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Abstract

Graphical models provide a very promising avenue for making sense of large,
complex datasets. The most popular graphical models in use at the moment are
Bayesian networks (BNs). This thesis shows, however, they are not always ideal fac-
torisations of a system. Instead, I advocate for the use of a relatively new graphical
model, the chain event graph (CEG), that is based on event trees.

Event trees directly represent graphically the event space of a system. Chain
event graphs reduce their potentially huge dimensionality by taking into account
identical probability distributions on some of the event tree’s subtrees, with the
added benefits of showing the conditional independence relationships of the system
— one of the advantages of the Bayesian network representation that event trees
lack — and implementation of causal hypotheses that is just as easy, and arguably
more natural, than is the case with Bayesian networks, with a larger domain of
implementation using purely graphical means.

The trade-off for this greater expressive power, however, is that model spec-
ification and selection are much more difficult to undertake with the larger set of
possible models for a given set of variables. My thesis is the first exposition of how
to learn CEGs. I demonstrate that not only is conjugate (and hence quick) learning
of CEGs possible, but I characterise priors that imply conjugate updating based
on very reasonable assumptions that also have direct Bayesian network analogues.
By re-casting CEGs as partition models, I show how established partition learning
algorithms can be adapted for the task of learning CEGs.

I then develop a robust yet flexible prediction machine based on CEGs for
any discrete multivariate time series — the dynamic CEG model — which combines
the power of CEGs, multi-process and steady modelling, lattice theory and Occam’s
razor. This is also an exact method that produces reliable predictions without
requiring much a priori modelling. I then demonstrate how easily causal analysis
can be implemented with this model class that can express a wide variety of causal
hypotheses. I end with an application of these techniques to real educational data,
drawing inferences that would not have been possible simply using BNs.
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Chapter 1

Introduction

Very large datasets are becoming ever more common, with the ability to make sense
of them becoming a major problem [Lohr, 2009]. If one uses overly simplistic models
to analyse them, there is a risk of jumping to incorrect conclusions; if the models
are too complex, they can at best take a very long time to compute, and at worst
be opaque black boxes that have no explanatory power, cannot be quality-assured
and are extremely sensitive in unpredictable ways to hyper-parameter inputs.
Graphical models provide an attractive middle way [Lauritzen, 1996]. Be-
cause of their pictorial form, graphs are excellent tools for eliciting expert opinion
about a system and are transparent and communicable; because of their highly
structured modular form, they can easily be operationalised for computation.
Bayesian networks (BNs) are currently one of the most widely used graphi-
cal models for representing and analysing multivariate distributions, with their ex-
plicit coding of conditional independence relationships between a system’s variables
[Cowell et al., 1999; Lauritzen, 1996], which is often the major knowledge domain of
experts and an effective way to reduce dimensionality of a problem at a high level.

However, despite their power and usefulness, it has long been known that BNs



cannot fully or efficiently represent certain common scenarios [Smith et al., 1993].
These include situations where the state space of a variable is known to depend on
other variables, or where the conditional independence between variables is itself de-
pendent on the values of other variables, called CONTEXT-SPECIFIC INDEPENDENCE
in the literature [Boutilier et al., 1996]. In order to overcome such deficiencies,
enhancements have been proposed to the canonical Bayesian network. Poole and
Zhang [2003], for example, define CONTEXTUAL BELIEF NETWORKS. These, however,
don’t represent the context-specific independence relationships graphically, thus un-
dermining the rationale for using a graphical model in the first place. Boutilier et al.
[1996], meanwhile, keep the BN in place but additionally uses trees to describe the
structures of the conditional probability distributions.

A new graphical model — the Chain Event Graph (CEG), first propounded
by Smith and Anderson [2008] — aims to represent the context-specific indepen-
dences and asymmetric sample spaces of a model explicitly and in a single graph.
To this end, CEGs are based not on Bayesian networks, but on event trees (ETs)
[Shafer, 1996]. Event trees are trees where nodes represent situations — i.e. scenar-
ios in which a unit might find itself — and each node’s extending edges represent
possible future situations that can develop from the current one. It follows that
every atom of the event space is encoded by exactly one root-to-leaf path. ETs
are expressive frameworks for directly and accurately representing beliefs about a
process, particularly when the model is described most naturally through how situ-
ations might unfold [Shafer, 1996]. However, as explained by Smith and Anderson
[2008], ETs can contain excessive redundancy in their structure, with subtrees de-
scribing probabilistically isomorphic unfoldings of situations being represented sep-
arately. They are also unable to explicitly express a model’s non-trivial conditional

independence relationships. The CEG deals with these shortcomings by combin-



ing the subtrees that describe identical subprocesses so that the CEG derived from
a particular ET has a simpler topology while in turn expressing more conditional
independence statements than is possible through an ET.

Consider the following example, which exemplifies the types of hypotheses I

plan to search over in my model selection.

Example 1. Successful students on a one year course study components A and B,
but not everyone will study the components in the same order: each student will
be allocated to study either module A or B for the first 6 months and then the
other component for the final 6 months. After the first 6 months each student will be
examined on their allocated module and be awarded a distinction (denoted with D), a
pass (P) or a fail (F'), with an automatic opportunity to resit the module in the latter
case. If they resit then they can pass and be allowed to proceed to the other component
of their course, or fail again and be permanently withdrawn from the programme.
Students who have succeeded in proceeding to the second module can again either
fail, pass or be awarded a distinction. On this second round, however, there is no
possibility of resitting if the component is failed. With an obvious extension of the

labelling, this system can be depicted by the event tree given in Figure 1.1.

To specify a full probability distribution for this model it is sufficient to only
specify the distributions associated with the unfolding of each situation a student
might reach. However, in many applications such as this one it is often natural to
hypothesise a model where the distribution associated with the unfolding from one
situation is assumed identical to another. Situations that are thus hypothesised to
have the same transition probabilities to their children are said to be in the same
stage. Thus in Example 1 suppose that as well as subscribing to the ET of Figure

1.1 one would want to consider the plausibility of the following three hypotheses:

1. The chances of doing well in the second component are the same whether the
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Figure 1.1: Event tree of a student’s potential progress through a hypothetical
course described in Example 1. Each non-leaf node represents a juncture at which a
random event will take place, with the selection of possible outcomes represented by
the edges emanating from that node. Each edge distribution is defined conditional
on the path passed through earlier in the tree to reach the specific node.



student passed the first module the first time or after a resit.
2. The components A and B are equally hard.

3. The distribution of marks for the second component is unaffected by whether

students passed or got a distinction for the first component.

Each of these hypotheses can be identified with a partitioning of the non-leaf

nodes (SITUATIONS). In Figure 1.1 the set of situations is

S ={Vo,A,B,P1 A, P B,D1,4,D1,5,F1 4, F1.B, Pr A, Pr B}

The partition C of S that encodes the above three hypotheses consists of the stages
ur = {A, B}, ug = {F1,4, F1B}, and uz = {P1,a, P1.B, Pr A, Pr,B, D1,4, D1,B} to-
gether with the singleton ug = {V;}. Thus the second stage ug, for example, implies
that the probabilities on the edges (F1 g, Fr,p) and (F1 4, FRr ) are equal, as are
the probabilities on (F g, Pr p) and (F1 4, Pr a). Clearly the joint probability dis-
tribution of the model — whose atoms are the root to leaf paths of the tree — is
determined by the conditional probabilities associated with the stages. A CEG is
the graph that is constructed to encode a model that can be specified through an
event tree combined with a partitioning of its situations into stages.

In the first part of this thesis I suppose that we are in a context similar
to that of Example 1, where, for any possible model, with a selection of these
types of hypotheses, the sample space of the problem must be consistent with a
single event tree. On the basis of a sample of students’ records we would want to
select one of a number of these different possible CEG models, i.e. we want to find
the “best” partitioning of the situations into stages. I take a Bayesian approach
to this problem and choose the model with the highest posterior probability —

the Maximum A Posteriori (MAP) model. This is the simplest and possibly most



common Bayesian model selection method, advocated by, for example, Bernardo
and Smith [1994], Denison et al. [2002], Heckerman [1999] and Castelo [2002], the
latter two specifically for models that are Bayesian networks. Because the range of
possible CEG models for any system exceeds the set of possible BN models, however,
and encode information differently from them, the algorithms for searching for MAP
BNs must be adapted accordingly. In Section 6.1.1 I show how to learn a CEG from
the tree in Example 1 using simulated data and the algorithm developed in Section
3.3.

My aim throughout this thesis is to ensure all calculations, at least with com-
plete sampling, are exact, i.e. there is no need for approximate numerical techniques
such as MCMC. While MCMC has vastly widened the vista of possible Bayesian
analyses, it can sometimes be used as a crutch when a faster, wholly adequate exact
analysis would be possible with a slight adjustment of the model. When it comes
to very large datasets with a commensurately very large set of possible models,
conjugate analyses can vastly speed up searches across the model space. MCMC
is extremely useful for estimating parameters of models once the most appropriate
choice of model has been identified, if necessary.

In the second half of the thesis I develop a class of dynamic multivariate
graphical models over finite discrete state spaces based on CEGs for the purposes of
prediction, where at each time point the relevant cohort of units data is represented
by a different CEG. Highly multivariate discrete processes are quite common but to
my knowledge have so far not been systematically studied with graphical models.

These processes in the most general case tend to have the following characteristics:

1. A description is provided of the possible development histories each unit in the
process can take at a given time. These histories could be radically different

from one another in terms of length of development, the variables encountered,



the state spaces of each stage of development, and so on, but the range of

possibilities remains fixed.

2. There are various symmetry hypotheses for a given population of units con-
cerning which situations in the histories have the same distributions over their

immediate developments.

3. The units arrive in discrete time cohorts, assumed here for simplicity to be
equally spaced apart. The symmetries in the system are allowed to change

from one time point to the next to reflect a changing environment.

4. The system may, at various times, be subject to local interventions, i.e. one of
its variables is manipulated exogenously. The model then admits a “causal”
extension which provides predictions of the process when subject to such a

control.

I am particularly interested in making good one-step ahead predictions for
such a system. I consider making good (probabilistic) predictions (or FORECASTS) to
be the central goal of statistical analysis, as argued by de Finetti [1974] and Dawid
[1984]. This approach will also provide, as a beneficial side-effect, the probabilities
of the symmetry hypotheses through time, which can be used as an explanatory
tool.

One example of a system that fits the criteria above is a programme of study
provided by an educational establishment which monitors students’ marks over time.

The general points above then translate into the following specific issues:

1. The modules of the course are always taken in a particular order (or consistent
with some partial order); there might be a requirement to achieve a threshold
mark before being allowed to continue onto the next module; and certain

modules might have different prerequisite modules.
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Figure 1.2: Event tree for marks for two modules in a course. Marks are discretized
into 3 grades, and A and N A indicate whether the mark is recorded or missing. The
10 situations are labelled and the 16 leaf nodes are unlabelled.

2. A student’s performance on a previous module could influence the marks on

a later one.

3. New students come in yearly cohorts. Because of any number of possible
changes in any number of unobserved confounding factors the similarities in

outcomes between different course histories could change for each cohort.

4. The administrators will be interested in predicting the effect on the mark dis-
tribution by changing the program in some way, such as changing the syllabus
or lecturer for a module, changing the prerequisites for a modules, or removing

a module entirely.

One example of an event tree for the marks for a course with two modules

and three grades is given by Figure 1.2.



The event tree can represent any discrete event space and naturally codifies a
chronological order (or partial order) in its topology, and so I base my own dynamic
graphical model on it. However, it is not sufficient for addressing the rest of our
requirements by itself, particularly because it does not codify the symmetries in the
system that I am interested in modelling. CEGs do, though, and so the model class
developed here is based on them but extended into a more general dynamic scenario
where probabilities and symmetries are allowed to change with time.

I describe the dynamics of this type of tree-structured process by a state
space model incorporating a switching mechanism to neighbouring models at every
time point. The earliest example of this general class, to the best of my knowledge,
was studied for univariate Gaussian series [Harrison and Stevens, 1976; West and
Harrison, 1997] and called Multi-process Models Class II. Frithwirth-Schnatter [2006]
reviews switching models for non-Gaussian state spaces, but none of these have
closed posterior forms. Here, I use a type of multi-process model which allows
dynamic shifting from one symmetry partition to neighbouring ones whilst retaining
conjugacy.

Various classes of discrete multivariate time series are of course well studied.
Possibly the closest classes to the one considered here with associated graphical
models are the models used in event history analysis. EVENT HISTORY data relates
to when events of interest occur, rather than what events occur at time points of
interest. Formally, an event history can be identified as a MARKED POINT PROCESS,
a set {(Ts, Es) : s =1,...,5} of pairs of times Ts when events E5 occurred, where
the times are random variables while the events of interest are fixed beforehand,
although their order might be uncertain a priori [Arjas, 1989]. Two graphical models
developed for event history analysis are local independence graphs [Didelez, 2008]

and graphical duration graphs [Gottard, 2007]. While there is an overlap between



event history data and the problem outlined here, it is clear that the two address
quite separate concerns. In event history analyses the number of events under
consideration is typically small, with the focus of analysis being the timing of events,
usually allowed to occur within a continuous time domain. Here, in contrast, I wish
to model a class of complex discrete distributions over a discrete time domain. I
discuss the connections between the two model classes further in Chapter 7.

In order to take into account possible drifting on the tree parameters through
time caused by unobserved background processes, one could follow the standard
approach of stating a transition probability P(6; | 6;—1,5), where 6; represents the
parameters on the tree at time ¢ and S is the underlying model. The most common
way to achieve this is to use a conventional state-space formulation. Unfortunately,
this approach almost always immediately requires the inference to be undertaken
with approximating numerical methods. This is not ideal in this context for several
reasons: First, in the process I consider here, conjugacy and modularity are present
and it would be a shame to lose these useful properties. Secondly, because of the
vastness of the model space of our domain of application it is convenient to be
able to have Bayes factors calculable in closed form, because this greatly speeds up
computation of model goodness. Thirdly, models in this class are easier to interpret
when they retain their modular and conjugate forms.

An alternative approach, which I take here, is to set a transition function

T POy |22, 8) = P60, | 2171, S) (1.1)

t=1 are the observations up to time t— 1. Although this approach is narrower

where x
in its scope, it is sufficient for making probabilistic predictions which is my aim here
as mentioned earlier. The particular transition function I ultimately choose to use

can be justified through various characterisations [Smith, 1979, 1992], encouraging

10



several different authors to use such transitions. I also show that it has the property
of preserving the modular structure of each model in this class and works well against
prior misspecification.

Interventions on a graphical model are covered by the causal literature (e.g.
Pearl [2000b]). Causal analysis on event trees was considered by Shafer [1996] and
was defined for static chain event graphs by Thwaites et al. [2010]. I extend this to
the dynamic model class presented here. By still retaining conjugacy and modularity
when learning model probability parameters, this causal extension of the model class
is particularly straightforward, allowing it to be easily used for modelling a controlled

environment.

Thesis outline

The remainder of this thesis is thus structured as follows.

In Chapter 2 I review the latest theory concerning graphical models and how
to learn them automatically.

In Chapter 3 I review the definitions of event trees and CEGs. I then develop
the theory of how conjugate learning of CEGs is performed, and apply this theory
by using the posterior probability of a CEG as its score in a model search algorithm
that is derived using an analogous procedure to the model selection of BNs. I
characterise the product Dirichlet distribution as a prior distribution for the CEGs’
parameters under particular homogeneity conditions.

In Chapter 4 I review some theory concerning state-space and dynamic graph-
ical models that will be relevant in developing the new dynamic graphical model
based on CEGs.

In Chapter 5 I proceed to expositing the dynamic chain event graph. I for-

mally define the necessary concepts and show how to make exact one-step ahead

11



predictions with the new model. I then extend the model to allow the implementa-
tion of causal analyses.

In Chapter 6 I apply all of the theory and algorithms to a simulated data for
testing purposes and then to results from a real educational programme in order to
make rich inferences about students’ educational achievement.

I end in Chapter 7 by discussing outstanding research questions that extend

from the work in this thesis.

12



Chapter 2

Graphical models

I begin by describing what I consider graphical models to be and why they are
worthy of study and use. I then move on to discussing various statistical issues
concerning the most popular contemporary graphical model: the Bayesian Network
(BN). I finish by critiquing the BN and proposing a new graphical model that is

more appropriate for many applications based on trees.

2.1 Introduction to graphical models

Statistical models are descriptions of stochastic systems that enable us to understand
the relationships between the variables of that system. In the Bayesian paradigm,
the statistical model encodes degrees of belief about various hypotheses concern-
ing the system as probabilities, and these probabilities are updated in line with
probability theory as observations of the system are made.

It is clear, therefore, that the statistical model used to describe a system and
make predictions and decisions concerning that system must be chosen with great
care. For very complex systems, the temptation to settle for a simple model should

in general be resisted unless it can be shown that the approximation required will not

13



affect any analysis adversely. Excessively complex models, however, require the set-
ting of more parameters, which leads to greater risk of model mis-specification, and
also large amounts of computation which can quickly lead to intractability. What
is required, as Einstein put it, is “to make the irreducible basic elements as simple
and as few as possible without having to surrender the adequate representation of
a single datum of experience” [Einstein, 1934]. One way to do so is to make qual-
itative judgements about the system, for example about any homogeneities which
are believed a priori to exist between seemingly separate variables. This can reduce
the dimensionality of the model as well as increase its power. To represent these
statements transparently one can use a (network) graph, which characterises the
model as a graphical model.

Lauritzen [1996] notes that graphical models have their origin in the early
20th century in the analysis of statistical mechanics by Gibbs [Gibbs, 1902; Borgelt
and Kruse, 2002]. Nowadays graphical models are considered to be “statistical mod-
els embodying a collection of marginal and conditional independences which may
be summarized by means of a graph” [Dawid and Lauritzen, 1993]. This certainly
describes Bayesian networks, but I will show how the syntax of a graph can be used
to describe other model properties apart from independence relationships.

My overarching aim when using graphical models is well described by Dawid

[2002]:

Seek to represent and manipulate as much as possible of the relevant
structure and details of the model by purely graphical means, keeping

any external information required to a minimum

As Dawid [2002] notes, “what is relevant for one purpose may be irrelevant
clutter for another”. I will show that Bayesian networks do not always represent the

important and relevant details of a model graphically.
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I begin by revising basic graph theory terminology that will be used through-
out. Further details of these concepts can be found in many introductory graph

theory texts, e.g. [West, 2001].

Definition 2. A GRAPH G is a pair (V(G), E(G)) where V(QG) is its set of vertices
(or nodes), E(G) is its set of edges. The set of edges can be thought of as a relation
on V(G).

When a graph is drawn, the vertices are displayed as points and the edges as

curves between the appropriate points.

Definition 3. A DIRECTED GRAPH (or digraph) is a graph G where the edges are
ordered pairs of vertices. Thus the edges ey = (v1,v2) and e2 = (v2,v1) (where
vi,v2 € V(G)) are distinct elements of E(G).

Edges in a directed graph are drawn as arrows from the first vertex to the
second vertex in the ordered pair.

All graphs in this paper are directed graphs, and the following definitions

assume this.

Definition 4. In a digraph, the CHILD of the edge e = (v1,v2) € E(G), written
ch(e), is vy. Its PARENT pa(e) is v;.
By abuse of notation, the children of a vertex v € V(G), written ch(v), are
defined as
ch(v) = {v' : v € V(GQ), (v,v") € E(G)} (2.1)

and pa(v) is defined similarly.

Definition 5. A PATH X\ between two vertices vi,va € V(G) is an ordered sequence
of edges A(vi,v2) = (e1,...,e,) where ey, ... e, € E(G), pa(e1) = v1, ch(e,) = v2

and ch(er) = pa(egs1) fork=1,...,n— 1.
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Definition 6. The LENGTH of a path is the number of edges it contains, given in
the above definition as n. By an abuse of notation, we say v € X\ (where v € V') if

the path \ passes through v.
Definition 7. A CYCLE is a path A(vi,v2) where vy = vs.
Definition 8. An ACYCLIC GRAPH contains no cycles.

Definition 9. A graph is CONNECTED if there exists a path in the graph between

every pair of vertices, where direction of edges here can be changed if necessary.

Definition 10. A graph is a COMPLETE graph if there is an edge between every pair

of nodes.

Definition 11. A TREE is a connected acyclic graph where one vertex (denoted here

by vo) has no parents and all other vertices have exactly one parent.

Definition 12. A LEAF NODE in a tree is a verter with no children. The set of leaf

nodes of a tree T is denoted here by L(T).

2.2 Introduction to Bayesian networks

The Bayesian network uses a modification of the graph theory concept of separa-
tion to represent conditional independence relationships. It can be proven that the
separation properties of a Bayesian network graph match up with the conditional
independence properties of a statistical model so that such a representation makes
sense. I show here how this is done formally, beginning with giving the definition
and formal axioms of conditional independence as defined by [Dawid, 1979]. The
axioms are also called the SEMI-GRAPHOID AXIOMS after Pearl and Paz [1986].

I start by introducing a formal definition of conditional independence as given

by [Dawid and Lauritzen, 1993].
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Definition 13. Let X,Y,Z be random variables on a probability space (0, F, P).
Then X is CONDITIONALLY INDEPENDENT of Y given Z (under P) if for any P-
measurable set A in the sample space of X, P(X € A|Y,Z) can be expressed as a

function of Z alone.

