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i 

 

ABSTRACT 

 

The performance of an MBR under chemical shock loading conditions was 

investigated, to ascertain the robustness of the treatment system for urban 

water reuse.   32 household products and industrial substances, likely to be 

found in urban wastewater were assessed for toxicity, using Microtox and 

respirometry to obtain EC50 values.  Six of these toxins were dosed into bench 

scale porous pots to observe any detrimental effects on the treatment system, 

in terms of effluent quality and potential foulant release. Four toxins were dosed 

into a pilot scale MBR to observe the effects of scale and enhanced biomass 

retention on the perturbations seen at bench scale.    Mitigation of the foulants 

observed was investigated by the addition of ancillary chemicals. 

 

10 household products and 6 industrial products were identified as being of risk 

to a biological treatment system with EC50 concentrations of the order that could 

be present in urban wastewater.  2 of the 6 toxins dosed into the porous pots 

caused a serious impact on the system reducing COD removal rates to 45%, 

compared with 92% average for the control pots, and increasing SMP turbidity 

to 11 NTU.  1 of the 4 toxins dosed into the MBR caused an impact, although 

less than observed in the porous pots, with the COD removal rate reducing to 

77% and SMP turbidity increasing to a maximum of 9 NTU.  Jar tests carried 

out to investigate mitigation potential of SMP turbidity found the cationic 

polymers MPE50 and high molecular weight polyDADMAC most efficient with 

reductions of SMP turbidity to <1 NTU possible although the toxins increased 

the dose necessary to achieve this. 

 

Keywords:  

chemical shock loading, MBR for reuse, unsteady state operation, chemical 

mitigation. 
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1 Introduction 

Water demand in the UK has been increasing over the last 50 years, as quality 

of life increases; all houses now have flushing toilets, washing machines, baths 

and showers, all of which exert an increased water demand.  Management 

strategies to meet this increasing demand include the provision of more storage 

or the reduction in demand for fresh water by conservation and/or reuse.  The 

former has limited political support and is of decreasing benefit due the 

unreliability of replenishing rainfall.  For instance, rainfall for 18 out of the 22 

months from November 2004 onwards, was below the 1961-1990 long term 

average (Met Office, 2006).  Consequently alternative solutions need to be 

sought, such as water recycling in urban, industrial and agricultural applications.  

Research and development have focussed on the last two (Asano, 1998) such 

that recycling in urban environments is a relatively poorly explored application 

yet it’s potential is significant.  For example, the Environment Agency’s report 

on greywater recycling states that less than 3% of water consumed in a 

household is used for drinking and cooking purposes (EA, 2000), yet 100% of 

the water delivered to a household is of drinking water quality, wasting valuable 

resources.  If recycled water was used for toilet flushing alone a saving of at 

least 30% would be achieved (Jefferson et al., 2001, Almeida et al., 1999, 

Butler, 1996.) 

 

Urban water recycling is defined as small decentralised plants which could 

provide water for defined reuse at a much lower cost, both economically and 

environmentally (Eriksson et al., 2003).   Grey water recycling is slowly 

becoming more accepted; with 25 operational or proposed systems as of 2001, 

however only 6 blackwater or sewage effluent systems have been installed in 

the same timeframe (Jeffrey et al., 2001).   

 

Urban water recycling would exert a greater demand on the treatment process 

employed; studies on the characteristics of grey water from all household 

activities identified the potential for a wide range of xenobiotic organic 
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compounds (XOCs) to be present (Eriksson et al., 2003, Palmquist and 

Hanaeus, 2005).  Most research to date has focussed on the capability of the 

technology to remove various constituents of wastewater but have not explored 

the effects that any of these detrimental constituents may have on the efficiency 

of the process (Jefferson et al., 2004, Eriksson et al., 2002).  The introduction of 

small decentralised plants would accentuate any fluctuations in influent water 

quality (Butler, 1996, Butler et al., 1995) in the absence of the dampening 

effects of a large sewerage network, but would provide a significant cost saving 

by retaining the water resource in the locality where it is collected and reused 

(Anderson, 1996).  The majority of installed recycling systems are used where 

human contact with the recycled water is limited (Melin et al., 2006).   However, 

if the recycled water is to be used in domestic households then the reliability 

and robustness of the process becomes more important as the potential for 

human contact also increases.   

 

Membrane bioreactors have been identified as one of the more robust 

technologies for water reuse (Jefferson et al., 2004), however, the effects of 

chemical shock loads, resulting from industrial and household discharges, on 

the limits of this treatment technology need to be defined further to ascertain its 

suitability for decentralised (approximately 2000 population equivalent) urban 

water reuse. 
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2 Literature Review 

2.1 Water Availability and Demand 

There are a finite number of sources of fresh water in the world and this fresh 

water is in a constant cycle.  In northern Europe the quantity of fresh water 

available has not been a pressing issue, however some droughts of the last 

decade have changed this view whereas in southern Europe the availability of 

water is becoming more of an issue (Angelakis and Bontoux, 2001).  As water 

demand increases the availability of fresh water becomes less and less.  

Predictions for 2025 show that in for example Cyprus, as the worst case 

scenario, as the population grows and the demand for water increases the 

available freshwater per person will decline to less than 50% of that available 

per person in 1955.  In the UK this is predicted to be 80% of the availability in 

1955 (Table 2-1).  It is becoming increasingly understood that the urban model 

of centralised waterbourne wastewater collection is both resource and 

economically expensive and decentralised treatment systems that can reuse 

water and require less water for the transportation of waste will become 

necessary (Eriksson et al., 2003). 

 

As well as population growth which has increased in the past few decades and 

is set to rise further in the decades to come, the population is also becoming 

increasingly urbanised with more concentrated clusters, which further increases 

the demand on the finite water supplies available in a geographic area (Asano, 

2002).  Water demand in the developed world, and the United Kingdom 

specifically, has been increasing over the last 50 years, as quality of life 

increases; most houses now have flushing toilets, washing machines, baths and 

showers, all of which exert an increased water demand.  Water demand in the 

UK has been estimated to have as large a range as between 5 and 585 l.p-1.d-1 

(Edwards et al., 1995) but a use of 145 l.p-1.d-1 is an accepted average for 

Northern Europe for domestic purposes (Butler, 1996). 
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Table 2-1 – Availability of freshwater per inhabitant in several European countries for 1955, 1990 and 2025 (from Angelakis and Bontoux 2001). 

Country Fresh water availability in m
3
.inhabitant

-1
 

 1955  1990  2025  

 Population 
(thousands) 

Availability 
(m

3
.inh

-1
.yr

-1
) 

Population 
(thousands) 

Availability 
(m

3
.inh

-1
.yr

-1
) 

Population  
(thousands) 

Availability  
(m

3
.inh

-1
.yr

-1
) 

Belgium 8868 1906 9951 1698 10407 1624 
Cyprus 530 1698 702 1282 927 971 
France 43,428 4260 56718 3262 61247 3021 
Greece 7966 7406 10238 5763 9868 5979 
Ireland 2921 17117 3503 14273 3882 12880 
Netherlands 10751 8371 14952 6019 16276 5530 
Portugal 8610 7666 9868 6688 9685 6815 
Spain 29199 3802 39,272 2826 37571 2954 
UK 51199 2344 57411 2090 61476 1952 
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Management strategies to meet this increasing demand include the provision of 

more storage of freshwater, transportation over large distances or the reduction 

in demand by conservation and/or reuse.  The former have limited political 

support, with the economic and environmental costs gaining greater recognition 

(Asano, 2005), and are of decreasing benefit due the unreliability of 

replenishing rainfall.  For instance, rainfall for 18 out of the 22 months from 

November 2004 onwards, in the UK, was below the 1961-1990 long term 

average (Met Office, 2006).    Consequently, alternative solutions need to be 

sought, such as water recycling in urban, industrial and agricultural applications.  

Research and development have focussed on the last two (Asano and Levine, 

1998) such that recycling in urban environments is a relatively poorly explored 

application yet it’s potential is significant.   

 

A break down of the usage in domestic households reveals that the water 

consumed in the bath and shower alone, if collected, would provide two thirds of 

the water needed to flush the toilet (Chambers et al., 2005) (Figure 2-1).  If this 

could be combined with water from the washing machine and the internal tap to 

provide the full demand for toilet flushing then 30% of the total water demand 

from a domestic household could be saved, on average 50 litres of water per 

day.   

 

 

Figure 2-1 – Uses of water in a domestic household broken down by appliance (WRc Report CP 
187 Chambers et al., 2005). 
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The Environment Agency’s report on greywater recycling (Environment Agency, 

2000) states that much of the drinking water quality water used in homes and 

businesses is often used for activities that could easily use a lower quality of 

water that needs less intensive treatment, e.g. first rinse of washing 

programmes, washing the car, irrigation, toilet flushing or even fire fighting.  In 

fact, less than 3% of water consumed in a household is used for drinking and 

cooking purposes, yet 100% of the water delivered to a household is of drinking 

water quality, wasting valuable resources (Environment Agency, 2000).  

Recycled water could be used for these applications with little impact on the 

outcomes and this would then ease the burden on abstraction and potentially 

enable the water cycle to recover.   

   

The issue of reuse does not hinge solely on water conservation but on the 

quality of water being discharged after treatment both in terms of the sensitivity 

of the receiving environment (nitrates, phosphates) and the quality of water 

available as a source for drinking water that is not detrimental to health (e.g.   

pesticide residues) (Angelakis and Bontoux, 2001).  Diverting water away from 

a source, for example a river, concentrates the remaining pollutants as well as 

adding others that are not legislated for in wastewater treatment consents.  

Aquarec (2005) describe an example (Figure 2-2) where 75 % of the river flow 

is diverted to be used in agriculture or urban activities, with the resultant flow in 

the river being less than half of the original after the treated wastewater has 

been discharged downstream of the city.  The pollutant load downstream of the 

city, in terms of COD, is almost ten times the original amount.  
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Figure 2-2 – Typical impact on a water source, in an urban scenario, in terms of water demand 
and pollutant load (Aquarec, 2005).  

2.2 Water Reuse. 

Water reuse has been employed for a century, with examples from the USA 

where recycled water has been used in California for irrigation purposes in 

public spaces since 1912 (Asano, 2002).   There are seven categories of water 

reuse listed in order of greatest use (Asano, 2002): 

• Agricultural irrigation,  

• Landscape irrigation, 

• Industrial activities, 

• Groundwater recharge, 

• Recreational and environmental uses, 

• Non-potable urban uses, 

• Potable reuse. 

2.2.1 Benefits of water reuse 

The potential benefits of water reuse are (Asano, 2005): 

• Water reuse conserves water supplies: water recycling increases the 

total available water supply.  High quality water supplies can be 

conserved by substituting reclaimed water where appropriate. 

• Water reuse is environmentally responsible: it can preserve the health of 

waterways, wetlands, flora and fauna.  It can reduce the level of nutrients 
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and other pollutants entering waterways and sensitive marine 

environments by reducing effluent and storm water discharge. 

• Water reuse makes economic sense: reclaimed water is at the doorstep 

of the urban development where water supply reliability is most crucial 

and water is priced highest. 

• Water reuse can save resources: recycled water originating from treated 

effluent contains nutrients if this water is used to irrigate agricultural land 

less fertiliser needs to be applied to the crops.  By reducing pollution and 

nutrient flows into waterways tourism and fishing industries are also 

helped. 

 

The scenario depicted previously (Figure 2-2) can now be shown with water 

reuse and conservation incorporated into the urban setting (Figure 2-3).  The 

river flow is maintained, at more than half of the original, as less needs to be 

extracted, resulting in a lower pollutant load after the discharge of the residual 

wastewater after reuse.  In this case the COD increases by only 2 mg.l-1 

whereas previously it increased by 43 mg.l-1.   

 

Figure 2-3 – Typical water demand in an urban scenario incorporating water reuse (Aquarec, 
2005). 
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2.3 Urban Water 

2.3.1 Definition 

For this study urban wastewater has been defined as the sum of all discharges 

from households, as well as any discharges from any light industry in the 

wastewater catchment area and any surface runoff.  It is likely that, unlike 

municipal wastewater which is becoming increasingly dominated by controlled 

industrial discharges (Tchoboglanous et al., 2003), urban water will consist of 

mainly domestic wastewater.  In turn, 75% of domestic wastewater is made up 

of greywater which is usually understood to be from household sources from 

washing facilities (bath, shower and wash basin), waste from the kitchen sink, 

dishwashers and laundry waste (Palmquist et al., 2005, Jefferson et al., 2004, 

Erikkson et al., 2003).  The remainder of wastewater discharged from 

households is defined as black water i.e. that from the toilet (Palmquist et al., 

2005, Ramon et al. 2004, Butler, 1996.)   

2.3.2 Characterisation 

Urban water, as defined for this study, is mainly made up of domestic 

wastewater which is highly heterogeneous in its character and varies from 

country to country and even household to household, depending on 

demographics, cultures, lifestyles and customs (Eriksson et al. 2002, 

Environment Agency, 2000).  Palmquist and Hanaeus (2005) highlight these 

discrepancies, reporting that there is little information on the character of grey 

water, which accounts for 70 – 75% of domestic wastewater and increasing 

knowledge in this area is of prime importance, to further understand the impact 

of potential household pollutants on treatment systems.  Attempts have been 

made to characterise grey water (Eriksson et al., 2002, Palmquist and Hanaeus, 

2005, Jefferson et al., 2004) and all the studies agree that it is complex with a 

multitude of variations in source pollutants, dependant on lifestyles, product 

choice, water usage and washing habits.  Jefferson et al., 2004, go on to 

observe that “the main characteristic of grey water is its variability”, again 

underlining the complexity of the wastewater.   
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Palmquist and Hanaeus (2005) have compared typical greywater, blackwater 

and domestic wastewater characteristics, in terms of flows, chemical, biological 

and physical parameters (Table 2-2).  Blackwater flows tend to be lower than 

greywater but the nutrient load is much higher with BOD and COD values being 

over twice that of greywater.  Nitrogen levels are over ten times higher in 

blackwater than greywater and twice that observed in domestic wastewater with 

average concentrations of 9.68, 150 and 20 -70 mg.l-1, respectively.  The total 

COD of 2260 mg.l-1 for blackwater is almost four times that of 588 mg.l-1 for 

greywater and approximately three times the 250 – 800 mg.l-1 given for 

domestic wastewater. 

 Table 2-2 – Comparison of the characteristics of greywater, blackwater and domestic 
wastewater (Palmquist and Hanaeus, 2005). 

Parameter Greywater Blackwater Domestic
 

 Average Min (Max) Average Min (Max)  

Q (m
3
.h

-1
) 0.54 0.16 (1.02) 0.17 0.16(0.18) - 

Ptot (mg.l
-1

) 7.53 4.6(11) 42.7 21 (58) 4-12 

Ntot (mg.l
-1

) 9.68 8.0 (11) 150 130 (180) 20-70 

BOD7 (mg.l
-1

) 418 350 (500) 1037 410 (1400) 160-300
 

CODCr (mg.l
-1

) 588 495 (682) 2260 806 (3138) 250-800 

TS (mg.l
-1

) 630 570 (700) 3180 920 (4320) 390-1230 

VS (mg.l
-1

) 330 300 (360) 2560 420 (3660) 95-315 

pH 7.50 6.06 8.94 8.87 (9.08) - 

 

Reinforcing the observation that grey and black water are highly heterogeneous 

another study by Henze and Ledin (2001) observed much lower levels for grey 

and black water with COD ranging between 200 -700 mg.l-1 for grey water and 

900 – 1500 mg.l-1 for black water (Table 2-3).  Total nitrogen of only 20 – 40 

mg.l-1 for black water was in the range quoted above for domestic wastewater. 

Table 2-3 – Comparison of the characteristics of grey and black wastewater (Henze and Ledin, 
2001).  

Parameter Grey Wastewater Black Wastewater 

 High  Low High Low 

BOD total (mg.l
-1

) 400 100 600 300 

COD total (mg.l
-1

) 700 200 1500 900 

Total nitrogen (mg.l
-1

) 30 8 40 20 

 

Almeida et al. (1999), further split these characteristics by contribution from 

various household appliances with relation to volume, COD ammonia nitrogen 
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and total suspended solids (Table 2-4).  The WC is the largest individual 

contributor in terms of volume and COD, ammonia nitrogen and total 

suspended solids, however, if the remaining appliances are combined they 

provide 69.2% volume of the discharged wastewater and are the most likely 

sources of xenobiotics (Eriksson et al., 2003).  In terms of COD and ammonia 

nitrogen the kitchen sink and washing machine provide the majority of the 

remaining contribution with 45.5% between them, while the WC provides 97.1% 

of the ammonia nitrogen. 

 Table 2-4 - % volume contribution of various household applicances (taken from Almeida et al., 
1999). 

Appliance Volume CODt NH3-N TSS 

WC 30.8 43.9 97.1 77.4 

Kitchen Sink 13.0 23.2 0.3 10.1 

Wash Basin 12.6 1.7 0.1 2.1 

Bath 15.7 2.5 0.6 1.3 

Shower 11.7 6.4 0.7 5.1 

Washing Machine 16.2 22.3 1.2 4.0 

 

In order to investigate the potential compounds from household product usage 

that could be discharged in greywater, Eriksson et al. (2002) conducted a study 

that identified over 900 xenobiotic compounds in household products, on the 

basis of their ingredients lists and tonnage of industrial manufacturing.  13 

groups were analysed for (Table 2-5) with the most common found to be 

fragrances and flavours with 197 identified.    Detergents made up a significant 

part of the remainder with a total of 192 identified, including anionic (most 

common), non-ionic, amphoteric and cationic.  Preservatives which by their 

nature are toxic to micro organisms were also found to be a significant group 

with 79 identified.  In particular, product usage in the bathroom has an impact 

on the nature of the water, with substances highly toxic to bacteria being 

discharged on an irregular basis (Jefferson et al.,  2004). 
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Table 2-5 – Groups of compounds found in common household chemicals in Denmark 
(Eriksson et al., 2002). 

Compound Group Number of 
Substances 

in group 

Fragrances and flavours 197 

Preservatives 79 

Anionic detergents 73 

Solvents 67 

Non-ionic detergents 65 

Cationic detergents 34 

Softeners 29 

Emulsifiers 28 

Dyes 26 

UV filters 23 

Amphoteric detergents 20 

Bleaches 16 

Enzymes 4 

Miscellaneous 238 

 

Another study by Eriksson et al., conducted in 2003, obtained the weekly usage 

of common household products for a housing complex in Copenhagen, 

Denmark, by inhabitants keeping a daily diary of all usage in the household.    

This study identified that shampoo was the most consumed product with 353 g 

per week being used, giving an approximate concentration in wastewater from 

the complex of 11 mg.l-1 (averaged over 7 days, assuming a water usage of 150 

l.p-1.day-1).  This was the most used product with all the other products 

contributing less than 10 mg.l-1 to the final concentration in the wastewater. 

Table 2-6 – Weekly comsumption of household products, in order of decreasing amount, from a 
residential complex in Copenhagen, Denmark (Eriksson et al., 2003). 

Type of Product Consumed amount  
(g) 

Approximate concentration  
in wastewater

1
 (mg.l

-1
) 

Shampoos  353 11 

Soaps  245 8 

Oral hygiene products  131 4 

Hair conditioners 91 3 

Skin care products  74 2 

Shower gels  62 2 

Cleaners  61 2 

Lime deposit removers  21 1 

Hair styling products 19 - 

Deodorants  16 - 
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Type of Product Consumed amount  
(g) 

Approximate concentration  
in wastewater

1
 (mg.l

-1
) 

Shaving foam 13 0.4 

Powder laundry detergents 8 0.25 

Glass and window cleaners 6 0.2 
1
 assuming usage of 150 l.p

-1
.day

-1
 and 30 residents 

2.4 Biological Response to Changes in Influent Wastewater. 

2.4.1 Types of changes 

As discussed in the previous section the characterisation of domestic 

wastewater is a complex and involved procedure, however, there are four 

fundamental variations to the biological treatment system environment 

influenced by the influent wastewater, that will have an effect on the biological 

community in a wastewater treatment process: 

1. pH, 

2. temperature, 

3. organic loading, 

4. presence or absence of toxic compounds. 

The presence of toxic compounds is the factor most likely to change abruptly in 

urban wastewater and which will have the most effect on the microbial 

community, and which is highly unpredictable.  The differing mechanisms of 

toxicity will be discussed in the following sections as well as the differing effects 

on various parts of the microbial community in an aerobic biological treatment 

system. 

2.4.2 Mechanisms of toxicity. 

Section 2.3.2 illustrated the components of urban wastewater are many and 

varied and it is difficult to predict the substances or compounds that could be 

discharged, however, the characteristics of the biomass in a biological 

wastewater treatment process are influenced by their environment and which 

have an effect on the filterability of the sludge (Chang and Lee, 1998, 

Rosenberger and Kraume, 2002) therefore, it is important to have an 

understanding of the mechanisms involved in the biodegradation of the 

components of influent wastewater and the effects that these variations could 
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have on the biomass.  Toxicity in biological oxidation systems may be due to 

one of several causes (Roš, 1993): 

 

1. Organic substances which are toxic in high concentrations, but 

biodegradeable in low concentrations (such as phenol, formaldehyde 

etc). 

2. Substances which have a toxic threshold dependent on the operating 

conditions (such as heavy metals). 

3. Inorganic salts and ammonia that exhibit retardation at high 

concentrations. 

 

Toxicity will affect the microbial community in two basic ways; either the osmotic 

balance of the cell or the enzyme action (Roš, 1993) which can result in 

inhibition or cell death.  The mechanisms can be split further into four broad 

categories where the oxidant (e.g. chlorine, peroxides) and lytic (e.g. silver, 

copper, mercury, isothiazolones) mechanisms interfere with the cell membrane 

and the electrophiles (e.g. phenoxyethanol,) and protonophores (e.g. parabens) 

interfere with metabolism or enzyme action (Chapman, 2003): 

 

 

 

 

 

 

 

 

Figure 2-4 – Categories of toxic mechanisms. 

 

The success of any biological treatment system for wastewaters is based on 

two fundamental activities – substrate utilisation to “clean” the water and growth 

kinetics to maintain a sustainable microbial community for substrate utilisation. 

Some substrates are easily degradable and provide a readily available carbon 

Biocide 

Electrophiles Membrane Active 

Oxidants Electrophiles Lytic Protonophores 
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source for the microbial community whereas others are more difficult to be 

broken down and these are termed xenobiotics.  Xenobiotics can also be toxic 

but do not have to be.    If a xenobiotic causes enzyme inhibition it can have 

three effects on substrate removal (Volskay and Grady, 1990, Roš, 1993):  

1. cause substrate inhibition, preventing the biodegradation of the 

xenobiotic compound itself (uncompetitive inhibition) 

2. influence the rate of substrate utilisation by competition (competitive 

inhibition) and 

3. inhibit substrate utilisation by micro-organisms that are incapable of 

biodegradation of the xenobiotic (non competitive inhibition) . 

 

Growth kinetics are described by kinetic theory which relates substrate 

concentration with biomass growth (Daigger and Grady, 1982).   In a steady 

state system these are easily defined and the relationship is a relatively simple 

equation, first described by Monod, however, in the presence of xenobiotic 

compounds the kinetics become more complicated, even though ultimately the 

breakdown of a xenobiotic compound is the same as for any other substrate: 

 

Figure 2-5 – Breakdown of a xenobiotic compound (Bitton, 1997). 

 

Toxicity of any form will interfere with the purpose of the treatment system either 

by inhibiting substrate utilisation which could then result in inferior effluent 

quality or by jeopardising the viability of the microbial community by causing cell 

death. 

Xenobiotic Compound 

Biological Transformation 

Mineralisation Accumulation Polymerisation 
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2.4.3 Effects of toxicity on a biological system 

The presence of toxic compounds will affect a biological system in five 

fundamental ways: 

1. impact on substrate removal, 

2. impact on flocculation ability of the biomass, 

3. release of extracellular polymeric substances, 

4. viability of the microbial community, 

5. increased oxygen demand. 

 

These five effects will not necessarily happen in isolation, for example, the 

effects of dosing sodium chloride into an activated sludge process at 

concentrations of up to 20, 000 mg.l-1 induced poor flocculation, reduced 

efficiency in substrate removal, generated higher effluent solids and an increase 

in the respiration rate (Kincannon and Gaudy, 1968).   Phenol containing waters 

inhibit the biological degradation of other compounds and inhibit microbial 

growth resulting in an increase in effluent COD and impacts on the process 

efficiency (Barrios-Martinez et al.,2006). 

 

Although the previous examples illustrate an apparent general toxicity some 

parts of the microbial community may be more sensitive to the presence of toxic 

compounds than others.  Pagga et al., (2006) found that the inhibition levels for 

nitrate formation were consistently lower than for heterotrophic bacterial 

respiration across a wide range of compounds (Table 2-7). For example, phenol 

had an EC50 for nitrate formation of 0.8 mg.l-1 whereas the EC50 for 

heterotrophic respiration was >100 mg.l-1.  Contrary to these findings, Madoni et 

al., 1999, reported that neither nitrifiers nor heterotrophs are more sensitive to 

heavy metals on the whole, with both ammonium uptake rate and oxygen 

uptake rate being inhibited by 50% for a concentration of soluble zinc of < 1 

mg.l-1.  The EQS for zinc is 0.0075mg.l-1. 
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Table 2-7 – Comparison of inhibition of nitrifiers and hetertrophic bacteria (Pagga et al., 2006). 

Chemical ISO 9509 Inhibition for 
nitrate formation,  
EC50 (mg.l

-1
) 

ISO 8192 Inhibition of 
heterotrophic respiration  
EC50 (mg.l

-1
)  

3-Chlorophenol 0.9 10-100 

2-Chloromandelonitrile <1 10-50 

2,4-Dichlorophenol 0.15 50-100 

Imidazole 6.2 >100 

N-Methylaniline 1.2 >100 

Nitrobenzene 56 >100 

Phenol 0.8 >100 

Pyrazole 0.16 >10 

Thioacetamide 0.2 >5 

Thiourea 0.3 >5 

Zn
2+ 

200 500-100 

  

 

Within the context of MBRs the effects of perturbations in influent water quality 

and/or the presence of toxic compounds is most apparent in the decrease of 

permeability of the membrane (Reid et al., 2006)  caused by the increased 

production by micro-organisms of soluble microbial products (SMP).    

 

Soluble microbial products can be produced by micro-organisms under various 

conditions: to establish a concentration equilibrium, during starvation conditions, 

in the presence of an energy source, when there is a sudden change in 

substrate availability from starvation conditions, if essential nutrients are only 

available in low concentrations, to relieve environmental stress and lastly as the 

process of normal cell growth and metabolism (Barker and Stuckey, 1999).  The 

most notable being the response to environmental stress which could include 

the presence of toxic substances.  Barker and Stuckey (1999) go on to report 

that SMP produced in a completely stirred mixed reactor fed with phenol 

produced more SMP than that fed with glucose but the SMP in the phenol fed 

reactor was more easily degradable, indicating that the type of toxin will have an 

influence on the type and degradeability of the SMP produced.   SMP have 

been identified as an important factor in membrane fouling that is discussed 

later in the review (Section 2.7.2). 
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2.5 Guidelines for water reuse 

Standards for water reuse have been introduced mainly in the countries that 

have experienced prolonged periods of drought or that have large areas of 

designated desert.    At the present time there are no specific European 

Directives on water reuse quality (Angelakis and Bontoux, 2001) and it is an 

accepted norm to use bathing water and/or drinking water standards as the 

accepted water quality standards, however, Aquarec, a research project 

partially funded by the European Commission and the Australian government 

has proposed a set of water quality parameters that amalgamates all the 

available guidelines into one proposal. These are subdivided into seven 

microbiological and four chemical quality classes to specify water quality 

parameters depending on the end use of the water (Table 2-8).   

 

The most stringent quality parameters are for the water that is most likely to 

come into human contact e.g. garden watering and toilet flushing or to protect 

groundwater recharge while the least stringent are for water used industrial 

cooling waters where human contact will be minimal.  Controversially, the 

microbial parameters are less stringent for water used for bathing than for that 

used in car washing. 

Table 2-8 – Microbial and chemical water quality categories for different final uses of reclaimed 
water (Aquarec, 2005). 

Microbial 
Category 

Chemical 
Category 

Specific Final Use 

I 1 -Residential uses: private garden irrigation, toilet 
flushing, home air conditioning systems, car 
washing. 
-Aquifer recharge by direct injection into the soil for 
irrigation purposes. 

II 1 -Bathing water. 
III 1 -Urban uses and facilities: irrigation of open access 

landscape areas (parks, golf courses, sport 
fields....).  Street cleaning, fire fighting, ornamental 
impoundments and decorative fountains. 
-Greenhouse crop irrigation. 
-Irrigation of raw consumed food crops.  Sprinkler 
irrigated fruit trees. 
-Unrestricted irrigation. 

IV 1 -Irrigation of pasture for milking or meat animals. 
-Irrigation of industrial crops for canning industry 
and crops not raw-consumed.  Irrigation of fruit 
trees except by sprinkler irrigation. 



Chapter 2 – Literature Review 

 

19 

 

Microbial 
Category 

Chemical 
Category 

Specific Final Use 

-Irrigation of industrial crops, nurseries, fodder, 
cereals and oleaginous seeds. 

 2 -Impoundments, water bodies and streams for 
recreational us in which the public’s contact with 
the water is permitted (except bathing) 

V 1 -Irrigation of forested areas, landscape areas and 
restricted access areas. Forestry. 

 2 -Aquaculture (plant or animal biomass). 
 3 -Aquifer recharge by localised percolation through 

the soil. 
VI 2 -Surface water quality, impoundments, water 

bodies and streams for recreational use, in which 
the public’s contact with the water is not permitted. 

VII 4 -Industrial cooling, except for the food industry. 

 

The microbial parameters for each class are based on both bacterial count and 

other micro-organisms, dependant on the end use of the water, only the total 

bacteria and faecal coliform limits have been included for information (Table 

2-9): 

Table 2-9 – Microbiological parameters for water reuse dependant on class of end use (Adapted 
from Aquarec, 2005). 

Use Total Bacteria  
(cfu.ml

-1
) 

Faecal 
Coliforms 
(cfu.100ml

-1
) 

I <1000- <10,000 abs 
II <1000 <20 - <1000 
III <1000 abs - <1000 
IV <10,000 - <100,000 abs - <10,000 
V <100,000 abs - <10,000 
VI <10,000 <200 - <10,000 
VII <10,000 abs - <10,000 

 

The chemical parameters are wide ranging and are grouped based on 

frequency of monitoring (daily – weekly, monthly, monthly – once yearly, once 

per year – once per five years), only the daily and monthly parameters have 

been included for information (Table 2-10).   

Table 2-10 – Frequently analysed chemical water quality parameters dependant on class of 
reuse (Aquarec, 2005). 

Parameter 1 
Private, urban 
and irrigation 

2 
Environmental 

and aquaculture 

3 
Indirect  
aquifer  

recharge 

4 
Industrial 
cooling 

Very high analytical frequency (daily – weekly) 

pH 6.0 – 9.5 6.0 – 9.5 7 -9 7.0 – 8.5 
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Parameter 1 
Private, urban 
and irrigation 

2 
Environmental 

and aquaculture 

3 
Indirect  
aquifer  

recharge 

4 
Industrial 
cooling 

BOD (mg.l
-1

) 10 - 20 10 - 20   
COD (mg.l

-1
) 100 70 - 100 70 - 100 70 

Dissolved Oxygen  
(mg.l

-1
) 

>0.5 >3 >8 >3 

UV 254 absorbance  
(cm

-1
x10

3
) 

30 - 70 30 - 70 10  

Conductivity (µS.cm
-

1
) 

3000 3000 1400  

TSS (mg.l
-1

) 10 - 20 10 - 20  10 – 20 
Ammonium – N 
(mg.l

-1
) 

2 - 20 1.5 0.2 1.5 

High analytical frequency (monthly) 

Na (mg.l
-1

) 150 150 -200   
Nitrate (mg.l

-1
)   25  

Chloride (mg.l
-1

) 250 250 - 400 100 400 
Sulphate (mg.l

-1
) 500 500 100  

Total P (mg.l
-1

) 2-5 0.2 - 1  0.2 

2.6 Technologies used for water reuse. 

The technologies employed for urban water reuse are dependant on the end 

use of the reclaimed water, the volume of water to be treated, the water quality 

standards to be met and the cost of the treatment (Salgot and Angelakis, 2001).  

In general, the higher the quality of water required the more technology is 

involved.  A treatment matrix has been developed which details the level of 

treatment required for a designated end use (van der Graaf et al., 2005) (Figure 

2-6): 

 

 

 

 

 

 

 

 

 

Figure 2-6 – Treatment matrix for different water reuse applications (A = industry, B = Domestic 
(Household - non potable), C = Domestic (Irrigation), D = Natural and E = Agriculture) 

 

Raw Wastewater 

Secondary Treatment 

Primary Treatment 

Tertiary Treatment 

E E C, D, E A, B, C, D, E 
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Primary treatment removes particulate matter from the wastewater, typically 

using sedimentation, filtration or screening, secondary treatment removes 

organic constituents and nutrients from the wastewater by an aerobic biological 

process, typically suspended or attached growth.  Suspended growth systems 

include stabilisation ponds, activated sludge or aerated lagoons with some form 

of biomass/liquid separation mechanism e.g. clarifiers or a membrane, whereas 

attached growth are trickling filters, rotating biological contactors or other media 

filters.  Tertiary treatment is employed for removal of specific pollutants if 

required and a final disinfection either by UV or chlorine (Asano and Levine, 

1998). 

