memory=2 else 

      '0'; 

memory_write_3<=clk when count_memory=3 else 
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      '0'; 

memory_write_4<=clk when count_memory=4 else 

      '0'; 

memory_write_5<=clk when count_memory=5 else 

      '0'; 

memory_write_6<=clk when count_memory=6 else 

      '0';       

 

ctrl_selector_1<='1' when count_memory=0 else 

      '0'; 

end controller_DWT; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

 

entity clock_gen IS 

port (  reset:   in std_logic; 

  clk:   in  std_logic;  

     

        clk_out_fast: out std_logic; 

  clk_out_slow: out std_logic 

 

); 

end clock_gen; 

 

architecture clock_generator of clock_gen is 

 

signal i : integer; 

 

 

begin 

process (clk,reset) 

begin 

if reset= '0' then 

  i<=0; 

  elsif clk'event and clk='1' then 

    i<=i+1; 

  if i<10 then 

  clk_out_slow<='1'; 

   elsif i>9 and i<19 then 
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   clk_out_slow<='0'; 

   elsif i=19 then 

   i<=0; 

  end if; 

end if;   

 

end process; 

 

clk_out_fast<=clk; 

 

end clock_generator; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

 

entity denoising_block is 

port( clk: in std_logic; 

  data_in: in std_logic_vector(15 downto 0); 

  data_out: out std_logic_vector(15 downto 0); 

  reset: in std_logic ; 

  start: in std_logic 

 

); 

 

end  denoising_block; 

 

 

architecture Denoising_fun of denoising_block is 

 

constant thres:std_logic_vector(15 downto 0) := conv_std_logic_vector(14, 16); 

signal data_denoise: std_logic_vector(15 downto 0); 

signal data_temp: std_logic_vector(15 downto 0); 

  

begin 

 

process (reset, clk) 

 

begin  
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if reset='0' then 

 

data_denoise<=(others=>'0'); 

data_out<=(others=>'0'); 

data_temp<=(others=>'0'); 

 

elsif reset='1' then 

 

 if clk'event and clk='1' and start='1' then 

  data_temp<=data_in; 

 

  if  thres > data_temp then 

   data_denoise<=(others=>'0'); 

  else data_denoise<=data_temp; 

  end if;            

 data_out<=data_denoise; 

 end if; 

end if; 

 

end process; 

 

end Denoising_fun; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

entity selector_2 is 

port(clk: in std_logic; 

 select_sig: in std_logic; 

 data_in_0: in std_logic_vector(15 downto 0); 

 data_in_1: in std_logic_vector(15 downto 0); 

 

 data_out:  out std_logic_vector(15 downto 0) 

 ); 

end selector_2; 

 

architecture selector_2_1 of selector_2 is 
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begin 

 

data_out<=data_in_0 when select_sig='1' else 

     data_in_1; 

 

end selector_2_1; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

entity selector is 

port(clk: in std_logic; 

 select_sig: in std_logic_vector(2 downto 0); 

 data_in_0: in std_logic_vector(15 downto 0); 

 data_in_1: in std_logic_vector(15 downto 0); 

 data_in_2: in std_logic_vector(15 downto 0); 

 data_in_3: in std_logic_vector(15 downto 0); 

 data_in_4: in std_logic_vector(15 downto 0); 

 data_in_5: in std_logic_vector(15 downto 0); 

 data_in_6: in std_logic_vector(15 downto 0); 

 

 data_out:  out std_logic_vector(15 downto 0) 

 ); 

end selector; 

 

architecture selector_7_1 of selector is 

 

begin 

 

process(clk, select_sig) 

 

begin 

 

if clk'event and clk='1' then 

case select_sig is 

when "000"=>data_out<=data_in_0; 

when "001"=>data_out<=data_in_1; 

when "010"=>data_out<=data_in_2; 

when "011"=>data_out<=data_in_3; 
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when "100"=>data_out<=data_in_4; 

when "101"=>data_out<=data_in_5; 

when "110"=>data_out<=data_in_6; 

when others=>null; 

end case; 

 

end if; 

 

end process; 

 

 

end selector_7_1; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

entity FIFO is 

generic(size: integer range 0 to 140); 

port(clk_in: in std_logic; 

data_in: in std_logic_vector(15 downto 0); 

data_out:  out std_logic_vector(15 downto 0); 

clk_out: in std_logic; 

read_en:  in std_logic; 

reset:  in std_logic 

 ); 

end FIFO; 

