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Laboratory work, in the Undergraduate Engineering course, is aimed at enhancing 

students’ understanding of taught concepts and integrating theory and practice. This 

demands that laboratory work is synchronised with lectures in order to maximise its 

derivable learning outcomes, measurable through assessment. The typical high costs of 

traditional engineering laboratory, which often militates against its increased use and the 

synchronisation of laboratory and lectures, have, in addition to other factors, catalysed the 

increased adoption of virtual laboratories as a complement to the traditional engineering 

laboratory. In extreme cases, virtual laboratories could serve as alternative means of 

providing, albeit simulated, meaningful practical experiences. A Virtual Electronic 

Laboratory (VEL), which can be used to undertake a range of undergraduate electronic 

engineering curriculum-based laboratory activities, in a realistic manner, has been 

implemented as part of the work presented in this thesis. The VEL incorporates a Bayesian 

Network (BN)-based model for the performance assessment of students’ laboratory work 

in the VEL. Detailed descriptions of the VEL and the assessment model are given. The 

evaluation of the entire system is in two phases: evaluation of the VEL as a tool for 

facilitating students’ deeper understanding of fundamental engineering concepts taught in 

lectures; and evaluation of the assessment model within the context of the VEL 

environment. The VEL is evaluated at two different engineering faculties, in two separate 

universities. Results from the evaluation of the VEL show the effectiveness of the VEL to 

enhance students’ learning, in the light of appropriate learning scenarios, and provide 

evidence and support for the use of virtual laboratories in the engineering educational 

context. Performance data, extracted from students’ behaviour logs (captured and recorded 

during the evaluation of the VEL) are used to evaluate the assessment model. Results of 

the evaluation demonstrate the effectiveness of the model as an assessment tool, and the 

practicability of the performance assessment of students’ laboratory work from their 

observed behaviour in a virtual learning environment. 
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1.0 BACKGROUND  
The aim of engineering faculties all over the world is to “build better engineers”. 

Consequently, many engineering faculties have embraced the student-centred learning 

educational paradigm, which seeks to improve the quality of students’ learning through a 

redefinition of the learning environment, the role of the instructor, the role of the learner, and 

the relationship among them. Faculty, in this context, refers to the entity or a division within 

the organizational structure of a University, comprising one subject area or a number of 

related subject areas. The student-centred paradigm demands active learning by students and 

the increased use of the laboratory in the instruction process, to integrate theory and practice. 

This is imperative because, to build better engineers, students in their early undergraduate 

years, need to overcome the challenge of grasping the fundamental engineering concepts 

taught in lectures, in order to have a more solid foundation for their later undergraduate years.  

 

The typical high costs of the traditional engineering laboratory often mean inadequate 

laboratory facilities in engineering faculties. This may especially be the case in developing 

countries where engineering faculties are more likely to be challenged by resource constraints 

and/or large class sizes, such that some students may graduate without meaningful laboratory 

experiences. Hence, engineering faculties are often challenged with the provision of 

meaningful laboratory experiences for their students. This challenge has catalytically 

contributed to the increasing adoption of virtual laboratories in the Undergraduate 

Engineering (UE) course. The aim is not to replace the traditional laboratory with virtual 

laboratories, but to complement it. However, the virtual laboratory could serve as an 

alternative in extreme cases [1]. Virtual laboratories are listed by The UK Higher Education 

Agency (UK HEA) as one of the alternative approaches to laboratory education because they 

can offer equivalent laboratory experiences [2]. 

 

The work reported in this thesis is focused on the implementation and evaluation of a low-

cost Virtual Electronic Laboratory (VEL), and the application of probabilistic reasoning 

Artificial Intelligence (AI) technique to the construction of an assessment model, for the 

performance assessment of students’ laboratory work in the VEL environment. The 

assessment tool is vital because, engineering faculties, in addition to the ongoing challenge of 

providing meaningful laboratory experiences for students, are also challenged with the 

performance assessment of students’ laboratory work, especially where there are large class 

sizes. 
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First, in section 1.1, the concept of laboratory in the UE course is explored, differentiating 

between real, remote and virtual laboratories.  Next, the effectiveness of virtual laboratories as 

learning environments is discussed in section 1.2, before looking at virtual laboratories in the 

context of UE laboratory education, in section 1.3. Section 1.4 highlights the challenges of 

students’ laboratory work assessment in the UE course. The motivation and objectives of the 

research work are presented in section 1.5, while section 1.6 highlights the research 

methodology. An overview of the thesis is given in section 1.7, and the chapter summarised in 

section 1.8. 

 
 
1.1 LABORATORY IN THE UNDERGRADUATE ENGINEERING COURSE 
Laboratory work in the UE course have been classified into three types, controlled 

assignments, experimental investigation, and projects, and their differences are the way they 

are organized in terms of the [3]:  

� nature of the activities to be undertaken,  

� style of the instruction given to the students,  

� relative amounts of time spent on the activities,  

� stages in the overall course at which they are introduced.  

Controlled assignments (also referred to as instructional laboratories) are described as 

relatively short laboratory exercises, devised and used by the instructor to enhance students’ 

understanding of concepts [3]. Controlled assignments will be interchangeably referred to, in 

this context, as laboratory work or activities, and is the focus of the research work presented 

in this thesis.  

 

In the early years of the UE course, students are challenged with grasping the fundamental 

concepts. For example, it has been highlighted that Electrical and Electronic Engineering 

(EEE) students find it difficult to understand the fundamental concepts in taught in lectures, in 

the early years of their study [4][5][6]. Failure to understand the fundamental concepts may 

affect their learning of more advanced concepts [6][7]. The course units in the early years 

serve two purposes: lay a foundation for the students to build on in their later undergraduate 

years of study; and equip students in some other engineering courses and related disciplines 

with the knowledge to support learning in their fields of study [8]. Fundamental concepts are 

the curriculum components that constitute the foundation for most other component parts of 

the curriculum.  
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The need to enhance students’ deeper understanding of fundamental concepts is justifiably the 

main reason why laboratory activities are concentrated in the early years of the UE course.  

Laboratory activities, used to involve students in practical experiences with taught concepts, 

help deepen their understanding of the concepts by integrating theory with practice [2]. The 

objectives of laboratory work have been highlighted by [3][9][10][11][12]. These objectives 

include: 

1. illustration and/or reinforcement of theory learned from lectures and tutorials. 