It is clear that conditional independence is a useful modelling assumption to
make if it sensible to do so, because the dimensionality of the model for any random
variable can be reduced when conditioning on other variables. A special case of
this phenomenon is statistical sufficiency, as explained by [Dawid, 1979; Dawid and
Lauritzen, 1993], when the random variables are parameters of the model; another
example of conditional independence is in linear regression where the number of
explanatory variables required in the model is deemed to be sufficient to model the
dependent variable.

Standard independence holds when Z in the above definition is the empty
set.

Now I introduce the semi-graphoid axioms. Let W, XY, Z be four disjoint
subsets of a set U and let 1L and | form a ternary relation R C U? of subsets of U,
where I write X 1L Y|Z if (X,Y,Z) € R, for example. It is also possible to write
X LY if (X,Y,0) € R. R then satisfies the semi-graphoid axioms if, as given by

[Borgelt and Kruse, 2002],

Symmetry (X 1Y |Z) = (Y1 X|Z2)

Decomposition (WUX) LY |Z) = WLY |Z)and (X 1LY |Z2)
Weak union (WUX) LY |Z) = (X LY |ZUW)

Construction (X LY |[(ZUW))and (W LY |Z) = (WUX)1LY|Z)

It can be proven that conditional independence between random variables

satisfies the semi-graphoid axioms [Castillo et al., 1997; Borgelt and Kruse, 2002],
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and therefore we can write X 1Y | Z to represent the statement that X is condi-
tionally independent of Y given Z.
I now show how a Bayesian network can be used to graphically represent all

of the conditional independence statements of a model.

Definition 14. A BAYESIAN NETWORK for the model with set of random variables
X ={Xy,..., X} on a probability space (A, F, P) is a directed acyclic graph G =

(V, E) where
1. each node V; € V' corresponds to exactly one variable X; € X, and

2. if P(X) can be written as [[;—_; P(X; | Qs), where Q; C {X1,...,X;—1} (with
the exception of Q1 = 0), then pa(V;) = V(Q;), where V(Q;) are the nodes

corresponding to the random variables in Q;.

From here on in, I refer to the vertices representing random variables or sets
or collections of random variables by the random variables themselves, except in
cases where there might be possible confusion.

Note that a complete Bayesian network can always be drawn for a model with
a finite number of random variables, as P(X1,..., X,) =[[i~, P(X; | X1,...,Xi—1)
is always true. Note therefore that there may also be more than one possible
Bayesian network representation of a model; in particular, any complete directed
acyclic graph with V' = V(X)) is always a valid Bayesian network. Adding edges to
a valid BN always creates another valid BN, as long as the resulting graph remains
directed and acyclic.

It is clear the Bayesian network representation of a model explicitly encodes
some conditional independence statements of the model. Specifically, it can be

immediately read from the graph that

Xl ({X1,. . Xim 3\ Qi) | Qs (2.2)
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for ¢ = 2,...,n purely from its topology. However, more conditional independence
statements can be inferred from the graph using a property of the graph that also
satisfies the semi-graphoid axioms. This property is D-SEPARATION, first defined by
Verma and Pearl [1988] and subsequently re-defined by Lauritzen [1996] in a more
useful and operational way, where for three disjoint subsets A, B, S C V, S is said
to d-separate A and B if S blocks all paths between all vertices in A and all vertices

in B on a transformed version of the original BN. The transformation is as follows:

1. Delete all vertices from the BN that are neither part of A, B or S, nor have a
path from themselves to another vertex in A, B or S. Delete all edges which
had one of the deleted vertices at one of their ends. This is the ANCESTRAL

graph of the BN.

2. For every pair of nodes that have a common child that are not connected create
an edge between them. This is the MORALISED graph (because “unmarried”

parent nodes are made to “marry”).

3. Ignore the directions of arrows on edges for determining whether paths are

blocked. This is the SKELETON graph.

Then it can be proven that for any BN set up as above,

S d-separates A from B= A1 B | S (2.3)

Thus by stating a few qualitative statements about how some variables are
not relevant in determining the distributions of other variables if the values of yet an-
other group of variables is known, many other conditional independence statements

of the model can be inferred.
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2.3 Learning Bayesian networks

In many scenarios, the modeller might not have complete certainty over the condi-
tional independence relationships which hold between the variables of the system
under consideration, or equivalently the Bayesian network which best represents the
model. In this case, the Bayesian approach is to consider the structure itself as a
random variable with a probability distribution of its form set a priori, and then
updated using Bayes’ theorem in the light of new data. This procedure has been de-
scribed as LEARNING the Bayesian network by the artificial intelligence community,
e.g. in [Heckerman, 1999] and can be considered as another form of model selection.

However, the procedure is in practice rarely so simple. The major obstacle
in carrying it out is that the size of the set of possible Bayesian networks grows
in size super-exponentially with respect to the size of the set of random variables
[Cooper and Herskovits, 1992]. This means that setting a proper subjective prior
distribution over the set of possible Bayesian networks for any practical situation is
generally intractably difficult, as is setting the parameter priors and likelihoods for
each possible BN.

There are some approaches advocated in the literature, however, that seek
to minimise this difficulty by utilising some reasonable simplifying assumptions. 1
discuss the assumptions which relate to discrete variables in particular which is my
focus in this thesis.

The initial set of assumptions deals with the probability model for the data
implied by each Bayesian network. Let B be the random variable representing the

Bayesian network which holds. Then
n

P(X | 65,B) = [[ P(Xi | Qi,05:, B) (2.4)
=1
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where O = {0p1,...,0p,} is the set of parameter vectors fp; for each distribu-
tion P(X; | Qi,0pi, B). Then the prior probability distribution of Op|B is set by

assuming PARAMETER INDEPENDENCE [Spiegelhalter and Lauritzen, 1990], so that

P@Os|B) =]] H P(0pij | B) (2.5)

i=1j=1

where 6p;; is the parameter vector of the probabilities P(X; | Q; = ¢;, B) and ¢;
is the number of possible values of @);. Note that I am assuming, in line with my
relevance assumptions, that the value of fp;; does not rely on the parts of B not
related to X; and its parents, a property called LIKELIHOOD MODULARITY. If 0p;;

is distributed as Dir(ap;;), then the updating of P(p;; | B, X) is conjugate:
gBij ’ B, X ~ Dir(aBij + N”) (26)

where IN;; represents the vector of counts V;j; when Q); = g; and X; = x4, where
k indexes the possible values of Xj.

While parameter independence simplifies the setting and updating of P(0 |
B) for each possible BN B, it still requires the setting of each P(0p;; | B) for each
B, and still does not address the setting of P(B).

In order to simplify the setting of P(0p; | B) — the priors for the parameters
of variable X; in a BN B — for all variables X; for each possible BN B, one can
make the assumption of PRIOR MODULARITY. This states that if two Bayesian
networks B; and Bs have identical parent variables ); for some variable X;, then
P(0p; | B1) = P(0p; | B2), i.e. the prior on the parameters that determine the
distribution of X; are equal for both BNs. The subscript B will therefore be dropped
henceforth as now only the parent set of a variable X is necessary to determine the

prior distribution of its parameters.
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Under the assumptions of prior and likelihood modularities, it is the case
(as shown in [Heckerman and Geiger, 1995]) that in order to set parameter priors
for each possible BN it is sufficient to set parameter priors only for the complete
Bayesian networks. Parameter priors for incomplete networks are then derived from
equivalent local structures in the corresponding complete network.

This can still be intractable, and so there is one more level of simplification
possible. Assume that under any B the parameter vectors ¢;; are mutually inde-
pendent of one another for any X; for any values of its parents @; = g; as above,
and that for any two Markov equivalent BNs By, By (i.e. those which encode the
same sets of conditional independence relations on X, as can be determined using
the methods of [Verma and Pearl, 1990] or [Chickering, 1995]) it is assumed that
P(X | B1) = P(X | By) (called HYPOTHESIS EQUIVALENCE by [Heckerman et al.,
1995]). Geiger and Heckerman [1997] showed that in this case that all 6;; must have
a Dirichlet distribution. Therefore to specify the parameter priors for any network
B one needs only to specify the hyperparameters of the Dirichlet distribution of the
joint distribution of X on a complete network.

The setting of P(B) is comparatively simple. Apart from the obvious choices
of a uniform prior over all possible B or a subset of all possible B, another possible
qualitative characterisation is to consider the probability for the inclusion of each
edge in a BN with a fixed order of variables [Buntine, 1991], and further still if
the edges are considered exchangeable, i.e. all of the edges have a probability p of
existing, then only one probability assessment — that of p — is needed.

With the parameters set as above and assuming Dirichlet priors, P(X | B)

will be a closed formula for each B as discovered by Cooper and Herskovits [1992];
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Heckerman et al. [1995]:

n il |24

P(X|B)=]] H I(cij.) II D(eviji + ijn) 27)

i=1j=1 sz] +x7».7)k 1 F(al.]k>

where |z;| are the number of possible values of X;, x;;, = Y. ®ijk, T4k is the number
of times X; = x;, when Q; = ¢j, and ayj. = > ) k. P(B | X) can then be easily
calculated from Bayes’ theorem for each B if P(B) is a fixed quantity a priori.
However, when there are a large number of possible BNs B, this might not
be practical. To predict new data X™* from the system after having observed X, it

is necessary to calculate

PX*| X)= Z P(X*| B)P(B| X). (2.8)
BeB
This is called MODEL AVERAGING [Hoeting et al., 1999]. For a large set of possible
BNs B, it would be impractical to calculate P(X* | B) and P(B | X) for each
B. There are a number of approximations to the full solution which could still give
good predictions while reducing the computational effort required [Hoeting et al.,
1999].

If the aim is to provide a good “explanatory” network for the system, then
trying to find the most probable BN (MAP, or Maximum A Posteriori BN) can be
done more efficiently, if not necessarily optimally, than just calculating P(B | X) for
every possible B, by SEARCHING the model space. There have been many strategies
suggested for this search, including greedy search, greedy search with restarts, best-
first search, and Monte Carlo methods, all discussed by Heckerman [1999], and more
recently weighted MAX-SAT solving [Cussens, 2008].

One relevant consequence of the model set-up described above which leads to

equation (2.7) is that the goodness of a BN, defined here as its posterior probability,
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can be calculated as the product of purely LOCAL properties of the network, where
local here relates to individual nodes and their parents. This means that if two
BNs differ only in one parent set (); of some variable X;, the difference in scores
will result only from that local difference. This allows for efficient LOCAL SEARCH
ALGORITHMS for searching the model space. A simple local greedy search starts with
one possible BN, then calculates the score for a BN which differs only in having an
edge reversed, an edge added or an edge deleted (subject to the resulting network
being acyclic) by only re-calculating the relevant local score, and chooses the BN
which has the higher posterior probability. Because only the local differences in the
graphs have to be taken into account, the search proceeds more quickly.

The search algorithms to find the MAP BN can also be used to find more

than one high-scoring network so that P(X™* | X) can be approximated as

P(X*|X)~ Y P(X*|B)P(B|X) (2.9)
BeB
where B is the set of highest-scoring networks found during the model search, where

the size of the set can be chosen as high as desired.

2.4 Causal Bayesian networks

Efforts have been made to use Bayesian networks not only to incorporate beliefs
about the conditional independence relations between the variables in a system, but
also CAUSAL RELATIONS between them, most prominently by Pearl [Pearl, 2000b].
I briefly review how this is done and how it has led to work on learning these causal
relations.

As mentioned in the last section, different Bayesian networks can represent

equivalent conditional independence statements. However, when drawing a Bayesian
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network of a system, there can be a conscious or unconscious desire to somehow rep-
resent certain “causal” relations between the variables. One way to describe these
causal hypotheses is to consider how the system changes under external interven-
tion. If a variable A is a cause of another B, then directly changing A will change
the probability distribution of B. Pearl [Pearl, 2000b] represents the probability
distribution of B after intervening in the value of A as P(B | do(A)), in order to
distinguish this distribution from the one of B after merely observing A, P(B | A).
There is no reason why in general P(B | do(A)) should be related to P(B | A),
but in many cases there is a presumed relationship that can be incorporated into a
model.

A cAusAL BAYESIAN NETWORK (CBN) [Pearl, 1995] sets strict constraints
on this relationship. A CBN is a BN that, as well as describing the conditional
independence statements that are satisfied by the joint probability distribution over
the model’s variables, asserts certain beliefs about the probability distribution over
the variables resulting from an exogenous manipulation of any subset of them. The

exact nature of these beliefs is described in the following definition.

Definition 15. A causal Bayesian network is a Bayesian network that addition-
ally holds the following properties when some subset of the variables X7 C X 1is

intervened upon to take the vector of values xy:

1. The probability distribution of each X; € Xy becomes degenerate, so that

P(X1 =x1) =1 when x1 is the relevant value from xy, and 0 otherwise

2. The probability distributions of all other variables X; ¢ X conditional on

their parent variables Q; stay unchanged.

The effect of an intervention, therefore, is to only change the parts of the

probability distribution associated with the intervened variables in the factorisa-
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tion of the joint probability distribution described by a BN. Note that now BNs
which were describing identical conditional independence statements have different
replacement probability distributions under identical interventions.

There have been attempts to learn CBNs from data, e.g. by Heckerman
[1995], Cooper and Yoo [1999], and Spirtes et al. [2001]. The approach advocated
by the first two papers cited works by either considering, in addition to the random
variables under investigation, whether those variables were merely observed or ac-
tively manipulated for each data point, which essentially expands the event space.
This is equivalent to re-drawing the CBN as a BN with additional nodes indicating
whether manipulation or mere observation led to other nodes’ values, as advocated
by Dawid [2002] and called an AUGMENTED DAG by him. This BN can then be
learnt in the same way as discussed earlier.

Spirtes et al. [2001], meanwhile, along with others such as Glymour and
Cooper [1999] and Neapolitan and Jiang [2006], claim to have algorithms to learn
CBNs, and thus causal relations between variables, merely from observational data.
This methodology is called CAUSAL DISCOVERY. The validity of this approach has
been disputed by a number of authorities, including Humphreys and Freedman
[1996], Cartwright [2007] and Dawid [2010], along the lines that, as Cartwright
[1994] put it, “No causes in, no causes out” — in other words, without making
causal assumptions, i.e. without explicitly stating how the idle and manipulated
systems relate to one another, it is not possible to learn about manipulated systems
from idle systems. I therefore do not pursue this approach further in this thesis,
instead only making causal inferences when I am willing to make causal assumptions,

which will only happen if data under controlled interventions are available.
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2.5 Disadvantages of Bayesian network representations

Despite their obvious strengths in allowing for the reduction in the dimensionality
of models’ joint probability distributions and in providing a transparent framework
for causal inference as described above, BNs are not optimal graphical models in all
situations. The biggest problems with their use occur under two scenarios, which

are not necessarily mutually exclusive:

1. when the model event space is not a simple product space, i.e. the state spaces
of some of the random variables in the system are radically different — or even

non-existent — depending on the values of other system variables; and

2. when conditional independence statements are true only under certain values

of other variables.

Neither of these scenarios can be discerned directly from the BN. Consider
the situation in Figure 1.2. The event space is clearly asymmetric because if the
first module’s marks are unavailable then they have no grade. Additionally, it might
be the case, for example, that students who get grades 2 or 3 in the first module
perform in an identical way on the second module, but student who perform the
best in the first module by getting the highest grade perform completely differently.
These features will not be exhibited by the structure on a BN unless special care is
taken.

These blind spots of BNs are not unknown in the literature. For example,
Spiegelhalter and Lauritzen [1990] already noted with regard to the second prop-
erty in 1990 that “a systematic approach to the manipulation of such relevance links
would be an important development”. This property was termed CONTEXT-SPECIFIC
INDEPENDENCE [Boutilier et al., 1996] and various approaches were tried to deal with

it in the BN representation. For example, Boutilier et al. [1996], in an early attempt,
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kept the BN in place but additionally used trees to describe the probability distribu-
tions of each variable, and then proceeded to re-arrange the BNs using these trees,
including having multiple nodes for a single random variable in order to represent
some of the context-specific independences in a BN format. Jaeger [2004] defined
PROBABILITY DECISION GRAPHS (PDGs) that can represent certain context-specific
independences, but PDGs cannot represent some conditional independence relations
that can be represented by BNs; for example, as admitted by Jaeger [2004], the BN
with nodes X7, X9, X3, X4 and edges (X1, X2), (X1, X3), (X2, X4), (X3, X4) cannot
be represented as a PDG. More recently, [Poole and Zhang, 2003] defined CONTEX-
TUAL BELIEF NETWORKS, but these are basically BNs with the extra contextual
information not represented graphically.

One final approach is that of Bayesian multinets [Geiger and Heckerman,
1996], where context-specific independence is termed ASYMMETRIC INDEPENDENCE.
Bayesian multinets are essentially collections of different BNs over the same set of
random variables, one BN drawn for each collection of values of one of the variables
(called the HYPOTHESIS VARIABLE) that makes the BN of the system different from
all the others. While this solves the problem of representing context-specific inde-
pendence graphically and hence explicitly, there is still a lot of redundancy in the
representation due to needing to draw a BN for each of the variable values of each
hypothesis. This problem only gets worse if more than one hypothesis variable is
proposed. There is also no acknowledgement of how to deal with sparse conditional
probability tables efficiently.

In the next chapter I re-introduce the Chain Event Graph (CEG), a tree-
based rather than BN-based graphical model. It will be shown that it can represent
all conditional independence statements that BNs of the same system can; that it

can make explicit the asymmetries in state spaces of random variables in different
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contexts; that it can graphically represent context-specific conditional independence
relationships; that it allows conjugate inference and learning; and that it allows a
larger class of external manipulations in the system than a BN, thereby extending

the range of possible causal analyses.
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Chapter 3

Learning chain event graphs

Finding that the BN is not always the optimal graphical model for modelling certain
systems and processes, this chapter suggests the advantages of using a graphical
model based on event trees — the chain event graph — and develops a totally
new mechanism to learn CEGs from data, from characterised priors to intelligent

learning algorithms.

3.1 Prerequisites

3.1.1 Event Trees

Trees, defined in Definition 11, can be used as an intuitive representation of discrete
stochastic processes. They were used in the first ever expositions of mathematical
probability by the likes of Huygens in the 17th century [Edwards, 1982]. Influence
diagrams, which can be thought of as Bayesian networks with decision and utility
nodes, were historically actually derived from decision trees [Shachter, 1986] as a sim-
pler, if sometimes necessarily over-simplified, representation of decision problems.

Developing tree-based graphical models is therefore only re-balancing a historical
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anomaly. Finally, event trees have a perfect match between their topology and
the sample space €2 of the Kolmogorov probability triple (€2, F, P) of a probability
model, ensuring that no aspect of the model is ignored in the graphical represen-
tation, while Bayesian networks focus on random variables which are real-valued
functions of events.

I start by defining event trees formally.

Let T = (V(T),E(T)) be a directed tree where V(T') is its node set and
E(T) its edge set.

Definition 16. The set of SITUATIONS of T', S(T), is the set of non-leaf nodes

{v:veV(T)\ L(T)}, where L(T) is the set of leaf nodes of T'.

Let X be the set of root-to-leaf paths of T, so that X = {A(vg,v) : v € L(T)}
(recall that vy is the root node). X represents the event space of the model, with
every root-to-leaf path an atom of the event space.

In an event tree, each situation v € S(T") has an associated random variable
X (v) defined conditional on having reached v. The state space of X (v) is denoted

as X(v), represented in the tree by ch(v).

Definition 17. The distribution of X (v) is determined by the PRIMITIVE PROBA-

BILITIES {7 (v'|v) = P(X(v) =) : v € X(v)}.

The probability of an event A € X can therefore be calculated by multiplying
the primitive probabilities along the path. Conversely, primitive probabilities can

be inferred from the probabilities for the events in X.

Definition 18. The FLORET of v € S(T) is
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Vg,
Figure 3.1: Floret of v. This subtree represents both the random variable X (v) and

its state space X(v).

U3
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Figure 3.2: Simple event tree. The non-zero-probability events in the joint prob-
ability distribution of two Bernoulli random variables, A and B, with A observed
before B, can be represented by this tree. Here, all four joint states are possible and
hence there are four root-to-leaf paths through the nodes.

where V(F(v)) = {v}U{v € V(T) : (v,0") € E(T)} and E(F(v)) = {e € E(T) :
e=(v,v)}.

The floret of a vertex v is thus a sub-tree consisting of v, its children, and the
edges connecting v and its children, as shown in Figure 3.1. The floret represents

the situation v, the associated random variable X (v) and its sample space X(v).

Example 19. Figure 3.2 shows a tree for two Bernoulli random variables, A and B,
with A occurring before B. In an education setting A could be the indicator variable
of a student passing one module, and B the indicator variable for a subsequent

module.

32



Here we have random variables X (vo) = A, X(v1) = B|(A =0) and X (v2) =
B|(A = 1), and primitive probabilities w(v1|vg) = p(A = 0), w(vs|v1) = p(B =0|A =
0) and so on for every other edge. Path probabilities can be found by multiplying
primitive probabilities along a path, e.g. p(A = 0,B =0) = p(A = 0)p(B = 0|4 =

0) = m(v1|vg)m(v3lv1) as (vo,v1) and (vi,v3) are on the path between vy and vs.