 

Biological systems vary considerably in their performance.  A study carried out 

by Jefferson et al., 2001 compared a MBR with a biological aerated filter and 

the performance of the MBR was consistently better for grey water, grey black 

water and black water for both physical and microbiological removal rates, with 

COD removal rates of ≥ 90% effluent turbidity of < 0.4 NTU and up to an 8 log 

removal for total coliforms compared with COD removal rates of 30-77%, 

effluent turbidity of 3 – 12 NTU and a 2-3 log reduction for total coliforms.  van 

der Graaf et al., (2005) compared the estimated removal efficiencies of seven 

secondary treatment systems (activated sludge (AS), trickling filter (TF), rotating 

biological contactor (RBC), submerged aerated filter (SAF), stabilisation ponds 

(StabP), constructed wetlands (CW) and an MBR).  The differences in removal 

rates were dependant on the proposed loading rates with greater loading rates 

producing lower removal rates.  The MBR was the only technology that was 

capable of removing pollutants in all of the categories presented demonstrating 

that this is the best process for high quality effluent (Table 2-11). 
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Table 2-11 – Comparison of estimated removal efficiencies for seven secondary treatment 
processes. 

Treatment 
process 

AS  TF  RBC  SAF  StabP  CW  MBR  

COD/BOD +++ ++/+++ +++ +++ ++/+++ ++/+++ +++ 
phosphorus ++/+++ ++ ++ ++ +/+++ +/+++ ++/+++ 
nitrogen ++/+++ ++ ++ ++ +/+++ ++/+++ ++/+++ 
SS +++ +++ +++ +++ +/+++ +++ +++ 
pathogens +/+++ +++ +++ +++ +++  +++ 
viruses/helminths +++ +/+++   +++  +++ 
micropollutants       +/++ 

removal efficiency: +: 0 - 35%, ++:35 - 70%, +++: 70 -100% 

2.7 Membrane Bioreactors 

2.7.1 Membrane Bioreactor Treatment Process 

Membrane bioreactors (MBRs) utilise a biological treatment system, either 

aerobic or anaerobic, with a membrane for biomass separation.  There are 

various different configurations of membrane bioreactors, but for wastewater 

treatment membrane bioreactors are operated in crossflow operation where the 

flow is tangential to the membrane, to encourage turbulent flow close to the 

membrane (Belfort et al., 1994).  The membrane can be housed in the same 

tank as the biological system, known as a submerged membrane bioreactor or it 

can be housed in an external loop, where the biomass is pumped to the 

membrane and recirculated back to the tank, known as a sidestream membrane 

bioreactor (Fane and Chang, 2002).  Submerged membrane bioreactors tend to 

be used for municipal wastewater treatment whereas sidestream MBRs tend to 

be used for more specialist applications where the wastewater is normally of 

industrial origin with extremes of pH, temperature, organic loading or other 

difficult conditions (Yang et al., 2005).  Different types of membrane 

configurations have been developed, including flat plate, hollow fibre, tubular 

and plate and frame.   

 

Membrane bioreactors were developed in the 1970s and were first used 

commercially in Japan the 1980s.  Since the 1990s MBRs have experienced a 

rapid growth in Europe and North America, becoming more of a mainstream 

treatment process (Pearce, 2008).  The majority of MBRs have been installed to 
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treat municipal wastewater.  Worldwide, as of 2005, there were 2259 

installations from four major MBR providers (Zenon, USFilter, Kubota, 

Mitsubishi-Rayon) with 1527 treating municipal wastewater and 732 treating 

industrial wastewater (Yang et al., 2005). 

 

MBRs have many benefits over conventional activated sludge plants, namely a 

higher quality effluent, as the membrane acts as a physical barrier rather than 

being reliant on the settleability of the sludge flocs, as in a conventional 

activated sludge process, intensification of the process resulting in a smaller 

footprint, (Stephenson et al., 2002), reduced sludge yield and increased 

process reliability (Visvanathan et al., 2000).     Most importantly the hydraulic 

retention time and solids retention time are decoupled allowing the process to 

be intensified and run with significantly higher MLSS concentrations, resulting in 

a smaller footprint with a lower sludge yield (Brindle and Stephenson, 1996).  

MLSS concentrations of 12 – 15 g.l-1 are recommended for submerged MBRs 

(Melin et al., 2006) however bioreactors have been run at concentrations of  0.3 

– 27 g.l-1 (Pollice et al. 2005).  Curtis, Head and Graham (2003) utilised island 

biogeography theories to demonstrate that the volume of a bioreactor has an 

influence on the diversity of a microbial community and the diversity of the 

community has an effect on the robustness of the system, potentially limiting 

how small a treatment plant can be.   The majority of wastewater treatment 

systems depend on micro-organisms to degrade undesirable contents of 

effluents and small scale water recycling systems are no different.  It is 

therefore imperative that the microbial population is maintained, and 

encouraged in its diversity, in order to meet process requirements (van der Gast 

et al., 2006). 

 

These attributes of the membrane bioreactor lend themselves well to using the 

technology for small decentralised wastewater treatment and for water reuse.  

Melin et al., 2006 report that there are around 6 companies that now offer MBR 

technology for this purpose, however, to date few operational MBRs have 

effluent that is actively reused, despite the high quality.  
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The performance of membrane bioreactors is dependant on the ability of the 

membrane to filter the biomass matrix efficiently.  This is influenced by the 

resistance of the membrane, the resistance of the fluid being filtered and the 

interaction between the membrane and the fluid.  The resultant flow through the 

membrane per unit area is termed the permeate flux and is given by the 

resistance in series model (Visvanathan et al., 2000) (1): 

                                          J = ∆P                                                 (1) 
      µRt 

Where J = permeate flux (m3.m-2.h-1), ∆P = transmembrane pressure (Pa), µ = 

viscosity (Pa.s) and Rt = total resistance to filtration (m-1).  The total resistance 

to filtration, Rt, has several components; the resistance of the membrane itself, 

Rm, the resistance of the polarization layer due to the concentration gradient, 

Rp, reversible or external fouling resistance due to the physicochemical 

interactions with the membrane, Ref, and irreversible or internal fouling due to 

absorption into the membrane pores, Rif.  These components are additive and 

in reality, there is little to distinguish the resistance due to the concentration 

gradient, Rp, and the reversible fouling, Ref, and these can be combined to Re 

for external fouling.  The total resistance is then (Visvanathan et al., 2000) (2): 

                    Rt = Rm + Re + Rif                   (2) 

Equation 1 illustrates that flux is proportional to the driving force across the 

membrane given by the transmembrane pressure, but is inversely proportional 

to the fouling resistance hence the focus of many research papers on this 

subject (Yang et al., 2005). 

2.7.2 Fouling 

Membrane processes are normally run at a constant permeate flow with a 

varying transmembrane pressure, which increases as resistances to the flow 

increase (Cho and Fane, 2002).  Fouling is the process by which the membrane 

used for biomass separation becomes less permeable and requires either 

greater pressure to drive the liquid through the membrane or more regular 

cleaning to remove the matter that is causing the interference.  A flux has been 

defined, known as the critical flux (Field et al., 1995), specific to each 
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membrane bioreactor, above which the rate of fouling increases rapidly and 

below which the rate of fouling is much reduced but still present.  Pollice et al., 

2005, comment that the source of fouling below the critical flux is due to 

colloidal elements in the biomass matrix and components that are released due 

to biological activity, e.g. soluble microbial products or cell detritus from cell 

lysis, whereas fouling above the critical flux is due to the suspended biomass 

itself. 

 

There are three main types of fouling that are recognised: adsorption of SMP, 

pore clogging and particle deposition (Liao et al., 2004) (Figure 2-7): 

 

(a) adsorption of SMP   (b) pore clogging  (c) particle deposition 

Figure 2-7 – Three main types of fouling that occur in membrane bioreactors. 

 

Fouling is the main obstacle to a more widespread uptake for membrane 

bioreactors as a mainstream treatment process.  In recent years much research 

has been dedicated to understand the causes and mechanisms of fouling, but 

to date no unifying theory has been proposed.  According to Zhang et al., 

(2006), there are three factors that contribute to fouling: 

 

1. the nature of the biomass matrix, 

2. the membrane properties, 

3. the hydrodynamic environment experienced by the membrane. 

 

Of these three the last two are controllable by the operator of the MBR as some 

decision can be taken as to the properties of the membrane to be used and the 

rate of aeration is normally advised by the manufacturer.  The nature of the 

biomass matrix however, is very dependant on the influent wastewater which is 

constantly changing and the state of the biomass at the time, which is also 

constantly changing.  It is this cause of fouling that has attracted the most 
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research and several studies have presented different conclusions as to the 

reasons (Table 2-12).   

 

It is likely all the relationships found will contribute in some way to the fouling of 

a membrane.  There are many studies (around 30% of recent MBR publications 

(Drews et al., 2006)) on this subject with a number of variables linked with the 

biomass matrix being associated with fouling (Table 2-12).  No clear unifying 

theory has been proposed and findings are often relevant only to the specific 

operational and physical set up of the MBR.      

 

Bouhabila et al., 2001, linked the colloidal fraction in the biomass with fouling, 

reporting a contribution of 50% to the overall fouling, however, this was at a 

very short hydraulic retention time (HRT) of 3.3 hours which Meng et al., 

(2006a) discovered to have a strong influence on fouling with a short HRT 

resulting in a high extracellular polymeric substance (EPS) concentration, high 

mixed liquor volatile suspended solids (MLVSS) and a high sludge viscosity.  

The MBR run at an HRT of 10 -12 hours maintained a flux twice that of the 

MBRs with HRTs <8 hours after 35 days filtration.  Itonaga et al., (2004) also 

linked the colloidal fraction to a decline in flux for dead end filtration with the 

colloidal element contributing only 18% to the overall fouling resistance, using 

biomass from an MBR with an HRT of <6 hours, resulting in a high loading rate.  

Nagaoka et al., (1998), observed that the loading rate had an influence on the 

fouling when an MBR running at a high loading rate of 1.5 gTOC.L-1.day-1 fouled 

irreversibly after 40 days whereas a low loaded MBR (0.5 gTOC.L-1.day-1) did 

not foul until 120 days of filtration.  On the other hand Rosenberger et al., 

(2006) observed colloids to have a significant influence on fouling at a longer 

HRT of 11 hours, but a short solids retention time (SRT) of 8 -15 days, whereas 

Bouhabila et al, (2001) had observed the longer the SRT, the less the effect of 

fouling from colloids. 
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It can be concluded from these studies that SRT and HRT have a strong 

influence on colloidal fouling and an increase in both parameters will have a 

positive effect on mitigation of fouling by colloids. 

 

A more robust relationship is that of SMP carbohydrates with fouling which has 

been shown for a variety of operating parameters.  Drews et al., (2006) 

observed that flux decline is proportional to polysaccharide content for an HRT 

of 11 hours and a 30 day SRT.  The MBR was run with intermittent sludge 

removal and although the relationship was generally linear there were 

deviations of up to 100%, thought to be caused by a variation in 

polysaccharides that had a varying fouling effect.   Lesjean et al., (2005) 

reported that SMP carbohydrates and fouling rate formed a linear relationship at 

a short SRT of 8 days but this could not be replicated at a longer SRT of 15 

days.  Again it can be concluded that the relationship of SMP carbohydrates is 

dependant on the specific operating environment of the MBR. 
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Table 2-12 – Fouling relationships from literature. 

Fouling parameter Relationship to fouling Operating parameters Reference 

Colloidal fraction from 
biomass 

Flux decline was proportional to 
the amount of colloids present. 

Flux = 12 l.m-2.h-1  
SRT = 10,20, 30 days 
HRT = 3.3 h 

Bouhabila et al., 2001. 

SRT Flux decline was inversely 
proportional to SRT. 

Reactor volume = 20 l  
Membrane type = Zenon HF 
Feed = synthetic dairy 

 

Particle size Flux decline accelerated with a 
decrease in particle size. 

Flux = various 
SRT = nd 
HRT = nd  
Reactor volume = nd  
Membrane type = HF  
Feed = synthetic 

Chang and Kim, 2005. 

Polysaccharide 
content 

Flux decline is proportional to 
polysaccharide content. 

Flux = 10 l.m-2.h-1 
SRT = 30d1 

HRT = 10.7 h   
Reactor volume =  140 l 
Membrane type =  plate and 
frame. 
Feed = domestic. 

Drews et al., 2006. 

Colloidal fraction Flux decline in dead end filtration 
tests was attributed to the colloidal 
fraction. 

Flux = 17 l.m-2.h-1 
SRT = nd 

HRT = 4.5 h 
Reactor volume =  180 l 
Membrane type = HF   
Feed = municipal 

Itonaga et al., 2004. 
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Fouling parameter Relationship to fouling Operating parameters Reference 

Dynamic membrane Flux decline was more rapid for an 
attached growth system where the 
biomass was grown out of 
suspension than for a suspended 
growth MBR. 80% of filtration 
resistance was observed for the 
cake layer in the suspended 
growth MBR. 

Flux = 25 l.m-2.h-1 
SRT = nd 

HRT = 8 h  
Reactor volume =  5 l 
Membrane type =  HF 
Feed = synthetic 

Lee, J. et al., 2001. 

Microbial floc (Amount 
of EPS protein, ratio of 
protein:carbohydrate, 
hydrophobicity, 
surface charge and 
microbial activity). 

Increase in all parameters was 
significant indication of fouling. 

Flux = 9 l.m-2.h-1 
SRT = 20, 40, 60 days.  
HRT = 7.8 h  
Reactor volume = 7 l 
Membrane type = HF 
Feed = synthetic 

Lee, W. et al., 2003. 

SMP polysaccharide 
content 

A linear relationship was observed 
for fouling vs. polysaccharide 
content at an 8 day SRT but this 
was not observed at a longer 15 
day SRT. 

Flux = 21.5 – 23.5 l.m-2.h-1 
SRT = 26, 20-12, 15, 8 days 
HRT = 11 h 
Reactor volume = 2000 l 
Membrane type = HF 
Feed = municipal 

Lesjean et al., 2005. 

Sludge morphology Fractal dimension had a strong 
positive correlation with fouling 
rate. 

Flux = 10 l.m-2.h-1 
SRT = 30,90,120 days 
HRT = 12 h 

Li et al., 2008. 

Proteins Fouling rate is proportional to the 
amount of proteins present. 

Reactor volume =12  l 
Membrane type = flat sheet 
Feed = synthetic 
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Fouling parameter Relationship to fouling Operating parameters Reference 

Effect of HRT A low HRT resulted in high EPS 
concentration, high MLSS 
concentration and high sludge 
viscosity.  These were all 
attributed to the excessive growth 
of filamentous bacteria and caused 
increased fouling in the MBR.   

Flux = variable (fixed water 
head drop) 
SRT = 30 days 
HRT =  12-5 h 
Reactor volume = 12 l 
Membrane type = HF 
Feed = synthetic 

Meng et al., 2006a. 

Sludge viscosity A decrease in HRT resulted in an 
increase in sludge viscosity 
decreasing the cross flow velocity 
of the sludge which in turn 
decreased the fouling effect on the 
membrane and increased fouling. 
 

Flux = variable (fixed water 
head drop) 
SRT = 30 days 
HRT =  12-5 h 
Reactor volume = 12 l 
Membrane type = HF 
Feed = synthetic 

Meng et al., 2006a 

MLSS Fouling rate and MLSS followed 
an exponential relationship. 

Flux = variable (fixed water 
head drop) 

Meng et al., 2006b. 

PSD The smaller the particle size the 
faster the fouling rate. 

SRT = nd 
HRT =  nd  

 

Microbial products SMP and colloidal products 
induced from EPS had a strong 
influence on the fouling rate.  

Reactor volume = 12 l  
Membrane type = HF 
Feed = synthetic 
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Fouling parameter Relationship to fouling Operating parameters Reference 

Filamentous bacteria An increased concentration of 
filamentous bacteria resulted in a 
more rapid fouling of the 
membrane. 

Flux = variable (fixed water 
head drop) 
SRT = nd 
HRT = nd 
Reactor volume = 12 l 
Membrane type = HF  
Feed = synthetic 

Meng et al., 2007. 

Organic loading The membrane in the high organic 
loading MBR fouled quicker than 
that with the low organic load. 

Flux = 6.25 l.m-2.h-1 
SRT = nd 
HRT =  nd 
Reactor volume = 28 l 
Membrane type = flat sheet  
Feed = synthetic 

Nagaoka et al., 1998. 

Decomposition of EPS 
on membrane surface 

The EPS accumulated on the 
surface of the flat sheet 
membranes was sampled over a 
40 day period and was found to 
decay to lower MW EPS over this 
time resulting in a lower fouling 
rate.   

Flux = 6.25 l.m-2.h-1 

SRT = nd 
HRT = nd 
Reactor volume = 82 l 
Membrane type = flat sheet 
Feed =synthetic 

Nagaoka and Akoh, 
2008. 

Suspended EPS 
(SMP) 

The higher the concentration of 
suspended EPS (SMP) the higher 
the fouling rate. 
 

Various pilot and full scale 
MBRs. 
Feed = municipal, domestic, 
industrial. 
 

Rosenberger  
and Kraume, 2002. 
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Fouling parameter Relationship to fouling Operating parameters Reference 

SMP polysaccharide 
content 

Fouling rate is proportional to 
polysaccharides concentration. 

Flux = 19 – 21 l.m-2.h-1 
SRT = 8 – 15 days 

HRT = 11 h 

Rosenberger et al., 
2006. 

Supernatant colloidal 
and soluble fraction 

Fouling rate is proportional to the  
colloidal and soluble fraction of 
supernatant. 

Reactor volume =  1900 and 
2100 l 
Membrane type =  HF 
Feed = municipal 

 

1
intermittent sludge removal,  nd = not defined, HF = hollow fibre. 
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2.8  Mitigation of the effects of fouling in MBRs  

2.8.1 Physical mitigation 

There are several strategies for mitigation of fouling in membranes by 

manipulation of operating parameters that will have a limited effect (Howell et al., 

2004).  These are increased aeration, backwashing/relaxation, chemical cleaning 

and operating at a reduced flux (Judd, 2005).  Each will have a limited effect on 

reversible and/or irreversible fouling.   

 

Increasing the aeration to a membrane will enhance the crossflow velocity in the 

vicinity of the membrane and increase the turbulence next to the membrane, 

thereby reducing fouling, by discouraging particle deposition, but becomes 

ineffective above a certain threshold and increases operational costs 

(Visvanathan et al., 2000, Le-Clech et al., 2003, Chang and Fane, 2000).   

 

Backwashing for hollow fibre submerged membrane entails reversing the 

permeate flow back through the membrane to dislodge reversible fouling by 

dislodging the cake layer and build up within the pores of the membrane.  Longer 

less frequent backwashes have been proven to be more effective than shorter 

frequent ones (Le-Clech et al., 2006).  Backwashing is not possible for flat plate 

membranes and these are relaxed at frequent intervals where permeate is no 

longer withdrawn and the continued aeration is effective at removing solids build 

on the membrane (Le-Clech et al., 2006).  Again both methods must take into 

consideration the impact on the process efficiency and additional operational 

costs.   

 

Chemical cleaning of membranes has been proven to be very effective at 

removing organic and inorganic build up on membranes.  Solutions of either 

sodium hypochlorite (organic foulant) or citric acid (inorganic foulant) are 

generally used but cleaning agents and regimes are dependant on the foulant 

present and are often developed specifically for individual sites (Liao et al., 2004, 

Le-Clech et al., 2006).     
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Operating at a reduced flux will certainly reduce or delay the fouling experienced 

but will reduce the throughput of the system adding to operational costs (Chua et 

al., 2002). 

2.8.2 Chemical mitigation 

The premise behind chemical mitigation of fouling is to stop the fouling fraction 

from coming into contact with the membrane.   This is achieved through 

coagulation or adsorption of the fouling fraction (in this instance believed to be 

colloidal particles or soluble microbial products as discussed in the fouling 

section above).  Coagulation will enable larger flocs to form that will trap colloidal 

particles and soluble microbial products, whereas adsorption acts by adsorbing 

the particles or SMP onto the additive.      The most commonly used chemicals 

for flux enhancement by coagulation or adsorption in MBRs are polymers and 

metal salts for coagulation and activated carbon for adsorption. 

 

Coagulation, by the addition of cationic polymers or inorganic salts, results in the 

neutralisation of the zeta potential of the negatively charged particles in the 

wastewater.  This destabilisation of colloidal particles allows the particles to 

overcome their natural repulsive forces and agglomerate, through macrokinetic 

flocculation, within the turbulent environment in the aerated MBR 

(Tchobanoglous et al., 2003).  Typical dose response curves for metal salts, for 

zeta potential and residual turbidity, show a minimum turbidity at, or close to, a 

neutral zeta potential.  This is followed by a subsequent increase in turbidity with 

an increase in concentration of the metal salt, as the zeta potential becomes 

increasingly positive and colloidal particles restabilise (Adin and Asano, 1998).  

This action removes the colloidal element within the biomass matrix, as 

evidenced by the reduction in residual turbidity, and increases the particle size 

within the matrix, significantly reducing fouling (Baek and Chang, 2009).  The 

main disadvantage of using metal salts is the increase in sludge production 

(Yoon et al., 2005).  Dosing with a cationic polymer has a similar effect on as the 

metal salt causing destabilisation of colloids through charge neutralisation 
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(Koseoglu et al., 2008), however, they have the added advantage of polymer 

bridging if they are of a very high molecular weight.  Polymer bridging is the 

action of numerous particles being adsorbed to the polymer at varying points 

along the chain thus providing a bridge between particles (Tchobanoglous et al., 

2003).  Dosing with cationic polymer does not increase sludge production 

significantly.   

 

Cationic polymers, inorganic salts, activated carbon and other coagulants have 

been used in many studies for flux enhancement in MBRs (Table 2-13).  The 

majority have been carried out on a case by case basis with varying degrees of 

success.  In general, although it is hard to compare the studies the cationic 

polymers seem to perform better than the activated carbon and inorganic salts.  

Collins et al., (2006) and Yoon et al., (2005) found that a dose of 400 mg.l-1 of 

MPE50 provided close to a 70% increase in flux, whereas a 2000 mg.l-1 dose of 

powdered activated carbon (PAC) only produced a 22% reduction in filtration 

resistance for Fang et al., (2006).   The most comprehensive study carried out 

was by Koseoglu et al., (2008) which compared 3 cationic polymers (MPL30, 

MPE50, KD452), 2 metal salts (FeCl3, PACl), a biopolymer (chitosan) and starch 

under the same experimental conditions.  This found that the inorganic salt poly 

aluminium chloride (PACl) performed the worst, with only a 33% reduction in 

fouling rate whereas the cationic polymers produced between a 74% (KD452) 

and a 96% (MPE50) reduction in fouling rate.  Although KD452 resulted in a 

smaller reduction in the fouling rate this was at a dose of 70 mg.l-1 compared with 

500 mg.l-1 for MPE50.  Interestingly, the starch and biopolymer produced 

reductions of 90% at doses of 1500 mg.l-1 and 250 mg.l-1 respectively. 
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Table 2-13 – Flux enhancers for MBRs and their effectiveness 

Chemical Type Flux (l.m-2.h-1) 
(min and max) 

Enhancement Dose  
(mg.l-1) 

MLSS 
(g.l-1) 

Scale Ref 

MPE50 Cationic  
polymer 

25 – 50 65% lower TMP 400  10-11 Pilot/Full  Collins et al., 
2006. 

MPE50 Cationic  
polymer 

10.2 – 17.5 72% higher flux 400 + 
10 daily 

8 – 12 Full  Collins et al., 
2006. 

MPE50 Cationic  
polymer 

17  Increased the critical 
flux from 17 to  
33 l.m-2.h-1. 

50 -
1000  

12 – 30 Pilot  Yoon et al., 
2005. 

MPE 50 Cationic  
polymer 

Ave 47.25 50% increase in flux 
(short term) 
68% increase in flux 
(long term) 

400  12 Full Yoon et al., 
2005. 

MPE50 Cationic  
polymer 

27 96% reduction in 
fouling rate 

500 8-9 Bench Koseoglu et 

al., 2008. 

MPL30 Cationic  
polymer 

27 80% reduction in 
fouling rate 

600 8-9 Bench Koseoglu et 

al., 2008. 

KD452 Cationic  
polymer 

27 74% reduction in 
fouling rate 

70 8-9 Bench Koseoglu et 

al., 2008. 

Alum  
(Al2(SO4)3 

Inorganic  
salt 

15 Maintained flux at low 
TMP (<0.5 bar) for 14 
days compared with 
fouling of the control 
after ~150 hours 

Ratio of 
Al:P of 
1.5 

5.2 – 9.2 Lab  Lee et al., 
2001. 

PACl Inorganic 
salt 

27 33% reduction in 
fouling rate. 

85 8-9 Bench Koseoglu et  

al., 2008. 
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Chemical Type Flux (l.m-2.h-1) 
(min and max) 

Enhancement Dose  
(mg.l-1) 

MLSS 
(g.l-1) 

Scale Ref 

PAC Organic Stirred cell 22% reduction in 
filtration resistance 

2000  4.76 Bench Fang et al., 
2006. 

PAC Organic 42 10 g.l-1 PAC 
~doubled filtration 
time to set TMP,  
40 g.l-1 PAC trebled 
filtration time to set 
TMP compared to 
control. 

10000 
and 
40000 

NR Bench Kim et al., 
2005. 

Zeolite Inorganic 15 Maintained flux at low 
TMP (<0.5 bar) for 14 
days compared with 
fouling of the control 
after ~150 hours 

1000 7.1 – 7.4 Lab  Lee et al., 
2001. 

Chitosan Biopolymer 27 90% reduction in 
fouling rate 

250 8-9 Bench Koseoglu et 

al., 2008. 

Starch Starch 27 90% reduction in 
fouling rate 

1500 8-9 Bench Koseoglu et 

al., 2008. 

 

NR = not reported. 
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The review of the literature has highlighted the need for water reuse to provide a 

valuable alternative water source for increasing water demand.  Of the biological 

treatment systems used for water reuse the MBR has been identified as the most 

efficient and robust.  Characterisation studies of domestic wastewater have 

shown the potential for a large variation in chemical constituents in urban 

wastewater.  Some constituents have been identified as xenobiotic which could 

have a detrimental effect on the biomass of the biological treatment system in a 

small scale MBR.  MBRs are susceptible to membrane fouling and this has been 

shown to be due to the production of SMP carbohydrates and the colloidal 

fraction within the biomass matrix, both of which can be exacerbated with the 

introduction of unsteady state operation.  To date the effects of the common 

household products or xenobiotic constituents of industrial wastewater have not 

been investigated on the performance and operation of a MBR. 
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3 Aim and Objectives 

3.1 Aim 

To understand the nature of intermittent chemical events that could be present 

with respect to urban blackwater, to understand the effect these events may 

have on the performance and robustness of a membrane bioreactor (MBR) and 

to investigate the impact of chemical control solutions at alleviating these 

effects. 

3.2 Scope 

Urban wastewater, or blackwater, can consist of any combination of chemicals 

that are present in products used in the domestic household and those 

discharged from industrial activities.  These chemicals may have an adverse 

effect on biological treatment systems, in this case an MBR.   

 

The scope of this project is to investigate and understand, firstly, the risk that is 

presented by these household or industrial chemicals and, secondly, the likely 

effects that they may have on an MBR.  Monitoring of the effects will focus on 

increased fouling of the membrane, failure of compliance of the effluent of the 

system with current reuse guidelines, any increased maintenance needs (e.g. 

more frequent chemical cleaning) and increases in sludge production.   

 

When an understanding of these risks and effects has been gained then a 

control strategy can be formulated to limit the impact on the system.  This 

control will be in the form of chemical addition to the system, either as planned 

addition of chemicals at defined times or in the form of a continuous addition. 

3.3 Objectives 

• To identify the risks presented by household products or industrial 

chemicals in wastewater to biological systems. 

• To investigate the effects of these products on a biological system with 

reference to system performance and the potential of foulant release. 
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• Using one or more of the toxicants identified in the previous stage to 

further study the effect on an MBR with reference to foulant potential, 

system performance and maintenance needs. 

• To identify which chemicals could be added to the system to alleviate the 

impacts observed in the previous stage. 

• To trial at pilot scale the addition of toxins followed by the addition of the 

control chemical to ensure the intended effects are reproducible at scale. 
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4 Materials and Methods 

4.1 Choice of toxins 

The toxins to be assessed were chosen on the basis of those that were most 

likely to be present in urban wastewater with either a domestic or industrial 

origin (Eriksson et al., 2002, Almeida et al., 1999).  23 household products and 

9 industrial toxins were chosen (Table 4-1).    

 

The household products were chosen to represent those that would be used on 

a regular basis in a normal domestic household.  These were further 

categorised by cost and ecological credentials.  Two were chosen on the basis 

of cost, with one being a more expensive leading brand and one being a low 

cost supermarket own brand and two were chosen from ecological brands, one 

being a widely available ecologically marketed brand and one being a more 

niche brand with stricter definitions of its impact on the environment.  The 

household products that were used throughout the project were purchased at 

one of the main supermarket chains in the UK or from websites in the case of 

the more niche environmental brands.   

 

The industrial toxins were chosen to represent as wide a spectrum as possible 

to investigate different actions of toxicity on the biomass or bacteria.  These 

were agreed on in discussion with the industrial sponsor of the project, 

KeppelSeghers, and represented some toxins that had been indentified as 

being of particular interest to the sponsors from case studies or those that gave 

a broad representation of toxins found in industrial wastewaters 

(KeppelSeghers, 2006).  Some of the individual industrial toxins form part of the 

ingredients list of the household products.  

 

 

 

  



Chapter 4 – Materials and Methods 

 

42 

 

Table 4-1 – Toxins tested in scoping work split into origin and category. 

Origin Category Substance Supplier 

Domestic All purpose 
cleaner 

Nest Anti-bacterial with 
essential oils (lavender and 
bergamot) 

NEST (www.eco-nest.co.uk) 

  Ecover natural lemon Morrisons supermarket 
  Morrisons Orange Morrisons supermarket 
  Mr Muscle Orange Morrisons supermarket 
 Shampoo Henna Plus Natural  Spirit of nature 

(www.spiritofnature.co.uk) 
  Naked Volumising Boots the chemist 
  Morrisons bettabuy Morrisons supermarket. 
  Pantene Pro-V (Sleek and 

Smooth) 
Morrisons supermarket 

 Shower Gel Lavera Orange and 
Seabuckthorn 

Spirit of nature 
(www.spiritofnature.co.uk) 

  Ecover Aloe and Lavender Morrisons supermarket 
  Original Source Mint and Tea 

Tree 
Morrisons supermarket 

  Morrisons peach shower creme Morrisons supermarket 
 Bleach Nest  NEST (www.eco-nest.co.uk) 
  Morrisons Thick  Morrisons supermarket 
  Domestos Morrisons supermarket 
 Washing  Nest  NEST (www.eco-nest.co.uk) 
 powder Ecover Morrisons supermarket 
  Morrisons cyclon for colours Morrisons supermarket 
  Persil Aloe Vera tablets Morrisons supermarket 
 Washing up 

liquid 
Nest (with essential oil 
lavender) 

NEST (www.eco-nest.co.uk) 

  Ecover Chamomile Morrisons supermarket 
  Morrisons concentrated lemon Morrisons supermarket 
  Persil Fresh Morrisons supermarket 
Industrial Surfactants Anionic (sodium dodecyl 

sulphate) 
Fisher Scientific, UK. 

  Cationic (cetyl trimethyl 
ammonium bromate) 

Fisher Scientific, UK. 

 Metals Zinc (as zinc sulphate) Fisher Scientific, UK. 
  Copper (as copper sulphate) Fisher Scientific, UK. 

 Oxidants Sodium hypochlorite Fisher Scientific, UK. 
  Hydrogen peroxide Fisher Scientific, UK. 
 Salts Sodium chloride Fisher Scientific, UK. 
  Magnesium (as magnesium 

sulphate) 
Fisher Scientific, UK. 

 Organic Phenol Fisher Scientific, UK. 

4.2 Why use the whole household product? 

Most studies have focussed on testing single toxins or well known chemicals.  

However, in the case of domestic wastewater it is the whole household product 

that is discharged to sewer and consequently it is important to test the whole 

product as there may be antagonistic or synergistic effects in the combination of 

any ingredient with another.  The individual toxicities of the ingredients do not 



Chapter 4 – Materials and Methods 

 

43 

 

necessarily have an additive effect, in fact some combinations of toxins will be 

more toxic than the additive effect of the individual toxins whereas some will be 

less toxic (Kahru et al., 1996).   Some of the ingredients that are included in 

household products were tested as part of the industrial portion of the toxins 

tested and illustrate the point that individual toxicities do not necessarily have a 

bearing on the overall toxicity.  For example, sodium dodecyl sulphate (also 

known as the much used sodium lauryl sulphate) showed low toxicity to the 

biomass using respirometry, yet most of the shower gels and shampoos, which 

include this as a main ingredient, showed a high toxicity.   Although all products 

give an ingredients list this is not exhaustive and some only contain an 

indication of the contents of the bottle e.g the ingredients listed for Morrisons 

thick bleach are >5% sodium hypochlorite, >5% anionic surfactants and >5% 

limescale deterrent.  All ingredients are given in descending order of magnitude, 

however, the absolute quantities are not known.  As the Microtox and 

respirometry demonstrated all substances have an EC50, and this can vary 

dramatically from substance to substance, illustrating that although an 

ingredients is listed low on the list this does not reduce its potential toxicity.  The 

surfactants used in household products are not of analytical grade as this would 

be prohibitively expensive but can vary in chain length which can have an effect 

on their toxicity (Madsen et al., 2000).  Household products are a complex 

mixture of ingredients that are formulated to produce an end result which 

depends on each individual ingredient in the mix, moreover, these ingredients 

will interact with each other to produce this desired effect which would not be 

gained if each ingredient was used in isolation.  Combinations of compounds 

can increase or decrease the toxic effect of each in isolation, for example, the 

presence of phenol with copper decreased the inhibition rate of nitrifying 

bacteria (Kim et al., 2006). 

