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Abstract 

 
 
The main objective of this research is to enhance navigation modules of location-based 

Intelligent Transport Systems (ITS) by developing a weight-based topological map-

matching algorithm and a map-aided integrity monitoring process. 

 

Map-matching (MM) algorithms integrate positioning data from positioning sensors with 

spatial road network data to identify firstly, the road link on which a vehicle is travelling 

from a set of candidate links; and secondly, to determine the vehicle’s location on that 

segment. A weight-based topological MM algorithm assigns weights for all candidate 

links based on different criteria such as the similarity in vehicle movement direction and 

link direction and the nearness of the positioning point to a link. The candidate link with 

the highest total weighting score is selected as the correct link. This type of map-

matching algorithm is very popular due to its simplicity and speediness in identifying the 

correct links. Existing topological map-matching algorithms however have a number of 

limitations: (1) employing a number of thresholds that may not be transferable, (2) 

assigning arbitrary weighting coefficients to different weights, (3) not distinguishing 

among different operational environments (i.e., urban, suburban and rural) when 

determining the relative importance of different weights and (4) not taking into account 

all available data that could enhance the performance of a topological MM algorithm. In 

this research a novel weight-based topological map-matching algorithm is developed by 

addressing all the above limitations. The unique features of this algorithm are: 

introducing two new weights on turn restrictions and connectivity at junctions to improve 

the performance of map-matching; developing a more robust and reliable procedure for 

the initial map-matching process; performing two consistency checks to minimise 

mismatches and determining the relative importance of different weights for specific 

operational environments using an optimisation technique.  

 

Any error associated with either the raw positioning data (from positioning sensors) or 

spatial road network, or the MM process can lead to incorrect road link identification and 

inaccurate vehicle location estimation. Users should be notified when the navigation 
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system performance is not reliable. This is referred to as an integrity monitoring process. 

In this thesis, a user-level map-aided integrity method that takes into account all error 

sources associated with the three components of a navigation system is developed. Again, 

the complexity of the road network is also considered. Errors associated with a spatial 

road map are given special attention. Two knowledge-based fuzzy inference systems are 

employed to measure the integrity scale, which provides the level of confidence in map-

matching results.  

 

Performance of the new MM algorithm and the integrity method was examined using a 

real-world field data. The results suggest that both the algorithm and the integrity method 

have the potential to support a wide range of real-time location-based ITS services. The 

MM algorithm and integrity method developed in this research are simple, fast, efficient 

and easy to implement. In addition, the accuracy offered by the enhanced MM algorithm 

is found to be high; it is able to identify the correct links 97.8% of the time with an 

horizontal accuracy of 9.1 m )2( σµ + . This implies that the developed algorithm has 

high potential to be implemented by industry for the purpose of supporting the navigation 

modules of location-based intelligent transport systems. 
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Chapter 1 

 
Introduction 

 
 
 
 
 
 
 
 
 
 

1.1 Background 

 

Around the world transport and traffic related problems have been increasing 

over the recent decades. It is increasingly recognised that simply attempting to 

provide additional infrastructure to meet such demand is not sustainable 

(Chowdhury and Sadek, 2003). Among a range of possible supply and demand 

based measures, Intelligent Transport Systems (ITS) have the potential to 

improve safety, mobility and efficiency, and reduce congestion and 

environmental impacts through the use of advanced computer, communication, 

navigation, information and vehicle sensing technologies (Sussman, 2005). 

Current ITS applications include traveller information services, route guidance, 

adaptive signal control, variable message signs, pre-trip and en-route travel 

information, travel demand management, electronic payment systems, and 

incident management. Most ITS services including navigation and route 

guidance, bus arrival information at bus stops (countdown in London, i.e. iBus), 

fleet management (a GPS-based taxi dispatching service in Singapore) and 

distance-based insurance premiums require vehicle positioning data in real-time.  

 

There are three key elements involved in locating a vehicle’s position on a road. 

They are: (1) positioning systems/sensors (2) a Geographic Information System 

(GIS)-based road map and (3) a map-matching (MM) algorithm (Taylor and
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 Blewitt, 2006). A number of positioning systems/sensors are normally used to 

obtain vehicle positioning data. These are:  

 
(a) dead reckoning (DR) systems which use a relative positioning technique to 

determine the location of a moving vehicle requiring vehicle speed and its 

direction of movement (White et al., 2000; Zhao  et al., 2003; Li and Fu, 2003);  

 
(b) ground based beacon systems (Bernstein and Kornhauser, 1996; White et al., 

2000), and  

 
(c) Global Navigation Satellite System (GNSS) such as GPS (White et al., 2000; 

Greenfeld, 2002; Zhao  et al., 2003; Quddus et al., 2003).  

 
Recently, GPS has become more popular as it offers a fast and convenient 

method of obtaining positioning data that is well-suited for viewing in a 

Geographic Information System (GIS) (Chen et al., 2003).  

 

A map-matching (MM) algorithm is used to augment positioning data from a 

navigation system with spatial road network data. A MM algorithm makes use of 

a range of navigational data including vehicle position, heading, speed and road 

network topology to identify the road segment on which a vehicle is travelling 

and the vehicle location on that road segment. The key task for a MM algorithm 

is to identify the correct road segment from a pool of candidate road segments.  

 
Various map-matching techniques (e.g. geometric, topological, probabilistic and 

advanced) have been developed for land vehicle navigation (Bernstein, 1996; 

Kim et al., 1996; White et al., 2000; Taylor et al., 2001; Phuyal, 2002; Srinivasan 

et al., 2003; Li and Fu 2003; Yin and Wolfson, 2004; Blazquez and Vonderohe, 

2005; Quddus et al., 2007; Sohn, 2009). The earliest algorithms, developed in the 

1990s, used only geometric information, the shape of the curve of the road 

segment (Kim et al., 1996; Bernstein, 1996; White et al., 2000; Quddus et al., 

2007). A MM algorithm that uses only geometric information is known as a 

geometric MM algorithm (gMM). These gMM algorithms are the simplest and 
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fastest to implement as they require very little information. However, gMM 

algorithms perform poorly, especially when matching at junctions, complex 

roundabouts and parallel roads. These gMM algorithms may be improved by 

including historical data (such as the previously matched road segment), vehicle 

speed and topological information from a spatial road map (such as link 

connectivity). A MM algorithm that uses such additional information is called a 

topological MM (tMM) algorithm (Greenfeld, 2002; Quddus et al., 2003; Li et 

al., 2005; Quddus et al., 2007). Obviously, the performance of a tMM is much 

better than that of a gMM (White et al., 2000; Greenfeld, 2002). A probabilistic 

MM (pMM) algorithm uses probability theory to identify the set of candidate 

segments by taking into account the error sources associated with both navigation 

sensors and spatial road data. The MM algorithms classed as advanced MM 

(aMM) algorithms include applications of extended kalman filter (EKF), belief 

theory, bayesian multiple hypothesis technique, fuzzy logic (FL) and artificial 

neural network (ANN) techniques (Pyo et al., 2001; Yang et al., 2003; Syed and 

Cannon, 2004; Fu  et al., 2004; Haibin et al., 2006; Quddus et al., 2007a; Smaili 

et al., 2008).  

 

The raw positioning data from a navigation system contains errors due to satellite 

orbit and clock bias, atmospheric (ionosphere and troposphere) effects, receiver 

measurement error and multipath error (Kaplan and Hegarty, 2006). GIS-based 

road maps include errors which can be geometric (e.g. displacement and rotation 

of map features) and/or topological (e.g. missing road features) (Goodwin and 

Lau, 1993; Kim et al., 2000). Even when raw positioning data and map quality 

are good, MM techniques sometimes fail to identify the correct road segment 

especially at roundabouts, level-crossings, Y junctions, dense urban roads and 

parallel roads (White et al., 2000; Quddus et al., 2007a). Any error associated 

with either the raw positioning points, the digital map used, or the MM process 

employed can lead to a mismatch. This could mislead the users and make the ITS 

service ineffective. It is therefore important to enhance the GPS/GIS/MM system, 

so as to enable the further improvement of vehicle navigation system.  
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Vehicle navigation systems may be enhanced by reducing the errors in the 

positioning sensors (e.g. GPS) or improving the quality of the spatial road 

network map or further enhancement of map-matching algorithms. For instance, 

the Russian Global Orbit Navigation Satellite System (GLONASS) and the 

upcoming European Galileo system, along with a DR system, may enhance the 

performance of existing vehicle positioning systems. However, a good map-

matching algorithm will still be needed to physically locate a vehicle on a road 

network. Current map-matching algorithms have many constraints and 

limitations, especially in typical operational environments (such as dense urban 

areas) in which highly accurate positioning data are essential (Quddus et. al., 

2007a). Enhancement in vehicle positioning can also be obtained by improving 

the quality of spatial network data. This is however costly and time consuming at 

a national level. Therefore, further improvement in map-matching algorithms is a 

viable alternative in order to enhance the vehicle navigation system.  

 

Among the four different map-matching algorithms (e.g. geometric, topological, 

probabilistic and advanced) identified in the literature, an advanced MM (aMM) 

algorithm that uses these more refined approaches, outperforms other MM 

algorithms (Quddus et al., 2006a). These aMM algorithms require more input data 

are relatively slow and difficult to implement. Whereas a tMM algorithm is very 

fast, simple and easy to implement. For this reason, a tMM algorithm has greater 

potential to be implemented in real-time applications by industry as its processor 

would require less memory. There are a number of constraints and limitations in 

existing tMM algorithms. Once such limitations are addressed, it is expected that 

the performance of a tMM algorithm could be comparable to that of a pMM 

algorithm or an aMM algorithm.  

 

As mentioned before, any error associated with the three main components (raw 

positioning systems/sensors, digital map, MM algorithms) may lead to a wrong 

location identification. Users should be notified when the system performance is 
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not reliable. This is vital not only for safety critical ITS applications such as 

emergency vehicle management and vehicle-based collision avoidance but also 

liability critical applications including electronic toll collection systems and 

distance-based pay-as-you-drive road pricing. For example, wrong vehicle 

location identification, due to errors associated with a navigation system, in an 

emergency vehicle routing ITS service may delay ambulances arrival at an 

accident site. If a driver is informed when the system performance is not reliable 

then the driver will not blindly depend on the output of the vehicle navigation 

system. 

 

1.2 Problem statement and intention of this thesis 

 

A MM algorithm that uses historical data (such as the previously matched road 

segment), vehicle speed and topological information on the spatial road network 

(such as link connectivity) is called a topological MM (tMM) algorithm 

(Greenfeld, 2002; Li  et al., 2005; Quddus et al., 2003). An algorithm which 

further assigns weights for all candidate links based on different criteria such as 

the similarity in vehicle movement direction and link direction, the nearness of 

the positioning point to a link, and the connectivity of a candidate road link to the 

previously travelled road link is known as a weight-based topological MM 

algorithm (Quddus et al., 2003). A weighting approach in selecting the correct 

road segment from the candidate segments improves the accuracy of correct road 

segment identification (Greenfeld, 2002; Quddus et al., 2003). According to the 

current literature, the generic limitations of such weight based topological map-

matching algorithms are: 

 

1. Assuming equal importance (or derived empirically) of  the weights 

considered in the weight-based tMM algorithm; 

 
2. operational environments (i.e., urban, sub-urban and rural) are not 

considered while determining the relative importance of different weights 

and  
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3. Employing a number of arbitrary thresholds which may not be 

transferable. 

 

Moreover, in many algorithms the horizontal accuracy (2D) has not been 

identified due to a lack of reference (true) vehicle positioning data. In order to 

enhance the vehicle navigation module of an intelligent transport system a more 

robust tMM algorithm, which can overcome the limitations of existing 

algorithms, needs to be developed.  

 

The concept of user-level integrity monitoring has been successfully applied to 

air transport navigation systems. Very little research has been devoted to land 

vehicle navigation system integrity monitoring. The primary difference is that in 

addition to the errors associated with the space segment, one needs to consider 

the errors associated with the digital map and the map-matching process when 

monitoring the integrity of a land vehicle navigation system. Research on land 

vehicle integrity monitoring has concentrated on either the integrity of raw 

positioning data obtained from GNSS (Philipp and Zunker, 2005; Feng and 

Ochieng, 2007; Lee et al., 2007) or the integrity of the map-matching process (Yu 

et al., 2006; Quddus et al., 2006c; Jabbour et al., 2008). Clearly, considering both 

sources of error concurrently, in identifying the goodness (trustability) of final 

positioning fixes, should lead to a better outcome.  

 

Moreover, taking the complexity of the road network (i.e. operational 

environment) into account may further improve the integrity process. This is 

because, although the raw positioning points from GPS contain some errors, a 

good map-matching algorithm can identify the correct road segment if the road 

network in which the vehicle is travelling is not complex. None of the existing 

research on land vehicle navigation integrity methods has considered the 

complexity of the road network in the integrity monitoring process.  

 



 

 7 
 

1.3 Research Aim and Objectives 

 
The primary aim of the this research is to enhance navigation modules of 

location-based Intelligent Transport Systems (ITS) by developing a weight-based 

topological map-matching algorithm and a map-aided integrity monitoring 

process. 

 

To achieve the above aim, the following objectives are formulated: 

 

1. To identify positioning requirements expressed as Required Navigation 

Performance parameters for a range of location-based ITS. 

 

2. To critically assess existing topological map-matching algorithms and 

integrity methods. 

 

3. To develop an improved weight-based topological map-matching 

algorithm and  introduce an optimisation technique to identify the relative 

importance of weight scores in different operational environments.  

 

4. To explore the transferability of tMM to different contexts; and  

systematically identify the sources of error in the tMM algorithm to 

further enhance it. 

 

5. To develop an improved integrity method by taking into account errors 

associated with the positioning data, GIS map and map-matching process 

concurrently. 

 

6. To identify location based intelligent transport systems that may be 

supported by the enhanced tMM algorithm and the integrity method.  
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Extensive positioning data is obtained from  different operational environments, 

using a low-cost GPS receiver and a carrier-phase GPS receiver integrated with a 

high-grade Inertial Navigation System (INS) to examine the relative importance 

of weight scores in different operational environments and to evaluate the 

performance of the tMM algorithm and the integrity method. As most  ITS 

services need continuous vehicle location information, here the positioning data 

is recorded every second. The aim is to develop a generic tMM algorithm that 

does not assume an O-D pair in the map-matching process.  

 

1.4 Outline of  the Thesis 

 

This thesis is organised into ten chapters. This chapter has described the research 

background, current research issues, aim and objectives and the structure of the 

thesis: 

 

Chapter Two provides a brief introduction to ITS services and ITS taxonomy 

showing various ITS services that require vehicle positioning information and 

services that may use the vehicle positioning information. This is followed by 

explanation of Required Navigation Performance (RNP) parameters in the 

context of land vehicle navigation. Then, a review of RNP for ITS, aiming to 

focus on how these RNP parameters are derived and the strategy to identify each 

RNP parameter for a range of ITS services, is provided. The chapter ends with 

evidence of RNP parameters for a range of ITS services and the target ITS 

services in this thesis.  

   

Chapter Three critically reviews geometric, topological, probabilistic and 

advanced map-matching algorithms. This is followed by a detailed literature 

review of topological map matching (tMM) algorithms by classifying then into: 

(1) non-weight based on-line algorithms, (2) weight based on-line algorithms and 

(3) off-line algorithms. Existing tMM algorithms performance is reported. The 

limitations of existing tMM algorithms are identified.   
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Chapter Four introduces the role of integrity methods in the context of land 

vehicle navigation and provides a detailed review of integrity methods. 

Performance and limitations of existing integrity methods are examined. Chapter 

Five specifies all the positioning data sets collected or used to identify the 

optimal weight scores in the tMM algorithm and to test both the enhanced tMM 

algorithm and the integrity method.  

 

In Chapter Six, a weight-based topological MM algorithm is described by 

dividing it into: initial map-matching, matching on a link and map-matching at a 

junction. Then an optimisation technique to identify the relative importance of 

weight scores is explained. The optimisation technique includes development of 

relation between map-matching errors and the weight scores and identification of 

optimal weight scores using the Matlab optimisation toolbox. Then, the 

performance of the tMM algorithm is assessed using positioning data collected in 

London, UK and Washington, USA. The positioning accuracy of the algorithm 

(i.e., horizontal accuracy, along track error and cross track error) is examined 

using highly accurate positioning data obtained from carrier-phase GPS 

integrated with INS. 

 

In Chapter Seven further enhancement of the tMM algorithm developed in the 

previous chapter is carried out using a sequential process of map-matching error 

detection, mitigation and performance re-evaluation. Firstly, all the mis-matching 

cases are identified by carefully analysing three positioning data sets from UK, 

USA and India. Here three different GIS maps are used. The mismatches due to 

positioning data errors, GIS map errors and map-matching process errors are 

measured. Secondly, a number of strategies are identified to avoid these 

mismatches enabling enhancement of the topological map-matching algorithm 

Thirdly, the tMM algorithm developed in Chapter Six is further 

modified/improved. Finally the enhanced algorithm performance is re-evaluated 

before and after improvement.  
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Chapter Eight starts with description of how to consider the integrity of raw 

positioning points, digital map errors and integrity of MM process concurrently. 

This is followed by development of enhanced integrity monitoring process for 

land vehicle navigation systems, which also includes two fuzzy inference 

systems. The chapter ends with performance evaluation of the developed integrity 

method.  

 

Chapter Nine compares the performance of the developed tMM algorithm and the 

integrity method with existing algorithms’ performance; and examines the extent 

to which the enhanced algorithm and the integrity method can support the 

navigation requirements of ITS services. Chapter Ten summarises the research 

contribution in the area of map-matching process and integrity methods. Research 

directions for future improvement of the MM algorithms and the integrity 

methods, which can support the limitations of this work, are provided. 
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Chapter 2 

 

Location-based ITS services and their RNP 

requirements  

 
 
 
 
 

 
 
 
 
2.1 Introduction 
 
This chapter contains a brief description of location-based transport services, and 

their positioning and navigation requirements, which are referred to as Required 

Navigation Performance (RNP) parameters. The RNP parameters are: accuracy, 

integrity, continuity, and availability. The basic factors that influence the RNP 

requirements for location-based ITS services are described. The RNP parameter 

requirements for a range of location-based ITS services are then discussed. The 

chapter ends with conclusion describing the ITS services that are targeted in this 

thesis.  

 
A composite taxonomy of user services derived from Chadwick (1994), FHA 

(2003), Christos and Anagnostopoulos (2006) and Quddus (2006) is shown in 

Table 2.1. A location-based ITS service is a service that requires knowledge 

about vehicle position (X, Y, and Z coordinates or latitude longitude and height) 

continuously during its operation. In this table the user services with star mark (*) 

require navigation and positioning capabilities and the services marked with plus 

mark (+) are additional services which can be assisted by navigation and 

positioning technologies. These ITS services are under various levels of 

development, testing, and deployment. Further details of potential applications of 

ITS can be found in Mashrur and Sadek (2003), Nijkamp et al. (1996), Klein 

(2001), Quddus (2006), Kaplan and Hegarty (2006). 
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Table 2.1: Taxonomy for ITS 
ITS User Groups User services 

Pre-trip travel information 
En-route driver information* 
Route guidance* 
Ride matching and reservation 
Traveller services information* 
Traffic control+ 
Incident management* 
Travel demand management 
Traffic data quality management 
Highway-rail intersection (HRI) 

Advanced Traffic Management 
System 

On-board emissions monitoring (OEM)+ 
Public Transport Management* 
En-Route Transit Information* 
Demand Responsive Transit 
Public Travel Security 

Advanced Public Transport and 
Operations 

Automatic bus arrival announcements* 
Electronic Toll Collection+ 
Electronic Parking Payment+ Electronic Payment System 
GPS based Variable Road User Charging * 
Commercial Vehicle Electronic Clearance* 
Automated Roadside Safety Inspection 
On-Board Safety Monitoring+ 
Commercial Vehicle Administrative Processes* 
Hazardous Material Transport+ 

Commercial Vehicle Operations 

Commercial Fleet Management* 
Emergency Vehicle Priority at Junction 
Emergency Notification and Personal Security* 
Disaster Response and Management 

Emergency Management Systems 

Emergency Vehicle Management and Routing* 
Vehicle based Collision Notification and Warning 
System* 
Vehicle-Based Collision Avoidance* 
Infrastructure-Based Collision Avoidance 
Sensor-Based Driving Safety Enhancement 
Safety Readiness 
Pre-Collision Restraint Deployment 

Advanced Vehicle Safety System 

On-board safety monitoring* 
Information Management System 
Parking facility management+ 
Maintenance and Construction Management System + 
Road Weather Management+ 
Inter-modal Freight+ 
Stolen Vehicles Recovery+ 

Other Services 

Accident Survey+ 
* Services that require navigation and positioning capabilities 
+ Additional services which can be assisted by navigation and positioning technologies 
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The navigation function of ITS is responsible for providing the physical location 

of a vehicle travelling on a road network. For example, accident and emergency 

(A&E) response vehicles under a safety-of-life accident notification service are 

equipped with a navigation system supported by GPS and a digital road map and 

a mobile communication system supported by Global System for Mobile 

Communication (GSM), General Packet Radio Service (GPRS) or Wireless Local 

Area Network (WLAN) or a combination of these technologies. In the event of an 

emergency such as an accident, the telemetric information from the navigation 

module is transmitted to the emergency service agencies through a wireless 

communication system. This information is not only useful in navigating an 

emergency vehicle to an accident, but also useful for road congestion relief. From 

the traffic control centre, vehicles receive real-time traffic updates on the state of 

the road network and the user is updated with the optimal route to reach a 

destination. This has the effect of re-distributing traffic around the network, 

thereby reducing congestion and its environmental impacts. 

 

The positioning system must satisfy a wide range of requirements such as 

performance of the system with respect to horizontal positioning accuracy, the 

total outage and the maximum continuous outage of the system, warning  users 

when the system performance falls below the expected level. These quantities are 

usually referred to Required Navigation Performance (RNP) parameters 

(accuracy, integrity, continuity and availability). The following section provides 

background and definitions of the RNP parameters. 

 

2.2 Required Navigation Performance (RNP) parameters 
 

RNP parameters were originally developed for aviation, by the International Civil 

Aviation Organization (ICAO), in 1983, to provide the specification of airspace, 

based on demonstrated levels of navigation performance and certain functional 

capabilities, to improve the system efficiency and safety (Cassell and Smith, 

1995; Sang and Kubic, 1998). The same concept has been extended to marine and 
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land transport. The main parameters to measure the performance of a navigation 

system are Accuracy, Integrity, Continuity, and Availability. These parameters 

are required to improve the overall system efficiency. The navigation system 

performance parameters defined by  FRP (1999), Ochieng and Sauer (2002), 

Kibe (2003), Ochieng et al. (2003), DoT (2004) and Quddus (2006) in the context 

of land navigation are summarised below.   

 

2.2.1 Accuracy 

 

Accuracy can be defined as the degree of conformance between the estimated or 

measured position of a point at a given time and its true or standard position. The 

true or standard position can be obtained from an independent source of high 

accuracy measurement such as GPS carrier phase observables (i.e., observations 

with accurate GPS) or high-resolution satellite imagery). Accuracy is generally 

presented as a statistical measure of system error; for example, the accuracy 

requirement of a GPS is specified at a 95% (2σ), i.e. for any estimated position at 

a specific location the probability that the position error is within the accuracy 

requirement should be at least 95 percent.  

 

Accuracy is generally specified as:    

 
Predictable - The accuracy of a position with respect to charted solution 

(geographic or geodetic coordinates of the earth). 

 

Repeatable - The accuracy with which a user can return to a position whose 

coordinates have been measured at a previous time with the same navigation 

system. 

 

Relative - The accuracy with which a user can measure position relative to that of 

another user of the same navigation system at the same time. 
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2.2.2 Integrity 

 

Integrity is the ability of system to provide timely warnings to users when the 

system should not be used for navigation/positioning. Integrity has three 

components: Alarm limit, Time-to-alarm and Integrity risk. 

 

Alarm limit (AL) is the error tolerance not to be exceeded without issuing an alert 

to the user. It represents the largest error that results in the safe operation. 

 

Time to alarm (TTA) is the duration between the onset of a failure (i.e. the error 

greater than the allowable error (AL) limit) and an alert being issued by the user’s 

receiver.  

 

Integrity risk (IR) is the probability that an error exceeds the alarm limit without 

the user being informed within the time to alert. 

 

For example, integrity of a system with AL: 10 m; TTA: 6 sec; IR: 10-2 per 1 

hour means the probability that the system gives an alarm to the user on or before 

6 seconds when the measured position error is equal to or more than 10 m is  99% 

in one hour. 

 

2.2.3 Continuity 

 

Continuity is the ability of a total system to perform its function without 

interruptions during the intended period of operation (POP). The continuity of the 

system is addressed by the Continuity Risk (CR). The CR can be defined as the 

probability that the system will be interrupted and will not provide guidance 

information for the intended period of operation. CR is the measure of system 

uncertainty. 

 

For example, the CR requirement of a particular system is defined as 10-3 per 

hour then this means that the probability that the system will be interrupted and 
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will not provide guidance due to a loss of either system accuracy or system 

integrity is 0.1 % for an hour duration.  

 

2.2.4 Availability 

 

Availability of a navigation system is the percentage of time that the services of 

the system are usable within a specified coverage area. The service is available if 

the system accuracy, integrity and continuity requirements are satisfied.  

 

2.3 Review of RNP for ITS 

 

RNP parameters for ITS services are under development (DOT, 2004). Partial 

information on RNP parameters (alarm limit,  time to alarm, integrity risk and 

continuity risk) is available in the literature (Ochieng and Sauer, 2002; DOT, 

2004; Feng and Ochieng, 2007). This evidence is discussed here. 

 

The criteria to derive RNP parameters for each ITS service vary significantly as 

service functions vary widely. For example, accident and emergency (A&E) 

response vehicles safety issues are predominant parameter to derive RNP. In the 

case of a distance based road user charging ITS service, where road users are 

charged based on distance travelled on a chargeable road, any error or outage of 

navigation system may result in errors in charges to users. In this case, 

commercial issues are major criteria to derive RNP. The following five 

parameters are identified as influencing issues or criteria in deriving RNP 

parameters for ITS services:  

 

1) System performance requirements (SPR) 

2) Commercial issues(CI) 

3) Operational environments (OE) 

4) Safety issues (SI) 

5) Type of operation (ToO) 
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2.3.1. System performance requirements (SPR) 

 
If an ITS service is intended to improve the efficiency of a transport system then 

the RNP parameters are derived from the operational aspects of the service. For 

instance, automated vehicle identification ITS system can support bus arrival 

time information (BATI) at bus stops and bus priority at junction (BPJ) sub-

services. The RNP requirements for BPJ are more than BATI at bus stops 

because large error or outage of positioning system for BPJ service provides 

wrong signal timing at the junction, which causes more junction delay and 

congestion. On the other hand, any error in positioning system for BATI at bus 

stops leads to show bus arrival information with few seconds error which causes 

only little discomfort to passengers. 

  

2.3.2 Commercial issues (CI)  

 
For some ITS services, the ability to accurately charge users is the first priority 

while developing the RNP parameters. Examples include electronic payment 

systems, variable road user charging (VRUC) and distance-based pay-as-you-go 

insurance schemes. There could be financial consequences if the system accuracy 

is set too low or the system fails to alert the user and operator when the 

performance is below the expected levels. For example, a GPS based VRUC 

scheme may charge users erroneously especially in situations where different 

prices apply to two adjacent roads (i.e., charge for a motorway is £1.50 per mile 

and charge for a minor road parallel to the motorway is £0.25 per mile); the 

navigation system needs to identify the correct road segment on which a vehicle 

is travelling. Therefore, the required accuracy, integrity, continuity, and 

availability for such a service will be relatively high (Quddus et al., 2007b). The 

RNP parameters are driven by the needs to charge users accurately according to 

use. 
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2.3.3 Operational environments (OE) 

 
The operation environments (urban, suburban, and rural) also influence the RNP 

parameters for ITS services. The RNP parameters for ITS services operating 

within an urban area should be high relative to sub-urban and rural areas. In 

urban areas complex road network and the impact of physical obstructions 

imposed due to tall buildings, narrow streets, flyovers, bridges and tunnels 

demand a more accurate positioning system. For instance, for navigation and 

route guidance ITS services in dense urban area, any small error or outage 

associated with position system can easily keep the vehicle on a wrong road, 

which misguides and confuses the driver. This is less likely to occur in simple 

rural and suburban networks. Therefore, the complexity of road network (i.e., 

operational environment: urban, suburban and rural) and surrounding land use 

and infrastructure will also influence the RNP parameters for ITS services. 

 

2.3.4 Safety issues (SI) 

 
For many ITS applications and services, safety is given the highest priority; these 

are ‘safety-of-life’ (SOL) critical applications. People are willing to take a risk if 

it can be considered to be as long as reasonable practicable (ALARP). Such an 

acceptable level of risk is referred to a ‘target level of safety’ (TLS). The TLS 

varies greatly from one ITS service to the other. For example, the TLS for 

collision avoidance (CA) service (a safety-of-life application) should be higher 

than that of for emergency response (ER) service (DOT, 2004; FRP, 1999). 

