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Abstract

Graphical models provide a very promising avenue for making sense of large,
complex datasets. The most popular graphical models in use at the moment are
Bayesian networks (BNs). This thesis shows, however, they are not always ideal fac-
torisations of a system. Instead, I advocate for the use of a relatively new graphical
model, the chain event graph (CEG), that is based on event trees.

Event trees directly represent graphically the event space of a system. Chain
event graphs reduce their potentially huge dimensionality by taking into account
identical probability distributions on some of the event tree’s subtrees, with the
added benefits of showing the conditional independence relationships of the system
— one of the advantages of the Bayesian network representation that event trees
lack — and implementation of causal hypotheses that is just as easy, and arguably
more natural, than is the case with Bayesian networks, with a larger domain of
implementation using purely graphical means.

The trade-off for this greater expressive power, however, is that model spec-
ification and selection are much more difficult to undertake with the larger set of
possible models for a given set of variables. My thesis is the first exposition of how
to learn CEGs. I demonstrate that not only is conjugate (and hence quick) learning
of CEGs possible, but I characterise priors that imply conjugate updating based
on very reasonable assumptions that also have direct Bayesian network analogues.
By re-casting CEGs as partition models, I show how established partition learning
algorithms can be adapted for the task of learning CEGs.

I then develop a robust yet flexible prediction machine based on CEGs for
any discrete multivariate time series — the dynamic CEG model — which combines
the power of CEGs, multi-process and steady modelling, lattice theory and Occam’s
razor. This is also an exact method that produces reliable predictions without
requiring much a priori modelling. I then demonstrate how easily causal analysis
can be implemented with this model class that can express a wide variety of causal
hypotheses. I end with an application of these techniques to real educational data,
drawing inferences that would not have been possible simply using BNs.

xi



Chapter 1

Introduction

Very large datasets are becoming ever more common, with the ability to make sense

of them becoming a major problem [Lohr, 2009]. If one uses overly simplistic models

to analyse them, there is a risk of jumping to incorrect conclusions; if the models

are too complex, they can at best take a very long time to compute, and at worst

be opaque black boxes that have no explanatory power, cannot be quality-assured

and are extremely sensitive in unpredictable ways to hyper-parameter inputs.

Graphical models provide an attractive middle way [Lauritzen, 1996]. Be-

cause of their pictorial form, graphs are excellent tools for eliciting expert opinion

about a system and are transparent and communicable; because of their highly

structured modular form, they can easily be operationalised for computation.

Bayesian networks (BNs) are currently one of the most widely used graphi-

cal models for representing and analysing multivariate distributions, with their ex-

plicit coding of conditional independence relationships between a system’s variables

[Cowell et al., 1999; Lauritzen, 1996], which is often the major knowledge domain of

experts and an effective way to reduce dimensionality of a problem at a high level.

However, despite their power and usefulness, it has long been known that BNs
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cannot fully or efficiently represent certain common scenarios [Smith et al., 1993].

These include situations where the state space of a variable is known to depend on

other variables, or where the conditional independence between variables is itself de-

pendent on the values of other variables, called context-specific independence

in the literature [Boutilier et al., 1996]. In order to overcome such deficiencies,

enhancements have been proposed to the canonical Bayesian network. Poole and

Zhang [2003], for example, define contextual belief networks. These, however,

don’t represent the context-specific independence relationships graphically, thus un-

dermining the rationale for using a graphical model in the first place. Boutilier et al.

[1996], meanwhile, keep the BN in place but additionally uses trees to describe the

structures of the conditional probability distributions.

A new graphical model — the Chain Event Graph (CEG), first propounded

by Smith and Anderson [2008] — aims to represent the context-specific indepen-

dences and asymmetric sample spaces of a model explicitly and in a single graph.

To this end, CEGs are based not on Bayesian networks, but on event trees (ETs)

[Shafer, 1996]. Event trees are trees where nodes represent situations — i.e. scenar-

ios in which a unit might find itself — and each node’s extending edges represent

possible future situations that can develop from the current one. It follows that

every atom of the event space is encoded by exactly one root-to-leaf path. ETs

are expressive frameworks for directly and accurately representing beliefs about a

process, particularly when the model is described most naturally through how situ-

ations might unfold [Shafer, 1996]. However, as explained by Smith and Anderson

[2008], ETs can contain excessive redundancy in their structure, with subtrees de-

scribing probabilistically isomorphic unfoldings of situations being represented sep-

arately. They are also unable to explicitly express a model’s non-trivial conditional

independence relationships. The CEG deals with these shortcomings by combin-
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ing the subtrees that describe identical subprocesses so that the CEG derived from

a particular ET has a simpler topology while in turn expressing more conditional

independence statements than is possible through an ET.

Consider the following example, which exemplifies the types of hypotheses I

plan to search over in my model selection.

Example 1. Successful students on a one year course study components A and B,

but not everyone will study the components in the same order: each student will

be allocated to study either module A or B for the first 6 months and then the

other component for the final 6 months. After the first 6 months each student will be

examined on their allocated module and be awarded a distinction (denoted with D), a

pass (P ) or a fail (F ), with an automatic opportunity to resit the module in the latter

case. If they resit then they can pass and be allowed to proceed to the other component

of their course, or fail again and be permanently withdrawn from the programme.

Students who have succeeded in proceeding to the second module can again either

fail, pass or be awarded a distinction. On this second round, however, there is no

possibility of resitting if the component is failed. With an obvious extension of the

labelling, this system can be depicted by the event tree given in Figure 1.1.

To specify a full probability distribution for this model it is sufficient to only

specify the distributions associated with the unfolding of each situation a student

might reach. However, in many applications such as this one it is often natural to

hypothesise a model where the distribution associated with the unfolding from one

situation is assumed identical to another. Situations that are thus hypothesised to

have the same transition probabilities to their children are said to be in the same

stage. Thus in Example 1 suppose that as well as subscribing to the ET of Figure

1.1 one would want to consider the plausibility of the following three hypotheses:

1. The chances of doing well in the second component are the same whether the

3



Figure 1.1: Event tree of a student’s potential progress through a hypothetical
course described in Example 1. Each non-leaf node represents a juncture at which a
random event will take place, with the selection of possible outcomes represented by
the edges emanating from that node. Each edge distribution is defined conditional
on the path passed through earlier in the tree to reach the specific node.
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student passed the first module the first time or after a resit.

2. The components A and B are equally hard.

3. The distribution of marks for the second component is unaffected by whether

students passed or got a distinction for the first component.

Each of these hypotheses can be identified with a partitioning of the non-leaf

nodes (situations). In Figure 1.1 the set of situations is

S = {V0, A,B, P1,A, P1,B, D1,A, D1,B, F1,A, F1,B, PR,A, PR,B}.

The partition C of S that encodes the above three hypotheses consists of the stages

u1 = {A,B}, u2 = {F1,A, F1,B}, and u3 = {P1,A, P1,B, PR,A, PR,B, D1,A, D1,B} to-

gether with the singleton u0 = {V0}. Thus the second stage u2, for example, implies

that the probabilities on the edges (F1,B, FR,B) and (F1,A, FR,A) are equal, as are

the probabilities on (F1,B, PR,B) and (F1,A, PR,A). Clearly the joint probability dis-

tribution of the model – whose atoms are the root to leaf paths of the tree – is

determined by the conditional probabilities associated with the stages. A CEG is

the graph that is constructed to encode a model that can be specified through an

event tree combined with a partitioning of its situations into stages.

In the first part of this thesis I suppose that we are in a context similar

to that of Example 1, where, for any possible model, with a selection of these

types of hypotheses, the sample space of the problem must be consistent with a

single event tree. On the basis of a sample of students’ records we would want to

select one of a number of these different possible CEG models, i.e. we want to find

the “best” partitioning of the situations into stages. I take a Bayesian approach

to this problem and choose the model with the highest posterior probability —

the Maximum A Posteriori (MAP) model. This is the simplest and possibly most
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common Bayesian model selection method, advocated by, for example, Bernardo

and Smith [1994], Denison et al. [2002], Heckerman [1999] and Castelo [2002], the

latter two specifically for models that are Bayesian networks. Because the range of

possible CEG models for any system exceeds the set of possible BN models, however,

and encode information differently from them, the algorithms for searching for MAP

BNs must be adapted accordingly. In Section 6.1.1 I show how to learn a CEG from

the tree in Example 1 using simulated data and the algorithm developed in Section

3.3.

My aim throughout this thesis is to ensure all calculations, at least with com-

plete sampling, are exact, i.e. there is no need for approximate numerical techniques

such as MCMC. While MCMC has vastly widened the vista of possible Bayesian

analyses, it can sometimes be used as a crutch when a faster, wholly adequate exact

analysis would be possible with a slight adjustment of the model. When it comes

to very large datasets with a commensurately very large set of possible models,

conjugate analyses can vastly speed up searches across the model space. MCMC

is extremely useful for estimating parameters of models once the most appropriate

choice of model has been identified, if necessary.

In the second half of the thesis I develop a class of dynamic multivariate

graphical models over finite discrete state spaces based on CEGs for the purposes of

prediction, where at each time point the relevant cohort of units data is represented

by a different CEG. Highly multivariate discrete processes are quite common but to

my knowledge have so far not been systematically studied with graphical models.

These processes in the most general case tend to have the following characteristics:

1. A description is provided of the possible development histories each unit in the

process can take at a given time. These histories could be radically different

from one another in terms of length of development, the variables encountered,
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the state spaces of each stage of development, and so on, but the range of

possibilities remains fixed.

2. There are various symmetry hypotheses for a given population of units con-

cerning which situations in the histories have the same distributions over their

immediate developments.

3. The units arrive in discrete time cohorts, assumed here for simplicity to be

equally spaced apart. The symmetries in the system are allowed to change

from one time point to the next to reflect a changing environment.

4. The system may, at various times, be subject to local interventions, i.e. one of

its variables is manipulated exogenously. The model then admits a “causal”

extension which provides predictions of the process when subject to such a

control.

I am particularly interested in making good one-step ahead predictions for

such a system. I consider making good (probabilistic) predictions (or forecasts) to

be the central goal of statistical analysis, as argued by de Finetti [1974] and Dawid

[1984]. This approach will also provide, as a beneficial side-effect, the probabilities

of the symmetry hypotheses through time, which can be used as an explanatory

tool.

One example of a system that fits the criteria above is a programme of study

provided by an educational establishment which monitors students’ marks over time.

The general points above then translate into the following specific issues:

1. The modules of the course are always taken in a particular order (or consistent

with some partial order); there might be a requirement to achieve a threshold

mark before being allowed to continue onto the next module; and certain

modules might have different prerequisite modules.
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Figure 1.2: Event tree for marks for two modules in a course. Marks are discretized
into 3 grades, and A and NA indicate whether the mark is recorded or missing. The
10 situations are labelled and the 16 leaf nodes are unlabelled.

2. A student’s performance on a previous module could influence the marks on

a later one.

3. New students come in yearly cohorts. Because of any number of possible

changes in any number of unobserved confounding factors the similarities in

outcomes between different course histories could change for each cohort.

4. The administrators will be interested in predicting the effect on the mark dis-

tribution by changing the program in some way, such as changing the syllabus

or lecturer for a module, changing the prerequisites for a modules, or removing

a module entirely.

One example of an event tree for the marks for a course with two modules

and three grades is given by Figure 1.2.
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The event tree can represent any discrete event space and naturally codifies a

chronological order (or partial order) in its topology, and so I base my own dynamic

graphical model on it. However, it is not sufficient for addressing the rest of our

requirements by itself, particularly because it does not codify the symmetries in the

system that I am interested in modelling. CEGs do, though, and so the model class

developed here is based on them but extended into a more general dynamic scenario

where probabilities and symmetries are allowed to change with time.

I describe the dynamics of this type of tree-structured process by a state

space model incorporating a switching mechanism to neighbouring models at every

time point. The earliest example of this general class, to the best of my knowledge,

was studied for univariate Gaussian series [Harrison and Stevens, 1976; West and

Harrison, 1997] and called Multi-process Models Class II. Frühwirth-Schnatter [2006]

reviews switching models for non-Gaussian state spaces, but none of these have

closed posterior forms. Here, I use a type of multi-process model which allows

dynamic shifting from one symmetry partition to neighbouring ones whilst retaining

conjugacy.

Various classes of discrete multivariate time series are of course well studied.

Possibly the closest classes to the one considered here with associated graphical

models are the models used in event history analysis. Event history data relates

to when events of interest occur, rather than what events occur at time points of

interest. Formally, an event history can be identified as a marked point process,

a set {(Ts, Es) : s = 1, . . . , S} of pairs of times Ts when events Es occurred, where

the times are random variables while the events of interest are fixed beforehand,

although their order might be uncertain a priori [Arjas, 1989]. Two graphical models

developed for event history analysis are local independence graphs [Didelez, 2008]

and graphical duration graphs [Gottard, 2007]. While there is an overlap between
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event history data and the problem outlined here, it is clear that the two address

quite separate concerns. In event history analyses the number of events under

consideration is typically small, with the focus of analysis being the timing of events,

usually allowed to occur within a continuous time domain. Here, in contrast, I wish

to model a class of complex discrete distributions over a discrete time domain. I

discuss the connections between the two model classes further in Chapter 7.

In order to take into account possible drifting on the tree parameters through

time caused by unobserved background processes, one could follow the standard

approach of stating a transition probability P (θt | θt−1, S), where θt represents the

parameters on the tree at time t and S is the underlying model. The most common

way to achieve this is to use a conventional state-space formulation. Unfortunately,

this approach almost always immediately requires the inference to be undertaken

with approximating numerical methods. This is not ideal in this context for several

reasons: First, in the process I consider here, conjugacy and modularity are present

and it would be a shame to lose these useful properties. Secondly, because of the

vastness of the model space of our domain of application it is convenient to be

able to have Bayes factors calculable in closed form, because this greatly speeds up

computation of model goodness. Thirdly, models in this class are easier to interpret

when they retain their modular and conjugate forms.

An alternative approach, which I take here, is to set a transition function

T : P (θt−1 | xt−1, S) 7→ P (θt | xt−1, S) (1.1)

where xt−1 are the observations up to time t−1. Although this approach is narrower

in its scope, it is sufficient for making probabilistic predictions which is my aim here

as mentioned earlier. The particular transition function I ultimately choose to use

can be justified through various characterisations [Smith, 1979, 1992], encouraging
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several different authors to use such transitions. I also show that it has the property

of preserving the modular structure of each model in this class and works well against

prior misspecification.

Interventions on a graphical model are covered by the causal literature (e.g.

Pearl [2000b]). Causal analysis on event trees was considered by Shafer [1996] and

was defined for static chain event graphs by Thwaites et al. [2010]. I extend this to

the dynamic model class presented here. By still retaining conjugacy and modularity

when learning model probability parameters, this causal extension of the model class

is particularly straightforward, allowing it to be easily used for modelling a controlled

environment.

Thesis outline

The remainder of this thesis is thus structured as follows.

In Chapter 2 I review the latest theory concerning graphical models and how

to learn them automatically.

In Chapter 3 I review the definitions of event trees and CEGs. I then develop

the theory of how conjugate learning of CEGs is performed, and apply this theory

by using the posterior probability of a CEG as its score in a model search algorithm

that is derived using an analogous procedure to the model selection of BNs. I

characterise the product Dirichlet distribution as a prior distribution for the CEGs’

parameters under particular homogeneity conditions.

In Chapter 4 I review some theory concerning state-space and dynamic graph-

ical models that will be relevant in developing the new dynamic graphical model

based on CEGs.

In Chapter 5 I proceed to expositing the dynamic chain event graph. I for-

mally define the necessary concepts and show how to make exact one-step ahead
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predictions with the new model. I then extend the model to allow the implementa-

tion of causal analyses.

In Chapter 6 I apply all of the theory and algorithms to a simulated data for

testing purposes and then to results from a real educational programme in order to

make rich inferences about students’ educational achievement.

I end in Chapter 7 by discussing outstanding research questions that extend

from the work in this thesis.
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Chapter 2

Graphical models

I begin by describing what I consider graphical models to be and why they are

worthy of study and use. I then move on to discussing various statistical issues

concerning the most popular contemporary graphical model: the Bayesian Network

(BN). I finish by critiquing the BN and proposing a new graphical model that is

more appropriate for many applications based on trees.

2.1 Introduction to graphical models

Statistical models are descriptions of stochastic systems that enable us to understand

the relationships between the variables of that system. In the Bayesian paradigm,

the statistical model encodes degrees of belief about various hypotheses concern-

ing the system as probabilities, and these probabilities are updated in line with

probability theory as observations of the system are made.

It is clear, therefore, that the statistical model used to describe a system and

make predictions and decisions concerning that system must be chosen with great

care. For very complex systems, the temptation to settle for a simple model should

in general be resisted unless it can be shown that the approximation required will not
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affect any analysis adversely. Excessively complex models, however, require the set-

ting of more parameters, which leads to greater risk of model mis-specification, and

also large amounts of computation which can quickly lead to intractability. What

is required, as Einstein put it, is “to make the irreducible basic elements as simple

and as few as possible without having to surrender the adequate representation of

a single datum of experience” [Einstein, 1934]. One way to do so is to make qual-

itative judgements about the system, for example about any homogeneities which

are believed a priori to exist between seemingly separate variables. This can reduce

the dimensionality of the model as well as increase its power. To represent these

statements transparently one can use a (network) graph, which characterises the

model as a graphical model.

Lauritzen [1996] notes that graphical models have their origin in the early

20th century in the analysis of statistical mechanics by Gibbs [Gibbs, 1902; Borgelt

and Kruse, 2002]. Nowadays graphical models are considered to be “statistical mod-

els embodying a collection of marginal and conditional independences which may

be summarized by means of a graph” [Dawid and Lauritzen, 1993]. This certainly

describes Bayesian networks, but I will show how the syntax of a graph can be used

to describe other model properties apart from independence relationships.

My overarching aim when using graphical models is well described by Dawid

[2002]:

Seek to represent and manipulate as much as possible of the relevant

structure and details of the model by purely graphical means, keeping

any external information required to a minimum

As Dawid [2002] notes, “what is relevant for one purpose may be irrelevant

clutter for another”. I will show that Bayesian networks do not always represent the

important and relevant details of a model graphically.
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I begin by revising basic graph theory terminology that will be used through-

out. Further details of these concepts can be found in many introductory graph

theory texts, e.g. [West, 2001].

Definition 2. A graph G is a pair (V (G), E(G)) where V (G) is its set of vertices

(or nodes), E(G) is its set of edges. The set of edges can be thought of as a relation

on V (G).

When a graph is drawn, the vertices are displayed as points and the edges as

curves between the appropriate points.

Definition 3. A directed graph (or digraph) is a graph G where the edges are

ordered pairs of vertices. Thus the edges e1 = (v1, v2) and e2 = (v2, v1) (where

v1, v2 ∈ V (G)) are distinct elements of E(G).

Edges in a directed graph are drawn as arrows from the first vertex to the

second vertex in the ordered pair.

All graphs in this paper are directed graphs, and the following definitions

assume this.

Definition 4. In a digraph, the child of the edge e = (v1, v2) ∈ E(G), written

ch(e), is v2. Its parent pa(e) is v1.

By abuse of notation, the children of a vertex v ∈ V (G), written ch(v), are

defined as

ch(v) = {v′ : v′ ∈ V (G), (v, v′) ∈ E(G)} (2.1)

and pa(v) is defined similarly.

Definition 5. A path λ between two vertices v1, v2 ∈ V (G) is an ordered sequence

of edges λ(v1, v2) = (e1, . . . , en) where e1, . . . , en ∈ E(G), pa(e1) = v1, ch(en) = v2

and ch(ek) = pa(ek+1) for k = 1, . . . , n− 1.
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Definition 6. The length of a path is the number of edges it contains, given in

the above definition as n. By an abuse of notation, we say v ∈ λ (where v ∈ V ) if

the path λ passes through v.

Definition 7. A cycle is a path λ(v1, v2) where v1 = v2.

Definition 8. An acyclic graph contains no cycles.

Definition 9. A graph is connected if there exists a path in the graph between

every pair of vertices, where direction of edges here can be changed if necessary.

Definition 10. A graph is a complete graph if there is an edge between every pair

of nodes.

Definition 11. A tree is a connected acyclic graph where one vertex (denoted here

by v0) has no parents and all other vertices have exactly one parent.

Definition 12. A leaf node in a tree is a vertex with no children. The set of leaf

nodes of a tree T is denoted here by L(T ).

2.2 Introduction to Bayesian networks

The Bayesian network uses a modification of the graph theory concept of separa-

tion to represent conditional independence relationships. It can be proven that the

separation properties of a Bayesian network graph match up with the conditional

independence properties of a statistical model so that such a representation makes

sense. I show here how this is done formally, beginning with giving the definition

and formal axioms of conditional independence as defined by [Dawid, 1979]. The

axioms are also called the semi-graphoid axioms after Pearl and Paz [1986].

I start by introducing a formal definition of conditional independence as given

by [Dawid and Lauritzen, 1993].
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Definition 13. Let X,Y, Z be random variables on a probability space (Ω,F , P ).

Then X is conditionally independent of Y given Z (under P ) if for any P-

measurable set A in the sample space of X, P (X ∈ A | Y,Z) can be expressed as a

function of Z alone.

It is clear that conditional independence is a useful modelling assumption to

make if it sensible to do so, because the dimensionality of the model for any random

variable can be reduced when conditioning on other variables. A special case of

this phenomenon is statistical sufficiency, as explained by [Dawid, 1979; Dawid and

Lauritzen, 1993], when the random variables are parameters of the model; another

example of conditional independence is in linear regression where the number of

explanatory variables required in the model is deemed to be sufficient to model the

dependent variable.

Standard independence holds when Z in the above definition is the empty

set.

Now I introduce the semi-graphoid axioms. Let W,X, Y, Z be four disjoint

subsets of a set U and let ⊥⊥ and | form a ternary relation R ⊆ U3 of subsets of U ,

where I write X ⊥⊥ Y |Z if (X,Y, Z) ∈ R, for example. It is also possible to write

X ⊥⊥ Y if (X,Y, ∅) ∈ R. R then satisfies the semi-graphoid axioms if, as given by

[Borgelt and Kruse, 2002],

Symmetry (X ⊥⊥ Y | Z) =⇒ (Y ⊥⊥ X | Z)

Decomposition ((W ∪X) ⊥⊥ Y | Z) =⇒ (W ⊥⊥ Y | Z) and (X ⊥⊥ Y | Z)

Weak union ((W ∪X) ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y | Z ∪W )

Construction (X ⊥⊥ Y | (Z ∪W )) and (W ⊥⊥ Y | Z) =⇒ ((W ∪X) ⊥⊥ Y | Z)

It can be proven that conditional independence between random variables

satisfies the semi-graphoid axioms [Castillo et al., 1997; Borgelt and Kruse, 2002],
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and therefore we can write X ⊥⊥ Y | Z to represent the statement that X is condi-

tionally independent of Y given Z.

I now show how a Bayesian network can be used to graphically represent all

of the conditional independence statements of a model.

Definition 14. A Bayesian network for the model with set of random variables

X = {X1, . . . , Xn} on a probability space (Ω,F , P ) is a directed acyclic graph G =

(V,E) where

1. each node Vi ∈ V corresponds to exactly one variable Xi ∈ X, and

2. if P (X) can be written as
∏n

i=1 P (Xi | Qi), where Qi ⊆ {X1, . . . , Xi−1} (with

the exception of Q1 = ∅), then pa(Vi) = V (Qi), where V (Qi) are the nodes

corresponding to the random variables in Qi.

