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ABSTRACT 

Gas path fault isolation is one of the key techniques in Engine Health 

Management systems. In order to accomplish gas path fault isolation 

successfully for a gas turbine engine, both an accurate off-design performance 

model and an effective fault isolation approach are necessary. In this thesis, two 

original and useful contributions to knowledge are presented: a new gas turbine 

off-design performance model adaptation approach and a new gas turbine fault 

isolation approach.  

This new adaptation approach uses optimal multiple scaling factors obtained by 

using a Genetic Algorithm to scale inaccurate component characteristic maps in 

gas turbine performance models to improve their prediction accuracy in different 

off-design conditions. The major feature of this approach is that it provides non-

linear map scaling and therefore is able to provide more effective adaptation. 

The new fault isolation approach can be used to discover knowledge hidden in 

engine fault samples, transfers that knowledge into rules, and then uses those 

rules for fault isolation. In addition, it is also capable of selecting appropriate 

measurements for fault isolation, dealing with uncertainty caused by 

measurement noise. Enhanced fault signatures, which are represented by the 

measurement deviations and their ranking pattern in terms of magnitude, are 

developed to make gas turbine faults easier to distinguish and hence make this 

fault isolation approach more effective.  

The new adaptation approach was applied to the off-design performance model 

adaptation of a gas turbine, while the new fault isolation approach was 

employed for fault isolation in a gas turbine. The results show that the new 

adaptation approach is very effective in improving the prediction accuracy of off-

design performance models and the new fault isolation approach is not only 

effective in fault isolation but also in selecting measurements for isolation and 

generating fault isolation rules. 
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1 Introduction 

1.1 Gas turbine maintenance 

With the increasing application of gas turbines in civil, military and industry 

fields, gas turbine maintenance becomes more important as it is able to improve 

the availability, safety and economics of gas turbines. Therefore much effort has 

been put into developing an effective maintenance technique. To date, 

maintenance techniques have been developed for three generations: these are 

listed as follows: 

1. First generation: run to failure maintenance which only carries out 

maintenance when gas turbines are broken. 

2. Second generation: preventive maintenance which executes scheduled 

overhauls in order to prevent component failure.   

3. Third generation: predictive maintenance which performs maintenance 

only when it is necessary. 

The first maintenance method is simple and less costly than the others; 

however it is risky and not applicable at the present time as it may lead to 

disasters if failures occur during flight. Thus it can neither ensure the reliability 

nor the safety of gas turbine operation. The second method is able to offer more 

insurance in preventing failures. However it still has several shortcomings: 

firstly, it is very costly since some overhauls may be unnecessary; secondly 

unexpected failures may occur between scheduled overhauls, thirdly, the 

downtime caused by overhauls leads to profit losses. As a result of this, the 

third method was introduced to overcome the shortcomings that the first and 

second methods have and maximally ensure availability, safety and good 

economics. This can be implemented by monitoring the health of gas turbines 

detect and predict faults, and hence appropriate maintenance can be scheduled 

and carried out. The system used to monitor and analyse the health of the gas 

turbine and optimise the gas turbine’s operation is usually referred to as the 

Engine Health Management (EHM) system.  
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1.2 Engine health monitoring 

An EHM system is usually used to deal with the monitoring, detection, isolation, 

predictive trending and accommodation of engine degradation, faults and 

failures [1]. It determines a state of awareness of the engine using tools such as 

data fusion physics based models, data driven models and feature extraction 

techniques, which determine accurate fault isolation for more efficient 

maintenance, predict future faults and deteriorating equipment health, and 

propose maintenance actions to obviate on-board equipment malfunction. 

The main purposes for employing an EHM system are to keep the gas turbine 

operating reliably, minimise total cost of gas turbine operation, asset availability 

and mission readiness while maintaining, and even increasing, safety [1]. These 

above-mentioned purposes are shared by different EHM systems for aero-

derivative, industrial and military engines; however, different EHM systems 

usually have different emphases. In the commercial sector, it is strongly desired 

to keep the total cost of engine operation as low as possible; this can be 

achieved by using EHM systems to reduce the possibility of in-flight shutdowns, 

unplanned engine removals, and cancellations and delays through planned 

maintenance. For military engine users, the prime causes of the implementation 

of EHM systems are to improve the availability of engines in order to reduce 

aborted missions, and provide real-time detection, prediction and evaluation of 

faults which may lead to critical failures. In the industrial sector, the main 

consideration is the down time of gas turbines, which may result in direct 

economic losses.  

The development of EHM systems is almost as old as that of the gas turbine 

engine. Thirty years ago, the term Engine Health Monitoring was used rather 

than Engine Health Management. The difference between them is that the 

former refers to passive observations whereas the latter is an active pursuit 

which is more robust and advanced [1]. To date, two types of EHM systems 

have been developed; ground-based and engine-hosted. The former is usually 
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used for aero-derivative and industrial gas turbines while the latter is more 

suitable to be introduced in the military sector. 

An EHM system usually employs several different techniques, as no single 

technique is able to satisfy all the requirements for detection, isolation, 

prediction and accommodation of all engine faults and failures. Some common 

EHM techniques are listed below [2]: 

Gas path analysis (GPA) 

Gas turbine component deterioration induces a change in configuration of the 

components. Such a change leads to performance degradation of the gas 

turbine, and simultaneously gas path measurement deviations which can be 

considered to be gas path fault signatures. The aim of GPA is to detect and 

isolate the faulty component(s), and quantify deterioration severity based on the 

fault signatures. 

Oil system monitoring 

a. Oil condition monitoring: a change in operating conditions of a gas turbine 

caused by deterioration can cause a change in aeration, temperature, oil 

consumption, and consequently induce a variation in the chemical properties of 

the oil used for combustion in the gas turbine.  Such a variation can be utilised 

for analysis of the deterioration.  

b. Oil debris monitoring: some of the rotary components of gas turbines, such 

as bearings and gears, need to be lubricated in order to reduce their 

temperatures, and the friction between them and the components connected to 

them. The deterioration of these oiled components, which leads to their size 

change, may result in a gradual increase of usage of the oil used for lubrication. 

Such a variation in oil usage can be considered as a signature of component 

deterioration and used for deterioration analysis. 

Vibration monitoring 
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The rotation of components of gas turbines usually induces the components to 

vibrate at certain frequencies, unless there is deterioration or change of 

operating conditions; hence, monitoring the vibration of both the components 

and the overall vibration can provide useful information to detect many faults 

such as compressor or turbine blade fracture, misaligned coupling, bearing 

defect, malfunction of gears and so on. These faults usually cannot be detected 

easily by other health monitoring techniques. 

Engine usage monitoring  

This technique is used for estimating component life and providing very useful 

information to users of gas turbines about when they need to replace 

components or order new ones, and consequently this improves the reliability of 

the gas turbines, reduces their maintenance costs and off line maintenance 

periods. Normally, the life of gas turbine components is determined by 

analysing creep and low cycle fatigue.  

Visual condition monitoring  

Visual condition monitoring is a very simple, accurate and effective technique, 

since many component faults are visible, and do not require any sensors, hence 

avoiding the positive influence resulting from measurement noise or sensor 

bias. Gas turbine internal inspection can be implemented by endoscopes.  

Turbine exit spread monitoring  

This technology is usually used to detect faults taking place in combustors, such 

as blocking and carking of the combustion chamber, a blocked burner, and 

asymmetric distribution of fuel in the combustors.  

Transient monitoring 

During some transient operating conditions (i.e. start up and shut down) of gas 

turbines, some transient condition parameters, such as maximum gas 

temperature, time required to light, and time needed for the start up or shut 
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down, can be utilised to analyse fuel system, starting system, or combustion 

system faults. 

Acoustic monitoring  

Rotary components always produce acoustic emissions, and any physical 

change of components caused by deterioration can lead to a change of level in 

their acoustic emissions which can be considered to be fault signatures. Hence 

the acoustic fault signatures can be used to detect component faults. 

Some thought needs to be given to the employment of health monitoring 

techniques, such as the choice of which components need to be monitored, and 

the appropriate selection of health monitoring techniques. These considerations 

could compromise the performance of cost of the EHM system. If an EHM 

system is too complex, it is possible that it may actually cause an increase of 

maintenance costs. In contrast, if it is too simple, the system may only be 

capable of dealing with a limited number of gas turbine faults and failures.  

Among the above-mentioned techniques, GPA is one of the most powerful as it 

is capable of dealing with many component faults effectively. It is included in 

most EHM systems and thus plays an important role.  

1.3 Gas path diagnostics  

An effective GPA method is a key to building an EHM system because of the 

important role this method plays in the system. Fault detection is relatively 

easier than fault isolation and quantification as it can be done by monitoring 

anomalies in the trend of measurement deviations. Usually fault isolation needs 

to be carried out prior to fault quantification to identify faulty component(s) 

(some GPA methods execute both of isolation and quantification 

simultaneously); hence successful fault isolation is essential to GPA. No matter 

how successful the fault quantification is, it can be misleading if a wrong fault 

isolation solution is provided.  
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In addition, the gas turbine performance model, which is able to simulate 

thermodynamic behaviour of clean and degraded gas turbines (gas turbines 

with component faults at different operating conditions, has a significant 

influence on the quality of gas path diagnostics. The gas turbine performance 

model is required by almost every existing method. Some of the methods use 

the model directly in the diagnostic process while others need it to generate 

essential gas turbine deterioration data, and then analyse such data to obtain 

useful information for diagnostic purposes.  

Therefore, the fault isolation method and the performance model are two of the 

most important aspects that need to be considered in gas path diagnostics.  

1.4 Gas path analysis based fault isolation  

The prime driver of the implementation of gas path analysis based fault isolation 

is to identify faulty components; however, there are also other important 

problems that may need to be dealt with. The relevant problems that a gas path 

diagnostic method may face are listed as follows: 

 Fault isolation: to identify the faulty component. 

 Measurement noise and sensor bias: GPA is to implement diagnostics 

based on measurement data, and measurement data usually have 

uncertainty due to measurement noise, sensor bias or both. Such an 

uncertainty can be reduced using measurement noise reduction 

approaches; however, they cannot be eliminated completely.  

 Limitation of measurement number: in practice, the number of available 

measurements for diagnostics is always limited due to high cost and 

installation difficulties.  

 Measurement selection: selecting appropriate set of measurements for 

fault isolation is important since it has great impact on the quality of 

diagnostics.  
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 Complexity: the high complexity of the diagnostic method can lead to 

higher costs.  

 Computational speed: in order to make a diagnostic approach suitable 

for on-wing applications, the computational speed is one of the key 

factors needed to be considered, especially for aircrafts not equipped 

with high performance computers.  

 Capability to provide expert knowledge: users of diagnostic systems can 

benefit from the expert knowledge to understand and solve diagnostics 

problems. 

An effective gas path based fault isolation method should be able to solve as 

many as possible of the problems listed above.  

1.5 Research objectives and strategies 

The research objective of this study is to develop two approaches for achieving 

good fault isolation: the first approach is to ensure the prediction accuracy of the 

engine performance model; the second approach is able to accurately isolate 

component faults and also solve most the fault isolation problems listed in the 

previous section.  

The strategy to achieve the research objective contains the following steps: 

1. To define the requirements for an effective gas turbine off-design 

performance model adaptation and a gas path analysis based fault 

isolation method. 

2. To carry out a literature review of existing gas path based fault isolation 

and gas turbine performance model adaptation techniques, and obtain a 

good understanding of their mechanisms, advantages and shortcomings.  

3. To construct a novel gas turbine off-design performance model 

adaptation method and a gas path based fault isolation method  
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4. To test the novel methods by applying them to performance model 

adaptation and fault isolation of gas turbines respectively. 

5. To analyse the results and check if the requirements have been met or 

not, if not, improve the methods and go back to step 4. 

6. To evaluate the potential of the methods and make recommendations for 

future studies. 

1.6 A guide to this thesis 

Section 1 introduces gas turbine maintenance, Engine Health Management 

systems, gas path diagnostics, and the importance of gas turbine performance 

model adaptation and gas turbine fault isolation techniques, and also states the 

reasons why this research needed to carried out and the main research 

objective.  

Section 2 focuses on different aspects: one is a literature review of existing gas 

path diagnostic techniques, including a study of their advantages and 

shortcomings, and the other is a literature review of gas turbine performance 

model adaptation approaches. This section also contains summaries for gas 

path diagnostics and gas turbine performance model adaptation.  

A new gas turbine performance model adaptation method developed by the 

author is presented in Section 3. In this section, the methodology, application, 

verification and evaluation of this approach are described.  

In Section 4, three different versions of a new rough set based fault isolation 

introduced by the author and different fault isolation frameworks integrating with 

the developed approach are described. The application, verification and 

analysis of the methods and frameworks are also presented in this section. 

Conclusions for the developed gas turbine performance model adaptation and 

fault isolation methods are made in Section 5 which states the pros and cons of 

these methods and also the contribution to knowledge made by the author in 

this research. 
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In Section 5, several conclusions are made on the basis of the work presented 

in this thesis. 

The last section, and 6, some recommendations for future works, which, may be 

worth carrying out to further improve the developed methods or integrate the 

methods with other techniques to form more robust gas path diagnostic 

techniques, are presented. 
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2 State of the art 

2.1 Gas path diagnostics 

2.1.1 Introduction 

When a gas turbine is in service, some of their components need to work under 

high pressure, high temperature and high stress conditions in long periods. This 

may result in component fouling, erosion, corrosion, rubbing wear, labyrinth 

deal damage, and hot end component damage, and consequently change of 

size of the components. Such a change will lead to performance degradation of 

the gas turbine, and simultaneously measurement deviations which can be 

considered to be fault signatures. The aim of GPA is to detect, and isolate the 

faulty component(s), and quantify degradation level of the faulty component(s) 

based on the fault signatures. The general process of GPA based gas turbine 

diagnostics is illustrated in Figure 2-1. 

 

Figure 2-1 Gas turbine diagnostics based on GPA [3] 

2.1.2 Component faults 

There are many different sorts of gas turbine component faults. Among them, 

the following faults [2] [4] are major factors causing degradation in performance 

of gas turbine components and cause gas path fault signatures (gas path 

measurement deviations): fouling, erosion, corrosion, rubbing wear, labyrinth 
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seal damage, and foreign object damage. Therefore the scope of the faults that 

gas path diagnostics is able to effectively deal with is limited to the above-

mentioned faults. Each of the faults is described in this section.  

Fouling 

When gas turbines are in service, large amount of air needs to pass thought 

their cores, and particles in the air are likely to adhere to their components. In 

addition, remains of combustion resulted from impure fuels may adhere to 

turbines. Both the phenomena are usually referred to as fouling which leads to 

degradation of flow capacity and efficiency of the components. Compressor 

fouling is the most common performance deterioration although fouling may 

take place in both the compressor and the turbine. Compressor fouling usually 

can be reduced by washing; however washing is not applicable for turbine 

fouling due to the extremely high temperature of and the location of turbines, 

which makes turbine fouling cleaning more difficult. 

Erosion 

Hard particles in the fluid passing through gas turbines can result in erosion on 

surfaces of some components. The erosion process can be speed up if gas 

turbines are operating in polluted atmospheres with solid particles. Erosion 

always leads to decrease in flow capacity and efficiency for compressors, and 

decrease in efficiency but increase in flow capacity for turbines.  

Corrosion 

Like erosion, corrosion also causes material loss of components, but it normally 

caused by chemical reaction between component materials and some elements 

or impurities in the fluid passing through the components. Compressor 

corrosion can by caused by salt, mineral acids and reactive gases, while more 

serious corrosion resulted from elements and high temperature can occur on 

turbines. The corrosion causes similar variation in health parameters of 

component to erosion does. Corrosion prevention can be carried out by coating 

of blades of turbines and compressors.  
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Rubbing wear  

Several factors, such as relative thermal growth between the static and rotating 

members, centrifugal growth of the rotating member, axial movement of rotating 

pars, distortion of casing relative to the rotors, and engine operating procedure, 

can induce contact between static parts and rotating parts with very high speed, 

and subsequently can result in material loss of rotor blade tips or knife edge 

seal. In order to reduce the influence of rubbing wear, abradable surfaces are 

employed by many gas turbines.  

Labyrinth seal damage 

Labyrinth seal damage doesn’t cause material losses on compressors or 

turbines; however it causes leakages on cavities connecting to compressors or 

turbines. Such leakages usually have larger influences on the efficiency of 

components affected by the leakages than on the flow capacity. 

Foreign object damage 

The faults mentioned earlier in this section, whose severity increases as time 

goes on, induce gradual deteriorations. Larger or hard objects such as birds 

sucked into gas turbines can cause serious damages to the gas turbines, and 

the deteriorations caused by the damages are instant. Foreign object damage 

usually causes the requirement to replace the damages components with new 

ones since it is unlikely to recover the damage caused by it. It can result in 

sudden reduction of efficiency of the damaged components or mass flow 

capacity of them.  

2.1.3 Component characteristics 

The component faults mentioned in the previous section usually cause 

variations of the performance characteristics of the faulty components which 

can be compressors, burner, and turbines. The characteristics of the 

components are usually represented by their corresponding characteristic 

parameters such as corrected mass flow rate (WAC) (i.e. flow capacity), 



30 

pressure ratio (PR), isentropic efficiency (ETA), enthalpy drop ratio (DH), burner 

inlet pressure (BIP), and burner temperature rise ( ). The characteristics of 

components varies with different operating conditions; hence component 

characteristic maps are usually used to describe the variation of the 

characteristics caused by the change of operating conditions. Examples of 

compressor, burner and turbine characteristic maps are shown in Figure 2-2, 

Figure 2-4 and Figure 2-3 where CN is corrected rotational speed. 

 

Figure 2-2 Compressor characteristic map 

 

Figure 2-3 Burner characteristic map 
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Figure 2-4 Turbine characteristic map 

In this study, the severity of performance degradation of components caused by 

the faults described in Section 2.2.2 are represented by degradation indices 

including flow capacity index (DIFC), pressure ratio index (DIPR) and isentropic 

efficiency index (DIE) (the details of the degradation indices can be found in [5]). 

Each of the degradation indices represents shift of speed lines in a certain 

direction (i.e. variation of its corresponding characteristic parameter) on 

compressor, burner, or turbine characteristic maps caused by their degradation. 

For example, if the degradation index DIFC of a faulty compressor is 5%, it 

means its flow capacity drops 5% and the points on each of the speed lines will 

be moved to new locations where the mass flow rates are 5% lower than 

before, as shown in Figure 2-5 where point A is a point on a speed line of the 

clean component map and point A* is the new location of point A after reducing 

the compressor’s flow capacity by 5%. 

As mentioned earlier, different components have different performance 

characteristics parameters; hence the level of performance degradation of each 
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of them can be represented by different degradation indices. The lists of 

degradation indices of major components are given in Table 2-1. 

 

 

Figure 2-5 Degradation of flow capacity of a compressor 

 

Table 2-1 Characteristic parameters and degradation indices of different 

components 

Component Characteristic Parameter Degradation indices 

Compressor WAC, ETA, and PR DIFC , DIE , DIPR 

Turbine WAC, ETA and DH DIFC , DIE , DIDH  

Burner ETA DIE 

 Shift 

WACA 

 A  A* 

 ETA 

PR 

WAC 

WAC 

 

 

 A  A* 
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WACA*= WACA X 95% 
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  Degraded map 
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2.1.4 Measurement uncertainty  

Due to measurement noises and sensor biases, in practice, gas turbine gas 

path measurements are always subject to uncertainty. This uncertainty always 

results in differences (errors) between what we measure and what is true. 

Measurement noises and sensor biases usually lead to random errors and 

constant errors respectively. GPA approaches isolate faults by analyzing the 

deviation of measurements caused by deterioration, and constant errors caused 

by sensor biases are more likely to influence the true values of measurements 

rather than their deviations, hence in this study, only measurement noises are 

considered. The order of magnitude of the measurement errors due to noises 

can be the same as that of measurement deviations resulted from gas turbine 

component faults. Hence measurement errors can easily lead to misdiagnosis 

or poor diagnostic results. Much effort has been made to create effective 

approaches to reduce gas path measurement uncertainty. As a result of this, 

different approaches have been developed, such as Rolling Average, 

Exponential Average and auto-associative ANN. A brief introduction of the three 

above-mentioned approaches is included in this section. 

Rolling average 

It reduces noise for a measurement by taking a rolling average (RA) as 

expressed in Equation (2-1) of its values in certain last period: 

  (2-1) 

 

where  is the value of a measurement at time k, is the rolling average of the 

measurement, I is the total number of measurement values that involved in the 

rolling average calculation process.  

Exponential average 
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In this method, an exponential average (EA) as expressed in Equation (2-2) of a 

measurement is calculated by its current value and the average of the last ten 

values, where the current value is associated with a weight with 15% and the 

average with a weight with 85%. 

 
=  

(2-2) 

 

Auto-associative ANN  

Auto-associative ANN can be used as a filter for removing noise from 

measurements. More details about noise reduction using auto-associative ANN 

can be found in [6]. Compared with the above-mentioned two methods, auto-

associative ANN has an advantage that it can filter noise with much less time 

delay.  

2.1.5 Measurement selection 

GPA is used to analysis engine component deterioration based gas path 

measurement deviations caused by the deterioration. Usually the number of gas 

path measurements that a gas turbine engine can be equipped with is limited in 

practice due to high cost or installation difficulties. Thus selecting appropriate 

measurements affects GPA base diagnostics approaches to provide reliable 

diagnostic results.  

So far, many measurement selection methods have been developed. Stamatis 

et al. [7] used singular value decomposition to analyze the relationships 

between measurements and component health parameters and developed a 

measurement selection method based on sensitivity analysis. Provost [8] 

introduced a selection method based on observability and correlation analysis. 

Ogaji et al. [9] studied the impact of measurement selection on the quality of 

diagnostic results by ranking all potential measurements by their sensitivities to 

different faults and using different combinations of measurements having higher 

sensitivities for diagnostics. However the number of possible combinations can 
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be very high and hence the selecting process may be very time-consuming. 

Sowers et al. [10] introduced a measurement selection approach based a GA 

which is able to avoid combinatorial selection process and search for an optimal 

selection solution. However the GA searching process sometimes can be 

computationally expensive. Jasmani et al [11] developed a sensitivity and 

correlation analysis based method to select appropriate measurements for 

multiple-fault diagnostics. 

Most of the existing measurement selections focus on selecting appropriate 

measurements to achieve optimal fault quantification as many GPA based 

diagnostic approaches carry out fault isolation and quantification 

simultaneously. However there are also approaches which isolate faults prior to 

fault quantification. Thus it is may be worth to study a proper method for 

selecting measurements for fault isolation. 

2.1.6 Gas path analysis technologies  

Urban [3] made a breakthrough in gas turbine diagnostics in 1967 by 

introducing a linear model based approach, which generally called linear Gas 

Path Analysis (LGPA). This approach relies on the assumption of linearity of 

gas turbine thermodynamic behaviour. Many optimal estimation theories, such 

as weighted-least squares [12], and Kalman filter [13] have been employed to 

help LGPA to deal with measurement noises and sensor biases. Weighted-

least-squares is used by General Electric in their diagnostic tool (TEMPER) 

[14]. Pratt and Whitney employed Kalman filter with several adaptations in their 

diagnostic tools (MAPIII, TEAMIII, EHM and ADEM). Rolls Royce employed a 

modified version of Kalman filter which was developed by Provost [8] and is 

called “Concentrator” in their diagnostic tool (COMPASS). In order to take the 

non-linearity into account, benefiting from the development of engine 

performance model non-linear GPA diagnostic approaches [15][16] [17] were 

developed. However non-linear model based approaches have a shortcoming 

that it may get stuck at a local optimum. Hence Zedda et al. [18] introduced 

non-linear diagnostic approach based on Genetic Algorithm (GA) to overcome 
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this shortcoming. Since the 80th there has been a rapid growth in the interest of 

the development of diagnosis approaches without involving complex 

performance models in the process (non-model based methods), this leaded to 

the successful applications of some artificial intelligence (AI) approaches in gas 

path diagnostics, such as artificial neural networks (ANNs) [19], rule based 

fuzzy logic [20], Bayesian-belief networks (BBNs) [21] and expert system (ES) 

[22]. However, these AI based approaches usually need to learn from the 

dataset which contains large information regarding to engine degradation, in 

order to obtain essential knowledge for fault detection, isolation, or 

quantification, and engine performance models are always still required to 

simulate degraded engines’ performance to construct such a dataset. Most of 

the above-mentioned diagnostic approaches will be described in detail in the 

following sections.  

2.1.7 Linear gas path analysis 

In 1967, a linear model based diagnostic approach generally called Linear Gas 

GPA was proposed by Urban [23]. In this approach, the relationship between 

the changes in measurements (independent engine parameters) and in health 

parameters is assumed to be linear. Such a linear relationship is expressed in 

Equation (2-3) in a matrix form:  

 
 

(2-3) 

The above equation can be converted to: 

 
 

(2-4) 

 

Where  is the measurement vector,  is the health parameter vector, H is 

usually called Influence Coefficient Matrix (ICM) and it inverse matrix H-1 is 

referred to as Fault Coefficient Matrix (FCM).  

The Equation (2-4) can be used to calculate the change in health parameters 

caused based on the deviation in measurements in real engine. Linear GPA has 

the following advantages: 
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1. It is able to perform multiple fault diagnosis, which is a breakthrough in 

gas turbine diagnosis.  

2. It is also capable of implement of fault quantification which can be 

represented by the change in health parameters. 