 

architecture behav_FIFO of FIFO is 

type shift_reg is array(integer range <>) of std_logic_vector(15 downto 0); 

signal content: shift_reg(size downto 0); 

signal in_counter: integer range 0 to size; 

signal out_counter: integer range 0 to size; 

 

begin 

 

process(clk_in, reset) 

 

begin 

if reset ='0' then 
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 in_counter<=0; 

   content<=(others=>"0000000000000000"); 

    

 elsif clk_in'event and clk_in='1' then 

 content(in_counter)<=data_in; 

   if in_counter=size then 

      in_counter<=0; 

   else in_counter<=in_counter+1; 

   end if; 

 

end if; 

 

end process; 

 

process(clk_out, reset) 

 

begin 

if reset ='0' then 

 out_counter<=size; 

 

 elsif clk_out'event and clk_out='1' then 

     if read_en='1' then  

     if 

      out_counter=size then 

        out_counter<=0; 

     else out_counter<=out_counter+1; 

     end if; 

    end if; 

end if; 

 

end process; 

 

data_out<=content(out_counter); 

 

end behav_FIFO; 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

-- synthesis translate_off 

Library XilinxCoreLib; 

-- synthesis translate_on 

ENTITY buffer_input IS 
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 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(15 downto 0); 

 addra: IN std_logic_VECTOR(13 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

END buffer_input; 

 

ARCHITECTURE buffer_input_a OF buffer_input IS 

-- synthesis translate_off 

component wrapped_buffer_input 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(15 downto 0); 

 addra: IN std_logic_VECTOR(13 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

-- Configuration specification  

 for all : wrapped_buffer_input use entity XilinxCoreLib.blk_mem_gen_v2_7(behavioral) 

  generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_prim_type => 1, 

   c_sinita_val => "0", 

   c_read_width_b => 16, 

   c_family => "virtex2p", 

   c_read_width_a => 16, 

   c_disable_warn_bhv_coll => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "WRITE_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_mem_output_regs_b => 0, 

   c_load_init_file => 0, 

   c_xdevicefamily => "virtex2p", 

   c_has_mem_output_regs_a => 0, 

   c_write_depth_b => 10240, 

   c_write_depth_a => 10240, 

   c_has_ssrb => 0, 
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   c_has_mux_output_regs_b => 0, 

   c_has_ssra => 0, 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 14, 

   c_addrb_width => 14, 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 16, 

   c_write_width_a => 16, 

   c_read_depth_b => 10240, 

   c_read_depth_a => 10240, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_use_ramb16bwer_rst_bhv => 0, 

   c_common_clk => 0, 

   c_wea_width => 1, 

   c_has_enb => 0, 

   c_web_width => 1, 

   c_has_ena => 0, 

   c_sinitb_val => "0", 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_use_default_data => 0); 

-- synthesis translate_on 

BEGIN 

-- synthesis translate_off 

U0 : wrapped_buffer_input 

  port map ( 

   clka => clka, 

   dina => dina, 

   addra => addra, 

   wea => wea, 

   douta => douta); 

-- synthesis translate_on 

 

END buffer_input_a; 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 
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---- Uncomment the following library declaration if instantiating 

---- any Xilinx primitives in this code. 

--library UNISIM; 

--use UNISIM.VComponents.all; 

 

entity combination is 

    Port ( clk : in  STD_LOGIC; 

           data_high_pass : in  STD_LOGIC_VECTOR (15 downto 0); 

           data_low_pass : in  STD_LOGIC_VECTOR (15 downto 0); 

           data_out : out  STD_LOGIC_VECTOR (15 downto 0)); 

end combination; 

 

architecture Behavioral of combination is 

 

begin 

 

process(clk) 

begin 

if clk'event and clk='1' then  

 

data_out<=data_high_pass+data_low_pass; 

end if; 

end process; 

 

end Behavioral; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

 

 

entity S_to_P IS 

port (  reset:  in  std_logic; 

     

    clk:   in std_logic;  

    data_in:  in std_logic_vector(15 downto 0); 

     

        data_out: out std_logic_vector(79 downto 0) 
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); 

end S_to_P; 

 

architecture connect_5 of S_to_P is 

 

signal temp_out: std_logic_vector(79 downto 0); 

signal i: integer range 0 to 7; 

begin 

 

process(clk, reset) 

 

begin 

if reset='0' then 

 data_out<=(others=>'0'); 

 temp_out<=(others=>'0'); 

 i<=0; 

 

  