From here on in, I refer to the vertices representing random variables or sets

or collections of random variables by the random variables themselves, except in

cases where there might be possible confusion.

Note that a complete Bayesian network can always be drawn for a model with

a finite number of random variables, as P (X1, . . . , Xn) =
∏n

i=1 P (Xi | X1, . . . , Xi−1)

is always true. Note therefore that there may also be more than one possible

Bayesian network representation of a model; in particular, any complete directed

acyclic graph with V = V (X) is always a valid Bayesian network. Adding edges to

a valid BN always creates another valid BN, as long as the resulting graph remains

directed and acyclic.

It is clear the Bayesian network representation of a model explicitly encodes

some conditional independence statements of the model. Specifically, it can be

immediately read from the graph that

Xi ⊥⊥ ({X1, . . . , Xi−1} \Qi) | Qi (2.2)
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for i = 2, . . . , n purely from its topology. However, more conditional independence

statements can be inferred from the graph using a property of the graph that also

satisfies the semi-graphoid axioms. This property is d-separation, first defined by

Verma and Pearl [1988] and subsequently re-defined by Lauritzen [1996] in a more

useful and operational way, where for three disjoint subsets A,B, S ⊂ V , S is said

to d-separate A and B if S blocks all paths between all vertices in A and all vertices

in B on a transformed version of the original BN. The transformation is as follows:

1. Delete all vertices from the BN that are neither part of A, B or S, nor have a

path from themselves to another vertex in A, B or S. Delete all edges which

had one of the deleted vertices at one of their ends. This is the ancestral

graph of the BN.

2. For every pair of nodes that have a common child that are not connected create

an edge between them. This is the moralised graph (because “unmarried”

parent nodes are made to “marry”).

3. Ignore the directions of arrows on edges for determining whether paths are

blocked. This is the skeleton graph.

Then it can be proven that for any BN set up as above,

S d-separates A from B =⇒ A ⊥⊥ B | S (2.3)

Thus by stating a few qualitative statements about how some variables are

not relevant in determining the distributions of other variables if the values of yet an-

other group of variables is known, many other conditional independence statements

of the model can be inferred.
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2.3 Learning Bayesian networks

In many scenarios, the modeller might not have complete certainty over the condi-

tional independence relationships which hold between the variables of the system

under consideration, or equivalently the Bayesian network which best represents the

model. In this case, the Bayesian approach is to consider the structure itself as a

random variable with a probability distribution of its form set a priori, and then

updated using Bayes’ theorem in the light of new data. This procedure has been de-

scribed as learning the Bayesian network by the artificial intelligence community,

e.g. in [Heckerman, 1999] and can be considered as another form of model selection.

However, the procedure is in practice rarely so simple. The major obstacle

in carrying it out is that the size of the set of possible Bayesian networks grows

in size super-exponentially with respect to the size of the set of random variables

[Cooper and Herskovits, 1992]. This means that setting a proper subjective prior

distribution over the set of possible Bayesian networks for any practical situation is

generally intractably difficult, as is setting the parameter priors and likelihoods for

each possible BN.

There are some approaches advocated in the literature, however, that seek

to minimise this difficulty by utilising some reasonable simplifying assumptions. I

discuss the assumptions which relate to discrete variables in particular which is my

focus in this thesis.

The initial set of assumptions deals with the probability model for the data

implied by each Bayesian network. Let B be the random variable representing the

Bayesian network which holds. Then

P (X | θB, B) =
n∏

i=1

P (Xi | Qi, θBi, B) (2.4)
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where θB = {θB1, . . . , θBn} is the set of parameter vectors θBi for each distribu-

tion P (Xi | Qi, θBi, B). Then the prior probability distribution of θB|B is set by

assuming parameter independence [Spiegelhalter and Lauritzen, 1990], so that

P (θB | B) =

n∏
i=1

qi∏
j=1

P (θBij | B) (2.5)

where θBij is the parameter vector of the probabilities P (Xi | Qi = qj , B) and qi

is the number of possible values of Qi. Note that I am assuming, in line with my

relevance assumptions, that the value of θBij does not rely on the parts of B not

related to Xi and its parents, a property called likelihood modularity. If θBij

is distributed as Dir(αBij), then the updating of P (θBij | B,X) is conjugate:

θBij | B,X ∼ Dir(αBij +Nij) (2.6)

where Nij represents the vector of counts Nijk when Qi = qj and Xi = xik, where

k indexes the possible values of Xi.

While parameter independence simplifies the setting and updating of P (θ |

B) for each possible BN B, it still requires the setting of each P (θBij | B) for each

B, and still does not address the setting of P (B).

In order to simplify the setting of P (θBi | B) — the priors for the parameters

of variable Xi in a BN B — for all variables Xi for each possible BN B, one can

make the assumption of prior modularity. This states that if two Bayesian

networks B1 and B2 have identical parent variables Qi for some variable Xi, then

P (θBi | B1) = P (θBi | B2), i.e. the prior on the parameters that determine the

distribution of Xi are equal for both BNs. The subscript B will therefore be dropped

henceforth as now only the parent set of a variable X is necessary to determine the

prior distribution of its parameters.
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Under the assumptions of prior and likelihood modularities, it is the case

(as shown in [Heckerman and Geiger, 1995]) that in order to set parameter priors

for each possible BN it is sufficient to set parameter priors only for the complete

Bayesian networks. Parameter priors for incomplete networks are then derived from

equivalent local structures in the corresponding complete network.

This can still be intractable, and so there is one more level of simplification

possible. Assume that under any B the parameter vectors θij are mutually inde-

pendent of one another for any Xi for any values of its parents Qi = qj as above,

and that for any two Markov equivalent BNs B1, B2 (i.e. those which encode the

same sets of conditional independence relations on X, as can be determined using

the methods of [Verma and Pearl, 1990] or [Chickering, 1995]) it is assumed that

P (X | B1) = P (X | B2) (called hypothesis equivalence by [Heckerman et al.,

1995]). Geiger and Heckerman [1997] showed that in this case that all θij must have

a Dirichlet distribution. Therefore to specify the parameter priors for any network

B one needs only to specify the hyperparameters of the Dirichlet distribution of the

joint distribution of X on a complete network.

The setting of P (B) is comparatively simple. Apart from the obvious choices

of a uniform prior over all possible B or a subset of all possible B, another possible

qualitative characterisation is to consider the probability for the inclusion of each

edge in a BN with a fixed order of variables [Buntine, 1991], and further still if

the edges are considered exchangeable, i.e. all of the edges have a probability p of

existing, then only one probability assessment — that of p — is needed.

With the parameters set as above and assuming Dirichlet priors, P (X | B)

will be a closed formula for each B as discovered by Cooper and Herskovits [1992];
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Heckerman et al. [1995]:

P (X | B) =

n∏
i=1

|qi|∏
j=1

 Γ(αij.)

Γ(αij. + xij.)

|xi|∏
k=1

Γ(αijk + xijk)

Γ(αijk)

 (2.7)

where |xi| are the number of possible values of Xi, xij. =
∑

k xijk, xijk is the number

of times Xi = xik when Qi = qj , and αij. =
∑

k αijk. P (B | X) can then be easily

calculated from Bayes’ theorem for each B if P (B) is a fixed quantity a priori.

However, when there are a large number of possible BNs B, this might not

be practical. To predict new data X∗ from the system after having observed X, it

is necessary to calculate

P (X∗ | X) =
∑
B∈B

P (X∗ | B)P (B | X). (2.8)

This is called model averaging [Hoeting et al., 1999]. For a large set of possible

BNs B, it would be impractical to calculate P (X∗ | B) and P (B | X) for each

B. There are a number of approximations to the full solution which could still give

good predictions while reducing the computational effort required [Hoeting et al.,

1999].

If the aim is to provide a good “explanatory” network for the system, then

trying to find the most probable BN (MAP, or Maximum A Posteriori BN) can be

done more efficiently, if not necessarily optimally, than just calculating P (B | X) for

every possible B, by searching the model space. There have been many strategies

suggested for this search, including greedy search, greedy search with restarts, best-

first search, and Monte Carlo methods, all discussed by Heckerman [1999], and more

recently weighted MAX-SAT solving [Cussens, 2008].

One relevant consequence of the model set-up described above which leads to

equation (2.7) is that the goodness of a BN, defined here as its posterior probability,
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can be calculated as the product of purely local properties of the network, where

local here relates to individual nodes and their parents. This means that if two

BNs differ only in one parent set Qi of some variable Xi, the difference in scores

will result only from that local difference. This allows for efficient local search

algorithms for searching the model space. A simple local greedy search starts with

one possible BN, then calculates the score for a BN which differs only in having an

edge reversed, an edge added or an edge deleted (subject to the resulting network

being acyclic) by only re-calculating the relevant local score, and chooses the BN

which has the higher posterior probability. Because only the local differences in the

graphs have to be taken into account, the search proceeds more quickly.

The search algorithms to find the MAP BN can also be used to find more

than one high-scoring network so that P (X∗ | X) can be approximated as

P (X∗ | X) ≈
∑
B∈B̃

P (X∗ | B)P (B | X) (2.9)

where B̃ is the set of highest-scoring networks found during the model search, where

the size of the set can be chosen as high as desired.

2.4 Causal Bayesian networks

Efforts have been made to use Bayesian networks not only to incorporate beliefs

about the conditional independence relations between the variables in a system, but

also causal relations between them, most prominently by Pearl [Pearl, 2000b].

I briefly review how this is done and how it has led to work on learning these causal

relations.

As mentioned in the last section, different Bayesian networks can represent

equivalent conditional independence statements. However, when drawing a Bayesian
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network of a system, there can be a conscious or unconscious desire to somehow rep-

resent certain “causal” relations between the variables. One way to describe these

causal hypotheses is to consider how the system changes under external interven-

tion. If a variable A is a cause of another B, then directly changing A will change

the probability distribution of B. Pearl [Pearl, 2000b] represents the probability

distribution of B after intervening in the value of A as P (B | do(A)), in order to

distinguish this distribution from the one of B after merely observing A, P (B | A).

There is no reason why in general P (B | do(A)) should be related to P (B | A),

but in many cases there is a presumed relationship that can be incorporated into a

model.

A causal Bayesian network (CBN) [Pearl, 1995] sets strict constraints

on this relationship. A CBN is a BN that, as well as describing the conditional

independence statements that are satisfied by the joint probability distribution over

the model’s variables, asserts certain beliefs about the probability distribution over

the variables resulting from an exogenous manipulation of any subset of them. The

exact nature of these beliefs is described in the following definition.

Definition 15. A causal Bayesian network is a Bayesian network that addition-

ally holds the following properties when some subset of the variables XI ⊆ X is

intervened upon to take the vector of values xI :

1. The probability distribution of each XI ∈ XI becomes degenerate, so that

P (XI = xI) = 1 when xI is the relevant value from xI , and 0 otherwise

2. The probability distributions of all other variables Xi /∈ XI conditional on

their parent variables Qi stay unchanged.

The effect of an intervention, therefore, is to only change the parts of the

probability distribution associated with the intervened variables in the factorisa-
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tion of the joint probability distribution described by a BN. Note that now BNs

which were describing identical conditional independence statements have different

replacement probability distributions under identical interventions.

There have been attempts to learn CBNs from data, e.g. by Heckerman

[1995], Cooper and Yoo [1999], and Spirtes et al. [2001]. The approach advocated

by the first two papers cited works by either considering, in addition to the random

variables under investigation, whether those variables were merely observed or ac-

tively manipulated for each data point, which essentially expands the event space.

This is equivalent to re-drawing the CBN as a BN with additional nodes indicating

whether manipulation or mere observation led to other nodes’ values, as advocated

by Dawid [2002] and called an augmented DAG by him. This BN can then be

learnt in the same way as discussed earlier.

Spirtes et al. [2001], meanwhile, along with others such as Glymour and

Cooper [1999] and Neapolitan and Jiang [2006], claim to have algorithms to learn

CBNs, and thus causal relations between variables, merely from observational data.

This methodology is called causal discovery. The validity of this approach has

been disputed by a number of authorities, including Humphreys and Freedman

[1996], Cartwright [2007] and Dawid [2010], along the lines that, as Cartwright

[1994] put it, “No causes in, no causes out” — in other words, without making

causal assumptions, i.e. without explicitly stating how the idle and manipulated

systems relate to one another, it is not possible to learn about manipulated systems

from idle systems. I therefore do not pursue this approach further in this thesis,

instead only making causal inferences when I am willing to make causal assumptions,

which will only happen if data under controlled interventions are available.
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2.5 Disadvantages of Bayesian network representations

Despite their obvious strengths in allowing for the reduction in the dimensionality

of models’ joint probability distributions and in providing a transparent framework

for causal inference as described above, BNs are not optimal graphical models in all

situations. The biggest problems with their use occur under two scenarios, which

are not necessarily mutually exclusive:

1. when the model event space is not a simple product space, i.e. the state spaces

of some of the random variables in the system are radically different — or even

non-existent — depending on the values of other system variables; and

2. when conditional independence statements are true only under certain values

of other variables.

Neither of these scenarios can be discerned directly from the BN. Consider

the situation in Figure 1.2. The event space is clearly asymmetric because if the

first module’s marks are unavailable then they have no grade. Additionally, it might

be the case, for example, that students who get grades 2 or 3 in the first module

perform in an identical way on the second module, but student who perform the

best in the first module by getting the highest grade perform completely differently.

These features will not be exhibited by the structure on a BN unless special care is

taken.

These blind spots of BNs are not unknown in the literature. For example,

Spiegelhalter and Lauritzen [1990] already noted with regard to the second prop-

erty in 1990 that “a systematic approach to the manipulation of such relevance links

would be an important development”. This property was termed context-specific

independence [Boutilier et al., 1996] and various approaches were tried to deal with

it in the BN representation. For example, Boutilier et al. [1996], in an early attempt,
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kept the BN in place but additionally used trees to describe the probability distribu-

tions of each variable, and then proceeded to re-arrange the BNs using these trees,

including having multiple nodes for a single random variable in order to represent

some of the context-specific independences in a BN format. Jaeger [2004] defined

probability decision graphs (PDGs) that can represent certain context-specific

independences, but PDGs cannot represent some conditional independence relations

that can be represented by BNs; for example, as admitted by Jaeger [2004], the BN

with nodes X1, X2, X3, X4 and edges (X1, X2), (X1, X3), (X2, X4), (X3, X4) cannot

be represented as a PDG. More recently, [Poole and Zhang, 2003] defined contex-

tual belief networks, but these are basically BNs with the extra contextual

information not represented graphically.

One final approach is that of Bayesian multinets [Geiger and Heckerman,

1996], where context-specific independence is termed asymmetric independence.

Bayesian multinets are essentially collections of different BNs over the same set of

random variables, one BN drawn for each collection of values of one of the variables

(called the hypothesis variable) that makes the BN of the system different from

all the others. While this solves the problem of representing context-specific inde-

pendence graphically and hence explicitly, there is still a lot of redundancy in the

representation due to needing to draw a BN for each of the variable values of each

hypothesis. This problem only gets worse if more than one hypothesis variable is

proposed. There is also no acknowledgement of how to deal with sparse conditional

probability tables efficiently.

In the next chapter I re-introduce the Chain Event Graph (CEG), a tree-

based rather than BN-based graphical model. It will be shown that it can represent

all conditional independence statements that BNs of the same system can; that it

can make explicit the asymmetries in state spaces of random variables in different
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contexts; that it can graphically represent context-specific conditional independence

relationships; that it allows conjugate inference and learning; and that it allows a

larger class of external manipulations in the system than a BN, thereby extending

the range of possible causal analyses.
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Chapter 3

Learning chain event graphs

Finding that the BN is not always the optimal graphical model for modelling certain

systems and processes, this chapter suggests the advantages of using a graphical

model based on event trees — the chain event graph — and develops a totally

new mechanism to learn CEGs from data, from characterised priors to intelligent

learning algorithms.

3.1 Prerequisites

3.1.1 Event Trees

Trees, defined in Definition 11, can be used as an intuitive representation of discrete

stochastic processes. They were used in the first ever expositions of mathematical

probability by the likes of Huygens in the 17th century [Edwards, 1982]. Influence

diagrams, which can be thought of as Bayesian networks with decision and utility

nodes, were historically actually derived from decision trees [Shachter, 1986] as a sim-

pler, if sometimes necessarily over-simplified, representation of decision problems.

Developing tree-based graphical models is therefore only re-balancing a historical

30



anomaly. Finally, event trees have a perfect match between their topology and

the sample space Ω of the Kolmogorov probability triple (Ω,F , P ) of a probability

model, ensuring that no aspect of the model is ignored in the graphical represen-

tation, while Bayesian networks focus on random variables which are real-valued

functions of events.

I start by defining event trees formally.

Let T = (V (T ), E(T )) be a directed tree where V (T ) is its node set and

E(T ) its edge set.

Definition 16. The set of situations of T , S(T ), is the set of non-leaf nodes

{v : v ∈ V (T ) \ L(T )}, where L(T ) is the set of leaf nodes of T .

Let X be the set of root-to-leaf paths of T , so that X = {λ(v0, v) : v ∈ L(T )}

(recall that v0 is the root node). X represents the event space of the model, with

every root-to-leaf path an atom of the event space.

In an event tree, each situation v ∈ S(T ) has an associated random variable

X(v) defined conditional on having reached v. The state space of X(v) is denoted

as X(v), represented in the tree by ch(v).

Definition 17. The distribution of X(v) is determined by the primitive proba-

bilities {π(v′|v) = P (X(v) = v′) : v′ ∈ X(v)}.

The probability of an event λ ∈ X can therefore be calculated by multiplying

the primitive probabilities along the path. Conversely, primitive probabilities can

be inferred from the probabilities for the events in X.

Definition 18. The floret of v ∈ S(T ) is

F(v) = (V (F(v)) , E (F(v)))
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Figure 3.1: Floret of v. This subtree represents both the random variable X(v) and
its state space X(v).

Figure 3.2: Simple event tree. The non-zero-probability events in the joint prob-
ability distribution of two Bernoulli random variables, A and B, with A observed
before B, can be represented by this tree. Here, all four joint states are possible and
hence there are four root-to-leaf paths through the nodes.

where V (F(v)) = {v} ∪ {v′ ∈ V (T ) : (v, v′) ∈ E(T )} and E(F(v)) = {e ∈ E(T ) :

e = (v, v′)}.

The floret of a vertex v is thus a sub-tree consisting of v, its children, and the

edges connecting v and its children, as shown in Figure 3.1. The floret represents

the situation v, the associated random variable X(v) and its sample space X(v).

Example 19. Figure 3.2 shows a tree for two Bernoulli random variables, A and B,

with A occurring before B. In an education setting A could be the indicator variable

of a student passing one module, and B the indicator variable for a subsequent

module.
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Here we have random variables X(v0) = A, X(v1) = B|(A = 0) and X(v2) =

B|(A = 1), and primitive probabilities π(v1|v0) = p(A = 0), π(v3|v1) = p(B = 0|A =

0) and so on for every other edge. Path probabilities can be found by multiplying

primitive probabilities along a path, e.g. p(A = 0, B = 0) = p(A = 0)p(B = 0|A =

0) = π(v1|v0)π(v3|v1) as (v0, v1) and (v1, v3) are on the path between v0 and v3.

3.1.2 Chain Event Graphs

Starting with an event tree T , we extend the definition with three new concepts

to form the CEG — stages, edge colours and positions – similarly to the

approach of [Smith and Anderson, 2008] and [Thwaites et al., 2010].

One of the redundancies that can be eliminated from an ET is that of two

situations, v and v′ say, which have identical associated edge probabilities despite

being defined by different conditioning paths. We say these two situations are in (or

at) the same stage. This concept is formally defined below.

Definition 20. Two situations v, v′ ∈ S(T ) are in the same stage u if and only if

X(v) and X(v′) have the same distribution under a bijection

ψu(v, v
′) : X(v) → X(v′) (3.1)

Definition 20 means that every pair of situations in a stage have a bijection

between their sample spaces that identifies which pairs of outcomes have equivalent

probabilities.

The set of stages of an event tree T (also called its staging) is written J(T ).

This set partitions the set of situations S(T ), due to the associated set of bijections

{ψu(v, v
′) : v, v′ ∈ u, u ∈ J(T )} forming an equivalence relation on S(T ).

Definition 21. Any two edges (v, v∗), (v′, v′∗) ∈ E(T ) have the same colour if and
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only if v, v′ ∈ u ∈ J(T ) and ψu(v, v
′)(v∗) = v′∗, i.e. v∗ and v′∗ are considered to

have equal probabilities of being reached from v and v′ respectively.

The edge colours make it clear, when drawn, which edges represent the same

primitive probabilities and hence which situations are in the same stage. An al-

ternative approach is to indicate which situations are in the same stage is to draw

undirected edges between them, as in [Smith and Anderson, 2008; Thwaites et al.,

2010].

Sometimes two situations have even more in common than the distribution

over their respective variables: the entire subtrees with the two situations as roots

share the same distribution over their paths. These two situations are said to be in

the same position. I define this concept formally.

Definition 22. Two situations v, v′ ∈ S(T ) are in the same position w if and only

if there exists a bijection

ϕw(v, v
′) : Λ(v, T ) → Λ(v′, T )

where Λ(v, T ) is the set of paths in T from v to a leaf node of T , such that for

every path λ(v) ∈ Λ(v, T ), the ordered sequence of colours in λ(v) equals the ordered

sequence of colours in λ(v′) := ϕw(v, T )(λ(v)) ∈ Λ(v′, T )

I denote the set of positions as K(T ). It is clear that J(T ) is a partition of

K(T ), as situations in the same position are in the same stage. K(T ) is therefore a

finer partition of S(T ) than J(T ).

Now the CEG can finally be constructed by taking the staged tree U(T ) of

an event tree and merging situations that are in the same position.

Definition 23. The chain event graph (CEG) C(T ) of an event tree T is the

coloured directed graph with vertex set V (C) and edge set E(C) where
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• V (C) = K(T ) ∪ w∞, so that each non-leaf node in the CEG represents one

position and w∞ represents the set of leaf nodes.

• Each edge in E(C) exists for one of the following two reasons.

– For w,w′ ∈ V (C)\w∞, there is an edge (w,w′) ∈ E(C) if and only if there

exist situations v, v′ ∈ S(T ) such that v ∈ w, v′ ∈ w′ and (v, v′) ∈ E(T ).

– For w ∈ V (C) \ w∞, there is an edge (w,w∞) ∈ E(C) if and only if

there exist situations v ∈ S(T ) and v′ ∈ L(T ) such that v ∈ w and

(v, v′) ∈ E(T ).

• The edge (w,w′) ∈ E(C) has the same colour as (v, v′) ∈ E(T ) where v ∈ w,

v′ ∈ w′.

An example of a CEG that could be constructed from the event tree in

Figure 1.1 is shown in Figure 3.3. It can immediately be seen that the CEG is a

more compact representation of the probability distribution over the system than the

event tree, but without discarding any information reflected by the tree. The non-

leaf nodes in Figure 3.3 are positions representing the three hypotheses described

in Chapter 1. For example, w1 is the position reached after knowing what the first

module is; if modules A and B are equally hard then the mark distributions are

equivalent whether A or B is taken first, and hence the subtrees with A and B as

root nodes will have identical distributions. The other positions can be identified

with the hypotheses of Example 1 similarly.

It is worth noting that for a finite number of discrete variables that the

set of possible CEG models over those variables is a strict superset of the set of

possible BN models. While a probability model that can be described by a BN

will look different when described by a CEG it will still be the same model. The

conditional independence statements described by a BN can always be represented
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Figure 3.3: The CEG that reflects the three hypotheses of Example 1

by a CEG through stages and positions as is shown in [Smith and Anderson, 2008]

and [Thwaites, 2008]. This is because the CEG works on the level of the event space

of the probability model while the BN considers only random variables.

