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ABSTRACT 

This dissertation describes the creation of a new integrated Information Technology (IT) 

system that assisted in the collection of data about the behaviour of website visitors as 

well as sales and marketing data for those visitors who turned into customers. A key 

contribution to knowledge was the creation of a method to predict the outcome of visits 

to a website from visitors’ browsing behaviour. 

A new Online Tracking Module (OTM) was created that monitored visitors’ behaviour 

while they browsed websites. When a visitor converted into a customer, then customer 

and marketing data as well as sales activity was saved in a new Customer Relationship 

Management (CRM) system that was implemented in this research.  

The research focused on service websites. The goal of these websites was to promote 

products and services online and turn enquiries into offline sales. The challenge faced 

by these websites was to convince as many visitors as possible to enquire.  

Most websites relied on Search Engine Optimisation (SEO) and Pay Per Click (PPC) 

advertising for traffic generation. This research used PPC advertising to generate traffic. 

An important aspect of PPC advertising was landing page optimisation. The aim of 

landing page optimisation was to increase the number of visitors to a website who 

completed a specific action on the website. In the case of the websites investigated in 

this research the action consisted of completing and sending an enquiry form from the 

websites.  
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The research looked for meaningful commonalities in the data collected by MS CRM 

and the OTM and combined this with feedback from the collaborating company’s sales 

team to create two personas for website visitors who had enquired. Techniques for 

improving landing pages were identified and these led to changes to landing pages. 

Some of these changes were targeted at a particular visitor persona. The effect of 

changes made to a landing page was measured by comparing its conversion rate and 

bounce rate before and after the changes. 

Behavioural data collected by the OTM was then analysed using a data mining engine 

to find models that could predict whether a user would convert based on their browsing 

behaviour. Models were found that could predict the outcome of a visit to a service 

website.  
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CHAPTER 1  

INTRODUCTION 

“The Internet has brought about a fundamental change in the way users generate and 

obtain information, thereby facilitating a paradigm shift in consumer search and 

purchase patterns” (Ghose and Yang, 2008b).  

At the time of writing, the Internet had become a powerful advertising medium and an 

online presence was becoming essential for a successful sales and marketing strategy.  

Online advertising had grown in popularity since its advent. Online advertising in the 

United Kingdom (UK) had a market share of 24.3% and was worth £1,968.6m in the first 

half of 2010. During that time, search advertising was the most popular online 

advertising format, accounting for 60% of the total online advertising spend (IAB UK, 

2010). 

The success of online advertising campaigns depended on the ability of websites to 

convert traffic generated by campaigns into customers. Implementing a website that had 

a high conversion rate involved designing web pages and browsing experiences that 

satisfied the needs of visitors. The design process was iterative and aimed to optimise a 

website by changing design elements in a controlled and measurable manner.  

An important aspect of online advertising was to identify target customers, understand 

who they were and to use that knowledge to create advertising campaigns and design 

websites. It was also important to gather data to gain insight into how visitors behaved 

on websites so as to optimise their experience and encourage conversion. 
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1.1. Research Aims and Objectives 

The aim of this research was to create new software systems to investigate whether 

conversion on a service website could be predicted based on visitors’ behaviour on 

such a website. In addition, the research aimed to optimise Pay Per Click (PPC) 

advertising campaigns and landing pages so as to increase online conversion. Specific 

objectives were to: 

• Investigate existing Customer Relationship Management (CRM) software. 

• Implement a CRM strategy and software system. 

• Customise and extend a CRM system by creating new user interfaces and new 

modules to support business processes. 

• Investigate website design, navigation design and identify ways of measuring 

website performance. 

• Create a new dynamic website.  

• Create a new online tracking system that recorded detailed visitor activities and 

behaviour on a website. 

• Investigate online advertising, Pay Per Click advertising and landing page design 

and optimisation. 

• Create new PPC campaigns and landing pages.  

• Use data collected in a CRM system and an online tracking system to 

understand the needs of website visitors and customers and to optimise PPC 

campaigns and landing pages so as to increase online conversion. 

• Investigate factors that influenced visitors’ behavior and their relation to 

conversion. 
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• Find ways to infer whether a visitor would convert based on their behavior on a 

website. 

1.2. Methodology 

CRM systems were investigated and the Microsoft Dynamics Customer Relationship 

Management 3.0 (MS CRM) system was chosen for implementation. The system was 

customised and extended in order to enable it to record customer data throughout a 

sales and product delivery cycle. A new Online Tracking Module (OTM) was 

implemented on existing websites so as to track visitors’ activities. Data collected by the 

OTM was integrated with data collected by MS CRM so that a history of online 

behavioural activity and sales activity for website visitors who became customers was 

captured. PPC advertising campaigns were created to generate traffic to existing 

websites. Using the data collected about visitors and customers together with feedback 

from the sales department, basic visitor personas were created. These personas 

provided some understanding regarding who prospective customers were as well as 

their needs. Using these personas, landing pages were optimised in order to increase 

online conversion.  

1.2.1. CRM 

The collaborating company was using the GoldMine Business Contact Manager 

(GoldMine) system at the beginning of the research to manage some of its CRM 

activities. GoldMine was not a CRM system; it was a contact management system. It 

was difficult to customise and as a result collected little information about customers. 

The data that was collected provided limited insight into customers or their needs. Also 

the system was not suitable for managing customer relationship efficiently. Therefore, a 

new CRM system was needed for the research. 
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Requirements for a new CRM system were derived from the collaborating company’s 

CRM strategy and business processes as well as feedback obtained from its staff. 

Several CRM systems were investigated, including MS CRM, SugarCRM and the latest 

version of GoldMine. MS CRM was chosen for implementation as the out-of-the-box 

system met most of the requirements that had been specified. The rest of the 

requirements could be met by developing custom add-ons for MS CRM. 

Once MS CRM was deployed at the collaborating company, then custom modules were 

implemented to support business processes and meet requirements that the out-of-the-

box product could not. Four new modules were implemented: a Customer Satisfaction 

Survey (CSS) module, Project Management module, Quality Control module and 

Opportunity Marker module.  

Reports and dashboards were implemented. They used the data stored in MS CRM to 

display information about key business performance indicators (KPI’s). The data 

collected by MS CRM was richer than had been available in GoldMine and was used to 

extract knowledge about customers. Integration with other IT systems was investigated 

but not carried out due to the costs involved. 

1.2.2. Websites 

At the beginning of the research, websites at the collaborating company were static and 

did not track visitor activity. As a result little was known about the type of traffic and 

visitors that online marketing campaigns generated.  

A first version of a new Online Tracking Module (OTM) was implemented to capture 

visitors’ marketing and behavioural data. This data was integrated with data collected by 
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MS CRM and was used to identify and optimise advertising campaigns that generated 

the types of customers that the collaborating company was targeting.  

A new back-end was implemented for the collaborating company’s main website so as 

to enable it to support dynamic content and navigation personalisation. The 

functionalities required to achieve this included the ability to infer customer interest from 

browsing behaviour, dynamic menu generation, dynamic content generation, dynamic 

inclusion of pictures and dynamic web page generation. 

The first version of the OTM was built around the structure of existing websites and as a 

result some aspects of the implementation lacked flexibility. When the new backend of 

the main website was designed and implemented, it presented an opportunity to re-

design some parts of the OTM as well as implement new functionality. The new version 

of the OTM could differentiate between new and returning visitors, used sessions to 

identify activities related to each returning visit and collected more details about visitors’ 

behavioural activities.  

After the implementation of the new version of the OTM, the front-end of the new 

dynamic main website was re-designed to give the website a professional and industry-

appropriate look. During this re-design, the website’s content was updated and its main 

menu was re-structured. 

1.2.3. Pay Per Click advertising  

Most Web users relied on search engines to find what they were looking for on the 

Internet. PPC advertising was a form of “text based online advertising” (Burns, 2005),  

where an Internet user entered keywords into a search engine and an advertisement 

was displayed on the top or the sides of a results page. 
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Google was one of the most popular search engines. In 2009, Google owned 82% of 

the global search engine market share (Netmarketshare, 2010). With such global reach, 

anyone advertising through Google’s PPC service (called Google AdWords) was likely 

to reach a large number of potential customers. 

The collaborating company provided two types of services: design and manufacturing. 

These services were advertised in the United Kingdom (UK) and United States (US). 

Each service had an advertising campaign and each campaign was duplicated and run 

in the US and the UK. 

Each campaign had several of Ad Groups. The Ad Groups were created around the 

different sub-types of the design and manufacturing services for example plastic 

moulding, plastic manufacturing, mechanical design and electronic design. 

The research created several Google AdWords campaigns to drive traffic to the 

collaborating company’s websites. A campaign could have one or more advertisement 

groups. Organising campaigns into smaller and separate advertisement groups that 

were based around products, services or goals allowed for better targeting and 

customisation. Each advertisement group consisted of a set of keywords, text 

advertisements and landing pages that were aimed at a specific audience.  

Google AdWords provided a number of performance measures for evaluating the 

effectiveness of campaigns, advertisement groups, keywords, advertisements and 

landing pages. Some of these measures were used during this research. They included: 

number of times an advertisement was displayed, click-through rate, cost per 

conversion, number of conversions and conversion rate. 
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In order to optimise the performance of advertisement groups, several experiments 

were conducted. First, text advertisements were tested to identify the best ones. The 

effectiveness of an advertisement was measured by its click-through rate (CTR). Then, 

changes were made to the landing pages of advertisement groups in order to increase 

conversion. 

1.2.4. Landing page optimisation 

In order to convert traffic generated by online advertising campaigns into customers, 

landing pages had to be optimised. Landing Page Optimisation (LPO) was achieved by 

improving the content and design of landing pages so that they appealed to targeted 

visitors and encouraged them to enquire about the services that were advertised. 

Data collected by MS CRM and the OTM, together with feedback from the collaborating 

company’s sales team were used to create two basic visitor personas for prospective 

customers. The personas attempted to identify who visitors were, what they were 

looking for, what problems they were trying to solve and where they were in the buying 

cycle.  

Landing page design was investigated and elements that could influence visitor 

behaviour were identified. Some of the elements identified were used to implement new 

landing pages that could appeal to visitors who fitted the personas that had been 

created. Several experiments were conducted to test the performance of these new 

landing pages. 

Design elements that were identified and implemented included: 

• Using content to create targeted landing pages. 
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• Reinforcing and extending an advertisement by ensuring that a landing page 

provided what the advertisement promised and used keywords from the 

advertisement in its title. 

• Improving visual design. 

• Complying with usability guidelines when writing and structuring content.  

• Visitor segmentation. 

1.2.5. Experiments and Results 

Data collected by the OTM about the way visitors interacted with the collaborating 

company’s main website was analysed to find models that could predict whether a 

visitor would convert based on their browsing behaviour. Models were also sought to 

identify whether the length of search keywords could indicate readiness to convert 

based on a search-conversion model proposed in this research. 

The data mining process was implemented in four stages:  

• Population sampling – Research identified the criteria used to select the data that 

would be used for data mining. 

• Data retrieval – Behavioural data was extracted from the OTM database. 

• Data cleaning and transformation – Errors and inconsistencies in the data were 

identified and removed. A Visual Basic for Applications (VBA) macro was then 

used to transform the data into behavioural attributes that could be used by a 

data mining tool to find rules and patterns. 

• Knowledge discovery – A data mining tool was used to analyse the data to find 

models that could predict conversions.  
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Several explorations of the data were carried out using three different prediction 

algorithms. A Neural Networks algorithm found the most accurate models for predicting 

conversion.  

Search keyword length distribution was analysed. For the purposes of this research, 

search keyword length was defined as the number of words found in a visitor’s search 

keyword. A search keyword could be a single word or a phrase that a visitor had typed 

into a search engine and that had led them to the websites used in this research.  

Some evidence was found to support two hypotheses proposed by this research. The 

first hypothesis suggested that longer search keywords indicated that Web users were 

more ready to convert. The second hypothesis suggested that shorter search keywords 

indicated that Web users were less ready to convert.  

Relevancy attributes for search keywords were derived using a scoring method, and 

then used to generate new models. However, the new attributes did not improve the 

prediction accuracy of these models. 

The accuracy of the models found by Neural Networks was better than the accuracy of 

a naive prediction model. A naïve prediction is a model which given 2 outcomes 0 and 1 

will predict all outcomes as either all 1 or all 0. A naïve prediction model is one that has 

not learnt from training data. It is the best guess that can be made without any other 

information. It was concluded that Neural Networks could be used to derive models from 

behavioural data to predict conversion. However, because the Neural Networks did not 

display the weights associated with input attributes, it was difficult to know how 

individual behavioural attributes influenced conversion. Nevertheless, a new method 

was created to extract attributes from behavioural data and use them to predict the 

outcome of visits on a service website. 
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1.3. Research Claims 

Research into CRM systems, website design, online advertising, landing page 

optimisation and online customer behaviour was undertaken. The research work has 

resulted in the following achievements: 

• A customised Customer Relationship Management (CRM) system was created 

that included new custom modules to: 

o Improve project management (Project Management module).  

o Improve quality control (Quality Control module). 

o Measure customer satisfaction (Customer Satisfaction Survey module).  

o Score sales opportunities (Opportunity Marker module). 

• Dashboards and reports were created to provide real time, graphical 

representations of data stored in a CRM system. 

• Data integration with a new Online Tracking Module was achieved to enable: 

o Web browsing data to be cross referenced with customer data stored in 

MS CRM. 

o Identification of the sources that customers originated from. 

o Identification of profitable online advertising campaigns. 

o Identification of the type of customers that each online campaign 

generated. 

o Calculation of Return On Investment for individual online advertising 

campaigns. 

o Collection of data about customers from the time they landed on a website 

and throughout a sales cycle. 

o Ability to associate customer’s online behavioural activities with sales 

profit. 
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• A new Online Tracking Module was created to enable: 

o The capture of detailed browsing activity. 

o Distinguishing between new and returning visitors. 

o Use of sessions to identify returning visits  

o Recording of lead quality scores both for email enquiries and telephone 

enquiries. 

o Associating lead quality score with individual online advertising 

campaigns.  

o Tracking of campaigns and advertisements that attracted Web users to a 

website. 

o Data integration with the MS CRM system.  

• A dynamic website was created to provide the ability to: 

o Infer customer interest based on browsing activity. 

o Modify content to match the search keywords that a visitor used. 

o Match the pictures displayed on a web page to the search keywords that a 

visitor used. 

New methods were created for: 

• Collecting data about the behaviour of website visitors.  

• Integrating CRM data with online behavioural data. 

• Modelling search-conversion for inferring readiness to convert from keyword 

length. 

• Optimisation of PPC campaigns and landing pages thorough the use of visitor 

personas. These personas were created using data collected by MS CRM and 

the OTM as well as feedback from the sales team at the collaborating company. 

• Inferring experiential or goal-oriented behaviour from keyword length  
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• Deriving behavioural attributes from data recorded about the way users 

interacted with a website. 

• Using Neural Networks to predict conversion. 

New results were obtained: 

• Changes in the conversion rate and bounce rate of landing pages were 

observed when modification based on the following concepts were made to the 

landing pages : 

o Using content to create targeted landing pages. 

o Reinforcing and extending an advertisement by ensuring that a landing 

page provided what the advertisement promised and used the wording of 

the advertisement in the title. 

o Improving visual design. 

o Complying with usability guidelines when writing and structuring content.  

o Visitor segmentation. 

• The data collected by the OTM and MS CRM produced new metrics for 

measuring the impact of changes to landing pages: 

o quality of leads. 

o type of customers who enquire, for example, individuals, small companies 

or corporate. 

• The distribution and occurrence of search keyword length in the data collected by 

the OTM was analysed. The analysis showed that 

o One and two word search keywords were associated with more non-

conversions than conversions. 

o Longer search keywords (containing more than two words) were 

associated with more conversions than non-conversions. 
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• A data mining tool was used to analyse data collected by the OTM to find models 

that could predict conversion using visitors’ behavioural attributes. New predictive 

models were found. These were more accurate than a naive prediction model. 

 

1.4. Overview of Dissertation  

Chapter 2 describes the literature research conducted into CRM systems, websites, 

website performance, online search behaviour, landing pages, data mining and 

knowledge discovery. 

Chapter 3 describes the CRM system that existed at the beginning of the research and 

its limitations. It then describes the specifications for a new CRM system and its 

implementation as well as the custom modules that were developed to extend the 

functionality of the new CRM system. Finally, Chapter 3 describes the type of 

information that was extracted from the data collected by the new CRM system during 

initial analyses. 

Chapter 4 describes the websites that existed at the beginning of the research and the 

implementation of the first version of the Online Tracking Module (OTM). It then goes on 

to describe the implementation of a new dynamic main website and a new and 

improved version of the OTM. Finally, it describes the changes made to the front-end of 

the new dynamic main website.  

Chapter 5 describes the Google AdWords service and how it was used to set up PPC 

campaigns to drive traffic to the websites described in Chapter 4. It describes how 

advertising campaigns were structured, set up and configured and the metrics that were 

used to measure and monitor their performance. 
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Chapter 6 describes the visitor personas that were created by this research and the 

changes that were made to landing pages in order to achieve higher conversion rates. 

Chapter 7 describes how data collected by the new OTM described in Chapter 4 was 

analysed and the results obtained. 

Chapter 8 describes the research finding, discusses the successes and failures of the 

research and provides recommendations for future research. 
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CHAPTER 2  

LITERATURE REVIEW 

This chapter reviews the systems, technologies, methodologies and measures related 

to the creation of the new systems described in chapters 3, 4, 5 and 6 - including 

Customer Relationship Management (CRM) systems, website design and the Per Per 

Click (PPC) model. 

2.1.  Customer Relationship Management  

Customer Relationship Management (CRM) has often been mistaken for CRM 

technology (Reinartz et al., 2005). CRM was “a concept that comprises the 

establishment, development, maintenance and optimisation of long-term, mutually 

valuable relationships between customers and organisations” (Payne and Ryals, 2001).  

Shaw and Reed (1999) suggested that CRM entailed: 

• Continuously collecting and updating knowledge on “customer needs, 

motivations, and behaviour” throughout the relationship.  

• Using knowledge gained from customers in the form of success and failures to 

improve performance. 

• Integrating various departments and business functions to achieve a common 

goal. 

• Implementing systems to support: 

o  acquisition and sharing of customer data and knowledge. 
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o  Measurement of CRM effectiveness. 

CRM technology or systems refer to the information technology (IT) implemented and 

deployed to support activities associated with customer relationship management, 

namely “sales support, service support, analysis support, and data integration and 

access support” (Chang et al., 2010). 

CRM systems could gather large amounts of data which could be used to build 

knowledge about clients. Effective use of this knowledge could help companies 

understand “customers’ tastes and preferences” (Lin et al., 2010) and build closer and 

more profitable relationships with clients. 

2.1.1. Types of Customer Relationship Management Sy stems 

Three types of CRM systems were identified by Marjanovic (2005): 

a) Analytical customer relationship management. 

b) Collaborative customer relationship management. 

c) Operational customer relationship management. 

a) Analytical Customer Relationship Management 

The main aim of this type of CRM system was to store, analyse and report on data 

about customers and their interaction with a company. The data was used to 

understand customers’ needs and assess customer satisfaction as well as predict future 

behaviour and help decision making regarding marketing, sales and customer support. 

By using data mining and data warehousing technologies analytical CRM systems could 

store and mine data. 
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b) Collaborative Customer Relationship Management 

The main purpose of this type of system was to promote collaboration amongst different 

departments in a company, for example, sales, marketing and engineering, by enabling 

the sharing of customer data. This type of CRM system achieved collaboration through 

the use of emails, conferencing and chat tools to promote teamwork and information 

sharing within an organisation. 

c) Operational Customer Relationship Management 

The main purpose of this type of CRM system was to improve the efficiency of doing 

business with customers. It focused on automating business processes which were 

initiated by customers such as their interaction with sales and marketing, technical 

support and shipping. 

2.1.2. Existing CRM systems 

At the beginning of this research, the collaborating company used the GoldMine system 

to manage some of its CRM activities. GoldMine had a number of limitations which 

made it unsuitable for customer relationship management, for example, the system was 

difficult to customise and as a result, limited information about customers was collected. 

A number of commercial CRM systems were investigated at the beginning of this 

research and the following systems were reviewed: 

a) GoldMine 6.0 

b) Microsoft CRM 3.0  

c) SugarCRM 
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a) GoldMine 6.0 

GoldMine 6.0 was “a contact manager for individuals and teams, specifically designed 

for small-and mid-sized organisations to bridge the gap between traditional contact 

managers and complex Customer Relationship Management (CRM) solutions” 

(FrontRange Solutions Inc, 2002). 

The main features of GoldMine 6.0 were: 

• Contact management. 

• Activities and task management. 

• Sales management. 

• Reporting. 

GoldMine 6.0 did not provide features that supported marketing campaigns, case 

management or customer service management. GoldMine 6.0 was not a complete CRM 

solution. It was more of a contact management product.  

(FrontRange Solutions Inc, 2002) 

b) Microsoft CRM 3.0  

Microsoft CRM 3.0 (MS CRM) was a software platform that companies of all sizes could 

use to implement their CRM strategies. MS CRM was released in 2005 with modules for 

sales, marketing and customer service. MS CRM integrated directly into Microsoft 

Outlook and other Microsoft applications. This allowed users to work with applications 

with which they were already familiar, thus promoting adoption and use within an 

organisation.  

(Snyder and Steger, 2006) 
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The main features of MS CRM included (Crm Connected, n.d.): 

• Activity and task management. 

• Account, contact, lead and opportunity management. 

• Quotes, orders, invoices and case management. 

• Workflow.  

• Marketing automation. 

• Microsoft CRM client for outlook (online and offline version). 

• Reporting.  

The main benefits of MS CRM were: 

Working efficiently from Microsoft Outlook. MS CRM enabled users to work from 

Microsoft Outlook. The tight integration between MS CRM and Microsoft Outlook as well 

as other Microsoft products enabled users to work with MS CRM within their usual work 

environment. 

Understanding customers. Microsoft SQL Server Reporting Services integrated with MS 

CRM, which enabled customer data to be analysed and reports to be created. This 

provided insight into customer preferences and behaviour. 

Security of data. MS CRM allowed role-based and permission based access to 

customer data which helped ensure that users only had access to data that they were 

authorised to see. 

Customisation. MS CRM had built-in customisation tools. These enabled quick 

customisation of application views, forms, data fields and relationships between entities.  

For more complex customisations, MS CRM could be extended using add-on software 

written in .NET. 
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Workflow. MS CRM workflow was a tool that helped set up and define business 

processes as a number of automated tasks. Workflow could be used to coordinate work 

between different teams or departments. 

(SolutionMark, n.d.) 

c) SugarCRM 

SugarCRM was a popular open source CRM system that was also available as a fully 

licensed commercial product that offered a broad set of features. SugarCRM's open 

source architecture made customisation and integration of customer centric business 

processes relatively easy. SugarCRM was built on open-source technologies that 

included PHP, MySQL, and the Apache Web server. 

The open source version of SugarCRM offered the following functionalities:  

• Sales management which included lead, account and opportunity management.  

• Marketing automation which included email marketing and management of 

marketing campaigns. 

• Customer Support which included case management and tracking. 

• Reporting.  

The main advantages of the open source SugarCRM systems were: 

Affordability. Since it was an open source product there were no financial costs involved 

in procuring SugarCRM thus making it the ideal solution for budget conscious 

organisations.  

Customisation. The system was completely customisable as it was an open source 

solution. Source code and documentation were readily available and an active 

community also provided support in developing add-ons.  
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The main drawbacks of the open source SugarCRM system were: 

Open source. Since SugarCRM was an open source product, organisations would 

require in-house programmers to customise it. Customisation and configuration efforts 

could be costly. 

Small business solution. It was a small business only solution. The fully licensed 

commercial version of the product was the better solution for corporate organisations. 

Poor reporting. Its built-in features for pipelines, forecasts and reporting were poor. 

Administration and security. It had limited tools for system administration tasks such as 

merging accounts and mass modifications. Also, its security model was not flexible. 

(Online-CRM.com, n.d.) 

2.1.3. Customer Relationship Management Implementat ion 

A CRM strategy could be expensive and difficult to implement.  “CRM is a multi-faceted, 

comprehensive phenomenon which includes strategic aspects, customer-oriented 

processes and organisational changes through projects as well as performance 

measurement. In addition, IS (information systems) implementation—which has 

mistakenly become a synonym for CRM—is an important element” (Meyer and Kolbe, 

2005). 

Companies that believed that CRM facilitated the implementation of better customer-

focused strategies invested heavily in CRM technology but it was found that only 30% of 

companies achieved improvement in performance (Chang et al., 2010).  CRM solutions 

were not always successful and lost investments and absence of Return On Investment 

(ROI) have been cited by some academic authors (Bull, 2003, Kotorov, 2002). CRM 
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implementation often focused on the deployment of a software package “without an in-

depth understanding of the issues of integrating culture, process, people, and 

technology within and across organisational context” (Finnegan and Currie, 2010). 

Factors affecting CRM Implementation  

There were a number of factors that could affect the implementation and success of 

CRM (strategy and system). Some of these factors were: 

a) Leadership. 

b) Customer centric organisational culture. 

c) Project Management. 

d) Complexity. 

e) Systems Integration. 

a) Leadership 

Effective leadership was important as the introduction of CRM technology in an 

organisation involved changes to business processes and introduction of new 

information technology (IT) or changes to existing IT structures. Leaders were also the 

ones who had the best understanding of an organisation’s goals and how CRM could 

help achieve them (Bull, 2003). 

b) Customer centric organisational culture 

In order to deliver financial benefits, CRM activities needed to contribute to a company’s 

performance and “customer orientation and especially CRM are important preconditions 

for the realisation of profitability” (Meyer and Kolbe, 2005). 
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CRM systems could not be regarded simply as contact management systems  but 

rather as tools which, when used efficiently could help cultivate good relationship with 

customers (Ciborra and Failla, 2000).  

Organisations needed to adopt a holistic approach to CRM whereby CRM systems were 

integrated with customer oriented business processes and customer service delivery. A 

holistic approach helped coordinate the various functions of CRM and ensured that 

operational CRM, analytical CRM and collaborative CRM complemented each other 

(Thompson et al., 2006).  

c) Project management 

Meyer and Kolbe (2005) found that bad project management and poor collaboration 

within organisations, with the latter mainly due to “technical and organisational barriers” 

were amongst the reasons why some CRM implementation failed. 

d) Complexity 

It appeared that a lack of alignment with an organisation’s goals and underestimation of 

its complexity were the main reasons why CRM solutions failed (Bull, 2003, Piercy, 

1998). This was because the implementation of a CRM strategy and system involved 

various stakeholders, with different skills and experiences. The coordination of the 

stakeholders throughout the implementation of the CRM solution could be challenging 

from a “strategic, process and system perspectives” (Mayer and Kolbe, 2005). 

e) Information Systems (IS) Integration 

The success of a CRM implementation depended on the coordination and collaboration 

that existed within an organisation. IS integration was crucial to a customer focused 

strategy (Bhatt and Troutt, 2005). Decision making for strategic input, relied on the use 
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and analysis of data related to various business processes/activities that companies 

carry out. Gupta et al. (2006) suggested that organisations needed to exploit existing 

resources and knowledge to achieve efficiency in their operations.  

There was a need for integration of business processes, software applications and data. 

Zahra and Nielsen (2002) stated that the ‘integration of internal and external sources is 

positively associated with successful technology commercialisation’. They suggested 

that both formal and informal integration contribute to this success. Other studies have 

supported that integration had a positive impact on systems performance, functional 

units and organisations (Kahn and Mentzer, 1998, Paashuis and Boer, 1997). Ultimately 

integration could lead to better relationship with customers and suppliers (Braganza, 

2002).  

It was assumed that information systems integration always resulted in net benefit to a 

company. However, Goodhue (1992) argued that the impact of data integration and 

benefits of information systems depended on organisational structure and that data 

integration could bring about “gains in organisation-wide coordination and organisation-

wide decision making, as well as losses in local autonomy and flexibility, and changes in 

system design and implementation costs”. 

2.1.4. Measuring the impact of CRM  

CRM could have an impact on a company’s success and profitability (Wilson et al., 

2002, Payne and Ryals, 2001, Dowling, 2002, Kotorov, 2002). CRM required 

considerable financial investments and changes in operational and organisational 

structures (Homburg et al., 2000, Wilson et al., 2002, Kotorov, 2002). It was important to 

be able to justify this investment with a ROI. ROI for CRM systems was usually 

achieved through customer retention and customer satisfaction. Reichheld and Sasser 



 

25 
 

(1990), showed that customer retention can have a big impact on profitability. The 

longer the customer relationship, the greater its profitability (Reichheld and Teal, 1996, 

Storbacka et al., 1994, Yeung and Ennew, 2000). Research has also shown that it was 

cheaper to retain existing customers than it was to acquire new customers (Reinartz et 

al., 2005, Phan and Vogel, 2010). 

Customer satisfaction was important to the success of companies and CRM could help 

them achieve this. When CRM was used to increase customer satisfaction, the factors 

(service quality, perceived value, trust and commitment) that supported customer 

satisfaction became the antecedents to CRM success (Meyer and Kolbe, 2005). 

According to Liu and Zhu (2009),  CRM not only improved customer satisfaction but 

also promoted loyalty. It followed from the research carried out into customer retention 

and customer satisfaction that if CRM was used effectively to support these two 

functions, it could deliver financial benefits. 

2.1.5. Discussion  

This Section described the CRM systems that were investigated at the beginning of this 

research as well as the factors that needed to be taken into consideration in order to 

successfully implement a CRM strategy.  

MS CRM was the better choice both from a functionality point of view and a cost benefit 

point of view. It also combined analytical, collaborative and operational CRM into one 

product. Moreover, it integrated seamlessly with other Microsoft applications which 

meant that users worked within an environment that was already familiar to them. This 

could encourage adoption and use of the system. The main drawback of MS CRM was 

that as a relatively new product some features had limited capabilities and flexibility. 
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Some measures of CRM success were also identified, for example, increase in 

customer satisfaction, customer retention and profit. The existing literature suggested 

that an integrated CRM system could bring many benefits to an organisation (Braganza, 

2002, Goodhue et al., 1992, Zahra and Nielsen, 2002). Integration did not necessarily 

need to be formal integration such as systems and data integration. Informal integration 

in the form of business process overlap within a CRM strategy could also bring positive 

results. Chapter 3 describes how MS CRM was implemented to support a CRM strategy 

in an SME. 

2.2. Online Advertising 

Online advertising could be regarded as the buying and selling of advertising space on 

the Internet. There were different types of online advertising: 

• Search advertising or Pay Per Click (PPC) advertising where advertisements 

appeared on search engines’ result page. 

• Display advertising or banner advertising that appeared on websites. 

• Classified listings which appeared on specialist websites. 

• Internet email based advertising. 

(Evans, 2008) 

2.2.1. Brief history 

Online advertising started when HotWire sold banner advertisements to a number of 

advertisers in 1994. Online advertising started gaining momentum until the dot-com bust 

reduced the demand for it. With the advent of the Web 2.0, online advertising regained 

momentum and by 2004 companies such as Overture, Advertising.com and Google 

were offering online advertising services (Evans, 2008). 
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Since then the online advertising market has grown steadily to become the second 

largest advertising medium; preceded only by television. It was worth £1,968.6m in the 

UK in the first half of 2010. This represented an increase of 10%, on a like for like basis, 

on the previous year. The breakdown of the market in terms of the different advertising 

formats was as follows: 

• Search advertising – 60% 

• Display advertising – 19% 

• Classified – 19% 

PPC advertising was by far the most popular online advertising format. 

 (IAB UK, 2010) 

2.2.2. Pay Per Click Advertising 

In the beginning, Internet advertising followed the offline advertising model. Advertising 

banners were the online equivalent of the offline print advertisements. Search engines 

that provided banner advertising faced a dilemma regarding whether to encourage 

visitors to stay on their website and view more advertising or to promptly send them to 

the websites that were listed in search results. In general, visitors found banner 

advertising irritating and distracting. 

PPC advertising solved these issues both for search engines and visitors. PPC 

advertising effectively tied the revenue of search engines to the act of transferring a 

visitor to an advertiser’s website. From the visitors’ point of view, PPC advertising 

delivered relevance as advertisements were matched to their search terms. It was also 

unobtrusive since advertisements were delivered as and when a visitor carried out a 

search. 

(Fain and Pedersen, 2006) 
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The PPC concept was first introduced in 1998 by Overture Services. Overture Services 

was acquired by Yahoo! in 2003 and re-branded as Yahoo! Search Marketing in 2005. 

Google launched its PPC service in 2002.  

Search engines that provided PPC advertising not only displayed results on their own 

sites but also in space that they rented on other search engines’ sites. For example 

when a Web user searched on AOL, the search query was passed to Google, which 

returned the results to AOL, which then displayed these on a search results page that it 

rendered to the Web user. Similarly Yahoo! rented space on MSN Search. 

(Evans, 2008) 

At the time of writing, Google was the most popular PPC advertising provider both in the 

United Kingdom and the United Stated of America (Charlton, 2010, Larsen, 2010). 

Pay Per Click advertising was described as an advertising concept whereby advertisers 

pay a fee to Internet search engines to have their advertisements displayed alongside 

organic (non-sponsored) search results. The PPC mechanism worked as follows 

(Ghose and Yang, 2008b): 

1. Advertisers identified keywords that described their products or services and 

submitted them to a PPC service provider. 

2. Bid values were assigned to individual keywords. This determined how much the 

advertiser had to pay the provider when a Web user clicked on an advertisement 

that was triggered by the keywords. Bids also determined the position of the 

advertisement on the search engine result page (SERP). 

3. When Web users searched for products or services online, they started their 

search by typing keywords (that can consist of multiple words) into a search 

engine (Rutz and Bucklin, 2007). Advertisements associated with their search 
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keywords were displayed on the SERP. Upon clicking on an advertisement, a 

Web user was taken to an advertiser’s website. Search engines used propriety 

models to determine which advertisements were displayed and at what position 

on the SERP. 

Companies used PPC advertising to drive customers to their websites. £1,180.1 million 

was spent on PPC advertising in the United Kingdom in the first half of 2010. This 

accounted for 59.9% of the online advertising revenue (IAB UK, 2010). In the United 

States of America, $4.4 billion was spent on PPC advertising during the first half of 2010 

accounting for 36% of the total online advertising revenue (IAB USA, 2010). 

PPC advertising allowed companies to address consumers directly during their 

electronic search for products or services. It was popular because it had “enabled a shift 

in advertising from ‘mass’ advertising to more ‘targeted’ advertising” (Ghose and Yang, 

2008b). As such it delivered: 

• More relevant search results to Web users hence improving their online 

experience. 

• Higher quality visitors to websites.  

Ghose and Yang (2008b) showed  that “on average the conversion rates, order values 

and profits from paid search advertisements were much higher than those from natural 

search.” 

In order to run successful and optimised PPC campaigns that generated ROI, it was 

important to have a PPC strategy that considered the following (Burns, 2005): 

a) Search Engine Optimisation (SEO). 

b) Relevancy. 
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c) Campaign goals.  

d) Targeted keywords. 

e) Campaign structure. 

f) Advertisement text.  

g) Landing page. 

h) Tracking results. 

Burns (2005) described these factors as:   

a) Search Engine Optimisation 

Search engine optimisation (SEO) was “a process that manipulated website 

characteristics and incoming links to improve a site's ranking in the search engines for 

particular search terms” (Malaga, 2010). Although, not a so-called advertising 

technique, it played an important role in website exposure and traffic generation. SEO 

was thought of as a cheap way of generating traffic compared to PPC advertising. 

However, this was not always true as considerable investment both in terms of technical 

effort and SEO expertise was required in optimising and keeping a website optimised 

for first page listing.  

SEO ensured that a website was well designed both for search engine crawlers and 

Web users. Crawlers were used by search engine to find and index sites. SEO 

reinforced the best practises in designing user-friendly websites with emphasis on 

content and structure. 
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b) Relevancy  

Relevancy was important both in the advertisement and on the website. Advertisements 

that connected Web users with exactly what they were searching for were the most 

successful and profitable  

c) Campaign goals 

Specific goals needed to be established for advertising campaigns so that the right 

keywords, advertising messages and landing pages could be selected. Metrics for 

measuring these goals were also important. 

d) Targeted keywords  

Building relevant and targeted keyword lists was important to the success of PPC 

campaigns. A keyword list that included terms that generated clicks from Web users 

who were not looking for the advertised product or service could be costly. 

There were free keyword generation tools that were available for example Google’s 

Keyword Suggestion Tool. In general, it was better to use multi-word keywords rather 

than single keywords which were broad and vague. Using brand name and product 

words were also better for targeting. 

e) Campaign structure 

Organising keywords into separate advertisement groups that were based around 

products, services or goals allowed for generation of custom advertisements, web 

pages and content. Customisation increased relevancy which was important in turning 

visitors into customers. Figure 2.1 illustrates a PPC advertising campaign structure. 
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Figure 2.1: PPC advertising campaign structure. 

f) Advertisement text  

The quality of the advertisement’s copy was crucial. It needed to be clear and 

compelling. Some of the techniques used generate good advertisement copy included: 

• Writing and testing multiple advertisements for each ad group. 

• Putting keywords into the copy to increase relevance. 

• Using strong call to action. 

• Putting forward a unique proposition or offer. 

g) Landing page 

Landing pages played a crucial role in the success of advertising campaigns. Success 

could be measured in term of conversion rate. Conversion rate was defined as the 
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percentage of total visitors who completed a specific action on a website e.g. registered 

for a newsletter, sent an enquiry email or purchased a product. A website could 

consider one or more actions as a conversion. 

Landing pages had a unique and distinct function from other pages in a website. As 

such there were unique challenges that had to be met when designing them. Loveday 

and  Niehaus (2008) identified that landing pages faced particular challenges. They had 

to: 

• singlehandedly take customers through the whole sales cycle. It had to “create or 

reinforce interest, then instil desire, and finally guide visitors to take action”.  

• perform quickly. 

• deal with a high number of first time visitors, who were not “familiar with the 

company and [had] no reason to trust it at first”. 

Landing pages needed to be specific to the advertisement. The content and design of 

the landing pages had to relate to the advertisement; they needed to be an extension of 

the advertisement (Loveday and Neihaus, 2008).  

Multiple landing pages could be used for individual advertisements as a way of finding 

the one that produced the best conversion rate. Over their lifetime, landing pages often 

went through an optimisation process in order to make them more effective.  

h) Tracking and measuring results  

In order to optimise ROI for PPC campaigns, it was important to try different keywords, 

advertisements, landing pages and content, and to measure how each performed. 
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PPC service providers reported on a number of metrics that could help gauge the 

performance of campaigns. These metrics included: 

• Impressions, a record of the number of times an advertisement was displayed. 

• Clickthrough rate (CTR) which was the number of clicks an advertisement 

received divided by the number of times the advertisement was displayed 

(impressions).  

• Conversion was the completion of a unique goal or action on a website e.g. 

sending an email, buying a product, signing up for a service, downloading a 

product. 

• Conversion rate was the number of conversions divided by the number of clicks.  

Unique tracking Uniform Resource Locators (URLs) could be assigned to each 

advertisement or keyword to track visitors who clicked through to a website. This could 

indicate the advertisements and keywords that converted most clicks to sales (Burns, 

2005). 

2.2.3. Long Tail  

Long tail was a phrase that became popular following the publication of a best-selling 

book by Anderson (2006). The long tail was a concept whereby demand for products 

shifted from popular products to niche products (Skiera et al., 2010). The idea of the 

long tail was adopted by online advertising industry and became a concept “used to 

describe the hundreds to thousands of keywords and key phrases that a website is 

found for, yet rarely noticed or exploited by owners of the website” (Bailey, n.d). Figure 

2.2 illustrates the concept. 
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Long tail keywords 

Long tail keywords were low-volume, obscure, infrequently searched-for keywords. 

When used as part of a PPC campaign they (Mitchell, 2009): 

• Could provide significant search volume. While the number of long tail searches 

were individually insignificant compared to generic searches, together they could 

provide significant search volume. 

• Had less competition than generic keywords and therefore were cheaper.  

• Were more specific than generic keywords. Therefore advertisements and 

landing pages could be better customised to satisfy customer’s needs. 

• Could produce higher conversion rates as it was thought that Web users making 

long tail searches were likely to be further along the buying cycle and therefore 

more ready to buy than Web users who made generic searches. 

• Could be more profitable then generic keywords as they were cheaper and more 

likely to produce a conversion. 

 

Figure 2.2: The short vs. long tail (Hoggart, n.d.) . 
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Because long tail keywords tended to be specific they were usually longer than generic 

keywords. Since long tail keywords had higher conversion rates, it was assumed that 

longer keywords were more likely to convert than shorter keywords. 

Online marketing agencies and experts believed  that long tail keywords could boost 

conversion rates especially when keyword relevancy in the website content was good 

and elements of good landing page design were present (Mitchell, 2009, Search Engine 

Partner, n.d.). 

However, Ghose and Yang (2008a), found that the “length of a keyword negatively 

impacts the performance on all three metrics [conversion rate, order value and profit] for 

natural search listings but only affects the order value in paid search.” Skiera et al 

(2010) found that “the top 100 keywords - and not the very long tail composed of other 

keywords - generate the majority of searches, clicks and conversions”.  

It was not clear whether the websites used in the research carried by Ghose and Yang 

(2008a) and Skiera (2010), were well designed and whether the content was relevant to 

long tail keywords. These could have affected their results.  

2.2.4. Discussion 

This Section described the concept of online advertising and the different advertising 

formats that it supported. The most popular format was Pay Per Click advertising. 

The biggest advantage of PPC advertising was perhaps that it was relatively easy to set 

up campaigns and that it could generate traffic instantly. The biggest challenge was 

managing and optimising these campaigns so as to target customers, who were ready 

to buy, subscribe or complete an action that was profitable to advertisers. Landing 

pages played a crucial role in the success of PPC campaigns as they had to entice 
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visitors to convert and become customers. Good design and optimisation was important 

in creating effective landing pages. Landing pages are discussed in more detail in 

Section 2.6. 

Keyword selection was also important to ensure Return On Investment (ROI). Keywords 

had to be targeted and relevant. Part of the challenge in keyword selection was the 

identification of long tail keywords. Long tail keywords were thought to have higher 

conversion rates while being cheaper than generic short tail keywords. Although they 

were defined as being specific which, suggested longer keywords, there was not a 

number of words (keyword length) that characterised a long tail keyword.  

Chapter 5 describes how PPC advertising was used to drive traffic to websites that were 

created in this research.  

2.3. Websites 

The Internet was an important marketing tool and a profitable selling channel. It was 

estimated that the Internet population would grow from 1.83 billion in 2010 to 2.10 billion 

in 2012 (Clickz, 2010).This represented a considerable rise in the number of potential 

customers for any business that used the Internet as a marketing or selling channel. 

In order for businesses to take advantage of the growth in online advertising and 

population, they needed to design websites that could meet marketing objectives that 

included “extended visit durations, repeat visits, positive consumer attitudes” (Stanaland 

and Tan, 2010) and perhaps most importantly converting visitors into customers.  

A website was “an information resource on the World Wide Web (WWW) [that was] 

defined as a group of interface and functional attributes that are connected to each 

other to serve high levels of usability, performance, and beauty to users, to satisfy 
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users’ wants, and to obtain their satisfaction in a competitive market of online and offline 

sales and information-services” (Lee and Koubek, 2010). 

Lee and Koubek (2010) categorised websites into four types:  

• Entertainment websites. These “provided diversion and relaxation to users who 

wanted to escape from the stressful reality.” 

• Information websites. These “made it possible for users to obtain useful 

information more quickly and more easily.”  

• Communication websites. These “facilitated communicating with others with 

similar interests.”  

• Commerce websites. These “provided an online market place where goods and 

services are purchased.”  

2.3.1. Website design 

 “In a practical sense, web[site] design is critical in building customer relationships, 

facilitating customer support, and converting visitors into customers in the online 

environment” (Hausman and Siekpe, 2009). According to Lee and Koubek (2010), “what 

constitutes a good website has been traditionally explained by relating it to user and 

usability. In other words, a successful and preferable website generally refers to one 

with high usability, which is user-friendly and user-centered in interface and functional 

aspects.” 

Studies by Levene (2006) and Widyantoro and Yen (2001) suggested that website 

visitors evaluated the relevance and usefulness of a website and formed an overall 

impression of the website in a short period of time. When a visitor landed on a website, 

“a rapid and almost unconscious but complex thought process [was] activated” that 

resulted in the visitor’s first impression of the website and affected their subsequent 
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decision regarding the website (Kim and Fesenmaier, 2008). Lindgaard et al (2006) 

stated that “visual appeal [could] be assessed within 50ms, suggesting that web 

designers [had] about 50 ms to make a good first impression.”  

First impressions created a long-lasting effect also called “halo effect”, which led visitors 

to interpret information in such a way as to confirm their preconceptions (Lindgaard et 

al., 2006).  

As a result Web users were consistent with their initial decision about a website. If the 

initial impression was good, they downplayed or ignored the negative aspects of a 

website. If the first impression was bad, most visitors left a website immediately. 

However, if they stayed on, they were less tolerant towards the negative aspects of the 

website and less impressed by the positive aspects (Kim and Fesenmaier, 2008). 

2.3.2. Website design elements 

There were a number of elements that made up the interface of a website and that 

affected visitors first and subsequent impression of a website The main elements 

included navigation, text, links, graphics and layout. Studies regarding website design 

focused on two levels of granularity, specific features, and categories that referred to a 

group of similar features (Zhang and von Dran, 2000). Some of these categories were: 

a) Hygiene (dissatisfiers) and  motivator (satisfiers) (Zhang and von Dran, 2000).  

b) Human and computer (Hausman and Siekpe, 2009).  

c) Information design, visual design and navigation design (Cyr, 2000). 

d) Hygiene and potential (Kim and Fesenmaier, 2008). 

e) Information, navigation, graphic and experience design (Ivory and Hearst, 2002). 

f) Navigation. 



 

40 
 

a) Hygiene/Motivator factors  

Hygiene factors were those factors that made a website functional and serviceable, and 

whose absence caused visitor dissatisfaction (hence dissatisfiers).  

Motivator factors were those factors that added value to a website by contributing to 

user satisfaction (thus satisfiers). 

(Zhang and von Dran, 2000) 

b) Human/Computer factors 

Hausman and Siekpe’s (2009) computer factors and human factors were based on 

Zhang and von Dran’s hygiene and motivator factors. 

Human factors were website design elements that contributed to visitors’ satisfaction, 

for example,  (Hausman and Siekpe, 2009): 

• Feedback features.      

• Language options.   

• Links to similar websites.   

• Humour.    

• Gift services.                     

Computer factors were those elements that provided functionality (Liang and Lai, 2002). 

According to Hausman and Siekpe (2009) computer factors included technical aspects, 

navigation, impartiality and information content for examples: 

• Company logo. 

• Clear displays of page contents. 

• Indication of security/secure site. 

• Presence of clear menu items on pages. 
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• Presence of shopping cart. 

• Assurance of privacy. 

• Company logo. 

• Product images as thumbnails. 

Hausman and Siekpe (2009) suggested that “providing richer media with a more real 

environment (providing improved human factors) [had] a more positive influence on user 

involvement with the content over improved computer factors.” The importance of 

human factors was further supported by Fogg (2002) who found that about half of all 

consumers paid more attention to aspects linked to human factors than to the content of 

a website. 

c) Information, visual and navigation design 

Cyr (2000) described information, visual and navigation design as: 

Information design referred to website elements that conveyed information (accurate or 

inaccurate) about products or services to visitors, for example text. 