3. It has low complexity. 

However it also has the following limitations to its application in gas turbine 

diagnosis: 

1. ICM must be available; hence an engine performance model is 

necessary in order to obtain such a matrix.  

2. ICM is invertible in order to obtain FCM; therefore the number of 

measurements must not be less than the number of health parameters. 

3. It cannot deal with measurement noises and sensor biases. 

4. The assumption of linearity limits its application as when the deviation in 

health parameters increases the relationship between the health 

parameters and measurements become more non-linear and the 

effectiveness of LGPA reduces. 

2.1.8 Non-linear gas path analysis 

Nonlinear GPA was developed to overcome the limitations caused by the 

assumption of linearity in linear GPA by solving the nonlinear relationship 

between the changes in measurements and in health parameters. House et al. 

[16] developed an iterative non-linear GPA method. Escher [17] did further 

development by introducing a nonlinear GPA method with an iterative method 

called Newton Raphson.  

As discussed in the previous section, the linear relationship between 

measurement vector and health parameter vector can be expressed by 

Equation (2-5) below: 

 
 

(2-5) 

In the nonlinear GPA method, a correction  is introduced to the solution 

vector: 
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 new = old+  
(2-6) 

where new is the new predicted health parameter vector after an iteration, and 

old is the previous predicted health parameter vector. 

By using Newton Raphson method, as shown in Figure 2-6, the process in 

Equation (2-6) is repeated, after each iteration, according to new, the predicted 

 can be calculated by Equation (2-3), if the difference between the predicted 

and actual measurement vectors is too large, then another iteration will be 

carried out until the difference become less than a threshold defined by the 

user. 

             

Figure 2-6 Illustration of nonlinear GPA [17] 

The accuracy of degradation prediction can be largely improved by the 

introduction of the iteration process. Although the introduction of the iteration 

process addresses the limitations caused the assumption of linearity, nonlinear 

GPA still inherits several shortcomings from linear GPA, such as:  

1. Influence Coefficient Matrix must be available.  
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2. The number of measurements must not be less than the number of 

health parameters. 

3. It cannot deal with measurement noise and sensor bias. 

In addition, the iteration process also causes other problems: 

1. It may get stuck in local optimums.  

2. It may not be able to converge at all. 

3. Increase of computational time and complexity of the diagnostic system    

2.1.9 Kalman filter based GPA: linear approach 

Kalman Filter (KF) [24] is an optimal estimation method, which processes 

measurements to minimize estimation error of the stat of a dynamic system with 

noisy measurements. KF has been successfully applied in lots of different fields. 

The concept of Kalman Filter, a linear filtering approach, is based on the 

following assumptions, noises are time-independent, and are Gaussian 

distributed. The following five equations are employed in KF to calculate an 

optimal solution (i.e. optimal health parameter vector) at certain time: 

State Equation: 

  (2-7) 

Predicted State Error Covariance Equation:          

  (2-8) 

Kalman Gain Equation: 

  (2-9) 

Measurement Equation: 

  (2-10) 

Updated State Error Covariance Equation: 
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  (2-11) 

 

Where: 

      is predicted state vector (i.e. health parameter vector) at time k 

 is state vector after optimization at time k-1 

      is state vector after optimization at time k 

V1        is the state transition model 

V2        is the control-input model which is applied to the state control vector 

      is the Influence Coefficient Matrix 

      is predicted state error covariance at time k 

       is state error covariance after optimization at time k 

  is state error covariance after optimization at time k-1 

      is the Kalman gain  

       is state control vector 

         is process covariance  

         is covariance of measurement noise  

       is measurement vector at time k 

The process of optimization based on Kalman filter is shown in Figure 2-7, it 

usually contains 2 steps:  

 Step1: Prediction of State (i.e. degradation): Equation (2-7)) is used to 

predict the state of a system. Next, based on Equation (2-8)), calculate 

predict state error covariance at time k.  

 Step2: Optimization of State: Then in Equation (2-9) it uses the predict 

state error covariance and covariance of measurement noise to calculate 

a factor  called Kalman gain which defines  how much the predicted state 

vector and the state vector calculated by measurement vector should be 

weighted in order to obtain a optimal state vector. Next, calculate the 
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optimal state error covariance in Equation (2-11). The optimal state 

vector and optimal state error covariance at time k then will be used to 

predict state vector and stat error covariance for next cycle. The 

estimation error will keeps reducing as the operation cycle goes on. 

 

 Figure 2-7 Operation cycle of Kalman Filter [24] 

 

The advantages to apply Kalman filter in GPA are listed as follows [17] [18]: 

1. It can deal with measurement noises which are Gaussian distributed. 

2. It is an efficient optimal estimation method, which leads to low cost. 

3. Its operation process is recursive, only information from one time before 

the operation time is needed.  Therefore it has low requirements on 

computer memory.  

4. It also can deal with sensor error by introducing sensor biases in 

operation cycle   

However it also faces the following problems [17] [18]: 

1. Kalman Filter always tries o “smear” the faults caused by few gas turbine 

components or sensors over many components or sensors. This problem 

is usually referred to as “smearing” effect. 
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2. It is based on an assumption that the process noise covariance is 

constant in the theory, but in reality this value is always not a constant 

value.  

3. It is still a linear approach; hence it shares one of the shortcomings that 

linear GPA has, which is that when the deviation in health parameters 

increases the prediction error will increase. 

4. The estimation process sometimes does not converge.  

2.1.10 Kalman filter based GPA: nonlinear approach 

The KF mentioned in the previous section is based on a linear assumption. 

However gas turbine thermodynamic behaviour is usually nonlinear. The 

intention to improve the performance of linear KF based GPA by modelling the 

engine thermodynamic behaviour more accurately leaded to the employment of 

nonlinear KF. Two of the most common nonlinear KF are extended Kalman 

Filter and iterated extended Kalman Filter. However, according to Marinai [25], 

both of them produce biased and sub-optimal estimates due the linearization of 

the cost function and this may lead to low accuracy estimation, apart from that, 

Zedda [18] discussed another potential solution which divides the cost function 

minimization (e.g. engine health state prediction error minimization) into two 

steps, a linear step followed by a non-linear step, by introducing new non-linear 

combinations of the unknown states in the first step. 

2.1.11 Weighted-Least-Squares: linear approach  

Weighted-Least-Squares (WLS) [26] is another optimization method which has 

been applied in GPA. It is able to take measurement noises and sensor biases 

into account. In this approach, WLS is employed to minimize the error between 

the actual measurement deviations and the predicted. This is accomplished by 

minimizing a cost function denoted by J and it is expressed in Equation (2-12) 

below: 
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(2-12) 

 

where HP1, HP2, … , HPi, are health parameters,  is standard deviation (a 

standard deviation can be used to represent the statistical variation of a health 

parameter or a measurement for overhauled engines [25]), e is a measurement 

error, Z1, Z2, … Zi, are measurements, the subscript  

 is the total number of health parameters, and the subscript i denotes the 

number of measurements. 

In Equation (2-12), there two types of unknowns: health parameter and 

measurement error, however each measurement error can be expressed by the 

difference between the predicted measurement which can be represented by 

the health parameter deviations and the ICM and the actual measurement. 

Therefore the minimum J can be calculated by solving: 

 
 

(2-13) 

 
 

(2-14) 

 
                               ……. 

…… 

 
 

(2-15) 

 

From above equations a set of optimal health parameter deviations in terms of 

minimizing the total error can be calculated out: 

From Equation (2-13)=> Optimal  
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From Equation (2-14) => Optimal  

…… 

From Equation (2-15) => Optimal  

 

The cost function J can also be expressed in Equation (2-16) by matrix 

nomenclature: 

  (2-16) 

 

where , ,   and R have been defined in the previous section, and the 

solution is shown in Equation (2-17): 

 
 

(2-17) 

where  is the optimal health parameter vector to minimise J. 

The major advantage of WLS based GPA is very obvious: it is able to deal with 

measurement noises and sensor biases. According to Doel [26], its major 

limitations are: 

1. This is a linear approach; hence it cannot provide accuracy solution for 

large degradation caused component(s). 

2. The “smearing” effect, described in the previous section, also occurs in 

this approach 

2.1.12 Genetic Algorithm  

GA is a robust optimization algorithm, which is used to search for optimized 

approximate solutions for optimization problems. Unlike traditional methods that 

possibly lead to local optimized solutions, GA is a global searching method, and 

it also can be categorized as one of stochastic search methods. Zedda et al. 

[27] first introduced a gas turbine sensor fault diagnostic system based on GA 

which takes measurement noises and biases into account. Later on, Gulati et al 

[28] made further development on the application of GA in diagnostics and 

developed a multiple-operation-point analysis method based on GA, which is 

http://en.wikipedia.org/wiki/Approximate
http://en.wikipedia.org/wiki/Problem
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able to perform diagnostics even there is only limited available measurements. 

GA theory is developed based on the Theory of Evolution of Darwin’s and the 

Theory of Heredity of Mendel’s. So the following concepts are employed from 

these two theories: 

 String:  chromosome in the Theory of Heredity of Mendel’s and stands 

for a potential solution to a problem.  

 Population: a set of potential solutions (Strings). 

 Gene: It is used to describe characteristics of strings.  

 Gene Position: It represents location of genes in a string. 

 Fitness: It is used to evaluate the effectiveness of each solution.    

 Selection (Reproduction): It is a process to select strings that have higher 

fitness to produce next generation (new strings). It is also referred to as 

reproduction. 

 Crossover: It is a process to switch genes that have the same gene 

positions in two strings to produce two new strings. 

 Mutation: It is a process to randomly change the value of genes of strings.  

Generally, as shown in Figure 2-8, the searching process of GA has the 

following steps. 

 Coding: convert potential solutions of the real problem to strings. Coding 

is the bridge connecting real problems and GA.  

 Initialization: randomly choose strings to form an initial population. The 

size of the population depends on the nature of the problem.  

 Selection (Reproduction): calculate a fitness for each string, then based 

on the fitness of each string, select the strings with higher fitness, and 

eliminate the rest.  

 Crossover: those selected strings are randomly paired off, and switch 

some genes in the same gene position to produce the same number of 

new strings as the number of the selected strings (strings have higher 

fitness are more likely to be selected for crossover).  
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Figure 2-8 Illustration of a generation cycle of Genetic Algorithm 

 Mutation: randomly change value of some gene(s) of string(s) to 

generate new strings. The intention of mutation is to enhance the 

diversity from the generation of previous population to the next.  

 This generation cycle will be repeated until one of the following 

conditions has been satisfied: a string with a desired fitness has been 

found; limitation of computing time or cost has been reached; the number 
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of generation has reached the value defined by operator; a global optimal 

solution has been found. 

The gas turbine faults diagnosis process using the Genetic Algorithm is similar 

to the process shown above. Equation (2-18) can be considered as the real 

problem that needs to be solved.  

 
 

(2-18) 

where  and  have been already defined in previous sections,  is 

measurement noise vector, and  is sensor bias vector.  

Each different  is a potential solution, and hence can be considered to be a 

string. In order to represent the fitness of string, an objective function, which 

measures the difference between the actual measurement parameter vector 

and the simulated measurement parameter vector, can be introduced, and the 

value of the fitness of string should be inversely proportional to the value of 

objective function. A classic objective function is expressed in equation (2-19). 

 
OF=  

(2-19) 

where  the actual measurement is vector and  is the predicted 

vector resulted from a solution ( ) obtained from a Genetic Algorithm. In order 

to calculate this , an engine model is needed.  

Compared with traditional calculation based diagnostic methods, GA has 

following features [27]:  

1. It is a global search algorithm; hence it is unlikely to get stuck in local 

optimizations. 

2. It is capable of dealing with non-smooth functions or functions with 

multiple peaks. 

3. GA directly deals with strings rather than numbers, leads to wide 

application of GA since the strings not only can represent numbers, but 

also structure object such as matrices, sets and so on.  
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However GA is also facing few limitations: 

1. The GA searching process can be very time-consuming. 

2. It is not very efficient since it still a stochastic search method. 

3. It can find approximate location of optimal solution but cannot locate 

optimal solution very accurately within a short period. 

4. Despite the crossover and mutation methods, the quality of the optimal 

solution provided by GA is largely depends on the number of generation, 

population size, and the size of searching area (i.e. the amount of all the 

potential solutions). The larger number of generation and population size, 

the better solutions can be found. For constant number of generation and 

population size, if the size of search-space can be reduced and 

simultaneously make sure that the optimal solution still locates in the 

reduced search-space) the possibility to obtain better solutions in each 

generation increases. Therefore due to these features, it is difficult to 

operate GA.  

2.1.13 Expert system 

ES is the first application of artificial intelligence (AI). The first ES was proposed 

in 1956. After then, many ESs were developed, but most of them were used for 

research purposes. In 70th, as the development of computer languages, ES was 

further completed. In 1990, ES was applied in gas turbine diagnostics by Doel 

[29]. Further applications of ES have been done by Torella [30], Winston et al. 

[31], Dundas et al. [32], and etc. So far, the application of expert systems in gas 

turbine diagnostics is still popular. The existing ESs include rule-based, model-

based, and case-based systems. Some of the developed expert systems are 

listed as follows [33]: ENGDOC, TEXMAS, HELIX, XMAN, TIGER, IFDIS, 

SHERLOCK, and etc. In an ES based on diagnostic approach, existing 

knowledge of gas turbine diagnostics is employed and usually represented in a 

way that similar to human beings’ logic, and then such knowledge can be used 

to solve gas turbine diagnostic problems. 
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An ES normally consists of three parts, knowledge base, inference engine and 

user interface, the definition of them is shown below. A configuration of a simple 

expert system is illustrated in Figure 2-9.  

 Knowledge base: It uses knowledge representation formalism to capture 

and codify knowledge of human experts or other sources. Then the 

knowledge being codified, which can be used by inference engine to 

search right solutions for certain problems, will be stored in knowledge 

base.  

 

Figure 2-9 Illustration of a simple ES 

 Inference Engine: By using inference rules (e.g. if-then rules) and 

knowledge from knowledge base, inference engine is not only able to 

find solutions for certain tasks, but also able to produce an explanation to 

each task.  

 Interface: allow user to input data and the system output solutions or 

explanation.    

ES based diagnostic approaches have two major advantages: 

1. It can provide interpretations to each solution, which helps user to 

understand the problems they are dealing with.  

2. It can deal with imprecise and uncertain information.  
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and the shortcomings of them are: 

1. It cannot be adapted unless knowledge is modified or updated. 

2. Its performance relies on the quality of the knowledge provided. 

3. It cannot deal with the problems that are not encountered in knowledge 

base 

2.1.14 Artificial neural network 

Artificial neural networks (ANNs) are a robust information process system. Early 

effort to apply the ANN in gas turbine diagnostics was made by Dietz et al. and 

Denny [40]. So far, many different ANNs have been applied in gas turbine 

measurement noise reduction, sensor fault detection, fault detection, isolation 

and quantification. Li [33] described existing applications of the ANN in gas 

turbine diagnostics, and pointed out that the most popular ANN used in gas 

turbine diagnostics is Feed-Forward Back-Propagation Networks (FFBPNs). 

Many researchers have made contributions to the application of FFBPNs in 

diagnostics, such as Torella et al. [41], Eustace [42], Ogaji et al.[19] and so on. 

Some of other types of ANNs have also been employed. Eustace et al. [43] 

introduced a probabilistic ANN for diagnostics, and a self-organizing ANN was 

used in an EHM system by Roemer [44]. 

The human brain, which roughly consists of 1010 neurons, is a highly complex 

and very robust information analysis system. Simulation of functions human 

brain for solving real problems has been a popular research field for many 

years; this leaded to the development of artificial neural networks, which has 

similar structure to biological neural networks (e.g. the human brain). An 

illustration of a single neuron is shown in Figure 2-10 below. 
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Figure 2-10 Illustration of a single neuron 

 

In Figure 2-10, We1, … Wen, are weights, which used to store knowledge. Each 

neuron performs a weighted sum of its own inputs, and consequently passes 

the sum through an activation function, which controls the activation level of this 

neuron. An ANN consists of many neurons; and different networks can be form 

by connecting neurons in different ways. The way that the ANN works is to learn 

from samples regarding to the problems needed to be solve, and store 

knowledge that obtained from the learning process in the ANN by adjusting 

weights connecting neurons, and once the knowledge has been appropriately 

stored (i.e. appropriate weights have been found), the neural network can be 

used to solve new problems in the range of the samples. The process to adjust 

weights is usually referred to as leaning. 

Existing neural networks can be classified by the type of the learning algorithm 

employed by them, or by the way signals are transferred in the networks. There 

are majorly three types of learning algorithms: supervised, unsupervised, and 

reinforcement; and there are two ways to transfer signals in networks: feed-

forward and feedback (also known as interactive or recurrent). For feed forward 

neural networks where connections between the neurons do not form cycles, 

signals always transfer on one direction, and it doesn’t move backwards, while 

in feedback neural networks, signals can move in both directions since the 

connection cycles are included. Unlike feed forward neural networks which fixed 

state, in order to reach an equilibrium state, feedback neural networks need to 

change their states continuously; therefore their complexity can be very high. 
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Take the FFBPN as an example to demonstrate how it is used for diagnostics. 

An illustration of a multiplayer FFBPN is shown in Figure 2-11. Normally, The 

FFBPN operates in two steps:  

 Learning: in this step, samples (i.e. training data) are used for adjusting 

weights by minimizing the error between predicted outputs from the 

network and the actual outputs in the samples. 

 Operation: once the learning or training step is accomplished, an output 

can be predicted by the network for each new input. 

 

Figure 2-11 Illustration of a multiplayer FFBPN 

 

 

Figure 2-12 Illustration of a gas turbine diagnostic framework based on FFBPNs 

[19] 
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A diagnostic system based on ANN usually involves more than one network as 

shown in Figure 2-12. In this figure, the system contains different networks for 

different tasks, e.g. different networks need to be built for fault detection, 

isolation, and quantification respectively. Having a network for each task, such a 

diagnostic system performs can provide better performance [19]. The ANN 

based GPA has following advantages: 

1. It addresses the non-linearity problem of gas turbine diagnostics. 

2. It can deal with the uncertainty of measurements. 

3. The ANN can be used to form filters to pre-process measurements to 

reduce measurement noises. 

But it also has some limitations: 

1. Large amount of training samples are required to train ANNs.  

2. The learning or training process can be time-consuming; however this 

issue may be becoming resolvable as the fast development of the 

computer. 

3. It cannot deal with the problems that are outside the range of the 

samples used for learning [45]. 

4. It can only provide solutions to diagnostic problems but it is difficult for it 

to give interpretations to the solutions [45], since it is a “black-box” 

modeling approach.  

2.1.15 Fuzzy logic 

Fuzzy logic is a generalization of fuzzy set theory that introduced by Zadeh in 

1965. Tang [46] developed an ANN and fuzzy logic based gas turbine 

diagnostics system. A fuzzy rule and case based expert system was introduced 

by Siu et al. [47]. Ganguli [48] presented a fuzzy logic based helicopter rotor 

fault isolation system. Karvounis et al. [49] introduced a diagnostic system using 

hybrid model-based and fuzzy logic approach. Marinai et al [45] developed a 

non-linear model based fuzzy logic system at Cranfield University.  
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Fuzzy logic is an approach that solves problems by formalizing the human’s 

reasoning capability that is approximate rather than precise [33]. Usually, the 

conventional way (e.g. crisp set) to describe affiliation between en element and 

a set is to use true and false logics, i.e. an element either belongs or doesn’t 

belong to a set. In fuzzy set, a notation called membership function is 

introduced to describe affiliations between elements and sets instead of true 

and false logics. For example, assuming there is a car with a speed of 100 

km/h, in order to define how fast this speed is, the conventional way is to set up 

a boundary between the crisp sets of “fast speed” and “slow speed” and the 

speed of car can be classified into to one of the sets, while in fuzzy set theory, 

the sets of “fast speed” and “slow speed” doesn’t have such a boundary, and 

the speed can have two separate membership functions (one for “fast speed” 

and the other for “slow speed”) to describe the speed of the car. Each 

membership function maps the same speed to a degree of membership in the 0 

to 1 range. These memberships can then be used to determine how fast or slow 

the speed is. An illustration of comparison between the crisp set and the fuzzy 

set using the above-mentioned sample is shown in Figure 2-13.   

 

Figure 2-13  Comparison between crisp set and fuzzy set 

A fuzzy logic system, which normally involves fuzzification, rule library, fuzzy 

inference and defuzzificaiton, is graphically represented in Figure 2-14. Fuzzy 

logic based GPA usually has the following steps [25].  

http://en.wikipedia.org/wiki/Reasoning


55 

 

Figure 2-14 Configuration of a fuzzy logic system [44] 

 Input fuzzification: construct membership functions for real engine 

measurements (input membership functions) and health parameters 

(output membership functions), and convert real values of the input 

functions into degrees of memberships.  

 Application of Rules: the rules, which need to be obtained from other 

sources, representing relationships between measurements and health 

parameters stored in the system can be then used by a fuzzy inference 

engine to map the degrees of output functions. 

 Output Defuzzification: calculate deviation of health parameters by 

converting the degrees of output membership functions to real values.  

The features of fuzzy Logic based diagnostics can be highlighted as follows:  

1. Just like ANN, it has the capability to deal with the non-linear nature of 

gas turbine diagnostic problems. 

2. It is also able to deal with uncertainty. 

3. The rules can be modified and updated in operations. 

4. It is fast and hence can be used for on-line applications. 

5. No engine performance models are required in the diagnostic process. 

Marinai [45] summarized limitation of fuzzy logic based diagnostics: 

1. It is not able to deal with the problems that are outside the range of its 

dataset. Therefore a large amount of fault samples covering all potential 

faults are required.  

2. As the complexity of the problem needed to solved increases (e.g. the 

potential faults increases), the number of rules required increases as well.  
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3. Computational speed and burden can influence the quality of the 

solutions provided by the fuzzy logic system 

4. Faults need to be accurately isolated using rules first.  

2.1.16 Rough set  

Rough set theory initially proposed by Pawlak in 1982 [34] establishes a sound 

basis for knowledge discovery in datasets. It is an extension of conventional set 

theory that supports approximations in decision making. The rough set itself is 

the approximation of a vague set by using a pair of precise sets called lower 

and upper approximations, which are an isolation of the domain of interest into 

disjoint categories. The lower approximation is a description of the domain 

objects which are known with certainty to belong to the subset of interest, 

whereas the upper approximation is a description of the objects which possibly 

belong to the subset [35]. For example, the conventional set theory is not 

suitable for describing a vague concept such as “good-looking people” as it is 

always hard to say if a person is good-looking or not. Therefore in rough set, 

two precise sets can be used to approximate this vague concept; one is the 

lower approximation set including all the people who can be definitely classified 

into the “good-looking” group, and the other is the upper approximation set 

including all the people who possibly can be classified into the group.  

Rough set is a useful tool for pattern extraction, attribute reduction, data 

reduction, and decision rule generation. It has been applied widely in many 

different fields, such as machine learning, artificial strategic decision, pattern 

recognition, and knowledge discovery. Rough set also have been used for 

machine diagnostics. In machine diagnostics, if a dataset containing fault 

samples of a machine is available, rough set can be utilized as a tool to select 

appropriate attributes (representing the characteristics of faults of the machine) 

and remove necessary attributes from the database, and generate decision 

rules based on the reduced database. The generated rules, representing logic 

relationships between the selected attributes and the faults, then can be used 

for the diagnostics of the machine.   
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Although Chen and et al.[36] studied the possibility of applying rough set for gas 

turbine fault isolation, rough set is still novel technique for gas turbine 

diagnostics and more works need to be carried out to construct an effective fault 

isolation system based on rough set. In his method, rough set is used in a 

similar way as it is used in machine diagnostics. They applied the rough set 

based method for single fault isolation of a two-spool turbofan engine. Chen et 

al.’s study on application of rough set for fault isolation proves the possibility of 

using rough set for measurement selection and gas turbine fault isolation, 

however their method only has been applied for single fault isolation and the 

accuracy of fault isolation obtained by his method and the effectiveness of 

rough set based fault isolation are not discussed in the publication. Therefore 

there are still many problems need to be studied and solved in order to build a 

effective fault isolation system based on rough set, such as:  

1. The effectiveness of rough set based fault isolation on single and 

multiple faults isolation  

2. The effectiveness of rough set for selecting measurements for fault 

isolation. 

3. The capability of the rough se based system to deal with measurement 

noises. 

More descriptions of rough set theory and Chen et al.’s study on rough set are 

included in Section 4.2.1.  

2.1.17 Hybrid system 

In order to develop an effective diagnostic method, much effort has been made 

by various researchers to build up a hybrid system which combines two or even 

more different GPA methods. Volponi et al. [50] developed a hybrid ANN where 

part of the model was replaced by influence coefficients to improve the 

accuracy of diagnostics. Another hybrid ANN developed by Sun et al.[51] used 

a training rule to improve its convergence. A feed forward ANN and genetic 

algorithm based system was developed by Kobayahshi et al.[52], where the 

ANN were used to for prediction of deviation of health parameters, and the 



58 

genetic algorithm was for dealing with sensor biases. Green [53] discussed the 

incorporation of ANN with other AI approaches or gas turbine diagnostics and 

prognostics. Breese et al [54] described a model based expert system 

combining a Bayesian belief network [55]. Torella [56] combined an expert 

system and ANN for fault isolation. In addition, as mentioned earlier, a hybrid 

system combing fuzzy-logic and expert system was developed by Siu et al. [47], 

and Tang [46] introduced a fuzzy-logic and ANN based diagnostic method. 