 

Whole effluent toxicity testing is a potential tool for aquatic toxicity and has been 

proposed for analysing industrial effluent being discharged to wastewater 

treatment works (Dalzell et al., 2002, Koh and Ellis, 2005).  One study 

conducted to assess the inhibitory effect of municipal wastewaters on 
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nitrification, identified that 60% of wastewater treatment plants contained 

substances that were inhibitory but no one element could be isolated that could 

cause this (Jönsson et al., 2000).  Without testing the complete influent 

wastewater these effects would not have been identified.   

4.3 Toxicity assessment 

Acute toxicity is typically measured in two different ways.  The effective 

concentration, which is the concentration where a specific effect is observed in 

a specific time frame (e.g. EC50 at 15 minutes) and the lethal concentration, 

where a specific percentage of the population is killed in a specific time frame 

(e.g. LC50) (Tchobanoglous et al., 2003).   It was decided to use the EC50 

measurement in this assessment as even if the observed behaviour was 

inhibited rather than the bacteria actually being killed it would mean a reduction 

in the system efficiency and potential discharge consents violations (Gutiérrez 

et al., 2002). 

 

Microtox and respirometry were chosen for the toxicity assessment.  Microtox 

uses a standard cultured luminescent marine bacteria that allows 

multidisciplinary comparison of results, even if at first inspection it would appear 

to bear little or no relation to a biological wastewater treatment system.    

Respirometry on the other hand uses a microbial community taken from the 

biological treatment process under assessment but produces results that are 

often difficult to compare and are dependant on many outside variables (feed 

matrix of the treatment plant from where the biomass is taken, pH of the 

biomass, prior acclimatisation to the toxin under test, f:m ratio, colloidal matter 

present).  If the ranking of the individual toxicities are the same for the two 

methods then the Microtox will provide a quick, repeatable and reproducible 

method for attaining an indication of a wastewater’s toxicity. 
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4.4 Microtox 

4.4.1 Materials 

The Microtox experiments were carried out using a Microtox Model 500 

Analyser (SDI Europe, Hampshire, UK.)  The serial dilutions necessary were 

made using a diluent, which is 2% NaCl in ultra pure water.  Osmotic adjusting 

solution, 22% NaCl, was added as directed and the bacteria used was Vibrio 

fischeri (formerly known as Photobacterium phosphoreum, NRRL number B-

11177) a marine species.  The household products used were diluted in 

deionised water. 

 

Figure 4-1 – Microtox 500 Analyser. 

The light readings taken from the bioluminescing bacteria were read using the 

Microtox analyser and transferred to a PC running Microtox Omni software 

Version 1.18. 

4.4.2 Methods 

Each of the Microtox tests were carried out following the 89% standard 

procedure detailed in the Microtox manual, which gave EC50 values at 5 and 15 

minutes for nine serial dilutions.  Tests were carried out on a trial and error 

basis until a concentration was found where the EC50 level was at 
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approximately half way through the dilutions.  The test was then repeated three 

times to ensure accuracy.   

4.5 Respirometry 

4.5.1 Materials 

The respirometry was carried out using a manometric respirometer (CES, 

Cornwall, UK).  The biomass used was from a pilot scale activated sludge plant 

that had been running for over one year on the Cranfield University campus, fed 

with sewage from the primary basin (settled sewage).  The biomass used was 

washed three times with deionised water that had 0.0125% m/V ferric sulphate, 

2.75% w/v calcium chloride, 2.5% w/v magnesium sulphate and phosphorus 

buffer solution (dilution water used in biological oxygen demand analysis) 

added, to ensure that the subsequent substrate added was the only food source 

available to the biomass.   Copper sulphate provided the electrolytic solution for 

the oxygen generation.   

 

Figure 4-2 – Manometric respirometer 

4.5.2 Methods 

The solutions to be tested were contained in 500ml glass bottles.  Each bottle 

contained 150ml of substrate (settled sewage), 100ml biomass and 50ml of the 

potential toxin.  11 channels were used with one as a control channel with 50ml 

Differential  pressure 
vessel. 

Copper sulphate  
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of deionised water instead of any toxin and five concentrations of toxin in the 

remaining 10 channels.  The oxygen was measured for the first 20 hours, the 

maximum time observed before endogenous respiration.  The graph of oxygen 

uptake was drawn and the gradient obtained to give the oxygen uptake rate.  

This was normalised to the MLVSS of the biomass to give the specific oxygen 

uptake rate (SOUR).  The SOUR of each concentration was then compared to 

the control SOUR and the EC50 determined when the SOUR of a concentration 

was 50% of the control SOUR.   

4.6 Porous Pots 

4.6.1 Materials 

The porous pots are purpose built 3.8 litre capacity pots for performing 

biodegradeability tests.  Each pot is made of a PVC outer shell with a 

membrane inner shell, with a pore size of 60 – 90 µm, that slots into the pot to 

capture the biomass and stop it escaping from the system.  Effluent overflows 

through a spout at the front of the pot to a communal drain to waste (Figure 4-3 

and Figure 4-4).  Each pot was aerated using a stone diffuser and the air flow 

regulated by an adjustable valve.  The air flow was set to 0.9 l.s-1, after five 

months of monitoring the dissolved oxygen (D.O.), as being the lowest flow to 

ensure the D.O. was >2mg.l-1.   Five spare liners were kept soaked in 0.1 % 

sodium hypochlorite.   When a liner became blocked and the contents of the pot 

was close to overflowing, the biomass was removed and a new liner that had 

been thoroughly rinsed with tap water, was inserted into the pot and the 

biomass replaced.  The dirty liner was then washed with tap water to remove as 

much of the biomass as possible and soaked in sodium hypochlorite solution, 

as described above, until needed.   
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Figure 4-3 – Diagrammatic representation of a porous pot. 

 

Figure 4-4 – Photograph of a porous pot showing the membrane liner.  

Each porous pot was fed using a multi channel peristaltic pump (Watson 

Marlow, UK) with settled sewage from a small reservoir of approximately 50 

litres capacity, positioned close to the porous pots.  The reservoir maintained a 

V= 3.8 litre 
HRT = 6 hours 

10.5 ml.l
-1

 settled sewage Air 0.9l.s
-1

 

Membrane liner 
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constantly fresh supply of settled sewage by draining from the bottom of the 

tank to drain, and being periodically cleaned thoroughly.  The supply lines to 

feed the pots were also positioned to draw sewage from the middle of the 

reservoir to avoid scum floating on the top of the reservoir and any solids that 

had settled to the bottom.     

4.6.1.1 Operating parameters 

The porous pots were operated with the same parameters throughout the 

baseline monitoring period and the trial periods (Table 4-2).  These parameters 

were chosen to maximise the MLVSS concentration in order for it to be as close 

as possible to the concentration in the pilot MBR.  The pots were run on a no 

wastage policy apart from sampling 100 ml from the biomass three times per 

week.  This resulted in an approximately 90 day solids retention time (SRT). 

Table 4-2 – Operating parameters for the porous pots. 

Parameter Porous Pots 

Aeration l.s
-1
 0.9 

 

HRT(hours) 8 
SRT (days) ~90 

 

4.6.2 Methods 

4.6.2.1 Baseline Analysis for Porous Pots 

The following analysis was carried out for the baseline analysis of the pots over 

an eighteen month period to build up a steady state picture of the variation of 

the parameters (Table 4-3).  All samples were analysed within 24 hours of 

collection. 

Table 4-3 – Baseline analysis for porous pots. 

Parameter Influent  Effluent Biomass 

COD 3 x weekly 3 x weekly  
BOD 1 x weekly 1 x weekly  
Ammonia 1 x weekly 1 x weekly  
Turbidity 3 x weekly 3 x weekly  
CST   1 x weekly 
pH   3 x weekly 
Conductivity   3 x weekly 
MLSS/MLVSS   3 x weekly 
PSD   1 x weekly 
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4.6.2.2 Chemical Oxygen Demand (COD) 

The chemical oxygen demand was determined using Merck cell tests at the 

lowest concentration range to ensure accuracy.  The standard procedure was 

followed as set out in the manufacturer’s instructions and the results were read 

using a Spectroquant Nova 60 spectrophotometer.     

4.6.2.3 5 Day Biological Oxygen Demand (BOD) 

The 5 day biological oxygen demand was determined using the standard APHA 

methods. 

4.6.2.4 Ammonia 

The ammonia concentration in the effluent and influent was measured using 

Merck cell tests at the lowest concentration range possible to ensure accuracy. 

The standard procedure set out in the manufacturer’s instructions was followed 

and the results were read using a Spectroquant Nova 60 spectrophotometer.   

4.6.2.5 Turbidity 

Influent and effluent turbidity were measured using a Hach 2100N turbidimeter 

(Camlab, Cambridge, UK).  A 30 ml sample was decanted into the specific 

glass vials for the turbidimeter.  The sample was then sonicated for 2-3 minutes 

and the turbidity read from the turbidimeter.  Each sample was read three times 

to provide an average reading.  The turbidimeter was calibrated each time it 

was used against a standard set of solutions. 

4.6.2.6 Capillary Suction Time (CST) 

The capillary suction time was measured using apparatus supplied by Triton 

Electronics, UK (Triton Electronics, Essex, UK).  This consisted of a control box 

attached to a Perspex frame, containing two concentric metallic rings each with 

an electronic contact, that was laid over a piece of thick filter paper (Figure 4-5).  

A small stainless steel reservoir with a volume of 5.5ml was placed inside this 

frame and in contact with the filter paper.  The sludge was then injected into the 

reservoir and the time for the water in the sludge to move by capillary action 



Chapter 4 – Materials and Methods 

 

51 

 

from the first electronic contact to the second was timed in seconds.  Capillary 

suction time gives an indication of the dewaterability of the sludge.   

 

          

Figure 4-5 – Capillary suction time apparatus. 

4.6.2.7 pH and Conductivity 

The pH was measured using a Jenway 3540 combined pH and conductivity 

meter (Camlab, Cambridge, UK).  This was calibrated with standard solutions 

each time it was used.   

4.6.2.8 Mixed Liquor Suspended Solids/Mixed Liquor Volatile Suspended 

Solids 

The mixed liquor suspended solids and mixed liquor volatile suspended solids 

were measured using APHA standard methods 2540D and 2540E.  

4.6.2.9 Particle Size Distribution (PSD) 

The particle size distribution was measured using a Malvern Mastersizer 2000 

(Malvern Instruments, Malvern, UK). This utilises light dispersion from the 

particles in suspension and reports the results as a %volume of the total against 

the particle size.  The measurements were taken over 5  20 second cycles and 

an average used.  The samples measured were dispersed in deionised water.   

CST filter 
paper 

Sludge reservoir 

Ring 1 Ring 2 
Control box 
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4.6.2.10 Toxin dosing 

4.6.2.11 Sampling regime 

The pots were sampled over a 24 hour period, as it was projected that most 

effects would be seen within 1 to 2 HRTs.  More sampling was carried out 

closer to the dosing time to ensure that any immediate effects were monitored 

(Table 4-4).  The parameters monitored were split into groups: effluent quality 

analysis (COD, ammonia and turbidity), biomass analysis (pH, conductivity, 

MLSS, MLVSS, CST and PSD) and foulant potential analysis (SMP tubidity, 

SMP proteins and SMP carbohydrates). 

Table 4-4 – Sampling regime for two control and two test pots during dosing trials. 

Parameter Before 
dosing 

t=0 mins 
(0 HRT) 

t = 30 mins 
(0.08HRT) 

t = 1 hr  
(0.2 HRT) 

t = 6 hrs 
(1 HRT) 

t = 12 hrs  
(2 HRT) 

t = 24 hrs  
(4 HRT) 

COD 1,2 2 2 2 2 2 2 
Ammonia 1,2 2 2 2 2 2 2 
Turbidity 1,2 2 2 2 2 2 2 
pH 3 3 3 3 3 3 3 
Conductivity 3 3 3 3 3 3 3 
MLSS/MLV
SS 

3 3 3 3 3 3 3 

CST 3 3  3 3  3 
PSD 3 3  3 3  3 
SMP 
turbidity 

3 3 3 3 3 3 3 

SMP 
proteins 

3 3 3 3   3 

SMP carbs 3 3 3 3   3 
1 = influent, 2 = effluent, 3 = biomass. 

4.6.2.12 Analysis 

COD, ammonia, turbidity, pH, conductivity, MLSS/MLVSS, CST and particle 

size distribution were carried out as described in 4.6.2.2 to 4.6.2.9.   

4.6.2.13 Soluble Microbial Product (SMP) Turbidity 

SMP turbidity was determined by centrifuging 250ml of sample at 10,000g for 

20 minutes (Sorvall Legend RT+).  The supernatant was then carefully 

decanted into the glass vessels used for reading turbidity and the turbidity 

determined as for turbidity (Section 4.6.2.5). 
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4.6.2.14 SMP proteins 

Proteins were determined following the Lowry et al., method (1951).  Three 

reagents were used: 143mM NaOH mixed with 270mM Na2CO3, 57 mM CuSO4 

and 124mM Na2-tartat.  The three reagents were mixed at a ratio of 100:1:1 

respectively.  The indicator was Folin Cioucalteau reagent diluted 1:2 with 

deionised water.  The absorption was measured at 750nm against a blank using 

a Jenway Aquanova spectrophotometer and a calibration curve was produced 

using the protein standard bovine serum albumin (BSA) (Figure 4-6).   
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Figure 4-6 – Calibration curve for SMP proteins.  

4.6.2.15 SMP carbohydrates 

SMP carbohydrates were determined using a method developed by Dubois et 

al. (1956).  The sample was mixed with phenol at 5% w/v and then sulphuric 

acid.  The absorbance was measured at 490nm against a blank using a Jenway 

Aquanova spectrophotometer and a calibration curve produced using 

monohydrate glucose (Figure 4-7). 
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Figure 4-7 – Calibration curve for SMP carbohydrates. 

4.7 Membrane Bioreactor 

4.7.1 Materials 

4.7.1.1 Pilot Rig Mark One 

A ready built pilot rig was supplied by KeppelSeghers in a sea container.  This 

was supplied in the “plug and play” concept; in theory all that was required was 

to attach electricity and sewage and the MBR would be operational.  

  

The plant consisted of a 12m3 aeration tank, a denitrification tank of 3m3, a 

membrane tank of 1m3 and influent and effluent tanks of 1m3  (Figure 4-8, 

Figure 4-9 and Figure 4-10).  Feed was pumped from the feed tank to the 

denitrification tank, then pumped to the aeration tank, overflowed by gravity to 

the membrane tank and pumped back from the bottom of the membrane tank  

to the aeration tank.     



Chapter 4 – Materials and Methods 

 

55 

 

 

Figure 4-8 – The containerised pilot plant showing the tops of the membrane and aeration 
tanks.   

 

Figure 4-9 – The containerised pilot plant delivered from Belgium.   



Chapter 4 – Materials and Methods 

 

56 

 

 

Influent  Denitrification   Aeration  Membrane  Permeate  

 

Figure 4-10 – flow diagram for the containerised plant. 

 

Two permeate pumps acted on duty and standby and were automatically 

swapped every week.  All levels and pumps were controlled via a central 

controller which had been programmed by the technicians at KeppelSeghers.  

The membranes supplied were flat sheet, nominal pore size 0.1 µm with a total 

area of 25m2.   The membranes were continuously aerated and permeate 

withdrawn for 9 minutes of a 10 minute cycle.  The remaining 1 minute was for 

relaxation of the membranes to aid fouling attenuation.  A steady state 

operation was not reached for the pilot plant although it was attempted to run 

the plant with an initial flux of 14 l.m-2.h-1 giving an HRT of 46 hours.   

 

Due to various technical problems with operation the containerised pilot plant 

was decommissioned in November 2006 and returned to Belgium.   

4.7.1.2 Pilot Rig Mark Two 

The second pilot rig was assembled within the pilot hall facilities on campus.  It 

consisted of a large aeration tank and a smaller membrane tank giving a total 

volume of 1950 litres (Figure 4-11).    

 

Feed was fed by gravity from the ring main in the pilot hall via a ball and float 

valve to ensure that the tank would not overfill.  The biomass was recirculated 

from the aeration tank to the membrane tank with a variable speed positive 

displacement pump (Seepex Ltd, Belgium) at 2 m3.h-1 and then overflowed back 

to the aeration tank.  Permeate was withdrawn from the membrane using 
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stainless steel piping, via a variable speed positive displacement pump (Seepex 

Ltd, Belgium). Permeate flow was measured using a digital flow meter.   

Automatic pneumatic valves, programmed via the controller, reversed the flow 

for 1 minute in every 10 to backwash the membrane.  The permeate tank 

provided a reservoir for the membrane backwashing.  The transmembrane 

pressure was measured using a pressure transducer and recorded on a digital 

display (Wika Electronics, Germany). Air was applied to the bottom of the 

membrane module via a customised aeration fitting, in the membrane tank and 

this was adjustable via a mechanical flow meter.  Air for the aeration tank was 

supplied from the same line to a disc aerator on the bottom of the aeration tank, 

this flow was not controllable.  

 

The MBR was seeded with return activated sludge (~6 g.l-1 MLSS) from the 

local municipal sewage works.  In order to acclimatise the biomass to Cranfield 

sewage the MBR was run at a relatively low flux of 10 l.m2.h-1 for two months, 

after which the flow was steadily increased until an instantaneous flux of 21 

l.m.h-1 was reached.  This gave the shortest HRT of 8.8 hours, that the rig was 

run at. 
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Figure 4-11 – Replacement pilot plant. 

4.7.1.3 Operating parameters 

The operating parameters for the MBR pilot plant were more variable than the 

porous pots. To ensure the acclimatisation of the biomass, the HRT was 

reduced steadily from 21 hours to 8 hours over the first two months of 

operation. For the monitoring and trial period the HRT was maintained at 11 

hours.  The membranes for the small pilot plant were hollow fibre, the 

membrane material was PVDF, with an area of 12.5m2 and the nominal pore 

size was 0.1 µm.   

Table 4-5 – Operating parameters for the pilot MBR. 

Parameter MBR Porous Pots 

Aeration (l.s
-1

) 1.5 – 1.6 0.9 
HRT (hours) 8 – 11 6 
SRT (days) ∞ ~90 

Membrane PVDF N/A 
Instantaneous Flux 17.6 - 21 N/A 

  

Membrane Tank 

Control Panel 

Backwash tank 

Membrane tank overflow 

Aeration Tank 
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4.7.2 Methods 

4.7.2.1 Membrane Cleaning 

Both in situ and off line cleans were performed on the membrane when needed, 

normally if the TMP was greater than 200 - 250 mbar.  An in situ clean 

consisted of pumping 0.5% NaOCl into the membrane over a 2 hour period and 

leaving it to soak for several hours.  The permeate was run to drain and the 

membrane operated for three to four cycles with no backwash until the sodium 

hypochlorite solution had been removed from the system.  An offline clean was 

performed when the in situ clean no longer proved effective.  The membrane 

was removed from the membrane tank, as much biomass as possible removed 

using a hose, and placed in a temporary tank with 0.5 % NaOCl solution.  

Aeration was applied at 1.5 l.s-1 to maximise the cleaning process and the 

membrane left for 24 hours.  Before reinstating the membrane, it was 

thoroughly rinsed in clean water and, once reinstalled, run for three to four 

cycles with no backwash to remove any residual hypochlorite.   

4.7.2.2 Baseline monitoring 

Baseline monitoring was carried out in the MBR for a period of fourteen months 

to establish the steady state range of the parameters analysed.  Analysis was 

carried out three times per week and all samples were analysed within 24 hours 

of collection (Table 4-6).   

Table 4-6 – Baseline monitoring for MBR. 

Parameter Influent  Effluent Biomass 

COD 3 x weekly 3 x weekly  
Ammonia 3 x weekly 3 x weekly  
Turbidity 3 x weekly 3 x weekly  
CST   1 x weekly 
pH   3 x weekly 
Conductivity   3 x weekly 
MLSS/MLVSS   3 x weekly 
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4.7.2.3 Toxin dosing 

4.7.2.3.1 Sampling regime 

The sampling period was kept to 4 HRTs with the final sample being taken at 48 

hours, slightly over 4 HRTs (Table 4-7).  Sampling was still concentrated to the 

initial period after dosing to ensure that any immediate effects were detected 

but a sample was also taken at 0.5 HRTs to give a more even spread.  The 

analysis was split into groups: effluent quality analysis (COD, ammonia and 

turbidity), biomass analysis (pH, conductivity, MLSS, MLVSS, CST and PSD) 

and foulant potential analysis (SMP turbidity, SMP proteins and SMP 

carbohydrates). 

Table 4-7 – Sampling regime for the MBR during dosing trials. 

Parameter t        

 Before 
dosing 

0 mins 
(0 HRT) 

30 mins 
(0.05HRT) 

1 hr 
(0.1 HRT) 

5.5hrs 
(0.5HRT) 

11 hrs 
(1 HRT) 

22 hrs  
(2 HRT) 

48 hrs  
(>4 HRT) 

COD 1,2 1,2 2 2 1,2 1,2 1,2 1,2 
Ammonia 1,2 1,2 2 2 1,2 1,2 1,2 1,2 
Turbidity 1,2 1,2 2 2 1,2 1,2 1,2 1,2 
pH 3 3 3 3  3 3 3 
Conductivity 3 3 3 3  3 3 3 
MLSS/ 
MLVSS 

3 3 3 3  3 3 3 

CST 3 3  3  3  3 
PSD 3 3 3 3 3 3 3 3 
SMP turbidity 3 3 3 3  3 3 3 
SMP proteins 3 3 3 3    3 
SMP carbs 3 3 3 3    3 

1 = influent, 2 = effluent, 3 = biomass. 

4.7.2.4 Analysis 

COD, ammonia, turbidity, pH, conductivity, MLSS/MLVSS, CST and particle 

size distribution were carried out as described in 4.6.2.2 to 4.6.2.9 above. 

 

SMP turbidity, SMP proteins and SMP carbohydrates were determined using 

the methods described in Sections 4.6.2.13 to 4.6.2.15. 
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4.8 Jar testing 

4.8.1 Materials 

The jar testing was carried out using a Phipps and Bird programmable jar tester 

(Camlab, Cambridge, UK) with six stirred cells of 1 litre each (Figure 4-12).    

The biomass used in the jar testing was taken from a 2 m3 MBR pilot plant 

using hollow fibre membranes with an HRT of 11 hours and an SRT of 20 days, 

a different, but similar, MBR to that used for the MBR dosing trials described 

above (Section 4.7.2.3).  Repeat tests, comparing the two MBR biomasses, 

were carried out as described in the methods section, for high molecular weight 

polyDADMAC, MPE50 and Ferripol XL, to ensure that the biomass was not 

significantly different (see Section 4.8.2.1). 

4.8.1.1 Toxins 

The four toxins that had been tested at the MBR pilot stage, bleach, washing 

powder, sodium dodecyl sulphate and zinc sulphate, were carried forward to 

this part of the research to observe in more detail the release of potential 

foulants and to investigate the interaction with the ancillary chemicals tested. 

 

Figure 4-12 – Jar tester used for the ancillary chemical investigation. 
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4.8.1.2 Coagulants 

The ancillary chemicals that were chosen were a polymer 

polydialyldimethylammoniumchloride (polyDADMAC) at varying molecular 

weights (Table 4-8), a metal salt (ferric sulphate), a commercially available 

membrane bioreactor performance enhancer (MPE50), manufactured by Nalco, 

and powdered activated carbon (Table 4-9).   The polyDADMAC, MPE 50 and 

ferric sulphate were in the form of aqueous solution, whereas the activated 

carbon was in powdered form. 

 Table 4-8 – range of molecular weights for polyDADMAC. 

polyDADMAC Molecular weight  
range (Daltons) 

very low MW <100,000  
low MW 100,000 - 200,000 
medium MW 200,000 – 350,000 
high MW 400,000 - 500,000 

 

Table 4-9 – Coagulants used in jar testing. 

Category Ancillary chemical Form Supplier 

Polymer polyDADMAC  
(very low MW)  

aqueous solution Sigma Aldrich 

 polyDADMAC 
(low MW) 

aqueous solution Sigma Aldrich 

 polyDADMAC 
(medium MW) 

aqueous solution Sigma Aldrich 

 polyDADMAC 
(high MW) 

aqueous solution Sigma Aldrich 

 MPE50
1
 aqueous solution Nalco 

Metal salt ferric sulphate  
(Ferripol XL) 

aqueous solution EA West 

Carbon Powdered activated 
carbon (Plusorb 207AP) 

powder Chemviron 

1
MPE50 (Membrane Performance Enhancer 50) is a commercially available product formulated 

specifically to enhance flux in MBRs. 

4.8.2 Methods 

4.8.2.1 Comparison of biomass from MBRs. 

The MBR that was used for the toxin dosing trials was decommissioned during 

the jar tests therefore biomass from a similar MBR that was running for the 

duration of the tests was used.  To ensure that the new biomass was 

comparable to the biomass from the original MBR some concurrent tests were 

carried out (Figure 4-13). 
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Figure 4-13 – Comparison of MBR biomass for MBR 1 (solid shapes) and MBR 2 (outlined 

shapes) for high molecular weight polyDADMAC (■,□) MPE50 (▲,∆) and Ferripol XL (♦,◊) 

4.8.2.2 Toxin only testing 

1 jar was used for the toxin only testing and the samples taken sequentially in 

time.  800 ml of biomass was added to the jar and stirred for 1 minute.  A 50ml 

sample of the biomass was taken at this stage as the baseline.  The toxin was 

added and samples taken at 10, 20, 30, 40, 50 and 60 minutes after dosing, as 

the maximum perturbation of parameters monitored for the porous pots and the 

MBR trials had occurred in the first hour after dosing.  Each sample was 

analysed for CST, SMP turbidity, SMP proteins and SMP carbohydrates as 

described previously. 

4.8.2.3 Toxin and ancillary chemical 

6 jars were used in each run of the jar test; 1 as a control with only the toxin 

present and the other five at varying concentration of ancillary chemical.  Each 

beaker or jar contained 1 litre of biomass.  The biomass was stirred for 1 minute 

after which the toxin was added and the mixture stirred for another minute.  The 

ancillary chemical was added and the resulting mixture stirred for 20 minutes, 

as this was when the maximum SMP turbidity had been observed in the toxin 

only jar tests.   

 

250 ml of the biomass was centrifuged at 10,000g for 20 minutes and the 

resultant supernatant was analysed for SMP turbidity (as described previously) 
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and zeta potential.  The zeta potential was obtained by using a Malvern 

Zetasizer 2000 (Malvern Instruments, Malvern, UK).  Three repeat readings 

were taken and an average used.    
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5 Microtox® and Respirometry. 

5.1 Microtox® 

EC50 values were obtained for a total of 29 toxins tested (Figure 5-1).  The three 

hypochlorite based products are excluded (Morrisons bleach, Domestos bleach 

and sodium hypochlorite) as dechlorination of samples is required as a 

preparation stage in the Microtox® method.   EC50 values are given in ppm for 

ease of comparison; those in liquid form (all purpose cleaners, washing up 

liquid, shampoo, shower gel, hydrogen peroxide and bleach) were used in µl.l-1 

concentrations and those in solid form (washing powder, metals, salts 

surfactants and phenol) in mg.l-1 concentrations. The equivalence in ppm is 

approximate for the washing up liquid, shampoo, shower gel and bleach as they 

are likely to have specific weights of greater than 1. 
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SDS = sodium dodecyl sulphate CTMAB = cetyltrimethyammoniumbromate. 
APC = all purpose cleaner, WUL = washing up liquid, WP = washing powder 

Figure 5-1 – Microtox® EC50 values for all toxins tested.   

More toxic Less toxic 
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The EC50 values ranged from the most toxic, 0.07±0.03 µl.l-1 for 30% H2O2, to 

the least toxic, 98000±16000 mg.l-1 for magnesium sulphate, both from the 

industrial compounds.  Both sodium chloride and magnesium sulphate were 

very much less toxic than the other industrial compounds with EC50 values of 

>10,000 ppm whereas the rest of the group had EC50 values of <15 ppm.  The 

range of EC50 values for the household products was 5±1 µl.l-1 for Pantene Pro 

V shampoo (the most toxic) to 35440±6720 µl.l-1 for the Nest bleach.  Although 

initially surprising that a bleach would be least toxic of the household products, 

on inspection of the ingredients the Nest bleach was 6% hydrogen peroxide in 

water, a very dilute oxidant.  In general, shower gels, washing powders and 

washing up liquids were more toxic than the other household products, while 

the all purpose cleaners and shampoos had two that were more toxic and two 

that were less toxic.   

 

In four out of the five household product categories (all purpose cleaner, 

washing up liquid, shampoo and shower gel) the niche environmental product 

was the least toxic.  This is most evident in the washing up liquid category, the 

environmental product is much less toxic than the other products in the category 

(Nest EC50 = 163±57 µl.l-1 compared with Ecover = 10±1 µl.l-1, Morrisons Ultra = 

6±1 µl.l-1 and Persil = 7±2 µl.l-1).  A comparison of the ingredients of all the 

products (Appendix A) reveals that the three more toxic products are made up 

of many more ingredients than the Nest product and all have surfactants as 

their main ingredients after water, whereas the Nest is based on vegetable soap 

which clearly has a less toxic effect on the bioluminescent bacteria.   In fact, the 

Morrisons Ultra washing up liquid has either surfactants or biocides as its top 

six ingredients.  As a marine bacteria, Vibrio fischeri, is sensitive to changes in 

osmotic pressure, which disrupts cell metabolism (Fernández-Alba et al., 2002), 

indeed one of the preparation steps for Microtox® is to add an osmotic adjusting 

solution (Microtox® manual, 2000) and the surfactants present in the products 

interfere with this mechanism.  The two surfactants tested in isolation were the 

next most toxic industrial compounds after hydrogen peroxide (Figure 5-1).     
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In contrast to this, in the washing powder category, the Nest product (niche 

environmental product) was not significantly less toxic than the Morrisons or 

Persil washing powders but all were more toxic than the Ecover washing 

powder, when analysed using ANOVA analysis with a 95 % confidence interval, 

resulting in an F-ratio of 14.7, and a p value 0.001, indicating that there was a 

significant difference between the EC50 values.  Inspection of the ingredients for 

these four products does not, however, provide a clear picture of why there is 

such a difference between them.  All four products have sodium carbonate as 

an ingredient but in varying proportions (Nest second ingredient, Ecover first or 

main ingredient, Persil as the sixth ingredient and Morrisons Cyclon it appears 

seventh).  Sodium carbonate is strongly alkaline and Microtox® is sensitive to 

changes in pH operating at an optimum of pH 6 (Fulladosa et al., 2005). The 

Nest product has only two ingredients of sodium carbonate (soda crystals) and 

vegetable flakes (assumed to be vegetable soap), which could account for the 

increased toxicity.  Sodium carbonate also appears as the top product for the 

Ecover washing powder but the alkalinity is clearly counteracted by other 

ingredients to give a lower toxicity.  The other two washing powders, Persil and 

Morrisons Cyclon, have many similarities in terms of their ingredients, however, 

only sodium carbonate in common with the Nest washing powder.  Morrisons 

Cyclon and Persil additionally contain bleaching agents, perfumes, complexing 

agents and surfactants but there is no prominent group that can explain the 

toxicity.  Synergistic or antagonistic toxicities have been demonstrated in simple 

mixtures of toxicants (Fernández-Alba et al., 2002, Farré et al., 2008) and it is 

likely that the complex set of ingredients will have a mixed effect on the bacteria 

with no dominant effect being evident.   

 

Ranking of the household products by toxicity revealed no clear overall pattern 

in relation to the consumer groupings.  Two out of the five categories (shampoo 

and shower gel) had toxicity rankings of leading brand>own brand>widely 

available environmental product>niche environmental product.  The other three 

categories had rankings of: All purpose cleaner - widely available environmental 

product>own brand>leading brand>niche environmental, washing up liquid – 

own brand>leading brand>widely available environmental>niche environmental 
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and washing powder – niche environmental>leading brand>own brand>widely 

available brand.  On the whole, the washing up liquids and washing powders 

were of a similar toxicity (EC50 <10 µl.l-1 and <10 mg.l-1 respectively) and were 

more toxic than the shower gels and shampoos (EC50 <100 µl.l-1 for both 

categories).  The all purpose cleaners had two products that were much less 

toxic than the other categories (EC50 >500 µl.l-1) and two that were as toxic as 

the shampoos and shower gels (EC50 <100 µl.l-1).   

 

In the industrial toxin category a general pattern was much more evident with 

the hydrogen peroxide being most toxic (0.07±0.03 µl.l-1), followed by the two 

surfactants (sodium dodecyl sulphate (0.75±0.04 mg.l-1) and 

cetyltrimethylammoniumbromate (1.0±0.2 mg.l-1)).  The increase in hypochlorite 

concentration from 6% in the Nest bleach to a solution of 30% has had a 

profound effect on the EC50, reducing it from over 35000 ppm to >1 ppm.  