3.1.3 Causal trees and CEGs

There is another aspect to event trees (and hence CEGs) that make their use in

modelling extremely appealing: their powerful expressiveness in describing causal

hypotheses and learning about the effect of external interventions in the system

from observational data. Due to reflecting the event space more finely, the range

and realism of the possible causal analyses is better than for a Bayesian network of

the same system. The intuitiveness of using trees for modelling causal hypotheses

was argued forcefully by [Shafer, 1996].

A modeller can learn about some of the probabilities on edges downstream

of a variable intervened upon even if observing only data from the idle, unmanip-

ulated system, if he or she is willing to assume that the probability distributions

are identical in the two systems. This is true vice versa as well, allowing inferences

from an experiment to be valid for the general population. This inference is clearly

generalisable to more than one type of control, different demographics, etc., as long

as it is represented on the tree. This is simply not possible with a BN, at least not
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through manipulation of the graphical structure itself, because the edges of a BN

do not represent parts of the event space but rather the conditional independence

structure of the system.

For example, consider the event tree in Figure 3.4 (inspired by an example in

[Smith, 2010]) which shows the two possible developments of a process conditional

on whether it is left undisturbed (“idle”) or controlled.

control

e1

e2

idle

e3

e4

e5

e6

Figure 3.4: Event tree for idle and manipulated versions of the same process

In Figure 3.4, the probabilities of e1, e2 might be considered equal to e3, e4

respectively, i.e. the associated variables become independent of whether they are in

the controlled or idle system, but e5, e6 might still be considered to be independent.

This cannot be considered graphically with a BN.

In a CEG, the edges will either be coloured the same or merged, making

explicit the model assumptions involved and in the latter case doing so efficiently.

The range of manipulations possible on a CEG is explored further in [Thwaites

et al., 2010].

In Section 5.5 I will show how to implement different interventions in a
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dynamic version of the CEG where the same edge is considered exogenously to the

structure to be equivalent in both the idle and the manipulated versions of the

system, and in Section 6.2.2 I demonstrate its use with a real dataset.

3.2 Conjugate learning of CEGs

It turns out that one convenient property of CEGs is that conjugate updating of

the model parameters is possible in a closely analogous fashion to that on a BN as

described in Section 2.3. Conjugacy is a crucial part of the model selection algorithm

that will be described in Section 3.3, because it leads to closed form expressions for

the posterior probabilities of candidate CEGs, which in turn makes it possible to

search the often very large model space quickly to find optimal models. The CEG

model class will in general be bigger than the BN class for the same random variables,

so that a model search will generally take longer but with the benefit that a richer

model class is being considered. I demonstrate here how a conjugate analysis on a

CEG proceeds.

Let a CEG C have set of stages J(C) = {u1, . . . , uk}, and let each stage

ui have ki outgoing edges (labelled e1, . . . , eki) with associated probability vector

πi = (πi1, πi2, . . . , πiki)
′ (where

∑ki
j=1 πij = 1 and πij > 0 for j ∈ {1, . . . , k}).

Then under complete sampling, the likelihood of the CEG can be decomposed

into a product of the likelihood of each probability vector, i.e.

p(x|π, C) =
k∏

i=1

pi(xi|πi, C) (3.2)

where π = {π1,π2, . . . ,πk}, and x = {x1, . . . ,xk} is the complete sample data

such that each xi = (xi1, . . . , xikn)
′ is the vector of the sample data of the edges (or

equivalence class of edges under ψu) taken by the units in the sample that start in
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stage ui.

With independence between the units conditional on π (i.e. the units are

exchangeable)

pi(xi | πi, C) =

ki∏
j=1

π
x
(j)
i

ij (3.3)

where x(j)i is the number of units which take the jth edge.

Thus, just as for the analogous situation with BNs, the likelihood of a ran-

dom sample also separates over components of π. With BNs, a common mod-

elling assumption is of local and global independence of the probability parameters

[Spiegelhalter and Lauritzen, 1990]; the corresponding assumption here is that the

parameters π1,π2,. . .,πk of π are all mutually independent a priori. It will then fol-

low, with the separable likelihood, that they will also be independent a posteriori.

If the probabilities πi are a priori assigned a Dirichlet distribution, Dir(αi),

where αi = (αi1, αi2, . . . , αiki)
′, then for values of π where

∑ki
j=1 πij = 1 and πij > 0

for 1 ≤ j ≤ ki, the density of πi, qi(πi|C), can be written

qi(πi|C) =
Γ(αi1 + . . .+ αiki)

Γ(αi1) . . .Γ(αiki)

ki∏
j=1

π
αij−1
ij

where Γ(z) =
∫∞
0 tz−1e−tdt is called the Gamma function. It then follows that

πi|x (= πi|xi) also has a Dirichlet distribution, Dir(α∗
i ), a posteriori, where α∗

i =

(α∗
i1, . . . , α

∗
iki

)′, α∗
ij = αij + x

(j)
i for 1 ≤ j ≤ ki, 1 ≤ i ≤ k.

The marginal likelihood of this model, p(x|C), can be written down exactly

and is a function of the prior and posterior Dirichlet parameters:

p(x|C) =
k∏

i=1

Γ(∑j αij)

Γ(
∑

j α
∗
ij)

ki∏
j=1

Γ(α∗
ij)

Γ(αij)

 (3.4)

The logarithm of the marginal likelihood, a computationally more useful quantity,
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is therefore a linear combination of functions of αij and α∗
ij . Explicitly,

log p(x|C) =
k∑

i=1

[s(αi)− s(α∗
i )] +

k∑
i=1

[t(α∗
i )− t(αi)] (3.5)

where for any vector c = (c1, c2, . . . , cn)
′,

s(c) = logΓ(
n∑

v=1

cv) and t(c) =
n∑

v=1

logΓ(cv) (3.6)

The posterior probability of a CEG C after observing x, q(C|x), can therefore

be calculated using Bayes’ Theorem, given a prior probability q(C), as:

log q(C|x) = log p(x|C) + log q(C) +K (3.7)

for some value K which does not depend on C. This is the score that will be used

when searching over the candidate set of CEGs for the model that best describes

the data.

3.3 A Local Greedy Search Algorithm for finding the

MAP Chain Event Graph

3.3.1 Preliminaries

With log q(C|x) — the log marginal posterior probability of a CEG model C — as a

CEG’s score, searching for the highest-scoring CEG in the set of all candidate models

C becomes equivalent to trying to find the Maximum A Posteriori (MAP) model

[Bernardo and Smith, 1994]. The intuitive approach for searching C — calculating
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log q(C|x) for every C ∈ C and choosing

C∗ := max
C

q(C|x) = max
C

log q(C|x) (3.8)

— is infeasible for any but the most trivial problems. I describe in this section an al-

gorithm for efficiently searching the model space for the MAP CEG by reformulating

the model search problem as a clustering problem.

As mentioned in Section 3.1.2, every CEG that can be formed from a given

event tree can be identified exactly with a partition of the event tree’s nodes into

stages. The coarsest partition C∞ has all nodes with k outgoing edges in the tree

in the same stage uk, for all needed k; the finest partition C0, in contrast, has each

situation in its own stage, except for the trivial cases of those nodes with only one

outgoing edge. Defined this way, the search for the highest-scoring CEG is equivalent

to searching for the highest-scoring clustering of stages.

Various Bayesian clustering algorithms exist [Lau and Green, 2007], including

many involving MCMC [Richardson and Green, 1997]. I show here how to implement

an Bayesian agglomerative hierarchical clustering (AHC) exact algorithm related to

that of Heard et al. [2006]. The AHC algorithm here is a local search algorithm that

begins with the finest partition of the nodes of the underlying ET model (called C0

above and henceforth) and seeks at each step to find the two nodes that will yield

the highest-scoring CEG if combined.

Some optional steps can be taken to simplify the search further, which I

will implement here. The first of these involves the calculation of the scores of the

proposed models in the algorithm. By assuming that the probability distributions

of stages that are formed from the same nodes of the underlying ET are equal in all

CEGs, i.e. pi(xi | πi, C1) = pi(xi | πi, C2) when ui ∈ J(C1), J(C2), it becomes more

efficient to calculate the differences of model scores, i.e. the logarithms of the relevant
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Bayes factors, than to calculate the two individual model scores separately. This is

because if the stagings J(C1) and J(C2) differ only in that stages u1a, u1b ∈ C1 are

combined into u2c ∈ C2, with all other stages unchanged, then the calculation of the

logarithm of their posterior Bayes factor, i.e. the calculation of log q(C1|x)
q(C2|x) , depends

only on the stages involved. Using the notation of Equation (3.6), this is done as

follows.

log q(C1|x)
q(C2|x)

= log q(C1|x)− log q(C2|x) (3.9)

= log q(C1)− log q(C2) + log p(x|C1)− log p(x|C2) (3.10)

= log q(C1)− log q(C2) +
∑
i

[s(α1i)− s(α∗
1i)] +

∑
i

[t(α∗
1i)− t(α1i)]

−
∑
j

[
s(α2j)− s(α∗

2j)
]
−
∑
j

[
t(α∗

2j)− t(α2j)
]

(3.11)

= log q(C1)− log q(C2) + s(α1a)− s(α∗
1a) + t(α∗

1a)− t(α1a)

+ s(α1b)− s(α∗
1b) + t(α∗

1b)− t(α1b)

− s(α2c) + s(α∗
2c)− t(α∗

2c) + t(α2c)

(3.12)

where αab is the vector of hyperparameters of the Dirichlet distribution of the pa-

rameter prior for stage ub of CEG Ca, a = 1, 2.

Using the trivial result that for any three distinct CEGs C1, C2, C3 ∈ C

log q(C3|x)− log q(C2|x) = [log q(C3|x)− log q(C1|x)]− [log q(C2|x)− log q(C1|x)] ,

it can be seen that comparing two proposal CEGs (here C2 and C3) from the current

CEG (here C1) can be done equivalently by comparing their individual log Bayes

factors against the current CEG with each other, which as shown above requires
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fewer calculations.

The calculation of the score for each CEG C, as shown by Equation (3.7),

shows that it is formed of two components: the prior probability of the CEG being

the true model and the marginal likelihood of the data. These must therefore be

set before the algorithm can be run, and it is here that the other simplifications are

made.

3.3.2 The prior over the CEG space

For any practical problem C, the set of all possible CEGs for a given ET, is likely

to be a very large set, making setting a value for q(C) for all C ∈ C an intractable

task. An obvious way to set a non-informative or exploratory prior is to choose the

uniform prior, so that q(C) = 1
|C| . This has the advantages of being simple to set

and of eliminating the log q(C1)− log q(C2) term in Equation (3.12).

A more sophisticated approach is to consider which potential clusters are

more or less likely a priori, according to structural or causal beliefs, and to exploit the

modular nature of CEGs by stating that the prior log Bayes factor of a CEG relative

to C0 is the sum of the prior log Bayes factors of the individual clusters relative to

their components completely unclustered, and that these priors are modular across

CEGs. In other words, the prior probability of every stage is independent of which

other stages are in the CEG. This approach makes it simple to elicit priors over C

from a lay expert, by requiring the elicitation only of the prior probability of each

possible stage.

A particular computational benefit of this approach is when the prior Bayes

factor of any CEG C with C0 is believed to be zero, because one or more of its

clusters is considered to be impossible. This is equivalent in the algorithm to not

including the CEG in its search at all, as though it was never in C in the first place,
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with the obvious simplification of the search following.

3.3.3 The prior over the parameter space

Just as when attempting to set q(C), the size of most CEGs in practical situations

leads to intractability of setting p(x|C) for each CEG C individually. However, the

task is again made possible by exploiting the structure of a CEG with judicious

modelling assumptions.

Assuming independence between the likelihoods of the stages for every CEG,

so that p(x|π, C) is as determined by Equation (3.3), and the fact that p(x|C) =∫
p(x|π, C)p(π|C)dπ, it is clear that to set the marginal likelihood for each CEG

is equivalent to setting the prior over the CEG’s parameters, i.e. setting p(π|C)

for each C. With the two further structural assumptions that the stage priors are

independent for all CEGs (so that p(π|C) =
∏k

i=1 p(πi|C)) and that equivalent

stages in different CEGs have the same prior distributions on their probability vec-

tors (i.e. p(πi|C1) = p(πi|C2) for all C1, C2 ∈ C) it can be seen that the problem

of setting p(x|π, C) is reduced to setting the parameter priors of each non-trivial

floret in C0 (p(πi|C0), i = 1, . . . , k) and the parameter priors of every stage that can

be formed from the stages of C0.

The usual prior put on the probability parameters of finite discrete BNs is the

product Dirichlet distribution. In [Geiger and Heckerman, 1997] the surprising result

was found that a product Dirichlet prior is inevitable if local and global independence

are assumed to hold over all Markov equivalent BNs of at least two variables. In the

following I will show that a new characterisation can be made for CEGs given the

assumptions in the previous paragraph. I will first show that the floret parameters

in C0 must have Dirichlet priors under certain conditions, and then that all CEGs

formed by clustering the florets in C0 must also have Dirichlet priors on the stage
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parameters with hyperparameters that are functions of the hyperparameters of the

priors under C0 of the constituent situations. One such characterisation of C0 is

given by Theorem 24 using a concept of “rates” of units along the paths. By rates

here I mean the relative expected probabilities of the paths as well as the overall

strength of belief in those probabilities.

Theorem 24. If it is assumed a priori that the rates at which units take the root-to-

leaf paths in C0 are independent (“path independence”) then the non-trivial florets

of C0 have Dirichlet priors on their probability vectors.

The proof of Theorem 24 is based on well-known results concerning properties

of the Gamma and Dirichlet distributions, which I review below. I then re-state and

prove Theorem 24 as Theorem 28.

Lemma 25. Let γj ∼ Gamma(αj , β), j = 1, . . . , n where αj > 0 for j ∈ {1, . . . , n},

β > 0 and assume ⊥⊥
i∈{1...n}

γi. Furthermore, let θj =
γj
γ for j ∈ {1, . . . , n}, where

γ =
∑n

i=1 γi.

Then θ := (θi)i={1,...,n} ∼ Dir (α1, . . . , αn).

Proof. Kotz et al. [2000].

Lemma 26. Let I[j] ⊆ {1, . . . , n}, γ(I[j]) =
∑

i∈I[j] γi and θ(I[j]) =
∑

i∈I[j] θi.

Then for any partition I = {I[1], . . . , I[k]} of {1, . . . , n},

θ(I) = (θ(I[1]), θ(I[2]), . . . , θ(I[k])) ∼ Dir (α(I[1]), . . . , α(I[k]))

where α(I[j]) =
∑

i∈I[j] αi.

Proof. For any I[j] ⊆ {1, . . . , n},

1. ⊥⊥
i∈I[j]

γi
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2. γ(I[j]) ∼ Gamma (α(I[j]), β) (a well-known result; see, for example, Weath-

erburn [1949])

3. for any partition I = {I[1], . . . , I[k]} of {1, . . . , n}, ⊥⊥
i∈{1,...,k}

γ(I[j])

Therefore, as

θ(I[j]) =
∑
i∈I[j]

θi =
∑
i∈I[j]

γi
γ

=
γ(I[j])

γ
, j = 1, . . . , k (3.13)

and γ =
∑k

i=1 γ(I[i]), the result follows from Lemma 25.

Lemma 27. For any I[j] ⊆ {1, . . . , n} where |I[j]| ≥ 2,

θI[j] =

(
θi

θ(I[j])

)
i∈I[j]

∼ Dir
(
(αi)i∈I[j]

)
Proof. Wilks [1962].

Theorem 28. Let the rates of units along the root-to-leaf paths λi ∈ X, i ∈

{1, . . . , |X|} of an event tree T have independent Gamma distributions with the same

scale parameter, i.e. γi = γ(λi) ∼ Gamma(αi, β), i ∈ {1, . . . , |X|} and ⊥⊥
i∈{1,...,|X|}

γi.

Then the distribution on each floret in the tree will be Dirichlet.

Proof. Consider a floret F with root node v and edge set {e1, . . . , el}. The rate for

each edge ei, γ(ei), is equal to

γ(ei) =
∑

λj∈Λ(ei)

γ(λj) (3.14)

where Λ(ei) is the set of root-to-leaf paths that contain ei, so that γ(ei) ∼ Gamma(α(ei), β)

when ⊥⊥
i∈{1,...,l}

γ(ei) as proven by Weatherburn [1949].
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Let I = {I[F ], I[F ]} partition X, where I[F ] = {Λ(e1), . . . ,Λ(el)} and I[F ] =

I \ I[F ]. Then by Lemma 27, the probability vector on F is Dirichlet, where

θI[F ] ∼ Dir
(
(α(ei))i∈{1,...,l}

)

p(πi|C0) is thus entirely determined by rates γ(λ) on the root-to-leaf paths

λ ∈ Λ(v0, C0) of C0. This is similar to the “equivalent sample sizes” method of

assessing prior uncertainty of Dirichlet hyperparameters in BNs as discussed in Sec-

tion 2 of [Heckerman, 1999]. This treats the parameters of the prior as having been

learnt from hypothetical observed data and an uninformative prior [Steck, 2008].

Here, however, the equivalent sample size is across the entire joint distribution of

the model, while in [Heckerman, 1999], [Steck, 2008] and the rest of the BN search

literature it applies to each conditional probability distribution separately. Lemma

26 shows that the parameter of the Dirichlet distribution of p(πi|C0) corresponding

to each edge equals the sum of the rates of the root-to-leaf paths passing through

that edge.

Another way to characterise all non-trivial situations in C0 as having Dirich-

let priors on their parameter spaces is to use the characterisation of the Dirichlet

distribution first proven by Geiger and Heckerman [1997], repeated here as Theorem

29.

Theorem 29. Let {θij}, 1 ≤ i ≤ k, 1 ≤ j ≤ n,
∑

ij θij = 1, where k and n are

integers greater than 1, be positive random variables having a strictly positive pdf

f({θij}). Define θi. =
∑n

j=1 θij, θI. = {θi.}k−1
i=1 , θj|i = θij/

∑
j θij, and θJ |i =

{θj|i}n−1
j=1 .

Then if {θI., θJ |1, . . . , θJ |k} are mutually independent, f({θij}) is Dirichlet.
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Proof. Theorem 2 of Geiger and Heckerman [Geiger and Heckerman, 1997].

This theorem is used for CEGs as follows.

Corollary 30. If C0 has a composite number m of root-to-leaf paths and all Markov

equivalent CEGs have independent floret distributions then the vector of probabilities

on the root-to-leaf paths of C0 must have a Dirichlet prior. This means in particular

that, from the properties of the Dirichlet distribution, the floret of each situation

with at least two outgoing edges has a Dirichlet prior on its edges.

Proof. Construct an event tree C ′
0 with m root-to-leaf paths, where the floret of

the root node v′0 has k edges and each of the florets extending from the children of

v′0 have n edges terminating in leaf nodes, where m = kn, k ≥ 2, n ≥ 2. This will

always be possible with a composite m. C ′
0 describes the same atomic events as C0

with a different decomposition.

Let the random variable associated with the root floret of C ′
0 beX, and let the

random variable associated with each of the other florets be Y |X = i, i = 1, . . . , k.

Let θij = P (X = i, Y = j). Then by the definition of event trees, P (θij > 0) > 0 for

1 ≤ i ≤ k, 1 ≤ j ≤ n, and
∑
θij = 1. By the notation of Theorem 29, θi. = P (X = i)

and θj|i = P (Y = j|X = i).

By hypothesis the floret distributions of C ′
0 are independent. Therefore the

condition of Theorem 29 holds and hence f(θij) is Dirichlet. From the equivalence

of the atomic events, the probability distribution over the root-to-leaf path prob-

abilities of C0 is also Dirichlet, and so by Lemma 27, all non-trivial florets of C0

therefore have Dirichlet priors on their probability vectors.

To show that the stage parameters of all CEGs in C have Dirichlet priors

when assuming stage prior equivalence, an inductive approach will be taken. Because

of the assumption of consistency – that two identically composed stages in different
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CEGs have identical priors on their parameter space – then for any given CEG

C whose stages all have independent Dirichlet priors on their parameters spaces,

another CEG C∗ formed by clustering two stages u1c, u2c from C into one stage uc∗

will have independent Dirichlet priors on all its stages apart from uc∗ . It is thus

only required to show that πc∗ has a Dirichlet prior. I prove this result for a class

of CEGs called regular CEGs.

Definition 31. A stage u is regular if and only if every path λ ∈ Λ(v0, C) contains

either one situation in u or none of the situations in u.

Definition 32. A CEG is regular if and only if every stage u ∈ J(C) is regular.

Theorem 33. Let C be a regular CEG, and let C∗ be the CEG that is formed from

C by setting two of its stages u1c and u2c as being in the same stage uc∗, where uc∗

is a regular stage, with all other attributes of the CEG unchanged from C.

If all stages in C have Dirichlet priors, then assuming that equal stages in

different CEGs have equivalent priors, all stages in C∗ have Dirichlet priors.

Proof. Without loss of generality, let all situations in u1c and u2c have s children

each, and let the total number of situations in u1c and u2c be r. Thus there are

r situations in uc∗ , each with s children. By the assumption of prior consistency

across stages, all other stages in C∗ have Dirichlet priors on their parameter spaces,

so it is only required to prove that uc∗ also has a Dirichlet prior.

Consider the CEG C ′ formed as follows: Let the root node of C ′, v0, have 2

children, v1 and v′. Let v′ be a leaf node, and let v1 have r children, {v1(1), . . . , v1(r)},

which are equivalent to the situations in uc∗ , including the property that they are

in the same stage uc′ . Lastly, let the children of {v1(1), . . . , v1(r)}, written as

{v1(i, j) : i = 1, . . . , r, j = 1, . . . , s}, be leaf nodes in C ′.

By construction, the prior for uc′ is the same as that for uc∗ .
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Now construct another CEG C∗′ from C ′ by reversing the order of the stages

v1 and uc′ . The new CEG has root node v0 with the same distribution as v0 ∈ C ′.

v0 now has two children v′ – the same as before – and v2, which has s children

{v2(1), . . . , v2(s)} in the same stage. Each node v2(i), i = 1, . . . , s has r children

v2(i, 1), . . . , v2(i, r), all of which are leaf nodes.

The two CEGs C∗′ and C ′ describe equivalent probability distributions, as

it is clear that P (v1(i, j)) = P (v2(j, i)), i = 1, . . . , r, j = 1, . . . , s, where P (v1(i, j))

is the probability of reaching the leaf node v1(i, j) from the root node under C1,

and similarly for v2(j, i). The probabilities on the floret of v2 are thus equal to

the probabilities of the situations in the stage of uc′ , and hence uc∗ . Because v2 is

a stage with only one situation, Theorem 24 implies that it has a Dirichlet prior.

Therefore uc∗ has a Dirichlet prior.

An alternative justification for assigning a Dirichlet prior to any stage that

is formed by clustering situations with Dirichlet priors on their probability distribu-

tions which does not depend on assuming equivalency of probability distributions

between CEGs derived from different event trees can be obtained by assuming a

property analogous to that of “parameter modularity” for BNs [Heckerman, 1995].

This property states that the distribution over structures common to two CEGs

should be identical. It is defined in the CEG context as follows.

Definition 34. Let u be a stage in a CEG C composed of the situations v1, . . . , vn

from C0, each of which has m children vi1, . . . , vim, i = 1, . . . , n such that vij are the

same colour for all i for each j. Then u has the property of margin equivalency
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if

πuj = P (v1j or v2j or . . . or vnj |v1 or v2 or . . . or vn) (3.15)

=

∑n
i=1 P (vij)∑n
i=1 P (vi)

(3.16)

is the same for both C and C0 for j = 1, . . . ,m.