Visual design referred to website elements pertaining to the balance, emotional appeal, 

aesthetics, and uniformity of a website’s graphical look, for example colours, 

photographs, shapes and fonts. 

Navigation design referred to the navigational scheme used to enable visitors to access 

different sections of a website, for example menu, links and search facility. 

d) Hygiene and potential factors .  

Kim and Fesenmaier  (2008) extended the model proposed by Zhang and von Dran 

(2000). They identified 2 types of website design categories: 
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• Hygiene factors which included elements pertaining to informativeness and 

usability. 

• Potential factors which included elements pertaining credibility, inspiration, 

involvement, reciprocity. 

Kim and Fesenmaier  (2008) described these factors as: 

Informativeness was the degree to which a website’s content was accurate, relevant, 

useful, current and complete. 

Usability was defined as the level of user-friendliness of websites that enabled visitors 

to easily navigate them with no (or a minimum level of) mental effort. Websites had to 

be designed so that visitors could easily understand who sponsored a website, the 

goals of a website and what they could achieve on it. Ease of navigation and perceived 

ease of use were important factors of usability. Perceived ease of use was considered 

an antecedent of positive behavioural intention, intention to purchase and satisfaction 

(Heshan and Zhang, 2006, Venkatesh and Morris, 2000).  

Credibility could enhance visitors’ perception of a website. Wang et al (2004) found that 

visitors inferred website credibility from credibility cues contained within a website. 

These cues were in the form of design elements such as awards from neutral sources, 

privacy and security components, the identity of the website operator, seals of approval, 

and references (Loveday and Neihaus, 2008, Fogg, 1999, Fogg et al., 2002, Fogg et al., 

2001, Yang et al., 2003) 

Inspiration could be evoked by truth, goodness, beauty, or superiority (Averill, 1975, 

Thrash and Elliot, 2003). Visual and auditory design elements could be used to create 

positive experiences that inspired visitors.  
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Involvement was the motivational force that determined behavioural outcomes. 

Interactivity promoted “user engagement with content” (Sundar and Kim, 2005). Early 

research had shown that visitors responded positively to interactive websites (Chung 

and Zhao, 2004, Jee and Lee, 2002, Stromer-Galley, 2004). Kim and Fesenmaier 

(2006) found that playful and enjoyable websites kept visitors entertained, encouraged 

them to browse and increased their depth of exploration. Interactivity positively affected 

visitors’ attitude towards a website’s brand as well as their intention to purchase (Ariely, 

2000, Sundar and Kim, 2005). Interactivity also increased the amount of information 

processed by visitors and increased product and website likability (Sicilia et al., 2005). 

Wu (2006) found that control over website elements such as navigation, pace of 

interaction and content contributed to a website’s perceived interactivity. 

Reciprocity was defined as “mutually gratifying patterns of exchanging goods and 

services”  (Kim and Fesenmaier, 2008). Kim and Fesenmaier  (2008) suggested that a 

website that promoted reciprocity could have a favourable impression on visitors.  

e) Information, navigation, graphic and experience design.  

Information, navigation, graphic and experience design were identified by Ivory and 

Hearst (2002). Ivory and Megraw (2005) refined these factors into a conceptual model 

of website interface shown in Figure 2.3. 

The model in Figure 2.3 shows that text, link, and graphic elements were the basic 

elements on which website interfaces were built. The next level up considered the 

formatting of basic elements while the subsequent level addressed the formatting/layout 

of a web page. 
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Figure 2.3: Conceptual model of website interface ( Ivory and Megraw, 2005). 

The top two levels considered page performance and site architecture including 

consistency, breadth, and depth of pages within websites. The top two levels were 

associated with design activities involved in creating an experience for visitors while the 

bottom three levels were associated with information, navigation, and graphic design 

activities. All levels influenced visitors’ experience with a website (Ivory and Megraw, 

2005). 

f) Navigation.  

Navigation structure acted as the roadmap of a website. According to Krug (2006),  the 

purposes of navigation were “to help us find whatever it is we are looking for and tell us 

where we are” and also to tell visitors about the website’s content by making the 

hierarchy visible. Ease and speed with which navigation allowed visitors to find what 

they were looking for were important factors that affected the usability of a website and 

the overall browsing experience of visitors. Disorientation was a frequently stated 

reason for negative experience with a website. Disorientation could lead to frustration 

which caused visitors to leave a website in search of a better website and left visitors 

with a negative impression which eliminated the possibility of recurring visits (Webster 

and Abuja, 2006).  



 

45 
 

2.3.3. Navigation Design 

Loveday and  Neihaus (2008) and Krug (2006) proposed the following guidelines for 

designing efficient navigation: 

• Having a persistent navigation or global navigation which displayed a consistent 

navigation menu on all pages. 

• Organising the content hierarchy into sections, sometimes called primary 

navigation.  

• Having a search box. Some people prefer searching to browsing. 

• Using breadcrumbs. Breadcrumbs were a series of links that showed the path 

that a visitor took while browsing a website. This made it easy for a visitor to 

navigate back to previous pages. Breadcrumbs were different to ‘You are here’ 

indicators which showed visitors where they were in the hierarchy of a website.  

Websites with large amounts of content had deep hierarchies which could increase the 

time a visitor spent searching for a page. One of the issues with categorising large 

amounts of content into sectors was that sometimes it was not obvious to visitors which 

sector a particular piece of information was found in. This could be frustrating for 

visitors. 

Design guidelines were sometimes not enough. There was a need for continuous 

optimisation of the navigation and linking structure over time as more visitors used a 

website, more content was added and also to accommodate the ever changing and 

evolving goals and search strategy of visitors. 
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2.3.4. Link Structure Optimisation 

Designing a navigation structure was not straight-forward as designers did not always 

understand the browsing and behavioural pattern of visitors at the early stages of the 

design process. In most cases, the initial navigation structure had to be optimised to 

accommodate website changes as well as the behaviour and goals of visitors. Hollink et 

al. (2007) suggested two ways of improving link efficiency by optimising: 

• Visual design of links, for example colour and placement on the page. 

• Structure of links, that is the way pages were connected.  

Methods existed that enabled the reduction of the time it took visitors to reach their goal 

page. These included: 

a) Organising navigation based on page popularity. 

b) Using recommender systems to predict pages that visitors were interested in. 

a) Page Popularity  

The model developed by Smyth and Cotter (2003) promoted menu items that visitors 

chose frequently to a higher position in the menu and reduced navigation time by almost 

50% leading to increase in usage in excess of 30%. 

Yen (2007) proposed an “accessibility-popularity (A-P)” model which modified the 

structure of a website by identifying popular pages and increasing their accessibility. 

The popularity of a page was measured as the number of times a page was viewed by 

visitors or the length of time visitors spent on the page. The A-P model followed two 

strategies:  

• Push – where a website reacted to demand, that is the pages that were popular 

with visitors were made more accessible. 
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• Pull – where pages that a website wanted to promote were made more 

accessible. 

b) Recommender Systems 

 “Web page recommender systems predict the information needs of users and provide 

them with recommendations to facilitate their navigation. Given a user’s current actions, 

the goal is to determine which Web pages will be accessed next. Many web sites on the 

Internet use web page recommender systems to increase their usability and user 

satisfaction” (Göksedef and Gündüz-Ögüdücü, 2010). 

Traditional recommender systems used web usage and web content mining techniques 

to make predictions. Better recommender systems in the form of hybrid recommender 

systems combine two or more prediction methods (Göksedef and Gündüz-Ögüdücü, 

2010). 

“One of the most successful and widely used technologies for building recommendation 

systems is collaborative filtering (CF). A collaborative filtering system collects visitor 

opinions on a set of objects to form peer groups, using ratings which are provided by 

the users or are implicitly computed, then learns from these peer groups to predict a 

particular user’s interest in an item. It is often based on matching, in real-time, the 

current user’s profile against similar records (nearest neighbors) obtained by the system 

over time from other users” (Demir et al., 2007). 

2.3.5. Discussion 

Websites were usually faced with the following questions:  

• What elements were most important to its success?  

• What elements influenced visitors’ response?  
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This Section provided an overview of the main design elements that influenced visitors’ 

response and contributed to good website design. However, because of the different 

types of websites that existed it was not clear how design elements contributed to the 

success of each website type. It was possible that depending on the purpose of a 

website, the importance of design elements varied.  

The design elements identified in this Section were taken into consideration when 

implementing the front-end of the dynamic main website described in Chapter 4. 

2.4. Behavioural Intention 

The design of online advertisements could influence the way visitors responded to a 

website (Robinson et al., 2007). Similarly, visitors’ perceptions and behaviours were 

governed by their motives for visiting a website (Rodgers et al., 2007).  

Visitors’ motives could affect the way they behaved on a website. Sanchez-Franco and 

Roldan (2005) identified two types of motives namely intrinsic and extrinsic. They 

described intrinsic motives as “emphasising internal rewards such as pleasure and 

satisfaction from performing the behaviour” and extrinsic motives as “focusing on 

external rewards including, for instance, incentives and gratifications”. Sanchez-Franco 

and Roldan (2005) also suggested that “research in the HCI (human-computer 

interaction) tradition has long asserted that the research of human factors is a key to the 

successful design and implementation of technological devices, and should include 

extrinsic and intrinsic motives.” Research in this area looked at applying the Technology 

Acceptance Model (TAM) to the online world in order to find out what factors affected 

website acceptance and usage. 
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Several models were found in literature regarding acceptance of technology. They 

included the Technology Acceptance Model (TAM) (Davis, 1986), Technology 

Acceptance Model 2 (TAM2) (Venkatesh & Davis, 2000), Innovation Diffusion Theory 

(Moore & Benbasat, 1991) and the Unified Theory of Acceptance and Use of 

Technology (UTAUT) (Venkatesh et al, 2003). 

Figure 2.4 shows the Technology Acceptance model presented by (Davis, 1986). 

 

Figure 2.4: Technology Acceptance Model (TAM) (Davi s, 1986). 

The TAM suggested that acceptance of technology depended on: 

• Perceived ease-of-use [PEOU]. 

• Perceived usefulness [PU]. 

Heshan and Zhang (2006) investigated the relationship between Perceived Enjoyment 

(PE) and Perceived Ease of Use (PEOU) and their effect on Behavioural Intention (BI) 

when applied to online tasks. They found that the “PE      PEOU direction has an overall 

dominance over the PEOU       PE direction in utilitarian system environments. PE does 

not have a direct impact on BI; instead, Perceived Usefulness (PU) and PEOU fully 

mediate its impacts.”  Their conclusions suggested that website design elements that 

contributed to PU and PEOU could influence visitor behaviour. Chen et al. (2002a) 
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demonstrated that attitude toward websites was positively influenced by PU. Chen et al. 

(2002b) have also shown that Perceived Informativeness (PI) can influence attitude 

towards website in a positive way. None of these studies identified the design elements 

that contributed to PU, PEOU or PI explicitly. 

Behavioural intention was also thought to be influenced by online flow. Sanchez-Franco 

and Roldan (2005) defined flow as “a positive, highly-enjoyable state of consciousness 

that occurs when our perceived skills match the perceived challenges we are 

undertaking. When this occurs, an individual derives intrinsic enjoyment from the activity 

and tends to continue with it.” They suggested that the level of perceived enjoyment of 

an activity could be a measure of flow.  

Hoffman and Novak (1996) suggested that online flow was a cognitive state 

experienced during navigation which could lead to more browsing, and ultimately 

purchase in an online shopping environment. According to their model, the factors that 

determined online flow were: 

• high levels of skills and control. 

• high levels of challenge and arousal. 

• focused attention. 

• interactivity and telepresence. 

Hausman and Siekpe (2009) and Smith and Sivakumar (2004) suggested that flow 

facilitated online behaviours such as browsing, shopping, and repeat purchases. Novak 

at al. (2000) found that 47% of visitors experienced flow on the Internet at some point.  

However, little was known about how flow worked on websites and the design elements 

that promoted it (Hausman and Siekpe, 2009).  
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2.4.1. Types of website visitors 

Visitors arrived at websites with different motives and goals in mind. These could affect 

behavioural intention. There were two generally recognised types of online visitors or 

visitor modes (Hoffman and Novak, 1996, Stanaland and Tan, 2010):  

a) Goal-oriented or Seekers. 

b) Experiential or Surfers. 

a) Goal-oriented or Seekers  

Goal-oriented consumers were motivated by external factors (extrinsic motivation), task 

oriented, and influenced by interests or concerns brought about by the particular 

situation or context that they were in.  They used directed searches, characterised by 

work-like thoughts, to reach their goals (Novak et al., 2003). 

According to Sanchez-Franco and Roldan (2005) “using the web for its informational 

value and purchase utility – such as directly searching for information to complete a task 

or to reduce purchase uncertainty – are goal-directed behaviours.” Goal-oriented 

visitors were usually constrained by time. They wanted to find what they were looking 

for as quickly as possible and access content and services according to “instrumental 

decision-criteria” and as a result  perceived usefulness was “likely to be weighed more 

strongly by goal-directed users” (Sanchez-Franco and Roldan, 2005). 

b) Experiential or Surfers 

Experiential visitors were motivated by fun which led to browsing. Their searches were 

non-directed and they usually did not have an explicit goal in mind when carrying out 

searches. They also spent a lot of time browsing websites usually in an ad-hoc fashion. 
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“Relatively unstructured recreational use [of the web or websites] is experiential 

behaviour” Sanchez-Franco and Roldan (2005). 

Furthermore, experiential visitors were thought to be less experienced while goal-

oriented visitors were thought to be more experienced. As a result, ease of use was 

more important to experiential visitors compared to goal-oriented visitors. Since goal-

oriented visitors were more skilled at using the Internet, they were less concerned by 

ease of use and considered usefulness as being more desirable. Perceived ease of use 

contributed to perceived usefulness and in the case of goal-oriented visitors the 

influence of perceived ease of use was moderated by perceived usefulness so that the 

former’s influence on attitude was indirect in their case. 

(Sanchez-Franco and Roldan, 2005) 

The differences between goal-oriented and experiential visitors that were identified by 

Novak (2003) are summarised in Table 2.1. 

2.4.2. Discussion 

In order to design websites that catered to visitors’ needs it was important to understand 

their motives. Visitor motives were determined by the goals that they had in mind when 

they browsed the Internet. Website visitors usually belonged in one of two categories: 

experiential visitors or goal-directed visitors. Each category was associated with 

characteristics that determined what visitors might expect from a website and how they 

might use it. It was therefore important for a website’s success to identify who its visitors 

were and to adjust its design according to the preferences of those visitors. The 

literature did not explicitly identify website design elements that were important in 

providing an optimum experience to either type of visitors. Some landing pages created 

by this research (described in Chapter 6) were optimised for goal-oriented visitors. 
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Goal-oriented Experiential 

Extrinsic motivation  

Instrumental orientation  

Situational involvement  

Utilitarian benefits/value  

Directed (pre-purchase) search  

Goal-directed choice  

Cognitive  

Work  

Planned purchases; repurchasing  

Intrinsic motivation 

Ritualised orientation 

Enduring involvement 

Hedonic benefits/value 

Non-directed (ongoing) search; browsing 

Navigational choice 

Affective 

Fun 

Compulsive shopping; impulse buys 

Table 2.1: Comparison between goal-oriented and exp eriential visitors (Novak et al., 2003). 

2.5. Websites Performance 

There were a number of metrics that could be used to evaluate the performance of a 

website. Some of these metrics were implicit and could not be measured directly while 

others were explicit and easier to measure.  

2.5.1. Implicit performance metrics 

Chiou et al. (2010) identified that websites could be evaluated based on the following: 

a) Website usability and design. 

b) Content.  

c) Quality. 

d) User acceptance. 

e) User satisfaction. 
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a) Website  usability and design  

“Website usability is a critical metric for assessing the quality of a firm's web presence. 

A measure of usability must not only provide a global rating for a specific website, 

ideally it can also illuminate specific strengths and weaknesses associated with site 

design” (Agarwal and Venkatesh, 2002). 

b) Content  

High quality content could “effectively facilitate interpretation and understanding” (Lin, 

2010). Website content was different from design. “The content component addresses 

the issue of what is included in the site and identifies the various types of information. 

The design component addresses presentation and navigational features” (Robbins and 

Stylianou, 2003). Content could be evaluated in terms of content accuracy, content 

currency and content completeness (Nelson et al., 2005, Lin, 2010).  

c) Quality  

Website quality comprised of the following dimensions: interactivity, online 

completeness, ease of use, and entertainment (Kim and Niehm, 2009). Ahn et al. 

(2007) categorised website quality into system, information, and service quality. Ahn et 

al. (2007) also found that website quality had a “significant impact on perceived ease of 

use, playfulness, and usefulness, and consequently, that it encouraged website use in 

the context of online retailing.” 

d) User acceptance  

The Technology Acceptance Model (TAM) was originally developed by Davis (1986). 

Davis (1986) suggested that acceptance of technology depended on perceived ease-of-

use and perceived usefulness. The TAM was applied to the online technology to predict 

the acceptance and use of the Internet and websites. Chung and Tan (2004) suggested 
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that in order to access the effectiveness of a website it was important to understand 

user acceptance. For certain websites, the number of repeat visits could be an 

indication of user acceptance (Ahn et al., 2007). 

e) User satisfaction 

It was thought that effective website design, including navigation capability or visual 

appeal of a website, could potentially result in online trust (Gefen and Straub, 2003, 

Koufaris, 2002, Cyr, 2000) or satisfaction (Agarwal and Venkatesh, 2002, Anderson and 

Srinivasan, 2003). Cyr (2000) found that all causal relationships between design 

(information design, visual design, navigation design) and satisfaction were significant 

and that these design elements had the ability to elicit satisfaction in website visitors. An 

increase in satisfaction could lead to an increase in customer retention and profit. 

According to Reichheld and Schefter (2000), an increase in customer retention rates by 

only 5 percent could increase profits by 25% to 95%. 

2.5.2. Explicit performance metrics 

In order to stay competitive in the online arena, companies needed to understand and 

respond to their website visitors’ needs. They could achieve this by analysing visitors’ 

online activities and incorporating the results in their decision-making processes and 

strategy (Park et al., 2010). This gave birth to the concept of Web Analytics. The Web 

Analytics Association defined Web Analytics as “the measurement, collection, analysis 

and reporting of Internet data for the purposes of understanding and optimising Web 

usage.”  

Web Analytics software was a key element of a company’s Web Analytics strategy. A 

popular Web Analytics software was Google Analytics. Google Analytics was “an 

enterprise-class web analytics solution” that provided insights into a website’s traffic and 
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marketing effectiveness. It had powerful, flexible and easy-to-use features. It was also a 

free service (Google, n.d.-e). 

Web Analytics software provided a number of metrics that enabled companies to 

measure the performance of their websites. Some of the metrics were (Burby et al., 

2007) : 

• Page views – “The number of times a page (an analyst-definable unit of content) 

was viewed.” 

• Unique visitors – “The number of inferred individual people (filtered for spiders 

and robots), within a designated reporting timeframe, with activity consisting of 

one or more visits to a site. Each individual is counted only once in the unique 

visitor measure for the reporting period.” 

• New visitor – “The number of unique visitors with activity including a first-ever 

visit to a site during a reporting period.” 

• Repeat visitor – “The number of unique visitors with activity consisting of two or 

more visits to a site during a reporting period.” 

• Visit duration – “The length of time in a session. Calculation is typically the 

timestamp of the last activity in the session minus the timestamp of the first 

activity of the session.” 

• Click-through – “Number of times a link was clicked by a visitor.” 

• Click-through rate/ratio – “The number of click-throughs for a specific link divided 

by the number of times that link was viewed.” 

• Page views per visit – “The number of page views in a reporting period divided 

by number of visits in the same reporting period.” 
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• Bounces – “Visits that consist of one page-view”. A bounce occurred when a 

visitor left immediately without having viewed any page but the landing page 

(White, 2006). 

• Bounce rate – This was calculated by dividing the number of bounces that a 

page generated by the number of visits that it had received. 

• Conversion – “A visitor completing a target action.” 

2.5.3. Discussion  

Small changes to a website’s layout or content could have a large effect on visitors’ 

response and the website’s efficiency. This Section identified metrics that could be used 

to measure website performance. Website performance metrics have evolved over the 

years from the number of hits a website received to usability, customer satisfaction, 

conversion rate and bounce rate. Some of the metrics found were implicit and therefore 

more difficult to measure for example usability and customer satisfaction. The process 

of evaluating implicit metrics involved surveys and other interactive methods. Other 

metrics found were explicit and were relatively easier to measure. These metrics were 

readily available as part of sophisticated reports that were generated by Web Analytics 

software. Some of the explicit performance measures described in this Section were 

used to measure the performance of landing pages during landing page optimisation 

described in Chapter 6. 

2.6. Landing Pages 

Loveday and Neihaus (2008) described the goal of a landing page as “moving the visitor 

to the primary desired action.” They stated that the selection of the action was driven by 

an online strategy for example if the business goal was to generate leads then the goal 

of the landing page was to motivate visitors to make contact.   
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The role of landing pages were different to other pages on a website and as such their 

design guidelines emphasised (Loveday and Neihaus, 2008): 

• Trust and credibility - Since landing pages were usually the first point of contact 

with a company, they needed to make a good first impression. 

• Professional and industry appropriate design – The appearance of a landing 

page impacted on visitors’ first impression. 

• References – References such as customer testimonials, industry awards and 

press quotes could be included on a landing page. 

• Reducing or eliminating navigation – Since visitors were looking for something 

specific, navigation options could be minimised so as not to lead them away from 

a conversion path. 

• Extension of an advertisement – Landing pages needed to be an extension of the 

advertisement that they serviced. This provided a consistent experience to the 

visitor. 

• Providing what the corresponding advertisement promised – The landing page 

needed to do this, otherwise visitors would leave without converting. 

• Segmentation – By providing segmentation options, landing pages were able to 

cater for the needs of a broader audience. 

• Personalisation – “Personalising the look and wording of a landing to a particular 

visitor or audience is a powerful way to capture and keep attention.” 

• Consideration for reading patterns – Different visitors had different reading 

patterns. Therefore, the content needed to be formatted to appeal to all visitors. 
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2.6.1. Segmentation and personalisation 

“The goal of web personalisation is to deliver the right content to the right person at the 

right time and to maximise immediate and future business opportunities” (Tam and Ho, 

2006). Web personalisation is akin to the mirroring principle where a product should be 

built around the “unique and particular needs” of customers (Hammer, 1995).  

In the online world, it was difficult to predict what group a website visitor belonged to. It 

was therefore difficult to cater to the specific needs of these segments. One way to 

solve this problem was to offer segmentation options which allowed visitors to qualify 

themselves. A web page with segmentation options offered “a clear, audience-specific 

path for each of the most important audiences” (Loveday and Neihaus, 2008). Further 

segmentation could be carried out on subsequent pages to pin down the visitor’s 

interest. Providing segmentation options on a landing page meant that one page could 

capture the attention of a wide variety of visitors and offer information relevant to each 

group.  

Segmentation could also take place at the advertisement level which meant that, the 

landing page could cater to a tightly defined set of visitors. In this case, the landing page 

could be personalised for these visitors. However, it was not always possible to run 

advertisement campaigns which were that well targeted and therefore, the level at 

which personalisation occurred within a website could vary. 

Types of personalisation 

There were different types of personalisation, ranging from “user-driven personalisation 

to transaction and context-driven personalisation strategies” (Tam and Ho, 2006). Tam 

and Ho (2006) presented the following definitions: 
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In user driven personalisation, visitors specified in advance the layout and content that 

matched their interests and preferences.  

In transaction driven personalisation, a website was customised based on the previous 

transactions of visitors. The visitor’s interests and preferences were inferred from their 

browsing history.  

Context driven personalisation relied on understanding the context of individual visitors 

through click stream analysis or web mining. By identifying the context of visitors, their 

objectives could be determined and a website could be personalised to help them meet 

their goals. 

User driven and transaction driven personalisation were not useful for landing pages as 

these pages attracted mostly new visitors for whom there was no historical data 

available. However, a landing page could offer visitors some options for personalising 

the website or page so that the next time they visited, the content and layout was 

tailored their preferences.  Context driven personalisation could be attempted on 

landing pages. If an advertising campaign was well targeted, then the context of visitors 

who landed on a website through that campaign could be assumed.  

Calculating how much of the content to customise on a landing page could be complex. 

Too much customisation could distract from the main aim of a landing page, for 

example offering too many customised links or options could take a visitor away from 

the optimal conversion path. It could be argued that landing page customisation had a 

positive impact as long as it re-enforced the primary aim of the landing page. 
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2.6.2. Trust and credibility 

Some of the design elements that impacted trust according to Loveday and Neihaus 

(2008) were: 

• Visual design - A landing page had to have a professional and industry-

appropriate look.  

• Quality and relevancy of content - A landing page had to provide well written, 

concise and accurate information.  

• References - A landing page could include positive references from third parties. 

• Security - It was important to make it obvious to visitors that a website was 

secure and that any credit card or personal details provided would be used in 

compliance with credit card company requirements and government regulation 

concerning storage of personal data.  

2.6.3. Content relevancy/structure 

The content of a landing page played an important role in its efficiency as it needed to 

catch visitors’ attention and persuade them to explore a website. Information was also 

considered an important factor in influencing trust and satisfaction (Cyr, 2000).  Small 

changes and adjustment in the content could have significant effects on visitors’ 

behaviour. One of the few well documented facts about the Internet is that people do 

not read web pages, instead they scan them. Krug (2006) states that “we tend to focus 

on words and phrases that seem to match (a) the task at hand or (b) our current or 

ongoing personal interests and (c) the trigger words that are hardwired into our nervous 

system like ‘Free’ and ‘Sale’”. In his research Neilsen (1997) found that 79% of visitors 

always scanned new pages that they came across while only 16% read every word. In 
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order to accommodate different reading patterns, Neilsen (1997) suggested that 

websites should use scannable text by: 

• Highlighting keywords. 

• Having meaningful sub-heading, not “clever” ones. 

• Using bullet lists. 

• Having one idea per paragraph. 

• Using the inverted pyramid style. 

When measuring usability of a web page that followed his content formatting  

guidelines, Neilsen (1997) observed a 124% increase in usability.  

Apart from content formatting and structure, there were other factors to consider when 

writing content such as (Loveday and Neihaus, 2008):  

• Tone and language – This needed to match the language of the target audience. 

• Benefits – The content needed to engage visitors with benefits and scenarios 

that they could relate to. 

• The amount of copy – Depending on the complexity of the offer being made on a 

landing page the copy could vary in length. When there was too much copy a 

rule of thumb was to have the essential points above the fold. This allowed 

visitors who did not like to scroll to still be able to scan the offer. 

Nielsen (2008) investigated how much content visitors actually read and found that “on 

the average web page, users have time to read at most 28% of the words during an 

average visit; 20% is more likely.” He was able to model visitors’ reading behaviour for 

pages containing between “30 and 1,250 words” using a linear equation shown in Graph 

2.1. 
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As expected visitors spent more time on pages with more content. However, the best-fit 

formula showed that visitors spent only “4.4 seconds more for each additional 100 

words.” There was also a fixed time of 25 second during which visitors were thought to 

be familiarising themselves with layout and navigation or looking at images (Nielsen, 

2008). These results suggested that content had to be kept short and to the point as 

visitors read little content. 

 

Graph 2.1: Average time visitors spend on pages wit h different word counts (Nielsen, 2008). 

2.6.4. Discussion 

This Section considered some of the best design practices regarding landing pages. 

These were taken into consideration when designing and optimising the landing pages 

that are described in Chapter 6. 
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2.7. Landing Page Optimisation 

Landing page optimisation (LPO) was a popular approach for assessing and then 

improving website design. During LPO several prototypes were created and then tested 

with website visitors. LPO could be either target-based (pages were customised based 

on behavioural or “self-profiled” information of a visitor, for example purchase history) or 

experiment-based (pages were optimised for visitors’ preferences that were inferred 

though experimentation). Landing page optimisation could be limited in time or ongoing.  

(Gofman and Moskowitz, 2009) 

The goal of LPO was to increase the number of website visitors who completed an 

action that represented a conversion. A conversion could be sending an enquiry, buying 

a product or downloading software. The definition of a conversion varied from website to 

website.  

2.7.1. Landing page optimisation through targeting 

Three main types of targeting could be used for landing page optimisation. They were 

(SEO Moves, 2010)  : 

• Associative content targeting (also called passive targeting). The design of the 

landing page was based on information obtained about the visitor, for example 

location, search criteria and other criteria that can be used to categorise a visitor. 

• Predictive content targeting (also called active targeting). The content of the 

landing page was adjusted based on historical information collected about the 

visitor, for example behaviour, browsing pattern or demographics etc. 

• Consumer directed targeting (also called social targeting). “The page content is 

created using the relevance of publicly available information through a 

mechanism based on reviews, ratings, tagging, referrals, etc.” 



 

65 
 

2.7.2. Landing page optimisation experimentation ty pes 

There were two main types of experimentations that could be conducted for LPO 

(Gofman and Moskowitz, 2009):  

• Closed-ended experimentation. Several variations of landing pages were tried 

and visitor behaviour was observed. At the end of the experiment the better 

performing page was selected.  

• Open-ended experimentation. Similar to closed-ended experimentation except 

that the experiment was ongoing or ran for a prolonged period of time. The 

design of the landing page was changed dynamically as the results changed. 

2.7.3. Experimentation methodologies for LPO 

There were three methodologies that could be used in experimentation based LPO, to 

find the best combination of design elements for an optimal landing page (Ash, 2008, 

Kaushik, 2006): 

a) A/B testing. 

b) Multivariate landing page optimisation. 

c) Experience testing. 

a) A/B testing 

A/B testing was also known as A/B split testing. It was a method for testing two versions 

of a web page by randomly assigning (usually in equal proportions) new visitors to each 

page. A/B testing could be carried out sequentially or in parallel.  

In sequential testing, pages were tested one at a time for a given period of time. Once 

all pages were tested, then their performance was compared. In parallel testing, both 



 

66 
 

versions of a landing page were tested at the same time with traffic divided (in equal 

proportions) between the two pages. 

It was possible to have more than two versions of a landing page in a split test. For 

example, if there was one original and two alternative versions. However, split tests 

were rarely used to test more than ten pages. 

A/B testing was comparatively cheap as it did not require additional tools or resources 

before it could be implemented. Results were easy to interpret and did not require 

statistical analysis. However, in the case of sequential testing, it was difficult to control 

external factors such as traffic, seasonal trends and economic trends. 

b) Multivariate landing page optimisation 

Multivariate landing page optimisation (MVLPO) was a method whereby multiple 

combinations of design elements of a page could be tested. For example, a page may 

have had X choices for its title, Y choices for its featured image, Z choices for its 

content. This would give X x Y x Z design and layout options for the page. By running 

MVLPO it was possible to identify elements that tended to produce an increase in 

conversion. MVLPO supported open-ended experimentation and took a scientific 

approach towards understanding visitor’s preference. One of the drawbacks of MVLPO 

was that it focused on optimising one page at a time. Since website experiences that 

resulted in conversion relied on multiple pages, optimisation of a conversion path could 

take a long time. 

c) Experience testing  

Experience testing provided a method for changing the entire website experience for a 

visitor. With experience testing, everything about the experience of a website could be 
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changed, not just the look of one page, or the navigation or a piece of text. Experience 

testing made it possible to create two or three persistent experiences on a website, 

instead of creating two or three individual websites (Kaushik, 2006). The advantage of 

experience testing was that the results represented the visitors experience with the 

whole website and not just one page. Two main disadvantages of experience testing 

were:  

• It needed a platform that supported experience testing. 

• It took longer to obtain results than with A/B testing or MVLPO.  

2.7.4. Discussion 

This section described landing page optimisation; the types of targeting that could be 

used to achieve LPO as well as the experimentation methodologies for LPO. These 

were taken into consideration during LPO described in Chapter 6. 

2.8. Online Search Behaviour 

As discussed in 2.4, visitors’ motivation had an impact on their behaviour on websites. 

One of the characteristics differentiating goal-oriented visitors from experiential visitors 

was the type of search that they carried out. Goal-oriented visitors carried out “directed 

(pre-purchase)” searches while experiential visitors carried out “non-directed (ongoing)” 

searches (Novak et al., 2003). Therefore, it was possible that visitor motivation and 

purchase intent could be inferred from the keyword that they used to search for 

information.  

Usually, Web users started their search with a generic search query and gradually 

refined it until they found a search query that led them to what they were looking for. 

Web users could adopt two types of strategies when searching: browsing and analytical 
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strategies (Marchionini, 1995). These strategies were described as follows (Zhang and 

von Dran, 2000): 

“Browsing is an informal and natural information seeking approach that depends heavily 

on the information environment and the user’s recognition of relevant information. 

Analytical strategies, in contrast, depend on careful planning, recall of query terms, 

iterative query reformulation, and examination of results”.  

Pavlou and Fygenson (2006) found that the intention of buying a product occurred 

before the intention of acquiring information on a product.  Following this reasoning, a 

Web user who had decided to buy a product would go online and try to express their 

decision in term of a search query. Pirolli (2007) made a similar distinction between task 

and need. He referred to a query as an external representation of need.  

Jansen et al. (2008) suggested that the search query was not the only expression of 

intent and that other “aspects of the interaction including number of query 

reformulations, selection of vertical, use of system feedback, and result page viewed” 

were also expressions of intent. Broder (2002) identified three types of searches: 

informational, navigational, and transactional which were described by Jansen et al 

(2008) as: 

• Informational searching: “The intent of informational searching is to locate 

content concerning a particular topic in order to address an information need of 

the searcher. The content can be in a variety of forms, including data, text, 

documents, and multimedia. The need can be along a spectrum from very 

precise to very vague”. 

• Navigational searching: “The intent of navigational searching is to locate a 

particular website. The website can be that of a person or organisation. It can be 
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a particular web page, site or a hub site. The searcher may have a particular 

website in mind, or the searcher may just ‘think’ a particular website exists.” 

• Transactional searching: “The intent of transactional searching is to locate a 

website with the goal to obtain some other product, which may require executing 

some web service on that website. Examples include purchase of a product, 

execution of an online application, or downloading multimedia.” 

The characteristics of these search types were (Jansen et al., 2008) :  

• Navigational searching 

o queries containing company/business/organization/people names. 

o queries containing domains suffixes. 

o queries with ‘Web’ as the source. 

o queries length (i.e. number of terms in query) less than 3. 

o searcher viewing the first search engine results page. 

• Transactional searching 

o queries containing terms related to movies, songs, lyrics, recipes, images, 

humor, and pornography. 

o queries with ‘obtaining’ terms (e.g. lyrics, recipes, etc.). 

o queries with ‘download’ terms (e.g. download, software, etc.). 

o queries relating to image, audio, or video collections. 

o queries with ‘audio’, ‘images’, or ‘video’ as the source. 

o queries with ‘entertainment’ terms (pictures, games, etc.). 

o queries with ‘interact’ terms (e.g. buy, chat, etc.). 

o queries with movies, songs, lyrics, images, and multimedia or 

compression file extensions (jpeg, zip, etc.). 

• Informational searching 
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o uses question words (i.e. ‘ways to’,  ‘how to’, ‘what is’, etc.); 

o queries with natural language terms; 

o queries containing informational terms (e.g. list, playlist, etc.); 

o queries that were beyond the first query submitted; 

o queries where the searcher viewed multiple results pages; 

o queries length (i.e., number of terms in a query) greater than 2; and 

o queries that do not meet criteria for navigational or transactional. 

2.8.1. Discussion 

Jansen et al (2008) have suggested that “by identifying the user intent of Web queries in 

real time, Web search engines can provide more relevant results to searchers and more 

precisely targeted sponsored links”.  Search engine behaviour studies could be applied 

to the design of websites and landing pages. By using visitors’ search query to infer 

intent, their experience on a website could be customised to better cater to their needs.  

For example, a transactional query could indicate that a visitor was ready to buy and 

therefore, should be directed to a website’s online shop. If a visitor landed on a website 

with an informational query, they could be directed to pages that contained information 

that matched their query.  

Search query could be used in visitor profiling as a way of determining what they were 

looking for when they landed on a website. This could be a powerful way of customising 

websites in real-time and minimising the effort required by visitors’ to reach their goals. 

This could lead to more satisfying interaction and experience on websites through 

increased customer satisfaction, Perceived Ease of Use and Perceived 

Informativeness. 
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The findings described in this Section led to an investigation into whether a relationship 

existed between search query length, search query relevancy and the likelihood that a 

visitor would convert. Chapter 7 describes the findings of the investigation. 

2.9. Data Mining and Knowledge Discovery 

Data mining was “the exploration and analysis of large quantities of data in order to 

discover meaningful patterns and rules. The data mining process is sometimes referred 

to as knowledge discovery or Knowledge Discovery in Databases KDD” (Berry and 

Linoff, 2004). 

The data mining process consisted of five iterative stages: 

• Data selection. 

• Data cleaning – duplicate data and inconsistencies were found and removed. 

• Data transformation – data was transformed into attributes that were used as 

input to data mining algorithm. 

• Data mining and model creation – data discovery algorithms were used to find 

patterns and create models. 

• Assess models – models were tested with a set of data separate and different to 

the one used to create the model. Accuracy measures were used to determine 

the reliability of models. 

It was possible to go back a step or more at each stage in order to correct errors or 

optimise the process. 

2.9.1. Web usage mining 

Web mining was described as the extraction of useful information from web documents 

and web services using data mining methods (Etzioni, 1996). There were three types of 
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web mining: content mining, web structure mining, and web usage mining (Kosala and 

Blockeel, 2000). 

Web usage mining extracted knowledge and identified patterns from data collected in 

web server access logs, proxy server logs, referrer logs, browser logs, error logs, visitor 

profiles, registration data, visitor sessions or transactions, cookies, visitor queries, and 

bookmark data, mouse clicks and scrolls and any other data generated by the 

interaction between users and the web or a website (Das and Turkoglu, 2009). 

The goal of web usage mining was to capture, analyse and model the behavioural 

patterns and profiles of visitors who interacted with a website (Liu, 2007, Wang and Liu, 

2003, Das and Turkoglu, 2009). Figure 2.5 shows the web usage mining process. 

 

Figure 2.5: Web usage mining process(Das and Turkog lu, 2009). 

Data mining algorithms that have been used for web usage mining included association 

rules, temporal sequences, clusters and path expressions (Cooley et al., 1997). 

2.9.2. Predicting online behaviour 

There has been growing interest in studying how people behave online and whether 

their behaviour can be predicted or influenced. Bucklin and Sismeiro (Bucklin and 

Sismeiro, 2008) reviewed the use of click stream data in understanding browsing and 

site usage, the efficacy of the Internet as an advertising medium and shopping 

behaviour on the Internet. Their review showed that research regarding online 
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behaviour prediction had focused on shopping behaviour and purchase on e-commerce 

websites, not service websites.  

Several approaches have been used to predict online purchase. Moe and Fader 

(2004a, 2004b) developed stochastic models of visitors’ behaviour on ecommerce 

websites. They found a relationship between the frequency with which a visitor came to 

a retail website and their likelihood to purchase; the higher the frequency of visits the 

greater their propensity to buy. They used this relationship to predict purchase based on 

prior visit behaviour. A limitation of their method was that it did not consider browsing 

behaviour and the possibility that certain browsing actions could influence or be 

associated with online purchase 

Montgomery et al  (2004) modelled visitors’ online browsing using path analysis and 

clickstream data. They proposed a multinomial probit model that could make 

probabilistic assessments about future paths including whether a visitor would make a 

purchase. Their model provided a dynamic forecast of a visitor’s likelihood to purchase 

as they viewed pages on a website. This had some similarity to some of the early work 

described in this dissertation but the work in this dissertation did not use a multinomial 

probit model, and considered more attributes to predict behaviour.  

Van den Poel and Buckinx (2005) investigated how different types of predictors affected 

purchasing at an online store and used logit modelling to predict whether a visitor would 

make a purchase during their next visit. They grouped predictors into four categories: 

1. General clickstream behaviour.  

2. More detailed clickstream behaviour. 

3. Customer demographics.  

4. Historical purchase behaviour. 
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Their results showed that variables from all four categories could be used to predict 

online purchase and that clickstream data (especially detailed clickstream behaviour) 

was important for predicting online purchase. They used previous browsing behaviour to 

predict future behaviour rather than real-time data. 

2.9.3. Artificial Neural Networks 

An Artificial Neural Network (ANN) was a network of interconnected elements which 

tried to mimic the way biological nervous systems worked (Picton, 2000). “ANN can 

recognise patterns and learn from their interactions with the environment. The multilayer 

feed-forward network is widely used. ANN is adaptive and can handle complex systems. 

The architecture of ANN includes a number of nodes (neurons) or units organised in 

input and output layers as well as a number of hidden layers” (Jafar et al., 2010). 

“The two most significant properties of neural networks are their ability to learn and 

generalise” (Picton, 2000). ANNs learned by adjusting their weight and biases through 

an iterative process (Najjar et al., 1997). 

There were two types of machine learning: 

a) Unsupervised learning.  

b) Supervised learning. 

a) Unsupervised learning 

In unsupervised learning an ANN was given a set of data as input but was not provided 

with corresponding target outputs (Ghahramani, 2004). Ghahramani  (2004) suggested 

that it was “possible to develop of formal framework for unsupervised learning based on 

the notion that the machine’s goal is to build representations of the input that can be 

used for decision making, predicting future inputs, efficiently communicating the inputs 
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to another machine, etc. In a sense, unsupervised learning can be thought of as finding 

patterns in the data above and beyond what would be considered pure unstructured 

noise. Two very simple classic examples of unsupervised learning are clustering and 

dimensionality reduction.” 

b) Supervised learning 

“The most common learning [method is] supervised learning, which provides a response 

value for every set of input values and requires a known (input) target value that the 

response is trying to guess” (Jafar et al., 2010). Supervised training involved the 

following steps: 

• Input values which had corresponding known output values were gathered. This 

set of data was usually called training data. 

• An ANN was executed (trained) with training data. “The goal of the machine is to 

learn to produce the correct output given a new input. This output could be a 

class label (in classification) or a real number (in regression)” (Ghahramani, 

2004). During execution the ANN weights were adjusted iteratively in order to 

minimize the error (Jafar et al., 2010). 

• The model that was developed using the training data was tested with a separate 

set of data that contained inputs and known output values. This data set was 

usually called test data. 

Najjar et al. (1997) identified some factors that needed to be considered during the 

development of ANNs: 

a) Size of dataset. 

b) Activation function. 

c) Criteria for termination of training. 
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d) Number of training cycles (iteration). 

a) Size of dataset 

Najjar et al (1997) suggested “that data to be used for training should be large enough 

to cover all possible variability within the application domain” and that “utilisation of 20 – 

25% of the data for testing, from a relatively large mother database, is practically 

sufficient for examining the prediction accuracy of the network while maintaining a wide 

variety of patterns for the network to learn.” 

b) Activation function 

“The activation (transfer) function is necessary to transform the weighted sum of all 

signals impinging onto a neuron into a state which determines the firing intensity of that 

neuron” (Najjar et al., 1997). 

c) Criteria for termination of training 

“The convergence criteria is usually based on the error representing the difference 

between the target output(s) and the predicted output(s). Training is allowed to proceed 

until the predicted output(s) for any pattern agrees with the target output(s) within a pre-

specified tolerance” (Najjar et al., 1997). 

d) Number of training cycles (iteration) 

It was important to determine the number of training cycles required to develop a good 

model. Using too many cycles could result in overtraining which was “detrimental to the 

capacity of the network for generalising from unseen data (a network that can 

accurately predict the output of the testing patterns is said to have generalised)” (Jafar 

et al., 2010). 
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2.9.4. Discussion 

This Section provided an overview of data mining, web mining, online behaviour 

prediction and Artificial Neural Networks as well as some factors that needed to be 

considered during the development of ANN models. ANN algorithms were used during 

the data mining stage of the research, which is described in Chapter 7. 

2.10. Chapter Discussion 

This Chapter reviewed the background research that was carried out into several areas 

that were relevant to the research work described in this dissertation. The literature 

search identified a gap in knowledge in some key areas.  

Existing research literature had proposed a number of website design and landing page 

design techniques that could be used to improve the performance of websites and 

landing pages. However, the literature did not present results to show how the 

application of these design techniques affected the conversion rate or bounce rate of a 

landing page or a website. 

Existing research about predicting online conversion had focused on retail websites and 

the prediction of purchase. There is no research published regarding visitor behaviour 

on a service website and the prediction of conversion on such websites. Also, the 

methods used for predicting purchase conversion have included the use of Bayesian 

models, logit models and other statistical methods. It appears that linear regression 

models, Find Laws and Neural Networks had not been used as a method for predicting 

online conversion. Search keyword length and relevance had also not been previously 

used as predictors of conversion. 
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Section 2.1 described the different types of CRM systems, existing commercial CRM 

systems as well as important considerations when implementing CRM and measures to 

evaluate the impact of the introduction of CRM in an organisation. These findings were 

taken into consideration during the implementing a CRM system that is described in 

Chapter 3. 

Section 2.2 gave an overview of online advertising, Pay Per Click advertising and the 

concept of long tail keywords. Chapter 5 describes how PPC advertising was used to 

drive traffic to websites that were created in this research.  

Section 2.3 considered the importance of website design and navigation design. It 

identified a number of design elements that were considered during the design of 

websites that are described in Chapter 4. 

Section 2.4 described behavioural intention and how it could affect visitors’ behaviour 

on a website. It also identified two main types of website visitors. Section 2.5 described 

measures of website performance. Section 2.6 described design guidelines that were 

important for landing pages. Section 2.7 described LPO and LPO experimentation 

methodologies. These findings were considered during the optimisation of landing 

pages described in Chapter 6. 

Section 2.8 described how Web users search for information and how a search query 

could be regarded an expression of a Web user’s intent. Section 2.9 gave an overview 

of data mining, web mining and Artificial Neural Networks. The finding from Section 2.8 

and 2.9 were used during data mining described in Chapter 7.  
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CHAPTER 3  

CUSTOMER RELATIONSHIP MANAGEMENT SYSTEMS 

A first step in improving customer generation was to understand who customers were 

as well as their needs. In order to achieve this, the research needed to collect data 

about customers from an initial visit to a website, through to product delivery.   

This Chapter describes the Information Technology (IT) systems and architecture that 

existed at the beginning of the research. It describes the limitations of these systems 

and the implementation of the Microsoft Dynamics Customer Relationship Management 

3.0 (MS CRM) system that replaced the existing GoldMine Business Contact Manager 

5.7 (GoldMine) system. It also describes how the author customised MS CRM to 

capture customer data throughout the collaborating company’s sales cycle and 

extended the system to collect additional customer data after product delivery. Finally, it 

describes how the data captured by MS CRM was used to extract knowledge about 

customers. 

3.1. Existing IT architecture 

The existing IT architecture is shown in Figure 3.1. The diagram shows interaction 

between users as well as interaction with software systems. The IT architecture shown 

in Figure 3.1 consisted of four systems: 

1. GoldMine that was used to manage customers and sales activities.  GoldMine 

was a popular solution for small businesses that needed to manage contacts, 
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Figure 3.1: Existing IT infrastructure. 
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2. Voice Over Internet Protocol (VOIP) phone system which was accessible to staff 

in the form of a client application that ran on their computer. The GoldMine 

system interfaced with the VOIP phone system through a plug-in that allowed 

users to telephone customers from GoldMine. 