Copper and zinc sulphate were toxic in the <10 mg.l-1 range and phenol at <20 

mg.l-1, whereas sodium chloride and magnesium sulphate were toxic only at 

very high concentrations.  This gives a ranking of oxidant>surfactant>heavy 

metals>organics>salts for the compounds tested.   

 

The method used for the Microtox® gave an EC50 value at 5 and 15 minutes.   

Using ANOVA analysis with a 95% confidence interval to analyse the difference 

between the mean EC50 values for 5 minutes and 15 minutes it was found ten of 

the tested substances had a significant difference (Table 5-1).  Nine toxins had 

EC50 5 minute values greater than the 15 minute value (i.e. the 15 minute value 

was more toxic) with a range of between 1:0.8 for Ecover all purpose cleaner to 

1:0.2 for zinc sulphate and copper sulphate.  The remainder had ratios of 1:0.6 

(Naked and Pantene shampoo), 1:0.5 (Ecover and Morrisons Ultra washing up 

liquid) and 1:0.4 (Nest washing powder and sodium dodecyl sulphate).  Only 

Henna Plus shampoo showed an EC50 15 minute value greater (i.e. less toxic) 

than the 5 minute value (1100 µl.l-1 compared with 750 µl.l-1 respectively or a 

ratio of 1:1.5).  Values in bold in the table denote the value used as the EC50 for 

that toxin.   
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The largest effect was seen with the heavy metals with an increase of 80 % 

over the 15 minute period (Copper sulphate EC50 5 minute was 19.7 mg.l-1 and 

EC50 15 minute was 3.4 mg.l-1, zinc sulphate EC50 5 minute was 38.1 mg.l-1 

and EC50 15 minute was 9.5 mg.l-1).       

Table 5-1 – EC50 values at 5 and 15 minutes, for household products tested using Microtox™ (+ 
standard error of the mean, n=3). 

Category Brand/ 
Compound 

EC50 5 mins 
(ppm) 

EC50 15 mins 
(ppm) 

EC505m:EC5015m 

All purpose  Ecover 80 (+3) 60 (+3) 1:0.8 
cleaner Nest 780 (+250) 840 (+250) 1:1 
 Morrisons 80 (+6) 110 (+12) 1:1 
 Mr Muscle 430 (+90) 440 (+126) 1:1 

Washing up  Ecover 21(+3) 10(+1) 1:0.5 
liquid Nest 163(+57) 168(+56) 1:1 
 Morrisons Ultra 11(+1) 6(+1) 1:0.5 
 Persil 13(+2) 7(+2) 1:1 
Shampoo Naked  160(+20) 100(+6) 1:0.6 
 Henna Plus 750(+40) 1100 (+110) 1:1.5 
 Morrisons  98(+19) 50(+10) 1:1 
 Pantene  9(+1) 5(+1) 1:0.6 
Shower Gel Ecover 58(+17) 43(+8) 1:1 
 Lavera 85(+6) 93(+2) 1:1 
 Morrisons 21(+2) 13(+2) 1:1 
 Original Source 15(+3) 10(+2) 1:1 
Bleach Nest 42250 (+1280) 35440 (+6720) 1:1 
 Morrisons  

bettabuy 
- - - 

 Domestos - - - 
Washing  Ecover 41 (+8) 54 (+18) 1:1 
powder Nest 14 (+1) 6 (+1) 1:0.4 
 Morrisons  14 (+2) 8 (+2) 1:1 
 Persil  8 (+1) 7 (+1) 1:1 
Heavy metal  CuSO4 19.7(+0.2) 3.4(+0.1) 1:0.2 
 (as Cu

2+
) 12.4(±0.1) 2.2(±0.07)  

 ZnSO4  38.1(+0.9) 9.5(+0.3) 1:0.2 
 (as Zn

2+
) 15.5(±0.3) 3.8(±0.1)  

Salt NaCl 29000(+6000) 29000(+6000) 1:1 
 MgSO4  125000(+4000) 98000(+16000) 1:1 
Surfactant  SDS

1
  1.72(+0.15) 0.75(+0.04) 1:0.4 

 CTMAB
2
  1.7(+0.4) 1.0(+0.2) 1:1 

Organic Phenol  17.4(+0.8) 17.5(+0.3) 1:1 
Oxidant 30% H2O2  0.100(+0.040) 0.07(+0.03) 1:1 
 NaOCl - - - 

1
 SDS = sodium dodecyl sulphate 

2
CTMAB = cetyltrimethylammoniumbromate 

 

Dutka et al., (1983) observed a similar effect with the heavy metals tested, zinc 

(in the form Zn2+) and copper (in the form Cu2+) with EC50 values at 5 minutes of 

13.8 and 19.5 ppm, respectively, compared with EC50 values of 3.8 and 3.45 

ppm at 15 minutes, a greater than 70 % increase in toxicity.  In contrast, the 
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EC50 at 5 minutes for sodium lauryl sulphate was 3.19 ppm and the 15 minute 

value 1.8 ppm, a 44 % increase and the phenol gave an increase in EC50 from 

28 ppm at 5 minutes to 34.3 ppm at 15 minutes.  These findings were echoed in 

research by Petala et al. (2005) where the five organics tested showed little 

change over a 15 minute timeframe (e.g. pentachlorophenol 5 min EC50 = 1.81 

mg.l-1 and 30 min EC50 = 1.20 mg.l-1) whereas the five heavy metals showed an 

increase in toxicity (e.g. nickel 5 min EC50 = 74.5 mg.l-1 and 30 minute EC50 = 

7.6 mg.l-1). 

 

Those toxins tested with an equal 5 and 15 minute EC50 value, exhibit 

behaviours of oxidant or lytic biocides, that produce a rapid kill response either 

by oxidation or destabilisation of the cell membrane leading to rapid cell lysis 

e.g. hydrogen peroxide, Original Source shower gel containing tea tree oil.  

Those toxins with a greater 5 minute than 15 minute EC50 value (i.e. more toxic 

after 15 minutes) exhibit behaviours of electrophiles or protonophores which 

interrupt enzymes and metabolism resulting in a slower impact on the cells e.g. 

copper sulphate and zinc sulphate (Chapman, 2003).   

 

No data could be found in the literature on complete household products, 

however, the values of industrial toxins found in this project were within the 

range of those found in the literature (Table 5-2).   For example, Dutka et al., 

(1983) found the EC50 for Zn2+ to be 3.45 ppm compared to 3.8±0.1 ppm for this 

study.   The study carried out by Farré et al., in 2006 illustrated the variation in 

values obtained by different laboratories analysing the same toxins using the 

same methods.  E.g. a range of 8.28 – 16.8 ppm was reported for phenol. 

Table 5-2 – Comparison of values found in literature with those obtained in this study for tested 
toxins. 

Category Brand/ 
Compound 

EC50 from this 
study (ppm) 

EC50  
(ppm) 

Reference 

Heavy  CuSO4 3.4(±0.1) 3.8 (as Cu
2+

) Dutka et al., 1983 
metal (as Cu

2+
) 2.2(±0.1) <0.3 (as Cu

2+
)* Dalzell et al., 2002. 

   0.35 (as Cu
2+

) Fulladosa et al., 2005. 
 ZnSO4  9.5(±0.3) 3.45 (as Zn

2+
) Dutka et al., 1983. 

 (as Zn
2+

) 3.8(±0.1) 18.8 – 31.9 Farré et al., 2006. 
   0.76 (as Zn

2+
)* Gutiérrez et al., 2002. 

   <1 (as Zn
2+

)* Dalzell et al., 2002. 
   0.86 (as Zn

2+
) Fulladosa et al., 2005. 
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Category Brand/ 
Compound 

EC50 from this 
study (ppm) 

EC50  
(ppm) 

Reference 

Surfactant  SDS
1
  0.75 1.8 Dutka et al., 1983. 

 LAS
2
 - 14.29* Gutiérrez et al., 2002. 

   <20* Dalzell et al., 2002. 
 CTMAB

3
 1.0(±0.2) 0.86 (CTMAC

4
) Dutka et al., 1983. 

Organic Phenol  17.4(±0.8) 25.9 Petala et al., 2005. 
   28 Dutka et al., 1983. 
   8.28 – 16.8  Farré et al., 2006. 
   18 Ren et al., 2003. 

* EC50 determined at 30 minutes. 
1
SDS = sodium dodecyl sulphate or sodium lauryl sulphate. 

2
LAS = linear alkyl benzene sulphonate. 

3
CTMAB = cetyltrimethylammoniumbromide. 

4
CTMAC = cetyltrimethylammoniumchloride. 

 

Examination of the full dose response curves gives a further insight into the 

effects of the individual products and compounds over and above the EC50 

values (Appendix B).  Three different types of response were observed; a 

natural logarithmic shape (Figure 5-2) shown by the majority of the toxins tested 

(20 from 29 tested), a linear response (Figure 5-3) (6 from 29 tested) and a 

negative effect or stimulatory response at low concentrations with a linear 

inhibitory effect being apparent at higher concentrations (Figure 5-4) (3 from 29 

tested).  
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Figure 5-2 - Pantene Pro V shampoo showing a natural logarithmic dose response ( ■ = 15 
minute data). 
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Figure 5-3 - Mr Muscle all purpose cleaner showing a linear response (■ = 15 minute data). 
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Figure 5-4 – Henna Plus shampoo showing a stimulatory followed by a linear response ( ■ = 15 
minute data). 

 

The gradient of the linear portion of each curve was calculated and if the 

response plateaued the %effect and concentration that this occurred at were 

also noted to assess the sensitivity of the system to each product.  A steeper 

gradient gives a more sensitive system while the concentration at the plateau 

indicates the maximum concentration above which no increased effect will be 

observed on the system (Table 5-3). 
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Table 5-3 – Microtox® dose response types, gradients and plateau values. 

Category Brand/ 
Compound 

Response  
Type 

Max gradient 
(%effect.ppm

-1
) 

Plateau  
height 
(% 
effect) 

Concentration 
at plateau 
(ppm) 

Plateau 
gradient 
(%effect.ppm

-1
) 

EC50 
(ppm) 

All purpose  Ecover ln 0.31 77 200 0.01 60(±3) 
cleaner Nest sl 0.04 - - - 780(±250) 
 Morrisons ln 0.35 72 200 0.02 80(±6) 
 Mr Muscle l 0.05 - - - 430(±91) 
Washing up  Ecover ln 1.2 77 64 0.002 10(±1) 
liquid Nest sl 0.04 - - - 163(±57) 
 Morrisons Ultra ln 3.5 95 25 0.01 6(±1) 
 Persil ln 0.9 90 102 -0.03 7(±2) 
Shampoo Naked  ln 0.2 80 409 0.002 100(±6) 
 Henna Plus sl 0.04 - - - 750(±40) 
 Morrisons  ln 0.7 72 102 0.01 50(±10) 
 Pantene  ln 0.9 93 102 0.003 5(±1) 
Shower Gel Ecover ln 0.4 87 205 0.003 43(±8) 
 Lavera ln 0.3 80 256 0.003 85(±6) 
 Morrisons ln 0.4 82 205 0 13(±2) 
 Original Source ln 0.8 85 102 0.003 10(±2) 
Bleach Nest ln 0.0008 89 102400 0 35440(±6720) 
Washing  Ecover l 0.5 - - - 41(±8) 
powder Nest l 0.3 - - - 6(±1) 
 Morrisons  ln 1.9 77 41 0.1 8(±2) 
 Persil  ln 3.4 69 20.5 0.1 7(±1) 
Heavy metal  CuSO4 ln 7.7 99 13 0.002 3.4(±0.1) 
 ZnSO4  l 1.1 - - - 9.5(±0.3) 
Salt MgSO4  l 0.3 - - - 98000(±16000) 
 NaCl ln 1.5 77 51.2 0.01 29000(±6000) 
Surfactant  SDS

1
  ln 33 85 2.61 0.05 0.75(±0.04) 

 CTMAB
2
  ln 54 70 1.29 0.02 1.0(±0.2) 

Organic Phenol  l 1.5 - - - 17.4(±0.8) 
Oxidant 30% H2O2  ln 0.4 90 205 0.004 0.07(±0.03) 
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A comparison of these responses shows that the two surfactants had the most 

pronounced affect with gradients of 33 %effect.mg.l-1 and 54 %effect.mg.l-1 for 

SDS and CTMAB respectively, further reinforcing the case for the V. fischeri 

bacteria being sensitive to surfactants.  This is most likely to be caused by the 

disruption of the osmotic pressure for the V. fischeri, that is adjusted at the 

beginning of the method (Microtox operating manual, 2000).  The CTMAB 

plateaued quickly after the EC50 of 1 mg.l-1 was reached at 1.29 mg.l-1, at a 70 

%effect.   

 

Within the household product category there was a broad range of responses.  

Morrisons Ultra washing up liquid and Persil washing powder had the steepest 

gradients of 3.5 %effect.µl.l-1 and 3.4 %effect.mg.l-1 respectively.  In the case of 

the washing up liquid this translates to a 3500 % increase in effect for every 1 

ml.l-1 increase in concentration. Most products  were in the 0.2 – 1.0 

%effect.ppm-1 range (Ecover and Morrisons all purpose cleaner, Persil washing 

up liquid, Naked, Morrisons and Pantene shampoo, Ecover, Lavera, Morrisons 

and Original Source shower gel and Ecover and Nest washing powder).  At the 

other end of the range the Nest bleach would result in a 0.8 % increase in effect 

for every 1 ml.l-1 increase in concentration; a considerable difference (Table 

5-3). 

 

Interestingly, comparison of the response type, maximum gradient, plateau 

height and concentration at plateau did not necessarily provide a good indicator 

of the EC50 value.  For example, in the case of the shower gels the maximum 

gradients were broadly similar (Ecover 0.4 %effect.µl.l-1, Lavera 0.3 %effect.µl.l-

1, Morrisons 0.4 %effect.µl.l-1 and Original Source 0.8 %effect.µl.l-1), each 

started to plateau at a similar %effect (Ecover 87 %effect, Lavera 80 %effect, 

Morrisons 82 % effect and Original Source 85 %effect) with a similar 

concentration, apart from the Original Source (Ecover 205 µl.l-1, Lavera 256 µl.l-

1, Morrisons 205 µl.l-1 and Original Source 102 µl.l-1) and each had a true 

plateau with a gradient very close to zero.  However, each had different EC50 

values (Ecover 43±8 µl.l-1, Lavera 85±6 µl.l-1, Morrisons 13±2 µl.l-1 and Original 

Source 10±2 µl.l-1). 
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5.2 Respirometry 

The respirometry analysis provided EC50 values with respect to oxygen uptake 

rate for 32 toxins tested.  25 produced EC50 values while the others were not 

toxic at the maximum concentrations tested.  The EC50 values gained ranged 

from 0.04 ml.l-1 for 30 % sodium hypochlorite (NaOCl) to 110 ml.l-1 for Ecover 

shower gel.  The household products ranged from 0.48 ml.l-1 for Domestos 

bleach to 110 ml.l-1 for Ecover shower gel and the industrial toxins ranged from 

0.04 ml.l-1 for NaOCl to 55000 mg.l-1 for magnesium sulphate (Figure 5-5).  This 

is a wide range of concentrations of EC50 values illustrating the differing effects 

of different toxins.  Those products or compounds that did not reach an EC50 

value at the maximum concentration tested (Ecover and Mr Muscle all purpose 

cleaner, Henna Plus and Morrisons shampoo, NaCl and sodium dodecyl 

sulphate) have been omitted from the graph but included in Table 5-4. 

.   
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Figure 5-5 – Respirometry EC50 values for toxins tested. 
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Within the household product category the hypochlorite based bleaches were 

the most toxic (0.48 and 0.8 ml.l-1 for Domestos and Morrisons respectively), 

showing that the microbial community is sensitive to strong oxidants which are a 

broad spectrum biocide (Cloete, 2003).  The washing powders were the next 

most toxic with EC50 values of 1600, 1750, 1200 and 1400 mg.l-1 for Ecover, 

Nest, Morrisons and Persil washing powders, with no one powder being clearly 

more toxic than the others.  It is likely that there are a combination of factors 

that are affecting the community including pH change (sodium carbonate) and 

surfactant action (Nest only has sodium carbonate and vegetable soap as 

ingredients but was not much less toxic).  The increase in toxicity for the other 

washing powders was due to the more complex ingredients and the bleaching 

agents present (for example sodium carbonate peroxide in the Morrisons 

Cyclon and Persil powders).   

 

The all purpose cleaners and washing up liquids had broadly similar toxicities of 

around 10 ml.l-1 however there were some exceptions, for example, Morrisons 

washing up liquid 4 ml.l-1 (which includes the specific anti-microbial ingredients 

(alkyldimethyl amine oxide and 5-Chloro-2-methyl-2H-isothiazol-3-one/2-methyl-

2H-isothiazol-3-one)), Morrisons all purpose cleaner 11 ml.l-1 (mostly alcohols), 

Nest washing up liquid 14 ml.l-1 (containing essential oils as a biocide).  Ecover 

all purpose cleaner showed no toxicity at the maximum concentration tested of 

167 ml.l-1 (containing mostly ethanol).  The shampoos and shower gels showed 

similar toxicities and were less toxic than the other categories (Naked and 

Pantene shampoo 36 ml.l-1 and Ecover shower gel 110 ml.l-1).   The shampoos 

contained a complex mixture of ingredients from which it was unable to discern 

which could be contributing to the toxicity (Appendix A).   

 

Within the industrial compounds tested the strong oxidants hydrogen peroxide 

and sodium hypochlorite were the most toxic with EC50 values in the sub 1ml.l-1 

range.  CTMAB was significantly more toxic than SDS with an EC50 of 72mg.l-1 

compared with >200mg.l-1.  The metals were the next most toxic with copper 

sulphate being twice as toxic as zinc sulphate with EC50 values of 42 and 86 
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mg.l-1 respectively.  Neither of the salts tested, sodium chloride or magnesium 

chloride showed significant toxicity with EC50 values of >10 g.l-1 and 55 g.l-1. 

 

Comparison within the categories of household products did not produce any 

conclusive evidence that the environmental products are less toxic to the 

activated sludge community.  For example in the all purpose cleaner category 

the cleaners were ranked Morrisons>Nest>Mr Muscle>Ecover however in the 

shampoo category they were ranked Naked=Pantene>Morrisons>Henna Plus.  

In the washing powder category there was no distinct difference between the 

categories with a range of 1200 to 1750 mg.l-1. 

Table 5-4 – EC50 values obtained using respirometry. 

Product/ 
Compound 

Brand EC50 
(ppm)  

All purpose  Ecover >167000 (40% stimulation)
 

cleaner Nest  30000 
 Morrisons 11000 
 Mr Muscle >100000 (20% inhibition)

 

Washing up  Ecover  29000 
liquid Nest  14000 
 Morrisons Ultra 4000 
 Persil 22000 
Shampoo Naked  36000 
 Henna Plus >167000 (40% inhibition)

 

 Morrisons bettabuy >100000 (12% inhibition)
 

 Pantene  36000 
Shower Gel Ecover  110000 
 Lavera 77000 
 Morrisons  >167000 (14% inhibition)

 

 Original Source 38000 
Bleach Nest  3000 
 Morrisons bettabuy 800 
 Domestos 480 
Washing  Ecover  1600 
powder Nest 1750 
 Morrisons cyclon 1200 
 Persil tablets 1400 
Heavy metal CuSO4  42 
 ZnSO4  86 
Salt NaCl  >10000 (20% inhibition)

 

 MgSO4  55000 
Surfactant SDS

1
  >200 (24% inhibition) 

 CTMAB
2
 72 

Organic Phenol  525 
Oxidant 30% H2O2  650 
 NaOCl  40 

Note: 167ml.l
-1

 was maximum concentration able to be tested with method. 
1
SDS = sodium dodecyl sulphate. 

2
CTMAB = cetyl trimethyl ammonium bromate. 
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The respirometry method produced oxygen uptake curves for each of the toxins 

tested.  Two interesting examples of these are given in Figure 5-6 and Figure 

5-7.   
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Figure 5-6 – Oxygen Uptake rates for Nest Antibacterial all purpose cleaner showing inhibition 
increasing with increasing concentration.  
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Figure 5-7 – Oxygen uptake for hydrogen peroxide showing initial inhibition followed by return to 
close to control uptake rates. 
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There are two distinct differences:  the first shows an inhibition of the biomass 

for the duration of the experiment, proportional to the concentration of the toxin, 

whereas the second shows a complete inhibition of the biomass for a specific 

length of time (directly proportional to the concentration of the toxin in the 

sample) followed by an oxygen uptake at the same rate as the control.    

 

The Nest antibacterial all purpose cleaner contained essential oils in its 

ingredients and these inhibit the biomass at higher concentrations however at 

lower concentrations it is stimulatory to the microbial community.  At 10 ml.l-1 

the effect is stimulatory, whereas for 20 ml.l-1 some inhibition is evident and by 

50 ml.l-1 it is close to 100% inhibition.  A subsequent increase in concentration 

of the toxin brings about little change in oxygen uptake.  This is caused by the 

essential oils in the cleaner which result in disturbance of the cell membrane 

and contents causing leakage of key components and, in some instances, 

death (Burt, 2004). 

 

In contrast, Figure 5-7 illustrates the response for an oxidant, hydrogen 

peroxide.  Here inhibition is total for a specific number of hours, directly 

proportional to the concentration of toxin.  E.g., at a concentration of 250µl.l-1 

the inhibition is for four hours before the oxygen uptake resumes at a slightly 

lower rate than the control (24 mgO2.l
-1.h-1 compared with 33.5 mgO2.l

-1.h-1). 

Table 5-5 – oxygen produced by hydrogen peroxide. 

Concentration 
of H2O2 (µl.l

-1
) 

H2O2  
present (µl) 

Theoretical oxygen 
available from 
H2O2 (mg O2) 

Length of 
inhibition 
(hours) 

Oxygen 
needed  
(mg O2)

1
 

50 300 2.88 0.5 1.67 
100 600 5.76 1 3.35 
250 1500 14.4 4 13.4 
500 3000 28.8 8 26.8 
1000 6000 57.6 16 53.6 

1
 with 100ml of biomass and an oxygen uptake rate of 33.5 mgO2.l

-1
.h

-1
 (Control OUR). 

 

Hydrogen peroxide will oxidise any organic material in the solution producing 

oxygen, hence the lack of oxygen consumption in the first portion of the curve.  

This acts akin to the chlorine demand in clean water with the majority of the 

cells themselves remaining unharmed.  If the theoretical oxygen produced from 
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the hydrogen peroxide is calculated it relates well to the required oxygen of the 

biomass for the length of the inhibition observed (Table 5-5).  Oxygen uptake is 

registered again once the oxygen produced by the oxidising action of the 

hydrogen peroxide is consumed (Chapman, 2003). 

 

The dose response curves for respirometry provide a more in-depth analysis of 

the toxin action (Appendix C).  Four responses were observed for the 

respirometry; a linear response (Nest washing up liquid, Pantene shampoo, 

Persil washing powder, copper sulphate, zinc sulphate, magnesium sulphate, 

sodium chloride, CTMAB, phenol and hydrogen peroxide) (Figure 5-8 (a)), a 

natural logarithmic response (Nest and Morrisons all purpose cleaner, Ecover, 

Morrisons and Persil washing up liquid, Original Source shower gel, Morrisons 

and Domestos bleach, Ecover washing powder and sodium hypochlorite) 

(Figure 5-8 (b)), a stimulatory followed by a linear inhibitory response at higher 

concentrations (Ecover and Mr Muscle all purpose cleaner, Henna Plus and 

Morrisons shampoo, Ecover, Lavera and Morrisons shower gel and sodium 

dodecyl sulphate) (Figure 5-8 (c)) and an s shaped curve with little inhibition at 

lower concentrations, increasing rapidly over a small concentration increase 

with a plateau effect at higher concentrations (Naked shampoo, Nest bleach 

and Nest and Morrisons washing powder) (Figure 5-8 (d)). 

 

From the gradients, plateau values and EC50 values the differences and 

similarities of the toxins are further revealed.  In general, the household 

products had shallow gradients with the Morrisons bleach and three of the 

washing powders (Ecover, Nest and Morrisons) having the steepest gradients.  

The microbial community is most sensitive to the hypochlorite based bleaches 

and the washing powders, whereas the shampoos and shower gels have a 

much lesser effect. 
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Figure 5-8 – Respirometry dose response curve for (a) CTMAB (linear response) (b) Persil WUL (natural logarithmic) (c) Henna Plus shampoo 
(stimulatory linear) (d) Naked shampoo (stimulatory s-shaped curve). 
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Shampoos and shower gels are likely to have up to 50% surfactant content 

compared to 25% in washing powders indicating the microbial community is 

more sensitive to other ingredients than the surfactants (Madsen et al., 2001).  

Pantene and Naked shampoos have the same EC50 values but the maximum 

gradients are very different: Naked produced a maximum of 3 %effect.ml.l-1 

whereas Pantene had a maximum of 0.8 %effect.ml.l-1.  The response curves 

themselves are remarkably similar at higher concentrations, with both 

shampoos causing an abrupt step change in toxicity to 70 % effect at 50 ml.l-1, 

however, Naked shampoo produced an initial stimulatory response of -20 % 

effect at concentrations of 5 – 20 ml.l-1 whereas Pantene produced 10 – 20 % 

effect at the same concentrations. Both shampoos have mainly surfactants as 

ingredients which clearly have a threshold value at which they become more 

toxic, however, the advertised 97% natural ingredients in the Naked shampoo 

has a much less toxic effect at the lower concentrations. 

 

Within the industrial toxins category the hypochlorite had the biggest effect with 

the steepest gradient of all the toxins of 0.93 %effect.µl.l-1 followed by copper 

sulphate and the cationic surfactant CTMAB, with a maximum gradient of 0.4 

%effect.mg.l-1.  The sodium dodecyl sulphate also had an impact with a 

maximum gradient of 0.2 %effect.mg.l-1 although this was not found to be toxic 

at 200 mg.l-1.  These results reinforce the observations that the system is most 

sensitive to hypochlorite, the same as the Microtox system, but although SDS 

(an anionic surfactant) produced one of the steeper gradients it had a much 

lesser toxic effect, in contrast to the cationic surfactant, CTMAB.  Anionic 

surfactants are used much more in household products than cationic 

surfactants (European estimated consumption in 1998 of 780,000 tons of 

anionic surfactant compared to 98,000 cationic surfactant (Madsen et al., 2001)) 

and tend to be more biodegradeable (Eriksson et al., 2002). 
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Table 5-6 - Dose response types, gradients and plateau values for respirometry. 

Category Brand/ 
Compound 

Response  
Type 

Max gradient 
(%effect.ppm

-1
) 

Plateau height 
(% effect) 

Concentration at 
plateau (ppm) 

Plateau gradient 
(%effect.ppm

-1
) 

EC50 
(ppm) 

 

All purpose  Ecover sl 0.0007 - - - >167000  
cleaner Nest ln 0.003 86 50000 0.00003 30000  
 Morrisons ln 0.004 70 42000 0.0002 11000  
 Mr Muscle sl 0.0005 - - - >100000  
Washing up  Ecover ln 0.002 78 50000 -0.00002 29000  
liquid Nest l 0.002 - - - 14000  
 Morrisons Ultra ln 0.009 84 10000 0.0004 4000  
 Persil ln 0.002 82 83000 0 22000  
Shampoo Naked  s 0.003 - - - 36000  
 Henna Plus sl 0.0004 - - - >167000  
 Morrisons  sl 0.0003 - - - >167000  
 Pantene  l 0.0008 - - - 36000  
Shower Gel Ecover sl 0.0009 - - - 110000  
 Lavera sl 0.0008 - - - 77000  
 Morrisons sl 0.00005 - - - >167000  
 Original Srce ln 0.001 86 100000 0.00001 38000  
Bleach Nest s 0.024 98 5000 0.0004 3000  
 Morrisons ln 0.06 94 2000 0.0004 800  
 Domestos ln 0.025 92 2000 0.0002 480  
Washing  Ecover ln 0.06 86 3330 0.002 1600  
powder Nest s 0.06 82 2500 0.0016 1750  
 Morrisons  s 0.06 98 3330 0.0004 1200  
 Persil  l 0.03 - - - 1400  
Heavy metal  CuSO4 l 0.4 - - - 42  
 ZnSO4  l 0.3 - - - 86  
Salt MgSO4  l 0.0007 - - - 55000  
 NaCl l 0.001 - - - >10000  
Surfactant  SDS

1
  sl 0.2 - - - >200  

 CTMAB
2
  l 0.4 - - - 72  

Organic Phenol  l 0.07 - - - 525  
Oxidant 30% H2O2  l 0.07 - - - 650  
 NaOCl ln 0.93 86 100 0.007 40  
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No comparison data was found in the literature for household products.  All 

comparative values from literature are similar to those found in this study (Table 

5-7). 

Table 5-7 – Comparison of EC50 values from this study with those found in literature. 

Category Brand/ 
Compound 

EC50 from this 
study (ppm) 

EC50  
(ppm) 

Reference 

Heavy metal  CuSO4 42 32.07 (as Cu
2+

) Gutiérriez et al., 2002. 
 (as Cu

2+
) 16.7 ~30  (as Cu

2+
) Dalzell et al., 2002. 

   17 (as Cu
2+

) Dutka et al., 1983. 
 ZnSO4  86 55.79 (as Zn

2+
) Gutiérriez et al., 2002. 

 (as Zn
2+

) 34 ~80 (as Zn
2+

) Dalzell et al., 2002. 
   5.2 (as Zn

2+
) Dutka et al., 1983. 

Surfactant  SDS
1
  >200 135 Dutka et al., 1983. 

 LAS
2
 - non toxic Gutiérriez et al., 2002. 

   non toxic Dalzell et al., 2002. 
Organic Phenol  525 520 Volskay et al., 1990. 

 

1
 SDS = sodium dodecyl sulphate. 

2
LAS = linear alkylbenzene sulphate. 

 

5.3 Comparison of Microtox® and Respirometry. 

On the whole the Microtox® system was more sensitive to the toxins tested and 

produced lower EC50 values than the respirometry in this study and others found 

in literature (Figure 5-9).  There were, however, two exceptions in this study: Nest 

bleach and magnesium sulphate which produced EC50 values for the 

respirometry that were lower than for the Microtox® (35 ml.l-1 for Microtox® and 3 

ml.l-1 for respirometry and 98 g.l-1 for Microtox® and 55 g.l-1 for respirometry, 

respectively).  Toxins represented by 0.01 ppm values for Microtox® were too 

toxic for the V.fischeri and those represented by 1,000,000 ppm values for 

respirometry were not found to be toxic at the concentrations tested.   

 

The differing results observed between the two methods are due to the 

differences between the pure marine microbial culture used in the Microtox test 

and the mixed community present in the biomass from a biological wastewater 

treatment works.  The V. Fischeri do not exist in a habitat that is similar to the 

biomass and thus will react in different ways to the different toxins present (Ricco 

et al., 2004).  The transition from salt water to fresh water for salt tolerant species 

is more detrimental than for freshwater to saltwater shocks (Kincannon and 

Gaudy, 1968).  There are a number of factors that influence the microbial 
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community’s response to acute toxicity including floc size, which protects the 

biomass (Henriques et al., 2005), and the diversity of the community being tested 

(Curtis et al., 2003).   

 

Several studies have compared Microtox® and respirometry for a range of single 

organic or inorganic toxins and all have found that the Microtox® method 

produces a more sensitive result compared to respirometry (Figure 5-9) (Ricco et 

al., 2004, Dutka et al., 1983, Dalzell et al., 2002, and Gutiérrez et al., 2002).  All 

draw the conclusion that as the Microtox method uses only a single pure culture 

of bacteria it will not react in the same way as the mixed community present in 

the activated sludge used for respirometry tests.  The respirometry results will 

therefore present the most meaningful results for toxicity assessment.   
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Figure 5-9 – Comparison of EC50 values by Microtox® and respirometry [■ values from this study, □ Dalzell et al., 2002, ∆ Dutka et al., 1983, ◊ 
Gutiérrez et al., 2002 (solid line represents Microtox® EC50 = respirometry EC50)]. 
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Three of the categories tested produced the same ranking of toxicities 

irrespective of method used for analysis: bleach, oxidants and the heavy metals.  

These have the same action on any type of bacteria and the presence of a 

community of micro-organisms does not affect the toxicity mechanisms of these 

compounds.  The remainder of the categories (all purpose cleaner, washing up 

liquid, shampoo, shower gel, washing powder, salts and surfactants) showed 

differences between the ranking of the toxins depending on which method was 

used.   

 

The respirometry biomass was more sensitive to the environmental household 

products containing essential oils than the Vibrio fischeri bacteria used in 

Microtox®.  For example, in the all purpose cleaner category (Nest cleaner 

contains essential oils) the ranking was Ecover>Morrisons>Mr Muscle>Nest for 

Microtox® and Morrisons>Nest>Mr Muscle>Ecover for respirometry.  In the 

washing up liquid category (Nest washing up liquid containing essential oils) a 

similar effect was seen; Microtox® gave a Morrisons>Persil>Ecover>Nest 

ranking compared with Morrisons>Nest>Mr Muscle>Ecover for respirometry.   

Both methods were sensitive to the Morrisons washing up liquid which contained 

anti microbials (Appendix B).   