Definition 35. C has margin equivalency if all of its stages have margin equivalency.

The alternative characterisation can then be stated and proven as follows.

Theorem 36. Let uc be a stage as defined in Definition 34 with m ≥ 2. Then

assuming independent priors between the situations for the associated finest-partition

CEG C0 of C, πvi ∼ Dir(αi) where αi = (αi1, . . . , αim) for each vi, i = 1, . . . , n.

Furthermore, for both C and C0, πu ∼ Dir(αu), where αu = (
∑

i αi1, . . . ,
∑

i αim).

Proof. From Theorem 28 or Corollary 30, every non-trivial floret in C0 has a Dirich-

let prior on its edges, which includes in this case the situations v1, . . . , vn.

Let γij = γπij for i = 1, . . . , n, j = 1, . . . ,m where γ ∼ Gamma(
∑

i,j αij , β)

and πij = P (vi = vij), where vij ∈ ch(vi). Then it is well-known that γij ∼

Gamma(αij , β) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m for some β > 0 and that ⊥⊥ j γij .

As ⊥⊥ i πvi , ⊥⊥ ij γij . By Lemma 26 therefore, where I[j] there is the set of edges

{eij = e(vi, vij), i = 1, . . . , n} for j = 1, . . . ,m,

πu ∼ Dir(
∑
i

αi1, . . . ,
∑
i

αim). (3.17)

By margin equivalency, πu must be set the same way for C.

Note that the posterior of πu for a stage u that is composed of the C0

situations v1, . . . , vn is thus πu | x ∼ Dir(α∗
u) where α∗

u = αu + xu =
∑n

i=1αvi +
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∑n
i=1 xvi , where αvi is the vector of hyperparameters of the distribution of θvi under

C0 and xvi is the vector of counts on the floret of vi. Equation (3.12), therefore,

becomes

log q(C1|x)
q(C2|x)

= log q(C1)− log q(C2) + s(α1a)− s(α∗
1a) + t(α∗

1a)− t(α1a)

+ s(α1b)− s(α∗
1b) + t(α∗

1b)− t(α1b)− s(α1a +α1b)

+ s(α∗
1a +α∗

1b)− t(α∗
1a +α∗

1b) + t(α1a +α1b) (3.18)

Setting priors on the paths rather than the florets also ensures that the

distribution of the probabilities of the atomic events remain the same under different

tree representations of the event space.

The path priors would in the first instance be set based on expert knowledge

of the system at hand, possibly using the “equivalent sample size” heuristic to aid

elicitation. In problems where there is no strong prior information, as with the anal-

ogous Dirichlet model selection issues for Bayesian networks [Steck and Jaakkola,

2003; Silander et al., 2007], the performance of the selection procedure is rather

sensitive to the prior value put on each of the components of α.

Within the context of the types of problem discussed here it seems natural in

the absence of information to the contrary to set all the components of this vector

equal to each other a priori. This implies that for the model with no stages, C0,

we a priori believe that all the atoms — i.e. all possible root to leaf paths — are

equally probable, implying that were a model with no structure true then we have

no prior information to expect one path to be more likely than another.

Even if we choose to set these all equal, the equivalent sample size parameter

α. , 1Tα — the sum of the rate parameters — has an important role in determining
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the performance of the selection procedure. One default is to let α be a vector of 1s.

This ensures both a uniform prior over all possible combinations of path probabilities

and equal expected path probabilities.

3.3.4 The AHC algorithm

The algorithm thus proceeds as follows:

1. Starting with the initial ET model, form the CEG C0 with the finest possible

partition, where all leaf nodes are placed in the terminal stage u∞ and all

nodes with only one emanating edge are placed in the same stage. Calculate

log q(C0|x) using (3.7).

2. For each pair of situations vi, vj ∈ C0 with the same number of edges, calculate

log q(C∗
1 |x)

q(C0|x) where C∗
1 is the CEG formed by having vi, vj in the same stage and

keeping all others in their own stage; do not calculate if q(C∗
1 ) = 0.

3. Let C1 = maxC∗
1
(log q(C∗

1 |x)
q(C0|x) ).

4. Now calculate log q(C∗
2 |x)

q(C1|x) for each CEG C∗
2 that can be formed from a pair of

stages in C1 except where q(C∗
2 ) = 0 a priori, and record C2 = max(q(C∗

2 |x)).

5. Continue for C3, C4 and so on until the coarsest partition C∞ has been reached.

6. Select the CEG C amongst C0, · · · , C∞ that has the highest score q(C | x) as

the MAP model.

Note that the algorithm can also be run backwards, starting from C∞ and

splitting one cluster in two at each step. This approach has the advantage of making

the identification of positions in the MAP model easier. Note the similarity in that

case to backward stepwise elimination of regression models which discards a variable

at each step based on model selection criteria such as BIC [Hocking, 1976].
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3.4 A weighted MAX-SAT algorithm for learning Chain

Event Graphs

There are two potential and related flaws with using the AHC algorithm of the last

section: being a greedy search, it might find a local maximum in the CEG space,

but not necessarily the global MAP CEG; and once it decides that two stages should

be combined, it does not reverse this decision.

An alternative way to search for the MAP CEG is to reformulate the en-

deavour as a weighted Maximum Satisfiability (MAX-SAT) problem. This was a

successful strategy for searching for MAP BNs [Cussens, 2008] and partitions [Liv-

erani et al., 2010]. Algorithms for solving MAX-SAT problems, weighted and un-

weighted, have been worked on for decades [Hansen and Jaumard, 1990], and many

are available pre-programmed in the UBCSAT package [Tompkins and Hoos, 2005].

By reformulating the MAP CEG search problem as a weighted MAX-SAT problem

it is possible to utilise the algorithm-designing expertise of generations of computer

scientists.

Weighted MAX-SAT is a modified form of the original SAT problem. The

SAT problem has been described as follows in [Hansen and Jaumard, 1990]:

Given a collection C of m clauses involving n logical variables [which

are also called atoms, the name I adopt in the following], x1, . . . , xn,

determine whether or not there exists a truth assignment for C such

that all clauses are simultaneously satisfied.

where a clause is a statement in logic consisting of the conjunction and disjunction

of boolean variables (or their negative), and a truth assignment is a function that

sets the truth values of atoms.

The MAX-SAT problem asks for the assignment in the same situation that
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satisfies the maximum number of clauses. The weighted MAX-SAT problem then

asks what assignment leads to the minimum sum of weights for clauses that are

not satisfied by it, where each clause is now given a weight. A well-known result

in propositional logic is that every collection of clauses can be transformed into

conjunctive normal form (CNF), i.e. each clause is disjunctive (i.e. a pure OR state-

ment). As the algorithms in the UBCSAT package demand that the clauses are

given in CNF form, I will ensure in the following that the clauses are disjunctive.

Recall that under the assumptions detailed earlier, the log posterior proba-

bility of a CEG C, which the MAP CEG maximises over the set of possible CEGs

C, is as given in equation (3.7),

log q(C|x) = log p(x|C) + log q(C) +K (3.19)

where K is a constant relative to C. Recall also that the log of the marginal

likelihood, log p(x|C), can be written as the sum of functions of its stage hyperpa-

rameters.

log p(x|C) =
k∑

i=1

[s(αi)− s(α∗
i ) + t(α∗

i )− t(αi)], (3.20)

That log p(x|C) is a sum of functions of its stages and that every stage’s contri-

bution would have the same value in any other possible staging is crucial for the

representation of the search for the MAP CEG as a weighted MAX-SAT problem.

If the logarithm of the prior p(C) is either constant relative to C — which

would imply all possible C are equally probable — or also obeys these two conditions,

then the search can be represented as a weighted MAX-SAT problem. An example of

a suitable prior is the product prior for partitions given in [Crowley, 1997; McCullagh

and Yang, 2006; Booth et al., 2008; Liverani et al., 2010]. Adapted for CEGs it takes
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the form

p(C) =
Γ(λ)λ|C|

Γ(|C0|+ λ)

∏
u∈C

Γ(|u|) (3.21)

where λ > 0 is a hyperparameter not related to C, as its logarithm is separable over

the stages of C:

log p(C) = logΓ(λ)− logΓ(|C0|+ λ) +
∑
u∈C

(logΓ(|u|) + 1) (3.22)

Therefore logP (C | x) is the sum of functions of the component stages of C and

the value of those functions does not change in other CEGs.

The weighted MAX-SAT representation of the search for the MAP CEG can

now be set up as follows.

The weighted MAX-SAT version of the search for a MAP CEG treats every

possible stage that can be formed from C0 — and therefore every stage u that can

be part of some C ∈ C — as an atom in a propositional logic. Each atom can be

true or false, representing whether the associated stage is part of the MAP CEG or

not. The clauses which restrict the set of possible assignments of truth values are

then chosen as follows, in order to be both disjunctive as required by the conjunctive

normal form and reflective of the CEG structure:

1. As stages which share situations cannot both be “true”, there will be many

clauses for every situation v ∈ S of the form

ui ∨ uj (3.23)

where ∨ indicates logical OR and x indicates logical NOT, and where ui∩uj ∋

v. There will be one of these for each pair of stages that overlaps. Each of

these clauses ensures that at most only one of the constituent stages is chosen,
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because each one is equivalent, by de Morgan’s laws, to

ui ∧ uj (3.24)

where ∧ indicates logical AND.

2. Clauses are also needed to ensure that for each situation one stage containing

it is considered “true”. Thus for each situation vi ∈ S(T ) there will be exactly

one clause of the form

ui,1 ∨ ui,2 ∨ · · · ∨ ui,n(i) (3.25)

where {ui,j : 1 ≤ j ≤ n(i)} = {u ⊆ S : vi ∈ u}.

3. Lastly, each stage has its own clause (known as a fact). For reasons that will

be explained in the following, each clause will be in the form ui, i.e. the stage

not being part of the MAP CEG.

Clauses of type 1 and 2 above are hard clauses. In theory they should be given

infinite weights to ensure they are satisfied. In practice this is not implementable

with the UBCSAT package and so the weights will be extremely large for the same

effect.

The clauses of type 3 are the soft clauses with finite weights, where the

weights are a fixed linear function of the associated stage scores. As contributions

to the overall weight are only given by clauses not satisfied, clauses of type 3 are in

the form ui, so that if ui is assigned true then its weight is contributed.

As weighted MAX-SAT aims to minimise the overall weight, while MAP

search aims to maximise posterior probability, it is sufficient, if the contribution

made by a stage u to the overall score of a CEG equals s(u), that the weight of the

associated clause equals −s(u).
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The optimal solution to the weighted MAX-SAT problem described above is

now the MAP CEG.

There are two disadvantages to finding the MAP CEG by solving the asso-

ciated weighted MAX-SAT problem rather than using the AHC algorithm directly.

First, especially for large trees, there is no guarantee that a valid staging will

be found within a short period of time, let along the optimal one. The algorithm

will search over many solutions which are not valid.

Second, and more prosaically, the UBCSAT package requires all clauses and

their weights to be given before starting the search for an optimal assignment,

which means that the stage scores must be calculated for all possible stages before

the algorithm is run. For a reasonably large tree this problem can be attenuated,

after judiciously ensuring that all subjectively impossible stages are not included in

the problem (e.g. by assuming the CEG must be hierarchical), by only considering

stages of a certain maximum size. While this would be inappropriate for some

partition searches (e.g. in [Liverani et al., 2010], which was motivated by clustering

genes), it is not always unsuitable for CEGs. In the educational example given in

Chapter 1, for example, it might not make sense for more than a few categories of

students to perform equivalently, even on the same exam.

In Chapter 6 I will compare the performances of the AHC and weighted

MAX-SAT approaches in searching for a MAP CEG with real data of students’

exam marks. Before that, I will spend the next two chapters on discussing how to

extend CEG learning to a dynamic context.
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Chapter 4

Dynamic graphical models

Data can often be time-indexed, with the time measured continuously or discretely.

When the time points at which the data is observed are discrete and equally spaced

then the data are said to be a time series. In this chapter I briefly review various

models for time series data, focusing in particular on graphical models for time series

data, which are often called dynamic graphical models.

4.1 Introduction to modelling time series

Time series data X can be partitioned by the time points at which they were

observed. X can then be written as separate data sets X1,X2, · · · ,Xτ , where each

subscript denotes the associated time point. I use the conventional notation Xt

henceforth to mean {X1,X2, · · · ,Xt}.

A stationary process is a time series where the joint distribution of some

of its quantities does not change when shifted in time. This modelling assumption

implies certain exchangeability conditions in the data, making the absolute time

index less relevant. The formal definition follows.
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Definition 37. A time series X is stationary when

P (Xt1 ∈ At1 , · · · , Xtk ∈ Atk) = P (Xt1+s ∈ At1 , · · · , Xtk+s ∈ Atk), (4.1)

for all possible values k, s and t1 · · · tk.

I am interested in this thesis in highly multi-dimensional non-stationary pro-

cesses, typically longitudinal studies of different cohorts. It is only possible to assume

that the underlying system process at a particular time point has more in common

with its nearer past than its distant past.

One way of modelling non-stationary time series is state-space modelling.

This involves modelling observations in terms of an underlying stochastic process.

This separation of the observable and the latent processes allows for a very general

and hence powerful modelling technique. An excellent introduction to this topic is

Durbin and Koopman [2000].

Following the compelling arguments of Dawid [1984], I am only interested in

the statistical model’s ability to predict (or forecast) observations well, and not in

inferring values of underlying parameters per se.

4.2 Forecasting with state-space models

State-space models define a latent process S1, · · · , Sτ and the relations between

these unobserved variables and the observed time series X1, · · · ,Xτ . Usually Xt

is conditionally independent of all other variables, observables and unobservables,

conditional on St.

In the prequential approach of Dawid [1984] all that is required from a statis-

tical model of a time series is the quantity P (Xt | Xt−1) for all t. In the state-space
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model setting this translates, given the above, to

P (Xt | Xt−1) =

∫
P (Xt | St)P (St | Xt−1)dSt (4.2)

P (St | Xt−1), in turn, can be written as

P (St | Xt−1) =

∫
P (St | St−1)P (St−1 | Xt−1)dSt−1 (4.3)

if it is assumed that St ⊥⊥ Xt−1 | St−1.

P (St−1 | Xt−1) can be calculated from Bayes’ theorem as

P (St−1 | Xt−1) ∝ P (Xt−1 | St−1)P (St−1 | Xt−2) (4.4)

It can be seen that state-space models admit a recursive definition which

allows “on-line” prediction. At time t, P (St−1 | Xt−1) is available. P (St | Xt−1)

is then obtained using P (St | St−1) with equation (4.3). Then P (Xt | Xt−1) can

be calculated using P (Xt | St). Bayes’ theorem gives P (St | Xt) (this step is called

filtering in some time series literature) and the process begins again.

4.3 Dynamic linear models

Dynamic linear models (DLMs) [Harrison and Stevens, 1976; West and Harrison,

1997; Petris et al., 2009] are the classic state-space model. They are defined as

follows.

Definition 38. A dynamic linear model consists of time vectors of observations

X and state parameters θ such that at time t = 0

θ0 ∼ N(m0, σ
2) (4.5)
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and at time t ≥ 1

Xt = Ftθt + vt (4.6)

θt = Gtθt−1 + wt (4.7)

where Ft and Gt are known matrices of appropriate order and vt, wt are indepen-

dent multivariate-Normal variables with mean zero and variances Vt,Wt respectively.

Equation (4.6) is conventionally called the observation equation while equation

(4.7) is the state equation or system equation.

The DLM is therefore a state-space model with the added assumptions of

linearity and Gaussianity. This allows for exact, conjugate updating of distributions

when applying the recursive procedure described above, as originally exploited by

the Kalman filter [Kalman, 1960]. When either linearity or Gaussianity are not

plausible, conjugacy is often hard to retain. I will introduce in the next chapter

a dynamic graphical model that allows for complex multi-variate distributions at

each time point that also retains conjugacy. First I discuss some general time series

modelling tools that will help in this task.

4.3.1 Multi-process Modelling

Even if a process is determined to be accurately represented by, say, a DLM, it is

natural to have uncertainty about the underlying parameter process, e.g. because of

knowledge of regime change, or external intervention [West and Harrison, 1989]. In

the DLM context this corresponds to being unsure as to the exact nature of F and

G in the process equations. This uncertainty can itself be modelled by introducing

a new level to the standard state-space model class given above. West and Harrison

[1997] call this multi-process modelling [Harrison and Stevens, 1976] in the
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DLM context, and is also known in the literature as switching state-space models

[Frühwirth-Schnatter, 2006].

In the West-Harrison terminology, multi-process models of the first class

apply when for all t there is some M which determines the parameter values for the

whole process — in the DLM this corresponds to uncertainty about F and G — but

it is not known which value of M from a possible set M is the true one.

This can be transparently dealt with under the Bayesian paradigm as follows.

A prior distribution P (M) over M is specified before the first observations. Predic-

tions for each Xt are calculated as a weighted average over the possible values of M

(shown here for a finite M) conditional on observations up to time t− 1 inclusive:

P (Xt | Xt−1) =
∑

M∈M
P (Xt |M)P (M | Xt−1) (4.8)

=
∑

M∈M

∫
Θt

P (Xt | θt)P (θt |M)P (M | Xt−1)dθt (4.9)

It can be seen that the usual assumption is that Xt is independent of M given

θt; in other words, M is purely a description of the latent process, which in turns

determines the distribution of the observable process, as before.

The distribution of M is then updated after each observation in the usual

way, similarly to the filtering method described above:

P (M | Xt) ∝ P (M | Xt−1)P (Xt |M) (4.10)

P (M | Xt−1) was obtained after observing Xt−1, and P (Xt | M) was calculated in

equation (4.8).

Where each process is a DLM, the multi-process model of the first class is,

of course, not a DLM itself, but rather a mixture of DLMs.
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A usually more realistic assumption is that at each time t a different value of

M holds. The dependence between the values of M at different times must then be

modelled explicitly, whether the values at different times are entirely independent

or highly correlated. This was named by West and Harrison [1997] a multi-process

model of the second class. It is clear that this class includes multi-process models

of the first class as a special case.

Now the prediction formula is updated in the following way:

P (Xt | Xt−1) =
∑

M t−1∈Mt−1

∑
Mt∈M

P (Xt |Mt)P (Mt |M t−1, Xt−1)P (M t−1 | Xt−1)

(4.11)

=
∑

M t−1∈Mt−1

∑
Mt∈M

∫
Θt

P (Xt | θt)P (θt |Mt)P (Mt | Xt−1,M t−1)P (M t−1 | Xt−1)dθt

(4.12)

While there are is obviously a large class of possible specifications for P (Mt |

Xt−1,M t−1), the three “practically important possibilities” recommended by West

and Harrison [1997] are as follows:

1. Fixed model probabilities, such that

P (Mt | Xt−1,M t−1) = π(Mt) for all t ≥ 1 (4.13)

Here one needs to only specify one prior over M. This prior remains fixed

through time and is not changed by observations.

2. First-order Markov probabilities, where fixed transition probabilities between

the models

π(M |M ′) = P (Mt =M |Mt−1 =M ′) (4.14)
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are specified a priori for all M,M ′ ∈ M, so that

P (Mt | Xt−1,M t−1) =
∑

M ′∈M
π(M |M ′)P (Mt−1 =M ′ | Xt−1) (4.15)

Some initial prior distribution over M would need to be set. These Markov

transition probabilities would also not change throughout the process.

3. Higher-order Markov probabilities, where the probabilities of Mt additionally

depend on the values of M at t− 2, t− 3, etc. as well as t− 1.

It should be clear that multi-process models of the second class are more

complicated than those of the first class with the benefit of allowing flexibility in

the models to changing circumstances in the system.

In the next chapter I will introduce a multi-process model where at each

time point Mt represents a possible underlying CEG, allowing for far more compli-

cated systems to be modelled than is possible with DLMs but nonetheless retaining

conjugacy.

4.4 Steady model

Any state-space model, as shown in Section 4.2, can be used to give P (XT ) because

T∏
t=1

P (Xt | Xt−1)P (X1), (4.16)

obtaining each P (Xt | Xt−1) by integrating out St from P (Xt | St)P (St | Xt−1).

With P (Xt | St) being given explicitly by the state-space model, there is only a

need to specify P (St | Xt−1) in general. One way to do so is as a function of

P (St−1 | Xt−1), which can itself be calculated using Bayes theorem applied to
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P (St−1 | Xt−2) and P (Xt−1 | St−1), the former being a function of P (St−2 | Xt−2),

and so on.

In the case of the DLM, the system equation (4.7)

θt = Gtθt−1 + wt (4.17)

does this, because equation (4.7) is true conditional on all possible values of Xt−1.

This clearly generalises to a possible strategy for all state-space models: assuming

P (St | St−1) = P (St | St−1, Xt−1) (4.18)

for all Xt−1 means that

P (St | Xt−1) =

∫
St−1

P (St | St−1)P (St−1 | Xt−1)dSt−1 (4.19)

It should be clear, however, that there are some disadvantages to this ap-

proach.

First, setting P (St | St−1) which holds for all Xt−1 is over-specification from

a forecasting perspective, because we’re only interested in how P (St | Xt−1) relates

to P (St−1 | Xt−1) for the Xt−1 actually observed.

Second, as has already been noted, setting P (St | St−1) which is invariant

to Xt−1 means that we learn nothing from the data about the latent process. The

prior belief put into the model endures, and any inferences will be sensitive to this

belief.

Third, when the state-space model is either non-Gaussian or non-linear a

loss of conjugacy of the parameters almost always follows, leading to a reliance on

numerical methods and an unfortunate subsequent loss of speed or precision.
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Therefore, it is worth trying an alternative approach. One that I will utilise

is the power steady model [Smith, 1979, 1981, 1992], which I will refer to here simply

as the steady model. This simply states that, letting pt(St | Xt−1) be the probability

density function (pdf) of St | Xt−1 and p∗t−1(St−1 | Xt−1) the pdf of St−1 | Xt−1,

pt(St | Xt−1) ∝
{
p∗t−1(St−1 | Xt−1)

}k (4.20)

for some value of 0 < k ≤ 1 where the constant of proportionality is uniquely

determined to ensure pt(St | Xt−1) is a density. The reciprocal of k is sometimes

called the temperature as it plays a similar role in physical models of gas diffusion.

A similar technique used for ensuring good mixing when carrying out MCMC is

called simulated annealing [Geyer and Thompson, 1995].

There are a number of justifications for the power steady model quite apart

from its simplicity.

First, it satisfies some intuitive common modelling assumptions, and can

be proven to do so in a formal way. These intuitive assumptions are, in decision

theoretic terms, that (as described in [Smith, 1979]):

1. decisions should not change between time points in the absence of further

information

2. the associated loss from making the decision should not decrease between time

points

It can be proven that for a step-loss utility function, the power steady model satisfies

the above criteria, and moreover is characterised by them if we also demand that

truncating the distribution should leave unaffected the density in the new support

except for a new constant of proportionality.

Second, when the transform (4.20) is applied to any multivariate distribution
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then all of its conditional independences are retained, and in many cases the distri-

butional family is also left intact. The former assertion can easily be shown: if St

is a vector of univariate parameters (S
(1)
t , · · · , S(n)

t ), with conditional independence

relationships reflected in the factorisation of p(St | Xt) (as described in Section 2.2)

p(St | Xt) =

n∏
i=1

p(S
(i)
t | Q(i)

t , Xt) (4.21)

where Q(i)
t is the minimal sufficient subset of (S(1)

t , · · · , S(i−1)
t ) to make the above

equation accurate (and obviously with Q
(1)
t = ∅), then applying the power steady

transform will yield

(
p(St | Xt)

)k
=

n∏
i=1

(
p(S

(i)
t | Q(i)

t , Xt)
)k
, (4.22)

making clear that conditional independence relationships will be left intact.