3. Accounts system for processing sales and purchase orders.  

4. Websites. There was a main website and a number of micro sites.  The main 

website promoted all the services that the collaborating company offered 

whereas each micro site focused on a specific service. The websites were static 

with no back-end technology for tracking and logging the activities of visitors. As 

a result, there was a lack of knowledge regarding who website visitors were, 

where they came from, what they were looking for and how they behaved on the 

websites.  

3.1.1. Limitations of existing IT architecture 

Some limitations of the existing IT architecture were: 

• Lack of automation. 

• Limited information capture and reporting on KPIs. 

• Little information flow.  

3.1.2. GoldMine Business Contact Manager 

GoldMine was used to capture and manage customer details and communication 

throughout the collaborating company’s sales cycle. The main features of GoldMine 

included: 

• An email system that allowed users to send and receive emails within GoldMine. 

GoldMine automatically linked emails to customer records thus keeping an 

accurate history of all communications with customers.  
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• A basic workflow system that could be customised to send tasks to company 

staff automatically.  

• A basic interface for interrogating data stored in the GoldMine database using 

Structured Query Language (SQL) queries and for generating reports. 

Generating reports in GoldMine required technical skills. Staff found this to be a 

significant drawback of GoldMine. 

It can be seen from Figure 3.1 that there was limited integration between the various 

systems. GoldMine interfaced with the phone system through a plug-in that allowed 

users to dial a customer’s phone number by clicking a button within the customer’s 

record. Sales staffs acted as an interface between GoldMine and the websites. The 

websites generated enquiries in the form of emails and sales staffs were responsible for 

creating a lead record in GoldMine for each enquiry and then assigning it to a member 

of the sales staff. Leads created from phone calls were assigned to the sales staff who 

answered the call.  

The collaborating company’s sales process specified that details such as telephone 

number and email address had to be captured and stored for all customers. However, 

this rule could not be enforced in GoldMine as it did not allow for data fields to be made 

mandatory. As a result, customer information that was stored in GoldMine was 

sometimes incomplete.  

Sales staff used GoldMine to manage customers from the lead stage to the order stage. 

When an order was placed, customer and order details were compiled into a sales order 

by a sales person. The sales order was then handed over to staff in the Finance 

department who entered it into the accounts system. 
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GoldMine ran workflow processes that assigned tasks to users. However, the workflow 

features were basic and did not allow for complex business processes to be completely 

automated and coordinated. It was difficult to implement business processes that had 

non-sequential or iterative stages. Human intervention and interaction was crucial in 

executing business processes. 

GoldMine could be difficult to customise. Therefore, minimal customer data was 

captured. The data was not detailed enough for analysis and decision making. 

GoldMine did not classify records in terms of the common stages that were present in 

most sales cycles, for example leads, opportunities and orders. It was therefore difficult 

to:  

• build and monitor a sales pipeline. 

• measure the performance of the sales team at various stages of the sales cycle.  

• identify bottlenecks in the sales cycle.   

These limitations of GoldMine meant that a significant amount of work and effort was 

required to manage customers, convert leads to orders and perform day-to-day tasks. 

This restricted the number of enquiries and orders that the collaborating company could 

deal with at any given time. This made it difficult for the business to grow and expand. 

Overall, GoldMine could not store the data required for the research and did not provide 

the necessary tools to support the sales and management team. 

In order to overcome these limitations of GoldMine, an alternative CRM system was 

required to provide: 

• Better information capture. 

• Reports that did not require technical skills to be created and could be generated 

by any member of staff. 
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• Workflow features that enabled easy automation of business processes and 

information flow. 

• Flexibility through customisation and the ability to extend the system with either 

third party software or custom built software modules. 

• Integration capabilities so that it could interface with other systems. 

3.2. Specifications for an alternative CRM system 

The specification of an alternative CRM system was defined after researching the 

different types of CRM systems described in Chapter 2, and after gathering information 

from sales and marketing staff at the collaborating company. 

3.2.1. Users 

Four different types of users were identified for the CRM system. These were: 

a) Sales staff. 

b) Sales support staff, for example, engineers, project managers and product 

sourcing staff. 

c) Management. 

d) Administrators. 

a) Sales staff  

Sales staff would use the CRM system on a daily basis to carry out tasks relating to 

sales. These tasks included communicating with customers via email, using calendar 

tools to schedule meetings and creating and modifying customer records in the CRM 

system. Sales staff typically had limited experience of using word processors, 

spreadsheet and email software.  
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b) Sales support staff 

Sales support staff included project managers, product designers, electronic engineers 

and product sourcing staff who worked with the sales team to deliver customer orders. 

They would use the CRM system to access and update customer data as well as for 

communications. 

c) Management  

Management would use the CRM system to generate and view reports about 

performance at various stages of the sales cycle.  

d) Administrators  

Administrators would carry out maintenance and customisation of the CRM system, 

including modifying the interface, implementing or editing workflows and creating 

reports. 

Sales staff were expected to use the CRM system on a daily basis to carry out all sales 

related tasks. They would use it more than other members of staff. Therefore, the 

system needed to be customised to meet their needs. Sales support staff were 

expected to use the CRM system mainly as an information repository and as a tool to 

track communications with customers.  

Management required custom reports and dashboards that would display Key 

Performance Indicators (KPIs) derived from the data stored in the system. They would 

also require training to learn how to use the CRM system’s reporting tools. 

Administrators needed to understand the technical details of the CRM system in order 

to maintain and customise it when required. 
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3.2.2. System Goals 

The goal of the new CRM system was to increase company performance by:  

• Increasing sales staff performance and thus increasing sales. 

• Generating repeat business by improving customer satisfaction through improved 

customer relationships. 

• Improving decision making through the use of reports and dashboards. 

• Improving information flow and promoting collaboration between departments. 

• Collecting detailed customer data. This data would be used to extract knowledge 

about customers and improve marketing. 

3.2.3. System Attributes 

The alternative CRM system needed to have the following attributes: 

a) Ease of use.  

b) Ease of customisation. 

c) Extendibility. 

d) Support for data mining and analysis. 

a) Ease of Use 

The alternative CRM system would be used mainly by sales staff with limited 

experience of computer applications. Therefore, the system needed to be easy to use. 

“A salesperson’s belief regarding CRM ease-of-use and CRM usefulness have a 

catalytic influence on sales performance” (Avlonitis and Panagopoulos, 2005). 

b) Ease of customisation 

The alternative CRM system needed to be easily customisable especially with regards 

to the Graphical User Interface (GUI), data capture and workflows. Similarly, it was 
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important to be able to easily edit or create new workflows which could automate 

existing and new business processes. 

c) Extendibility 

The alternative CRM system had to support business processes that would evolve and 

change. Therefore, it had to be extendable so that new features could be created when 

required. Extendibility was also important in case the alternative CRM system needed to 

be integrated with existing systems. 

d) Support for data mining and analysis  

The CRM system’s database would act as a main data repository for customer data. 

This would be achieved through customisation of the CRM system’s database and 

integration with existing systems. It was important for the CRM system to have reporting 

functions that users with limited technical abilities could use to analyse data stored in 

the system’s database. It was also important for the back-end database to be directly 

accessible to more experienced users who might want to carry out more advanced data 

mining and analysis.  

3.2.4. System functions 

There were three main functions that were required from the alternative CRM system in 

order to meet the goals stated in Section 3.2.2: 

a) Customer management. 

b) Workflow service. 

c) Reporting features. 
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a) Customer management 

The CRM system needed to have functions to create, edit and save customer data 

easily. It needed to be able to track customer communications and have tools and 

features that would support the day to day tasks of the sales team. 

b) Workflow service 

 A workflow was an application or service that ran constantly. Workflows evaluated 

CRM data according to conditions that were pre-defined in business processes. When 

the workflow service determined that a condition had been fulfilled, it started the 

appropriate workflow rules to run workflow actions. Typical workflow actions included 

sending an e-mail message, creating a task or updating a data field. Workflows were 

needed to automate business processes and sales processes and to coordinate tasks 

across departments. 

c) Reporting features 

The CRM system needed to have reporting functions so that knowledge could be 

extracted from data that was collected. The CRM system also needed to support quick 

and easy creation of custom reports. Examples of reports included sales pipeline, 

number of enquiries received in a period of time and number of quotes sent every 

month.  

3.2.5. System implementation 

Three CRM software packages were investigated namely MS CRM, SugarCRM and the 

latest version of GoldMine. These software packages were reviewed in Chapter 2. MS 

CRM was selected as it met the requirements for the system attributes (described in 
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section 3.2.3) and system functions (described in section 3.2.4) while still being 

affordable. The process for rolling out MS CRM involved: 

• Agreeing the system requirements with all stakeholders at the collaborating 

company. 

• Building a test environment in which  

o MS CRM was evaluated against detailed requirements and then 

customised (including user interface, workflows, reports and dashboards) 

according to requirements gathered through meetings with sales staff and 

management.  

o Data migration from GoldMine to MS CRM was tested. 

o Selected users were asked to use MS CRM and provide feedback. 

Modifications were made to the system based on user feedback. 

• Deploying MS CRM and customisations to a live server.  

• Migrating selected data from GoldMine to MS CRM. 

• Training staff. 

• Rolling out MS CRM.  

• Phasing out the use of GoldMine. 

• Getting feedback about MS CRM and making modifications accordingly. 

 
Initially the plan was to migrate all data stored in GoldMine to MS CRM. However, the 

database structures of the two systems were different so this was more complex than 

originally anticipated and increased timescales. As a result only a selected set of data 

was migrated. Once data had been migrated and staff trained, MS CRM was rolled out 

in the collaborating company in May 2006. The IT architecture at this stage is shown in 

Figure 3.2. 
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Figure 3.2: IT architecture after the introduction of MS CRM.

With the implementation of MS CRM, new business processes and information flow 

were introduced. Some of the changes included: 

A dedicated member of the Customer Service team was tasked with handling 

phone enquiries as well as email enquiries that were received from the website

new customer made an enquiry, a lead record was created in MS CRM 

and populated with the customer’s information. Selected fields were made 

mandatory in MS CRM to ensure that certain information was always captured 

for example email address and customer name. New data such as the source of 

an enquiry and the method of enquiry were also stored in customers’ records. 

 

: IT architecture after the introduction of MS CRM.  

CRM, new business processes and information flow 

A dedicated member of the Customer Service team was tasked with handling 

phone enquiries as well as email enquiries that were received from the websites. 

new customer made an enquiry, a lead record was created in MS CRM 

and populated with the customer’s information. Selected fields were made 

mandatory in MS CRM to ensure that certain information was always captured 

me. New data such as the source of 

an enquiry and the method of enquiry were also stored in customers’ records. 



 

91 
 

Once a record was created, it was then assigned to a sales person. This 

triggered an automatic workflow which coordinated the efforts of the various 

departments that needed to work with the new customer so as to deliver an 

order. 

• Dashboards were implemented and customised. They were available for both 

management and staff. MS CRM captured detailed data allowing reports to be 

generated and KPIs to be monitored. Dashboards displayed data stored in MS 

CRM graphically and provided easy access to statistics that were used in 

decision making.  

• Remote staff could access MS CRM directly and did not need to synchronise 

with the system to see up-to-date data. 

Over the months following its launch, MS CRM was extended to have custom modules 

that would provide project management functions, the ability to capture data from 

customer surveys, quality control functions and a scoring system for identifying high 

quality enquiries.  

3.2.6. Custom Modules 

The MS CRM system was not integrated with any of the other existing systems such as 

the websites, telephone system or accounting system. Human interaction was still 

required to carry out some tasks and achieve information flow especially for project 

management. In order to collect data beyond the sales cycle, the MS CRM system was 

extended with the following custom built modules: 

a) Customer Satisfaction Survey (CSS) module.  

b) Project management module. 

c) Quality control module. 
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d) Opportunity marker. 

a) Customer Satisfaction Survey module  

At the beginning of the research, customer satisfaction surveys were not carried out. As 

part of the strategy to collect detailed customer data, a Customer Satisfaction Survey 

(CSS) was conducted by the marketing department. Marketing staff telephoned existing 

customers and asked them a series of questions. Answers to these questions were 

stored for analysis. This survey data was linked to customer data stored in MS CRM. In 

order to achieve this, the MS CRM was extended by creating a new CSS module. The 

CSS module worked within the MS CRM GUI, providing a seamless experience for 

users. Reports were created in MS CRM to view the data collected by the CSS module.  

b) Project Management Module 

At the beginning of the research, the collaborating company did not have a project 

management system. Sales staff managed the delivery of customers’ orders without 

formal recordings of problems and with limited quality control. There were no formal 

procedures for managing and delivering customers’ orders.  

A project manager was recruited to take over project management responsibilities and 

to introduce procedures for managing and delivering customer projects. The project 

manager’s initial responsibilities were to keep track of: 

• The stages of the different projects. 

• Payment dates and amount for customers and suppliers. 

• Project delivery dates. 

• Problems that occurred during production and delivery. 

The project manager used a spreadsheet to record project data and used MS CRM to 

keep track of communications with customers. This method worked well in the 
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beginning when there were few projects but became inefficient as the number of 

projects increased. 

The main weaknesses associated with managing projects in this way were: 

• It was difficult to update timescales. For example, if the start date of a project 

was delayed then this would affect subsequent dates. Updating the dates 

manually was time consuming and error prone. 

• Payment information was updated by the project manager as well as by the 

product sourcing staff. This made version control problematic. 

• It was difficult to generate reports from the data stored in a spreadsheet. 

In order to address these weaknesses a project management module was created in 

MS CRM that had the same structure as the spreadsheet. Workflows were also 

created to help coordinate tasks that required collaboration between departments or 

teams. 

The new module brought the following benefits: 

• Staff across the company could access timescales and payment information for 

any project through MS CRM. 

• It was possible to generate reports from the data captured by the module, for 

example, cash flow reports. 

c) Quality control module 

Following the introduction of quality control management processes at the collaborating 

company, a quality control module was created by extending MS CRM. This module 

collected quality control data that could be cross-referenced with existing customers’ 

records in MS CRM.  
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d) Opportunity marker module  

In order to allocate its resources efficiently, the collaborating company needed to 

identify enquiries that had a high potential of turning into sales. At the beginning of the 

research, enquiries were rated as ‘Hot’, ‘Warm’ or ‘Cold’ based on the opinion of 

individual sales staff. In an effort to improve the accuracy of these ratings, a scoring 

system was created. This system calculated the quality of enquiries based on a number 

of criteria.  These criteria included: 

• Size of business for example, small company, big multinational, individual, etc. 

• Delivery timescales. 

• The size of an order. 

• Whether there would be repeat orders. 

The opportunity marker module was created as a web form that displayed a series of 

questions. Each question had a set of pre-defined answers shown in a drop down 

menu. Answers were scored and the total was the quality score. Sales staff used the 

opportunity marker to score every enquiry. This score was stored automatically in MS 

CRM. Resources were allocated based on the score obtained by an enquiry. 

The IT architecture at the time of writing is shown in Figure 3.3. The data stored in MS 

CRM was integrated with data stored by the main website via a unique customer ID that 

allowed data to be cross referenced between MS CRM and the main website’s Online 

Tracking Module (OTM). This is discussed in more detail in Chapter 4. 
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Figure 3.3: Current IT architecture. 

enabled easier reporting on KPIs. A number of reports and dashboards were 

reated to view the data stored in MS CRM. The dashboards were used by the 

collaborating company’s management team to monitor the company’s performance.

Other members of staff used the dashboards to keep track of their performance and 

meeting their targets. For example, sales staff was targeted on 

the number of opportunities that they opened every month. Dashboards 

management to monitor this easily. 
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reated to view the data stored in MS CRM. The dashboards were used by the 

collaborating company’s management team to monitor the company’s performance. 

Other members of staff used the dashboards to keep track of their performance and 

meeting their targets. For example, sales staff was targeted on 

ashboards were created to 
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MS CRM reports enabled the extraction of knowledge about customers using the data 

that was stored in MS CRM. Data could also be manipulated and viewed by querying 

the MS CRM database directly. 

3.2.8. Systems/Data Integration 

MS CRM could be easily integrated with Microsoft products such as Microsoft Outlook 

and Microsoft SharePoint. Integration of MS CRM with non-Microsoft systems found in 

the IT architecture was investigated. It was found that because different technologies 

were used by the systems, integration would be expensive, complex and time-

consuming. However, data integration between the main website and MS CRM was 

achieved by collecting behavioural data on the website for each visitor and then cross 

referencing this data with corresponding customer records in MS CRM. A unique ID was 

stored in both systems to enable cross referencing. Integration between MS CRM and 

the main website is explained in more detail in Chapter 4.  

It was possible to integrate MS CRM with the main website so that online behavioural 

data for visitors who enquired by sending an email from the website, was automatically 

stored in MS CRM. However, this required another software component that was 

expensive. Therefore, this solution was not implemented.  

3.2.9. Knowledge extraction 

A few months after MS CRM was rolled out, enough data had been collected by the 

system for initial analyses. At this point in the research, the OTM was yet to be created. 

Therefore, there was no online behavioural data available for analysis. Initial analyses 

of the data captured by MS CRM generated information about: 

• Enquiries, for example:  
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o type of enquiry, that is whether an enquiry was about one of the following 

services: manufacturing , mechanical design or electronic design.  

o total number of enquiries received in a period of time. 

o total number of enquiries received for each type of enquiry. 

o the reason why an enquiry was rejected by the sales team. 

o types of enquiries commonly rejected by the sales team. 

o countries from which different types of enquiries originated. 

• Customers,  for example: 

o customer types, that is whether they were individuals, SMEs or corporate. 

o customers types who placed orders. 

o Whether a particular customer type was more likely to generate a 

particular type of enquiry. 

Chapter 4 describes how online behavioural data was collected by an Online 

Tracking Module and how some of this data was stored in MS CRM.  

3.3. Chapter Discussion 

In order to improve customer generation it was important to first understand existing 

customers and their needs. This required the extraction of knowledge from customer 

data that had been collected and stored in various systems at the collaborating 

company. 

This Chapter described the IT structure, CRM system and business processes that 

existed at the beginning of the research. The existing GoldMine system had a number 

of limitations that made data collection and analysis challenging and also limited the 

performance and growth of the collaboration company. The GoldMine system was 

replaced with MS CRM to overcome these limitations. 
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The MS CRM system was customised and extended to collect customer data 

throughout the sales cycle and post product delivery. The MS CRM system was also 

integrated with the main website using a common ID (described in Chapter 4). 

Detailed customer data was captured using the MS CRM system. This data was used to 

carry out initial analyses to extract knowledge about customers. Online behavioural data 

needed to be captured to enrich existing customer data so that more knowledge about 

customers could be extracted. Chapter 4 describes the implementation of an Online 

Tracking Module which captured data about website visitors’ browsing behaviour. 
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CHAPTER 4  

WEBSITES USED IN THIS RESEARCH 

In order to gain insight into customers’ needs and motivation, and build a knowledge 

base, data is often required. To achieve a similar goal in the research described in this 

dissertation a procedure was implemented to acquire data. A first step in achieving this 

was to implement and customise MS CRM to act as a central customer data repository. 

MS CRM captured data throughout a sales cycle and was extended to enable the 

collection of additional data after product delivery (described in Chapter 3). The next 

step involved collecting data about website visitors so that the research could gather 

data about customers from their initial visit to a website, through to product delivery.   

In order to do this, an Online Tracking Module (OTM) was created to collect marketing 

and behavioural data for all visitors who browsed the collaborating company’s websites. 

A solution was then implemented to allow data stored in the OTM to be cross 

referenced with data stored in MS CRM for visitors who had enquired.  

At the beginning of the research, the collaborating company had static websites that 

had no visitor tracking or personalisation capabilities. This Chapter describes these 

websites and how a first version of the OTM was created. It goes on to describe how a 

dynamic main website that had personalisation capabilities was created to replace the 

existing main company website at the collaborating company and how the 
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implementation of this dynamic main website led to the development of a second 

version the OTM with improved data capture functionalities.  

The author identified the requirements and wrote the specifications for the new dynamic 

website and OTM. The author also designed these systems together with a junior web 

designer who worked for the collaborating company. The code for the new dynamic 

website and OTM were written by the junior web designer under the supervision of the 

author. 

4.1. Existing websites  

At the beginning of the research, the collaborating company had simple websites with 

static pages. These websites had little functionality and did not collect marketing and 

behavioural data about visitors. Figure 4.1 shows the set up of the websites and their 

traffic sources at the beginning of the research.   

It can be seen from Figure 4.1 that the collaborating company had two types of 

websites: 

• A static main website. 

• Several static micro sites. 

The collaborating company used its websites to promote its services. They offered two 

main types of services, product design and product manufacturing. Each type of service 

was divided into a number of specialist areas for example, product design included 

electronic design and mechanical design while product manufacturing included plastic 

production and tooling production. Some of these specialist areas were further broken 

down into specialist services for example, plastic production included different types of 

plastic moulding and plastic extrusion. 
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Figure 4.1: Existing websites. 

The static main website promoted all the services that the company offered. It contained 

content, giving the website a deep structure. The micro sites on the 

other hand were smaller websites. Each micro site focused on a specialist service area 

for example plastic production, electronic design etc. 

Pay Per Click (PPC) advertising (discussed in Chapter 5) and non

sources such as organic search engine listings and web directory listings generated 

Email and phone enquiries that were generated by the websites were 

team. Customer details obtained from phone and emails enquiries 

were used to create unique contact records in GoldMine.  

 

The static main website promoted all the services that the company offered. It contained 

content, giving the website a deep structure. The micro sites on the 

other hand were smaller websites. Each micro site focused on a specialist service area 

n Chapter 5) and non-paid online traffic 

sources such as organic search engine listings and web directory listings generated 

Email and phone enquiries that were generated by the websites were handled by a 

Customer details obtained from phone and emails enquiries 
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Several changes were made to the websites during this research. Table 4.1 

summarises these changes which are discussed in the following Sections of this 

Chapter.  

Stages Changes 

Stage 1 
A first version of a new OTM was created and used to monitor visitors 

on all websites 

Stage 2a 

A new dynamic main website replaced the existing static main 

website. The back-end of the dynamic main website was new but the 

front-end was the same as the existing static main website.   

The research stopped generating traffic to the micro sites. They were 

not used from this point on; only the dynamic main website was in 

operation. 

Stage 2b 

A new improved version of the OTM was launched on the new 

dynamic main website only. 

Stage 3 

The front-end which included the visual design, layout and content of 

the new dynamic main website was changed. 

Table 4.1: Stages of major changes to the websites.  

4.2. Stage 1 – New Online Tracking Module 

The first OTM was created in order to determine how online advertising campaigns 

were performing. By cross referencing customer data stored in MS CRM with 

advertising data collected by the OTM, it would be possible to identify the strengths and 

weaknesses of the online advertising campaigns. 

Specifications of the OTM were defined after collating marketing information.  
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4.2.1. System goals  

The goal of the OTM was to capture data about website visitors so as to enrich the data 

stored in MS CRM. Knowledge extraction from more detailed data could help improve 

understanding and performance of online advertising campaigns. The OTM captured 

data regarding: 

• Online advertising campaigns that sent visitors to the websites. This data could 

be combined with data stored in MS CRM to identify the online advertising 

campaigns that generated enquiries. 

• Search engines that sent visitors to the websites. This data could be used to 

understand which search engine visitors originated from and the type of visitors 

that search engines attracted to the websites. 

• The search keywords that visitors had used to find the websites. This data could 

be used to identify search keywords that generated high quality enquiries or high 

value sales. This information could also be used to identify new search keywords 

for PPC campaigns. 

• Browsing behaviour so as to understand how visitors browsed the websites. 

4.2.2. System functions  

There were two main functions that were required from the OTM:  

• Data collection: The system needed functions to track and record data relating to 

online advertising, for example which search engines and advertising campaigns 

attracted visitors to the websites. The OTM also needed functions to track and 

record visitors’ behavioural data that is, data relating to their browsing pattern on 

the websites. It was important for the OTM to be able to collect information in the 
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background without interfering with visitors’ browsing, for example by prompting 

them to fill in forms or provide information explicitly. 

• Reporting: The system needed a simple interface to allow staff at the 

collaborating company with average computer skills to run reports on the data 

collected. 

4.2.3. System implementation  

The OTM’s functions were implemented using Active Server Pages (ASP). A Microsoft 

Structured Query Language (MS SQL) database was used for storing data. Some of the 

core methods of the OTM included: 

a) Generation of a unique identification code ([mainID]) for each visitor. 

b) Referer filtering. 

c) Capturing visitors’ browsing activity. 

d) Identifying visitors’ country. 

e) Allowing a user to score the quality of enquiries and retrieve related marketing 

data. 

f) Generating reports from data that was collected. 

a) Generating a visitor’s unique identification cod e ([mainID]) 

Each visitor was given a unique identification code called [mainID] so that they could be 

tracked. The [mainID] was generated using a counter ([ID]) that was stored in the 

OTM’s database. When a visitor landed on a website that was monitored by the OTM, 

the value of [ID] was fetched from the database and assigned as [mainID] to the visitor. 

The value of the counter was then incremented and stored back into the database, 

overwriting the old counter value, and ready to be assigned to the next visitor. 
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Data stored in the OTM database about a particular visitor could be accessed using 

their [mainID]. The [mainID] was included in email enquiries whenever possible. If the 

[mainID] could be obtained from an email enquiry or from a person who enquired by 

telephone, it was stored in MS CRM and used to cross reference data between the MS 

CRM and OTM databases. 

Website visitors enquired using three different methods: 

1. An enquiry form found on the websites. 

2. Their email client to send an email enquiry. 

3. Telephoning the sales number advertised on the websites. 

Method 1 

When a visitor sent an enquiry form from a website, their [mainID] was automatically 

included in the body of the form. When the details contained in the enquiry form were 

used to create and populate a customer record in MS CRM, the [mainID] was also 

stored.  

Method 2 

Some visitors sent email enquiries by clicking on a contact email address link. Clicking 

on a contact email address link automatically started their email client. In such 

instances, tracking data that was included in the body of an email could be seen and 

deleted by a visitor. Therefore, it was not always possible to obtain a [mainID] from an 

email enquiry. 

Website visitors could also manually open up their email client, enter the contact email 

address that was displayed on a website’s Contact Us  page, compose a message and 

then send the email. In such cases, it was not possible to include tracking data into the 

email and such enquiries could not be cross referenced with the OTM. 
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Method 3 

Visitor’s [mainID] was displayed as a promotional code in the footer of the websites and 

each visitor could only see their [mainID]. When a website visitor made an enquiry by 

telephone, they were asked for a promotional code and if they were able to provide one, 

it was stored in their MS CRM record. It was not always possible to obtain a promotional 

code from website visitors who enquired by telephone.  

Due to the issues associated with Methods 2 and 3, there were some instances where 

the data stored in MS CRM and the OTM could not be cross referenced. 

b) Referer filtering 

The HTTP protocol was a “request/response protocol. A client sends a request to the 

server in the form of a request method, Uniform Resource Identifier, and protocol 

version, followed by a MIME-like message containing request modifiers, client 

information, and possible body content over a connection with a server. The server 

responds with a status line, including the message's protocol version and a success or 

error code, followed by a MIME-like message containing server information, entity meta 

information, and possible entity-body content”.  

Request-header fields “allow the client to pass additional information about the request, 

and about the client itself, to the server. These fields act as request modifiers, with 

semantics equivalent to the parameters on a programming language method 

invocation.”  

The Referer was a “request-header field [that] allows the client to specify, for the 

server's benefit, the address (URI) of the resource from which the Request-URI was 

obtained (the "referrer", although the header field is misspelled.)” (Fielding et al., 1999) 
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The Referer was not sent if the Request-URI was obtained from a source that did not 

have its own URI, for example using a bookmarked URI or input from a user’s keyboard. 

Therefore, the value of the Referer could either be a URI address or empty.  

The Request Object and ServerVariables collection provided by ASP could be used to 

obtain predetermined environment variables and request header information (MSDN 

Library, n.d.).  These were used to obtain the URI from the Referer field in the request 

header each time a website received a request. The URI was then parsed to extract a 

search engine name and a search keyword. These values were then stored in the OTM 

database along with the URI obtained from the Referer.  

An issue with the third party code used to parse the Referer URI was that it checked the 

URI against a static pre-defined list of search engine names in order to identify the 

Referer website and extract a search keyword. Although, the list included the most 

popular search engines, it was not a complete list and did not include directories. As a 

result not all Referers could be matched successfully. 

If a Referer was not matched against the list, NULL values were stored in the OTM 

database for the fields corresponding to search engine name and search keyword. If the 

Referer string request header was empty, then NULL values were stored in the OTM 

database for the fields corresponding to the Referer, search engine name and search 

keywords. 

c) Visitor browsing activity 

Data relating to user activity that needed to be recorded are shown in Table 4.2. 
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Data Field  Description  

referer URI from which the visitor originated. 

keywords The search keywords that the visitor had used. 

engine Name of search engine from which the visitor originated. 

countryCode Country from which visitor accessed the website. 

land Landing page, the first page that a visitor accessed. 

decIP The visitor’s IP address in decimal format. 

sent 
Binary value indicating whether the visitor has sent an email enquiry 

from a website. 

tStamp Date and time at which a visitor landed on a website. 

gc 
Online campaign code. Each online advertising campaign was given 

a unique code. 

mainID Unique ID that identified a visitor 

pID Unique ID for each page visited. 

dTime Time in seconds spent on a web page. 

vID Video ID of a video viewed by a visitor. 

Table 4.2: Data collected by OTM. 

The structure of the OTM database as well as detailed table definitions can be found in 

Appendix A (Section A.1). 

The OTM started tracking visitors as soon as they landed on a website and collected 

data relating to the activities described in Table 4.2. Each time a visitor accessed a 

page the tracking function was executed and the visitor’s history was updated in the 

database. In order to calculate the time spent on a page (dTime), the time at which a 
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visitor landed on a page was recorded and subtracted from the time at which the visitor 

landed on the next page. 

If the visitor did not visit another page, then the time spent on the current page could not 

be calculated and was set to NULL. The time spent on a page (dTime), did not 

necessarily represent the actual amount of time that a visitor was active for on that 

page. The OTM could not detect when a visitor was inactive, for example if a visitor left 

a page open while working on something else or moved away from their computer. 

d) Location  

The Request Object and ServerVariables collection was used to obtain the Internet 

Protocol (IP) address of the remote host who made a request. The IP address was 

cross-referenced against a third party database to find the corresponding country which 

was then stored in the OTM database. 

e) Enquiry quality score and marketing data retriev al  

The OTM database was used to track the quality and type of enquiries that were 

generated by the website. A simple web page (see Appendix A, Figure A.3 and Figure 

A.4 ) was implemented so that the person in charge of handling email enquiries could 

store a value for lead type ([leadType]) and lead quality ([leadClass]) in the OTM 

database. This interface was also used to retrieve marketing data about visitors who 

had enquired. This data was then manually stored in visitors’ MS CRM record. This was 

done for all enquiries that could be cross reference with the OTM database. 

f) Reporting 

A reporting interface was created to generate basic reports using the data collected by 

the OTM. The reporting interface was a web form that allowed a user to select a number 

of parameters and then click on a button to generate a report. Some of the parameters 
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that were selected were used to construct SQL queries to retrieve data from the OTM 

database. Other parameters were used to format and display the data that had been 

retrieved and processed. 

Reports generated using the OTM were mainly used to identify the type and quality of 

enquiries that online advertising campaigns were generating. Knowledge gained from 

these reports was used to identify online advertising campaigns that were performing 

poorly so that they could be improved. 

4.2.4. Discussion 

The OTM was successfully implemented on all websites. The data that it collected was 

used to generate performance reports about online advertising campaigns.  The OTM 

had some weaknesses, for example it could not identify returning visitors. These were 

fixed in a new improved version of the OTM that was implemented later in the research 

(see Section 4.4).  

4.3. Stage 2a – New dynamic main website  

At the beginning of the research, the main company website was static. It was not 

flexible or customisable and could not support personalisation. “The goal of web 

personalisation is to deliver the right content to the right person at the right time and to 

maximise immediate and future business opportunities” (Tam & Ho, 2006). Web 

personalisation was akin to the mirroring principle where a product was built around the 

“unique and particular needs” of a customer (Hammer, 1995). This research created a 

new dynamic main website that could offer a better and more personalised browsing 

experience than the static main website. 
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4.3.1. System goals 

The goal was to create a new dynamic main website that:  

• Provided an improved browsing experience through content and navigation 

personalisation and generated high volume and high quality leads. 

• Supported the separation of web page content from web page presentation, so 

as to provide more flexibility and control over presentation characteristics while 

maintaining consistency across the website. 

4.3.2. System functions 

The new dynamic main website consisted of a database back-end which stored the 

content for all pages on the website. The pages were generated by scripts that 

controlled various aspects of a page such as content, picture, menus and layout. The 

main features of the website that needed to be dynamic were the Left Hand Side (LHS) 

menu (Figure 4.2) and the content, which included both text and pictures. Functions 

required to achieve this included: 

a) Customer interest evaluation. In order to achieve personalisation, it was 

important to understand what content a visitor was interested in. Visitors’ search 

keyword and information about the type of pages that they browsed were used to 

infer interest.  

b) Dynamic web page generation. Functions were required to dynamically generate 

pages using content and pictures that were stored in a database and layout 

specifications defined in a Cascading Style Sheet (CSS) file. 

c) Dynamic LHS menu. Functions were required to display links in the LHS menu 

depending on the content of a page or a visitor’s interest. 
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d) Dynamic content. Functions were required to change the textual content of pages 

based on a visitor’s search keywords or advertising campaign that they had 

originated from. 

e) Dynamic inclusion of pictures. Functions were required to display images on 

pages based on a visitor’s search keywords or advertising campaign that they 

had originated from. 

 

 

Figure 4.2: Screenshot showing the LHS menu that ne eded to be dynamic. 

4.3.3. System implementation 

The functions identified in Section 4.3.2 were implemented in ASP. A single database 

was created to store the content of the new dynamic main website and the data that 

would be collected by the new version of the OTM (described in Section 4.4). The 

database was referred to as the Content and Tracking (CAT) database. Its structure and 

detailed table definitions can be found Appendix A (Section A.2). 
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a) Customer interest evaluation 

A list of the most popular search keywords used by visitors who browsed the static main 

website was identified using the data captured by the OTM. 

Each search keyword was then given a design score and a manufacturing score 

between 0 and 1. These scores represented a customer’s interest in either design or 

manufacturing content. When a customer landed on the dynamic main website, the 

customer’s search keyword would be matched against the existing list of scored 

keywords to determine the customer’s interest. 

Each page on the dynamic main website was given a design score and a manufacturing 

score. Pages were given a score of 1 to indicate the bias of the content of the page, for 

example if a page’s content was biased towards design services then it was given a 

score of 1 for [ScoreDesign] and 0 for [ScoreManufacture]  and vice versa. Pages such 

as Contact Us  pages and enquiry forms, which were not content pages, were given a 

[ScoreDesign] and [ScoreManufacture] of 0.  

As visitors browsed the website, the page score and keyword score were used to 

calculate a score representing interest. This score (called interest) was stored in a 

session variable and was used to customise links in the LHS menu (see Figure 4.3). A 

visitor was shown more links to a certain type of content depending on their interest 

score. 

b) Dynamic web page generation 

Each page on the website would consist of a top horizontal menu, a LHS menu, a 

contents section and a footer. Figure 4.3 shows the structure of a web page and its 

components.  
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Figure 4.3: Structure of dynamic web page. 

When a visitor accessed a web page, a script was executed which gathered the various 

components for the page from the database, formatted the page using a Cascading 

Style Sheet (CSS) file and presented it to the visitor. 

c) Dynamic LHS menu generation 

The left hand side menu was made up of a number of panels. The contents of the 

panels were defined in the database and each page was assigned a set of panels that 

made up its LHS menu. This allowed the LHS menu to be customised based on the 

content of each page, thus providing relevant links that could help visitors find 

information quickly. The LHS menu could also be customised based on a visitor’s 

interest score.  

d) Dynamic Content  

The contents section (see Figure 4.3) contained both text and pictures.  A new feature 

which dynamically altered the textual content of a web page was implemented. 

Particular words, sentences or whole paragraphs could be changed on-the-fly. A trigger 
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or condition was required in order to activate this feature, for example the title of a page 

could be changed based on an advertisement that a visitor had clicked on, or particular 

words in the text could be replaced with the search keywords used by a visitor.  

e) Dynamic inclusion of pictures  

Pictures could be included on web pages dynamically if a predefined condition was 

satisfied, for example, a picture could be included based on an advertisement that a 

visitor had clicked on or based on the search keyword used by a visitor. 

4.3.4. Discussion 

Figure 4.4 shows the set up of the new dynamic main website and its traffic sources. 

After the launch of the new dynamic main website, the micro sites were taken offline. All 

traffic generated by PPC campaigns were directed to the new dynamic main website 

which had become the primary generator of enquiries. The look of the new dynamic 

main website was the same as that of the old static main website. However, the 

features and functionality of the new dynamic main website enabled content 

personalisation. This played an important role in designing landing pages that were 

effective at converting visitors into customers. This is discussed in more detail in 

Chapter 6. 

The tracking module shown in Figure 4.4 was an improved version of the original OTM 

described in Section 4.2. Section 4.4 describes the new OTM in more detail. 

4.4. Stage 2b – New and improved Online Tracking Mo dule 

The first version of the OTM was built around an existing website and its structure. As a 

result, some aspects of the implementation lacked flexibility. When the back-end of the 



 

 

dynamic site was created, it presented an opportunity to redesign some parts of the 

OTM. 

4.4.1. System goals  

The goals of for the new OTM included those describe in section 4.2. However, the new 

module also needed to:

• Capture complete browsing history for all visitors.

• Identify returning visitors and assign an ID for each visit so as to record 

browsing behaviour more accurately.

• Record which

• Have an interface that allowed 

o easy access and sorting through the data that it had collected 
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dynamic site was created, it presented an opportunity to redesign some parts of the 

Figure 4.4: Current website systems. 

 

The goals of for the new OTM included those describe in section 4.2. However, the new 

: 

Capture complete browsing history for all visitors. 

Identify returning visitors and assign an ID for each visit so as to record 

browsing behaviour more accurately. 

Record which pages visitors sent email enquiries from. 

Have an interface that allowed  

easy access and sorting through the data that it had collected 

dynamic site was created, it presented an opportunity to redesign some parts of the 

 

The goals of for the new OTM included those describe in section 4.2. However, the new 

Identify returning visitors and assign an ID for each visit so as to record 

pages visitors sent email enquiries from.  

easy access and sorting through the data that it had collected  
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o reports to be generated using the new data that had been captured. 

• Improve the ease with which 

o marketing data about visitors who had enquired was retrieved from the 

OTM and entered in MS CRM. 

o email enquiries were scored. 

4.4.2. System functions 

In order to meet the goals specified in section 4.4.1, the following functions were 

required: 

• Returning visitors. The system needed to identify returning visitors and record 

their browsing behaviour under the same unique visitor ID (UserID) that had 

been assigned to them the first time they visited the website. Therefore, the 

system needed to generate and assign another ID (microID) to a visitor each 

time they returned to the website so as to differentiate between behaviour that 

took place during different visits. 

• Identify where email enquiries were sent from. If a visitor sent an email enquiry 

from a website, the system needed to record which page it had been sent from. 

• Quality score. All email enquiries received from the website were given a quality 

score. A better solution than the one implemented in the first version of the OTM 

was required to optimise the scoring of email enquiries and the retrieval of 

visitors’ marketing data for subsequent  input in MS CRM. 

• Interface. An interface was required for staff at the collaborating company to 

generate reports from the data gathered by the OTM. This interface would be 

used primarily by the collaborating company’s sales and marketing manager.  

More advanced reporting and data mining would be carried out using SQL to 

query the database. 
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4.4.3. System implementation 

The OTM stored data that it collected in the CAT database (see Appendix A Section 

A.2). Functions were implemented to: 

a) Identify returning visitors. 

b) Record which page a visitor sent an enquiry from. 

c) Simplify the scoring of the quality of email enquiries and retrieval of marketing 

data from the OTM. 

d) Generate marketing reports from the data stored in the CAT database. 

a) Returning visitors 

Figure 4.5 shows how the OTM determined whether a visitor was a returning visitor or 

whether they were a first time visitor. The OTM relied on sessions and cookies to keep 

track of visitors. 

 

Figure 4.5: Flow diagram to identify returning visi tors. 
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A session was defined as “a sequence of actions undertaken by a user within a period 

of time. In order to determine when a session ends and the next one begins, a session 

timeout threshold (STT) is often used” (Huynh and Miller, 2009). The OTM used a 

session timeout threshold that was set to 20 minutes.  

“HTTP cookies also known as Web cookies or just cookies are small parcels of text sent 

by a server to a web browser and then sent back unchanged by the browser if it 

accesses that server again. Cookies [were] originally designed to carry information 

between servers and browsers so that a stateful session could be maintained within the 

stateless HTTP protocol” (Yue et al.).  

The cookies created by the OTM were set to expire after a year except for a [Sequence] 

cookie which expired after 3,600 seconds.  When a visitor landed on a website, the 

OTM checked whether there was an active session for that visitor. If there was, then the 

visitor was not regarded as a returning visitor. If a session did not exist, the OTM 

checked whether a cookie containing [UserID] existed on the visitor’s computer. If there 

was no cookie, then a [UserID] was created for the visitor. A cookie containing that 

[UserID] was stored on the visitor’s computer and a corresponding session was created.  

If there was a cookie containing [UserID] on the visitor’s computer, then the [Sequence] 

cookie and the [Referer] cookie were checked. The [Sequence] cookie had a lifespan of 

an hour which was the period of time that the OTM used to determine whether a visitor 

had returned to the website or not. The [Referer] cookie stored the address of the 

website that the visitor had originated from. If the [Referer] value was NULL then it was 

assumed that the visitor has accessed the website directly by either typing the URL of 

the website into a browser or by using a bookmark. If a visitor did not have a 

[Sequence] value that was greater than 0 or was associated with a [Referer] whose 
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value was NULL or contained the collaborating company’s URI, then they were 

classified as returning visitors. 

However, a visitor who had a valid [UserID] cookie was not considered a returning 

visitor if, they came back to the site within an hour of their last visit and did not access 

the site directly. Each returning visit was identified by a unique ID called a [MicroID].  

b) Website forms and emails 

The website had a Contact Us  page and various enquiry forms that visitors could use 

to enquire. Some pages had contact email address links. Upon clicking such links, 

visitors were taken to an enquiry form. There were various pages from which visitors 

could complete and send an enquiry form. In order to understand the point at which 

visitors decided to enquire, the [PageID] of the page that led them to an enquiry form 

was recorded. The [PageID] was only recorded in cases where an enquiry form was 

completed and sent.  

c) Enquiry quality score and marketing data retriev al  

All email enquiries that could be cross referenced with the OTM database were given a 

quality score and a type. Marketing data was also retrieved for all enquiries recorded by 

the OTM and stored in MS CRM.  

When an email enquiry was sent from the website using an enquiry form, links similar to 

the ones shown in Figure 4.6 were appended to it. A user could click on the appropriate 

link to score the quality of an enquiry as well as specify the type of an enquiry. Upon 

clicking on a link, the user was taken to a web page that displayed marketing data 

related to the enquiry that was being scored (see Appendix A Section A.3).  
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Figure 4.6: Quality scoring links. 

d) Reporting module 

Figure 4.7 shows the interface for a simple reporting module that was implemented to 

allow staff at the collaborating company to generate reports from the data collected by 

the OTM. It was implemented as an online form. SQL queries were generated based on 

the selection a user made using the form. The SQL queries were then issued to the 

CAT database and results were formatted and displayed. 

Figure 4.8 shows an example of a report that was generated. The reports generated 

using the reporting module were mainly used to understand and improve the online 

advertising campaigns that generated traffic to the website. 

4.4.4. Discussion 

The new improved OTM provided better tracking and data recording than the first 

version. In particular, it was able to identify returning visitors and assign a unique 

[MicroID] to each returning visit. This provided new insight in the search and browsing 

behaviour of visitors, which was used during the data selection stage of the data mining 

process described in Chapter 7. 
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   Figure 4.7: Reporting interface. 

                    

    Figure 4.8: Example report.
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4.5. Stage 3 – Redesign of front-end of new dynamic  main website 

At the end of Stage 2, the front-end of the new dynamic main website was the same as 

that of the old static website. The design looked outdated. Therefore, the front-end was 

redesigned to have a professional and industry-appropriate look. 

4.5.1. Redesign goals 

The goals for the redesign of the front-end were to: 

a) have a professional and industry-appropriate design. 

b) improve the website’s main menu.  

c) improve and update the content of the website. 

d) Use better quality pictures and graphics 

4.5.2. Implementation 

a) Website’s look 

The collaborating company’s decided on a new visual design for the website. This 

design was then implemented using Cascading Style Sheets.  

b) Main menu  

In order to improve the navigation of the website, the main menu of the dynamic main 

website was changed. Its content was re-organised and categorised under new and 

more meaningful headings.  

c) Content 

New content for the dynamic main website was generated by the marketing department. 

When writing the textual content, the marketing staff followed some of the guidelines 

proposed by Neilsen (1997) to accommodate the different reading pattern of visitors. 
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d) Better graphics 

The graphics and pictures used on the static main website were poor and sparse. Better 

graphics and pictures were included on every page on the dynamic main website. Good 

descriptive pictures were especially important as “some visitors don’t read at all; another 

reason to include at least one strong image” (Loveday and Neihaus, 2008). 

4.5.3. Discussion 

The redesign of the front-end was successfully implemented. Landing pages would be 

further improved to increase the number of visitors who enquired. This is described in 

Chapter 6. 

4.6. Chapter Discussion 

The challenge for any online business is to turn website visitors into customers. A first 

step in achieving this is perhaps to gain knowledge about the type of visitors who come 

to a website as well as their needs.  

One way to understand website visitors and their needs is to study their behaviour on a 

website and then infer motivation and need. This was what the research aimed to 

achieve through the implementation of the OTM. The research went a step further by 

cross referencing data between the OTM and MS CRM, so as to extract knowledge 

about visitors who become customers. The knowledge gained was used to improve 

online advertising campaigns and landing pages (described in Chapter 6). 

A new dynamic main website was created to replace the old static main website. The 

new dynamic main website supported personalisation features. Chapter 6 describes 

how these features were used to design landing pages and improve the generation of 

enquiries. 
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The collaborating company relied on Pay Per Click (PPC) campaigns to generate traffic 

to its websites. The success of PPC campaigns relied not only on the ability of the 

campaigns to generate traffic but also on the ability of websites to convert the traffic into 

enquiries.  

Chapter 5 describes the PPC model and explains how it was used to set up advertising 

campaigns that generated traffic to the websites described in this Chapter. 
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CHAPTER 5  

PAY PER CLICK ADVERTISING 

In order to attract customers, an online business needed a way of driving people to a 

website. This was an important part of any online business model without which it could 

not generate enquiries or online sales. There were several methods that could be used 

for gaining exposure online. One of the most popular methods was Pay Per Click (PPC) 

advertising. The Internet Advertising Bureau (IAB), reported that “paid-for search 

continues to lead the way, growing by 28% year-on-year and was worth £981 million in 

the first half of 2008, with its market share marginally up to 58.3% of total online 

advertising” (IAB UK, 2008).  