Therefore, the positioning requirements for CA are high compared with those for 

ER. Normally, highly accurate positioning information is essential for SOL ITS 

services so that the precise location of the vehicle can be determined to avoid any 

collision (DOT, 2004). Moreover, the values of alert limit and time-to-alert 

should also be set low (i.e., high requirements) so that drivers can take 

appropriate actions to avoid a possible collision. 
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2.3.5 Type of operation (ToO) 

 
For land transport, type of operation can generally be categorised into fixed route 

operation and variable route operation. Normally, transit and rail operations fall 

under the fixed route category. The examples of ITS services for transit and rail 

include bus arrival information at bus stops, bus priority at junctions, public 

transport maintenance and management and transit emergency response. For the 

fixed route operation, users position is located on a predefined route. Any small 

error in positioning data may not affect the system performance severely. The 

RNP requirements for fixed route services are normally low. On the other hand, 

ITS services that perform on roadways which are non fixed route services - 

examples include navigation and route guidance, variable road user charging, 

commercial fleet management and vehicle based collision avoidance - require 

high accuracy, integrity, continuity and availability of positioning information 

compared to fixed route operations.  

 

As mentioned before, each of the ITS services has different RNP requirements. 

The criteria to determine the navigation performance parameters vary across ITS 

services. For a few ITS services such as emergency vehicle management, vehicle 

based collision notification and warning system, vehicle-based collision 

avoidance, safety issues are main criteria. For few other services such as  GPS 

based VRUC and electronic parking payment, commercial issues are predominant 

factors for deriving RNP parameters. The criteria to derive RNP parameters for 

most of the existing location-based transport services, which require navigation 

and positioning information, are depicted in Table 2.2.  

 

 

 

 

 

 

 



 

 20 
 

Table 2.2: Criteria to Derive RNP Parameters for location-based ITS 

ITS User Groups User services 
Criteria to Derive 

RNP 

Navigation and Route guidance  SPR, OE 

En-route driver information SPR, OE 

Traveller services information SPR, OE 

Incident management OE,  

Traffic control OE,  

Advanced Traffic 
Management System 

On-board emissions monitoring (OEM) SPR 

Public transport management ToO, SPR 

En-route transit information ToO, SPR 
Advanced Public 
Transport and 
Operations Demand responsive transit ToO   

Variable road user charging  CI, OE 

Electronic parking payment CI 
Electronic Payment 
System 

Electronic toll collection CI 

Commercial fleet management SPR, OE 

Hazardous material incident response  OE 
Commercial Vehicle 
Operations 

On-board safety monitoring SI 

Emergency vehicle management SPR, SI, OE 

Emergency notification / personal security SPR, SI, OE 
Emergency Management 
Systems 

Disaster response and management OE, SI 

Vehicle based collision notification and 
warning system 

SI, OE Advanced Vehicle 
Safety System 

Vehicle-based collision avoidance SI, OE 

Accident survey SPR 

Maintenance and management system  SPR Other Services 

Road weather management OE 

 

For example, RNP requirements for navigation and route guidance are primarily 

driven by system performance requirements (SPR) and operational environments 

(OE).  

 

2.4 RNP values in the literature 

 

The level of accuracy required depends upon the quantity, type and quality of 

guidance information provided to users. If a route guidance system is required to 

provide information such as roadway signing (e.g. stop signs, sharp curve, wet 
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pavement, warning messages whenever driver exceeds safe speed, etc.) along 

with the usual turn-to-turn instructions on how to reach a destination, then the 

required positioning accuracy should be high. The accuracy requirement for the 

navigation and route guidance service varies from 1m to 20m (95%) (DOT, 

2004; Quddus, 2006; FRP, 1999; Ochieng and Sauer, 2002). 

 

AL and TTA for navigation and route guidance vary from 2m to 20m and from 

1sec to 15 sec respectively (DOT, 2004; Quddus, 2006). These parameters are set 

in such a way that there should not be any adverse effect if the system fails to 

alert the user, and if the performance goes below the expected level. Moreover, 

these RNP requirements for navigation and route guidance systems also depend 

on operational environments; if it is a critical operational environment such as 

dense urban area it demands high requirements. Because in complex road 

networks, where roads are in close proximity to each other, small positioning 

error or failure to alert users keeps the users in wrong road which creates more 

confusion.  

 

The recommended availability requirements (by DOT, 2004; Quddus, 2006; FRP, 

1999; Ochieng and Sauer, 2002) for navigation and route guidance vary from 

95% to 99.7% meaning that the total outage of the system is from about 4 

minutes to 70 minutes in a day. 

 

RNP parameters accuracy, integrity, continuity and availability for various ITS 

services discussed in the literature are illustrated in Table 2.3. It is noticeable 

from Table 2.3 that the requirements for only two RNP parameters (accuracy and 

availability) are fully reported in the literature for the case of land transport. 

There is partial information on system integrity and continuity. This suggests that 

the impact of integrity (i.e., warning users when the system is not trustable) and 

continuity (i.e., the consequence due to loss of system integrity and continuity) on 

the performance of a system is under development for road transport systems. 
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Table 2.3: Required Navigation Performance (RNP) Parameters for ITS

                                            
1
 Automated Vehicle Identification for Road tolling and taxation purpose.  

2 Vehicle monitoring for GPS based VRUC 

Integrity 

 ITS user group Source 
Accuracy in 

metres (95%) 
Alarm limit 

(metres) 

Time to alarm 

(Seconds) 

 Integrity risk 

(Per 1 hour) 

Continuity risk  

(Per 1 hour) 
Availability (%) 

Highway 

DOT (2004) 1 to 20 2 to 20 >=5 -- -- >95  
Quddus (2006) 5 to 20 -- 1 to 15 -- -- 99.7 
FRP (1999) 5 to 20 -- -- -- -- -- 
Ochieng and Sauer (2002) 5 -- 1 -- -- 99.7 

Navigation and Route Guidance 

Feng and  Ochieng (2007) 5-20 7.5-50 10 10-6 10-5 99.7 
DOT (2004) 1 3 >=5 -- -- 99.7 
FRP (1999) 30 -- -- -- -- -- Automated Vehicle Identification 

Sheridan (2001)1 10 to 50 50 300 -- -- >99.0 
Quddus et al. (2007)2 5 -- -- -- -- -- 
DOT (2004) 0.1 to 30 0.2 to 30 5 to 300 -- -- >95.0 
FRP (1999) 30 -- -- -- -- -- 

Automated Vehicle Monitoring 

Feng and  Ochieng (2007) 30 75 10 10-6 10-5 99.7 
DOT (2004) 0.3 to 10 0.5 to 10 Near zero -- -- 99.7 
Ochieng and Sauer (2002) 5 -- 1 -- -- 99.7 Emergency Response 
Quddus (2006) 5 to 10 -- 1 to 5 -- -- 99.7 
DOT (2004) 0.1 0.2 5 -- -- 99.9 
FRP (1999) 1 -- -- -- -- -- 
Quddus (2006) 1 -- 1 to 15 -- -- 99.7 

Collision Avoidance 

Feng and  Ochieng (2007) 1 2.5 1 10-7
  per case 10-5 99.7 

Accident Survey DOT (2004) 0.1 to 4 0.2 to 4 30 -- -- 99.7 
Transit 

DOT (2004) 30 to 50 -- -- -- -- 99.7 
Quddus (2006) 30 to 50 -- 1 to 15 -- -- 99.7 Vehicle Command and Control 
FRP (1999) 30 to 50 -- -- -- -- -- 
DOT (2004) 5 -- -- -- -- 99.7 Automated Voice Bus Stop 

Announcement Quddus (2006) 5 to 10 -- 1 to 15 -- -- 99.7 
DOT (2004) 75 to 100 -- -- -- -- 99.7 

Emergency Response 
FRP (1999) 75 to 100 -- -- -- -- -- 
DOT (2004) 5 -- -- -- -- 99.7 

Data Collection 
FRP (1999) 5 -- -- -- -- -- 
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As shown in Table 2.3, the level of accuracy, integrity and availability required for 

different ITS applications vary significantly. For instance, the values of accuracy 

(1m to 20m, 95% of the times) and availability for vehicle navigation and route 

guidance are high (i.e., low requirements) compared with those of collision 

avoidance service. This is because safety is the most critical criterion for the 

collision avoidance service. The requirements of integrity risk and continuity risk 

for land navigation are still under development (DOT, 2004).  

 

Moreover, the RNP requirements for each ITS service is given in a range. For 

example, the accuracy requirements for vehicle identification vary from 1m to 

50m (95%) (DOT, 2004; FRP, 1999; Sheridan, 2001). The automatic vehicle 

identification is a necessary component of various ITS services and applications 

such as electronic parking system (EPS), parking facility management (PFM), 

electronic toll collection (ETC), emergency vehicle management (EVM), and 

automatic bus arrival announcements (ABAA). A highly accurate positioning data 

is required for electronic parking (EP) since it is essential to identify the presence 

or absence of a vehicle in a tightly spaced parking bays. The horizontal accuracy 

requirements for EP may be 5m (95%); because it has to locate a vehicle on a 

parking bay. For ECT and EP performance parameters are mainly driven by 

commercial issues. In case of EVM system, RNP parameters are driven by safety 

issues which demands high requirements. On the other hand, ABAA at bus stops 

which enables the operator to find out the location of the vehicle on a network 

may not require high accurate positioning data; 40 to 50 m (95%) accuracy may be 

sufficient for this purpose. 

 

2.5 Target ITS applications 

 

RNP parameters for various ITS services are mainly driven by either safety or 

commercial or system operational and performance issues. If they are driven by 

the safety issue, then the requirements are high. This is due to the fact that such 

ITS services are safety-of-life (SOL) critical applications. If the RNP parameters 



 
 
 

 
24 

 

for an ITS service are driven by the operational issue, then the requirements are 

relatively low.  

 

Unlike aviation and marine transport, land navigation vehicles’ position is 

always referred-to on a spatial road network map. In aviation and maritime, the 

positioning accuracy is measured with respect to the distance between true 

position and the measured position. In the case of land vehicle navigation, firstly 

it is necessary to identify a road segment (from a set of candidate road segments) 

on which a vehicle is travelling and then the vehicle position on that road 

segment. Here, in the RNP parameter accuracy is categorised as the  percentage 

of correct link identification and horizontal positioning accuracy. Due to a lack 

of accurate (true) vehicle location data, researchers usually measure whether the 

vehicle is located on a correct road segment on which vehicle is travelling. This 

is often represented as percentage of correct road segment identification (Pyo et 

al., 2001; Bouju et al., 2002; Yang et al., 2003; Syed and Cannon, 2004; Wu et 

al., 2007). Very few authors have measured the accuracy of the navigation 

system with respect to both percentage of correct link identification and the 

accuracy in distance (Quddus 2006; Yu et al., 2006; Taylor et al., 2006).  

 

The vehicle navigation module needs to be further improved to support location-

based real-time transport services (White et al., 2000; Quddus et al., 2003; 

Ochieng et al., 2004a; Jabbour et al., 2008; Velaga et al., 2009). As discussed in 

section 1.1, further improvement in map-matching algorithms and development 

of an integrity method is a viable approach in order to enhance the vehicle 

navigation system. In this research, the ITS services that require about 98 percent 

correct link identification3 with positioning accuracy of  5 to 10 m are targeted.  

 

 

 

                                            
3 RNP requirements on percentage of correct link identification is not available in the 
literature; but generally the performance of any MM algorithm is reported with respect 
to percentage of correct link identification along with horizontal accuracy.  
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These include:  

 
(a) Liability-critical applications: electronic toll collection, electronic parking 

payment and GPS based variable road user charging; 

(b)  System performance critical applications: navigation and route guidance, 

public transport management, automatic bus arrival announcements;  

(c) Commercial applications: fleet management, commercial vehicle 

administrative processes and electronic clearance; and 

(d) Safety-critical applications: emergency vehicle routing, incident and accident 

management.  

 

While enhancing a map-matching algorithm or integrity method it should be 

noted that, in order to support the real time ITS applications, both the MM 

algorithm and the integrity method, which will be developed in this research, 

should be generic (not specific for a particular ITS application), simple, fast and 

easy to be implemented by the industry. Moreover, the validation of the 

developed algorithm and integrity method using a higher accuracy reference 

(truth) of the vehicle trajectory obtained from a carrier phase GPS observables is 

essential. This will indicate the reliability of both the enhanced algorithm and the 

integrity method. 
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Chapter 3 

 
Review of Topological Map-Matching Algorithms 

 
 
 
 
 
 
 
 
 
 
3.1 Introduction 
 

This chapter introduces map-matching (MM) algorithms along with their 

constraints and limitations. This is followed by a detailed review of existing 

topological MM algorithms which classifies  them as in sections: (1) non weight 

based real time (on line) algorithms (2) weight based real time algorithms and (3) 

off-line algorithms. The performance of these topological map-matching 

algorithms in terms of correct link identification and horizontal accuracy is also 

presented. Then a brief discussion on how to further improve existing 

topological map-matching algorithms is provided.  

 

Map-matching is the process of identifying a vehicle’s position on a digital map. 

The purpose of MM is firstly to identify correctly the link on which a vehicle is 

travelling and secondly to determine the vehicle’s position on the selected link 

(Zhao, 1997; Ochieng et al., 2004b; Chen et al., 2005). A MM algorithm 

integrates navigation data from positioning sensors and spatial road network data 

from a digital map to determine the location of a vehicle on a road segment. 

There are different ways to accomplish the purpose of a MM algorithm. MM 

algorithms can generally be classified into four categories (Quddus et al., 2007a): 

geometric, topological, probabilistic and advanced MM algorithms. 
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A MM algorithm that uses only geometric information (the shape of the curve of 

the road segment) is known as a geometric MM algorithm (gMM) (Kim et al., 

1996; Bernstein and Kornhauser, 1998; White et al., 2000; Quddus et al., 2007a).   

Geometric MM algorithms are improved by incorporating historical data (such 

as the previously matched road segment), vehicle speed and topological 

information about the spatial road network (such as link connectivity). A MM 

algorithm that uses such additional information is called a topological MM 

(tMM) algorithm (Greenfeld, 2002; Quddus et al., 2003; Li et al., 2005; Quddus 

et al., 2007a). Probabilistic MM algorithms use a probability theory in the 

identification of the correct road segment on which the vehicle is travelling 

(Ochieng et al., 2004b). The MM algorithms classed as advanced MM (aMM) 

algorithms include applications of extended kalman filter (EKF), belief theory, 

fuzzy logic (FL) and artificial neural network (ANN) techniques (Pyo et al., 

2001; Kim and Kim, 2001; Yang et al., 2003; Syed and Cannon, 2004; Quddus 

et al., 2006a; Zhang and Gao, 2008a; Sohn, 2009).  

 

3.2 Geometric Map-matching Algorithms 
 

The earliest MM algorithms, developed in the 1990s, used geometric information 

(shape of the curve) of road network to locate the vehicle on a GIS map (e.g. 

Krakiwsky et. al., 1988; Tanaka, 1990; Collier, 1990; Bernstein and Kornhauser, 

1998; Kim et al., 1996; White et al., 2000). These algorithms are referred to as 

geometric MM algorithms. They are further categorised into: (1) point-to-point 

MM, (2) point-to-curve MM and (3) curve-to-curve MM algorithms (Bernstein 

and Kornhauser, 1998). 

 

3.2.1 Point-to-point MM 

 

In a point-to-point MM algorithm, a position (x and y coordinates) of a moving 

vehicle obtained from a positioning system is matched to the closest node or 

shape point of a road segment (Bernstein and Kornhauser, 1998). A node is a 
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point, represented by a pair of longitude and latitude coordinates (x and y 

coordinates), at which a link begins or terminates (i.e., the beginning and ending 

of a road segment) (Wu et al., 2007). A link may be a straight line segment (a 

straight section of a road) or a general curve, having intermediate points (shape 

points) along the link. An example using a hypothetical road network is shown in 

Figure 3.1.    

 

 
Figure 3.1: Problems with Point-to-point MM algorithm 

 

In the above figure, points A and B are nodes, points c, d, e and f are shape 

points; and P1, P2, …, Pn are positioning points. A point-to-point MM algorithm, 

which is also known as the nearest node searching method, calculates the 

distance between the positioning point and  node or shape points and selects the 

closest one (Krakiwsky et. al., 1988; Bernstein and Kornhauser, 1998). For 

positioning point P1, the closest shape point is ‘c’ and for P2 the closest one is 

‘d’. Based on the point-to-point algorithm, the map-matched route is determined 

as link c-d, d-e and e-f. However, the vehicle is actually travelling on link A-B 

suggesting that the algorithm wrongly identifies the travelling route. This 

algorithm is easy to implement and fast, but it has the following characteristics: 

 

1. Snapping positioning points to the nearest node or shape point. 

2. Positioning fixes are treated individually, no historical information is 

used.  

3. No topological information, such as road connectivity, is used. 
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4. Additional data, such as vehicle speed and heading, are not used.  

 

The above characteristics in the map-matching process may lead to the following 

problems: 

 

1. A lack of certainty about the road segment on which a vehicle is 

travelling. 

2. Mis-matching at junctions and in dense urban areas where roads are close  

to each other. 

3. Sudden switching of map-matched vehicle position from one road 

segment to the other. 

 

 These problems are illustrated in Figure 3.2 and discussed below.  

 

 

Figure 3.2: Mis-matches by the Point-to-point MM algorithm  

 

A lack of certainty about the road segment on which a vehicle is travelling: In a 

hypothetical road network shown in Figure 3.2, points P1, P2, P3,….., P10 are 

positioning points of a vehicle obtained from positioning sensors. A, B, C,…., H 

represent node/shape points of the road network. According to the point-to-point 

MM algorithm the positioning fixes are snapped to the nearest node or shape 

points. For position points P3 and P4 the nearest node is F and similarly for P7 
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and P8 the nearest node is H. The point-to-point algorithm assigns these 

positioning fixes to F and H. There are three routes, route 1: F-G-H and route 2: 

F-H (straight road) route 3: F-B-C-D-H, that connect the node F and H. A Point-

to-point MM will not show the route which the vehicle actually travelled. This 

problem is due to snapping positioning points to the node/shape points.  

 

Mis-matching at junctions and in dense urban areas: In Figure 3.2, the vehicle 

actually travelled on links A-B, B-C, C-D and D-E (i.e., through nodes A, B, C, 

D and E). Point-to-point matching shows the vehicle travelling through nodes A, 

F, C, H and E, because the positioning points P3, P4, P7 and P8 are nearer to 

junctions F and H compared to junctions B and D.  

 

Sudden switching from one road segment to other road segments:  In Figure 3.2, 

initially, the positioning fixes P1 and P2 are assigned to node A. The following 

positioning fixes (P3 and P4) are assigned to node F, though there is no direct link 

connecting these two nodes (A and F). This mis-matching is due to the fact that 

the point-to-point algorithm treats all positioning fixes individually and does not 

consider historic MM information. 

 

The point-to-point algorithm performance critically depends on the way the road 

network is digitised (the way in which shape points are used in the network 

digitisation). In Figure 3.3 a modified/re-digitised version of road network of 

Figure 3.2 is shown. Additional shape points such as a, b, c, d, e, f, are 

incorporated between nodes A, B, C, D, E. Now the point-to-point algorithm is 

capable of identifying the correct route (i.e. route A-B-C-D-E) on which the 

vehicle actually travelled. The greater the number of shape points between two 

nodes the more likely the actual travel path will be matched. One could argue 

that just increasing the number of shape points in the network could solve the 

problem. However, modifying road network maps nationally is a costly and time 

consuming process. 
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Figure 3.3:  Point-to-point MM algorithm performance with more shape 

points 

 

3.2.2 Point- to- curve MM algorithm 

 

This algorithm identifies the link that is the closest to the positioning fix as the 

correct link (Tanaka, 1990; Bernstein and Kornhauser, 1998; Kim et al., 1996). 

In Figure 3.1, link A-B is the closest one for positioning points P1, P2 …, Pn, and 

this link is selected as the true link for these positioning fixes. The perpendicular 

projection of a positioning fix on the selected link gives the vehicle position on 

that link.  

 

The performance of point-to-curve algorithm is better than that of the point-to-

point approach as it gives the vehicle location on a link, but still the algorithm 

has limitations. These include: 

 

1 Positioning fixes are treated individually; no historical/past matching 

information is used.  

2 Topological information (such as road connectivity) and additional data 

(such as vehicle speed and heading) are not used. 

 

The above limitations in the map-matching process may lead to the following 

problems: 
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1. Mis-matching at junctions and in dense urban areas where roads are close 

to each other. 

2. Sudden switching from one road segment to the other road segment. 

 

These problems are explained in Figure 3.4.  

 

 

Figure 3.4: Point-to-curve algorithm performance 

 

Mis-matching at junctions and in dense urban areas: In Figure 3.4, points P1, 

P2,….., P10 are the positioning points, points d1, d2,…., d10 are the corresponding 

map-matched points. The vehicle actually travels on link A-B, B-C and C-D. The 

positioning fixes P5 and P6 are assigned to link E-F, because these positioning 

points are slightly nearer to link E-F than link B-C. At junction C, position fix P8 

is almost equidistant from links C-D and C-E, and slightly nearer to link C-E. 

Based on the minimum distance this positioning point, P8, is assigned to link C-

E.  Here, two parallel routes A and D, are route 1: A-B-C-D, route 2: A-B-F-E-

C-D. The algorithm results show that the vehicle travelled on both routes, though 

the vehicle actually travelled on route A-B-C-D.  

 

Sudden switching from one road segment to other road segment: The positioning 

fixes P1 and P2 are assigned to link A-B. The next positioning fix P3 is nearer to 

link F-G and assigned to d3. The result shows that the vehicle suddenly switches 

from link A-B to F-G.  
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3.2.3 Curve-to-curve MM algorithm  

 

The curve-to-curve algorithm considers positioning fixes simultaneously and 

constructs piece-wise linear curves (Bernstein and Kornhauser, 1998; Kim et al., 

1996; White et al., 2000). The algorithm compares this piece-wise vehicle’s 

trajectory curve with the road segments that are passing through the nearest 

node. The road segment that is the nearest to the curve formed by positioning 

fixes, is considered as the correct road segment on which vehicle travels. The 

perpendicular projection of positioning fixes on the selected link gives the 

vehicle position on that link. 

 

 

Figure 3.5: Curve-to-curve MM algorithm 

 

As seen in Figure 3.5, for the first positioning point P1, the nearest node is ‘A’. 

The piece-wise road segments that pass through node ‘A’ are: (1) A-B-C-D; (2) 

A-E-F and (3) A-G-H. The algorithm constructs a piecewise vehicle trajectory 
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curve by using positioning fixes P1 to P8, then the vehicle trajectory curve is 

compared with the road segments that pass through the nearest node/shape point 

‘A’. Among the three candidate road segments, the piecewise road segment, A-

B-C-D, is identified as the nearest to the vehicle trajectory curve. The 

perpendicular projection of positioning points on road segment A-B-C-D gives 

the vehicle position.  

 

The major limitations of the MM algorithm are: 

 

1. Algorithm performance depends on the point-to-point algorithm (i.e., the 

nearest node search) that identifies a set of piecewise candidate road 

segments.  

2.  The algorithm cannot provide real-time vehicle location information.  

3. Topological information and additional data, such as vehicle speed, heading 

data are not used. 

 

The above limitations in this map-matching process may lead to the following 

problem: 

 

1. The algorithm is quite sensitive to outliers, sometimes it gives an unexpected 

result. 

 

As shown in Figure 3.6, a vehicle travels on road segment A-B-C-D. For the first 

positioning fix P1, the nearest node point is ‘G’. Piece-wise road segments that 

pass through ‘G’ are: G-I and G-H. Among these two road segments, segment G-

I is identified as the nearest segment and the vehicle is assigned to that link. 

Here, the true road segment on which the vehicle actually travels (i.e., A-B-C-D) 

is eliminated from candidate piecewise road segments. The curve-to-curve 

algorithm depends on the point-to-point matching and sometimes, keeps the 

vehicle on the wrong road segment.   
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Figure 3.6: Curve-to-curve algorithm performance 

 

Algorithms that use only geometric information are the simplest and fastest. 

However, in many cases (e.g. matching at junctions and between two parallel 

roads) geometric MM algorithms may yield undesirable results. Further 

improvement of the geometric MM algorithms can be achieved by considering 

additional information in correct road segment identification. An example of 

such algorithms is a topological map-matching algorithm.  

 

3.3 Topological Map-matching algorithms 

 

The topological map-matching uses additional information including 

historical/past matching information, vehicle speed, vehicle turn restriction 

information and topological information of the spatial road network (e.g. link 

connectivity) in addition to road geometry (Greenfeld, 2002; Quddus, 2006; Xu 

et al., 2007; Pink and Hummel, 2008). This additional information enables tMM 

to outperform geometric MM algorithms. An example of a topological map 

matching output is shown in Figure 3.7. 
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Figure 3.7: Topological Map-matching output 

 
In Figure 3.7, the vehicle is actually travelled on road segment A-B, B-C and C-

D. If map-matching is carried out by a geometric algorithm (example, point-to-

curve algorithm), the corresponding road segment for the positioning points P5 

and P6 would be link G-F, and for the positioning points P8, P9 and P10, the 

correct link would be F-E. This is because, the positioning points P5  and P6  are 

nearer to the link G-F, and P8, P9 and P10 are nearer to the link E-F. A topological 

map-matching algorithm will identify the links correctly. For instance, at 

junction C, the positioning point P8 is nearer to the link E-F and also coincides 

with the vehicle movement direction, but it is not directly connected to the 

previously travelled road link (i.e., B-C). Therefore, the algorithm selects link C-

D as the correct link. A similar scenario applies to the other successful 

positioning points (P5, P6, P8, and P9) in  Figure 3.7.  

 
The advantages of the tMM algorithms over geometric algorithms are: 

 
1. Positioning fixes are not treated individually; historical/past matching 

information is used. 

2. The correct link identification process is more logical. 

3. Topological and additional information, such as vehicle speed, heading are 

used in the correct link identification process. 
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Topological MM algorithm performance is better than that of the geometric 

algorithms, but, still there are some  flaws:  

 

1. Sometimes a tMM algorithm fails in identifying the correct road segment at 

‘Y’ junctions, roundabouts, and dense urban areas.  

2. Problems with the initial map-matching. 

 

Problems with the tMM at a complex road network: although a tMM uses more 

information than a geometric algorithm; sometimes, the tMM algorithm still 

cannot keep the vehicle on the correct road segment. This is particularly so in 

dense urban areas, at roundabouts and junctions. An example of mis-matching at 

a Y junction is shown in Figure 3.8.  

 

 

Figure 3.8: Mis-matching at a ‘Y’ Junction 

 

In Figure 3.8, a vehicle travelled on road segment A-B and B-C. The positioning 

fixes (P1, P2, and P3) are assigned to link A-B. For the positioning fix (P4), which 

is at junction B - based on the vehicle movement direction (heading), nearness to 

the road segment link, connectivity to the previously travelled to road segment, 

and vehicle speed - the algorithm selects B-D as the correct link. In this typical 

scenario, the tMM algorithm fails to keep the vehicle on the correct road 

segment.  
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Problems with the initial map-matching: The initial map-matching is a process of 

finding the correct road segment for the first positioning fix (Greenfeld, 2002; 

Quddus et al., 2003). As explained above, the tMM algorithm considers the 

previous history (such as previous road link on which a vehicle travelled). The 

subsequent map-matching (i.e., MM after the first positioning point), therefore, 

depends on the output of the initial map-matching. In general, for the initial map-

matching, existing tMM algorithms select all the links that are connected to the 

nearest junction for the first fix, as the candidate road links. Then the algorithm 

chooses the correct link from these candidate links (Greenfeld, 2002; Quddus et 

al., 2003; Taghipour et al., 2008).  

 

In Figure 3.9, P1, P2 ….P5 are positioning points. For first positioning point (P1) 

the nearest node point (junction) is node c. Links passing through node c are c-b, 

c-d, c-e. Algorithms consider these three links to be the candidate links. Among 

these three candidate links, link c-d is nearer to the first GPS point (P1) and the 

vehicle movement direction and link c-d direction is also similar. Based on 

vehicle heading and proximity, link c-d is identified as the correct link for 

positioning point P1. The following positioning points (P2, P3….P5) are assigned 

to the same link c-d. But the true link on which the vehicle was travelled is link 

b-a. 

 

In the candidate link identification for initial map matching the algorithm, 

sometimes, fails to consider the true link, on which vehicle travels. If the 

algorithm selects the wrong link for the first positioning fix, this may affect the 

subsequent map-matching. In Figure 3.9, for the subsequent positioning points 

(P2, P3, P4 and P5) the algorithm identifies link c-d as the correct link, but the 

vehicle is on link b-a. 
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Figure 3.9: Errors in initial MM process 

 

3.4 Probabilistic map-matching algorithms 

 

The main advance in probabilistic MM algorithms is the selection of a set of 

candidate links for a positioning point. A tMM algorithm identifies the correct 

link among the links that are connected to the nearest junction from that 

positioning fix. This process may not be reliable in dense urban areas where 

junctions are very close to each other. In the probabilistic algorithm, initially an 

error bubble (shaped either as an ellipse, a rectangle, a square or a circle) is 

drawn around a positioning fix; and the links that are inside and around the error 

bubble are considered as the candidate links for that positioning fix. The 

probabilistic algorithm can therefore solve some problems with the initial map 

matching process, even so map-matching errors in dense urban areas are 

inevitable. 