3.1.2 Chain Event Graphs

Starting with an event tree T, we extend the definition with three new concepts
to form the CEG — STAGES, EDGE COLOURS and POSITIONS — similarly to the
approach of [Smith and Anderson, 2008] and [Thwaites et al., 2010].

One of the redundancies that can be eliminated from an ET is that of two
situations, v and v’ say, which have identical associated edge probabilities despite
being defined by different conditioning paths. We say these two situations are in (or

at) the same STAGE. This concept is formally defined below.

Definition 20. Two situations v,v" € S(T') are in the same stage u if and only if

X (v) and X (v') have the same distribution under a bijection

Py (v,7") : X(v) = X(v) (3.1)

Definition 20 means that every pair of situations in a stage have a bijection
between their sample spaces that identifies which pairs of outcomes have equivalent
probabilities.

The set of stages of an event tree T" (also called its STAGING) is written J(T').
This set partitions the set of situations S(7T'), due to the associated set of bijections

{y(v,0") :v,0" € uyu € J(T)} forming an equivalence relation on S(7T).

Definition 21. Any two edges (v,v*), (v',v™*) € E(T) have the same colour if and
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only if v,v" € uw € J(T) and ¢y (v,v")(v*) = v™, i.e. v* and v"* are considered to

have equal probabilities of being reached from v and v’ respectively.

The edge colours make it clear, when drawn, which edges represent the same
primitive probabilities and hence which situations are in the same stage. An al-
ternative approach is to indicate which situations are in the same stage is to draw
undirected edges between them, as in [Smith and Anderson, 2008; Thwaites et al.,
2010).

Sometimes two situations have even more in common than the distribution
over their respective variables: the entire subtrees with the two situations as roots
share the same distribution over their paths. These two situations are said to be in

the same POSITION. I define this concept formally.

Definition 22. Two situations v,v" € S(T') are in the same POSITION w if and only

if there exists a bijection

dw(v,v") A, T) = AW, T)

where A(v,T) is the set of paths in T from v to a leaf node of T, such that for
every path A(v) € A(v,T), the ordered sequence of colours in A\(v) equals the ordered
sequence of colours in \N(v") := ¢y, (v, T)(A(v)) € A(v', T)

I denote the set of positions as K(7'). It is clear that J(T) is a partition of
K(T), as situations in the same position are in the same stage. K (T') is therefore a
finer partition of S(7T') than J(T).

Now the CEG can finally be constructed by taking the staged tree U(T") of

an event tree and merging situations that are in the same position.

Definition 23. The CHAIN EVENT GRAPH (CEG) C(T) of an event tree T is the

coloured directed graph with vertex set V(C) and edge set E(C) where
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e V(C) = K(T)Uws, so that each non-leaf node in the CEG represents one

position and we, Tepresents the set of leaf nodes.
e FEach edge in E(C) exists for one of the following two reasons.

— Forw,w’ € V(C)\ww, there is an edge (w,w') € E(C) if and only if there

exist situations v,v" € S(T') such that v € w, v' € w' and (v,v") € E(T).

— For w € V(C) \ wa, there is an edge (w,we) € E(C) if and only if
there exist situations v € S(T) and v' € L(T) such that v € w and

(v,v") € E(T).

e The edge (w,w') € E(C) has the same colour as (v,v") € E(T) where v € w,

v ew.

An example of a CEG that could be constructed from the event tree in
Figure 1.1 is shown in Figure 3.3. It can immediately be seen that the CEG is a
more compact representation of the probability distribution over the system than the
event tree, but without discarding any information reflected by the tree. The non-
leaf nodes in Figure 3.3 are positions representing the three hypotheses described
in Chapter 1. For example, w; is the position reached after knowing what the first
module is; if modules A and B are equally hard then the mark distributions are
equivalent whether A or B is taken first, and hence the subtrees with A and B as
root nodes will have identical distributions. The other positions can be identified
with the hypotheses of Example 1 similarly.

It is worth noting that for a finite number of discrete variables that the
set of possible CEG models over those variables is a strict superset of the set of
possible BN models. While a probability model that can be described by a BN
will look different when described by a CEG it will still be the same model. The

conditional independence statements described by a BN can always be represented
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Figure 3.3: The CEG that reflects the three hypotheses of Example 1

by a CEG through stages and positions as is shown in [Smith and Anderson, 2008]
and [Thwaites, 2008]. This is because the CEG works on the level of the event space

of the probability model while the BN considers only random variables.

3.1.3 Causal trees and CEGs

There is another aspect to event trees (and hence CEGs) that make their use in
modelling extremely appealing: their powerful expressiveness in describing causal
hypotheses and learning about the effect of external interventions in the system
from observational data. Due to reflecting the event space more finely, the range
and realism of the possible causal analyses is better than for a Bayesian network of
the same system. The intuitiveness of using trees for modelling causal hypotheses
was argued forcefully by [Shafer, 1996].

A modeller can learn about some of the probabilities on edges downstream
of a variable intervened upon even if observing only data from the idle, unmanip-
ulated system, if he or she is willing to assume that the probability distributions
are identical in the two systems. This is true vice versa as well, allowing inferences
from an experiment to be valid for the general population. This inference is clearly
generalisable to more than one type of control, different demographics, etc., as long

as it is represented on the tree. This is simply not possible with a BN, at least not
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through manipulation of the graphical structure itself, because the edges of a BN
do not represent parts of the event space but rather the conditional independence
structure of the system.

For example, consider the event tree in Figure 3.4 (inspired by an example in
[Smith, 2010]) which shows the two possible developments of a process conditional

on whether it is left undisturbed (“idle”) or controlled.

€1

control

idle

=0

Figure 3.4: Event tree for idle and manipulated versions of the same process

In Figure 3.4, the probabilities of e, es might be considered equal to es, ey
respectively, i.e. the associated variables become independent of whether they are in
the controlled or idle system, but es, eg might still be considered to be independent.
This cannot be considered graphically with a BN.

In a CEG, the edges will either be coloured the same or merged, making
explicit the model assumptions involved and in the latter case doing so efficiently.
The range of manipulations possible on a CEG is explored further in [Thwaites
et al., 2010].

In Section 5.5 I will show how to implement different interventions in a
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dynamic version of the CEG where the same edge is considered exogenously to the
structure to be equivalent in both the idle and the manipulated versions of the

system, and in Section 6.2.2 I demonstrate its use with a real dataset.

3.2 Conjugate learning of CEGs

It turns out that one convenient property of CEGs is that conjugate updating of
the model parameters is possible in a closely analogous fashion to that on a BN as
described in Section 2.3. Conjugacy is a crucial part of the model selection algorithm
that will be described in Section 3.3, because it leads to closed form expressions for
the posterior probabilities of candidate CEGs, which in turn makes it possible to
search the often very large model space quickly to find optimal models. The CEG
model class will in general be bigger than the BN class for the same random variables,
so that a model search will generally take longer but with the benefit that a richer
model class is being considered. I demonstrate here how a conjugate analysis on a
CEG proceeds.

Let a CEG C have set of stages J(C) = {u1,...,ux}, and let each stage
u; have k; outgoing edges (labelled e, ..., eg,) with associated probability vector
7 = (mi1, ™2,y - - ., Tk, )| (where Zf;l mi; =1 and m; > 0 for j € {1,...,k}).

Then under complete sampling, the likelihood of the CEG can be decomposed

into a product of the likelihood of each probability vector, i.e.

k
p(a|w,C) = | [ pi(ailmi, C) (3.2)

i=1
where m = {m,mo,...,w}, and * = {@x1,..., 2} is the complete sample data
such that each ; = (x;1,..., %, )" is the vector of the sample data of the edges (or

equivalence class of edges under v,,) taken by the units in the sample that start in
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stage u;.

With independence between the units conditional on 7 (i.e. the units are

exchangeable)
k; .
: @)
pili | 7, C) = [[ =i (3.3)
j=1
where x( 7 is the number of units which take the jth edge.

Thus, just as for the analogous situation with BNs, the likelihood of a ran-
dom sample also separates over components of 7. With BNs, a common mod-
elling assumption is of local and global independence of the probability parameters
[Spiegelhalter and Lauritzen, 1990]; the corresponding assumption here is that the
parameters 71,72, . ., of 7 are all mutually independent a priori. It will then fol-
low, with the separable likelihood, that they will also be independent a posteriori.

If the probabilities 7r; are a priori assigned a Dirichlet distribution, Dir(e;),
where a; = (a1, g, . . ., a4, ), then for values of  where 25’21 mi; = 1 and m; > 0

for 1 < j < k;, the density of m;, ¢;(7;|C), can be written

ki

Do + ...+ uk;) aij—1

| C) = Tt ) T e
7 i j=1

where I'(z) = fooo t*~le~!dt is called the Gamma function. It then follows that
7;|x (= m;|x;) also has a Dirichlet distribution, Dir(a}), a posteriori, where af =
(afys-nah)s af = ay+ad for 1 <j <k 1<i<k.

The marginal likelihood of this model, p(x|C), can be written down exactly

and is a function of the prior and posterior Dirichlet parameters:

p(x|C) = (3.4)

The logarithm of the marginal likelihood, a computationally more useful quantity,
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is therefore a linear combination of functions of a;; and «;. Explicitly,

k
log p(x|C) = Z a;)l + Z [t(e) — tei)] (3.5)

where for any vector ¢ = (c1,¢2,...,¢,),

3

s(c) = logI'( ch and t(c Zlogf (cv) (3.6)
v=1

The posterior probability of a CEG C' after observing x, ¢(C|x), can therefore

be calculated using Bayes’ Theorem, given a prior probability ¢(C), as:
log ¢(Clx) = logp(x|C) 4+ logq(C) + K (3.7)

for some value K which does not depend on C. This is the SCORE that will be used
when searching over the candidate set of CEGs for the model that best describes

the data.

3.3 A Local Greedy Search Algorithm for finding the
MAP Chain Event Graph

3.3.1 Preliminaries

With log ¢(C|x) — the log marginal posterior probability of a CEG model C' — as a
CEG’s score, searching for the highest-scoring CEG in the set of all candidate models
C becomes equivalent to trying to find the Maximum A Posteriori (MAP) model

[Bernardo and Smith, 1994]. The intuitive approach for searching C' — calculating
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log q(C|x) for every C' € C and choosing
c* = mcaxq(C|a:) = mgxlog q(Clx) (3.8)

— is infeasible for any but the most trivial problems. I describe in this section an al-
gorithm for efficiently searching the model space for the MAP CEG by reformulating
the model search problem as a clustering problem.

As mentioned in Section 3.1.2, every CEG that can be formed from a given
event tree can be identified exactly with a partition of the event tree’s nodes into
stages. The coarsest partition C, has all nodes with k outgoing edges in the tree
in the same stage ug, for all needed k; the finest partition Cp, in contrast, has each
situation in its own stage, except for the trivial cases of those nodes with only one
outgoing edge. Defined this way, the search for the highest-scoring CEG is equivalent
to searching for the highest-scoring clustering of stages.

Various Bayesian clustering algorithms exist [Lau and Green, 2007], including
many involving MCMC [Richardson and Green, 1997]. I show here how to implement
an Bayesian agglomerative hierarchical clustering (AHC) exact algorithm related to
that of Heard et al. [2006]. The AHC algorithm here is a local search algorithm that
begins with the finest partition of the nodes of the underlying ET model (called Cy
above and henceforth) and seeks at each step to find the two nodes that will yield
the highest-scoring CEG if combined.

Some optional steps can be taken to simplify the search further, which I
will implement here. The first of these involves the calculation of the scores of the
proposed models in the algorithm. By assuming that the probability distributions
of stages that are formed from the same nodes of the underlying ET are equal in all
CEGs, i.e. pi(x; | m;, C1) = pi(x; | 7;, C2) when u; € J(C1), J(Cs), it becomes more

efficient to calculate the differences of model scores, i.e. the logarithms of the relevant
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Bayes factors, than to calculate the two individual model scores separately. This is
because if the stagings J(C4) and J(C3) differ only in that stages w14, u1p € Cy are
combined into ug. € Co, with all other stages unchanged, then the calculation of the

logarithm of their posterior Bayes factor, i.e. the calculation of log Zggélg, depends

only on the stages involved. Using the notation of Equation (3.6), this is done as

follows.
q(C1|z)
lo =logqg(C1|x) — log g(Cs|x 3.9
8 4 (Cal) gq(Cilz) —logq(C2|z) (3.9)
= log q(C1) — log q(C2) + log p(x|C1) — log p(x|C2) (3.10)

= log(C) —loga(C2) + 3 [s(ons) = slaii)] + 3 [Hexiy) = tleu)]

=2 [sley) = sle)] = 3 [tas)) - tlewy)]
J j (3.11)
= logq(C1) ~ log a(Ch) + s(ersa) — sletiy) + ter,) — H(eura)
+s(am) — s(afy) +t(af,) — tom) (3.12)

— s(@ac) + s(as) — tage) + t(aze)

where oy, is the vector of hyperparameters of the Dirichlet distribution of the pa-
rameter prior for stage u; of CEG Cy, a =1, 2.

Using the trivial result that for any three distinct CEGs Cy,Cs,C5 € C
log ¢(Cs|) —log ¢(Chlz) = [log q(Cs|x) —log q(Ci|x)] — [log ¢(Calz) — log q(C1fx)],

it can be seen that comparing two proposal CEGs (here Cy and C3) from the current
CEG (here C1) can be done equivalently by comparing their individual log Bayes

factors against the current CEG with each other, which as shown above requires
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fewer calculations.

The calculation of the score for each CEG C, as shown by Equation (3.7),
shows that it is formed of two components: the prior probability of the CEG being
the true model and the marginal likelihood of the data. These must therefore be
set before the algorithm can be run, and it is here that the other simplifications are

made.

3.3.2 The prior over the CEG space

For any practical problem C|, the set of all possible CEGs for a given ET, is likely
to be a very large set, making setting a value for ¢(C) for all C' € C an intractable
task. An obvious way to set a non-informative or exploratory prior is to choose the
uniform prior, so that ¢(C) = ﬁ This has the advantages of being simple to set
and of eliminating the log ¢(C1) — log ¢(C3) term in Equation (3.12).

A more sophisticated approach is to consider which potential clusters are
more or less likely a priori, according to structural or causal beliefs, and to exploit the
modular nature of CEGs by stating that the prior log Bayes factor of a CEG relative
to Cp is the sum of the prior log Bayes factors of the individual clusters relative to
their components completely unclustered, and that these priors are modular across
CEGs. In other words, the prior probability of every stage is independent of which
other stages are in the CEG. This approach makes it simple to elicit priors over C
from a lay expert, by requiring the elicitation only of the prior probability of each
possible stage.

A particular computational benefit of this approach is when the prior Bayes
factor of any CEG C' with Cj is believed to be zero, because one or more of its
clusters is considered to be impossible. This is equivalent in the algorithm to not

including the CEG in its search at all, as though it was never in C' in the first place,
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with the obvious simplification of the search following.

3.3.3 The prior over the parameter space

Just as when attempting to set ¢(C'), the size of most CEGs in practical situations
leads to intractability of setting p(x|C) for each CEG C' individually. However, the
task is again made possible by exploiting the structure of a CEG with judicious
modelling assumptions.

Assuming independence between the likelihoods of the stages for every CEG,
so that p(z|m,C) is as determined by Equation (3.3), and the fact that p(x|C) =
[ p(x|m, C)p(w|C)dm, it is clear that to set the marginal likelihood for each CEG
is equivalent to setting the prior over the CEG’s parameters, i.e. setting p(w|C)
for each C. With the two further structural assumptions that the stage priors are
independent for all CEGs (so that p(w|C) = Hle p(m;|C)) and that equivalent
stages in different CEGs have the same prior distributions on their probability vec-
tors (i.e. p(m;|C1) = p(m;|Cy) for all C,Cy € C) it can be seen that the problem
of setting p(x|m,C) is reduced to setting the parameter priors of each non-trivial
floret in Cy (p(m;|Co),i =1,...,k) and the parameter priors of every stage that can
be formed from the stages of Cj.

The usual prior put on the probability parameters of finite discrete BNs is the
product Dirichlet distribution. In [Geiger and Heckerman, 1997] the surprising result
was found that a product Dirichlet prior is inevitable if local and global independence
are assumed to hold over all Markov equivalent BNs of at least two variables. In the
following I will show that a new characterisation can be made for CEGs given the
assumptions in the previous paragraph. I will first show that the floret parameters
in Cy must have Dirichlet priors under certain conditions, and then that all CEGs

formed by clustering the florets in Cy must also have Dirichlet priors on the stage
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parameters with hyperparameters that are functions of the hyperparameters of the
priors under Cj of the constituent situations. One such characterisation of Cj is
given by Theorem 24 using a concept of “rates” of units along the paths. By rates
here I mean the relative expected probabilities of the paths as well as the overall

strength of belief in those probabilities.

Theorem 24. If it is assumed a priori that the rates at which units take the root-to-
leaf paths in Cy are independent (“path independence”) then the non-trivial florets

of Co have Dirichlet priors on their probability vectors.

The proof of Theorem 24 is based on well-known results concerning properties
of the Gamma, and Dirichlet distributions, which I review below. I then re-state and

prove Theorem 24 as Theorem 28.

Lemma 25. Let v; ~ Gamma(a;j,3),j =1,...,n where o > 0 for j € {1,...,n},
B8 > 0 and assume 1L
ie{l...

Then 6 := (0:);—1, . ny ~ Dir (o, ..., an).

vi- Furthermore, let 0; = 77] for j € {1,...,n}, where

n

Proof. Kotz et al. [2000]. O

Lemma 26. Let I[j] € {1,...,n}, v(I[j]) = X icqpvi and O(I[j]) = 3 e 5 Oi-
Then for any partition I = {I[1],...,I[k]} of {1,...,n},

where a(I[j]) = 3 ey 0
Proof. For any I[j] C{1,...,n},

1. A
et "
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2. v(I[j]) ~ Gamma (a(I[j]),8) (a well-known result; see, for example, Weath-
erburn [1949])

3. for any partition I = {I[1],...,I[k]} of {1,...,n}, i 1 ~(I[5])

Therefore, as

. i Ij .
9(I[J])229i221:7(7[‘7]), j=1,... .k (3.13)
i€I[y] i€l[j]
and v = Zle v(I[i]), the result follows from Lemma 25. O

Lemma 27. For any I[j] C {1,...,n} where |I[j]| > 2,

0; :
O =\ ——=< ~ Dir ((e)ierri
1[3] <9(I[]])>iel[ﬂ ((ei) GIM)
Proof. Wilks [1962]. O

Theorem 28. Let the rates of units along the root-to-leaf paths A\, € X,i €

{1,...,|X|} of an event tree T have independent Gamma distributions with the same

scale parameter, i.e. vy; = v(\i) ~ Gamma(a;, 5),i € {1,...,|X|} and . J'L\X|}%'
i€{l,

Then the distribution on each floret in the tree will be Dirichlet.

Proof. Consider a floret F with root node v and edge set {ei,...,e;}. The rate for

each edge e;, vy(e;), is equal to
Ve = > v(\) (3.14)

where A(e;) is the set of root-to-leaf paths that contain e;, so that y(e;) ~ Gamma(a(e;), 3)

when {%L l}fy(ei) as proven by Weatherburn [1949].
1€1,...,
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Let I = {I[F], I[F]} partition X, where I[F] = {A(e1),...,A(e;)} and I[F] =

I'\ I[F]. Then by Lemma 27, the probability vector on F is Dirichlet, where

0117 ~ Dir ((a(ei))ie{1,...,l})

O]

p(mi|Co) is thus entirely determined by rates y(\) on the root-to-leaf paths
A € A(vg,Cp) of Cp. This is similar to the “equivalent sample sizes” method of
assessing prior uncertainty of Dirichlet hyperparameters in BNs as discussed in Sec-
tion 2 of [Heckerman, 1999]. This treats the parameters of the prior as having been
learnt from hypothetical observed data and an uninformative prior [Steck, 2008|.
Here, however, the equivalent sample size is across the entire joint distribution of
the model, while in [Heckerman, 1999], [Steck, 2008] and the rest of the BN search
literature it applies to each conditional probability distribution separately. Lemma
26 shows that the parameter of the Dirichlet distribution of p(7;|Cy) corresponding
to each edge equals the sum of the rates of the root-to-leaf paths passing through
that edge.

Another way to characterise all non-trivial situations in Cy as having Dirich-
let priors on their parameter spaces is to use the characterisation of the Dirichlet
distribution first proven by Geiger and Heckerman [1997], repeated here as Theorem

29.

Theorem 29. Let {0;;},1 < i < k,1 < j < mn, sz 0;; = 1, where k and n are
integers greater than 1, be positive random wvariables having a strictly positive pdf
F({6i5}).  Define 0; = 35_1 055, 01 = {0}, 05 = 0i3/3;0i5, and 0y =
O vy

Then if {01,011, - -, 051} are mutually independent, f({0:;}) is Dirichlet.
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Proof. Theorem 2 of Geiger and Heckerman [Geiger and Heckerman, 1997]. O
This theorem is used for CEGs as follows.