Chen and et al.[36] introduced a hybrid system based on rough set and ANN for 

diagnostics where rough set is used for fault isolation and the ANN for fault 

quantification.  

2.1.18 Summary 

Although there are many mature technologies among the GPA approaches 

described earlier, none of them is capable of solving all the problems defined 

earlier regarding to gas path diagnostics [25], each of them has several 

limitations which has been described earlier. Li [33] carried out a review of GPA 

approaches and comparison of them in terms of computation speed and 

complexity (see Figure 2-15, please note rough set has also been added in to 

the figure by the author). Later on, Marinai et al. [25] also made a review of 

GPA approaches and summarized the pros and cons of them as shown in 

Table 2-2, X denotes that the approach has that feature, and MFI and SFI 

denote multiple fault isolation and single fault isolation respectively.. 

Basically, linear model based methods, such as LGPA, WLS, and Linear KF, 

are simple and fast solutions to diagnostic problems, but they are not able to 

solve the non-linearity of the diagnostic problems. Although non-linear model 

based methods, such as non-linear GPA, non-linear KF and GA, are able to 

overcome this shortcoming, the non-linear models also induce problems like 

high complexity and the possibility to get stuck at local optimums or un-

convergence. Non-model based methods like ANN, ES, and fuzzy Logic do not 

have the problems caused by engine performance models, and most of them 

have the capability to deal with measurement noises and perform diagnostics 
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quickly once they have been set up, however their performance to deal with the 

problems outside their datasets is low. Therefore, in order to develop a more 

effective approach, it may be necessary to make more efforts to improve the 

existing diagnostic systems or develop a new more effective diagnostic system 

or a new hybrid diagnostic system combing two or more GPA based diagnostic 

methods which can cover the limitations of the other’s.  

 

Figure 2-15 Comparison of gas path analysis approaches [33] 
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Table 2-2  Summary of gas path analysis approaches [25] 
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2.2 Gas turbine performance model adaptation 

2.2.1 Introduction 

Accurate gas turbine performance models are necessary for gas turbine 

performance analysis and gas path diagnosis. The accuracy of a performance 

model largely depends on its component characteristic maps. These maps are 

usually built by carrying out rigorous engine rig tests at different operation 

conditions. Hence, it is not realistic for the engine manufacturers to produce 

individual set of component characteristic maps for each gas turbine 

manufactured by them due to that the tests are not only very time-consuming 

but also costly. As a result of this, engine manufacturers usually only provide 

their customers a set of characteristic maps of major components (i.e. 

compressors and turbines) of the engines they received in the same fleet. 

However, the gas turbines in the same fleet usually slightly differ from each 

other in their performance due to manufacturing or assembly tolerances. Apart 

from that, after maintenances or overhauls engines normally need to be 

disassembled or re-built, this will lead to variation of their performance. In 

addition, for some gas turbine users, they even do not have the component 

characteristic maps of the fleet engines because the maps are proprietary 

information of the engine manufacturers, hence they may use generic maps for 

the performance simulation.  

The performance difference between gas turbines in the same fleet, the 

performance variation after maintenances or overhaul, or the absence of the 

component characteristic maps produced by the engine manufacturers can 

influence the performance models’ prediction accuracy. Most of existing gas 

path analysis approaches either are performance model based or require 

models to produce their dataset of engine deterioration, for this reason, 

inaccuracy engine performance models may lead to poor gas path diagnostic 

results. Therefore, so far, much effort has been made to establish an effective 

approach to improve the prediction accuracy of engine performance models by 
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tuning the existing component characteristic maps or generating new 

component characteristic maps based on engine test data.   

2.2.2 Performance model adaptation techniques 

Stamatic et al. [57] developed a gas turbine performance model adaptation 

method which improves the accuracy of engine performance models by using 

an optimal set of modification factors to modify component characteristic maps. 

Such an optimal set can be found by an optimization procedure. This method 

was further developed by Lambiris [58]. Later on, Kong et al. [59] introduced a 

new map scaling method based on system identification. In this method, 

component characteristics and scaling factors obtained at design point (DP) 

based on engine test data are utilized to derive new component characteristics 

at off-design (OD) points. In order to address the problems like low accuracies 

of scaled characteristic maps or even the absence of characteristic maps, Kong 

[60] developed an approach to produce new component characteristic maps 

using a Genetic Algorithm (GA) based on engine test data. Li et al. [61] and 

Roth et al. [62] [63] separately developed two different DP performance model 

adaptation approaches by minimising the difference between DP performance 

predicted by engine models and engine test data. To minimise such a 

difference, Li employed a Newton-Raphson based approach, while Roth utilized 

a minimum variance optimal estimator. Lo Gatto et al. [64] studied to use a GA 

to search for an optimal set of scaling factors to scale a component 

characteristic map based on engine test data at a single OD point. Marinai et al. 

[65] [66] further developed this method by seeking an optimal set of scaling 

factors for map scaling based on engine test data at multiple OD points. 

2.2.3 Summary 

Most of the off-design performance adaptation approaches described earlier 

used only a set of scaling factors to scale one component characteristics map. 

However the nature of the engine performance is usually non-linear, the 

difference between the engine model performance and test data at different off-

design points may vary non-linearly. Due to this non-linear behaviour, only use 
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a set of optimised scaling factors to modify each component characteristic map 

to minimize the errors between the engine model performance and test data 

can be difficult.  
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3 Off-design performance adaptation using a Genetic 

Algorithm 

3.1 Introduction  

Engine off-design (OD) prediction accuracy of engine performance models is 

mainly depended on the quality of engine component characteristic maps. If 

inaccurate component characteristic maps used in an engine performance 

model, the predicted of off-design performance of the engine model will differ 

from the engine’s actual performance thus producing prediction errors. 

Therefore, it is importance to adapt inaccurate component maps in order to 

match the predicted with actual performance of engines at corresponding off-

design operating conditions.  

In order to do so, Gatto et al. [64] introduced a GA based adaptation method. 

This method utilizes a GA to search for an optimized set of scaling factors (SFs) 

to scale a component map to minimize the difference between the predicted 

performance resulted from the engine model with the map to engine test data at 

one OD point. Marinai et al. [65] [66] further developed this method. In the 

further developed method, it still uses a GA to search for an optimized set of 

scaling factors; however this optimized set is able to be used to minimize the 

average performance prediction error at several OD points.  

A common shortcoming of these two methods is that it ignores the non-linearity 

nature of the engine performance model hence making it difficult to achieve 

high prediction accuracy when only one identical set of scaling factors is used to 

scale different speed lines in a component map. 

To overcome this limitation, different speed lines in a component map may need 

different sets of scaling factors. Therefore in this study, a new GA based 

adaptation method was proposed. The proposed method is able to search for 

an optimized set of scaling factors for each speed line a component map in 

order to minimise the performance prediction errors at different OD points. 
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3.2 Methodology 

In this study, a GA based OD performance model adaptation approach, which 

modifies the component characteristic maps using multiple sets of scaling 

factors, is presented. It is worth mentioning that this study focuses on the OD 

performance model adaptation only and hence all the performance models used 

are assumed to be accurate at design point. Considering turbines are likely to 

work under choked conditions and consequently the quality of turbine maps 

doesn’t affect the prediction accuracy largely, therefore this study focuses on 

modifying only the compressor maps to improve the prediction accuracy at OD 

points of engine performance models.  

Sections 3.2.1 to 3.2.5 describe the important factors involved in this method, 

and the process of using this method for OD performance model adaptation is 

described in Section 3.2.6.  

3.2.1 Engine test data 

The main purpose of the developed adaptation approach is to minimize the 

predicted performance of the engine performance model and the real engine 

data at different OD points. Therefore deciding which OD points’ performance 

need to be improve is the first step to use the developed approach to adapt an 

engine model. Users then can select the speed lines on compressor maps(s) of 

the model need to be scaled based on the corrected rotational speeds (CNs) 

covered the selected OD points. The CN can be calculated by Equation (3-1).  

 
 

(3-1) 

where CN is the relative rotational speed (the ratio between actual absolute 

rotational speed and design point absolute rotational speed), and TDP and TOD 

are the inlet total temperatures at design point and at the actual operating 

condition respectively.  
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Once the speed lines need to be adapted are known, the next step is to gather 

engine test data at the CNs that the speed lines need to be adapted have. The 

engine test data will be used as the target performance data for finding 

appropriate scaling factors to each of the speed lines needed to be scaled so 

that the error between the predicted performance and the performance and the 

test data will be minimal at the CNs. 

3.2.2 Scaling factor 

As mentioned earlier in Section 2.1.3, a component may have more than one 

characteristic parameter; in order to in order to define the whole characteristic of 

the compressor, three characteristic parameters are required and they are listed 

in Table 3-1. Because of this, three scaling factors are required to scale the 

entire compressor map and they are also listed in Table 3-1 

Each scaling factor is used to scale one characteristic parameter, and for all the 

points on a speed line in a component map, an identical scaling factor will be 

used for each of the characteristic parameters to scale the speed line. However 

such a scaling factor will differ for different speed lines. The scaling factors 

required for scaling compressor maps are also shown in Table 3-1. 

Table 3-1 Characteristic parameters and scaling factors for compressor maps 

Characteristic 

parameter 
Scaling factor 

WAC  

ETA   

PR  

 

The definitions of the scaling factors are expressed in Equations (3-2) to (3-4).  

 
 

(3-2) 

 
 

(3-3) 
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(3-4) 

where the subscript  and  represent the original and the modified 

characteristic parameters respectively.  

3.2.3 Map scaling  

 

Figure 3-1 Illustration of a compressor map 

In order to scale a component map to achieve minimum overall prediction error 

at OD points, different speed lines in each component map may need different 

sets of scaling factors. In this study, a set of optimal scaling factors will be 

generated for each of the speed lines needed to be scaled. Using the scaling 

factor, the speed lines in the original component map can then be modified 

according to the scaling factors, resulting in better performance prediction 

accuracy.  

The following example is used to schematically illustrate the map scaling for a 

compressor map. Assume that the compressor map shown in Figure 3-1 is the 
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map used in an engine performance model and the speed lines CNA and CNB 

need to be scaled to improve the model’s prediction accuracy. In addition also 

assume that there are available engine test data, which covers the engine 

performance at one operating point (point A) on the speed line CNA and also 

one operating point (point B) on the speed line CNB. The map scaling then can 

be carried out by the following two steps: 

 

Figure 3-2 Illustration of scaling of a speed line in a compressor map 

Step 1: find a set of optimal scaling factors ,  and  for the speed 

line CNA by a GA (the process to find optimal scaling factors will be introduced 

in Section 3.2.5). The optimal scaling factors are able to give minimal 

performance prediction error at point A. The three characteristic parameters 

WAC, PR, and ETA on the speed line CNA will then be modified according to 

their corresponding scaling factors to form a scaled speed line as shown in 

Figure 3-2, where the speed lines CNB in original component map represented 

by the solid lines are shifted to form new scaled line represented by the dotted 
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line, and the adapted characteristic parameters marked by subscript “*” are 

calculated by equations (3-2) to (3-4). It is worth noting that the DP speed line is 

always fixed during the scaling. 

 

Figure 3-3  Illustration of scaling of a speed line in a compressor map 

Once the scaling has been carried out to all the speed lines need to be scaled 

(i.e. in this case, the speed lines CNA and CNB), a scaled compressor map then 

can be obtained as shown in Figure 3-4. The scaled map then can be used by 

the engine performance model to provide more accurate performance prediction 

at OD points having corresponding operating points near the scaled speed 

lines.  
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Figure 3-4 Original and scaled compressor maps 

3.2.4 Objective function 

In this study, the accuracy of prediction of an engine performance model at an 

OD point is measured by an objective function representing the average 

difference between the predicted gas path measurements and actual gas path 

measurements (i.e. engine test data) at this point. Such an objective function is 

defined in Equation (3-5).  

 
 

(3-5) 

where  denotes the number of measurements, P denotes measurement, 

subscript i is measurement index. 

In order to evaluate the effectiveness of each set of scaling factors in minimizing 

prediction error at its corresponding CN, each obtained set of scaling factors will 

be used to scale the speed line corresponding to the CN, and this scaled map 

will then be used by the engine model to predict engine performance at the CN. 
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Then based on the predicted performance and the accuracy performance data 

from the engine data, an objective function can be calculated to represent the 

effectiveness of the obtained set(s) of scaling factors to improve performance 

prediction accuracy. The higher objective function indicates higher 

effectiveness.  

3.2.5 Genetic Algorithm 

In order to search for an optimal set of scaling factor for each speed line having 

corresponding engine data in a compressor map, a GA is used in this study 

because of the following two advantages it has: firstly, it does not get stuck in 

local optima since it is a global search algorithm, secondly, non-smooth 

functions can be optimized because no derivatives are required [27]. A GA is 

able to find the fittest solution (string) among all potential solutions using three 

GA operations which are reproduction (selection), crossover and mutation.  

Generally, as shown in Figure 2-7, the searching process of GA has the 

following steps.   

 Initialization: generate an initial population of strings where each string 

represents a potential solution (i.e. in this study, a string represent a set 

of scaling factors) to the problem needed to be solved (i.e. in this study, 

minimizing prediction error of an engine performance model at a 

operating point on a speed line of a compressor map). Then each 

potential solution is evaluated by calculating its fitness (i.e. in this study, 

the fitness is calculated using equation (3-6). 

 
 

(3-6) 

 Selection (Reproduction): calculate fitness for each potential solution for 

evaluations, and then select the strings with higher fitness for crossover 

and mutation, eliminate the rest.  

 Crossover: select a part of strings and randomly pair them off, and switch 

some genes in the same gene position to produce the same number of 
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new strings as the number of the selected strings (strings with higher 

fitness are more likely to be selected for crossover).  

 Mutation: randomly mutate some of the strings to generate new strings 

with the intention to enhance the diversity from current generation to the 

next.  

This generation cycle will be repeated until one of the following conditions has 

been satisfied: (1) a string with a desired fitness (i.e. target objective function) 

has been found; (2) limitation of computing time or cost has been reached; (3) 

the number of generation has reached the value defined by operator; or (4) a 

global optimal solution has been found (i.e. minimized objective function). 

 

Figure 3-5 A flow chart of searching for optimal scaling factors for a speed line  

Details of the process of searching for an optimal set of scaling factors for a 

speed line having corresponding engine test data (i.e. the data cover an 

operating point on the speed line) in a component map using a GA is illustrated 

in Figure 3-5. Once the to-be-adapted component map and speed line, and an 

operating point (having corresponding engine test data) on the speed line are 

selected, and the search range for each scaling factor (i.e. minimum and 

maximum values of each scaling factor) are defined, the GA will start to search 

for fitter sets of scaling factors within the defined ranges by the three GA 
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operations described earlier in this section. Each set will then be applied to 

scale the map(s), and the scaled map is then used by the engine performance 

model to produce simulated measurements. Based on these simulated 

measurements and engine test data at this operating point, an objective 

function can be calculated for the operating point. This process will continue 

until one of the conditions mentioned earlier has been satisfied.  

It is worth mentioning that setting of the search ranges for each scaling factors 

is very essential to find an optimized set of scaling factors as the GA only 

searches for solutions within the pre-defined scope (i.e. search ranges of 

scaling factors). If the best solution is not included in the pre-defined scope, the 

GA will only provide a local optimized solution. Therefore it is very important to 

check the optimized scaling factors found by the GA to see if any of them has a 

value close to lower or upper boundary of its pre-defined search range. If so, 

the search ranges need to be adjusted to avoid local optimum. This done by 

modifying the search ranges so that the value of each of the optimized scaling 

factors will roughly lies in the middle of its new search range. After the 

modification the search process described in last paragraph needs to be carried 

out again. This modification and the search process need to be repeated until 

the value of each optimized scaling factor lies in the middle of its search range.  

3.2.6 Adaptation process 

Generally the adaptation process for a compressor map of an engine 

performance model based on the developed method consists of the following 

steps: 

1) Choose the speed lines needed to be adapted in the compressor map 

and gather sufficient engine test data for the speed lines needed to be 

adapted 

2) For each of the speed lines, use the GA to search for a set of optimized 

scaling factors by the process described in Figure 3-5.  

3) Scale all the speed lines in the component map according to their 

corresponding scaling factors to form a scaled map which can then be 
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used by the engine performance model to provide better OD 

performance prediction for the engine.  

3.3  Application and analysis 

To evaluate the effectiveness of the developed adaptation method, the method 

was applied to a turbo-shaft gas turbine engine. In addition, because this 

method is developed based on the studied carried out by Gatto et al. [64] and 

Marinai et al. [65], it is necessary to compare this method with their methods to 

see weather multiple sets of scaling factors can lead to better adaptation 

results. As Marinai have already proved that his method provides better results 

than the work of Gatto’s, in this study, in this application, Marinai’s method was 

also applied to the turbo-shaft gas turbine for comparisons. All the adaptations 

in this application were carried out by a gas turbine performance and 

diagnostics software called PYTHIA [67], of Cranfield University which has been 

developed over many years. PYTHIA is able to carry out adaptations by either 

the developed method or the old methods (i.e. Gatto and Marinai’s methods) 

3.3.1 Engine model  

 

 

                                  

 

 

 

 

Figure 3-6 Engine model configuration 

The configuration of the turbo-shaft gas turbine engine being studied is given in 

Figure 3-6, where the red arrows stand for flows splitting from the main flow. An 

engine performance model for this engine was constructed using PYTHIA. It 

consists of a three axial and one centrifugal stages-compressor, a reverse flow 

annular combustion chamber, a single stage compressor turbine and a two 
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stages-power turbine. Due to the confidentiality reasons, the engine 

characteristics is not given in this thesis. 

A default compressor map is used in the engine model for performance 

simulation. The purpose of this application is to use the developed adaptation 

approach to adapt this engine model so that its predicted performance can 

match with target engine data. In practice, the target engine data is purposed to 

be real engine test data. However since the engine used in this application is a 

model engine and there are no available engine test data, a set of simulated 

engine data given by the same engine performance model but with another 

compressor map was employed as target engine data. In this application, the 

default compressor map is referred to as “inaccurate” map and the compressor 

map used to generate the target engine data is referred to as “accurate” map. 

Hence the developed adaptation approach was used to scale the “inaccurate” 

map so that the predicted performance given by it can match with that given by 

the “accurate map”. Configuration of the “inaccurate” compressor map is shown 

in Figure A -6-1and Figure A -6-2 in Appendix A. The “accurate” compressor 

map’s configuration is shown in Figure A -6-3 and Figure A -6-4 in Appendix A. 

The measurements shown in Table 3-2 were chosen for OD adaptations.  

Table 3-2 Measurements chosen for adaptations 

Measurement Symbol Unit 

Compressor outlet total pressure P3 atm 

Compressor outlet total temperature T3 k 

Power turbine inlet pressure P7 atm 

Power turbine inlet temperature T7 k 

Power turbine outlet total pressure P8 atm 

Power turbine outlet total temperature T8 k 

Fuel flow rate FF kg/s 

Shaft power SP Watt 
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3.3.2 Engine data simulation 

Using the same engine model, two sets of engine performance data were 

generated at the International standard atmosphere (ISA) sea level ambient 

condition. The first set of data were generated using the “inaccurate” 

compressor map while the second set were generated using the “accurate” 

compressor map. The set of data resulted from the “accurate” compressor map 

was used as target data while the OD adaptation methods were used to scale 

the “inaccurate” map to provide predicted performance matching to the target 

data. 

Table 3-3 Rotational speeds for adaptation and verification 

 
Case 1 Case 2 Case3 

CN new developed method old method 

1.2 Adaptation Adaptation Adaptation 

1.15 Verification Verification Verification 

1.1 Verification Verification Verification 

1.05 Verification Verification Verification 

1 Design point Design point Design point 

0.97 Verification Verification Verification 

0.95 Verification Adaptation Adaptation 

0.93 Verification Verification Verification 

0.9 Adaptation Adaptation Adaptation 

* The point with CN =1 is the design point 

Eight different CNs representing eight OD points as listed in Table 3-3 were 

used in this study where for each CN; measurements listed in Table 3-2 were 

simulated. It is important to note that throughout the study, the CN (i.e. CN and 

PCN are equivalent since the ambient condition is ISA sea level condition 

during the simulation of performance data and it is assumed that the intake is 

adiabatic (see Equation (3-1)) was used as the engine handle in order to have 

the control when the values were changed to the desired OD point.  

Three cases of OD adaptation were studied, see Table 3-3. Cases 1 and 2 used 

the new developed method while Case 3 has the same adaptation points as 

Case 2 has but the adaptation was performed using Marinai’s method (old 
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method). Case 1 has two adaptation points (CNs with 1.2 and 0.9), while Case 

2 and Case 3 have three adaptation points (CNs with 1.2, 0.95, and 0.9). 

Therefore In the application, in Case 1, only the two speed lines with CNs 1.2, 

and 0.9 were scaled while in Cases 2 and 3 all the three speed line with CNs 

1.2, 0.95 and 0.9 were scaled.  

The reason for having both Case 1 and 2 is to investigate how the number of 

adaptation points can affect the adaptation result. In Case 1, two CNs (1.2 and 

0.9) were chosen for OD adaptation while another six were chosen to validate 

the effectiveness of this method. Meanwhile in Cases 2 and 3, only three OD 

points (points with CNs 1.2, 0.95 and 0.9) were chosen for OD adaptation while 

another five were used for the verification of the effectiveness of the adaptation. 

The reason that the points with CNs 1.2, 0.95 and 0.9 are chosen for 

adaptations is that in the “inaccurate” map it has three speed lines with CNs 1.2, 

0.95, and 0.9.  

3.3.3 Searching for scaling factors  

Table 3-4 GA setting 

GA Setting Value 

Max No. of 
Generations 

20 

Population Size 50 

Probability of 
Crossover 

0.35 

Probability of Mutation 0.3 

Convergence Criterion 
(Fitness) 

0.99 

 

In order to search for the scaling factors, in both Case 1 and Case 2, firstly, a 

search range for each scaling factor was set, then following the process 

described in Section 3.2.5, a GA was used to search for an optimized set of 

scaling factors (i.e. ,  and ) for each speed line selected for 

adaptation. The setting of maximum number of generations, population size, 
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probability of crossover, probability of mutation, and convergence criterion 

(fitness) for each searching process is shown in Table 3-4.  

As shown in Table 3-4, the maximum number of generations was set to 20, 

however it is possible that the best set of scaling factors found within the 20 

generations may not be the global optimal scaling factors since the scaling 

factors in the global optimal set may not be in the pre-defined search ranges. 

Therefore in the process of searching scaling factors for each speed line, after 

each 20 generations, the scaling factors in the fittest set were checked against 

their pre-defined search ranges. If any of the scaling factors had a value close 

to boundaries of its search range, the search range would be modified so that 

the value would lie in the middle of the new search range and another 20 

generations would be carried out to search for better scaling factors. This was 

repeated until the value of each of the scaling factors in the fittest set found 

after the 20 generations lie in the middle of it search range. 

In Case 3, according to Marinai’s method, the GA was used to search for an 

identical set of scaling factors for scaling all the three speed lines (speed lines 

with CNs =1.2, 0.95 and 0.9) using the same setting shown in Table 3-4. This 

can be done by the same process described in Section 3.2.5, however the 

fitness of a set of scaling factors is represented by the average prediction 

accuracy over the three CNs resulted from the map scaled by this set of scaling 

factors. 

3.3.4 Map scaling  

Once the scaling factors required by each case have been obtained by the GA, 

a scaled map was then produced for each case. For Case 1, scaled map 1 was 

produced by using obtained optimized scaling factors to scale the speed lines 

with CNs 1.2 and 0.9; for Case 2 and Case 3, scaled maps 2 and 3 was 

produced respectively by scaling the speed lines with CNs 1.2, 0.95 and 0.9. 

Note that in Case 2, the three speed lines are scaled by different sets of scaling 

factors while in Case 3 they all scaled by the same set of scaling factors. 
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3.3.5 Verification 

In order to evaluate the effectiveness of the adaptation methods, each of the 

scaled maps was used to predict the model engine’s OD performance at all the 

CNs shown in Table 3-3. The predicted performance resulted from each of the 

scaled maps was then compared with the predicted performance with the 

“accurate” map at the CNs and discussed in the next section.  

3.3.6 Simulation results and analysis 

Initial prediction errors of measurements, which represent the relative 

differences between measurements resulted from the “inaccurate” map and the 

“accurate” map as shown in Equation (3-7), are shown in Figure 3-7.  

 
 

(3-7) 

where  is a measurement simulated using the “accurate” map, and 

 is the same measurement simulated using the “inaccurate” map.  

. 

Figure 3-7 Initial prediction errors 

By analyzing Figure 3-7, the following can be seen: 
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 The performance prediction error for each measurement becomes larger 

as the CN moves away from the design point (Design point selected is at 

CN = 1). The reason caused this phenomenon is the non-linearity of the 

OD performance model which induces the prediction error increase as 

the operating point is move away from the design point.  

 The increase of CN leads to larger prediction error than the decrease of 

CN. This may because the similarity of between the speed lines with 

higher CNs from the “inaccurate” and “accurate” maps is lower than that 

of between the speed lines with lower CNs from the maps (higher 

similarity may lead to lower prediction errors).  

 The prediction of SP, FF, P7 and P3 have very low accuracy, while 

relatively T3, T7, T8, and P8 have relatively less prediction errors. 

Therefore it seems that the prediction accuracy of temperature 

measurements is higher than most of the other measurements.  