The latter assertion of distributional family invariance depends on the form

of the density, but examples of distributions that retain their form after the power

steady transform (called the linear expanding distributions in Smith [1979, 1981])

are the normal, Student-t, Gamma, Beta, Dirichlet, and Pareto distributions, and

their product versions.

Third, it can be shown that use of the steady model guards against misspeci-

fied priors, making predictions more robust to this potential problem. I demonstrate

this in two different ways:

1. Let the local de Robertis measure DRA be defined as in [Smith and

Daneshkhah, 2010]:

dLA(f, g) = sup
θ,ϕ∈A

{(log f(θ)− log g(θ))− (log f(ϕ)− log g(ϕ))} (4.23)
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for any A ∈ Θ. Smith and Daneshkhah [2010] show that the local de Robertis

measure is a separation measure where its separations do not change under

Bayesian updating. It therefore represents artifacts of the model that cannot

be changed by observation. It can easily be shown that, where f∗ ∝ fk and

similarly for g,

dLA(f
∗, g∗) = k(dLA(f, g)), (4.24)

Thus using the steady model brings distributions closer together when 0 <

k ≤ 1. In this sense steady models tend to be robust against initial prior

misspecification, if we see f as the prior used in the analysis and g as the

“true” prior. See Smith and Rigat [2008] for further details.

2. A similar result can be shown for Kullback-Leibler (KL) distances [Kullback

and Leibler, 1951]. Recall that for two densities f and g the KL distance is

given by

dKL(f ; g) =

∫
(log f(θ)− log g(θ))g(θ)dθ

and that the entropy H of a density is given by

H(f) = −
∫
f(θ) log f(θ)dθ

Let f1, f2 be any two densities such that H(f1) = H(f2). Then

dKL(pt+1; f1)− dKL(pt+1; f2) = k(dKL(pt; f1)− dKL(pt; f2)) (4.25)

where pt is the density at time t and pt+1 ∝ (pt)
k. Equation (4.25) says that

the K-L distance between the model density and two arbitrary densities with

the same entropy decreases by a fixed proportion at each time step, again

indicating a robustness to prior mis-specification.
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4.5 Dynamic graphical models

There has been much research in the last couple of decades on representing time

series with graphical models, for the usual advantages that graphical modelling

brings as discussed in Chapter 1. I review some of these models here.

4.5.1 Dynamic Bayesian networks

The most obvious way of representing discrete-time data is with a BN as usual, with

one node for the value of each variable at each time point. Then the conditional

independence of variables between and within time points can be represented ex-

plicitly. Such BNs are called dynamic Bayesian networks (DBNs) [Koller and

Lerner, 2000].

The first to propose this idea were Dean and Kanazawa [1988, 1989], although

they did not invent the name. The state-space model whose state-space process is a

Markov chain (also called a Hidden Markov Model (HMM), and which includes the

DLM), for example, holds the following conditional independence properties:

Xt ⊥⊥ Xt−1, St−1 | St t = 1, 2, · · · (4.26)

St ⊥⊥ Xt−1, St−2 | St−1 t = 1, 2, · · · (4.27)

These can be represented as the DBN

X1 X2 Xt−1 Xt Xt+1

S1 S2 · · · St−1 St St+1 · · ·

Figure 4.1: Dynamic Bayesian network of state-space model

In many instances, as in the example in Figure 4.1, the same graphical pat-
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tern is established between each pair of consecutive time points, and where the whole

process is a Markov chain. Thus all that is required in this case is the prior distribu-

tion P (X1, S1) and the invariant Markov transition function P (Xt+1, St+1 | Xt, St).

Instead of drawing a DBN for the whole process, it is then sufficient to draw a two-

time-slice Bayesian network (2TBN), which depicts merely the relationship

between all consecutive pairs of time points graphically. For example, for the DBN

in Figure 4.1, the following 2TBN can be used to represent the process:

Xt Xt+1

St St+1

Figure 4.2: Two-time-slice Bayesian network of state-space model

In the most general case DBNs and 2TBNs will not allow closed-form updat-

ing, as seen with the special case of non-Gaussian DLMs.

4.5.2 Multiregression dynamic models

One graphical model which does allow for the exact modelling of multivariate time

series is the multiregression dynamic model (MDM) [Queen and Smith, 1993;

Queen and Albers, 2009]. This models the independences between separate univari-

ate regression DLMs in a conscribed way that ensures conjugacy.

Definition 39. A multiregression dynamic model (MDM) is a BN with nodes

Xt(1), · · · , Xt(n) representing the n components of the n-dimensional observable

time series Xt, t = 1, · · · , τ and the following conditional independence properties

hold for i = 2, · · · , n for all t:

1. Xt(i) ⊥⊥ {Xt(1), · · · , Xt(i− 1)} | Qi
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2. Xt(i) ⊥⊥ {Xt(1), · · · , Xt(i− 1)} | {Qi, X
t−1(i)}

where Qi, as before, denotes the set of parents of Xt(i) (which must be a subset of

{Xt(1), · · · , Xt(i− 1)}) in the BN. Property 1 is implied by the BN, while property

2 describes the locality of the relationship of the system at time t with its past.

These conditional distributions are explicitly defined in the form of DLMs,

i.e., for each Xt(i), for all t and i,

Xt(i) = Ft(i)θt(i) + vt(i) (4.28)

θt = Gtθt−1 +wt (4.29)

but where now Ft(i) is an si-dimensional column vector (where si is the dimension of

θt(i)) which can be a (known) function of Xt−1(i) and Qi(Xt), Gt is a block-diagonal

matrix with non-zero square sub-matrices {Gt(1), · · · , Gt(n)} each respectively of

dimension si, vt(i) has mean 0 and variance Vt(i), and wt has mean 0 and a block-

diagonal covariance matrix Wt = blockdiag{Wt(1), · · · ,Wt(n)} where again Wt(i) is

an si × si square matrix for i = 1, · · · , n.

Finally, θ0 is assigned mean m0 and block-diagonal covariance matrix C0

structured similarly to Gt and Wt.

Note that vt(i) and wt are now not required to be explicitly Gaussian.

It was proven by Queen and Smith [1993] that under the MDM model, if for

all i = 1, · · · , n

θt−1(i) ⊥⊥ {θt−1 \ θt−1(i)} | Xt−1 (4.30)

then

θt(i) ⊥⊥ {θt \ θt(i)} | Xt (4.31)

This says that if the components of θt−1 are mutually independent up to time t− 1
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then under the MDM θt will also have mutually independent components after

additionally observing Xt. Thus if all θ0(i) are mutually independent a priori then

the state parameters remain so throughout the process.

It was also proven in this case that for all i ∈ {1, · · · , n}

θt(i) ⊥⊥ Xt(i+ 1), · · · , Xt(n) | Xt(1), · · · , Xt(i) (4.32)

If vt and wt are chosen to be Gaussian, then Xt(i) | Qi(Xt(i)) will be Gaus-

sian too. Each component will therefore follow the normal DLM as described in

section 4.3, which implies conjugate updating as in that case. Note that interven-

tions on individual components can also be easily implemented in the MDM, as

shown in Section 4 of Queen and Albers [2009].

4.5.3 Flow networks

A flow network F is a directed graph which models the flow of units from a root

node v0 to a sink node vs [West, 2001]. Each edge e ∈ E(F ) has an associated

capacity c(e) and flow f(e) (where 0 ≤ f(e) ≤ c(e)). Flow networks also assume

a conservation of flow property: for every node that is not a root node or sink

node (i.e., for every v ∈ V (F ) \ {v0, vs}),

∑
e∈{e:ch(e)=v}

f(e) =
∑

e∈{e:pa(e)=v}

f(e), (4.33)

i.e., the sum of the flows into v must equal the sum of the flows out of v.

Flow networks are clearly an excellent graphical model for representing flows

of material, such as traffic or oil supply. They have been extended to allow proba-

bilistic forecasting by Figueroa-Quiroz [2003] in the form of dynamic flow net-

works. These extend the flow networks described above by assigning each edge a
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transport time as well as a capacity. In addition, a modified multilevel DLM —

a state-space model with a DLM between the observed variables and one level of

latent variables, and then another between that level of latent variables and another,

and so on — is posited for the root-to-sink path flows for the case when the flow

network is strictly hierarchical, i.e. every root-to-sink path is the same length. By

modelling the path flows as opposed to the flows through nodes, the conservation

of flows requirement is neatly side-stepped, and the path flows can be modelled as

independent; the node flows are functions of the path flows and can therefore be

recovered. The DLM is different from the canonical one described in Section 4.3

because some of the information is delayed, but similar exact updates and forecasts

can be undertaken. Also, just as in the original DLM case, interventions can easily

be incorporated within the model class through formal Bayesian intervention.

Although flow networks can be treated directly as BNs (as in [Whitlock and

Queen, 2000]), Figueroa-Quiroz [2003] showed that instead the DLM on the flow

paths can be drawn as a 2TBN (as shown in Smith and Figueroa [2007]).

The original flow network, however, can in some circumstances be considered

as a CEG. Consider the example flow network in Figure 4.3 (adapted from Smith

and Figueroa [2007]).

In a hierarchical model such as this, where all root-to-sink paths are the same

length (the condition for the dynamic flow network model in [Figueroa-Quiroz, 2003;

Smith and Figueroa, 2007]), if the transport time is the same for all edges (and even

if not, the flow network can be transformed into one with “phantom” nodes, as shown

in Figueroa-Quiroz [2003], in which this condition is fulfilled), then the amount of

material at a node at any time t is simply the sum of the amount of material at its

parents at time t − 1, and so the data can be considered in a cohort fashion. If at

every node the process that decides where its material ends up next is not dependent
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Figure 4.3: Example of a flow network

on the path that the material took to reach the node, and all units of material at

a node are exchangeable, then the flow network can also be interpreted as a CEG

where each node in the flow network is a position in the CEG sense. While this will

not be valid in all cases, e.g. when two physical nodes have identical probabilities

distributions over where their respective flows go next, it does seem more natural

than interpreting the flow network as a BN.

While the dynamic flow network is very useful in the case when a DLM on

paths is valid, a more general dynamic model will be shown in the next chapter

which allows for conjugate analyses of non-linear and non-Gaussian multivariate

variables with changes in the underlying process, and which also incorporates any

needed formal intervention as needed, by at each time point modelling the data as

a mixture of CEGs. This model is the dynamic chain event graph.
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Chapter 5

Dynamic chain event graphs

I present in this chapter a new dynamic graphical model based on CEGs that ad-

mits a conjugate analysis and exact predictions of discrete multivariate time series

without sacrificing realism.

Let T be an event tree whose topology is known and fixed in time, but with

an uncertain and possibly dynamic probability distribution over its possible CEGs.

Let the set of situations of T , S(T ), be denoted by S =
{
v1, . . . , v|S|

}
.

At each time point t = 1, . . . , τ , we wish to predict xt(v) for all v ∈ S, where

xt(v) is the vector of values of X(v) at time t. Let xt = (xt(v))v∈S . Then at every

time t we need to construct a probability distribution over the possible values of xt

conditional on all previous observations xt−1 = (x1, . . . ,xt−1). The marginal joint

distribution P (xτ ) over time of the full data set can then be calculated as a product

of the one-step ahead predictive probabilities P (xt | xt−1). Bayes factors associated

with different models can then be expressed as a function of these quantities. Note

that this factorisation corresponds to the prequential likelihood described by Dawid

[1984] used for comparing probabilistic forecasting systems.

The probability distribution of xt | xt−1 can be written parametrically as a
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function of θt, the values of θ(v) for all v ∈ S at time t, so that

P (xt | xt−1) =

∫
Θt

P (xt | θt,xt−1)p(θt | xt−1)dθt (5.1)

θt is unknown in the general case. One way to specify the distribution of θt

is to assume the process can be described by a dynamic chain event graph. A

dynamic chain event graph is defined to be a collection of chain event graphs with

possibly different CEGs Ct(T ) at each time point for one fixed event tree T .

If v, v′ ∈ S(T ) are in the same stage u in a CEG Ct at time t then it is

assumed, given the definition of stages, that

θt(v) = θt(v
′) , θt(u) (5.2)

If it is assumed that θt(u1) ⊥⊥ θt(u2) when u1 ∩u2 = ∅ for all t when u1, u2 ∈

J(C) for all possible C then the distribution of θt under a CEG Ct can be written

as the product of the distribution of each stage’s parameters:

p(θt | Ct,x
t−1) =

∏
u∈Ct

p(θt(u) | Ct,x
t−1) (5.3)

Therefore equation (5.1) can be written as

P (xt | xt−1) =
∑
Ct∈C

∫
Θt

P (xt | θt, Ct,x
t−1)p(θt | Ct,x

t−1)P (Ct | xt−1)dθt (5.4)

=
∑
Ct∈C

∫
Θt

(
P (xt | θt, Ct,x

t−1)P (Ct | xt−1)
∏
u∈Ct

p(θt(u) | Ct,x
t−1)

)
dθt

(5.5)

To carry out a one-step ahead forecast on the system three probability distri-

butions must therefore be specified: the sampling distribution P (xt | xt−1,θt, Ct),
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the stage parameter distributions p(θt(u) | Ct,x
t−1), and the CEG distributions

P (Ct | xt−1). I show below how this can be achieved for each item in turn using

techniques discussed in previous chapters and some new ideas.

5.1 The sampling distributions

Under complete sampling the distribution of X(v) for any situation v ∈ S is con-

ditionally independent of any other quantity given θ(v). In particular, this means

that the distributions of X(v) and X(v′) for two situations v, v′ ∈ S, v ̸= v′, are

assumed to be independent conditional on θ(v), θ(v′).

This does not necessarily apply to xt(v), because the distribution of the

number of samples Nt(v) from X(v) at time t is unknown in the general case. I

assume here, however, that for all situations bar the root node v0 — i.e. for all

v ∈ S \ v0 — that Nt(v) equals the value of xvt (v∗), the number of times that

X(v∗) = v at time t, where v∗ is the situation such that v ∈ X(v∗), i.e. where

v∗ is the parent node of v. This matches the view of the units moving along the

root-to-leaf paths, similarly to a flow network. I discuss the setting of Nt(v0) shortly.
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P (xt | θt, Ct,x
t−1) can therefore be written as

P (xt | θt, Ct,x
t−1) =

∑
Nt(v0)

P (xt | Nt(v0),θt, Ct,x
t−1)P (Nt(v0) | θt, Ct,x

t−1)

(5.6)

=
∑

Nt(v0)

([∏
v∈S

P (xt(v) | θt(v), xvt (v∗))

]
P (Nt(v0) | θt, Ct,x

t−1)

)

(5.7)

=
∑

Nt(v0)

∏
v∈S

I{∑xv′
t (v)=xv

t (v
∗)}

∏
v′∈X(v)

θt(v, v
′)x

v′
t (v)

P (Nt(v0) | θt, Ct,x
t−1)


(5.8)

where IA is the indicator variable for an eventA, xv0t (v∗) is abuse of notation meaning

Nt(v0), and θ(v, v′) = P (X(v) = v′).

The modelling of the distribution of Nt(v0) depends on the details of the

system under consideration.

Sometimes Nt(v0) will be known in advance. For example, in the educational

scenario of the example in Chapter 1, the number of students enrolling every year

might be fixed.

Another common scenario is when Nt(v0) is believed to be independent of

all other system parameters apart from, at most, values of Ns(v0) for s < t. One

approach in this case is to model Nt(v0) as a Poisson variable with parameter λ,

where λ can either be constant or itself given a conjugate prior of Gamma(αλ, βλ)

at time 1.

When Nt(v0) is known, equation (5.8) becomes

P (xt | θt, Ct,x
t−1) =

∏
v∈S

I{∑xv′
t (v)=xv

t (v
∗)}

∏
v′∈X(v)

θt(v, v
′)x

v′
t (v)

 (5.9)
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where xv0t (v∗) should again be read as Nt(v0).

5.2 The stage parameter distributions

As with every aspect of the model, the specification of the probability distribution

over the floret parameters for each possible stage should be tailored to the scenario

at hand. In many cases, however, it is possible to characterise the distribution from

some common qualitative modelling assumptions along the lines shown in Chapter

3.

Consider first the trivial CEG Ct = C0. Recall that if it is assumed that the

relative rates of the root-to-leaf paths are independent, each non-trivial floret’s pa-

rameters must themselves be Dirichlet distributed. Therefore, denoting its collection

of hyperparameters as αt(v) = (αt(v, v
′))v′∈X(v), the density of θt(v) | Ct = C0,x

t−1

for a non-trivial floret v ∈ C0 is

fθt(v)(θt(v) | Ct = C0,x
t−1) = Γ

 ∑
v′∈X(v)

αt(v, v
′)

 ∏
v′∈X(v)

θt(v, v
′)αt(v,v′)−1

Γ(αt(v, v′))
(5.10)

for
∑

v′∈X(v) θt(v, v
′) = 1 and αt(v, v

′) > 0 for all v′ ∈ X(v), and 0 otherwise.

Now consider a CEG C that is not a trivial partition of C0. In Chapter

3 it was shown that requiring margin equivalency to hold for its stages u ∈ C

characterises the prior on the floret distributions. A stage u has margin equivalency

when

P (X(u) | θ, C) = P (X(u) | θ, C0). (5.11)

whereX(u) is the random variable with sample space
∪

v′∈ch(vu){v
′∪{
∪

v∈u ψ(vu, v)(v
′)}},

i.e. the edge equivalence classes under a stage, where vu is any situation in u. With

the distribution for florets in C0 as given above, this implies that the prior proba-
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bility of θt(u) | Ct = C,xt−1 has a Dirichlet distribution too, with hyperparameters

that are sums of the corresponding hyperparameters under C0 of the constituent

florets:

fθt(u)(θt(u) | Ct = C,xt−1) = Γ

 ∑
v′∈X(vu)

ᾱt(u, v
′)

 ∏
v′∈X(vu)

θt(u, v
′)ᾱt(u,v′)−1

Γ(ᾱt(u, v′))

(5.12)

where vu is any situation in u, θt(u, v′) are the elements of the vector θt(u) and

ᾱt(u, v
′) =

∑
v:v∈u αt(v, ψu(vu, v)(v

′)). Informally, equation (5.12) says that the

hyperparameter vector for all of the floret distributions of the situations in stage u

is equal to the sum of the hyperparameter vectors of the floret distributions under

C0.

With margin equivalency and independence between the floret distributions

under C0, the floret distributions under different CEGs for stages composed of the

same situations will always be the same. Therefore the probability distributions for

a stage’s parameters (5.10) and (5.12) depend only the composition of the stage and

not on the rest of the CEG. This property is useful since it allows discussion of the

characteristics of stage clusters of variable groups without reference to the partition

in which they appear. This makes individual models much simpler to explain. It

also reduces the computational complexity in calculating (5.10) and (5.12).

Recall that θt(u) is conditionally independent of all other quantities given its

hyperparameters αt(u), which itself depends only on αt(v), v ∈ u, where αt(v) is the

collection of hyperparameters of θt(v) under C0. Therefore setting P (θt | Ct,x
t−1)

simply requires the setting of αt(v) for each situation v ∈ S for every t. This model

can be simplified still further by relating the floret distributions between time points.

This can be done, as discussed in Section 4.4, with, for example, a (power) steady
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model. This relates the floret prior at a time t with its posterior at time t− 1, i.e.,

ft+1,v(θ) = T (f∗t,v(θ)) (5.13)

for some function T for all t > 1, where ft,v(θ) is the density of θt(v) | xt−1, Ct = C0

as given in equation (5.10), and f∗t,v(θ) is the density of θt(v) | xt, Ct = C0. With

this, only α1(v) needs to be set for every v ∈ S to specify the one-step ahead

forecasting model.

The simplest choice of T is the identity functional, so that

ft+1,v(θ) = f∗t,v(θ) (5.14)

for t > 1. With ft,v(θ) as given in equation (5.10) and P (xt(v) | θt(v)) as given

by equation (5.8), Bayes’ theorem implies that θt(v) has a Dirichlet distribution a

posteriori

f∗θt(v)(θt(v) | C = C0,x
t) = Γ

 ∑
v′∈X(v)

α∗
t (v, v

′)

 ∏
v′∈X(v)

θt(v, v
′)α

∗
t (v,v

′)−1

Γ(α∗
t (v, v

′))
(5.15)

where α∗
t (v, v

′) = αt(v, v
′) + xv

′
t (v), and so

αt+1(v) = α∗
t (v) (5.16)

= αt(v) + xt(v) (5.17)

As equation (5.17) is true for all t > 1, αt(v) can be written as a function of only

α1(v) and xt−1(v),

αt(v) = α1(v) +

t−1∑
τ=1

xτ (v) (5.18)

for all v ∈ S.
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Letting T be the identity functional as above reflects a modelling assumption

that the underlying probabilities associated with each stage do not evolve for any

CEG. Sometimes this will be too strong an assumption to make. In this case, a

weaker set of assumptions are needed which will represent the fact that there is an

“information drift” between the time points. This will also guard against spurious

jumps in the model probabilities from expected model drift.

One way to characterise T to meet this need is provided by the power steady

model [Smith, 1979, 1981, 1992] discussed in the previous chapter. It was shown

by Smith [1979] that if, loosely speaking, it is assumed that the Bayes decision

under a step loss function would stay the same over time if no more information was

gathered about the system but that the expected loss of the decision increases due

to increasing uncertainty, then it is required that

ft+1,v(θ) ∝ (f∗t,v(θ))
k (5.19)

for some 0 < k ≤ 1. It also has the advantage here of preserving the Dirichlet

distributions of the floret priors.

With α∗
t (v) = αt(v) + xt(v), equation (5.19) implies that θt+1(v) is still

distributed Dirichlet if θt(v) is Dirichlet but with the hyperparameters of the distri-

bution now given by the values

αt+1(v, v
′) = kαt(v, v

′) + kxt(v, v
′)− k + 1 (5.20)

Solving this recurrence relation for a constant k yields

αt(v, v
′) = kt−1(α1(v, v

′)− 1) +
t−1∑
τ=1

kt−τxτ (v, v
′) + 1 (5.21)
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which heuristically can be seen as weighting recent observations more heavily for

the setting of the latest prior, corresponding to the popular exponential-weighted

moving average method of estimating parameters in classical time series models.

Each situation can have its own k, k(v), and it might be desired that this k(v)

be different for different t, for example when an external intervention in the system

occurs at v ∈ S then a smaller value of k(v) can be used to indicate increased

uncertainty about its new value, just as West and Harrison [1997] do for DLM

parameters.

I note that the use of the power steady model has a long history with Dirichlet

distributions (e.g. in Smith [1979]; Queen et al. [1994]; Cowell et al. [1999]) and more

generally (e.g. Ibrahim and Chen [2000]; Rigat and Smith [2009]), and has also been

used in Bayesian forecasting under the alternative name of exponential forgetting

[Raftery et al., 2010]. Here I use the power steady model as a justifiable conjugate

method for making inference about tree models whose floret probabilities evolve.

5.3 The CEG distributions

We have allowed in the previous section for drift over time in the values of probabil-

ities associated with the conditional independence structure implicit in a dynamic

CEG model. However, it is necessary to allow in most applications for the possi-

bility that the underlying CEG itself — and not just its parameters — evolves in

time. It is unfeasible and usually unnecessary to model all possible changes over

the partition space; in most applications it is appropriate to assume that changes

in stage structure will be small in number and occur locally.