Corollary 30. If Cy has a composite number m of root-to-leaf paths and all Markov
equivalent CEGs have independent floret distributions then the vector of probabilities
on the root-to-leaf paths of Cy must have a Dirichlet prior. This means in particular
that, from the properties of the Dirichlet distribution, the floret of each situation

with at least two outgoing edges has a Dirichlet prior on its edges.

Proof. Construct an event tree C{; with m root-to-leaf paths, where the floret of
the root node v, has k edges and each of the florets extending from the children of
vy have n edges terminating in leaf nodes, where m = kn,k > 2,n > 2. This will
always be possible with a composite m. C{, describes the same atomic events as Cp
with a different decomposition.

Let the random variable associated with the root floret of C, be X, and let the
random variable associated with each of the other florets be Y|X =i,i =1,... k.
Let 0;; = P(X =14,Y = j). Then by the definition of event trees, P(¢;; > 0) > 0 for
1<i<k,1<j<mn,and) 6;; =1. By the notation of Theorem 29, §; = P(X = 1)
and 0;; = P(Y = j|X =1).

By hypothesis the floret distributions of C{, are independent. Therefore the
condition of Theorem 29 holds and hence f(6;;) is Dirichlet. From the equivalence
of the atomic events, the probability distribution over the root-to-leaf path prob-
abilities of Cy is also Dirichlet, and so by Lemma 27, all non-trivial florets of Cj

therefore have Dirichlet priors on their probability vectors. O

To show that the stage parameters of all CEGs in C' have Dirichlet priors
when assuming stage prior equivalence, an inductive approach will be taken. Because

of the assumption of consistency — that two identically composed stages in different
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CEGs have identical priors on their parameter space — then for any given CEG
C whose stages all have independent Dirichlet priors on their parameters spaces,
another CEG C* formed by clustering two stages u1., us. from C' into one stage u.»
will have independent Dirichlet priors on all its stages apart from we«. It is thus
only required to show that m. has a Dirichlet prior. I prove this result for a class

of CEGs called REGULAR CEGSs.

Definition 31. A stage u is REGULAR if and only if every path A € A(vy, C') contains

either one situation in w or none of the situations in u.
Definition 32. A CEG is REGULAR if and only if every stage u € J(C) is regular.

Theorem 33. Let C be a regular CEG, and let C* be the CEG that is formed from
C by setting two of its stages ui. and us. as being in the same stage ucx, where uex
is a regular stage, with all other attributes of the CEG unchanged from C.

If all stages in C have Dirichlet priors, then assuming that equal stages in

different CEGs have equivalent priors, all stages in C* have Dirichlet priors.

Proof. Without loss of generality, let all situations in uj. and ug. have s children
each, and let the total number of situations in ui. and ug. be r. Thus there are
r situations in u.+, each with s children. By the assumption of prior consistency
across stages, all other stages in C* have Dirichlet priors on their parameter spaces,
so it is only required to prove that u.« also has a Dirichlet prior.

Consider the CEG C’ formed as follows: Let the root node of C’, v, have 2
children, v; and v’. Let v' be a leaf node, and let v1 have r children, {vy(1),...,v1(r)},
which are equivalent to the situations in u.+, including the property that they are
in the same stage u». Lastly, let the children of {vi(1),...,v1(r)}, written as
{v1(i,5):i=1,...,r,j=1,...,s}, be leaf nodes in C".

By construction, the prior for u. is the same as that for wuex.
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Now construct another CEG C* from C’ by reversing the order of the stages
v1 and uy. The new CEG has root node vg with the same distribution as vg € C’.
vgp now has two children v/ — the same as before — and v, which has s children
{v2(1),...,v2(s)} in the same stage. Each node vq9(i),7 = 1,...,s has r children
va(i,1),...,v2(7,r), all of which are leaf nodes.

The two CEGs C* and C’ describe equivalent probability distributions, as
it is clear that P(v1(4,7)) = P(v2(j,1)),e =1,...,7,7 = 1,...,s, where P(vi(i,J))
is the probability of reaching the leaf node vi(7,j) from the root node under Cf,
and similarly for va(j,i). The probabilities on the floret of vp are thus equal to
the probabilities of the situations in the stage of u., and hence u.~. Because vy is
a stage with only one situation, Theorem 24 implies that it has a Dirichlet prior.

Therefore u.+ has a Dirichlet prior. ]

An alternative justification for assigning a Dirichlet prior to any stage that
is formed by clustering situations with Dirichlet priors on their probability distribu-
tions which does not depend on assuming equivalency of probability distributions
between CEGs derived from different event trees can be obtained by assuming a
property analogous to that of “parameter modularity” for BNs [Heckerman, 1995].
This property states that the distribution over structures common to two CEGs

should be identical. It is defined in the CEG context as follows.

Definition 34. Let u be a stage in a CEG C' composed of the situations vi, ..., vy
from Co, each of which has m children v;1,...,Vim,% = 1,...,n such that v;; are the

same colour for all i for each j. Then u has the property of MARGIN EQUIVALENCY
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Tuj = P(vij or vy or ... or vpslvr or vy or ... orwvy) (3.15)

- 2%1%5) 10

is the same for both C and Cy for j =1,...,m.
Definition 35. C has margin equivalency if all of its stages have margin equivalency.
The alternative characterisation can then be stated and proven as follows.

Theorem 36. Let u. be a stage as defined in Definition 34 with m > 2. Then
assuming independent priors between the situations for the associated finest-partition
CEG Cy of C, m,, ~ Dir(ay;) where a; = (a1, ..., ) for each v, i = 1,...,n.

Furthermore, for both C and Cy, m, ~ Dir(ey,), where o, = (D; ity .., Y, Qim)-

Proof. From Theorem 28 or Corollary 30, every non-trivial floret in Cjy has a Dirich-
let prior on its edges, which includes in this case the situations vy, ..., v,.

Let v;j = ymij fori=1,...,n, j =1,...,m where v ~ Gamma(}_, ; a5, 5)
and m;; = P(v; = v;;), where v;; € ch(v;). Then it is well-known that ~;; ~
Gamma(a;j,8) for all 1 < i < n,1 < j < m for some § > 0 and that 1L ;~;;.
As Al ;m,;, Al;j7v;;. By Lemma 26 therefore, where I[j] there is the set of edges

{eij :e(vi,vzj),i: 1,...,TL} fOI‘j: 1,...,m,

Ty ~DIX(Y ity > i) (3.17)

By margin equivalency, 7, must be set the same way for C. O

Note that the posterior of m, for a stage u that is composed of the Cjy

situations vy, ..., v, is thus 7, | @ ~ Dir(e) where o, = oy + @y, = > 1 @y, +
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>, &y, where o, is the vector of hyperparameters of the distribution of 6, under
Co and x,, is the vector of counts on the floret of v;. Equation (3.12), therefore,

becomes

log

q(C1:SB) =logq(Cy) —log q(Cs) + s(a1a) — s(aj,) + tlaj,) — t(aa)

q(Calx)
+ s(ap) — s(agy) +t(ai,) — tlaw) — s(aq + aup)

+s(ag, +ag) —taf, + afy) +Han, +ap) (3.18)

Setting priors on the paths rather than the florets also ensures that the
distribution of the probabilities of the atomic events remain the same under different
tree representations of the event space.

The path priors would in the first instance be set based on expert knowledge
of the system at hand, possibly using the “equivalent sample size” heuristic to aid
elicitation. In problems where there is no strong prior information, as with the anal-
ogous Dirichlet model selection issues for Bayesian networks [Steck and Jaakkola,
2003; Silander et al., 2007], the performance of the selection procedure is rather
sensitive to the prior value put on each of the components of c.

Within the context of the types of problem discussed here it seems natural in
the absence of information to the contrary to set all the components of this vector
equal to each other a priori. This implies that for the model with no stages, Cp,
we a priori believe that all the atoms — i.e. all possible root to leaf paths — are
equally probable, implying that were a model with no structure true then we have
no prior information to expect one path to be more likely than another.

Even if we choose to set these all equal, the equivalent sample size parameter

a. 2 17— the sum of the rate parameters — has an important role in determining
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the performance of the selection procedure. One default is to let a be a vector of 1s.
This ensures both a uniform prior over all possible combinations of path probabilities

and equal expected path probabilities.

3.3.4 The AHC algorithm

The algorithm thus proceeds as follows:

1. Starting with the initial ET model, form the CEG C with the finest possible
partition, where all leaf nodes are placed in the terminal stage us and all
nodes with only one emanating edge are placed in the same stage. Calculate
log ¢(Co|x) using (3.7).

2. For each pair of situations v;, v; € Cp with the same number of edges, calculate

a(Ci )
a(Cole)

keeping all others in their own stage; do not calculate if ¢(CY) = 0.

log where C7 is the CEG formed by having v;, v; in the same stage and

Ctlx
3. Let Cy = maxcs (log ZEC’EJJ:)) )-
q(C3|x)
q(C1|z)

4. Now calculate log for each CEG C35 that can be formed from a pair of

stages in C except where ¢(C5) = 0 a priori, and record Co = max(q(C5|x)).
5. Continue for C3, C4 and so on until the coarsest partition Cw, has been reached.

6. Select the CEG C amongst Cp, - - - , C that has the highest score ¢(C' | ) as
the MAP model.

Note that the algorithm can also be run backwards, starting from C,, and
splitting one cluster in two at each step. This approach has the advantage of making
the identification of positions in the MAP model easier. Note the similarity in that
case to backward stepwise elimination of regression models which discards a variable

at each step based on model selection criteria such as BIC [Hocking, 1976].
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3.4 A weighted MAX-SAT algorithm for learning Chain

Event Graphs

There are two potential and related flaws with using the AHC algorithm of the last
section: being a greedy search, it might find a local maximum in the CEG space,
but not necessarily the global MAP CEG; and once it decides that two stages should
be combined, it does not reverse this decision.

An alternative way to search for the MAP CEG is to reformulate the en-
deavour as a weighted Maximum Satisfiability (MAX-SAT) problem. This was a
successful strategy for searching for MAP BNs [Cussens, 2008] and partitions [Liv-
erani et al., 2010]. Algorithms for solving MAX-SAT problems, weighted and un-
weighted, have been worked on for decades [Hansen and Jaumard, 1990], and many
are available pre-programmed in the UBCSAT package [Tompkins and Hoos, 2005].
By reformulating the MAP CEG search problem as a weighted MAX-SAT problem
it is possible to utilise the algorithm-designing expertise of generations of computer
scientists.

Weighted MAX-SAT is a modified form of the original SAT problem. The

SAT problem has been described as follows in [Hansen and Jaumard, 1990]:

Given a collection C' of m clauses involving n logical variables [which
are also called ATOMS, the name I adopt in the following], x1,...,x,,
determine whether or not there exists a truth assignment for C' such

that all clauses are simultaneously satisfied.

where a clause is a statement in logic consisting of the conjunction and disjunction
of boolean variables (or their negative), and a truth assignment is a function that
sets the truth values of atoms.

The MAX-SAT problem asks for the assignment in the same situation that
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satisfies the maximum number of clauses. The weighted MAX-SAT problem then
asks what assignment leads to the minimum sum of weights for clauses that are
not satisfied by it, where each clause is now given a weight. A well-known result
in propositional logic is that every collection of clauses can be transformed into
conjunctive normal form (CNF), i.e. each clause is disjunctive (i.e. a pure OR state-
ment). As the algorithms in the UBCSAT package demand that the clauses are
given in CNF form, I will ensure in the following that the clauses are disjunctive.
Recall that under the assumptions detailed earlier, the log posterior proba-
bility of a CEG C, which the MAP CEG maximises over the set of possible CEGs

C, is as given in equation (3.7),
log q(Clx) = log p(x|C) + log¢(C) + K (3.19)

where K is a constant relative to C. Recall also that the log of the marginal
likelihood, log p(x|C'), can be written as the sum of functions of its stage hyperpa-

rameters.

k
logp(a|C) =) [s(ci) — s(e) +t(e) — t(exs)], (3.20)
=1

That logp(x|C) is a sum of functions of its stages and that every stage’s contri-
bution would have the same value in any other possible staging is crucial for the
representation of the search for the MAP CEG as a weighted MAX-SAT problem.
If the logarithm of the prior p(C) is either constant relative to C' — which
would imply all possible C are equally probable — or also obeys these two conditions,
then the search can be represented as a weighted MAX-SAT problem. An example of
a suitable prior is the product prior for partitions given in [Crowley, 1997; McCullagh
and Yang, 2006; Booth et al., 2008; Liverani et al., 2010]. Adapted for CEGs it takes
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the form

IC|
p(C) = %gmun (3.21)

where A > 0 is a hyperparameter not related to C, as its logarithm is separable over

the stages of C:

logp(C) =logT'(A) —logT'(|Co| + N\) + Z(logf(\uD +1) (3.22)
ueC

Therefore log P(C' | ) is the sum of functions of the component stages of C' and
the value of those functions does not change in other CEGs.

The weighted MAX-SAT representation of the search for the MAP CEG can
now be set up as follows.

The weighted MAX-SAT version of the search for a MAP CEG treats every
possible stage that can be formed from Cy — and therefore every stage v that can
be part of some C' € C — as an atom in a propositional logic. Each atom can be
true or false, representing whether the associated stage is part of the MAP CEG or
not. The clauses which restrict the set of possible assignments of truth values are
then chosen as follows, in order to be both disjunctive as required by the conjunctive

normal form and reflective of the CEG structure:

1. As stages which share situations cannot both be “true”, there will be many

clauses for every situation v € S of the form
w; V (3.23)

where V indicates logical OR and 7 indicates logical NOT', and where u; Nu; >
v. There will be one of these for each pair of stages that overlaps. Each of

these clauses ensures that at most only one of the constituent stages is chosen,
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because each one is equivalent, by de Morgan’s laws, to

Ui N\ Uj (324)

where A indicates logical AND.

. Clauses are also needed to ensure that for each situation one stage containing
it is considered “true”. Thus for each situation v; € S(T') there will be exactly
one clause of the form

Uil VUuig VeV Uj (i) (3.25)
where {u; ; : 1 <j<n(i)} ={uCS:v €u}.

. Lastly, each stage has its own clause (known as a FACT). For reasons that will
be explained in the following, each clause will be in the form w;, i.e. the stage

not being part of the MAP CEG.

Clauses of type 1 and 2 above are hard clauses. In theory they should be given

infinite weights to ensure they are satisfied. In practice this is not implementable

with the UBCSAT package and so the weights will be extremely large for the same

The clauses of type 3 are the soft clauses with finite weights, where the

weights are a fixed linear function of the associated stage scores. As contributions

to the overall weight are only given by clauses not satisfied, clauses of type 3 are in

the form %;, so that if u; is assigned true then its weight is contributed.

As weighted MAX-SAT aims to minimise the overall weight, while MAP

search aims to mazimise posterior probability, it is sufficient, if the contribution

made by a stage u to the overall score of a CEG equals s(u), that the weight of the

associated clause equals —s(u).
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The optimal solution to the weighted MAX-SAT problem described above is
now the MAP CEG.

There are two disadvantages to finding the MAP CEG by solving the asso-
ciated weighted MAX-SAT problem rather than using the AHC algorithm directly.

First, especially for large trees, there is no guarantee that a valid staging will
be found within a short period of time, let along the optimal one. The algorithm
will search over many solutions which are not valid.

Second, and more prosaically, the UBCSAT package requires all clauses and
their weights to be given before starting the search for an optimal assignment,
which means that the stage scores must be calculated for all possible stages before
the algorithm is run. For a reasonably large tree this problem can be attenuated,
after judiciously ensuring that all subjectively impossible stages are not included in
the problem (e.g. by assuming the CEG must be hierarchical), by only considering
stages of a certain maximum size. While this would be inappropriate for some
partition searches (e.g. in [Liverani et al., 2010], which was motivated by clustering
genes), it is not always unsuitable for CEGs. In the educational example given in
Chapter 1, for example, it might not make sense for more than a few categories of
students to perform equivalently, even on the same exam.

In Chapter 6 I will compare the performances of the AHC and weighted
MAX-SAT approaches in searching for a MAP CEG with real data of students’
exam marks. Before that, I will spend the next two chapters on discussing how to

extend CEG learning to a dynamic context.
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Chapter 4

Dynamic graphical models

Data can often be time-indexed, with the time measured continuously or discretely.
When the time points at which the data is observed are discrete and equally spaced
then the data are said to be a TIME SERIES. In this chapter I briefly review various
models for time series data, focusing in particular on graphical models for time series

data, which are often called DYNAMIC GRAPHICAL MODELS.

4.1 Introduction to modelling time series

Time series data X can be partitioned by the time points at which they were
observed. X can then be written as separate data sets X1, Xs, -, X, where each
subscript denotes the associated time point. I use the conventional notation X*
henceforth to mean { X1, Xo,---, X;}.

A STATIONARY process is a time series where the joint distribution of some
of its quantities does not change when shifted in time. This modelling assumption
implies certain exchangeability conditions in the data, making the absolute time

index less relevant. The formal definition follows.
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Definition 37. A time series X is stationary when

P(th S At17 s ,th S Atk) = P(thJrS € Atl, s 7th+s S Atk), (41)

for all possible values k, s and ty ---t.

I am interested in this thesis in highly multi-dimensional non-stationary pro-
cesses, typically longitudinal studies of different cohorts. It is only possible to assume
that the underlying system process at a particular time point has more in common
with its nearer past than its distant past.

One way of modelling non-stationary time series is state-space modelling.
This involves modelling observations in terms of an underlying stochastic process.
This separation of the observable and the latent processes allows for a very general
and hence powerful modelling technique. An excellent introduction to this topic is
Durbin and Koopman [2000].

Following the compelling arguments of Dawid [1984], I am only interested in
the statistical model’s ability to predict (or forecast) observations well, and not in

inferring values of underlying parameters per se.

4.2 Forecasting with state-space models

State-space models define a latent process Si,---,S, and the relations between
these unobserved variables and the observed time series X1, ---,X,. Usually X;
is conditionally independent of all other variables, observables and unobservables,
conditional on Sj.

In the prequential approach of Dawid [1984] all that is required from a statis-

tical model of a time series is the quantity P(X; | X*~1) for all £. In the state-space
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model setting this translates, given the above, to
P(X; | X1 :/P(Xt | S)P(S; | Xt1)ds; (4.2)
P(S; | Xt71), in turn, can be written as
P(S; | Xt71) = /P(St | Sthp(st—t | xthastt (4.3)

if it is assumed that S; 1L X*~1 | §t~L.

P(S*1 | Xt~1) can be calculated from Bayes’ theorem as
P(S71 | XY & P(X;q | STHP(ST | X2 (4.4)

It can be seen that state-space models admit a recursive definition which
allows “on-line” prediction. At time t, P(S'~! | X'~!) is available. P(S; | X*71)
is then obtained using P(S; | S*~!) with equation (4.3). Then P(X; | X'~ ') can
be calculated using P(X; | S¢). Bayes’ theorem gives P(S; | X*) (this step is called

FILTERING in some time series literature) and the process begins again.

4.3 Dynamic linear models

Dynamic linear models (DLMs) [Harrison and Stevens, 1976; West and Harrison,
1997; Petris et al., 2009] are the classic state-space model. They are defined as

follows.

Definition 38. A DYNAMIC LINEAR MODEL consists of time vectors of observations

X and state parameters @ such that at timet =0

90 ~ N(mo,UQ) (45)
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and at time t > 1

Xt = Ftet + (%7 (46)

(9,5 = Gth_l + wy (47)

where Fy and Gy are known matrices of appropriate order and vy, wy are indepen-
dent multivariate- Normal variables with mean zero and variances Vi, Wy respectively.
Equation (4.6) is conventionally called the OBSERVATION EQUATION while equation

(4.7) is the STATE EQUATION or SYSTEM EQUATION.

The DLM is therefore a state-space model with the added assumptions of
linearity and Gaussianity. This allows for exact, conjugate updating of distributions
when applying the recursive procedure described above, as originally exploited by
the Kalman filter [Kalman, 1960]. When either linearity or Gaussianity are not
plausible, conjugacy is often hard to retain. I will introduce in the next chapter
a dynamic graphical model that allows for complex multi-variate distributions at
each time point that also retains conjugacy. First I discuss some general time series

modelling tools that will help in this task.

4.3.1 Multi-process Modelling

Even if a process is determined to be accurately represented by, say, a DLM, it is
natural to have uncertainty about the underlying parameter process, e.g. because of
knowledge of regime change, or external intervention [West and Harrison, 1989]. In
the DLM context this corresponds to being unsure as to the exact nature of F' and
G in the process equations. This uncertainty can itself be modelled by introducing
a new level to the standard state-space model class given above. West and Harrison

[1997] call this MULTI-PROCESS MODELLING [Harrison and Stevens, 1976] in the
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DLM context, and is also known in the literature as switching state-space models
[Frihwirth-Schnatter, 2006].

In the West-Harrison terminology, multi-process models of the first class
apply when for all ¢ there is some M which determines the parameter values for the
whole process — in the DLM this corresponds to uncertainty about F' and G — but
it is not known which value of M from a possible set M is the true one.