 

The process in which the error bubble is derived and  the candidate links selected 

that are both inside and just touching the bubble is explained in Zhao (1997), 
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Kim et al. (2000) and Pyo et al. (2001). In this research, an error circle is used to 

identify a set of candidate links. A detailed description of the process is therefore 

provided in section 6.3.1.  

 

3.5 Advanced map-matching algorithms 

 

Advanced algorithms use more refined concepts such as: Extended Kalman 

Filter (EKF) (e.g. Krakiwsky, 1993; Tanaka et al., 1990; Jo et al., 1996; Kim et 

al 2000; Torriti and Guesalaga, 2008;), Bayesian interference (e.g. Pyo et al., 

2001; Smaili et al., 2008), belief theory (e.g. Yang et al., 2003; Najjar and 

Bonnifait, 2005; Nassreddine et al., 2008), fuzzy logic ( e.g. Zhao, 1997; Kim 

and Kim, 2001; Syed and Canon, 2004; Quddus et al., 2006a; Su et al., 2008; 

Zhang and Gao, 2008b) and artificial neural networks (e.g. Ding et al., 2007; Su 

et al., 2008). The difficult part of any map-matching process is to detect the 

correct road segment from a set of candidate segments. In most algorithms, the 

advanced techniques are used in the correct link identification process.  

 

Among these MM algorithms (geometric, topological, probabilistic and 

advanced) an aMM algorithm, that uses more refined concepts, outperforms 

other MM algorithms. However, these aMM algorithms require more input data 

and are relatively slow and difficult to implement compared to a tMM algorithm 

(Velaga et al., 2009). Because these advanced algorithms are slow, sometimes, 

they may not be able to support real-time transport applications. Whereas, a 

tMM algorithm is very fast, simple and easy to implement. For this reason, a 

tMM algorithm has more potential to be implemented in real-time applications 

by industry. However, there are a number of constraints and limitations in 

existing tMM algorithms. Once such limitations are addressed, it is expected that 

the performance of a tMM algorithm may be comparable to that of a pMM 

algorithm or aMM algorithm. The remainder of this chapter concentrates on 

detail review and performance of topological map-matching algorithms. The 
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following section provides a critical review of existing topological MM 

algorithms and their performances.  

 

3.6 Review of Topological MM algorithms 

 

Before starting the review of existing tMM algorithms, the process by which a 

general topological MM algorithm works is provided :  

 

Step 1: Identify a set of candidate links for the first positioning point (Pn). 

Step 2: Identify the correct link among the candidate links using vehicle heading, 

speed, turn restriction and road network topological information such as 

link connectivity. 

Step 3: Determine the vehicle position on the selected link. 

Step 4: Check whether next positioning point (Pn+1) is near to a junction or not.  

Step 5: If positioning point (Pn+1) is not near to a junction, assign the current 

position fix (Pn+1) to the previously map-matched link. 

Step 6: If positioning point (Pn+1) is near to a junction, repeat steps 1, 2 and 3.  

Step 7: Repeat the above procedure until the vehicle stops.   

 

A MM algorithm can be performed in two ways: on-line or off-line (Jagadeesh et 

al., 2004). On-line MM algorithms determine the real-time vehicle position 

during a trip (Basnayake et al., 2005). Off-line matching finds the overall route 

of the vehicle after the trip is over (Jagadeesh et al., 2004). Most  ITS services, 

such as route guidance, vehicle-based collision avoidance, emergency vehicle 

management, fleet management and bus priority at junctions require real-time 

vehicle positioning information. However, for a few ITS services such as road 

maintenance and management systems and GPS based accident surveys, real-

time vehicle position may not be required. 

 

Various topological MM algorithms have been developed for location-based ITS 

applications. Different authors have used the topological information at various 
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levels. For instance, White et al. (2000) and Li and Fu (2003) used topological 

information to identify a set of candidate links for each positioning point. 

Srinivasen et al. (2003) and Blazquez and Vonderohe (2005) used topological 

information to check the map-matched point after geometric (point-to-curve) 

matching. Greenfeld (2002), Quddus et al. (2003), and Taghipour et al. (2008) 

introduced weight-based algorithms to identify the correct road segment among 

the candidate segments for on-line map-matching problem. Marchal et al. (2005) 

developed a off-line weight based topological MM algorithm. Li et al. (2005) 

introduce the buffer band concept to identify candidate links for off-line 

matching problem. Each of these algorithms has strengths, complexities and 

limitations. This section discusses different techniques and methodologies used 

in previous research by categorising them into three groups: (1) non weight 

based on-line algorithms (2) weight based on-line algorithms and (3) off-line 

topological algorithms.  

   

3.6.1 Non-weight based on-line algorithms 

 

White et al. (2000) and Li and Fu (2003) used vehicle heading information (i.e., 

vehicle movement direction with respect to the north) to identify a set of 

candidate links for each position fix. If the vehicle heading is not in line with the 

road segment direction, then the road segment is discarded from the set of 

candidate segments. If the algorithm has confidence in the previous map-

matched position it will use the topology (road connectivity) of network for 

current positioning point map-matching. That means the algorithm considers the 

road segments that are connected to the previous map-matched road link to 

identify the current road segment. Srinivasen et al. (2003) and Blazquez and 

Vonderohe (2005) used the point-to-curve approach for the correct link 

identification for all positioning points. After selecting the correct link for a 

positioning point, map-matched link is checked using topological information of 

the road network and vehicle speed and heading. This section discusses how and 
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to what extent topological information is used by different authors. The 

performance of the algorithms is also considered.  

 

White et al. (2000) discussed some simple MM algorithms that used geometric 

and topological information of road network. In their study, four different 

algorithms were implemented and tested using field data collected in New 

Jersey. Algorithm 1 found nodes that are close to the GPS fix and finds the set of 

arcs that are connected to those nodes. It then finds the closest of those arcs and 

projects the points on that arc. Algorithm 2 is similar to algorithm 1 except that it 

makes use of vehicle heading information. Algorithm 3, is a variant of algorithm 

2, adds topological (connectivity) information. Algorithm 4, uses curve to curve 

matching; firstly, it locates candidate nodes using the same techniques as in 

algorithm 3, then, given a candidate node, it constructs piece-wise linear curves 

from the set of paths that originate from that node. Secondly, it constructs a 

piece-wise linear curve using the GPS fixes, and calculates the distance between 

this curve and the curves corresponding to the network. Finally, it selects the 

closest curve and projects the point onto that curve.  

 

Field tests were conducted in four pre-determined routes, in total 1.2 km in 

length, in New Jersey. The study concluded that percentage of correct link 

identification using algorithms 1, 2, 3 and 4 are 66.3%, 73.6%, 85.8% and 68.7% 

respectively. The best algorithm is identified as algorithm 3 which uses 

topological (connectivity) information for candidate link identification. The 

authors also concluded that these algorithms worked better when the distance 

between the GPS point and closest road was small; and the correct matches tend 

to occur at greater vehicle speeds on straight roadways.  

 
Li and Fu (2003) developed an improved topological MM based on pattern 

recognition. The algorithm is divided into three different stages, namely: 1) 

searching mode 2) normal running mode and 3) turning mode. The first step, 

searching mode, is the process of searching for a road link, for the first GPS 

point. Candidate links are identified by comparing the link direction and the 
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vehicle movement direction, then the point-to-curve approach (closest road 

segment) is used to select the correct link out of all candidate links. In normal 

running mode vehicle position fixes are continuously matched to the previous 

map-matched link until the vehicle makes a turn. In turning mode the algorithm 

uses the same method as the first step that is to complete the process of searching 

new road link. This method is very sensitive to outliers as these may cause the 

determined vehicle heading to be inaccurate as GPS position fixes are scattered 

randomly when the speed is less than 3 m/sec. (Taylor et al., 2001 and Ochieng 

et al., 2004b). The other deficiency of this algorithm is not to take into account 

the vehicle speed and the way links are connected to each other. Unfortunately, 

the performance of algorithm with respect to percentage of correct link 

identification and 2D horizontal accuracy is not reported by the authors.  

 

Srinivasen et al. (2003) developed point-to-curve map matching algorithm for 

electronic road pricing (ERP) system using enhanced road segment information. 

The software, named ERP2, was developed using ‘ArcPad’ GIS platform. The 

algorithm developed for the ERP2 program, firstly identifies the closest road 

segment. Before assigning the GPS point on the closest segment, checks are 

performed to see if it is feasible for the vehicle to actually be on the road 

segment. Two checks, a heading check (bearing difference between vehicle 

movement and link direction) and a turn prohibition check, are incorporated. The 

turn prohibition check is implemented only when the vehicle is travelling from 

one road segment to another segment. If a vehicle reaches a junction point, the 

segment identification is compared to the turn restriction table to see whether it 

was possible for the vehicle to move from the previous map-matched road 

segment to the current road segment. If a turn prohibition is detected the 

algorithm will search for the next nearest segment and repeat heading and turn 

prohibition checks again. Their results shows that the general point-to-curve 

algorithm can identify the true link 69.87% of the time and for the point-to-curve 

algorithm with topological information, this improves to 98.5%. The result 

shows that the second algorithm (that uses topological information) performs 

well. However the reported results were based on a limited data set of 242 GPS 



 
 
 

 
45 

 

data points collected on a university road network. The algorithm result may not 

be reliable in a more complex road network and larger data sample.  

 
Blazquez and Vonderohe (2005) reviewed several approaches for solving the 

map-matching problem, and proposed a simple map-matching algorithm that 

works based on shortest paths between snapped ‘differential GPS’ (DGPS) data 

points using network topology and turn restrictions. The algorithm selects all 

roadways within a ‘buffer circle4’ around a DGPS data point and snaps the point 

to the closest roadway by determining the minimum perpendicular distance from 

the data point to each roadway. Subsequently, the speed using the shortest path 

distance between the two snapped DGPS data points using network topology and 

turn restrictions is compared with the distance travelled by multiplying vehicle 

speed and time. This is explained in Figure 3.10. It has been observed that the 

performance of the algorithm depends on the size of buffer bubble.  

 

Figure 3.10: Speed checks after point-to-curve matching 

 

                                            
4 The buffer circle size is decided based on quality and geometry of spatial data (dGPS points and 
digital road network data).   
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In Figure 3.10, the vehicle is actually travelling on link A-B, from A to B. DGPS 

point P1, P2, P3 are assigned on link A-B at d1, d2, d3 points respectively. For 

DGPS point P4 links that are inside the buffer band are A-B and D-E. The 

algorithm selects the nearest link D-E as the correct link and assigns DGPS point 

P4 at point d4 on link D-E. The algorithm calculates the shortest distance between 

d3 and d4 (i.e., d3B + BD + Dd4). Based on this distance vehicle speed is 

calculated. The snapped DGPS point d4 is considered to be correct if similarity 

exists between the calculated speed and recorded vehicle speed. If the two speeds 

are not comparable then the algorithm searches for an alternative road link that is 

nearer to the DGPS point, the shortest paths are recalculated and speeds are 

again compared. In this example, after a second iteration the algorithm selects 

the correct link A-B.  This algorithm achieved 94.8% correct link identification 

based on 600 DGPS points collected in Columbia. The authors concluded that 

actual link identification is sensitive to size of the buffer circle. 

 

3.6.2 Weight based online algorithms   

 

A weight-based topological MM approach for the correct link identification 

among candidate links was first developed by Greenfeld (2002). This approach 

was further improved and tested by Quddus et al. (2003). Taghipour et al. (2008) 

demonstrate the advantages of a weight-based approach, and propose 

modifications to the topological map-matching algorithm developed by Quddus 

et al. (2003). These algorithms divide the map-matching process into initial MM 

and subsequent MM. Initial MM process locates vehicle on a network (i.e., map-

matching for the first positioning point). In the subsequent MM process, if a 

vehicle travels on the same link that is previously map-matched the current 

positioning point is simply snapped on previously identified link. When a vehicle 

is near to a junction, the correct link identification is based on sum of individual 

weight scores.  

 

Greenfeld (2002) reviews several approaches for solving the MM problem, and 

proposes a weight based topological MM algorithm. The matching process 
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consists of two separate algorithms: initial map-matching and subsequent map-

matching. In initial matching, the closest node to the GPS point is identified first. 

Links connected to the closest node are considered as the candidate links. 

Among these candidate links the nearest link is considered to be the link on 

which the vehicle is travelling. The perpendicular projection of raw GPS on the 

selected link gives the vehicle position on that link.  In subsequent MM, the 

correct link selection among candidate links is based on total weighting score 

(TWS), sum of three individual weights. These weight parameters are:  

 

1) weight for heading (i.e. the degree of parallelism between the GPS line and 

the road network),  

2) weight for proximity (i.e. the perpendicular distance of GPS point from the 

arc segment) and  

3) weight for intersection (i.e. the intersecting angle if an intersection exists). 

TWS formula is:  

 

IDAZ WWWTWS ++=      (3.1) 

Where  

Weight for heading ( AZW ) = AZ)(cos C AZn
AZ ∆  

Weight for proximity ( DW ) = Dn
D D aC −  

Weight for intersection ( IW ) = AZ)(cos C In
I ∆  

 
The values of the parameters in the equation are (Greenfeld, 2002): 
 

10n  10,C  1.2,n  0.1,a  10,C  5,n  10,C IIDDAZAZ =======  
 

AZ∆  is the heading difference between vehicle movement direction and link 

direction in degrees. 

 

D  is the distance from the GPS point to a candidate road segment. 
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A pictorial form of the three weights, heading, proximity and intersection, are 

shown in Figures 3.11, 3.12 and 3.13.  

 

Figure 3.11: Heading weight proposed by Greenfeld (2002) 

 

 

Figure 3.12: Proximity weight proposed by Greenfeld (2002) 
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Figure 3.13: Intersection weight proposed by Greenfeld (2002) 

 

Heading weight )( AZW  is a function of the difference between the vehicle 

movement direction and link direction. Proximity weight )( DW  is a function of 

perpendicular distance GPS point to a link and weight for intersection (WI) is a 

function of difference between the bearings of the GPS line and the evaluated 

network arc. 

 

Figures 3.11, 3.12 and 3.13 show that heading and proximity weights vary from 

‘+10’ to ‘-10’ and intersection weights vary from ‘+10’ to zero. The weight 

based approach developed by Greenfeld (2002) assumes equal importance to 

each of the three weights. 

 

Greenfeld’s algorithm uses vehicle speed, heading and link orientation 

information, but it does not consider turn restriction information. Algorithm 

performance was not reported. However, Quddus et al. (2003) tested this 

algorithm and concluded that sometimes the algorithm identified incorrect road 

segments. 

 

Quddus et al. (2003) describe limitations of existing topological MM algorithms 

and develop a general MM algorithm intended to support the navigation function 
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of a real-time vehicle performance and emission monitoring system and other 

ITS applications. The MM process is initiated with nodal matching (i.e., 

identification of the nearest node to the first GPS point). Identification of the 

correct link among all the links connected with the closest node is based on three 

weighting parameters. Those are: 1) weight for vehicle heading 2) weight for 

proximity and 3) weight for position of the point relative to the link. The highest 

total weight score (TWS) (sum of above three scores) determines the most likely 

candidate link for the correct match. The same procedure is repeated when 

vehicle is near junction. The TWS is defined as (Quddus et al., 2003): 

 

RPPDH WSWSWSTWS ++=     (3.2) 
 
Where  
 

Heading weight )cos( )( β∆= HH AWS   
 
Proximity weight ω )( PDPD AWS =  
 
Weight for position of point relative to link )cos( )( θRPRP AWS =  

 

PDH AA ,  and RPA  are the weighting parameters for heading, proximity and 

position of point relative to the link respectively.  

 
β∆  is the angle difference between vehicle movement direction and link 

direction. 

αβ =∆               if -180°<= α <= 180° 

 αβ −=∆ 360     if α >180° 

 αβ +=∆ 360      if α <-180°  

21 ααα −=  

1α  is the heading of each candidate link with respective to the north 

2α is the vehicle heading with respective to the north  

  

ω  = 1             if D < 5 m 
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ω  = 1.0 − 0.01D  if 5 ≤ D ≤ 100 

ω  = −1    if D > 100 
 
D  is the perpendicular distance from a GPS point to a candidate road segment.  

 
θ  is the intersecting angle between the line between two consecutive GPS points 

and the link. If the two lines do not intersect then the score corresponding to 

)*( θCosAPD  is taken as zero.  

 

α  is the angle between the candidate link and the link through the nearest node 

and GPS point. α  is shown in Figure 3.14. 

 

Figure 3.14: Location of GPS point relative to link (Source: Quddus et al. (2003)) 

 

Relationship between the three weight parameters ( PDH AA ,  and RPA ) are: 

 

PDRP

PDH

AbA

AaA

*

*

=

=
      (3.3) 

 
Where a  and b are weighting factors that give the strength of relationship 

between PDH AA ,  and RPA . Using an empirical analysis, Quddus et al. (2003) 

identified the weighting factors a  and b  as 3 and 2 respectively. The empirical 

analysis was done by checking the algorithms performance, with respective to 

correct link identification, for different combination of a and b values. Here, the 

minimum and maximum values of both a and b were considered to be 0.5 and 
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4.0. In each iteration an increment of 0.5 was added to the a and b values. With 

these weight factors (a is 3 and b is 2), the algorithm is capable of snapping 89% 

of GPS/DR points correctly, with 2D horizontal accuracy of 18.1m (95%). 

Quddus et al. (2003) concludes that actual link identification using weighting 

scheme is sensitive to weighting factors ( a  and b ) and suggested further 

research to obtain the optimal values for the weighting parameters.  

 

Taghipour et al. (2008) used the weight-based topological MM algorithm 

develop by Quddus et al. (2003) and applied a consistency check at junctions. 

But, no further improvement is done in total weight score calculation, the 

relative importance of each weight is as recommended  by Quddus et al. (2003). 

The new consistency check at a junction is shown in Figure 3.15. 

 

 

Figure 3.15: Consistency check at Junction 

 

In Figure 3.15 the dotted line represents the road central line. Here, a vehicle 

travelled from junction A to junction B and then to junction E. At the junction B, 
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positioning fixes near to  junction B (highlighted with a bold circle in the figure) 

do not fall either on link A-B or link B-E. The weight-based algorithms that 

choose the link based on the total weight score (sum of heading, proximity and 

intersection weights) choose either link B-C or B-D as the correct link for the 

positioning points at junction B.  

 

In the consistency check at a junction, if the distance calculated by adding the 

length of the road link and the half of the width of previous street travelled by 

the vehicle (in Figure 3.15, the sum of length of link A-B and end the road width 

W) is less than the distance travelled by the vehicle from the previous junction to 

the current positioning point (multiplying the vehicle speed and time) then it is 

considered as vehicle is still travelling on the previous road segment. Otherwise, 

it is considered that the vehicle is at a junction and based on the TWS  the new 

road segment is identified. The consistency check has improved the map-

matching process, but requires that the width of the each road segment in the 

network is known. The enhancement of the proposed algorithm was 

demonstrated using a few critical junction scenarios (where Quddus tMM 

algorithm mismatches the vehicle position) in Arak city, Iran. However, the 

performance is not quantified with respect to the correct link identification and 

horizontal accuracy.  

  

3.3.3 Off-line topological MM 

 

In this section off-line topological MM algorithms developed by Yin and 

Wolfson (2004), Li et al. (2005) and Marchal et al. (2005) are reviewed. 

 

Li et al. (2005) develop an algorithm based on the connectivity of road network. 

Continuous buffer bands are used to identify the road candidate links, and then 

evaluate the candidates based on heading, proximity and connectivity. A buffer 

band is created by using three parameters. They are: (1) buffer distance (BD) (2) 

distance between two key points (ND) (3) searching distance (SD) are shown in 

Figure 3.16. 
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Figure 3.16: Buffer band  (Source: Li et al. (2005)) 
 
Buffer distance (BD) is determined by error associated with the tracking data. 

Searching distance (SD) is the distance between two continuous buffer bands. 

The value of ND is set several times BD.  

 

The value of SD is 

PBDSD *=        (3.4) 

P  value varies in between 0 and 2. 

0=P  if end of one buffer band is also start point of its successive buffer 

band. 

2=P  for direct tracking line 

 

From field trials, it has been observed that, in most of the travelled route, GPS 

tracking line is within 15m from the road centre line. The maximum distance of 

tracking line from the road centre line is observed as 75m. Based on the error 

associated with tracking data, in their study, two sets of buffer band parameters 

are considered:  

set 1: BD=20m, SD=30m and ND=100m and  

set 2: BD=80m, SD=80m and ND=200m.  
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Figure 3.17: Buffer band concept for candidate link identification  
(Source: Modified from Li et al. (2005)) 

 

A rounded rectangle error region, with centre line connecting several tracking 

point, is constructed to identify a set of candidate links. Every road segment 

interacting with or covered by buffer band are considered as candidate links. 

Further candidate links are classified into five categories. They are: 

 

Type 1: road segments intersecting buffer bands, not within the buffer band (in 

Figure 3.17 road segments 5, 7, 9 and 10). 

 

Type 2: segments interacting with two continuous buffer bands, and segment 

runs through one of the buffer band (in Figure 3.17 road segments 8 comes under 

this category).    

 
Type 3: segments interacting with two continuous buffer bands, and starts former 

band (in Figure 3.17 road segments 6 and 8 of buffer band A).  

 
Type 4: segments interacting with two continuous buffer bands, and ending in 

later buffer band (in Figure 3.17 road segments 8 of buffer band B).  

 
 Type 5: segments totally covered by buffer bands (in Figure 3.17 road segments 

2, 3 and 4).  
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In their study, few candidate links are eliminated based on heading and 

proximity and connectivity. After evaluating candidate links based on heading, 

proximity and connectivity, several road links may still be available to select as 

the correct link. The final correct link identification is based on length 

comparison. Minimum length difference between length of road segment 

between previously map-matched point to current map-matched point and the 

length of tracking line covered by same GPS points. Correct link identification 

among candidate links is not based on total weight scores. Candidate links are 

checked with heading and proximity. The performance of the developed 

algorithm was not presented.  

 

Yin and Wolfson (2004) propose a weight based map-matching algorithm for 

offline snapping problem. To compute the weight of each arc following two 

factors are considered: 1) possible route of the trajectory should be closer to the 

geometry of the arc and 2) each arc of possible route of trajectory is in the 

similar direction to that of corresponding sub-trajectory.  The algorithm was 

tested in Chicago metropolitan area and identified 94% of the links correctly. 

 

Marchal et al. (2005) present an off-line map-matching algorithm using network 

topological information. The algorithm finds a set of candidate link that are 

closer to the GPS point. Among the candidate links the correct link identification 

is based on absolute score value. The absolute score ‘F’ of path ‘P’ is defined as: 

 

∑∑
= =

=
p

j

T

i

ijji EQdF
1 1

*),( δ     (3.5) 

 

Where, 

 { }
Pj EEEEP ...,...., 21  denote the path composed of the P subsequent links 

PEEE .....,, 21 .  

{ }Ti QQQQ ....,...., 21 is the set of GPS points.  
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),( ji EQd  represents the distance between the i th GPS point to j th link.  

1=ijδ if iQ was assigned to link jE  else 0=ijδ  

 
The algorithm developed by Marchal et al. (2005) concentrates on computational 

speed of the algorithm in addition to 2D accuracy. They concluded that the 

algorithm has capability of handling huge volumes of data in a considerable time 

period. The computational speed of developed algorithm is 2,000 GPS points per 

second. The major drawback is the algorithm does not consider vehicle heading, 

speed information and turn restrictions at junctions. 

 

3.7 Performance of the existing MM algorithms 

 

As discussed, a number of different algorithms have been proposed for different 

applications. It has been established that the use of topological information in 

correct link identification can improve map-matching performance. Moreover, a 

weighting approach in selecting the correct road segment from the candidate 

segments improves the accuracy of correct road segment identification 

(Greenfeld, 2002; Quddus et al., 2003; Taghipour et al., 2008). An algorithm that 

assigns weights for all candidate links - using similarity in network geometry and 

topology information and positioning information from a GPS/DR integrated 

system - and selects highest weight score link as correct road segment is called a 

weight based tMM algorithm.  

 

Few studies report on the performance of tMM algorithms. Those that have done 

so are shown in Table 3.1. Most did not assess algorithm performance with 

respect to 2-D horizontal accuracy due to a lack of high accuracy reference (true) 

positioning trajectory. Quddus (2006) tested four of these algorithms using 

suburban data (2040 positioning fixes) obtained from GPS/DR and a digital map 

of scale 1:2500. Carrier-phase GPS observations were used to obtain the 

reference (true) trajectory. These results are shown in columns 7 and 8 of Table 

3.1. This positioning data, employed by Quddus (2006), is also used later in this 
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research to test the performance of the enhanced tMM algorithm to enable a real 

test of comparative performance to be made. Table 3.1 suggests that the 

performance of tMM algorithms with respect to correct link identification ranges 

from 85% to 98.5%; and the horizontal accuracy ranges from 32 m ( σ2 ) to 18.1 

m ( σ2 ). Although, the MM algorithm developed by Srinivasan et al. (2003) 

identified 98.5% of the segments correctly, this was based on a small sample in a 

simple network (university roads). When tested on a larger, more representative, 

road network, the accuracy falls to 80.2%. The algorithm developed by Blazquez 

and Vonderohe (2005) is capable of identifying the correct road segment 94.8% 

of times while employing a sample size of 600 position fixes obtained from a 

DGPS. Their algorithm performance is reasonably good and this may be due to 

their use of a high accuracy DGPS (relative to a stand-alone GPS) to obtain 

position fixes; and they also consider link connectivity and turn restriction 

information to verify map-matched positions after a point-to-curve map-

matching approach. Table 3.1 also suggests that when tested on the same data 

set, weight-based algorithms perform better than non-weight-based algorithms. 
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Table 3.1 Review of the existing topological MM algorithms 

Author and 

Year of 

publication 

Navigation 

Sensors 

Test 

Environment 

Map 

Scale 
Sample size 

Correct link 

Identification 

Correct link 

identification  

by (Quddus,  

2006) 

Horizontal 

Accuracy by 

(Quddus,  

2006) 

Topological information 

used 

Non-weight based  algorithms 

White et al. 
(2000) 

GPS Suburban -- 1.2 Km 85.80% 76.8% 32 m (95%) 
Heading, proximity and link 

connectivity 
Li and Fu 

(2003) 
GPS and 

DR 
Urban -- -- -- -- -- Heading and proximity 

Srinivasan et 
al. (2003) 

GPS 
University road 

network 
-- 

242 GPS 
points 

98.5% 80.2% 21.2 m (95%) Heading and turn restriction 

Blazquez and 
Vonderohe 

(2005 
DGPS 

Urban and 
Suburban 

1:2400 
600 DGPS 

points 
94.8% -- -- 

Connectivity and turn 
restrictions 

Weight-based algorithms 

Greenfeld 
(2002) 

GPS 
Urban and 
Suburban 

-- -- -- 85.6% 18.3 m (95%) 
Heading, proximity and 

intersection weights 

Quddus et al. 
(2003) 

GPS and 
DR 

Urban 1:1250 -- 88.6%  88.6% 18.1(95%) 
Heading, proximity and 

position of point relative to 
link 

Taghipour et 
al. (2008) 

GPS Suburban -- -- -- -- -- 
Same weights as Quddus et 

al. (2003) 
Off-line map matching 

Li et al. (2005) GPS Suburban 1:1000 -- -- -- -- 
Heading weight and 

proximity weight 
Yin and 
Wolfson 
(2004) 

GPS Urban -- -- 94% -- -- Heading and proximity  

Marchal et al. 
(2005) 

GPS 
Urban and 
Suburban 

-- 
2 million 

GPS points 
-- -- -- Proximity and connectivity 
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3.8 Conclusion  

 

Performance evaluation of tMM algorithms suggests that the weight based 

algorithms, which select the correct link based on the TWS assigned to each of 

the candidate links, are more logical; and performs better than non-weight based 

algorithms. Evidence from literature suggests the ways in which existing weight-

based tMM algorithms may be improved include:  

 

(1) The subsequent MM process of a weight-based tMM algorithm is heavily 

dependent on the performance of the initial MM process. Therefore, a 

more robust and reliable procedure for the initial MM process should 

reduce mismatches. 

 

(2) Weight-based algorithms primarily consider heading and proximity 

weights. These may be enhanced by including the performance of 

weights for turn restriction at junctions, link connectivity, roadway 

classification (e.g. one-way or two-way roads) and road infrastructure 

information (e.g. fly-overs and underpasses). The relatively good 

performance of the tMM algorithm developed by Blazquez and 

Vonderohe (2005) that used turn restriction and link connectivity would 

seem to support this.  