 

   elsif clk'event and clk='1' then 

 case i is 

 when 0 =>  

        

       temp_out(15 downto 0)<=data_in; 

       i<=i+1; 

       

 when 1 =>  

       temp_out(31 downto 16)<=data_in; 

       i<=i+1; 

       

 when 2 =>  

       temp_out(47 downto 32)<=data_in; 

       i<=i+1; 

        

 when 3 =>  

       temp_out(63 downto 48)<=data_in; 

       i<=i+1; 

        

 when 4 =>  

       temp_out(79 downto 64)<=data_in; 

       i<=0; 
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       data_out<=temp_out; 

         

        

 when others=>null;       

 end case;   

   

 end if; 

 

end process; 

 

end connect_5; 

 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

--use ieee.std_logic_unsigned.all; 

use ieee.std_logic_signed.all; 

 

 

 

entity convolution IS 

port (  reset:  in  std_logic; 

    start:  in std_logic; 

    clk:   in std_logic;  

    data_in:  in std_logic_vector(79 downto 0); 

    coeff_in: in  std_logic_vector(79 downto 0); 

        data_out: out std_logic_vector(15 downto 0) 

 

); 

end convolution; 

 

architecture convolution_5 of convolution is 

 

signal multi_out: std_logic_vector(27 downto 0); 

 

 

begin 

 

process(clk, reset) 

 

begin 

if reset='0' then 
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 data_out<=(others=>'0'); 

 

 multi_out(27 downto 16)<=(others=>'0'); 

 multi_out(15 downto 0)<=(others=>'0'); 

 

 

  

  

 

   elsif clk'event and clk='1' then 

 if  start = '1' then  

  multi_out(27 downto 0)<=data_in(79 downto 64)*coeff_in(49 downto 40) 

  +data_in(63 downto 48)*coeff_in(39 downto 30)+data_in(47 downto 32)*coeff_in(29 downto 20) 

  +data_in(31 downto 16)*coeff_in(19 downto 10)+data_in(15 downto 0)*coeff_in(9 downto 0); 

     

 end if; 

 

end if;  

 

data_out<=multi_out(15 downto 0); 

 

end process; 

 

end convolution_5; 

 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

-- synthesis translate_off 

Library XilinxCoreLib; 

-- synthesis translate_on 

ENTITY coeff_memory IS 

 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(79 downto 0); 

 addra: IN std_logic_VECTOR(12 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(79 downto 0)); 

END coeff_memory; 

 

ARCHITECTURE coeff_memory_a OF coeff_memory IS 

-- synthesis translate_off 

component wrapped_coeff_memory 
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 port ( 

 clka: IN std_logic; 

 dina: IN std_logic_VECTOR(79 downto 0); 

 addra: IN std_logic_VECTOR(12 downto 0); 

 wea: IN std_logic_VECTOR(0 downto 0); 

 douta: OUT std_logic_VECTOR(79 downto 0)); 

end component; 

 

-- Configuration specification  

 for all : wrapped_coeff_memory use entity XilinxCoreLib.blk_mem_gen_v2_7(behavioral) 

  generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_prim_type => 1, 

   c_sinita_val => "0", 

   c_read_width_b => 80, 

   c_family => "virtex2p", 

   c_read_width_a => 80, 

   c_disable_warn_bhv_coll => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "WRITE_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_mem_output_regs_b => 0, 

   c_load_init_file => 0, 

   c_xdevicefamily => "virtex2p", 

   c_has_mem_output_regs_a => 0, 

   c_write_depth_b => 6144, 

   c_write_depth_a => 6144, 

   c_has_ssrb => 0, 

   c_has_mux_output_regs_b => 0, 

   c_has_ssra => 0, 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 13, 

   c_addrb_width => 13, 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 80, 

   c_write_width_a => 80, 
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   c_read_depth_b => 6144, 

   c_read_depth_a => 6144, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_use_ramb16bwer_rst_bhv => 0, 

   c_common_clk => 0, 

   c_wea_width => 1, 

   c_has_enb => 0, 

   c_web_width => 1, 

   c_has_ena => 0, 

   c_sinitb_val => "0", 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_use_default_data => 0); 

-- synthesis translate_on 

BEGIN 

-- synthesis translate_off 

U0 : wrapped_coeff_memory 

  port map ( 

   clka => clka, 

   dina => dina, 

   addra => addra, 

   wea => wea, 

   douta => douta); 

-- synthesis translate_on 

 

END coeff_memory_a; 
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