I therefore propose a dynamic model for the CEGs analogous to the Class 2

Multi-process Models used for dynamic linear models (DLMs) [Harrison and Stevens,

1976; West and Harrison, 1997] discussed in the previous chapter. This was devel-
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oped for the case where “no single [model] adequately describes what might happen

to the process in the next time interval” [West and Harrison, 1997].

Let C be the set of all possible CEGs of T , and for each C ∈ C and t > 1

let πt(C) = P (Ct = C | xt−1).

Recall the three modelling strategies proposed by West and Harrison [1997]

when using the C2MPM of fixed model probabilities, a first-order Markov transition

between the models, or a higher-order Markov transition. While the first possible

modelling strategy, of fixed model probabilities, is much the simpler one, the second

and third strategies are often going to be more accurate reflections of experts’ beliefs.

I show here how to implement the second strategy of first-order Markov transitions

between CEGs.

At the first time point, t = 1, the marginal distribution of the observations

x1 can be calculated as follows:

P (x1) =
∑
C∈C

π1(C)P (x1 | C1 = C) (5.22)

At t = 2, after having observed x1,

P (x2 | x1) =
∑
C∈C

P (x2 | C2 = C)π2(C) (5.23)

=
∑
C∈C

[
P (x2 | C2 = C)

∑
C′∈C

π(C | C ′)π∗1(C
′)

]
(5.24)

where π(C | C ′) is the fixed transition probability P (Ct = C | Ct−1 = C ′) for any t,
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and

π∗1(C
′) = P (C1 = C ′ | x1) (5.25)

∝ P (x1 | C1 = C ′)π1(C
′), (5.26)

with all the terms on the right-hand side of equation (5.26) available from (5.22).

So for all times t > 1,

P (xt | xt−1) =
∑
C∈C

[
P (xt | Ct = C)

∑
C′∈C

π(C | C ′)π∗t−1(C
′)

]
(5.27)

with π∗t−1(C
′) available from the previous time point t − 1. This is the recursive

property of state-space models as discussed in Section 4.2.

A common assumption will be that π(C | C ′) is larger the “closer” C is to C ′

in some sense, so that the underlying process is unlikely to change too dramatically

over a short period of time in the idle system. If π(C | C ′) = 0 for some C ∈ C, this

has the advantage of reducing the number of terms in equations (5.24) and (5.27).

This is particular attractive when calculating P (x | C) is very expensive for each

CEG C, as is the case for CEGs with a large number of stages or where some stages

have large sample spaces.

One way to represent this “closeness” is through a metric over C. Meilă [2007]

derived a metric for general partition spaces called the “variation of information”

metric. It is defined as follows for any two partitions C and C ′ of a set S:

V I(C,C ′) = H(C) +H(C ′)− 2I(C,C ′) (5.28)
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where

H(C) = −
∑
u∈C

P (u) logP (u) (5.29)

I(C,C ′) =
∑
u∈C

∑
u′∈C′

P (u, u′) log P (u, u′)

P (u)P (u′)
(5.30)

and where P (u) = |u|
|S| , P (u, u

′) = |u∩u′|
|S| . The variation of information metric can be

justified using information theory.

Recalling that C is a subset of the set of partitions of S, we can therefore

set π(C | C ′) as a function of V I(C,C ′). One intuitive way of doing so is to let

π(C | C ′) =


ρ if C = C ′

|Bϵ(C
′)|−1(1− ρ) if 0 < V I(C,C ′) ≤ ϵ

0 otherwise

(5.31)

where 0 < ρ < 1, and Bϵ(C
′) = {C ∈ C : V I(C,C ′) ≤ ϵ, C ̸= C ′}. This implies

that only CEGs in a small neighbourhood around C ′ are considered and they have

an equal chance of occurring. The parameter ρ — the probability of the staging

remaining unchanged — determines the conservatism of the process.

The choice of ϵ can be characterised by considering the value of V I(C,C ′)

for some common transformations. For example, when C is obtained from C ′ by

splitting one of the latter’s stages, say u′ into u1, . . . , um, V I(C,C ′) in this case was

calculated by Meilă [2007] to be

V I(C,C ′) =
|u′| log |u′|

|S|
− 1

|S|

m∑
l=1

|ul| log |ul| (5.32)
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If |u′| = m ≤ |S| and |ul| = 1 (so that in this case ul ∈ S) for l ∈ {1, . . . ,m}, then

V I(C,C ′) =
m logm

|S|
(5.33)

This is also the value of V I(C,C ′) if C is formed from C ′ by the reverse of this

process, thanks to the symmetry of V I due to its being a metric. So a simple choice

for ϵ can be m logm
|S| for some value of 1 ≤ m ≤ |S|, not necessarily an integer. Having

m = |S| (i.e., ϵ = log |S|) would be equivalent to not ruling out any CEG.

If more radical changes in the CEG process are taking place due to external

intervention in the system then the methodology in Section 5.5.1 can be deployed.

The V I metric has the disadvantage of its not being immediately clear what

its value is between two arbitrary CEGs, making it hard to select only “close” CEGs

in an algorithm without calculating its value for all CEGs.

A more intuitive and implementable metric that can be used can be derived

from the Hasse diagram of the lattice of partitions of S under the relation “finer

than” (see Stanley [1997] for a detailed overview of such lattice terminology). The

Hasse diagram for |S| = 4, as an example, is shown in Figure 5.1.

The length of the shortest path between two partitions on the Hasse diagram

is a metric on the partition space of S, and I call it ℓ here. A distance of ℓ = 1

represents the division of a stage or the merging of two stages. One way to set

π(C | C ′) based on this metric is to do so in a similar way as with the V I metric,

π(C | C ′) =


ρ if C = C ′

|Bϵ(C
′)|−1(1− ρ) if 0 < ℓ(C,C ′) ≤ ϵ,

0 otherwise

(5.34)

where Bϵ(C
′) = {C ∈ C : ℓ(C,C ′) ≤ ϵ, C ̸= C ′} is an ϵ-ball of CEGs around C ′
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{1,2,3,4}

{1,4},{2,3} 1,{2,3,4} {1,2,4},3 {1,3},{2,4} {1,2,3},4 {1,3,4},2 {1,2},{3,4}

1,{2,3},4 {1,4},2,3 1,{2,4},3 {1,3},2,4 {1,2},3,4 1,2,{3,4}

1,2,3,4

Figure 5.1: The Hasse diagram of the lattice of partitions of S when |S| = 4

under the ℓ metric.

The advantage of using this metric ℓ instead of V I is that generating Bϵ(C
′)

is much simpler under the former metric. Under V I, it is not clear how to generate

general neighbourhoods of a partition C ′ in the scheme above without calculating

V I(C,C ′) for all C ∈ C, which for even moderately large |S| could quickly become

unfeasible. Restricting C further in some way could eliminate this difference, how-

ever. Ultimately π(C | C ′) must be set according to the statistical needs of the

model.

The other term in equation (5.27), P (Ct−1 = C ′ | xt−1), can be calculated

for each Ct−1 using Bayes’ theorem:

P (Ct−1 = C ′ | xt−1) ∝ P (xt−1 | Ct−1 = C ′)P (Ct−1 = C ′ | xt−2) (5.35)

=
P (xt−1 | Ct−1 = C ′)P (Ct−1 = C ′ | xt−2)∑

C′∈C P (xt−1 | Ct−1 = C ′)P (Ct−1 = C ′ | xt−2)
(5.36)

The P (Ct−1 = C ′ | xt−2) terms on the right-hand side of (5.36) will be already be
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available at time t−1. The term P (xt−1 | Ct−1 = C ′), meanwhile, can be calculated

as follows, using equations (5.8) and (5.12) at time t−1 (assuming Nt(v0) is known):

P (xt−1 | Ct−1 = C ′) =

∫
Θt−1

P (xt−1 | θt−1, Ct−1 = C ′)P (θt−1 | Ct−1 = C ′)dθt−1

(5.37)

∝
∫
Θt−1

∏
u∈C′

Γ

 ∑
v′∈X(vu)

ᾱt−1(u, v
′)

 ∏
v′∈X(vu)

θt−1(u, v
′)ᾱ

∗
t−1(u,v

′)−1

Γ(ᾱt−1(u, v′))

 dθt−1

(5.38)

=
∏
u∈C′

Γ
(∑

v′∈X(vu) ᾱt−1(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t−1(u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t−1(u, v

′))

Γ(ᾱt−1(u, v′))


(5.39)

where vu is any situation in u, ᾱ∗
t−1(u, v

′) = x̄t−1(u, v
′)+ᾱt−1(u, v

′), where x̄t−1(u, v
′) =∑

v:v∈u xt−1(v, ψu(vu, v)(v
′)) and ᾱt−1 is as defined in equation (5.12). Note the sim-

ilarity to equation (3.4).

The number of terms when calculating equation (5.27) can be reduced further

by setting the values of P (Ct−1 = C ′ | xt−1) that are below a threshold q as zero

and normalising the remaining probabilities to ensure they still sum to 1. This will

guard against calculating P (C ′ | C), P (xt | C) and P (xt | C ′) for C ′ ∈ Bϵ(C) for

any CEG C that is considered unlikely a posteriori at time t−1. A similar approach

advocated by Madigan and Raftery [1994] as “Occam’s window” is to discard models

C ′ that are not in the set

C∗
t =

{
Ct ∈ C :

P (Ct | xt)

maxC P (C | xt)
≤ q

}
(5.40)

for some 0 < q < 1, i.e., to only keep models where the Bayes factor between them

and the most probable model a posteriori are above a certain threshold. This has
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the advantage of guaranteeing that at least one model will be kept.

One last way to consider for easing the calculations is to reduce the number

of CEGs under consideration that have overly similar marginal likelihood functions,

because these will give similar predictions and hence it is redundant to consider them

all separately. A rigorous method of determining the similarity between densities

that satisfies desirable properties is to consider their f-divergence [Ali and Silvey,

1966]. This is a class of functions defined for two probability distributions P1, P2

over the same sample space (as long as they are absolutely continuous with respect

to each other over the sample space) as follows.

Define the f-divergence between densities P1 and P2 to be

fdiv(P1, P2) = f [E1(g(ϕ))] (5.41)

where ϕ is the Radon-Nikodym derivative of P2 relative to P1, g is a continuous con-

vex function, E1 denotes expectation with respect to P1, and f is a non-decreasing

function on R.

In the context here this translates into calculating, for any time t

fdiv(P (xt | Ct = C,xt−1), P (xt | Ct = C ′,xt−1))

= f

(∑
xt

P (xt | Ct = C,xt−1) · g
(
P (xt | Ct = C ′,xt−1)

P (xt | Ct = C,xt−1)

))
(5.42)

There are many choices of g present in the literature. One of the most famous

examples is the Kullback-Leibler distance [Kullback and Leibler, 1951] where g(ϕ) is

− logϕ. I illustrate here g(ϕ) = (
√
ϕ− 1)2, known in the literature when f(x) = 1

2x

as the Hellinger distance (and by Ali and Silvey [1966] as Kolmogorov [1963]’s

measure of distance). The Hellinger distance between the marginal likelihoods at
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time t of two CEGs C and C ′ is

hd(C,C ′) =
1

2

∑
xt

P (xt | Ct = C,xt−1) · g
(
P (xt | Ct = C ′,xt−1)

P (xt | Ct = C,xt−1)

)
(5.43)

= 1−
∑
xt

√
P (xt | Ct = C ′,xt−1)P (xt | Ct = C,xt−1) (5.44)

Equation (5.44) cannot be calculated exactly. However, it can be related to

the Hellinger distance between the distributions of the tree parameters under the

two CEGs, a quantity that can be calculated exactly.

Let p1 denote the density p1(θt | xt−1, C) and p2 the equivalent density under

C ′. Furthermore, let p†1 denote the density p†1(θt,xt | xt−1, C) and similarly for p†2.

Then

p†1 = p1P (xt | θt, C) (5.45)

and similarly for p†2.

Then

1− hd(p†1, p
†
2) =

∫
Θt

∑
xt

(p1P (xt | θt, C))
1
2
(
p2P (xt | θt, C ′)

) 1
2 dθt (5.46)

=

∫
Θt

p
1
2
1 p

1
2
2 dθt (5.47)

because P (xt | θt, C) = P (xt | θt, C ′), and so

hd(p†1, p
†
2) = hd(p1, p2) (5.48)

Now let p∗1 denote p∗1(θt | xt, C), and similarly for p∗2 with C ′. Then it is also

true that

p†1 = p∗1P (xt | xt−1, C) (5.49)
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and similarly for p2. Therefore

1− hd(p†1, p
†
2) =

∑
xt

∫
Θt

(
p∗1P (xt | xt−1, C)

) 1
2
(
p∗2P (xt | xt−1, C ′)

) 1
2 dθt (5.50)

=
∑
xt

P (xt | xt−1, C)
1
2P (xt | xt−1, C ′)

1
2

∫
Θt

(p∗1p
∗
2)

1
2 dθt (5.51)

≤ 1− hd(C,C ′) (5.52)

as by Schwarz’s inequality

∫
Θt

(p∗1p
∗
2)

1
2 dθt ≤

(∫
Θt

p∗1dθt

) 1
2
(∫

Θt

p∗2dθt

) 1
2

= 1 (5.53)

In fact hd(p1, p2) does not strictly exist because if the underlying stagings

are different then p1 and p2 are not absolutely continuous with respect to each other.

However, the Hellinger distance of the marginal densities of each floret under the

different stagings can be calculated, as each will be Dirichlet distributed with the

same number of parameters. The Hellinger distance between two Dirichlet densities

can be calculated as in [Rauber et al., 2008]. The Hellinger distance between two

marginal likelihoods for different CEGs can probably be related to these marginal

distances, but the derivation is beyond the scope of this thesis.

So if for two CEGs C,C ′ where πt(C), πt(C ′) > 0 their Hellinger distance

hd(C,C ′) is bounded above by some threshold h as calculated above then the con-

sideration of C and C ′ can be “merged” by changing πt(C) to πt(C) + πt(C
′) and

πt(C
′) to 0. The sum over C in equation (5.4) will then take place over fewer terms.
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5.4 One-step-ahead prediction

Equation (5.4) can now be written, using the foregoing, as

P (xt | xt−1) =
∑
Ct∈C

∫
Θt

 ∑
Ct−1∈C

π(Ct | Ct−1)P (Ct−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | θt, Ct,x
t−1)

·
∏
u∈Ct

IA

Γ( ∑
v′∈X(vu)

ᾱt(u, v
′)
)
·
∏

v′∈X(vu)

θt(u, v
′)ᾱt(u,v′)+x̄t(u,v′)−1

Γ(ᾱt(u, v′))

 dθt

(5.54)

where A is the event ∀v ∈ u \ v0,
∑

v′ x
v′
t (v) = xvt (v

∗). If it is assumed that the

distribution of Nt(v0) depends only on xt−1 then (5.54) can be further simplified to

the closed-form solution

P (xt | xt−1) =
∑
Ct∈C

( ∑
Ct−1∈C

π(Ct | Ct−1)P (Ct−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | xt−1)

·
∏
u∈Ct

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))

)

(5.55)

If Nt(v0) is always known in advance, then (5.55) can be simplified further

to become

P (xt | xt−1) =
∑
Ct∈C

( ∑
Ct−1∈C

π(Ct | Ct−1)P (Ct−1 | xt−1)


·
∏
u∈Ct

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))

)

(5.56)

This quantity can be computed with the following algorithm at each time
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t, incorporating the techniques mentioned earlier. The quantities not associated

directly with xt can be calculated first:

1. For each Ct−1, calculate P (Ct−1 | xt−1) using equation 5.36

2. Discard Ct−1 for which maxP (Ct−1|xt−1)
P (Ct−1|xt−1)

≤ q for some threshold q, and normalise

probabilities of remaining Ct−1.

3. For each remaining Ct−1, find Ct in Bϵ(Ct−1) and calculate π(Ct | Ct−1) under

V I or ℓ metric

4. Calculate P (Ct | xt−1) =
∑

Ct−1∈C π(Ct | Ct−1)P (Ct−1 | xt−1)

5. For C,C ′ where hd(C,C ′) < h, change P (C | xt−1) to P (C | xt−1) + P (C ′ |

xt−1) and P (C ′ | xt−1) to 0.

Now for each value of xt of interest,

1. If necessary, calculate P (Nt(v0) | xt−1)

2. For each Ct such that P (Ct | xt−1) > 0, calculate for each u ∈ Ct

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))
(5.57)

where αt(v, v
′) = kt−1(α1(v, v

′) − 1) +
∑t−1

τ=1 k
t−τxτ + 1 if using the steady

model with a constant k.

3. Substitute all the calculated quantities into equation (5.55).

5.5 Causal intervention

With many forecasting systems there is also an attendant need to consider the

effects of external intervention in the system, including by the forecasters themselves
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[Harrison and Stevens, 1976; West and Harrison, 1989]. This ensures that all relevant

information is taken into account, increasing the accuracy of future forecasts.

The predicted effect of an intervention depends both on the nature of that

intervention and the context in which it applies. Many interventions act only on

certain local features of a model while leaving the other features of the model un-

changed. These types of interventions have now been extensively studied on CBNs

[Pearl, 2000b; Spirtes et al., 2001] as discussed in Section 2.4. Dynamic extensions

of CBNs also exist [Queen and Smith, 1993; Eichler and Didelez, 2007; Queen and

Albers, 2009].

As discussed in Section 3.1.3 I believe that tree-based graphical models are

very useful in general for carrying out causal analysis, as due to the multiple rep-

resentations of each variable in the graph — one for each possible path-history on

parent variables — much more refined interventions in the system can be represented

[Shafer, 1996]. How causal hypotheses can be represented within the framework of

static CEGs has been investigated by Thwaites and Smith [2006] and Thwaites et al.

[2010].

I will now show how causal analysis affects the one-step ahead forecast on a

dynamic CEG given by equation (5.56) for two different types of intervention not

possible on BNs: one on the possible CEGs on a tree T and one on the topology of

the tree T itself.

5.5.1 Intervention on the CEG distribution

Suppose that at time t it is determined that some situations will be moved into

their own stage u†, leaving all other stages intact. For example, in the educational

example of Figure 1.2, the exams for the second module might be tailored so that

performance in the first module is no longer a predictor in how well students should

96



perform in it. The one-step ahead forecasts can then be modified in the following

way to reflect this intervention.

Recall that π∗t−1(C) = P (Ct−1 = C | xt−1). Let π†t (C) = P (Ct = C |

xt−1, It), where It is the intervention described above. Then one approach to mod-

elling the intervention is to set π†t (C) = π∗t−1(C) for each C ∈ C such that u ∈ C,

and set π†t (C†) = π∗t−1(C) and π†t (C) = 0 for C ∈ C such that u ̸∈ C, where C† is

the same as C except that u ∈ C† and other stages that contained situations v ∈ u

are reduced accordingly. The effect of this approach is to transfer the probability

massed on the CEGs where u ̸∈ C to CEGs where u ∈ C .

One issue that now arises is how the distribution of θt | Ct is affected. In the

absence of further information, a good default is to use the steady model as in the

idle system but with a lower value for the steady parameter k. This indicates that

past data might not be as useful in helping to make predictions in this situation as

under the idle system. Note that this is analogous to setting a higher variance on

evolution parameters in dynamic linear models when forecasting after interventions

is required for that model class (Section 1.2.2 of West and Harrison [1997]).

5.5.2 Intervention on T

Recalling the event tree pictured in Figure 1.2, consider the case where at time t

the course directors decide to eliminate the first module on the tree from the course.

This means that the marks that students would have gotten for this module are

unknown from that time onwards, and therefore all of the data at time t for this

module will be concentrated on the second (“NA”) edge of the v1 floret.

This type of intervention is analogous to the do operator introduced for

CBNs by [Pearl, 2000a], where a random variable is forced to take a particular

value with probability 1. The difference with CBNs is that CEGs allow a richer set
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of interventions on their structure, including letting an intervention take place at

specific time and situations, and not merely changing the value of a variable under

all circumstances.

I assume that the probability distributions on any unmanipulated florets re-

main unchanged, just as for CBNs manipulations are local [Pearl, 2000a]. I will also

assume here that once an intervention is made, it endures thereon. I now describe

how the learning framework outlined previously can be adapted to prediction after

an intervention of this type occurs.

Without loss of generality, say that at time t an intervention It(v, v
′) at sit-

uation v ∈ S occurs so that θt(v, v′) is equal to 1 for a specific v′ ∈ X(v) and to 0

for all other v∗ ∈ X(v). By the definition of the event tree, along with the causal

assumptions, all other floret distributions are technically unchanged. However, no-

tice that the probability of reaching any node in any Λ(v∗, T ) for v∗ ∈ X(v) \ v′

is now zero. It follows that the tree T is equivalent to the reduced tree T ′ where

all Λ(v∗, T ) are deleted and only the edge (v, v′) remains in the floret F(v). The

process can henceforth be considered to take place on this reduced tree T ′.

The one-step ahead forecasts can now be calculated as before with a few

modifications due the set of situations S changing; call this new set S†. First, the

distribution over C†, the new set of possible CEGs, must be set. There are several

possible choices here. In the absence of any other information, a good default is to

let

P (Ct = C† | xt−1, It(v, v
′)) = P (Ct−1 = C | xt−1), (5.58)

where C† is the CEG formed from C by first replacing each stage u ∈ C with a new

stage u† := u \ {v†}v†∈S\S† , and then by splitting the stage u† ∈ C† that contains

the intervention node v into two stages {u† \ v} and {v}.

Second, the distributions of the stage parameters θt(u) need to be reconsid-

98



ered. Under the causal assumptions considered here, interventions have only local

effects, so a sensible default model is to let fθt(u)(θt(u) | Ct = C,xt−1, It(v, v
′)) be

calculated as before, i.e. as given in equation (5.12), except of course for θt(v).

Assuming that all of the other system characteristics, e.g. the steady model

and the multinomial sampling, are intact post-intervention, the one-step ahead fore-

cast (5.55) is adjusted to become

P (xt | xt−1, It(v, v
′)) =

∑
C†

t∈C†

( ∑
Ct−1∈C

π†(C†
t | Ct−1)P (Ct−1 | xt−1)

 ∑
Nt(v0)

P (Nt(v0) | xt−1)

·
∏
u∈C†

t

IA

Γ
(∑

v′∈X(vu) ᾱt(u, v
′)
)

Γ
(∑

v′∈X(vu) ᾱ
∗
t (u, v

′)
) ∏

v′∈X(vu)

Γ(ᾱ∗
t (u, v

′))

Γ(ᾱt(u, v′))


)

(5.59)

where π†(C†
t | Ct−1) = π(Ct | Ct−1) by the argument above, and using the same

modelling approximations as before.
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Chapter 6

Analysis of exam-mark data

using CEGs

The theory and algorithms developed in the thesis up to this point are intended to

be used to model real multivariate systems. I show here how implementations of the

algorithms perform with real and simulated exam-mark data based on the examples

of Chapter 1.

6.1 Learning static CEGs

6.1.1 Simulated data

To demonstrate the efficacy of the AHC algorithm described in Section 3.3 I tested

the algorithm using simulated data on the event tree shown in Figure 1.1. I generated

the data from a distribution on the tree described by the CEG in Figure 3.3. This

CEG corresponds to the three hypotheses described after Example 1, repeated here

for convenience:

1. The chances of doing well in the second component are the same whether the
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student passed first time or after a resit.

2. The components A and B are equally hard.

3. The distribution of marks for the second component is unaffected by whether

students passed or got a distinction for the first component.