 

(3) The relative importance of different weights may be derived using a 

robust method rather than assuming equal weights as Greenfeld (2002) 

did or deriving them empirically as Quddus et al. (2003) did. This can be 

done for different combinations of navigation sensors (such as GPS or 

GPS/DR or DGPS) by collecting data from different operational 

environments (such as dense urban, urban, suburban, rural and hilly 

areas). This will improve the transferability of the developed weighting 

scheme. Another approach would be to determine different weighting 

schemes for different operational environments. For instance, the weight 
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for heading may be more important in a dense urban environment than in 

a rural context.  

 

Considering the above enhancements, a new weight based topological MM 

algorithm is developed in this research and presented in Chapter 6. The 

following chapter provides the review of integrity methods in the context of land 

vehicle navigation. 
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Chapter 4 

 
Review of Integrity Methods for Land Vehicle 

Navigation 
 
 
 
 
 
 
 
 
 
 
 
4.1 Introduction 
 

The raw positioning data from a navigation system contain errors due to satellite 

orbit and clock bias, atmospheric (ionosphere and troposphere) effects, receiver 

measurement errors and multipath errors (Kaplan and Hegarty, 2006). Digital 

maps include errors which can be geometric, e.g. displacement and rotation of 

map features, or topological, e.g. missing road features (Goodwin and Lau, 1993; 

Kim et al., 2000). Even where the raw positioning data and the map quality are 

good, MM techniques sometimes fail to identify the correct road segment 

especially at roundabouts, level-crossings, Y junctions, dense urban roads and 

parallel roads (White et al., 2000; Quddus et al., 2007). Any error associated 

with either the raw positioning fixes, digital map, or MM process can lead to 

wrong location identification (Quddus et al., 2006b). Users should be notified 

when the system performance is not reliable. This is vital for safety critical ITS 

applications such as emergency vehicle management, vehicle collision avoidance 

and liability critical applications such as electronic toll collection system and 

distance-based pay-as-you-drive road pricing. For example, the wrong vehicle 

location identification due to errors associated with a navigation system used in 

an emergency vehicle routing service delays an ambulance arrival at the accident 

site; this may lead to loss of life. If the user is informed when system 
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performance is not reliable then the user will not blindly depend on the 

navigation system.  

Integrity monitoring of a navigation system can be categorised into system,  

network  and  user level monitoring (Ochieng et al., 2007; Feng and Ochieng, 

2007). System level monitoring can provide integrity information by considering 

satellite orbit and clock bias. An example of system level integrity is Galileo. 

Network level integrity monitoring can be further classified into: Satellite Based 

Augmentation System (SBAS) and Ground Based Augmentations System 

(GBAS) (Bhatti et al., 2006). The SBAS is an overlay system to enhance the 

accuracy of GPS by using additional satellites. The SBAS considers satellite 

orbit and clock corrections, geometry of satellite and user, and ionosphere error, 

but not the tropospheric effects, receiver measurement error and multipath error 

(Feng and Ochieng, 2007). An example of SBAS is European Geostationary 

Navigation Overlay Service (EGNOS), operated by the European Space Agency. 

In case of GBAS, ground survey stations monitor the health of satellite and 

transmit correction to the user receivers via very high frequency transmitters. 

The GBAS considers troposphere correction in addition to the other errors 

covered in SBAS. An example of GBAS is the United States' Local Area 

Augmentation System (LAAS). Neither system level or network level integrity 

monitoring cover multipath error that generally occurs in urban canyons.  

Integrity monitoring, at the individual user level which considers receiver 

measurement errors and multipath error along with all the other errors discussed 

above is referred to as the User Level Integrity Monitoring (ULIM) process. A 

ULIM with a stand-alone GNSS is generally called Receiver Autonomous 

Integrity Monitoring (RAIM). Integrity monitoring combining GNSS and other 

sensors (e.g.  dead reckoning system or inertial navigations system) is commonly 

known as User Autonomous Integrity Monitoring (UAIM) (Ochieng et al., 

2007). The UAIM is a special case of RAIM. The UAIM considers sensor 

(odometer and gyroscope) errors along with GPS receiver measurement errors 

and multipath error. 
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Integrity monitoring methods are further classified as snapshot or  filtering 

methods (Feng et al., 2007). The snapshot method uses the current positioning 

point information to predict whether the positioning point is reliable or not. 

Whereas, the filtering method considers the history of previous positioning 

information, in addition to the current positioning point, to predict the 

untrustable positioning output. The filtering methods performs better than the 

snapshot method (Yun et al., 2008). The following section describes the integrity 

methods. 

 

4.2 Integrity methods 
 

As discussed in the previous section, the integrity monitoring process can be 

done at system network or user level. Integrity monitoring at a user level (i.e. 

integrity checking within the user equipment) considers all the errors including 

multipath error. It may not be possible to detect this error mode, at a system level 

or at a network level. Therefore, integrity checking within the user’s receiver has 

more advantages. As mentioned before, the user level integrity monitoring with a 

stand-alone GNSS is generally referred to Receiver Autonomous Integrity 

Monitoring (RAIM). Various RAIM methods and their advantages and 

disadvantages are discussed in the section. The key RAIM methods are 

(Broughton, 2003):  

 

1. Range comparison method  

2. Least square residual method 

3. Weighted least square residual method 

4. Kalman filter method 

 

The first three methods are snapshot methods (SM) and the fourth is a filtering 

method (FM). 
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4.2.1 Range Comparison Method 

 

In the range comparison method (RCM), firstly the position is estimated using 

any four available satellites. Then, the range to each individual satellite is 

calculated. The difference (range residual) between the calculated range to 

individual satellite and the predicted range (using four satellites) is then 

measured. This is shown in Figure 4.1 (Lee, 1992). The reliability of positioning 

information depends on the quantity of range residuals (i.e., small or large). If 

the range residuals (obtained from all visible satellites) are relatively small the 

algorithm declares ‘no failure’; otherwise ‘failure.’ The judgement on whether 

the range residuals are small or large, is made using an empirical test that checks 

whether the typical sample GNSS point lies inside or outside the alert limit (AL).  

 

 
Figure 4.1: Satellite range comparison method  

(Source: modified from Lee, 1992) 
 

 

The RCM is very simple and easy to develop. But the basic disadvantages are:  
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(1) This method uses only current positioning point information to identify the 

reliability of positioning information. (2) Further, the initial estimated range 

(using any four visible satellites) could also contain some error; this error is 

not considered in decision making process on detecting a failure.  

(3) It is not suitable for an integrated system (GNSS and DR).  

(4) It is an empirical method. 

 

4.2.2 Least squares residual method 

 

There are four unknown terms: user longitude, latitude, height and time (x, y, z 

and dt) associated with the user position estimation. For example, if six satellites 

are available for a GNSS positioning point; instead of considering any four 

satellites to calculate the four unknowns, the least squares residual method 

considers all the available satellites; and the four unknowns are calculated by 

minimising the sum of squares of estimated errors. The derivation of a least 

squares technique is provided here (Taylor and Blewitt, 2006): 

  
The vector matrix form of residual observation is: 

 

eAXP +=        (4.1) 

 

In equation (4.1),  

P is the vector of residual observations  of size n by 1.  

A is the design matrix of size n by 4.  

X is a vector of size 4 by 1 representing three components of user position and 

time. and  

e is the error matrix of size n by 1. 

 

From equation (4.1) the matrix form of estimated error can be written as: 
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∧∧

−= XAPe        (4.2) 

 

‘^’ in equation (4.2) represents the estimated value. 

 
 
The square of the above error term in equation (4.2) for n number of satellites in 

functional form is: 
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The above function in a matrix from: 
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The least squares solution can be found where sum of squares of error (that is 

f(x)) is minimum. Therefore, if the change in the function (f(x)) is zero, then the 

function is minimum (Taylor and Blewitt, 2006). 
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∧

=       (4.3) 

 

From equation (4.1) and (4.3) estimated residual observation vector can be  

written as 
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TT PAAAAXAP 1)( −
∧∧

==      (4.4) 

 

Therefore, the range error (E) vector can be written as: 

 

∧

−= PPE        (4.5) 

 

From equation (4.4) and (4.5) 

 

TT PAAAAPE 1)( −−=  

))(( 1 TT AAAAIPE −−=      (4.6) 

 

Substitute equation (4.1) in equation (4.6) 

 

))()(( 1 TT
AAAAIeAXE

−−+=  

 

{ } { }))(())(( 11 TTTT AAAAIeAXAAAAAXIE −− −+−=  

 

))(( 1 TT AAAAIeE −−=      (4.7) 

 

Where  

E is the range error vector of size n by 1 

I is the unit matrix of size n by n  

A is the design matrix of size n by 4  

e is the measurement error vector of size n by 1 and  

n is the number of satellites. 

 

Therefore, the square root of sum of squared range error is: 
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EESSE
T=        (4.8) 

 

Here, to declare the presence of a fault in the calculated receiver position two 

quantities are used: test statistics and decision threshold. A decision threshold 

value is chosen, for given statistical characteristics of test statistics, by 

controlling the false alarm and missed detection rate (Feng and Ochieng, 2007). 

The SSE  is used as the test statistic. By using the test statistics and the 

decision threshold, the protection level5 (PL) is calculated. The comparison of 

the PL against alert limit6 guides whether to raise the alarm or not. 

 

Disadvantages:  

(1) Calculated SSE (or test statistic) is independent of satellite and user 

geometry.  

(2) This method uses only current positioning point information  

 

4.2.3 Weighted least squares residual error method 

 

In the least squares residual method, the SSE is independent of satellite and user 

geometry. But, in practice, some satellites may have probably large error 

compared to other satellites. For instance, if the satellite elevation is higher the 

multipath effect and the atmospheric effects are less compared to a lower 

elevation satellite. The weighted least squares residual method provides more 

accurate receiver positioning information by giving more weight to satellites that 

are less likely to have errors (Broughtom, 2003).  

 

Therefore, the weighted sum of squared range error is (from equation 4.7 and 

4.8): 

                                            
5
 Protection level is the upper boundary of the confidence region (circle with centre as 

computed position) of a GPS sensor, in which position error can be detected outside that 
region   
 
6 Alert level is the error tolerance not to be exceeded without issuing an alert to users.  
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WEEWSSE
T=       (4.9) 

 

Where  

 

))(( 1 TT WAAWAAIeE −−=      (4.10) 

Where,  

W is the weight matrix of size n by n, that is inverse of the covariance matrix  

I is the unit matrix of size n by n 

 A is the design matrix of size n by 4and 

e is the measurement error vector of size n by 1. 

 

The weighted least square residual error has similar disadvantages of least square 

residual error method except it gives different weights to all visible satellites.  

 

4.2.4 Kalman filter method  

 

For land vehicle navigation, stand alone GNSS systems face signal masking, 

particularly in urban canyons. To overcome this problem, often the GNSS 

system is integrated with other sensors such as DR. A Kalman filter is a set of 

mathematical equations, that integrate the data from the GNSS receiver and the 

data from other sensors, to provide a precise receiver positioning information 

(Krakiwsky et al., 1988). The Kalman filter approach, which computes an 

integrated solution, is also used for integrity monitoring purpose (Philipp and 

Zunker, 2005; Feng and Ochieng, 2007). A brief description of Kalman filter 

(proposed by Sun and Cannon, 1998) is provided here:  

 

A Kalman filter primarily consists of a system equation and an observation 

equation.  
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The system equation is given by:  

 

kkkk wXX +Φ= −− 11       (4.11) 

 

Where  

Xk  is the state vector  

1−Φ k is the transition matrix,  

w is the system error matrix 

the subscript k represents the time step (i.e., epoch k) 

 
The observation equation is given by  

 

  kkkk vXHz +=       (4.12) 

 
where 

zk is the measurement vector 

Hk is the measurement matrix 

vk is the measurement error vector 

 

The prediction of state vector and variance-covariance matrix can be written as: 

∧

−−

∧
− Φ= 11 kkk XX       (4.13) 

1111 −−−−

− +ΦΦ= k

T

kkkk QPP      (4.14) 

 

In equation (4.13) and (4.14), ‘-’ represents the predicted value. Pk is the 

variance-covariance matrix and Q is the process error covariance matrix. For 

initial iteration (i.e., k=1), 
∧

−1kX and 1−kP  are the inputs to the system. 

 

Then, the system calculates the Kalman gain matrix, which is given by 
 

( ) 1−−− += K

T

kkk

T

kkk RHPHHPK     (4.15) 
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In equation (4.15) Kk is the Kalman gain matrix; Hk is the measurement matrix; 

Pk variance-covariance matrix which is obtained from equation (4.14); and RK is 

measurement error covariance matrix.  

 

Using equation (4.13) and (4.15) the state vector and variance-covariance matrix 

are updated. 

 

)(
∧

−
∧

−
∧

−+= kkkkkk XHzKXX      (4.16) 

  ( )
∧

−−= kkkk PHKP 1       (4.17) 

 

Where, 

∧

kX is the final state vector for epoch k 

Hk is the measurement matrix 

zk is the measurement vector (from equation 4.12); and 

∧
−

kX and Kk  are obtained from equation (4.13) and (4.15). 

 

Further detailed description of Kalman filter to integrate GPS and DR sensors 

can be found in Zhao et al. (2003). The basic integrity monitoring process, using  

Kalman filter, was designed by Lu and Lachapelle (1991), Sun and Cannon 

(1998), and Feng and Ochieng (2007). 

 

The innovation matrix is given as (Feng and Ochieng, 2007) 

 

−−= kkkk XHzv       (4.18) 

Where 

vk is the measurement error vector 

zk is the measurement vector 
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Hk is the measurement matrix 

−

kX  is the predicted state vector 

 

The weight matrix (W), which is inverse of co-variance matrix, is  

 

1)( −− += K

T

kkkk RHPHW      (4.19) 

 

In the above equation, Hk is the measurement matrix; Pk variance-covariance 

matrix, which is obtained from equation (4.14); and RK is measurement error 

covariance matrix. 

 

Then, sum of squared errors is (Feng and Ochieng, 2007) 

 

T

kkk vWvSSE =      (4.20) 

 

SSE  is used as test statistic. It is assumed that the SSE follows the Chi-square 

distribution with n degrees of freedom. The calculation of protection level is 

similar to the procedure explained in least squares residual method. This PL is 

compared against alert limit to decide whether to raise an alarm for that 

positioning fix or not. The derivation of decision threshold depends on the 

probabilities of false alert and missed detection.  

 
Philipp and Zunker (2005) also consider the state variance covariance matrix 

(i.e., P in equation 4.15), which is calculated for each positioning fix, to 

determine the integrity of positioning output. In matrix P, first 2 by 2 sub-matrix 

is the variance and covariance of positioning information in X and Y directions 

with 68.3% confidence level (i.e. one sigma). Using this P matrix, horizontal 

tolerance limit (HTL) is estimated with higher level of confidence (6-sigma 

level). The HTL, which is analogous of protection limit (PL), concept is 

introduced to detect the failures in the positioning data.  
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The Kalman filter based integrity monitoring process is useful for integrated 

sensor systems (such as GNSS and DR). Moreover, this filtering approach uses 

the previous positioning points data in addition to the current GNSS point 

information.  

 
As a part of the integrity monitoring process, the quality of satellite and user 

geometry also plays an important role. To check the geometry of satellite, with 

respect to the user, in the failure detection process three commonly employed 

methods are used in the literature (Broughtom, 2003). They are: (1) 

maxHδ method (Parkinson and Spilker, 1996) (2) approximated radial error 

protected (ARP) method (Parkinson and Spilker, 1996) and (3) horizontal 

protection limit (HPL) method (Broughtom, 2003). The following section 

describes applications and performance of integrity method in the context of land 

vehicle navigation.  

 

4.3 Application and performance of integrity methods 

 
Basic approaches for integrity methods vary from a very simple process (e.g. 

range comparison method) (Walter and Enge, 1995; Lee, 1992) to complex 

methods (e.g. Kalman Filter method) (Yun et al., 2008; Lee at al., 2007). Studies 

focusing on the enhancement of integrity methods for land vehicle navigation are 

discussed in this section (Jabbour et al., 2008; Feng and Ochieng, 2007; Lee et 

al., 2007; Santa et al., 2007 Kuusniemi et al., 2007; Gomes and Pereira, 2007; 

Santa et al., 2006; Quddus et al., 2006c; Yu et al., 2006;  Philipp and Zunker, 

2005; Syed, 2005; Wullems et al., 2004; Gustafsson et al., 2002; Sun and 

Cannon, 1998). The land vehicle navigation integrity monitoring process can be 

categorised into: integrity of map-matching process, positioning integrity 

monitoring and other integrity methods. 
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4.3.1 Integrity of Map-matching process 

 

Quddus et al. (2006c) developed an integrity method for map-matching 

algorithms. The integrity of the map-matched solution was assumed to be a 

function of: 1) uncertainty associated with the positioning solution 2) 

comparison of vehicle heading with respect to selected road link direction and 3) 

distance comparison between raw positioning fix and map-matched position. The 

integrity of the map-matched position is represented by a scalar value, that 

ranges from 0 to 100 (0 indicates a low level of confidence and 100 indicates a 

high level of confidence). The derivation of the scalar value (0-100) is done 

using a sugeno fuzzy inference system. The authors tested the method, on three 

different map-matching (MM) algorithms, using stand-alone GPS data and 

GPS/DR data, for three different (scale) digital maps. The valid integrity 

warnings using a topological map-matching, probabilistic map-matching and 

advanced map-matching were found to be 91.1%, 97.5% and 98.2% respectively. 

Quddus et al. (2006c) used a simple empirical method to identify the integrity of 

MM positions, and proposed the employment of more rigorous statistical 

methods.  

 
Jabbour et al. (2008) proposed a map-matching algorithm and an integrity 

method - using a multihypothesis technique - for land vehicle navigation. The 

integrity of a map-matched positioning fix is checked using two indicators: (1) 

number of efficient hypotheses and (2) normalised innovation square. In the 

integrity monitoring process, they used two threshold values; and these values 

are derived empirically. Their method did not consider the error sources 

associated with the digital map. As Quddus et al. (2006c) did, they also identify 

the overall correct detection rate, which is function of false alarm rate and 

missed detection rate. The MM algorithm and the integrity method were tested 

using real-time field data (3,661 positioning fixes) collected in Compiegne, 

France. And it was found that the integrity method can give 88.8% valid 

warnings.     
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Yu et al. (2006) used a curve pattern matching to identify the reliability of map-

matched output. After map-matching a positioning point, the algorithm forms a 

curve using all the positioning points and the current point. Then the algorithm 

also forms another curve using map-matched position. By comparing these two 

curves the algorithm identifies mis-matching, and reinitiates the process and 

corrects the mis-matching. The process is more like a consistency check. 

Integrity process performance was examined using an extensive data (3,000 km 

travel length) collected in central Hong Kong. The performance was examined 

only with missed detection rate (MDR); which was 1.41%. The error associated 

with GNSS system and digital map were not considered in the integrity process.  

 

4.3.2 Positioning integrity monitoring  

 

Philipp and Zunker (2005) developed a novel integrity process for land vehicle 

navigation applications. A Kalman filter was designed which can consider errors 

with a GNSS system and other sensors (DR). The variance-covariance matrix 

obtained from a Kalman filter is used to identify the horizontal trust limit (HTL). 

The HTL is measure of accuracy of integrated position solution obtained from 

GPS and other vehicle sensors. The process was tested using a small data set 

collected in Ulm, Germany. However, a quantitative measure of performance of 

developed integrity method is not reported.  

 

Feng and Ochieng (2007) developed a user-level Vehicle Autonomous Integrity 

Monitoring (VAIM) algorithm for safety and liability critical ITS applications. 

The integrity algorithm uses a hybrid method consists of a weighted least squares 

technique and an Extended Kalman Filter (EKF) approach. Though, the authors 

consider the odometer and gyroscope errors in the failure detection process, they 

did not consider the digital map errors. The developed integrity method was 

tested using a data collected near London, and it was found that the algorithm 

can efficiently detect potential failures in the navigation systems outputs. The 

percentage of valid warnings was not measured. 
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Sun and Cannon (1998) conducted a reliability analysis of navigation module of 

intelligent transport systems (ITS). Three separate cases were analysed. They 

are: (1) GPS only scenario (2) GPS integrated with gyro (3) GPS integrated with 

gyro and digital map. A standard kalman filter was used for the reliability 

analysis. Instead of employing the errors associated with the digital map, their 

study used the longitude and latitude coordinates of a map-matched point to aid 

the overall integrity monitoring. The performance in terms of integrity was not 

measured individually. 

 

Gomes and Pereira (2007) discussed the fundamentals of integrity requirements 

and state-of-the-art in integrity monitoring process for electronic fee collection. 

The basic advantages of integrity monitoring for road tolling is categorised into: 

operational use and legal use. This study did not consider the digital map errors 

in the integrity monitoring process. Santa et al. (2006) developed a reliable 

integrity monitoring process for location based services. Embedded software, for 

integrity monitoring was developed.   

 

4.3.3 Other Integrity Methods 

 
 
Lee et al. (2007) developed an integrity method - using the Monte Carlo 

technique - for aviation and land vehicle navigation. The total process is divided 

into: fault detection (FD) and fault isolation (FI). The FD process is carried out 

using particle filter approach; and log-likelihood ratio method is used for FI. This 

research considered GNSS system errors but not the error associated with the 

other sensors (such as DR or INS). Gustafsson et al. (2002) also developed a 

particle filter - using a Sequential Monte Carlo method - for positioning 

navigation and tracking. The developed filter was tested for aviation and car 

navigation. Their method considers integrated navigation (GPS + DR / INS); but, 

the digital map errors are not considered in the filtering process. Kuusniemi et al. 

(2007) used the Modified Danish method for reliability testing of GNSS 
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positioning output for indoor applications. The Danish method is an iteratively 

reweighted least square estimation.  

 

Few studies report the performance of the developed integrity monitoring 

processes. Those, that did are shown in Table 4.1. It can be concluded that the 

performance of the integrity methods varies widely. In column 6, the valid 

integrity warnings include false alarm rate (FAR) and missed detection rate 

(MDR). The performance of the integrity method developed by Yu et al. appears 

good, however, due to lack of true positioning fixes, they did not measure the 

performance with respect to FAR (Yu et al., 2006). If the FAR is also considered 

in performance evaluation, the percentage of valid warnings provided by their 

integrity process may be lower. Feng and Ochieng (2007) checked their integrity 

method in four different scenarios (i.e., in tunnels, flyovers, bridges, and parallel 

roads). Their algorithm did not quantify the performance with respect to the valid 

warnings. The other integrity methods developed in the literature provides about 

90 percent valid warnings. Moreover the performance of the integrity method is 

sensitive to quality of digital map (map scale) and type of map-matching 

algorithms used in the vehicle navigation module (Quddus et al., 2006c). The 

integrity method developed by Quddus et al. (2006c) performs better when an 

advanced map-matching algorithm and more accurate digital map (scale 1:1,250) 

was used; and it gives 98.2% valid warnings. Its performance was recorded as 

91.1% when it was tested with a weight based topological map-matching 

algorithm. However, they examined the integrity method performance only with 

840 positioning fixes, in a sub-urban area. The performance of the existing 

integrity methods may not support few safety and liability critical ITS 

applications. Further enhancement of the integrity method is required. The 

following section discusses how this integrity method can be further improved. 
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Table 4.1: Performance of integrity methods for land vehicle navigation 

1Using a weight based topological MM algorithm. 
2Using a probabilistic MM algorithm. 
3Using an advanced MM algorithm. 
MDR: missed detection rate 
 

4.4 Research gap in integrity monitoring 
 

The reliability of the final vehicle positioning output obtained for a vehicle 

navigation system mainly depends on three components:  

 

(1) errors in raw positioning fix (such as satellite orbit and clock bias, 

atmospheric (ionosphere and troposphere) effects, receiver 

measurement error and multipath error)  

Author and 

Year of 

publication 

Methodology used 
Sample 

size 

Map 

Scale 
Test 

environment 
Performance 

Map-matching integrity 

91.1% valid 
warnings1

 

97.5% valid 
warnings2 

Quddus et al. 
(2006c) 
 

Empirical method 
Fuzzy logic system 
is used to represent 
integrity in a scalar 
value 

840 
positioning 

fixes 
1:2,500 Sub-urban 

98.2% valid 
warnings3

 

Yu et al. 
(2006) 

Curve pattern 
matching 

3,000 KM 
length 

1:1,000 Urban MDR is 1.41% 

Jabbour et al. 
(2008) 

Multihypothesis 
technique 

3,661 
positioning 

fixes 
 Urban 

88.8 % valid 
integrity warnings 

Raw GNSS positioning fix integrity 

Sun and 
Cannon 
(1998) 

Kalman filter -- 1:5,000 
Urban and 
Suburban 

79.9% valid 
warnings 

Philipp and 
Zunker (2005) 

Kalman filter  -- -- 
Urban 

(in Ulm, 
Germany) 

-- 

Kuusniemi et 
al.,  (2007) 

Modified Danish 
method 

12 hours 
data 

-- -- 
89.5% valid 

warnings 

Feng and 
Ochieng 
(2007) 
 

Weighted least 
squares technique 
and Extended 
Kalman Filter 
 

-- 1:2,500 Sub-urban  

Four different 
scenarios (i.e., in 
tunnels, flyovers) 
were discussed 
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(2) quality of digital road map and  

 
(3) errors in map-matching process.  

 

State-of-the-art research in land vehicle integrity monitoring has concentrated on 

either the integrity of raw positioning information obtained from GNSS/DR 

(Philipp and Zunker, 2005; Feng and Ochieng, 2007; Lee et al., 2007) or the 

integrity of map-matching process (Yu et al., 2006; Quddus et al., 2006c; 

Jabbour et al., 2008). The uncertainties associated with the digital map are 

considered only by Quddus et al., 2006c. Quddus et al., 2006c measured the 

digital map uncertainty using the length of road segment and GIS map scale. 

 
Clearly, considering these three sources of errors together should lead to a better 

outcome. Moreover, taking the complexity of the road network (i.e., operational 

environment) into account can further improve the integrity process. Therefore, 

the ways to further improve the integrity of land vehicle navigation are identified 

as: 

 

(1) Consider errors associated with the positioning data, GIS map data and 

map-matching process together in identifying the goodness (trustability) 

of final positioning fix obtained from a vehicle navigation module. 

 

(2) Though a raw positioning fix includes considerable error, if the 

operational environment is not complex (i.e., a rural environment), 

simple map-matching algorithm can still identify the correct road 

segment on which a vehicle is travelling. So, considering operational 

environment in the integrity of land vehicle navigation can further 

improve its performance.  

 

The development of an integrity method for land vehicle navigation, which 

considers the limitations of the existing studies, is shown in Chapter 8. The 
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following chapter provides the description of different positioning data sets 

collected and used in this thesis.  
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Chapter 5 

 

Data Collection 
 
 
 
 
 
 
 
 
 
 
 

5.1 Introduction 
 

This chapter describes the positioning data sets used in this thesis. To test, 

implement and evaluate the performance of developed MM algorithm and 

integrity method a total of six positioning data sets were utilised. A detailed 

description of each data set is provided in this chapter. The use of positioning 

data from three different countries with three different digital road maps should 

address issues of transferability of the developed map-matching algorithm and 

the integrity method.  

 

5.2 Positioning data  collection 

 
Six positioning data sets were collected from the UK, India and USA. These data 

sets are shown in Table 5.1. The first column of the table represents the data set 

number and the second column provides the location of the test route. The date 

of data collection and the equipment used are shown in column three and four 

respectively. Columns five and six provide sample size with respect to number of 

positioning points, and approximate test route length in km. The total number of 

positioning points including all six data sets is 88,481 with an approximate total 

test route length of 1,098 km. The last column provides the location 

characteristics of the test route. Data sets 1, 2, 3, and 4 were collected as part of 
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this research and the data sets 5 and 6 were obtained from Quddus (2006). As it 

can be seen in Table 5.1, positioning data from various operational environments 

including dense urban, suburban and rural areas were used in this research. This 

is because the performance of a vehicle navigation module depends on the 

complexity and operational characteristics (such as tall buildings, bridges) of the 

road network. All these data sets recorded positioning data every second. In the 

rest of the thesis positioning data is referred-to by the data set number given in 

Table 5.1. The data sets are now discussed in here.  