 

There was little discrimination between the washing powders for respirometry 

(Ecover 1600 mg.l-1, Nest 1750 mg.l-1, Morrisons 1200 mg.l-1, Persil 1400 mg.l-1) 

although for Microtox® the Ecover powder was less toxic (Ecover 41 mg.l-1, Nest 

6 mg.l-1, Morrisons 8 mg.l-1, Persil 7 mg.l-1).   The washing up liquids, all purpose 

cleaners, shampoos and shower gels had a broadly similar effect.  Interestingly, 

the Microtox® was equally sensitive to both the surfactants tested (sodium 

dodecyl sulphate 0.75 mg.l-1, CTMAB 1 mg.l-1) whereas the respirometry was 

only sensitive to the cationic surfactant (SDS >200 mg.l-1, CTMAB 72 mg.l-1). 
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Table 5-8 – ranking of toxins using both Microtox® and respirometry. 

Category Method EC50 
Most toxic 

  EC50 
Least toxic 

All purpose 
 cleaner 

Micro  Ecover 
(60±3) 

Morrisons 
(80±6) 

Mr Muscle 
(430±90) 

Nest 
(780±250) 

 Resp 
 

Morrisons 
(11000) 

Nest 
(30000) 

Mr Muscle 
(>167000) 

Ecover 
(>167000) 

Washing 
up liquid 

Micro Morrisons 
(6±1) 

Persil 
(7±2) 

Ecover 
(10±1) 

Nest 
(163±60) 

 Resp 
 

Morrisons 
(4000) 

Nest 
(14000) 

Persil 
(22000) 

Ecover  
(29000) 

Shampoo Micro  Pantene 
(5±1) 

Morrisons 
(50±10) 

Naked 
(100±6) 

Henna Plus 
(750±40) 

 Resp 
 

Pantene 
(36000) 

Naked 
(36000) 

Henna Plus  
(>167000) 

Morrisons 
(>167000) 

Shower 
Gel  

Micro  Original Source 
(10±2) 

Morrisons 
(13±2) 

Ecover 
(43±8) 

Lavera 
(85±6) 

 Resp 
 

Original Source 
(38000) 

Lavera 
(77000) 

Ecover 
(110000) 

Morrisons 
(>1670000) 

Bleach Micro  Domestos 
(nv) 

Morrisons 
(nv) 

Nest 
(35440±6720) 

 

 Resp 
 

Domestos 
(480) 

Morrisons 
(800) 

Nest 
(2500) 

 

Washing 
powder 

Micro  Nest 
(6±1) 

Persil 
(7±1) 

Morrisons 
(8±2) 

Ecover 
(41±8) 

 Resp 
 

Morrisons 
(1200) 

Persil 
(1400) 

Ecover 
(1600) 

Nest 
(1750) 

Heavy 
metals 

Micro  CuSO4 
(3.4±0.1) 

ZnSO4 
(9.5±0.3) 

  

 Resp 
 

CuSO4 
(42) 

ZnSO4 
(86) 

  

Salt Micro NaCl 
(29000±6000) 

MgSO4 
(98000±16000) 

  

 Resp MgSO4 
(55000) 

NaCl 
(>10000) 

  

Surfactants Micro  SDS 
(0.75±0.04) 

CTMAB 
(1.0±0.2) 

  

 Resp 
 

CTMAB 
(72) 

SDS 
(>200) 

  

Organic Micro  Phenol 
(17.4±0.8) 

   

 Resp 
 

Phenol 
(525) 

   

Oxidants Micro  NaOCl 
(nv) 

30% H2O2 
(0.07±0.03) 

  

 Resp 
 

NaOCl 
(40) 

30% H2O2 
(650) 

  

nv = no valid results obtained. 
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5.4 Risk assessment of toxins 

In order to be able to assess the risk that the household products pose it is 

necessary to link the EC50 values to the system that will treat the urban water.  

Most systems include some kind of buffering tank to equalise flows to the system 

and it is assumed that the water is stored for 24 hours for this purpose; the 

optimal time for grey water storage before treatment (Dixon et al., 1999).  Using 

the EC50 values from Microtox® and respirometry the volume of any given 

product needed to be used per person per 24 hours, based on a water use of 150 

l.p.day-1, was calculated (Table 5-9). 

Table 5-9 – Volumes needed to be discharged to reach EC50 levels per 24 hours.   

Category Brand/ 
compound 

Product 
number 

Water usage of 
150 l.p

-1
.day

-1
. 

   Volume to reach 
Microtox®  
EC50 

 

Volume to reach 
respirometry 
EC50  

All purpose  Ecover 1 9 - 
cleaner Nest  2 117 4500 
(ml.p

-1
) Morrisons 3 12 1650 

 Mr Muscle 4 64.5 - 
Washing up  Ecover  5 1.5 4350 
liquid Nest  6 24 2100 
(ml.p

-1
) Morrisons Ultra 7 0.9 600 

 Persil 8 1.05 3300 
Shampoo Naked  9 15 5400 
(ml.p

-1
) Henna Plus 10 112.5 - 

 Morrisons  11 7.5 - 
 Pantene Pro V 12 0.75 5400 
Shower Gel Ecover  13 6 165000 
(ml.p

-1
) Lavera 14 13.5 11550 

 Morrisons  15 1.5 - 
 Original Source 16 1.5 5700 
Bleach Nest  17 5316 375 
(ml.p

-1
) Morrisons  18 - 120 

 Domestos 19 - 72 
Washing  Ecover  20 6 240 
powder Nest 21 0.9 262.5 
(g.p

-1
) Morrisons  22 1.2 180 

 Persil tablets 23 1.05 210 

 

Using the respirometry values as a guide, the bleaches and washing powder 

pose the greatest threats, as these could reach the EC50 values in everyday use 

(doses of 200 – 300 ml are recommended for cleaning with bleach and washing 

powder uses around 90 -100 g per wash).  Of the remaining categories (all 

purpose cleaner, washing up liquid, shampoo and shower gel) only the Morrisons 

washing up liquid is at levels (600ml.p-1) that might be discharged during normal 
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household activities over one day.  The rest of the products would only have an 

effect if more than 2 litres were discharged on one day.    In the worst case 

scenario a whole bottle of product could be dispensed, however, even in this 

case products tend to come in 1 litre packages making it very unlikely that more 

than 1 litre of a product would be discharged per day.  In the case of Ecover 

shower gel 165 litres would need to be discharged in any 24 hours which is 

extremely unlikely. 

 

A risk matrix can be drawn up to show the likelihood of discharging a specified 

volume of household product and the potential impact this could have on a 

treatment works, taking into account whether the respirometry EC50 values 

determined would be exceeded or not.  Five categories are normally given for the 

frequency, or likelihood, and the impact, or severity, of the event (Pollard, 2008).  

These are numbered 1 to 5, with 1 being the lowest impact and the least likely to 

5 being the highest impact and the most likely (Table 5-10).   

Table 5-10 – Definition of the impact and likelihood categories for the risk matrix. 

Category Impact Likelihood 

1 no impact on treatment process yearly 
2 limited impact monthly 
3 moderate impact weekly 
4 severe impact daily  
5 catastrophic process failure hourly 

 

This has been translated into a risk matrix and the areas that pose an 

unacceptable risk to the treatment system have been coloured red, those with a 

moderate risk have been coloured amber and those with an acceptable risk 

coloured green.  These have been populated for a 0.5 litre and 1 litre discharge 

of each liquid.  Each product has been numbered (Table 5-9) and placed within 

the matrix, apart from the washing powder.  

 

As the amount of toxin discharged changes the risk to the treatment system also 

changes.  The bleaches present the biggest risk and this does not change from 

0.5 to 1 litre discharge.  In fact if 0.25 litres of bleach were discharged per person 

in a 24 hour period this could have an impact on the treatment system as 

Domestos and Morrisons bleach have critical levels of under 0.15 litres per 
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person per day.  In the case of the other household products only the washing up 

liquids present an increasing risk to the system, as the amount discharged is 

increased. 

 

 1 2 3 4 5 

 1  1,2,3,4 9,10, 
11,12 

5,13, 
14,15, 
16 

 

2    8  

3    6  

4    7 17,18, 
19 

5      

(a) 

 

 

 

 1 2 3 4 5 

 1 1,2,4 5 9,10, 
11,12 

13,14, 
15,16 

 

2 3 8    

3  6    

4  7    

5     17,18, 
19 

(b) 

 

Figure 5-10 – Risk matrix for discharge of toxic products (a) 0.5 litre and (b) 1 litre per day using 
respirometry EC50 values. 
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6 Porous Pots Trials 

6.1 Toxins used  

The previous work of the Microtox® and respirometry provided a ranking of the 

toxins tested.  In the household product category, on the whole the leading 

brand household products were the most toxic and contained the most complex 

mix of ingredients and these would be used for subsequent experiments.   In 

the industrial product category it was decided to use compounds that were most 

likely to be discharged in urban wastewater or that were of particular interest to 

the industrial sponsor KeppelSeghers.  The toxins chosen were a mix of 

products to ensure that as broad a spectrum as possible was covered to 

investigate the effects on a bench scale biological treatment system.  From the 

23 household products and 9 industrial toxins it was decided to carry forward 4 

household products and 3 industrial products.   

 

From the household products it was sensible to choose the shampoo, shower 

gel, washing powder and the hypochlorite based bleach as these are the most 

likely to be discharged from households (Almeida et al., 1999).  Although the all 

purpose cleaner was the next most toxic after bleach it is highly unlikely to be 

discharged to sewer in any great quantities and even if it was it would have less 

of an effect than the bleach.  It was anticipated that bleach would have the most 

profound effect on the system and cause the most damage, proving the 

systems robustness (Bodík et al., 2008).  Washing powder is used in large 

quantities in the home and has been identified as containing many ingredients 

that could be harmful to wastewater treatment works (Pettersson et al., 2000). 

Shampoo and shower gel are the next most regularly used in the home along 

with washing up liquid.  Examination of ingredients lists (Appendix A) showed 

that the shampoo and shower gel were similar to washing up liquid but had 

more complex mixtures of ingredients which could interact with the biomass in 

the treatment system (Eriksson et al., 2002).        
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From the industrial toxins the most likely to be discharged to sewer were zinc 

sulphate (Palmquist and Hanaeus, 2005), sodium dodecyl sulphate (Eriksson et 

al., 2002) and phenol (requested by the industrial sponsor as of interest).   

6.2 Baseline Monitoring 

The hydraulic retention time (HRT) of the porous pots was set at 6 hours and 

the solids retention time (SRT) of approximately 90 days (wastage due to 

sampling only), to maintain a biomass concentration as close to that in an MBR 

as possible.  The dissolved oxygen (DO) was monitored for the first 5 months of 

operation to ascertain the lowest rate needed to ensure that the DO remained 

>2 mg.l-1.  This was found to be at an aeration rate of 54 l.h-1, which was kept 

constant for the remainder of the experiments.  The porous pots were run for 18 

months before any trials took place to ensure full acclimatisation to the Cranfield 

sewage and to provide a comprehensive baseline data set at steady state.   

 

A complete set of baseline monitoring data is given in Table 6-1 to Table 6-3.  

The average COD removal rate was >80 % and the average ammonia removal 

rate was >90 %.  Mixed liquor volatile suspended solids (MLVSS) peaked at 

>10 g.l-1 but was on average between 4 and 5 g.l-1.  This performance is in 

accordance with pilot MBRs that have been operated in previous studies.  

Brindle et al., (1996) reviewed a number of pilot MBR systems all of which 

provided a >80% COD removal rate and operated at between 2.5 – 6 g.l-1 

MLSS.   Rosenberger and Kraume (2002) ran an MBR for 535d and reported a 

95% reduction in COD and an ammonia removal rate of 82% with an MLSS that 

reached a maximum of 20 g.l-1. Gander et al., (2000) also reviewed a number of 

MBRs that achieved a >85% COD removal and >90% ammonia removal. 

 

The feed characteristics of a mean of 344 mg.l-1 COD and 24.5 mg.l-1 ammonia  

place the Cranfield sewage in the diluted category of domestic wastewater 

according to Henze and Ledin (2001) who defined diluted domestic wastewater 

as having 320 mg.l-1 COD and 18 mg.l-1 ammonia. 

 



Chapter 6  - Porous Pot Trials 

 

94 

 

Table 6-1 – COD, Ammonia and Turbidity values for background monitoring of the porous pots. 

Parameter COD
a
(mg.l

-1
) Ammonia

b
(mg.l

-1
)  Turbidity

c
(NTU) 

 Mean Range Standard  
deviation 

n Mean  Range Standard  
deviation 

n Mean Range Standard  
deviation 

n 

Pot 1 60.57 14 - 260 38.9 86 1.7 0.07 – 22.4 3.7 52 5.17 0.56 – 69.4 11.4 44 
Pot 2  57.91 6 - 318 41.0 87 1.5 0.1 – 27.2 4.0 52 5.73 0.7 – 80.4 13.1 44 
Pot 3 60.71 14 – 176 33.1 86 2.3 0.08 – 35.8 6.1 52 5.68 0.58 - 97.4 14.9 43 
Pot 4 62.76 14 – 174 30.0 87 1.7 0.14 – 24.9 3.9 52 5.10 0.7 - 79.4 12.0 44 
Pot 5 59.93 8 – 266 37.6 87 1.5 0.2 – 24.3 3.6 52 5.65 0.49 - 111 16.7 44 
Pot 6 59.72 11 – 242 37.4 87 1.5 0.15 – 22.8 3.5 52 5.77 0.66 - 43.1 9.7 44 

Feed 344.1 132 - 1172 189.2 85 24.5 12.7 – 36.8 5.7 49 129.0 22.1 - 409 67.2 44 
a Effluent COD except for feed.

 b
 Effluent ammonia except for feed

 c
 Effluent turbidity except for feed 

Table 6-2 – MLSS, MLVSS and particle size values for background monitoring of the porous pots. 

Parameter MLSS(g.l
-1

) MLVSS(g.l
-1

) Particle Size (d50) 

 Mean Range Standard 
deviation 

n Mean  Range Standard 
deviation 

n Mean  Range Standard 
deviation 

n 

Pot 1 4.91 0.76 – 11.48 2.4 85 4.20 0.07 – 10.17 2.0 81 169 99.1 – 230.4 49.6 11 
Pot 2  5.72 0.69 – 15.23 3.4 85 4.91 0.05 – 13.3 2.9 80 171 89.9 – 220.0 41.7 11 
Pot 3 5.64 0.57 – 13.61 2.8 85 4.90 0.49 – 11.74 2.4 79 169 99.1 – 230.4 49.6 11 
Pot 4 5.27 0.37 – 10.73 2.5 85 4.58 0.01 – 9.41 2.2 80 188.4 96 – 268.2 59.7 11 
Pot 5 5.78 0.94 – 15.82 3.2 85 4.95 0.02 – 13.63 2.8 80 179.8 117.6 – 243.7 49.3 11 
Pot 6 5.93 0.63 – 13.01 2.8 84 5.06 0.05 – 10.85 2.4 80 153.21 117.87 – 177.33 20.48 11 

Table 6-3 – Conductivity and pH values for background monitoring of the porous pots. 

Parameter Conductivity(µS.cm
-1

) pH 

 Mean Range Standard 
deviation 

n Mean Range Standard 
deviation 

n 

Pot 1 733.6 584 – 1060 117.4 43 6.3 4.61 – 7.54 0.7 48 
Pot 2  715.5 581 – 997 107.1 43 6.3 4.62 – 7.11 0.6 48 
Pot 3 740 592 – 1156 132.6 43 6.2 4.57 – 7.08 0.7 48 
Pot 4 730.7 563 – 1035 113.0 43 6.3 4.75 – 7.09 0.6 48 
Pot 5 722.5 575 – 1015 111.7 43 6.3 5.01 – 7.23 0.6 48 
Pot 6 751.2 589 - 1113 156.4 43 6.3 5.14 – 7.42 0.5 48 
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The variation of the control pots was fairly large over the 18 months that they 

were monitored at steady state.  This is a reflection of the variation in the 

sewage feed that was used for the pots and shows the variation of the 

parameters as a result of this.  The outlying values can be accounted for by 

system failures (i.e. air or sewage failure) so on the whole the pots were 

consistent and any changes that were seen in the dosing trials can be attributed 

to the addition of toxins rather than the “steady state” variation of the pots 

themselves.  As neither air nor sewage failures occurred during the dosing trials 

these can be ruled out as having caused the changes seen in the parameters 

monitored.   

 

A plot of the cumulative frequency curves for the effluent parameters illustrates 

the robustness of the system and the spread of the data.  For the effluent COD 

over 80% of the values are ≤100 mg.l-1 the limit for the Aquarec guidelines.  

One of the pots managed to attain this for 100% of measurements taken (Figure 

6-1). 
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Figure 6-1 – Cumulative frequency curves for the six porous pots for effluent COD (dashed line 
represents Aquarec reuse guidelines). 
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Both the ammonia and turbidity curves show the effect of a few outliers where 

>90% of the data is less than 10 mg.l-1 for effluent ammonia and 90% of the 

effluent turbidity samples are <8 NTU but there are a couple of points that 

disrupt this hence the large standard deviations for these parameters (Figure 

6-2 and Figure 6-3). 
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Figure 6-2 – Cumulative frequency curves for all six pots for effluent ammonia (dashed line 
represents Aquarec guidelines for Class 1 Private, urban and irrigation use). 
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Figure 6-3 – Cumulative frequency curves for all six pots for effluent turbidity. 

It was important to ascertain that the pots were behaving similarly so that when 

dosing with toxins any variation observed could be attributed to the toxin itself 

rather than the specific pot it had been dosed into.  ANOVA analysis of the data 

(95 % confidence interval) proves that each of the pots is functioning similarly 
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and that each has reached a steady state that is the same as the others.  In this 

instance the p-value is >0.05, the α value, making the F-ratio small, for all 

parameters, and acceptance of the hypothesis that all the means are equal, 

regardless of the pot sampled from (Table 6-4). 

Table 6-4 - ANOVA results for all parameters. 

Parameter F ratio p value 

COD 0.16 0.976 
Ammonia 0.29 0.92 
Turbidity 0.64 0.669 
MLSS 1.51 0.185 
MLVSS 1.37 0.234 
pH 0.15 0.979 
Conductivity 0.45 0.816 

 

6.3 Results for acute toxicity experiments 

6.3.1 Shampoo 

The shampoo was dosed at the EC50 value from respirometry of 36 ml.l-1.  It 

immediately became apparent that the limiting factor for the biological process 

was severe foaming rather than toxicity.  At this dose the foaming was not 

containable and even though the pots are small with a capacity of only 3.8 litres 

the foaming was substantial (Figure 6-4 to Figure 6-6). 

 

The severe foaming made it impossible to obtain uncontaminated samples, due 

to the set up of the pots, as effluent samples were taken from a point at the front 

of the pot where the effluent overflowed to drain.  Biomass was carried by the 

foam and forced out of the pots severely limiting the population.  The foaming 

had greatly subsided after 12 hours but a lot of biomass had been lost in this 

time.  The initial MLVSS was an average of 4.9 g.l-1 for the two test pots, after 

12 hours this had dropped to an average of 1.66 g.l-1 due to the overflow action 

of the foaming.   
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Figure 6-4 – Control and test pots for shampoo dosing. 

 

 

Figure 6-5 – Loss of biomass during foaming with shampoo. 

Control Pots 
Test Pots 

Biomass carried 

by foam 
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Figure 6-6 – Effects of foaming 12 hours after dosing. 

 

As a result of this all other foaming toxins were subjected to a foaming trial 

which consisted of adding a solution of each toxin to a beaker of biomass 

aerated at the same rate as the pots until foaming occurred.  The concentration 

that produced foam was noted and each toxin was dosed below this level.  This 

was done for shower gel, washing powder and sodium dodecyl sulphate (SDS) 

considerably reducing the dose compared to the EC50 obtained by respirometry.  

Before dosing into the pots it was already apparent that the limiting factor with 

these toxins was not the acute toxicity but the foaming potential. 

6.3.2 Doses of toxins used 

Table 6-5 lists the doses used for the porous pot acute toxicity experiments.  

After the preliminary dosing with shampoo (results given separately in Section 

6.3.1) and the effects of the foaming that were observed, all foaming products 

were reduced to a dose below their foaming point.  The other three toxins were 

all dosed at or close to the EC50 levels obtained by respirometry. 

Control Pots Test Pots 
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Table 6-5 – volume of toxins dosed for acute toxicity experiment using the porous pots. 

Toxin EC50 by  
respirometry 

Actual amount 
dosed 

Shampoo 36ml.l
-1 

36ml.l
-1 

Shower gel 38.5ml.l
-1 

1ml.l
-1 

Washing powder 1.2g.l
-1 

0.5g.l
-1 

Bleach
1
 0.48ml.l

-1 
0.4ml.l

-1 

SDS NT 28mg.l
-1 

Zinc sulphate 85mg.l
-1 

85mg.l
-1

 
Phenol 525mg.l

-1 
525mg.l

-1
 

1
Hypochlorite based household bleach 

 

6.3.3 Effluent Analysis 

6.3.3.1 Hydraulic characteristics of the pots 

It was assumed that the porous pot were ideal completely mixed reactors due to 

the vigorous aeration.  For an ideal completely mixed reactor a non reactive 

tracer, that completely and instantaneously disperses, injected as a spike dose, 

would affect the effluent of the system in a negative exponential curve (Figure 

6-7).  τ is the HRT of the system, in this case 6 hours and the concentration of 

the tracer is given as 1 for the initial concentration, C0 (Tchobanoglous et al., 

2003).    
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Figure 6-7 – Effluent tracer concentration for an ideal completely mixed reactor 
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For example, the phenol dosing had an initial COD concentration of 1247 mg.l-1, 

if there was no interaction with the biomass and no contribution of COD from 

any other source then due to dilution at 1 HRT the effluent COD concentration 

would be 499 mg.l-1.  For any of the parameters tested if the effluent profile is 

different from that shown above it can be assumed that there has been some 

interaction with the contents of the bioreactor.   

6.3.3.2 Effluent Chemical Oxygen Demand 

The effluent chemical oxygen demand (COD) measurements were normalised 

to the control pots to ensure that the response seen was only for the shock 

loading of COD from the toxins dosed.  As all the pots were fed from the same 

feed reservoir it was assumed that the normalised response seen was due only 

to the shock loading of the toxin and any other effects were also seen in the 

control pots which would be accounted for in the normalisation.  The shock 

dose of COD varied for each of the toxins (Table 6-6). 

Table 6-6 – COD shock dose from each toxin 

Toxin COD (mg)  

Bleach  167 
Shower gel 1835 
Washing powder 566 
Phenol 4739 
Sodium Dodecyl Sulphate 452 
Zinc sulphate 170 

 

Two distinct responses to the spot doses were observed for effluent COD.    

Bleach, SDS and zinc sulphate had no discernable effect on the effluent COD 

with no change greater than 20 mg.l-1 compared to the control pots (Figure 6-8 

and Figure 6-9).  However, washing powder, shower gel and phenol showed a 

rapid increase to a peak at 1 HRT (6 hours) followed by a gradual decline over 

the 4 HRTs (24 hours) monitored, without returning to control pot levels.   
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Figure 6-8 –Effluent COD vs time for all six toxins tested normalised to their respective controls 

 

In the case of the phenol, a shock load of 4739 mg of COD (Table 6-6) was 

applied at time t = 0 (Figure 6-8).  The total normalised effluent COD over the 

24 hours monitored was 7530 mg COD meaning that 2791 mg COD was 

released as a result of the action of the phenol on the biomass.  The origin of 

the COD could be a mixture of soluble and insoluble COD.  This is clearly 

different from the effluent concentration expected from an ideal reactor with a 

non reactive tracer (Section 6.3.3.1) and it can be assumed that the phenol 

interacts with the biomass.  The phenol dose has had an extreme effect on the 

COD removal of the system and would result in system failure. 

2 HRT 4 HRT 1 HRT 
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Figure 6-9 – Effluent COD excluding phenol normalised to their respective controls 

 

The washing powder dose resulted in a shock load of 566 mg COD with a 

resulting 759 mg COD in the effluent, a positive difference of 193 mg COD.  The 

effluent turbidity showed an increase indicating degreasing and separating dirt 

through surfactants is the most likely action here, with an increase in colloidal 

particles in the effluent.  The evidence does not suggest any toxic action as the 

other parameters monitored do not show that the biomass was harmed in any 

way.   

 

Similarly the shower gel produced a shock load of 1832 mg COD, however, the 

effluent COD over the 24 hours monitored was 880 mg with a removal rate of 

52%.  Although there is evidence that the biomass has been disturbed there is 

clearly a part of the community that is still functioning and removing substrate.  

This indicates true inhibition or kill of a part of the biomass, which is unexpected 

as the dose for shower gel was 2.5% of the EC50 value (1 ml.l-1 dosed 

compared with an EC50 by respirometry of 38.8 ml.l-1). 

1 HRT 2 HRT 4 HRT 
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6.3.3.3 Effluent Ammonia 

None of the products contributed to the ammonia loading.  Neither the sodium 

dodecyl sulphate nor the zinc sulphate had any adverse effects on the effluent 

ammonia with normalised readings for SDS being a maximum of 0.52 mg.l-1 

difference and zinc sulphate being a maximum of 1.33 mg.l-1 different from the 

control.   

 

Most notable amongst the effluent ammonia results are those of the shower gel 

and phenol.  Both were constant for the first hour of sampling with levels of 

1.3mg.l-1 above the control for shower gel and a gradual increase for phenol to 

just 0.34mg.l-1 above the control.  At the six hour mark, however, both had 

increased to over 6 mg.l-1 above their respective controls.  This gap widened at 

the 12 hour sample to phenol being at 11.24 mg.l-1 above and shower gel to 

being 8.6 mg.l-1.  The effluent ammonia for the phenol dosing peaked at this 

point whereas the shower gel increased again at 24 hours to 11.05 mg.l-1 above 

the control.  This gave an absolute effluent ammonia of 13.96 mg.l-1.  Influent 

ammonia levels were around 30 mg.l-1 for the shower gel giving a minimum 

removal rate of 53 %.  Influent levels were 16.4 mg.l-1 for phenol, resulting in the 

lowest removal rate being just 31%.  

 

It is well known that nitrifiers are more sensitive than other parts of the microbial 

community (Pagga et al., 2006) and these two dosing experiments demonstrate 

inhibition of ammonia removal and both show that it takes longer than 4 HRTs 

for the system to return to pre dosing levels.   The lag in reaction time for the 

shower gel indicates that parent compounds present were degrading into more 

toxic byproducts (Petersson et al., 2000). 
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Figure 6-10 – effluent ammonia for all six toxins normalised to their respective controls 

   

In contrast the washing powder dose reduced the effluent ammonia level 

compared to the control.  Again this effect is most prominent 6 hours after the 

spot dosing, peaks at 12 hours and is still evident after 24 hours.  In addition to 

this, the influent ammonia at the beginning of the trial was above the average 

recorded during baseline monitoring at 41.5mg.l-1.  The washing powder has 

increased the pH of the system from 6.1 to 7 immediately after dosing (Section 

6.3.4.4) which is the optimum operating pH for nitrifying bacteria 

(Tchobanoglous et al., 2003) and can be seen in the increase in ammonia 

removal in the test pots to 94 % compared to the control pots removal rate of 80 

%.     

 

The bleach dosing is the only trial where the toxin transits the system within the 

24 hours and returns to close to steady state.  However, as there is not a 

marked contrast between control and test pots for the bleach trial, this is most 

likely to be due to environmental factors rather than true inhibition of the 



Chapter 6  - Porous Pot Trials 

 

106 

 

nitrifying bacteria.  The test pots went from an effluent level of around 4mg.l-1 

until an hour after dosing to 8mg.l-1 after 6 hours so a doubling of effluent 

ammonia when the pH was between 5.7 and 6.2.  The control pots were also 

showing a higher than usual effluent ammonia of around 7mg.l-1 during most of 

the trial with a low pH of 6.5 but had decreased to 0.73mg.l-1 by the end of the 

24 hour period when the pH was at 7, the optimum for the nitrifying bacteria as 

mentioned above.   

6.3.3.4 Effluent Turbidity 

The effluent turbidity was affected differently by all six of the toxins (Figure 6-11) 

and there was no apparent pattern to the effects, in contrast to the effluent 

ammonia.  The sodium dodecyl sulphate seems to have had no significant 

effect on the effluent turbidity at all and the zinc sulphate dose, although the 

effluent turbidity for the test pots was high to begin with compared to the 

controls, steadily decreases over the 24 hour period until it is, to all intents and 

purposes, the same as the control.  These effects are most likely to be the 

influence of external environmental factors rather than the toxin dosing.  

 

The bleach also had little effect on this parameter for the first 12 hours of 

sampling but then surprisingly there is an increase after 24 hours.  It is, 

however, difficult to determine whether this can be attributed to the bleach dose 

or some other environmental factor in the pots. 
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Figure 6-11 – Graph of effluent turbidity for all six toxins tested normalised to their respective 
controls 

 

The washing powder and shower gel showed an immediate increase in the 

effluent turbidity after dosing; from 2.82 NTU immediately after dosing to 4.53 at 

0.5 hours for washing powder and from -1 NTU at 0.5 hours to 7 NTU after 1 

hour for the shower gel.   Both these products are predominantly surfactants 

(Appendix A) and are designed to separate dirt and hold it in aqueous solution 

to be rinsed either from the washing machine or in the process of showering 

(Madsen et al., 2001).  The increase in effluent turbidity was due to colloidal 

particles being held in solution and being washed from the system also reflected 

in the increase in effluent COD.  In the case of shower gel this is exacerbated 

by the action of the essential oils. 

 

The effluent turbidity as a result of the phenol dosing was still increasing after 

24 hours.  This appears to be true toxicity of the biomass present but whether 

this is due to the action of the phenol or a lack of oxygen present in the system 

due to the organic overload produced by the phenol dose is impossible to 

deduce (Kim et al., 2006).   
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6.3.4 Biomass Analysis 

6.3.4.1 Capillary Suction Time. 

Three different responses were observed for the capillary suction time (CST).  

Sodium dodecyl sulphate, shower gel and bleach had little impact on the CST 

readings, phenol and zinc sulphate resulted in an initial increase in the time to 

filter which returned to pre dose levels after 24 hours and washing powder 

improved the response compared to the control. 
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Figure 6-12 – Capillary suction time for six toxins, normalised to their respective controls 

 

The peak CST time measured for the phenol dosing was immediately after 

dosing which indicates that the source of this is not from colloidal material as it 

is not registered as effluent turbidity or effluent COD at this time.  Both effluent 

turbidity and COD have a peak at 12 and 6 hours respectively.  It is more likely 

that the microbial products excreted by the bacterial community have affected 

the dewaterability as there is also a peak in SMP turbidity and carbohydrates 

immediately after dosing (Section 6.3.5.1 and 6.3.5.2). 
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The surfactants present in the washing powder are likely to interact with the 

capillary action on the filter paper used for the test, resulting in lower readings.  

Interestingly, the shower gel did not produce any difference in readings even 

though the MLVSS of the pots decreased markedly in the first hour (Section 

6.3.4.1) and CST is normally linked to MLVSS concentration; the higher the 

MLVSS concentration the longer the CST (Houghton et al., 2001). 

 

6.3.4.2 Mixed Liquor Suspended Solids (MLSS) and Mixed Liquor Volatile 

Suspended Solids (MLVSS). 
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Figure 6-13 – Ratio of MLVSS to MLSS six toxins 

 

The ratio of MLVSS to MLSS stayed broadly the same for washing powder, 

bleach, phenol and zinc sulphate.  The shower gel had an increasing ratio as 

the MLVSS decreased, as expected.   
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The sodium dodecyl sulphate, however, had an increasing ratio from 0.89 to 

0.92, which indicates that the readily degradeable surfactant was helping to 

break down other recalcitrant compounds present in the reactor.  As there was 

no wastage from the pots any recalcitrant compounds would eventually be 

broken down but it would seem that the surfactant either in providing more 

substrate or changing the nature of these compounds has helped to reduce 

them over the period monitored.    
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Figure 6-14 – MLVSS for six toxins tested normalised to their respective controls 

 

Zinc sulphate, SDS and bleach had no effect on the MLVSS and all remained at 

a constant difference from the control pots (Figure 6-14).  The most notable 

toxin to affect the MLVSS was the shower gel (Figure 6-14).  There is an 

immediate reduction on the MLVSS in comparison to the control pots and this 

continues for the first 6 hours where it stabilises but does not increase again.  

The initial loss is to 4 g.l-1 less than the control pots (Figure 6-15).  This is an 

82% loss of biomass over an hour and represents a catastrophic event which 

would impact on the performance of the system as the biomass has been 
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washed from the system and recovery is impossible (coincident with a large 

increase in effluent COD and effluent turbidity).  This is for a dose that is only 

2.5% of the EC50 obtained in the respirometry scoping work.   The most likely 

cause of this toxicity is the essential oils present in the particular shower gel 

used, mint oil (mentha arvensis) and tea tree oil (melaleuca alternifolia), both of 

which have been shown to be fungicidal and bactericidal (Mayaud et al., 2008, 

Kumar et al., 2007). 
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Figure 6-15 – MLVSS, control and test pots, for shower gel 24 hours. 
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6.3.4.3 Particle Size Distribution 
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Figure 6-16 – d50 values for all six toxins 

Only shower gel and washing powder showed any difference for the particle 

size distribution with the washing powder showing a slight decrease in floc size 

after 30 minutes followed by a return to pre dosing levels.  On the other hand 

the shower gel caused an increase in the particle size without a return to pre 

dosing values after the full 24 hours that was monitored (Figure 6-17).  It is 

likely that the shower gel has affected those bacteria that were not in large flocs 

and these have been washed from the system whereas those in larger flocs 

have been protected and remain viable (Henriques et al., 2005). 
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Figure 6-17 – Detailed particle size distribution for shower gel. 
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Figure 6-18 – pH of biomass for six toxins. 
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These results were not normalised against the control pots.  Again washing 

powder, shower gel and phenol had the most noticeable effects on the pH but 

neither raised the pH above levels that would have a detrimental effect on the 

biomass (Figure 6-18).  