 The SP seems to be the most sensitive measurement to the variation of 

compressor’s characteristics as it’s the one having the largest prediction 

error in this figure. This is because the SP is largely influenced by mass 

flow rate and the change of the compressor characteristic map changes 

the flow capacity of the compressor and consequently affects the mass 

flow rate. The variation of characteristics of the compressor seems have 

less influence on T8 and P8, as these two measurements have lower 

prediction errors than the other measurements have.  

 The initial prediction errors are unacceptable for diagnostics as most of 

prediction errors may have levels higher than measurement deviations 

caused by component degradation. Especially for SP and FF, they both 

have very large prediction errors and they also are very important 

measurements for diagnostics.  

A graph of average of measurement prediction error at each power against CN 

is plotted and shown in Figure 3-8. The average measurement prediction error 

at a CN is the average of the prediction errors of the eight measurements at this 

CN.  
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Figure 3-8 Average measurement prediction errors  

Note that the average prediction error line is V shape as all the all prediction 

errors are absolute values. In addition, it is also worth mentioning that for design 

point performance simulation the compressor map is not needed then at the 

design point both the performance simulation using the “inaccurate” and 

“accurate” map lead to the same result and hence there is no prediction error at 

design point. The average prediction errors shown in Figure 3-8 indicate that 

the prediction accuracy of the engine OD performance is very poor. Hence this 

model is not qualified to be used for diagnostics and it is necessary to carry out 

OD adaptation to improve the quality of prediction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                

3.3.7 Adaptation results and analysis 

Table A -6-1 to Table A -6-3 shown in Appendix C list the amount of attempts 

made (each attempt is denoted by “TRY”) to modify the scaling factor search 

ranges for the speed lines with CNs 1.2, 0.95, and 0.9 respectively. In addition 

the tables also contain the maximum fitness obtained within 20 generations by 

the GA and the scaling factors (corresponding to the maximum fitness) in each 

attempt (in each attempt 20 generations were carried out).  

Note in Case 1 and Case 2, the scaling factors obtained for the speed lines with 

CNs .2, and 0.9 are the same (the only different between the adaptations in 

Case 1 and Case 2 is that the latter scale an extra speed line which is the one 

with CN 0.95).  
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Bar charts of the maximum fitness found within each 20 generations for different 

speed lines in each case are shown in Figure 3-9, Figure 3-10, and Figure 3-11.  

 

 

Figure 3-9 Maximum fitness found within each 20-generation for speed line with 

CN 0.9 in both Case 1 and Case 2 

 

Figure 3-10 Maximum fitness found within each 20-generation for speed line 

with CN 0.95 in Case 2 
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Figure 3-11 Maximum fitness found within each 20-generation for speed line 

with CN 1.2 in both Case 1 and Case 2 

From the results shown in above Figure 3-9 to Figure 3-11, the following 

observations can be made: 

 The attempt to adjust search ranges can largely improve the maximum 

fitness can be obtained within 20 generations. In the adaptations for the 

speed lines with CN 0.93 and 0.9, each of the attempts leads to a rise of 

the maximum fitness. 

 The adaptations for the speed lines with CNs 0.9 and 0.95 are quite 

successful. Each of the adaption obtained a final maximum fitness (i.e. 

the highest maximum fitness obtained within the TRYs) close to 1 after 

several TYRs. However the adaptation for the speed line with CN 1.2 are 

relative less effective as the best result it obtained with in eleven TRYs is 

a maximum fitness 0.563. This is because the initial average prediction 

error at CN 1.2 is much higher than the error at CN 0.9 or 0.95 (refer to 

Figure 3-8) and the increase of the average initial prediction error raises 

the difficulty to achieve good adaptation Therefore the final maximum 

fitness obtained for the speed line the CN 1.2 is much low than for the 

other two. The absence of fitness for some TRYs in Figure 3-11 and 

Table A -6-3 because in these TRYs the GA code in PYTHIA crashed. 

The reason caused the crash of the code is due to that the operating 
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point may lie beyond the surge line of the scale map resulted from the 

scaling factors found by the GA in these tries.  

In addition, the final optimized set of scaling factors for each of the three speed 

lines in Case 1 and Case 2 and an optimized set of scaling factors for all the 

three speed line obtained in Case 3 are shown in Table 3-5.  

Table 3-5 Final optimal scaling factors for different speed lines 

  

Scaling Factor 

Case 1 Case 2 Case 2 

CN ETA WAC PR ETA WAC PR ETA WAC PR 

1.2 0.87 1.273 1.175 0.87 1.273 1.175 0.901 1.178 1.134 

0.95 x x x 0.951 1.088 1.059 0.901 1.178 1.134 

0.9 0.908 1.145 1.126 0.908 1.145 1.126 0.901 1.178 1.134 

 

The results shown in Table 3-5 indicate: 

 The obtained final optimized scaling factors for each of the speed lines in 

each case shown in Table 3-5 shows that ETA of all the three speed 

lines in the “inaccurate” map’s needed to be scaled down (scaling factor 

less than 1 indicates a scale down), and in contrast WAC and PR need 

to be scaled up (scaling factor higher than 1 indicates a scale up) . 

 

Figure 3-12 Scaling factors obtained in Case 2  
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 The optimal scaling factors required to minimize prediction errors at 

different CNs varies with CN non-linearly, this can be observed from 

Figure 3-12 where the scaling factors obtained in Case 2 is plotted 

against CN. It can be seen from Figure 3-12, all the three trend lines of 

the three scaling factors (ETA, WAC, and PR) are non-linear lines.  

In each case, the obtained scaling factors obtained were then employed to 

scale the “inaccurate” map to produce a scaled map. Hence three scaled maps 

were generated in three cases: scaled map 1 generated by scaling two speed 

lines with CNs 1.2 and 0.9 in Case 1, scaled map 2 generated by scaling thee 

speed lines with CNs 1.2, 0.95, and 0.9 in Case 2, scaled map 3 generated by 

scaling thee speed lines with CNs 1.2, 0.95, and 0.9 in Case 3. The scaling of 

the three speed lines in Case 2 is shown in Figure A 6-5 and Figure A 6-6 in 

6Appendix C. 

3.3.8 Verification results and analysis 

In order to evaluate the effectiveness of each of the scaled maps to improve OD 

performance prediction, each of them was used to predict performance at all the 

CNs shown in Table 3-3, and the simulation errors resulted from using the 

scaled maps 1 and 2 are shown in Figure 3-13 to Figure 3-20.  

 

Figure 3-13 Prediction errors of T3 in Case1 and Case 2 
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Figure 3-14 Prediction errors of P3 in Case1 and Case 2 

 

Figure 3-15 Prediction errors of T7 in Case1 and Case 2 
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Figure 3-16 Prediction errors of P7 in Case1 and Case 2 

 

 

 

Figure 3-17 Prediction errors of T8 in Case1 and Case 2 
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Figure 3-18 Prediction errors of P8 in Case1 and Case 2 

 

 

 

Figure 3-19 Prediction errors of FF in Case1 and Case 2 
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Figure 3-20 Prediction errors of SP in Case1 and Case 2 

From Figure 3-13 to Figure 3-20, some observations can be made: 

 At CNs 1 to 1.2 the use of either of the scaled maps (scaled maps 1 and 

2) the prediction error of each measurement can be reduced significantly. 

Especially shaft power, its highest initial prediction error is 43.59% at CN 

1.2. (refer to Figure 3-20), and this error is reduced to 0.93% in Case 1 

and 0.35 % in Case 2 respectively  

 The figures also show that in Case 2 prediction accuracies for all the 

measurements different CNs can be largely improved at CNs 1 to 0.9, 

while in Case 2 only the prediction errors at CNs between 0.9 and1.0 

cannot be reduced to very low levels. This is because in Case 1 the 

speed line with CN 0.95 was not included in the adaptation and hence 

the prediction errors at CNs near 0.95 were very low. However since the 

speed line with CN 0.9 was included in the adaptation in Case 1 and CN 

1.0 is the design point, Case 1 was still able to provide accurate 

performance prediction accuracies at CNs near 0.9 and 1.0. 

 By analyzing the adaptation results from Case 1 and Case 2, it can be 

seen that the developed adaptation approach is very effective in 

improving simulation accuracy of engine performance models. In 

addition, the choice on the speed lines needed to be scaled is very 
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important. The more speed lines selected for adaptation, the better 

simulation accuracy can be obtained at the operating points near the 

selected speed lines.  

Average error of each measurement over the nine CNs is calculated and shown 

in Table 3-6.  

Table 3-6 Average error of each measurement over nine different CNs 

  

Average error  

inaccurate 

map 

scaled 

map 1 

scaled 

map 2 

T3 6.24% 1.49% 0.36% 

P3 16.34% 3.24% 0.81% 

T7 6.19% 1.43% 0.62% 

P7 13.77% 2.14% 0.65% 

T8 3.95% 1.11% 0.66% 

P8 4.80% 0.75% 0.35% 

FF 20.02% 3.44% 0.47% 

SP 27.23% 3.43% 0.83% 

 

Table 3-6 shows that the average error of each measurement can be reduced 

significantly using either of the scaled map 1 or 2, however the scaled map 2 is 

seen to be more effective than scaled map 1. This can be seen clearly as the 

scaled map 2 is able to reduce the average error of each measurement to lower 

than 1 % while in scaled map 1 only measurement P8 is seen to have a 

measurement prediction error of less than 1%.  

Average prediction errors (i.e. average of eight measurement prediction errors) 

resulted from different scaled maps at each CN are shown in Table 3-7 and a 

graph of average prediction error against CN is plotted and shown in Figure 

3-21.  
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Table 3-7 Average prediction errors at different CNs 

CN 

Average prediction error over all 

measurements 

Inaccurate 

map 

Scaled 

map 1 

Scaled   

map 2 

scaled 

map 3 

1.2 25.97% 0.92% 1.08% 4.82% 

1.15 21.67% 1.09% 1.07% 5.22% 

1.1 16.85% 1.01% 1.22% 6.13% 

1.05 10.45% 0.81% 1.18% 4.33% 

1 0.00% 0.00% 0.00% 0.00% 

0.97 4.56% 4.58% 0.23% 3.81% 

0.95 8.11% 5.86% 0.25% 4.20% 

0.93 9.91% 4.22% 0.11% 5.40% 

0.9 14.66% 0.98% 0.21% 4.70% 

 

Figure 3-21 provides useful information for evaluating the effectiveness of the 

scaled maps in improving accuracy OD performance prediction. By analyzing 

this figure the following can be observed: 

 It can be seen from this figure that scaled map 2 is able to reduce 

prediction errors at all the eight different CNs significantly, while scaled 

map 1 only able to improve the prediction accuracy at some of the CNs 

and it leads to high prediction error at CNs near 0.95 (as shown in Table 

3-6, the top three highest average prediction errors of scaled map 1 are 

4.58% at CN 0.97, 5.96 % at CN 0.95, and 4.22% at CN 0.93). This 

again proves that the absence of speed line 0.95 in the adaptation Case 

2 results in the low prediction accuracy at CNs near 0.95 and hence the 

choice and the number of speed lines need to be adapted is very 

importance. Therefore for an engine model needs to be adapted at a 

certain CN range, all the speed lines within the range are needed to be 

scaled. 
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Figure 3-21 Average prediction errors resulted from different maps 

 Apart from that, Figure 3-21 also shows that the prediction accuracy of 

simulation using scaled map 2 is not only very high but also quite stable 

over a range of CNs unlike that of inaccurate map which changes 

dramatically with the variation of CN.  

 It also can be observed from Figure 3-21 that compared with the scale 

map 3 the scaled map 2 is able to provide more accuracy performance 

prediction at all the eight CNs included in this application. This indicates 

that with the same adaptation points included in the adaptation the new 

developed method is capable of providing better adaptation results. The 

reason for this can be found in Table 3-5 which indicates that the scaling 

factors required to minimize performance prediction error vary with 

different CNs and it is necessary to scale the component map non-

linearly, hence using an identical set of scaling factors to scaling different 

speed lines cannot maximally reduce the prediction error at different CNs.  

 In addition, the results in Figure 3-21 show that using the new developed 

method, an “inaccurate” map, which is originally total unacceptable for 

gas path diagnostics of the model engine, can be scaled to a map which 

provides good performance prediction. In this study, the highest and 

lowest prediction errors resulted from the an “inaccurate” map at the 
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eight CNs are 25.97% and 4.56%, and the new developed managed to 

reduce these two errors to 1.22 % and 0.11 % respectively (see the 

prediction errors of scaled map2 in Table 3-7)  



94 

3.4 Chapter conclusions:  

In this research, a new gas turbine performance model adaptation using 

multiple non-linear scaling factors is presented with the intention of improving 

the prediction accuracy of gas turbine engine performance models so that they 

can be used for diagnostics. This is implemented by using different optimised 

sets of scaling factors to scale different speed lines on a component map that 

needed to be adapted. A GA is utilised to search for an optimal set of scaling 

factors for each speed line that needs to be scaled. Application of the 

developed non-linear off-design adaptation approach to a model single spool 

turbo-shaft aero-engine has proved that:  

 This new adaptation method has great potential to improve the off-design 

prediction accuracy of engine performance models.  

 It is capable of searching for a set of optimal scaling factors for the speed 

lines needed to be scaled in a component characteristic map and scaling 

component map non-linearly and effectively. 

 The GA is very effective in finding optimal solutions of the scaling factors. 

In addition, limitations of the new method have also been found: 

 It can be time-consuming when the number of speed lines that need to 

be scaled is high as the adaptation for each speed line needs to be 

carried out individually. 

 In order to scale a compressor map using the new method, engine test 

data at different off-design conditions are needed. The absence of 

necessary data to cover different speed lines could lead to low prediction 

accuracy at certain off-design conditions.  

Based on the advantages and the limitations of the developed off-design 

adaptation approach listed in this section, comparisons between this approach 

and those which are also able to carry out off-design adaptation can be made: 
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All of the off-design adaptation approaches mentioned in Section 2.2 are only 

able to scale component characteristic maps linearly, but as mentioned earlier 

in this section the developed approach can carry out non-linearly map scaling 

and hence match the non-linearity of the gas turbine off-design performance 

model. However the developed method may require more engine test data for 

adaptation than the other approaches do.  
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4 Rough set based fault isolation 

4.1 Introduction 

Economic, availability and safety concerns have led to a rapid growth in the 

application of Engine Health Monitoring (EHM) in recent years. Gas path 

diagnostic techniques for the isolation of component faults based on gas path 

fault signatures, are important techniques in condition monitoring. An effective 

fault isolation approach should be able to solve most the problems listed in 

Section 1.4.  

In the past half-century, many model-based gas path diagnostic techniques, 

such as linear gas path analysis, non-linear gas path analysis, Kalman filter, 

genetic algorithm and weighted least squares, have been developed by 

employing gas turbine performance models in the diagnostic process. Since 

1980 there has been a rapid growth in interest in the development of non-model 

based diagnostic approaches where no complex performance models are 

required in the diagnostic process. This has led to the successful development 

of neural networks, rule based fuzzy logic, and expert systems based gas path 

diagnostic techniques. All these techniques have been introduced in Section 2.1.  

It is also mentioned in Section 2.1.6 that in the most recent development rough 

set is introduced for fault isolation. Rough set is a mathematical approach in 

dealing with vagueness, imprecision and uncertainty. It can be used for pattern 

extraction, attribute selection, data reduction, and decision rule generation. It 

has been applied widely in many different fields, such as machine learning, 

artificial strategic decisions, pattern recognition, and knowledge discovery. 

Therefore rough set has the potential to be a good tool for gas turbine fault 

isolation. 

In addition, conventional fault signatures are represented by measurement 

deviations due to gas turbine component faults. As the complexity of potential 

faults increases, similarity of the conventional fault signatures caused by 

different faults may increase, which results in difficulties in distinguishing the 
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faults. Thus, enhanced fault signatures, derived from the conventional fault 

signatures and including both the measurement deviations and the ranking 

patterns of the measurement deviations in terms of magnitude, are developed 

and integrated with the rough set based fault isolation approach to make this 

approach more robust.  

Therefore in this research, a new rough set based gas turbine fault isolation 

approach was created. Three different versions of the new rough set based 

approach were developed to make it suitable for fault isolations using 

conventional fault signatures, using enhanced fault signatures, and only limited 

measurements respectively. In addition, a study of creating an effective fault 

isolation framework for this developed rough set based approach was also 

carried out. This was done by studying three different fault isolation frameworks. 

All the three versions of the developed approach integrated with one fault 

isolation framework were applied to a model two-spool turbofan gas turbine 

engine for the isolation of single and dual faults under different levels of 

measurement noises in order to test the effectiveness of the approach. In 

addition, in order to study the other two frameworks, one of the versions was 

integrated with the other two frameworks separately and also tested by applying 

it to the isolation of single and dual faults of the same model engine under 

different levels of measurement noises. Based on the study of the three 

frameworks a new framework was created for the developed fault isolation 

approach.  

4.2 Methodologies 

Rough set theory is introduced in Section 4.2.1 along with the process of using 

rough set for machine diagnostics. Three different versions of the developed 

rough set based fault isolation approach are presented in 4.2: the first one using 

conventional fault signatures is described in Section 4.2.2, the second one 

using enhanced fault signatures is presented in Section 4.2.3, and the last one 

presented in Section 4.2.4 is suitable in the circumstances when only limited 

measurements are available. Section 4.2.5 illustrates the study being carried 
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out to create an effective fault isolation framework for the developed isolation 

system.  

4.2.1 Rough set theory 

As mentioned in Section 2.1.6, rough set establishes a sound basis for 

knowledge discovery in datasets, and can be used to reduce redundancy of 

attributes and generate rules from datasets for machine diagnostics. The 

following concepts are important to understand how rough set can be used to 

approximate a vague concept reduce attributes in a dataset, and generate rules 

from that dataset.  

4.2.1.1 Information system  

In rough set theory, the dataset that needs to be analysed is usually referred to 

as an information system and represented by IS: IS = (U, At), where U is the set 

of objects in the dataset and At is a set of attributes used to describe the 

characteristics of the objects (e.g. in this study, objects can be gas turbine fault 

samples, and attributes of each fault sample can be the fault type and 

measurement deviations corresponding to the fault sample). The value of an 

attribute f (f Є At) of an object w (w Є U) is denoted by w(f). 

4.2.1.2 Discretization 

Due to the fact that rough set is not able to deal with continuous data, 

discretization needs to be carried out to discrete attribute values of objects in 

the information system before the system can be analysed by rough set. An 

example of discretization is illustrated in Figure 4-1, where v1 and v2 are two 

threshold values, and d1, d2 and d3 are discrete values. 
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Figure 4-1 An example of discretization 

In this example, it is assumed that the discretization for the value of an attribute 

b follows the following three rules listed below: 

If the original value of attribute f < v1 then the discrete value = d1 

If the original value of attribute f < v2 and > v1 then the discrete value = d2 

If the original value of attribute f > v2 then the discrete value = d3 

It can be seen from Figure 4-1 that before discretization the value of attribute f 

can be any value from infinity to finity, but after discretization it can only be d1, 

d2, or d3. These three discrete values actually represent intervals of the value 

domain of attribute f (i.e. d1, d2, or d3 represent intervals (-∞,v1], (v1, v1], (v1, ∞], 

of the value domain of attribute f respectively). The choice of discretization 

method is very important as it can directly affect the characteristics of objects in 

the information system. Well-established discretization methods have been 

described by Øhrn [68], [69]; they include: manual discretization, equal interval 

width, equal frequency interval, entropy algorithm, naïve algorithm, semi-naïve 

algorithm, Boolean reasoning and rough set based algorithm, and so on. 

Basically, these algorithms can be classified into two groups; one which needs 

users to provide preliminary information (i.e. discretization rules shown earlier in 

the section) to carry out discretization such as the first three algorithms 

mentioned earlier in this paragraph, and the other which does not require any 

v1 v2 ∞ 
Value of attribute b 

d2 

d1 

d3 

Discretized attribute value 

∞ 
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preliminary information and is able to implement discretization based on the 

information given in the decision table such as the last four algorithms also 

mentioned earlier in this paragraph.  

4.2.1.3 Indiscernibility  

In an information system, if two objects w and y (m, y Є U) have the same value 

of an attribute f (i.e. w(f) = y(f)) or the same discretized value if discretization 

has been carried out to the attribute value, then they are equivalent with respect 

to attribute f, and they are f-indiscernible. All objects, which have the same 

discrete value of the attribute f as the object w has, are equivalent to the object 

w with respect to attribute f, and they can be represented by a equivalence-

class set denoted by [w]f. For an attribute set F (F ⊆ A), [w]F denotes the set of 

objects which are equivalence to object w with respect to the attribute set F, and 

is expressed in Equation (4-1): 

 
 

(4-1) 

For individual object w, its equivalence-class set [w]F, with respect to a certain 

attribute set F provides the information that which objects in the decision table 

are equivalent to the object w. The smaller the size of this equivalence-class set, 

the easier it is to distinguish this object from the rest of the objects using the 

attribute set F. 

4.2.1.4 Lower & upper approximations and boundary region 

As far as a group of objects is concerned, say a set of objects W (W⊆U), 

equivalence-class sets can be used to calculate lower and upper 

approximations of this set with respect to a certain attribute set. These 

approximations provide the information about how effective the objects in this 

group can be distinguished from the rest in the information system by using a 

certain attribute set.  
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As expressed in Equation (4-2), the lower approximation of a set W ( denoted 

by  ) with respect to an attribute set F consists of those objects in W 

which definitely can be distinguished from the rest of the objects in the 

information system using attribute set F. In other words, the objects in the lower 

approximation are those that definitely can be classified into the set W using the 

attribute set F. The way to identify whether an object w in the universe of 

objects U (in an information system) belongs to the set W’ s low approximation 

follows two steps: firstly, calculate the equivalence-class set with respect to 

attribute set F for the object w; secondly, check if all the objects in this 

equivalence-class set are in the set W, and if so, this object should be classified 

into the lower approximation of the set W with respect to attribute F.  

 
 

(4-2) 

As expressed in Equation (4-3), the upper approximation of a set W with 

respect to attribute set F denoted by  contains those objects in the object 

universe U which possibly can be classified into the set W using attribute set F. 

For an object w from the universe of objects, if any of the objects in the 

equivalence-class set of this object w is in the set W, then object w will be 

classified into the upper approximation of set W. It is worth noting that the lower 

approximation of set W is actually a subset of the upper approximation. 

 
 

(4-3) 

The tuple ( ) composed of the lower and upper approximation is 

called a rough set.  

The difference between the lower and upper approximation sets of a set W with 

respect to a certain attribute set F is called the boundary region, as expressed 

in Equation (4-4), which consists of those objects having equivalence-class sets 

that do not belong to the set W but have intersection with it. 

 
Boundary Region of approximation of W =  

(4-4) 
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The effectiveness of using an attribute set F to discern objects in set W from the 

rest of the objects in the same information system can be evaluated by a so-

called accuracy of the approximation which is denoted by  and expressed 

as: 

  
(4-5) 

Where and  represent the cardinalities of  and 

respectively. 

4.2.1.5 Reduct 

Rough set can be used for attribute reduction (to analyse all attributes and 

remove unnecessary ones). Assuming it is desired to distinguish a set of W (W 

⊂ U) from the others in the universe U, for any subset F of the original attribute 

set At (F ⊆ At), if  =  and   (for any subset F* ⊂ 

F), then the attribute set F can be defined as a reduct of the original attribute set 

A. Such a reduct has the same capability to distinguish the objects in the set W 

from other objects in the information system as the original attribute set A has, 

thus the rest of the attribute in A will not be needed. It is possible to have more 

than one reduct for distinguishing the set W, and the intersection of all reducts 

is called the core. The core is the set of attributes (or a single attribute) which is 

the most important in order to distinguish the object set W from the rest in the 

object universe U.  

4.2.1.6 Decision table 

An information system usually can also be represented by a so-called decision 

table. For diagnostic purposes, the decision table is more appropriate to 

generate decision rules for diagnostic purposes. Such a decision table contains 

all the objects and their corresponding attributes and attribute values, in the 

dataset. In a decision table, attributes are usually divided into two types: the 

condition attribute and the decision attribute. The major difference between 

them is that the latter is the most important characteristics of the object and is 
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actually used by users of the decision table to distinguish the objects (e.g. in 

this study, fault type should be the decision attribute as the purpose of this 

study is to identify the fault type when gas turbine faults occur, and 

measurements or measurement deviations can be the condition attributes). The 

decision table then can be expressed as T=(U,C D), where C is a set of 

condition attributes and D is a decision attribute (although the decision attribute 

can be more one - in this study, the number of decision attribute is always one). 

An example of a decision table is illustrated in Table 4-1, where fault samples 

are considered as objects, gas path measurements (i.e. temperatures, 

pressures, power output, fuel flow rate and so on) as condition attributes, 

measurement deviation values as condition attribute values, and fault type as a 

decision attribute.  

Table 4-1 A gas turbine degradation decision table 

Fault 
Sample 
(objects) 

Condition attribute (C) 
Decision 
attribute 

(D) 

P1 P2 … PL Fault type 

S1 -1.1% 3.1% … -0.9% Fault1 

S2 2.3% -0.2% … 4.7% Fault1 

S3 1.3% 5.6% … 2.5% Fault1 

S4 -0.4% 1.4% … 3.1% Fault2 

… … … … … … 

SM -2.1% 2.3% … -3.6% FaultO 

* S1, S2,… SM  are fault sample indices, P1, P2, …, PL are measurements, Fault1, 

Fault2, …, and FaultO represent different fault types, and subscripts M, L and O 

are the total number of fault samples, total number of measurements and total 

number of fault types respectively.  