 

Table 5.1: Positioning data 

Data 

set 

Test 

Location 
Date 

Equipment 

used 

Sample 

size 

Approximate 

test route 

length (km) 

Location 

characteristics 

1 

Loughborough 
to London; 

Central 
London and 
south part of 
London, UK 

May-08 
AEK - 4P 

and AEK 4R 
42,231 
points  

700 
Mix of dense 

urban, suburban, 
and rural 

2 Mumbai, India Dec-08 AEK-4P 
16,756 
points  

95 

An urban area 
with narrow 

congested roads 
and construction 

site 

3 
Washington, 

DC, USA 
Jan-09 AEK-4P 

3,900 
points  

17 

Dense urban 
road network, 
tall buildings, 
bridges and 

flyovers 

4 
In and around 
Nottingham, 

UK 
May-09 

AEK - 4P  
AEK 4R, a 

Carrier-
phase GPS 
with high 
grade INS 

10,347 
points  

89 
Urban and 

suburban areas 

5 

Suburban: 
(West of 

London– near 
Reading) 

Aug-05 
GPS/DR and 

a carrier-
phase GPS 

2,040 
points  

49 Suburban area 

6 

Central 
London and 

suburban area 
of London 

July-04  GPS 
13,207 
points 

148 
Dense urban and 
suburban areas 
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In the case of the first data set, a test vehicle equipped with a single frequency 

high sensitivity GPS receiver and a low-cost gyroscope were used. The 

positioning data were collected in the United Kingdom (a return trip from 

Loughborough to London and inside central London) on 26th of May 2008. The 

test route was selected carefully to ensure that the vehicle travelled through 

different operational environments including rural, suburban and a good mix of 

urban characteristics (tall buildings, bridges, flyovers and tunnels etc). As the 

test vehicle travelled on a pre-defined route the road segment on which vehicle 

travelled is known. The total trip length of the data set is about 700 km. The test 

route trajectory is show in Figure 5.1. The black line indicates the test route.  
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Figure 5.1: Data set 1- test route in the United Kingdom  

 
The second and third data sets were collected using a 16-channel single 

frequency high sensitivity GPS receiver (AEK-4P) on pre-planned routes in 

congested road network of Mumbai, India and the downtown area of 

Washington, DC, USA on 8th December 2008 and 13th January 2009 

respectively. For both data sets (2 and 3), the test routes were again selected 

 Loughborough 

 
London 
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carefully to ensure that the vehicle travelled through a good mix of urban 

characteristics. The total trip length of data sets 2 and 3 were about 95 km and 17 

km respectively. The test trajectory for data set 2 (in Mumbai) and data set 3 (in 

Washington, DC) are shown in Figures 5.2 and 5.3 respectively. 

 

 

Figure 5.2: Data set 2- test route in Mumbai, India  

 Airport 
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Figure 5.3: Data set 3- test route in Washington, DC  

 
The satellite availability for data sets 2 and 3 are shown in Figure 5.4. The 

minimum and maximum number of satellites for data set 2 are rescored as 3 and 

12 respectively. In case of data set 3 the minimum number of visible satellites 

are 4 and the maximum number of visible satellites are 11. 
  

 

Figure 5.4: Satellite availability 
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Positioning data set 4 was collected in and around Nottingham, UK on the 1st of 

May 2009. The test trajectory is shown in Figure 5.5. For the collection of this 

dataset, a test vehicle equipped with a single frequency high sensitivity GPS 

receiver and a low-cost gyroscope were used. The vehicle was also equipped 

with an integrated carrier-phase GPS and high-grade Inertial Navigation System 

(INS). Accuracy of this equipment (carrier-phase GPS/INS) was found to be 

better than 5 centimetres over 97.5% of the time in all three coordinate 

components (Aponte et al., 2009). Therefore, the positioning fixes obtained from 

GPS carrier-phase observations integrated with a high-grade INS were used as 

reference positioning points. The test vehicle and the equipment setting is shown 

in Figure 5.6. and 5.7.  

 
Figure 5.5: Data set 4- test route trajectory in and around Nottingham, UK  
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Figure 5.6: The vehicle used for positioning data set-4 collection 

 

 

 
Figure 5.7: Equipment setup in the test vehicle 
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Positioning data sets 5 and 6 were obtained from Quddus (2006). Data set 5 is 

from suburban areas of London (near Reading), and was collected on August 

2005, was conducted. A vehicle was equipped with a 12-channel single 

frequency (L1) high sensitivity GPS receiver, a low-cost MEMS rate gyroscope 

and the interfaces required to connect to the vehicle speed sensor (odometer). For 

this data a carrier-phase GPS (i.e., a geodetic receiver consisting of a 24-channel 

dual-frequency (L1 and L2) with C/A code and P code ranging) was used to 

obtain the reference (true) trajectory. The total length of the test trajectory is 

about 46 km (2,040 positioning points). The test route is shown in Figure 5.8. 

Positioning data 6 was collected in and around London using a 12-channel single 

frequency (L1) high sensitivity GPS receiver. The length of test trajectory is 

noted as 148 km.  

 

 
Figure 5.8: Data set 5- Test route in South part of London  
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5.3 Digital road maps 
 

In this research, three digital road maps, which are obtained from different 

sources, were used. For all these maps, roads are represented by a single-line-

road-network representing the road central line. The details of three digital maps 

are provided in Table 5.2.  

 

Table 5.2. Digital road map data 

Map Location Scale Source 

1 United Kingdom 1:2,500 Quddus (2006) 

2 Mumbai, India 1:25,000 
Indian Institute of Technology 

Bombay (IITB), India 1 

3 Washington, DC, USA 1:1,250 
DC Geographic Information 

Systems (DCGIS) 
1  Developed by Maples, India; and obtained from IITB 
 

Turn restriction data at junctions are an essential input to the developed map-

matching algorithm and the integrity method. Such data are not available with 

these digital maps. For data sets 2 and 3, the legal turn restriction information 

was noted while collecting the field data and then crosschecked with the Google 

earth map; whilst for the other data sets (which were collected in the UK) the 

turn restriction information was noted from road markings using the Google 

earth map. 

 

The turn restriction data (for tMM algorithm and integrity method) is stored in 

the form of turn restriction matrix to consider all the possible turns at a junction 

point. A four legged junction, where four road segments (1, 2, 3, 4) meet at 

junction, is explained in Figure 5.9. In this case, a vehicle travelling towards the 

junction along link 1 is restricted to take a right turn and a U turn. The 

corresponding vehicle turn restrictions information is represented with ‘1’ in the 

turn restriction matrix. For example, the value ‘1’ in the first row forth column of 

turn restriction matrix represents vehicle coming from link 1 can not turn to link 

4.   
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Figure 5.9  Turn restriction at junction 

 
 

This chapter described the extensive positioning data sets and GIS road maps 

used in this research. The following chapter describes the development of a 

weight-based topological map-matching algorithm.  
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Chapter 6 

 
Development of an Enhanced Topological Map-

matching Algorithm 
 
 
 
 
 
 
 
 
 
6.1 Introduction 
 

An improved topological map-matching (tMM) algorithm is developed in this 

chapter. This tMM uses a standard procedure to identify a set of candidate links, 

then assigns weights for all candidate links - using similarity in network 

geometry and topology information and positioning information from a GPS 

system - and selects the link with the highest weight score as the correct road 

link from a set of candidate road links (see section 3.3 in Chapter 3). As the 

correct link identification is based on total weight scores (i.e., the sum of 

heading, proximity, connectivity and turn restriction weight scores), the 

developed algorithm is known as a weight-based topological map-matching 

algorithm. As a part of enhancement of the tMM algorithm, an optimisation 

technique is introduced to identify the relative importance of these weight scores 

for different operational environments (urban, suburban and rural). The 

performance of the algorithm, with respect to percentage of the correct link 

identification and horizontal accuracy, is assessed using field data. 

 
6.2 Map-matching Process  
 

The tMM  algorithm requires a range of data input that include:  positioning data, 

topological features of spatial road network data and turn restrictions at 

junctions. The positioning data includes GPS easting and northing (i.e., X and Y 
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coordinates), vehicle heading (i.e., vehicle movement direction with respect to 

the North direction), and vehicle speed data in m/sec. Digital map data includes 

node data and link data. The node data consists of node number, node easting 

and northing (i.e., X and Y coordinates). The link data consists of link ID, start 

node and end node of each link. The turn restrictions information, at each 

junction, is given in a matrix form (see section 5.3).  

 

A simple flowchart of the proposed tMM algorithm is shown in Figure 6.1. The 

map-matching (MM) process is divided into three key stages: (a) initial MM, (b) 

matching on a link and (c) MM at a junction. The aim of the initial MM process 

is to identify the correct link for the first positioning point. A robust and reliable 

method (discussed below) is introduced for the initial MM process. After 

assigning the first positioning point to the selected link, the algorithm checks 

three criteria for matching the next position point:  

 
(1) whether a vehicle is in a stationary condition (matching on a link) 

(2) whether a vehicle is travelling on the previously matched link (matching 

on a link) 

(3) whether a vehicle is near to a junction (matching to a junction).  

 
If the speed of the vehicle for a positioning fix is zero then the vehicle is 

stationary; in this case the vehicle’s position is assigned to the previously map-

matched link. If the vehicle is not stationary, then the algorithm examines 

whether the positioning fix is near to a downstream junction or not. If the vehicle 

is far from a downstream junction then this positioning fix is also assigned to the 

previously map-matched road segment. If the vehicle is near to a junction, the 

algorithm re-identifies the correct road segment from a set of candidate segments 

which is known as matching at a junction. The above three criteria are further 

described in the following sections. In all cases, once the correct link is identified 

for a positioning fix, a perpendicular projection from the positioning fix to the 

identified link gives the location of the vehicle on that link. 
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Figure 6.1: A flow-chart representing the enhanced tMM algorithm 
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6.3 Initial MM process  

 

The purpose of the initial MM process is to identify the first correct road 

segment for the first positioning point. After the initial MM process, the 

subsequent matching (either on a link or at a junction) may commence. Since 

any error in the initial matching process will lead to a mis-matching of the 

subsequent positioning points, a robust and reliable approach is introduced which 

has three major stages:  

 
(1) the identification of a set of candidate links,  

(2) the identification of the correct link among the candidate links using heading 

weight (Wh) and proximity weight (Wp) 

 (3) the estimation of vehicle position on the correct link. 

 

6.3.1 Identification of candidate links   

 

Firstly, the algorithm creates an error circle around the first positioning fix. The 

radius of the error bubble is primarily based on quality of positioning data (i.e. 

variance and covariance of easting and northing) at that instant (for that 

positioning point). The error bubble used in this research was suggested by Zhao 

(1997), Ochieng et al. (2004b) and Quddus (2006). All the links that are either 

inside the error bubble or touching the error bubble are considered as the 

candidate links for the first positioning fix. 

 

In Figure 6.2, points A, B, C,…, I are referred to as node points; points a, b, c, d 

and e are referred to as shape points; and points P1 and P2 are positioning fixes. 

The scenarios that need to be investigated to identify the candidate links are: (1) 

All links inside the error circle (link A-a, A-c). (2) Links intersect with the error 

circle at one point (i.e., one node/shape point is inside the circle and other 

node/shape point is outside the error circle). Links A-H, A-d, a-b and c-I fall 

under this scenario. (3) Links intersect with the error circle at two points but both 
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node/shape points are outside the error circle (i.e., link H-I). (4) Links tangent to 

the error circle (i.e., link I-b). Finally, for the positioning fix P1, candidate links 

are A-a, A-d, A-c, A-H, a-b, c-I, H-I, and I-B.  

 

 

Figure 6.2: Candidate link identification 

 

As explained above, candidate link identification falls into four major cases.  

Case A: Road segments those are completely inside the error circle 

Case B: Road segments intersect the error circle at one point 

Case C: Road segments intersect an error circle at two points but the start and 

end nodes are out side the error circle 

Case D:  Road segments tangential to the error circle 

 
Each of these is briefly discussed below: 

 
Case A: Road segment completely inside the error circle 

 
Assuming positioning coordinates (X and Y coordinates) are h and k; and link 

start node coordinates are  (x1, y1) and link end node coordinates are (x2, y2), The 
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distance between (h, k) and (x1, y1) and between (h, k) and (x2, y2)’ using the 

following equation: 

 

di = 22 )()( kyhx ii −+−      (6.1) 

 

 

Figure 6.3: Road segment inside an error circle 

 

If the distance between (h, k) and (x1, y1) is d1 and between (h, k) and (x2, y2) is 

d2; road segments, that are completely inside the error circle (see Figure 6.3), are 

identified by checking the condition: d1< r and d2< r.  

 

Case B: Road segment intersects the error circle at one point 

 

 

Figure 6.4: Road segment intersects an error circle at one point 
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If a road segment intersects the error circle at one point, as shown in the above 

Figure 6.4, then the following condition need to be satisfied: ‘d1< r and d2> r’ or 

‘d2< r and d1> r’ 

 

Case C: Road segments intersect the error circle at two points but the start  and 

end nodes are outside  the error circle 

 

Figure 6.5: Road segments intersect an error circle at two points  

 

If the differences in the x and y coordinates between the start node (x1, y1) and 

the end node (x2, y2) of a link A-B is ∆x and  ∆y respectively, then 

∆x = x1 − x2       (6.2) 

∆y = y1 − y2       (6.3) 

 

The equation of the circle of radius r and centre (h, k) is: 
 

(x − h)2+ ( y − k)2 = r 
2    (6.4) 

 
 

The equation of the line passing through point A (x1, y1) and B (x2, y2) is: 
 

y = mx + c       (6.5) 
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Where 

m = 
x

y

∆

∆
      (6.6) 

c = 
x

xyyx

∆

− 2121     (6.7) 

 
The points of intersection between equations (6.4) and (6.5) can be expressed as: 
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Where  
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+
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=

21

)(

m

cmhk
g     (6.10) 

 
The expression (r 

2 − g 
2) in equation (6.8) or (6.9) can be used to see whether 

the line intersects the circle. 

 

If (r 
2 − g 

2)>0 and ‘x1 ≤α ≤ x2 or x2 ≤α ≤ x1’ or ‘y1 ≤ β  ≤ y2 or y2 ≤β  ≤ y1’ then 

the line intersects the circle at two points 

 

Case D:  Road segment that is tangential to the error circle 

 

Figure 6.6: Road segment is tangent to an error circle 
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If the term (r 2 − g 

2) in equation 6.8 and 6.9 is equal to zero, then the line is a 

tangent to the error circle. 

 

6.3.2 Identification of the correct link among candidate links  

  

The main task of any MM algorithm is to select the correct link among the 

candidate links. For the first positioning fix, topological information such as link 

connectivity and turn restrictions cannot be used because user location on the 

network is unknown. In this study, for the first positioning point, only heading 

and proximity weight are considered. A GPS receiver provides heading data for 

the first positioning fix based on the last stored position fix. 

 

Among the candidate links, greater weight should be given to a link that is in-

line with the vehicle movement direction. For instance, as shown in Figure 6.7, 

for a positioning point P vehicle heading from a navigation sensor is noted as 

270°, link direction from the north for link a-b and a-c are 230° and 265o 

respectively. The values of heading difference between the vehicle movement 

direction and the link (a-b and a-c) direction are 40° and 5o respectively. Hence, 

the heading difference is less for link a-c relative to link a-b. Therefore, more 

importance should be given to link a-c compared to link a-b.  
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Figure 6.7: Heading weight 

 

Heading weight is considered as a cosine function of angle between the vehicle 

movement direction and the link direction (as suggested by Greenfeld, 2002) and 

shown in equation 6.11. This is to ensure that if the difference in angle is small, 

the heading weight is large and vice versa.  

 

( )θfHW wh =       (6.11) 

Where 

hW denotes  the weight for heading 

wH is the heading weight coefficient 

)cos()( θθ ∆=f  
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2θ = Vehicle heading with respect to the North  

 
The weight for proximity is based on the perpendicular distance (D) from the 

positioning point to the link. If a link is nearer to the positioning point, then this 

link should be given more weight than a link which is further away. If the 

perpendicular line from the positioning fix to the link does not physically 

intersect then D is increased by ∆D which represents the distance between the 

intersection point and the closest node of the link. In Figure 6.8, from positioning 

point ‘P’ perpendicular distances to candidate links a-b, b-c, a-c are d1, d2 and d3 

respectively. The perpendicular projection of positioning point ‘A’ falls outside 

the candidate link c-d. This case distance ‘D’ is taken as the sum of the distances 

between start node of the link to perpendicular projected point (d4) and the 

perpendicular distance (d5). 

 

 

Figure 6.8: Weight for proximity 

 

From Figure 6.9, the perpendicular distance from positioning point P(h, k) to a 

link A-B with  the start node coordinates as (x1, y) and the end node coordinates 

as (x2, y2) is:  
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Figure 6.9: Perpendicular distance from positioning point to link 

 

The weight for proximity (Wp) varies linearly with the perpendicular distance.  

 

( )DfDW wp =       (6.13) 

Where 






 −
=

80

)80(
)(

D
Df  

 

wD is the proximity weight coefficient 

 

If the positioning fix falls on the link (i.e., D = 0) the proximity weight 

parameter, )(Df , is consider to the highest possible value which is 1; and if the 

distance between the positioning point and the link is more than or equal to 

160m (i.e. mD 160≥ ), the proximity weight parameter, )(Df , is -1. Between 0 

and 160m (that is 0<D<160m) the weight parameter, )(Df , varies linearly with 

the distance.  
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The Total Weight Score (TWS) for the first positioning point is the sum of 

heading and proximity weights, as shown below: 

 

ph WWTWS +=       (6.14) 

 

TWS is calculated for each candidate link and the link with the highest TWS is 

identified as the correct link.  

 

6.3.3 Estimation of vehicle location on the selected link 

 

The above procedure (Section 6.3.2) identifies the correct link among all 

candidate links based on the maximum total weight (the sum of heading and 

proximity weights). The next step is to estimate the vehicle location on that 

selected link. This is achieved by the perpendicular projection of positioning 

point onto the link. For instance, in Figure 6.9, the estimated coordinates of the 

positioning point P (h, k) onto link A-B is Q (x, y). The perpendicular projection 

of point (h, k) is obtained using following equations 6.15 and 6.16. 
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6.4 Map-matching on a link 

 

After successful completion of the initial MM process, the second stage of the 

tMM algorithm (i.e., MM on a link) starts with checking the speed of the vehicle. 

If the vehicle speed is zero, the algorithm assigns the vehicle to the previously 

map-matched road segment. If the vehicle is moving (i.e., speed is greater than 
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zero), the algorithm checks whether the vehicle is near to a junction using two 

criteria:  

 

(1) the distance from the previously map-matched vehicle position to the 

downstream junction.  

 
(2) the vehicle heading with respect to the previously matched link direction.  

 

For the first check, to examine whether the vehicle is near to a junction or not, 

the algorithm compares the remaining distance on the previously map-matched 

road segment with the distance travelled by the vehicle within the last time 

interval.  

 

The mathematical representation of this check is: 

 

( )thresholdddd +≥ 21       (6.17) 

 

Where d1 is the distance between the previously map-matched positioning point 

to the downstream junction, and d2 is the distance travelled by the vehicle during 

last time interval. If d1 ≅ d2, it is considered that, for the current positioning fix, 

the vehicle is at a junction. However, due to errors associated with the previous 

map-matched positioning point and errors with the digital map (i.e., the omission 

of road width), a distance threshold (dthreshold) needs to be considered. This is to 

ensure that the map-matching process does not miss vehicles that may be at a 

junction. dthreshold is considered to have a positive value. 

 

For the second check, if the vehicle direction changes significantly with respect 

to the previously selected road link, it is considered to that the vehicle makes a 

turn.  
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Figure 6.10:  RMS value calculation 

 
In Figure 6.10, points P1, P2, ......, P5 are positioning fixes before MM. For 

instance, positioning fixes P1 to P4 are assigned to link B-A. For point P5, the root 

mean square (RMS) heading value of the previously map-matched points on the 

same link is represented using equation (6.18).  
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Where 

αθδ −= ii  

 

Here, 4321 δ and δ ,δ ,δ are absolute value of angle difference between vehicle 

heading 4321 θ and θ ,θ ,θ  and link ‘a-b’ direction ‘α ’ with respect to the North.  

 

The mathematical representation of the second check is shown in equation 6.19.  

 

( )thresholdi

i

RMS hh +≥ δ      (6.19) 
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value of angle difference between the vehicle heading at the current position fix 

and the previously identified link direction for positioning point i. GPS position 

fixes are less reliable when the speed of the vehicle is less than 3 m/sec (Quddus 

et al., 2007a; Taylor et al., 2001). To overcome this, a bearing threshold 

(hthreshold) is added to iδ .  

 

The distance threshold (dthreshold) and the bearing threshold (hthreshold) values were 

identified as 20m and 5o respectively. This is accomplished by manually 

checking different threshold values at junctions using an independent field data 

set of 1,800 GPS fixes from data set 6. Firstly, few typical junctions are 

identified where a vehicle took a turn; then at individual junction by randomly 

giving different distance threshold (dthreshold) and bearing threshold (hthreshold) 

values it is examined at what threshold values the algorithm can correctly 

recognise when a vehicle reaches a junction. However, the derived threshold 

values may depend on the quality and the scale of digital map, time interval of 

each positioning points, and the quality of navigation data from GPS.  

 

If the two checks are satisfied then the algorithm assumes that the vehicle is 

moving on the previously matched link, and the algorithm snaps the current 

positioning fix to the previously selected road segment. Otherwise, the vehicle is 

at junction. 

 

6.5 Map-matching at a junction 

 

When the vehicle is at a junction, a road segment is identified among the set of 

candidate segments. The procedure for the identification of the set of candidate 

segments for a positioning point at a junction is the same as that of  the initial 

MM process. The correct link is selected based on the total weight score (TWS). 

At this stage, two additional weights are introduced: (1) turn restrictions at 

junctions and (2) link connectivity. If a vehicle approaches to a junction and is 

not legally permitted to turn on to a link connected to the junction, then the link 
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is given less weight relative to the other links on to which the vehicle can turn. 

With respect to link connectivity, a link is given more weight if it is directly 

connected to the previously identified link.  

 

The link connectivity weight (Wc) and turn restriction weight (Wt) are given 

below: 

 

cwc CCW =        (6.20) 

twt CTW =        (6.21) 

Where 

}1,1{ −=cC  

}1,1{ −=tC  

wC  and wT  are weight coefficients for link connectivity and turn  

restriction respectively. 

 
Cc equals 1 if a candidate link (within the set of the candidate links) is directly 

connected to the previously identified link and -1 otherwise. Ct equals 1 if a 

vehicle can legally make a turn to a link and -1 otherwise.  

 

The TWS at a junction, which is the sum of four weight scores, is given below:   

 

twcwww CTCC
D

DHTWS ++




 −
+=

80

)80(
)cos(θ                    (6.22) 

 
The Hw Dw Cw and Tw are the weight coefficients for heading, proximity, link 

connectivity and turn restriction respectively. These coefficients represent the 

relative importance of different factors in calculating the TWS.   

 

The functions representing heading, f(θ), proximity, f(D), connectivity, Cc, and 

turn restrictions, Ct,  are specified in such as way that their values lie between +1 

to -1 for any possible values of the factors. This constraint allows some control 
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over the relative importance of weight coefficients. Although values of θ, D, Cc 

and Ct in equation (6.22) are available for a positioning fix, the values of the 

coefficients Hw, Dw, Cw and Tw are unknown. In previous research, these values 

were assumed to be equal (Greenfeld, 2002) or determined empirically (Quddus 

et al., 2003). This raises the issue of transferability to different operational 

environments.    

 

Here an optimisation technique is developed to determine the values of Hw, Dw, 

Cw and Tw The aim is to identify the values of these coefficients that minimise 

the total map-matching error in terms of identification of the correct links. The 

optimisation technique is described in Section 6.6.  

 

6.5.1 Consistency checks to minimise mismatches 

 

Two consistency checks are carried out before finalising the selection of the 

correct link among the candidate links. These are:  

 
(a) whether the TWS for two or more links are close to each other and  

(b) whether the distance between the raw position fix and the map-matched 

position on the link is large. 

 

For the first check, if the difference between the TWS for two (or more) links are 

found to be less than or equal to 1% then the algorithm identifies this as an 

ambiguous situation. This is because an investigation of our data suggests that a 

1% difference in the TWS values correctly picks all ambiguous situations. The 

algorithm then uses external information including the distance from the last 

map-matched position to the current map-matched position and compares this 

with the distance (speed×time) travelled by the vehicle within the last time 

interval. If these two distances agree for a particular link then it is assumed that 

this is the correct link.  
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After matching a positioning fix to the identified link, the second consistency 

check estimates the distance from the positioning fix to the map-matched 

location on the link. If the distance exceeds the pre-defined threshold, then it is 

assumed that the identified link is not the correct link. In such a case, the 

algorithm carries out the first check (i.e. comparing distance between previously 

matched point to current map-matched position with the distance travelled by the 

vehicle within the last time interval, which is one second in our case), and 

identifies the road segment on which the vehicle is travelling. The pre-defined 

threshold is based on the error ellipse, the quality of spatial road data and 

sampling frequency of positioning data. From analysis of an independent data set 

(data set - 6), this threshold is fixed at 40m in this case. 

 

6.6 Determining weight scores using an optimisation technique 

 

The review of weight based topological map-matching algorithms in Section 

3.6.2 indicated that various techniques are available to determine the relative 

importance of weight scores used in tMM algorithms. Most techniques applied to 

date are simple and are not based on scientific evidence. For example, Greenfeld 

(2002) considered three weights (heading, proximity and intersection weights) in 

the correct link identification process and simply assumed all three weights have 

equal importance. Quddus et al. (2003) developed an empirical approach to find 

the relative importance of weight scores in a total weight score (TWS) function. 

Two weight factors ( a  and b ) were introduced to find the relative importance 

between heading, proximity and relative position ( PDH AA ,  and RPA ). 

 

The relationships between the three weight parameters ( PDH AA ,  and RPA ) were 

defined as: 
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Where a  and b  are weighting factors that indicate the strength of any 

relationship between PDH A ,A  and RPA . An empirical analysis was carried out 

by checking the performance of the algorithm with respect to correct link 

identification, for different combinations of a and b values. Here, the minimum 

and maximum values of both a and b were set as 0.5 and 4.0. In each iteration an 

increment of 0.5 was added to a and b values. Quddus et al. (2003) identified the 

weighting factor for a  as 3 and for b  as 2. Concluding that actual link 

identification using a weighting scheme is sensitive to weighting factors ( a  and 

b ) and suggesting further research to obtain optimal values for the weighting 

parameters. One of the major disadvantages of this one stage empirical approach 

is that the derived weight factors are not transferable to different operational 

environments.   

 

To identify the relative importance of weights optimally in different operational 

environments, firstly a functional relationship between the weights and the 

percentage of wrong link identification for each operational environments is 

required; then, optimal weight scores can be derived by minimising the 

percentage of wrong link identification in the above functional form. In existing 

research the functional relationship between weight scores and algorithm 

performance is not identified; and for all operational environments the same 

weights are proposed using a one stage empirical approach.  

 

In this research, a two-stage approach is adopted to optimally identify the 

relative importance of the four weight scores used in the TWS function. Firstly, 

the functional relationships between the percentage of wrong link identification 

and four weights coefficients (Hw, Dw, Cw and Tw) for different operational 

environments are identified. Secondly, the optimal values of weight coefficients 

are determined by optimising the above functional relationship.  

 

It may be argued that the above two tasks can be done simultaneously in a one 

stage process. But, in the functional relationship, there are two unknowns: the 
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regression coefficients (β) and the weight coefficients (Hw, Dw, Cw, and Tw) (see 

equation 6.24). Solving these two unknowns in order to simultaneously obtain 

optimal values of both regression coefficients and weight coefficients would be 

difficult due to the complex functional form and the associated search space for 

each of the 18 regression coefficients and four weight coefficients. Moreover, the 

process of identification of relative importance of weight scores is a post-

processing technique meaning that the relative importance of weight scores is 

identified for each operational environment and then they will be used in the 

MM process in real-time. Therefore, the two-stage optimisation technique 

adopted in this research does not affect the computational speed of the map-

matching algorithm for real-time applications. This is the reason to use a two-

stage process in identifying the relative importance of weight scores optimally. 

 

The optimisation test process is shown diagrammatically in Figure 6.11. The 

process starts with the map-matching of a positioning fix near to a junction and 

generates random values for the coefficients between 1 and 100 in such a way 

that the sum of all four coefficients equals 100. Using these selected values, the 

process then map-matches at that junction and identifies the link on which the 

MM algorithm locates the vehicle. Since the actual link is known, it is possible 

to see whether the MM algorithm has identified the link correctly. If the 

algorithm fails to identify the true link among candidate links then the algorithm 

regenerates the random values and repeats the map-matching at that junction. 

This process continues until the algorithm selects the true link. This produces a 

set of weight coefficients (Hw, Dw, Cw and Tw) that identify the link correctly at 

that junction. These weights are then applied, for all positioning fixes. The 

percentage of wrong link identification is then calculated for these specific 

values of the coefficients. The same procedure is repeated for all positioning 

fixes near to junctions. This process generates a set of values for the weight 

coefficients and the corresponding percentage of error associated with wrong 

link identification for each set. 
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Figure 6.11: Weight coefficient optimisation process 

 

As the other variables, f(θ),  f(D), Cc and Ct, in TWS function vary from +1 to -1 

for any possible values, it is assumed that the map-matching error with respect to 
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the correct link identification  (
error

MM ) is a function of the weights Hw, Dw, Cw 

and Tw only. 