2. illustration of topics more readily understood if introduced via laboratory rather than by 

means of lectures. 

3. development of abilities/skills in the apt use of components, techniques, and equipment. 

4. development of the ability to observe and check data. 

5. stimulating interest in a subject 

These objectives demand the synchronisation of laboratory activities with lectures in order to 

maximise their derivable learning outcomes, measurable through assessment. The timing of 

laboratory activities is important, to maximise its effectiveness [13].  

 

Large class sizes often entail the division of students into groups, for weekly laboratory time 

slots. This, in addition to the high costs of the traditional engineering laboratory, often 

militates against the: 

� synchronisation of laboratory activities and lectures.  

� increased use of the laboratory to enhance students’ understanding of taught concepts. 

That is, providing meaningful laboratory experiences for students, synchronisation of 

laboratory activities and lectures, and increasing the use of laboratory exercises in the 

instructional process, present challenges to engineering faculties. The challenges crystallised 

the need for alternative laboratory arrangements.  

 

For instance, at the University of Technology, Owerri (UTON), an additional complimentary 

approach to Electrical and Electronic Engineering (EEE) laboratory education may be 

beneficial.  The engineering faculty at UTON offers a 5-year undergraduate EEE programme. 

All the EEE students take the same course units in their first three years of study. During this 

three-year period, the students are exposed to the foundations of science and general studies, 

fundamental EEE course principles/concepts and circuit theory. Laboratory activities are 

concentrated mainly in the second and third years of study. At the end of the third year, 

students choose their preferred EEE course options: Communication Engineering (COE), 

Power Systems Engineering (PSE) and Electronic and Computer Engineering (ECE).  As the 
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students enter into their fourth and fifth years of study, they concentrate mainly on course 

units for their respective options. At this level, they begin to apply the learning gains from 

their earlier years, to the learning of more advanced concepts and specific problem contexts. 

This is when learning gaps, if any, may be highlighted.  

 

Learning gaps may exist in students’ learning, in an engineering faculty, if, for example: 

1. laboratory activities are based more on the traditional laboratory setting.  

2. there are resources constraints, in the face of high costs of laboratory equipment. 

3. there are large class sizes such that students out-number the available laboratory 

resources. 

Basically, there are three types of laboratories: real (traditional), remote and virtual. 

Nowadays, all three types of laboratories are computer mediated, the major difference being 

the psychology of presence and the degree of computer mediation [15]. The real laboratory is 

the traditional fixed-space laboratory. Both remote and virtual laboratories are Virtual 

Learning Environments (VLE), but throughout literature, their definitions are inconsistent and 

confusing. The terms are often used interchangeably, despite the significant differences in 

their technologies.  

 
 
 
1.1.1  Traditional Laboratory 

 The traditional laboratory is characterized by:  

� real data, equipment, and components. 

� space requirements and time restrictions.  

� supervisor and user physical presence requirements.  

� high costs. 

� waste of consumables. 

In the traditional laboratory, “student cohorts are often subdivided into groups to undertake a 

rolling programme of practical sessions that is often out of sync with the lecture programme 

delivering the associated theoretical concepts” [2]. Students are often required to re-produce 

routing experiments that yield well-known results and to focus on experimental methodology 

rather than on developing skills [2]. In addition, they are often exposed to the use of 

expensive laboratory equipment that provide many complex functions oriented to the 

professional market, which are not needed for educational purposes [16]. Furthermore, 

laboratory sessions are time consuming to organize, manage and assess [2].  
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Despite these often emphasised limitations of the traditional laboratory, its proponents, 

according to [17], argue that students need to be exposed to physical contact with laboratory 

equipment, components, and the uncertainties of laboratory work, because hands-on 

experience is the best form of learning and there are more information and cues in working 

with real equipment and people. [17] stated that the argument is not backed by appropriate 

research study, and that the preference for a particular type of communication method might 

be the resultant effect of social factors and opportunities for choice, rather than 

technologically determined. Also, according to [18], individuals adapt to whatever media of 

communication are available and to which they are continually exposed. For example, [19] 

stated that, presently, technologies have pervaded and improved education to the extent that 

instructors and students now expect their educational experiences to include the use of 

interactive web-based online instruction/learning tools. 

 

 

1.1.2 Remote Laboratory 

Remote laboratories are characterized by mediated reality and are mainly for data acquisition 

and experimental monitoring and control [15]. They are real laboratories with remote user 

presence and internet/web mediated access and operations [20]. They require physical space 

to setup and can employ both real and virtual instruments. Laboratory devices are interfaced 

to local computers, using interface hardware (such as Data Acquisition (DAQ) boards) and 

real-time communication software. Middleware software facilitates remote clients’ connection 

to the local computers, through the Internet and/or local network, for laboratory device 

manipulation and/or real world data acquisition.  

 

Remote laboratories make it possible for many users to share remote and/or specific scarce 

laboratory resources. Control systems engineering, robotics, and mechanical engineering are 

areas that seem to have benefited from the remote laboratory technology.  [21]described a 

remote laboratory for the tele-operation of an omni-directional vehicle, and [22] reported a 

remote laboratory for the tele-operation of robots.  A rotating plate is remotely controlled to 

keep a ball in a specific position by modifying the parameters of the controller, while 

visualizing the setup using a camera. The user can introduce a disturbance to verify the stability 

of the system. They are commonly employed in distance learning education [20]. 
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1.1.3 Virtual Laboratory  

Virtual laboratories are software versions of the traditional laboratory where experimental 

setups are implemented in software such that a Personal Computer (PC) can take the place of 

a laboratory workbench [23]. They provide enabling environments for 

demonstrating/exploring concepts taught in lectures and/or concepts not readily explored in 

physical ways. The characteristics and benefits of virtual laboratories are articulated by [14], 

which include enhancing students’ understanding of concepts.   

 

Despite their acknowledged virtues, virtual laboratories are said to be limited in their function 

as laboratory environments because, they are not able to convey the seriousness of technical 

procedures [22]. The dangers and risks involved are not taken seriously and a certain degree 

of thoughtlessness in technical procedures occurs which may be a disadvantage later in the 

professional years [22]. This thoughtlessness with regards to procedures also exists in the 

traditional laboratory environment where students’ disregard rules due to either forgetfulness 

or complacency [25]. To address this problem in the virtual laboratory environment, [25] 

developed a series of virtual reality based laboratory accidents to argument virtual 

laboratories and provide valuable learning experiences with respect to the importance of safe 

laboratory practices. 