6.3.4.5 Conductivity 

-100

-50

0

50

100

150

200

250

300

350

400

450

-5 0 5 10 15 20 25

C
o

n
d

u
c
ti
v
it
y
 (
µ
S

.c
m

-1
)

Time (Hours)

Shower Gel Washing Powder bleach SDS phenol zinc sulphate

 

Figure 6-19 – Conductivity of biomass for six toxins normalised to their respective controls. 

 

The sodium dodecyl sulphate had no discernable effect on the conductivity 

compared to the control pots.  The washing powder dose had an immediate and 

pronounced effect on the conductivity raising the level to over 350 µS.cm-1 

above the control readings within the first hour after dosing.  This rapidly 

diminished again to be around the same as the control by the 12 hour sampling 

run.  On the other hand the phenol dose raised the conductivity to over 100 

µS.cm-1 above the control immediately after dosing and did not reduce this level 

by the end of the 24 hour trial.  In fact the conductivity increased slightly over 

this period to a final reading of 172 µS.cm-1 above the control pots.   
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The shower gel dose produced a steady increase in the conductivity over the 24 

hour period to a maximum of 77 µS.cm-1 over the control from an initial 

difference of 14 µS.cm-1 before dosing.  The bleach affected the conductivity, in 

contrast, only over the first 6 hours of the trial giving an increase to 54 µS.cm-1 

immediately after dosing from being 57 µS.cm-1 below the control before dosing.  

This increase diminished slightly at the 0.5 and 1 hour samples to 44 µS.cm-1 

before returning to being close to the control pots afterwards.  The zinc sulphate 

produced a very similar response to the bleach with a maximum being 

experienced immediately after dosing of 80 µS.cm-1 and returning to being close 

to the control after 12 hours.   

6.3.5 Potential Foulant Analysis  

6.3.5.1 Soluble Microbial Product (SMP) Turbidity 
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Figure 6-20 – SMP turbidity for six toxins normalised to their respective controls. 

 

The effect on SMP turbidity by the toxins was almost exclusively seen in the first 

hour after dosing (shower gel, washing powder, SDS and phenol), in contrast to 

the effluent turbidity where the peaks were observed at 6 hours or greater.  The 
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exceptions were bleach which peaked at 12 hours and zinc sulphate which 

increased up to the end of the 24 hours observation time.   Interestingly, the 

bleach dose produced a significant decrease in SMP turbidity over the first hour 

after dosing, with readings of 5 NTU less than the respective control pots but 

had increased to a maximum of 7.68 NTU above the control after 12 hours. 

 

The zinc sulphate, however produced an inconclusive effect for the first 12 

hours of sampling with readings between 1 to 2 NTU above or below the control 

to then a marked increase at 24 hours to 8.3 NTU above the control.  The SDS 

had a peak at 12 hours with an SMP turbidity of 16.8 NTU above the control.   

6.3.5.2 Soluble Microbial Product Proteins and Carbohydrates 
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Figure 6-21 – SMP proteins for five toxins normalised to their respective controls. 
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Figure 6-22 – SMP proteins for five toxins normalised to control and to MLVSS. 

 

Following the pattern of the SMP turbidity the SMP proteins for all the five 

toxins, had a peak immediately after dosing.  The phenol dosed samples could 

not be tested as the phenol interfered with the protein method that is based on 

phenol addition.  Both washing powder and shower gel had the most 

pronounced effects with shower gel producing an immediate increase of over 70 

mg.l-1 above the control.  This had dropped to less than 10 mg.l-1 difference by 

the end of the first hour after dosing, however, the amount normalised to the 

MLVSS increased dramatically as the MLVSS decreased rapidly at this stage of 

the trial from 5.4 mg.l-1 to 1.39 mg.l-1 so that each gram of MLVSS was 

producing 20 mg of protein compared to 5 mg.gMLVSS-1 in the control pots.  By 

the end of the 24 hour monitoring period the absolute level of proteins for the 

pots dosed with shower gel was 5mg.l-1 less than that of the control pots, 

however, the MLVSS normalised value was 11.9 mg.gMLVSS-1. 
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Figure 6-23 – SMP carbohydrates for six toxins normalised to their respective controls. 
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Figure 6-24 – SMP carbohydrates for six toxins normalised to their respective controls and 
MLVSS. 
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Similarly the SMP carbohydrates peaked at the hour mark for most of the 

toxins.  SDS was a notable exception where the carbohydrates level increased 

immediately after dosing and then decreased after 30 minutes.  This decrease 

continued at the hour mark and by 24 hours the reading was 6.5mg.l-1 less than 

the control.  Both shower gel and washing powder dosed biomass showed a 

sustained increase in carbohydrates over the first hour after dosing, reaching 

maximums of 25.8mg.l-1 at 0.5 hours for shower gel and 33.8mg.l-1 at 1 hour for 

washing powder.  These were 14.8mg.l-1 and 27.2mg.l-1 respectively above their 

controls.  The washing powder dosed pots had returned to close to pre dosing 

levels after 24 hours or 4 HRTs but the effect induced by the shower gel dose 

was still in evidence after 24 hours.   

 

It is unclear whether the levels of SMP proteins and carbohydrates observed in 

these trials would cause fouling.  There was no provision to monitor any fouling 

of the membranes used in the porous pots, however, the toxins dosed did 

provide a change in the parameters measured and could result in fouling in an 

MBR.  SMP carbohydrates have been identified as one of the main parameters 

associated with fouling (Drews et al., 2006, Lesjean et al., 2005, Rosenberger 

and Kraume, 2002). 

6.4  System performance 

The toxins dosed into the porous pots had an effect on the system performance 

when compared to the control pots.  Comparison with the standard compiled in 

the Aquarec report of 2005 found that the effluent quality was sub standard for 

several of the toxin dosing trials (Table 6-7).  All of the toxins caused a breach 

in effluent turbidity with washing powder causing the worst breach with a 

maximum of 18.2 NTU, however, the effluent turbidity for the bleach and SDS 

dosing were below the mean values of between 5.1 and 5.77 NTU observed for 

steady state operation.  The colloidal fraction in a biomass matrix has been 

identified as one of the contributing factors to membrane fouling (Bouhabila et 

al., 2001, Itonaga et al., 2004) and it is likely that the effect seen here in the 

porous pots will have an impact on the MBR system. 
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Table 6-7 – Effluent quality criteria and comparison for the porous pots. 

Parameter Aquarec  
Standard

2
 

Toxin Maximum Value 

COD  <100 Shower Gel 105 
(mg.l

-1
)  Washing Powder 118 

  Bleach 39.5 
  SDS 50.5 
  Phenol 754 
  Zinc sulphate 52.5 

Ammonia  2 - 20 Shower Gel 13.96 
(mg.l

-1
)  Washing Powder 8.2 

  Bleach 8.28 
  SDS 3.84 
  Phenol 11.38 
  Zinc sulphate 8.61 

Turbidity  <2  Shower Gel 13.5 
(NTU)

1
  Washing Powder 18.2 

  Bleach 4.88 
  SDS 4.63 
  Phenol 11.8 
  Zinc sulphate 14.4 

pH 6 – 9.5 Shower Gel 5.9 (7.1) 
  Washing Powder 6.1 (7.3) 
  Bleach 5.7 (6.8) 
  SDS 5.2 (6.5) 
  Phenol 6.9 (7.8) 
  Zinc sulphate 5.2 (6.4) 

Conductivity  <3000 Shower Gel 813 
(µS.cm

-1
)  Washing Powder 1183 

  Bleach 890 
  SDS 818 
  Phenol 991 
  Zinc sulphate 838 

1
 Accepted level for effective downstream disinfection. 

2
 Class 1 Private, urban and irrigation purposes. 

 

Interestingly, none of the toxins caused a breach of the ammonia standard 

indicating that the increase in the other parameters are most likely to have been 

caused by interference with the interstitial elements of the biomass matrix to 

cause deflocculation rather than a true toxic effect on the biomass, as the 

nitrifiers are the most sensitive of the microbiological community, which would 

be reflected in an increase in effluent ammonia. 

 

In general toxic effects on the biomass itself were not observed in terms of the 

MLVSS and the particle size, apart from the dosing trial with the shower gel 

where a significant drop in biomass was observed and an increase in the 

median particle size.  This was accompanied by an increase in effluent turbidity 
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levels indicating a wash out of a mixture of the biomass, colloids and solids from 

the system, however, this still did not cause a breach in the ammonia standard 

and the COD breach was by just 5 mg.l-1 at the maximum observed.  This 

demonstrates the robustness of the biological community and reinforces the 

point that most of the biomass is shielded from the effects of the substrate 

variation by the floc structure present in suspended growth biological systems. 

 

All toxins caused an increase in the parameters monitored as potential foulants, 

although it was impossible to comment as to whether the membranes used in 

the pots fouled more or less than before the dosing.  Quantitative values are 

quoted in the literature for these parameters, however, the configuration and 

operation of a biological system contribute to the threshold values necessary to 

cause fouling. 

 

The dosing trials with the porous pots have indicated that there is some effect 

on the biological system caused by the toxins and that these will be worth 

investigating further at MBR pilot scale. 
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7 Membrane Bioreactor Trials 

7.1 Choice of household products 

The porous pot trials provided an indication of the effects of the tested toxins on 

the biological system.  One of the toxins that had shown an effect on the porous 

pot system, washing powder, was then tested further on the pilot scale 

membrane bioreactor, however, it was also decided to verify those that had 

unexpectedly shown little effect at the bench scale to see if they would behave 

similarly at pilot scale with a different property membrane, to eliminate any 

effects of scale.  The toxins that were investigated further at pilot scale were 

washing powder, hypochlorite based household bleach, sodium dodecyl 

sulphate and zinc sulphate. 

7.2 Flux step tests 

7.2.1 Critical flux tests 

An online clean was performed before the two critical flux tests that were carried 

out, prior to dosing with toxins, following the flux-step method described by Le 

Clech at al., 2003.  These were carried out at aeration rates of 1 l.s-1 and 2 l.s-1.  

Both these rates were outwith the manufacturers advised operation range of 

aeration; one below and one above the range, however, this gave some 

indication of the operating limits of the membrane.  The maximum flux that 

could be obtained at 2 l.s-1 was 30 l.m-2.h-1 as the pilot plant had been fitted with 

an automatic shut off at 600 mbar TMP to protect the membranes.  With this 

limitation a critical flux could not be determined at an aeration rate of 2 l.s-1, 

however, the 1 l.s-1 aeration rate gave a critical flux of 17 l.m-2.h-1 (Figure 7-1).  

This critical flux is similar to that reported by Pollice et al.,2005 of 19 l.m-2.h-1 for 

a hollow fibre submerged MBR with 12-19 g.l-1 MLSS, although aeration rates 

were not reported. 
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Figure 7-1 – Fouling rates for aeration rates of 1 l.s
-1

 (solid line) and 2 l.s
-1

 (dashed line). 

In the course of running these tests it was observed that the permeate pump 

was cavitating when excessive demands was placed on it and for this reason no 

more critical flux tests were performed. 

7.3 Steady state operation of the MBR 

The MBR was run for two months to acclimatise it to the Cranfield sewage feed, 

with the flow being steadily increased, as advised by the industrial sponsor who 

provided the pilot plant (KeppelSeghers).   After two months it was running with 

approximately an 8 hour HRT and it was decided to start wasting biomass to 

give a 15 day SRT.  This proved catastrophic to the biomass and wasting was 

stopped as the biomass level dropped very low to below 1 g.l-1 and the MBR 

was foaming.  It was tried several times to establish a longer SRT of 20 days 

but in the end this was abandoned as the biomass struggled to maintain an 

acceptable level, due to the low concentration of feed water.  It was attempted 

to run the MBR with an 8 hour HRT but the pump could not maintain a constant 

flux of 20 l.m-2.h-1 over a sustained period (Figure 7-2). When the flux was 

reduced to 17.5 l.m-2.h-1 sustainable operation over a longer period of time was 

Critical flux of 17 l.m
-2
.h

-1
 

for 1 l.s
-1

 aeration. 
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achieved (Figure 7-3).  The MBR was run with an HRT of 11 hours and an 

infinite SRT (sampling wastage only) and the MLVSS concentration stabilised at 

around 4 g.l-1. 

 

Figure 7-2 – TMP vs flux for a sustainable flux of 20 l.m
-2

.h
-1

. 

 

Figure 7-3 – TMP vs flux for a sustainable flux of 17.5 l.m
-2

.h
-1

. 
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7.3.1 Cleaning regime 

Cleaning was carried out on the membrane when the trans membrane pressure 

increased to greater than 250 mbar or if the permeate flow could not be 

maintained at the required level.  Four in situ cleans were carried out before an 

offline clean was performed when an in situ clean proved ineffective.   

7.3.2 Operational problems 

Several problems were encountered with the rig both with the auxiliary pumps 

and with the membrane housing itself.  An offline clean resulted in an ingression 

of biomass into the permeate side of the membrane and no reason could be 

found for this (Figure 7-4).  

 

Figure 7-4 – Biomass ingress into the permeate side of the membrane. 

To try to rectify this, the membrane housing was reassembled several times and 

the stainless steel piping disinfected but no solution was found.  Additionally the 

permeate flow was decreased for several weeks and then slowly increased, 

with no improvement.  It was decided to carry on with the pilot plant in this state 

as the effluent quality was not compromised.   
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The recirculation pump, from the aeration tank to the membrane tank, failed 

after three dosing trials had been carried out and was replaced with a 

centrifugal pump.  This initially severely affected the biomass (Figure 7-9) and 

the MBR was left for two months to return to steady state levels for MLSS 

before the final trial, of dosing with sodium dodecyl sulphate, took place. 

7.3.3 Baseline monitoring 

Baseline monitoring was carried out over a 16 month period.  The effluent 

quality and biomass analysis was monitored to ensure that the MBR was 

running at steady state.  The operational problems encountered described in 

Section 7.3.2 had an effect on the parameters monitored, as did the insitu or 

offline cleans, which have been indicated to further understand their effects.  

7.3.3.1 Influent characteristics  

The sewage feed to the MBR was the same as that delivered to the porous pots 

with a range of COD from 132 to 722 mg.l-1, ammonia from 10.1 to 34.2 mg.l-1 

and turbidity from 31.7 to 409 NTU (Table 7-1).   

Table 7-1 – Summary of feed characteristics during baseline monitoring for the pilot scale MBR. 

Parameter Feed  

 Mean  Range Standard  
deviation 

n 

COD (mg.l
-1

) 295.8 132-722 112.6 41 
Ammonia (mg.l

-1
) 25.35 10.1 – 34.2 6.34 30 

Turbidity (NTU) 121.1 31.7 - 409 67.6 37 

 

These feed characteristics are similar to those in several other studies treating 

municipal wastewater with COD levels ranging from 93 – 4292 mg.l-1, ammonia 

from 11.7 – 78.2 mg.l-1 and turbidity from 54.6 to 148 NTU (Table 7-2): 
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Table 7-2 – Literature values of feed characteristics for MBRs treating municipal wastewater. 

Parameter Range Reference 

COD (mg.l
-1

) 132-722 This study 
 150 – 690 Wu et al., 2007 
 112 - 389 Yoon et al., 2000 
 93 - 217 Fatone et al., 2006 
 299 - 4294 Rosenberger et al., 2002 
 135 Ravazzini et al., 2005 
 482 Côté et al., 1997 

Ammonia (mg.l
-1

) 10.1 – 34.2 This study 
 17.8-58.2 Wu et al., 2007 
 11.7 – 16.2 Fatone et al., 2006 
 21.2 – 78.2 Rosenberger et al., 2002 
 29.9 Ravazzini et al., 2005 
 39 Côté et al., 1997 

Turbidity (NTU) 31.7 - 409 This study 
 54.6 Ravazzini et al., 2005 
 148 Côté et al., 1997 

7.3.3.2 Effluent quality analysis 

7.3.3.2.1 Effluent COD 

The effluent COD for the MBR while operating at steady state was consistently 

below the proposed effluent COD level of 100 mg.l-1 from Aquarec (2005) for 

European water reuse guidelines (Figure 7-5 with the horizontal dashed line 

indicating the Aquarec guidelines).   
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Figure 7-5 – Baseline influent and effluent COD for the pilot scale MBR   (x = influent, ■ = 
effluent, ∆ = insitu clean, □ = offline clean).  
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This output level was maintained even through the operational problems 

(biomass ingress into permeate after the second offline clean and failure of 

recirculation pump).  Insitu and offline cleans are indicated to monitor any effect 

these may have on the performance of the MBR, however, no adverse affects 

were observed.  This gave an average removal rate of 90% for COD over the 

518 days monitored. 

7.3.3.2.2 Effluent Ammonia 

The pilot MBR was below the upper end of the range of the Aquarec guidelines 

for ammonia, of 2 to 20 mg.l-1 (range for Class I private and urban reuse), for 

the whole monitoring period, with only six incidences over the 2 mg.l-1 level in 

the sixteen months of steady state operation (Figure 7-6 with the horizontal 

dashed lines representing the upper and lower limit for the Aquarec guidelines 

for Class 1 private, urban and irrigation reuse).   
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Figure 7-6 – Baseline influent and effluent ammonia for the pilot scale MBR (x = influent, ■ = 
effluent, ∆ = insitu clean, □ = offline clean). 

 

 



Chapter 7 – Membrane Bioreactor Trials 

  

129 

 

7.3.3.2.3 Effluent Turbidity 

The effluent turbidity at steady state was consistently below 2.5 NTU for the first 

year of operation, however, it was severely affected by the biomass ingress into 

the permeate.  Despite this, it remained < 6 NTU apart from 3 samples, directly 

after an offline clean of 14.5, 17.7 and 24.6 NTU (Figure 7-7).  Effluent turbidity 

is not listed specifically as one of the parameters for water reuse by Aquarec.  

However, it is generally acknowledged that the effluent turbidity should be <2 

NTU (horizontal dashed line in Figure 7-7) to prevent problems with 

downstream disinfection (Crook, 1998).    The MBR performed satisfactorily at 

this level for over a year.  Most of the pre dosing measurements were at an 

acceptable level of around 2 NTU, the exception being the bleach dosing trial 

where the pre dosing level was close to 6 NTU. 
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Figure 7-7 – Baseline influent and effluent turbidity (x = influent, ■ = effluent, ∆ = insitu clean □ 

= offline clean). 
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7.3.3.3   Baseline biomass analysis 

7.3.3.3.1 Capillary Suction Time 

The CST increased in line with the increase in MLSS as was expected 

(Houghton et al., 2001) (Figure 7-8).  The mean CST over the 518 days 

monitored was 187 seconds with a standard deviation of 207.6 seconds.  

However, if the first five samples are disregarded then the mean was 103.6 

seconds with a standard deviation of 42.5 seconds.  A mean of 103.6 seconds 

is higher than that for a similar sized, but flat plate MBR, operated at a much 

shorter HRT of 2.2 hours and SRT of between 10 and 40 days.by Wu et al. 

(2007) who recorded CST readings of less than 50 s.  Khongnakorn et al., 

(2007) also observed low CST readings of >30 seconds for a pilot MBR of 50 

litres volume with an HRT of 2 days and an infinite SRT.  On the other hand 

Pollice et al., (2005) reported CSTs of between 11.9 and 1542 seconds for a 

range of pilot and full scale MBRs.   
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Figure 7-8 – Baseline capillary suction time for the pilot scale MBR (∆ = insitu clean □ = offline 

clean). 
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7.3.3.3.2 Mixed Liquor Suspended Solids and Mixed Liquor Volatile Suspended 

Solids  

The MLSS broadly stabilised in line with the HRT: the longer the HRT, the lower 

the MLSS concentration (Figure 7-9).  At an HRT of 11 hours the MLSS 

stabilised at around 5 g.l-1.  As the MBR was fed with real sewage the variation 

in influent COD will effect the level of MLSS and MLVSS so that a true steady 

state is never reached. 

 

The MLVSS concentration stabilised at around 90% of the MLSS concentration 

which is high compared to other municipal wastewater treatment systems where 

a value of 70% is considered common (Rosenberger et al., 2002). 
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Figure 7-9 – Baseline mixed liquor suspended solids (x) and mixed liquor volatile suspended 

solids (■) for pilot scale MBR (∆ = insitu clean, □ = offline clean). 

7.3.4 Steady state performance 

Despite these issues the MBR performed well and the effluent quality was good 

with a maximum effluent COD of 67 mg.l-1, a maximum effluent ammonia of 

5.21 mg.l-1.  As explained earlier the effluent turbidity was disturbed by the 

cleaning regime and a maximum of 24.6 NTU was recorded, however, the 

Recirculation pump fail 

HRT increased from 8 hrs to 

11 hrs 

Wastage period 

for SRT 
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mean was 2.77 NTU over the fourteen months monitored (Table 7-3).  The 

biomass stabilised at approximately 5 g.l-1 and the pH was in the limits for 

aerobic systems (6-9) (Tchobanoglous et al., 2003). 

 Table 7-3 – Summary table of parameters analysed during baseline monitoring for the pilot 
scale MBR. 

Parameter Mean Range Standard  
deviation 

n 

COD (mg.l
-1

) 27.01 4-67 15.45 41 
Ammonia (mg.l

-1
) 1.00 0.14 – 5.21 1.59 30 

Turbidity (NTU) 2.77 0.10-24.6 5.46 37 
Conductivity (µS.cm

-1
) 752.9 574.0 – 911.0 97.3 29 

pH 6.40 4.45 – 7.28 0.75 37 
CST (secs) 187.0 48.5 – 761.1 207.6 22 
MLSS (g.l

-1
) 4.97 0.8 – 11.68 2.55 49 

MLVSS (g.l
-1

) 4.13 0.09 – 8.41 1.91 39 

 

The MBR gave an average of 90% COD removal, 96% ammonia removal and 

97% turbidity removal while running at steady state.    This performance is in 

accordance with several other studies with MBRs treating municipal or domestic 

wastewater which reported >88% COD removal and 82% ammonia removal 

(Table 7-4). 

Table 7-4 – Literature values for pollutant removal for steady state MBRs. 

Parameter % removal Reference 

COD (mg.l
-1

) 90% This study 
 >93% Brindle et al., 1996. 
 >88% Brindle et al., 1996. 
 95% Rosenberger et al., 2002 
Ammonia (mg.l

-1
) 96% This study 

 82% Rosenberger et al., 2002 

 

7.4 Acute toxicity dosing results 

7.4.1 Foaming 

To ensure that foaming was not the limiting factor for the dosing trials the same 

doses were used as had been used for the porous pots (Table 7-5). 

 

 

 

 



Chapter 7 – Membrane Bioreactor Trials 

  

133 

 

Table 7-5 – Dose of toxins for the MBR 

Toxin EC50 by  
respirometry 

Actual amount 
dosed 

Washing powder 1.2g.l
-1 

0.5g.l
-1 

Bleach 0.48ml.l
-1 

0.4ml.l
-1 

SDS NT 28mg.l
-1 

Zinc sulphate 85mg.l
-1 

85mg.l
-1

 

 

This strategy was successful in all but the case of the washing powder which 

caused excessive foaming in the MBR (Figure 7-10).    This is most likely to be 

caused by the increased aeration in the MBR; 1.5 l.s-1 compared with the pots 

aeration rate of 0.9 l.s-1. The foaming caused some loss of biomass from the 

membrane tank but the results are presented and the foaming taken into 

account as one of the effects.  In comparison the bleach caused very little 

foaming, as had been experienced with the porous pot dosing trials (Figure 

7-11). 

 

Figure 7-10 – Foaming as a result of 0.5 g.l
-1

 dose of washing powder.  
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  (a)     (b) 

Figure 7-11 – (a) aeration tank before (b) aeration tank after, 0.4 ml.l
-1

 bleach dosing. 

7.4.2 Effluent analysis 

7.4.2.1 Hydraulic characteristics of the MBR 

It was assumed that the MBR had the same hydraulic characteristics as the 

porous pots, with the system being a completely mixed reactor (Chapter 6 

Section 6.3.3.1).  Any delay seen in parameters monitored for the system are 

assumed to be due to interaction with the biomass in some way.   

7.4.2.2 Effluent COD 

The effluent COD before dosing was <20 mg.l-1 for all the experiments carried 

out demonstrating that the MBR was running at steady state with a COD 

removal rate of  >94 % for each run.  The shock dose of COD varied for each of 

the toxins (Table 7-6) with washing powder and sodium dodecyl sulphate 

contributing the most to the chemical oxygen demand. 

Table 7-6 – COD shock dose from each toxin 

Toxin COD (g)  

Washing powder  291 
Bleach 86 
Sodium dodecyl sulphate 232 
Zinc sulphate 87 
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There was no clear pattern to the effects of the toxins on the effluent COD, but 

none of the toxins produced a breach of the Aquarec guideline levels for water 

reuse of 100 mg.l-1 (Aquarec, 2005) (Figure 7-12). 
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Figure 7-12 – Effluent COD for all four toxins (steady state operation at t = -5 hrs and toxin 
dosed at t = 0 hrs). 

The zinc sulphate dose initially caused an increase for the first 0.5 HRT of 

observation from 13.5 mg.l-1 to 20.5 mg.l-1 then decreased to 12-13 mg.l-1 at the 

1 and 2 HRT mark before levelling out at 20 mg.l-1 at 3 HRTs and beyond.    

These small variations are most likely to be the variation in the system and are 

unlikely to be attributed to the zinc sulphate dose.  

 

Similarly the bleach had little effect on the effluent COD, as was previously seen 

with the porous pots.  An increase to 21 mg.l-1 was seen at 2 HRTs, but 

otherwise the COD measured was at the lower limit of detection for the range, 

at 10mg.l-1. 

 

The most pronounced affect of the toxin dosing was caused by the washing 

powder with a gradual increase over the first 2 HRTs (22 hours) to a maximum 

1 HRT 2 HRT 3 HRT >4 HRT 
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of 55 mg.l-1, with a rapid decrease to pre dosing levels after 3 HRTs (33 hours).   

There is no evidence of deflocculation from the particle size distribution 

measurements (Section 7.4.3.3), however, there was a substantial increase in 

effluent turbidity at the same time so there may be some interaction with the 

washing powder and the membrane that has decreased the effectiveness of the 

membrane barrier or the washing powder has increased the colloidal fraction in 

the aqueous solution that has then passed through the membrane but has not 

had an effect on the biomass flocs. 

 

The SDS produced an erratic response in the effluent COD: a slight increase 

after 1 hour to 22 mg.l-1 was followed by a decrease at 0.5 HRT (5.5 hours) to 

below pre dosing level (10 mg.l-1 compared to 17 mg.l-1 respectively), at 11 

hours it increased to 28 mg.l-1 then by 33 hours (3HRTs) it had returned to close 

to pre dosing levels at 14 mg.l-1.   As there was no increase in effluent turbidity 

in line with the effluent COD it is likely that these are normal variations over the 

cycle of the HRT.   

 

After all four of the toxin dosing experiments the MBR had returned to pre 

dosing levels after 4 HRTs. 

7.4.2.3 Effluent Ammonia 

The toxins dosed did not contribute to the ammonia loading of the system.  In 

general there was little effect on the ammonia removal in the system with the 

bleach and SDS dosing having no effect at all on the effluent ammonia (Figure 

7-13).  Zinc sulphate had the most effect on the effluent ammonia with a rapid 

increase to >6mg.l-1 after 1 HRT followed by a return to pre dosing levels after 2 

HRTs.   The only other toxin to have any effect on the effluent ammonia was the 

washing powder which increased to 2.5 mg.l-1 after 1 HRT.   In fact this is 

similar to the response shown by the porous pots where the washing powder 

actually improved the ammonia removal from the system by increasing the pH 

of the reactor.  This is true for the washing powder dose in the MBR, however, 

the initial pH was at the optimum for nitrifiers of 7 and the increase to 7.2 does 

not seem to have had any detrimental effect. 
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Figure 7-13 – Effluent ammonia for all four toxins (t = -5 hrs was steady state operation before 
dosing and toxin was dosed at t = 0 hrs). 

Only the washing powder and zinc sulphate produced effluent ammonia levels 

above the lower range of the Aquarec standard of 2 mg.l-1 but none of the toxins 

dosed breached the upper range of the standard of 20 mg.l-1.   

7.4.2.4 Effluent Turbidity 

No clear pattern was apparent for the effluent turbidity with four different 

responses for the four different toxins.  The washing powder produced a steady 

increase in effluent turbidity from 1.7 NTU before dosing to 18.57 NTU after 22 

hours (2 HRT).  Over the final two HRTs the effluent turbidity returned to pre 

dosing levels.  The effluent turbidity followed the profile of the effluent COD 

almost exactly for the washing powder showing that the effluent COD was 

particulate (Figure 7-12).  Washing powder is designed to lift and separate dirt 

from clothing and, as such, seems to be performing the same function on the 

biomass (Madsen et al., 2001). 

   

1 HRT 2 HRT 3 HRT >4 HRT 
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Figure 7-14 – Effluent turbidity for all four toxins (t = -5 hrs was steady state operation before 
dosing and toxin was dosed at t = 0 hrs). 

 

The bleach dose started with a high turbidity, before dosing, of 6.66 NTU which 

was reduced after dosing to 2.07 NTU but increased again to a maximum of 

13.9 NTU at 2 HRT before reducing again to steady state levels of around 2 

NTU.  It is unclear that the fluctuations in effluent turbidity can be attributed to 

the bleach dosing alone, because of these fluctuations.  Zinc sulphate produced 

an initial increase from 2.74 NTU to 5.4 NTU in the first 5.5 hours (0.5 HRT) 

after dosing.  This decreased again to around 2 NTU before increasing to 

around 5 NTU after 3 HRTs.  It was still at this level after 4 HRTs.  The sodium 

dodecyl sulphate had no discernible effect on the effluent turbidity with a 

minimum of 1.31 NTU and a maximum of 2.88 NTU occurring at 2 HRTs.  

7.4.3 Biomass Analysis 

7.4.3.1 CST 

Neither the bleach nor the zinc sulphate had any effect on the CST over the 4 

HRTs monitored (Figure 7-15).    The washing powder caused an immediate 

1 HRT 2 HRT 3 HRT >4 HRT 
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increase in the CST from 156 seconds to 255 seconds in 0.5 HRTs.  This then 

decreased over the next three HRTs from 188 seconds to 137 seconds, below 

the pre dosing levels, in contrast to the effects observed in the porous pots 

where the washing powder caused a decrease in the CST readings (Chapter 6 

Section 3.4.1). 
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Figure 7-15 – CST for all four toxins (t = -5 hrs was steady state operation before dosing and 
toxin was dosed at t = 0 hrs). 

In the case of the pots it is likely that the surfactant action separated some of 

the smaller particles which were then washed from the system (evidenced by a 

concomitant increase in effluent turbidity) through the relatively large pore size 

membranes (60 – 90 µm) whereas in the MBR system these were not expelled 

from the system due to the much smaller pore size in the hollow fibre 

membranes of 0.1 µm and hence added to the decrease in dewaterability.  The 

washing powder caused a lot of foaming over this same time resulting in loss of 

biomass which will have contributed to the later lower CST readings.  In light of 

this, the lower readings cannot be solely attributed to the effects of the washing 

powder.    

 

1 HRT 2 HRT 3 HRT >4 HRT 
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The SDS had an intermittent effect on the CST.  An initial increase from 142 

seconds to 175 seconds immediately after dosing was followed by a decrease 

to 150 seconds before another increase to 197 seconds and a final decrease to 

178 seconds.  It is likely that these results are due to the variation introduced 

from sampling rather than a definite effect of the SDS as there is only a 20% 

difference between each successive reading.  CST readings from a variety of 

pilot and full scale flat plate, hollow fibre and tubular MBRs ranged from 11.9 to 

1542 seconds, showing the vast differences that are encountered (Pollice et al., 

2005).  The operating parameters for the MBRs and method for the CST 

measurement were not included in the review, by Pollice et al., but it is 

assumed that the same method was used throughout.   

7.4.3.2 MLSS and MLVSS 

Washing powder was the only toxin to have an effect on the MLVSS level and 

this was most likely caused by foaming and overspill, rather than a specific toxic 

kill (Figure 7-10). None of the other toxins had a significant effect on the 

biomass levels (Figure 7-16).  Bleach had a range of 5.72 – 5.96 g.l-1, zinc 

sulphate had a range of 4.56 – 5.3 g.l-1 and SDS from 5.45 – 5.81 g.l-1.  Clearly 

there has been no detrimental effect on the levels of MLVSS and the predicted 

toxins have not shown a toxic effect, resulting in cell death, on the bacterial 

community. 
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Figure 7-16 – MLVSS for all four toxins (t = -5 hrs was steady state operation before dosing and 
toxin was dosed at t = 0 hrs). 