 

),,,( wwwwerror TCDHfMM =     (6.23) 

 

This simulated data is then used to develop a relationship between percentage of 

wrong link identification and the weight coefficients (Hw, Dw, Cw and Tw) using 

regression analysis. Since the error associated with wrong link identification is 

always a positive value, a log-linear model is used. The functional relationship 

between the weights and the MM error is unknown and therefore, various 

specifications are considered. Assuming that the map-matching error (MMerror) 

depends on the individual weights (Hw, Dw, Cw and Tw), their square terms (Hw
2, 

Dw
2, Cw

2
 and Tw

2), inverse terms (1/Hw, 1/Dw, 1/Cw and 1/Tw) and interaction 

terms (HwDw, HwCw, HwTw, DwCw, DwTw and CwTw) a functional relationship can 

be written as: 
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where 

α is an intercept term. 

32121
,,,.....,,

ttthh
βββββ  are the regression coefficients for heading, 

proximity, connectivity and turn restriction weights.  

i
ε is the error term. 

 

It should be noted that one of the assumptions of a classical regression model is 

that there are no exact linear relationships between explanatory variables 

included in the model (Kennedy, 2008). The statistical phenomenon of very high 

correlation between two or more independent variables in a model is referred-to 

as Multicollinearity (Gujarati, 2004;  Kennedy, 2008; Maddala and Lahiri, 

2009). In this research, as various specifications (such as individual terms, 
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square terms, inverse terms and interaction terms) are assumed; approximate 

linear relationship exist among the explanatory variables and this may result in 

imprecise estimates. It is therefore necessary to examine whether the 

phenomenon of multicollinearity is a problem. This is carried out by a 

correlation analysis and a sensitivity analysis. A common method of detecting 

multicollinearity is through the analysis of correlation matrix (Kennedy, 2008; 

Maddala and Lahiri, 2009). A suggested rule of thumb is that if the correlation 

coefficients among the explanatory variables are more than 0.8 there might be 

multicollinearity among those variables (Gujarati, 2004; Kennedy, 2008). If 

multicollinearity is detected, there are a range of methods to test whether the 

multicollinearity affects the assumed specification. Among those methods, the 

drop a variable method is often used to check the effect of multicollinearity 

(Gujarati, 2004; Kennedy, 2008). Here, one of the collinear variables is dropped 

and its effect on the remaining highly correlated parameters is examined 

(Gujarati, 2004;  Kennedy, 2008). Both Kennedy (2008) and Gujarati, (2004) 

indicate that multicollinearity among independent variables is not an issue if the 

t-statistics of correlated variables exceed 2 in the final model.  

 

Initially, all 18 variables are included in the regression analysis. A correlation 

analysis is carried to examine the presence of multicollinearity amongst the 

explanatory variables. Three correlation matrices – one for each operational 

environment - are developed. The results suggest that there is a high degree of 

correlation (correlation coefficients greater than 0.94) between linear terms (Hw, 

Dw, Cw and Tw) and their corresponding squared terms  (Hw
2, Dw

2, Cw
2
 and Tw

2). 

For the other variables (inverse terms and interaction terms) the correlation 

coefficients are less than 0.8.  

 

Considering all the 18 variables,  regression analysis is carried out using a step-

by-step backward elimination process, at each step one statistically insignificant 

parameter, based on a t-test (which is used to see whether the coefficient of an 

independent variable is statistically significant), is removed. Parameters with a t-
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value exceeding 1.96 (95%) are retained. The final regression model, with all 

statistically significant variables, is the optimisation function. Before 

optimisation, sensitivity tests, to identify whether multicollinearity is a problem, 

are carried out. 

 

The objective is to minimise the error. In order to perform this minimisation, 

some restrictions have to be imposed. As discussed, the sum of all weight 

coefficients is set to be 100 and the minimum and maximum values of each 

weight coefficient set at 1 and 100 respectively. The optimisation function, 

obtained from above regression analysis, and the associated constraints is given 

below.  

 

Minimisation 
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subject to: 
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Optimisation of equation (6.25) was carried out in MATLAB using the 

constrained nonlinear minimisation method (Michael et al., 2007). The values of 

four weight coefficients (Hw, Dw, Cw and Tw) were calculated by identifying the 

global minimum of map-matching error (MMerror). It is a convex optimisation 

problem. The process was applied to real-world positioning data obtained from 

different operational environments including: dense urban, suburban and rural 

areas.  

 

Part of data set  6 relating to urban, suburban areas and data set 1 rural areas 

were used to the optimisation process. Table 6.1 shows the best fitting regression 

models for each area type. The adjusted R2 estimates the percentage of behaviour 

of dependant variable (i.e., percentage of wrong link identification) is explained 
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by the independent variables. As mentioned, the sum of the four weights is 100. 

If an intercept (i.e., α) term is considered in the regression, this term is then 

directly correlated with weight coefficients and subsequently, one of the weight 

coefficients is automatically dropped from the regression model. However, the 

inclusion of individual weights is important as our objective is to find the relative 

importance of these four weight coefficients (Hw, Dw, Cw and Tw) in reducing the 

error in map-matching process. Therefore, the regression does not have an 

intercept term ‘α’. As the regression is forced through the origin, the adjusted R2 

is high in all the cases. The model specifications vary by operational 

environment suggesting that the use of one specification for all environments 

may be inappropriate.  

 

Table 6.1: Regression Models for Urban, Suburban and Rural Area 

Urban Suburban Rural 
Weights 

Coefficient T-stat Coefficient T-stat Coefficient T-stat 

Hw 0.0231 8.35 0.0287 16.82 0.0285 6.48 
Dw 0.0266 8.81 0.0233 17.99 0.0235 9.51 
Cw 0.0352 4.78 0.00347 4.97 0.0311 14.83 
Tw 0.0132 4.88 0.00467 6.72 0.0302 19.2 
Hw

2 -- -- -0.000115 -5.34 -- -- 
Dw

2 -- -- -0.0000476 -2.56 -- -- 
1/(Hw) 2.542 9.44 1.266 34.3 -- -- 
1/(Dw) 0.551 2.55 1.137 25.36 -- -- 
1/(Cw) 0.957 4.47 0.197 6.12 -- -- 
1/(Tw) -- -- 0.260 5.94 -- -- 

(Hw*Dw) -- -- -0.000539 -18.16 -0.00056 -3.62 
(Hw*Cw) -0.00064 -4.14 -- -- -- -- 
(Hw*Tw) -- -- -0.000069 -2.97 -- -- 
(Dw*Cw) -0.000552 -2.99 --  -- -- 
(Cw*Tw) -0.000406 -2.29 0.00013 5.91 -- -- 

Adjusted R2 0.984 0.997 0.997 
Observations 175 450 40 

Where, Hw  is Heading weight coefficient; Dw is Proximity weight coefficient; Cw is 
Connectivity weight coefficient; and Tw is Turn restriction weight coefficient. 
 

Model sensitivity analysis:  

Among the three models presented in Table 6.1, the first and third models 

corresponding to the urban and rural operational environments, do not include 

any squared terms. The second model corresponding to the suburban area 
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includes two square terms (Hw
2 and Dw

2). Thus, a sensitivity analysis (using the 

drop a variable method) is carried out for this model to see whether 

multicollinearity is an issue. Table 6.2 presents three scenarios: base model, 

exclude Dw
2  and exclude Hw

2.  

 
Table 6.2: Regression model sensitivity (suburban area) 

Base model Exclude Dw
2
   Exclude Hw

2
  

Weights Coefficient T-stat Coefficient T-stat Coefficient T-stat 

Hw 0.0287 16.82 0.0277 16.61 0.0201 37.34 
Dw 0.0233 17.99 0.0201 47.95 0.0215 16.78 
Cw 0.00347 4.97 0.00456 8.21 0.00593 11.02 
Tw 0.00467 6.72 0.00575 10.4 0.00564 8.21 

Hw
2 -0.000115 -5.34 -0.0001 -4.82 -- -- 

Dw
2 0.0000476 -2.56 -- -- -2.2E-05 -1.21 

1/(Hw) 1.266 34.3 1.272 34.35 1.194 33.9 
1/(Dw) 1.137 25.36 1.083 27.29 1.144 24.9 
1/(Cw) 0.197 6.12 0.157 5.54 0.149 4.69 
1/(Tw) 0.26 5.94 0.228 5.41 0.209 4.78 

(Hw*Dw) -0.000539 -18.16 -0.0005 -19.84 -0.00044 -18.8 
(Hw*Tw) -0.000069 -2.97 -6.8E-05 -2.91 -3.25E-06 -0.16 
(Cw*Tw) 0.00013 5.91 0.000104 5.3 9.24E-05 4.32 

Adjusted R2 0.9970 0.9970 0.9969 
 

It can be observed from Table 6.2 that after eliminating one of the correlated 

variables (Hw
2 and Dw

2) from the base model, the results are not significantly 

different. The sign of the remaining correlated variables (Hw, Dw, Cw and Tw) are 

not affected. Moreover, the variation in R2 value is also negligible. Clearly, the t-

stats increase showing the presence of a model with collinear variables. 

However, the significance of the variables is not a problem here because the t-

stats of these variables are greater than 2. The sensitivity analysis indicates that 

the multicollinearity is not a problem in this model. Therefore, the three 

functional relationships presented in Table 6.1 are considered optimal and are 

utilised in the optimisation process.  

 

The optimal values of weights for the three operational environments are shown  

in Table 6.3. In dense urban areas, heading and connectivity weights (Hw, Cw) are 
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almost equal and the weight for proximity (Dw) is less important, this is because 

in dense urban areas roads are in close proximity and the quality of positioning 

information is bad compared to open areas. The two new weight scores (link 

connectivity and turn restriction) considered in this research are more important 

in urban areas where more than 50% of the weight score is allotted to these two 

new weights. It is expected that the contribution of these two new weights will 

improve the algorithm performance in terms of correct link identification 

especially in urban areas. In suburban and rural areas the weight for connectivity 

(Cw) and weight for turn restriction (Tw) are less important; whereas, weights for 

heading and proximity (Hw, Dw) are almost equally important, probably because 

in suburban areas and rural areas the quality of GPS positioning fixes is good 

and the road network is less dense.  

 

Table 6.3: Optimisation Result 

Operational areas 
Weights  

Urban Suburban Rural 

Hw 39.99 46.24 44.48 
Dw 8.13 44.99 53.52 
Cw 36.40 4.46 1 
Tw 15.48 4.31 1 

 

6.7 Algorithm performance evaluation 

 

In order to evaluate the performance of the enhanced tMM algorithm, part of 

data sets 1 and 3 were used. The sample size (i.e., number of positioning data 

points) sets 1 and 3  are 2,814 and 3,600 respectively. The test trajectory for data 

set 1 (in central London) and data set 3 (in Washington, DC) are shown in Figure 

6.12 and Figure 6.13 respectively. But, no reference (actual) trajectory in terms 

of true vehicle positions was available for the data sets and therefore, the 

algorithm’s performance can be tested only with respect to correct link 

identification. However, the reference trajectory of the vehicle was available for 

data set 5 obtained from Quddus (2006). This allows the performance to be 

assessed in terms of both link identification and horizontal accuracy. It should be 
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noted that the data set 5 was also used to examine the existing tMM algorithms 

performance by Quddus (2006), which was illustrated in Table 3.1, and the 

results are therefore directly comparable.  

 

 

Figure 6.12: Test route in central London 

 

1 Km 
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Figure 6.13: Test route in Washington, D.C., USA 

 

The values of the weights from Table 6.3 are then applied for algorithm testing. 

For data set 1 (urban areas in central London) the enhanced tMM algorithm 

identified 96.8% of the road segments correctly. In case of data set 3 (urban 

areas in Washington, DC) the success rate is 95.93%. The test result, with data 

sets from two metropolitan cities, suggested that the enhanced algorithm is 

transferable to a certain extent. In terms of computational speed, the algorithm 

carried out the map-matching of 180 positioning fixes per sec (with a laptop of 

1GB RAM and 1.46 processor speed). This suggests that the algorithm is 

suitable for real-time implementation. Figure 6.14 shows a part of the test 

trajectory along with raw positioning fixes (with star symbols) and map-matched 

fixes (with round symbols).  
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Figure 6.14: A part of test road with map-matched positions 

 

The enhanced tMM algorithm was then applied to the fifth data set (suburban 

area), which was also used for performance evaluation in terms of both correct 

link identification and 2-D horizontal accuracy of existing MM algorithms by 

Quddus (2006). The algorithm identified 96.71% of the road segments correctly 

with a horizontal (2D) accuracy of 15.44m ( hh σµ 2+ ). This outperforms all the 

tMM algorithms previously tested by Quddus (2006) using this data. The tMM 

algorithm performance is summarised in Table 6.4.  

 

Table 6.4: Algorithm performance 

Data set number 
(location) 

Percentage of correct 
link identification 

Horizontal accuracy 
( σµ 2+ ) 

1 (London) 96.80% -- 
3 (Washington, DC) 95.93% -- 
5 (South part of London)  96.71% 15.44m 

 

Mean and standard deviation of the positioning accuracy for data set 5 is shown 

in Table 6.5. The along-track and cross-track errors were found to be 10.5m 

( aa σµ 2+ ) and 12.48m ( cc σµ 2+ ) respectively. 

 
 

GPS/DR fix before map matching 

GPS/DR fix after  map 
matching 

Scale 
 

0m           100m 
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Table 6.5: Algorithm positioning accuracy 

Horizontal 
accuracy (m) 

Along-track 
error (m) 

Cross-track 
error (m) Data set number 

(location) 
hµ  hσ  aµ  aσ  cµ  cσ  

5 (South part of London) 5.64 4.90 3.14 3.68 3.48 4.50 

 

6.8 Summary 
 

In this chapter, a real-time, weight-based topological MM algorithm has been 

developed to address some of the limitations of existing topological MM 

algorithms. The algorithm has been tested using real-world field data collected in 

different operational environments. The key features of the enhanced topological 

MM algorithm are:  

 

(a) the selection of candidate links in the initial map-matching process and the 

map-matching at junctions,  

(b) the introduction of two additional weight parameters: connectivity and turn 

restriction,  

(c) use of an optimisation process to derive the relative importance of weights 

using data collected in different operational environments and  

(d) the implementation of two consistency checks to reduce mismatches.  

 

All of these new features have contributed to the performance of the algorithm. 

The link connectivity and turn restriction weights are particularly important in 

urban areas. The enhanced topological MM algorithm identified 96.8% of the 

road segments correctly for data set from central London; and 95.93% correct 

road segments for positioning data from urban areas in Washington, DC; and 

96.71% of the road segments with a horizontal accuracy of 9.81m ( σµ 2+ ) in a 

suburban area of the UK.  
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This algorithm performs better than existing topological MM algorithms reported 

in the literature. This topological MM algorithm is fast, simple and efficient and 

therefore, has good potential to be implemented by industry. However, the 

performance of a tMM algorithm can further be improved by investigating the 

causes for the mismatches and modifying the algorithm accordingly. This is 

carried is by a sequential process of map matching error detection, correction and 

re-evaluation, which is presented in chapter 7. 
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Chapter 7 

 
Map-matching error detection, correction and re-

evaluation  
 
 
 
 
 
 
 
 
 
 
7.1 Introduction 
 

Although the performance of the topological map-matching algorithm developed 

in the previous chapter was found to be good, the algorithm incorrectly identified 

road segments about 4% of the time. Any error associated with either the raw 

positioning data, the digital map, and the MM process can lead to incorrect link 

identification. The aim of this chapter is to further improve the algorithm firstly 

by map-matching error detection, then, using a thematic analysis the 

identification of a number of strategies to correct these mismatches. This is 

followed by modifications to the algorithm. Finally, the performance of the tMM 

algorithm (before and after the improvement) is evaluated using an independent 

data set.  

 

7.2 Algorithm enhancement methodology 

 

A step-by-step process of the enhancement of the tMM algorithm, which mainly 

consists of error detection, correction and re-evaluation process, is shown in 

Figure 7.1.  
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Figure 7.1: MM error detection, correction and performance re-evaluation 

 

The output of the tMM algorithm provides a road segment on which a vehicle is 

travelling. If the road segment selected by the tMM algorithm is the actual (true) 

road segment for that particular positioning point, then it is assumed that there is 

no error in link identification. Otherwise, the map-matched point falls under the 

mis-matching case. This process was conducted for all 62,887 positioning points 

to identify the main reasons for mis-matching involving errors in the positioning 

data or the digital map or the map-matching process. The error detection process 

is followed by the development of different strategies to improve the 

performance of the tMM algorithm and then to modify the algorithm 
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accordingly. Finally, the performance of the enhanced tMM algorithm (before 

and after enhancement) is examined using an independent positioning data set. 

The following section describes the mis-matching identification process.  

 

7.3 Error identification process 

 

The error detection process is carried out by classifying the mismatches due to 

errors in the positioning data, the digital map, and the map-matching process. 

The quality of raw position points is decided based on the number of visible 

satellites and the value of the Horizontal Dilution of Precision (HDOP) 

representing the quality of positioning solution. The UK Google earth satellite 

image is used as a base map to check errors in the GIS road maps (examples 

include, topological and geometric errors, missing links, extra links and 

digitisation errors). If the quality of a raw positioning point is good and no errors 

are identified in the digital map, then the reason for mis-matching is assumed to 

be an error in the map-matching process. Each of mismatches due to the MM 

process is examined carefully to identify which part of the algorithm (i.e., the 

candidate link identification, the total weight score calculation and the 

consistence checks) caused the mis-matching. Though the overall performance 

of the tMM algorithm is good, there are some mismatches in situations where the 

vehicle took a ‘U’ turn at junctions or at complex road configurations (i.e., Y 

junctions, roundabouts and parallel roads etc). The main cause of each mis-

matching case was identified through careful observation and critical judgement. 

 

Table 7.1 shows the results from the tMM algorithm on three separate data sets 

collected in from UK, USA and India.  
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Table 7.1: Reasons for mismatches 

 
 UK 

(Data set 1) 
 Washington, DC, 
USA (Data set 3) 

 Mumbai, India 
(Data set 2)  

Positioning data sample size 42,231 3,900 16,756 
Mismatches due to positioning 
sensor error 

472 (33.9%) 47 (29.6%) 159 (11.6%) 

Mismatches due to digital map 
error 

238 (17.1%) 27 (17.0%) 985 (71.7%) 

Mismatches due to MM 
process errors 

683 (49.0%) 85 (53.4%) 230 (16.7%) 

Total number of mismatches 1,393 159 1,374 
 

The tMM algorithm has 96.7%, 95.9% and 91.8% success rate of correct road 

link identification with data set 1, 3 and 2 respectively. From 62,887 map-

matched positioning points, a total of 2,926 mismatches were discovered. In 

order to find out the reasons (i.e., errors in positioning data, map-matching 

process and digital map) of mis-matching, each mis-matching case was 

individually examined. In Table 7.1, the percentage contribution of mismatches 

due to the corresponding error is provided in parenthesis. It can be seen that 

about half of the mismatches in data sets 1 and 3 are due to errors in the map-

matching process. The similar results for data set 1 and 3 suggest that the 

algorithm may be transferable. In case of data set 2, the major contribution of 

mismatches is digital map errors. This is due to the fact that the Mumbai GIS 

map has more missing links and digitisation errors. Clearly, the map-matching 

errors are predominant where the digital maps are good.  

 

7.4 Enhancement of the MM algorithm 
 

From 62,887 map-matched positioning points, a total 998 of mismatches were 

found due to errors in map-matching process. The tMM algorithm failed to 

identify the correct road segment particularly in complex road configurations 

(such as Y junctions, roundabouts and parallel roads). Examples of mis-matching 

cases at a roundabout and at a Y junction are shown in Figures 7.2 and 7.3 

respectively. 
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Figure 7.2: Mis-matching at roundabout 

 

 

Figure 7.3: Mis-matching at Y junctions 

 
In Figure 7.3, at junction A, for positioning fix P1 the algorithm identified the 

wrong road segment (i.e., link A-B). However, to avoid continuous mis-

matching, the algorithm measures the distance between the raw positioning point 
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and the map-matched positioning point. If the distance is more than the 

allowable limit (a threshold value), then the algorithm reinitiates the map-

matching process. In this case, for positioning point P5, the algorithm reinitiates 

the process and chooses the true road segment. Two other thresholds (a distance 

threshold and a heading threshold) were also used to check whether a vehicle is 

near a junction or not. As mentioned before, in the tMM algorithm, the correct 

road segment selection at a junction is based on the total weight score (TWS) 

which is the sum of four weights: heading, proximity, link connectivity and turn 

restriction. Further, the relative importance of these weights varies with the 

operational environments. Therefore, any mistake in the identification of the 

operational environment may lead to an error in the total weight score. This may 

subsequently lead to wrong road link identification. Moreover, the threshold 

values used in the algorithm may influence the correct road segment 

identification.  

 

After careful observation of all mis-matching cases due to errors in map-

matching process, the following three strategies were identified to enhance the 

tMM algorithm:  

 

1. re-examining the optimal weight scores using a Genetic Algorithm (GA) 

optimisation technique;  

 
2. using a lookup table to identify the weight scores corresponding to the 

operational environment (e.g. urban, suburban and rural); and  

 
3. re-estimating the thresholds used in the algorithm  

 

7.4.1 Optimisation of the weight scores using a Genetic Algorithm (GA) 

 
Previously, a gradient search method was used to determine the optimal values 

of weight scores used in the map-matching process (see Section 6.6). In the 

gradient search minimisation problem there is a possibility that the optimisation 



 
 
 

 132 
 

stops at a local rather than a global minimum (Michael et al., 2007). In order to 

ascertain whether the optimisation has reached a global minimum, Konar (2005) 

suggests the user of a more refined method such as a Genetic Algorithm (GA). 

Therefore, a GA based optimisation algorithm is used to determine the relative 

importance of different weights.  

 

A GA is a stochastic search technique to find exact solutions to both constrained 

and unconstrained optimisation problems (Callan, 2003). Unlike, a conventional 

gradient search method, which starts with a single point and progresses to the 

optimal solution, the GA technique starts with an initial set of random points 

covering the entire range of possible solutions (Russel and Norvig, 2002; Callan, 

2003; Karray and DeSilva, 2004). These random points are generally called as 

population. The individual random point/solution in the population is known as a 

chromosome. The function value (in the GA terminology, fitness value) is 

calculated for each chromosome. For the following generation, a new set of 

chromosomes are evolved, from the current population, based on given selection 

rules7, crossover rules8 and mutation rules9 (MathWorks, 2008). For each new 

generation the new chromosomes (in the GA terminology, child) is identified 

using a pair of chromosomes in the previous generation. The process of 

regeneration stops when it reaches a termination conditions (i.e., pre-defined 

maximum number of iterations or change in fitness value or maximum time 

limit).    

 

In the previous optimisation test the sample size for the rural operational 

environment was low with only 40 junctions. Here this is increased to 186. A 

new objective function (i.e., the relationship between the map-matching error 

and the weight coefficients) for the rural operation environment is identified. The 

detailed description on the derivation of the  objective function is provided in 

                                            
7 Process of selecting individual chromosomes (parents) based on fitness value to  
  develop next generation. 
8 Rules for combining two parents for new chromosomes (children) for next generation 
9 Random changes to individual parents to form children for the next generation. 
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Section 6.6. The objective function for the rural operation environment is 

identified as: 

 

 
wwwwwwwwerror TDDHTCDHMM 00037.000079.028.035.02.029.0 +−+++=     

          (7.1) 

 

Where Hw, Dw, Cw, and Tw are the weight coefficients for heading, proximity, 

link connectivity and turn restriction respectively. The adjusted R2 value of the 

above model is found to be 0.98. To re-estimate the optimal weight scores, the 

Matlab GA toolbox is used. For the other two operational environments (i.e., 

urban and suburban), optimisation functions are the same as the functions 

provided in Section 6.7.  

 

In the GA optimisation process, a population size of 20, which were uniformly 

distributed with lower range of 1 and higher range of 100 were used. Stopping 

criteria is selected as 5,000 generations. After approximately 1,500 generations, 

the function value (fitness value) shows that the function achieves the global 

optimal values. The optimal values of heading, proximity, connectivity and turn 

restriction weight scores for the three operational environments, using gradient 

search method and a Genetic Algorithm, are illustrated in Table 7.2.  

 

Table 7.2: Optimal weight scores using gradient search method and GA 

Gradient search method Genetic Algorithm Weight 
coefficient Urban Suburban Rural Urban Suburban Rural 

Hw 39.99 46.24 44.48 37.15 46.42 42.37 
Dw 8.13 44.99 53.52 8.06 43.76 55.63 
Cw 36.4 4.46 1 35.85 4.29 1 
Tw 15.48 4.31 1 18.94 5.53 1 

 

 

It is noticeable from Table 7.2 that the weight scores from the two optimisation 

techniques are very similar. The main difference is the GA gives more weight to 

Tw, less weight to Hw in urban areas and a slight rise in Tw weight in suburban 

area. The optimal weight scores obtained using the GA are thought to be more 
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reliable as those are solved as a global optimisation problem. Therefore, the 

second set of optimal values (from GA) is included in the enhanced tMM 

algorithm.  

 

7.4.2 Use of a lookup table to identify the operational environment 

 

Table 7.2 shows that the relative importance of the weights varies with the 

operational environment. The algorithm should identify the operational 

environment in which the vehicle is travelling, and should select the 

corresponding weights from the weight matrix shown in Table 7.2. The 

identification of the operational environment (whether the vehicle is in an urban, 

suburban or rural area) can be based on the complexity of road network, land-use 

data, building height data, etc. For instance, the road network in an urban area is 

denser (i.e., more junctions and roads per unit area) than that of in a suburban or 

a rural area. Since, land-use data and building height data are not easily 

available, the identification of operational environment can be determined by a 

threshold which is a function of the total length of the road network and the 

number of junctions per unit area:   

 

( )NLfTOE ,=        (7.2) 

where, 

TOE  is the threshold for operational environment,  

L is the total length of road network (in km) within a given area and  

N is the number of junctions in that area. 

 

An empirical analysis was conducted, using a national level GIS road network, 

to identify the TOE which can be used to detect the operational environment on 

which a vehicle is travelling. Firstly, using the UK Google Earth map, a sample 

of rural areas was identified in the network. Random points are selected within 

the road network of rural area, and a circle of radius 200m is drawn around each 

of the points. After performing a sensitivity analysis a circular area of radius 
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200m was found to successfully establish the threshold for the identification of 

operational environment. The total length of all road segments (L) and the 

number of junctions (N) within that circular area are calculated. This procedure 

is repeated for 300 different random points in the network. This procedure 

provides a set of L and N for that particular operational environment. A factor, 

which is the ratio of N and L, is identified and its mean )(µ  and standard 

deviation (σ ) are calculated. The same procedure is repeated for the urban and 

suburban environments. The means and standard deviations of the factor for 

urban, suburban and rural operational environments are shown in Figure 5. Here, 

Uµ , Sµ  and Rµ are the mean values and Uσ , Sσ  and Rσ  are the standard 

deviations of the factor for urban, suburban and rural operational environments 

respectively.  

 

 

Figure 7.4: Thresholds for operational environment identification 
 

As stated before, the identification of an operational environment is critical to a 

MM algorithm. Figure 7.4 shows that the values of the means and standard 

deviations of the N by L ratios for different operational environments are over-

lapped meaning that it is not easy to derive threshold values for the identification 

of an operational environment. In the case where a vehicle travels through a 

mixed urban setting (i.e. partly urban and partly suburban), the algorithm should 

recognise that the vehicle is in an urban area so that more stringent weight 

coefficients are selected for the map-matching process. This is also true for the 

N/L 
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case of mixed suburban area (i.e. partly suburban and partly rural) in which the 

weight coefficients for the suburban area should be employed.  

 

Assuming the ratio of N and L follows a normal distribution and based on the 

above argument, two threshold values (TOE1 and TOE2) are identified as:  

 

SSOET σµ 21 −=       (7.3)

     

UUOET σµ 22 −=       (7.4) 

 

if 1OEOE TT ≤  then it is assumed that the operational environment is rural 

if 21 OEOEOE TTT << then it is assumed that the operational environment is 

suburban 

if 2OEOE TT ≥  then it is assumed that the operational environment is urban 

 

Where, TOE is the calculated threshold in the map matching process. 

 

The mean of N/L for urban, suburban and rural operational environments are 

identified as 8.8, 5.7 and 1.6 respectively; and the corresponding (σ ) values are 

0.993, 1.41 and 1.29 respectively. The TOE1  and TOE2 were found to be 2.88  (i.e., 

5.7-2*1.41) and 6.81 (i.e., 8.8-2*0.993). In the map-matching process if the 

calculated threshold (TOE) using the same area (i.e., 200m radius circle), is less 

than TOE1 (2.88) a vehicle is in a rural area; if it is more than TOE2 (6.81) vehicle 

is in an urban area, if it is between these two values then the vehicle is in a 

suburban area. 

 

7.4.3 Checking threshold values used in the algorithm 

 
In the topological MM algorithm three different threshold values are used. They 

are distance threshold (Dt), heading threshold (Ht) and a threshold value for a 
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consistency check (Ct). The former two threshold values are used to identify 

whether the vehicle is near a junction. The tMM algorithm checks whether a 

vehicle reaches a junction using two criteria: (1) checking distance from the 

previously map-matched vehicle position to the downstream junction; in which a 

distance threshold (Dt) is used. (2) checking the vehicle heading with respect to 

the previously matched link direction; in which a heading threshold (Ht) is used. 