This Chapter describes the PPC model and goes on to describe the Google AdWords 

model which was used during the research described in this dissertation to drive traffic 

to the websites described in Chapter 4. 

5.1. Web search 

Web search was key to the navigation and usage of the Internet (Fain and Pedersen, 

2006). Most Web users relied on search engines to find what they were looking for on 

the Internet. The delivery of relevant results was an important part of the search 

experience. Sponsored search results which delivered highly targeted text 

advertisements could satisfy Web users’ need for relevant search results. This also 
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provided advertisers with high quality traffic to their websites. This win-win solution was 

perhaps why PPC advertising was so popular. 

5.2. Pay Per Click (PPC) advertising  

PPC advertising was also known as keyword search advertising (KSA), keyword 

advertising, or sponsored search advertising. PPC advertising was a form of “text based 

online advertising” (Burns, 2005) that used search engines to display text 

advertisements in response to the keywords that a Web user had typed into a search 

engine. The text advertisements were displayed alongside organic (non-paid) search 

results and were usually positioned at the top or on the right hand side of a search 

engine’s results page. Advertisers could bid on keywords in response to which text 

advertisements were displayed. Advertisers were charged only when a Web user 

clicked on their advertisement. Upon clicking on an advertisement, Web users were 

taken to the advertiser’s website. Search engines that offered PPC advertising included 

Yahoo, MSN and Google. 

The history of PPC advertising as well as basic elements of the PPC advertising model 

were described in Chapter 2.  

5.3. Google advertising 

Google launched its first version of a PPC advertising service called Google AdWords in 

October 2000 with a total of 350 customers. Google AdWords was a self service 

advertising program where advertisers could set up and manage their advertising 

campaigns and that also provided performance feedback (Google, n.d.-f). Since its 

launch, Google AdWords has grown rapidly and has become one of the biggest PPC 

advertising service. The popularity of the Google search engine may have contributed to 
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this achievement. In 2009, Google owned 82% of the global search engine market 

share (Netmarketshare, 2010). With such global reach, anyone advertising through 

Google AdWords was likely to reach a large number of potential customers.  

The research described in this dissertation relied on Google AdWords to target 

customers and generate traffic to the websites described in Chapter 4. The campaigns 

and advertisements that were set up in Google AdWords to achieve this are described 

in Section 5.10.  

The Google AdWords PPC model was based on the sponsored search model described 

in Chapter 2.  Google AdWords had an online interface which allowed advertisers to 

create and manage advertising campaigns. The structure of a Google campaign is 

shown in Figure 5.1. 

5.4. Google AdWords campaign 

A Google AdWords campaign, “uses keyword targeting or placement targeting to put 

advertisements on search results and content network placements across websites and 

other online content” (Google, n.d.-d). A Google AdWords campaign had a number of 

settings that gave advertisers control over the campaign. Some of these setting 

included: 

• Location targeting. This allowed an advertiser to specify the countries in which 

campaigns ran, that is countries in which text advertisements were displayed. 

• Language targeting. Advertisers specified whether campaign advertisements 

were only displayed to users who communicated in a particular language. 
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Figure 5.1: Google campaign structure. 
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• Advertisement scheduling. The advertiser could specify the hours or days on 

which advertisements were displayed. 

• Advertisement delivery. Whether to display advertisements more evenly by 

rotating them or to optimise display by showing the better performing 

advertisements more often. 

The settings of a campaign were inherited by all its Ad Groups. Ad Groups could not 

override these settings. Within a Google AdWords account, separate campaigns could 

be created to organise product lines and services. A Google AdWords account could 

have a maximum of 25 campaigns.  

5.5. Google Ad Group  

A Google Ad Group contained keywords and text advertisements associated with those 

keywords. Usually, an Ad Group focused on advertising a specific product or service. A 

campaign could have a maximum of 2000 Ad Groups. Each Ad Group could have up to 

2000 keywords and 50 advertisements.  

5.6. Keywords 

Keywords were the terms or phrases that triggered an advertisement to appear in 

search results. Keywords had a maximum cost per click (CPC), which was defined by 

Google (n.d.-d) as “the highest amount that [an advertiser] is willing to pay for a click on 

[their] ad.” The maximum CPC was set at keyword level. Google AdWords calculated an 

average position for each keyword. This was the position at which a text advertisement 

was displayed for a particular keyword. The average position depended on the 

maximum CPC of the keyword. 
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Keywords also had matching options that helped determine when advertisements were 

displayed in response to a search. Table 5.1 shows how the different matching options 

worked. Matching options were set on individual keywords using the punctuation shown 

below. The matching options were (Google, n.d.-d): 

• Broad match: keyword (no punctuation)  

Showed advertisements for searches on similar phrases and relevant variations. 

• Phrase match: "keyword"  

Showed advertisements for searches that matched the exact phrase. 

• Exact match: [keyword]  

Showed advertisements for searches that matched the exact phrase exclusively.  

• Negative match: -keyword  

Did not show advertisements for any search that included that term.  

If a matching option was not specified, a keyword was set as a broad match by default. 

Some matching options provided greater advertisement exposure and broader 

targeting, for example broad match. Other matching options reached a smaller but more 

targeted audience, for example exact match. Upper-case and lower-case letters were 

ignored when keywords were matched. 

The Ad Groups that were set up for this research used all four matching types. In order 

to work out which combination of keyword and matching option performed better, all 

keywords were configured with broad, phrase and exact match when a campaign was 

created. After a period of time, the performance of the keywords was reviewed and only 

combinations that performed well remained active. 
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Matching option 
Advertisements may show 

on searches for 

Advertisements will not 

show on searches for 

Broad match e.g.  

Plastic manufacturer 

plastic 

manufacturer 

plastic manufacturer in uk 

find plastic manufacturers 

plastic factory 

 

Phrase match e.g. 

“plastic manufacturer” 

plastic manufacturer uk 

find plastic manufacturer 

plastic toy manufacturer 

plastic manufacturers 

Exact match e.g. 

[plastic manufacturer] 

plastic manufacturer plastic manufacturer uk 

find plastic manufacturer 

plastic manufacturers 

Negative match e.g. 

plastic manufacturer 

-acrylic 

plastic manufacturer uk 

find plastic manufacturer 

plastic manufacturers 

acrylic plastic manufacturer 

manufacturer of acrylic plastic 

Table 5.1: How matching options work. 

5.7. Advertisements 

Google AdWords offered 4 types of advertisement. They were: 

• Text advertisements. 

• Image advertisements. 

• Mobile advertisements. 

• Video advertisements. 
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The research described in this dissertation used text advertisements only to drive traffic 

to websites. Figure 5.2 shows an example text advertisement. 

 

Figure 5.2: Example text advert (Google, n.d.-b). 

The main components of a Google AdWords text advertisement were (Google, n.d.-b): 

• Headline. The first line of a text advertisement was a link to a website. It was 

good practice to insert a keyword in the headline that related to keywords being 

searched. 

• Lines of text. There were two lines of text that were available to convey a sales 

message. Each line of text was set to allow for a maximum number of characters. 

• Display Uniform Resource Locator (URL). The last line in a text advertisement 

displayed the URL of the website that was being promoted. This URL was not the 

full URL of the destination page within the website.  

• Destination URL. The destination URL was the exact URL of the page that Web 

users would be taken to when they clicked on an advertisement. The destination 

URL was not displayed in advertisements but had to be specified when creating 

an advertisement. 

Figure 5.3 shows where advertisements were displayed on the Google search results 

page. 
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Figure 5.3: Google search results page. 

The position of an advertisement depended on its AdRank. The advertisement with the 

highest AdRank appeared first. Google AdWords calculated AdRank using individual 

keyword’s Quality Score and cost-per-click (CPC).  

Quality Score was a measure that Google AdWords used to assess the relevance of 

advertisements, keywords and landing pages compared to a Web user’s search 

keywords.  A Quality Score was assigned to each advertisement and keyword found in 

an AdGroup. It was calculated using a variety of factors. Some of these factors were 

(Google, n.d.-c):  

• The historical click-through rate (CTR) of a keyword. 

• The historical CTR of all the advertisements and keywords in a Google account.  

• The quality of a landing page that is, the page on the destination website that an 

advertisement was associated with. 

Advertisements 

N
at

ur
al

 li
st

in
gs

 



 

135 
 

Quality Score could have a big impact on the performance of Google AdWords 

campaigns. It affected: 

• Costs. A high keyword Quality Score meant a lower cost-per-click. 

• Whether advertisements were eligible for display. Keywords with a higher Quality 

Score performed better in the PPC auction that determined whether an 

advertisement was displayed. 

• Advertisement position. An advertisement's position on a page depended the 

Quality Score and cost-per-click of the keywords that were associated with it. 

5.7.1. Advertisement targeting 

Advertisement targeting was an important factor in running successful Google AdWords 

campaigns. Advertisements were targeted using: 

a) Keyword targeting. 

b) Location and language. 

c) Placement options on the Google Network. 

a) Keyword targeting 

Keyword targeting was the primary method for reaching potential customers. By 

creating a keyword list that was highly relevant to the type of audience that this research 

wanted to reach, advertisements could be targeted to the chosen audience. Building an 

effective keyword list for the campaigns that were created in this research was a 

process that took time. The process started with the compilation of a list of keywords 

that included as many relevant keywords as possible. These were then reviewed after a 

few weeks of being active and the list of keywords was refined by eliminating keywords 

that did not generate enquiries. The review process also enabled the identification of 
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keywords that generated a high number of enquiries. By reviewing and refining a 

keyword list regularly, a targeted keyword list could be generated. 

b) Targeting by location and language 

For each Google AdWords campaign the language of the targeted audience could be 

configured. For example, advertisements could be displayed in Europe but to an English 

speaking audience only. Advertisers could also specify the location of the targeted 

audience. For example a campaign created during this research was targeted at the 

East coast region of the United States of America (US) while another was targeted at 

the whole of the US. 

AdWords used the location and language settings to determine who saw 

advertisements. AdWords used the following factors to determine this: 

• Web users’ Google domain for example www.google.fr or www.google.co.uk. 

• Web users’ search keyword. 

• Web users’ IP address was used to determine geographical location. 

• Language preference that a Web user had set for Google. 

c) The Google Network 

Each Google AdWords campaign enabled an advertiser to choose a network and 

device setting for the advertisements in that campaign. This was described in Section 

5.4. 

This research used a combination of the above targeting methods to create 

advertisements that could reach targeted audiences. 
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5.8. Landing Page 

A landing page was a web page that a Web user was taken to after they clicked on an 

advertisement. Google AdWords assessed the page quality of all landing pages 

specified in advertisements. The landing page quality was determined by the 

“usefulness and relevance of information provided on the page, ease of navigation for 

the user, page loading times, how many links are on the page, how links are used on 

the page and more” (Google, n.d.-a). Google used the landing page quality to calculate 

the keyword quality score for all keywords that were associated with a landing page. 

Good landing page design was therefore important to achieve high keyword quality 

scores that would enable advertisements to reach high positions on search engine 

results pages. 

Landing pages usually had a unique and distinct function from other pages in a website. 

They played an important role in converting website visitors into customers. Landing 

pages had to be specifically designed to support a marketing campaign. As such there 

were unique challenges that needed to be met when designing them.  

Loveday and Neihaus (2008) found that landing pages faced the following issues: 

• They had to singlehandedly take visitors through the whole sales cycle. They had 

to “create or reinforce interest, then instill desire, and finally guide visitors to take 

action”.  

• They had to perform quickly. 

• They had to deal with a high number of first time visitors, who were not “familiar 

with the company and [had] no reason to trust it at first”. 
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The landing pages used in this research went through an optimisation process which is 

described in Chapter 6. 

5.9. AdWords performance metrics 

The Google AdWords system provided a number of performance measures that could 

be used to evaluate the effectiveness of advertising campaigns, keywords and 

advertisements. Some of these measures were used during this research to measure 

the effect of changes made to advertising campaigns and to landing pages. Google 

AdWords metrics that were used during this research included: 

• Impression - This was the number of times an advertisement was displayed on 

Google’s search results page or the Google content network. 

• Click - When a Web user saw an advertisement and clicked on it Google 

AdWords recorded this as a click. The number of clicks roughly represented the 

number of visitors to a website. The number of clicks recorded by Google 

AdWords was not unique, for example it sometimes recorded multiple clicks from 

the same Web user. However, Google AdWords monitored all clicks to ensure 

that there was no abuse. This included analysing clicks to see if they fitted a 

pattern of fraudulent use. Google’s proprietary technology could distinguish 

between clicks from normal Web users and clicks generated by spammers and 

automated robots. Google claimed that it could filter out such clicks and that they 

did not show up on reports. 

• Click through rate (CTR) -  This was the number of clicks an advertisement 

received divided by the number of times the advertisement was displayed 

(impressions)  
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• Conversion -  A conversion was the completion of a unique goal or action on a 

website for example sending an email, buying a product, signing up for a service 

or downloading a product. In the context of this research, the action of sending 

an email enquiry from the collaborating company’s website was a conversion. 

• Cost per conversion - This was the total cost of a campaign divided by the 

number of conversions that it had generated. 

• Conversion rate – The conversion rate was the number of conversions divided by 

the number of clicks that a campaign or Ad Group or advertisement had 

received. 

These metrics were available for campaigns, Ad Groups, keywords and advertisements. 

This enabled performance to be measured at a various levels. 

5.9.1. Google AdWords Conversion Tracking 

Google’s AdWords Conversion Tracking was a tool that allowed advertisers to track and 

measure conversions. For tracking to take place advertisers had to place the AdWords 

Conversion Tracking code on their website. Depending on what represented a 

conversion, advertisers chose different conversion confirmation pages. Conversion 

confirmation pages were pages that users were sent to after completing a unique action 

for example a Thank You  page following purchase or sign-up. 

Once the code was placed on the appropriate pages, the AdWords Conversion Tracking 

worked by placing a cookie onto a visitor’s computer or mobile phone when they clicked 

on an advertisement. If the visitor reached a conversion confirmation page, the cookie 

was connected to that page and AdWords recorded a conversion. The cookie that 

Google AdWords placed on a visitor’s computer or mobile device expired after 

approximately 30 days. 
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AdWords Conversion Tracking could record 1-per-click and many-per-click conversions. 

1-per-click conversion meant that if “one click led to multiple conversions, they were 

counted only once” (Mutlu, 2009). In the case of many-per-click conversion, the tracking 

system counted each conversion that occurred after a Web user clicked on an 

advertisement.  

For the purposes of this research, only 1-per-click conversion was used since unique 

enquiries were of interest. Many-per-click conversion was better suited for measuring 

online purchases where a Web user clicked on an advertisement once but purchased 

more than one product. 

For the websites used in this research the AdWords Conversion Tracking code was 

placed on Thank You  pages. Visitors were automatically directed to this page after they 

completed and sent an enquiry form.  

5.10. Google AdWords configuration 

The research described in this dissertation created a number of AdWords campaigns in 

order to drive traffic to websites. Some of these campaigns are described in the 

following sections. 

5.10.1. Campaign types 

The collaborating company provided two types of services: design and manufacturing. 

These services were advertised in the United Kingdom (UK) and United States (US). 

Each service had an advertising campaign and each campaign was duplicated and run 

in the US and the UK. 



 

141 
 

Each campaign had several of Ad Groups. The Ad Groups were created around the 

different sub-types of the design and manufacturing services for example plastic 

moulding, plastic manufacturing, mechanical design and electronic design. 

At the beginning of this research, there were two Google AdWords accounts. One ran 

campaigns for the main site and the other ran campaigns for the micro sites. The 

campaigns were set up in this way because they were bidding on the same keywords 

but the advertisements led to different websites. Only one advertisement from a Google 

AdWords account could be shown on the Google search results page at any given time. 

By having separate accounts, it was possible to have two advertisements appear for the 

same keyword but leading to different sites. This set up ran from 2005 to 2007.  

This research also used MSN’s and Yahoo!’s search marketing service. However, these 

campaigns were not cost effective and generated few, poor quality enquiries. As a result 

these campaigns were suspended in 2008. 

In order to track which advertisements, Ad Groups and campaigns generated traffic, 

each of them was given unique identifier called a campaign code. The destination URL 

of all advertisements was appended with a campaign code corresponding to their Ad 

Group. The Online Tracking Module described in Chapter 4 used this code to track 

which Google AdWords campaign visitors came from. This code was also used to 

dynamically configure landing pages (described in Chapter 6) and menus in order to 

provide better content personalisation (described in Chapter 4). The campaign code 

was recorded in MS CRM for those visitors who enquired using enquiry forms found on 

the websites. 
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5.10.2. Core campaigns 

Over the course of this research, some of the campaigns that were created became 

core campaigns as they generated the majority of enquiries. There were also several 

small campaigns that were targeted at smaller audiences that generated fewer leads. 

The core campaigns were the: 

a) Inventor campaign. 

b) Manufacturing campaign. 

a) Inventor Campaign 

The Inventor campaign advertised the collaborating company’s design services. It was 

targeted at individuals and inventors who had new product ideas that they wanted to 

develop. The matching options used for the keywords in the two main Google AdWords 

campaigns that ran in the United Kingdom can be found in Appendix B (and at the 

beginning of this Chapter). Keywords included: 

• Invention 

• Inventor 

• product idea 

• product development 

The advertisements used for this campaign are shown in Figure 5.4. Both 

advertisements had the same destination URL. Over the course of the research 

described in this dissertation, the landing page for the advertisements was changed 

several times. Figures 5.5, 5.6 and 5.7 show the last three landing pages for the UK 

campaign. 
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Figure 5.4: Inventor campaign advertisements. 

The screenshot in Figure 5.5 shows the landing page used for the campaign from May 

2007 to June 2008. The landing page was changed to the one shown in Figure 5.6 in 

July 2008. This landing page was active until the end of October 2008 when it was 

replaced by the one shown in Figure 5.7.  

 

Figure 5.5: Landing page for the inventor campaign from May 2007 to June 2008. 
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Figure 5.6: Landing page between July 2008 and Octo ber 2008. 

 

Figure 5.7: Landing page from November 2008 to pres ent. 
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The US version of this campaign was paused in February 2009 due to cuts in 

advertising budget. This campaign used the same landing pages as the UK campaign. 

The landing pages followed a similar progression as those of the UK campaign. 

However, the last landing page of the US campaign (active from October 2008 to 

February 2009) was different to that of the UK campaign. This landing page is shown in 

Figure 5.8. 

 
Figure 5.8: Landing page for US campaign from Octob er 2008 to February 2009. 

b) Manufacturing Campaign 

The Manufacturing campaign advertised the collaborating company’s manufacturing 

services. It was targeted at individuals and SMEs who were looking for plastic 

manufacturing services. Keywords included: 

• Plastic manufacturer  
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• Plastic manufacturing 

• Plastic product 

This campaign ran both in the UK and in the US. A number of different advertisements 

and landing page combinations were used to achieve high conversion rates. Some of 

these landing pages are described in Chapter 6.  

5.10.3. Running advertisements in parallel 

In order to work out the most effective combination of landing page and advertisement, 

several advertisements were run at the same time. The effectiveness of an 

advertisement was measured by its Click-Through Rate (CTR). To find the best 

advertisement, several advertisements were created, each with a different message. 

The campaign containing the advertisements was then configured to serve the 

advertisements evenly by rotating them. These advertisements were run for a minimum 

of two weeks before comparing their CTR to find the one that had performed best. 

Once the advertisement with the highest CTR was found, then landing pages were 

tested. The advertisement was duplicated and each copy was given a destination URL 

corresponding to each landing page that needed to be tested. Once again the campaign 

containing the advertisements was configured to serve them evenly by rotating them. 

The advertisements were run for a minimum of two weeks. At the end of the 

experiment, the conversion rates of the advertisements were compared to find the best 

landing page.  

There were a number of external factors that affected the performance of campaigns 

and landing pages, for example seasonal trends and the recession that started in 2008 

(BBC News, 2009). It was difficult to attribute the changes in performance to the 
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changes made to the campaigns or landing pages unless there were control 

experiments also running. By comparing performance against that of the control group, 

the influence of external factors could be minimised. 

It was not possible to run control groups as the collaborating company only ran high 

performing advertisements and landing pages. Control groups could be expensive to 

run and could take some of the traffic away from the better performing advertisements 

and landing pages.   

5.11. Chapter Discussion  

This Chapter described the PPC model, in particular the Google AdWords model used 

during this research to generate traffic to the websites described in Chapter 4. The 

various configurations used to target advertisements at specific audiences via language, 

location and keywords were described in section 5.7. The metrics provided by Google 

AdWords to measure the performance of campaigns, Ad Groups, keywords and 

advertisements were described in section 5.9. These performance measures were used 

to monitor the performance of the advertising campaigns that were created during this 

research.  

Google AdWords campaigns were successfully setup to drive targeted traffic to the 

websites described in Chapter 4. The next step in this research was to optimise landing 

pages so as to encourage website visitors that PPC campaigns had attracted, to 

convert into customer by enquiring. Chapter 6 describes how landing page optimisation 

was carried out. 
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CHAPTER 6  

LANDING PAGE OPTIMISATION 

Chapter 5 described how Google AdWords was used to generate traffic to the websites 

described in Chapter 4. In order to convert traffic generated by online advertising 

campaigns into enquiries, these websites needed to be improved to have higher 

conversion rates. Landing page optimisation (LPO) was especially important as the 

landing page was the page that visitors landed on after clicking on an advertisement.  

This Chapter describes some of the techniques for improving landing pages that were 

found in literature. These techniques led to changes to the landing pages of the two 

core advertising campaigns (described in Chapter 5) that ran in the United Kingdom 

(UK). The changes to the landing pages that are described in this Chapter took place on 

the collaborating company’s main website.   

This Chapter also describes the experiments that were set up to determine how the 

changes that were made affected the conversion rate and bounce rate of landing pages.  

In order to determine whether the changes made to a landing page had led to an 

improvement, the conversion rate and the bounce rate (in some cases) of the landing 

page before and after the changes was compared. The statistical significance of the 

differences observed in conversion rates or bounce rates was calculated using 

statistical techniques such as chi-square test, confidence interval and t-test. 
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The results of the experiments that were carried out on the landing pages are presented 

and discussed in this Chapter. The literature search carried out during this research 

identified a gap in knowledge whereby existing research  literature did not present 

results to show how the application of certain landing page design techniques affected 

the conversion rate or bounce rate of a landing page. This Chapter presents data that 

showed the effect that some landing page design techniques had on conversion rate 

and bounce rate. Such results have not been previously available in research literature. 

6.1. Understanding a website’s audience 

Ash (2008) claimed that “before you can even look at the specific issues and problems 

with your landing page, you must try to see it through the eyes of your audience”. 

Therefore, it was important to understand who website visitors were, where they came 

from and what their intent was.  

This research looked for meaningful commonalities in the data collected by MS CRM 

and the OTM and combined this with feedback from the sales team to create two 

personas for website visitors who had enquired. They were: 

• The Inventor. This was an individual who had an idea for an invention that they 

wanted to develop into a product. Usually, they did not have previous experience 

in product development and were looking for a company that could guide them 

through the process. An inventor had limited or sometimes no budget. Inventors 

used keywords such as “invention”, “product idea”, “invention idea”.  

• The Manufacturer. This was usually a person from a small to medium company 

that wanted to manufacture a product in large quantities. Their main goal was to 

get a quote. They were goal-oriented, time conscious and had a budget. They 

used keywords that were variations of the word “plastic manufacturer” 



 

150 
 

The keywords that were frequently used by each persona were identified from data that 

was stored in MS CRM and the OTM. The other characteristics of the personas were 

identified by the sales team and were based on their interaction with customers. 

6.2. Landing page optimisation 

6.2.1. Changes to landing pages 

This research focused on optimising the landing pages for the core UK advertising 

campaigns described in Chapter 5 and for the two visitor personas that had been 

identified. Table 6.1 provides a summary of the changes that were made to the landing 

pages of the core campaigns during the landing page optimisation process.  

Change  Description  Applied to  

Change 1 
Changed landing page to provide more 

targeted content. 
Inventor campaign 

Change 2 
Included keywords from advertisement 

in title of landing page. 
Inventor campaign 

Change 3 Improved visual design. 
All pages of the new 

dynamic main website 

Change 4 
Changed style in which content was 

written and laid out. 
Manufacturing campaign 

Change 5a 
Implemented user directed 

segmentation using pictures. 
Manufacturing campaign 

Change 5b 
Implemented user directed 

segmentation using a questionnaire. 
Manufacturing campaign 

Table 6.1: Changes to landing pages. 
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These changes are described in the following sections. Performance measures that 

were used to assess the impact of the changes made to landing pages are also 

presented. Detailed performance measures can be found in Appendix E. 

6.2.2. Performance measures 

The performance of landing pages was measured using conversion rate and bounce 

rate. 

The conversion rate of a landing page was calculated by dividing the number of 

conversions that it had generated by the number of views that it had received. Data 

collected by Google AdWords was used to calculate conversion rate. 

The bounce rate of a landing page was calculated by dividing the number of bounces 

that it generated by the number of visits that it received. Data collected by Google 

Analytics was used to calculate bounce rate. 

The number of clicks (or views) that was recorded by Google AdWords was different 

from the number of visits recorded by Google Analytics. This was because Google 

AdWords tracked clicks, while Google Analytics tracked visits. Clicks represented the 

number of times that an advertisement was clicked by visitors, while visits indicated the 

number of unique sessions initiated by visitors. For example, if a Web user clicked on 

an advertisement twice within thirty minutes without closing their browser, this was 

registered by Google Analytics as one visit while Google AdWords recorded two clicks 

(Google, n.d.-g).  

6.2.3. Statistical indicators 

In order to determine the statistical significance of the results that were obtained during 

LPO, the following statistical indicators were used: 
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a) Pearson chi-square test. 

b) confidence interval. 

c) t-test. 

a) Pearson chi-square test 

The Pearson chi-square test (commonly referred to as chi-square test) was used when 

the data being analysed was “nominal in nature i.e. when it is recorded as frequencies 

in discrete categories” (Jones, 2002). Since the data collected from the experiments 

described in this Chapter was nominal the chi-square test was used to determine 

whether there was a correlation between the frequencies associated with the rows and 

those recorded in the columns that is, it was used to test the null hypothesis and to 

determine the statistical significance of results. 

The chi-square test compared the tallies or counts of categorical responses between 

two (or more) independent groups. Equation 6.1 shows how the chi-square statistic for a 

2 x 2 contingency table (Table 6.2) was calculated (The Mathbeans Project, n.d.). 
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Equation 6.1: Chi-square. 

 Data Type 1  Data Type 2  Total  
Category 1  a b a + b 
Category 2  c d c + d 

Total  a + c b + d a + b + c + d = N 

Table 6.2: Example 2 x 2 contingency table. 

The chi-square statistic (��) was used to calculate a p-value by comparing the value of 

the statistic to a chi-squared distribution for a number of degrees of freedom (DF). 

Equation 6.2 shows how the number of degrees of freedom was calculated. r was the 

number of rows and c was the number of columns in a contingency table. 
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Equation 6.2: Degrees of freedom. 

The p-value indicated the statistical significance of data presented in a contingency 

table. This research used a significance level of 0.05. Therefore, if a p-value was 

smaller than 0.05, then test results were deemed to be statistically significant. 

This research used two free online tool, one  provided by the Mathbeans Project (The 

Mathbeans Project, n.d.) and another by GraphPad (GraphPad, n.d.-a) to carry out chi-

square tests and calculate p-value for data presented in this Chapter. 

b) Confidence interval 

The research used confidence interval to confirm the conclusions drawn from chi-

square tests. If the p-value calculated by a chi-square test was greater than 0.05 then, it 

was concluded that the results obtained were not statistically significant. This meant that 

the null hypothesis could not be rejected but did not mean that the null hypothesis was 

true. Motulsky (1995) suggested that when a high p-value indicated results that were 

not significant, confidence interval (CI) could be used to evaluate the study. 

A confidence interval (CI) was “a range of values for a variable of interest constructed 

so that this range has a specified probability of including the true value of the variable. 

The specified probability is called the confidence level, and the end points of the 

confidence interval are called the confidence limits. It is conventional to create 

confidence intervals at the 95% level” (Davies and Crombie, 2009). 

When evaluating CI on the difference between proportions, if the confidence interval 

included the value reflecting no-effect (which was 1), then the difference that was 

observed was statistically non-significant (for a 95% confidence interval, non-



 

154 
 

significance was at the 5% level). If the confidence interval did not enclose the value 

reflecting no-effect, then the difference that was observed was statistically significant. 

Equation 6.3 shows how the CI on the difference between proportions was evaluated. 

�� � ����∓�.��√�
 

Equation 6.3: Confidence interval (Winner, 2011). 

Equation 6.4 and Equation 6.5 show how RR and v were calculated (using Table 6.2 as 

example): 
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      Equation 6.4: Relative Risk (Winner, 2011).                Equation 6.5: � (Winner, 2011) 

c) t-test 

The t-test was a commonly used method for evaluating the differences in means 

between two groups. A t-test produced a p-value that represented the probability of 

error regarding the existence of a difference. In other words the p-value indicated 

whether the difference in means was statistically significant. If the difference was in a 

predicted direction, then only one half (one "tail") of the probability distribution was 

considered. In this case, the standard p-value reported by a t-test (a "two-tailed" 

probability) was divided by two (StatSoft, 2010). 

This research used GraphPad (GraphPad, n.d.-b), which was a free online tool to carry 

out t-tests. 
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6.3. Change 1 – Targeted landing page 

6.3.1. Concept 

Understanding the audience of a website was an important part of LPO (Ash, 2008, 

Loveday and Neihaus, 2008). When designing landing pages “it is important to keep in 

mind who your audience is and [to] make sure that the information you provide is 

relevant to them” (Mason, 2007). Thompson (2009) suggested that using content to 

create targeted landing pages for different audience segments could help keep visitors 

on a website longer and lead to more conversion. He claimed that the more targeted a 

landing page’s content was towards a niche market, the more likely it was to convert 

visitors. 

6.3.2. Concept application and landing page testing  

At the beginning of this research, the Inventor campaign described in Chapter 5 had the 

Design Overview page as landing page. The Inventor campaign ran two text 

advertisements that had different headlines but the same text, display URL and landing 

page (the Design Overview page). Figure 6.1 shows the Design Overview page and 

the advertisements that used it as landing page. The Inventor campaign mostly 

attracted visitors who fitted the Inventor persona. 

Advertisement delivery for the Inventor campaign was configured so that the two 

advertisements were displayed evenly by rotating them. Google AdWords determined 

which advertisement to display in response to a search by a Web user. Each 

advertisement received approximately the same number of impressions but the number 

of clicks that each received depended on Web users’ preference. 
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The content of the Design Overview page was focused on the design services that the 

collaborating company offered and was not targeted at the Inventor persona. Therefore, 

a new landing page called Product Idea  (see Figure 6.2) was tested against the 

Design Overview page. The advertisements shown in Figure 6.1 were duplicated and 

configured to have the Product Idea  page as landing page. The duplicated 

advertisements co-existed with the original advertisements in the Inventor campaign. 

                                           

 

Figure 6.1: Design Overview page and advertisements  that were run by the Inventor campaign. 

The content of the Product Idea  page was relevant to the Inventor persona because:  

• of the heading of the page. 

• the first paragraph of the text specified that the company worked with individuals 

and could turn their idea into a product. 
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• the picture on the page showed a person having a light bulb moment which was 

evocative of an inventor coming up with an idea. 

The Product Idea  page had clear calls of action at the end of the page to encourage 

visitors to make an enquiry by either calling the sales line or by email. The Design 

Overview page did not have any calls of actions. The content of the Product Idea  page 

was written in short easy to read paragraphs while the content of the Design Overview  

page was written in longer paragraphs which could have required more effort to read 

and looked less appealing to a visitor. The Design Overview page displayed a list of 

links at the bottom of the page while the Product Idea  page did not. 

                                                       

 

Figure 6.2: Duplicated advertisements used the Prod uct Idea page as landing page.  
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The two landing pages ran in parallel for 6 days. Conversion rates were recorded by 

Google AdWords and used to compare the performance of the two landing pages.  

 

Graph 6.1: Conversion rate for Design Overview page  and Product Idea page before and after 

testing. 

Graph 6.1 shows how the conversion rate of the two landing pages varied during the 

test. The solid lines show the conversion rate during the testing period. The dotted lines 

show the performance of the pages before and after the test. It can be seen that at the 

beginning of the test the Design Overview  page performed better that the Product 

Idea page. The conversion rate of the Product Idea  page gradually increased and 

peaked at 13.04%.The conversion rates for the landing pages at the end of the test are 

shown in Table 6.3. 

Landing page Conversions Non-
Conversions Views Conversion 

Rate 

Product Idea  7 145 152 4.61% 

Design Overview  5 139 144 3.47% 

Table 6.3: Conversion rates for Design Overview pag e and Product Idea page. 

A chi-square test was used to determine the statistical significance of the results shown 

in Table 6.3. The chi-square test yielded a p-value of 0.62. A 95% Confidence Interval 
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(CI) ran from 0.43 to 4.08. The CI was wide and included 1 which confirmed that the 

results were not statistically significant. 

6.3.3. Conclusion 

It was concluded that the increase in conversion rate observed for the Product Idea  

page was not statistically significant.  Because the test was carried out over a short 

period of time and collected a relatively small amount of data, it might not have detected 

the effect of the Product Idea  page. The Product Idea  page remained active and was 

used to carry out new changes and tests that are described in the next section. 

6.4. Change 2 - Include keywords from advertisement  in title of 

landing page. 

6.4.1. Concept  

Loveday and Neihaus (2008) suggested that in order to provide a seamless and 

consistent experience to visitors, landing pages had to be an extension of their 

advertisements. They proposed the following methods to achieve this: 

• Ensuring that a landing page provided what the corresponding advertisement 

promised. This had to be explicit and obvious. If an advertisement offered design 

services then the content of the landing page had to be about design services. 

Otherwise visitors could think that they were victim of the “bait and switch” trick 

and leave with a bad impression of the website. 

• Matching the wording of an advertisement on its landing page. Since visitors 

decided whether a page was relevant to their search within seconds (Lindgaard 

et al., 2006), including the wording found in an advertisement on its landing page 
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could help to convince visitors that they had found a suitable website, thus 

encouraging them to stay and browse. 

• Maintaining the language and tone of the advertisement on the landing page, for 

example if the advertisement used intellectual language then the landing page 

had to do the same. 

Maintaining consistency between an advertisement and its landing page drew on the 

idea of mirroring. The mirroring principle suggested “that the efficacy of tools or 

messages can be maximised by ensuring that they contain features that mirror the 

preferences of the target market” (Moss et al., 2008).  

The mirroring principle had been used in various fields and translated into different 

views. Two views that were relevant to website design were the communication field 

and social psychology. In the communication field, mirroring represented the notion that 

persuasiveness is enhanced by the similarity between source and receiver (Moss et al., 

2008, Brock, 1965). In social psychology, it translates to “the ‘matching hypothesis’ or 

‘similarity-attraction’ which implied that increased similarity leads to increased attention 

and attraction” (Moss et al., 2008). 

6.4.2. Concept application and landing page testing  

This research assumed that when a Web user clicked on a particular advertisement out 

of a list of advertisements, they were expressing a preference towards the 

advertisement’s message. Therefore, maintaining features of the advertisement on its 

landing page could have a positive impact on conversion rate. This idea was tested on 

the Product Idea  page that was introduced during Change 1 (described in Section 



 

161 
 

6.3.2).  Figure 6.3 shows the advertisements (referred to as Advertisement 1 and 

Advertisement 2) that used the Product Idea  page as landing page.  

                                                       

 

Figure 6.3: Product Idea page as landing page for A dvertisement 1 and Advertisement 2 

The title of the Product Idea  page included the keyword (“product idea”) from 

Advertisement 1 only.  The two advertisements ran in parallel over a period of 3 weeks. 

The conversion rate of the Product Idea  page resulting from views generated by each 

advertisement are shown in Table 6.4. 

A chi-square test yielded a p-value of 0.02. A 95% CI ran from 1.12 to 3.63. It was 

concluded that the higher conversion rate associated with Advertisement 1 was 

  Advert isement  1   Advert isement 2  
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statistically significant. Table 6.5 shows the bounce rate (recorded by Google Analytics) 

associated with visits to the Product Idea page generated by each advertisement. 

Landing page Conversions Non-
Conversions Views Conversion 

Rate 

Advertisement  1 26 352 378 6.88% 

Advertisement  2 18 510 528 3.41% 

Table 6.4: Conversion rates of the Product Idea pag e resulting from views generated by 

Advertisement 1 and Advertisement 2 over 3 weeks. 

The bounce rates of the Product Idea  page resulting from visits generated by each 

advertisement are shown in Table 6.5.  A chi-square test on the data presented in Table 

6.5 yielded a p-value of 0.03. A 95% CI ran from 0.69 to 0.98. It was concluded that the 

lower bounce rate associated with Advertisement 1 was statistically significant.  

Landing page Bounces Non-
Bounces Visits Bounce Rate 

Advertisement  1 120 201 321 37.38% 

Advertisement  2 205 246 451 45.45% 

Table 6.5: Bounce rate for landing pages associated  with Advertisement 1 and 2. 

Based on the conversion rates shown in Table 6.4, and the bounce rates shown in 

Table 6.5, it was concluded that the Product Idea page performed better when used in 

combination with Advertisement 1. It was assumed that this was the case because the 

keywords used in Advertisement 1 had been included in the title of the Product Idea 

page. In order to determine whether, by using this principle, the conversion rate of the 

Product Idea  page could be increased when used with Advertisement 2, the Product 

Idea page was modified so that its title changed dynamically depending on the 

advertisement that a visitor had clicked on. Figure 6.4 shows how the dynamic Product 

Idea page looked when a visitor landed on it after clicking Advertisement 2. The look of 

the dynamic Product Idea  page for Advertisement 1 stayed the same as the non-
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dynamic Product Idea  page shown in Figure 6.3. Advertisement 1 and Advertisement 2 

ran in parallel for a period of 12 weeks.  

 

Figure 6.4: The dynamic Product Idea page for Adver tisement 2.         

The conversion rate of the dynamic Product Idea  page resulting from views generated 

by Advertisement 1 and Advertisement 2 is summarised in Table 6.6. Because the 

setup shown in Figure 6.3 where Advertisement 1 and Advertisement 2 used the non-

dynamic Product Idea page as landing page, ran for a 3 week period only,  the results 

shown in Table 6.6 (obtained over 12 weeks) were averaged over a 3 week period 

before the performance of the dynamic and non-dynamic Product Idea  page could be 

compared. 

Table 6.7 shows the performance (over a 3 week period) of the Product Idea  page for 

Advertisement 2 before and after the change to the page’s title was made. 
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Landing page Conversions Non-
Conversions  Views Conversion 

Rate 

Advertisement  1 64 1691 1755 3.65% 

Advertisement  2  121 2404 2525 4.79% 

Table 6.6: Conversion rate of the dynamic Product I dea page resulting from views generated by 

Advertisement 1 and Advertisement 2 over 12 weeks.  

Landing page Conversions Non-
Conversions  Views Conversion 

Rate 

Dynamic Product 
Idea page 30 601 631 4.75% 

Non-dynamic 
Product Idea  page 18 510 528 3.41% 

Table 6.7: Conversion rate of the dynamic and non-d ynamic Product Idea page resulting from 

views generated by Advertisement 2 over a 3 week pe riod. 

A chi-square test on the data presented in Table 6.7 yielded a p-value of 0.25. A 95% CI 

ran from 0.79 to 2.47. It was concluded that the results were not statistically significant.  

Data collected about the Design Overview page and Advertisement 2 over a 12 week 

period prior to Change 1 (describe in Section 6.2.2) was compared with data collected 

about the dynamic Product Idea  page and Advertisment 2. The conversion rates and 

bounce rates are shown in Table 6.8 and Table 6.9 respectively. 

Landing page Conversions  Non-
Conversions  Views Conversion 

Rate 

Dynamic Product 
Idea page 121 2404 2525 4.79% 

Design Overview  
page 96 3495 3591 2.67% 

Table 6.8: Conversion rate of the dynamic Product I dea page and Design Overview page resulting 

from views generated by Advertisement 2 over a 12 w eek period. 
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A chi-square test on the data presented in Table 6.8 yielded a p-value of 0.00. A 95% CI 

ran from 1.38 to 2.33. The p-value and the CI confirmed that the increase in conversion 

rate that was associated with the dynamic Product Idea  page was statistically 

significant when compared to the Design Overview page. There was a relative 

increase in conversion rate of 79.40%. 

A chi-square test was carried out on the data presented in Table 6.9. This produced a p-

value of 0.47. A 95% CI ran from 0.96 to 1.09. The CI was narrow and included 1. 

Therefore, the increase in bounce rate that was observed for the dynamic Product Idea  

page was not statistically significant. 

Landing page Bounces Non-
Bounces Visits Bounce Rate 

Dynamic Product 
Idea page 964 1128 2092 46.08% 

Design Overview  
page 1355 1653 3008 45.05% 

Table 6.9: Bounce rate of the dynamic Product Idea page and Design Overview page resulting 

from visits generated by Advertisement 2 over a 12 week period. 

Data collected about the Design Overview page and Advertisement 1 over a 12 week 

period prior to Change 1 (described in Section 6.2.2) was compared with data collected 

about the dynamic Product Idea  page and Advertisment 1. This is shown in Table 6.10. 

A chi-square test yielded a p-value of 0.34 and a 95% CI ran from 0.54 to 1.24. The 

decrease in conversion rate associated with the dynamic Product Idea  page was not 

statistically significant. 
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Landing page Conversions  Non-
conversions Views Conversion 

Rate 

Dynamic Product 
Idea page 64 1691 1755 3.65% 

Design Overview  
page 33 709 742 4.45% 

Table 6.10: Conversion rate of the dynamic Product Idea page and Design Overview page 

resulting from views generated by Advertisement 1 o ver a 12 week period. 

6.4.3. Conclusion  

The results obtained were inconclusive in determining whether the inclusion of 

keywords used in an advertisement into its landing page’s title could increase  

conversion rate. However, for Advertisement 2, the dynamic Product Idea  page had a 

higher conversion rate than the Design Overview  page that was statistically significant. 

For Advertisement 1, the dynamic Product Idea  page had a lower conversion rate than 

the Design Overview  page but this was not statistically significant. Therefore, it could 

be  concluded that the landing page for Advertisement 2 had been improved and that a 

relative increase in conversion rate of 79.40% (compared to the Design Overview  

page) that was statistically significant had been achieved. 

These conclusions had limitations. External factors such as search and seasonal trends 

could have affected the results obtained when comparing the performance of the 

dynamic Product Idea  page and the Design Overview page. The effect of these 

external factors could have been reduced if the performance of the two landing pages 

had been compared over a similar time frame. 

Another limitation was that the advertisement message was reinforced on the landing 

page through the title only. The content of the page was not changed to match the 

message of the advertisement. It could be argued that changing the title alone was not 
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enough to match the message of the advertisement and that if the content had been 

matched to the advertisement message; higher conversion rates could have been 

observed. 

6.5. Change 3 - Visual design 

6.5.1. Concept 

A study by Lindgaard et al  (2006) showed that visitors formed an impression of a web 

page in the first 50ms based on visual appeal, for example, design layout, colour, etc. 

This implied that the main features and general appearance of a landing page had a 

greater initial impact on visitors than its content (Gofman and Moskowitz, 2009).  

6.5.2. Concept application and landing page testing  

The visual design of landing pages was changed when the front-end of the dynamic 

main website was redesigned to have a professional and industry-appropriate design 

(described Chapter 4).  The performance of the dynamic Product Idea  page before and 

after the change was compared to measure its impact on conversion rate. Table 6.11 

shows the conversion rate of the dynamic Product Idea  page resulting from views 

generated by Advertisement 1 over a 3 month period before and after the change in 

visual design. 

Landing page  Conversions  Non-
Conversions Views Conversion 

Rate 

Product Idea  page 
(after change) 

62 1286 1348 4.60% 

Product Idea  page 
 (before change) 

64 1691 1755 3.65% 

Table 6.11: Conversion rate of the dynamic Product Idea page resulting from views generated by 

Advertisement 1 over a 3 month period before and af ter the change in visual design. 
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It can be seen that there was an increase in conversion rate after the change in design. 

A chi-square test yielded a p-value of 0.18. A 95% CI ran from 0.90 to 1.78. The 

increase in conversion rate was deemed not to be statistically significant. 

Table 6.12 shows the conversion rate of the dynamic Product Idea  page resulting from 

views generated by Advertisement 2 over a 3 month period before and after the change 

in visual design. 

Advertisement Conversions  Non-
Conversions  Views Conversion 

Rate 

Product Idea  page 
 (after change) 

101 3111 3212 3.14% 

Product Idea  page 
 (before change) 

121 2404 2525 4.79% 

Table 6.12: Conversion rate of the dynamic Product Idea page resulting from views generated by 

Advertisement 2 over a 3 month period before and af ter the change in visual design. 

For Advertisement 2, a decrease in conversion rate was observed following the 

changes to the website’s design. A chi-square test yielded a p-value of 0.00. The CI for 

a relative conversion rate of 0.66 in ran from 0.51 to 0.85. The decrease was statistically 

significant.  

6.5.3. Conclusion 

When used as landing page by Advertisement 1, the dynamic Product Idea  page 

achieved an increase in conversion rate but this was not statistically significant.  When 

used as landing page by Advertisement 2, the dynamic Product Idea  page achieved a 

decrease in conversion rate that was statistically significant. The observations made 

had limitations as the data used for comparison had been collected over different time 

periods. Therefore, external factors such as search and seasonal trends could have 

affected the results.The effect of these external factors could have been reduced if the 
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performance of the landing pages had been compared over a similar time frame. Also 

the effects of the recession that had started in the second quarter of 2008 (BBC News, 

2009) had become more severe in the months following the changes made to the 

dynamic main website’s visual design. 

Graph 6.2 shows how the conversion rate of the Inventor campaign varied over a period 

of 2 years. The average conversion rate associated with the Inventor campaign before 

Change 1 was 3.22%. The average conversion rate after Change 1 (and including 

Change 2 and 3) was 3.84%. It appeared that there had been an increase in average 

conversion rate after Change 1. This could have been due to seasonal trends and some 

results associated with Changes 1, 2 and 3 were not statistically significant.   

 

Graph 6.2: Conversion rate of Inventor campaign ove r time. 

A t-test produced a value of 1.7864 at a DF of 20. The corresponding one-tailed 

probability (p-value) was 0.04. Therefore, the relative increase in conversion of 19.25% 

was statistically significant. It appeared that the combined effect of Changes 1, 2 and 3 
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had a positive influence on the overall conversion rate of the landing pages. This 

increase in average conversion rate was observed despite external factors such as the 

economic recession that started in the second quarter of 2008 and a cut in advertising 

budget (of 50%) at the beginning of February 2009. 

It was not possible to conclusively determine whether individual changes to the landing 

pages of the Inventor campaign had impacted conversion rate. However, it appeared 

that a combination of the following techniques: using targeted content (Change 1), 

including keywords from advertisement into landing page title (Change 2) and improving 

visual design (Change 3)  had resulted in an increase in average conversion rate that 

was statistically significant despite a recession and reduction in advertising budget.  

6.6. Change 4 - Content Structure 

6.6.1. Concept 

In his research Nielsen (1997) found that 79% of users always scanned new pages that 

they came across while only 16% read every word. In order to accommodate the 

different reading patterns, Nielsen (1997) suggested that websites should use 

scannable text by: 

• Highlighting keywords. 