4.2.1.7 Discretization for decision table 

Similar to attribute values in an information system, condition attribute values in 

a decision table also need to be discretized in order to analyse the decision 

table by rough set; however, it may not be necessary to discretize decision 
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attribute value (e.g. in Table 4-1, the decision attribute is fault type and does not 

have a numerical attribute value; hence there is no needed to carry out 

discretization). For example, using a simple manual discretization method to 

discretize condition attribute values in Table 4-1, a discretized table as shown in 

Table 4-2 can be obtained. It is assumed that this method follows two 

discretization rules:  

1. If the original value of an attribute < 0 then the discrete value = 0 

2. If the original value of an attribute >= 0 then the discrete value = 1 

Table 4-2 A discretized decision table 

Fault 
Sample 
(objects) 

Condition attribute (C) 
Decision 
attribute 

(D) 

P1 P2 … PL Fault type 

S1 0 1 … 0 Fault1 

S2 1 0 … 1 Fault1 

S3 1 1 … 1 Fault1 

S4 0 1 … 1 Fault2 

… … … … … … 

SM 0 1 … 0 FaultO 

 

4.2.1.8 Attribute reduction for decision table  

As far as a decision table being discretized is concerned, all the fault samples 

(objects) can be classified into groups by the fault type (the decision attribute), 

and this is the way the users of the decision table want to classify the objects 

(e.g. in this study, the actual way to classify fault samples (objects) is to use 

their fault types (decision attribute values)). The measurements (the condition 

attributes) can also be used to classify the fault samples into groups. If the 

groups resulting from the measurements are the same as (or very similar to) the 

groups obtained by the fault type, it means that it is possible to use the 

measurements to identify the fault type of a new fault sample with known 

measurement deviation values and unknown fault type. It is important to note 
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that this is possible only if the fault type of the new fault sample is covered by 

the decision table.  

The concepts of lower and upper approximation concepts can now be utilised to 

evaluate how well the fault sample groups resulting from the measurements can 

match the groups given by the fault type (i.e. how well the measurements can 

be used to distinguish different fault types in the decision table). 

If, in a decision table, T (T=(U,C D)), assuming all the fault samples in U can 

be divided into several groups denoted by WD (WD represents the set of those 

groups) by their fault types ( the decision attribute values), say WD
1, WD

2, 

WD
3,… (W1, W2, WD

3, …  ⊂ U). In addition, assuming that they also can be 

classified into several groups denoted by WC by the measurements (the 

condition attribute set C), say WC
1, W

C
2, W

C
3, … (WC

1, W
C

2, W
C

3, … ⊂ U), then 

fault samples in the same group have the same measurement deviations.  

If any group from WC belongs to one of the groups in WD; then all the fault 

samples in this group form WC will be classified into the lower approximation 

 of the set of groups WD with respect to the measurements (C). If any 

group from WC is interactive with one of the groups in W,; then all the objects in 

this group form WC will be classified into the upper approximation  of 

the set of groups WD with respect to the measurements (C). In other words, fault 

samples in the lower approximation of WD with respect to the measurements (C) 

are those which can be definitely classified into the correct fault types using the 

measurements; while objects in the upper approximation are those which 

possibly can be classified into the correct fault types using the measurements 

(C). 

If a measurement subset F of the original measurement set C, (F ⊆ C), leads to 

 =  and    (for any measurement subset F* ⊂ 

F), then F is a reduct of C. Once a reduct of the original measurements has 

been found, unnecessary measurements (condition attributes) can then be 

removed from the decision table to reduce the redundancy in the decision table. 
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This is actually how rough set can be used to select appropriate measurements 

(i.e. measurements in the reduct) for fault isolation. 

Once a reduct of condition attributes (measurements) can be found, 

measurements not included in the reduct can then be removed from the 

discretized decision table to create a discretized and reduced decision table. 

Taking the attributes in Table 4-2 as an example, assuming that P2 and PL are 

not included in the reduct, then a discretized and reduced table as shown in 

Table 4-3 can be formed by removing these two attributes from the table. 

Table 4-3 A discretized and reduced decision table 

Fault 
Sample 
(objects) 

Condition attribute (C) 
Decision 
attribute 

(D) 

P1 P3 … PL-1 Fault type 

S1 0 1 … 1 Fault1 

S2 1 1 … 1 Fault1 

S3 1 0 … 1 Fault1 

S4 0 1 … 1 Fault2 

… … … … … … 

SM 0 1 … 0 FaultO 

 

4.2.1.9 Decision rules 

One of the common purposes of the implementation of rough set is to generate 

decision rules from a decision table. The decision rules can be used to identify 

decision values of new objects (e.g. identify the fault type of a new fault sample) 

with known condition attribute values (e.g. measurement deviation values). Rule 

generation usually should be carried out after discretization and attribute 

reduction of the decision table, as, compared with the original decision table a 

discretized and reduced decision table contains more simple and useful 

information. Each rule contains a conditional part “if …” and a decision part 

“then…” in the form as “if … then …” or “if… …”, where the conditional and 

decision parts are the descriptions of condition attribute(s) and decision attribute 
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respectively of the same object in a discretized and reduced decision table. 

More detail of rule generation will be described in 4.2.2.4. 

4.2.1.10 Reasoning  

Once rules have been generated from a discretized and reduced decision table, 

the only problem left is how to use the rules to identify the decision attribute 

values of new objects. This is usually done by using a reasoning method. This 

method decides which rules should be used for each new object and how to 

solve conflicts if different rules lead to different solutions for the same new 

object (e.g. rules gives different decision attribute values for the same new 

object). 

4.2.1.11 Rough set in gas turbine fault isolation  

As mentioned in Section 2.1.6. Chen et al. studied the possibility of using rough 

set for fault isolation. The process of fault isolation is based on Chen et al.’s 

method and contains 5 major steps as shown in Figure 4-2. Chen et al. applied 

their method for the single fault isolation of a twin spool turbofan. 

 

Figure 4-2 A fault isolation method based on rough set [36] 
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Generate single fault samples using an engine performance model to build a 

decision table for the engine, which considers fault samples as objects, 

measurements as condition attributes, measurement deviations caused by 

faults as condition attribute values and the fault type as a decision attribute, an 

example of such a decision table has already been illustrated in Table 4-1. 

Step 2 Discretization  

In this method, the discretization algorithm [37], is used to split the domain of 

the value of each condition attribute into two intervals; therefore two discrete 

values, are used to replace the original values of the condition attributes. This 

algorithm is similar to the manual discretization method used for Table 4-1 

which also split the domain of each value into two intervals by discretization 

rules defined by the author; however, for the former the discretization rules are 

automatically provided by the algorithm. 

Step 3 Attribute reduction  

An attribute reduction method based on a GA is then used to calculate a reduct 

of the measurements (condition attributes) to select appropriate measurements 

for fault isolation (measurements in the reduct). In this method, each possible 

solution (a subset of the attributes) to the attribute reduction problem is 

considered to be a string (refer to the description of GA in Section 2.1.12), and 

by following a searching process similar to the one described in Section 2.1.12, 

the fittest string (i.e. an optimal reduct) can be found. The fitness of each string 

is calculated by evaluating the number of measurements included in the string 

and the capability of the measurements to distinguish fault samples in decision 

table. More detail of this method can be found in [38].Once a reduct has been 

found, measurements not included in the reduct can then be removed from the 

discretized decision table and a discretized and reduced table can be formed. 

Step 3 Rule generation 
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In Chen et al.’s method, rules are generated from the discretized and reduced 

table, and used for single fault isolation (the reasoning algorithm they used in 

their study is not described in their publication[36] regarding this method). 

4.2.2 Fault isolation based on rough set using conventional fault 

signatures 

 

 Figure 4-3 Flow chart of the developed rough set based fault isolation approach 

using conventional fault signatures 

The main objective of this study is to develop a rough set based gas turbine 

diagnostic approach where knowledge, which is hidden in fault samples, is 

discovered and transferred into rules that can be used to isolate gas turbine 

faults. In this section a new rough set based fault isolation approach using 

conventional fault signatures (i.e. each signatures is represented by the 

deviation of a measurement caused by the gas turbine component fault) is 

presented. The novelty of this approach is that the way to carried out 

discretization and attribute reduction is totally different to that of in Chen et al.’s 

method described in Section 4.2.1.11. The generation and application of such a 

rough set diagnostic approach for a gas turbine engine is illustrated in Figure 

4-3 and it contains steps 1 - 5:  
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1. Build a performance model for the engine and generate sufficient fault 

samples from an engine performance model for all potential faults. Each 

fault sample is represented by conventional fault signatures caused by 

the fault (i.e. measurement deviations) and the fault type.  

2. Represent the generated fault samples in a decision table according to 

rough set theory. Such a decision table considers fault samples as 

objects, conventional fault signatures as condition attributes (Unlike 

described in Section 4.2.1.6, measurement deviations are used as 

condition attributes instead of measurements, however measurement 

deviations are equivalence to measurements as each measurement 

produces one measurement deviation) and fault type as a decision 

attribute.  

3. Discretization and attribute reduction are then carried out simultaneously 

(unlike the process shown in Figure 4-2 in Section 4.2.1.11 which carries 

out discretization and attribute reduction separately) to form a discretized 

and reduced decision table. Here the attribute reduction is utilized to 

select appropriate measurements for fault isolation.  

4. Generate rules for fault isolation from the discretized and reduced 

decision table. 

5. Once real fault signatures have obtained from real faulty engine, the 

generated rules can be used for identifying the faulty component by a 

reasoning algorithm. 

The details of above five steps are explained in Sections 4.2.2.1, 4.2.2.2, 

4.2.2.3, 4.2.2.4, and 4.2.2.5 respectively.  

4.2.2.1 Gas turbine fault samples 

It is unrealistic in practice to generate all fault samples for a gas turbine using 

engine tests. Therefore, gas turbine thermodynamic performance models may 

be used to produce fault samples that cover all potential faults including 

different types and different levels of degradation. Each of the samples contains 

information of the fault type and corresponding fault signatures. The more 

samples provided, the more knowledge may be discovered and consequently 
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better rules may be generated. Each fault sample may be represented in the 

following form: 

Sample i (Si) ( i=1 to M): ΔPk = vik (k=1 to N), Faulth (h =1, 2,… or O) 

where Si represents the ith fault Sample, M is the total number of samples, ΔPk 

is the deviation of the kth measurement Pk, vik is the value of ΔPk, N is the total 

number of measurements, Faulth is the hth type of fault, and O is the total 

number of different fault types.  

4.2.2.2 Decision table 

Once sufficient fault samples are obtained, they need to be represented in a 

decision table acceptable by rough set. In rough set theory, a decision table 

denoted by T may be represented as T=(U, C  D), where U is the universe of 

objects, and C and D denote condition and decision attributes respectively. The 

attributes are used to represent the characteristics of the objects, and each 

object has its own attribute values. In this approach, fault samples are 

considered as the objects, conventional fault signatures (measurement 

deviations) as the condition attributes C, measurement deviation values as 

condition attribute values, and fault type as the decision attribute D. For 

example, an example of gas turbine fault decision table is shown in Table 4-4, 

which includes four fault samples two measurement deviations and two types of 

fault. Note that although some of the samples have the same fault, they have 

different levels of degradation. 

Table 4-4 An example of gas turbine fault decision table 

Fault 
Sample 

Condition 
attributes (C) 

Decision 
attribute (D) 

ΔP1(%) ΔP2(%) Fault type 

S1 v11 v12 Fault1 

S2 v21 v22 Fault1 

S3 v31 v32 Fault2 

S4 v41 v42 Fault2 
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where ΔP1 and ΔP2 are two measurement deviations, v11 …. v41 and v12 … v42 

are measurement deviation values, Fault1 and Fault2 are faulty component’s 

names.  

4.2.2.3 Discretization and attribute reduction  

After the construction of the decision table, discretization needs to be carried 

out to discrete condition attribute values in the decision table since rough set is 

only able to deal with discrete data. Apart from that, in order to select 

appropriate measurements for fault isolation using rough set, attribute reduction 

needs to be carried out. Attribute reduction is a process to select an informative 

condition attribute subset called a reduct from the decision table being 

discretized. In a more technical term, the reduct is a representative subset of 

the original condition attributes in a decision table, which is able to be used to 

discern the same objects that can be distinguished by using the original 

condition attributes. If each condition attribute in the decision table is 

represented by a measurement deviation, then the measurements involved in 

the reduct can be selected as appropriate measurements for isolation of those 

faults included in the decision table. 

 In this study, an algorithm [70] which is based on the combination of rough set 

and Boolean reasoning is employed for both discretization and attribute 

reduction. This algorithm is able to carry out discretization while simultaneously 

calculate a reduct for the original condition attributes in a decision table for the 

attributes reduction. The main reason this algorithm is chosen in this research 

due to the unique feature it has: it is able to carry out discretization with minimal 

information loss (the downside of discretization is that it induces information 

loss to the decision table).  

Taking the decision table shown in Table 4-4 as an example, the process of 

carrying out discretization and finding a reduct using this algorithm follows the 

three steps below: 

Step 1- Initial discretization 
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In order to demonstrate the discretization process clearly, each fault sample in 

the decision table is schematically denoted by a point in N-dimensional space, 

where N is the total number of the measurement deviations (i.e. the total 

number of measurements) in the decision table. Assuming v41 <v11 < v31 <v21 

and v32< v22 <v42< v12, the four samples in Table 4-4 now can be denoted by 

four points in a two-dimensional space as shown in Figure 4-4. 

To carry out discretization, the axis of each measurement deviation in the space 

is divided into intervals by cut(s). A cut is denoted by C(ci , mip), where ci 

denotes that this is a cut of the ith measurement deviation, mip is the position of 

this cut and its subscript ip denotes this is the pth cut of the ith measurement 

deviation; it divides the axis of the measurement deviation ci into two intervals (-

∞, mip], and (mip, ∞), and the position the cut should be taken (i.e. the value of 

mip) is defined by an average of two adjacent measurement deviation values in 

the space. All fault samples, which have values of a condition attribute falling 

into the same interval of this condition attribute, will be assigned an identical 

discrete value dig to replace the actual values, where dig denotes the gth interval 

of the ith measurement deviation. For example, in Figure 4-4, ΔP1  is divided into 

two intervals by taking a cut at the point where the value of ΔP1 is the average 

of v41 and v11, and the cut is denoted by C(ΔP1, m11), where m11 is the average 

of v41 and v11. Therefore two different discrete values will be assigned to the 

four samples to replace their actual values of ΔP1, say discrete values d11 and 

d12 as shown in Figure 4-4, where in this case they represent intervals (-∞, m11] 

and (m11, ∞) of the axis of the measurement deviation ΔP1 respectively.  
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Figure 4-4 Faults in a two-dimension space 

In order to replace the actual measurement deviation values with discrete 

values (i.e. carry out discretization), while ensuring that all the faults in the 

decision table can still be distinguished by these discrete values, an set of initial 

cuts of measurement deviations is formed by taking a cut in the middle of each 

two adjacent values on each measurement deviation axis in the space. For 

example, as shown in Figure 4-5, the set of initial cuts of ΔP1 and ΔP2 in Table 

4-4 should be: {C(ΔP1 , m11), C(ΔP1 , m12), C(ΔP1 , m13), C(ΔP2 , m21), C(ΔP2 , 

m22), (ΔP2 , m23)}, where m11, m12,…, m23 are the averages of two adjacent 

condition values. According to the set of initial cuts, new discrete values will be 

assigned to replace the original values as illustrated in Figure 4-5, where d11, 

d12,…, d24 are new discrete values, and they represent different intervals of 

measurement deviation axes, for example, now d11 represents interval (-∞, m11] 

of ΔP1 axis, and d22 represents interval (m21, m22] of ΔP2 axis. 
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Figure 4-5 Initial discretization 

By comparing Figure 4-4 with Figure 4-5, it can be seen that after dividing the 

space by cuts each fault sample can provide much more useful information 

(before discretization each fault sample only represent a single point in the 

space and after discretization a area).  

Step 2-Cut selection  

The next step is to select appropriate cuts from the set of initial cuts to form a 

set of final cuts since not all the initial cuts are necessary to distinguish all the 

faults in the decision table. To do so, a cut selection table needs to be 

constructed. In the cut selection table, all the initial cuts are listed in a row, and 

all possible pairs of the fault samples that have different types of faults are listed 

in a column. The set of final cuts should be able to distinguish all faults covered 

in the decision table with a minimum number of cuts (i.e. be able to distinguish 

the fault samples in each pair listed in the cut selection table).  

In the cut selection table, if two samples in a pair can be distinguished using the 

discrete values resulting from a cut, the word “Yes” will be placed in the 

intersection cell between the column of this cut and the row of this pair; 

otherwise the word “No” will be placed in the intersection cell. For example, for 

fault samples shown in Table 4-4, a cut selection table is constructed and 
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shown in Table 4-5. Taking the cut C(ΔP1, m11) as an example, it can be 

observed in Figure 4-4 that it leads to samples S1, S2 and S3 having the same 

discrete value. Therefore, the fault samples in pair (S1, S3) or (S2, S3) are not 

distinguishable with respect to the discrete value given by the cut C(ΔP1, m11), 

as a result of this, the intersection cells between these two pairs and the cut 

should be marked by “No”.  

Table 4-5 Cut selection table 

  Initial cuts of measurement deviations 

Pair of 
fault 

samples 

C
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(Δ
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2
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2
3 ) 

(S1,S3) No Yes No Yes Yes Yes 

(S1,S4) Yes No No No No Yes 

(S2,S3) No No Yes Yes No No 

(S2,S4) Yes Yes Yes No Yes No 

 

After the construction of the cut selection table, the three steps shown below 

need to be taken to find a set of final cuts: 

1. In the cut selection table, find a cut corresponding to the column with the 

largest number of “Yes” (i.e. a cut that is able to distinguish the largest 

number of fault samples in the decision table).  

2. Remove the cut and the pairs of fault samples that can be distinguished 

by this cut from the cut selection table. 

3. Repeat the above two steps for the remaining cuts and pairs of fault 

samples until all the pairs have been removed, and the set of final cuts is 

the one with all the cuts have been removed. 
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Following the above steps, a set of final cuts can be obtained in Table 4-5 is 

{(ΔP1 , m13), (ΔP2 , m23)}. It is worth mentioning that, in this case, there is more 

than one solution to the set of final cuts.  

Step 3- Final discretization and attribute reduction 

Once a set of final cuts has been found, those measurement deviations that are 

not involved in the final cuts will be removed from the decision, and 

discretization based on the final cuts will be carried out to the remaining 

measurement deviations to form a discretized and reduced decision table. 

Taking Figure 4-5 as an example, after the set of final cuts {(ΔP1, m13), (ΔP2, 

m23)} has been found, the two-dimensional space can be re-divided as shown in 

Figure 4-6. 

 

Figure 4-6 Final discretization 

The reduct of the original condition attributes is the set of condition attributes 

included in the final cuts. table. In this case, the reduct includes ΔP1 and ΔP2. 

Notice that the condition attributes are the same as the initial ones although it is 

possible to distinguish the fault samples with only one attribute (by taking three 

cuts on axis of ΔP1 the fault samples still can be discerned and ΔP1 will be the 

only attribute in the reduct). The reason for this is because that this algorithm 
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tends to use as fewer cuts as possible to achieve discretization, and in this case 

using both condition attributes obviously leads to fewer cuts (only two cuts). 

Measurements included in the reduct are selected for classifying the faults in 

the decision table, since each condition attribute is represented by a 

measurement deviation. 

A discretized and reduced decision table that only contains the condition 

attributes involved in the final cuts and discrete values given by the final cuts 

can be constructed for Table 4-4 and is shown in Table 4-6.  

Table 4-6 A discretized and reduced decision table 

Fault 
Sample 

Condition 
attribute 

Decision 
attribute 

ΔP1 
(%) 

ΔP2 
(%) 

Fault 
Type 

S1 d11 d22 Fault1 

S2 d12 d21 Fault1 

S3 d11 d21 Fault2 

S4 d11 d21 Fault2 

*Note that now d11 and d12 represent intervals (-∞,m13] and (m13,∞) of the axis of 

ΔP1 in the space respectively, and d21 and d22 represent intervals (-∞,m23] and 

(m23,∞) of the axis of ΔP2 respectively. 

4.2.2.4 Rule generation  

Any decision table being discretized and reduced can be used to generate 

decision rules which represent the logical relationships between measurement 

deviations (the condition attributes) and the fault type (the decision table) in the 

decision table. Each rule contains a conditional part “if …” and a decision part 

“then…” in the form of “if … then …” or “if… …”, where the conditional and 

decision parts are the descriptions of measurement deviation(s) and the fault 

type of the same fault sample in the decision table respectively. In this study, 

the principle to generating rules from any decision table is the same [71]: each 

rule is formed by matching a fault sample against its measurement deviations 
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and fault type respectively in the table, however such a rule only contains a 

minimal subset of the measurement deviations which is sufficient to be used to 

distinguish this fault sample from those having different faults. It is also likely to 

generate more than one rule from a fault sample. Apart from that, identical rules 

may be generated from different fault samples, and hence to evaluate the 

importance of each generate rule a parameter called “Support” will be 

calculated for each rule. The “Support” of each rule equals the number of fault 

samples in the decision table matching the rule.  

Taking Table 4-6 as an example, by the rule generation method described 

earlier in this section three rules can be generated as follows:   

Rule1 from sample 1: If ΔP2= d22  Fault1 (Support = 1) 

Rule2 from sample 2: If ΔP1= d12  Fault1 (Support = 1). 

Rule3 from sample 3 or 4: If ΔP1 d11 and ΔP2= d21  Fault2 (Support = 2) 

For fault sample S1, a minimal subset to distinguish S1 from S3 and S4 (S1 has 

different fault type to the fault S3 and S4 have) would only be ΔP2 although ΔP1 

is also available. This is because the value of ΔP2 of S1 is different to both the 

values of S3 and S4. This is similar to the rule generated from sample S2 where 

ΔP1 is used as the minimal subset. Both rules from sample S1 and S2 has a 

“Support”  equalling to one, as there are no other fault samples matching the 

rules. On the other hand, both samples S3 and S4 have the same rule thus the 

“Support” of this rule is two. In addition the minimal subset for both S3 and S4 

are the same (ΔP1 and ΔP2) because both ΔP1 and ΔP2 are needed to 

distinguish each of S3 and S4 from both S1 and S2. 

4.2.2.5 Reasoning  

The generated rules then can be utilized for classifying component faults of the 

real engine by a reasoning algorithm called Standard Voting [71]. It carries out 

reasoning by three steps: 
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Firstly, once the real engine degrades and the fault signatures caused by the 

degradation are obtained, the Standard Voting algorithm will first compare the 

obtained fault signatures with the rules generated. The algorithm will then select 

the rules with correct matches between the conditional part of the rules and the 

signatures for reasoning. For example, taking the rules (i.e. Rule1, Rule2 and 

Rule3) presented in Section 4.2.2.4 as an example, assuming that a fault 

occurs in the real engine and causes deviations ΔP1 and ΔP2 (i.e. fault 

signatures) to the measurements P1 and P2, where ΔP1 and ΔP2 have values 5% 

and -3% respectively, if 5%  is in the interval d12 of ΔP1 (i.e. if m13 >5% since d11 

represent interval (m13, ∞), refer to Table 4-6) then the fault signatures is 

matched by the Rule2, similarly if -3% is in the interval d22 (i.e. if m23> or =-3% 

since d22 represent interval (-∞,m23])  then the fault signatures is matched by the 

Rule1, and if 5% is in the interval d12 and -3%  is in the interval d21 then the fault 

signatures is matched by the Rule3. The faults described in the decision parts 

of the selected rules are potential faults which may cause the degradation to the 

real engine. For example, if the Rule2 is selected, then Fault1 is a potential fault.  

Next, a certain number of “votes”, representing the probability of each potential 

fault, will be assigned to each potential fault based on the number of selected 

rules supporting (having the potential fault in its decision part) the potential fault 

and the importance (“Support”) of the rules. If a potential fault is supported by a 

selected rule, then from this rule, this fault can obtain the number of “votes” 

equalling to the “Support” of this rule.  

Finally, after the calculation of total “votes” that each potential fault obtained 

from the selected rules, the total “votes” of each potential fault will be 

normalized by dividing the number of total “votes” of this potential fault by the 

number of total “votes” that all potential faults obtained. The real fault will be 

classified as the potential fault with the highest normalized total “votes”. 

Basically, the fault isolation process based on this version of the developed 

approach follows the five steps described in previous five sections respectively 

The application of this version of the developed rough set based fault isolation 

approach presented in this section will be described in Section 4.3.1.
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4.2.3 Fault isolation based on rough set using enhanced fault  

signatures 

In order to make the developed fault isolation approach more effective, 

enhanced fault signatures are developed to enhance the characteristics of faults 

and hence increase the discernibility of faults and consequently improve fault 

isolation accuracy. More details of enhanced fault signatures will be presented 

in Section 4.2.3.1. The process of fault isolation based on the developed rough 

set approach using enhanced fault signatures is shown Figure 4-7.   