Figure 6.1 (on page 112) shows the number of students in the sample who

reached each situation. It can be seen that there is naturally a conservation of “flow”

at each situation node reflecting that the root-to-leaf paths are the fundamental

events of the probability model.

For illustration purposes I set a uniform prior on the CEG priors and a Dir(1)

uninformative prior distribution on the root-to-leaf paths of C0. The priors on the

floret parameters for any candidate CEG can be calculated from the path priors

using the methods of Section 3.3.3.

Recall that at every step of the AHC algorithm that every possible pair

of situations is considered for merging. Consider first the merging of two of the

situations with two outgoing edges, F1,A and F1,B. Under the prior assumptions

described in the previous paragraph each of these two florets will have Beta(1,3)

priors on its edge probabilities because one edge on each leads directly to a leaf

node and the other is on three root-to-leaf paths. The combined stage will therefore

have a Beta(2,6) prior on its parameters assuming that the two terminal edges (i.e.

the edges (F1,A, FR,A) and (F1,B, FR,B)) are considered equivalent. Using equation

(3.12) the log Bayes factor of the posterior probabilities of the CEGs in this case is

calculated to be 1.85 in favour of the merged CEG.

Carrying out similar calculations for all the pairs of situations with three

edges, it is decided to merge the nodes P1,A and P1,B because the log Bayes factor

for the resulting CEG is 3.76 in favour of the merged CEG. Applying the algorithm
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to the updated set of nodes and iterating as required, the CEG in Figure 3.3 (shown

on page 36) that generated the data was found to be the MAP CEG, validating the

AHC algorithm in this instance.

6.1.2 Student exam data

I applied both of the learning algorithms of Chapter 3 — AHC and weighted MAX-

SAT — to a real dataset in order to test their efficacy in a real-life situation and

to identify remaining issues with their usage as well to make inferences about the

education system under investigation. The dataset I used was an appropriately

disguised set of marks taken over a 12-year period from four core modules of the

MORSE degree course taught at the University of Warwick. A part of the event tree

used as the underlying model for the first two modules is shown in Figure 6.2 (on

page 113) along with a few illustrative data points. This is a large enough example

to illustrate the richness of inference possible with CEG search.

6.1.3 AHC algorithm

For simplicity, the prior distributions on the candidate models and on the root-to-

leaf paths for the trivial CEG C0 were both chosen to be uniform distributions, in

the latter case by again assuming αi = 1 for each root-to-leaf path λi.

An R program implementing the algorithm found that the MAP CEG model

was not C0, i.e. that there were some non-trivial stages. In total, in fact, 170

situations were clustered into 32 stages. Some of the more interesting stages of this

model are described in Table 6.1.

From inspecting the membership of stages it is possible to identify various

situations which were discovered to share distributions. For example, students who

reach one of the two situations in stage 7 — specifically, the marks for the second
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Stage Probability vector Students Situations Locations Comments
7 (0.47, 0.44, 0.08) 685 2 1; 1,1,1 High achievers
11 (0.22, 0.43, 0.35) 412 6 3; 1,2; 3,1;

1,1,3
Middling stu-
dents

13 (0.33, 0.33, 0.33) 16 18 4; 4,2; 4,3 No students
appeared in
17 of these
situations

17 (0.07, 0.27, 0.66) 86 4 1,3; 3,2;
3,2,4

Struggling stu-
dents

27 (0.19, 0.56, 0.25) 464 7 1,1,4;
1,2,2;
1,3,2;
1,4,2

More likely to
get grade 2
than stage 11

28 (0.11, 0.51, 0.38) 436 6 1,2,3;
3,1,3;
1,2,4

More likely to
get grade 3
than stage 27

Table 6.1: Selected stages of MAP CEG model found from data described in Sec-
tion 6.1.2 using AHC. The columns respectively detail the stage number, posterior
expectation of the probability vector of that stage (rounded to two decimal places),
number of students passing through that stage in the dataset, number of situations
from the original ET in that stage, examples of situations in that stage (shown as
sequence of achieved grades 1, 2 or 3, and where 4 means that the grade is missing),
and any comments or observations related to that stage.
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module after getting the highest grade in the first module or the marks for the

fourth module after getting the highest grade in the first three modules — have an

expected probability of 0.47 in getting a high mark, an expected probability of 0.44

of getting a middling grade, and an expected probability of only 0.08 of achieving

the lowest grade. From being in a stage of their own, it can be deduced that students

in these situations have qualitatively different prospects from students in any other

situations. In contrast, students who reach one of the four situations in stage 17

have an expected probability of 0.66 of getting the lowest grade. It is instructive that

the CEG search found that, by examining stage 17, students getting the top grade

in the first module but then only getting the lowest grade in the second module

perform identically in the third module to students who only got the lowest grade

in the first module and then got the middling grade for the second module.

It is also interesting to note that the 18 situations which had no or almost no

students in the data are clustered into one stage. In the absence of prior information

distinguishing the situations, I believe this is a positive feature of the algorithm.

First, it reduces the dimensionality of the problem relatively painlessly, making the

representation of the problem more parsimonious. Second, even if the clustering is

ultimately incorrect, due to the very small chance, a posteriori, that many students

will traverse these situations in a non-uniform way, the expected loss due to incorrect

predictions under any reasonable utility function will be minimal.

It is worth considering at this point how this data-set would traditionally be

analysed and contrast it with the method here. One common approach would be

to model the events — in this case students’ complete exam records — as Poisson-

distributed, and hence to use a log-linear model. This models the expected frequen-

cies in a multi-way contingency table using a generalised linear model with a log

link function.
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The trouble with automatically using a log-linear model or some other re-

gression model for such data is that the assumptions required for the analysis to

be valid are generally more restrictive than those for modelling them with a CEG.

For example, a log-linear model for Poisson distributed data requires that the con-

tribution to the expected (log) cell frequencies from the factors be linear. It also

doesn’t easily allow for the sort of complex dependence structures that were found

with the CEG search method. With the CEG learning approach one starts only

with the event tree and possibilities for situations to have equivalent probability

distributions, ensuring the results are more likely to be valid by not assuming too

much.

6.1.4 Weighted MAX-SAT

I also undertook a search for a MAP CEG for the data above using the weighted

MAX-SAT approach of Section 3.4 under the same assumptions. Due to computer

memory restrictions caused by requiring all stage scores to be calculated and stored

a priori — a problem discussed in Section 3.4 — it was necessary to restrict the

maximum stage size. I ran the algorithm with maximum stage sizes of 2 and 4.

With a maximum stage size of 2, the MAP CEG found had 143 stages, which

means there were 27 stages with 2 situations. As each stage’s weight was equal to

its contribution to the log-likelihood in this application, the sum of the weights was

equal to -1 multiplied by the log-likelihood of the CEG. The sum of the weights of

the MAP CEG after 106 steps was 3951.46, which means the likelihood of the CEG

was exp(−3951.46). As the log-likelihood of C0 is -3953.40, this indicates that the

MAP CEG from the set of CEGs with a maximum stage size of 2 barely fits the

data better than C0. Setting the algorithm to search the set for longer (108 steps)

yielded only a CEG with log-likelihood of -3947.78. This indicates either that there
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is no CEG with maximum stage size of 2 for this dataset that fits the data much

better than C0, or that the algorithm is not able to find that CEG. Either way, this

reflects badly on this restriction.

With a maximum stage size of 4, the set of CEGs searched over is clearly

bigger than when the maximum stage size is restricted to 2, but the problem this

time is that the number of clauses grows super-exponentially. While the event tree,

with 170 situations — 85 each with two and three outgoing edges respectively —

requires 614,380 clauses in CNF form to describe the problem in weighted MAX-

SAT form when the maximum stage size is 2 [using the typology of Section 3.4,

these are made up of 170 hard clauses (of type 1) for each situation, 7310 weighted

clauses (of type 3) for the possible stages, and 170 ×
(
85
2

)
= 606, 900 hard clauses

(of type 2) ensuring that stages that overlap cannot both be chosen], for the case

where the maximum number of situations per stage is limited to 4 the number

of possible stages is 204,850, the total number of clauses is 1,083,813,258 and the

text file containing them is 25GB. Attempting to run the algorithm therefore failed

because of memory constraints. Considering that the MAP CEG found with the

AHC algorithm contained stages with up to 18 situations, this strategy is clearly

not viable.

Some modifications of the usage of weighted MAX-SAT to find MAP CEGs,

including combining its usage with AHC, will be discussed in Chapter 7.

6.2 Prediction with dynamic CEGs

In this section I illustrate how to carry out one-step ahead predictions with dynamic

CEGs for the 12 years’ worth of exam marks used in the last section for two of the

undergraduate modules. The underlying event tree used was again that shown

in Figure 1.2, so that there are 10 situations, 5 with two edges each describing
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availability of marks and another 5 with three edges each for grades.

I made the following assumptions:

1. Nt(v0), the number of students every year, was known for all values of t

2. The distribution over the root-to-leaf paths at time t = 1 under C1 = S was

Dirichlet with all path hyperparameters equal to 1 a priori

3. For the transitions between stagings I used the ℓ metric with ϵ = 1, i.e. only

transitions between models that require at most one split or merge were con-

sidered possible.

I present here the posterior probabilities P (Ct | xt) for the stagings after

t = 1 for each time t for different modelling values of the hyperparameters k (the

steady model parameter), ρ (the probability of the underlying model not changing)

and q (the Occam’s window threshold), when analysed with and without an external

intervention. In a full analysis this application could be run over a distribution of

the hyperparameters, perhaps after taking account of an elicited prior over their

possible values. However, to illustrate the efficacy of the methods rather than learn

these hyperparameters it is better to hold them fixed so that there is better focus

on the impact of various structured assumptions that can be learnt about. Also, I

consider ρ and q in particular to be tuning parameters which determine the desired

trade-off between the speed and accuracy of the algorithm as well as reflecting real

beliefs about the underlying process.

6.2.1 Analysis of the series without intervention

In Table 6.2 I present P (Ct | xt) for t = 1 . . . 12 for the model where C1 = {v1, v2,

{v3, . . . , v6}, {v7, . . . , v10}} with probability 1 and k = 0.9, ρ = 0.9 and q = 0.2.

The latter two parameter values ensure that few new models will be kept in the
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Time Ct P (Ct | xt)
1 1, 2, {3,4,5,6}, {7,8,9,10} 1
2 1, 2, 3, {4,5,6}, {7,8,9,10} 0.824

1, 2, {3,4,5,6}, {7,9,10}, 8 0.175
3 1, 2, 3, {4,5,6}, {7,8,9,10} 0.766

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.233
4 1, 2, 3, {4,5,6}, {7,8,9,10} 0.677

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.322
5 1, 2, 3, {4,5,6}, {7,8,9,10} 0.328

1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.671
6 1, 2, 3, {4,5,6}, {7,10}, {8,9} 1
7 1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.609

1, 2, 3, {4,5,6}, {7,10}, 8, 9 0.390
8 1, 2, 3, {4,5,6}, {7,10}, {8,9} 0.304

1, 2, 3, {4,5,6}, {7,10}, 8, 9 0.695
9 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
10 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
11 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1
12 1, 2, 3, {4,5,6}, {7,10}, 8, 9 1

Table 6.2: All possible stagings and their posterior probabilities at each time t for
k = 0.9, ρ = 0.9, q = 0.2 with P (C1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1

analysis, as the high value of ρ gives a low prior probability on transitions between

stagings and the high value of q makes the Occam’s window set of equation (5.40)

small. This speeds up the computation of the forecasts at the expense of possibly

worse predictions through fewer stagings being included in the model averaging.

An alternative way of presenting this information is to plot how Pt(vi, vj ∈

u | xt), the a posteriori probability that situations vi, vj are in the same stage u at

time t, changes over time. This can be calculated from

Pt(vi, vj ∈ u | xt) =
∑
C∈C

P (Ct = C | xt)I(∃u ∈ C : vi, vj ∈ u) (6.1)

Figure 6.3 shows this for the information in Table 6.2.

It can be seen very clearly from Figure 6.3 that most situations by time
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t = 6 are either totally independent of one another or certainly in the same stage.

The stages that remain by that time that are not composed of one situation are

{v4, v5, v6} which are the situations concerning the availability or missingness of

grades for the second module after getting a top, middling or bottom grade re-

spectively in the first module; and {v7, v10}, which are the situations for the florets

describing the grades gained in the second module after either getting a grade 3 or

not having a grade at all in the first module. The former stage indicates that whether

a mark is available for the second module is independent of the grade achieved in the

first one, assuming that is itself not missing; the second stage says that the grade

gained in the second module is independent of whether the student did poorly in, or

just has a mark missing for, the first module. Both of these inferences would have

been impossible to achieve with a Bayesian network search of the same probability

model: the first one demands an asymmetric sample space (because if there is no

mark available then it cannot be described), while the second is a context-specific

conditional independence.

The above analysis is “quick and dirty”, in that very clear signals were gained

from the dynamic model quickly. To illustrate how the level of detail in the CEG

distribution changes as a function of the modelling hyperparameters, allowing more

subtle analyses, I ran the algorithm again with radically different values: I set

k = 0.5 (so that floret distributions are flattened more quickly and therefore past

observations more heavily discounted, allowing the data to “speak for itself” more),

ρ = 0.25 (so that the probability of moving between stagings is more likely), and

q = 0.05 (so that stagings with poorer Bayes factors relative to the most likely

are nonetheless kept in the analysis) with the initial degenerate staging distribution

P (C1 = {v1, v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1 still assumed for consistency. The

resulting matrix plot of probabilities of situations being in the same stage against
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time is as shown in Figure 6.4.

It can be seen from the latter figure that the analysis with the new hyperpa-

rameter values gives much the same qualitative description of the system as the more

conservative hyperparameters at greater computational expense, with the pay-off of

greater detail.

Some interesting characteristics of the system can be discerned from this

analysis. With regard to the situations concerning the missingness of marks, θ(v3)

— the probability distribution for the second module’s marks being available given

that the mark in the first module is itself missing — retains the appearance of

being unrelated to the floret distributions at any time point. Until t = 7 or so

the situations v4, v5 and v6, whose state spaces represent the missingness of marks

for the second module after respectively gaining a high, medium or low mark in

the first module, had initially high but then gradually falling probabilities of being

in the same stage, implying that independence of the missingness of the second

module’s marks from the marks gained in the first module kept decreasing. At

t = 8, in contrast, these probabilities become much lower, although the probability

distributions of marks being missing after gaining a medium or low mark in the

first module are deemed to become slightly more likely to be the same after that,

with students performing well in the first module continuing to have a very different

probability distribution for the missingness of their second module marks. This

more subtle analysis was not captured by the more conservative analysis earlier

which claimed these situations were simply in the same stage with probability 1

throughout the process. I investigate a possible causal hypothesis that might explain

what might have changed at t = 8 in the next section.

Another notable finding is that v7 and v10 — the situations concerning marks

gained in the second module after getting a poor grade or having a missing mark
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in the first module, respectively — are always strongly related, just as in the first

analysis. It therefore appears that the second module marks of students who did

poorly in the first module should be used to predict the second module performance

of students whose first module marks are missing.

It is worth noting again that these detailed homogeneities within the sys-

tem would not have been as easily identifiable if the model class was restricted to

Bayesian networks.

6.2.2 Analysis of the series after intervention

I also carried out an analysis with the latter modelling hyperparameters after a

hypothesised causal intervention: I assumed that at t = 8 the situations for the

grades {v2, v7, v8, v9, v10} were put into the same stage. This could have happened,

for example, because the modules were believed to re-defined to be very similar in

difficulty for students with different skills. The resulting matrix of probabilities of

situations being in the same stage through time is shown in Figure 6.5.

It can be seen that the probabilities are not too different from those in Figure

6.4, but there are increased probabilities of v8, v9 and v10 being in the same stage

even for t > 8, which indicates slightly higher probabilities of dependence between

the second module’s grades for students who performed differently in the first module

under the causal hypothesis considered here.

It is worth noting again the ease with which this causal hypothesis or any

other one implemented on the structure or the staging is implemented in the pre-

diction algorithm.
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Figure 6.1: The event tree from Example 1 with the numbers representing the
number of students in a simulated sample who reached each situation.
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Figure 6.2: Sub-tree of the event tree of possible grades for the MORSE degree
course at the University of Warwick. Each floret of two edges describes whether a
student’s marks are available for a particular module (denoted by the edge labelled
A for the first module) or whether they are missing (NA). If they are available,
then they are counted as grade 1 if are 70% or higher, grade 2 if they are between
50% and 69% inclusive, and grade 3 if they are below 50%. Some illustrative count
data are shown on corresponding nodes.
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Figure 6.3: Plots of probabilities that each pair of situations are in the same stage
for different values of t, for the case when k = 0.9, ρ = 0.9, q = 0.2 with P (C1 = {v1,
v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1, using the values in Table 6.2
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Figure 6.4: Plots of probabilities that each pair of situations are in the same stage for
different values of t, for the case when k = 0.5, ρ = 0.25, q = 0.05 with P (C1 = {v1,
v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1
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Figure 6.5: Plots of probabilities that each pair of situations are in the same stage for
different values of t, for the case when k = 0.5, ρ = 0.25, q = 0.05 with P (C1 = {v1,
v2, {v3, . . . , v6}, {v7, . . . , v10}}) = 1, and situations v2, v7, v8, v9, v10 caused to be in
the same stage at t = 8
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Chapter 7

Discussion

In this thesis I have shown that chain event graphs are not just an efficient way of

storing the information contained in an event tree, but also a natural way to rep-

resent the information that is most easily elicited from a domain expert: the order

in which events happen, the distributions of variables conditional on the process up

to the point they are reached, and prior beliefs about the relative homogeneity or

symmetry of different situations. This strength is exploited when the MAP CEG is

discovered, as this can be used in a qualitative fashion to detect homogeneity be-

tween seemingly disparate situations, or when predictions need to be made, allowing

flexible and robust specification of the system structure. The range of possible ap-

plications goes beyond the educational one, with forensic, biological and medical

systems seeming particularly suitable with their asymmetric processes and complex

independence structures.

One difficulty with model selection over CEGs is simply the expressiveness

and hence relative size of the model space, which means that to be feasible for even

larger problems one needs to add more contextual information to limit the size of

the space. This is particularly the case if the underlying tree is allowed to em-
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body different orders for when situations happen as described in the last paragraph.

One possible method is to use search for a MAP BN as a coarse initialisation step

and then, taking a CEG consistent with its conditional independences, refine the

search using methods described here. In other contexts, it is worth remembering

that to allow all possible combinations of florets into stages, as done here, would be

implausible. When this is the case, the search algorithm can accommodate this in-

formation easily and therefore be carried out faster; for example, it might be decided

that only situations the same distance away from the root node could be combined,

which would make sense if the underlying even tree is drawn in a hierarchical man-

ner, with the same system variables being represented in the same order along all

root-to-leaf paths of the tree.

It was found in Chapter 6 that even in moderately-sized problems that

weighted MAX-SAT can quickly become intractable, even with restrictions on the

maximum size a stage can take, due to needing to calculate every stage score before-

hand. AHC, on the other hand, while fast, might not explore the space as well as

an algorithm to solve weighted MAX-SAT can. An algorithm that combines AHC

and weighted MAX-SAT might thus be worth investigating. One possible approach

to investigate, used successfully to search over partitions in [Liverani et al., 2010],

is as follows:

1. Use AHC initially to reduce the number of stages to a manageable number

2. For each stage of the staging found with AHC, run the weighted MAX-SAT

algorithm to find the optimal partition of that stage. Replace each stage with

its optimal partition.

3. If nothing changed after the weighted MAX-SAT step, stop. Otherwise run

AHC on the new partition, and repeat until the staging is stable.
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This hybrid algorithm exploits the speed of AHC with the thoroughness of weighted

MAX-SAT.

Another algorithm which has recently emerged for learning BNs uses inte-

ger linear programming [Cussens, 2010]. This involves restating the search for

a MAP CEG as a problem in propositional logic just as with weighted MAX-SAT.

The conditions for being to apply it here are

1. that the score of each CEG is a linear function of its stages, which is the case

here;

2. that the constraints for a staging to be valid (i.e. that it be a partition of the

situations) also be linear in terms of the stages chosen, whether as equalities

or inequalities.

If this second condition holds — and this must be investigated — then an algorithm

called an IP solver can be used to solve the formulated integer programming

problem.

There are a number of extensions to the theory in this thesis that look worthy

of pursuit. One important modelling extension arises from uncertainty about the

underlying event tree. With each different event tree of the same event space,

different factorisations and conditional independence statements can be learnt from

the data. A similar model search algorithm to the one described in this thesis is

possible in this case after setting a prior distribution on the candidate event trees. In

many potential applications it would be desirable to allow for multiple possible trees

at any time point. Sometimes all that is required is the subclass of T — the general

class of event trees — that consists of trees that are merely different partitions of

the same fixed set of root-to-leaf path events. In that case, assuming that the same

root-to-leaf path events on different trees have the same probability implies that

the floret distributions on all trees can be characterised as Dirichlet by the methods
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used here, with the parameters for each possible CEG characterised similarly. The

method of assigning probabilities over the tree space, or how those probabilities

change over time, would still need to be resolved. If a bigger subset of T is required

due to uncertainty about the nature of the event space, then P (xt | xt−1) can still

be calculated as outlined here but with the additional step of marginalising over the

T ∈ T such that P (T | xt−1) > 0, assuming the number of such T is tractable.

In this thesis it was assumed that it was always known that the edges that

were coloured the same in florets deemed to be in the same stage were those of equal

value. Another way of enlarging the model space is therefore to allow for uncertainty

in the function ψu(v, v
′) which determines which edges are coloured identically. This

would allow symmetries to emerge beyond simple conditional independence. One

type of hypothesis this could capture is stability between values of different random

variables. For example, consider the event tree of Figure 3.2. Stability would be

described by colouring edges (v1, v3) and (v2, v6) identically, so that the probabilities

P (B = 0 | A = 0) and P (B = 1 | A = 1) are equal. Stability is therefore a kind

of independence, as |B − A| ⊥⊥ A. This example is called a noisy OR gate in

computer science, and is another kind of structure that cannot be easily represented

with the structure of a BN.

In the educational examples described in this thesis the assumption of sta-

bility would translate into believing that the probability of getting the same grade

in two different modules is the same for all possible grades, i.e. that students who

perform poorly in one module will continue to perform poorly in the next module

with approximately the same proportion as that of students who do well in the

second module after doing well in the first one.

It must be noted that the number of possible ψu(v, v
′) for any pair of situa-

tions v, v′ ∈ S is |X(v)|!. Therefore to make the model search tractable in general
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either the number of possibilities must be restricted using contextual information,

or a local neighbourhood switching function, like the one used in this thesis, could

incorporate this feature too.

One other possible enhancement is to allow for more complex relationships

between floret distributions. At the moment they must either be identical or in-

dependent. However, many applications have non-homogeneous samples. One ap-

proach which keeps the strengths of the CEG models is to analyse relevant sub-

populations on separate trees, perhaps with dependence modelling of floret parame-

ters of different sub-population trees but keeping the CEG framework within trees.

Indeed, the dynamic CEG here can be a seen as an analysis of this sort, with dif-

ferent stagings for different cohorts and a specification of the relationship between

adjacent years’ parameters.

One aspect of the CEG that is worth noting is its ignoring of the time it takes

for events to occur by modelling only which events occur. In applications like the

educational one, where the time of the events is predetermined, or where the time to

an event is not relevant to the probability of it occurring — as with constant hazard

function models — this does not matter. For other systems, however, the times at

which events occur are an extremely important part of the underlying process, and is

the type of domain where event history analysis has been applied. The incorporation

of non-constant hazard functions into CEGs is thus worth investigating, perhaps

through “transport times” as used with flow networks.