 
 
 
1.2 EFFECTIVENESS OF THE VIRTUAL LABORATORY AS A LEARNING 

ENVIRONMENT  
Literature indicates that Virtual Learning Environments (VLEs) are seen to be representative 

of real world learning environments, and that users are able to learn effectively in the VLE. 

They have been proven to have positive impact on students’ learning and performance [26] 

[27] [28]. In some cases, the evidence contradicts popular hypotheses that face-to-face 

instructor-student interaction is a more valuable experience and produces better results. [17] 

found students’ learning outcomes with virtual laboratories to be equal or superior to that of 

the traditional laboratory, in terms of promoting students’ understanding of course concepts 

specifically related to the laboratory topic, suggesting that in courses where the laboratory is 

intended primarily to aid the conceptual understanding of the course content, virtual 

laboratories can be valuable tools. 

 

Virtual laboratories have been shown to be equivalent to the physical laboratory for 

explaining and reinforcing concepts [29]. [30] investigated the extent to which a software 
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simulation of electronic circuits’ laboratory can support beginner electrical engineering 

students, and the extent to which laboratory simulations can replace some physical electronics 

laboratories. They found equivalent, and in some cases improved, learner performance with 

decreasing time requirements for laboratory activities and the number of questions students 

asked of laboratory assistants.  

 

[31], in his research on whether alternatives to laboratory practicals do meet the desired 

needs, found that the group that had undertaken simulation based laboratory practicals 

performed better than the control group. The author concluded that simulations are more 

effective than the traditional laboratory in helping students achieve assessed objectives, and 

can provide a learning aid as effective as the physical laboratory. [2] stated that “many 

qualities and higher level learning goals traditionally gained through [traditional] laboratory-

based investigation can be achieved without undertaking any hands-on practical work”.  

 

According to [32] and [17], it is not clear what factors influence the efficacy of virtual 

laboratories as pedagogically useful tools for promoting understanding of course concepts. 

[17] suggested three possible factors: 

� much of the attention and time of students in traditional hands-on laboratories is 

devoted to understanding the procedures to be followed and to laboratory equipment 

setup and teardown, which is an inherent part of every laboratory work in the 

traditional laboratory environment. Consequently they focus less on developing 

conceptual understanding of how the data and relevant theories/concepts relate. In the 

virtual laboratory environment, students’ attention can be directed towards specific 

learning objectives.  

� students, in the virtual laboratory, more often collect laboratory data individually and 

have more opportunities to repeat laboratory activities, vary parameters, and observe 

their effects, and structure their learning. Such affordances are especially valuable in 

enhancing learning.  

� in the virtual laboratory, “students usually run the laboratories individually. This is 

different from the traditional laboratory situation where the students run laboratories 

as a group, where often, only one student actually interacts with the equipment, while 

the others watch (witness). If witnessing the actual physical experiment is the 

important thing, we would expect the traditional laboratories to result in better 

learning outcomes. However, if individual interaction and the potential for multiple 
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runs of the procedure are more important, then both simulations and remote 

laboratories may have an advantage” [17].  

In addition, [33] found in their study that students positive relationships with computers and 

attitudes to computer use were key factors in the VLE success. According to [34], the 

interactive nature of VLEs enhances student performance and retention, as well as faculty 

productivity. The VLE encourages freedom and students often thrive in it [35].  

 

 
 
1.3 VIRTUAL LABORATORY IN UNDERGRADUATE ENGINEERING 

LABORATORY EDUCATION  
The challenge facing engineering faculties, with respect to the adoption of virtual laboratories 

in the undergraduate engineering course, is how to place the real laboratory online [36]. 

Introducing the laboratory learning environment online is a difficult task but the rapid 

development of technologies makes it simpler [36]. The rate of adoption of virtual 

laboratories in the educational context is fuelled and driven by the possibilities and benefits 

offered by today’s affordable PCs, Object-Oriented and Graphical programming languages, 

and other technologies. There is a large body of literature on virtual laboratory.  [15] and [37]] 

assert that reports on virtual laboratories are dispersed in more than 100 different journals and 

conference proceedings because of their wide disciplinary nature, with most concentrated on 

engineering.  

 

However, the use of virtual laboratories in engineering laboratory education, to undertake 

curriculum-based laboratory activities, is still a challenge, due to the numerous diverse 

requirements and experiential needs of engineering curricula. Thus, for various fields of 

engineering, research is on-going on virtual laboratories that can emulate the traditional 

laboratory processes. Hence, more virtual laboratory implementation and research efforts, for 

the UE course, are required. Every implementation depends on the identified needs and 

application, the basic requirement being that each outcome should be functionally satisfying. 

 

There is need for a virtual laboratory environment that will enable students to undertake 

curriculum-based laboratory activities, in the undergraduate electronic engineering course, in 

a realistic manner. The existing virtual laboratories in engineering are mainly interactive 

simulations or animated software solutions for demonstrating and/or visualizing specific 

concept(s) and are not intended for use to undertake varying instructor designed curriculum-

based laboratory activities; or are implemented using commercial software tools that may be 
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expensive to license. Also, to the best of the author's knowledge, non of the existing 

engineering oriented virtual laboratories integrates an assessment tool for the assessment of 

students' laboratory work performance in the virtual laboratory environment.  

 
 
 
1.4 LABORATORY WORK ASSESSMENT 
The learning outcomes derivable from laboratory activities are only measurable through 

assessment.  Learning is often assessed to provide a measure of students’ performance as an 

index of the effectiveness of both the instruction and learning processes. Effective instruction 

and learning lead to improved performance [38]. This highlights a close association between 

instruction, learning, and assessment [39]. Without assessment, there is no quantitative or 

qualitative measure of learning [40]. Assessment generates data for information about the 

learning that has or has not taken place, relative to specific objectives and goals [40] [41]. The 

roles of assessment in instruction and learning have been articulated by [42] and include: 

� direct students' efforts towards key aspects of a course unit  

� engage students in learning activities appropriate to the unit  

� reveal students' strengths and weaknesses  

� facilitate feedback to students, for improvement.  