This can be transparently dealt with under the Bayesian paradigm as follows.
A prior distribution P(M) over M is specified before the first observations. Predic-
tions for each X; are calculated as a weighted average over the possible values of M

(shown here for a finite M) conditional on observations up to time ¢ — 1 inclusive:

P XY = S P(X | MYP(M | XY (48)
MeM
-y / P(X, | 6:)P(0, | M)P(M | X'"V)do,  (4.9)
MeM "’ Ot

It can be seen that the usual assumption is that X, is independent of M given
0:; in other words, M is purely a description of the latent process, which in turns
determines the distribution of the observable process, as before.

The distribution of M is then updated after each observation in the usual

way, similarly to the filtering method described above:

PM|X") < P(M | X"™Y)P(X; | M) (4.10)

P(M | X*=1) was obtained after observing X; 1, and P(X; | M) was calculated in
equation (4.8).
Where each process is a DLM, the multi-process model of the first class is,

of course, not a DLM itself, but rather a mixture of DLMs.
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A usually more realistic assumption is that at each time ¢ a different value of
M holds. The dependence between the values of M at different times must then be
modelled explicitly, whether the values at different times are entirely independent
or highly correlated. This was named by West and Harrison [1997] a multi-process
model of the second class. It is clear that this class includes multi-process models
of the first class as a special case.

Now the prediction formula is updated in the following way:

PX | xhH = > > P(Xy | My)P(M; | ML X P X
Mt— 1€Mt lMtGM

(4.11)

— Z Z / (Xy | 0)P(6; | My)P(M; | XL, Mt=YP(at—t | Xt1)de,
Mt=le Mt=1 MieM

(4.12)

While there are is obviously a large class of possible specifications for P(M; |
XL M1, the three “practically important possibilities” recommended by West

and Harrison [1997] are as follows:

1. Fixed model probabilities, such that
P(M; | XL MY =n(M;)  forallt>1 (4.13)

Here one needs to only specify one prior over M. This prior remains fixed

through time and is not changed by observations.

2. First-order Markov probabilities, where fixed transition probabilities between

the models

(M| M')y=P(M,=M | M_ = M) (4.14)

64



are specified a priori for all M, M’ € M, so that

P(M, | XN M) = Y a(M | M)P(Myy =M | X' (4.15)
M'eM
Some initial prior distribution over M would need to be set. These Markov

transition probabilities would also not change throughout the process.

3. Higher-order Markov probabilities, where the probabilities of M; additionally

depend on the values of M at t — 2, t — 3, etc. as well as t — 1.

It should be clear that multi-process models of the second class are more
complicated than those of the first class with the benefit of allowing flexibility in
the models to changing circumstances in the system.

In the next chapter I will introduce a multi-process model where at each
time point M; represents a possible underlying CEG, allowing for far more compli-
cated systems to be modelled than is possible with DLMs but nonetheless retaining

conjugacy.

4.4 Steady model

Any state-space model, as shown in Section 4.2, can be used to give P(X7) because

T

[[PX: | Xi)P(X), (4.16)
t=1

obtaining each P(X; | X*~1) by integrating out S; from P(X; | S;)P(S; | X'71).
With P(X; | S;) being given explicitly by the state-space model, there is only a
need to specify P(S; | X*71) in general. One way to do so is as a function of

P(S;—1 | X'1), which can itself be calculated using Bayes theorem applied to
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P(S;—1 | Xt72) and P(X¢—1 | Si—1), the former being a function of P(S;_o | X!72),
and so on.

In the case of the DLM, the system equation (4.7)

Qt = Gtet—l + wy (417)

does this, because equation (4.7) is true conditional on all possible values of X~ 1.

This clearly generalises to a possible strategy for all state-space models: assuming

P(S; | 7Y = P(S; | S*71, xth) (4.18)

for all X*~! means that

P(S; | X7 = P(S; | SthHp(st! | xt=hast! (4.19)
St—1

It should be clear, however, that there are some disadvantages to this ap-
proach.

First, setting P(S; | S'~!) which holds for all X*~! is over-specification from
a forecasting perspective, because we're only interested in how P(S; | X*~1) relates
to P(S;—1 | Xt71) for the X'~ actually observed.

Second, as has already been noted, setting P(S; | S?~!) which is invariant
to X'~ means that we learn nothing from the data about the latent process. The
prior belief put into the model endures, and any inferences will be sensitive to this
belief.

Third, when the state-space model is either non-Gaussian or non-linear a
loss of conjugacy of the parameters almost always follows, leading to a reliance on

numerical methods and an unfortunate subsequent loss of speed or precision.
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Therefore, it is worth trying an alternative approach. One that I will utilise
is the power steady model [Smith, 1979, 1981, 1992], which I will refer to here simply
as the steady model. This simply states that, letting p;(S; | X*~!) be the probability

density function (pdf) of S; | X!~ and p;_;(S;—1 | X*1) the pdf of S;—1 | X1,
_ . 1k
pe(Se | X7 o {pi 1 (Se-1 | X7} (4.20)

for some value of 0 < k£ < 1 where the constant of proportionality is uniquely
determined to ensure p;(S; | X'~!) is a density. The reciprocal of k is sometimes
called the TEMPERATURE as it plays a similar role in physical models of gas diffusion.
A similar technique used for ensuring good mixing when carrying out MCMC is
called simulated annealing [Geyer and Thompson, 1995].

There are a number of justifications for the power steady model quite apart
from its simplicity.

First, it satisfies some intuitive common modelling assumptions, and can
be proven to do so in a formal way. These intuitive assumptions are, in decision

theoretic terms, that (as described in [Smith, 1979]):

1. decisions should not change between time points in the absence of further

information

2. the associated loss from making the decision should not decrease between time

points

It can be proven that for a step-loss utility function, the power steady model satisfies
the above criteria, and moreover is characterised by them if we also demand that
truncating the distribution should leave unaffected the density in the new support
except for a new constant of proportionality.

Second, when the transform (4.20) is applied to any multivariate distribution
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then all of its conditional independences are retained, and in many cases the distri-
butional family is also left intact. The former assertion can easily be shown: if S;
(1)

is a vector of univariate parameters (S;”,-- -, St(n)), with conditional independence

relationships reflected in the factorisation of p(S; | X*) (as described in Section 2.2)

p(s | X4 =5 | Q7. X1 (4:21)
i=1
where Qgi) is the minimal sufficient subset of (Sﬁl), e ,Slgi*l)) to make the above

1 _

equation accurate (and obviously with @, = ), then applying the power steady

transform will yield

n

(0 1 X9) =TT (w5 1 @7 )" (4.22)

=1

making clear that conditional independence relationships will be left intact.

The latter assertion of distributional family invariance depends on the form
of the density, but examples of distributions that retain their form after the power
steady transform (called the linear expanding distributions in Smith [1979, 1981])
are the normal, Student-t, Gamma, Beta, Dirichlet, and Pareto distributions, and
their product versions.

Third, it can be shown that use of the steady model guards against misspeci-
fied priors, making predictions more robust to this potential problem. I demonstrate

this in two different ways:

1. Let the LoCAL DE ROBERTIS MEASURE DRy be defined as in [Smith and

Daneshkhah, 2010]:

d5(f,g9) = sup {(log f(8) —logg(h)) — (log f(¢) —logg(¢))}  (4.23)

0,0cA
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for any A € ©. Smith and Daneshkhah [2010] show that the local de Robertis
measure is a separation measure where its separations do not change under
Bayesian updating. It therefore represents artifacts of the model that cannot
be changed by observation. It can easily be shown that, where f* oc f* and

similarly for g,

di(f*.g%) = k(d5(f.9)), (4.24)

Thus using the steady model brings distributions closer together when 0 <
k < 1. In this sense steady models tend to be robust against initial prior
misspecification, if we see f as the prior used in the analysis and g as the

“true” prior. See Smith and Rigat [2008] for further details.

. A similar result can be shown for Kullback-Leibler (KL) distances [Kullback
and Leibler, 1951]. Recall that for two densities f and g the KL distance is
given by

diufig) = | log 1(6) ~ logg(6))g(6)ds

and that the entropy H of a density is given by
1(f) =~ [ 10 1og 16)a6

Let f1, fo be any two densities such that H(f;) = H(f2). Then

drr(pi+1; f1) — dxp(pesa; f2) = k(dk L (p f1) — din(pes; f2)) (4.25)

where p; is the density at time ¢ and p;11 o (p)*. Equation (4.25) says that
the K-L distance between the model density and two arbitrary densities with
the same entropy decreases by a fixed proportion at each time step, again

indicating a robustness to prior mis-specification.
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4.5 Dynamic graphical models

There has been much research in the last couple of decades on representing time
series with graphical models, for the usual advantages that graphical modelling

brings as discussed in Chapter 1. I review some of these models here.

4.5.1 Dynamic Bayesian networks

The most obvious way of representing discrete-time data is with a BN as usual, with
one node for the value of each variable at each time point. Then the conditional
independence of variables between and within time points can be represented ex-
plicitly. Such BNs are called DyNAMIC BAYESIAN NETWORKS (DBNs) [Koller and
Lerner, 2000].

The first to propose this idea were Dean and Kanazawa [1988, 1989], although
they did not invent the name. The state-space model whose state-space process is a
Markov chain (also called a Hidden Markov Model (HMM), and which includes the

DLM), for example, holds the following conditional independence properties:

XL Xt st st =12, (4.26)

Syl XL 828, t=1,2,--- (4.27)

These can be represented as the DBN

X1 X5 X1 X Xty

| |

S1 So e Si—1 Sy Sty1

Figure 4.1: Dynamic Bayesian network of state-space model

In many instances, as in the example in Figure 4.1, the same graphical pat-
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tern is established between each pair of consecutive time points, and where the whole
process is a Markov chain. Thus all that is required in this case is the prior distribu-
tion P(X71,S7) and the invariant Markov transition function P(X;y1,Siy1 | X, St).
Instead of drawing a DBN for the whole process, it is then sufficient to draw a TWO-
TIME-SLICE BAYESIAN NETWORK (2TBN), which depicts merely the relationship
between all consecutive pairs of time points graphically. For example, for the DBN
in Figure 4.1, the following 2TBN can be used to represent the process:

X Xiq1

Sy Si+1

Figure 4.2: Two-time-slice Bayesian network of state-space model

In the most general case DBNs and 2TBNs will not allow closed-form updat-

ing, as seen with the special case of non-Gaussian DLMs.

4.5.2 Multiregression dynamic models

One graphical model which does allow for the exact modelling of multivariate time
series is the MULTIREGRESSION DYNAMIC MODEL (MDM) [Queen and Smith, 1993;
Queen and Albers, 2009]. This models the independences between separate univari-

ate regression DLMs in a conscribed way that ensures conjugacy.

Definition 39. A MULTIREGRESSION DYNAMIC MODEL (MDM) is a BN with nodes
Xi(1),---, X¢(n) representing the n components of the n-dimensional observable

time series X;, t = 1,--- ,7 and the following conditional independence properties

hold fori=2,--- ,n for all t:

1o Xe(8) L{Xe(1), -, Xe(i = 1)} | Qs

71



2. X(i) L{XH(1), - X6 = D} [{Qi, X))}

where Q;, as before, denotes the set of parents of X(i) (which must be a subset of

{X¢(1), -+, X¢(i —1)}) in the BN. Property 1 is implied by the BN, while property

2 describes the locality of the relationship of the system at time t with its past.
These conditional distributions are explicitly defined in the form of DLMs,

i.e., for each X(i), for all t and i,

Xi(i) = Fy ()0 (i) + v (i) (4.28)

0, = Gi0; 1 + wy (4.29)

but where now Fy(i) is an s;-dimensional column vector (where s; is the dimension of
0;(i) ) which can be a (known) function of X'=1(i) and Q;(Xy), Gy is a block-diagonal
matriz with non-zero square sub-matrices {G¢(1),--- ,G¢(n)} each respectively of
dimension s;, vi(i) has mean 0 and variance Vi(i), and w; has mean 0 and a block-
diagonal covariance matriz Wy = blockdiag{W;(1),--- , Wi(n)} where again W;(i) is
an s; X s; square matrix fori=1,--- ,n.

Finally, 8y is assigned mean mq and block-diagonal covariance matriz Cy

structured similarly to Gy and Wr.

Note that v¢(i) and w; are now not required to be explicitly Gaussian.
It was proven by Queen and Smith [1993] that under the MDM model, if for
alli=1,---|n

O 1(1) 1L{O;_ 1\ O;_1(i)} | Xt1 (4.30)

then
0:(i) 1L{6, \ 6:(3)} | X* (4.31)

This says that if the components of 8;_; are mutually independent up to time ¢ — 1
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then under the MDM 6; will also have mutually independent components after
additionally observing X;. Thus if all 6y(i) are mutually independent a priori then
the state parameters remain so throughout the process.

It was also proven in this case that for all i € {1,--- ,n}

If vy and w; are chosen to be Gaussian, then X;(7) | Q;(X¢(¢)) will be Gaus-
sian too. Each component will therefore follow the normal DLM as described in
section 4.3, which implies conjugate updating as in that case. Note that interven-
tions on individual components can also be easily implemented in the MDM, as

shown in Section 4 of Queen and Albers [2009].

4.5.3 Flow networks

A flow network F' is a directed graph which models the flow of units from a root
node vy to a sink node vy [West, 2001]. Each edge e € E(F) has an associated
CAPACITY c(e) and flow f(e) (where 0 < f(e) < c(e)). Flow networks also assume
a CONSERVATION OF FLOW property: for every node that is not a root node or sink

node (i.e., for every v € V(F) \ {vo,vs}),

Yoo = > fle), (4.33)

ec{e:ch(e)=v} ec{e:pa(e)=v}

i.e., the sum of the flows into v must equal the sum of the flows out of v.

Flow networks are clearly an excellent graphical model for representing flows
of material, such as traffic or oil supply. They have been extended to allow proba-
bilistic forecasting by Figueroa-Quiroz [2003] in the form of DYNAMIC FLOW NET-

WORKS. These extend the flow networks described above by assigning each edge a
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TRANSPORT TIME as well as a capacity. In addition, a modified multilevel DLM —
a state-space model with a DLM between the observed variables and one level of
latent variables, and then another between that level of latent variables and another,
and so on — is posited for the root-to-sink path flows for the case when the flow
network is strictly hierarchical, i.e. every root-to-sink path is the same length. By
modelling the path flows as opposed to the flows through nodes, the conservation
of flows requirement is neatly side-stepped, and the path flows can be modelled as
independent; the node flows are functions of the path flows and can therefore be
recovered. The DLM is different from the canonical one described in Section 4.3
because some of the information is delayed, but similar exact updates and forecasts
can be undertaken. Also, just as in the original DLM case, interventions can easily
be incorporated within the model class through formal Bayesian intervention.

Although flow networks can be treated directly as BNs (as in [Whitlock and
Queen, 2000]), Figueroa-Quiroz [2003] showed that instead the DLM on the flow
paths can be drawn as a 2TBN (as shown in Smith and Figueroa [2007]).

The original flow network, however, can in some circumstances be considered
as a CEG. Consider the example flow network in Figure 4.3 (adapted from Smith
and Figueroa [2007]).

In a hierarchical model such as this, where all root-to-sink paths are the same
length (the condition for the dynamic flow network model in [Figueroa-Quiroz, 2003;
Smith and Figueroa, 2007]), if the transport time is the same for all edges (and even
if not, the flow network can be transformed into one with “phantom” nodes, as shown
in Figueroa-Quiroz [2003], in which this condition is fulfilled), then the amount of
material at a node at any time ¢ is simply the sum of the amount of material at its
parents at time ¢t — 1, and so the data can be considered in a cohort fashion. If at

every node the process that decides where its material ends up next is not dependent
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Figure 4.3: Example of a flow network

on the path that the material took to reach the node, and all units of material at
a node are exchangeable, then the flow network can also be interpreted as a CEG
where each node in the flow network is a position in the CEG sense. While this will
not be valid in all cases, e.g. when two physical nodes have identical probabilities
distributions over where their respective flows go next, it does seem more natural
than interpreting the flow network as a BN.

While the dynamic flow network is very useful in the case when a DLM on
paths is valid, a more general dynamic model will be shown in the next chapter
which allows for conjugate analyses of non-linear and non-Gaussian multivariate
variables with changes in the underlying process, and which also incorporates any
needed formal intervention as needed, by at each time point modelling the data as

a mixture of CEGs. This model is the DYNAMIC CHAIN EVENT GRAPH.
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Chapter 5

Dynamic chain event graphs

I present in this chapter a new dynamic graphical model based on CEGs that ad-
mits a conjugate analysis and exact predictions of discrete multivariate time series
without sacrificing realism.

Let T be an event tree whose topology is known and fixed in time, but with
an uncertain and possibly dynamic probability distribution over its possible CEGs.
Let the set of situations of 7', S(T'), be denoted by S = {vl, o ,v|5|}.

At each time point ¢t = 1,...,7, we wish to predict a¢(v) for all v € S, where
x¢(v) is the vector of values of X (v) at time t. Let @; = (z4(v))yes. Then at every
time t we need to construct a probability distribution over the possible values of x;
conditional on all previous observations &‘~! = (x1,...,x;_1). The marginal joint
distribution P(x™) over time of the full data set can then be calculated as a product
of the one-step ahead predictive probabilities P(x; | z'~!). Bayes factors associated
with different models can then be expressed as a function of these quantities. Note
that this factorisation corresponds to the prequential likelihood described by Dawid

[1984] used for comparing probabilistic forecasting systems.

The probability distribution of ; | =1 can be written parametrically as a
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function of 6, the values of §(v) for all v € S at time ¢, so that

Pla, | o) = / P(a: | 6,2 V)p(6; | z)db, (5.1)
O

0; is unknown in the general case. One way to specify the distribution of 6,
is to assume the process can be described by a DYNAMIC CHAIN EVENT GRAPH. A
dynamic chain event graph is defined to be a collection of chain event graphs with
possibly different CEGs Cy(T') at each time point for one fixed event tree T'.

If v, € S(T) are in the same stage u in a CEG C; at time ¢ then it is

assumed, given the definition of stages, that
9{/(2)) = Ht(v’) £ Ht(u) (52)

If it is assumed that 6;(u1) 1L 6;(uz) when uq Nug = () for all ¢ when uy,ug €
J(C) for all possible C' then the distribution of 8; under a CEG C} can be written

as the product of the distribution of each stage’s parameters:

p(0: | Crox™") = [] p(0s(w) | Gy ™) (5.3)

ueClt

Therefore equation (5.1) can be written as

P {Bt | (B Z / ZEt ’ Ot,C’t, ) (Ot | Ct,wtil)P(Ct ‘ wtil)det (54)
cieC
=y / ( ;| 6, Cro " P(Cy | 1) T p(6i(u) | Ct7$t1)> d6;
Crec /' ®t ueC
(5.5)

To carry out a one-step ahead forecast on the system three probability distri-

butions must therefore be specified: the sampling distribution P(x; | /=1, 8;, Cy),
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the stage parameter distributions p(6;(u) | Cy, 2"~ 1), and the CEG distributions
P(Cy | £'1). I show below how this can be achieved for each item in turn using

techniques discussed in previous chapters and some new ideas.

5.1 The sampling distributions

Under complete sampling the distribution of X (v) for any situation v € S is con-
ditionally independent of any other quantity given #(v). In particular, this means
that the distributions of X (v) and X (v’) for two situations v,v" € S, v # v/, are
assumed to be independent conditional on 6(v),6(v).

This does not necessarily apply to z:(v), because the distribution of the
number of samples N;(v) from X (v) at time ¢ is unknown in the general case. I
assume here, however, that for all situations bar the root node vy — i.e. for all
v € S\ vy — that Ny(v) equals the value of x}(v*), the number of times that
X(v*) = v at time ¢, where v* is the situation such that v € X(v*), i.e. where
v* is the parent node of v. This matches the view of the units moving along the

root-to-leaf paths, similarly to a flow network. I discuss the setting of N¢(vg) shortly.
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P(z; | 6, Cy, 2t~ 1) can therefore be written as

P(mt | Ot,Ct,mt_l) = Z P(a:t | Nt(Uo),et,ct,ﬁct_l)P(Nt(Uo) | Gt,Ct,cct_l)
N (vo)

(5.6)

x|

N¢(vo)

H P(z¢(v) | 0¢(v), z)(v™)) | P(N¢(vo) | Ot,(]t,a:t_l)>

veES

(5.7)

= 2 | | H sy w=oy 11 000) ) 0| P(Ni(vo) | 64, C, 2!

N¢(vo) ves v’ eX(v)

(5.8)

where I 4 is the indicator variable for an event A, z;° (v*) is abuse of notation meaning
Ni(vg), and O(v,v") = P(X(v) =v').

The modelling of the distribution of N¢(vy) depends on the details of the
system under consideration.

Sometimes N¢(vg) will be known in advance. For example, in the educational
scenario of the example in Chapter 1, the number of students enrolling every year
might be fixed.

Another common scenario is when N;(vp) is believed to be independent of
all other system parameters apart from, at most, values of Ng(vg) for s < t. One
approach in this case is to model N¢(vy) as a Poisson variable with parameter X\,
where A can either be constant or itself given a conjugate prior of Gamma(ay, )
at time 1.