• Having meaningful sub-headings, not “clever” ones. 

• Using bullet lists. 

• Having one idea per paragraph. 

• Using the inverted pyramid style. 

When measuring the usability of a web page against all the guidelines outlined above, 

Nielsen observed a 124% increase in usability.  
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Loveday and Neihaus (2008) suggested that the following should be considered when 

writing content landing page:  

• Tone and language. This needed to match the language of the target audience, 

for example if the audience was technical, then technical jargon could be used. 

• Engaging visitors with benefits and scenarios they can relate to. 

• The amount of text. Depending on the complexity of the offer being made on a 

landing page, the text could vary in length. If there was too much text, a rule of 

thumb was to have essential points above the fold. This allowed visitors who did 

not like to scroll to still see the offer. 

6.6.2. Concept application and landing page testing  

Figure 6.5 shows the Plastic Manufacturing  page which was the original landing page 

of the Manufacturing campaign.  

 

Figure 6.5: Plastic Manufacturing page. Original la nding page for Manufacturing campaign.  
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The Plastic Manufacturing  page ignored the guidelines suggested by Nielsen (1997) 

and Loveday and Neihaus (2008). A new landing page called Product Manufacture  

(see Figure 6.6) was implemented based on some of the concepts described in Section 

6.6.1. This landing page was similar to the Plastic Manufacturing  page except for the 

structure of its content. The content structure followed some of Nielsen’s (1997) 

guidelines (bullet points, one idea per paragraph) and suggestions by Loveday and 

Neihaus (2008).  

 

Figure 6.6: Product Manufacture page.  

In order to test the landing pages, the advertisement that led visitors to the Plastic 

Manufacturing  page was duplicated. The duplicate advertisement was then set so that 

it led visitors to the Product Manufacture  page. The advertisements and landing pages 
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ran in parallel over a period of 2 months and the results obtained are shown in Table 

6.13. 

Landing page Conversions  Non-
Conversions  Views Conversion 

Rate 

Product 
Manufacture  

21 947 968 2.17% 

Plastic 
Manufacturing  

31 1603 1634 1.90% 

Table 6.13: Conversion rates for landing pages show n in Figure 6.5 and Figure 6.6. 

The results showed that the Product Manufacture  page that followed the guidelines for 

structuring and writing content had a higher conversion rate. A chi-square test produced 

a p-value of 0.63. A 95% CI ran from 0.66 to 1.98. The increase in conversion was not 

statistically significant. The bounce rates of the landing pages are shown in Table 6.14. 

Landing page Bounces Non-
Bounces 

Visits Bounce Rate 

Product 
Manufacture  

311 395 706 44.05% 

Plastic 
Manufacturing  

1115 817 1894 58.87% 

Table 6.14: Bounce rates for landing pages shown in  Figure 6.5 and Figure 6.6. 

The results showed that the Product Manufacture  page had a lower bounce rate. A 

chi-square test produced a p-value of 0.00. A 95% CI ran from 0.66 to 0.82. The relative 

decrease of 25.17% in bounce rate was therefore statistically significant.  

6.6.3. Conclusion 

Although the Product Manufacture  page had a higher conversion rate, this was not 

statistically significant. Therefore, it could not be demonstrated that good content 

structuring and writing had an effect on conversion rate. However, the bounce rate of 
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the Product Manufacture  page that followed guidelines for good content structuring 

and writing was lower than that of its counterpart. This suggested that good content 

structuring and writing could encourage visitors to stay on a website and browse rather 

than leave without browsing. 

6.7. Change 5 – Visitor segmentation  

6.7.1. Concept 

According to Talerico (2010) “online traffic is like a mixed fruit basket, similar in many 

ways, but also very different. Marketing to a mixed basket is difficult—how can you 

possibly know the right image, message, tone and offer that will appeal to anyone & 

everyone? This task becomes much more manageable when you group similar people 

together into segments.” Leap (2010) suggested that for online marketing, segmentation 

could be carried out pre-click and post-click. Pre-click segmentation involved keyword-

based segmentation, so as to maximise the relevancy of paid clicks. Post-click 

segmentation involved segmenting visitors when they reached a landing page. Such a 

landing page presented visitors with simple choices to make about who they are or what 

they are looking for. The subsequent pages that a visitor was directed to were more 

relevant and tailored to the visitor’s audience segment. Leap (2010) called this type of 

segmentation “user-directed” segmentation as visitors directed how they were 

segmented, and Leap claimed that this could increase conversion rate and the quality of 

enquiries. 

6.7.2. Concept application and landing page testing  

This research used two types of landing page design to implement user-directed 

segmentation: 
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a) Segmentation using pictures. 

b) Segmentation using a questionnaire. 

6.7.3. Change 5a - Segmentation using pictures 

It was assumed that a segmented landing page that could help visitors find relevant 

content quickly would be better suited to visitors who fitted the Manufacturer persona, 

that is, visitors who were goal-oriented and time conscious. Therefore, the original 

landing page (Plastic Manufacturing  shown in Figure 6.7) of the Manufacturing 

campaign was replaced with a landing page that implemented segmentation using 

pictures (Picture-segmented  page shown in Figure 6.8). 

 

Figure 6.7: Plastic Manufacturing page. Original la nding page for Manufacturing campaign. 
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Due to a limited advertising budget, the two landing pages did not run in parallel.  In 

order to compare performance, data from two different years (2008 and 2009) had to be 

used. To minimise the effect of seasonal trends, data corresponding to the same 

months (January to August) of the different years was used. Table 6.15 summarises the 

performance of the landing pages. 

 

Figure 6.8: New Picture-segmented landing page with  segmentation options. 

Landing page Conversions Non-
Conversions  Views Conversion 

Rate 

Picture-segmented 237 9167 9404 2.52% 

Plastic Manufacturing 111 9051 9162 1.21% 

Table 6.15: Performance of Plastic Manufacturing pa ge between January 2008 and August 2008 

and Picture-segmented page between January 2009 and  August 2009. 
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A chi-square test on the data shown in Table 6.15 yielded a p-value of 0.00. A 95% CI 

ran from 1.66 to 2.60. Therefore, the relative increase in conversion rate of 108.26% for 

the new Picture-segmented  landing page was statistically significant. The bounce rate 

of the landing pages were compared using data collected by Google Analytics. This is 

shown in Table 6.16. A relative improvement of 22.96% in bounce rate was observed 

for the new Picture-segmented  landing page. 

Landing page Bounces Non-
bounces Visits Bounce Rate 

Picture-
segmented 

3583 3770 7353 48.73% 

Plastic 
Manufacturing  

10005 5813 15818 63.25% 

Table 6.16: Bounce rates for Picture-segmented and Plastic Manufacturing landing pages. 

A chi-square test for the data shown in Table 6.16 yielded a p-value of 0.00. A 95% CI 

ran from 0.75 to 0.79. Therefore, it was concluded that relative improvement of in 

bounce rate that was observed for the new Picture-segmented  landing page was 

statistically significant. 

6.7.4. Conclusion 

The statistically significant increase in conversion rate and decrease in bounce rate 

demonstrated that the new Picture-segmented  landing page performed better than the 

Plastic Manufacturing page. There were limitations associated with the data used to 

draw this conclusion. The two landing pages that were compared were different in terms 

of look and navigation. Also, data used to compare performance was not from the same 

time period. Therefore, it was not possible to conclusively attribute the increase in 

conversion rate solely to the use of a picture-segmented landing page as external 

factors could have also contributed to this.  
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6.7.5. Change 5b - Segmentation using questionnaire  

A landing page that used a questionnaire (see Figure 6.9) to segment visitors was 

tested. This landing page (Questionnaire ) ran in parallel with the Picture-segmented  

landing page shown in Figure 6.8. A summary of the performance of these landing 

pages over an eight months period is shown in Table 6.17. 

 

Figure 6.9: Questionnaire landing page for Manufact uring campaign. 

A chi-square test for the data shown in Table 6.17 yielded a p-value of 0.22. A 95% CI 

ran from 0.92 to 1.43. The CI was narrow and included 1 which suggested that the 

increase in conversion rate associated with the Questionnaire  landing page was not 
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statistically significant. The bounce rates (shown in Table 6.18) of the two landing pages 

were compared. 

Landing page Conversions Non-
Conversions  Views Conversion 

Rate 

Questionnaire 156 3963 4119 3.79% 

Picture-
segmented 

150 4395 4545 3.30% 

Table 6.17: Performance data for Questionnaire and Picture-segmented landing pages. 

The questionnaire landing page had a higher bounce rate than the picture-segmented 

landing page. A chi-square test yielded a p-value of 0.00. A 95% CI ran from 1.22 to 

1.35. The higher bounce rate associated with the questionnaire landing page appeared 

be statistically significant. 

Landing page Bounces Non-
Bounces Visits Bounce Rate 

Questionnaire 1934 1390 3324 58.18% 

Picture-
segmented 1391 1673 3064 45.40% 

Table 6.18: Bounce rates for Questionnaire and Pict ure-segmented landing pages 

The comparison between the performance of the Questionnaire  landing page and the 

Picture-segmented  landing page were inconclusive. The Questionnaire  landing page 

was then compared with the original landing page (Plastic Manufacturing ) shown in 

Figure 6.7. Data over the same months (May to August) but from two different years 

(2008 and 2009) were used for comparison since the landing pages did not run in 

parallel. Table 6.19 shows the conversion rates of the two landing pages. 
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Landing page Conversions  Non-
Conversions Views Conversion 

Rate 

Questionnaire 89 1962 2051 4.34% 

Plastic 
Manufacturing  

61 5170 5231 1.17% 

Table 6.19: Performance data for Questionnaire and Plastic Manufacturing landing pages. 

A chi-square test on the data presented in Table 6.19 yielded a p-value of 0.00. A 95% 

CI ran from 2.70 to 5.13. Therefore, the relative increase in conversion rate of 270.94% 

for the Questionnaire  landing page was statistically significant. 

Landing page Bounces Non-
Bounces Visits Bounce Rate 

Questionnaire 1010 651 1661 60.81% 

Plastic 
Manufacturing 

3953 2461 6414 61.63% 

Table 6.20: Bounce rate for original and questionna ire landing pages. 

Table 6.20 shows the bounce rate of the Plastic Manufacturing  page and the 

Questionnaire  landing page. A chi-square test yielded a p-value of 0.54 and a 95% CI 

ran from 0.94 to 1.03. Therefore, the relative decrease in bounce rate associated with 

the Questionnaire  landing page was not statistically significant. 

6.7.6. Conclusion 

It was not possible to ascertain whether the Questionnaire  landing page was better 

than the Picture-segmented  landing page. However, the Questionnaire  landing page 

had a higher conversion rate (that was statistically significant) than the original landing 

page of the Manufacturing campaign (Plastic Manufacturing  page shown in Figure 

6.7). There were limitations associated with this conclusion. The Plastic Manufacturing  

page and the Questionnaire  landing page were different in terms of look and 
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navigation. Also, data used to compare performance was not from the same time 

period. Therefore, it was not possible to conclusively attribute the increase in conversion 

rate to the use of a landing page that provided user-directed segmentation through a 

questionnaire.  

6.8. Chapter Discussion 

This Chapter described how landing page optimisation was carried out during the 

research. Different landing pages were tested and their performance was then 

evaluated using conversion and bounce rate. Not all tests yielded results that were 

statistically significant. Therefore, it was not possible to conclusively determine the 

impact that individual changes to the landing pages had on their performance. 

However, it was observed that for the Inventor campaign the average conversion rate 

following all the changes made to its landing pages was higher than the average 

conversion rate of its original landing page. This increase in average conversion rate 

was statistically significant. 

Three new landing pages were tested for the Manufacturing campaign.  The first landing 

page was created by changing the content structure and writing of the original landing 

page. The changes did not have a significant effect on conversion rate. However, the 

bounce rate of the new landing page was lower than that of the original landing page 

and the difference was statistically significant.  

Two landing pages that supported user-directed segmentation were created. Both had 

the same visual design but used different types of segmentation.  The visual design of 

these landing pages was different to that of the original landing page of the 

Manufacturing campaign. Both segmentation landing pages achieved statistically 
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significant increases in conversion rate compared to the original landing page of the 

Manufacturing campaign. Overall, it appeared that the new landing pages that were 

implemented during the research had higher conversion rates than the original landing 

page of the Manufacturing campaign. 

The conclusions drawn from the results obtained had some limitations. In some cases, 

multiple changes were made to a landing page. This affected comparison to an original 

landing page. When landing pages did not run in parallel, performance data from 

different time frames were used for comparison. As a result, the effect of external 

factors could not be controlled. However, to minimise the effect of seasonal trends, 

comparisons were carried out with data from the same months (but different years) 

whenever possible. 

External factors such as the economic recession that started in the second quarter of 

2008 and a cut in advertising budget (of 50%) at the beginning of February 2009 also 

affected the results presented in this Chapter. 

The aim of the landing page optimisation process had been to encourage as many 

visitors as possible to browse the dynamic main website and to enquire (convert). The 

OTM described in Chapter 4 collected data about these visitors’ browsing behaviour. 

This research analysed the data captured by the OTM to determine whether visitors’ 

browsing behaviour could predict their intention to convert. Chapter 7 describes the 

analysis that was carried out and the results that were obtained.   



 

183 
 

  

CHAPTER 7   

EXPERIMENTS AND RESULTS 

This Chapter describes the data mining and analysis that was carried out on the data 

collected by the Online Tracking Module (OTM) described in Chapter 4. The aim was to 

analyse data collected by the OTM to find rules or models that enabled the prediction of 

conversions from recorded visitor activity on a website. 

Models or rules that could predict whether visitors were likely to convert could help 

identify attributes and website design elements that affected conversion positively. This 

could be used to improve website design and increase conversion, which could 

ultimately lead to increased sales and profit. Also, the ability to predict conversion could 

help create systems that could monitor visitor’s browsing and then guide them along an 

optimised or personalised path.  

This Chapter first describes the different stages of the data mining and analysis process 

namely population sampling, data retrieval, data cleaning and transformation and 

knowledge discovery. It then describes the data mining tool and algorithms that were 

used to find models. The results of the various explorations of the data are then 

described. Finally, the results as well as their limitations are discussed and conclusions 

are drawn. 
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7.1. Experiment Design 

Experiments were designed to retrieve and analyse data about visitors’ browsing 

behaviour on the collaborating company’s dynamic main website. Collected data was 

analysed using the PolyAnalyst data mining engine to find models to predict online 

conversion. 

Data captured by the Online Tracking Module (OTM) described in Chapter 4 was used. 

The OTM saved data in a Microsoft Structured Query Language (SQL) database.  Data 

selection and cleaning was performed in the SQL database and was then exported to a 

Microsoft Excel file. A Visual Basic for Applications (VBA) macro was then used to 

transform the data so as to derive and format values for predictor attributes (described 

in Section 7.3.3). These were then imported into a data mining engine called 

PolyAnalyst to find models. 

7.2. The data mining process 

The data mining process used in this research is shown in Figure 7.1. Data extraction 

encompassed Stages 1 and 2 of the experiments. It consisted of identifying the criteria 

for the population sample required and extracting data from the OTM database for that 

sample. The data was then saved in Microsoft Excel files. 

Data cleaning consisted of removing inconsistent and erroneous data. Data 

transformation consisted of deriving and formatting the values of predictor attributes 

from the data saved in Microsoft Excel files. These predictor attributes were then 

imported into PolyAnalyst to find models. 

PolyAnalyst’s data mining algorithms were run during the data mining phase. This 

provided a set of models. PolyAnalyst generated accuracy measures for each model 
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model analysis was repeated (based on the findings of previous iterations) in order to 

improve the accuracy of models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1: The data mining process. 
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7.3. Implementing the data mining process 

The experiments described in this Chapter were implemented in four stages: 

1. Population sampling. 

2. Data retrieval. 

3. Data cleaning and transformation. 

4. Knowledge discovery. 

7.3.1. Stage 1: Population sampling 

The OTM collected data for all visitors who browsed the collaborating company’s 

dynamic main website. Google Analytics (described in Chapter 2) was also used to 

capture data about the dynamic main website’s traffic. Reports from Google Analytics 

showed that: 

• the dynamic main website received an average of 220 visits a day. 

• traffic to the dynamic main website was generated by the following sources:  

o Search Engines (86%),  

o Direct Traffic (9%) and  

o Referring Sites (5%).   

• 82% of visits were unique visits while the remaining 18% were returning visits.  

• On average a visitor viewed 3 pages per visit and spent an average of 159 

seconds per visit. 

Data collected by MS CRM showed that visitors who enquired varied from individuals to 

corporate businesses. Data collected by the OTM showed that visitors were mainly from 

the United States or Europe (predominantly the United Kingdom and Ireland). For the 

purposes of this research only a subset of the available data was selected. The 



 

187 
 

research described in this dissertation considered a population sample that satisfied the 

following criteria: 

• First time visitors. 

• Visitors who landed on the dynamic main website after a keyword search. This 

excluded search keywords that contained the collaborating company’s name or 

variations of it, for example “MotionTouch”, “Motion touch design”, etc. 

• Visitors who did not bounce off the dynamic main website. A bounce occurred 

when a visitor left immediately without having viewed any page but the landing 

page (White, 2006).  

This research did not consider returning visits or visits that were not associated with a 

search keyword. 

7.3.2. Stage 2: Data retrieval  

SQL commands were used to retrieve data from the OTM database for a sample 

population that satisfied the criteria defined in Stage 1.  This data was then saved to 

Microsoft Excel files which were used in Stage 3. Data retrieval from the OTM database 

took place on the collaborating company’s web server. The data retrieval involved a 

series of steps. They were: 

1. Extracting and combining elements of browsing behaviour and web page 

structure for each visitor from various tables in the OTM database. This data was 

then saved in a table called Results. This table contained records for visits that 

had converted, had not convert and visits that had bounced.   

2. Records that were not associated with a conversion were retrieved. For each 

record, the [Total Time on site] was calculated and the results were stored in a 
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table called NonConvAll.  Bounces were identified from table NonConvAll by 

selecting records that had a [Total Time on site] that was equal to NULL.   

3. Data associated with conversions and non-conversions were extracted from the 

Results database and saved in Microsoft Excel files ready for the transformation 

stage. Visits that originated from: 

a. China were excluded from the data set as the majority of email enquiries 

originating from China were spam emails.  

b. Poland were excluded as these represented visits by staff who worked in 

the collaborating company’s Polish office.  

c. Netherlands were excluded as an individual with malicious intent was 

accessing the dynamic main website from the Netherlands. 

The SQL commands used in Steps 1, 2 and 3 are listed in Appendix C. Figure 7.2 is a 

screenshot showing the structure of the Microsoft Excel files created in Step 3.  

The Microsoft Excel files had the following data columns: 

• [UserId] – Unique id generated and assigned by the OTM to a visitor.  

• [Title] – Title of a web page. 

• [PageId] – Unique id for each web page. 

• [PageType] – Each web page was given a type that described the function of that 

page. [PageType] could have one of the following values: Video, Download, 

Company Info, Other, Services, Contact Us, Form, Media Access, FT Quote, 

Case Study, PR. These are described at the end of this section. 
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Figure 7.2: Structure of Microsoft Excel file that stored visitors’ browsing data.
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•  [MicroId] – This represented a session number and was used to identify 

returning visits. If [MicroId] was 1, it indicated a first visit. If it was greater than 1 

then it indicated returning visits, in which case the value represented the number 

of returning visits. Chapter 4 described how the OTM assigned a [MicroId] to 

returning visitors. 

• [Sequence] – This indicated the order in which web pages were accessed by a 

visitor. 

• [TimeSpent] – The number of seconds that had elapsed between a visitor landing 

on a page and accessing the next page. [TimeSpent] was not available for the 

last page visited because of the method used by the OTM to calculate this 

metric. [TimeSpent] was regarded as the time a visitor spent on a web page but 

there was no way of knowing how the visitor actually spent this time. The visitor 

could have been browsing a page or could have been away from their computer.  

• [Keywords] – The search keyword used by a visitor. 

Definition of [Page Type]  

Case Study – Pages that displayed case studies about projects that had been 

completed by the collaborating company. Each case study had its own page. 

Company Info – Pages that provided information about the collaborating company, for 

example the Home  and About Us pages. 

Contact Us – This was the Contact Us  page. The Contact Us  page displayed contact 

details, for example office addresses and email addresses. 

Download – Pop up pages that allowed visitors to download files. 

Form – Pages that displayed enquiry forms. 
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FT Quote – These pages offered segmentation options that allowed visitors to guide 

themselves to an enquiry form best suited for the type of enquiry that they wanted to 

make. 

Media Access – Pages that listed files such as videos and case studies. Visitors 

accessed individual Video and Case Study pages via a Media Access page. 

PR – Pages that displayed press releases. 

Services – Content pages that described the services that the collaborating company 

offered, for example the Design Overview  page, the Product Sector Overview  page 

and the Quality Services  page. 

Video –These were pop up pages that contained embedded videos and no content or 

navigation. 

Other – Pages that did not fit in any category, for example a Thank you page. 

7.3.3. Stage 3:  Data cleaning and transformation 

Data saved during Stage 2, was cleaned and then transformed into attributes that could 

be imported into PolyAnalyst. A  VBA macro was implemented to transform the data. 

The data sets obtained from Step 3 of Stage 2 were cleaned and transformed 

separately but using the same process. The transformed data was then used to create 

two new data sets called Training Data  and Test Data .   

Data cleaning - [Keywords]  column 

Records were removed when the string stored in the [Keywords] column contained: 

• URL fragments. 

• only alphanumeric string.  

• the collaborating company’s name or variations of it, for example,  

“MotionTouch”, “Motion touch design”, etc.  
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The [Keywords] column was checked a second time for invalid values after the data had 

been transformed. This was done manually. 

Data cleaning - [PageType]  column 

All records associated with a [UserId] that had a [PageType] entry that was equal to 

NULL were removed. A [PageType] that was equal to NULL indicated that a visitor had 

browsed the collaborating company’s online shop. This website was not considered in 

this research. 

Data transformation 

Once the data had been cleaned, then it was transformed. In order to do this a VBA 

macro was implemented to transform the data saved in Microsoft Excel files. The VBA 

macro saved the transformed data within the same file but in a different spreadsheet 

called Clean Data . The spreadsheet with data saved from Stage 2 was called Raw 

Data. The transformation process derived the following attributes for each visitor record 

found in Raw Data :  

• [Browsing Time] – Time in seconds spent browsing a website before enquiring. 

For visitors who did not enquire this represented the time spent browsing a 

website before leaving. [Browsing Time] excluded time spent filling in enquiry 

forms. This also excluded time spent on a Contact Us  page if a visitor accessed 

and then sent an enquiry form via the Contact Us  page. 

• [Browsed ContactUs] – Number of times a Contact Us  page was visited without 

the visitor subsequently accessing and sending an enquiry form. 

• [Browsed ContactUsTS] – Time spent browsing a Contact Us  page without 

subsequently accessing and sending an enquiry form. 

• [Case Studies] – Number of pages of type Case Study accessed. 
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• [Case StudiesTS] – Total time spent on pages of type Case Study. 

• [Company Info] – Number of pages of type Company Info accessed. 

• [Company InfoTS] – Total time spent on pages of type Company Info.  

• [ContactUs Sent] – This value was set to 1 if an enquiry ensued from a visit to a 

Contact Us  page. Otherwise, the value was set to 0. 

• [ContactUs SentTS] – Time spent on a Contact Us  page that generated an 

enquiry. 

• [Conversion] – 1 or Yes for a conversion and 0 or No for a non-conversion. 

• [Download] – Number of files downloaded. 

• [DownloadTS] – Time spent downloading files. 

• [FTQuote] – Number of pages of type FTQuote accessed. 

• [FTQuote TS] – Total time spent on pages of type FTQuote. 

•  [Keyword Length] – The number of words in a search keyword. 

• [Media Access] – Number of pages of type Media Access that were accessed. 

• [Media AccessTS] – Total time spent on pages of type Media Access. 

• [Other] – Number of pages of type Other accessed. A page called Sent  was 

loaded by the script that sent emails from a website. If an email was successfully 

sent, then the script redirected the user to a Thank You  page. The Sent  page 

and Thank You  page were of type Other. 

• [OtherTS] – Total time spent on pages of type Other. 

• [PR] – Number of pages of type PR accessed. 

• [PRTS] – Total time spent on pages of type PR. 

• [Sent Form] – Number of pages of type Form that were accessed and sent. The 

value could be either 1 or 0. 
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• [Sent FormTS] – Total time spent on pages of type Form that were accessed and 

then sent. 

• [Services] – Number of pages of type Services accessed. 

• [ServicesTS] – Total time spent on pages of type Services. 

• [Total Time on site] – Total time in seconds that a visitor spent on a website 

excluding time spent on the last page they visited. Since the OTM had no method 

of knowing when a visitor left the website, it recorded time spent on the last page 

visited as NULL.  

• [Unsent Form] – Number of pages of type Form that were accessed but not sent. 

• [Unsent FormTS] – Total time spent on pages of type Form that were accessed 

but not sent. 

• [UserId] – Unique ID for each visitor.  

• [Video] – Number of videos that a visitor accessed. 

• [VideoTS] – Time spent watching videos. 

The structure of the Clean Data  spreadsheet is shown in Figure 7.3 and Figure 7.4. 

Figure 7.3 shows a screenshot of the first fifteen columns of the spreadsheet and Figure 

7.4 shows a screenshot of the next seventeen columns. The VBA macro transformed 

the browsing history shown in Figure 7.2 into the values stored in row five of the 

spreadsheet shown in Figure 7.3 and Figure 7.4. 

In order to calculate [Browsing Time], each time the VBA macro came across a page of 

type Form, it checked whether the next page visited had a [PageId] of 0. This sequence 

of action indicated that an enquiry form had been sent and that the VBA macro needed 

to adjust its calculation of [Browsing Time] to exclude [TimeSpent] on the page of type 

Form and any pages accessed after it. For example, when the macro parsed the data  
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Figure 7.3: First fifteen attribute columns contain ing values derived from Raw Data spreadsheet. 

 

Figure 7.4: Next seventeen attribute columns contai ning values derived from Raw Data spreadsheet.
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shown in Figure 7.2, it did not include [TimeSpent] on pages beyond row 34 when 

calculating [Browsing Time]. This was because row 35 showed that a page of type Form 

had been accessed and then sent (rows 36 and 37). If the page preceding a page of 

type Form (that was subsequently sent) was the Contact Us  page then [Browsing 

Time], did not include [TimeSpent]  on the Contact Us  page.   

[Total Time on site] included [TimeSpent] on all pages browsed by a visitor without 

exception. In the example shown in Figure 7.2, the visitor continued to browse the site 

after sending an enquiry. Therefore, rows 24 to 42 were used to calculate [Total Time 

on site] for that visitor. 

Once data had been transformed, it was cleaned a second time to remove errors that 

had not been detected in the first attempt. Using the filter feature available in Microsoft 

Excel, records with particular criteria were identified and removed from the data. In the 

data set for conversions the following criteria were identified and corresponding records 

were deleted: 

• [Total Time on site] was equal to 0. 

• [Other] was equal to 0. This highlighted unusual browsing patterns or an error 

in the tracking.  

• Both [Sent Form] and [ContactUs Sent] were equal to 0. This highlighted 

unusual browsing patterns or an error in the tracking. 

The following criteria were identified and corresponding records were deleted in the 

data set for non-conversions: 

• [Total Time on site] was equal to 0. 
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• [Other] was greater than 0. This highlighted unusual browsing patterns or an 

error in the tracking where a Sent page had been accessed but no enquiry 

had been received or recorded by the OTM. 

Once cleaned, the data contained 1431 conversion records and 23,348 non-conversion 

records. This represented a 6%-94% split between conversion and non-conversion. The 

data was used to create two new data sets, Training Data  and Test Data  that were 

used in Stage 4 to find and test models. Conversion records were split between 

Training Data  and Test Data . Each data set had a 50%-50% split between conversion 

and non-conversion records. 

It was assumed that a training sample with a 50%-50% split between conversion and 

non-conversion records could produce more accurate models since prediction 

algorithms could develop equal knowledge about conversion and non-conversion with 

such a training sample. 

It was also assumed that if a test sample that had a 6%-94% split was used, then it 

could be difficult to assess the accuracy of the models at predicting conversions since 

accuracy measures could be influenced by the models’ prediction accuracy of a high 

number of non-conversions. To avoid this, a training sample with a 50%-50% split 

between conversion and non-conversion was used. 

Training Data  contained: 

• A total of 1428 records. 

• 714 records of visits that had converted, that is, had a value of 1 for [Conversion]. 

• 714 records of visits that had not converted, that is had a value of 0 for 

[Conversion]. 
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Test Data  contained: 

• A total of 1434 records. 

• 717 records of visits that had converted, that is had a value of 1 for [Conversion]. 

• 717 records of visits that had not converted, that is had a value of 0 for 

[Conversion]. 

7.3.4. Stage 4: Knowledge discovery 

Data from Stage 3 was imported into PolyAnalyst to seek models to automatically 

determine whether a visitor would enquire based on the way that they interacted with 

the dynamic main website. 

The knowledge discovery stage took place at the University of Portsmouth.  Training 

Data from Stage 3 was imported into a data mining engine called PolyAnalyst.  Some 

models were successfully found by the data mining engine. These models were then 

tested using Test Data  from Stage 3. Section 7.5 describes the knowledge discovery 

stage in more detail. 

7.4. Data Mining 

Once data was retrieved, cleaned and transformed, it was imported into PolyAnalyst in 

order to generate models to predict whether a visit would generate a conversion. 

PolyAnalyst 6 was a data mining tool that had a selection of algorithms that could 

perform automated learning and knowledge discovery operations. It was selected to 

perform data mining because it provided tools for importing, cleaning and manipulating 

data as well as pattern discovery, prediction and reporting (PolyAnalyst, n.d.). 

PolyAnalyst 6 provided algorithms for general statistical analysis; categorisation, 

predictive analysis and text analysis.   
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7.4.1. Prediction algorithms 

Three algorithms were selected: “Linear Regression”, “Find Laws” and “Neural 

Networks”.  “Linear Regression” and “Find Laws” produced human-readable models 

that could be used to predict target variables from a set of input attributes. Unlike the 

“Linear Regression” and “Find Laws” algorithms, which clearly displayed the involved 

terms and each term's impact (each term's coefficient), the output of “Neural Networks” 

could not be observed. The model that it created was essentially the weight of the 

connections between neurons (nodes) within that model. 

The “Linear Regression”, “Find Laws” and “Neural Networks” algorithms are described 

as: 

Linear regression 

“Linear Regression” was one of the oldest and most frequently used methods of 

statistical prediction.  “Linear Regression” analysed the relationship between variables 

and produced a linear regression model that could be used to understand dependency 

between variables and predict numerical values. 

The output of “Linear Regression” was a linear solution. If the relationship was expected 

to be linear, then the algorithm provided high quality output. In cases where the 

relationship was not linear, “Linear Regression” was useful in identifying attributes that 

influenced the target attribute. These attributes could then be included in subsequent 

analyses with “Find Laws” and “Neural Networks” to find better models. PolyAnalyst’s 

multi-parametric stepwise linear regression worked with any number of attributes. 

PolyAnalyst performed rigorous significance testing on linear regression models. It used 

two different methods to perform this. The first method was based on checking the 
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value of F-ratio (see description in Section 7.4.2) of every term that was included in a 

model. If a term had a value of F-ratio less than a specified threshold (set to 3 for the 

research described in this dissertation), then this term was discarded from the model. 

The second method used randomised testing. While PolyAnalyst searched for the best 

regression model for the explored data set, it solved the same problem for several 

randomised data sets. Randomised data sets were created from the original data set 

using random permutation of the target attribute values for various records. PolyAnalyst 

considered the created regression model as significant only if accuracy obtained for the 

real data was much higher than for any randomised data. Otherwise, PolyAnalyst 

concluded that it did not have enough data to create a significant model. 

Find Laws 

PolyAnalyst’s “Find Laws” was a proprietary, nonlinear regression algorithm that could 

be used for predictive analysis. “Find Laws” searched for multi-dimensional non-linear 

relations in data and presented discovered relations as explicit mathematical formulae. 

“Find Laws” algorithm generated miniature equations and then combined these together 

to form larger equations so as to produce a final equation that effectively modelled the 

dependence of a target attribute on a set of one or more independent attributes. 

PolyAnalyst performed rigorous significance testing on “Find Laws” models using 

randomised testing and created significant models only.  

Neural Networks 

“Neural Networks” are a well known and researched approach for modelling data and 

identifying patterns. In comparison to linear regression, a neural network is non-linear. 

Data was inputted into a neural network to train a model. The trained model was then 

applied to new records to assess the accuracy of the model. “Neural Networks” was 
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computationally intensive and could take extended periods of time to train a model. The 

number of attributes used in “Neural Networks” could be minimised by using “Linear 

Regression” and “Find Laws” beforehand and then running “Neural Networks” with the 

attributes found to be of high relevance. 

7.4.2. Accuracy measures 

PolyAnalyst provided statistical indicators to assess the accuracy of models, such as 

standard error, r-squared and standard deviation.  When “Neural Networks” was 

utilised, the statistical indicators for the accuracy of the models developed included 

classification probability, classification efficiency, classification error and classification 

failure. 

Standard Deviation (σ, s or stdev) was a measure of the degree of variation of data from 

its mean value.  A large standard deviation indicated that data points were far from the 

mean and spread over a large range of values. A small standard deviation indicated that 

they were close to the mean (Jordan and Smith, 2002).  Equation 7.1 shows how the 

standard deviation for a given population was calculated.  Equation 7.2 shows how the 

standard deviation for a sample of values from a larger population was calculated.  
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Equation 7.2: Standard deviation for a 

sample from a larger population. 

Standard Error (stderr) was the standard deviation of the predicted values of a target 

variable with respect to the real values of the target variable. Equation 7.3 shows how 
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the standard error was calculated.  N was the number of data samples. Pi and pi were 

the real and predicted values for the target variables in each sample.   
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Equation 7.3: Standard Error. 

PolyAnalyst calculated standard error by dividing standard deviation by dispersion. 

Dispersion was the square of standard deviation. Values for standard error lay between 

0 and 1. A value of 0 corresponded to an absolutely accurate prediction model.  

R-Squared (RSq) was a measure of how well future values were likely to be predicted 

by a model. R-Squared was calculated as 1 – r2, where r was the standard error.  Its 

values lay between 0 and 1, with a value of 1 indicating an absolutely accurate model. 

F-ratio was used to determine how much predictive power independent attributes had in 

a linear relationship. F-ratio was calculated as the square of the ratio of a term’s value 

to the term’s standard deviation. If an independent attribute present in a linear 

regression model had a high F-ratio (greater than 3), it meant that the attribute was 

important in predicting the value of the model’s target variable. The threshold value of F-

ratio was set to 3 for the research work discussed in this dissertation. 

Classification Probability (cp) was the number of times (expressed as a percentage) that 

a prediction algorithm made a correct classification. Equation 7.4  shows how the 

classification probability of an algorithm was calculated. NcorrectA and NcorrectB were the 

number of correctly classified records for classes A and B. NA and NB were the total 

number of records of class A and B.   
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BA

correctBcorrectA

NN

NN
cp

+
+

×=100  

Equation 7.4: Classification probability (Bergasa-S uso, 2005). 

The percentage of visitors in each class (conversion and non-conversion) in Test Data  

determined the minimum accuracy required by the models that were found.  For 

example, a naïve prediction rule that considered every visit as a non-conversion would 

have an accuracy of 50% if 50% of visitors in the dataset did not convert.  Any algorithm 

that claimed to learn from a set of input data had to predict better than a naïve algorithm 

(Adriaans and Zantinge, 1996). 

Classification Efficiency (ce) provided a measure of the accuracy of a prediction 

algorithm with respect to a naïve prediction algorithm . Equation 7.5 shows how the 

classification efficiency of a prediction algorithm was calculated. NcorrectA and NcorrectB 

were the number of correctly classified records for classes A and B.  NA and NB were 

the total number of records of class A and B.   

( )
( )BA

BAcorrectBcorrectA

NN

NNNN
ce

,min

,max
100

−+×=  

Equation 7.5: Classification Efficiency (Bergasa-Su so, 2005). 

If 80% of records in a data set were from class A and 20% were from class B, then a 

naïve algorithm would classify all records as class A and would have a classification 

probability of 80%, but a classification efficiency of 0% (see Equation 7.6, cenaive). A 

prediction algorithm that classified all records correctly would have a classification 

efficiency of 100% (see Equation 7.6, ceaccurate) (Bergasa-Suso, 2005). 
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100 =−+×==−+×= accuratenaive cece  

Equation 7.6: Classification efficiency for naïve a nd accurate classification rules (Bergasa-Suso, 

2005). 

Classification Error (cerr) was the percentage of times that a model made an incorrect 

prediction. 

Classification Failure (cf) was the percentage of times that the prediction algorithm 

failed to make a prediction. 

7.5. Experiment Results 

7.5.1. Initial explorations  

Initial explorations were carried out to predict whether a visit would result in a 

conversion. These explorations were carried out using PolyAnalyst’s “Linear 

Regression”, “Find Laws” and “Neural Networks”. During these explorations, errors were 

found in the VBA macro that was used to transform the data retrieved from the 

database into the data that was imported into the PolyAnalyst algorithms. This 

introduced errors in the data as [Total Time on site] was calculated erroneously in 

instances where an enquiry was sent from a Contact Us  page. Also, the VBA parser 

macro did not filter out visits to the collaborating company’s online shop. The results 

that were obtained from these initial explorations can be seen in Appendix D.  

7.5.2. First exploration - Using all attributes 

The VBA parser macro was modified to filter out visits to the collaborating company’s 

online shopping website and to include [TimeSpent] on a Contact Us  page when 

calculating [Total Time on site] in instances where an enquiry was sent from a Contact 
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Us page. The first exploration of the data was carried out using “Linear Regression”, 

“Find Laws” and “Neural Networks”. The attributes used in the first exploration are 

shown in Table 7.1.  

The target attribute was [Conversion]. Since “Linear Regression” and “Find Laws” 

accepted numerical values only, [Conversion] was imported into these algorithms as 

integer values; conversion was represented by a value of 1 and non-conversion by a 

value of 0.  

Attributes used in first exploration 

[Browsed ContactUs] [Media Access] 

[Browsed ContactUsTS] [Media AccessTS] 

[Browsing Time] [PR] 

[Case Studies] [PRTS] 

[Case StudiesTS] [Services] 

[Company Info] [ServicesTS] 

[Company InfoTS] [Total Time on site] 

[Download] [Unsent Form] 

[DownloadTS] [UnsentFormTS] 

[FTQuote] [Video] 

[FTQuote TS] [VideoTS] 

[Keyword Length]  

Table 7.1: Attributes used in the first exploration . 

Linear Regression 

“Linear regression” found prediction model LR1 using Training Data. Equation 7.7 

shows model LR1. 

 

 
 



 

206 
 

�
���� !
�	 � 	�0.387559	 � 0.0335942 ∗ +�
,-��.	��/
0 	� 0.0164385 ∗ 2���!	� 	

� 0.106221 ∗ +3� ��4	�
�,	0 	� 0.000319465 ∗ +5��!�	6		�  720 	

� 0.000693281 ∗ +8�
9 !�:	7!,�0 	� 0.000784759

∗ +7
4�;	7!,�	
�	 !4�0 	� 0.104908 ∗ +8�
9 ��	�
�4�	43 0 	� 0.0388765

∗ �7<=
4� 

 
 

 

 

Equation 7.7: Prediction model LR1. 

The accuracy measures for the prediction model LR1 are shown Table 7.2. 

StdErr RSq StdDev 

0.80 0.36 0.40 

Table 7.2: Accuracy measures for prediction model L R1 derived from Training Data . 

It can be seen from Table 7.2 that LR1 had a high standard error and low RSq value. 

This suggested that the model was not accurate. The model was tested with Test Data . 

The accuracy measures are shown in Table 7.3. These confirmed the low accuracy of 

model LR1. 

StdErr RSq StdDev 

0.82 0.33 0.41 

Table 7.3: Accuracy measures for LR1 after testing model with Test Data . 

Graph 7.1 shows [Conversion] values predicted by LR1 plotted against real 

[Conversion] values in Test Data. The x-axis of Graph 7.1 shows the real value of 

[Conversion] for the records in Test Data , that is 0 for non-conversion and 1 for 

conversion. The y-axis represents the value that LR1 predicted for [Conversion] for 

each record found in Test Data . When the real [Conversion] value was 0 (non-

conversion), the values predicted by LR1 ranged from -1.92 to 0.76. When the real 

[Conversion] value was 1 (conversion) the values predicted by LR1 range from -0.62 to 

2.64. It was observed from Graph 7.1 that for real [Conversion] values of 1 most of the 

predicted [Conversion] values were greater than 0.50 and that most of the predicted 
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[Conversion] values for real non-conversions was less than 0.50. Therefore, a boundary 

value of 0.50 (shown as a dotted line on Graph 7.1) was considered. 

 

Graph 7.1: [Conversion] value predicted using LR1 vs real [Conversion] value (using Test Data ). 

Graph 7.2 shows the value predicted by LR1 for each record in Test Data . The x-axis of 

the graph shows the record number for each record found in Test Data . The y-axis 

shows the [Conversion] values predicted by LR1. The red dots on the graph represent 

records whose real [Conversion] value was 1(conversion) while the blue dots represent 

records whose real [Conversion] value was 0 (non-conversion). 
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Graph 7.2: [Conversion]  values predicted by LR1 for individual records fou nd in Test Data . 

Graph 7.2 confirmed the observations made from Graph 7.1, whereby most of the 

[Conversion] values predicted by LR1 for records that had a real [Conversion] value of 0 

were less than 0.50 and most of the [Conversion] values predicted by LR1 for records 

that had a real [Conversion] value of 1 were greater than 0.50. Therefore, a boundary 

value of 0.50 (shown as a dotted line on Graph 7.1 and Graph 7.2) was applied. 

A confusion matrix for LR1 (using Test Data ) with a boundary value for identifying 

conversions set at 0.50 is shown in Table 7.4. The classification probability and 

efficiency of LR1 were derived from the values shown in Table 7.4. They were 84.59% 

and 69.18% respectively. The model predicted 70.99% of the target 1s correctly, which 

suggested good accuracy. Also Table 7.4 shows that LR1 (with a boundary value set at 
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0.50) predicted that 522 records were conversions. Out of these predictions, 97.51% 

(509) were correct.  

           Predicted 
 
Actual 

> 0.50 
(conversion) 

≤ 0.50  
(non-conversion)  Total 

1  
(conversion) 509 208 717 

0  
(non-conversion) 13 704 717 

Total 522 912 1434 

Table 7.4: Confusion matrix for LR1 with boundary s et to 0.50 (using Test Data ). 

Find Laws 

“Find Laws” found prediction model FL1 (see Equation 7.8) using Training Data . 

 
 
 
 
 
 
 

Equation 7.8: Prediction model FL1. 

The accuracy measures for the prediction model FL1 are shown in Table 7.5. The 

model was tested with Test Data . The accuracy measures are shown in Table 7.6. FL1 

had a high RSq value and low standard error. This suggested that the model had high 

accuracy. 

StdErr RSq StdDev 

0.13 0.98 0.06 

Table 7.5: Accuracy measures for prediction model F L1 derived from Training Data . 
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StdErr RSq StdDev 

0.16 0.98 0.08 

Table 7.6: Accuracy measures for FL1 after testing model with Test Data . 

Graph 7.3 shows [Conversion] values predicted by FL1 plotted against real [Conversion] 

values found in Test Data.  

 

Graph 7.3: [Conversion] value predicted using FL1 vs A real [Conversion] value (using Test Data ). 

The x-axis of Graph 7.3 shows the real value of [Conversion] for the records in Test 

Data, that is 0 for non-conversion and 1 for conversion. The y-axis represents the value 

that FL1 calculated for [Conversion]. When the real [Conversion] value was 0 (non-

conversion), the values predicted by FL1 ranged from -0.05 to 0.04. When the real 
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[Conversion] value was 1 (conversion), the values predicted by FL1 ranged from 0.01 to 

1. A boundary value could be set anywhere between 0.05 to 0.80. An arbitrary value of 

0.20 (shown as a dotted line on Graph 7.3) was considered as boundary value. 

Graph 7.4 shows the [Conversion] value predicted by FL1 for each record found in Test 

Data.  

 

Graph 7.4: [Conversion]  values predicted by FL1 for individual records fou nd in Test Data . 

The x-axis of the graph shows the record number for each record found in Test Data . 

The y-axis shows the [Conversion] values predicted by FL1. The red dots on the graph 

represent records whose real [Conversion] value was 1 (conversion) while the blue dots 

represent records whose real [Conversion] value was 0 (non-conversion). Graph 7.4 
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confirmed the observations made from Graph 7.3, whereby most of the [Conversion] 

values predicted by FL1 for records that had a real [Conversion] value of 0 were less 

than 0.20 and most of the [Conversion] values predicted by FL1 for records that had a 

real [Conversion] value of 1 were greater than 0.20. Therefore, a boundary value of 0.20 

(shown as a dotted line on Graph 7.3 and Graph 7.4) was set.  

A confusion matrix for FL1 is shown in Table 7.7 when the boundary value for 

identifying 1s was set to 0.20. 

           Predicted 
 
Actual 

> 0.20 
(conversion) 

≤ 0.20  
(non-conversion) Total 

1  
(conversion) 

708 9 717 

0  
(non-conversion) 

0 717 717 

Total 708 726 1434 

Table 7.7: Confusion matrix for FL1 with boundary w as set to 0.20.  

The classification probability and efficiency of FL1 were derived from the values shown 

in Table 7.7. They were 99.37% and 98.74% respectively. The model predicted 98.74% 

of the target 1s correctly which suggested good accuracy. Also Table 7.7 shows that 

FL1 (with a boundary value set at 0.20) predicted that 708 records were conversions. 

This represented 100% prediction accuracy in the prediction set.  

FL1 appeared to be a much better model than LR1 with higher classification probability, 

efficiency and percentage of correct predictions for conversion in both the target and 

predicted sets. Table 7.8 shows the accuracy measures for FL1 and LR1.  
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Model cp % ce % Accuracy of 
conversion prediction 

in target set % 

Accuracy of 
conversion prediction 

in predicted set % 

LR1 84.59 69.18 70.99 97.51 

FL1 99.37 98.74 98.74 100.00 

Table 7.8: Accuracy measures of LR1 and FL1. 

Neural Network 

Unlike “Linear Regression” and “Find Laws”, “Neural Networks” did not provide symbolic 

rules as output. The model was the weight of the connections between neurons within 

the model. PolyAnalyst calculated classification probability, classification efficiency, 

classification error and classification failure for “Neural Networks” models. These 

accuracy measures were used to assess the accuracy of the models developed. These 

accuracy measures were described in Section 7.4. 

PolyAnalyst’s “Neural Networks” algorithm accepted either Boolean or binary values as 

target values. PolyAnalyst generated accuracy measures such as classification 

probability (cp), classification efficiency (ce), classification error (cerr), classification 

failure (cf) and confusion matrices only if the target value was Boolean. These 

measures were considered to be better for assessing the quality of “Neural Networks” 

models than the measures (standard error, r-squared and standard deviation) that 

would have been derived if binary target values had been used. Therefore, this research 

used Boolean target values instead of binary values when utilising “Neural Networks”. 