� compare students' works based on some criterion level (e.g. a pass-mark) or with a 
student's previous work 

� other stakeholders appreciate what standard a given student has attained  

� instructors and administrators to evaluate the effectiveness of the course unit and 
improve it where necessary 

 

The assessment of student’s laboratory work performance is another challenge faced by 

engineering faculties generally, and particularly by faculties additionally challenged by 

resource constraints and/or large class sizes. The assessment requirements for students’ 

laboratory work in the virtual laboratory environment are essentially the same as in the 

traditional laboratory setting, in terms of fairness, reliability, and validity [43].  In the virtual 

learning environment, assessment is no less critical [44]. This highlights the need for 

laboratory work performance assessment models for the virtual laboratory environment.  
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1.5 MOTIVATION AND OBJECTIVES OF THE RESEARCH WORK 
The major motivating factors for the work presented in this thesis are the ongoing challenges 

faced by engineering faculties, with respect to the:  

� provision of meaningful laboratory experiences for students, in view of the typical 

high costs of the traditional engineering laboratory and/or large class sizes 

� the performance assessment of students’ laboratory work 

The critical role of laboratory work in the Undergraduate Engineering (UE) course makes 

these challenges ones of utmost importance. These challenges, together, inform the aim (goal) 

of the work reported in this thesis. The aim is to provide the instructor with a tool which 

presents a realistic laboratory environment (albeit virtual) to facilitate the increased use of 

laboratory activities to enhance students’ understanding of concepts taught in lectures, in 

order to lay a more solid foundation for the students. This aim includes the provision of an 

assessment tool, for the instructor, to facilitate the timely, consistent, and fair performance 

assessment of students’ laboratory work within the context of the virtual laboratory 

environment. 

 

Consequently, objectives of the work reported in this thesis are:  

� implementation of a low-cost Virtual Electronic Laboratory (VEL). 

� evaluation of the VEL as a tool for enhancing students’ understanding of concepts 

taught in lectures. 

� construction of a Bayesian network-based model for the performance assessment of 

students’ laboratory work, in the VEL environment, based on the students’ “observed” 

behaviour.  

� empirical investigation of the optimal approach for the construction of a Bayesian 

network-based model for the performance assessment of students’ laboratory work. 

� verification and evaluation of the assessment model within the context of the VEL 

environment, in order to demonstrate:  

� its effectiveness as a tool for the performance assessment of students’ 

laboratory work 

� the practicability of the performance assessment of students’ laboratory work 

based on performance data extracted from their "observed" behaviour. 

These objectives collectively lead to the realisation of the aim of the research work. 
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1.6 RESEARCH METHODOLOGY  
The methodology adopted for the work presented herewith could be classified as action 

research, which is often employed when proposing a new approach for grafting on to or 

replacement of an existing approach [44]. Action research is neither a method nor a technique 

but applied research carried out because of the identified need for change or improvement 

[44]. The aim of the action research methodology is to arrive at recommendations for 

improved practice [46]. Action research is a progressive problem solving led by an 

individual(s) working with others in a team, in order to propose a new course of action or 

strategy aimed at improving an existing work practice(s). The research work is undertaken in 

two phases: implementation and evaluation. 

 
 
1.6.1 Implementation Phase 

The implementation of the VEL will entail its functional specification and GUI design. The 

construction of the assessment tool will necessitate the committed participation of domain 

experts. Cognitive Psychologists will also be involved in the construction process, during 

cognitive task analysis (discussed in Chapter 2, section 2.8). 

 
 
1.6.2 Evaluation Phase 

The evaluation of the entire system is in two stages: evaluation of the VEL with student 

cohorts; and the evaluation of the assessment tool using students’ behaviour logs to be 

generated from the evaluation of the VEL. The VEL will be evaluated at two different 

engineering faculties in two separate universities. Over 60 students from both engineering 

faculties will participate in the evaluation study. Domain experts will assist with the design of 

the laboratory activities to be used for the evaluation of the VEL. The activities will be 

designed to address concepts the students have already been taught in lectures. Pre-Test and 

Post-Test (PTPT) observation technique will be used to generate data for statistical and 

concentration analysis, while a survey instrument will be used to elicit students’ feedback 

about the VEL.   

 

The evaluation of the assessment tool (referred to in this context as the LAboratory 

Performance (LAP) model) will involve the participation of a team of assessors, domain 

experts different from the ones that will help to create the model and design the laboratory 

activities. The assessors will also be different from the instructors that taught the students the 

concepts to be addressed by the laboratory activities.  The assessors will assess students’ 
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laboratory work using performance data to be extracted from students’ behaviour logs that 

will be generated during the evaluation of the VEL. An events tracker/recorder agent in the 

VEL environment will unobstructively observe, capture, and log students’ behaviour as they 

undertake laboratory activities in the VEL environment.  Hence, the evaluation of the LAP 

model will be based on the virtual observation method, whereby a software agent undertakes 

the observation of students and the recording of their laboratory work behaviour, in place of 

human assessors. The assessors, rather than physically observe the students themselves 

(physical observation technique which is time, space, and logistically demanding and 

subjective), will use the observations (virtual observation) that will be made and recorded by 

the software agent in the VEL environment to assess and score students’ laboratory work 

performance, based on a set of criteria. The assessors will each assess the same laboratory 

activities for each of the students that will participated in the evaluation of the VEL.  

 
 
 
 
1.7 OVERVIEW OF THE THESIS 
The background, motivation, and objectives of the work presented in this thesis have been 

detailed. The remainder of the thesis is organized as follows:  

Chapter 2 presents the review of literature for related work on virtual laboratories in the UE 

course, and intelligent assessment in VLEs. The chapter also detailed the traditional 

laboratory work assessment practices and their inherent problems, before giving an 

overview of performance-based assessment.  In addition, details on Bayesian networks, 

their underlying theories, and associated concepts are also given, before highlighting the 

role of psychology in the research work, and summarising the chapter.  

Chapter 3 gives a description of the VEL, and its evaluation processes and results.  

Chapter 4 highlights the structural realization and parameterization of the assessment model. 

The specific tools and reasoning used in the construction of the model are described, 

together with the knowledge elicitation processes and model calibration technique.  

Chapter 5 details empirical investigation of an optimal approach for construction of Bayesian 

network-based model for the performance assessment of students’ laboratory work.   

Chapter 6 illustrates the performance data extraction and evidence quantization and 

instantiation processes which encompass the analysis of students’ laboratory work 

behaviour logs.  