7.4.3.3 Particle Size Distribution 

The baseline median diameter for the MBR biomass of 20 – 22 µm (Figure 

7-17) was much lower than that for the pots of approx 100 µm.  This is due to 

the increased stress on the biomass from aeration and pumping in the 

bioreactor.  The smaller flocs are more susceptible to toxic effects by reducing 

mass transfer limitations (Henriques et al., 2005), however, this does not seem 

to have affected the performance of the biomass in the MBR.   

1 HRT 2 HRT 3 HRT >4 HRT 
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Figure 7-17 – d50 for all four toxins (t = -5 hrs was steady state operation before dosing and 
toxin was dosed at t = 0 hrs). 

 

For the SDS dosing, a detailed breakdown of the particle size distribution 

(Figure 7-18) reveals the extent of the aggregation over the time monitored.  

Interestingly, there is a peak at 0.8 µm, which also appears in all the other 

dosing trials, which represents the colloidal element within the mixed liquor.  An 

initial aggregation of the biomass in the first 30 minutes after dosing (the peak 

of the distribution shifted from 26.3 µm before dosing to 34.6 µm 30 minutes 

after dosing) was followed by a return to pre dosing levels at 22 hours (the peak 

occurred at 22.9 µm).  The 48 hour sample, however, reveals a new peak at 

approximately 140 µm with the peak of the distribution being smaller and at 10 

µm rather than 30 µm, indicating that the SDS has caused flocculation, of some 

of the medium sized flocs (around 20 – 30 µm).  The smaller peak at <1 µm has 

remained unchanged over the entire monitoring period indicating that the 

colloidal element has been unaffected by the surfactant addition. 
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Figure 7-18 – Detailed breakdown of particle size distribution over time for sodium dodecyl 
sulphate (all data not included). 

7.4.3.4 pH 

Neither the bleach nor the zinc sulphate had any significant effect on the pH of 

the system.  SDS had the most significant effect on the biomass pH level 

causing a significant drop in pH from 6.1 to 5 over 4 HRTs (Figure 7-19).  As 

this effect was not seen in the porous pot trial it is assumed that this was due to 

outside environmental factors rather than the action of the surfactant dosing. 
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Figure 7-19 – pH of biomass for all four toxins (t = -5 hrs was steady state operation before 
dosing and toxin was dosed at t = 0 hrs). 

7.4.3.5 Conductivity 

The washing powder showed a classic dose response for an ideal completely 

mixed reactor with a non reactive tracer passing through the system.  It seems 

to have no long term effect on the biomass as the conductivity has passed 

through the MBR after 3 HRTs and returned to pre dosing levels (Figure 7-20). 

 

1 HRT 2 HRT 3 HRT >4 HRT 
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Figure 7-20 – conductivity of biomass for all four toxins (t = -5 hrs was steady state operation 
before dosing and toxin was dosed at t = 0 hrs). 

7.4.4 Foulant Analysis 

7.4.4.1 SMP turbidity 

Three out of the four toxins had pre dosing levels of 1 -2 NTU which is similar to 

that found by Ramesh et al., 2006,  and Rosenberger et al., 2006 who observed 

an SMP turbidity of between 2 and 9 NTU for aerobic return sludge and pilot 

scale MBRs.  

 

All four toxins had differing effects on the SMP turbidity (Figure 7-21).  The 

bleach had no detrimental effect and the turbidity remained at <3 NTU for the 

entire observation period.  In fact, the bleach had a positive effect lowering the 

turbidity from a pre dosing level of 2.05 NTU to a post dosing level at >4 HRTs 

(48 hours) of 0.92 NTU. 

1 HRT 2 HRT 3 HRT >4 HRT 
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Figure 7-21 – SMP turbidity for all four toxins (t = -5 hrs was steady state operation before 
dosing and toxin was dosed at t = 0 hrs). 

 

The other three toxins had varying effects.  The zinc sulphate showed a linear 

increase from 1.92 NTU at 0.5 HRTs (5.5 hours) to 5.1 NTU at 2 HRTs (22 

hours).  By 3 HRTs (33 hours) this had decreased again to 2.63 NTU but was 

followed by an increase at the >4 HRT sample.   This shape of response was 

not echoed in any of the other parameters measured for the zinc sulphate 

dosing which indicates that the zinc sulphate is not interacting with the biomass 

in the system.  It is possible that the metal salt is interacting with other 

compounds in the feed matrix to produce more colloidal substances in the 

supernatant and it is unlikely to be due to a response from the biomass. 

 

The washing powder produced a very similar response to that observed with the 

porous pots (Chapter 6 Section 3.5.1).  This appears to be the washing powder 

passing through the system and affecting the colloidal element within the mixed 

liquor, without having any effect on the microbial actions of the biomass.  As 

there was severe foaming at the time this might have affected the SMP turbidity, 

however, as the response was so close to that seen in the pots that did not 

1 HRT 2 HRT 3 HRT >4 HRT 
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have foaming, it can be assumed that this is not the primary influence.  The 

washing powder separates loosely bound colloidal elements from the flocs and 

causes the increase in SMP turbidity.  These are either rebound when the 

washing powder is degraded, washed from the system or are degraded easily, 

as the SMP turbidity returns to pre dosing levels after 2 HRTs (22 hours).    As 

there was a parallel increase in the total effluent COD it is more likely that these 

are washed from the system. 

 

The SMP turbidity for the sodium dodecyl sulphate (SDS) trial was initially very 

high.  This could have been due to the introduction of a centrifugal pump as the 

recirculation pump.  This exchange of pumps will have disrupted the biomass by 

introducing a different form of shear than that experienced with the positive 

displacement pump (Kim et al., 2001).  There is evidence that the SDS did 

increase the SMP turbidity (from 12 NTU to 24 NTU over 1 HRT) and as this 

effect was also seen in the porous pot trials it can be assumed that it is the 

effect of the SDS destabilising the flocs by increasing the negative charge in the 

reactor.   

7.4.4.2 SMP proteins and carbohydrates 

None of the toxins dosed into the system contributed to the proteins or 

carbohydrates measured themselves.  The carbohydrates and proteins were at 

a similar level of 2 -4 mg.gMLVSS-1 or 9 -12 mg.l-1 before all of the dosing trials, 

apart from the sodium dodecyl sulphate where both proteins and carbohydrates 

were approximately 4 mg.gMLVSS-1 or 20 mg.l-1 (Figure 7-22  and Figure 7-23).  

This high level before the SDS trial is due to the emergency change in 

recirculation pump, to a centrifugal pump, as all other parameters were the 

same as the other trials. The centrifugal pump exerts a higher shear force on 

the biomass, compared to the previous positive displacement pump, resulting in 

stress to the biomass (Kim et al., 2001) which in turn increases the amount of 

SMP excretions (Rosenberger and Kraume, 2002).   

 

Other studies have found varying ratios of carbohydrates to proteins depending 

on the operating conditions and feed matrix (Table 7-7).  One study (Klatt and 
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LaPara, 2003) found much higher levels of proteins at steady state (90 mg.l-1 

proteins, but this was using synthetic wastewater which has been shown to 

produce more proteins and carbohydrates (Le Clech et al., 2003).  The low 

levels measured before dosing in this study are due to a combination of factors: 

the long HRT, infinite SRT and the slow start up procedure employed (Grelier et 

al., 2006, Pollice et al., 2005). 

Table 7-7 – Literature values of proteins and carbohydrates for differing system configuration 
and feed matrix compared to steady state values for this study. 

Proteins 
(mg.l

-1
) 

Carbohydrates 
(mg.l

-1
) 

Operating parameters Reference 

9-12 6-10 Flux = 17 l.m
-2

.h
-1

 
SRT = no wastage 
HRT = 11 h 
Feed = municipal + toxin 
 

This study 

12 32 Flux = 5 l.m
-2

.h
-1 

SRT = 106 days 
HRT = 15 h 

Spérandio et al., 
2005 

  Feed = municipal 
 

 

90 20 Flux = ~6 l.m
-2

.h
-1

 
SRT = ∞ 
HRT = 8.5 h 
Feed = synthetic 
 

Klatt and LaPara, 
2003 

16.8 13.1 Flux = 4.5 l.m
-2

.h
-1

 
SRT = 13 days 
HRT = ~8 h 
Feed = municipal 

Ernst et al., 2007 

 

 

Neither the bleach nor the zinc sulphate had any impact on the protein or 

carbohydrate levels, with neither producing levels above 4 mg.gMLVSS-1 over 

the entire 4 HRT observation period.  The washing powder and sodium dodecyl 

sulphate did have an effect on the protein and carbohydrate levels with both 

toxins producing an increase in levels.  The washing powder had the more 

pronounced effect, with a sharp increase in protein levels observed directly after 

dosing, from 2.5 to 8.7 mg.g MLVSS-1 with a peak of 12.2 mg.gMLVSS-1 after 

one hour.  A more moderate increase in carbohydrate levels was also recorded 

from 2 to 5.6 mg.gMLVSS-1 with a peak of 6.4 mg.gMLVSS-1 after one hour. 
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Figure 7-22 – SMP proteins normalised to MLVSS (t = -5 hrs was steady state operation before 
dosing and toxin was dosed at t = 0 hrs). 
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Figure 7-23 – SMP carbohydrates normalised to MLVSS (t = -5 hrs was steady state operation 
before dosing and toxin was dosed at t = 0 hrs). 
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In contrast to the washing powder, the SDS caused a larger increase in the 

carbohydrate concentration (3.2 to 7.4 mg.gMLVSS-1 from 0.5 hours to one 

hour after dosing) compared to the protein concentration (3.5 to 4.8 

mg.gMLVSS-1 from one to 5.5 hours after dosing).  Again these levels did not 

cause any significant fouling during the dosing trial.  The lack of fouling is likely 

to be due to the operational setup of the MBR – a long HRT (Meng et al., 2007) 

and SRT (Lee et al., 2003), real sewage (Le Clech et al., 2003), and a relatively 

low MLVSS (Li et al.,2008) are all conducive to a low fouling rate. 

  

7.4.4.3 Trans membrane pressure 

None of the toxins had any effect on the TMP of the membrane and no fouling 

was observed.  This could be due to the fact that the system was operating as 

more of a static TMP system and the flow could not be automatically logged.  

The flow was checked at each sampling time and it was ensured it was at the 

correct level, however, towards the end of the monitoring period this meant that 

there were long periods when the flow was not monitored.  For example, during 

the washing powder experiment there was a substantial decrease in TMP, but 

this occurred when the flow wasn’t monitored and the TMP had increased again 

by the next sampling time (Figure 7-24).  The flow could have decreased at this 

point, due to fouling and increased again when the scouring effect of the 

aeration had removed the temporary fouling.  A similar effect was seen for the 

bleach dosing, however, no other parameter showed any indication of fouling or 

a detrimental effect on the biomass and it is assumed that this was due to 

operational difficulties rather than any specific effect on the fouling rate (Figure 

7-25).   
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Figure 7-24 – TMP trace for washing powder 
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Figure 7-25 – TMP trace for bleach dosing. 
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After all the dosing trials had been carried out the membrane was removed from 

the MBR and evidence of clogging can be seen at the base of the module 

(Figure 7-26).  Again from the analysis carried out this did not appear to have a 

detrimental affect on the performance of the MBR. 

 

Figure 7-26 – Membrane after dosing trials had been carried out. 

 

7.5 System performance 

7.5.1 Effluent Quality 

Overall the effluent quality was good with the effluent COD being below the 

levels put forward in guidelines for water reuse in Europe (Aquarec, 2005).  

These levels are 100 mg.l-1 for effluent COD and 2-20 mg.l-1 for ammonium 

nitrogen, for reuse in Class 1 for private and urban reuse.  It has been advised 

that effluent turbidity should be ≤2 NTU and absolutely less than 5 NTU, to 

ensure effective downstream disinfection (Crook, 1998).  This would be a 

problem with the current configuration of the MBR as the effluent turbidity 

increased to above 2 NTU for each of the dosing experiments with only SDS 
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maintaining an effluent turbidity of less than 5 NTU for the duration of the dosing 

experiment.   

7.5.2 Toxic effects on the biomass 

None of the toxins chosen for the dosing trial appeared to have a toxic effect on 

the biomass according to the parameters monitored.  Most importantly the 

effluent ammonia was unaffected, as nitrifying bacteria are well known to be the 

most sensitive of the bacterial community to environmental changes.  There 

was no effect on the biomass in terms of MLVSS and the CST was not 

adversely affected in the long term by any of the doses.  The pH and 

conductivity remained in the same range as for the baseline monitoring and the 

particle size distribution was only affected by the SDS dosing. 

7.5.3 Fouling potential 

From the data gathered for the four dosing trials carried out it is likely that no 

fouling took place, however, as the flow could not be automatically monitored 

the fouling of the membrane may have resulted in a decrease in flux rather than 

a recorded decrease in TMP.  Fouling is dependant on many factors including 

aeration rate, feed matrix and membrane type.  Many studies have been carried 

out, as discussed previously in the literature review, with correlations being 

identified with SRT, the colloidal fraction of the biomass matrix, SMP proteins 

and carbohydrates, MLSS concentration and HRT.  The effects of SRT and 

HRT can be discounted as both were observed to increase fouling at low values 

(SRT of 8 days Lesjean et al., 2005 and HRT < 6h Meng et al., 2007), neither of 

which were relevant for the pilot MBR.  The MLSS concentration was at the 

lower end of the range for MBRs and this can also be discounted.  This leaves 

the SMP fraction and the colloidal fraction as the most likely to cause fouling.   

 

The reported role of proteins and polysaccharides in membrane fouling is 

contradictory with some studies reporting a direct correlation and others 

disputing the role (Drews et al., 2006, Marshall et al., 1993). Although 

quantitative values above which fouling will occur are reported, these are very 

dependant on the set up of the MBR, the feed matrix and the method of 
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measurement.   For example, Evenblij et al., (2005) did not find a correlation 

with fouling for the carbohydrates measured in the biomass supernatant for 

concentrations below 10 mg.l-1, whereas Rosenberger et al., (2006) found the 

fouling rate at a concentration of 10 mg.l-1 carbohydrates to be twice that at 5 

mg.l-1.  In the case of this study, neither the carbohydrates nor the proteins 

seem to have reached a critical level to cause fouling (Section 7.4.4.3).   

 

The colloidal fraction present in the biomass matrix was measured using SMP 

turbidity.  This fraction has been shown to influence fouling in the membrane 

with Bouhabila et al., (2001) observing that the colloids present in the 

supernatant caused half of the loss of permeability over a 180 minute filter time.  

On the other hand Itonanga et al., (2004) found that the colloidal fraction 

contributed as much as the suspended solids fraction to the overall resistance 

to filtration (~18 %) in a conventionally run MBR at steady state whereas it 

contributed more than 60% in an MBR with coagulation and sedimentation as a 

pretreatment stage, in a rapid fouling phase.  The SMP turbidity values of >20 

NTU for the SDS dosing compared to <15 NTU pre dosing, indicates a 

considerable fraction of colloidal particles is present, however, this does not 

seem to effect the membrane.  The steady state levels of 1-2 NTU for the pilot 

MBR (apart from the SDS pre dosing level) are similar to those found by 

Rosenberger et al., (2006) of 2 – 9 NTU. 

 

Overall the MBR performed extremely well, with no effect on any of the system 

parameters measured, demonstrating the robustness of the system.  The 

combination of a long hydraulic retention time, infinite sludge age and the use of 

a membrane as a barrier to stop any perturbations affecting the effluent have 

been an effective combination in negating any effects from the increase in toxic 

loading from the domestic products and industrial substances. 
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8 Chemical Mitigation of Fouling  

The role of the parameters analysed for fouling potential were not fully 

explained by the trials on the MBR reported in Chapter 7.  Although fouling was 

not observed for the four toxins tested, the effect of these toxins on the SMP 

turbidity and SMP proteins and carbohydrates was noticeable.   These effects 

were mainly observed within the first hour after dosing and observing the 

response of these to the toxin dosing in more detail would lead to a better 

understanding of whether this was an instantaneous reaction or whether there 

was some time delay associated with it and when the peak occurred.  It was 

also hoped to determine some quantitative measurement of these parameters 

to predict the boundary conditions that would cause fouling. 

 

In order to counteract the release of foulants the use of chemical addition could 

be used to either coagulate or adsorb the colloidal particles and microbial 

secretions to minimise the risk of fouling and flux decline.  A preliminary 

investigation was undertaken to find the most efficient chemical at producing 

this effect, using SMP turbidity and zeta potential as indicative parameters of 

the reduction of fouling potential and efficient coagulation or adsorption. 

8.1 Jar testing with toxin only  

Jar testing was carried out for four different toxins, washing powder, zinc 

sulphate, sodium dodecyl sulphate and bleach (Figure 8-1).  Samples were 

taken for the first 60 minutes after dosing, at ten minute intervals, as this was 

when the most perturbation had been observed previously in the dosing trials 

(Chapters 6 and 7) and to ensure that the jar tests provided a biological system 

with a similar response to that seen in the porous pots and MBR.  None of the 

toxins dosed contributed directly to the parameters measured. 

 

The biomass used for the SDS, bleach and zinc sulphate jar tests had similar 

pre dosing CSTs of 100 seconds whereas the biomass used for the washing 

powder trial had an unusually low CST of 50 seconds, however, no explanation 
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was found for this as the origin of the biomass was the same and no changes 

had been made to the operational parameters of the MBR.   

 

Three different responses were observed for the four toxins with respect to the 

CST measurements taken (Figure 8-1).  The response to the sodium dodecyl 

sulphate (SDS) and zinc sulphate dosing was minimal with only small variations 

of less than 20%, from the pre dosing levels.  This was expected as neither of 

these toxins had had any effect on CST in the previous MBR dosing trials.  The 

washing powder dose produced an immediate 20 second increase which then 

remained stable over the remaining 60 minutes monitoring period.  In contrast, 

the bleach dose produced a more delayed and steady increase in CST of 

approximately 5 seconds for each ten minute interval until a peak of 130 

seconds was observed at the 40 minute sample, an overall increase of 20 

seconds from pre dosing levels.    This effect had not been observed in the 

MBR dosing trials, but is likely to be influenced by the oxidation action of the 

bleach on any organic content in the mixed liquor. 

 

All of the jar tests had a similar SMP turbidity before dosing of approximately 2 

NTU.  As previously, the bleach, sodium dodecyl sulphate and zinc sulphate 

doses had little effect on the SMP turbidity.  The washing powder dose, 

however, caused an immediate increase of turbidity from 2.2±0.02 NTU before 

dosing to 10.5±0.09 NTU ten minutes after.  The peak turbidity was at 20 

minutes after dosing at 14.8±0.03 NTU, thereafter the level settled to around 10 

NTU (10.9±0.1 NTU, 9.5±0.1 NTU and 10.4±0.1 NTU at 30, 40 and 50 minutes 

respectively).  This effect is the same as that experienced in the porous pot and 

MBR trials where the washing powder dose produced an instantaneous 

increase in SMP turbidity, however, as the jar test is a closed system the 

reduction in SMP turbidity after 20 minutes must have been due to a 

reflocculation of some of the colloidal element within the biomass matrix. 

 

All the pre dosing samples had similar SMP protein levels of 10 to 12 mg.l-1.  

Again the bleach, sodium dodecyl sulphate and zinc sulphate doses had little 
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effect on the SMP proteins measured.  The washing powder, however, caused 

an immediate increase from 13.0±0.2 mg.l-1 before dosing, to 44.8±0.3 mg.l-1 

after 10 minutes stirring time.  This increase continued until a peak, after 50 

minutes stirring, of 58.5±0.2 mg.l-1.  

  

The four toxins dosed produced a varied response in terms of SMP 

carbohydrates.  The biomass used for both the zinc sulphate and the SDS had 

a high level of SMP carbohydrates of 17±0.3 and 16±0.4 mg.l-1 pre dosing, 

respectively, whereas the biomass for the washing powder and bleach jar tests 

had pre dosing levels of 3.7±0.3 and 8.2±0.5 mg.l-1.The washing powder dose 

showed only a slight increase over the first twenty minutes from the pre dose 

level of 3.7±0.3 mg.l-1 to 4.4±0.4 mg.l-1, however, the SMP carbohydrates 

increased steadily over the remaining forty minutes monitored, to a peak of 

12.1±0.1 mg.l-1 at 50 minutes.  The bleach dosing produced a more erratic 

response in the SMP carbohydrates with levels being around 8 mg.l-1, apart 

from at 30 minutes where there was an increase to 12.6±0.3 mg.l-1.      
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Figure 8-1 – (a) CST (b) SMP Turbidity (c) SMP proteins and (d) SMP carbohydrates for biomass dosed with washing powder (■), bleach (▲), SDS (x) and 
zinc sulphate (●) (t at -5 minutes = biomass only before toxin testing). 
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A summary of the effects observed in the first hour of the porous pot, MBR trials 

and the jar tests is given below (Table 8-1).  The washing powder produced the 

most pronounced effects over the parameters measured with changes observed 

across the three systems used.  For example, an increase of at least 7 NTU in 

SMP turbidity was observed across the three dosing trials.  The other three 

toxins produced more varied responses with changes in parameters seen in 

some dosing trials but not others (Table 8-1).   

 

In general, the effects observed in the jar tests reflected those in the other 

dosing trials, with the results following the MBR trials more closely than the 

porous pot trials.  This is understandable as the biomass used for the jar testing 

was MBR biomass.  An explanation of the effects observed have been 

described and explained in the previous trials chapters, the same being true for 

the jar tests.  There were some exceptions, however, for example, in the first 

hour after the washing powder dose the CST increased by 40 seconds in the 

porous pot trial and by 100 seconds in the MBR trial, whereas for the jar testing 

the increase was only 30 seconds over the hour monitored.    

Table 8-1 – Summary of the effects observed in the first hour after dosing for the porous pot and 
MBR trials. 

Parameter Toxin dosed Porous pot trial MBR trial Jar testing 

CST WP
1 

60 to 106  156 to 255 47 to 72 

(secs) SDS
2
 40 to 47 to 44 142 to 175 97 to 112 to 95 

 Bleach 68 to 86 to 82 80 to 85 111 to 130 

 ZnSO4 68 to 133 to 50 91 to 100 100 to 108 

SMP turbidity  WP 1.61 to 11.2 2.5 to 9 2 to 14 to 9 

(NTU) SDS 6 to 8  14.1 to 15.6 1.6 to 1.8 

 Bleach 4 to 8.5 to 5.9 2 to 2.7 to 2 1.7 to 2 

 ZnSO4 4 to 7.4 to 5 1.2 to 2 No change 

SMP proteins  WP 14 to 50 13 to 56 13 to 58 to 55 

(mg.l
-1

) SDS No change No change No change 

 Bleach 19 to 28 to 26 No change No change 

 ZnSO4 17 to 24 to 18 No change No change 

SMP  WP 7 to 34
 

10 to 29 4 to 10 

carbohydrates SDS No change 21 to 42 16 to 19 

(mg.l
-1

) Bleach 5 to 14 No change 8 to 13 

 ZnSO4 12 to 13 to 8 No change No change 

 1
WP = washing powder, 

2
SDS = sodium dodecyl sulphate. 
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Although the jar testing set up did not mirror the conditions or environment of 

the two dosing trials exactly, it would provide an opportunity to observe trends in 

the behaviour of the release of foulants and in the mitigation effects of the 

coagulants added. 

8.2 Dosing with toxin and chemical. 

8.2.1 Baseline analysis of the biomass. 

For each jar test carried out a sample was taken of the biomass before any 

toxin or ancillary chemical was added.  The distribution of the zeta potential and 

SMP turbidity of these samples are both normal with means of -13.1±0.2 mV 

and 13.5±1.8 NTU and the standard deviations are 1.207 and 9.8 respectively 

(Figure 8-2 and Figure 8-3).  The zeta potential is similar to the range of -13 to -

15 mV reported by Wu et al., (2006) for activated sludge with an MLSS content 

of 3.9 – 4.3 g.l-1.  The SMP turbidity has a much larger spread of data for the 

baseline state with a shallower more widespread distribution of data compared 

to the zeta potential illustrating that the SMP turbidity is highly variable and 

dependant on many more variations within the biological system.   
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Figure 8-2 – Distribution for biomass zeta potential. 
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Figure 8-3 – Distribution for biomass SMP turbidity. 

 

A plot of zeta potential against SMP turbidity for the 28 baseline samples taken 

reveals the extent of the spread of the data (Figure 8-4).  The SMP turbidity has 

a range of 5.02±0.09 NTU to 44.3±0.5 NTU or 39.28 NTU whereas the zeta 

potential has a range of -15.1±0.1 mV to -10.6±0.6 mV or 4.5 mV.  Any 

perturbation caused to the system by a toxin will be more apparent in the zeta 

potential value rather than the SMP turbidity. 
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Figure 8-4 – Graph of zeta potential vs SMP turbidity for MBR biomass. 

8.2.2 Effect of toxin on zeta potential and SMP turbidity. 

The addition of the toxin to the biomass further changes the system and 

illustrates further the volatility of the SMP turbidity (Table 8-2).  The maximum 

change to zeta potential caused by the addition of a toxin to the biomass is 3.4 

mV whereas a change (decrease) of 32.6 NTU was observed for the SMP 

turbidity.   

Table 8-2 – Change of zeta potential and SMP turbidity caused by toxins. 

Toxin Change in  
zeta potential (mV) 
(max,min) 

Change in  
SMP turbidity (NTU)  
(max,min) 

n 

Washing Powder -2.3,-0.5 -32.6,0.5 7 
SDS -1.2,-0.1 -13.3,-0.6 7 
Bleach -1.4,-0.1 -12.1,-0.3 7 
ZnSO4 3.4,0.3 -6.9,-1.22 7 
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8.2.3 Effect of polymer molecular weight on efficiency of 

coagulation. 

Initially a jar test was carried out only using the different molecular weight range 

polyDADMAC as a coagulant to investigate the effect of the molecular weight of 

a polymer on the dose needed to reach a neutral zeta potential and any 

corresponding effect on the SMP turbidity, as a measure of fouling potential 

(Figure 8-5, Figure 8-6 and Figure 8-7).    Data points at a concentration of -100 

mg.l-1 represent biomass only, while data points at 0 mg.l-1 represent biomass 

plus toxin. 

 

In general, as the molecular weight increased the concentration of polymer 

needed to reach a neutral zeta potential decreased, although each toxin dosed 

interacted differently with the polyDADMAC and produced different responses in 

terms of both the zeta potential and the SMP turbidity.   

 

The sodium dodecyl sulphate and zinc sulphate dosed biomass showed a linear 

zeta potential response to the polyDADMAC dose, with the molecular weight 

having a clear effect (Figure 8-5).  For example, the biomass dosed with 85 

mg.l-1 zinc sulphate had a zeta potential, at a dose of 500 mg.l-1 of 

polyDADMAC, for very low molecular weight, low molecular weight, medium 

molecular weight and high molecular weight of 4±0.2 mV, 15±0.3 mV, 25±2.3 

mV and 32±2.7 mV respectively.  This response was mirrored for the SDS trial 

with the corresponding zeta potentials being 4±0.4 mV, 19.5±0.5 mV, 31.6±1.6 

mV and 35.4±1.2 mV illustrating that for both toxin doses the difference 

between the very low, low and medium molecular weight doses are 

considerably larger than the difference between the medium and high molecular 

weight.   It would appear that the effect is less pronounced as the molecular 

weight increases above 200,000 Daltons and, in the case of SDS, as the 

concentration increases; at 500mg.l-1 the difference in zeta potential between 

the medium and high molecular weight polyDADMAC is 3.8 mV compared to 

1.2 mV at a concentration of 1000 mg.l-1.   Both the medium and high molecular 

weight doses showed a plateauing of the effect after 500 mg.l-1 concentration. 
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Figure 8-5 – Zeta potential and corresponding SMP turbidity for (a) biomass and ZnSO4 and (b) biomass and SDS dosed with (+) high, (♦)medium, (▲) low 
and (■) very low MW polyDADMAC.  
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Figure 8-6 - Zeta potential and corresponding SMP turbidity for (a) biomass and washing powder and (b) biomass and bleach dosed with (+) high, 
(♦)medium, (▲) low and (■) very low MW polyDADMAC. 
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Figure 8-7 - Zeta potential and corresponding SMP turbidity for biomass dosed with (+) high, (♦)medium, (▲) low and (■) very low MW polyDADMAC. 
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Similar linear responses for zeta potential were observed for the biomass dosed 

with washing powder and bleach, however the distinction between the 

molecular weight ranges was not as clear (Figure 8-6).  For bleach dosed 

biomass there was no distinction between the high and medium molecular 

weight polyDADMAC doses through the whole concentration range and the 

effect of the polyDADMAC plateaued at the higher concentrations for both high 

and medium molecular weight ranges.  Moreover, the biomass dosed with 

washing powder showed an erratic response.  At doses of ≤100 mg.l-1 of 

polyDADMAC, at all molecular weight ranges, for the biomass dosed with 0.5 

mg.l-1 washing powder, no effect was observed on the zeta potential and at 500 

mg.l-1 of polyDADMAC the range was just 10 mV from very low to high 

molecular weights (-9±1 mV, -4±0.5 mV, -4.2±1.8 mV, 1.1±2.4 mV respectively).  

Compare this with a range of 28 mV for the zinc sulphate dosed biomass, 25.8 

mV for bleach dosed biomass and 31 mV for the SDS dosed biomass.   At 

1,000 mg.l-1, the highest concentration tested, the range was back to a 

comparable 28 mV. 

 

This effect was also observed for the jar test with the biomass only dosed with 

polyDADMAC (Figure 8-7), however, there was some discernible effect on the 

zeta potential with as little as 100 mg.l-1 polyDADMAC.   There was little 

difference between the medium and high molecular weight doses, although the 

high molecular weight dose plateaued before the medium molecular weight, at a 

concentration of 500 mg.l-1 and the medium molecular weight dose produced a 

slightly greater effect for the 750 and 1000 mg.l-1 doses with a zeta potential of 

41.4±0.4 mV and 46.5±1.7 mV respectively compared with 39.5±2.9 mV and 

42.5±1.7 mV for the high molecular weight dose.   

 

The dose required to reach a neutral zeta potential was dependant on the toxin 

dosed and the molecular weight of the polyDADMAC added (Table 8-3).  For 

example, for the very low molecular weight polyDADMAC the estimated dose 

required for a neutral zeta potential for the biomass dosed with washing powder 

(1013 mg.l-1) was almost three times that required for the biomass only (371 

mg.l-1), in comparison the zinc sulphate, SDS and bleach only needed around 

1.2 times (419, 436 and 472 mg.l-1 respectively).   As the molecular weight 
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increased the dose needed to reach a neutral zeta potential decreased across 

all the toxins dosed.  In the case of the biomass dosed with washing powder 

this decrease was close to three times less between the very low and high 

molecular weight doses (1013 mg.l-1 and 360 mg.l-1).   

Table 8-3 – Analysis of dosing of polyDADMAC with respect to zeta potential. 

Molecular 
weight range 

Toxin  
dosed 

Estimated dose 
for neutral zeta 
potential (mg.l

-1
) 

Gradient 
(mV.(mg.l

-1
)
-1

) 
R

2
 value 

very low  biomass 371 0.026 0.979 
 ZnSO4 419 0.029 0.988 
 SDS

1 
436 0.030 0.987 

 WP
2 

1013 0.015 0.933 
 bleach 472 0.024 0.966 

low  biomass 159 0.047 0.954 
 ZnSO4 240 0.042 0.977 
 SDS 210 0.048 0.969 
 WP 749 0.021 0.960 
 bleach 215 0.048 0.965 

medium  biomass 83 0.077 0.993 
 ZnSO4 176 0.047 0.904 
 SDS 134 0.061 0.951 
 WP 519 0.031 0.917 
 bleach 132 0.074 0.953 

high biomass 86 0.085 0.981 
 ZnSO4 111 0.057 0.956 
 SDS 139 0.064 0.935 
 WP 360 0.044 0.966 
 bleach 138 0.079 0.958 

1
SDS = sodium dodecyl sulphate 

2
WP = washing powder 

 

The gradient of the dose response curve was calculated (before the plateau in 

the case of bleach and biomass for medium and high molecular weight 

polyDADMAC) which gives the mV change in zeta potential per mg.l-1 change in 

concentration of polyDADMAC (Table 8-3).  The gradient increases as the 

molecular weight increases, illustrated by the biomass only jar test, with a 

gradient for very low molecular weight addition of 0.026 mV.(mg.l-1)-1 which 

doubled for low molecular weight and again for medium molecular weight doses 

with gradients of 0.047 and 0.077 mV.(mg.l-1)-1.  This effect is then slightly 

diminished with a gradient of 0.085 mV.(mg.l-1)-1  for the high molecular weight 

dose.  Therefore, as the molecular weight increases the dose required to 

neutralise the zeta potential decreases.  The biomass dosed with the four toxins 

showed similar effects as the molecular weight of the polyDADMAC dosed 

increased.  
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A simultaneous minimum in SMP turbidity was observed with the neutral zeta 

potential point, across all the molecular weight ranges, for twelve out of the 

twenty jar tests completed, moreover, there was not a general response to the 

polyDADMAC dosing (Figure 8-5 to Figure 8-7 and Table 8-4).  In the case of 

the biomass only jar test, the polyDADMAC had a rapid effect at 10 mg.l-1 with 

decreases of 3.53, 3.08, 6.62 and 5.54 NTU for very low, low, medium and high 

molecular weights, respectively.  Thereafter only the very low and high 

molecular weight polyDADMAC caused a further decrease to a minimum of 

0.645±0.05 NTU and 0.288±0.01 NTU respectively, which coincided with the 

neutral zeta potential point, whereas the low and medium molecular weight 

polyDADMAC caused a slight increase at this point and in fact the minimum 

SMP turbidity for low molecular weight occurred at 10 mg.l-1, while for medium 

molecular weight this did not occur until 1,000 mg.l-1, the highest concentration 

tested, far outwith the neutral zeta potential point.  Low molecular weight 

polymer will cause charge neutralisation reducing the repulsive forces between 

the particles and result in an aggregation of these particles, however, too much 

polymer addition will reverse the charge from negative to positive and the same 

repulsive forces will be present again (Ebeling et al., 2005).  For example, the 

biomass only jar test had a zeta potential of -12.5 mV with 10 mg.l-1 of very low 

MW polyDADMAC with a corresponding SMP turbidity of 2.02 NTU and at a 

zeta potential of 9.8 mV with 750 mg.l-1 the SMP turbidity was roughly the same 

at 2.22 NTU.  A high MW polymer will cause charge neutralisation as well as 

bridging between the particles producing larger, more loosely packed flocs.  