Finally, it appears that the static and dynamic CEGs could be extended to

model processes defined on continuous as well as discrete variables. Converting the

leaf nodes on a tree into continuous sample spaces is trivial as upstream nodes are

unaffected. When other variables are continuous then analogous conjugate models

can be defined which describe hierarchical clustering models, discretising continu-
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ous variables intelligently. This is quite analogous to the relationship between the

Dirichlet distribution and the Dirichlet process, and certainly merits further inves-

tigation.
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Appendix A

Exam marks

Below I present the raw data used in Chapter 6.1, with grades for different yearly

cohorts presented separately. For the dynamic analysis of Section 6.2, only the first

two modules were used, while for the static case in Section 6.1 years were obviously

ignored. A blank space means the grade is not available.

1994 cohort

ID ST108grade IB104grade ST213grade IB207grade

33 2 2

34 3 2

46 1 1 2 1

61 3 2 2 1

75 3 2 3 2

78 1 2

80 1 2 3 2

81 2 1 1 1

89 2 2 3 2
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106 3 1 2 2

126 1 1 1 2

207 2 2 2 2

232 2 3

233 2

234

248 2 3 2 3

260 2

261 1 3

287 1 1 2 1

315 1 2 2 1

403 1 1 2 1

413 1 2 2 1

420 2 2 3 2

421

439 3 2

440 1 2

443 1 2 2 2

448 2 2 3 3

456

457 3 2 3 2

463 2 3 3 3

464 3 2

465 3 2

477 1 2 2 1

485 2 2 3 2

124



486

496 2 3

497 2

503 1 2 1 1

511 3 3 3 2

525 2 2 3 2

611 3 3

676 3 3

677 2 2 2 2

678 2 2

683

684 1 2 3 2

700 2 2 3 1

701 2 1 3 3

702

712 3 2 3 2

721

833 3 1 3 2

880 2

881 2 3 1 1

886 3 2 3 2

887

890 2 1 1 1

893 2 2 2 3

897 1 1 2 2

911
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912 3 3

946 1 2 2 2

1995 cohort

ID ST108grade IB104grade ST213grade IB207grade

17 1 1 2 1

23 2 2 3 1

25 3 2 3 3

49 1 1 3 1

50 2 2 1 1

51 2 2 3 1

60 1 1 2 1

74 2 2 3 2

112 1 2 2 2

212 1 2 2 1

221 1 1

222 1 2 1 1

244 3 3 3 3

245 1

270 3 3

271 2

282 2 2 3 1

291 1 1 1 2

310 1 1 3 1
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319 1 1 2 1

401 2 2 2 1

402 2 1 2 1

416 2 2 2 1

436

437 3 3 3 2

450 1 1 2 1

479

480 2 2 3 2

495 2 2 2 3

510 1 1

530 1 2 3 2

617 3 1 2 2

621 1 1

633 2 3 3 2

634

635 3 2 3 2

699 2 3 2 3

711 2 2 2 2

714 2 2 3 2

730 3 1 2 3

734 1 1

742 1 2 2 2

829 3 3 3 1

837 2 3 2 2

846 1 2 2 1

127



852 1 1 1 1

855 1 2 2 1

864 2 2 3 3

883 2 2 2 2

892 2 3 3 3

895 1 1 3 3

904 2 2 2 2

909 2 3 3 2

919 2 2 3 3

920 3 1 2 2

925 1 2 2 2

941 2 2 3 2

957 1 1 2 1

1996 cohort

ID ST108grade IB104grade ST213grade IB207grade

14 1 2 1 2

30 1 2 2 1

31

42 1 1 2 2

48 1 1 1 2

66 1 2 1 1

77 2 2 3 3

104 2 1 2 2

128



194 1 2 3 3

195 1 1 2 2

220 1 1 2 1

236 2 1

241 1 2 3 1

250 1 1 2 2

252 1 1 1 1

256 2 2

262 1 2 3 2

269 1 2 2 1

303 3

304 3 2 3 3

406

407 2 2 2 2

408 1 3 3

411 1 1 1 1

412 2 2 2 1

419 2 1 3 1

434 1 2 2 1

435 1 2 1 1

460 1 1 2 1

492 2 2 3 2

498 1 1 2 1

500 1 2 1 2

512 1 1 1 1

615 1 2 2 2

129



627 1 1 1 2

651 1

652 3 3

653 1 2 1 1

659 1 2 2 2

665 1 1 1 1

670 1 2 1 2

674 1 2 2 2

680 1 2 2 2

719 2 2 3 3

739 1 2 2 1

741 2 2 3 2

832 1 2 3 2

845 1 2 1 2

848 2 2 3 2

858 1 1 1 2

903 1 1 2 2

917 2 1 2 2

924 1 1 1 1

943 3 1 3

962 2 2 2 2

1997 cohort

130



ID ST108grade IB104grade ST213grade IB207grade

6 2 2 3 3

10 1 2 1 3

13 2 2 3 2

15 2 1 2 3

22 2 2 2 3

41 1 1 1 2

68 1 1

73 1 2 1 3

76 1 1 2 1

86 1 2 2 3

87 1 1 1 1

93 2 2 2 2

110 1 1 1 2

111 2 1 2 1

114 1 2 1 2

121

210 1 2 1 2

216 2 2 3 3

219 1 2 1 3

246 1 1 1 1

273 1 2 3 3

277 3 2 2 2

298 2 1 3 3

299 2 2 2 2

318 3 2 2 3

131



446 3 1

455 1 1 2 2

481 2 2 2 3

502 2 1 3 2

509 1 2 2 3

637 2 3

643 2 2 2 2

648 2 3

649 3 3

654 2 2 1 2

661 2 1

662 2 2 3 2

664 1 1 1 2

682 2 2 3 3

690 2 2 2 1

691 1 1 1 1

718 1 2 3 2

722 1 2 2 2

744 1 1 2 1

746 1 1 3 3

825 2 2 1 3

836 3 2 2 3

847 1 1 1 1

850 2 1 3 2

857 1 2 1 2

865 1 2 3 3

132



871 3 3

872

901 2 3 3 3

902 2 2 3 2

928 2 2 2 1

929 1 2 2 3

936 1 1 2 2

949 2 1 3 3

955 1 2 2 2

960 2 1 3 2

1998 cohort

ID ST108grade IB104grade ST213grade IB207grade

4 2 1 3 2

8 3 3

9 3

21 1 2 2 3

35 1 2 2 2

36 2 2

37 3

47 2 2 3 3

57 2 1 2 2

62 3 2 3 3

65 2 1 3 3

133



96 1 3 3 3

97

109 1 2 2 2

113 1 1 2 2

208 1 1 2 1

209 1 1 2 2

227 2 2 3 3

235 1 2 1 1

238 1 2 3 3

249 2 2 3 2

251 2 2

275 2 2 3 3

280 3 1 3 2

296 2 2

297 3 3

307 2 1 1 3

404 1 1 2 2

422 2 2 3 3

423 1 1 2 2

442 2 2 3 3

449 2 1 3 2

491 1 1 1 1

514 1 2 2 3

529 1 2 2 2

612 2 2

613

134



620 1 1 1 2

629 1 1 2 1

636 1 1 2 2

646 2 1 2 2

647 1 1 3 2

685 1 1 1 1

689 1 2 2 3

707 1 1 1 1

708 1 2 2 2

717 3 2 3 3

733 1 1 3 2

736 1 1 2 2

827 1 1 2 3

831 1 2 3 3

834 1 2 2 3

835 2 2 1 1

853 1 2 2 1

854 1 2 2 3

856 2 2 3 3

867 1 1 1 1

874 3 2 2 2

875 1

888 2 2 3 3

891 2 1 3 2

910 1 2 2 3

914 2 2 3 3

135



915 1 1 2 1

930 1 1 1 1

953 1 2 3 2

1999 cohort

ID ST108grade IB104grade ST213grade IB207grade

24 2 3 3 3

55 1 1 1 1

70 2 2 3 3

175 2 1 3 2

198 3 3

199 2 1

228 2 2 3 2

279 2 2 3 3

283 2 2

284 3 3

335 2 2 3 2

357 2 2 3 2

358 3 2

360 3 2

382 3 1

383 2 2

417 1 2

426 1 1

136



427 3 2

472 3 2 3 2

478 1 1 2 2

489 2 2 3 2

493 2 2 2 2

548 3 3

549 3 2

553 2 1 2 2

558 1 1 2 2

561 2 2 2 2

562 1 1 2 2

568 1 1 2 2

577 1 1 1 2

587 3 2

588 2 2

591 1 1 2 2

609 3 2

610 3 2

618 2 3 3 2

619

655 1 2 3 3

671 2 1 3 1

675 2 1 2 2

681 1 2 3 2

697 1 2 3 1

710 2 1 3 3

137



723

724 2 2 3 2

727 3 2

728 2 3

737 2

738 1 2 3 2

748 2 1 3 2

779 2 2 3 2

791 2 1 2 1

804 1 2 3 2

811 3 3

812 2 2

816 3 2 3 2

840 3 2 3 3

841 3

842 2 3 3 3

866 1 2 2 2

927 1 1 3 3

969 2 2 3 2

970

978 1 1 2 1

986 1 1

987 1 2 3 2

994 1 1 2 1

999 1 1 1 1

1000 2 2 3 3

138



1006 1 1 3 2

1019 1 2 2 2

1029 1 1 2 2

2000 cohort

ID ST108grade IB104grade ST213grade IB207grade

119 1 1 1 1

125 1 1 2 2

135 1 1 1 1

138 1 3 3 3

151 1 2 1 2

154 2 3 3 3

156 1 3 3 3

167 1 1 1 1

170 1 2 1 2

186 2 3 3 3

188 2 3

196 1 2 2 2

197 1 2 1 3

223 2 3 3 3

224 1 2 1 1

225 1 3 2 3

231 1 2 2 2

288 1 2 1 2

139



308 2 2 3 2

331 2 2 2 3

332 1 2 3 2

336 1 3 2 2

338 2 3 2 3

343 1 2 1 2

363 1 1 2 2

379 1 3 2 2

380 2 3 3 3

398 1 3 3 3

400 1 2 2 3

430 1 2 2 2

444 1 2 2 2

447 1 2 2 2

452 1 2 2 3

467 1 2 1 2

501 2 2 2 2

504 1 2 2 3

516 1 3 2 2

539 1 2 2 3

551 1 2 3 2

557 1 2 1 1

571 1 2 2 2

623 1 2 2 2

645 1 2 1 1

660 1 2 1 1

140



668 1 2 3 2

687 1 1 1 2

694 1 2 1 2

715 1 2 2 2

726 1 3 3 3

750 1 3 3 2

753 1 3 3 3

765 1 2 3 3

771 2 1 3 2

781 1 2 2 2

802 1 2 2 2

803 1 2 2 1

808 1 2 2 1

824 1 2 1 2

839 1 2 1 2

868 1 1 1 2

938 3 3 3 3

942 1 1 3 3

945 2 3 3 3

952 1 2 1 1

966 1 1 2 2

972 1 2 2 2

979 1 2 1 2

988 1 3 2 3

991 1 2 1 1

1027 1 2 2 2

141



1036 1 2 1 2

2001 cohort

ID ST108grade IB104grade ST213grade IB207grade

12 1 2 2 2

26 1 1 3 1

32 1 1 1 2

38 1 1 1 1

53 2 2 2 3

79 2 2 3 3

92 1 1 2 1

115 1 1 2 2

117 1 1 2 1

137 2 2 2 2

144 1 2 2 1

147 1 1 1 2

158 1 1 2 1

162 1 2 3 3

164 2 2 3 3

173 1 2 2 2

176 1 2 3 3

180 1 2 3 3

213 1 2 3 3

230 1 2 2 2

142



254 1 2 1 2

257 2 2 2 2

263 2 2 2 2

276 1 2 1 2

321 1 2 1 3

322 1 2 2 3

324 1 1 2 2

341 1 2 3 2

362 2 1 1 2

366 1 1 3 2

370 3 2 3 3

384 2 2 3 2

385 1 2 2 2

388 3 3

389 3 3

410 1 2 2 2

414 2 1 3 3

433 2 2 2 2

445 1 2 3 2

474 1 2 2 3

484 2 2 2 1

507 1 2 1 2

517 2 1 1 2

519 1 3 1 1

520 2 2 3 3

521

143



535 2 2 2 2

544 1 2 3 2

564 3 2 2 3

583 1 1 2 2

584 1 1 1 2

593 1 2 3 3

607 3

608

622 1 1 3 3

624 1 2 2 1

640 2 2 3 2

669 1 1 1 2

679 1 1 1 2

703 1 2 1 3

706 1 1 1 3

740 1 1 2 1

745 1 1 1 1

747 2 2 3 3

761 2 3 3 3

764 1 1 1 1

774 3 3

775 3 3

789 1 1 2 1

793 1 1 3 1

795 2 3 2 3

799 1 1 1 2

144



800 2 2 3 2

805 1 2 2 2

810 1 2 2 2

813 1 2 3 2

843 2 1 1 2

863 1 2 2 2

873 2 1 3 3

884 1 2 2 2

894 2 1 1 1

905 1 2 2 2

921 1 1 3 3

922 1 2 3 2

947 1 2 3 2

975 1 2 3 3

984 1 2 2 2

2002 cohort

ID ST108grade IB104grade ST213grade IB207grade

2 1 1 3 2

11 1 2 3 3

28 3 3

45 1 2 1 2

54 1 1 1 2

56 2 2 2 3

145



82 1 2 3 2

84 1 1 2 2

94 1 1 1 2

98 1 2 2 3

100

101 1 3 3 3

118 1 2 1 2

120 1 1 3 2

152 1 2 3 3

174 1 2

179 1 1 3 2

189 1 1 2 3

191 1 1 1 2

202 1 2 2 3

204 1 1 3 2

226 1 1 3 2

237 1 2 1 2

239 1 2 2 2

247 1 1 3 1

278 1 2 2 2

281 1 1 2 3

286 1 1 2 2

292 3

293 3 3 3 3

294 1 3 3 3

295 1 1 1 1

146



329

330 2 2 3 2

349 1 2 2 1

361 1 1 1 1

374 1 1 2 3

386 1 1 1 1

387 1 1 1 1

390 1 1 2 1

394 1 3 2 2

424 1 2

425 3 3

428 1 2 2 3

451 1 3 3 3

459 1 1 1 1

468 1 2 2 3

473 1 2 2 2

523 2 3 3

524 3 3

528 2 3 3 3

582 1 2 3 3

586 1 2 2 2

592 1 1 2 2

594 1 1 1 2

601

602 3 3 3 3

631 1 1 2 2

147



642 2 2 2 1

644 1 2 2 2

672 1 2 2 3

693 1 1 1 2

704 1 2 2 2

709 1 1 1 1

757 1 1 1 2

758

759 1 1 2 2

769 1 1 2 2

784 3

785 3 2 3 3

798 1 2 1 2

818 1 2 3 2

822 1 1 2 2

826 1 2 1 2

828 1 2 2 3

859 1 1 1 2

878 1 2 3 2

889 1 1 1 1

926 1 2 2 3

950 1 1 3 2

959 1 1 3 1

964 1 1 1 2

976 1 2 3 3

982 2 2 3 2

148



990 1 2 3 3

993 1 1 1 1

995

996 2 2

997 1 2 1 2

998 1 2 3 1

1002 1 2 2 2

1005 2 2 3 2

1022 1 1 1 2

1024 1 2 2 2

1028 1 2 2 1

1030 1 2 2 2

1031 1 2 3 2

1032 1 2 3 1

2003 cohort

ID ST108grade IB104grade ST213grade IB207grade

5 1 1 2 2

18 2 2 2 2

83 1 1 3 2

90 1 2 3 3

91 2 2 3 3

102 2 2 3 2

103

149



123 2 2 3 3

124

131 1 1 2 2

133 2 1 3 3

139 1 1 2 3

140 2 1 3 1

149 2 3 3 3

150 1 2 3 3

155 1 1 3 3

161 1 1 2 3

163 1 1 3 3

165 1 1 1 3

166 2 2 3 2

181 2 1 2 2

184 1 1 1 1

203 1 2 3 2

229 1 2 2 1

240 1 1 3 3

243 1 1 1 2

258 2 1 3 3

259 1 1 3 2

268 1 3 2 3

301

302 2 2 3 2

311 1 1 1 2

316 3 3 3 3

150



317 2 3

327 3 3

328 2

339 3 3 3 3

340 3 2

342 2 3 3 3

365 3 3 3

367 1 1 1 2

399 1 2 2 2

415 2 1 3 3

418 1 2 3 3

429 2 2 3 3

431 2 2

453 1 1 2 1

461 1 1 1 1

462 1 1 3 1

476 2 2 2 3

482 1 2 3 3

494 1 3 2 2

513 2 2 3 3

515 1 2 3 2

518 1 2 1 1

526 1 1 2 2

531 1 2 2 3

534 1 1 1 2

536 3 3 3 3

151



550 2 3 2 3

554 2 2

559 1 1 2 3

563 1 1 2 2

565 1 2 3 3

572 2 2 3 3

580 1 2 3 3

585 1 1 1 2

590 1 1 2 1

595 1 1 1 1

597 1 1 1 1

600 1 2 3 3

604 1 1 3 2

605 2 2 3 3

616 1 1 2 2

641 1 2 2 2

658 1 1 2 1

667 3 1 3 3

713 2 1 2 2

720 2 3 3 3

731 3

732 2 3 3 3

754 1 1 3 3

756 1 3

760 2 2 3 2

766

152



767 2 2 3 3

776 3 3

777 3 3

782 1 2

783 3 3

801 2 1 2 2

807 2 3 3 3

814 3 2 1 3

815 1 1 2 2

820 1 1 2 3

821 1 1 1 3

849 3 2 3 3

869 2

870 3 3

933 1 3 3 3

935 1 1 1 2

939 2 1 3 3

940 2 1 2 3

956 2 1 2 3

963 1 1 1 2

973 1 1 2 3

974 1 1 3 3

989 1 2 2 3

1003 1 1 3 2

1004 3 3 2 3

1007 1 2 2 3

153



1013 3 3 3 3

1015 1 1 3 2

1035 2 2 3 3

2004 cohort

ID ST108grade IB104grade ST213grade IB207grade

1 1 1 3 2

3 1 2 3 2

19 1 1 3 1

20 2 2 3 2

39

40 2 2 3 2

43 1 2 2 2

44 1 3 1 1

58 3 3

59 2 3

69 1 3 3 2

88 1 2 2 1

105 1 2 3 2

108 2 2 3 2

122 2 2 3 2

127 1 2 3 2

129 3 2 3 2

132 1 1 2 1

154



136 1 1 3 2

142 1 2 3 2

148 3 2

157 1 2

160 1 2 2

168 1 3 3 3

169 1 1 3 1

177 1 1 3 3

178

185 2 2 3 2

190 3 3

193 1 1 2 2

200 1 1 2 1

201 1 3 3 2

206 2 2 2 2

211 1 1 1 2

217 1 3 2 1

242 2 3 3 2

255 1 2 2 1

264 1 1 3 2

266 3

267

272 1 2 3 2

285 1 3 3 2

306 1 2 2 2

309 1 3 3 1

155



312

313 3

320 1 2 3 2

323 1 2 2 2

325 1 1

326 3 2

333 2 3 3 2

334

344 1 2 3 2

345 1 1

347 1 2 3 2

350 2 3 3 2

351 1 3 2 2

352 3 3 2 1

355 1 2 3 2

356 1 2 3 1

359 1 2 3 2

368

369 3

372 1 2 3 1

376 3 3

377 2 2

381 1 1 2 2

392 1 1 1 1

393 1 2 3 1

395 2 3 3 2

156



397 1 2 2 2

438 2 1 3 2

441 1 1 3 1

458 3 3 3 3

469 1 1 2 2

470

471 2 1 3 2

487 1 1 1 1

488 3 3 3 2

490 1 3 3 2

506 2 3 3 2

532 1 3 3 2

533 1 2 3 3

540 1 2 3 2

541 1 1 1 2

543 1 2 3 1

552 1 1 1 2

556 1 1 1 1

569 1 1 1 1

576 1 2 1 1

581 1 2 3 2

589 1 1 2 2

596 1 2 3 3

598 2 3 2

599 3 2

614 1 1 3 2

157



625 1 2 1 1

626 1 2 3 2

630 1 3 3 2

638 1 2 3 1

656 1 1 2 1

657 1 1 2 2

666 1 2 2 2

692 1 1 2 2

698 1 3 3 2

705 1 2 3 2

735 1 3 2 2

763 1 2 3 2

773 1 2 2 2

778 1 2 2 3

786 1 2 1 1

796 1 2 2 2

806 1 1 2 1

817 1 2 3 2

860 1 1 3 2

861 1 1 1 2

862 1 1 2 1

877 1 2 3 3

882 2 3

898 1 2 3 2

899 1 3 3 2

906 1 3 3 2

158



907 3 2

908 2 1

913 1 2 2 2

918 1 2 2 2

932 1 1 1 1

934 2 2 3 2

951 1 1 1 1

965 2 2 3 2

977 1 1 3 2

981 1 2 1 2

983 1 1 2 1

992 1 2 3 3

1001 1 1 1 1

1009 2 3 3 2

1010 2 1 3 1

1016 2 3

1017

1021 1 1 1 1

1034 1 2 3 3

2005 cohort

ID ST108grade IB104grade ST213grade IB207grade

7 1 2

16 1 2

159



27 2 2

29 1 1

52 1 3

63 2 1

64 2 1

67 1 1

71 1 1

72 1 2

85 1 2

95 1 1

99 3 2

107 2 2

116 1 1

128 1 1

130 2 2

134 1 2

141 2 2

143 1 2

145 3 2

146 1 1

153 1 1

159 1 1

171 1 1

172 1 1

182 3 1

183 1 2

160



187 2 2

192 1 1

205 1 1

215 2 3

218 2 2

265 1 2

274 1 2

289 2 1

290 1 2

300 1 1

305 1 1

314 3

337 1 1

346 2 1

348 1 1

353 1 1

354 1 1

364 1 1

371 1 1

373 1 1

375 1 1

378 1 1

391 1 2

396 2 1

405 1

409 2 2

161



432 1 2

454 1 2

466 1 1

475 1 2

483 2 1

499 1 2

505 2 2

508 1 1

522 1 1

527 2 3

537 1 1

538 1 2

542 1 2

545 1 1

546 1 1

547 1 1

555 1 2

560 1 1

566 1 2

567 1 1

570 1 1

573 2 3

574 1 1

575 1 1

578 1 2

579 2 2

162



603 1 1

606 2 1

628 2 1

632 1 1

639 3 3

650 1 2

673 1 2

686 1 1

695 1 1

696 2 3

716 1 1

725 1 1

729 2 1

743 2 3

749 2 2

751 2

752 1 2

755 1 1

762 1 1

768 1 3

772 1 1

780 3 3

787 1 1

788 1 2

790 1 1

792 1 3

163



794 1 1

797 2 1

809 1 1

819 1 1

823 2 1

830 1 1

844 1 2

851 1 1

876 1 2

885 3 1

896 2 3

900 1 1

916 1 1

923

931 1 1

937 1 1

948 1 1

954 3 2

958 1 1

961 1 1

967 2 2

968 1 1

971 2 3

980 2 1

985 1 1

1008 1 2

164



1011 2 1

1012 1 1

1014 1 3

1018 1 1

1020 1 1

1023 1 1

1025 1 1

1026 1 1

1033 1 1

No year available

ID ST108grade IB104grade ST213grade IB207grade

214

253 3 1

663 3 3

688 1 1

770 2 3

838 3 3

879

944 3 3

165
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