Chapter 7 presents verification and evaluation of the assessment model within the context of 

the VEL, and its possible application processes.   
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Chapter 8 summarises the thesis in terms of discussion, limitations, contributions, further 

work, and conclusions. 

 

1.8 SUMMARY  
The background, motivation, and objectives of the work presented in this thesis have been 

given, and the organization of the thesis highlighted. The next chapter presents a review of 

literature on the various concepts that are key to the work undertaken and presented in the 

thesis.  
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CHAPTER 2 

 LITERATURE REVIEW 

Twice and thrice over, as they say, good is it to repeat and review 
what is good.  

Plato  
347BC - 427BC 
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2.0 INTRODUCTION  
It is appropriate to review the literature on relevant and related works in order to place the 

work presented in this thesis into context. In this chapter, the broad areas of virtual 

laboratories and intelligent assessment are reviewed, and underlying key concepts detailed, in 

addition to the basics of Bayesian reasoning and networks. 

 

First, in section 2.1, related works on virtual laboratories are reviewed. Next, the traditional 

laboratory work performance assessment practices (often extended to the virtual laboratory 

environment) and their inherent problems are detailed in sections 2.2 and 2.3, respectively. 

Section 2.4 presents the concept of performance-based assessment.  A review of literature on 

intelligent performance assessment models in the VLE is presented in section 2.5, while 

section 2.6 details the Bayesian Network (BN) AI technique and its underlying theories and 

concepts, highlighting its inference process and advantages. A review of behaviour log 

analysis techniques for performance data extraction, for input into the BN-based model, is 

presented in section 2.7, before discussing the Cognitive Task Analysis (CTA) framework in 

section 2.8. The chapter is summarised in section 2.9. 

 

 
 
2.1 RELATED WORK ON VIRTUAL LABORATORY  
A review of virtual laboratory implementations that have contextual relevance to this work is 

presented in this section. These include: Virtual Workbench for Electronic Instrumentation 

Teaching (VIEW) by [47]; electromagnetic fields virtual laboratory by [48]; power system 

dynamics and control virtual laboratory by [49]; Fourier Transform Tool by [50]; Digital 

Signal Processing Soft Laboratory (DSPL) by [50]; microelectronics technologies virtual 

laboratory by [52], and DigiLab by [53]. Others are the virtual laboratories presented by Zhou 

& Lo [54], and [55].  

 

VIEW [47], for teaching Analogue-to-Digital Conversion (ADC), DSP, digital filters and 

Fourier transforms, was developed using a combination of tools: LabVIEW, Matlab, 

Multisim, Spice, and Electronic Work Bench (EWB). The virtual laboratory by [48], for 

teaching electromagnetic fields, was based on Matlab, while the one by [49] was realized by 

obtaining a customized computer application for laboratory topics, using Matlab and 

Simulink. The virtual laboratory by [50], for teaching Fourier transform, was implemented 

with LabVIEW. The DSPL by [51] was created with VC ++ and Matlab mixed programming. 

The microelectronics virtual laboratory by [52] serves as a subsidiary learning tool by 
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demonstrating how microelectronic technologies work. It is based on HyperText Markup 

Language (HTML), Cascading Style Sheets (CSS), PHP (recursive acronym for PHP: 

Hypertext Preprocessor), My Structured Query Language (MySQL) and Macromedia flash 

technologies. The DigiLab by [53] for demonstrating the basic concepts of Digital Logic 

Design (DLD) is based on Java and Structured Query Language (SQL). The interface is 

designed with HTML as the programming language with animation and graphic display.  The 

virtual laboratory by [54], like that of [48], is a set of java simulation applets used for 

enhancing students’ understanding of the concepts taught in a course unit on random signals 

and noise.  

 

The Ngee Ann Polytechnic virtual laboratory [56] is only used to measure the resistance of 

and the voltage across a resistor placed on a virtual breadboard. Resistors are the only 

components seen to be provided in the virtual laboratory environment. The Universal Virtual 

Laboratory (UVL) by [55], specifically focused on people with motor disability (especially 

upper extremities), also made intensive use of commercial software tools including Matlab, 

Simulink, PSpice, LabVIEW, Multisim, Authorware, and ORCAD.  

 

In addition to the reports in literature, numerous virtual laboratory websites exist, a few of 

which are highlighted from the list given by [57].  

� http://www.ipes.ethz.ch  

The interactive Power Electronics Seminar (iPES) site offers interactive tools for 

demonstrating the theory of three phase systems, DC-AC converters, and 

fundamentals of electric and magnetic fields, among others, based HTML and Java 

applets. 

 

� http://www.isep.pw.edu.pl/ICG/vlab/   

The virtual laboratory for power electronics site offers interactive animation tools for 

demonstrating Pulse Width Modulation (PWM) techniques, based on java applets. The 

theory is summarized on an HTML surface. 

 

� http://www.sia.co.jp/~icass/index.html  

The Interactive Circuits and Systems Seminar (ICSS) site offers Java applet-based 

interactive animations for explaining the current and voltage sharing among resistors 

connected in parallel and in series and the behaviour of resistors, inductors and 
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capacitors in single phase networks, and the basic series and parallel RL, RC and RLC 

circuits. 

 

� http://thayer.dartmouth.edu/other/3Dcircuits/animations/index.shtml The Electronic 

Circuits Animation (ECA) site contains animations for the visualization of voltage, 

current, and flux with respect to electronic circuit components (such as op-amp, 

comparator, and Schmitt-trigger circuits) and power system circuit components (such 

as diode, bridge, and half-wave rectifiers).  

 

� http://tams-www.informatik.uni-hamburg.de/applets/hades/html/  

The HAmburg DEsign System (HADES) is another virtual laboratory site. HADES is 

a Java-based framework for simulation which presents an editor to create digital 

circuit schematics. It provides about 200 simulation components for digital circuit.  

 

These existing virtual laboratories are:  

� either java applet-based animations for the demonstration of specific concept(s) or 

based on commercial software tools (such as Matlab, Simulink, PSpice, LabVIEW, 

Multisim and Authorware, ORCAD) that may be expensive to licence and therefore 

may not be  ideal for engineering faculties challenged by resource constraints.  

� not designed to undertake instructor-designed curriculum-based laboratory activities.  

� not available for the whole spectrum of engineering courses.  