The third threshold value is used in a consistency check (i.e., whether the 

distance between the raw position point and the map-matched position on the 

link is large). Every time the algorithm checks the distance between the raw 

positioning point and the map-matched positioning point. If it exceeds a certain 

limit (i.e., the threshold value) then the algorithm re-initiates the process. 

Previously, these three thresholds (Dt, Ht and Ct) were identified, using 1800 

positioning points, by manually checking whether the algorithm selects ‘map-

matching at junction’ process when the vehicle reaches a junction and whether 

the algorithm can recognise the continuous mismatches in order to reinitiate the 

process to identify the correct link. Dt, Ht and Ct thresholds were identified as 20, 

5 and 40 respectively. Now, as part of the algorithm correction process, 

thresholds (Dt, Ht and Ct) were re-estimated using a positioning data set of 2,814 

positioning points collected in Central London (part of data set 1 in Table 5.1). 

An experiment was conducted with different possible threshold values and its 

corresponding percentage of correct link identification was measured. The Dt, Ht 

and Ct values with minimum error in correct link identification are identified as 

23, 5 and 37 respectively. 

 

7.5 Performance of The Enhanced tMM Algorithm 
 

An independent dataset (sample size 5,256 positioning points) collected in and 

around Nottingham, UK was used to re-evaluate the performance of the 

enhanced map-matching algorithm. This positioning data is a part of data set 4 in 

Table 5.1. A reference (true) trajectory was obtained from a carrier phase GPS 

receiver integrated with a high-grade Inertial Navigation System (INS). 
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Accuracy of this equipment (carrier-phase GPS/INS) was found to be better than 

5 centimetres over 97.5 percent of the time in all three coordinate components 

(Aponte et al., 2009). The total length of the test trajectory is 55.9 km. The test 

trajectory is shown in Figure 7.5. 

 

 

Figure 7.5: Test trajectory in and around Nottingham, UK 
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The improvement in the correct road link identification also affects the 

horizontal accuracy. The highly accurate positioning data from carrier phase 

GPS/INS enabled us to check the algorithm’s horizontal positioning accuracy. 

The algorithm’s performance for each enhancement strategy, with respect to the 

original (base)  tMM algorithm is shown in Table 4.  

 

Table 7.3: Enhanced algorithm performance 
Horizontal 

accuracy (m)  
Along-track error 

(m) 
Cross track error 

(m) 
Enhancement 

% of 
correct 

link 
identific

ation  

Average 
( hµ ) 

SD 
( hσ ) 

Average 
( aµ ) 

SD 
( aσ ) 

Average 
( cµ ) 

SD 
( cσ ) 

Base tMM algorithm  96.5 4.33 2.83 2.16 1.74 3.29 2.86 
1: New weight scores  96.7 4.31 2.78 2.14 1.69 3.28 2.85 
2: Lookup table 97.7 4.20 2.48 2.12 1.53 3.20 2.60 
3: Threshold values 96.5 4.33 2.83 2.16 1.74 3.30 2.87 
1 and 2 97.8 4.19 2.47 2.11 1.52 3.19 2.59 
1 and 3 96.7 4.31 2.79 2.15 1.69 3.29 2.85 
2 and 3 97.7 4.20 2.48 2.12 1.53 3.20 2.60 
1, 2 and 3 97.8 4.19 2.47 2.11 1.52 3.19 2.59 
SD- Standard deviation 
 
 

The original algorithm correctly identifies the road links 96.5% of the time. 

However, when all three improvements are included in the final algorithm which 

increases the correct link identified to 97.8%. An improvement of 1.3% in 

correct road link identification is noticed. The second improvement (i.e., using a 

lookup table to identify the operational environment) contributes most to the 

improvement in the algorithms performance. The first enhancement (i.e., re-

examining the optimal weight scores using a Genetic Algorithm) slightly 

improves the algorithm and the third enhancement (re-estimating the thresholds 

used in the algorithm) did not contribute in improving the algorithm 

performance. The horizontal accuracy of the enhanced algorithm is identified as 

9.1m )2( hh σµ +  with along track and cross track errors as 5.2 m )2( aa σµ + and 

8.4m )2( cc σµ +  respectively.  

 

Some typical parts of the test route (a motorway junction and a dense urban road 

network) are shown in Figures 7.6 and 7.7. Here, map-matched positioning 
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points  before and after enhancement are illustrated. Bold circle symbols 

represent raw positioning point and the star symbols are map-matched points. 

The arrows show the actual vehicle travelled path with the direction of 

movement. 

 

 Figure 7.6: Algorithm performance on Motorways 

 

 

Before Enhancement 

After Enhancement 

Positioning point after MM 

Positioning point before MM 

Positioning point after MM 

Positioning point before MM 
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Figure 7.7: Algorithm performance in a dense urban area 

7.6 Summary  

 
An improvement process of a weight-based topological map-matching algorithm 

was presented in this chapter. The enhancement process included: mis-matching 

detection, improvement strategies identification, algorithm modification and 

performance re-evaluation. After map-matching using extensive positioning data 

sets, all mismatches due to positioning data errors, digital road map and map-

matching process were identified. In positioning data sets 1 and 3 (for which the 

digital maps are good) about 50% of the wrong road link identification was due 

to the map-matching process. After further examining the mismatches due to the 

map-matching process, three strategies were identified to enhance the tMM 

algorithm. They were:  

 

1. Re-examining the relative importance of weight scores using a Genetic 

Algorithm optimisation technique; 

2. Using the lookup table for operational environment identification; and 

3. Re-estimating threshold values. 

Before Enhancement After Enhancement 

Positioning point after MM 
Positioning point before MM 
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The performance of the algorithm was re-evaluated using an independent 

positioning data. The enhanced algorithm succeeded 97.8% of the time in correct 

link identification with an horizontal accuracy of 9.1 m )2( hh σµ + . Before the 

enhancement the success rate was 96.5% with 10.0m )2( hh σµ +  horizontal 

accuracy. This suggests that the proposed modifications were rational as they 

improved the performance by 1.3% in correct link identification and 0.9m 

horizontal accuracy. The introduction of lookup table contributed to the greatest 

improvement.  
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Chapter 8 

 

Development of a Map-aided integrity method  

 
 
 
 
 
 
 
 
 
 
8.1 Introduction 
 

Existing studies of land vehicle integrity monitoring have concentrated on either 

the integrity of raw positioning information obtained from GNSS/DR or the 

integrity of the map-matching process (see Chapter 4). Considering these three 

sources of errors together may lead to a better outcome. Moreover, taking the 

complexity of the road network (i.e., operational environment) into account can 

further improve the integrity process. Because, if a vehicle is in a simple road 

network (e.g. rural operational environment) a simple MM algorithm can 

identify the correct road segment even with an erroneous raw positioning point.  

 

In this chapter an attempt has been made to develop an integrity method for land 

vehicle navigation, which considers all the sources of error with GPS raw 

positioning data, spatial road network map and the map-matching process 

simultaneously. Integrity of raw position points is measured using a weighted 

least squares method10. The complexity of road network is also considered in the 

integrity monitoring process.  

 

The following section provides the description of the input data in the integrity 

method. Then the developed  integrity method is outlined. This includes the 

                                            
10 See section 3.2.3 
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monitoring of GPS integrity, identification of operational environment, map-

matching integrity and the derivation of an integrity scale using two knowledge-

based sugeno fuzzy inference systems (FIS).  

 

8.2 Input Data 
 

 

The data required for the integrity method are: link data including a unique link 

ID, start node and end node; node data including unique node ID, easting and 

northing coordinates of the node; turn restriction data for junctions and 

positioning and navigation data from a navigation sensor (either GPS or 

GPS/DR) including easting and northing coordinates of position fixes, vehicle 

heading, vehicle speed in metres per second, and error variance for heading and 

speed. Satellite data include satellite number and satellite X, Y, and Z 

coordinates in Earth-Centred Earth-Fixed (ECEF) coordinate system, satellite 

clock bias, satellite elevation and azimuth angles, measured ranges; and user X, 

Y, and Z position in ECEF coordinate system. Additional information on map 

scale, Horizontal Alert Limit (HAL), false alarm probability (PFA) and missed 

detection probability (PMD) are also inputs to the system.  

 

A GIS map of 1:2500 scale was used in this study. The selection of HAL is 

subjective as this depends on the required horizontal positioning accuracy (DOT, 

2004). For most location based ITS services (except a few safety critical services 

such as collision avoidance system), the horizontal accuracy ranges from 5m to 

50m (DOT, 2004; Sheridan, 2001; Feng and Ochieng, 2007; and Quddus, 2006) 

and the HAL is 2.5 times the horizontal accuracy (DOT, 2004; Feng and 

Ochieng, 2007). In this study, the HAL is chosen to be 15m and this equals to the 

required horizontal accuracy of 6m, with which most ITS services can be 

supported (DOT, 2004; Sheridan, 2001; Feng and Ochieng, 2007; Quddus, 

2006).  The PFA and the PMD are defined to be 0.001 and 0.00001 as suggested by 

Feng and Ochieng (2007). That means the likelihoods of a false alarm and a 
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missed detection occurrence are 1 in 1,000 and 1 in 100,000 positioning points 

respectively.  

 
The range residuals data for each positioning point is one of the inputs to 

measure the integrity of the raw positioning points. The range residual is the 

difference between the measured pseudorange and the predicted pseudorange. As 

the data on the range residuals are not directly available from the GPS receiver 

used, range residuals are calculated using a least squares method. In the 

following section, a brief description of the procedure to calculate the range 

residuals is provided.  

 

8.2.1. Range residual calculation using a least squares method 

 

The range residual information is used to in the estimation of integrity of raw 

positioning data (see section 8.3.1 for details). The range residual for satellite i 

can be defined as the difference between the measured pseudorange and the 

predicted pseudorange of the satellite i. The diagrammatic representation of 

range residuals is shown in Figure 8.1.  
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Figure 8.1: Range residuals (Source: modified from Lee, 1992) 

 

The step-by-step procedure of least square method range residual estimation is 

provided here. This is a traditional method of estimating range residual matrix.  

 
A least squares method of range residual estimation step-by-step procedure: 

 
In the least square method the input data are:  

(1) Satellite number 

(2) Elevation angle of each satellite  

(3) Measured ranges from each of the satellites (this is obtained from the 

GPS receiver) 

(4) Satellite Xs, Ys, Zs coordinates and satellite clock offset.  

 

User  position 

SV1 

SV2 

SV3 

SV4 

Measured range to SV1 

Predicted Range to SV1  

Range Residual 

SV - Space vehicle 



 
 
 

 147 
 

 

Step 1: Initial user vehicle estimation:  

The measured pseudorange calculation is as follows (Parkinson and Spilker 

1996; Leeuwen, 2002):  

 
)( iiiii

m SctroionC +++= ρρ      (8.1) 

 

Where  

i

mρ  is the measured pseudorange from satellite i  

iρ  is the range from a satellite i (this is the input data 3 from step-1) in 

metres 

C is the speed of GPS signal (i.e., speed of light)= 299792458 m/sec 

i
ion  is the ionospheric delay in seconds for satellite i 

i
tro  is the tropospheric delay in seconds for satellite i 

i
Sc  is the satellite clock offset for satellite i 

 
The propagation of a GPS signal in the ionosphere and the troposphere differs 

with the speed of satellite signal (the speed of light). So the delay terms i
ion and 

i
tro are considered in the measured pseudorange calculation. In equation (8.1), 

both i
ion and i

tro  need to be estimated and i
Sc  is input 4 .  

 

Calculation of ionospheric delay:  

 

Ionospheric delay is calculated using the Klobuchar model (Klobuchar, 1987; 

Klobuchar, 1991). The delay calculation for a single frequency receiver is as 

follows: 

 

93 10*5])53.0(161[ −−+= ii Eion      (8.2) 

 

Where i
ion  is the ionospheric delay in sec 
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iE  is the elevation angle of satellite i  

 

Calculation of tropospheric delay:  

 

The Calculation of tropospheric delay is followed by Tsui (2000); and Parkinson 

and Spilker (1996) 

 

10^8)*2.99/1(
0121.0)sin(
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i

i

E
tro     (8.3) 

 

Where i
tro  is the tropospheric delay in sec 

iE  is the elevation angle to satellite i  

 

Step 2: calculation of user/GPS receiver position (Xu, Yu, and Zu coordinates): 

 

This is an iterative process using a least squares method. The procedure followed 

is as given in Parkinson and Spilker (1996) and Jwo (2005) an shown below:  

 

(1) In the first iteration, assume a user position ( 1
uX , 1

uY  and 1
uZ coordinates) 

and receiver clock offset C1. Here, the initial user position and the clock 

offset are assumed as zero.  

(2) Calculate the predicted/estimated range to each satellite using equation 

(8.4)  

 

1212121 )()()( CZZYYXX u

i

su

i

su

i

s

i

e +−+−+−=ρ    (8.4) 

Where  

i

eρ  is the predicted or estimated pseudorange to satellite i 

1
sX , 1

sY  and 1
sZ are the satellite position  

1
uX , 1

uY  and 1
uZ  are the user position in the first iteration  
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C
1 is the receiver clock bias in the first iteration 

  
(3) calculate range residual ( 1

iR ) for iteration 1 to satellite i. This is 

accomplished by using equation (8.1) end equation (8.4) 

 
i

e

i

miR ρρ −=1       (8.5) 

(4) Calculate the observation matrix (G)  

 

(5) Calculate the change in user position and the receiver clock offset matrix 

by minimising the error. This is done using the following matrix 

computation. 
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     (8.6) 

 

(6) Calculate the new user position and receiver clock offset 
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    (8.7) 

 
For the next iteration, the new user position and the receiver clock offset 

are 2
uX , 2

uY , 2
uZ  and C2  

(7) Repeat the above procedure (1 to 6) and use 2
uX , 2

uY , 2
uZ  and C2 instead 

of 1
uX , 1

uY , 1
uZ  and C1 

(8) Stop the procedure (iterations) when the change in user position and the 

receiver clock offset matrix  is very small or negligible.  
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After few iterations (here approximately five iterations) the change in user 

position and the receiver clock offset matrix is very small. After the final 

iteration, say the final user position and the receiver clock offset are uX , uY , uZ  

and C. 

 

Step 3: Range residual calculation  

Range residuals to satellite i is given as  

i

e

i

miR ρρ −=        (8.8) 

 

i

mρ  is calculated using equation 3 and 
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Where  
  Ri range residual to satellite i 

i

s

i

s YX ,  and i

sZ  are the satellite (i) position  

uuu ZYX ,,  and C are the user position and receiver clock offset 

calculated in  step 2.  

 

 
8.3 Integrity Method 

 

A flowchart of the proposed integrity method is shown in Figure 8.2. The 

procedure starts with the calculation of Horizontal Protection Level (HPL) from 

GPS raw positioning data (see equations 9.10 to 9.14 below). HPL is the upper 

boundary of the confidence region of a GPS receiver, in which positioning error 

outside that region can be detected. The availability of Receiver Autonomous 

Integrity Monitoring (RAIM) is examined by comparing the calculated HPL with 

the Horizontal Alert Limit (HAL). HAL is the error tolerance not to be exceeded 

in horizontal direction (i.e., X and Y) without issuing an alert to users. If HAL is 

greater than HPL then it is assumed that the RAIM is available. If the RAIM is 



 
 
 

 151 
 

not available an appropriate warning should be given to the user. On the other 

hand, if RAIM is available, the next step is to detect any fault in the positioning 

output. A weighted least squares residual method is used to identify the fault. If 

any fault is detected, rather than immediately giving a warning to the user, the 

integrity method identifies the operational environment in which the vehicle is 

travelling. Although the raw positioning fixes from the GPS contains some 

errors, a good map-matching algorithm can identify the correct road segment if 

the road network on which the vehicle is travelling is simple. If the operational 

environment is complex, an alert is raised. The procedure for the identification of 

the complexity of a road network is explained in the following section. If the 

operational environment is not complex (i.e., rural), then the integrity process is 

followed by the map-matching process and its integrity measurement. In this 

case, as shown in Figure 8.2, a fuzzy inference system (FIS-1) is used to derive 

an integrity scale. The integrity scale value determines whether an alert is issued 

or not.  

 

If no fault is detected in the raw positioning fix, then the map-matching process 

and its integrity measurement are carried out. This is because, although there is 

no error with the GPS fixes, the map-matching process may fail to identify the 

correct link (from the set of candidate links) due to the complexity of road 

network, errors in GIS digital map, or errors in the map-matching process. 

Therefore another fuzzy inference system (FIS-2) is used so as to derive the 

integrity scale for the purpose of raising an alert or not. 
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Figure 8.2 A flowchart representing the integrity method 

 

8.3.1 Integrity of Raw GPS Positioning Fixes 

 

 

RAIM is a powerful technique in providing final layer of integrity of the space 

(GPS) data processing (Walter and Enge, 1995). In this research, a measurement 

domain RAIM method is used to check the consistency of the raw positioning 

fixes. The process of integrity monitoring of raw positioning fixes can be divided 

into two stages: (1) computation of protection level to check the RAIM 

availability; and (2) detection of failures (Feng and Ochieng, 2007).  

 

Here, a HPL method is used to check the RAIM availability. The horizontal 

protection level (HPL) is compared with the horizontal alert limit (HAL) to 
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check the availability of integrity function. The calculation of HPL is as given in 

Walter and Enge (1995).  
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Where,  

G is an observation matrix,  

W is the weight matrix,  

I is the identity matrix,  

T is a threshold value, which is function of number of satellites (N) and 

probability of false alarm (PFA), follows a chi-square distribution with N-

4 degree of freedom,  

k(PMD) is the number of standard deviations corresponding to specified 

probability of missed detection (PMD) and 

HDOP is the horizontal dilution of precision. 

 

The failure detection process identifies the potential threats in the GPS based on 

the vehicle position calculation. A weight based least squares method is used to 

detect faults. The presence of failure is identified by comparing the test statistic 

(TS) with a decision threshold. If the TS is less than the decision threshold there 

is no fault detected, and vice versa. 

 

Weighted Sum of Squares Errors (WSSE) can be defined as (Walter and Enge, 

1995): 

 



 
 
 

 154 
 

[ ]YPIWYWSSE T )( −=       (8.15) 

( ) WGWGGGP TT 1−
=       (8.16) 

Where,  

G is the observation matrix,  

Y is the range residuals,  

W is the weight matrix,  

I is the identity matrix. 

 

The test statistic is defined as the square root of WSSE (Walter and Enge, 1995). 

The corresponding threshold is determined based on the probability of false 

alarm and the number of satellites (Walter and Enge, 1995).  

 

If the threshold exceeds the test statistic then the GPS positioning fix is assumed 

to be safe and usable and vice versa. Even if the raw GPS positioning fixes 

contain error, if the operational environment is not dense (i.e., rural) a good map-

matching process has the potential to identify the correct road segment. Here, the 

system needs to check the operational environment in which the user is 

travelling. The following section describes the method of identifying an 

operational environment. 

  

8.3.2 Identification of an Operational Environment 

 

Though the raw GPS positioning fix has an error, if the vehicle is travelling in a 

rural environment, a map-matching process should be able to identify the correct 

road segment on which a vehicle is travelling. In the proposed integrity method, 

if the raw GPS fix is not trustable then the operational environment is identified; 

if the operational environment is rural then the process continues with map-

matching rather giving an alert to the user.  
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Identification of operational environment is explained in Chapter 7. It is based on 

a threshold which is a function of the total length of the road network and the 

number of junctions per unit area (see section 7.4.2 for further details):   

 

( )NLfTOE ,=        (8.17) 

 

Where,  

TOE  is the threshold for identifying an operational environment,  

L is the total length of road network (in km) per given area,  

N is the number of junctions in that area. 

 

Here, the objective is to know whether a vehicle is in a simple road network (i.e., 

rural operational environment) is not. Assuming that N/L for different 

operational environments follow a normal distribution, the value obtained by 

adding mean and two times standard deviation ( RR σµ 2+ ) for the rural 

environment (i.e., 4.19) is considered as the threshold value to decide whether 

the vehicle is in a rural area. It is also examined that the threshold value is less 

than the value obtained by subtracting the standard deviation of the suburban 

area from its mean (i.e., 4.29) and also the value obtained by subtracting the 

factor mean in urban area and three times the corresponding standard deviation 

(i.e., 5.82). Therefore, if the factor (i.e., N/L calculated from the same radius of 

200m) is less than the threshold TOE (which is 4.19) then it is determined that the 

user is in a rural area. Otherwise, the user is thought to be travelling in a 

suburban or an urban area.  

 

8.3.3 Map-matching Integrity 

 

If the quality of raw positioning point is good or a vehicle is in a simple road 

network; and if the quality of raw positioning point is bad, the process continues 

with MM the raw positioning point. Then the map-matching integrity process is 

carried out by considering the distance residual and the heading residual. These 
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two residuals check the ability of the algorithm to correctly identify the road 

segment and determine the vehicle location on the selected segment. Here, the 

uncertainty associated with the digital road map is also taken into account. The 

heading residual and distance residual are explained in this section. 

 

8.3.3.1 Heading Residual 

 

The correct road segment identified by the map-matching algorithm needs to be 

in-line with the vehicle’s direction of movement. If the vehicle movement 

direction (heading) with respect to the North is θ , and the selected road link 

direction with respect to the North is β , then the absolute difference between 

these two directions (i.e., | βθ − | ) should be close to zero. However, the heading 

from GPS is not accurate and there is also error in the estimation of link heading 

due to errors in the digital map. These two errors need to be considered while 

calculating the heading residual. The heading residual is derived as suggested by 

Quddus et al. (2006c). 

 

 

Figure 8.3 Heading residual (modified from Quddus et al., 2006c). 

 

In Figure 8.3, P is the raw positioning point with heading angle θ  from the 

North. The corresponding correct link for that positioning point is link ‘AB’ and 

β  is the link direction with respect to the North. The scale of a GIS road map 

represents the minimum plottable error (Ochieng and Sauer, 2002). For example, 
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a digital map of scale 1:2500 has an error of 2.5m. Based on this plottable error, 

an error bubble is defined at the start and the end node. In Figure 8.3, for node 

‘A’ and ‘B’ the error bubble of radius m (which depends on the map scale) is 

considered. In the worst case, the maximum error in link heading can be as large 

as β∆  with the position of node ‘A’ at ‘a’ and the node ‘B’ at ‘b’ in the error 

circle. The uncertainty in vehicle heading calculation is detected from the 

variance for heading.  

 

Using an error propagation theorem the combined error can be given as (Quddus 

et al., 2006c): 

 

22 )()3( βσ ∆+= hHE      (8.18) 
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Where,  

m is the digital map plottable error derived from the map scale,  

L is the length of the road segment, and  

hσ3  is the error variance (99.8% confidence level) associated with the 

vehicle  

heading. 

 

If the difference between (|θ  - β |) and HE is less than or close to zero, then it 

can be said that the correct road segment identification by the map matching 

algorithm is reliable.  

 

The heading residual can be represented as: 

 

HEH −−=∆ βθ       (8.20) 
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8.3.3.2 Distance Residual  

 

The distance between two consecutive map-matched positioning fixes should be 

comparable with the distance travelled by the user within the interval (i.e., the 

distance obtained by multiplying the vehicle speed and time). However, 

generally, there will be an error associated with the map-matched positioning 

points as well as the vehicle speed measurement. This is explained in Figure 8.4. 

P1 and P2 are the two consecutive positioning points from GPS and the 

corresponding map-matched positioning points on the identified map-matched 

segments are mp1 and mp2 respectively. Generally, there will be an error in the 

map-matched positions due the error in the digital map and the error in the map-

matching process. Here, the map-matched positioning errors for positioning fixes 

P1 and P2 are 1d∆  and 2d∆ respectively.  

 

Figure 8.4: Distance residual 

 

The uncertainty with the vehicle speed calculation is vσ3  (i.e., error variance 

associated with the measurement of vehicle speed, with 99.8% confidence level). 

Based on the error propagation theorem the combined error ( 1d∆ , 2d∆  and vσ3 ) 

is:  
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22
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1 )3()()( vddDE σ+∆+∆=     (8.21) 

 

Here, the positioning error terms ( 1d∆  and 2d∆ ) are identified from a series of 

map-matched positioning and their corresponding true positions. For the purpose 

of deriving these two errors a real-world dataset of 2,040 positioning fixes, (data 

set 5) from suburban areas of London, is used. The true positioning fixes are 

obtained from a carrier-phase GPS receiver. From a post-processing analysis of 

the above positioning data, the 1d∆  and 2d∆ are identified as 3.6m and 4.1m 

respectively.  

 

The distance residual is given as follows: 

 

DEDDD −−=∆ 21        (8.22) 

where,  

D1 is the travelled distance between the two consecutive map matched 

positioning points (in figure 8.4 sum of d1 and d2) 

  D2 is the distance calculated by multiplying vehicle speed (m/sec) and the  

time (sec).   

 

If the difference between the absolute value of (D1 - D2) and the DE is less than 

or close to zero then it can be said that the identification of the road segment and 

vehicle location on that road, by the map-matching algorithm, is more reliable, 

and vice versa. The following section provides a description of the derivation of 

the integrity scale, which is used to decide whether to alert users.  

 

8.4 Derivation of Integrity scale using an artificial intelligence  

technique 

 

Artificial intelligence (AI) can be defined as the ability of a computer software 

and hardware to do things that would require intelligence behaviour as if it is 



 
 
 

 160 
 

done by a human (Callan, 2003). In other words, AI is a system that thinks and 

acts rationally like humans (Russel and Norvig, 2002). AI is used in many fields. 

The application areas can be broadly classified into: problem solving by 

searching and learning, planning and acting in real world, learning from 

observations, recognizing patterns and making logical inferences (Russel and 

Norvig, 2002; Callan, 2003). 

 

Generally, the following artificial intelligence (AI) techniques are used in the 

field of transportation engineering (Bielli, 1991; Teodorovi, 1999; Bell, 2000; 

Yin et al., 2002; Zhong, et al., 2004; Konar, 2005; Hawas, 2007): 

 

Genetic Algorithms (GA) 

Neural Networks (NN) 

Fuzzy Logic (FL) 

Game theory 

Belief theory 

 

And combinations of the above techniques: such as neuro-fuzzy synergism, 

neuro-GA synergism, fuzzy-GA synergism, neuro-belief theory synergism and 

neuro-fuzzy-GA synergism.  

 

Genetic algorithm is a technique used to find exact or approximate solutions by 

searching methods (Konar, 2005). This is used for problem solving by searching 

and learning application. The neural network (NN) technique is based on cellular 

structure (also called neurons) of the human brain. A NN has the ability to 

approximate arbitrary nonlinear functions in a decision making process (Karray 

and De Silva, 2004). The NN technique is further categorised into artificial 

neural network and biological neural network. These techniques are generally 

used for recognizing patterns, planning and acting in real world, and making 

logical inferences (Karray and De Silva, 2004).  
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Fuzzy logic (FL) is an effective way to make conclusions based on qualitative 

terms and linguistic vagueness. Fuzzy logic systems are usually built with a set 

of rules (using ‘if’ and ‘then’) to solve problem, rather attempting to model a 

system mathematically (Konar, 2005). The FL system is generally used for 

making logical inferences (Konar, 2005). Game theory attempts to 

mathematically capture behavior in strategic situations to make decisions based 

on number of available conditions (Levinson, 2005). It is useful in planning and 

acting in real world and in decisions making process (Levinson, 2005). Belief 

theory makes it possible to model the uncertainty of a problem (Konar, 2005). It 

is based on probability theory (particularly, conditional and Bayesian 

probability). Belief theory is generally used for learning from observations, 

recognizing patterns. In some situations, the combination of AI techniques are 

considered to solve a problem (Konar, 2005). For example, in integration of GA 

with FL (i.e., fuzzy-GA synergism) optimises the parameters of a fuzzy system 

by using a genetic algorithm technique. Further details of these integrated 

systems, and how combined systems work can be found in Konar (2005). 

 

In the proposed integrity method, the user alert should be given based on the 

quality of raw politicising fix, uncertainty in digital map and errors associated 

with the map matching process. In other terms, IF the final positioning point has 

error THEN an alert should be given to the user. The process involves the logical 

functions ‘if’ and ‘then’. Moreover, the system need to find a single output 

(integrity scale) from multiple inputs (different errors). In this kind of scenario, 

from the brief review of above AI technologies, an artificial neural network 

system or fuzzy logic system are suitable to solve the problem. 

 

Though the artificial neural network (ANN) system is useful to take decisions 

from multiple inputs, in ANN the logical functions and linguistic terms (such as 

IF and THEN) are not possible to model (Konar, 2005). Moreover, the ANN is 

more complex than a fuzzy logic system (Matreata, 2005). So, the derivation of 
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integrity scale is carried out using a fuzzy inference system. This is further 

explained in the following section.  