 

Figure 4-7 Flow chart of the developed rough set based fault isolation approach 

using enhanced fault signatures 
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As shown in the figure above, basically this flow chart consists of three major 

steps: 

1. Measurement selection: this process is exactly the same as the one 

described in Section 4.2.2: firstly, generate fault samples to cover 

potential faults, secondly, use the samples to build a decision table with 

conventional fault signatures which consider fault samples as objects 

and measurement deviations as condition attributes and the fault type as 

the decision table, and finally carry out discretization and attribute 

reduction to calculate a reduct to of measurement deviations and select 

measurements involved in the reduct for fault isolation. However now the 

decision table constructed with conventional fault signatures is only used 

for measurement selection but not for rule generation. 

2. Rule generation: another decision table, which is similar to the decision 

table with conventional fault signatures except that it uses enhanced fault 

signatures derived from the select measurements as condition attributes, 

will be built. After carrying out discretization and attribute reduction to this 

new decision table (note the attribute reduction is utilized to select 

appropriate enhanced fault signatures for fault isolation), rules will be 

generated from this table by the same method mentioned in 4.2.2.4.  

3. Reasoning: the reasoning process is exactly the same as the one 

described in Section 4.2.2.5. 

Actually, the major different between using conventional and enhanced fault 

signatures for rough set based fault isolation is that the latter uses a extra 

decision table with enhanced fault signatures for rule generation. More details 

about the step 2 (i.e. rule generation using enhanced fault signatures) will be 

presented in Section 4.2.3.3).  

4.2.3.1 Enhanced fault signatures 

A measurement deviation caused by a gas turbine component fault, is 

conventionally called a fault signature. Thus the number of condition attributes 
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is consistent with the number of measurements if conventional fault signatures 

are used as condition attributes in decision tables. Due to the limited number of 

measurements available, the rough set based fault isolation approach may not 

be able to isolate engine faults effectively when engines are complicated in 

configuration. This is because when the complexity and number of faults 

needed to dealt with increase, the similarity of conventional fault signatures 

caused by different faults may increase as well, which results in rise of the 

difficulty to distinguish different faults and consequently low fault isolation 

accuracy. 

To make the developed fault isolation approach more robust in dealing with 

complexity faults, a concept of enhanced fault signatures is introduced. 

Enhanced fault signatures are developed by the author with the intention to 

enhance the characteristics of faults, which may make it easier to distinguish 

them, and consequently improve the possibility of successful fault isolation. The 

enhanced fault signatures, which include both the measurement deviations and 

the information of the ranking pattern of the same measurement deviations in 

terms of magnitude, are derived from conventional fault signatures. For 

instance, if a component fault induces conventional fault signatures (i.e. 

measurement deviations) ΔP1, ΔP2 and ΔP3, where ΔP1> ΔP2> ΔP3, then the 

corresponding enhanced fault signatures should include both the measurement 

deviations ΔP1, ΔP2 and ΔP3 and also the information representing the ranking 

pattern of these deviations, i.e. ΔP1> ΔP2> ΔP3.  

The introduction of such a ranking pattern is due to the consideration that such 

a ranking pattern of some measurement deviations may be consistent or similar 

for the same faults with different levels of degradations but different for other 

types of faults. Therefore such a ranking pattern may provide extra useful 

information to distinguish the faults, and the extra information can be analyzed 

by rough set and transferred to extra rules for fault isolation. In order to convert 

the information of the ranking pattern into condition attributes that rough set can 

deal with, a so-called ranking parameter denoted by R(PxPy) is created and 
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used. It represents the difference between two measurement deviations as 

expressed in Equation (4-6). 

 
R(PxPy)= ΔPx-ΔPy (4-6) 

where both Px and Py denote measurements, and ΔPx and ΔPy are deviations of 

them respectively. Each ranking parameter’s value is able to reflect the 

relationship between two measurement deviations in terms of magnitude; hence 

sufficient ranking parameters are able to represent a ranking pattern of all 

measurement deviations. The number of ranking parameters required to 

represent a ranking pattern of N measurement deviations can be calculated 

using a combination equation (see Equation (4-7)). Taking the ranking pattern 

“ΔP1> ΔP2> ΔP3” as an example, three ranking-parameters are needed: 

R(P1P2), R(P1 P3) and R(P2P3).  

 
 

(4-7) 

4.2.3.2 Measurement selection  

As shown in Figure 4-7, Fault isolation based on rough set using enhanced fault 

signatures follows the same measurement selection process described in 

Section 4.2.2 : build a decision table using conventional fault signatures (refer to 

Section 4.2.2.2), then use the algorithm based on the combination of rough set 

and Boolean to calculate a reduct (refer to Section 4.2.2.3), and measurements 

involved in the reduct are selected for fault isolation. 

4.2.3.3 Rule generation using enhanced fault signatures 

Once measurement selection is finished, the selected measurements will then 

be used to derive enhanced fault signatures (i.e. to calculate measurement 

deviations and ranking parameters based on the selected measurements) for 

each fault sample.  
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Both the measurement deviations and the ranking parameters then can be used 

to form a new decision table which is the same to the one with conventional 

fault signatures (i.e. Table 4-4) but using both the measurement deviations and 

ranking parameters as condition attributes. Taking the decision table with 

conventional fault signatures shown in Table 4-4 as an example, two 

measurements P1, P2 were selected as appropriate measurements for fault 

isolation (refer to Section 4.2.2.3), then now enhanced fault signatures based 

on the two measurements can be derived which contains measurement 

deviations ΔP1 and ΔP2, and a ranking parameter R(P1P2). Using the derived 

enhanced fault signatures and the same fault samples included in Table 4-4, 

another decision table can be constructed as shown in Table 4-7. 

Table 4-7 Decision table using enhanced fault signatures 

Fault 
Sample 

Condition attribute 
Decision 
attribute 

ΔP1(%) ΔP2(%) R(P1P2) 
Fault 
type 

S1 v11 v12 v11-v12 Fault1 

S2 v21 v22 v21-v22 Fault1 

S3 v31 v32 v31-v32 Fault2 

S4 v41 v42 v41-v42 Fault2 

 

After the construction of such a decision table, the table will then be discretized 

and reduced using the same discretization and attribute reduction algorithm 

described in Section 4.2.2.3, and this will result in a new discretized and 

reduced decision table. Note that here the attribute reduction is utilized to select 

appropriate enhanced fault signatures for fault isolation as not all the enhanced 

fault signatures are useful. By applying the same principle presented in 4.2.2.4, 

fault isolation rules can be generated from this new discretized and reduced 

decision table.  



127 

4.2.3.4 Reasoning  

By the same reasoning algorithm mentioned in 4.2.2.5, rules generated from the 

discretized and reduced decision table with enhanced fault signatures can be 

utilized for fault isolation. It worth mentioning that here the fault signatures 

obtained from the real engine need to be enhanced fault signatures which can 

be simply derived from measurement deviations.  

The application of this version of the developed rough set based fault isolation 

approach (using enhanced fault signatures) will be described in Section 4.3.1. 

4.2.4 Fault isolation based on rough set with limited measurements 

 

Figure 4-8 Flow chart of the developed rough set based fault isolation approach 

with limited measurements 
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One of the common between the first two versions of the developed fault 

isolation approach (i.e. the one using conventional and the other one using 

enhanced fault signatures, as presented in Sections 4.2.2 and 4.2.3) is that they 

select an appropriate set of measurements for fault isolation from all potential 

measurements that can be used for fault isolation. However if the appropriate 

set given by them contains too many measurements then it may be 

unacceptable to engine users as the higher number of sensors may lead to a 

higher cost. Therefore, in order to make the developed fault isolation approach 

more flexible in measurement selection, a new measurement selection 

approach was proposed and integrated with the developed fault isolation 

approach to form another version, which is able to provide an appropriate set of 

measurements according to the number of measurements that users want to 

use for isolation. This new measurement selection method is suitable for either 

fault isolation using conventional fault signatures or using enhanced fault 

signatures. The flow chart of fault isolation based on this new version is 

illustrated in Figure 4-8. 

From Figure 4-8, it can be observed that this flow chart also contains three 

major steps: measurement selection, rule generation, and reasoning. These 

steps will be described in the following three sections respectively.  

4.2.4.1 Measurement selection  

In order to carry out measurement selection under the circumstance when the 

number of measurements can be used for isolation is fixed, a measurement 

discernibility (the capability to discern potential faults) ranking table needs to be 

constructed, and then users can select a certain number of measurements that 

have higher ranks for fault isolation. The flow chart of building such a 

measurement discernibility table is illustrated in Figure 4-9, where C is the 

condition attribute, WD is a set of groups that all the fault samples in the 

decision table can be divided into by the fault type (the decision attribute D), 

and , which indicates the discernibility of the condition attribute C to 

distinguish faults in the decision table, is the low approximation of WD with 
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respect to the condition attribute C (Please refer to Section 4.2.1 for more 

details of ).  

 

Figure 4-9 Measurement selection based on fault discernibility 

As shown in Figure 4-9, such a measurement selection contains the following 

steps: 

 Firstly, use an engine model to generated fault samples to cover all 

potential faults, and use the generated samples to build a decision table 

for each measurement. Each decision table considers fault samples as 

objects, the fault type as the decision table, and only the deviation of the 

measurement as the condition attribute. Taking one of the 

measurements (ΔP1) in Table 4-4 in Section 4.2.2.2 as an example, a 

decision table shown in Table 4-8 can be built for this measurement 

using the fault sample included in Table 4-4. 
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Table 4-8 An example of a decision table with one condition attribute 

Fault 
Sample 

Condition 
attribute 

(C) 

Decision 
attribute 

(D) 

ΔP1(%) Fault 

S1 v11 Fault1 

S2 v21 Fault1 

S3 v31 Fault2 

S4 v41 Fault2 

 

 Secondly, calculate for each decision table built in the first step, 

which indicates the discernibility of the measurement included in this 

decision table.  

 Thirdly, rank all the measurements according to the fault discernibility of 

each of them (i.e. the size of the low approximation  that each 

measurement corresponds to) to form a measurement discernibility table. 

 Finally, according to the measurement number that the user wants to use 

for fault isolation, select the same number of measurements having 

higher ranks from the measurement discernibility table for fault isolation.  

4.2.4.2 Rule generation 

Once measurements for fault isolation have been selected by the method 

mentioned in the previous section, using the generated fault samples also 

mentioned in the previous section with only the selected measurements, either 

a decision table with conventional fault signature or with enhanced fault 

signatures can be constructed (since the measurement selection method is 

suitable for either fault isolation using conventional fault signatures or using 

enhanced fault signatures). In addition, rules can be generated from either of 

them by the same method for rule generation described 4.2.2.4 after carrying 

out discretization and attribute reduction to them by the same algorithm 

introduced in 4.2.2.3. 
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4.2.4.3 Reasoning  

By the same reasoning algorithm mentioned in Section 4.2.2.5, rules generated 

from the discretized and reduced decision table can be utilised for fault isolation. 

The application of this version of the developed rough set based fault isolation 

approach presented in this section will be described in Section 4.3.2. 

4.2.5 Fault isolation frameworks  

Apart from the choice of the fault isolation method, the fault isolation framework, 

which describes the process employed to classify faults, is also one of the major 

factors influencing fault isolation accuracy. In this research, three different 

frameworks shown in Figure 4-10, Figure 4-11, and Figure 4-12 were studied, 

and they are:  

(a)  Framework 1 that is simple and the most commonly used framework, and 

this is the framework used in Sections 4.2.2., 4.2.3 and 4.2.4.  

(b)  Framework 2 that has been used by several researches for gas path 

diagnostics [1] [19] [45]. 

(c)  Framework 3 which is proposed by the author.  

 

Figure 4-10 Framework 1 
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Figure 4-11 Framework 2 

 

Figure 4-12 Framework 3 
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capable of accurately identifying the actual fault from all potential faults. This 

may raise difficulties in remaining the accuracy of isolation as the number or the 

complexity of potential faults increases, especially if multiple-faults are involved 

in the isolation. The fault isolation processes of the three different versions of 
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the developed rough set based fault isolation approach mentioned in Sections 

4.2.2, 4.2.3, and 4.2.4 actually follow the process in Framework 1.  

Framework 2 splits the fault isolation process into two steps. The first step is to 

identify whether the fault is a single fault or multiple-fault before the actual fault 

is identified at step 2 which has two options (one for identifying single faults and 

the other for multiple-faults). Having the two steps may help to reduce the 

isolation complexity because in each step the complexity and number of 

potential faults that need to be analysed are low. Apart from that, this framework 

is seen to be more flexible than Framework 1 in the following two circumstances: 

(1) when users just want to know whether the fault causes rapid (short-term) 

deterioration or gradual (long-term) deterioration since the single fault and 

multiple-fault usually cause rapid and gradual deteriorations respectively [8] (in 

this case only step 1 in framework 2 needs to be carried out); and (2) when the 

fault is known as a single fault (users may be able to detect single faults by 

monitoring rapid trend variation of measurements), only Step 2a in framework 2 

needs to carry out the isolation, hence in return the isolation can be much 

easier as there are no complex multiple-faults involved. 

Framework 3 also splits the process into two steps. Like Framework 2, this 

framework may also be able to reduce the difficulty of isolation and provide 

more options for users. The first step of this framework is to determine which 

type(s) of components (i.e. compressors or turbines) is(are) involved with the 

fault. For example, when a fault occurs and every faulty component is a 

compressor then the fault will be classified as a compressor fault. Similarly if 

every faulty component is a turbine then it is a turbine fault and if the fault 

components contain both compressor(s) and turbine(s) then it is a combined 

compressor and turbine fault. This kind of information can be valuable to gas 

turbine operators, because some of the most common faults such as fouling, 

corrosion and erosion can be induced by different causes, and each of the 

causes may only lead to deterioration to the same type components (i.e. either 

only compressors or only turbines). For example, if gas turbines are operating in 

dusty localities, fouling is more likely to occur in all compressors. Resultants of 
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combustion can also cause fouling (or corrosion) to and only to turbines. Salts 

in the air lead to fouling (or corrosion) to compressors of the gas turbines 

operating in offshore oil rigs, but this is less likely happened to turbines. 

Therefore under any of the above-mentioned circumstances in this paragraph, 

only Step1 in Framework 3 needs to be carried out. Even it is needed to identify 

the faulty components, once step 1 has been carried out, the actual faulty 

component(s) can then be identified by one of the options at step 2 (steps 2a, 

2b or 2c). 

4.2.5.1 Integrating the developed rough set based fault isolation approach 

with different frameworks 

To study and test the effectiveness of the introduced three frameworks, they are 

integrated with one of the versions of the developed rough set based fault 

isolation approach using enhanced fault signatures. As mentioned in Section 

4.2.3, the fault isolation based on rough set using enhanced fault signatures has 

three steps which are (a) measurement selection, (b) rule generation, and (c) 

using the generated rule to classify faults by reasoning. Sections 4.2.5.2, 

4.2.5.3, and 4.2.5.4 describe how the above steps can be integrated with the 

frameworks. 

4.2.5.2 Measurement selection 

The process for measurement selection is consistent for all three frameworks, 

and is the same as the process presented in Section 4.2.3.2: use all generated 

fault samples to build a decision table considering conventional fault signatures 

as condition attributes, and calculate a reduct of the condition attributes in the 

table, and consequently measurements involved in the reduct will be chosen for 

fault isolation.  

4.2.5.3 Rule generation 

Enhanced fault signatures derived from selected measurements are used as 

condition attributes for decision tables for rule generation. Further, since the 

fault isolation purposes at different steps in different frameworks are different, a  
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Table 4-9 Decision tables used for rule generation in different frameworks 

Decision 
table 
No. 

Framework / 
step that the 

decision table is 
built for 

Decision table properties 

Fault samples 
required 

Decision attribute 
values 

1 FW1 
All fault 
samples 

faulty component(s)'s 
names 

2 

FW2 

Step1 
All fault 
samples 

"Single Fault" or 
"Multiple-Fault" 

3 Step2a 
Single fault 

samples 
faulty component's 

names 

4 Step2b 
Multiple-fault 

samples 
faulty components' 

names 

5 

FW3 

Step1 
All fault 
samples 

"Compressor Fault", 
"Turbine Fault" or 

"Comp & Turb Fault" 

6 Step2a 
Compressor 
fault samples 

faulty component(s)'s 
names 

7 Step2b 
Turbine fault 

samples 
faulty component(s)'s 

names 

8 Step2c 
Comp & Turb 
fault samples 

faulty component(s)'s 
names 

 

decision table needed to be constructed to generate a unique set of rules for 

each step. In addition, apart from condition attributes (all the decision tables for 

different steps using the enhanced fault signatures derived from selected 

measurements as condition attributes), both the choices on fault samples and 

decision attribute values for constructing such a decision table may be different 

for different steps. Framework 1 for example only requires one decision table 
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since it only needs rules to identify the faulty component(s). In Framework 2 or 

3, at each step, the isolation purpose is different and hence a different decision 

table is needed to generate specific rules for the fault isolation at each step. 

Table 4-9 provides the properties of different decision tables used in 

Frameworks 1, 2 and 3 where Comp and Turb denote the compressor and 

turbine respectively, and FW stands for framework.  

After building the decision tables, the tables will then be discretized and 

reduced using the same discretization and attribute reduction algorithm 

described in Section 4.2.2.3, and hence each of them will result in a new 

discretized and reduced decision. By applying the same rule generation method 

introduced in 4.2.2.4, a set of fault isolation rules can then be generated from 

each of the discretized and reduced decision tables.  

4.2.5.4 Reasoning  

Each set of fault isolation rules generated will be employed for fault isolation at 

its responding framework or step by the same reasoning algorithm mentioned in 

4.2.2.5. Note that only the set of rules generated for each step will be involved 

in the reasoning at the step and once the enhanced fault signatures have been 

obtained from the real engine, they will be used for both fault isolations at steps 

1 and 2 in Frameworks 2 and 3. 

The application of the developed rough set based fault isolation approach using 

enhanced fault signatures integrated with the three different frameworks will be 

presented in Section 4.3.3. 
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4.3 Application and analysis 

This section presents the application and analysis of the different versions of 

the developed fault isolation approach presented in Sections 4.2.2, 4.2.3, and 

4.2.4, and the three different frameworks mentioned in 4.2.5. Section 4.3.1 

describes fault isolations using different fault signatures (conventional and 

enhanced fault signatures). Section 4.3.2 discusses the application of the 

developed fault isolation approach using enhanced fault signatures with limited 

measurements. Section 4.3.3 studies the three different frameworks and 

proposes a suitable framework for the developed fault isolation approach.  

Rough Set Exploration System (RSES) 2.2 [72] developed by Warsaw 

University, which is a rough set toolkit can be used to analyze of table data, is 

employed in this study as it is capable of carrying out discretization & attribute 

reduction, rule generation and reasoning by the methods described in Sections 

4.2.2.3, 4.2.2.4, and 4.2.2.5 respectively. The user’s guide of RSES 2.2 can be 

found in [73].  

4.3.1 Fault isolation using different fault signatures  

This section describes the application of two versions (the one using 

conventional fault signatures and another one using enhanced fault signatures) 

of the develop fault isolation approach (referred to as Approach 1 in this section) 

and the corresponding results and analysis. In addition, in order to test the 

effectiveness of enhanced fault signatures on other rough set based 

approaches, another rough set based approach (referred to as Approach 2) is 

also applied for the fault isolation using conventional and enhanced fault 

signatures respectively. The Approach 2, which follows the same fault isolation 

process of Chen et al.’s approach [36] presented in Section 4.2.1, uses the 

manual discretization method (the one used to create Table 4-2) and the 

Genetic Algorithm [38] introduced in Section 4.2.1, and the same rule 

generation and reasoning methods described in Sections 4.2.2.4 and 4.2.2.5 

respectively. Hence this section also describes the application and analysis for 

the Approach 2. In the application of the Approach 2, RSES 2.2 was also 
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employed for attribute reduction, rule generation and reasoning (RSES 2.2 is 

also able to carry out attribute reduction based on the Genetic Algorithm 

method mentioned in this paragraph). All the two versions of the Approach 1 

and the Approach 2 were applied to a two-spool turbofan model engine for 

single and dual-component faults isolation. Therefore six fault isolation test 

cases shown in Table 4-10 were studied. 

Table 4-10 Six different test cases of fault isolation 

  

Fault isolation 
approach  

Fault signatures 
 Potential faults 

considered 

Approach 
1 

Approach 
2 

Conventional Enhanced 
single 
faults 
only 

single 
& dual 
faults 

Case1 X 
 

X 
 

X 
 

Case2 X 
  

X X 
 

Case3 X 

 

X 
  

X 

Case4 X 

 
 

X 
 

X 

Case5 

 

 X X 

 
 

X 

Case6   X 
 X   X 

 

Cases 1 and 2 only carried out the same single fault isolation using the same 

approach (Approach 1) but different types of fault signatures.  

Cases 3 and 4 carried out isolation of the same single and dual faults using the 

same approach (Approach 1) but different types of fault signatures.  

Cases 5 and 6 carried out isolation of the same single and dual faults using the 

same approach (Approach 2) but different types of fault signatures. 

4.3.1.1 Model engine  

The two-spool turbofan model engine used in this study, which is similar to the 

Pratt & Whitney PW4000-94 engine, comprises a fan, an intermediate (IP) 

compressor, a high pressure (HP) compressor, an annular combustor, a HP 

turbine and a low pressure (LP) turbine. The LP shaft rotational speed was used 
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as the handle to control the status of the engine in this study. Using Cranfield 

University gas turbine performance and diagnostics software called PYTHIA, a 

non-linear thermodynamic performance model was built for the engine and used 

for generating fault samples. The model engine configuration is shown in Figure 

4-13. 

 

Figure 4-13 Model engine configuration 

The characteristics of this model engine is shown in Table 4-11. 

Table 4-11 Engine characteristics 

Engine 
Characteristics  

Value  Unit 

Mass flow rate 700 kg/s 

Bypass ratio 5 
 

Fan PR 1.7 
 

IP Compressor PR 1.5 
 

HP Compressor PR 12 
 

Overall PR 31 
 

TET 1700 k 

Thrust 278 KN 

Fuel flow rate 3.8 kg/s 

 

Assuming the 12 measurements shown in Table 4-12 are potential 

measurements that can be used for diagnostics, the measurement selection 

method described in Section 2.2.1 was utilized to select appropriate ones for 
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two different fault isolations (i.e. single faults isolation only and both single and 

dual-faults isolation), since some of them may not effectively contribute to the 

fault isolations. 

Table 4-12 Potential measurements for fault isolation 

Measurement Symbol Unit 

Fan outlet total temperature T3 k 

Fan outlet total pressure P3 atm 

IP compressor outlet total temperature T5 k 

IP compressor outlet total pressure P5 atm 

HP compressor outlet total temperature T6 k 

HP compressor outlet total pressure P6 atm 

HP turbine outlet total temperature T8 k 

HP turbine outlet total pressure P8 atm 

LP turbine outlet total temperature T9 k 

LP turbine outlet total pressure P9 atm 

Fuel flow rate FF kg/s 

HP compressor rotational speed N2 rpm 

 

4.3.1.2 Fault samples  

In this study, degradation indices including flow capacity index (SFFC) and 

isentropic efficiency index (SFE), which represent the shift of speed lines on 

compressor or turbine characteristic maps caused by their degradation, are 

employed to represent the level of the degradation of compressors and 

turbines. The details of the degradation indices can be found in [5]. Usually 

burner degradation does not induce large variations in gas path measurements; 

therefore it is ignored in this study. Table 4-13 shows the ranges of the levels of 

component degradations considered in this study.  
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Table 4-13 Ranges of component degradations 

Fault Health Parameter Range (%) 

Compressor 

Flow Capacity Index SFFC -0.5 to -5 

Isentropic Efficiency Index SFE -0.5 to -5 

Turbine 

Flow Capacity Index SFFC -0.5 to -5 and 0.5 to 5 

Isentropic Efficiency Index SFE -0.5 to -5 

 

As shown in Figure 4-14, the degradation of either compressor or turbine can 

be represented in a two-dimensional degradation since the degradation of 

compressors or turbines can be represented by two degradation indices. Hence 

each point in a degradation space can be selected to produce a fault sample, 

and fault samples for constructing decision tables or verification can be selected 

from degradation spaces.  

 

Figure 4-14 Fault sample selection for a compressor 

In this study, fault samples for constructing decision tables are selected at 

intersection points between constant SFFC/SFE lines and the maximum and 

Fault samples for verification 

-5 

0 

Fault samples for rule generation 

-0.5 

 

-5 

-0.5 

 
SFE 

SFFC 
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minimum boundaries of the health parameters being considered. The reason for 

do so is due to the understanding that the measurement deviations may vary 

linearly with the health parameters if the level of the degradation is low. 

Therefore the two intersection points on each constant SFFC/SFE line should be 

sufficient to represent the range of deviation of the measurements along this 

line within the considered degradation ranges. Thus, selecting points at the 

boundaries in the considered degradation area may be able to represent the 

range of the variation of measurements corresponding to the considered 

degradation area in the space.  

To test the effectiveness of the developed fault isolation approach, fault 

samples for verification are simulated at discrete points with constant intervals 

in between within the range of degradation in concern, see Figure 4-14. Unlike 

the fault samples for decision table constructions, the verification samples are 

simulated with implanted measurement noises whose assumed ranges are 

shown in Table 4-14. These noises are assumed to be Gaussian distributed.  