Furthermore, they do not integrate any form of assessment tool or mechanism for: 

� the automatic generation of laboratory activity-related graphs, by students, in the virtual 

laboratory environment. 

� the performance assessment of students' laboratory work in the virtual laboratory 

environment. As stated earlier, in the virtual learning environment, assessment is no less 

critical [44]. Generally, the tendency is to extend the laboratory work assessment 

practices in the traditional laboratory setting to the virtual laboratory environment [58]. 

 

The work reported in this thesis, undertaken as a contribution towards addressing these 

identified research gaps, encompass the design and implementation of a low virtual electronic 

laboratory, for the field of electronic engineering, and the construction of a Bayesian 

Network-based assessment tool for the performance assessment of students’ laboratory work, 

within the context of the virtual electronic laboratory environment. The virtual electronic 

laboratory, designed for undertaking instructor-designed curriculum-based laboratory 
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activities, incorporates a graphics tool for the automatic generation of laboratory activity-

related graphs, by students. 

 
 
 
2.2 TRADITIONAL LABORATORY WORK ASSESSMENT PRACTICES  
Engineering faculties, as institutional divisions, often require students’ to keep records of 

laboratory activities using journals and/or logbooks, and in some cases to produce written 

reports.  Assessment of students’ laboratory work is generally based on marking these pieces 

of written evidence and/or students’ responses to questions relating to the laboratory 

activities. What and how it is assessed varies among faculties. [59] reported that, in their 

faculty, students’ laboratory journals are inspected but not assessed. Assessment for each 

laboratory activity is based on marking a set of questions constituting part of the laboratory 

instruction sheet. [60] reported a similar assessment practice where, though students keep 

journals of all laboratory activities, assessment is based on marking a set of questions related 

to the performance and results of the laboratory work. [61] use the logbook as the primary 

mechanism for the assessment of students’ laboratory work but not all laboratory activities are 

assessed. A set of randomly selected activities (which may be different for each student), are 

marked (students are encouraged to assume that every laboratory activity can potentially 

contribute to their final mark).  

 

A similar practice is reported by [62], but with a different marking method. First, a student’s 

logbook is marked in consultation with the student who is then given a chance to revise the 

logbook based on any adverse feedback received. The revised logbook is marked. The final 

mark for the laboratory work is made up of the mean of the marks assigned to the original 

logbook, the revised log book, and two written reports. A student is only allowed to progress 

to the next set of laboratory activities if he/she achieves a mean mark ≥ 50%. Otherwise, the 

student takes a practical examination which the student must pass in order to progress to the 

next stage. [63] reported an assessment scheme that is based on logbook and the physical 

observation of students as they undertake laboratory activities. The assessment by physical 

observation is based on a set of performance factors (shown in Table 2.1). Each factor has a 

set of criteria to be used in awarding marks. For example, “Intelligent approach” factor has 

the following four marking criteria: original, full of ideas, questioning each step, and not 

contributing at all (no ideas) [3]. All the assessment is made and completed in the presence of 

the students and the marks from the logbook and the physical observation contribute equally 

to the final mark. [64] reported an assessment scheme in which the final mark is made up of 
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marks from written reports, portfolios, and individual laboratory examinations. [65] proposed 

a scheme involving team-based approach to writing laboratory reports by students, using a 

journal-style format, whereby the team is assessed as a group and share the mark on the 

report.  

 

The traditional laboratory work assessment practices seem to embody some limitations, with 

possibilities of inconsistency, bias and unfairness. For example, the assessment scheme of 

[63] puts emphasis on attitude, qualities, and other factors that neither reflect the objectives of 

laboratory work nor allow them to occur [3]. 

 
 

Table 2.1: Performance Factors for a Physical Observation technique  
(Source [3]) 

Student Experiment
Poor Doubtful Satisfactory Good Excellent

Performance                        Total 0 1 2 3 4
Planning and preparation
Understanding of expt. And 
background
Intelligent approach
Application and effort
Rate of progress and progress made

Lab. Log.                              Total 0 1 2 3 4
Sectioning and layout (ease of access)
Data presentation and handling (tables 
and graphs)
Experimental notes and observations
Treatment of uncertainties
Presentation of results and 
conclusions

Grand Total                         Date

Student Experiment
Poor Doubtful Satisfactory Good Excellent

Performance                        Total 0 1 2 3 4
Planning and preparation
Understanding of expt. And 
background
Intelligent approach
Application and effort
Rate of progress and progress made

Lab. Log.                              Total 0 1 2 3 4
Sectioning and layout (ease of access)
Data presentation and handling (tables 
and graphs)
Experimental notes and observations
Treatment of uncertainties
Presentation of results and 
conclusions

Grand Total                         Date  

 
 
 
2.3 PROBLEMS OF TRADITIONAL LABORATORY WORK ASSESSMENT 

PRACTICES  
Laboratory work assessment practices based only on written evidence has been criticized [26]. 

The criticism is not necessarily indicative of the questionability of the value of students’ 

written reports (the importance of technical communication and the maintenance of proper 

records are not underestimated [3], rather, it emphasises the need for the assessment of 

students’ laboratory work from a holistic approach. “The requirements of formal laboratory 

reports, their structure, and the assessment methodology, are often ambiguous” [66]. 

Moreover, assessment of laboratory reports is challenging/demanding, especially where there 

are large class sizes [67] [68]. The time requirement is typically in excess of 33 working hours 

per week for class sizes of around 200 students [68]. It is therefore, difficult to sustain this 
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approach because of increasing student numbers. Moreover, students often manipulate 

laboratory reports [26], resulting in inconclusive assessment of the students’ work. Large 

class sizes pose the additional problems of fair and consistent assessment. 

 

An important flaw of assessment of practical work based only on written evidence is that it 

focuses on assessing only the end product, neglecting the work process and the specific 

practical abilities/skills (competencies) which are part of the learning outcomes of engineering 

education [2]. The assessment method is not in line with the principles of the prevailing 

educational paradigm which demands that students demonstrate their abilities/skills for 

laboratory work, and their knowledge and understanding of concepts addressed by the 

laboratory activities. It is therefore imperative that students’ laboratory work assessment 

practices should change, not only in accordance with the prevailing educational theories, but 

in response to statements of criteria for engineering education by Quality Assurance Agency 

(QAA) [11] and Accreditation Board for Engineering and Technology (ABET) [12]. This 

need for change towards a holistically based assessment scheme can possibly be met through 

performance-based assessment which is discussed below. 