The Boolean values were set as Yes for conversion and No for non-conversion.   

“Neural Networks” was given the same input parameters as LR1 and FL1. Training 

Data was used to derive model NN1, which was then tested with Test Data . The 

accuracy measures for the tested model NN1 is shown in Table 7.9. 
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cerr cp cf ce 

3.56% 96.44% 0% 92.89% 

Table 7.9: Accuracy measures for NN1 when tested wi th Test Data . 

NN1 had a classification probability that was higher than a naïve model (cp =50%) as 

well as a high classification efficiency. Table 7.10 provides a breakdown of the model’s 

predictions. It can be seen that NN1 predicted 94.14% of Yes correctly in the target set. 

The confusion matrix for NN1 is shown in Table 7.11. 

Target No of records Error % Correct% Undefined%  

Yes  
(conversion) 

717 5.86 94.14 0.00 

No 
(non-conversion) 

717 1.26 98.74 0.00 

Total 1434 3.56 96.44 0.00 

Table 7.10: Breakdown of predictions for NN1 when t ested with Test Data . 

From Table 7.11, it can be seen that model NN1 predicted a total of 684 records as 

conversions. Out of these predictions, 98.68% (675) were correctly predicted. 

           Predicted 
 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

675 42 717 

No  
(non-conversion) 

9 708 717 

Total 684 750 1434 

Table 7.11: Confusion matrix for NN1 when tested wi th Test Data . 

Summary of results obtained from first exploration 

The first exploration used all available predictor attributes as input data to find models 

using “Linear Regression”, “Find Laws” and “Neural Networks”. “Linear Regression” and 
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“Find Laws” found models LR1 and FL1 that are represented by Equation 7.7 and 

Equation 7.8 respectively. “Neural Networks” found model NN1. Table 7.12 summarises 

the classification accuracy for LR1, FL1 and NN1. 

Model cp % ce % 
Accuracy of conversion 
prediction in target set 

% 

Accuracy of conversion 
prediction in predicted 

set % 

LR1 84.59 69.18 70.99 97.51 

FL1 99.37 98.74 98.74 100.00 

NN1 96.44 92.89 94.14 98.68 

Table 7.12: Accuracy measures for LR1, FL1 and NN1.  

From the measures shown in Table 7.12, it was concluded that FL1 was the best model 

as it had the highest classification efficiency, classification probability and prediction 

accuracy in both the target and predicted sets. NN1 was the second most accurate 

model while LR1 was the least accurate.   

7.5.3. Second exploration – Removing [Total Time on site] as an attribute 

In the second exploration, [Total Time on site] was removed as an attribute from the 

data. [Total Time on site] made it easy for models LR1, FL1 and NN1 to predict 

conversions as on average [Total Time on site] for visits that generated conversions 

tended to be higher when compared to visits that did not generate conversions. Also, 

this research was trying to find a model that could predict conversions based on data 

about the behaviour of website visitors prior to an action that represented a conversion. 

Since visitors could continue browsing a website after they had converted, [Total Time 

on site] was not a suitable attribute. The attributes used in the second exploration are 

shown in Table 7.13. 
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Attributes used in second exploration 

[Browsed ContactUs] [Keyword Length] 

[Browsed ContactUsTS] [Media Access]  

[Browsing Time] [Media AccessTS] 

[Case Studies] [PR] 

[Case StudiesTS] [PRTS] 

[Company Info] [Services] 

[Company InfoTS] [ServicesTS] 

[Download] [Unsent Form] 

[DownloadTS] [UnsentFormTS] 

[FTQuote] [Video] 

[FTQuote TS] [VideoTS] 

Table 7.13: Attributes used in second exploration. 

Linear Regression 

“Linear regression” found prediction model LR2 (see Equation 7.9) using Training Data . 

 
 
 
 
 

Equation 7.9: Prediction model LR2. 

The accuracy measures for the prediction model LR2 are shown in Table 7.14. 

StdErr RSq StdDev 

0.97 0.06 0.49 

Table 7.14: Accuracy measures for prediction model LR2 using Training Data . 

It can be seen from Table 7.14 that LR2 had a high standard error and low RSq value. 

This suggested that the rule was not accurate at predicting [Conversion]. The accuracy 

measures obtained when LR2 was tested with Test Data  are shown in Table 7.15 
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StdErr RSq StdDev 

1.00 -0.01 0.50 

Table 7.15: Accuracy measures for prediction model LR2 using Test Data . 

Standard error was 1 and the Rsq was -0.01. This suggested that model LR2 was poor 

at predicting [Conversion]. Graph 7.5 shows [Conversion] values predicted by LR2 

plotted against actual [Conversion] values, using Test Data. 

 

Graph 7.5:  [Conversion] value predicted using LR2 vs real [Conversion] value (using Test Data ). 

The x-axis of Graph 7.5 shows the real value of [Conversion] for the records in Test 

Data, that is 0 for non-conversion and 1 for conversion. The y-axis represents the 

values that LR2 calculated for [Conversion] using Equation 7.9 and Test Data . When 
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the real value was 0 (non-conversion), the values predicted by LR2 ranged from -2.06 to 

1.3. When the real value was 1 (conversion), the values predicted by LR2 ranged from  

-0.60 to 1.22. It was observed from Graph 7.5 that the range of predicted values 

overlapped for most of the data. A boundary value of 0.50 was considered. A lower 

value could cause LR2 to predict the value of a high number of real non-conversions as 

conversions and a value higher than 0.50 could predict fewer real conversions as 

conversions. 

Graph 7.6 shows the [Conversion] values predicted by LR2 for individual records found 

in Test Data . The x-axis of the graph shows the record number for each record found in 

Test Data . The y-axis shows the [Conversion] values predicted by LR2. 

 

Graph 7.6: [Conversion]  values predicted by LR2 for individual records fou nd in Test Data . 

The red dots on the graph represent records whose real [Conversion] value was 1 

(conversion) while the blue dots represent records whose real [Conversion] value was 0 

(non-conversion). Graph 7.6 confirmed the observations made from Graph 7.5 whereby 
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most of the predicted values were within the same range of values, thus making it hard 

to find an obvious boundary value. A boundary value of 0.50 was chosen (shown as a 

dotted line on Graph 7.5 and Graph 7.6). 

A confusion matrix for LR2 (using Test Data ) when a boundary value for predicting 

[Conversion] was set to 0.50 is shown in Table 7.16. The classification probability and 

efficiency of LR2 were derived from the values shown in Table 7.16. They were 61.85% 

and 23.71% respectively. The model predicted 70.15% of the target 1s correctly. Also 

Table 7.7 shows that LR2 (with a boundary set at 0.50) predicted that 836 records were 

conversions. Out of these predictions, 60.17% (503) were correct. 

           Predicted 
 
Actual 

> 0.50 
(conversion) 

≤ 0.50  
(non-conversion) Total 

1  
(conversion) 

503 214 717 

0  
(non-conversion) 

333 384 717 

Total 836 598 1434 

Table 7.16: Confusion matrix for LR2 with boundary value set to 0.5 (using Test Data ) 

Find Laws 

The “Find Laws” algorithm was unable to find a model.  

Neural Networks 

The accuracy measures for model NN2 generated by “Neural Networks” and tested 

using Test Data  is shown in Table 7.17.  

cerr cp cf ce 

30.68% 69.32% 0% 38.63% 

Table 7.17: Accuracy measures for model NN2. 
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NN2 had a classification probability that was lower than NN1 but still higher than a naïve 

prediction model (cp =50%) as well as a high classification efficiency. Table 7.18  

provides a breakdown of the model’s predictions. It can be seen that NN2 predicted 

65.69% of conversions correctly. The confusion matrix for NN2 is shown in Table 7.19. 

Target No of records Error % Correct% Undefined%  

Yes  
(conversion) 

717 34.31 65.69 0.00 

No 
(non-conversion) 

717 27.06 72.94 0.00 

Total 1434 30.68 69.32 0.00 

Table 7.18: Breakdown of predictions for model NN2.  

From Table 7.19, it can be seen that model NN2 predicted a total of 665 records as 

conversions. Out of these predictions, 70.83% (471) were correct.   

             Predicted 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

471 246 717 

No  
(non-conversion) 

194 523 717 

Total 665 769 1434 

Table 7.19: Confusion matrix for NN2. 

Summary of results obtained from second exploration  

The second exploration produced a “Linear Regression” model LR2 and a “Neural 

Network” model NN2.  The “Find Laws” algorithm was unable to find a model to predict 

[Conversion]. LR2 had poor prediction accuracy as indicated by an RSq of -0.01. 

“Neural Networks” generated a model which had a classification probability of 69.32%. 
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This was lower than the classification probability of NN1 but higher than that of a naïve 

prediction model (50%). Table 7.20 summarises the accuracy measures of the models 

found in the first and second explorations. 

Model cp % ce % 
Accuracy of 

conversion prediction 
in target set (%) 

Accuracy of 
conversion prediction 

in predicted set (%) 

LR1 84.59 69.18 70.99 97.51 

FL1 99.37 98.74 98.74 100.00 

NN1 96.44 92.89 94.14 98.68 

LR2 61.85 23.71 70.15 60.17 

FL2 - - - - 

NN2 69.32 38.63 65.69 70.83 

Table 7.20: Summary of accuracy measures of models found in the first and second explorations. 

7.5.4. Third exploration – Using attributes with hi gh F-Ratio 

Based on the results of the second exploration, it was assumed that “Neural Networks” 

was better than “Linear Regression” and “Find laws” at finding predictive models and 

non-linear dependencies in the data used in this research. However, “Linear regression” 

provided a method of determining how much predictive power each attribute had in a 

linear relationship based on F-ratio. PolyAnalyst used F-ratio (described in Section7.4) 

to determine how much predictive power independent attributes had in a linear 

relationship. F-ratio was calculated as the square of the ratio of a term’s value to the 

term’s standard deviation. 

In order to determine whether the attributes identified by “Linear Regression” could be 

used to generate a model that was more accurate than NN2, “Neural Networks” was run 

with the attributes of LR2 (see Equation 7.9). Table 7.21 shows the F-ratio for the 

attributes of LR2. 
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Attribute F-ratio 

[Services]  4.82 

[FTQuote] 7.20 

[Media Access] 14.57 

[Browsing Time] 12.29 

[Browsed ContactUs] 19.52 

[Unsent Form]  29.31 

Table 7.21: F-Ratio for attributes of LR2. 

Model NN3 was generated by “Neural Networks” using the attributes shown in Table 

7.21 as input. NN3 was tested with Test Data  and its accuracy measures are shown in 

Table 7.22. 

cerr cp cf ce 

30.61% 69.39% 0% 38.77% 

Table 7.22: Accuracy measures for model NN3. 

When comparing the accuracy measures of NN2 (see Table 7.17) and NN3 (see Table 

7.22), it was observed that there was no significant improvement in classification 

probability or classification efficiency. A breakdown of the predictions made by NN3 is 

shown in Table 7.23. 

Target No of 
records 

Error % Correct% Undefined% 

Yes  
(conversion) 

717 39.19 60.81 0.00 

No 
(non-conversion) 

717 22.04 77.96 0.00 

Total 1502 30.61 69.39 0.00 

Table 7.23: Breakdown of predictions for model NN3.  
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From Table 7.18 and Table 7.23, it can be seen that NN2 was better at predicting 

conversions (Yes) in the target set than NN3. Table 7.24 shows the confusion matrix for 

NN3. 

             Predicted 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

436 281 717 

No  
(non-conversion) 

158 559 717 

Total 594 840 1434 

Table 7.24: Confusion matrix for model NN3. 

Table 7.24, shows that model NN3 predicted a total of 594 records as conversion. Out 

of these predictions, 73.40% (436) were actually correct. NN3 was slightly better than 

model NN2 at predicting conversions in the predicted set.  

Summary of results obtained from third exploration 

The third exploration did not produce a model that was significantly more accurate than 

NN2. It appeared that using “Linear Regression” as a method for selecting attributes for 

“Neural Networks” could not produce more accurate NN models. The patterns that 

existed in the data may have been too complex for an algorithm such as “Linear 

regression” to identify. 

7.5.5. Fourth exploration – Search keyword length 

Web users’ perceptions and behaviours were governed by their motives for visiting a 

website (Rodgers et al., 2007). Pavlou and Fygenson (2006) found that the intention of 

buying a product occurred before the intention of acquiring information on a product. 
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Jansen, Booth and Spink (2008) suggested that a search query was one way in which 

Web users expressed intent.  

Hölscher and Strube (2000) suggested that when Web users searched for information 

online they usually went through a process of typing a search term into a search engine 

and browsing websites returned by the search engine. If they did not find what they 

were looking for, Web users reformulated their query by changing one word for another, 

or adding or subtracting words (Jansen et al., 2000) and went through the search 

process again. 

This research theorised that during the search process, Web users went through an 

experiential stage where they looked for information and tried to refine their search 

terms so as to find relevant information. During this stage, Web users were focused on 

research and were not ready to convert. Once Web users felt that they had enough or 

the right information, they would enter a goal-oriented stage. At this stage Web users 

were ready to convert and browsed websites with the intention to convert. 

This research proposed the following hypotheses:  

H1: Longer search keywords (containing 3 words or more) indicated that Web users 

were more ready to convert. 

H2: Shorter search keywords (containing less than 3 words) indicated that Web users 

were less ready to convert. 

H3: Visitors’ search terms could indicate intent. 

H4: Goal-oriented visitors were more likely to convert than experiential visitors.    

Based on these hypotheses the research proposed a search-conversion model shown 

in Figure 7.5.  
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Figure 7.5: Search-conversion model. 

It was assumed that Web users who were at the experiential stage were at the 

beginning of the search process and would use one or two word search keywords. Web 

users who had reached the goal-oriented stage were likely to have more specific and 

therefore longer search keywords, that is, search keywords containing more than 2 

words. Therefore, it was hypothesised that the length of a search keyword could 

indicate whether a visitor was ready to convert.  

The search keyword length distribution for the data collected by the Online Tracking 

Module (OTM) described in Chapter 4 was analysed. The analysis used the conversion 

and non-conversion data sets generated in Step 3 of the data mining process 

(described in Section 7.3.3). Graph 7.7 shows the distribution of search keyword length 

in this data.  



 

226 
 

 

Graph 7.7: Search keyword length vs frequency of oc currence (count). 

It can be seen from the graph that search keywords that contained two or three words 

had the highest occurrence followed by search keywords that contained four words. 

Search keyword length appeared to decay exponentially from search keyword length 

three onwards. That part of the graph appeared to follow the long tail distribution. The 

long tail is a “colloquial name given to a product distribution curve at the long-tail end 

because the demand for the products is low. This technique has helped Amazon and 

Netflix satisfy customers’ demands for obscure products that traditional stores would not 

stock” (Phan and Vogel, 2010). The long tail concept has been applied in retail 

marketing to describe niche markets, where large number of unique or obscure 
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products is sold in small amounts. The concept has been also applied to search 

keywords. Search keywords could be categorised as:  

• Short-tail search keywords: One or two word keyword phrases which were very 

popular and generated high volume search and traffic. 

• Long-tail keywords: “Long-tail keywords are those low-volume, obscure, 

infrequently searched-for keywords” (Mitchell, 2009). Mahaney (2006) describes 

long-tail keywords as  “three and four keyword phrases which are very, very 

specific to whatever you are selling.”  

There was no formal definition of the length of a short-tail or long-tail search keyword. 

Search keywords used in Pay Per Click (PPC) advertising campaigns tended to have a 

natural bias towards a certain length that depended on the products or services 

advertised. Therefore, the length of short-tail and long-tail search keywords could vary.  

The PPC campaigns (described in Chapter 5) created during this research to drive 

traffic to the websites described in Chapter 4 were biased towards search keywords that 

contained one and two words.  

Graph 7.8 shows the search keyword length distribution for visits that had generated an 

email enquiry (equivalent to a conversion in this research). Graph 7.8 follows the same 

kind of distribution as Graph 7.7. Most conversions (32.01%) were generated from three 

word search keywords. The distribution peaked at search keyword length three then 

decayed exponentially. 



 

228 
 

 

Graph 7.8: Search keyword length distribution for v isits that had generated a conversion. 

 

Graph 7.9: Histogram of keyword length vs frequency  of occurrence (count) for visits that did not 

convert. 
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There were more conversions originating from search keywords containing four words 

(16.42%) than one word. When the distribution was examined on either side of the 

highest point on the graph (search keyword length = 3), it was observed that 31.86% of 

conversions were associated with search keywords that contained less than three 

words, while 68.14% of conversions were associated with search keywords that 

contained three words or more. This appeared to support Hypothesis 1 (H1) which 

suggested that visitors who used search keywords containing 3 words or more were 

more ready to convert.  

The distribution of search keywords that did not produce conversions was examined. 

This is shown in Graph 7.9. 

It can be seen that the shape of the distribution shown in Graph 7.9 is similar to that of 

Graph 7.7 and Graph 7.8. It was observed that three word search keywords accounted 

for 29.15% of visits that did not convert. The distribution peaked at search keyword 

length three then decayed exponentially. There were more non-conversions originating 

from search keywords containing four words (16.37%) than from one word search 

keywords (11.02%).  

When the distribution was examined on either side of the highest point on the graph 

(search keyword length = 3), it was observed that 35.22% of non-conversions were 

associated with search keywords containing less than three words, while 35.63% of 

non-conversions were associated with search keywords containing more than three 

words. 64.78% of non-conversions were associated with search keywords containing 

three or more words.  
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Table 7.25 compares the occurrence of search keyword length in the conversion and 

non-conversion data sets. From Table 7.25, it was observed that one and two word 

search keywords were associated more non-conversions (35.22%) than conversions 

(31.86%). This appeared to support Hypothesis 2 (H2), which suggested that visitors 

who used search keywords containing less than 3 words were less ready to convert.  

Search 
Keyword 

length 

% in Conversion 
data 

% in Non- 
conversion data Difference 

1 9.92 11.02 -1.10 

2 21.94 24.20 -2.26 

3 32.01 29.15 2.86 

4 16.42 16.37 0.05 

5 7.83 9.06 -1.12 

6 4.82 4.66 0.16 

7 2.45 2.47 -0.02 

8 1.96 1.39 0.57 

9 0.98 0.70 0.28 

10 0.70 0.41 0.29 

>10 0.98 0.57 0.41 

Table 7.25: Occurrence of search keyword length in conversion and non conversion data sets. 

Search keywords containing three words generated more conversions than non-

conversions as did search keywords containing four words. However, four word search 

keywords generated only 0.05% more conversions than non-conversions. Five and 

seven word search keywords generated more non-conversions than conversions, while 

six, eight, nine, ten and longer than ten word keywords generated more conversions 

than non-conversions. Overall, longer search keywords (containing more than 3 words) 

were associated with more conversions (68.14%) than non-conversions (64.78%). This 

appeared to support Hypothesis 1 (H1), which suggested that longer search terms 

indicated that visitors were more ready to convert. 
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Summary of results obtained from fourth exploration  

Data collected by the OTM was analysed to investigate H1 and H2. The results that 

were obtained by comparing the occurrence of search keyword length in the conversion 

and non-conversion data sets provided some evidence to support H1 and H2. This also 

supported part of the search-conversion model that was proposed. H3 and H4 were not 

tested as the research ran out of time. This is an area where future work is required. 

There were some limitations to the conclusions drawn regarding H1 and H2. Not all 

keywords found in the data were relevant to the content of the dynamic main website. 

Some PPC advertisements were triggered by keywords that had low relevancy. For 

example, search keywords such as “james dyson inventions” or “largest manufacturer of 

plastic parasol bases in the uk” were not relevant to the dynamic main website’s content 

and were not expected to convert. Irrelevant search keywords could have affected the 

results obtained during the analysis of search keywords associated with non-

conversions. Another limitation was that the search keyword data that was analysed 

had been collected from one website only. Search keywords from other websites should 

be analysed and the results compared so as to further validate H1 and H2. 

7.5.6. Fifth exploration - Search keyword Type 

The relevancy of a visitor’s search keyword to the content of a website could affect the 

likeliness that the visitor would browse or convert. The relevancy of a search keyword 

did not depend on its length but rather on the words that made up the search keyword. 

Increased relevancy was thought to lead to increased browsing which could in turn lead 

to conversions. This research evaluated the relevancy of a search keyword by 

determining its type. Search keyword types were identified by reviewing the search 

keywords in the data and finding common attributes between them. The search keyword 

types identified were: 
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1. [Product] – search keywords that indicated a need for a product, for example 

“plastic container designer”. 

2. [Service] – search keywords that indicated a need for a service, for example 

“make a prototype”, “rubber manufacture” and “plastic manufacturers “.  

3. [Location] – search keywords that contained a location, for example “magnet 

manufacturers uk toys” and “plastic product manufacturing uk”. 

4.  [Other] – search keywords that did not fit under any type or which were not 

relevant to the main website e.g. “buy plastic coffin”, “membership for inventors” 

and “invention grant”. 

While assigning types to the search keywords found in the data, it was observed that 

most search keywords belonged to more than one type for example “plastic tray 

manufacturer uk” was of type [Product], [Service] and [Location]. Therefore, rather than 

using keyword types as categories, they were used as individual predictor attributes. 

[Product], [Service] and [Location] were given a value of 1 or 0 depending on whether 

the search keyword satisfied the requirements for that type. In the case of [Other], the 

values ranged from -1 for search keywords that were irrelevant to the dynamic main 

website to 1 for search keywords that were relevant and 0 for search keywords that 

were not of type [Other]. Table 7.26 shows examples of how keywords were scored 

against keyword types. 

Key phrase Product Service  Location Other 

plastic feed buckets 1 0 0 0 

custom plastic molding 0 1 0 0 

sell a toy idea 0 0 0 -1 

plastic manufacturers in bristol 0 1 1 0 

Table 7.26: Attribute for search keyword relevance.  



 

233 
 

The attributes were scored manually as it was difficult to automate the process due to 

the uniqueness of keywords in the data set. As a result, the new attributes were derived 

for small samples taken from Training Data  and Test Data . 

The new data sets Keyword Training Data and Keyword Test Data  used 26% of the 

data from Training Data  and Test Data respectively. Keyword Training Data  

contained: 

• A total of 376 records. 

• 188 records of visits that had converted, that is had a value of 1 for [Conversion]. 

• 188 records of visits that had not converted, that is had a value of 0 for 

[Conversion]. 

Keyword Test Data  contained: 

• A total of 378 records. 

• 189 records of visits that had converted, that is had a value of 1 for [Conversion]. 

• 189 records of visits that had not converted, that is had a value of 0 for 

[Conversion]. 

Keyword Training Data and Keyword Test Data were explored using the “Linear 

Regression”, “Find Laws” and “Neural Network” algorithms. Table 7.27 shows the 

attributes that were used in the fifth exploration. 
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Attributes used in fifth exploration 

[Browsed ContactUs] [Media Access] 

[Browsed ContactUsTS] [Media AccessTS] 

[Browsing Time] [Other] 

[Case Studies] [PR] 

[Case StudiesTS] [PRTS] 

[Company Info] [Product] 

[Company InfoTS] [Service] 

[Download] [Services] 

[DownloadTS] [ServicesTS] 

[FTQuote] [Unsent Form] 

[FTQuote TS] [UnsentFormTS] 

[Keyword Length] [Video] 

[Location] [VideoTS] 

Table 7.27: Attributes used in fifth exploration. 

Linear Regression 

“Linear Regression” produced model LR5 (see Equation 7.10). Out of the four search 

keyword attributes used as input for the “Linear Regression” algorithm, [Service] and 

[Location] were identified by LR5 as being useful for predicting [Conversion]. 

 

 

 

Equation 7.10: Prediction model LR5. 

The accuracy measures for LR5 derived using Keyword  Training Data  are shown in 

Table 7.28. 
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StdErr RSq StdDev 

0.92 0.16 0.46 

Table 7.28: Accuracy measures for LR5 derived using  Keyword  Training Data . 

It can be seen from Table 7.28 that LR5 had a high standard error and low RSq value. 

This suggested that LR5 was not accurate at predicting [Conversion]. The accuracy 

measures for LR5 when tested with Keyword  Test Data  are shown in Table 7.29. The 

high standard error and Rsq confirmed that LR5 was poor at predicting [Conversion].  

StdErr RSq StdDev 

0.98 0.04 0.49 

Table 7.29: Accuracy measures for LR5 using ( Keyword  Test Data ). 

Graph 7.10 shows how the [Conversion] values predicted by LR5 varied compared to 

the real [Conversion] value in Keyword Test Data.  The x-axis shows the real value of 

[Conversion] for the records in Keyword Test Data , that is 0 for non-conversion and 1 

for conversion.  

The y-axis represents the value that LR5 calculated for [Conversion] using Equation 

7.10 and Keyword Test Data . When the real value was 0 (non-conversion), the values 

predicted by LR5 ranged from -0.28 to 1.22. When the real value was 1 (conversion), 

the values predicted by LR5 ranged from 0.03 to 1.78. It was observed from Graph 7.10 

that the range of predicted values overlapped for most of the data. A boundary value of 

0.50 was considered.  
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Graph 7.10: [Conversion] value predicted using LR5 vs real [Conversion] value (using Keyword 

Test Data ). 

Graph 7.11 shows the [Conversion] values predicted by LR5 for individual records found 

in Keyword Test Data . The x-axis of the graph shows the record number for each 

record found in Keyword Test Data . The y-axis shows the [Conversion] values 

predicted by LR5. The red dots on the graph represent records whose real [Conversion] 

value was 1 (conversion) while the blue dots represent records whose real [Conversion] 

value was 0 (non-conversion). 

Graph 7.11 confirmed the observations made from Graph 7.10 whereby most of the 

predicted values for conversion and non-conversion overlapped, thus making it difficult 
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to find an obvious boundary value. A boundary value of 0.50 was decided upon (shown 

as a dotted line on Graph 7.10 and Graph 7.11). 

 

Graph 7.11: [Conversion]  values predicted by LR5 for individual records fou nd in Keyword Test 

Data. 

A confusion matrix for LR5 (using Keyword  Test Data ) with a boundary value set to 

0.50 is shown in Table 7.30. The classification probability and efficiency of LR5 were 

derived from the values shown in Table 7.30. They were 62.43% and 24.87% 

respectively. The model predicted 69.84% of target 1s correctly, which suggested good 

accuracy. Also Table 7.30 shows that LR5 (with a boundary value set at 0.50) predicted 

that 217 records were conversions. Out of these predictions 60.83% (132) were correct.  
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           Predicted 
 
Actual 

> 0.50 
(conversion) 

≤ 0.50  
(non-conversion)  Total 

1  
(conversion) 132 57 189 

0  
(non-conversion) 85 104 189 

Total 217 161 378 

Table 7.30: Confusion matrix for LR5 with boundary set to 0.50 (using Keyword Test Data ) 

Model LR2 which was found during the second exploration was tested with Keyword  

Test Data  and the results were compared with LR5. Table 7.31 shows the accuracy 

measures for LR2 when tested with Keyword  Test Data.  

StdErr RSq StdDev 

0.97 0.07 0.48 

Table 7.31: Accuracy measure for LR2 when tested wi th Keyword  Test Data.  

A confusion matrix for LR2 (using Keyword  Test Data ) with a boundary value set to 

0.50 is shown in Table 7.32. 

           Predicted 
 
Actual 

> 0.50 
(conversion) 

≤ 0.50  
(non-conversion)  Total 

1  
(conversion) 140 49 189 

0  
(non-conversion) 88 101 189 

Total 228 150 378 

Table 7.32: Confusion matrix for LR2 with boundary set to 0.50 (using Keyword Test Data ) 

The classification probability and efficiency of LR2 when tested with Keyword Test 

Data were derived from the values shown in Table 7.32. They were 63.76% and 
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27.51% respectively. The model predicted 74.07% of target 1s correctly. Also Table 

7.32 shows that LR2 (with a boundary value set at 0.50) predicted that 228 records 

were conversions. Out of these predictions 61.40% (140) were correct.  

Table 7.33 summarises the classification accuracy of LR5 and LR2 when tested with 

Keyword Test Data.  It was concluded that LR2 was a better prediction model than 

LR5. 

Model cp % ce % 
Accuracy of conversion 
prediction in target set 

% 

Accuracy of conversion 
prediction in predicted 

set % 

LR5 62.43 24.87 69.84 60.83 

LR2 63.76 27.51 74.07 61.40 

Table 7.33: Classification accuracy of LR5 and LR2 when tested with Keyword Test Data. 

Find Laws 

The “Find Laws” algorithm was unable to find a model.  

Neural Networks 

The predictor attributes shown in Table 7.27 were used as input for “Neural Networks”. 

The accuracy measures for model NN5 which was tested with Keyword  Test Data  are 

shown in Table 7.34. 

cerr cp cf ce 

33.86% 66.14% 0% 32.28% 

Table 7.34: Accuracy measures for model NN5. 

The classification probability and efficiency of NN5 were less than that of NN2. 

However, the classification probability was still higher than that of a naïve model. Table 

7.35 shows the breakdown of the predictions made by model NN5.  
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Target No of records Error % Correct% Undefined%  

Yes  
(conversion) 

189 31.75 68.25 0.00 

No 
(non-conversion) 

189 35.98 64.02 0.00 

Total 378 33.86 66.14 0.00 

Table 7.35: Breakdown of NN5. 

Table 7.36 shows the confusion matrix for NN5. From Table 7.36 it can be seen that 

model NN5 predicted a total of 197 records as conversions. Out of these predictions, 

129 were correct (65.48%).   

             Predicted 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

129 60 189 

No  
(non-conversion) 

68 121 189 

Total 197 181 378 

Table 7.36: Confusion matrix for NN5. 

Model NN2, which was found during the second exploration was tested with Keyword  

Test Data . The accuracy measures for the tested model are shown in Table 7.37. 

cerr cp cf ce 

28.84% 71.16% 0% 42.33% 

Table 7.37: Accuracy measures when NN2 was tested w ith  Keyword  Test Data . 

Table 7.38 shows the breakdown of the predictions made by model NN2 when tested 

with Keyword Test Data . It can be seen that the percentage error in the target set is 

less than that of NN5 suggesting that NN2 was a more accurate prediction model. 
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Target No of records Error % Correct% Undefined%  

Yes  
(conversion) 

189 29.63 70.37 0.00 

No 
(non-conversion) 

189 28.04 71.96 0.00 

Total 378 28.84 71.16 0.00 

Table 7.38: Breakdown of NN2 when tested with  Keyword Test Data . 

Table 7.39 shows the confusion matrix for NN2 when it was tested with Keyword Test 

Data. From Table 7.39, it can be seen that model NN2 predicted a total of 186 records 

as conversions. Out of these predictions, 133 were correct (71.51%). The accuracy 

measures for NN5 and NN2 when tested with Keyword Test Data are summarised in 

Table 7.40. 

             Predicted 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

133 56 189 

No  
(non-conversion) 

53 136 189 

Total 186 192 378 

Table 7.39: Confusion matrix for NN2 ( using Keyword Test Data ). 

From the data presented in Table 7.40, it was concluded that NN2 was a better and 

more accurate prediction model that NN5. 

Model cp % ce % 
Accuracy of conversion 
prediction in target set 

% 

Accuracy of conversion 
prediction in predicted 

set % 

NN5 66.14 32.28 68.25 65.48 

NN2 71.16 42.33 70.37 71.51 

Table 7.40: Classification accuracy of NN5 and NN2 when tested with Keyword Test Data.  
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Summary of results obtained from fifth exploration 

The fifth exploration produced a “Linear Regression” model LR5 and a “Neural Network” 

model NN5. The “Find Laws” algorithm was unable to find a model to predict 

[Conversion]. In order to compare the accuracy of LR5 and NN5 with models LR2 and 

NN2 obtained during the second exploration, LR2 and NN2 were tested with Keyword 

Test Data  and then the accuracy measures were compared to those of LR5 and NN5. It 

was found that the models produced during the second exploration were more accurate 

than those produced during this exploration. The keyword relevancy attributes 

introduced during this exploration had not produced more accurate prediction models. 

There were two reasons why this could have been the case:  

1. Keyword relevancy was not an important factor in predicting conversions.  

2. The simple classification model used to determine keyword relevancy was not 

accurate. 

7.5.7. Sixth exploration – new attributes [Keyword Score] and [Ratio of 

Score to Keyword Length] 

Table 7.41 shows the predictor attributes that were used as input for the algorithms 

used in this exploration.  

In order to find a more accurate model than LR5 and NN5, two new attributes [Keyword 

Score] and [Ratio of Score to Keyword Length] were derived. [Keyword Score] was 

calculated by adding the scores of the individual relevancy scores. [Ratio of Score to 

Keyword Length] was the ratio of [Keyword Score] to [Keyword Length]. These two new 

attributes replaced the keyword relevance attributes in Keyword Training Data and 

Keyword Test Data . 
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Attributes used in sixth exploration 

[Browsed ContactUs] [Keyword Score] 

[Browsed ContactUsTS] [Media Access] 

[Browsing Time] [Media AccessTS] 

[Case Studies] [PR] 

[Case StudiesTS] [PRTS] 

[Company Info] [Ratio of Score to 
Keyword Length] 

[Company InfoTS] [Services] 

[Download] [ServicesTS] 

[DownloadTS] [Unsent Form] 

[FTQuote] [UnsentFormTS] 

[FTQuote TS] [Video] 

[Keyword Length] [VideoTS] 

Table 7.41: Attributes used in sixth exploration. 

Linear Regression 

The “Linear Regression” algorithm found prediction model LR6 (see Equation 7.11) 

using Keyword  Training Data . 

 

 

 

Equation 7.11: Prediction model LR6. 

The prediction model LR6 did not use either of the new attributes. The prediction 

accuracy of LR6 derived from Keyword  Training Data  is shown in Table 7.42. 

StdErr RSq StdDev 

0.93 0.13 0.47 

Table 7.42: Measures for prediction model LR6 deriv ed from Keyword Training Data . 
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It can be seen from Table 7.42  that prediction model LR6 had a high standard error and 

low RSq value. This suggested that the rule had low prediction accuracy. The prediction 

accuracy measures for LR6 when tested with Keyword  Test Data  are shown in Table 

7.43. These confirmed the low accuracy of model LR6. 

StdErr RSq StdDev 

0.97 0.06 0.48 

Table 7.43: Accuracy measures for prediction model LR6 when tested with Keyword Test Data . 

Although “Linear Regression” was able to find a prediction rule, it did not use the new 

attributes [Keyword Score] and [Ratio of Score to Keyword Length]. ”Linear Regression” 

did not find a relationship between these attributes and [Conversion].   

Find Laws 

“Find Laws” was unable to find a prediction model suggesting that the relationship that 

existed in the data might have been too complex for this algorithm. 

Neural Networks 

Accuracy measures for model NN6 that was generated by “Neural Networks” and tested 

with Keyword Test Data  is shown in Table 7.44.  

cerr cp cf ce 

31.22% 68.78% 0% 37.57% 

Table 7.44: Accuracy measures for model NN6. 

The classification probability and efficiency of NN6 were higher than those of NN5 but 

still lower than those of NN2 when tested with Keyword Test Data  (shown in Table 

7.37). Table 7.45 shows the breakdown of the predictions made by model NN6 and 

Table 7.46 shows its confusion matrix. 
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Target No of records Error % Correct% Undefined% 

Yes 189 35.45 64.55 0.00 

No 189 26.98 73.02 0.00 

Total 378 31.22 68.78 0.00 

Table 7.45: Breakdown of predictions for model NN6.  

             Predicted 
Actual 

Yes  
(conversion) 

No  
(non-conversion) Total 

Yes  
(conversion) 

122 67 189 

No  
(non-conversion) 

51 138 189 

Total 173 205 378 

Table 7.46: Confusion matrix for NN6. 

It can be seen from Table 7.45 that NN6 predicted 64.55% of the target Yes correctly. It 

was observed from Table 7.46 that NN6 predicted a total of 173 records as conversions. 

Out of these predictions, 122 were correct (70.52%).   

Summary of results obtained from sixth exploration 

The sixth exploration produced a “Linear Regression” model LR6 and a “Neural 

Network” model NN6.  The “Find Laws” algorithm was unable to find a model to predict 

[Conversion]. “Linear Regression” produced a model which did not use either of the new 

attributes introduced in this exploration. “Neural Networks” produced model NN6 whose 

overall classification accuracy was better than NN5. Table 7.47 shows the classification 

accuracy of NN6, NN5 and NN2 when tested with Keyword Test Data . The difference 

in accuracy between the three models was small. NN2 had the highest classification 

accuracy.   
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Model cp % ce % 
Accuracy of conversion 
prediction in target set 

% 

Accuracy of conversion 
prediction in predicted 

set % 

NN6 68.78 37.57 64.55 70.52 

NN5 66.14 32.28 68.25 65.48 

NN2 71.16 42.33 70.37 71.51 

Table 7.47: Classification accuracy of NN6, NN5 and  NN2 when tested with Keyword Test Data.  

Even though NN5 and NN6 were less accurate than NN2, they were still better than a 

naïve prediction model.  

The scoring system used to score the keyword relevancy attribute and calculate 

[Keyword Score] and [Ratio of Score to Keyword Length] had some limitations which 

could have accounted for the fact that they did not produce models which had better 

accuracy than NN2. 

It was observed that most keywords that had not converted were still relevant to the 

websites. It was therefore difficult to evaluate keyword relevancy using an attribute 

based scoring system, since keywords that did not convert could still satisfy the 

relevancy criteria and score high marks. The keywords used to search for design 

services were shorter than those used to search for manufacturing services. As a result 

the shorter design keywords scored consistently less than the longer manufacturing 

keywords. This made the scoring system inaccurate. By using the [Ratio of Score to 

Keyword Length], the inaccuracy was reduced. 

A better way of calculating keyword relevancy would have been to weigh each word in 

the keyword phrase against the frequency with which those words appeared on 

websites. However, due to the time required to implement such a scoring system this 

method was not used. This is an area where future work is required.  
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7.6. Data Interpretation 

The way data was collected and transformed might have impacted on the experiments 

and results described in this Chapter.  

7.6.1. Contact Us page Vs FT Quote pages 

When calculating [Browsing Time], the time spent on the Contact Us  page was not 

included if the user accessed the Contact Us  form immediately afterwards.  If the user 

visited the Contact Us  page but did not access the Contact Us  form next, the time 

spent on the Contact Us  form was saved as [Browsed ContactUs TS] and included in 

[Browsing Time].  

This method was used as it was assumed that if a user enquired after going to the 

Contact Us  page, then they had already made a decision to enquire when they 

accessed the Contact Us  page. Therefore, they were not in browsing-mode when they 

reached the Contact Us  page 

The same reasoning could have been applied to the Fast Track Quote  (FT Quote ) 

pages but it was not. Time spent on the FT Quote  pages was always included in 

[Browsing Time]. FT Quote  pages were treated differently because they were used as 

landing pages by the Manufacturing advertising campaign described in Chapter 5. As 

such, it was difficult to determine whether a visitor had made a conscious decision to 

visit an FT Quote  page or whether they had been sent to one after clicking on an 

advertisement. 

7.6.2. [Browsing Time]  

The Online Tracking Module (OTM) described in Chapter 4 was unable to determine 

[TimeSpent] on the last page that a visitor browsed. The system worked out 
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[TimeSpent] on a page by recording and then subtracting the time at which a visitor 

landed on the page from the time at which the visitor landed on the next page. This did 

not affect [Browsing Time] for visitors who converted as there was always another page 

following the point from which [Browsing Time] stopped being calculated. For visitors 

who did not enquire, [Browsing Time] did not include [TimeSpent] on the last page 

visited as this was the page from which visitors left the website. 

It could be argued that this did not affect the results as the issue is consistent across all 

non-converted visits. If it had randomly affected the records used in the experiments 

then the data would have been inconsistent and the results unreliable.  

The calculation of the number of pages visited for each page type did not suffer from 

this issue. Pages were counted even if the corresponding value for [TimeSpent] was 

NULL. 

7.6.3. Training and test samples relative sizes 

The distribution of converted and unconverted visits in the data collected by the OTM 

was 6% conversion and 94% non-conversion. If this data was split equally into a training 

sample and a test sample, they would each retain the 6% - 94% split. If a neural 

network was trained with such a sample, it would learn from less examples of 

conversion but more examples of non conversion. This could mean that the “Neural 

Networks” algorithm understood and therefore predicted non-conversions better. 

However, if a training sample that had a 50%-50% split was used then the “Neural 

Networks” algorithm could develop equal knowledge about converted and unconverted 

visits and could make more accurate predictions. Based on this reasoning a training 
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sample with a 50%-50% split was used to train the “Neural Networks” algorithm used in 

the experiments described in this Chapter. 

The test sample used to test the models that were found in the various explorations also 

had a 50%-50% split. If the test sample had a 6%-94% then it could have been difficult 

to assess the accuracy of the models at predicting conversions since the classification 

probability and efficiency could have been influenced by the prediction accuracy of the 

high number of non-conversions. Since the research was only interested in predicting 

conversions, it was looking for a model that was better at predicting conversions than 

non-conversions. Therefore, a test sample with a 50%-50% split was found to be better 

for demonstrating the efficiency of a model that was trying to predict conversion. 

7.7.  Chapter Discussion  

Experiments were designed using data collected by the Online Tracking Module (OTM) 

described in Chapter 4. The aim of the experiments were to analyse data collected by 

the OTM to find rules or models that enabled the prediction of conversions from 

recorded user activity on a website. 

Data used for the experiments was collected on the collaborating company’s dynamic 

main website. Initial analysis yielded Neural Network models that had good 

classification probability and efficiency. However, it was found that errors were 

introduced in the data due to bugs in the VBA parser macro used to transform the data 

obtained from the OTM’s database into input data for the “Neural Networks” algorithm. 

[Total Time on site] was calculated with errors in instances where an enquiry was sent 

from the Contact Us  page. Also, the VBA parser macro did not filter out visits to the 

collaborating company’s online shop. Since the research and experiments were focused 

on service websites, data associated with an online shop introduced errors. The VBA 
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parser macro was modified to filter out visits to the collaborating company’s online 

shopping website and to ignore [TimeSpent] on a Contact Us  page when calculating 

[Total Time on site] in instances where an enquiry was sent from a Contact Us  page. 

The first exploration of the data used all available attributes. “Linear Regression”, “Find 

Laws” and “Neural Networks” were used to find rules.  “Linear Regression” and “Find 

Laws” found rules to calculate a value for [Conversion]. Boundary values were identified 

for each rule and used to determine whether predicted values were considered to be a 

conversion (indicated by a value of 1). “Neural Networks” also found a prediction model. 

The “Find Laws” rule was found to be the most accurate with a classification probability 

that was higher than the “Linear Regression” rule and the “Neural Networks” model. 

For visitors who did not convert, [Total Time on site] was always the same as [Browsing 

Time], while for those who converted, [Total Time on site] was always greater than 

[Browsing Time]. This relationship made it easy for a model to predict [Conversion]. The 

“Find Laws” rule FL1 identified and exploited this relationship which explained its high 

classification probability and efficiency. Moreover, when trying to predict [Conversion], 

only activities that took place before a conversion should have been considered since 

events that occurred after a conversion would not have affected the outcome of a visit. 

In order to find better rules, a second exploration was carried out in which [Total Time 

on site] was not used as input. “Linear Regression” found a rule which had low accuracy 

while “Find Laws” was unable to find a rule. “Neural Networks” found a model which had 

a classification probability of 69.32%. The model was better than a naïve model. 

There was a disparity between [Browsing Time] for visitors who converted and those 

who did not. The OTM did not detect when a visitor left the website and as a result 

[TimeSpent] on the last page that a visitor browsed was not recorded. In general, this 
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did not affect the calculation of [Browsing Time] for visitors who converted. However, for 

visitors who did not convert, [Browsing Time] excluded the time that they spent on the 

last page that they browsed.  

A third exploration was carried out to determine whether the “Neural Networks” model 

found in the second exploration could be improved by using attributes identified by the 

“Linear Regression” algorithm. Attributes with high F-Ratios were selected and used as 

input to the “Neural Networks” algorithm. A more accurate model was not found. 

The fourth exploration tried to identify whether a relationship existed between [Keyword 

Length] and [Conversion]. The research proposed a search-conversion model based on 

four hypotheses. Hypothesis 1 (H1) and Hypothesis 2 (H2) were tested by analysing 

how search keyword length was associated with conversion and non-conversion using 

data sets derived from data collected by the OTM. It was found that one and two word 

search keywords were associated with more non-conversions than conversions. It was 

also found that search keywords that contained more than two words were usually 

associated with more conversions than non-conversions. Some evidence supporting 

H1, H2 and thus part of the search-conversion model was found. Hypothesis 3 (H3) and 

Hypothesis 4 (H4) could not be tested as the research ran out of time. Future work is 

required to test H3 and H4 and to further investigate the search-conversion model 

proposed. 

It was thought that there could be a relationship between keyword relevancy and 

[Conversion]. In order to investigate this, keywords were scored against a matrix of 

keyword attributes in the fifth exploration. Only a subset of the data used in previous 

explorations was utilised for this. The accuracy measures of the rules found in this 

exploration were still lower than those of the second exploration.  
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Two new attributes [Keyword Score] and [Ratio of Score to Keyword Length] were 

derived from the data and introduced in the sixth exploration. However, these did not 

produce models that were more accurate than NN2. These results did not necessarily 

indicate that keyword relevance was not a predictor of [Conversion]. The method used 

to evaluate keyword relevancy had limitations and may not have assessed keyword 

relevancy consistently. This is an area where future work is required. 

PolyAnalyst did not provide information regarding the weights it assigned to the different 

inputs attributes of “Neural Networks”. As a result, it was not possible to determine how 

individual attributes contributed in predicting [Conversion] or which attributes were more 

important and which ones had less impact. This is an area where future work is 

required. 

The experiments described in this Chapter showed that the relationships between the 

various attributes that represented browsing activity were complex and were best 

modelled by Neural Networks. The fact that models were found that were consistently 

better than a naive model demonstrated that visitors’ browsing activity on a service 

website could be used to predict whether visitors were likely to convert. This could help 

identify attributes and website design elements that affected conversion positively, thus 

providing a method of improving website design and increasing conversion which could 

ultimately result in increased sales and profit. The ability to predict conversion could 

also help create systems that could monitor visitor’s browsing and guide them along an 

optimised route determined from a conversion model. 
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CHAPTER 8  

DISCUSSION AND CONCLUSION 

This Chapter describes the conclusions and recommendations resulting from the 

research described in this dissertation. 

A challenge at the beginning of the research was to improve the data capturing ability of 

an existing Customer Relationship Management (CRM) system, in order to collect 

customer data from an initial visit to a website, through to product delivery. To achieve 

this, the existing CRM system was replaced by Microsoft Dynamic CRM 3.0 (MS CRM). 

MS CRM was customised and new modules were created to provide additional 

functionality and data capture.  

The research then focused on improving websites. Existing websites at the 

collaborating company were static and did not record data about visitors’ browsing 

behaviour. A new front-end was implemented to improve the usability and aesthetics of 

the collaborating company’s main website. A new back-end was also created to allow 

this website to support personalisation features. The back-end incorporated an Online 

Tracking Module (OTM) which recorded data about visitor’s browsing activities.  

Data collected by the OTM was integrated with data collected by MS CRM so that a 

complete history of online behavioural activity and sales activity for website visitors who 
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became customers was captured. PPC advertising campaigns were created and 

optimised to generate traffic to the collaborating company’s main website. 