Table 4-14 Measurement noise ranges [74] 

Measurement 

Measurement noise 
range 

Minimum 
(%) 

Maximum 
(%) 

T3 -0.1 0.1 

P3 -0.1 0.1 

T5 -0.2 0.2 

P5 -0.1 0.1 

T6 -0.4 0.4 

P6 -0.1 0.1 

T8 -0.4 0.4 

P8 -0.1 0.1 

T9 -0.4 0.4 

P9 -0.1 0.1 

FF -1 1 

N2 -0.02 0.02 
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The constructed engine performance model was used to generate a total of 

3,612 fault samples for building decision tables. These 3612 samples cover all 

potential single and dual-component faults (5 single faults and 10 dual faults) 

and some different levels of degradation for each fault. Notes that all 

measurement deviation values in each sample are rounded down to decimal 

point. All the samples were generated at full power setting and ISA sea level 

ambient condition.  

Table 4-15 Generated fault samples 

Fault type 

No. of samples 

for 
constructing 

decision 
tables 

for verification 

Half 
assumed 

noise 
ranges 

Normal 
assumed 

noise ranges 

Double 
assumed 

noise ranges 

S
in

g
le

 F
a

u
lt
s
 FAN 40 100 100 100 

IPC 40 100 100 100 

HPC 40 100 100 100 

HPT 80 200 200 200 

LPT 80 200 200 200 

D
u
a

l-
F

a
u

lt
s
 

FAN&IPC 196 625 625 625 

FAN&HPC 196 625 625 625 

IPC&HPC 196 625 625 625 

HPT&LPT 392 1250 1250 1250 

FAN&HPT 392 1250 1250 1250 

FAN&LPT 392 1250 1250 1250 

IPC&HPT 392 1250 1250 1250 

IPC&LPT 392 1250 1250 1250 

HPC&HPT 392 1250 1250 1250 

HPC&LPT 392 1250 1250 1250 

Total 3612 11325 11325 11325 

 

To investigate the capability of the fault isolation approaches to deal with 

different levels of measurement noises, for each selected verification point, see 
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Figure 4-14, three fault samples were generated with half, normal and double 

the assumed noise ranges respectively. Different amounts of verification fault 

samples were generated for different types of faults as shown in Table 4-15. It 

is worth mention that the number of samples generated for each type of fault is 

depends on its complexity. For example, each single fault has fewer samples 

for either rule generation or verification since each of them only involves with 

two health parameters, while each dual-fault involving with four health 

parameters has more samples. In addition, the degradation range of each 

turbine are wider than that of each compressor, hence faults involving with 

turbines have more samples compared with those which have the same number 

of health parameter but don’t involve with any turbine(s). 

4.3.1.3 Discretization and attribute reduction  

Using the generated fault samples, decision table(s) was then constructed and 

import to RSES 2.2. Consequently discretization and attribute reduction were 

carried out to the decision table(s) in each case:  

 in cases 1, following the fault isolation process described in Section 4.2.2, 

firstly, 280 single fault samples were used for constructing a decision 

table which use 280 single fault samples as objects, conventional fault 

signatures (i.e. 12 deviations of the measurements shown in Table 4-12) 

as condition attributes and the fault type as a decision attribute, secondly, 

discretization and attribute reduction were carried out to the decision 

table to discretized fault signatures and select appropriate 

measurements for fault isolation, and finally a discretized and reduced 

decision table was formed. 

 In case 2, following the fault isolation process described in Section 4.2.3, 

firstly, construct the same decision table as described in last paragraph 

and carry out discretization and attribute reduction to select appropriate 

measurements for fault isolation, secondly, construct another decision 

table, which use the same 280 single fault samples as objects, derived 

enhanced fault signatures (i.e. the measurement deviations and ranking 
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parameters derived from the select measurements according to Equation 

(4-6)) as condition attributes and the fault type as a decision attribute, 

thirdly, discretization and attribute reduction were carried out to this new 

decision table to form a discretized and reduced decision table. 

 In case 3, the discretization and attribute reduction process is same as in 

case 1, however both the decision table used in case 3 uses all 3612 

fault samples (i.e. both single and dual-fault samples) as objects.  

 In case 4, the discretization and attribute reduction process is same as in 

case 2, however both the two decision tables (one for measurement 

selection and one for rule generation) used in case 4 use all 3612 fault 

samples as objects.  

 In case 5, the discretization and attribute reduction were carried out 

separately. Firstly, the same decision table as the one constructed in 

case 3 was built, and the manual discretization algorithm mentioned in 

Section 4.2.1 (the one used for creating Table 4-2) was used for 

discretization, then attribute reduction was carried out to the discretized 

decision table to select measurements for fault isolation by the Genetic 

Algorithm [37] based attribute reduction approach introduced in Section 

4.2.1, and finally a discretized and reduced decision table was formed. 

 In case 6, the discretization and attribute reduction were carried out 

separately using the same methods used in case 5, the decision table 

used in this case is similar to the one used in case 5, the only different 

between them is that in this case the decision table used enhanced fault 

signatures derived from the measurements selected for fault isolation in 

case 5 as condition attributes (in this way, both cases 5 and 6 used the 

same measurements for fault isolation and the only different between 

them is that they used different type of fault signatures).  

The selected measurements for fault isolation in each case are shown in Table 

4-16.  
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Table 4-16 Selected measurements in each case  

 

selected measurements 

Cases 1 & 2 

T3,P3,T5,P5,T6,P6,P8,FF,N2                        

（9 measurements） 

Cases 3 & 4 
T3,P3,T5,P 5,T6,P6,P8,T9,P9,FF,N2              

( 11 measurements ) 

Cases 5 & 6 
T3,P3,T5,P5,T6,P6,T8,P8,T9,P9,FF,N2           

( 12 measurements ) 

 

Form Table 4-16 the following can be observed:  

 Firstly for single fault isolation using the fault isolation Approach 1, T8, T9 

and P9 are not needed, and this may due to that the similarity of the 

deviations of these three measurements caused by different faults is high, 

and hence it is difficult to use them to distinguish faults.   

 Secondly, for fault isolation of single and dual faults using the Approach 

1 only T8 can be excluded as one the complexity and number of faults 

needed to deal with are much higher and hence more measurements 

need to distinguish them. 

 Thirdly, the Approach 2 requires all the 12 measurements for fault 

isolation. The reason the Approach 2 requires more measurements than 

the Approach 1 is that it uses an inefficient discretization which causes 

large information loss and therefore in order to distinguish all faults in the 

decision table the Approach needs to discover knowledge from more 

measurements to compensate the information loss. 

The numbers of enhanced fault signatures remaining after the attribute 

reduction in each of the cases using enhanced fault signatures are shown in 

Table 4-17. In such a case, enhanced fault signatures are derived from the 
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selected measurements shown in Table 4-16. For example, Table 4-17 shows 

that 45 enhanced fault signatures (9 measurement deviations and 36 ranking 

parameters) were derived from the selected 9 measurements in case 2.  

Table 4-17 Attribute reduction results for enhanced fault signatures 

  

No. of enhanced fault signatures  

before attribute 

reduction 

after attribute 

reduction 

Case 2 45 7 

Case 4 66 33 

Case 6 78 64 

 

From Table 4-17, several conclusions can be made:  

 Firstly, in each case in this table the number of enhanced fault signatures 

is reduced by attribute reduction, (especially in case 2, only 7 enhanced 

fault signatures remained after the attribute reduction). 

 Secondly, the number of enhanced fault signatures required for fault 

isolation increases as the complexity and number of potential faults 

increases, which can be observed by comparing the remaining numbers 

of signatures in case 2 and 4. 

 Thirdly the Approach 2 needs much more enhanced fault signatures for 

fault isolation than the Approach 1 does (the former requires 64 

signatures and the latter 33 signatures), the reason for this is that the 

discretization method of the former is not effective as that of the latter 

and the faults needed to be distinguish are the same for them and hence 

the former requires more enhanced fault signatures to distinguish 

potential faults.  

In addition, statistical information about the cuts of the condition attributes (fault 

signatures) being taken in the discretization processes in the cases using the 

Approach 1 is shown in Table 4-18. 
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Table 4-18 Statistical information about the condition attribute cuts in the 

discretized and reduced decision tables used for rule generation 

  

No. of condition 

attributes having 

more than 5 cuts 

No. of condition 

attributes having 

more than 2 cuts 

Case1 0 0 

Case2 0 0 

Case3 6 10 

Case4 1 5 

 

Form Table 4-18 some observations can be obtained: 

 In cases 1 and 2, all the condition attributes have no more than two cuts 

and hence they all only have one cut because the similarity between five 

single faults is very low and hence less cuts need to be taken to 

distinguish them. 

 As the complexity and number of potential faults increase the number of 

condition attributes having a large number of cuts increases as well. This 

can be proved by comparing the statistical information about the cuts in 

case 1 and 3 or in case 2 and 4.  

 Apart from that, it also can be seen from this table that: when dealing 

with complex faults the introduction of enhanced fault signatures largely 

reduced the number of the condition attributes having many cuts after 

discretization. This can be observed in the comparison between case 3 

and case 4 in this table where the number of condition attributes having 

more than either 5 or 2 cuts in Case 4 is much lower than in Case 3. 
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4.3.1.4 Rule generation 

Table 4-19 Number of rules generated in each case  

  
Number of 
generated 

rules 

Time spent on 
the rule 

generation 

Case1 140 0.2 minutes 

Case2 106 0.1 minutes 

Case3 17472 19 minutes 

Case4 32925 110 minutes 

Case5 671 1.5 minutes 

Case6 34444 82 minutes 

 

Once a discretized and reduced decision table for rule generation had been 

constructed in each case, a set of fault isolation rules then were generated from 

each discretized and reduced decision table by the method mentioned in 

Section 4.2.2.4. The number of rules generated and the corresponding 

computational time spent using a standard desktop computer with Intel Core 2 

Quad 2.4GHz /1.98GB RAM CPU in each case are shown in Table 4-19. 

Examples of the generated rules in cases 1 to 4 are shown in 6Appendix D. 

By analyzing the results shown in Table 4-19, the following can be observed:  

 By comparing the numbers of rules in case 1 and case 2 with the 

numbers in case 3 and case 4 respectively, it can be seen that when the 

potential faults become more complex, the number of rules are required 

to distinguish them increases largely. Another reason causing this 

phenomenon is that the number of single fault samples used in this study 

is much lower than that of dual-fault samples and hence fewer rules are 

required to distinguish the faults in the single fault samples.  

 In addition, by comparing the numbers of rules in case 3 and case 5 with 

the numbers in case 4 and case 6 respectively, it shows that the 

introduction of enhanced fault signatures in either the Approach 1 or 
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Approach 2 leads to large rise of the number of generated rules. 

Especially for the Approach 2, with conventional fault signatures (case 5) 

only 671 rules were generated due to that the simple manual 

discretization method results in large information loss in the decision 

table and hence less knowledge can be discovered and consequently 

fewer rules can be generated, however with enhanced fault signatures 

(case 6) the characteristics of faults can be enhanced and hence more 

knowledge can be discovered, which leads to that large amount of rules 

were generated in this case.  

 The results also indicate that a large number of rules can be generated in 

a short period of time (the longest period used for rule generation in the 

cases is only 110 minutes), hence rough set based fault isolation 

approaches are able to offer an efficient way to generate rules.  

4.3.1.5 Fault isolation 

In each case, the corresponding generated rules were used for isolating faults 

in the corresponding verification samples by the reasoning algorithm presented 

in Section 4.2.2.5. In cases 1 and 2, their rules were used to isolate faults in 

each of the three sets of 700 single fault verification samples shown in Table 

4-15 separately. In cases 3, 4, 5, and 6, their rules were used for fault isolation 

of each of the three sets of 11325 single and dual-fault verification samples. In 

this study, the accuracy of fault isolation in each case is measured by a 

parameter called success rate which is the ratio between the total number of the 

fault samples being carried out fault isolation successfully and the total number 

of fault samples used for verification. The success rates obtained in each case 

are shown in Table 4-20.  
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Table 4-20 Fault isolation success rates 

  
Number of 
verification 
samples 

Total success rate 

under half 
assumed 

noise 
ranges 

under normal 
assumed 

noise ranges 

under double 
assumed 

noise ranges 

Case1 700 0.94 0.92 0.85 

Case2 700 0.94 0.89 0.82 

Case3 11325 0.62 0.59 0.53 

Case4 11325 0.88 0.82 0.76 

Case5 11325 0.40 0.38 0.37 

Case6 11325 0.76  0.73 0.69 

 

The fault isolation results in Table 4-20 show the impact of the fault complexity 

on the fault isolation accuracy and the effectiveness of using the enhanced fault 

signatures to improve fault isolation accuracy. The following can be observed 

from this table: 

Firstly, the single fault isolation under different levels of measurement noises 

either in case 1 or case 2 is very successful. The fault isolations of single and 

dual-faults in both cases 3 and 5 (both using conventional fault signatures) are 

not successful due the extremely low success rates they have, while the same 

fault isolation for single and dual-faults in both case 4 and case 5 (both using 

enhanced fault signatures) are much more successful. 

Secondly, the use of the enhanced fault signatures does not contribute to any 

improvement in the accuracy of single fault isolation. On the contrary, the 

success rate in Case 2 is slightly worse than that in Case 1 under normal and 

double assumed noise ranges. This is due to the following reasons:  

 For single fault isolation, conventional fault signatures can provide 

enough information to distinguish faults with high accuracy since the 

complexity of the faults is relatively low. Therefore the use of enhanced 

fault signatures does not provide any advantages in this situation.  
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 The number of condition attributes in Case 1 (9 condition attributes, refer 

to Table 4-17) in the discretized and reduced decision table is larger than 

that in Case 2 (7 condition attributes, refer to Table 4-18). This leads to 

more rules being generated in Case 1 (refer to Table 4-19). In the fault 

isolation, more rules may lead to a rise in the total number of “votes” for 

the correct type of faults during reasoning due to the statistical nature of 

the reasoning method, and consequently may lead to a high possibility of 

successful isolation.  

Thirdly, when using either the conventional or enhanced fault signatures in 

rough set diagnostics, the fault isolation become less accurate when the 

potential faults varies from single faults to single and dual-faults. This can be 

seen by the comparison of success rates in cases 1 and 3 or in case 2 and 4. 

Fourthly, when the complexity of the faults increases, fault isolation using the 

enhanced fault signatures shows significant advantages in accuracy compared 

with that using conventional fault signatures. This applies to both the rough set 

based fault isolation approaches (the Approach 1 and Approach 2) studied in 

the research. This can be seen by comparing the success rates in cases 3 and 

4 or cases 5 and 6. Especially for the Approach 2, the employment of enhanced 

fault signatures (case 6) gives much better success rates under all different 

levels of measurement noises than the case using conventional fault signatures 

(case 5). Therefore it can be concluded that the use of enhanced fault 

signatures in rough set based fault isolation approaches can largely improve the 

isolation accuracy of complex component faults. The main reasons that the use 

of enhanced fault signatures can lead to a significant improvement in accuracy 

for complex fault isolation are:  

 The Introduction of enhanced fault signatures gives a reduction in the 

number of the condition attributes having a large number of cuts (this 

only applies to the Approach 1), see the statistical information about cuts 

shown in Table 4-18. The numbers of cuts of condition attributes directly 

influences the tolerance of the rules measurement noises. The fewer 

cuts condition attributes have, the larger the intervals will be included in 
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the rules and consequently the rules will have better tolerance to the 

uncertainty caused by measurement noises. The use of enhanced fault 

signatures provides the following advantages: (1) it offers more condition 

attributes and therefore is able to reduce the number of cuts needed on 

each condition attribute; (2) the ranking patterns among some 

measurement deviations may be consistent for the same type of faults 

but different for different types of faults, which make the ranking 

parameters effective condition attributes to distinguish faults and hence 

less cuts will be required.  

 The use of enhanced fault signatures leads to that more rules can be 

generated from the same amount fault samples as enhanced fault 

signatures are able to enhance the characteristics of faults and more 

knowledge can be discovered and consequently more rules can be 

generated (This applied to both the Approach 1 and Approach 2). As 

mentioned earlier in this section, such an increase could lead to a rise in 

the total “votes” for the correct type of faults during reasoning, and 

therefore result in a higher possibility of successful isolation.  

 

Table 4-21 Computational time spent in fault isolation  

  

No. of 

verification 

samples 

Computational time spent 

Total average 

Case1 700 0.1 minutes 0.01 seconds 

Case2 700 0.1 minutes 0.01 seconds 

Case3 11325 4 minutes 0.02 seconds 

Case4  11325 19 minutes 0.10 seconds 

Case5  11325 0.6 minutes 0.003 seconds 

Case6  11325 7 minutes 0.04 seconds 

 

The total computational time used in fault isolation in each case and the 

average time used for each verification sample in each is shown in Table 4-21 
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(the same computer used for rule generation in Section 4.3.1.4 is used for fault 

isolation as well) 

The difference in the total computational time spent on fault isolation between 

different is mainly due to the difference in the number of rules involved in the 

reasoning process, the complexity of the rules and, the total number of 

verification samples. Basically, from Table 4-21, it can be seen that the average 

computational time spent on each sample in each case is no more than 0.1 

seconds; hence the developed fault isolation approach has the potential for on-

line applications. 

4.3.2 Fault isolation with limited measurements 

This section presents the application of the version of the developed fault 

isolation approach with limited measurements as described in Section 4.2.4. In 

this application, 11 fault isolation test cases, as shown in Table 4-22, were 

studied and each of them only allows a certain number of measurements for 

fault isolation.  

In cases 1 to 5, the measurement selection method, mentioned in Section 

4.2.4.1, based on the fault discernibility of measurements, was used for 

selecting a certain number of measurements having a higher discernibility for 

fault isolation in each case. The selected measurements were then used for rule 

generation by the method presented in Section 4.2.3.3 and consequently the 

generated rules were employed for single and dual faults isolation. 

In cases 6 to 10, the way to select measurements was also based on their 

discernibility but in these cases the measurements having lower discernibility 

were chosen, and in each case rule generation (also by the method presented 

in Section 4.2.3.3) and fault isolation were also carried out using the selected 

measurements.  
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Table 4-22 Fault isolation test cases with different numbers of measurements 

Case 

Number of 
measurements 

allowed for 
fault isolation 

The way to select measurement 

1 6 
select measurement with higher 

discernibility 

2 7 
select measurement with higher 

discernibility 

3 8 
select measurement with higher 

discernibility 

4 9 
select measurement with higher 

discernibility 

5 10 
select measurement with higher 

discernibility 

6 6 
select measurement with lower 

discernibility 

7 7 
select measurement with lower 

discernibility 

8 8 
select measurement with lower 

discernibility 

9 9 
select measurement with lower 

discernibility 

10 10 
select measurement with lower 

discernibility 

11 11 
select measurement with higher 

discernibility 

 

In cases 1 to 5, the number of measurements allowed for fault isolation are 6, 7, 

8, 9, and 10 in cases 6 to 10 are also 6, 7, 8, 9, and 10. The intention in 

studying the first 10 cases is to compare cases 1, 2, 3, 4, and 5 with 6, 7, 8, 9, 

and 10 respectively to see whether choosing measurements having 

discernibility can lead to higher fault isolation accuracy when the number of 

measurements used for isolation is the same.  

The last case is for comparing this version with the one using enhanced fault 

signatures in terms of fault isolation accuracy. This was done by using the 

former to select the same number of measurements selected by the latter in 
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Section 4.3.1 (which is 11 measurements, see Table 4-16) and using them for 

rule generation and fault isolation and consequently comparing the fault 

isolation results resulting from both of them.  

The fault isolation process in each case, which follows the process presented in 

Figure 4-8 in Section 4.2.4, is described in Sections 4.3.2.1, 4.3.2.2, 4.3.2.3, 

and 4.3.2.4.  

4.3.2.1  Fault samples  

The same gas turbine engine used in Section 4.3.1.1 is employed in this 

Section, and hence the same fault samples for rule generation and the three 

sets of fault samples for verification shown in Table 4-15 in Section 4.3.1.2 are 

also used in this application.  

4.3.2.2 Measurement selection  

Using the generated fault samples, a decision table was constructed for each of 

the 12 potential measurements; the decision table uses all the 3125 fault 

samples as objects, fault type as a decision attribute and only the deviation of 

this measurement as the condition attribute. For each decision table, the low 

approximation of WD with respect to the condition attribute (refer to Section 

4.2.1), which indicates the discernibility of this condition attribute to distinguish 

faults in the decision table, was calculated by RSES 2.2. In order to normalise 

the low approximation, the ratio of the number of fault samples in the low 

approximation and the total number of the fault samples (3125) is calculated 

and used to represent the low approximation. The normalised low 

approximation given by each measurement is shown in Table 4-23. 
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Table 4-23 Measurement discernibility table 

Measurement 
Fault 

discernibility 
Ranking 

Low 
approximation 

region (%) 

P5 1 4.6  

T5 2 2.0  

P8 3 1.9  

P3 4 1.7  

P9 5 1.7  

N2 6 1.5  

T9 7 1.4  

P6 8 1.1  

FF 9 1.1  

T6 10 0.9  

T8 11 0.4  

T3 12 0.3  

 

This discernibility table indicates that most of the pressure measurements have 

higher discernibility than the temperature measurements, and P5 seems to be 

the most effective measurement to distinguish faults. Therefore, the similarity of 

pressure measurement deviations caused by different faults is lower than that of 

temperature measurement deviations.  

According to the ranking Table 4-23, measurements having higher ranks were 

chosen in cases 1 to 5 (the number of selected measurements in each case 

equals the number allowed in this case), while those having lower ranks were 

chosen in cases 6 to 10. In addition, 11 measurements having higher ranks 

were selected in case 11. The selection results are shown in Table 4-24. 
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Table 4-24 Measurement selection results 

Case selected measurements  

1 P5,T5,P8,P3,P9,N2 

2 P5,T5,P8,P3,P9,N2,T9 

3 P5,T5,P8,P3,P9,N2,T9,P6 

4 P5,T5,P8,P3,P9,N2,T9,P6,FF 

5 P5,T5,P8,P3,P9,N2,T9,P6,FF,T6 

6 T3,T8,T6,FF,P6,T9 

7 T3,T8,T6,FF,P6,T9,N2 

8 T3,T8,T6,FF,P6,T9,N2,P9, 

9 T3,T8,T6,FF,P6,T9,N2,P9,P3 

10 T3,T8,T6,FF,P6,T9,N2,P9,P3,P8 

11 P5,T5,P8,P3,P9,N2,T9,P6,FF,T6,T8 

  

4.3.2.3 Rule generation  

In each case, the generated 3125 samples with the selected measurements 

were utilised to construct a decision table for rule generation. Such a decision 

table considers the fault samples as objects, the enhanced fault signatures 

derived from the selected measurements as condition attributes, and fault type 

as a decision attribute. Discretization and attribute reduction were then carried 

to each decision table to form a discretization and reduced decision table by the 

algorithm presented in Section 4.2.2.3, and rules were then generated by the 

rule generation method mentioned in Section 4.2.2.4.  

4.3.2.4 Fault isolation  

Finally, in each case, the generated rules were employed for fault isolation of 

the three sets of fault samples (each set includes 11325 samples) generated for 

verification by the reasoning algorithm introduced in Section 4.2.2.5. The fault 

isolation results in cases 1 to 10 are shown in Table 4-25.  
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Table 4-25 Fault isolation results with different measurements 

Case 

Fault isolation success rate 

under half 
assumed 

noise ranges 

under normal 
assumed 

noise ranges 

under double 
assumed noise 

ranges 

1 0.68 0.67 0.65 

2 0.68 0.65 0.62 

3 0.78 0.75 0.72 

4 0.77 0.74 0.71 

5 0.82 0.78 0.71 

6 0.59 0.53 0.47 

7 0.62 0.55 0.49 

8 0.66 0.59 0.51 

9 0.75 0.67 0.59 

10 0.85 0.80 0.72 

 

The fault isolation results in cases 1 to 10 are also presented in Figure 4-15 in 

order to compare them more conveniently.  

 

Figure 4-15 Fault isolation results with different measurements 
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By comparing the fault isolation results from cases 1, 2, 3, 4 and 5 with the 

those from 6, 7, 8, 9 and 10 respectively (see Figure 4-15), it can be seen that: 

Generally when the number of measurements for fault isolation is the same, 

selecting measurements with higher fault discernibility ranks results in better 

fault isolation accuracy under different noise levels. In this study, this applies to 

the circumstances when the numbers of measurements allowed for fault 

isolation are 6, 7, 8, and 9. However, this does not apply to those where the 

number of selected measurements is 10. This indicates that the effectiveness of 

this measurement selection approach may reduce when the number of 

measurements allowed for isolation is high. The reasons causing this may be:  

 Firstly, when the number of measurements allowed to be used for fault 

isolation increases, the similarity between the selected measurements 

given by the two different measurement selection methods (the one 

selects measurements having higher ranks and the other chooses the 

measurements having lower ranks) increases. Therefore, the fault 

isolation accuracies resulting from the two measurement selection 

methods may be similar as well.  

 Secondly, the ranking in the discernibility table only considers the 

individual measurement’s discernibility and the correlation between 

measurements is not taken into account. Thus, when there are many 

measurements selected for isolation, the faults distinguished by a 

measurement may be similar to those given by other measurement(s) in 

the selected measurements and hence make this measurement selection 

method less effective in these circumstances.  