 

 

2.4 PERFORMANCE -BASED ASSESSMENT 
“Performance [-based] assessment is the direct, systematic observation of an actual student 

performance and the rating of that performance according to previously established 

performance criteria” [69]. Performance assessment entails that students are assessed on both 

the process and the end result of their work [69].  “Performance [-based] assessment calls 

upon students to demonstrate specific skills and competencies and to apply the skills and 

knowledge they have mastered” [70]. It highlights what a student knows and can actually do 

[70]. It is said to be valid in terms of consequence, impartiality, content coverage, cognitive 

complexity, significance, judgment, cost, and efficiency [71]. Its outcome provides 

information on what students can actually do [72]. Performance-based assessment has been 

demonstrated as an effective way of evaluating students’ laboratory skills [73]. 

 

Efforts at performance-based assessment, in the traditional laboratory setting, used the 

physical observation technique based on a list of performance criteria [63] [74]. [75] proposed 

the use of a survey instrument to assess students’ practical-intelligences (knowledge and 

skills) gained from engineering laboratory activities. The instrument consists of a set of 

domain specific problems/tasks, such as wire stripping. For each problem/task, a set of 10 to 
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20 response items, each describing (in words, pictures, and/or illustrations) a possible solution 

approach to the problem/task is constructed. Students are required to rate the appropriateness 

of each response item to the problem/task, on a 7-point Likert scale, and the students’ 

responses are scored. This assessment scheme is not performance-based and the authors 

acknowledged that constructing the assessment instrument is challenging.  

 

The principles of Objective Structured Clinical Examination (OSCE) have also been 

proposed, by [76], for the assessment of engineering students’ laboratory work performance. 

The OSCE, originated by [77], is a widely adopted physical observation-based performance 

assessment tool in healthcare education. [76] proposed Objective Structured Technical 

Examination (OSTE) as an engineering version of the OSCE. The assessment scheme is 

space, time, and assessor intensive, logistically demanding, and difficult to apply to large 

class sizes, unlike the virtual observation technique proposed in this thesis as an alternative to 

the written evidence and physical observation assessment techniques, for the virtual 

laboratory environment, using a Bayesian network-based assessment model.  

 

Virtual behavioural observation is the collection and logging of behavioural data while 

subjects are engaged in activities in an interactive virtual environment [78]. It is a common 

tool of user modelling, an activity that attempts to describe the users’ behavioural patterns, 

preferences, interests, and characteristics, for providing personalized or adaptable web 

applications [78]. It is also used in the field of Intelligent/Adaptive Tutoring System 

(ITS/ATS) for student modelling (describing students’ behavioural patterns, preferences, 

interests, and characteristics), in order to provide personalized or adaptable teaching. Virtual 

observation has also been used in other areas of study and applications including examination 

of moon phases [79], clinical studies [80], and teachers’ professional development experience 

[81]. [79] found virtual observations more effective than direct physical observations and 

acknowledged that it produced better data.  

 
 
 
2.5 RELATED WORK ON INTELLIGENT PERFORMANCE ASSESSMENT IN THE 

VIRTUAL LEARNING ENVIRONMENT  
Intelligent assessment consists of: assessment scenarios, AI, and the use of a cognitively-

grounded measurement model [82]. The assessment scenario consists of context specific 

tasks, the performance of which will be assessed by automated routines that emulate the 

behaviour of an expert (the model-based measurement tool, based on AI technique), to 
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provide an assessment outcome that impact instructionally useful information [82].  

Educational assessment has been subject to numerous studies. The emergence of Bayesian 

reasoning AI technique as a powerful probabilistic inference tool catalyzed research on 

intelligent assessment in the educational context. [83] presented a preliminary study of the 

progress of research on educational assessment using BNs, highlighting the different areas of 

application of BN-based models, in the educational assessment context. [84] reported the 

construction of a model for estimating an educational institution’s performance, with respect 

to a specific subject. The aim was to develop a diagnostic model of an institution’s 

effectiveness or quality. They identified and modelled the causal relationship between factors 

affecting the effectiveness of an educational system, such as instructors' knowledge and 

experience, class size, student and instructor attendance, among others. [85] presented a 

model for evaluating students learning styles based on the Index of Learning Styles by [86]. 

Data recorded from the observation of a student's learning behaviour in web-based courses are 

used to automatically detect the student's learning style. [87] presented a model for assessing 

students' grasp of a particular concept. The model assesses students’ current state in an 

open/distance informatics course based on such factors as: use of computers, web-based 

material, textbook, and internet, family status, and hours of work. The model is aimed at 

predicting whether a student is likely to dropout or continue with a course. 

 

Other related works that demonstrate the feasibility and benefits of performance assessment 

of students learning in the virtual learning environment (VLE), using BN AI technique, are 

hereby cited. The design of a BN-based model for the prediction of students’ performance in a 

test and the application of a BN-based model in educational computerized adaptive testing to 

assess students’ performance were reported by [88]and [89], respectively. [90] applied BN in 

adaptive testing of multiple student latent traits in a single item-based test, using granularity 

hierarchies. Bayesian inference is used to propagate knowledge over the hierarchies. Each 

trait is either mastered or not mastered. [91] presented a BN- and rule-based model for the 

assessment of students’ learning, using students’ knowledge map and analysis of their 

responses to tests items. The model was designed for the assessment of students’ software 

usage abilities and skills in a computer course. [92] reported a BN-based model of student 

activity performance for assessing students’ learning processes in a VLE, from the analysis of 

the students’ web portfolios. Assessment is based on such variables as self reflection, 

homework, read frequency, login frequency, and peer interactions. 
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These intelligent assessment models, though BN-based, are not aimed at students’ laboratory 

work performance assessment. That is, literature search has highlighted previous work on 

performance assessment in virtual learning environments but has not identified performance-

based assessment in the context of virtual laboratories generally and virtual electronic 

laboratories specifically. Furthermore, most of these existing BN-based assessment tools, 

though designed for VLEs, are focused mostly on the ITS/ATS environment, the common and 

initial area of application of intelligent assessment models. ITS/ATS are software tools for 

teaching, aimed at achieving a one-to-one tutoring process, without the instructor. The output 

of the assessment model, in an ITS/ATS, is often used to determine what instructional 

material or assessment item to give the learner next or what concept to teach next [93]. Also, 

some of the existing models are focused on the assessment of such constructs as learning 

style, effectiveness, quality, grasp of concept, and learning, while others are focused on item-

based tests assessment. 