When N;(vp) is known, equation (5.8) becomes

P(a: |6, Cra'™) = [T |yt ymavioeyy 1 0e(0:0) et ) (5.9)

veS v’ eX(v)
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where ;° (v*) should again be read as N;(vp).

5.2 The stage parameter distributions

As with every aspect of the model, the specification of the probability distribution
over the floret parameters for each possible stage should be tailored to the scenario
at hand. In many cases, however, it is possible to characterise the distribution from
some common qualitative modelling assumptions along the lines shown in Chapter
3.

Consider first the trivial CEG C; = Cy. Recall that if it is assumed that the
relative rates of the root-to-leaf paths are independent, each non-trivial floret’s pa-
rameters must themselves be Dirichlet distributed. Therefore, denoting its collection
of hyperparameters as oy (v) = (o (v,v'))yex(v), the density of 6;(v) | C; = Co, '~

for a non-trivial floret v € Cj is

0 Nat(v,w')—1
Fo)(0:e(0) | Co=Coa™ ) =T [ 3 v, ) | ] (v, V) (5.10)
v’ €X(v) v’ €X(v)

for 3~ ex() 0¢(v,v') = 1 and ay(v,v") > 0 for all v’ € X(v), and 0 otherwise.

Now consider a CEG C that is not a trivial partition of Cy. In Chapter
3 it was shown that requiring margin equivalency to hold for its stages v € C
characterises the prior on the floret distributions. A stage u has margin equivalency
when

P(X(u)|6,C) = P(X(u) | 6, Co). (5.11)

where X (u) is the random variable with sample space U, ¢ o (y,) 10" UH{Uypey ¥ (0u, v) (V) }},
i.e. the edge equivalence classes under a stage, where v, is any situation in u. With

the distribution for florets in Cy as given above, this implies that the prior proba-
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bility of 8;(u) | C; = C, £'~! has a Dirichlet distribution too, with hyperparameters
that are sums of the corresponding hyperparameters under Cjy of the constituent

florets:

0, (u’ U/)&t(uw’)*l
(@t (u, v"))

fowy(Oe(u) | Co=Coa™ ) =T [ Y aw)| ][]

v/ €X(vy) v'€X (vy)

(5.12)

where v, is any situation in w, 6;(u,v’) are the elements of the vector 6;(u) and

a(u, V') = >, pew 0t (U, Yu(vy,v)(v')). Informally, equation (5.12) says that the

hyperparameter vector for all of the floret distributions of the situations in stage u

is equal to the sum of the hyperparameter vectors of the floret distributions under
Co.

With margin equivalency and independence between the floret distributions
under Cp, the floret distributions under different CEGs for stages composed of the
same situations will always be the same. Therefore the probability distributions for
a stage’s parameters (5.10) and (5.12) depend only the composition of the stage and
not on the rest of the CEG. This property is useful since it allows discussion of the
characteristics of stage clusters of variable groups without reference to the partition
in which they appear. This makes individual models much simpler to explain. It
also reduces the computational complexity in calculating (5.10) and (5.12).

Recall that 6;(u) is conditionally independent of all other quantities given its
hyperparameters oy (1), which itself depends only on ay(v), v € u, where ay(v) is the
collection of hyperparameters of 0;(v) under Cy. Therefore setting P(6; | Cy, x'~1)
simply requires the setting of a;(v) for each situation v € S for every ¢. This model
can be simplified still further by relating the floret distributions between time points.

This can be done, as discussed in Section 4.4, with, for example, a (power) steady
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model. This relates the floret prior at a time ¢ with its posterior at time ¢ — 1, i.e.,

fer1.0(0) = T(f£,(0)) (5.13)

for some function 7 for all ¢ > 1, where f;,(6) is the density of 6;(v) | !~1, Cy = Cp
as given in equation (5.10), and ff,(6) is the density of 6;(v) | *,C; = Cy. With
this, only «;(v) needs to be set for every v € S to specify the one-step ahead
forecasting model.

The simplest choice of T is the identity functional, so that

frr10(0) = f7,(0) (5.14)

for t > 1. With f;,(0) as given in equation (5.10) and P(z:(v) | 6:(v)) as given
by equation (5.8), Bayes’ theorem implies that 6;(v) has a Dirichlet distribution a

posteriori

0 neay(v,w')—1
Fow @) | C=Coxy=T| 3 ajw,o)| ] t(v ”3 (5.15)

where af(v,v") = ay(v,v') + z¥ (v), and so

arp1(v) = ag(v) (5.16)

= o (v) + z¢(v) (5.17)

As equation (5.17) is true for all ¢ > 1, ax(v) can be written as a function of only

a1(v) and zt71(v),

a(v) = a1(v) + Y z-(v) (5.18)

=1

for all v € S.
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Letting T be the identity functional as above reflects a modelling assumption
that the underlying probabilities associated with each stage do not evolve for any
CEG. Sometimes this will be too strong an assumption to make. In this case, a
weaker set of assumptions are needed which will represent the fact that there is an
“information drift” between the time points. This will also guard against spurious
jumps in the model probabilities from expected model drift.

One way to characterise 7 to meet this need is provided by the power steady
model [Smith, 1979, 1981, 1992] discussed in the previous chapter. It was shown
by Smith [1979] that if, loosely speaking, it is assumed that the Bayes decision
under a step loss function would stay the same over time if no more information was
gathered about the system but that the expected loss of the decision increases due

to increasing uncertainty, then it is required that

frr1.0(0) o< (f7,(0))" (5.19)

for some 0 < k < 1. It also has the advantage here of preserving the Dirichlet
distributions of the floret priors.

With o (v) = a(v) + 2¢(v), equation (5.19) implies that 6;41(v) is still
distributed Dirichlet if 6;(v) is Dirichlet but with the hyperparameters of the distri-

bution now given by the values
a1 (v, 0") = kag(v,v') + kay(v,0) — k+ 1 (5.20)

Solving this recurrence relation for a constant k yields
t—1

a(v,v') = K ag(v,0) — 1) + Z k' Tr(v,0)) + 1 (5.21)

=1
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which heuristically can be seen as weighting recent observations more heavily for
the setting of the latest prior, corresponding to the popular exponential-weighted
moving average method of estimating parameters in classical time series models.

Each situation can have its own k, k(v), and it might be desired that this k(v)
be different for different ¢, for example when an external intervention in the system
occurs at v € S then a smaller value of k(v) can be used to indicate increased
uncertainty about its new value, just as West and Harrison [1997] do for DLM
parameters.

I note that the use of the power steady model has a long history with Dirichlet
distributions (e.g. in Smith [1979]; Queen et al. [1994]; Cowell et al. [1999]) and more
generally (e.g. Ibrahim and Chen [2000]; Rigat and Smith [2009]), and has also been
used in Bayesian forecasting under the alternative name of exponential forgetting
[Raftery et al., 2010]. Here I use the power steady model as a justifiable conjugate

method for making inference about tree models whose floret probabilities evolve.

5.3 The CEG distributions

We have allowed in the previous section for drift over time in the values of probabil-
ities associated with the conditional independence structure implicit in a dynamic
CEG model. However, it is necessary to allow in most applications for the possi-
bility that the underlying CEG itself — and not just its parameters — evolves in
time. It is unfeasible and usually unnecessary to model all possible changes over
the partition space; in most applications it is appropriate to assume that changes
in stage structure will be small in number and occur locally.

I therefore propose a dynamic model for the CEGs analogous to the Class 2
Multi-process Models used for dynamic linear models (DLMs) [Harrison and Stevens,

1976; West and Harrison, 1997] discussed in the previous chapter. This was devel-
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oped for the case where “no single [model| adequately describes what might happen
to the process in the next time interval” [West and Harrison, 1997].

Let C be the set of all possible CEGs of T', and for each C € C and ¢t > 1
let m(C) = P(Cy = C | z'71).

Recall the three modelling strategies proposed by West and Harrison [1997]
when using the C2MPM of fixed model probabilities, a first-order Markov transition
between the models, or a higher-order Markov transition. While the first possible
modelling strategy, of fixed model probabilities, is much the simpler one, the second
and third strategies are often going to be more accurate reflections of experts’ beliefs.
I show here how to implement the second strategy of first-order Markov transitions
between CEGs.

At the first time point, ¢ = 1, the marginal distribution of the observations

x1 can be calculated as follows:

P(z1) = Y_ m(C)P(w1 | C1=C) (5.22)
CeC

At t = 2, after having observed a1,

P(:BQ ‘ :131) = Z P(.’BQ ’ CQ = C)?TQ(C) (523)
CeC
=Y |Plx2| Ca=C) > =(C|C)mi(C) (5.24)
ceC c’eC

where 7(C' | C") is the fixed transition probability P(Cy = C' | C;—1 = (") for any ¢,
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and

THC) = P(Cy = C' | a1) (5.25)

X P(il}l | Cl = C”)m(C’), (526)

with all the terms on the right-hand side of equation (5.26) available from (5.22).

So for all times ¢t > 1,

Pl |a'™") =D |Plx, |C,=C) > n(C|Cm(C) (5.27)
ceC c'eC

with 7}_;(C”) available from the previous time point ¢ — 1. This is the recursive
property of state-space models as discussed in Section 4.2.

A common assumption will be that 7(C | C”) is larger the “closer” C is to C’
in some sense, so that the underlying process is unlikely to change too dramatically
over a short period of time in the idle system. If 7(C' | C') = 0 for some C € C), this
has the advantage of reducing the number of terms in equations (5.24) and (5.27).
This is particular attractive when calculating P(x | C) is very expensive for each
CEG C, as is the case for CEGs with a large number of stages or where some stages
have large sample spaces.

One way to represent this “closeness” is through a metric over C. Meila [2007]
derived a metric for general partition spaces called the “variation of information”

metric. It is defined as follows for any two partitions C' and C’ of a set S:

VI(C,C') = H(C) + H(C") — 21(C, ") (5.28)
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where

=~ 2 PlulosPlu (5.29)
ueC

P(u,u
;;; (! 1°gp<i><if> (5.30)

and where P(u) = W P(u,u’) = \u‘f;}rﬂ. The variation of information metric can be

justified using information theory.
Recalling that C' is a subset of the set of partitions of S, we can therefore

set 7(C' | C") as a function of VI(C,C"). One intuitive way of doing so is to let

)
p itC =0

T(C|C) = q|BC)H1=p) HO<VIC,C)<e (5.31)
0 otherwise

\

where 0 < p < 1, and B,(C') = {C € C : VI(C,C") < ¢,C # C'}. This implies
that only CEGs in a small neighbourhood around C’ are considered and they have
an equal chance of occurring. The parameter p — the probability of the staging
remaining unchanged — determines the conservatism of the process.

The choice of € can be characterised by considering the value of VI(C,C")
for some common transformations. For example, when C is obtained from C’ by
splitting one of the latter’s stages, say v’ into uy, ..., un, VI(C,C") in this case was
calculated by Meila [2007] to be

u'| log |u 1 &
vie,c) = L oS tog u (5.32)
=1
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If |o/| =m < |S] and |uy;| =1 (so that in this case u; € S) for [ € {1,...,m}, then

1
vie,cy=" ﬁ;g' m (5.33)

This is also the value of VI(C,C") if C is formed from C’ by the reverse of this

process, thanks to the symmetry of V' I due to its being a metric. So a simple choice

mlogm

5]

for € can be for some value of 1 < m < |S], not necessarily an integer. Having
m = |S]| (i.e., e = log|S|) would be equivalent to not ruling out any CEG.

If more radical changes in the CEG process are taking place due to external
intervention in the system then the methodology in Section 5.5.1 can be deployed.

The VI metric has the disadvantage of its not being immediately clear what
its value is between two arbitrary CEGs, making it hard to select only “close” CEGs
in an algorithm without calculating its value for all CEGs.

A more intuitive and implementable metric that can be used can be derived
from the Hasse diagram of the lattice of partitions of S under the relation “finer
than” (see Stanley [1997] for a detailed overview of such lattice terminology). The
Hasse diagram for |S| = 4, as an example, is shown in Figure 5.1.

The length of the shortest path between two partitions on the Hasse diagram
is a metric on the partition space of S, and I call it £ here. A distance of ¢/ = 1

represents the division of a stage or the merging of two stages. One way to set

7m(C' | C") based on this metric is to do so in a similar way as with the VI metric,

p ifC=0C'
m(C1C) = |B.(C) M1 —p) if0<lC,C)<e, (5.34)
0 otherwise

\

where B.(C') = {C € C : {(C,C") < €,C # C'} is an e-ball of CEGs around C’
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Figure 5.1: The Hasse diagram of the lattice of partitions of S when |S| =4

under the ¢ metric.

The advantage of using this metric ¢ instead of VI is that generating B.(C")
is much simpler under the former metric. Under VI, it is not clear how to generate
general neighbourhoods of a partition C’ in the scheme above without calculating
VI(C,C") for all C' € C, which for even moderately large |S| could quickly become
unfeasible. Restricting C' further in some way could eliminate this difference, how-
ever. Ultimately 7(C | C") must be set according to the statistical needs of the
model.

The other term in equation (5.27), P(Cy—1 = C’ | '~1), can be calculated

for each Cy_; using Bayes’ theorem:

P(Ct,1 = C, | CBt_l) X P(mt,l | thl = C/)P(thl = C/ | a:t_Q) (535)

. P(mt,1 | Ci_1 = C/)P(thl =’ | mt_z)
ZC”EC P(mt,l | thl = C/)P(thl =" | a:t*Q)

(5.36)

The P(C;_1 = C' | '=2) terms on the right-hand side of (5.36) will be already be
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available at time ¢t — 1. The term P(x;—1 | C;—1 = C'), meanwhile, can be calculated

as follows, using equations (5.8) and (5.12) at time ¢t —1 (assuming N;(vp) is known):

P(xi1|Cio1 =C") = P(xi_1|6,_1,C_1 = C")P(6;—1 | Ci—1 = C")dO;_1
O

(5.37)

] B ()10
o r ay—1(u, v’ -
/@t—1 H Z ' 1( ) H F(at—l(uv U,))

ueC’ v’ €X(vy) v €X(vy)

(5.38)

= H r (EU/GX(vu) O_thl(u, ’Ul)) H M
uec \I (ZU,GX(Uu) oy (u, U’)) o EX (v) I'(a—1(u,v"))
(5.39)

where v,, is any situation in u, @;_; (u,v") = Ty—1(u, v')+a—1(u,v"), where Ty (u,v') =

Y vwen Li—1(V, Yu(vy,v) (V")) and a1 is as defined in equation (5.12). Note the sim-
ilarity to equation (3.4).

The number of terms when calculating equation (5.27) can be reduced further
by setting the values of P(C;_; = C’ | '~1) that are below a threshold ¢ as zero
and normalising the remaining probabilities to ensure they still sum to 1. This will
guard against calculating P(C’ | C), P(x; | C) and P(x; | C') for C' € B(C) for
any CEG C that is considered unlikely a posteriori at time t — 1. A similar approach
advocated by Madigan and Raftery [1994] as “Occam’s window” is to discard models

C’ that are not in the set

] P(Cy | ')
C; {Ot €C: PO ) =1 (5.40)

for some 0 < g < 1, i.e., to only keep models where the Bayes factor between them

and the most probable model a posteriori are above a certain threshold. This has
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the advantage of guaranteeing that at least one model will be kept.

One last way to consider for easing the calculations is to reduce the number
of CEGs under consideration that have overly similar marginal likelihood functions,
because these will give similar predictions and hence it is redundant to consider them
all separately. A rigorous method of determining the similarity between densities
that satisfies desirable properties is to consider their F-DIVERGENCE [Ali and Silvey,
1966]. This is a class of functions defined for two probability distributions P, Py
over the same sample space (as long as they are absolutely continuous with respect
to each other over the sample space) as follows.

Define the f-divergence between densities P} and P, to be

fdiv(Pr, ) = f[E1(9(0))] (5.41)

where ¢ is the Radon-Nikodym derivative of P, relative to Pj, g is a continuous con-
vex function, E; denotes expectation with respect to P;, and f is a non-decreasing
function on R.

In the context here this translates into calculating, for any time ¢

fdiv(P(x; | Cy = C, &™), P(zy | Cy = C', 2'1))

x; = /’ mt—l

There are many choices of g present in the literature. One of the most famous
examples is the Kullback-Leibler distance [Kullback and Leibler, 1951] where g(¢) is
—log ¢. I illustrate here g(¢) = (v/é — 1)?, known in the literature when f(z) = iz
as the HELLINGER DISTANCE (and by Ali and Silvey [1966] as Kolmogorov [1963]’s

measure of distance). The Hellinger distance between the marginal likelihoods at
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time t of two CEGs C and C' is

a(c,c’) = ZP x| Cr=Czt™) . g < (éi'&_%,; 1))> (5.43)

=1- VP |C=0C"at")P(z | C; = C,at 1) (5.44)

Equation (5.44) cannot be calculated exactly. However, it can be related to
the Hellinger distance between the distributions of the tree parameters under the
two CEGs, a quantity that can be calculated exactly.

Let p1 denote the density p1(6; | =1, C) and ps the equivalent density under

C’'. Furthermore, let p denote the density pl(Ot, x; | £'~1, C) and similarly for p2

Then
PJ{ =pP(x: | 6;,C) (5.45)
and similarly for p;
Then
1 !
1 — hd(p!, ph) / S (01 P | 6,C)3 (paP(wi | 6,C))2 6, (5.46)
(S xt
1
- / p2p3do, (5.47)
(ON
because P(x; | 0;,C) = P(x; | 6;,C"), and so
hd(pl, p}) = hd(p1, po) (5.48)

Now let p} denote p}(6; | !, C), and similarly for p with C’. Then it is also
true that

P} =piP(z, | z'71,C) (5.49)
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and similarly for py. Therefore
1 1
1—hd(pl,ph) =" /@ (i P(ze | 21, C)) 7 (P3P (e | 21, C7))2 d6;  (5.50)
Tt t

(SN

:Zp(mtmt—l,mép(mya,-t-l,c’)%/ i) o, (5.51)
Tt

<1-hd(C,C") (5.52)

as by Schwarz’s inequality

1 1
/ <p’{pz>2d0ts< / p1d0t> < / p2d0t> —1 (5.53)
(CH [CX OF

In fact hd(p1,p2) does not strictly exist because if the underlying stagings
are different then p; and py are not absolutely continuous with respect to each other.
However, the Hellinger distance of the marginal densities of each floret under the
different stagings can be calculated, as each will be Dirichlet distributed with the
same number of parameters. The Hellinger distance between two Dirichlet densities
can be calculated as in [Rauber et al., 2008]. The Hellinger distance between two
marginal likelihoods for different CEGs can probably be related to these marginal
distances, but the derivation is beyond the scope of this thesis.

So if for two CEGs C,C" where m(C),m(C") > 0 their Hellinger distance
hd(C,C") is bounded above by some threshold h as calculated above then the con-
sideration of C' and C’ can be “merged” by changing m;(C) to m(C) + m(C’) and

7 (C") to 0. The sum over C in equation (5.4) will then take place over fewer terms.

93



5.4 One-step-ahead prediction

Equation (5.4) can now be written, using the foregoing, as

Pla |2 )) = Z/ S #(C | Cra)P(Cry | 2t Z P(Ni(vo) | 61, Cy, @t
(C]

CcieC t Ci_1€C (’Uo
v )+Z¢(u,v')—1
[Tufr( Y @) 11 Olu, r)( o) d6,
ueCy v’ eX(vy) v’ eX(vu)
(5.54)

where A is the event Yo € u\ vy, Y, ¥ (v) = a¥(v*). If it is assumed that the
distribution of N;(vg) depends only on z'~! then (5.54) can be further simplified to

the closed-form solution

Pm; | =) ( > w(C [ C)P(Coa |2 | | YD P(Ni(wo) [2)

ceC Cy_1€C Nt(UO)

SO L) R VTR )
e [T (Soexon 01()) vy 100

(5.55)

If Ni(vo) is always known in advance, then (5.55) can be simplified further

to become

Play | ) =) ( > w(Ci| C1)P(Crq | ™)

Ct ceC

(5.56)

This quantity can be computed with the following algorithm at each time
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t, incorporating the techniques mentioned earlier. The quantities not associated

directly with x; can be calculated first:
1. For each Cy_1, calculate P(C;_; | &;—1) using equation 5.36

2. Discard C;_; for which % < q for some threshold ¢, and normalise

probabilities of remaining C;_1.

3. For each remaining C;_1, find Cy in B.(C;_1) and calculate w(C; | Cy—1) under

VI or ¢ metric
4. Calculate P(Cy | ') =30 cem(Ct | Cro1)P(Cry | &' 1)

5. For C,C" where hd(C,C") < h, change P(C | ') to P(C | z'~1) + P(C" |
=) and P(C' | '71) to 0.

Now for each value of x; of interest,
1. If necessary, calculate P(Ny(vg) | '~1)

2. For each C; such that P(C; | '~1) > 0, calculate for each u € C;

(5.57)

where a;(v,v') = K (ay(v,v') — 1) + 02 k72, + 1 if using the steady

model with a constant k.

3. Substitute all the calculated quantities into equation (5.55).

5.5 Causal intervention

With many forecasting systems there is also an attendant need to consider the

effects of external intervention in the system, including by the forecasters themselves
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[Harrison and Stevens, 1976; West and Harrison, 1989]. This ensures that all relevant
information is taken into account, increasing the accuracy of future forecasts.