Knowledge was extracted from data collected by MS CRM and the OTM, and was used 

together with feedback from the collaborating company’s sale team to create personas 

for visitors who could be prospective customers. These personas were used to create 

and optimise the landing pages of the main online advertising campaigns.  

Data collected by the OTM was then analysed to find rules that could predict whether a 

visitor would enquire based on their browsing behaviour. Rules and models were also 

sought to identify whether the length of search keywords could indicate readiness to 

convert based on the stage that a visitor had reached in a search-conversion model 

proposed in this research. 

A Neural Network algorithm was used to build and test models. The models that were 

found were consistently better than a naive model and demonstrated that visitors’ 

browsing activity on a service website could be used to predict whether visitors were 

likely to convert.  

8.1. Research summary 

A challenge at the beginning of the research was to improve data capture. Therefore, 

Microsoft Dynamics Customer Relationship Management 3.0 (MS CRM) was 

customised and extended in order to enable it to record customer data throughout a 

sales and product delivery cycle.  

A new Online Tracking Module (OTM) was implemented on existing websites so as to 

track visitors’ activities. Data collected by the OTM was integrated with data collected by 

MS CRM so that a history of online behavioural activity and sales activity for website 
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visitors who became customers was captured. A new dynamic website was also 

implemented to replace an existing static website. PPC advertising campaigns were 

then created to generate traffic to existing websites.  

Using the data collected about visitors and customers together with feedback from the 

sales department, basic visitor personas were created. These personas together with 

some landing page design techniques were used to improve the conversion rate of 

landing pages. The effect of the changes to the landing pages was measure using 

conversion rate and bounce rates. 

Data collected by the Online Tracking module about the way visitors interacted with the 

main website were analysed to find rules/models that could predict whether a visitor 

would convert based on their browsing behaviour. Rules and models were also sought 

to identify whether the length of search phrases could indicate readiness to convert 

based on the stage that a visitor had reached in a search-conversion model proposed 

by the research. 

8.2. Resolution of Research Aims and Objectives 

a) Implement a CRM strategy and software system. 

A new CRM system was implemented, customised and extended by creating new user 

interfaces and new modules to support business processes. This was described in 

Chapter 3.  

b) Investigate website design, navigation design and identify ways of measuring 

website performance. 

Important elements of website and navigation design were identified and discussed in 

Chapter 2. Some of the elements that were identified were used in the design of a new 
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website described in Chapter 4 as well as landing pages described in Chapter 6. Ways 

of measuring website performance were identified and discussed in Chapter 2  

c) Create a new dynamic website.  

Chapter 4 described the implementation of new websites that were dynamic and could 

provide customised and personalised content to website visitors. 

d) Create a new online tracking system that recorded detailed visitor activities and 

behaviour on a website. 

Chapter 4 described the implementation of a first version of the OTM which recorded 

visitors’ browsing activity. A second version of the OTM was then implemented to 

overcome some limitations. 

e) Investigate online advertising, Pay Per Click advertising and landing page design 

and optimisation. 

Online advertising, Pay Per Click advertising and landing page design were investigated 

in Chapter 2. The findings were taken into account when implementing PPC campaigns 

described in Chapter 5 and when designing landing pages described in Chapter 6.  

f) Create and optimise new PPC campaigns and landing pages  

PPC campaigns and landing pages described in Chapters 5 and 6 were created and 

optimised to drive targeted traffic to websites and to increase conversion rate.  

g) Investigate factors that influenced users’ behavior online and their relation to 

conversion. 

Chapter 2 investigated and identified factors regarding website and landing page design 

as well as online search behavior that influenced online behavior and likeliness to 

convert.  
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h) Find ways to infer whether a website visitor would convert based on their behavior 

on a website. 

Data mining algorithms were applied to data recorded by the new OTM to find rules to 

infer conversion. Results were analysed and compared to find the most accurate rules 

and to determine whether search keywords length could indicate increased likelihood to 

convert. 

8.3. Key research successes and contribution 

Research into CRM systems, website design, online advertising, landing page 

optimisation and online customer behaviour was undertaken. The research work 

delivered the following achievements: 

New systems created: 

• Custom modules to extend and improve an existing Customer Relationship 

Management (CRM) software package:  

o Project Management module. 

o Quality Control module. 

o Customer Satisfaction Survey module.  

o Opportunity Marker module 

• New dynamic website that supported content personalisation. 

• New Online Tracking Module that collected data pertaining to visitors’ browsing 

behaviour on a website. 

• New Lead quality scoring and reporting interface for the Online Tracking Module. 
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New Methods: 

• Capture of customer and sales data from inquiry to order delivery using a 

customised CRM system. 

• Capture of browsing behaviour of website visitors. 

• Integrating behavioural data captured on a website with customer and sales data 

stored in a CRM system 

• Search-conversion model for inferring readiness to convert from keyword length. 

• Optimisation of PPC campaigns through the creation of user stereotypes from 

CRM data. 

• Optimisation of landing page through segmentation. 

• Inferring experiential or goal-oriented behaviour from keyword length  

• Creation of metrics to measure the impact of changes to web design, for 

example: 

o quality of leads. 

o type of customers who enquired, for example, individuals, small 

companies or corporate. 

• Design elements that had significant impact on user behaviour (for example: 

content, segmentation, navigation, structure, text, pictures etc). 

• Method for deriving behavioural attributes from data recorded about the way 

visitors interacted with a website. 

• Using Neural Networks to predict conversion. 

8.4. Improvements to this research 

There were several areas in this research where limitations restricted the achievement 

of some objectives and that require improvement. 
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8.4.1. Online Tracking Module 

The Online Tracking Module (OTM) described in Chapter 4 was unable to track 

[TimeSpent] on the last page that a visitor browsed. The module calculated   

[TimeSpent] on a page by recording and then subtracting the time at which a visitor 

landed on the page from the time at which the visitor landed on the next page. This did 

not affect [Browsing Time] for visitors who converted as there was always another page 

following the point from which [Browsing Time] stopped being calculated. For visitors 

who did not enquire, [Browsing Time] did not include [TimeSpent] on the last page 

visited as this was the page that visitors left the site from. 

It could be argued that this did not affect the results as the issue was consistent across 

all non-converted visits. If it had randomly affected the records used in the experiments 

described in Chapter 7 then the data would have been inconsistent and the results 

unreliable.  

The calculation of the number of pages visited (for the each page type) did not suffer 

from this issue. Pages were counted even if the corresponding value for [TimeSpent] 

was NULL. 

The time spent on the last page could have been inferred by calculating the average 

time a visitor spent on other pages in that session 

8.4.2. Search-conversion model 

This research proposed a search-conversion which was based on hypotheses that were 

presented in Chapter 7. Hypothesis 1 and 2 (H1 and H2) were tested by analysing the 

occurrence of search keyword length in the conversion and non-conversion data sets 

derived from data collected by the OTM.  
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Some evidence was found to support H1 and H2. However, these had limitations. Not 

all keywords found in the data were relevant to the content of the dynamic main 

website. Therefore, irrelevant search keywords could have affected the results obtained 

during the analysis of search keywords associated with non-conversions. Irrelevant 

search keywords should have been identified and removed from the data set before 

analysis. 

Another limitation was that the search keyword data that was analysed had been 

collected one website only. Search keywords from other similar websites should have 

been analysed and the results compared so as to further validate H1 and H2. 

Hypothesis 3 and 4 (H3 and H4) were not tested as this research ran out of time. As a 

result the search-conversion model was not fully tested and validated.  

8.4.3. Keyword relevancy 

The scoring system used to score the keyword relevancy attribute and calculate 

[Keyword Score] and [Ratio of Keyword Score to Keyword Length] in Chapter 7 had 

some limitations. It was observed that most keywords that had not converted were still 

relevant to the websites. It was therefore difficult to evaluate keyword relevancy using 

an attribute based scoring system, since keywords that did not convert could still satisfy 

the relevancy criteria and obtain a high score. 

Also the average keyword length varied depending on the service that visitor’s searched 

for. For example, keywords used to search for design services tended to be shorter than 

those used to search for manufacturing services. As a result the shorter keywords 

scored consistently less than the longer keywords. The scoring system was therefore 

biased.  
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A better way of calculating keyword relevancy would have been to weigh each word in 

the keyword phrase against the frequency with which those words appeared on 

websites.  

The sample data that included keyword score was relatively small due to difficulty in 

scoring keywords automatically. A bigger sample could have yielded more accurate 

rules.  

8.4.4. Neural Networks 

The Neural Network algorithm that was used did not provide detailed breakdowns of the 

models that it found. It only calculated accuracy measures for the models that it had 

found. By using a Neural Network algorithm that showed the weights assigned to each 

attribute in a model, it would have been possible to identify the type of pages that had 

the greatest influence on visitors’ behaviour.  

8.5. Suggestions for future work 

Following from the discussion presented in Section 7.4 the following are areas where 

further work could be undertaken: 

• Testing and refining the search-conversion model. 

• Identifying more accurate methods for calculating the relevancy of search 

keywords used by website visitors. 

• Developing a methodology to infer whether visitors are experiential or goal-

oriented based on their browsing behaviour. 

• Writing or using new Neural Network algorithms to determine the importance of 

individual attributes used in the models. 



 

262 
 

• Identifying methods for calculating the boundary value of Linear Regression and 

Find Laws automatically or using statistical methods. 

8.6. Thesis conclusion 

Research was successfully undertaken in the area of Information Technology to create 

an integrated system that could assist in the collection of data about the browsing 

behaviour of website visitors as well as sales and marketing data for those website 

visitors who turned into customers.  

The research resulted in the customisation and extension of a CRM software package 

that was used to capture data from the enquiry stage through to the product stage and 

beyond in the form of customer satisfaction surveys. The research also resulted in the 

creation of a dynamic website that had content personalisation features and an Online 

Tracking Module that recorded the browsing behaviour of website visitors. Data 

integration was achieved between the OTM and the CRM system, enabling knowledge 

to be extracted about website visitors and customers. This knowledge was used to 

improve online marketing and the website’s design.  

A key contribution to knowledge was the creation of a method to predict the outcome of 

visits to a website from visitors browsing behaviour. The objectives of the research were 

broadly achieved. Problems and limitations were encountered. These have been 

explained and possible solutions have been recommended.  

The research demonstrated that visitors’ browsing activity on a service website could be 

used to predict whether visitors were likely to convert. Such conversion prediction 

models could help identify attributes and web design elements that affect conversion 

positively, thus providing a method for improving website design and increasing 
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conversion that could ultimately result in increased sales and profit. The ability to predict 

conversion could be used to create systems that monitor visitor’s browsing and guide 

them along an optimised route determined from a conversion model. 
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APPENDIX A  

 

A.1. First Online Tracking Module 

A.1.1. Table relationship in OTM database 

 

Figure A.1: Table relationship in OTM database. 
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A.1.2. Definition of tables found in OTM database  

Table A.1: Definition of tables found in OTM databa se.  

 

 

 

 

 

 

 

 

 

 

 

 Table Description  

1 CurrentID Stores next free userID  

2 IP GeoIP DB  

3 Country GeoIP DB  

4 motiontouch Stored details of visitor origin  

5 historyMotiontouch Stores pages visited by users and time spent on each page  

6 pagesMotiontouch Stores the URI for all page on the website   

7 videoList Stores details of all videos on the website  

8 videoLogMotiontouch Stores view history of videos   
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A.1.3. Definition of columns for tables in OTM data base 

Column  Name 䌀䌀䌀䌀ample Data Description 

Table: country   

countryCode GB Primary Key: Unique ISO country code, + Ax for anonymous proxies 

countryName United Kingdom Iso Country names + Anonymous Proxy 

Table: IP   

countryCode GB Primary Key: Unique ISO country code, + Ax for anonymous proxies 

ipStart -2113487304 First IP in netblock 

ipEnd -2113487297 Last IP in netblock 

Table: currentIDs   

site MT Identifies the website that the ID is for  

ID 468701 The ID that will be assigned to the next visitor 

IDtime 23/06/2009 08:45:15 Time and data at which ID was updated 

Table: historyMotiontouch   

ID 1 Primary Key: unique ID 

uID 21827 unique ID assigned to each new visitor 

pID 23 Foreign Key : unique ID of the page that a visitor browsed 

dTime 124 Time in seconds that a visitor spent on a page 

Table:  pagesMotiontouch   

pID 324 Primary Key: unique page ID 

pUri /manufacturing/plastics_production.asp URL of page  

Table: videoList   

ID 1 Primary Key: Unique video ID 

name Electronic-Design Name of the video 
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ext wmv, avi Extension indicating format of video 

size 2.2 Sizeof video in MB 

Table:videoLogMotiontouch   

ID 12 Primary Key: unique ID 

uID 21827 Foreign Key:  unique ID assigned to each new visitor 

vID 1 Foreign Key:  unique video ID stored as ID in table videoList 

linkID /manufacturing/video/Default.asp URL of page where video is embedded 

tStamp 20/06/2007 13:39:34 Time and data at which a visitor accessed a video 

Table: motiontouch   

ID  Primary Key: unique ID 

referer 
http://www.google.com/search?q=job+agency
s+that+employ+injection+moulders&hl=en&rlz
=1B2GGFB_enGB204&start=20&sa=N 

URL of the website that from which a visitor originated 

keywords plastic cans Keyword that a visitor used to carry out a search in a search engine 

engine google Search engine name 

countryCode GB Visitor’s country of origin 

land 
www.motiontouch.com/manufacturing/plastics
_production.asp 

First page on which a visitor landed 

decIP -721618680 Visitor’s IP address 

sent 1 or 0 Flag indicating whether an email enquiry was sent from the website 

tStamp 10/09/2008 04:35:53 Data and time at which a visitor arrived on the website 

gc MT01-01 Unique code given to online marketing campaigns 

mainID 21266 FK: Unique visitor ID stored as uID in other tables 

leadType 2 
Data provided by person creating leads. Type represents lead type 
i.e. design (1) or manufacturing(2)  

leadClass 1 Class represents the quality of leads, good(1) medium(0) or bad (-1)  

Table A.2: Definition of columns for tables in OTM database.  
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A.2. Table relationship and definition for CAT database 

The relationships between tables found in the CAT database are shown in Figure A.2. The 

descriptions of the tables found in the CAT database are summarised in Table A.3. 

 Table Description  

1 URL Contains PageID and corresponding user frendly URI O 

2 Page Contains content of the page C 

3 Header Contains right header for the page C 

4 IP GeoIP DB G 

5 Country GeoIP DB G 

6 Panel  Stores information that binds pages and panel sections together C 

7 PanelSection Contains elements for the left panel C 

8 Misc Contains predefined  code to insert into pages C 

9 History Tracking – main table with user IDs  T 

10 MicroHistory Tracking – detailed log of pages visited  T 

11 Sent Tracking – Contains log of sent events T 

12 VideoLog Tracking - Log of videos viewed by visitors T 

13 Video List of available videos V 

14 VideoFile List of video files for each video, needed for streaming/download V 

15 VideoCategory Which video belongs to which category, for auto populate video pages V 

16 VideoCategoryList List of categories that videos belong to V 

17 SentName Stores names of pages from where enquiries can be sent T 

18 EngineType Defines if it’s a search engine, or directory listing T 

19 CS Case studies list, with links and pics and short desc, for list of case studies C 

20 CSCategory List of Case Study categories mappings to Case Studies C 

21 CSCategoryList List of Case Study Categories C 

22 Keywords List of search phrases and corresponding interest scores  S 

23 CurrentID Stores next free userID T 

24 SiteSearch Contains phrases used in page search T 

25 EngineType Defines name of the Engine T 

26 User Stores registered visitor details – for authentication T 

27 File Lists files available for download C 

28 FileCategory Defines file – category C 

29 FileCategoryList Defines list of categories for files C 

30 FileHistory Saves download events T 

31 Questionnaire Stores questionnaire details C 

32 QLink Stores link recommendation for questionnaire answer C 

33 QHistory Stores details of how visitors answered questionnaire T 

Table A.3: Descriptions of tables found in the CAT database. 
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Database tables are grouped as follows: 

Tracking – this group is used to track user behaviour  

Scoring – This group is used to calculate visitor interest score 

Content – Contains different parts of page content 

GeoIP – GeoIP tables 

Videos – Video content 

Other – things that don’t belong to any other group 

#MBD – must be defined while creating record 
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Figure A.2: Relationships between tables found in t he CAT database. 
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A.2.1. Definition of columns for tables in CAT data base  

Column Name Sample Data 
Default 

Value 
Groups Description 

URL   Other  

URLID 324 UID 

 

PK - URL unique ID 

URL /design/plastic.asp #MBD URL of the page to display to the user, instead of the Page.PageID 

PageID 324 UID FK: Page.PageID – to which page given url refers to 

File View.asp <empty> Which file will handle that url – works with IIRF 

QueryString page <empty> How to pass page id in the url – works with IIRF 

OldURL /news/today.asp NULL If the page was in the old system under differen url this wil generate 301 redirect from old url to new 

DateTimeStamp 2008/06/13 1:12:05 Now() When the row was edited 

Page   Content  

PageID 324 UID 

 

PK - Page unique ID 

PageContent <h1>Design Dep… #MBD HTML content to display as a main text for the page 

PageSentID 2 0 FK: Sent. SentID – Describes type of sent event 

Vars var1 = 22 <empty> Additional Predefined Variables 

ScoreDesign 0.23 0.5 Design Score of that page 

ScoreManufacturing 0.23 0.5 Manufacturing Score of that page 

Enabled 1 1 Is the page enabled to view 

MetaTitle 
Design - 
MotionTouch 

<empty> Used to fill in meta title tag 

MetaKeywords Plastic, production <empty>  Used to fill in meta keywords tag 

MetaDescription Mt is a leading.... <empty>  Used to fill in meta description tag 

metaRobots all <empty>  Used to fill in meta robots tag 

Signature 1/0 <empty>  Flag to indicate whether page belongs to signature pad microsite 

PageType  Services <empty>  
Each web page was classified under a given type. The different types were: Video, Download, 
Company Info, Other, Services, Contact Us, Form, Media Access, FT Quote, Case Study, PR 

Country   Geo  

CountryCode UK #MBD 
 

PK - Unique ISO country code, + Ax for anonymous proxies 

CountryName United Kingdom #MBD Iso Country names + Anonymous Proxy 

Keywords   Scoring  

KeywordsID 324 UID 

 

PK - Keywords unique ID 

Phrase Plastic design #MBD Phrase to match search engine keywords against 

DynamicWord Plastic #MBD DynamicWord that dynamic wording feature uses 
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DynamicPicture /images/pl01.jpg #MBD DynamicPicture that dynamic images feature uses 

ScoreDesign 0.23 #MBD 
Initial Score that will be assigned to user based on Keywords he used in SE 

ScoreManufacturing 0.23 #MBD 

CSID 22 NULL  Shows related CS ID to given keyword 

CSCategoryListID 2 NULL  Shows related cs category id 

Panel   Content  

PanelID 324 UID 
 

PK - Left panel unique id 

PageID 22 #MBD On which page display the panel section 

PanelSectionID 3 #MBD  Which panel section to display on that page 

PanelSectionOrder 50 #MBD  What’s the order of the panels ASC 

Enabled 1 #MBD  Is the rule enabled 

PanelSection   Content  

PanelSectionID 324 UID 
 

PK - PanelContent unique ID 

PanelSectionContent <tr><td>Favorite… #MBD Content that will be feed into Panel.Content 

PanelSectionDesc 3 links NULL  Contains basic description for the given section 

Misc   Content  

MiscID 324 UID 
 

PK  - Misc unique ID 

MiscContent <tr><td>Featured... #MBD HTML code that can be attached on any page in main text area (featured Video, etc) 

MiscDesc Mentis video NULL  Basic info on what’s this misc do 

Enabled 1 #MBD  Is the section enabled 

SentName   Tracking  

SentNameID 324 UID 
 

PK - Video unique ID 

SentName FastTrack Design #MBD Name of the sent event 

Video   Videos  

VideoID 324 UID  PK - Video unique ID 

Title MT introduction #MBD  The real user friendly title of the video 

Description <ul><li>Why Mot.. #MBD  HTML code to put under the video, the usual questions 

Picture \videos\324.jpg #MBD  Path to video thumbnail 

FileName Intro to MT #MBD  Video file name, without ext 

Length 4:21 #MBD  Video Length (time) 

Enabled 1 1  Is the video enable to access 

VideoFile   Videos  

VideoFileID 324 UID 

 

PK - VideoFile unique ID 

VideoID 234 UID FK: Video.VideoID 

Ext swf #MBD File ext that decides how to play the file 

Size 1.5 #MBD Size in MB 
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VideoCategory   Videos  

VideoCategoryID 324 UID 

 

PK - VideoCategoryID 

VideoCategoryListID 3214 UID FK: VideoCategoryList.VideoCategoryListID 

VideoID 324 UID FK: Video.VideoID – which video falls in which category 

VideoOrder 55 50 The order of the video I current category 

VideoCategoryList   Videos  

VideoCategoryListID 324 UID 
 

PK - unique identifier 

CategoryName Manufacturing #MBD User friendly way to name categories 

PageID 2001 #MBD  Which page displays videos in that cat. 

VideoLog   Tracking  

VideoLogID 324 UID 

 

PK - Video Log unique ID 

UserID 324 UID FK: Motiontouch.UserID 

MicroID 324 UID FK: Motiontouch.MicroID 

PageID 324 UID FK: Page.PageID 

VideoFileID 324 UID FK: Video.VideoID 

DateTimeStamp 12:00 01/12/2008 Now() Time Stamp 

History   Tracking  

HistoryID 324 UID 

 

PK - Motiontouch unique ID 

UserID 324 UID User main ID aka UserID that identifies each single user 

MicroID 324 UID User micro ID aka MicroID that identifies each single visit of the user 

Referer http://www.googl.. 0 Referrer  requested from user browser 

EngineNameID 1 0 FK: Describes Which search engine it was 

KeywordsID 34 NULL FK: Did it match any of the defined keywords 

Keywords Plastic design 0 Keywords extracted from referrer - if possible 

LandPage Page.PageID #MBD FK: Page.PageID Page that user used as a start page 

CountryCode UK 0 FK: Country.CoutryCode Country code of the user 

IP 5416873 0 Dec representation of user IP address 

GCC HP11-03 0 Google Campain Code – if present 

DateTimeStamp 12:00 01/12/2008 Now() Time Stamp 

MicroHistory   Tracking  

MicroHistoryID 324 UID 

 

PK - History Motiontouch unique ID 

UserID 324 UID FK: Motiontouch.UserID 

MicroID 324 UID FK: Motiontouch.MicroID 

PageID 324 UID FK: Page.PageID 

Sequence 3 #MBD Sequence number for any given MicroID of visited pages – for paths 

TimeSpent 21 0 Time in seconds that user spent on the page 
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LinkSectionID 2 NULL Where the link was clicked, left menu, main menu, the site itself, features 

Sent   Tracking  

SentID 324 UID 

 

PK - SentMotiontouch unique ID 

UserID 324 UID FK: Motiontouch.UserID 

MicroID 324 UID FK: Motiontouch.MicroID 

PageID 324 UID FK: Page.PageID 

DateTimeStamp 12:00 01/12/2008 Now() Time Stamp 

LeadType 2 <NULL> Data provided by person creating leads. Type represents lead type i.e. design(1) or manufacturing(2) 
Class represents lead quality, good(1) medium(0) or bad(-1) LeadClass 1 <NULL> 

EngineType   Tracking  

EngineTypeID 22 UID 
 

PK – unique ID 

EngineType Search Engine #MBD User friendly name of engine type: search engine, directory listing 

CS   Content  

CSID 324 UID 

 

PK – unique ID 

Title Netronome #MBD Title of the CS 

Description Service type: des.. #MBD Short desc for cs listings 

Picture /images/cs/324.jpg #MBD Path to img thumb for cs 

PageID 324 #MBD Where the actual CS is located 

Visible 1 1 Is the CS visible in listings 

Enabled 1 1 Is the CS accessible to users 

CurrentID   Tracking  

IDName motiontouch #MBD  Which Site the id is for 

ID 25658 #MBD  Current id 

CScategoryList   Content  

CScategorylistID 234 UID  PK – unique Table id 

CategoryName design #MBD  Category name 

PageID 234 #MBD  Which page displays given category 

CSCategory   Content  

CSCategoryID 2435 #MBD  PK – unique ID 

CScategoryListID 45 #MBD  FK 

CSID 234 #MBD  FK 

CSOrder 34 #MBD  CS order in given category 

User   Content  

UserUID 234 UID  PK – unique ID 

UserID 234 #MBD  FK: user id 

MicroID 234 #MBD  FK: user micro id 
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FullName Dave Watson #MBD  Full name 

Name Watt #MBD  Desired login name 

Pass Dw343 #MBD  Password 

Email user@mail.com #MBD  Email address 

Newsletter 0 #MBD  Does the user wants to receive newsletter 

IP 98463987496 #MBD  User ip (dec) 

DateTimeStamp 2008-06-18 Now()  Time of record creation 

File   Content  

FileID 3 UID  PK – unique ID 

Name Mt T&Cs #MBD  Name of the file 

Description Terms and cond. #MBD  A short desc. For downloads page 

FileName T&c.pdf #MBD  An on-disc filename 

Size 2.5 #MBD  Size in MB 

Restricted 0 #MBD  Is the file available only to registered users 

Enabled 1 #MBD  Is the file enabled for download 

FileCategory   Content  

FileCategoryID 23 UID  PK – unique ID 

FileCategoryListID 2 #MBD  FK- category list id 

FileID 43 #MBD  Fk – FileID 

FileOrder 50 #MBD  Order in category 

FileCategoryList   Content  

FilecategorylistID 23 UID  PK – unique ID 

CategoryName Legal docs #MBD  Name of the category 

EngineName   Tracking  

EngineNameID 2 UID  PK – unique ID 

EngineName Google #MBD  SE name 

EngineTypeID 1 #MBD  Type of the SE 

SiteSearch   Tracking  

SiteSearchID 23 UID  PK – unique ID 

Phrase Toys #MBD  Phrase that user typed in to search box 

PageID 24 #MBD  FK – Page id 

UserID 23 #MBD  FK – user id 

MicroID 54 #MBD  FK – micro id 

Sequence 3 #MBD  Sequence on the site 

DateTimeStamp 2008-06-18 Now()  Current date time stamp 

FileHistory   Tracking  

FileHistoryID 45 UID  PK – unique ID 
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UserUID 34 NULL  FK – user – registration id 

UserID 345 #MBD  FK –user id 

MicroID 34 #MBD  FK –user micro id 

PageID 34 #MBD  FK –page id 

FileID 534 #MBD  FK –file id 

DateTimeStamp 2008-06-18 Now()  Date Time stamp 

Questionnaire   Tracking  

ID 23 #MBD  PK – Unique ID 

QuestionnaireID 1 #MBD  Unique ID of questionnaire 

QuestionID 24 #MBD  Unique ID of questions 

Answer 3 #MBD  Unique ID for answers to questionnaire’s question 

AnswerDescription Medium Business #MBD  Description of answer 

QHistory   Tracking  

QHistoryID 4 #MBD  PK – Unique ID 

UserID 34 #MBD  FK –user id 

MicroID 34 #MBD  FK –user micro id 

QuestionnaireID 1 #MBD  FK – unique ID of questionnaire 

QuestionID 3 #MBD  FK – unique ID of questions 

Answer 3 #MBD  FK - unique ID for answers to questionnaire’s question 

Path 2.1  #MBD  Path indicating the options visitor chose in the questionnaire 

SentFrom <empty> NULL  Point in the questionnaire at which it was sent 

DateTimeStamp 2008-06-18 Now()  Date Time stamp 

Link   Tracking  

QLinkID 1 #MBD  PK – Unique ID 

QuestionnaireID 1 #MBD  FK - unique ID of questionnaire 

QuestionID 24 #MBD  FK - unique ID of questions 

Answer 3 #MBD  FK - unique ID for answers to questionnaire’s question 

LinkDesc Design Overview                                    #MBD  Title to be displayed as a link 

LinkPageID 39 #MBD  PageID of page to link to  

 

PK: Primary Key 

FK: Foreign Key 

UID: Unique ID  
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A.3. Enquiry quality score and marketing data retrieval  

A.3.1. First version of OTM  

Figure A.3 shows a screenshot of a simple web page that was implemented for the first 

version of the OTM. This web page was used to access quality score and marketing 

data for visitors who had enquired. On this page, the user entered the [mainID] 

corresponding to the visitor whose enquiry needed to be scored.  

 

Figure A.3: Screenshot of web page used to view vis itor’s data  

Figure A.4 shows the page displayed when the user had entered a valid [mainID]. The 

user could then score the enquiry as well as obtain marketing data that needed to be 

manually entered and stored in the visitor’s MS CRM record. 
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Figure A.4: Screenshot of web page used to score en quiries 

A.3.2. Improved OTM (implemented in Stage 2b) 

Figure A.5 shows a screenshot of the links that were appended to email enquiries by 

the improved OTM. A user could click on the appropriate link to score the quality of an 

enquiry as well as specify the type of an enquiry. Upon clicking on a link, the user was 

taken to a web page (Figure A.6 ) that displayed marketing data related to the enquiry 

that was being scored. 

 

Figure A.5: Screenshot of links that were appended to email enquiries. 
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Figure A.6: Screenshot of web page used to score en quiries 
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APPENDIX B 

 

The matching options used for the keywords in the two main Google AdWords 

campaigns that ran in the United Kingdom were defined as: 

• Broad match:  keyword (no punctuation)  

Showed advertisements for searches on similar phrases and relevant variations. 

• Phrase match:  "keyword"  

Showed advertisements for searches that match the exact phrase. 

• Exact match:  [keyword]  

Showed advertisements for searches that match the exact phrase exclusively.  

• Negative match:  -keyword  

Did not show advertisements for any search that includes that term.  

The list of keywords is commercial in confidence at the time of writing. The list may be 

requested from the author or the collaborating company after 2 years (that is, from June 

2013).   
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APPENDIX C 

 

C.1. Stage 2: Data retrieval  

C.1.1. Step 1: Extract and combine elements of brow sing history 

INSERT INTO motiontouch . Results 
( userid ,  metatitle ,  
pageid , pagetype , pagelength , textlinkcount , imglinkcount , listcount , listwordcount
,  microid , sequence ,  linksectionid , timespent ,  keywords ) 
select  motiontouch . microhistory . userid ,  metatitle ,  
motiontouch . page . pageid , pagetype , pagelength , textlinkcount , imglinkcount , listco
unt , listwordcount , motiontouch . microhistory . microid , sequence , linksectionid , tim
espent , keywords from  motiontouch . page ,  motiontouch . microhistory ,  
motiontouch . history 
where  motiontouch . page . pageid = motiontouch . microhistory . pageid 
and  motiontouch . microhistory . userid = motiontouch . history . userid 
and  motiontouch . microhistory . microid = motiontouch . history . microid 
and  motiontouch . history . microid = '1' 
and  keywords not  like  '%motiontouch%' 
and  keywords not  like  '%motion touch%' 
and  keywords not  like  'MONTION TOUCH' 
and  keywords not  like  'www.%' 
and  keywords not  like  'ttp:%' 
and  keywords not  like  'http%' 
and  keywords not  like  '%.com' 
and  keywords not  like  '%.co.uk' 
and  keywords not  like  '%.org' 
and  keywords not  like  '%.net' 
and  keywords !=  '' 
and  countrycode !=  'NL' 
and  countrycode !=  'CN' 
and  countrycode !=  'PL' 
and  motiontouch . microhistory . userid !=  4209 -- Malicious user 
and  enginenameid not  in  ( '2' , '4' , '30' , '32' , '33' , '34' ) 
order  by  motiontouch . microhistory . userid , microid , sequence 

C.1.2. Step 2:  Retrieve all non-converted records 

insert  into  motiontouch . NonConvAll 
( userid , pages , totaltimespent ) 
select  userid ,  count (*) as  Pages ,  sum ( TimeSpent )  as  TotalTimeSpent  from  
motiontouch . microhistory  
where  userid not  in   
( select  userid from  motiontouch . sent where  microid = '1' ) 
and  microid = '1' 
group  by  userid 
order  by  pages ,  userid asc 
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C.1.3. Step 3: Retrieve data associated with conver sions and non-

conversions 

Data associated with conversions 

select  userid , metatitle ,  pageid , pagetype , microid , sequence , timespent , keywords 
from  motiontouch . results 
where  userid in   
( select  userid from  motiontouch . sent 
where  leadtype != ''      -- legitimate lead as indicated by receptionist 
and  datetimestamp <= '2010-06-01'   
and  microid = '1' 
) 
order  by  userid desc , microid , sequence 
 

Data associated with non-conversions (excluding bou nces) 

select  userid , metatitle ,  pageid , pagetype , microid , sequence , timespent , keywords 
from  motiontouch . results 
where  userid in   
( select   motiontouch . NonConvAll . userid from  
motiontouch . NonConvAll , motiontouch . history 
where  motiontouch . NonConvAll . userid = motiontouch . history . userid 
and  totaltimespent is  not  NULL -- not a bounce 
and  datetimestamp <= '2010-06-01'   
) 
order  by  userid desc , microid , sequence 
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Conversion = +0.395528 -0.000281744*VideoTS -0.0238632*Services -

0.0588671*[Unsent Form ] -0.000545676*[Media AccessTS] -0.000553811*[Time on 

site (s) b4 enquiring] +0.000789077*[Total Time on site (s)] -0.107448*[Browsed 

ContactUs] 

APPENDIX D                                                            

INITIAL DATA EXPLORATIONS 

 

D.1. First exploration 

Linear Regression 

“Linear regression” found the following prediction model (LR0.1) using Training Data : 

 
 
 
 
 
 
 
 

 

Equation D.1: Prediction model LR0.1. 

The accuracy measures for the prediction model LR0.1 are shown in Table D.1. 
 

StdErr  RSq StdDev  

0.81 0.34 0.41 

Table D.1: Accuracy measures for prediction model L R0.1 derived from Training Dataset. 

It can be seen from Table D.1 that prediction model LR0.1 had a high standard error 

and low RSq value. This suggested that the rule was not accurate in predicting 

conversions.  The model was tested with Test Data . The accuracy measures are shown 

in Table D.2. 
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StdErr  RSq StdDev  

0.86 0.27 0.43 

Table D.2: Accuracy measures for LR0.1 after testin g the model with Test Data . 

Graph D.1 shows how the predicted values varied compared to the real value in Test 

Data.  

 

Graph D.1: Predicted vs Real Value for LR0.1 (using  Test Dataset). 

Graph D.2 shows how the predicted values and real varied for individual records in Test 

Data. From Graph D.1 and Graph D.2, it was observed that most target values of 1 had 

a predicted value that was greater than 0.50.  
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Graph D.2: Predicted and real value for individual records (using Test Dataset). 

A confusion matrix for LR0.1 (using Test Data ) is shown in Table D.3 when the 

boundary value for identifying 1s was set to 0.50. 

Actual/Predicted  1 0 Total  

1 529 284 813 

0 31 782 813 

Total  560 1066 1626 

Table D.3: Confusion matrix for LR0.1. 

The classification probability and efficiency of LR0.1 were derived from the values 

shown in Table D.3. They were 80.62% and 61.25% respectively. The model predicted 

65.07% of the target 1s correctly which suggested good accuracy. Also Table D.3 
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Conversion = (3.70233e-007*[Time on site (s) b4 enquiring]*[Total Time on site 

(s)]*[Total Time on site (s)]+1.00196*[Time on site (s) b4 enquiring]*[Total Time on site 

(s)]-1.00198*[Time on site (s) b4 enquiring]*[Time on site (s) b4 

enquiring]+0.000376032*[Total Time on site (s)]-0.000864941)/([Time on site (s) b4 

enquiring]*[Total Time on site (s)]-0.99881*[Time on site (s) b4 enquiring]*[Time on site 

(s) b4 enquiring]+8.59465*[Media Access]*[Time on site (s) b4 enquiring]) 

shows that LR0.1 (with a boundary for 1s set at 0.50) predicted that 560 instances of 

the data had a conversion value of 1. Out of these instances 94.46% (529) were 

predicted correctly.  

Find Laws 

“Find Laws” found the following prediction model (FL0.1) using Training Data : 

 
 
 
 
 
 
 

 

 

Equation D.2: Prediction model FLD.1 

 
The accuracy measures for the prediction model FLD.1 are shown in Table D.4. 
 

StdErr  RSq StdDev  

0.30 0.91 0.15 

Table D.4: Accuracy measures for prediction model F L0.1 derived from Training Data  

The model was tested with Test Data . The accuracy measures are shown inTable D.5. 

StdErr  RSq StdDev  

0.48 0.77 0.24 

Table D.5: Accuracy measures for FL0.1 after testin g FL0.1 with Test Data . 

RSq for FL0.1 was high suggesting a model that was more accurate than LR0.1. From 

Graph D.3 and Graph D.4, it can be seen that predicted values that were greater than 
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0.35 were likely to correctly predict 1s. Table D.6 shows the confusion matrix for FL0.1 

when the boundary value for identifying 1s was set to 0.35. 

 

 

Graph D.3: Predicted vs Real Value for FL0.1.
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Graph D.4: Predicted and Real value vs record numbe r. 

Actual/Predicted  1 0 Total  

1 707 106 813 

0 13 800 813 

Total  720 806 1626 

Table D.6: Confusion matrix for FL0.1 when boundary  value for identifying 1s was set to 0.35   

The classification probability and efficiency of FL0.1 were derived from the values 

shown in Table D.6. They were 92.68% and 85.36% respectively. The model predicted 

86.96% of the target 1s correctly which suggested good accuracy. 
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Also Table D.6 shows that FL0.1 (with a boundary for 1s set at 0.35) predicted that 720 

instances of the data had a conversion value of 1. Out of these instances 98.19% (707) 

were predicted correctly.  

Table D.7 shows the confusion matrix for FL0.1 if the boundary value for identifying 1s 

was set to 0.5 (as with LR0.1). 

Actual/Predicted  1 0 Total  

1 704 109 813 

0 6 807 813 

Total  710 916 1626 

Table D.7: Confusion matrix for FL0.1 when boundary  value for identifying 1s was set to 0.5   

The classification probability and efficiency of FL0.1 derived from the values shown in 

Table D.7 were 92.92% and 85.84% respectively. The model predicted 86.59% of the 

target 1s correctly. 

Table D.7 also shows that FL0.1 (with a boundary for 1s set at 0.5) predicted that 710 

instances of the data had a conversion value of 1. Out of these instances 99.15% (704) 

were predicted correctly.  

Changing the boundary value for identifying 1s from 0.35 to 0.5 had little impact on 

FL0.1. It was however easier to compare FL0.1 with LR0.1 when they both had the 

same boundary value for identifying 1s. FL0.1 appeared to be a much better model than 

LR0.1 with higher classification probability efficiency and correct predictions for target 

1s. Table D.8 compares the measures for FL0.1 and LR0.1. 
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 Model  cp ce Accuracy in 

target set 

Accuracy 

predicted set 

LR0.1 80.62 61.25 65.07 94.46 

FL0.1 92.92 85.84 86.59 99.15 

Table D.8: Accuracy measures of LR0.1 compared to F L0.1. 

 
Neural Networks 

“Neural Networks” were given the same input parameters as LR0.1 and FL0.1. Training 

Data was used to derive mode NN0.1, which was then tested with Test Data . The 

accuracy measures for the tested model NN0.1 is shown in Table D.9. 

cerr  cp cf  ce 

10.15 89.85 0% 79.70% 

Table D.9: Accuracy measures for NN0.1. 

This model had a classification probability that was higher than a naïve prediction (cp 

=50%) as well as a high classification efficiency. Table D.10 provides a breakdown of 

the model’s predictions.  

Target No of records Error % Correct% Undefined% 

Yes 751 17.22 82.78 0.00 

No 751 3.08 96.92 0.00 

Total 1502 10.15 89.85 0.00 

Table D.10: Breakdown of predictions for NN0.1. 

It can be seen that NN0.1 predicted 96.01% of conversions correctly in the target set. 

The confusion matrix for NN0.1 is shown in Table D.11. 
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Conversion = +0.525756 -0.0185710*Services -0.107911*[Unsent Form ] -

0.106552*[Media Access] +0.00317758*PRTS +0.000245167*[Time on site (s) b4 

enquiring] -0.111964*[Browsed ContactUs] +0.0371440*FTQuote 

Actual/Predicted  Yes No Total 

Yes 673 140 813 

No 25 788 813 

Total 698 928 1626 

Table D.11: Confusion matrix for NN0.1. 

From Table D.11, it can be seen that model NN0.1 predicted a total of 698 records as 

having a value of Yes for conversion. Out of these predictions, 96.42% (673) were 

predicted correctly. 

D.2. Second Exploration 

In the second exploration, [Time spent on site (s)] was removed as an attribute from the 

data.  

Linear Regression 

Linear regression found the following prediction model (LR0.2) using Training Data : 

 
 
 
 
 
 

Equation D.3: Accuracy measures for prediction mode l LR0.2. 

The accuracy measures for the prediction model LR0.2 are shown Table D.12. 
 

StdErr  RSq StdDev  

0.9719 0.0555 0.4861 

Table D.12: Accuracy measures for prediction model LR0.2 
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It can be seen from Table D.12 that prediction model LR0.2 had a high standard error 

and low RSq value. This suggested that the rule was not accurate. The model was 

tested with Test Data . The accuracy measures are shown in Table D.13. These 

confirmed that LR0.2 had low accuracy. 

StdErr  RSq StdDev  

1.01 -0.03 0.51 

Table D.13: Accuracy measures for LR0.2 after testi ng the model with Test Data . 

 

Graph D.5: Predicted values against real value for LR0.2. 

Graph D.5 shows the values predicted by LR0.2 plotted against the real values. It can 

be seen that the range of predicted values for 0 and 1 overlap for most of the data.  
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Graph D.6: Predicted, real vs record number. 

Graph D.6 shows how the predicted values varied compared to the real values for 

individual records. It confirmed that prediction model LR0.2 had low accuracy. 

Find Laws 

“Find Laws” was unable to find a rule. 

Neural Networks 

The accuracy measures for model NN0.2 generated by “Neural Networks” is shown in 

Table D.14. 

cerr  cp cf  ce 

23.64% 76.36% 0% 52.73% 

Table D.14: Accuracy measures for model NN0.2. 
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This model had a classification probability that wa s higher than a naïve prediction (cp =50%) as 

well as a high classification efficiency.  

Table D.15 provides a breakdown of the model’s predictions. It can be seen that NN0.2 

predicted 72.17% of Yes correctly and 80.56% of No correctly. This indicated that 

NN0.2 was better at predicting No than it was at predicting Yes. The confusion matrix 

for NN0.1 is shown in Table D.16. 

Target No of records Error % Correct% Undefined% 

Yes 751 27.83 72.17 0.00 

No 751 19.44 80.56 0.00 

Total 1502 23.64 76.36 0.00 
 

Table D.15: Breakdown of predictions for model NN0. 2. 

From Table D.16, it can be seen that model NN0.2 predicted a total of 688 records as 

Yes. Out of these predictions, 542 were actually correct (79%) while 146 (21%) were 

incorrect. NN0.2 was more accurate than a naïve model. 

Actual/Predicted  Yes No Total 

Yes 542 209 751 

No 146 605 751 

Total 688 814 1502 

Table D.16:  Confusion matrix for NN0.2. 

D.3. Third Exploration 

“Neural Networks” was better than “Linear Regression” and “Find laws” at finding 

predictive models and non-linear dependencies. However, the “Linear regression” 
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provided a method of determining how much predictive power each attribute had in a 

linear relationship using F-Ratio.  

In order to determine whether the attributes identified by the “Linear Regression” could 

generate more accurate models, “Neural Networks” was run with attributes identified by 

the predictive model LR0.2. Table D.17 shows the F-Ratio for these attributes. 

Attribute F-Ratio 

[Services] 9.28 

[Unsent Form] 19.38 

[Media Access] 21.77 

[PRTS] 3.35 

[Time on site (s) b4 enquiring] 30.58 

[Browsed ContactUs] 17.82 

[FTQuote] 4.06 

Table D.17: F-Ratio for attributes identified by pr edictive model LR0.2 

The accuracy measures of the new NN model (NN0.3) are shown in Table D.18. 

cerr cp cf  ce 

24.77% 75.23% 0% 50.47% 

Table D.18: Accuracy measures for model NN0.3. 

It can be seen from Table D.18 and Table D.19 that while there was no improvement in 

accuracy measures, the difference between the accuracy measures of NN0.2 and 

NN0.3 was actually small. The breakdown of NN0.3’s predictions is shown in Table 

D.19. 
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Target No of records Error % Correct% Undefined% 

Yes 751 29.16 70.84 0.00 

No 751 20.37 79.63 0.00 

Total 1502 24.77 75.23 0.00 
Table D.19: Breakdown of predictions for model NN0. 3. 

From Table D.20, it can be seen that model NN0.3 predicted a total of 685 records as 

Yes. Out of these predictions, 532 were actually correct (78%) while 153 (22%) were 

incorrect.  This was better than a naïve prediction. 

Actual/Predicted  Yes No Total 

Yes 532 219 751 

No 153 598 751 

Total 685 817 1502 

Table D.20: Confusion for NN0.3. 
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APPENDIX E 

Data used to measure the performance of landing pages described in Chapter 6 are 

provided in this Appendix. Conversion rate were obtained from Google AdWords and 

bounce rate was obtained from Google Analytics. 