Again, if too much polymer is dosed then the long tail of the polymer attaches to 

too many sites on the target particle and wraps itself around, leaving no free 

sites to bridge to other particles – the “hair ball” effect (Ebeling et al., 2005).  For 

example for the biomass jar test a minimum SMP turbidity of 0.288 NTU was 

reached at the neutral zeta potential and then this increased as the dose 

increased to a maximum of 7.33 NTU. 

 

The washing powder dosed biomass showed a similarly erratic response; a 

small dose of 10 mg.l-1 of the polyDADMAC across the molecular weight ranges 

caused a large increase in the SMP turbidity of between 3.5 NTU (high 

molecular weight polyDADMAC) and 8.1 NTU (low molecular weight 
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polyDADMAC).  The minimum SMP turbidity, across the molecular weight 

range, only coincided, in this case, with the neutral zeta potential point for the 

high molecular weight polyDADMAC, and the minimum SMP turbidities 

observed were greater than those for the other three toxins apart from the 

medium molecular weight polyDADMAC where it was considerably lower 

(1.27±0.19 NTU for washing powder compared with 3.68±0.04 NTU for biomass 

only, 2.49±0.16 NTU for zinc sulphate, 4.52±0.09 NTU for sodium dodecyl 

sulphate and 5.9±0.16 NTU for bleach).    The surfactant action of the washing 

powder caused a greater increase in SMP turbidity initially compared to the 

other toxins (normally 7 – 8 NTU compared to 2-4 NTU for the other toxins) and 

this had an effect on the action of the polymer, coupled with the vigourous 

stirring present for the duration of the test.   

 

The biomass dosed with bleach responded differently to the different molecular 

weight polyDADMACs (Figure 8-6).  At 10 mg.l-1 concentration the very low and 

high molecular weight doses caused an increase in the SMP turbidity (from 

8.73±0.02 NTU to 14.5±0.02 NTU for very low MW and 16.4±0.12 NTU to 

26.4±0.34 NTU for high MW), whereas, the low and medium molecular weight 

doses caused a decrease (12.1±0.09 NTU to 7.53±0.02 NTU low MW and 

10.8±0.03 NTU to 9.3±0.3 NTU for medium MW).  In spite of this initial 

response the high molecular weight polyDADMAC dose produced the minimum 

SMP turbidity (Table 8-4) of 1.85±0.09 NTU before increased doses forced a 

large increase to levels of around 20 NTU.   

Table 8-4 – Minimum observed SMP turbidity, maximum SMP turbidity removal and 
corresponding concentration of polyDADMAC. 

Molecular  
weight 
range 

Toxin Minimum 
SMP turbidity  
(NTU±S.E.) 

Max. SMP 
turbidity 
removal 
(%) 

Coincident with  
neutral zeta  
potential point? 

Concentration 
(mg.l

-1
) 

very low  biomass 0.645±0.05 89 � 100 

 ZnSO4 4.05±0.06 59 x 100 

 SDS
1 

6.68±0.09 49 � 500 

 WP
2 

8.45±0.13 56 x 500 

 bleach 5.93±0.15 32 x 100 

low  biomass 4.05±0.03 57 x 1000 

 ZnSO4 2.8±0.09 66 � 100 

 SDS 4.22±0.04 54 x 500 

 WP 5.87±0.1 64 x 500 

 bleach 4.1±0.01 66 � 100 
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Molecular  
weight 
range 

Toxin Minimum 
SMP turbidity  
(NTU±S.E.) 

Max. SMP 
turbidity 
removal 
(%) 

Coincident with  
neutral zeta  
potential point? 

Concentration 
(mg.l

-1
) 

medium  biomass 3.68±0.04 64 x 10 

 ZnSO4 2.49±0.16 64 � 100 

 SDS 4.52±0.09 36 � 100 

 WP 1.27±0.19 95 x 500 

 bleach 5.9±0.16 45 � 100 

high biomass 0.288±0.01 96 � 100 

 ZnSO4 2.01±0.15 69 � 100 

 SDS 0.937±0.11 88 � 100 

 WP 2.67±0.39 86 � 500 

 bleach 1.85±0.09 89 � 100 
1
SDS = sodium dodecyl sulphate 

2
WP = washing powder 

 

8.2.4 Effect of type of chemical on removal of fouling potential. 

In terms of the parameters monitored, zeta potential and SMP turbidity the 

polymers produced a better overall result than the metal salt or powdered 

activated carbon.   The powdered activated carbon had no effect on the zeta 

potential as was expected as the action is not conducive to destabilising the 

electrostatic effect but rather an adsorption of colloids.  Once the Ferripol XL 

reached a neutral zeta potential there was no further increase and in fact the 

metal salt started to precipitate out and increase the SMP turbidity. 

 

At the initial concentrations tested the biomass dosed with washing powder did 

not reach a neutral zeta potential with 1,000 mg.l-1 concentration of MPE50 

therefore further tests were carried out to ensure that the neutral zeta potential 

point had been passed (Table 8-5). 

Table 8-5 – Additional concentrations for MPE50 to gain a neutral zeta potential with biomass 
dosed with washing powder. 

Concentration Zeta potential 
(mV) 

SMP turbidity 
(NTU) 

1500 4.3±0.8 0.577±0.04 
2000 1.8±1.0 0.766±0.04 
2500 3.7±0.4 0.437±0.1 
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(a)          (b) 

Figure 8-8 – Zeta potential and corresponding SMP turbidity for (a) high MW polyDADMAC   and (b) powdered activated carbon as coagulant for the four 
toxins (■) washing powder, (▲) bleach, (x) SDS, (●) ZnSO4 against a control: (�) biomass. 
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Figure 8-9 - Zeta potential and corresponding SMP turbidity for (a) Ferripol XL and (b) MPE50 as coagulant for the four toxins washing powder(■), 
bleach(▲),SDS(x) and ZnSO4 (●) against (�) biomass. 
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Analysis of the dose required to reach a neutral zeta potential and the gradient 

of the dose response curves reveals that there is some difference between the 

chemicals (Table 8-6).  In general the zeta potential versus concentration was a 

linear response apart from the biomass dosed with washing powder and MPE50 

which produced a quadratic response.  The maximum gradient was taken over 

the steepest part of the curve in each instance, over a minimum of three data 

points.  A steeper gradient translates into a potentially lower concentration of 

chemical needed to destabilise the colloids present in the biomass matrix, to 

allow their capture in the resultant larger flocs, in turn minimising the fouling 

potential in an MBR. 

Table 8-6 - Analysis of dosing of chemicals with respect to zeta potential. 

Chemical Toxin  
dosed 

Estimated dose  
for neutral zeta  
potential (mg.l

-1
) 

Max Gradient 
(mV.(mg.l

-1
)
-1

) 
R

2
 value 

High MW.  biomass 86 0.085 0.981 
polyDADMAC ZnSO4 111 0.057 0.956 
 SDS 

(1) 
139 0.064 0.935 

 WP 
(2) 

360 0.044 0.966 
 bleach 138 0.079 0.958 

Ferripol XL  biomass 100 0.042 0.880 
 ZnSO4 194 0.041 0.921 
 SDS 183 0.054 0.737 
 WP 270 0.059 0.964 
 bleach 200 0.046 0.719 

MPE50 biomass 403 0.031 0.961 
 ZnSO4 343 0.028 0.985 
 SDS 809 0.017 0.946 
 WP 

(3) 
1370

 
0.018

 
0.993 

 bleach 413 0.028 0.921 
1 
SDS = sodium dodecyl sulphate 

2 
WP = washing powder 

3
 Including additional data points 

The washing powder increased the dose of chemical needed to reach a neutral 

zeta potential in all tests, compared with the biomass.  In the case of high MW 

polyDADMAC the dose for biomass only was 86 mg.l-1 compared with 360 mg.l-

1 with washing powder addition, for Ferripol XL the dose for biomass dosed with 

washing powder was over twice that for biomass alone (270 mg.l-1 versus 100 

mg.l-1) and with MPE50 as the additive chemical the dose was increased by 

over three times from 403 mg.l-1 to 1370 mg.l-1.  The other toxins increased the 

respective doses needed but never by more than double, apart from the 

biomass dosed with zinc sulphate which had a lower concentration of MPE50 

compared to that of the biomass of 343 mg.l-1 compared to 403 mg.l-1. 
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SMP turbidity removal rates varied greatly over the tests performed with the 

best removal rate being 96% for both the biomass with high MW polyDADMAC 

added and biomass dosed with sodium dodecyl sulphate with MPE50 added, 

and the worst being 7% for biomass dosed with washing powder with Ferripol 

XL added (Table 8-7).       

Table 8-7 - Minimum observed SMP turbidity, maximum SMP turbidity removal and 
corresponding concentration of added chemical. 

Chemical Toxin Minimum 
SMP 
turbidity  
(NTU±S.E.) 

Max. SMP 
turbidity 
removal 
(%) 

Coincident 
with neutral 
zeta potential 
point? 

Concentration 
(mg.l

-1
) 

high MW  biomass 0.288±0.01 96 � 100 

polyDADMAC ZnSO4 2.01±0.15 69 � 100 

 SDS
1 

0.937±0.11 88 � 100 

 WP
2 

2.67±0.39 86 � 500 

 bleach 1.85±0.09 89 � 100 

Ferripol XL biomass 7.21±0.20 28 x 250 

 ZnSO4 8.74±0.57 41 � 500 

 SDS 5.40±0.3 67 � 100 

 WP 12.4±0.3 7 � 250 

 bleach 7.28±0.07 44 x 500 

PAC biomass 13.0±0.1 51 N/A 1000 

 ZnSO4 19.5±0.3 11 N/A 750 

 SDS 11.0±0.2 17 N/A 100 

 WP >control N/A N/A N/A 

 bleach >control N/A N/A N/A 

MPE50 biomass 0.927±0.03 91 � 500 

 ZnSO4 0.565±0.06 90 � 500 

 SDS 1.76±0.43 96 � 750 

 WP 0.437±0.10 94 x 2500 

 bleach 0.359±0.02 97 � 500 

 

In two cases (washing powder and bleach with powdered activated carbon 

added) the SMP turbidity increased above that of the control (biomass with toxin 

added).  On the whole, the two polymers (high MW polyDADMAC and MPE50) 

added to the biomass performed better than ferric sulphate or PAC.  However, 

the high MW polyDADMAC reached removal rates of >85% in three instances 

with a concentration of just 100 mg.l-1 compared to the MPE50 which needed 

doses of 500 – 2500 mg.l-1 for >90% removal.  The levels of MPE50 for three 

out of the four toxins are similar to those reported by Collins et al. (2006), who 

found concentrations of between 400 – 600 mg.l-1 were needed to enhance the 

flux by twofold, in a membrane bioreactor running at steady state.  Iversen et 
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al., (2008) and Koseoglu et al., (2008), reported an optimum dose of 500 mg.l-1 

of MPE50 for MLSS concentrations of 15 and 8-10 g.l-1 respectively.  In the 

tests carried out in this study the washing powder has increased the 

concentration needed to reach a neutral zeta potential to around five times 

these levels.    
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9 Discussion 

Key observations from the work were: 

1. The highest level risks identified from the Microtox and respirometry were 

identified for the bleach based household products, the hydrogen 

peroxide and sodium hypochlorite. Secondary risks from washing up 

liquids containing specific antimicrobial agents or essential oils were also 

identified. Overall, 11 out of 19 of the household products were likely to 

be discharged at levels that would exceed the EC50 values on a weekly 

basis. 

2. No identifiable pattern was observed between the toxicity within a 

product group and the ingredients of the products and/or the cost or 

environmental status of the products. In particular, complete product 

toxicity could not be inferred from the individual ingredients and thus 

makes whole product testing critical for any assessment. Microtox 

represented a more sensitive system giving more conservative EC50 

values than the respirometry by two orders of magnitude and so 

potentially acts as a conservative screening tool.  

3. The impact of the toxic shocks varied depending on the scales of the 

system considered. In the case of the porous pots, the impacts were 

principally observed in relation to effluent turbidity, effluent COD, effluent 

ammonia, and the potential foulants of SMP turbidity and SMP 

carbohydrates and proteins. Whereas in the case of the MBR shocked 

with washing powder the impacts were principally observed in relation to 

an increase in effluent COD, effluent turbidity, conductivity, SMP turbidity 

and SMP carbohydrates and proteins. 

4. Remediation of the impact of increase in turbidity could be effectively 

managed through polymer addition. MPE50 (cationic polymer) was 

observed to be more effective than polyDADMAC and the efficacy 

increased in general as the MW of the polymer increased. Application of 

MPE50, for instance, enabled a 90% removal of turbidity irrespective of 

the toxin added. 
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The overall implications of these observations on the operation of an MBR for 

urban water reuse are that chemical shock loads represent a key risk to both 

effluent compliance and sustainable membrane operation.   

 

The toxic effects predicted by the assessment using Microtox and respirometry 

were not observed in the biological systems. For illustration the case study 

comparing washing powder and bleach will be considered. The washing powder 

had an EC50 value of 1400 ppm, obtained by respirometry, which was far 

greater (less toxic) than the EC50 of 480 ppm for bleach. However, the impact of 

the washing powder on the system was evident even at the much lower dose of 

500 ppm compared with 400 ppm dose for bleach, which showed little or no 

effect. The differences are related to the nature of biomass where the 

susceptibility to toxins is reduced due to the protective nature of excreted 

extracellular polymeric substances.  In conjunction, the impact of toxins needs 

to be considered in relation to the amount of substrate available. For instance, 

an investigation into the effects of substrate concentration revealed that, with a 

constant toxin concentration (in this case 0.4 ml.l-1 bleach), the higher the 

concentration of substrate, the lesser the effect on the relative oxygen uptake 

rate (Figure 9-1). The consequence of this is that in continuously fed reactors 

(porous pot, MBR) the constant supply of substrate is reducing the impact of the 

toxic shock, whereas, the respirometry is a batch fed system with a fixed 

amount of substrate and hence more sensitive to the shock load.  Ultimately this 

means the translation of toxicity from batch to continuous systems is a complex 

and difficult process and potentially limits the importance of batch toxicity tests 

over and above simple ranking.  
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Figure 9-1 – Effect of varying substrate concentration on oxygen uptake with a constant toxin 
concentration. 

 

Comparison of the impact of the toxic shocks on effluent quality at both porous 

pot (bench scale) and MBR (pilot scale) demonstrated similar rankings of 

effected variables but with different magnitudes. No significant correlation 

between changes in effluent quality and SMP were observed. For instance, the 

SMP turbidity did not follow the effluent COD or turbidity response for the 

porous pot trials or the MBR trials, but increased rapidly within the first hour 

after dosing, in line with the SMP carbohydrates and proteins (Figure 9-2 to 

Figure 9-1).  Reid (2005) demonstrated a positive correlation of SMP turbidity 

with SMP carbohydrate (Pearsons coefficient of 0.81) and a negative correlation 

of SMP carbohydrate with permeability (Pearsons coefficient of -0.42) for MBR 

biomass experiencing high salinity. The release of potential foulants peaked 

one hour after dosing for both the porous pots and the MBR even though both 

had different HRTs of 6 hours and 11 hours respectively, whereas the effluent 

COD and effluent turbidity peaked after 1 HRT for the porous pots and after 2 

HRTs for the MBR. Proteins have been shown to be instrumental in floc 

formations in activated sludge systems (Dignac et al., 1998, Bura et al., 1998) 
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with extracted extracellular polymer substances being composed of 75% 

proteins.  The rapid increase seen after the washing powder dose is likely to be 

the result of the deflocculation or break up of the biomass.  The increase in 

effluent turbidity that followed several hours after is likely to be these smaller 

particles being washed from the system.    
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Figure 9-2 – comparison of effluent COD (■, 

mg.l-1) effluent turbidity (♦, NTU)  
and SMP turbidity (▲, NTU) for washing 
powder dosed into the porous pots. 

Figure 9-3 – comparison of proteins (■,mg.l
-1

), 
carbohydrates (●, mg.l

-1
) and SMP turbidity 

(▲, NTU) for washing powder dosed into the 
porous pots. 

Figure 9-4 – comparison of effluent COD (■, 

mg.l
-1

) effluent turbidity (♦, NTU) and SMP 
turbidity (▲, NTU) for the pilot MBR. 

Figure 9-5 – comparison of proteins (■,mg.l
-1

), 
carbohydrates (●, mg.l

-1
) and SMP turbidity 

(▲, NTU) for washing powder dosed into the 
pilot MBR 

 

Fouling was not observed in this particular pilot plant for the maximum SMP 

carbohydrate concentration observed of 28 mg.l-1 (washing powder trial), 

however, carbohydrates have been identified as the major component in 

membrane fouling (Le-Clech et al., 2006) and a linear relationship was 

observed for carbohydrate concentration and fouling rate in an MBR treating 

municipal wastewater with an SRT of 8 days from 5 – 15 mg.l-1 carbohydrates 
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(Lesjean et al., 2005).  This relationship was generally replicated for an MBR 

operating at unsteady state, in terms of organic loading, and a 15 day SRT, 

(Drews et al., 2006), but the data collected showed a large scatter around the 

linear correlation, with some deviations of more than 100%.  Concentrations in 

the range of 20-30 mg.l-1 resulted in a wide range of fouling rates of between 10 

-90 x1010 m.d-1, with the differences being attributed to varying fractions of 

carbohydrates resulting from the unsteady state operation which have varying 

impacts on fouling.   

 

Overall the significance of such events is seen through a reduction in the reuse 

applications that can be considered. At steady state, the MBR would be suitable 

for Classes 1, 2 and 4 for COD, turbidity, ammonia and conductivity.  The 

average pH of 6.4 would have been in the lower limits for Classes 1 and 2 but is 

too low for Class 4 (industrial cooling water). After dosing with the toxins the 

effluent would only be suitable for Class 1 use, however, the effluent turbidity 

would increase the chlorine demand required for downstream disinfection with a 

maximum effluent turbidity of 18.5 NTU. As a consequence, applications that 

identify a potential risk of chemical shock need to include preventative or 

remediative solutions to maintain the application to classes 2 and 4. This 

suggests the need for risk assessments to incorporate potential chemical 

shocks within their consideration if the technology is to be used for water reuse 

applications.  
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10 Conclusions 

10.1 Microtox and respirometry 

• 32 household products and industrial substances were tested.  10 

household products and 6 industrial substances were identified that 

present a risk to biological systems. 

• Both Microtox and respirometry were most sensitive to sodium 

hypochlorite and hydrogen peroxide.   

• No clear pattern of effect was observed for household products between 

type of product, cost differential or environmentally friendly or non 

environmentally friendly. 

• The Microtox method was more sensitive than the respirometry by two 

orders of magnitude. 

• A consistent ranking of toxicities was not possible between Microtox and 

respirometry. 

10.2 Porous pot trials 

• Foaming was identified as a risk to the system. 

• Dosing of some of these toxins into a bench scale biological reactor 

caused degradation of the effluent quality and increases in potential 

foulants. 

• No acute toxicity was observed, however there was a physical interaction 

with the biomass matrix.  

• Assessment of the toxicity by respirometry did not predict the impact on 

the biological system. 

• SMP turbidity proved to be a good indicator of SMP carbohydrate and 

SMP protein concentrations. 

10.3 MBR trials 

• Dosing of four of the toxins into a MBR caused degradation of the 

effluent quality and an increase in potential foulants. 
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• No fouling was observed in the specific pilot plant used. 

10.4 Chemical Mitigation of Fouling 

• Mitigation of the effects of the increase of SMP turbidity caused by toxin 

addition were possible with the addition of cationic polymers.   

• MPE50 and high MW polyDADMAC performed better compared to ferric 

sulphate and PAC in terms of SMP turbidity reduction, with >90% and 

>85% reduction respectively. 
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11 Further Work 

11.1 Bench scale 

Further investigation of the effects of a range of toxins from both a household 

and industrial origin should be carried out on a bench scale filtration rig to 

understand the impact on critical flux that the toxins have.  Quantification of the 

resultant levels of SMP turbidity and SMP carbohydrates and proteins are 

required to understand if there is a threshold level above which the fouling rate 

increases exponentially.   

 

The jar tests identified that the cationic polymers MPE50 and polyDADMAC 

were efficient at removing SMP turbidity.  Bench scale filtration trials would 

reveal if this is still valid in a continuous system.   

 

11.2 Pilot scale  

As dosing trials, of a small range of toxins, have been shown to cause 

perturbations in the system, further investigation, with different toxins or higher 

concentration of the toxins tested, would enhance the understanding of the 

limits under which the system can perform satisfactorily.   

 

Repetition of the dosing trials carried out on a pilot plant that is able to operate 

at higher fluxes, would further enhance understanding of the system.  

 

Addition of MPE50 and polyDADMAC at pilot scale would reveal the true 

efficiencies of these chemicals at mitigating the effects of chemical shock loads. 
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APPENDIX A – Household products ingredients list 
ALL PURPOSE CLEANER 
 

Mr Muscle APC Morrisons orange APC Ecover APC Nest APC 

Water, 
C11-15 pareth-7, 
Decyl glucoside, 
Tetrasodium 
EDTA, 
Perfume, 
PEG-4, 
Colourant. 

Aqua, 
Sodium xylenesulfonate, 
Industrial methylated spirits, 
Hexylene glycol, 
Alcohol ethoxylate, 
C9-11 alcohols, 
Tetrapotassium 
pyrophosphate, 
Parfum, 
Hydroxy ethyl cellulose, 
Formaldehyde, 
BHT. 

Water, 
Ethanol, 
Alkylpolyglycoside C10-16, 
Potassium soap of coco and olein fatty 
acids, 
Sodium octyl sulphate, 
Perfume, 
Limonene, 
Xanthum gum. 

Water, 
Soda crystals, 
Lavender essential 
oils, 
Bergamot essential 
oils. 
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SHAMPOO 
 

Pantene Pro V Morrisons Bettabuy  Naked Volumising Shampoo Henna Plus Natural Plus 

Water 
Ammonium laureth sulphate 
Ammonium lauryl sulphate 
Sodium chloride 
Glycol distearate 
dimethicone 
ammonium xylenesulfonate 
citric acid 
cetyl alcohol 
sodium citrate 
cocamide MEA 
polyquaternium 10 
parfum, 
hydrogenated polydecene, 
sodium benzoate, 
disodium EDTA, 
PEG-7M, 
Trimethylolpropane tricaprylate/tricaparte, 
DMDM hydantoin, 
Hexyl cinnamal, 
Tetrasodium EDTA, 
Panthenol, 
Panthenyl ethyl-ether, 
Benzyl salicylate, 
Butylphenyl methylpropional, 
Lysine HCL, 
Methyl tyrosinate HCL, 
Linalool, 
Limonene, 
Citronellol, 
Geraniol, 
Hydroxyisothexyl 3-cyclohexene, 
Carboxaldehyde, 
Histidine, 
Methylchloroisothiazolinone, 
Methylisothiazolinone, 
Tocopherol. 

Water, 
sodium chloride, 
sodium laureth sulfate, 
cocamidopropyl betaine, 
disodium EDTA, 
parfum, 
citric acid, 
sodium hydroxide, 
triethylene glycol, 
benzyl alcohol, 
propylene glycol, 
sodium benzoate, 
magnesium choride, 
magnesium nitrate, 
methylchloroisothiazolinone, 
methylisothiazolinone, 
hexylene glycol, 
Cl 19140, 
Cl 42090. 
 

Water, 
cocamidopropyl Betaine, 
Lauryl glucoside, 
Sodium Cocyl Apple Amino Acids, 
PEG-120 Methyl Glucose Diolate, 
Sodium Laurel Sarcosinate, 
Polyquarternium-16, 
Betaine, 
Inulin (Chicory), 
Parfum (Fragrance), 
Lactic acid, 
Butylene Glycol, 
Linalool, 
Sodium Lactate, 
Benzoic Acid, 
Helianthus Anuus (Sunflower) Seed Extract, 
Citronellol, 
Sodium Chloride, 
Dimethicone Copolyol, 
PEG/PPG-20/6, 
Dimethicone, 
Wheat Amino Acids, 
Geraniol, 
Magnesium Nitrate, 
Phenoxyethanol, 
Potassium Sorbate, 
Methylchloroisothiazolinone, 
Magnesium Chloride, 
Methylisothiazolinone. 

Water, 
cocamidopropyl betaine, 
isostearamide Mipa, 
citric acid, 
laureth-10, 
sodium laureth-11 carboxylate, 
sodium cocyl glutamate, 
sodium cocamphoacetate, 
decyl polyglucose, 
sodium magnesium silicate, 
betaine, 
sucrose laurate, 
paullinina cupana, 
humulus lupulus, 
lawsonia inermis, 
simondsia chinensis, 
prunus dulcis, 
panthenol, 
caprylyl glycol, 
xanthan gum, 
behenoyl Pg-trimonium chloride, 
maltodextrin, 
glycerin, 
levulinic acid, 
sodium levulinate, 
terpineol, 
sodium chloride, 
parfum. 
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SHOWER GEL 
 
Ecover Lavera Morrisons Shower Crème Original Source Mint and Tea Tree 

Water Water aqua aqua 
Fatty Alcohol Sulfate C10-16 Glycerin sodium laureth sulfate sodium laureth sulfate 
Alkyl Poly Glycoside C10-16 Coc Glucoside sodium chloride cocamide DEA 
Sodium Cocoamphoacetate Caprylyl/Capryl Glucoside cocamide DEA mentha arvensis leaf oil 
Sodium Octyl Sulfate Sodium Lauryl Sulfoacetate glycerin melaleuca alternifolia (tea tree) leaf oil 
Alkyl Poly Glycoside C8-14 Citrus Aurantium Dulcis 

(Orange) Flower Water 
cocamidopropyl betaine sodium chloride 

Glycol Distearate Hippophae Rhamnoides 
Extract 

parfum PEG-150 distearate 

Protein Hydrolysate Xanthum Gum glycol distearate sodium lactate 
Lactic Acid Alcohol cocamide MEA lauryl betaine 
Perfume Citrus Aurantium Amara 

(Bitter Orange) Oil 
laureth 10 disodium EDTA 

Guar Hydroxypropyl Trimonium 
Chloride 

Fragrance citric acid styrene/acrylates copolymer 

Aloe Barbadensis Extract Limonene benzyl alcohol sodium lauryl sulfate 
Citric Acid  magnesium nitrate lactic acid 
Sodium Hydroxymethyl Glycinate  methylchloroisothiazolinone lavandula angustifolia (lavender) oil 
Limonene  methyllisothiazolinone limonene 
Eugenol  magnesium chloride linalool 
  hexylene glycol magnesium nitrate 
  linalool methylchloroisothiazolinone 
  hexyl cinnamal magnesium chloride 
  butylphenyl methylpropional methyllisothiazolinone 
  CI 16035 Cl 42090 
  CI 19140 CI 19140 

 
 
 
 
 
 



205 
 

 
 
WASHING POWDER 
 

Ecover Persil Cyclon NEST 

Sodium Carbonate Pentasodium Triphosphate Pentasodium Triphosphate soda crystals (sodium carbonate) 

Zeolite Sodium Silicoaluminate Sodium carbonate Peroxide vegetable flakes  

Sodium Cocoate Sodium Carbonate Peroxide Sodium Alkyl Sulphate   

Sodium Bicarbonate Sodium Dodecylbenzenesulfonate Sodium Carbonate  

Sodium Citrate Aqua Sodium Silicate  

Coco Glucoside Sodium Carbonate Microcrystalline cellulose  

Sodium Sulfate C12-15 Pareth-7 Sodium Carbonate  

Sodium Poly Asparaginate Tetraacetyl Ethylene Diamine C12-15 Pareth-2  

Sodium C12-18 Alkyl Sulfate Sodium Acetate TAED  

Sodium Disilicate Ceteareth-25 Parfum  

Capryl Glucoside Sodium Silicate Polyaromatic ester and sodium 
sulfate 

 

Lauryl Polyglucose Sodium Stearate Optical Brightener  

Sodium Cetearyl Sulfate Ethylene Diamine Tetra Methylene Phosphonic Acid 
Ca/Na salt 

Diethylenetriamine 
Pentamethylene Phosphonic acid 

 

Cellulose Gum Sodium Bentonite Aqua  

Trisodium Ethylenediamine Disuccinate Maize Starch C12-15 PARETH-2  

Methyl Cellulose Cellulose Gum CI 74160  

Magnesium Sulfate Sodium Sulfate Hexyl Cinnamal  

Ethoxylated Fatty Alcohol C12-18 Parfum   

 Dimorpholinopyridazinone   

 Sodium Acrylic Acid/MA Copolymer   

 Simethicone   

 Sodium Chloride   

 Sodium Polyacrylate   

 Glyceryl Stearate   

 Sodium Polyaryl Sulfonate   

 Aloe Barbadensis   

 CI 74260   
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WASHING UP LIQUIDS 
 

Morrisons Ultra Persil Ecover NEST 

Aqua Aqua Water vegetable based soap 

Sodium Lauryl Sulfate Magnesium Laureth Sulfate Sodium Lauryl Ether Sulfate malt solution 

Sodium Laureth Sulfate Sodium Laureth Sulfate Alkyl Poly Glycoside C10-16 fruits 

Lauryl Glucoside Cocamidopropyl Betaine Sodium Chloride plants 

Sodium xylenesulfonate Sodium Sulfate Citric Acid essential oils 

Alkyldimethyl Amine Oxide  Sodium Chloride Perfume 

Cocamidopropyl Betaine Disodium Citrate Limonene 

Undeceth-4 Parfum Protein Hydrolysate 

5-Chloro-2-methyl-2H-isothiazol-3-one 
/2-methyl-2H-isothiazol-3-one  

Limonene Aloe Barbadensis Extract  

(Ethylenedioxy)-diamethanol Monosodium Citrate Citral 

 Parfum Linalool 2-bromo-2-nitropropane-1,3-diol  

Formaldehyde Citral 

2-Bromo-2-Nitropropane-1,3-Diol Methylchloroisothiazolinone 

Citric Acid Methylisothiazolinone 
  CI 19140 CI 19140 

CI 35780 CI 15985 

 
BLEACHES 
 

Domestos Morrisons thick NEST 

Aqua less than 5% sodium hypochlorite 6% hydrogen peroxide 

Sodium Hypochlorite less than 5% anionic surfactants water 

Sodium Chloride less than 5% limescale deterent  

Cocamine Oxide   

Sodium Hydroxide   

Sodium Laurate   
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APPENDIX B – Microtox dose response curves. 
ALL PURPOSE CLEANERS 
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Mr Muscle Orange APC                                      Morrisons Orange APC 
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SHAMPOO 
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-10

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5

E
ff

e
c

t (
%

)

Concentration (ml.l-1)

5 mins 15 mins

  

0

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5

E
ff
e

c
t (

%
)

Concentration (ml.l-1)  
Morrisons Bettabuy Shampoo                                       Pantene Pro V 



209 

 

SHOWER GEL 
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Morrisons Shower Crème        Original Source Tea Tree and Mint 
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WASHING POWDERS 
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           Ecover Washing Powder                      NEST washing powder 
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            Morrisons Cyclon                  Persil Aloe Tablets 
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WASHING UP LIQUID 
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Morrisons Ultra Washing Up Liquid            Persil Washing Up Liquid 
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INDUSTRIAL COMPOUNDS 
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APPENDIX C – Respirometry dose response curves. 
ALL PURPOSE CLEANER 

-160

-140

-120

-100

-80

-60

-40

-20

0

0 20 40 60 80 100 120 140 160 180

E
ff
e

c
t (

%
)

Concentration (ml.l-1) -60

-40

-20

0

20

40

60

80

100

0 50 100 150 200

E
ff
e

c
t (

%
)

Concentration (ml.l-1)
  

Ecover APC          Morrisons APC 

-5

0

5

10

15

20

25

0 20 40 60 80 100 120

E
ff
e
c
t (

%
)

Concentration (ml.l-1)
-40

-20

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

E
ff
e
c
t (

%
)

Concentration (ml.l-1)

 
Mr Muscle APC         Nest APC  



215 

 

BLEACH 
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SHAMPOO 
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Henna Plus Shampoo respirometry.              Morrisons Bettabuy shampoo. 
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SHOWER GEL 
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Ecover shower gel.        Lavera shower gel. 
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Morrissons Shower Creme.            Original Source shower gel. 
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WASHING POWDER 
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Ecover washing powder.      Morrisons Cyclon washing powder. 
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Nest washing powder.       Persil washing powder. 
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WASHING UP LIQUID 
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Nest washing up liquid       Persil washing up liquid 
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INDUSTRIAL 
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