The results in case 11, along with the fault isolation results given by the version 

using enhanced fault signatures, (i.e. the results of case 4 shown in Table 4-20 

in Section 4.3.1) are illustrated in Table 4-26. 
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Table 4-26 Comparison of fault isolation results given by two different versions 

of the developed approach 

  

Fault isolation success rate 

under half 
assumed 

noise 
ranges 

under normal 
assumed 

noise ranges 

under double 
assumed 

noise ranges 

the version with limited 
measurements (case 11 

in this application) 
0.82 0.80 0.73 

the version using 
enhanced fault 

signatures 
0.88 0.82 0.76 

 

The comparison illustrated in Table 4-26 indicates that if the number of 

measurements used is the same, the new measurement selection is less 

effective than the one employed by the version using enhanced fault signatures 

as the latter is able to lead to a better fault isolation success rate.  

Therefore, it can be concluded that the new measurement selection method 

employed in this version of the developed fault isolation approach is able to 

provide good measurement selection solutions for rough set based fault 

isolation when the number of measurements allowed for fault isolation is not 

very high. This make  this version a suitable replacement for the version using 

enhanced fault signatures which may require many measurements for fault 

isolation under the circumstance when the number of measurements required 

by the latter cannot be satisfied. However, the version using enhanced fault 

signatures still has advantages when the number of measurements required by 

it can be satisfied. 



162 

4.3.3 Fault isolation using different frameworks  

The application of the three different frameworks (shown in Figure 4-10, Figure 

4-11 and Figure 4-12) integrated with the developed fault isolation approach 

using enhanced fault signatures is presented in this section. In this application, 

the three different fault isolation frameworks were studied by measuring their 

average and individual fault isolation accuracies for different types of 

component faults under different levels of measurement noises. In addition, 

based on the study of the three different frameworks, a new framework is 

proposed in this section which is a combination of all three frameworks, and is 

more robust and flexible than each of the individual frameworks as it is able to 

provide a useful decision tree for users in order ensure the accuracy of fault 

isolation. Note; the first framework (framework 1 shown in Figure 4-10) actually 

have been tested in Section 4.3.1; in this section it will be compared with the 

other two frameworks.  

Sections 4.3.3.1, 4.3.3.2, 4.3.3.3, and 4.3.3.4 describe the application of fault 

isolation based on the three different frameworks. 

4.3.3.1 Fault samples 

The same gas turbine engine used in Section 4.3.1.1 is employed in this 

section, and hence the same fault samples for rule generation and the same 

three sets of fault samples, shown in Table 4-15 in Section 4.3.1.2, are also 

used in this application.  

4.3.3.2 Measurement selection 

One decision table, using 12 measurement deviations as condition attributes, 

the fault type as a decision attribute, faulty component(s)’s names as the 

decision attribute values, and all 3612 fault samples generated for decision 

table construction as objects, was constructed for the measurement selection 

for all three frameworks. This decision table is exactly the same as the one 

used for measurement selection in case 4 in Section 4.3.1 (i.e. fault isolation 

based on the developed approach using enhanced fault signatures), hence the 
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same selection result was obtained in each case which is a set of 

measurements (11 measurements) including all the potential measurements 

shown in Table 4-12 in Section 4.3.1.1 except T8. 

4.3.3.3 Rule generation  

Since the isolation purposes at different steps in different frameworks are not 

the same, a decision table needed to be constructed to generate a unique set of 

rules for each step. The generated fault samples with the selected 11 

measurements were then used to construct 8 decision tables for different steps 

in different frameworks according to the description in Table 4-9 in Section 

4.2.5.3. It is worth mentioning that all the 8 decision tables using enhanced fault 

signatures derived from the 11 selected measurements as condition attributes 

(i.e. 11 measurement deviations and 55 ranking-parameters derived from the 11 

measurement deviations).  

Table 4-27 Statistics of enhanced fault signatures and generated rules 

Framework 

No. of enhanced fault 
signatures 

No. of 
generated 

rules 
before 

attribute 
reduction 

after 
attribute 
reduction 

1 66 33 32925 

2 

Step1 66 31 13623 

Step2a 66 7 140 

Step2b 66 25 26533 

3 

Step1 66 27 18739 

Step2a 66 17 1803 

Step2b 66 12 322 

Step2c 66 19 8934 
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After building the decision tables, the tables were discretized and reduced using 

the same discretization and attribute reduction algorithm described in Section 

4.2.2.3, and hence each of them resulted in a new discretized and reduced 

decision and the 66 enhanced fault signatures were then reduced. The 

reduction results of enhanced fault signatures for each step in each framework 

are shown in Table 4-27. By applying the same rule generation principle 

introduced in 4.2.2.4, once discretization and attribute reduction have been 

carried out to the 8 decision tables, a set of decision rules can then be 

generated from each of the decision tables. The number of rules generated for 

each step is also shown in Table 4-27. 

From Table 4-27, it can be seen that the total number of reduced enhanced 

fault signatures increases as the number or the complexity of the potential faults 

rises. Framework 1 has the largest number of reduced fault signatures due to 

the fact that it needs to deal with more faults (15 different faults-5 single faults 

and 10 dual-faults) compared with the steps in the other frameworks. 

Apart from that, it also can be seen from this table that Framework 1 has the 

largest number of rules generated (32925) because it involves the highest 

numbers of objects, condition attributes and potential faults. Similarly, such a 

number for step2a in framework 2 is the lowest due to the extremely low 

numbers of objects, condition attributes and complexity of faults included in the 

table. Note that in Framework 2, compared with step1, step2b has many more 

generated rules, although the former has more objects and condition attributes; 

this is because the complexity of the faults needed to be dealt with at step2b is 

much higher than at step1.  

4.3.3.4 Fault isolation  

The accuracies of the fault isolation at each individual step and the overall 

framework are assessed using the success rate and the average success rate 

respectively. The average success rate represents the ratio between the total 

numbers of the verification fault samples being successfully isolated at both 



165 

steps 1 and 2 and the total fault verification samples. The fault isolation results 

obtained in the three different frameworks are shown in Table 4-28. 

Table 4-28 Fault isolation results 

Framework 
No. of 

verification 
samples 

success rate 

under half 
noise 

ranges 

under 
normal 
noise 

ranges 

under 
double 
noise 

ranges 

1 11325 0.88 0.82 0.76 

2 

Step1 11325 0.96 0.95 0.94 

 Step2a 700 0.94 0.89 0.82 

Step2b 10625 0.84 0.8 0.71 

average 
 

0.81 0.77 0.67 

3 

Step1 11325 0.96 0.92 0.9 

Step2a 2175 0.88 0.83 0.77 

Step2b 552 0.79 0.78 0.77 

Step2c 8598 0.8 0.75 0.7 

average   0.78 0.71 0.65 

 

From the fault isolation results shown in Table 4-28several observations can be 

drawn: 

Firstly, the results in the table show that Framework 1 has a higher average 

success rate than Frameworks 2 and 3. The intention of the introduction of 

Frameworks 2 and 3 is to improve the quality of fault isolation, based on rough 

set, by dividing the isolation process into steps, and at each step the complexity 

of potential faults is lower, which may improve the overall isolation accuracy. 

However neither of the obtained average success rates in Frameworks 2 or 3 is 

higher than Framework 1. The main reason causing this phenomenon is 

because the utilization of the enhanced fault signatures in Frameworks 2 or 3 is 

not as successful as in Framework 1. One of the features of the employed 

discretization algorithm is that it carries out discretization and attributes 
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reduction simultaneously. Although the attribute reduction can be utilised for 

measurement selection, it also limits the use of enhanced fault signatures. From 

Table 4-28, it can be seen that many enhanced fault signatures were removed 

from the decision tables constructed for rule generation after attribute 

reductions and which directly leads to fewer generated rules from each decision 

tables. The drop in number of rules may lead to lower success rates due to the 

statistical nature of the reasoning method. Table 4-28 also shows that the total 

number of enhanced fault signatures remaining after the attribute reduction in 

Framework 1, is the largest one. Consequently, the effect of the drop on 

generated rules, which is caused by the reduction of the enhanced fault 

signatures number during the discretization process, has the smallest impact on 

Framework 1. The benefits, given by reducing the complexity of potential faults 

at each step in frameworks 2 and 3, does not compromise the effect of the drop 

on generated rules. This means that Framework 1 has the highest average 

success rate.  

Secondly, although Framework 1 has the highest overall isolation accuracy, the 

other two still have advantages in isolation accuracy under certain 

circumstances which are likely to occur in practice. This can be seen clearly 

from Table 4-28 where the success rates at some steps in both Frameworks 2 

and 3 are quite high (i.e. step 1 and step 2a in Framework 2, and step 1 in 

Framework 3). The reason for this is because the low complexity of potential 

faults needed to be dealt with at each step compensates for the effect caused  

by the drop of generated rules. Therefore, Framework 2 is actually very 

effective when users just want to find out whether the fault causes rapid (short-

term) deterioration (usually caused by single faults ) or gradual (long-term) 

deterioration (usually caused by multiple faults), or the fault has been identified 

as a single fault by monitoring rapid trend variation of measurements and the 

faulty component needs to be identified. In addition, Framework 3 becomes 

more useful if it is desired to determine which type(s) of components (i.e. 

compressors or turbines) are involved with the fault, since it has a suitable 

option (step 1) to do so and, as shown in Table 4-28, very high isolation 

accuracy can be achieved in this instance.  
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Thirdly, frameworks 2 and 3 seem to have better tolerances to measurement 

noises under some of the circumstances mentioned in the last paragraph, 

although framework 1 has a slightly better overall tolerance. To better represent 

the tolerance of each set of rules to measurement noises, a parameter called 

the accuracy drop rate, which calculated by Equation (4-8) and represents how 

much success rates will drop if baseline noise ranges are increased by 100% 

(the half assumed noise ranges are considered as baseline noise ranges), is 

calculated based on the results shown in Table 4-28. The accuracy drop rate for 

each step in each framework is shown in Figure 4-16. 

 
Accuracy drop rate =  (SRhalf - SRdouble)/1.5 

(4-8) 

where SRhalf and SRdouble denote success rates under half and double assumed 

ranges respectively.  

 

Figure 4-16 Accuracy drop rates 

Figure 4-16 provides the evidence that the increase of measurement noise 

ranges has a direct impact on the effectiveness of each framework. Apart from 

that, from this figure it can also be seen that rules generated from some steps 

have a much better tolerance to measurement noises than the rules from 

Framework 1, although this framework has a better overall tolerance (lower 
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accuracy drop rate) than the other two frameworks. For example, the accuracy 

drop rates at step 1 in Framework 2, and at step 1 and step 2b in Framework 3 

are higher than that of Framework 1. This further enhances the advantages of 

Frameworks 2 and 3 under some of the circumstances mentioned in the 

previous paragraph (i.e. when only step 1 in Framework 2 or in Framework 3 

needs to be carried out).   

Therefore it can be concluded that although Framework 1 shows the best 

overall performance in the isolation of single and dual-faults of the turbofan 

engine being studied, the other two frameworks have their advantages in 

isolation accuracy under the following circumstances: 

(a) When users just want to know whether the real fault is a single or 

multiple-fault 

(b) When the users have already known that the real fault is a single fault 

and want to identify the faulty component  

(c) When the users want to find out whether it is compressor 

deterioration, turbine deterioration or a combination of compressor and 

turbine deterioration 

In addition, the other two frameworks also have better tolerance to 

measurement noises under two of the above-mentioned circumstances (i.e. (a) 

and (c)).  

4.3.3.5 Proposed framework 

According to the discussion in the previous section, each of the three 

frameworks has it own advantages under different circumstances. Thus in order 

to achieve fault isolation with the highest accuracies under any circumstances, 

all three frameworks should be integrated to form a new framework, as 

illustrated in Figure 4-17, where Ca, Cb and Cc stand for the circumstance (a), 

(b) and (c) mentioned in last section and Else denotes any other circumstances. 
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Figure 4-17 Proposed framework 

This proposed framework is a combination of the three frameworks. 

Frameworks 2 or 3 will be used for fault isolation under the circumstances (a), 

(b), and (c), and framework 1 will be employed otherwise.  
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4.4 Chapter conclusions 

In this chapter, a new gas turbine fault isolation approach based on rough set, 

which discovers knowledge hidden in engine fault samples, and transfers the 

knowledge into rules and then uses those rules for fault isolation, as well as 

three different versions of this fault isolation approach are presented. In 

addition, a suitable framework was proposed for the developed fault isolation 

approach by studying three different fault isolation frameworks. On the basis of 

the research presented in Section 4, several conclusions can be made: 

 The first version, using convention fault signatures, is the most effective 

for single fault isolation in the presence of measurement noises but not 

effective for the isolation of single and dual faults.  

 The second version, using enhanced fault signatures, is able to carry out 

the isolation of single and dual faults effectively in the presence of 

measurement noises. However, the number of measurements required 

by this version for fault isolation can be high. 

 The third version is able to provide more flexible measurement selection 

for fault isolation and hence it is a good replacement for the second 

version when the measurements required by the latter cannot be 

satisfied.  

 The most suitable framework for the developed fault isolation approach is 

a combination of all three frameworks being studied; it is more robust 

and flexible than each of the individual framework as it is able to provide 

a useful decision tree to users to ensure accuracy of fault isolation. 

 The employment of enhanced fault signatures can enhance the 

characteristics of faults, and make them more discernible, and 

consequently can: firstly make rough set based fault isolation 

approaches much more robust in fault isolation when dealing with 

complex faults, and secondly lead to more fault isolation rules being 

generated.  
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It has also been proved that this developed approach has the following 

advantages:  

 It is able to carry out measurement selection for fault isolation, even in 

the circumstance when the number of measurements allowed to be used 

for fault isolation is fixed. 

 It is capable of generating fault isolation rules very effectively within a 

short period. This indicates that it can provide expert knowledge to users 

to understand and solve diagnostics problems. In addition, by employing 

enhanced fault signatures, more rules can be generated from a certain 

amount of fault samples when conventional fault signatures are not 

sufficient to distinguish potential faults. 

 It has the potential to be used for on-wing applications since the 

computational time it requires for fault isolation is very low (average of 

more than 0.1 seconds is required to carry out fault isolation for each 

verification sample). 

 It is equipped with a good capability to deal with measurement noises; it 

can achieve high fault isolation accuracy in the presence of 

measurement noises 

 It has low complexity as it does not need any engine performance model 

in the fault isolation process. 

However it also has several shortcomings:  

 When the complexity or the number of potential faults increases, its 

effectiveness in fault isolation reduces.  

 Since it discovers fault isolation knowledge from fault samples provided, 

It can only isolate the faults that are covered by those fault samples.  

 Large amounts of fault samples are required to generate fault isolation 

rules. 

Based on the advantages and the shortcomings of the developed rough set 

based fault isolation approach listed in this section, comparisons between this 

developed approach and the other fault isolation approaches can be made:  



173 

 Among the diagnostics approaches introduced in Section 2.1, ANN, ES, 

and fuzzy logic are the ones which are able to carry out fault isolation 

separately (i.e. not together with fault quantification). Compared with 

these three approaches, the developed approach has two unique 

features: firstly it can carry out measurement selection for fault isolation 

and unlike other measurement selection methods which focus more on 

selecting appropriate measurement for achieving optimal fault 

quantification the measurement selection provided by this approach is 

specifically designed for fault isolation; secondly, it can use enhanced 

fault signatures to generate more rules and hence more expert 

knowledge.  

 On the other hand, all three existing approaches (ANN, ES, and fuzzy 

logic) and the developed approach share some shortcomings which are 

the last two shortcomings listed in this section. 
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5 Conclusions 

The objective of this research is to develop one effective gas turbine off-design 

performance model adaptation approach and also one fault isolation approach 

which is able to solve all the fault isolation problems listed in Section 1.4. On the 

basis of the work presented in this thesis, it can be concluded that this research 

objective has been successfully accomplished. The two developed approaches 

have a great potential to be used to enhance Engine Health Management 

systems. In addition, contributions made by the presented research are: 

 A new gas turbine off-design performance model adaptation approach 

was developed. The novelty of this approach is that it uses multiple 

scaling factors to scale component characteristic maps and the non-

linear map scaling can therefore be achieved and hence more effective 

adaptations can be accomplished.  

 The novel development of the rough set based fault isolation approach, 

which is able to perform measurement selection, rule generation and 

fault isolation, was accomplished. This approach introduces an algorithm 

based on a combination of rough set and Boolean reasoning for 

discretization and attribute reduction. This algorithm is able to carry out 

discretization with minimal information loss.  

 A novel rough set based measurement selection method, which selects 

measurements based on their fault discernibility and can carry out 

measurement selection according to the number of measurements users 

want to use for fault isolation, was created.  

 Based on the study of three different frameworks, a new framework for 

the developed fault isolation approach was proposed. The new 

framework is a combination of all three frameworks and is more robust 

and flexible than each of the individual frameworks as it is able to provide 

a useful decision tree to users to ensure the accuracy of fault isolation. 
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 Novel fault signatures, called enhanced fault signatures, were created, 

which enhances the characteristics of component faults and makes them 

easier to distinguish. The employment of enhanced fault signatures in 

rough set based fault isolation approaches can result in a significant 

improvement of isolation accuracy and also a sharp increase in fault 

isolation rules being generated.  
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6 Future works  

The following recommendations are for future studies: 

 Use the developed rough set based fault isolation approach for 

generating fault isolation rules for fuzzy-logic or expert system based 

diagnostic approaches, since these diagnostic approaches require fault 

isolation rules for diagnostics and the developed approach offers a very 

effective way to generate rules.  

 Use the developed fault isolation approach to select appropriate 

measurements for fault isolation based on fuzzy-logic, ES or ANN. 

 Take measurement noises into account while carrying out rule 

generation; using noisy fault samples to construct decision tables for rule 

generation, and therefore fault isolation using the generated rules may 

have higher accuracy in the presence of measurement noises. 

 Fully utilise all available enhanced fault signatures to generate more 

rules as it has been proved that more rules can lead to higher fault 

isolation accuracy. In this research, if enhanced fault signatures were 

used for fault isolation, attribute reduction was carried out to select 

appropriate enhanced fault signatures for isolation and the unselected 

signatures were not used for rule generation. Hence it would be worth 

trying to use the unselected signatures to generate extra rules.  

 Set benchmarks for good fault isolation and compare the developed 

rough set based fault isolation approach with other similar approaches 

based on the benchmarks. 
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APPENDICES 

Appendix A Compressor maps 

A.1 Map configuration  

 

 

Figure A -6-1 “Inaccurate” compressor map-part 1 
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Figure A -6-2 “Inaccurate” compressor map-part 2 

 

 

Figure A -6-3 “Accurate” compressor map-part 1 
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Figure A -6-4 “Accurate” compressor map-part 2 
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Appendix B Adaptation results 

B.1 Searching results from the GA 

 

Table A -6-1 Searching results for speed line with CN 0.90 

 

 

 

minimum maximum

ETA 0.990 1.010 0.990

WAC 0.990 1.010 1.010

PR 0.990 1.010 1.010

ETA 0.951 1.000 0.951

WAC 1.000 1.049 1.049

PR 1.000 1.049 1.049

ETA 0.921 0.971 0.922

WAC 1.029 1.079 1.078

PR 1.029 1.079 1.079

ETA 0.902 0.951 0.902

WAC 1.049 1.098 1.098

PR 1.049 1.098 1.098

ETA 0.882 0.931 0.882

WAC 1.069 1.118 1.117

PR 1.069 1.118 1.115

ETA 0.862 0.912 0.903

WAC 1.088 1.138 1.136

PR 1.088 1.138 1.131

ETA 0.872 0.921 0.908

WAC 1.098 1.147 1.146

PR 1.098 1.147 1.127

ETA 0.872 0.921 0.908

WAC 1.118 1.167 1.145

PR 1.098 1.147 1.126

Try6 0.780

Try7 0.978

Try8 0.979

Try3 0.198

Try4 0.307

Try5 0.517

Searching 

result
Fitness

Try1 0.079

Try2 0.122

Scaling factor 

searching range 
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Table A -6-2 Searching results for speed line with CN with 0.95 

 

 

minimum maximum

ETA 0.995 1.005 0.995

WAC 0.995 1.005 1.005

PR 0.995 1.005 1.005

ETA 0.976 1.000 0.976

WAC 1.000 1.024 1.024

PR 1.000 1.024 1.024

ETA 0.961 0.986 0.962

WAC 1.014 1.039 1.038

PR 1.014 1.039 1.038

ETA 0.952 0.976 0.952

WAC 1.024 1.048 1.048

PR 1.024 1.048 1.048

ETA 0.942 0.966 0.942

WAC 1.034 1.058 1.058

PR 1.034 1.058 1.058

ETA 0.933 0.957 0.934

WAC 1.043 1.067 1.067

PR 1.043 1.067 1.062

ETA 0.928 0.952 0.935

WAC 1.048 1.072 1.072

PR 1.048 1.072 1.054

ETA 0.928 0.952 0.952

WAC 1.058 1.082 1.082

PR 1.048 1.072 1.070

ETA 0.928 0.952 0.951

WAC 1.063 1.087 1.087

PR 1.053 1.077 1.061

ETA 0.937 0.961 0.951

WAC 1.072 1.096 1.088

PR 1.053 1.077 1.059

Try9 0.957

Try10 0.979

Try6 0.557

Try7 0.624

Try8 0.815

Try3 0.245

Try4 0.323

Try5 0.420

Searching 

result
Fitness

Try1 0.132

Try2 0.181

Scaling factor 

searching range 
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Table A -6-3 Searching results for speed line with CN with 1.2 

 

minimum maximum

ETA 0.980 1.020 0.980

WAC 0.980 1.020 1.020

PR 0.980 1.020 1.020

ETA 0.899 1.000 0.901

WAC 1.000 1.101 X

PR 1.000 1.101 X

ETA 0.980 0.899 X

WAC 1.101 1.202 1.202

PR 1.101 1.202 1.137

ETA 0.737 0.838 X

WAC 1.162 1.263 X

PR 1.101 1.202 X

ETA 0.798 0.899 0.867

WAC 1.162 1.263 1.263

PR 1.101 1.202 1.182

ETA 0.798 0.899 X

WAC 1.202 1.303 X

PR 1.162 1.263 X

ETA 0.798 0.899 X

WAC 1.182 1.283 X

PR 1.121 1.223 X

ETA 0.798 0.899 X

WAC 1.182 1.283 X

PR 1.101 1.202 X

ETA 0.838 0.939 X

WAC 1.182 1.283 X

PR 1.101 1.202 X

ETA 0.798 0.899 0.870

WAC 1.172 1.273 1.273

PR 1.101 1.202 1.175

ETA 0.838 0.899 X

WAC 1.182 1.283 X

PR 1.121 1.182 X

0.563

X

Try1

Try2

Try3

Try4

Try5

Try6

Try7

Try8

Try9

Try10

Try11

0.468

X

Searching 

result

X

X

X

Fitness

0.046

X

0.223

X

Scaling factor search 

range 
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Appendix C Map scaling 

 

 

Figure A 6-5 Scaling of speed lines with CNs 1.2, 0.95, and 0.9 –part 1 
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Figure A 6-6 Scaling of speed lines with CNs 1.2, 0.95, and 0.9 –part 2 
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Appendix D  Examples of fault isolation rules  

Note each of the fault isolation rules listed below does not contain any discrete 

values as all the discrete values have been replaced by their corresponding 

intervals. 

Case1 

If T3 (0.05,∞), and N2 (-∞,0.05) 

→ Fan Fault 

If T5 (-∞,-0.25), and P8  (-∞,-0.15)., and N2 (-∞,-0.05) 

→LPC Fault 

If P5 (0.25, ∞), and T6  (0.05, ∞), and FF (-∞,-1.35) 

→ HPC Fault 

If P5 (0.25, ∞), and T6  (-∞,-0.05), and P8  (-∞,-0.15) 

→ HPT  Fault 

If T3  (-∞,-0.05), and P5 (-∞,0.25), and T6 (0.06, ∞), and N2 (-0.05, 

∞) →LPT Fault 

Case2 

If T6  (0.05,∞), and R(P3P9) (-0.05,∞), and R(P5P6) (-0.05, ∞), and 

R(P8T5) (-0.45, ∞) → Fan Fault 

If T6  (-∞,-0.15), and R(P3P9) (-0.05,∞), and R(P5P6)  ( -∞,-0.05) 

→ LPC Fault 

If T6  (-∞,-0.15), and R(P3P9) (-∞,-0.05), and R(P5P6)  ( -0.05,∞) 

→ HPC Fault 
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If R(P3P9)  (-0.05,∞), and R(P5P6) (-∞,-0.05), and R(P3FF)  ( -∞,0.15) 

→ HPT Fault 

If R(P3P9)  (-∞,-0.05), and R(P5P8) (-∞,-0.15), and R(P8T5)  ( -0.45,∞) → 

LPT Fault 

Case3 

If P5 (11.75,∞), and T6 (0.65,2.25), and P9 (-1.05,∞) 

→ Fan & HPC Fault 

If T3 (-1.15,-0.85), and P5 (11.75,∞), and T8 (-0.05,∞), and T9 (-

∞,0.05) → HPC & HPT Fault 

If T6  (-1.55,-1.25), and T9 (0.05,∞), and FF (2.75,0.45) 

→ HPT & LPT Fault 

Case4 

If T3 (-0.05,∞), and R(P3P5) (-0.45,∞), and R(P6P9) (-∞, -0.05), and 

R(P9T9) (-2.95,-∞) →Fan & LPT Fault 

If T6 (0.45,∞), and P6 (-∞,0.05), and R(P3P5) (-∞, -0.45), and R(T5T9) 

(-∞,0.05) →HPC & LPT Fault 

If T6 (-∞,0.25), and R(P6P8)  (0.05,∞), and R(FFN2) (0.65,∞), and 

R(T5T9) (-∞,0.05) →HPT & LPT Fault 