E.1. Data used to measure Change 1 

Day Page Clicks Conv 

Conv 

Rate 

23-Jun Design Overview 66 1 1.52% 

24-Jun Design Overview 62 2 3.23% 

25-Jun Design Overview 58 3 5.17% 

26-Jun Design Overview 48 1 2.08% 

27-Jun Design Overview 46 3 6.52% 

28-Jun Design Overview 49 1 2.04% 

29-Jun Design Overview 56 2 3.57% 

30-Jun Design Overview 22 1 4.55% 

01-Jul Design Overview 23 2 8.70% 

02-Jul Design Overview 21 0 0.00% 

03-Jul Design Overview 16 0 0.00% 

04-Jul Design Overview 6 0 0.00% 

     During Overlap 144 5 3.47% 

     29-Jun Product Idea 2 0 0.00% 

30-Jun Product Idea 32 1 3.13% 

01-Jul Product Idea 23 1 4.35% 

02-Jul Product Idea 23 3 13.04% 

03-Jul Product Idea 33 1 3.03% 

04-Jul Product Idea 39 1 2.56% 

05-Jul Product Idea 36 3 8.33% 

06-Jul Product Idea 59 4 6.78% 

07-Jul Product Idea 58 2 3.45% 

08-Jul Product Idea 50 0 0.00% 

09-Jul Product Idea 46 4 8.70% 

10-Jul Product Idea 55 4 7.27% 

     During Overlap 152 7 4.61% 
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E.2. Data used to measure Change 2 

Conversion Rate (over 3 weeks) of Product Idea page  for views from 

Advertisement 1 

Day Advertisement 1 Views Conversion Conversion Rate 

29/06/2008 Got a great product idea? 1 0 0 

30/06/2008 Got a great product idea? 13 1 7.69% 

01/07/2008 Got a great product idea? 9 0 0.00% 

02/07/2008 Got a great product idea? 7 1 14.29% 

03/07/2008 Got a great product idea? 10 1 10.00% 

04/07/2008 Got a great product idea? 16 0 0.00% 

05/07/2008 Got a great product idea? 15 1 6.67% 

06/07/2008 Got a great product idea? 30 3 10.00% 

07/07/2008 Got a great product idea? 27 1 3.70% 

08/07/2008 Got a great product idea? 20 0 0.00% 

09/07/2008 Got a great product idea? 17 2 11.76% 

10/07/2008 Got a great product idea? 27 4 14.81% 

11/07/2008 Got a great product idea? 13 1 7.69% 

12/07/2008 Got a great product idea? 6 0 0.00% 

13/07/2008 Got a great product idea? 10 0 0.00% 

14/07/2008 Got a great product idea? 14 0 0.00% 

15/07/2008 Got a great product idea? 18 2 11.11% 

16/07/2008 Got a great product idea? 19 0 0.00% 

17/07/2008 Got a great product idea? 17 1 5.88% 

18/07/2008 Got a great product idea? 12 1 8.33% 

19/07/2008 Got a great product idea? 13 1 7.69% 

20/07/2008 Got a great product idea? 20 3 15.00% 

21/07/2008 Got a great product idea? 33 3 9.09% 

22/07/2008 Got a great product idea? 11 0 0.00% 

  

378 26 6.88% 
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Conversion Rate (over 3 weeks) of Product Idea page  for views from 

Advertisement 2 

Day Advertisement 2 Views Conversion Conversion Rate 

29/06/2008 Got a great invention? 1 0 0.00% 

30/06/2008 Got a great invention? 19 0 0.00% 

01/07/2008 Got a great invention? 14 1 7.14% 

02/07/2008 Got a great invention? 16 2 12.50% 

03/07/2008 Got a great invention? 23 0 0.00% 

04/07/2008 Got a great invention? 23 1 4.35% 

05/07/2008 Got a great invention? 21 2 9.52% 

06/07/2008 Got a great invention? 29 1 3.45% 

07/07/2008 Got a great invention? 31 1 3.23% 

08/07/2008 Got a great invention? 30 0 0.00% 

09/07/2008 Got a great invention? 29 2 6.90% 

10/07/2008 Got a great invention? 28 0 0.00% 

11/07/2008 Got a great invention? 30 1 3.33% 

12/07/2008 Got a great invention? 10 1 10.00% 

13/07/2008 Got a great invention? 9 0 0.00% 

14/07/2008 Got a great invention? 23 2 8.70% 

15/07/2008 Got a great invention? 29 0 0.00% 

16/07/2008 Got a great invention? 20 0 0.00% 

17/07/2008 Got a great invention? 36 2 5.56% 

18/07/2008 Got a great invention? 24 0 0.00% 

19/07/2008 Got a great invention? 22 0 0.00% 

20/07/2008 Got a great invention? 28 1 3.57% 

21/07/2008 Got a great invention? 30 1 3.33% 

22/07/2008 Got a great invention? 3 0 0.00% 

  

528 18 3.41% 

 

Bounce rate of Product Idea page for visits from Ad vertisement 1 and 

Advertisement 2 

www.motiontouch.com 

    Top Landing Pages 

    June 29, 2008 - July 22, 2008 

   # ---------------------------------------- 

   Landing Page Ad Content Entrances Bounces Bounce Rate 

Advertisement 2 Got a great invention? 451 205 45.45% 

Advertisement 1 Got a great product idea? 321 120 37.38% 
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Conversion Rate (over 12 weeks) of dynamic Product Idea page for views from 

Advertisement 1 

Day Ad Clicks Conv. Conv. rate 

22/07/2008 Got a great product idea? 18 2 11.11% 

23/07/2008 Got a great product idea? 20 2 10.00% 

24/07/2008 Got a great product idea? 20 1 5.00% 

25/07/2008 Got a great product idea? 26 3 11.54% 

26/07/2008 Got a great product idea? 8 0 0.00% 

27/07/2008 Got a great product idea? 16 2 12.50% 

28/07/2008 Got a great product idea? 21 3 14.29% 

29/07/2008 Got a great product idea? 11 0 0.00% 

30/07/2008 Got a great product idea? 14 0 0.00% 

31/07/2008 Got a great product idea? 8 0 0.00% 

01/08/2008 Got a great product idea? 9 1 11.11% 

02/08/2008 Got a great product idea? 9 0 0.00% 

03/08/2008 Got a great product idea? 18 0 0.00% 

04/08/2008 Got a great product idea? 26 0 0.00% 

05/08/2008 Got a great product idea? 36 0 0.00% 

06/08/2008 Got a great product idea? 23 1 4.35% 

07/08/2008 Got a great product idea? 22 1 4.55% 

08/08/2008 Got a great product idea? 23 2 8.70% 

09/08/2008 Got a great product idea? 12 0 0.00% 

10/08/2008 Got a great product idea? 14 0 0.00% 

11/08/2008 Got a great product idea? 28 0 0.00% 

12/08/2008 Got a great product idea? 31 1 3.23% 

13/08/2008 Got a great product idea? 19 0 0.00% 

14/08/2008 Got a great product idea? 22 3 13.64% 

15/08/2008 Got a great product idea? 18 1 5.56% 

16/08/2008 Got a great product idea? 13 0 0.00% 

17/08/2008 Got a great product idea? 27 0 0.00% 

18/08/2008 Got a great product idea? 22 1 4.55% 

19/08/2008 Got a great product idea? 19 2 10.53% 

20/08/2008 Got a great product idea? 14 1 7.14% 

21/08/2008 Got a great product idea? 15 0 0.00% 

22/08/2008 Got a great product idea? 10 1 10.00% 

23/08/2008 Got a great product idea? 4 0 0.00% 

24/08/2008 Got a great product idea? 10 0 0.00% 

25/08/2008 Got a great product idea? 16 0 0.00% 

26/08/2008 Got a great product idea? 22 0 0.00% 

27/08/2008 Got a great product idea? 22 0 0.00% 

28/08/2008 Got a great product idea? 17 0 0.00% 

29/08/2008 Got a great product idea? 18 1 5.56% 
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30/08/2008 Got a great product idea? 11 0 0.00% 

31/08/2008 Got a great product idea? 20 0 0.00% 

01/09/2008 Got a great product idea? 13 2 15.38% 

02/09/2008 Got a great product idea? 17 0 0.00% 

03/09/2008 Got a great product idea? 18 0 0.00% 

04/09/2008 Got a great product idea? 16 0 0.00% 

05/09/2008 Got a great product idea? 21 0 0.00% 

06/09/2008 Got a great product idea? 10 0 0.00% 

07/09/2008 Got a great product idea? 15 0 0.00% 

08/09/2008 Got a great product idea? 19 0 0.00% 

09/09/2008 Got a great product idea? 17 1 5.88% 

10/09/2008 Got a great product idea? 17 0 0.00% 

11/09/2008 Got a great product idea? 32 1 3.12% 

12/09/2008 Got a great product idea? 14 1 7.14% 

13/09/2008 Got a great product idea? 12 0 0.00% 

14/09/2008 Got a great product idea? 23 1 4.35% 

15/09/2008 Got a great product idea? 33 3 9.09% 

16/09/2008 Got a great product idea? 29 1 3.45% 

17/09/2008 Got a great product idea? 30 0 0.00% 

18/09/2008 Got a great product idea? 32 3 9.38% 

19/09/2008 Got a great product idea? 19 0 0.00% 

20/09/2008 Got a great product idea? 11 1 9.09% 

21/09/2008 Got a great product idea? 19 1 5.26% 

22/09/2008 Got a great product idea? 32 1 3.12% 

23/09/2008 Got a great product idea? 25 1 4.00% 

24/09/2008 Got a great product idea? 29 0 0.00% 

25/09/2008 Got a great product idea? 23 2 8.70% 

26/09/2008 Got a great product idea? 9 0 0.00% 

27/09/2008 Got a great product idea? 20 2 10.00% 

28/09/2008 Got a great product idea? 18 2 11.11% 

29/09/2008 Got a great product idea? 29 1 3.45% 

30/09/2008 Got a great product idea? 27 0 0.00% 

01/10/2008 Got a great product idea? 29 0 0.00% 

02/10/2008 Got a great product idea? 32 2 6.25% 

03/10/2008 Got a great product idea? 13 0 0.00% 

04/10/2008 Got a great product idea? 14 0 0.00% 

05/10/2008 Got a great product idea? 19 0 0.00% 

06/10/2008 Got a great product idea? 21 0 0.00% 

07/10/2008 Got a great product idea? 24 0 0.00% 

08/10/2008 Got a great product idea? 20 0 0.00% 

09/10/2008 Got a great product idea? 13 0 0.00% 

10/10/2008 Got a great product idea? 11 0 0.00% 

11/10/2008 Got a great product idea? 7 0 0.00% 

12/10/2008 Got a great product idea? 9 0 0.00% 
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13/10/2008 Got a great product idea? 27 1 3.70% 

14/10/2008 Got a great product idea? 18 1 5.56% 

15/10/2008 Got a great product idea? 13 0 0.00% 

16/10/2008 Got a great product idea? 21 1 4.76% 

17/10/2008 Got a great product idea? 11 1 9.09% 

18/10/2008 Got a great product idea? 14 1 7.14% 

19/10/2008 Got a great product idea? 11 0 0.00% 

20/10/2008 Got a great product idea? 17 0 0.00% 

21/10/2008 Got a great product idea? 25 2 8.00% 

22/10/2008 Got a great product idea? 25 2 8.00% 

  

1755 64 3.65% 

 

Conversion Rate (over 12 weeks) of dynamic Product Idea page for views from 

Advertisement 2 

 

Day Ad Clicks Conv. Conv. rate 

22/07/2008 Got a great invention? 15 2 13.33% 

23/07/2008 Got a great invention? 20 1 5.00% 

24/07/2008 Got a great invention? 18 2 11.11% 

25/07/2008 Got a great invention? 28 0 0.00% 

26/07/2008 Got a great invention? 14 0 0.00% 

27/07/2008 Got a great invention? 25 2 8.00% 

28/07/2008 Got a great invention? 26 3 11.54% 

29/07/2008 Got a great invention? 14 0 0.00% 

30/07/2008 Got a great invention? 16 1 6.25% 

31/07/2008 Got a great invention? 19 2 10.53% 

01/08/2008 Got a great invention? 19 0 0.00% 

02/08/2008 Got a great invention? 15 0 0.00% 

03/08/2008 Got a great invention? 34 1 2.94% 

04/08/2008 Got a great invention? 26 0 0.00% 

05/08/2008 Got a great invention? 33 3 9.09% 

06/08/2008 Got a great invention? 28 2 7.14% 

07/08/2008 Got a great invention? 22 2 9.09% 

08/08/2008 Got a great invention? 22 0 0.00% 

09/08/2008 Got a great invention? 22 1 4.55% 

10/08/2008 Got a great invention? 19 1 5.26% 

11/08/2008 Got a great invention? 43 4 9.30% 

12/08/2008 Got a great invention? 29 1 3.45% 

13/08/2008 Got a great invention? 43 5 11.63% 

14/08/2008 Got a great invention? 23 0 0.00% 

15/08/2008 Got a great invention? 16 0 0.00% 



 

313 
 

16/08/2008 Got a great invention? 12 1 8.33% 

17/08/2008 Got a great invention? 27 2 7.41% 

18/08/2008 Got a great invention? 31 2 6.45% 

19/08/2008 Got a great invention? 32 0 0.00% 

20/08/2008 Got a great invention? 12 0 0.00% 

21/08/2008 Got a great invention? 18 0 0.00% 

22/08/2008 Got a great invention? 11 0 0.00% 

23/08/2008 Got a great invention? 5 2 40.00% 

24/08/2008 Got a great invention? 8 1 12.50% 

25/08/2008 Got a great invention? 18 0 0.00% 

26/08/2008 Got a great invention? 28 3 10.71% 

27/08/2008 Got a great invention? 19 1 5.26% 

28/08/2008 Got a great invention? 23 0 0.00% 

29/08/2008 Got a great invention? 21 1 4.76% 

30/08/2008 Got a great invention? 25 0 0.00% 

31/08/2008 Got a great invention? 30 2 6.67% 

01/09/2008 Got a great invention? 22 5 22.73% 

02/09/2008 Got a great invention? 34 0 0.00% 

03/09/2008 Got a great invention? 33 0 0.00% 

04/09/2008 Got a great invention? 29 0 0.00% 

05/09/2008 Got a great invention? 33 2 6.06% 

06/09/2008 Got a great invention? 20 0 0.00% 

07/09/2008 Got a great invention? 34 3 8.82% 

08/09/2008 Got a great invention? 38 2 5.26% 

09/09/2008 Got a great invention? 58 5 8.62% 

10/09/2008 Got a great invention? 41 2 4.88% 

11/09/2008 Got a great invention? 48 2 4.17% 

12/09/2008 Got a great invention? 27 1 3.70% 

13/09/2008 Got a great invention? 31 1 3.23% 

14/09/2008 Got a great invention? 31 1 3.23% 

15/09/2008 Got a great invention? 45 4 8.89% 

16/09/2008 Got a great invention? 56 4 7.14% 

17/09/2008 Got a great invention? 46 0 0.00% 

18/09/2008 Got a great invention? 46 3 6.52% 

19/09/2008 Got a great invention? 24 0 0.00% 

20/09/2008 Got a great invention? 20 0 0.00% 

21/09/2008 Got a great invention? 27 0 0.00% 

22/09/2008 Got a great invention? 46 2 4.35% 

23/09/2008 Got a great invention? 38 1 2.63% 

24/09/2008 Got a great invention? 39 2 5.13% 

25/09/2008 Got a great invention? 39 3 7.69% 

26/09/2008 Got a great invention? 23 1 4.35% 

27/09/2008 Got a great invention? 25 0 0.00% 

28/09/2008 Got a great invention? 25 3 12.00% 
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29/09/2008 Got a great invention? 29 1 3.45% 

30/09/2008 Got a great invention? 29 0 0.00% 

01/10/2008 Got a great invention? 31 2 6.45% 

02/10/2008 Got a great invention? 27 3 11.11% 

03/10/2008 Got a great invention? 23 1 4.35% 

04/10/2008 Got a great invention? 17 0 0.00% 

05/10/2008 Got a great invention? 23 0 0.00% 

06/10/2008 Got a great invention? 29 0 0.00% 

07/10/2008 Got a great invention? 34 0 0.00% 

08/10/2008 Got a great invention? 24 2 8.33% 

09/10/2008 Got a great invention? 28 2 7.14% 

10/10/2008 Got a great invention? 25 1 4.00% 

11/10/2008 Got a great invention? 20 0 0.00% 

12/10/2008 Got a great invention? 30 2 6.67% 

13/10/2008 Got a great invention? 27 3 11.11% 

14/10/2008 Got a great invention? 43 3 6.98% 

15/10/2008 Got a great invention? 23 0 0.00% 

16/10/2008 Got a great invention? 30 2 6.67% 

17/10/2008 Got a great invention? 35 0 0.00% 

18/10/2008 Got a great invention? 13 1 7.69% 

19/10/2008 Got a great invention? 21 1 4.76% 

20/10/2008 Got a great invention? 25 2 8.00% 

21/10/2008 Got a great invention? 24 0 0.00% 

22/10/2008 Got a great invention? 28 0 0.00% 

  

2525 121 4.79% 

 

Conversion Rate (over 12 weeks) of Design Overview page for views from 

Advertisement 1 

Day Advertisement 2 Clicks Conv.  Conv. rate  

28/03/2008 Got a great product idea? 2 1 50.00% 

29/03/2008 Got a great product idea? 0 0 0.00% 

30/03/2008 Got a great product idea? 4 0 0.00% 

31/03/2008 Got a great product idea? 3 0 0.00% 

01/04/2008 Got a great product idea? 6 1 16.67% 

02/04/2008 Got a great product idea? 6 0 0.00% 

03/04/2008 Got a great product idea? 0 0 0.00% 

04/04/2008 Got a great product idea? 5 0 0.00% 

05/04/2008 Got a great product idea? 2 0 0.00% 

06/04/2008 Got a great product idea? 1 0 0.00% 

07/04/2008 Got a great product idea? 3 0 0.00% 

08/04/2008 Got a great product idea? 3 0 0.00% 
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09/04/2008 Got a great product idea? 4 0 0.00% 

10/04/2008 Got a great product idea? 3 0 0.00% 

11/04/2008 Got a great product idea? 0 0 0.00% 

12/04/2008 Got a great product idea? 2 0 0.00% 

13/04/2008 Got a great product idea? 4 0 0.00% 

14/04/2008 Got a great product idea? 5 0 0.00% 

15/04/2008 Got a great product idea? 2 0 0.00% 

16/04/2008 Got a great product idea? 3 0 0.00% 

17/04/2008 Got a great product idea? 0 0 0.00% 

18/04/2008 Got a great product idea? 2 0 0.00% 

19/04/2008 Got a great product idea? 2 0 0.00% 

20/04/2008 Got a great product idea? 4 0 0.00% 

21/04/2008 Got a great product idea? 6 0 0.00% 

22/04/2008 Got a great product idea? 4 0 0.00% 

23/04/2008 Got a great product idea? 6 0 0.00% 

24/04/2008 Got a great product idea? 7 0 0.00% 

25/04/2008 Got a great product idea? 4 0 0.00% 

26/04/2008 Got a great product idea? 1 0 0.00% 

27/04/2008 Got a great product idea? 5 0 0.00% 

28/04/2008 Got a great product idea? 6 1 16.67% 

29/04/2008 Got a great product idea? 6 0 0.00% 

30/04/2008 Got a great product idea? 0 0 0.00% 

01/05/2008 Got a great product idea? 1 1 100.00% 

01/05/2008 Got a great product idea? 12 1 8.33% 

02/05/2008 Got a great product idea? 21 1 4.76% 

03/05/2008 Got a great product idea? 16 0 0.00% 

04/05/2008 Got a great product idea? 21 1 4.76% 

05/05/2008 Got a great product idea? 14 0 0.00% 

06/05/2008 Got a great product idea? 18 1 5.56% 

07/05/2008 Got a great product idea? 27 1 3.70% 

08/05/2008 Got a great product idea? 18 0 0.00% 

09/05/2008 Got a great product idea? 23 0 0.00% 

10/05/2008 Got a great product idea? 13 1 7.69% 

11/05/2008 Got a great product idea? 15 0 0.00% 

12/05/2008 Got a great product idea? 21 0 0.00% 

13/05/2008 Got a great product idea? 9 3 33.33% 

14/05/2008 Got a great product idea? 9 1 11.11% 

15/05/2008 Got a great product idea? 12 0 0.00% 

16/05/2008 Got a great product idea? 10 1 10.00% 

17/05/2008 Got a great product idea? 5 1 20.00% 

18/05/2008 Got a great product idea? 2 0 0.00% 

19/05/2008 Got a great product idea? 4 0 0.00% 

20/05/2008 Got a great product idea? 5 0 0.00% 

21/05/2008 Got a great product idea? 1 0 0.00% 
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22/05/2008 Got a great product idea? 6 0 0.00% 

23/05/2008 Got a great product idea? 3 1 33.33% 

24/05/2008 Got a great product idea? 2 0 0.00% 

25/05/2008 Got a great product idea? 1 0 0.00% 

26/05/2008 Got a great product idea? 1 0 0.00% 

27/05/2008 Got a great product idea? 2 0 0.00% 

28/05/2008 Got a great product idea? 0 0 0.00% 

29/05/2008 Got a great product idea? 1 0 0.00% 

30/05/2008 Got a great product idea? 0 0 0.00% 

31/05/2008 Got a great product idea? 3 0 0.00% 

01/06/2008 Got a great product idea? 0 0 0.00% 

02/06/2008 Got a great product idea? 0 0 0.00% 

03/06/2008 Got a great product idea? 0 0 0.00% 

04/06/2008 Got a great product idea? 2 0 0.00% 

05/06/2008 Got a great product idea? 0 0 0.00% 

06/06/2008 Got a great product idea? 0 0 0.00% 

07/06/2008 Got a great product idea? 0 0 0.00% 

08/06/2008 Got a great product idea? 0 0 0.00% 

09/06/2008 Got a great product idea? 0 0 0.00% 

10/06/2008 Got a great product idea? 1 0 0.00% 

11/06/2008 Got a great product idea? 0 0 0.00% 

12/06/2008 Got a great product idea? 0 0 0.00% 

13/06/2008 Got a great product idea? 11 0 0.00% 

14/06/2008 Got a great product idea? 18 1 5.56% 

15/06/2008 Got a great product idea? 24 0 0.00% 

16/06/2008 Got a great product idea? 19 2 10.53% 

17/06/2008 Got a great product idea? 29 1 3.45% 

18/06/2008 Got a great product idea? 24 1 4.17% 

19/06/2008 Got a great product idea? 16 0 0.00% 

20/06/2008 Got a great product idea? 20 2 10.00% 

21/06/2008 Got a great product idea? 22 1 4.55% 

22/06/2008 Got a great product idea? 25 0 0.00% 

23/06/2008 Got a great product idea? 22 1 4.55% 

24/06/2008 Got a great product idea? 28 1 3.57% 

25/06/2008 Got a great product idea? 24 2 8.33% 

26/06/2008 Got a great product idea? 14 0 0.00% 

27/06/2008 Got a great product idea? 20 3 15.00% 

28/06/2008 Got a great product idea? 16 1 6.25% 

  

742 33 4.45% 
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Conversion Rate (over 12 weeks) of Design Overview page for views from 

Advertisement 2 

Day Advertisement 2 Clicks Conv. Conv. rate 

28/03/2008 Got a great invention? 51 2 3.92% 

29/03/2008 Got a great invention? 41 4 9.76% 

30/03/2008 Got a great invention? 38 0 0.00% 

31/03/2008 Got a great invention? 56 2 3.57% 

01/04/2008 Got a great invention? 49 1 2.04% 

02/04/2008 Got a great invention? 46 2 4.35% 

03/04/2008 Got a great invention? 33 0 0.00% 

04/04/2008 Got a great invention? 50 4 8.00% 

05/04/2008 Got a great invention? 32 2 6.25% 

06/04/2008 Got a great invention? 48 1 2.08% 

07/04/2008 Got a great invention? 43 1 2.33% 

08/04/2008 Got a great invention? 43 0 0.00% 

09/04/2008 Got a great invention? 41 3 7.32% 

10/04/2008 Got a great invention? 40 1 2.50% 

11/04/2008 Got a great invention? 33 0 0.00% 

12/04/2008 Got a great invention? 27 1 3.70% 

13/04/2008 Got a great invention? 37 1 2.70% 

14/04/2008 Got a great invention? 45 1 2.22% 

15/04/2008 Got a great invention? 33 0 0.00% 

16/04/2008 Got a great invention? 36 0 0.00% 

17/04/2008 Got a great invention? 22 0 0.00% 

18/04/2008 Got a great invention? 28 1 3.57% 

19/04/2008 Got a great invention? 42 1 2.38% 

20/04/2008 Got a great invention? 33 1 3.03% 

21/04/2008 Got a great invention? 42 0 0.00% 

22/04/2008 Got a great invention? 25 0 0.00% 

23/04/2008 Got a great invention? 26 0 0.00% 

24/04/2008 Got a great invention? 29 1 3.45% 

25/04/2008 Got a great invention? 31 1 3.23% 

26/04/2008 Got a great invention? 8 0 0.00% 

27/04/2008 Got a great invention? 24 1 4.17% 

28/04/2008 Got a great invention? 51 1 1.96% 

29/04/2008 Got a great invention? 30 2 6.67% 

30/04/2008 Got a great invention? 38 0 0.00% 

01/05/2008 Got a great invention? 15 3 20.00% 

01/05/2008 Got a great invention? 11 0 0.00% 

02/05/2008 Got a great invention? 9 1 11.11% 

03/05/2008 Got a great invention? 15 1 6.67% 

04/05/2008 Got a great invention? 22 1 4.55% 
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05/05/2008 Got a great invention? 15 1 6.67% 

06/05/2008 Got a great invention? 31 2 6.45% 

07/05/2008 Got a great invention? 24 0 0.00% 

08/05/2008 Got a great invention? 30 0 0.00% 

09/05/2008 Got a great invention? 31 3 9.68% 

10/05/2008 Got a great invention? 25 0 0.00% 

11/05/2008 Got a great invention? 29 0 0.00% 

12/05/2008 Got a great invention? 43 3 6.98% 

13/05/2008 Got a great invention? 37 0 0.00% 

14/05/2008 Got a great invention? 53 1 1.89% 

15/05/2008 Got a great invention? 51 3 5.88% 

16/05/2008 Got a great invention? 44 1 2.27% 

17/05/2008 Got a great invention? 39 0 0.00% 

18/05/2008 Got a great invention? 54 2 3.70% 

19/05/2008 Got a great invention? 63 1 1.59% 

20/05/2008 Got a great invention? 62 0 0.00% 

21/05/2008 Got a great invention? 55 2 3.64% 

22/05/2008 Got a great invention? 48 0 0.00% 

23/05/2008 Got a great invention? 41 2 4.88% 

24/05/2008 Got a great invention? 34 2 5.88% 

25/05/2008 Got a great invention? 58 3 5.17% 

26/05/2008 Got a great invention? 63 2 3.17% 

27/05/2008 Got a great invention? 61 0 0.00% 

28/05/2008 Got a great invention? 60 4 6.67% 

29/05/2008 Got a great invention? 48 0 0.00% 

30/05/2008 Got a great invention? 46 0 0.00% 

31/05/2008 Got a great invention? 45 2 4.44% 

01/06/2008 Got a great invention? 53 0 0.00% 

02/06/2008 Got a great invention? 55 0 0.00% 

03/06/2008 Got a great invention? 49 1 2.04% 

04/06/2008 Got a great invention? 47 0 0.00% 

05/06/2008 Got a great invention? 51 0 0.00% 

06/06/2008 Got a great invention? 41 0 0.00% 

07/06/2008 Got a great invention? 46 0 0.00% 

08/06/2008 Got a great invention? 35 1 2.86% 

09/06/2008 Got a great invention? 50 1 2.00% 

10/06/2008 Got a great invention? 48 0 0.00% 

11/06/2008 Got a great invention? 54 2 3.70% 

12/06/2008 Got a great invention? 45 1 2.22% 

13/06/2008 Got a great invention? 40 1 2.50% 

14/06/2008 Got a great invention? 21 0 0.00% 

15/06/2008 Got a great invention? 28 2 7.14% 

16/06/2008 Got a great invention? 41 3 7.32% 

17/06/2008 Got a great invention? 30 2 6.67% 
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18/06/2008 Got a great invention? 40 0 0.00% 

19/06/2008 Got a great invention? 28 2 7.14% 

20/06/2008 Got a great invention? 22 1 4.55% 

21/06/2008 Got a great invention? 25 0 0.00% 

22/06/2008 Got a great invention? 24 1 4.17% 

23/06/2008 Got a great invention? 44 0 0.00% 

24/06/2008 Got a great invention? 34 1 2.94% 

25/06/2008 Got a great invention? 34 1 2.94% 

26/06/2008 Got a great invention? 34 1 2.94% 

27/06/2008 Got a great invention? 26 0 0.00% 

28/06/2008 Got a great invention? 33 0 0.00% 

  

3591 96 2.67% 

 

Bounce rate of Design Overview page for visits from  Advertisement 1 and 

Advertisement 2 (March 28, 2008 - June 28, 2008) 

# ---------------------------------------- 

    www.motiontouch.com 

    Top Landing Pages 

    March 28, 2008 - June 28, 2008 

    # ---------------------------------------- 

    Page Ad Content Entrances Bounces Bounce Rate 

Design Overview (Advertisment 2) Got a great invention? 3008 1355 45.05% 

Design Overview (Advertisment 1) Got a great product idea? 636 252 39.62% 

 

Bounce rate of dynamic Product Idea page for visits  from Advertisement 1 and 

Advertisement 2 (July 22, 2008 - October 22, 2008) 

# ---------------------------------------- 

    www.motiontouch.com 

    Top Landing Pages 

    July 22, 2008 - October 22, 2008 

    # ---------------------------------------- 

    

     Page Ad Content Entrances Bounces Bounce Rate 

Product Idea (Advertisement 2) Got a great invention? 2092 964 46.08% 

Product Idea (Advertisement 1) Got a great product idea? 1441 618 42.89% 
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E.3. Data used to measure Change 3 

Conversion Rate (over 3 months) of dynamic Product Idea page for views from 

Advertisement 1 after change in visual design 

Day Ad Clicks Conv. 

Conv. 

rate 

01/11/2008 Got a great product idea? 15 2 13.33% 

02/11/2008 Got a great product idea? 17 0 0.00% 

03/11/2008 Got a great product idea? 29 2 6.90% 

04/11/2008 Got a great product idea? 36 2 5.56% 

05/11/2008 Got a great product idea? 26 0 0.00% 

06/11/2008 Got a great product idea? 27 1 3.70% 

07/11/2008 Got a great product idea? 16 0 0.00% 

08/11/2008 Got a great product idea? 16 2 12.50% 

09/11/2008 Got a great product idea? 38 1 2.63% 

10/11/2008 Got a great product idea? 29 1 3.45% 

11/11/2008 Got a great product idea? 38 1 2.63% 

12/11/2008 Got a great product idea? 29 2 6.90% 

13/11/2008 Got a great product idea? 27 2 7.41% 

14/11/2008 Got a great product idea? 17 0 0.00% 

15/11/2008 Got a great product idea? 14 1 7.14% 

16/11/2008 Got a great product idea? 30 0 0.00% 

17/11/2008 Got a great product idea? 49 3 6.12% 

18/11/2008 Got a great product idea? 27 3 11.11% 

19/11/2008 Got a great product idea? 30 1 3.33% 

20/11/2008 Got a great product idea? 33 2 6.06% 

21/11/2008 Got a great product idea? 21 1 4.76% 

22/11/2008 Got a great product idea? 13 0 0.00% 

23/11/2008 Got a great product idea? 21 1 4.76% 

24/11/2008 Got a great product idea? 27 2 7.41% 

25/11/2008 Got a great product idea? 28 1 3.57% 

26/11/2008 Got a great product idea? 26 0 0.00% 

27/11/2008 Got a great product idea? 27 2 7.41% 

28/11/2008 Got a great product idea? 18 2 11.11% 

29/11/2008 Got a great product idea? 35 1 2.86% 

30/11/2008 Got a great product idea? 12 0 0.00% 

01/12/2008 Got a great product idea? 24 0 0.00% 

02/12/2008 Got a great product idea? 20 0 0.00% 

03/12/2008 Got a great product idea? 18 1 5.56% 

04/12/2008 Got a great product idea? 16 2 12.50% 

05/12/2008 Got a great product idea? 11 1 9.09% 

06/12/2008 Got a great product idea? 16 0 0.00% 
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07/12/2008 Got a great product idea? 14 0 0.00% 

08/12/2008 Got a great product idea? 18 2 11.11% 

09/12/2008 Got a great product idea? 18 1 5.56% 

10/12/2008 Got a great product idea? 15 1 6.67% 

11/12/2008 Got a great product idea? 22 1 4.55% 

12/12/2008 Got a great product idea? 16 0 0.00% 

13/12/2008 Got a great product idea? 19 1 5.26% 

14/12/2008 Got a great product idea? 17 1 5.88% 

15/12/2008 Got a great product idea? 20 1 5.00% 

16/12/2008 Got a great product idea? 21 0 0.00% 

17/12/2008 Got a great product idea? 17 1 5.88% 

18/12/2008 Got a great product idea? 8 0 0.00% 

19/12/2008 Got a great product idea? 5 0 0.00% 

20/12/2008 Got a great product idea? 9 1 11.11% 

21/12/2008 Got a great product idea? 5 0 0.00% 

22/12/2008 Got a great product idea? 7 1 14.29% 

23/12/2008 Got a great product idea? 7 0 0.00% 

24/12/2008 Got a great product idea? 2 0 0.00% 

25/12/2008 Got a great product idea? 2 0 0.00% 

26/12/2008 Got a great product idea? 7 0 0.00% 

27/12/2008 Got a great product idea? 6 0 0.00% 

28/12/2008 Got a great product idea? 9 1 11.11% 

29/12/2008 Got a great product idea? 14 1 7.14% 

30/12/2008 Got a great product idea? 12 1 8.33% 

31/12/2008 Got a great product idea? 8 0 0.00% 

01/01/2009 Got a great product idea? 11 3 27.27% 

02/01/2009 Got a great product idea? 25 1 4.00% 

03/01/2009 Got a great product idea? 16 0 0.00% 

04/01/2009 Got a great product idea? 16 0 0.00% 

05/01/2009 Got a great product idea? 17 0 0.00% 

06/01/2009 Got a great product idea? 19 1 5.26% 

07/01/2009 Got a great product idea? 7 0 0.00% 

08/01/2009 Got a great product idea? 10 0 0.00% 

09/01/2009 Got a great product idea? 3 0 0.00% 

10/01/2009 Got a great product idea? 5 1 20.00% 

11/01/2009 Got a great product idea? 9 0 0.00% 

12/01/2009 Got a great product idea? 12 1 8.33% 

13/01/2009 Got a great product idea? 8 1 12.50% 

14/01/2009 Got a great product idea? 3 0 0.00% 

15/01/2009 Got a great product idea? 4 0 0.00% 

16/01/2009 Got a great product idea? 1 0 0.00% 

17/01/2009 Got a great product idea? 2 0 0.00% 

18/01/2009 Got a great product idea? 2 0 0.00% 

19/01/2009 Got a great product idea? 1 0 0.00% 
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20/01/2009 Got a great product idea? 0 0 0.00% 

27/01/2009 Got a great product idea? 0 0 0.00% 

28/01/2009 Got a great product idea? 2 0 0.00% 

29/01/2009 Got a great product idea? 0 0 0.00% 

30/01/2009 Got a great product idea? 0 0 0.00% 

31/01/2009 Got a great product idea? 1 0 0.00% 

  

1348 62 4.60% 

 

Conversion Rate (over 3 months) of dynamic Product Idea page for views from 

Advertisement 2 after change in visual design 

Day Ad Clicks Conv. 

Conv. 

rate 

01/11/2008 Got a great invention? 16 0 0.00% 

02/11/2008 Got a great invention? 22 2 9.09% 

03/11/2008 Got a great invention? 43 1 2.33% 

04/11/2008 Got a great invention? 43 0 0.00% 

05/11/2008 Got a great invention? 37 0 0.00% 

06/11/2008 Got a great invention? 31 1 3.23% 

07/11/2008 Got a great invention? 26 0 0.00% 

08/11/2008 Got a great invention? 22 1 4.55% 

09/11/2008 Got a great invention? 30 3 10.00% 

10/11/2008 Got a great invention? 50 2 4.00% 

11/11/2008 Got a great invention? 41 0 0.00% 

12/11/2008 Got a great invention? 38 1 2.63% 

13/11/2008 Got a great invention? 40 2 5.00% 

14/11/2008 Got a great invention? 25 0 0.00% 

15/11/2008 Got a great invention? 17 1 5.88% 

16/11/2008 Got a great invention? 50 1 2.00% 

17/11/2008 Got a great invention? 50 0 0.00% 

18/11/2008 Got a great invention? 41 1 2.44% 

19/11/2008 Got a great invention? 47 1 2.13% 

20/11/2008 Got a great invention? 48 3 6.25% 

21/11/2008 Got a great invention? 33 1 3.03% 

22/11/2008 Got a great invention? 23 0 0.00% 

23/11/2008 Got a great invention? 28 1 3.57% 

24/11/2008 Got a great invention? 49 2 4.08% 

25/11/2008 Got a great invention? 47 2 4.26% 

26/11/2008 Got a great invention? 50 0 0.00% 

27/11/2008 Got a great invention? 40 1 2.50% 

28/11/2008 Got a great invention? 27 2 7.41% 

29/11/2008 Got a great invention? 28 0 0.00% 
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30/11/2008 Got a great invention? 33 2 6.06% 

01/12/2008 Got a great invention? 46 1 2.17% 

02/12/2008 Got a great invention? 49 2 4.08% 

03/12/2008 Got a great invention? 30 0 0.00% 

04/12/2008 Got a great invention? 31 2 6.45% 

05/12/2008 Got a great invention? 37 3 8.11% 

06/12/2008 Got a great invention? 32 1 3.12% 

07/12/2008 Got a great invention? 44 0 0.00% 

08/12/2008 Got a great invention? 46 2 4.35% 

09/12/2008 Got a great invention? 60 1 1.67% 

10/12/2008 Got a great invention? 41 1 2.44% 

11/12/2008 Got a great invention? 42 2 4.76% 

12/12/2008 Got a great invention? 38 1 2.63% 

13/12/2008 Got a great invention? 26 2 7.69% 

14/12/2008 Got a great invention? 26 0 0.00% 

15/12/2008 Got a great invention? 32 1 3.12% 

16/12/2008 Got a great invention? 33 0 0.00% 

17/12/2008 Got a great invention? 26 1 3.85% 

18/12/2008 Got a great invention? 25 0 0.00% 

19/12/2008 Got a great invention? 16 2 12.50% 

20/12/2008 Got a great invention? 10 1 10.00% 

21/12/2008 Got a great invention? 16 0 0.00% 

22/12/2008 Got a great invention? 19 0 0.00% 

23/12/2008 Got a great invention? 15 0 0.00% 

24/12/2008 Got a great invention? 4 0 0.00% 

25/12/2008 Got a great invention? 6 0 0.00% 

26/12/2008 Got a great invention? 16 0 0.00% 

27/12/2008 Got a great invention? 10 0 0.00% 

28/12/2008 Got a great invention? 12 0 0.00% 

29/12/2008 Got a great invention? 23 0 0.00% 

30/12/2008 Got a great invention? 37 3 8.11% 

31/12/2008 Got a great invention? 14 1 7.14% 

01/01/2009 Got a great invention? 25 1 4.00% 

02/01/2009 Got a great invention? 35 2 5.71% 

03/01/2009 Got a great invention? 44 0 0.00% 

04/01/2009 Got a great invention? 48 3 6.25% 

05/01/2009 Got a great invention? 55 2 3.64% 

06/01/2009 Got a great invention? 55 3 5.45% 

07/01/2009 Got a great invention? 61 3 4.92% 

08/01/2009 Got a great invention? 48 0 0.00% 

09/01/2009 Got a great invention? 45 0 0.00% 

10/01/2009 Got a great invention? 40 2 5.00% 

11/01/2009 Got a great invention? 47 1 2.13% 

12/01/2009 Got a great invention? 72 4 5.56% 
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13/01/2009 Got a great invention? 78 0 0.00% 

14/01/2009 Got a great invention? 71 0 0.00% 

15/01/2009 Got a great invention? 67 2 2.99% 

16/01/2009 Got a great invention? 39 2 5.13% 

17/01/2009 Got a great invention? 49 1 2.04% 

18/01/2009 Got a great invention? 66 4 6.06% 

19/01/2009 Got a great invention? 76 1 1.32% 

20/01/2009 Got a great invention? 8 0 0.00% 

27/01/2009 Got a great invention? 10 1 10.00% 

28/01/2009 Got a great invention? 75 1 1.33% 

29/01/2009 Got a great invention? 52 3 5.77% 

30/01/2009 Got a great invention? 51 4 7.84% 

31/01/2009 Got a great invention? 58 3 5.17% 

  

3212 101 3.14% 

 

Conversion Rate (over 3 months) of dynamic Product Idea page for views from 

Advertisement 1 before change in visual design is the same as the data for conversion 

rate (over 12 weeks) of dynamic Product Idea page for views from Advertisement 1 

(found in Section E.2) 

Conversion Rate (over 3 months) of dynamic Product Idea page for views from 

Advertisement 2 before change in visual design is the same as the data for conversion 

rate (over 12 weeks) of dynamic Product Idea page for views from Advertisement 2 

(found in Section E.2) 

Conversion rate of Inventor campaign over 2 years ( Oct 2007 – Oct 2009) 

Month Views Conv.  Conv. rate  

 Oct-07 1027 30 2.92% 

  Nov-07 1369 52 3.80% 

  Dec-07 804 24 2.99% 

  Jan-08 1541 59 3.83% 

  Feb-08 1098 34 3.10% 

  Mar-08 1595 50 3.13% 

  Apr-08 1167 29 2.49% 

  

May-08 1558 54 3.47% 

Avg Conv from Oct-

May 3.22% 
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Jun-08 1525 41 2.69% Change 1 made here 

 Jul-08 1295 71 5.48% Change 2 made here 

 Aug-08 1376 53 3.85% 

  Sep-08 1665 72 4.32% 

  Oct-08 1406 49 3.49% Change 3 made here 

 Nov-08 1846 67 3.63% 

  Dec-08 1265 45 3.56% 

  Jan-09 1449 51 3.52% 

  Feb-09 1271 39 3.07% 

  Mar-09 968 28 2.89% 

  01/04/2009 70 2 2.86% 

  01/07/2009 243 14 5.76% 

  01/08/2009 275 13 4.73% 

  01/09/2009 395 14 3.54% 

  

01/10/2009 197 6 3.05% 

Avg Conv from Jul-

Oct 3.84% 

 

E.4. Data used to measure Change 4 

Conversion Rate (over 2 months) of Plastic Manufact uring page 

Month Landing Page  Views Conv.  Conv. rate  

01/07/2008 Plastic Manufacturing 1549 30 1.94% 

01/08/2008 Plastic Manufacturing 85 1 1.18% 

  

1634 31 1.90% 

 

Conversion Rate (over 2 months) of Product Manufact ure page 

Month Landing Page  Views Conv.  Conv. rate  

01/07/2008 Product Manufacture 73 2 2.74% 

01/07/2008 Product Manufacture 32 0 0.00% 

01/07/2008 Product Manufacture 51 2 3.92% 

01/08/2008 Product Manufacture 434 10 2.30% 

01/08/2008 Product Manufacture 378 7 1.85% 

  

968 21 2.17% 
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Conversion Rate (over 2 months) for Plastic Manufac turing and Product 

Manufacture page 

www.motiontouch.com 

    Top Landing Pages 

    July 1, 2008 - August 31, 2008 

    Page Ad Content Entrances Bounces Bounce Rate 

Plastic Manufacturing Plastic Manufacturer 1894 1115 58.87% 

Product Manufacture Plastic Manufacturer 706 311 44.05% 

 

E.5. Data used to measure Change 5a 

Conversion Rate (over 9 months) for Plastic Manufac turing page 

Month Landing Page  Views Conv.  Conv. rate  

01/01/2008 Plastic Manufacturing 991 18 1.82% 

01/02/2008 Plastic Manufacturing 927 10 1.08% 

01/03/2008 Plastic Manufacturing 1201 14 1.17% 

01/04/2008 Plastic Manufacturing 374 2 0.53% 

01/04/2008 Plastic Manufacturing 438 6 1.37% 

01/05/2008 Plastic Manufacturing 712 10 1.40% 

01/06/2008 Plastic Manufacturing 2885 20 0.69% 

01/07/2008 Plastic Manufacturing 1549 30 1.94% 

01/08/2008 Plastic Manufacturing 85 1 1.18% 

  

9162 111 1.21% 

 

Conversion Rate (over 9 months) for Picture-segment ed page 

Month Landing Page  Views Conv. Conv. rate  

01/01/2009 Picture-segmented 2060 31 1.50% 

01/02/2009 Picture-segmented 1807 45 2.49% 

01/03/2009 Picture-segmented 1606 40 2.49% 

01/04/2009 Picture-segmented 1451 39 2.69% 

01/05/2009 Picture-segmented 780 28 3.59% 

01/05/2009 Picture-segmented 225 0 0.00% 

01/06/2009 Picture-segmented 407 17 4.18% 

01/07/2009 Picture-segmented 532 14 2.63% 

01/08/2009 Picture-segmented 536 23 4.29% 

  

9404 237 2.52% 
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Bounce Rate (over 9 months) for Plastic Manufacturi ng page 
 
 
www.motiontouch.com 

    Top Landing Pages 

    January 1, 2008 - August 31, 

2008 

    
Page Ad Content Entrances Bounces Bounce Rate 

Plastic Manufacturing 

Plastic 

Manufacturer 15818 10005 63.25% 

 

Bounce Rate (over 9 months) for Picture-segmented p age 

# ---------------------------------------- 

   www.motiontouch.com 

    Top Landing Pages 

    January 1, 2009 - August 31, 2009 

   # ---------------------------------------- 

   Page Ad Content Entrances Bounces Bounce Rate 

Picture-Segemented Plastic Manufacturer 7353 3583 48.73% 

 

E.6. Data used to measure Change 5b 

Conversion Rate (over 8 months) for Picture-segment ed page 

Month Page Views Conv.  Conv. rate  

01/05/2009 Picture-segmented 1005 28 2.79% 

01/06/2009 Picture-segmented 407 17 4.18% 

01/07/2009 Picture-segmented 532 14 2.63% 

01/08/2009 Picture-segmented 536 23 4.29% 

01/09/2009 Picture-segmented 553 19 3.44% 

01/10/2009 Picture-segmented 620 19 3.06% 

01/11/2009 Picture-segmented 575 17 2.96% 

01/12/2009 Picture-segmented 317 13 4.10% 

  

4545 150 3.30% 
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Conversion Rate (over 8 months) for Questionnaire p age 

Month Ad Views Conv.  Conv. rate  

01/05/2009 Questionnaire 360 15 4.17% 

01/06/2009 Questionnaire 622 25 4.02% 

01/07/2009 Questionnaire 573 30 5.24% 

01/08/2009 Questionnaire 496 19 3.83% 

01/09/2009 Questionnaire 589 19 3.23% 

01/10/2009 Questionnaire 590 15 2.54% 

01/11/2009 Questionnaire 566 20 3.53% 

01/12/2009 Questionnaire 323 13 4.02% 

  

4119 156 3.79% 

 

Bounce Rate for Questionnaire page and Picture-segm ented page 

# ---------------------------------------- 

    www.motiontouch.com 

    Top Landing Pages 

    May 1, 2009 - December 31, 2009 

   # ---------------------------------------- 

    Page Ad Content Entrances Bounces Bounce Rate 

Questionnaire Plastic Manufacturer 3324 1934 58.18% 

Picture-Segmented Plastic Manufacturer 3064 1391 45.40% 

 

Conversion Rate (over 4 months) for Plastic Manufac turing page 

Month Ad Clicks Conv.  Conv. rate  

01/05/2008 Plastic Manufacturing 712 10 1.40% 

01/06/2008 Plastic Manufacturing 2885 20 0.69% 

01/07/2008 Plastic Manufacturing 1549 30 1.94% 

01/08/2008 Plastic Manufacturing 85 1 1.18% 

  

5231 61 1.17% 
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Conversion Rate (over 4 months) for Questionnaire p age 

Month Ad Clicks Conv.  Conv. rate  

01/05/2009 Questionnaire 360 15 4.17% 

01/06/2009 Questionnaire 622 25 4.02% 

01/07/2009 Questionnaire 573 30 5.24% 

01/08/2009 Questionnaire 496 19 3.83% 

  

2051 89 4.34% 

 

Bounce Rate for Plastic Manufacturing page 

# ---------------------------------------- 

    www.motiontouch.com 

    Top Landing Pages 

    May 1, 2008 - August 31, 2008 

    

Page Ad Content Entrances Bounces 

Bounce 

Rate 

Plastic Manufacturing Plastic Manufacturer 6414 3953 61.63% 

 

Bounce Rate for Questionnaire page 

# ---------------------------------------- 

    www.motiontouch.com 

    Top Landing Pages 

    May 1, 2009 - August 31, 2009 

   # ---------------------------------------- 

    Page Ad Content Entrances Bounces Bounce Rate 

Questionnaire Plastic Manufacturer 1661 1010 60.81% 

 

 