The predicted effect of an intervention depends both on the nature of that
intervention and the context in which it applies. Many interventions act only on
certain local features of a model while leaving the other features of the model un-
changed. These types of interventions have now been extensively studied on CBNs
[Pearl, 2000b; Spirtes et al., 2001] as discussed in Section 2.4. Dynamic extensions
of CBNs also exist [Queen and Smith, 1993; Eichler and Didelez, 2007; Queen and
Albers, 2009].

As discussed in Section 3.1.3 I believe that tree-based graphical models are
very useful in general for carrying out causal analysis, as due to the multiple rep-
resentations of each variable in the graph — one for each possible path-history on
parent variables — much more refined interventions in the system can be represented
[Shafer, 1996]. How causal hypotheses can be represented within the framework of
static CEGs has been investigated by Thwaites and Smith [2006] and Thwaites et al.
[2010].

I will now show how causal analysis affects the one-step ahead forecast on a
dynamic CEG given by equation (5.56) for two different types of intervention not
possible on BNs: one on the possible CEGs on a tree T' and one on the topology of

the tree T itself.

5.5.1 Intervention on the CEG distribution

Suppose that at time t it is determined that some situations will be moved into
their own stage u', leaving all other stages intact. For example, in the educational
example of Figure 1.2, the exams for the second module might be tailored so that

performance in the first module is no longer a predictor in how well students should
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perform in it. The one-step ahead forecasts can then be modified in the following
way to reflect this intervention.

Recall that 77 (C) = P(Ci_y = C | &™Y). Let 7(C) = P(C; = C |
x!~1 I,), where I is the intervention described above. Then one approach to mod-
elling the intervention is to set WZ(C) = m;_,(C) for each C' € C such that u € C,
and set 7} (C1) = 77 (C) and 7] (C) = 0 for C € C such that u ¢ C, where C' is
the same as C except that u € C' and other stages that contained situations v € u
are reduced accordingly. The effect of this approach is to transfer the probability
massed on the CEGs where u ¢ C to CEGs where u € C .

One issue that now arises is how the distribution of 8; | C; is affected. In the
absence of further information, a good default is to use the steady model as in the
idle system but with a lower value for the steady parameter k. This indicates that
past data might not be as useful in helping to make predictions in this situation as
under the idle system. Note that this is analogous to setting a higher variance on
evolution parameters in dynamic linear models when forecasting after interventions

is required for that model class (Section 1.2.2 of West and Harrison [1997]).

5.5.2 Intervention on T

Recalling the event tree pictured in Figure 1.2, consider the case where at time ¢
the course directors decide to eliminate the first module on the tree from the course.
This means that the marks that students would have gotten for this module are
unknown from that time onwards, and therefore all of the data at time ¢ for this
module will be concentrated on the second (“NA”) edge of the v; floret.

This type of intervention is analogous to the do operator introduced for
CBNs by [Pearl, 2000a], where a random variable is forced to take a particular

value with probability 1. The difference with CBNs is that CEGs allow a richer set
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of interventions on their structure, including letting an intervention take place at
specific time and situations, and not merely changing the value of a variable under
all circumstances.

I assume that the probability distributions on any unmanipulated florets re-
main unchanged, just as for CBNs manipulations are local [Pearl, 2000a]. I will also
assume here that once an intervention is made, it endures thereon. I now describe
how the learning framework outlined previously can be adapted to prediction after
an intervention of this type occurs.

Without loss of generality, say that at time ¢ an intervention I;(v,v) at sit-
uation v € S occurs so that 6;(v,v") is equal to 1 for a specific v' € X(v) and to 0
for all other v* € X(v). By the definition of the event tree, along with the causal
assumptions, all other floret distributions are technically unchanged. However, no-
tice that the probability of reaching any node in any A(v*,T) for v* € X(v) \ v/
is now zero. It follows that the tree T is equivalent to the reduced tree T" where
all A(v*,T) are deleted and only the edge (v,v’) remains in the floret F(v). The
process can henceforth be considered to take place on this reduced tree T".

The one-step ahead forecasts can now be calculated as before with a few
modifications due the set of situations S changing; call this new set ST. First, the
distribution over C, the new set of possible CEGs, must be set. There are several
possible choices here. In the absence of any other information, a good default is to
let

P(Cy=C" a1 Ii(v,v)) = P(Cioy = C | 2™ 1), (5.58)

where CT is the CEG formed from C by first replacing each stage u € C' with a new
stage ul := u\ {UT}UTES\Sh and then by splitting the stage u! € CT that contains
the intervention node v into two stages {u' \ v} and {v}.

Second, the distributions of the stage parameters 6;(u) need to be reconsid-
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ered. Under the causal assumptions considered here, interventions have only local
effects, so a sensible default model is to let fy, ) (0:(u) | Cy = C '™, I(v,0)) be
calculated as before, i.e. as given in equation (5.12), except of course for 6;(v).
Assuming that all of the other system characteristics, e.g. the steady model
and the multinomial sampling, are intact post-intervention, the one-step ahead fore-

cast (5.55) is adjusted to become

(5.59)

where 7TTL(C'tT | Ci—1) = w(Ct | Ci—1) by the argument above, and using the same

modelling approximations as before.
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Chapter 6

Analysis of exam-mark data

using CEGs

The theory and algorithms developed in the thesis up to this point are intended to
be used to model real multivariate systems. I show here how implementations of the
algorithms perform with real and simulated exam-mark data based on the examples

of Chapter 1.

6.1 Learning static CEGs

6.1.1 Simulated data

To demonstrate the efficacy of the AHC algorithm described in Section 3.3 I tested
the algorithm using simulated data on the event tree shown in Figure 1.1. I generated
the data from a distribution on the tree described by the CEG in Figure 3.3. This
CEG corresponds to the three hypotheses described after Example 1, repeated here

for convenience:

1. The chances of doing well in the second component are the same whether the
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student passed first time or after a resit.
2. The components A and B are equally hard.

3. The distribution of marks for the second component is unaffected by whether

students passed or got a distinction for the first component.

Figure 6.1 (on page 112) shows the number of students in the sample who
reached each situation. It can be seen that there is naturally a conservation of “flow”
at each situation node reflecting that the root-to-leaf paths are the fundamental
events of the probability model.

For illustration purposes I set a uniform prior on the CEG priors and a Dir(1)
uninformative prior distribution on the root-to-leaf paths of Cy. The priors on the
floret parameters for any candidate CEG can be calculated from the path priors
using the methods of Section 3.3.3.

Recall that at every step of the AHC algorithm that every possible pair
of situations is considered for merging. Consider first the merging of two of the
situations with two outgoing edges, F 4 and Fi p. Under the prior assumptions
described in the previous paragraph each of these two florets will have Beta(1,3)
priors on its edge probabilities because one edge on each leads directly to a leaf
node and the other is on three root-to-leaf paths. The combined stage will therefore
have a Beta(2,6) prior on its parameters assuming that the two terminal edges (i.e.
the edges (F1,a, Fr.a) and (F1 g, Fr p)) are considered equivalent. Using equation
(3.12) the log Bayes factor of the posterior probabilities of the CEGs in this case is
calculated to be 1.85 in favour of the merged CEG.

Carrying out similar calculations for all the pairs of situations with three
edges, it is decided to merge the nodes P 4 and P p because the log Bayes factor

for the resulting CEG is 3.76 in favour of the merged CEG. Applying the algorithm
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to the updated set of nodes and iterating as required, the CEG in Figure 3.3 (shown
on page 36) that generated the data was found to be the MAP CEG, validating the

AHC algorithm in this instance.

6.1.2 Student exam data

I applied both of the learning algorithms of Chapter 3 — AHC and weighted MAX-
SAT — to a real dataset in order to test their efficacy in a real-life situation and
to identify remaining issues with their usage as well to make inferences about the
education system under investigation. The dataset I used was an appropriately
disguised set of marks taken over a 12-year period from four core modules of the
MORSE degree course taught at the University of Warwick. A part of the event tree
used as the underlying model for the first two modules is shown in Figure 6.2 (on
page 113) along with a few illustrative data points. This is a large enough example

to illustrate the richness of inference possible with CEG search.

6.1.3 AHC algorithm

For simplicity, the prior distributions on the candidate models and on the root-to-
leaf paths for the trivial CEG Cjy were both chosen to be uniform distributions, in
the latter case by again assuming «; = 1 for each root-to-leaf path ;.

An R program implementing the algorithm found that the MAP CEG model
was not Cj, i.e. that there were some non-trivial stages. In total, in fact, 170
situations were clustered into 32 stages. Some of the more interesting stages of this
model are described in Table 6.1.

From inspecting the membership of stages it is possible to identify various
situations which were discovered to share distributions. For example, students who

reach one of the two situations in stage 7 — specifically, the marks for the second
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Stage | Probability vector | Students | Situations | Locations | Comments
7 (0.47, 0.44, 0.08) 685 2 1;1,1,1 High achievers
11 (0.22, 0.43, 0.35) 412 6 3; 1,2; 3,1; | Middling stu-
1,1,3 dents
13 (0.33, 0.33, 0.33) 16 18 4:4,2: 4,3 | No  students
appeared  in
17 of these
situations
17 (0.07, 0.27, 0.66) 86 4 1,3;  3,2; | Struggling stu-
3,2,4 dents
27 (0.19, 0.56, 0.25) 464 7 1,1,4; More likely to
1,2,2; get grade 2
1,3,2; than stage 11
1,4,2
28 (0.11, 0.51, 0.38) 436 6 1,2,3; More likely to
3,1,3; get grade 3
1,2,4 than stage 27

Table 6.1: Selected stages of MAP CEG model found from data described in Sec-
tion 6.1.2 using AHC. The columns respectively detail the stage number, posterior
expectation of the probability vector of that stage (rounded to two decimal places),
number of students passing through that stage in the dataset, number of situations
from the original ET in that stage, examples of situations in that stage (shown as
sequence of achieved grades 1, 2 or 3, and where 4 means that the grade is missing),
and any comments or observations related to that stage.
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module after getting the highest grade in the first module or the marks for the
fourth module after getting the highest grade in the first three modules — have an
expected probability of 0.47 in getting a high mark, an expected probability of 0.44
of getting a middling grade, and an expected probability of only 0.08 of achieving
the lowest grade. From being in a stage of their own, it can be deduced that students
in these situations have qualitatively different prospects from students in any other
situations. In contrast, students who reach one of the four situations in stage 17
have an expected probability of 0.66 of getting the lowest grade. It is instructive that
the CEG search found that, by examining stage 17, students getting the top grade
in the first module but then only getting the lowest grade in the second module
perform identically in the third module to students who only got the lowest grade
in the first module and then got the middling grade for the second module.

It is also interesting to note that the 18 situations which had no or almost no
students in the data are clustered into one stage. In the absence of prior information
distinguishing the situations, I believe this is a positive feature of the algorithm.
First, it reduces the dimensionality of the problem relatively painlessly, making the
representation of the problem more parsimonious. Second, even if the clustering is
ultimately incorrect, due to the very small chance, a posteriori, that many students
will traverse these situations in a non-uniform way, the expected loss due to incorrect
predictions under any reasonable utility function will be minimal.

It is worth considering at this point how this data-set would traditionally be
analysed and contrast it with the method here. One common approach would be
to model the events — in this case students’ complete exam records — as Poisson-
distributed, and hence to use a log-linear model. This models the expected frequen-
cies in a multi-way contingency table using a generalised linear model with a log

link function.
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The trouble with automatically using a log-linear model or some other re-
gression model for such data is that the assumptions required for the analysis to
be valid are generally more restrictive than those for modelling them with a CEG.
For example, a log-linear model for Poisson distributed data requires that the con-
tribution to the expected (log) cell frequencies from the factors be linear. It also
doesn’t easily allow for the sort of complex dependence structures that were found
with the CEG search method. With the CEG learning approach one starts only
with the event tree and possibilities for situations to have equivalent probability
distributions, ensuring the results are more likely to be valid by not assuming too

much.

6.1.4 Weighted MAX-SAT

I also undertook a search for a MAP CEG for the data above using the weighted
MAX-SAT approach of Section 3.4 under the same assumptions. Due to computer
memory restrictions caused by requiring all stage scores to be calculated and stored
a priori — a problem discussed in Section 3.4 — it was necessary to restrict the
maximum stage size. I ran the algorithm with maximum stage sizes of 2 and 4.
With a maximum stage size of 2, the MAP CEG found had 143 stages, which
means there were 27 stages with 2 situations. As each stage’s weight was equal to
its contribution to the log-likelihood in this application, the sum of the weights was
equal to -1 multiplied by the log-likelihood of the CEG. The sum of the weights of
the MAP CEG after 10° steps was 3951.46, which means the likelihood of the CEG
was exp(—3951.46). As the log-likelihood of Cj is -3953.40, this indicates that the
MAP CEG from the set of CEGs with a maximum stage size of 2 barely fits the
data better than Cy. Setting the algorithm to search the set for longer (10° steps)
yielded only a CEG with log-likelihood of -3947.78. This indicates either that there
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is no CEG with maximum stage size of 2 for this dataset that fits the data much
better than Cjy, or that the algorithm is not able to find that CEG. Either way, this
reflects badly on this restriction.

With a maximum stage size of 4, the set of CEGs searched over is clearly
bigger than when the maximum stage size is restricted to 2, but the problem this
time is that the number of clauses grows super-exponentially. While the event tree,
with 170 situations — 85 each with two and three outgoing edges respectively —
requires 614,380 clauses in CNF form to describe the problem in weighted MAX-
SAT form when the maximum stage size is 2 [using the typology of Section 3.4,
these are made up of 170 hard clauses (of type 1) for each situation, 7310 weighted
clauses (of type 3) for the possible stages, and 170 x (825) = 606, 900 hard clauses
(of type 2) ensuring that stages that overlap cannot both be chosen], for the case
where the maximum number of situations per stage is limited to 4 the number
of possible stages is 204,850, the total number of clauses is 1,083,813,258 and the
text file containing them is 25GB. Attempting to run the algorithm therefore failed
because of memory constraints. Considering that the MAP CEG found with the
AHC algorithm contained stages with up to 18 situations, this strategy is clearly
not viable.

Some modifications of the usage of weighted MAX-SAT to find MAP CEGs,

including combining its usage with AHC, will be discussed in Chapter 7.

6.2 Prediction with dynamic CEGs

In this section I illustrate how to carry out one-step ahead predictions with dynamic
CEGs for the 12 years’ worth of exam marks used in the last section for two of the
undergraduate modules. The underlying event tree used was again that shown

in Figure 1.2, so that there are 10 situations, 5 with two edges each describing
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availability of marks and another 5 with three edges each for grades.

I made the following assumptions:

1. N¢(vp), the number of students every year, was known for all values of ¢

2. The distribution over the root-to-leaf paths at time ¢ = 1 under C7; = S was

Dirichlet with all path hyperparameters equal to 1 a priori

3. For the transitions between stagings I used the £ metric with e = 1, i.e. only
transitions between models that require at most one split or merge were con-

sidered possible.

I present here the posterior probabilities P(C; | x') for the stagings after
t = 1 for each time t for different modelling values of the hyperparameters k (the
steady model parameter), p (the probability of the underlying model not changing)
and ¢ (the Occam’s window threshold), when analysed with and without an external
intervention. In a full analysis this application could be run over a distribution of
the hyperparameters, perhaps after taking account of an elicited prior over their
possible values. However, to illustrate the efficacy of the methods rather than learn
these hyperparameters it is better to hold them fixed so that there is better focus
on the impact of various structured assumptions that can be learnt about. Also, I
consider p and ¢ in particular to be tuning parameters which determine the desired
trade-off between the speed and accuracy of the algorithm as well as reflecting real

beliefs about the underlying process.

6.2.1 Analysis of the series without intervention

In Table 6.2 I present P(Cy | ') for t = 1...12 for the model where C; = {v1, vo,
{vs,..., v}, {v7,...,v10}} with probability 1 and & = 0.9, p = 0.9 and ¢ = 0.2.

The latter two parameter values ensure that few new models will be kept in the
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Time Ct P(Ct ‘ l‘t)

1 1,2, {3,456}, {7.8,9,10} 1
1,2, 3, {4,5,6}, {7,8,9,10} 0.824
1,2, {3,4,5,6}, {7,9,10}, 8 0.175
3 1,2, 3, {456}, {7,8,9,10} 0.766
1,2, 3, {456}, {7,10}, {8,9} | 0.233
1 1,2, 3, {4,5,6}, {7,8,9,10} 0.677

1,2, 3, {4,5,6}, {7,10}, {8,9} | 0.322
5 1,2, 3, {456}, {7,8,9,10} 0.328
1,2, 3, {456}, {7,10}, {8,9} | 0.671
6 | 1,2 3 {456}, {7,10}, {3,9} 1

7 [1,2 3, {456}, {7,10}, {89} | 0.609
1,2,3, {456}, {7,10},8,9 | 0.390
8 | 1,2, 3, {456}, {7,10}, {8,9} | 0.304
1,2, 3, {4,5,6}, {7,10},8,9 | 0.695

9 | 1,2 3, {456}, {7,10}, 8, 9 1
10 | 1,2, 3, {456}, {7,10}, 8, 9 1
11 | 1,2, 3, {456}, {7,10}, 8, 9 1
12 | 1,2, 3, {456}, {7,10}, 8, 9 1

Table 6.2: All possible stagings and their posterior probabilities at each time t for
kE=0.9,p=0.9, ¢=0.2 with P(Cy = {v1, v, {v3,..., 06}, {v7,...,v10}}) =1

analysis, as the high value of p gives a low prior probability on transitions between
stagings and the high value of ¢ makes the Occam’s window set of equation (5.40)
small. This speeds up the computation of the forecasts at the expense of possibly
worse predictions through fewer stagings being included in the model averaging.
An alternative way of presenting this information is to plot how P;(v;,v; €

u | '), the a posteriori probability that situations v;, v; are in the same stage u at

time ¢, changes over time. This can be calculated from

Pi(vi,vj €ula’) =) P(C,=C|a")(Fue C:v,v; € u) (6.1)
ceC

Figure 6.3 shows this for the information in Table 6.2.

It can be seen very clearly from Figure 6.3 that most situations by time
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t = 6 are either totally independent of one another or certainly in the same stage.
The stages that remain by that time that are not composed of one situation are
{v4,v5,v6} which are the situations concerning the availability or missingness of
grades for the second module after getting a top, middling or bottom grade re-
spectively in the first module; and {v7,v10}, which are the situations for the florets
describing the grades gained in the second module after either getting a grade 3 or
not having a grade at all in the first module. The former stage indicates that whether
a mark is available for the second module is independent of the grade achieved in the
first one, assuming that is itself not missing; the second stage says that the grade
gained in the second module is independent of whether the student did poorly in, or
just has a mark missing for, the first module. Both of these inferences would have
been impossible to achieve with a Bayesian network search of the same probability
model: the first one demands an asymmetric sample space (because if there is no
mark available then it cannot be described), while the second is a context-specific
conditional independence.

The above analysis is “quick and dirty”, in that very clear signals were gained
from the dynamic model quickly. To illustrate how the level of detail in the CEG
distribution changes as a function of the modelling hyperparameters, allowing more
subtle analyses, I ran the algorithm again with radically different values: 1 set
k = 0.5 (so that floret distributions are flattened more quickly and therefore past
observations more heavily discounted, allowing the data to “speak for itself” more),
p = 0.25 (so that the probability of moving between stagings is more likely), and
g = 0.05 (so that stagings with poorer Bayes factors relative to the most likely
are nonetheless kept in the analysis) with the initial degenerate staging distribution
P(Cy = {v1, va, {v3,...,v6}, {vr,...,v10}}) = 1 still assumed for consistency. The

resulting matrix plot of probabilities of situations being in the same stage against
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time is as shown in Figure 6.4.

It can be seen from the latter figure that the analysis with the new hyperpa-
rameter values gives much the same qualitative description of the system as the more
conservative hyperparameters at greater computational expense, with the pay-off of
greater detail.

Some interesting characteristics of the system can be discerned from this
analysis. With regard to the situations concerning the missingness of marks, 6(vs3)
— the probability distribution for the second module’s marks being available given
that the mark in the first module is itself missing — retains the appearance of
being unrelated to the floret distributions at any time point. Until £ = 7 or so
the situations v4, vs and vg, whose state spaces represent the missingness of marks
for the second module after respectively gaining a high, medium or low mark in
the first module, had initially high but then gradually falling probabilities of being
in the same stage, implying that independence of the missingness of the second
module’s marks from the marks gained in the first module kept decreasing. At
t = 8, in contrast, these probabilities become much lower, although the probability
distributions of marks being missing after gaining a medium or low mark in the
first module are deemed to become slightly more likely to be the same after that,
with students performing well in the first module continuing to have a very different
probability distribution for the missingness of their second module marks. This
more subtle analysis was not captured by the more conservative analysis earlier
which claimed these situations were simply in the same stage with probability 1
throughout the process. I investigate a possible causal hypothesis that might explain
what might have changed at t = 8 in the next section.