 

8.4.1 Derivation of an Integrity Scale Using Two Knowledge-based FISs 

 

In this integrity method, an alert is raised based on the quality of raw positioning 

fix, the uncertainty associated with the digital map and the error related to the 

map matching process. In other words, the integrity monitoring process needs to 

deal with a series of logical statements in order to address with such 

uncertainties. As shown in Figure 8.2, two fuzzy inference systems (FIS) are 

used: FIS-1 is used if a fault is detected in the GPS positioning output and  FIS-2 

if no fault is detected. For both cases, an integrity scale, which represents the 

confidence level of the final map-matched positioning fix, is defined (Quddus et 

al., 2006c). The integrity scale ranges from ‘0’ to ‘100’. The value 0 represents 

the most un-trustable user position and 100 represents the most trustable 

positioning fix.  

 

As shown in Figure 8.2, FIS-1 is designed for the case of a faulty GPS 

positioning fix. If the raw GPS fix is not trustworthy, and the operational 

environment is rural (i.e., a less-dense road network), then the algorithm 

continues with the map-matching process. Finally, the estimated error associated 

with the raw positioning fix and the errors associated with the digital map and 

the map matching process are considered in the derivation of the integrity scale. 

The FIS-1 is a Sugeno-type fuzzy inference system with three stated input 

variables. These are the difference in test statistic and decision threshold ( T∆ ), 

the distance residual ( D∆ ) and the heading residual ( H∆ ). Twelve knowledge 

based fuzzy rules and one output (integrity scale) are considered in this FIS. The 

fuzzy sub-sets associated with the T∆  are low, average and high; D∆ and H∆  

are positive and negative. The fuzzy rules are formulated based on knowledge-

based interpretation of the characteristics of the variables. For example, if the 

T∆ values is very low (i.e., close to zero) and D∆ and H∆ are negative, then the 
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integrity scale should be high. A zero-order Sugeno output model, that has five 

constant output levels (Zi), is developed. These output levels are selected as very 

low (Z1=0), low (Z2=40), average (Z3=65), high (Z4=85) and very high (Z5=100).  

 

FIS-2 is used when there is no GPS positioning fault. FIS-2 uses two inputs: D∆  

and H∆ in which four knowledge based fuzzy rules are used. The shapes and the 

parameters of membership functions (MF) can be derived in an optimal way 

using advanced techniques such as a genetic algorithm or Matlab inbuilt toolbox 

Adaptive-Neuro Fuzzy Inference System (ANFIS) (Wong and Hamouda, 2000). 

However, these automatic MF tuning methods need true input  and output (i.e., 

the true integrity output for the corresponding T∆ , D∆ and H∆ ) so as to adjust 

the membership functions shape and parameters (Chen and Tsai, 2008). But, in 

our case, although the true input data can be obtained from carrier-phase GPS 

points, the corresponding integrity scale is not known. Here, an empirical 

analysis is used to determine the membership functions shape and parameters. 

This is accomplished using an independent dataset of 221 carrier-phase GPS 

positioning points collected in Nottingham, UK (data set – 4). This dataset is 

independent from the positioning dataset used for performance evaluation. The 

construction of the membership functions is done by adjusting the internal 

parameter values and the shape, and by checking the performance (i.e., whether 

the integrity method can provide low values of the integrity scale when there are 

failures in the inputs). The membership functions for the two FIS systems are 

shown in Figure 8.6. Fuzzy rules corresponding to both the FIS systems are 

illustrated in Table 8.1. Equal rule weights (firing strength) are considered for 

both the FISs.  
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Table 8.1: Fuzzy Rules Used in Fuzzy Inference Systems 

Fuzzy Inference Systems-1 (FIS-1) 

R1: if H∆ is negative and D∆ is negative and T∆ is low then integrity scale (Z) is very high 

R2: if H∆ is negative and D∆ is negative and T∆ is average then integrity scale (Z) is high 

R3: if H∆ is negative and D∆ is negative and T∆ is high then integrity scale (Z) is average 

R4: if H∆ is negative and D∆ is positive and T∆ is low then integrity scale (Z) is high 

R5: if H∆ is negative and D∆ is positive and T∆ is average then integrity scale (Z) is average 

R6: if H∆ is negative and D∆ is positive and T∆ is high then integrity scale (Z) is average 

R7: if H∆ is positive and D∆ is negative and T∆ is low then integrity scale (Z) is high 

R8: if H∆ is positive and D∆ is negative and T∆ is average then integrity scale (Z) is high 

R9: if H∆ is positive and D∆ is negative and T∆ is high then integrity scale (Z) is average 

R10: if H∆ is positive and D∆ is positive and T∆ is low then integrity scale (Z) is average 

R11: if H∆ is positive and D∆ is positive and T∆ is average then integrity scale (Z) is low 

R12: if H∆ is positive and D∆ is positive and T∆ is high then integrity scale (Z) is very low 

Fuzzy Inference Systems-2 (FIS-2) 

R1: if H∆ is negative and D∆ is negative then integrity scale (Z) is very high 

R2: if H∆ is positive and D∆ is negative then integrity scale (Z) is high 

R3: if H∆ is negative  and D∆ is positive then integrity scale (Z) is average 

R4: if H∆ is positive and D∆ is positive then integrity scale (Z) is low 

 

The coding of the integrity method was completed in Matlab programming 

environment; and also the Matlab fuzzy tool box is used for the above two FISs 

(Konar, 2005). 
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Figure 8.5 Fuzzy inference systems 

 

As mentioned before the objective of the integrity method is to give alerts to 

users when the system is not usable. The criteria that is normally employed to 

evaluate the performance of an integrity method is Overall Correct Detection 

Rate (OCDR) (Jabbour  et al., 2008; Quddus et al., 2006c). The OCDR refers to 

percentage of time the system can provide valid warnings to users. Further,  

invalid warnings can be either missed detections or false alarms. The missed 

detection (MD) suggests that although there is a mistake in the final positioning 

output of the navigation system, the integrity method could not identify it; and 

the false alarm (FA) indicates that although there is no error in the final 

Fuzzy inference system-1 

Fuzzy inference system-2 
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positioning output obtained from the vehicle navigation module the system gives 

an alert to users. So the performance of the developed integrity method could be 

measured with respect to Missed Detection Rate (MDR), False Alarm Rate 

(FAR) and Overall Correct Detection Rate (OCDR) (Jabbour  et al., 2008; 

Quddus et al., 2006c). As suggested by Quddus et al. (2006c) and Jabbour et al. 

(2008) the overall correct detection rate (OCDR), which is derived with respect 

to false alarm rate (FAR) and missed detection rate (MDR), can be written as: 

 

)(1 MDRFAROCDR +−=       (8.23) 

o

f
FAR =         (8.24) 

o

m
MDR =         (8.25) 

Where,   

f  is the total false alarms,  

m is the total missed detections and  

o is the total observations. 

 
To decide the total number of false alarms (f) and the number of missed 

detections (m), reference (true) vehicle positioning is required. Here, the 

positioning fixes obtained from GPS carrier-phase observations integrated with a 

high-grade Inertial Navigation System (INS) were used as reference positioning 

points.  

 

The integrity scale value, which is derived in section 8.4.1, for each positioning 

point varies from 0 to 100. It is necessary to identify a threshold value of the 

integrity scale for the purpose of raising an alert or not. That means if the 

integrity value of a positioning point is less than the identified threshold, an alert 

should be given to users and vice versa. The integrity threshold is identified 

using an empirical analysis of an independent dataset consisting of 2,261 
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observations, collected in Nottingham, UK (part of data set 4). The result is 

shown in Figure 8.6. As can be seen, FA increases as the thresholds increases 

and MD decreases as the threshold increases. In order to achieve the optimal 

solution in terms of overall correct detection, the integrity value at which both 

FA and MD lines intersect is taken as the threshold.  
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Figure 8.6: Variation in false alarms and missed detections 

 

It can be seen that at an integrity scale of 82, the FA and MD lines intersect. So 

the integrity scale 82 is chosen as the threshold value to raise an alert to users. 

That means, if the integrity scale is less than or equal to 82 the users will be 

alerted and vice versa. 

 

8.5 Performance 

 

To evaluate the performance of the integrity method, positioning data (data set 4, 

in Table 5.1) collected in central Nottingham, UK, was used. The positioning 

fixes obtained from GPS carrier-phase observations integrated with a high-grade 

Inertial Navigation System (INS) were used as reference positioning points. For 

the collection of this dataset, a test vehicle equipped with a single frequency high 

sensitivity GPS receiver, a low-cost gyroscope and integrated carrier-phase 

GPS/high-grade INS was used. Accuracy of the integrated carrier-phase GPS and 
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INS was found to be  better than 5 centimetres over 97.5% of the time in all three 

coordinate components (i.e., X, Y and Z directions) (Aponte et al., 2009). The 

positioning data was recorded every second. A total of  2,838 positioning fixes, 

along the test route of 20.6 km was used for integrity method performance 

evaluation. The test trajectory is shown in Figure 8.7. A spatial digital map of 

scale 1:2,500, obtained from Quddus (2006), was used in the analysis.  

 

The analysis of the field data reveals that the total number of false alarms and 

missed detections were 24 and 28 respectively. The number of missed detection 

and false alarms in case of faulty raw positioning points, FIS 1, and fault free 

raw positioning points, FIS 2, are illustrated in Table 9.2. For five positioning 

points the RAIM is not available (HPL>HAL). The FAR, MDR and OCDR were 

found to be 0.0084, 0.0099 and 0.9817 respectively. That means, the integrity 

method gave correct warnings 98.2% of the time. The user needs to be alerted 

within the time-to-alarm limit. Therefore, the computational speed of the 

integrity method is also important. In terms of computational speed, the integrity 

method processed 4 positioning fixes per second (with a laptop of 2 GB RAM 

and 1.46 (1.83 GHz) processor speed).  

 

Table 8.2: Integrity performance 

  False Alarms Missed detections 
Faulty GPS points (FIS-1)  12 1 
Fault free GPS points (FIS-2) 12 27 
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Figure 8.7: Test route in Nottingham, UK 

 

8.6 Summary 

 

An integrity method, that gives warnings to users when the final positioning 

output is not usable, was developed in this chapter. Here, the error sources 

associated with raw positioning points, digital map and map-matching process 

were considered simultaneously. Moreover, the operational environment in 

which a vehicle is travelling is also taken into account in the integrity process. 

The sequential process of checking outliers in the raw positioning fixes using a 

measurement domain RAIM method and followed by checking for an 

operational environment and then examining the integrity of map-matching 

process improved the performance. The integrity scale was derived using two 
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knowledge based fuzzy inference systems. The next chapter provides the 

discussion on research findings.  
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Chapter 9 

 

Discussion 

 
 
 
 
 
 
 
 
 
 

9.1 Introduction 

 

This chapter firstly summarises the key features of the developed topological 

map-matching algorithm and the integrity method; secondly compares the 

performance of both the enhanced algorithm and the integrity method with the 

evidence available in the literature; then examines the extent to which the 

algorithm and integrity method can support navigation requirements of location-

based ITS services; and finally describes the suitability of both the MM 

algorithm and the integrity method for practical implications by industry.   

 

9.2 Key features of the MM algorithm and the Integrity method 
 

This research has developed a weight-based topological MM algorithm and a 

map-aided integrity monitoring process for supporting the navigation module of 

location-based Intelligent Transport Systems (ITS) applications. Firstly, an in-

depth literature review was carried out to identify constraints, limitations and the 

performances of existing MM algorithms and integrity methods. Different ways 

to improve tMM algorithm and integrity method were identified. Then, a weight-

based topological MM algorithm and a map-aided integrity method were 

developed and tested. 
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The key features of the developed topological MM algorithm are:  

 

(a) A robust method for selecting candidate links in the initial map-matching 

process and the map-matching at junctions;  

(b) Introduction of two additional weight parameters: connectivity and turn 

restriction;  

(c) Use of an optimisation process to derive the relative importance of weights 

using positioning data collected in three different operational environments; 

(d) Identification of an operational environment in which a vehicle is travelling; 

and 

(e) Implementation of two consistency checks to reduce mismatches.  

 

The key features of the developed integrity method include:  

 

(a) Considering errors associated with the positioning data, GIS map and map-

matching process concurrently in identifying the goodness (trustability) of 

the final positioning point; 

(b) Considering the operational environment; and 

(c) Developing two fuzzy inference systems (FIS) to measure the integrity scale. 

 
9.3 Performance of the enhanced MM algorithm and the 

integrity method compared with existing algorithms 
 

These new features have improved the performance of the tMM algorithm and 

the integrity method. Both the tMM algorithm and the integrity method were 

tested using real-world field datasets. The enhanced algorithm succeeded 97.8% of 

the time in correct link identification with an horizontal accuracy of 9.1 m )2( σµ +  

and the integrity method was capable of providing correct warnings 98.2% of the 

time. 
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Chapter 3 reviewed existing topological map-matching algorithms and presented 

evidence on the performance of tMM algorithms from the literature. The 

summary of existing tMM algorithms performance along with the performance 

of the enhanced tMM algorithm developed in the research is illustrated in Table 

9.1.  

 
Table 9.1: Performance of topological MM algorithms 

Author and year of publication Correct link 
identification 

Horizontal accuracy in metres 
(95% confidence level) 

White et al. (2000) 85.80% 32  

Greenfeld (2002) 85.60% 18.3  

Srinivasan et al. (2003) 98.50% 21.2  

Quddus et al. (2003) 88.60% 18.1 

Yin and Wolfson (2004) 94% -- 

Blazquez and Vonderohe (2005) 94.80% -- 

tMM algorithm developed in this 

research 
97.8% 9.1  

 

The MM algorithm developed by Srinivasan et al. (2003) identified 98.5% of the 

segments correctly; this was based on a small positioning data of sample size 242 

positioning points (about four minutes data) in a simple network (university 

roads). When tested on a larger, more representative, road network, the accuracy 

falls to 80.2% (see Quddus, 2006). The tMM algorithm developed in this study 

outperforms the existing topological MM algorithms (with respect to percentage 

of correct link identification and horizontal accuracy) reported in the literature 

except the algorithm by Srinivasan et al. (2003), which was evaluated using a 

very small positioning data in university roads.  

 

The performance of existing integrity methods and the map-aided integrity 

method developed in this research are summarised in Table 9.2.  
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Table 9.2: Performance of Integrity methods 

Author and Year of publication Performance 

Sun and Cannon (1998) 79.9% valid warnings 

91.1% valid warnings1 

97.5% valid warnings2 Quddus et al. (2006c) 

98.2% valid warnings3 

Yu et al. (2006) MDR is 1.41% 

Kuusniemi et al.,  (2007) 89.5% valid warnings 

Jabbour et al. (2008) 88.8 % valid integrity warnings 

Integrity method developed in this 

research  

98.2% valid integrity 

warnings 
1Using a weight based topological MM algorithm. 
2Using a probabilistic MM algorithm. 
3Using an advanced MM algorithm. 
MDR: missed detection rate 
 

The integrity method developed by Yu et al. (2006) provided the performance 

only with respect to the missed detection rate (MDR); therefore, the results are 

not directly comparable. The performance of the integrity method developed in 

this research is better than most existing integrity methods and equals that of an 

integrity method, supported by an advanced MM algorithm, developed by 

Quddus et al. (2006c). However, the advanced algorithms uses more refined 

approaches and may not be easy to implement for real-time ITS applications.  

 

9.4 Location-based ITS services that may be supported by the 

algorithms developed in this thesis  
 

Positioning requirements of ITS services are represented with Required 

Navigation Performance (RNP) parameters. The RNP parameters for land 

vehicle navigation are still under development. The evidence of RNP values in 

the literature, for various ITS user groups and services, are illustrated in Table 

2.3. After the critical review of RNP for location-based ITS services, it is noticed 

that the identification of RNP parameters for all  ITS services or applications are 

yet to fully develop. Ideally one needs to carry out a series of field tests to 
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determine the RNP parameters (that depend on various driving factors: target 

level of safety, economic and operational efficiency) of an intelligent transport 

system. This is however not within the  scope of this research.  

 

ITS services that require  horizontal accuracy of 10 metres (95% of the times) 

can be supported by the developed algorithms. These include the following 

(identified from Table 2.3): 

 
(a) Liability critical applications: electronic toll collection, electronic parking 

payment and GPS based variable road user charging; 

(b) System performance critical applications: navigation and route guidance, 

public transport management, automatic bus arrival announcements; 

(c) Commercial applications: fleet management, commercial vehicle 

administrative processes and electronic clearance; and 

(d) Safety critical applications: emergency vehicle management, incident and 

accident management.  

 

The developed tMM algorithm and the integrity method may support most ITS 

services the exceptions being safety-critical ITS services such as lateral and 

longitudinal collision avoidance systems and vehicle based collision notification 

system. The ‘safety-of-life’ (SOL) critical applications like vehicle collision 

avoidance systems require 0.1 m to 1 m horizontal accuracy (FRP, 1999; DOT, 

2004; Quddus, 2006; and Feng and Ochieng, 2007). To achieve this high 

accuracy a stand-alone GPS, digital map and MM algorithm are not sufficient. 

The vehicle navigation module needs to be integrated with emerging positioning 

technologies such as laser scanners, radars, network-based real-time kinematic 

(N-RTK) carrier phase observables and video cameras. This is however not with 

in the scope of this thesis. 
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9.5 Suitability of the developed tMM algorithm and integrity  

method for practical implications 
 

This research has developed a simple, fast and generic map-matching algorithm 

and an integrity method to support real-time ITS applications. To provide 

continuous vehicle location information, here the positioning data were recorded 

every second (i.e. frequency 1Hz). The positioning data were collected from 

three different countries (UK, India and USA) using a low-cost GPS receiver. 

The validation of the developed algorithm and the integrity method were carried 

out using a higher accuracy reference (truth) of the vehicle trajectory obtained 

from a carrier phase GPS observables integrated with high-grade INS. This 

provides evidence of the reliability and transferability of the enhanced algorithm 

and the integrity method. The developed tMM algorithm and integrity method 

have high potential to be implemented by industry for real- time applications as 

these both algorithms are easy to implement and have a high degree of 

transferability. 

 

A significant improvement in the topological MM algorithm and the integrity 

method was achieved by introducing more sophisticated and logical techniques 

such as weight scores optimisation technique in the tMM algorithm and fuzzy 

inference system in the integrity method. The benefit of this research is mainly 

enhancement of real-time vehicle positioning systems to support a range of 

location-based ITS services.  
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Chapter 10 
 

Conclusions and Recommendations 

 
 
 
 
 
 
 
 
 
 
10.1 Map-matching algorithm and the integrity method 
 

In this research, a weight-based topological map-matching algorithm was 

developed after identifying constraints of existing map-matching algorithms 

through a detailed literature review. Then, errors in the developed tMM 

algorithm were determined using an extensive positioning data collected in three 

different countries (UK, USA and India). Further enhancement of the tMM 

algorithm was carried out. Considering two new weights, optimisation technique 

to identify the relative importance of weight scores, considering operational 

environment were the main novelties of the developed tMM algorithm. 

 

A user-level integrity method, which takes into account all error sources 

associated with a navigation system simultaneously, was developed. The 

sequential process of checking outliers in the raw positioning fixes using a 

measurement domain Receiver Autonomous Integrity Monitoring method, 

followed by checking for an operational environment then examining the 

integrity of map-matching process and finally deriving the integrity scale using 

two fuzzy inference systems improved the performance.  

 

The developed tMM algorithm identified links correctly 97.8% of the time; the 

horizontal accuracy of the algorithm was measured as 9.1 m )2( σµ + . The 

integrity method provided valid warnings 98.2% of the time. It was revealed that 
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the enhanced algorithm and the integrity method can support a range of ITS 

services that require positioning accuracy of 10 m. The main research 

contribution in the area of vehicle positioning systems for location-based ITS 

services is described in the following section.  

 

10.2 Research Contribution 

 

The primary aim of the proposed research was to enhance navigation modules of 

location-based Intelligent Transport Systems (ITS) by developing a weight-based 

tMM algorithm and a map-aided integrity monitoring process. In order to 

achieve this aim a set of objectives were formulated (see Section 1.3). Table 10.1 

gives a brief description of each of the objectives and the corresponding 

Chapters in which they were achieved/addressed.  

 

Table 10.1: Research objectives 

Objective Method/Description Chapter  

Identify positioning requirements 
for location-based ITS services 

Literature review: RNP parameters for 
ITS 

2 

Critically assess existing tMM 
algorithms and integrity methods 

Literature review:  
(1) map-matching algorithms and  
(2) integrity methods 

 
3 and 

4 

Develop a weight-based topological 
map-matching algorithm 

(1) A well-structured tMM algorithm 
(2) an optimisation technique  
(3) the performance evaluation 

6 

Further improvement of the tMM 
algorithm 

(1) Explore transferability of the  
     algorithm  
(2) Identify the sources of errors 
(3) Identify the enhancement strategies 
(4) Performance re-evaluation 

7 

Develop an improved integrity 
method 

(1) Consider all error sources and    
      operational environments 
(2) Develop a fuzzy inference system 
(3) Performance evaluation 

8 

Performance of the tMM algorithm 
and integrity method 

(1) Performance with respect to existing  
     algorithms and integrity methods 
(2) Location-based ITS services that  
      can be supported  

9 
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Chapter 5, which was not listed in Table 10.1, described different positioning 

data sets used in this research. The main research contribution of this thesis is 

described in the following sections.  

 
10.2.1 Optimisation technique to identify the relative importance of weights 

 

The weight-based topological MM algorithm assigns weights to all candidate 

links based on different criteria such as the similarity in vehicle movement 

direction and link direction, the nearness of the positioning point to a link, and 

the connectivity of a candidate road link to the previously travelled road link and 

selects the correct link based on total weight scores (TWS). In previous research, 

the relative importance of these weights were considered to be equal or derived 

empirically. In this research an optimisation technique was introduced to identify 

the relative importance of the weight scores for different operational 

environments: urban, suburban and rural. 

 

10.2.2 Distinguishing among different operational environments 

 

The relative importance of weight scores varied with operational environments 

(urban, suburban and rural). It was important to identify the operational 

environment in which  a vehicle is travelling. The operational environment 

identification was achieved based on the complexity of road network, the 

number of junctions, and the length of road network per given area. This process 

was explained in Section 7.4.2. The algorithm identified the operational 

environment in which the vehicle was travelling, followed by total weight score 

calculation based on the corresponding weight scores.  

 

In the map-aided integrity monitoring process, though a raw GPS positioning 

point has an error, if the vehicle is travelling in a simple operational environment 

a map-matching process should be able to identify the correct road segment on 

which a vehicle is travelling. It is more logical that if the raw positioning point 

quality is not good, before giving alert to an user the integrity method checks 
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whether the vehicle is in a simple operational environment; if so, the process 

continues with MM and checking the integrity of map-matching process. This 

enhanced the performance of the developed integrity method.  

 
10.2.3 Transferable algorithm 

 

In the existing research, MM algorithm’s performance with respect to the 

percentage of the correct link identification is measured using a positioning 

dataset collected from a geographical place/a city. Whilst the horizontal accuracy 

(2D) has not been identified due to a lack of reference (true) vehicle positioning 

data. To explore the transferability of the developed tMM to different contexts, a 

total of six positioning datasets collected from the three different countries (UK, 

USA and India) and three different digital road network maps were used. As part 

of this study,  positioning data were collected using a low-cost GPS receiver and 

a high accurate carrier-phase GPS (CGPS) receiver integrated with high-grade 

Inertial Navigation System (INS). The CGPS/INS system provides the reference 

(true) vehicle positioning data with centimetre level accuracy. This made it 

possible to measure the developed algorithms’ horizontal accuracy (2D) and the 

performance of the map-aided integrity method.  

 

10.2.4 Computational speed 

 

This research aimed to develop a generic map-matching algorithm and an 

integrity method that can be useful for any location-based ITS service. The 

weight-based topological MM algorithm and the map-aided integrity method 

developed in this research were logical, simple, fast, efficient and easy to 

implement. In terms of computational speed, the MM algorithm and the integrity 

method achieved 180 positioning points per second and 4 positioning points per 

second respectively (with a laptop of 1 GB RAM and 1.46 processor speed). This 

implies that the developed algorithm has high potential to be implemented by 

industry for the purpose of supporting the navigation modules of location-based 

intelligent transport systems. 
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10.3 Limitations and future research  

 

Optimisation test for more operational environments: 

The relative importance of each weight score used in the tMM algorithm was 

optimally derived for urban, suburban and rural operational environments. This 

optimisation test can be further extended to more operational environments: such 

as dense urban, suburban, motorways, university roads, hilly roads, rural roads 

and others.. 

 

Integrating with a routing algorithm: 

For many ITS services, origin and destination points are known before starting a 

trip. Examples include: navigation and route guidance, automatic announcement 

of bus stops and emergency vehicle management. For a given origin and 

destination, a routing algorithm suggests the preferred route based on the shortest 

distance path or the lowest travel time path or the lowest travel cost path. If a 

map-matching algorithm uses the recommended route information obtained from 

the routing algorithm when identifying the correct road segment from candidate 

segments, then the algorithm performance would be improved. Therefore, the 

integration of the MM algorithm with a routing algorithm may improve the MM 

algorithm’s performance. 

 

Derivation of threshold values: 

In this thesis, many threshold values, derived empirically using a small 

positioning data set, were used. These include the distance threshold and bearing 

threshold in the tMM algorithm and an integrity threshold in the integrity 

method. These threshold values need to be further checked for different 

operational environments with large data sets to identify optimal values. 

  

Identification of vehicle location on a selected road link: 

The developed MM algorithm first identified the correct road segment from a set 

of candidate road segments. Then the perpendicular projection of the raw 

positioning point on the selected link gave vehicle position on that link. Further 
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improvement can be done in vehicle position identification on the selected link. 

Here, considering the road width parameter may drastically improve the 

algorithm’s horizontal positioning accuracy. However, most of the GIS maps 

represent a road segment with road central line, ignoring road width. 

 
Development of RNP for ITS:  

It is noticeable from Table 2.3 that only two Required Navigation Performance 

(RNP) Parameters (accuracy and availability) were fully reported in the 

literature. There was partial information on the system integrity and continuity 

parameter for some services. This suggests that the impact of integrity (i.e. 

reliability of final vehicle positing data after map-matching) and continuity (i.e. 

the consequences due to a loss of either system accuracy or integrity) on the 

performance of a system is under development. 

 

Unlike aviation and marine transport, for land navigation vehicles’ position is 

always referred on a spatial road network map. In aviation and maritime, the 

positioning accuracy is measured with respect to the distance between true 

position and the measured position. In case of land vehicle navigation, firstly it is 

necessary to identify a road segment (from a set of candidate road segments) on 

which vehicle is travelling and then the vehicle position on that road segment. 

Here, the RNP parameter accuracy is required to categorise into percentage of 

correct link identification and horizontal positioning accuracy. 
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Frequently used Acronyms 

 

 

 

 
A&E:   Accident & Emergency 

AL:   Alarm Limit 

aMM:  advanced Map Matching 

ANFIS:   Adaptive Neuro Fuzzy Inference System 

ANN:   Artificial Neural Network 

CI:   Commercial Issues 

CR:   Continuity Risk 

DoD:   Department of Defence 

DGPS:   Differential Global Positioning System 

DR:  Deduced Reckoning 

ECEF:  Earth Centred Earth Fixed 

EGNOS:   European Geostationary Navigation Overlay Service 

EKF:   Extended Kalman Filter 

ERP:   Electronic Road Pricing system 

FAR:   False Alarm Rate 

FIS:   Fuzzy Inference System 

FL:   Fuzzy Logic 

FM:  Filtering Method 

GA:  Genetic Algorithm 

GBAS:  Ground Based Augmentation System 

gMM:    geometric Map Matching 

GIS:  Geographic Information Systems 

GLONASS:  GLObal NAvigation Satellite System 

GPS:   Global Positioning Systems 

GNSS:  Global Navigation Satellite Systems 

GPRS:    General Package for Radio Service 

GSM:  General System for Mobile 
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HDOP:   Horizontal Dilution of Precision 

HTL:  Horizontal Tolerance Limit 

ICAO:  International Civil Aviation Organization 

INS:   Inertial Navigation Systems 

IR:   Integrity risk 

ITS:   Intelligent Transportation Systems 

LAAS:   Local Area Augmentation System 

MDR:   Missed Detection Rate 

MEMS:  Micro-Electro Mechanical Systems 

MF:   Membership Function 

MM:   Map Matching 

NN:  Neural Networks 

OCDR:   Overall Correct Detection Rate 

OE:  Operational Environments 

pMM:   probabilistic Map Matching 

RCM:  Range Comparison Method 

RAIM:   Receiver Autonomous Integrity Monitoring 

RMS:   Root Mean Square 

RNP:   Required Navigation Performance 

SBAS:   Satellite Based Augmentation System 

SI:   Safety Issues 

SM:  Snapshot Methods 

SOL:   Safety of Life 

SPR:   System Performance Requirements 

ToO:  Type of Operation 

tMM:    topological Map Matching 

TTA:   Time to alarm 

TWS:  Total Weighting Score 

UERE:  User Equivalent Range Error 

ULIM:  User Level Integrity Monitoring 

VRUC:  Variable Road User Charging 



 
 
 

 203 
 

WLAN:   Wireless Local Area Network 

WSSE:  Weighted Sum of Squares Errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