Another notable finding is that v7 and v1g — the situations concerning marks

gained in the second module after getting a poor grade or having a missing mark
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in the first module, respectively — are always strongly related, just as in the first
analysis. It therefore appears that the second module marks of students who did
poorly in the first module should be used to predict the second module performance
of students whose first module marks are missing.

It is worth noting again that these detailed homogeneities within the sys-
tem would not have been as easily identifiable if the model class was restricted to

Bayesian networks.

6.2.2 Analysis of the series after intervention

I also carried out an analysis with the latter modelling hyperparameters after a
hypothesised causal intervention: I assumed that at ¢ = 8 the situations for the
grades {vg, vy, vs, vg, v19} were put into the same stage. This could have happened,
for example, because the modules were believed to re-defined to be very similar in
difficulty for students with different skills. The resulting matrix of probabilities of
situations being in the same stage through time is shown in Figure 6.5.

It can be seen that the probabilities are not too different from those in Figure
6.4, but there are increased probabilities of vg, vg and v1g being in the same stage
even for ¢t > 8, which indicates slightly higher probabilities of dependence between
the second module’s grades for students who performed differently in the first module
under the causal hypothesis considered here.

It is worth noting again the ease with which this causal hypothesis or any
other one implemented on the structure or the staging is implemented in the pre-

diction algorithm.

111



41 Fp 4 FrB
/ ’ 25 1

Fi 4
67 PrAa—35—>PRrB
108 91 _I2m 7 D> r B
261
A/’Pl,A_}S%_)PZ,B
58 D
131
F:
500 /2 20
D1,A§P23
v 99 Da.p
40 Frp 23 Fara
Fl,B /
Pr p—33— P
500 60 Pr.B 2R, A
100 26 _F2.a 4 Do r A
251
B/rp1,B—1-7'5—>P2,A
50 Do
159
I3

} |
D p—48—P; 4
108 "Dy 4

Figure 6.1: The event tree from Example 1 with the numbers representing the
number of students in a simulated sample who reached each situation.
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Figure 6.2: Sub-tree of the event tree of possible grades for the MORSE degree
course at the University of Warwick. Each floret of two edges describes whether a
student’s marks are available for a particular module (denoted by the edge labelled
A for the first module) or whether they are missing (NA). If they are available,
then they are counted as grade 1 if are 70% or higher, grade 2 if they are between
50% and 69% inclusive, and grade 3 if they are below 50%. Some illustrative count
data are shown on corresponding nodes.
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Figure 6.3: Plots of probabilities that each pair of situations are in the same stage
for different values of ¢, for the case when k = 0.9, p = 0.9, ¢ = 0.2 with P(C; = {vy,
vg, {vs,...,v6}, {vr,...,v10}}) = 1, using the values in Table 6.2
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Figure 6.4: Plots of probabilities that each pair of situations are in the same stage for
different values of ¢, for the case when k = 0.5, p = 0.25, ¢ = 0.05 with P(C; = {v1,
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Figure 6.5: Plots of probabilities that each pair of situations are in the same stage for
different values of ¢, for the case when k = 0.5, p = 0.25, ¢ = 0.05 with P(C; = {v1,
vy, {v3,...,v6}, {vr,...,v10}}) = 1, and situations vy, v7, vg, vg, V19 caused to be in
the same stage at t = 8
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Chapter 7

Discussion

In this thesis I have shown that chain event graphs are not just an efficient way of
storing the information contained in an event tree, but also a natural way to rep-
resent the information that is most easily elicited from a domain expert: the order
in which events happen, the distributions of variables conditional on the process up
to the point they are reached, and prior beliefs about the relative homogeneity or
symmetry of different situations. This strength is exploited when the MAP CEG is
discovered, as this can be used in a qualitative fashion to detect homogeneity be-
tween seemingly disparate situations, or when predictions need to be made, allowing
flexible and robust specification of the system structure. The range of possible ap-
plications goes beyond the educational one, with forensic, biological and medical
systems seeming particularly suitable with their asymmetric processes and complex
independence structures.

One difficulty with model selection over CEGs is simply the expressiveness
and hence relative size of the model space, which means that to be feasible for even
larger problems one needs to add more contextual information to limit the size of

the space. This is particularly the case if the underlying tree is allowed to em-
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body different orders for when situations happen as described in the last paragraph.
One possible method is to use search for a MAP BN as a coarse initialisation step
and then, taking a CEG consistent with its conditional independences, refine the
search using methods described here. In other contexts, it is worth remembering
that to allow all possible combinations of florets into stages, as done here, would be
implausible. When this is the case, the search algorithm can accommodate this in-
formation easily and therefore be carried out faster; for example, it might be decided
that only situations the same distance away from the root node could be combined,
which would make sense if the underlying even tree is drawn in a hierarchical man-
ner, with the same system variables being represented in the same order along all
root-to-leaf paths of the tree.

It was found in Chapter 6 that even in moderately-sized problems that
weighted MAX-SAT can quickly become intractable, even with restrictions on the
maximum size a stage can take, due to needing to calculate every stage score before-
hand. AHC, on the other hand, while fast, might not explore the space as well as
an algorithm to solve weighted MAX-SAT can. An algorithm that combines AHC
and weighted MAX-SAT might thus be worth investigating. One possible approach
to investigate, used successfully to search over partitions in [Liverani et al., 2010],

is as follows:
1. Use AHC initially to reduce the number of stages to a manageable number

2. For each stage of the staging found with AHC, run the weighted MAX-SAT
algorithm to find the optimal partition of that stage. Replace each stage with

its optimal partition.

3. If nothing changed after the weighted MAX-SAT step, stop. Otherwise run

AHC on the new partition, and repeat until the staging is stable.
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This hybrid algorithm exploits the speed of AHC with the thoroughness of weighted
MAX-SAT.

Another algorithm which has recently emerged for learning BNs uses INTE-
GER LINEAR PROGRAMMING [Cussens, 2010]. This involves restating the search for
a MAP CEG as a problem in propositional logic just as with weighted MAX-SAT.

The conditions for being to apply it here are

1. that the score of each CEG is a linear function of its stages, which is the case

here;

2. that the constraints for a staging to be valid (i.e. that it be a partition of the
situations) also be linear in terms of the stages chosen, whether as equalities

or inequalities.

If this second condition holds — and this must be investigated — then an algorithm
called an IP SOLVER can be used to solve the formulated integer programming
problem.

There are a number of extensions to the theory in this thesis that look worthy
of pursuit. One important modelling extension arises from uncertainty about the
underlying event tree. With each different event tree of the same event space,
different factorisations and conditional independence statements can be learnt from
the data. A similar model search algorithm to the one described in this thesis is
possible in this case after setting a prior distribution on the candidate event trees. In
many potential applications it would be desirable to allow for multiple possible trees
at any time point. Sometimes all that is required is the subclass of T' — the general
class of event trees — that consists of trees that are merely different partitions of
the same fixed set of root-to-leaf path events. In that case, assuming that the same
root-to-leaf path events on different trees have the same probability implies that

the floret distributions on all trees can be characterised as Dirichlet by the methods
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used here, with the parameters for each possible CEG characterised similarly. The
method of assigning probabilities over the tree space, or how those probabilities
change over time, would still need to be resolved. If a bigger subset of T' is required
due to uncertainty about the nature of the event space, then P(x; | '~!) can still
be calculated as outlined here but with the additional step of marginalising over the
T € T such that P(T | 2'~1) > 0, assuming the number of such T is tractable.

In this thesis it was assumed that it was always known that the edges that
were coloured the same in florets deemed to be in the same stage were those of equal
value. Another way of enlarging the model space is therefore to allow for uncertainty
in the function 1y, (v,v") which determines which edges are coloured identically. This
would allow symmetries to emerge beyond simple conditional independence. One
type of hypothesis this could capture is stability between values of different random
variables. For example, consider the event tree of Figure 3.2. Stability would be
described by colouring edges (v1,v3) and (vg, vg) identically, so that the probabilities
P(B=0|A=0)and P(B=1| A=1) are equal. Stability is therefore a kind
of independence, as |B — A| 1L A. This example is called a NOISY OR GATE in
computer science, and is another kind of structure that cannot be easily represented
with the structure of a BN.

In the educational examples described in this thesis the assumption of sta-
bility would translate into believing that the probability of getting the same grade
in two different modules is the same for all possible grades, i.e. that students who
perform poorly in one module will continue to perform poorly in the next module
with approximately the same proportion as that of students who do well in the
second module after doing well in the first one.

It must be noted that the number of possible 1, (v,v’) for any pair of situa-

tions v,v" € S is [X(v)|!. Therefore to make the model search tractable in general
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either the number of possibilities must be restricted using contextual information,
or a local neighbourhood switching function, like the one used in this thesis, could
incorporate this feature too.

One other possible enhancement is to allow for more complex relationships
between floret distributions. At the moment they must either be identical or in-
dependent. However, many applications have non-homogeneous samples. One ap-
proach which keeps the strengths of the CEG models is to analyse relevant sub-
populations on separate trees, perhaps with dependence modelling of floret parame-
ters of different sub-population trees but keeping the CEG framework within trees.
Indeed, the dynamic CEG here can be a seen as an analysis of this sort, with dif-
ferent stagings for different cohorts and a specification of the relationship between
adjacent years’ parameters.

One aspect of the CEG that is worth noting is its ignoring of the time it takes
for events to occur by modelling only which events occur. In applications like the
educational one, where the time of the events is predetermined, or where the time to
an event is not relevant to the probability of it occurring — as with constant hazard
function models — this does not matter. For other systems, however, the times at
which events occur are an extremely important part of the underlying process, and is
the type of domain where event history analysis has been applied. The incorporation
of non-constant hazard functions into CEGs is thus worth investigating, perhaps
through “transport times” as used with flow networks.

Finally, it appears that the static and dynamic CEGs could be extended to
model processes defined on continuous as well as discrete variables. Converting the
leaf nodes on a tree into continuous sample spaces is trivial as upstream nodes are
unaffected. When other variables are continuous then analogous conjugate models

can be defined which describe hierarchical clustering models, discretising continu-

121



ous variables intelligently. This is quite analogous to the relationship between the
Dirichlet distribution and the Dirichlet process, and certainly merits further inves-

tigation.
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Appendix A

Exam marks

Below I present the raw data used in Chapter 6.1, with grades for different yearly
cohorts presented separately. For the dynamic analysis of Section 6.2, only the first
two modules were used, while for the static case in Section 6.1 years were obviously

ignored. A blank space means the grade is not available.

1994 cohort

ID ST108grade IB104grade ST213grade IB207grade

33 2 2

34 3 2
46 1 1 2 1
61 3 2 2 1
7 3 2 3 2
78 1 2

80 1 2 3 2
81 2 1 1 1
89 2 2 3 2
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106
126
207
232
233
234
248
260
261
287
315
403
413
420
421
439
440
443
448
456
457
463
464
465
477
485
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486
496
497
503
511
925
611
676
677
678
683
684
700
701
702
712
721
833
880
881
886
887
890
893
897
911
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912 3 3
946 1 2 2 2

1995 cohort

ID ST108grade IB104grade ST213grade IB207grade

17 1 1 2 1
23 2 2 3 1
25 3 2 3 3
49 1 1 3 1
50 2 2 1 1
51 2 2 3 1
60 1 1 2 1
74 2 2 3 2

112 1 2 2 2

212 1 2 2 1

221 1 1

222 1 2 1 1

244 3 3 3 3

245 1

270 3 3

271 2

282 2 2 3 1

291 1 1 1 2

310 1 1 3 1
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319
401
402
416
436
437
450
479
480
495
510
530
617
621
633
634
635
699
711
714
730
734
742
829
837
846
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852

855 1 2 2 1
864 2 2 3 3
883 2 2 2 2
892 2 3 3 3
895 1 1 3 3
904 2 2 2 2
909 2 3 3 2
919 2 2 3 3
920 3 1 2 2
925 1 2 2 2
941 2 2 3 2
957 1 1 2 1
1996 cohort
ID ST108grade IB104grade ST213grade IB207grade
14 1 2 1 2
30 1 2 2 1
31
42 1 1 2 2
48 1 1 1 2
66 1 2 1 1
72 2 3 3
104 2 1 2 2
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194
195
220
236
241
250
252
256
262
269
303
304
406
407
408
411
412
419
434
435
460
492
498
500
512
615
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627
651
652
653
659
665
670
674
680
719
739
741
832
845
848
858
903
917
924
943
962

1997 cohort
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ID ST108grade IB104grade ST213grade IB207grade

6 2 2 3 3
10 1 2 1
13 2 2 3 2
15 2 1 2 3
22 2 2 2 3
41 1 1 1 2
68 1 1
73 1 2 1 3
76 1 1 2 1
86 1 2 2 3
87 1 1 1 1
93 2 2 2 2
110 1 1 1 2
111 2 1 2 1
114 1 2 1 2
121
210 1 2 1 2
216 2 2 3 3
219 1 2 1 3
246 1 1 1 1
273 1 2 3 3
277 3 2 2 2
298 2 1 3 3
299 2 2 2 2
318 3 2 2 3
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446
455
481
502
509
637
643
648
649
654
661
662
664
682
690
691
718
722
744
746
825
836
847
850
857
865
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871 3 3
872
901 2 3 3 3
902 2 2 3 2
928 2 2 2 1
929 1 2 2 3
936 1 1 2 2
949 2 1 3 3
955 1 2 2 2
960 2 1 3 2
1998 cohort
ID ST108grade IBl104grade ST213grade IB207grade
4 2 1 3 2
8 3 3
9 3
21 1 2 2 3
35 1 2 2 2
36 2 2
37 3
47 2 2 3 3
57 2 1 2 2
62 3 2 3 3
65 2 1 3 3
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96

97
109
113
208
209
227
235
238
249
251
275
280
296
297
307
404
422
423
442
449
491
514
529
612
613
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620
629
636
646
647
685
689
707
708
717
733
736
827
831
834
835
853
854
856
867
874
875
888
891
910
914
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915 1 1 2 1
930 1 1 1 1
953 1 2 3 2

1999 cohort

ID ST108grade IB104grade ST213grade IB207grade

24 2 3 3 3
55 1 1 1 1
70 2 2 3 3
175 2 1 3 2
198 3 3
199 2 1
228 2 2 3 2
279 2 2 3 3
283 2 2
284 3 3
335 2 2 3 2
357 2 2 3 2
358 3 2
360 3 2
382 3 1
383 2 2
417 1 2
426 1 1
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427
472
478
489
493
548
549
553
558
561
562
568
LY
587
588
591
609
610
618
619
655
671
675
681
697
710
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723
724
727
728
737
738
748
779
791
804
811
812
816
840
841
842
866
927
969
970
978
986
987
994
999
1000
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1006 1 1 3 2
1019 1 2 2 2
1029 1 1 2 2

2000 cohort

ID ST108grade IB104grade ST213grade IB207grade

119 1 1 1 1
125 1 1 2 2
135 1 1 1 1
138 1 3 3 3
151 1 2 1 2
154 2 3 3 3
156 1 3 3 3
167 1 1 1 1
170 1 2 1 2
186 2 3 3 3
188 2 3

196 1 2 2 2
197 1 2 1 3
223 2 3 3 3
224 1 2 1 1
225 1 3 2 3
231 1 2 2 2
288 1 2 1 2
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308
331
332
336
338
343
363
379
380
398
400
430
444
447
452
467
501
504
516
539
551
557
071
623
645
660
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668
687
694
715
726
750
753
765
771
781
802
803
808
824
839
868
938
942
945
952
966
972
979
988
991
1027
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1036 1 2 1 2

2001 cohort

ID ST108grade 1IB104grade ST213grade IB207grade

12 1 2 2 2
26 1 1 3 1
32 1 1 1 2
38 1 1 1 1
23 2 2 2 3
79 2 2 3 3
92 1 1 2 1
115 1 1 2 2
117 1 1 2 1
137 2 2 2 2
144 1 2 2 1
147 1 1 1 2
158 1 1 2 1
162 1 2 3 3
164 2 2 3 3
173 1 2 2 2
176 1 2 3 3
180 1 2 3 3
213 1 2 3 3
230 1 2 2 2
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254
257
263
276
321
322
324
341
362
366
370
384
385
388
389
410
414
433
445
474
484
507
517
519
520
521
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535
544
564
583
584
993
607
608
622
624
640
669
679
703
706
740
745
747
761
764
774
775
789
793
795
799
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800 2 2 3 2
805 1 2 2 2
810 1 2 2 2
813 1 2 3 2
843 2 1 1 2
863 1 2 2 2
873 2 1 3 3
884 1 2 2 2
894 2 1 1 1
905 1 2 2 2
921 1 1 3 3
922 1 2 3 2
947 1 2 3 2
975 1 2 3 3
984 1 2 2 2
2002 cohort
ID ST108grade IB104grade ST213grade IB207grade
2 1 1 3 2
1 1 2 3 3
28 3 3
45 1 2 1 2
54 1 1 1 2
56 2 2 2 3
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82

84

94

98
100
101
118
120
152
174
179
189
191
202
204
226
237
239
247
278
281
286
292
293
294
295

146

w W W



329
330
349
361
374
386
387
390
394
424
425
428
451
459
468
473
523
524
528
582
586
592
594
601
602
631

147

w W W



642
644
672
693
704
709
757
758
759
769
784
785
798
818
822
826
828
859
878
889
926
950
959
964
976
982

148



990 1 2 3 3

993 1 1 1 1

995

996 2 2

997 1 2 1 2

998 1 2 3 1
1002 1 2 2 2
1005 2 2 3 2
1022 1 1 1 2
1024 1 2 2 2
1028 1 2 2 1
1030 1 2 2 2
1031 1 2 3 2
1032 1 2 3 1

2003 cohort

ID ST108grade IB104grade ST213grade IB207grade

5 1 1 2 2
18 2 2 2 2
83 1 1 3 2
90 1 2 3 3
91 2 2 3 3

102 2 2 3 2
103

149



123
124
131
133
139
140
149
150
155
161
163
165
166
181
184
203
229
240
243
258
259
268
301
302
311
316

150

W W W w W w



317
327
328
339
340
342
365
367
399
415
418
429
431
453
461
462
476
482
494
513
515
518
526
531
534
536

151



550
554
559
563
565
972
580
585
590
595
597
600
604
605
616
641
658
667
713
720
731
732
754
756
760
766

152

NWwWw W W



767
776
T
782
783
801
807
814
815
820
821
849
869
870
933
935
939
940
956
963
973
974
989
1003
1004
1007

153

NWw W W

w W w



1013 3 3 3 3
1015 1 1 3 2
1035 2 2 3 3

2004 cohort

ID ST108grade IB104grade ST213grade IB207grade

1 1 1 3 2
3 1 2 3 2
19 1 1 3 1
20 2 2 3 2
39
40 2 2 3 2
43 1 2 2 2
44 1 3 1 1
58 3 3
59 2 3
69 1 3 3 2
88 1 2 2 1
105 1 2 3 2
108 2 2 3 2
122 2 2 3 2
127 1 2 3 2
129 3 2 3 2
132 1 1 2 1
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136
142
148
157
160
168
169
177
178
185
190
193
200
201
206
211
217
242
255
264
266
267
272
285
306
309

155



312
313
320
323
325
326
333
334
344
345
347
350
351
352
355
356
359
368
369
372
376
377
381
392
393
395

156

w W w



397
438
441
458
469
470
471
487
488
490
506
532
533
540
541
543
552
556
569
576
581
589
596
598
599
614

157

w W W



625
626
630
638
656
657
666
692
698
705
735
763
773
778
786
796
806
817
860
861
862
877
882
898
899
906

158

w W W



907 3 2

908 2 1
913 1 2 2 2
918 1 2 2 2
932 1 1 1 1
934 2 2 3 2
951 1 1 1 1
965 2 2 3 2
977 1 1 3 2
981 1 2 1 2
983 1 1 2 1
992 1 2 3 3
1001 1 1 1 1
1009 2 3 3 2
1010 2 1 3 1
1016 2 3
1017
1021 1 1 1 1
1034 1 2 3 3

2005 cohort

ID ST108grade IB104grade ST213grade IB207grade

7 1 2
16 1 2

159



27
29
52
63
64
67
71
72
85
95
99
107
116
128
130
134
141
143
145
146
153
159
171
172
182
183

160



187
192
205
215
218
265
274
289
290
300
305
314
337
346
348
353
354
364
371
373
375
378
391
396
405
409

161



432
454
466
475
483
499
505
508
522
527
537
538
542
545
546
547
559
560
566
567
570
573
074
575
578
579

162



603
606
628
632
639
650
673
686
695
696
716
725
729
743
749
751
752
755
762
768
772
780
787
788
790
792

163



794 1 1

797 2 1
809 1 1
819 1 1
823 2 1
830 1 1
844 1 2
851 1 1
876 1 2
885 3 1
896 2 3
900 1 1
916 1 1
923

931 1 1
937 1 1
948 1 1
954 3 2
958 1 1
961 1 1
967 2 2
968 1 1
971 2 3
980 2 1
985 1 1
1008 1 2
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1011 2 1

1012 1 1
1014 1 3
1018 1 1
1020 1 1
1023 1 1
1025 1 1
1026 1 1
1033 1 1

No year available

ID ST108grade 1IB104grade ST213grade IB207grade

214

253 3 1
663 3 3
688 1 1
770 2 3
838 3 3
879

944 3 3
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