 

On-Line Assessment of Expertise (OLAE) presented by [93] and [94] is another BN-based 

performance assessment model designed for the assessment of students’ knowledge of 

Newtonian mechanics in a VLE. OLAE maintains a list of the correct and incorrect rules for 

solving problems in the domain, against which it matches a student’s problem solving 

solution steps, using a BN and a solution graph, in order to assess the set of rules that have 

been mastered by a student. OLAE does not assess students’ abilities to undertake laboratory 

activities or analyze experimental results [93]. Also, it “does not monitor laboratory tasks, 

large-scale projects or their [students’] hands-on activities” [95]. The BN-based assessment 

model by [96] designed for a VLE consisting of an ITS and a robotics virtual laboratory, was 

used in the ITS component of the VLE to assess students’ knowledge of course themes.  

 

A BN-based assessment tool, which is part of the work presented in this thesis, was 

constructed for the performance assessment of students’ laboratory work in the VEL 

environment. The next section describes Bayesian networks and their underlying theory and 

associated concepts, highlighting the advantages of BNs over other AI techniques. 

 

 

2.6 BAYESIAN NETWORK ARTIFICIAL INTELLIGENCE TECHNIQUE  
A BN consists of two component parts: 

� network structure (the qualitative part of a BN): a set of random variables (nodes) and 

a set of directed edges interconnecting the nodes without creating directed loops, so 
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that the nodes, together with the edges, form a Directed Acyclic Graph (DAG). The 

network structure defines the probabilistic relations among the variables. 

� parameters (the quantitative part of a BN): the conditional and prior probability 

distributions of the dependent nodes (child nodes – nodes with parents) and 

independent nodes (nodes without parents), respectively, in the network.  

The building of a BN model involves the following three ordered tasks: identification of the 

variables (nodes) and their possible values (states), identification of the relationships between 

the variables, and obtainment of the parameters.  

 

Each node in a BN represents a random variable or hypothesis and each directed edge 

represents a relationship (dependency) between the two linked nodes, thereby creating a 

parent→child relationship. Though the term, parent→child relationship, is generally viewed 

from a biological perspective, it is conventionally used in BN literature to represent 

relationship(s) between a dependent variable (the child node) and the variable(s) on which it 

depends (the parent node(s)). In the context of BN models, a child node (a dependent 

variable) can have many parents (the variables on which it depends). Node A, for instance, is a 

parent of a node B, the child node, if there is a directed edge from A to B (see Figure 2.1).  

 

A
(parent node)

B
(child node)

A
(parent node)

B
(child node)

 

Figure 2.1: A sample BN model: parent-child relationship 
 

 

Often, semantics are used to give the edges and their directions, particular meanings, 

reflecting the relationship modelled by the edges. The commonest semantic is causality, 

which implies an asymmetric cause-effect relationship. Causality is not however, a 

requirement for BNs [97]. The edges in a BN can represent other relationships, such as 

containment, ownership, part, requirement, or any relationship that has meaning with the 

context of the focus domain. For example, [98], defined the edges in their BN model as 

representing the relationship of “skill → sub-skill” where the parent node represents a skill 

and the child node represents a sub-skill (component) of the parent skill.  

A directed edge 
indicating a 
relationship 
between A and B 
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A node can have from zero to a finite number of parents, which interact to produce a 

combined effect on the child node. All child nodes (nodes with parents) have Conditional 

Probability Tables (CPTs) that model the combined impact of their parents, while each leaf 

node (node without parents) has Prior Probability Tables (PPTs) describing the prior 

knowledge about them. The number of possible values of a node and the number of its parents 

impact on the size of its CPT. There is, an exponential relationship between the size of the 

CPT of a node, the number of its parent nodes, and the number of possible states of its 

parents. For example, if a node, A, has k parents and each parent has two possible states, then 

the CPT for node A will contain, 2k entries (k = 2, k = 8, and k = 16, will result in 4, 256, and 

65536 entries respectively). If each of the parents has three possible values, 3k entries are 

required (k = 2, k = 8, and k = 16, will result in 9, 6561, and 43046721 entries respectively). 

Generally, the number of entries in the CPT of a child node, A, that has k number of parents, 

where each parent has n possible states, is nk.  

 

Each discrete variable in a BN can take a finite set of values and can assume only one of its 

values at any one time, and the sum of the probabilities of all the states should be 1. In this 

way a BN model is subject to the standard axioms of probability theory [99]. The basic 

axioms of probability theory, Bayes theorem, and the concept of Joint Probability Distribution 

(JPD) underpin BNs. Other important concepts associated with BNs are conditional 

independence, d-separation, marginalization, and inference. 

 

 
2.6.1 Probability Theory, Bayes Theorem, and Joint Probability Distribution 

The basic axioms of probability theory states that, for events, A and B:  

1. P(A) = 1 iff A is certainly true. If A  is a multinomial variable with the set of possible 

states { }, , , ,,1 2a a a a ani= … … , the probability that A is in state ai is denoted 

( )P A ai= . The sequence of probabilities 

( ), ( ), , ( ), , ( )1 2P A a P A a P A a P A ani= = … = … = define a probability vector simply 

written as P(A), and ( ) 1
1

n
P A aii

= =∑
=

.  

2. P(A) = 0 iff A is certainly false. 

3. 0 ( ) 1P A≤ ≤ , the numeric bound of ( )P A  



                                   CHAPTER 2: LITERATURE REVIEW 

 

27 

4. If A  and B  are mutually exclusive (the two events are disjoint and cannot occur 

together) then, the probability of A  or B , ( )P A B∪ , is ( ) ( ) ( )P A B P A P B∪ = + .  

5. If A  and B  are dependent, then P(A B) = P(A) + P(B)- P(A B)∪ ∩ , and the 

probability of A , given B , is 
( , )

( | )
( )

P A B
P A B

P B
= , while the probability of B , given 

A , is 
( , )

( | )
( )

P A B
P B A

P A
= . The Joint Probability Distribution (JPD) of A and B, 

( )P A B∩ , also written as ( , )P A B , is: 

( , ) ( | ) ( ) ( | ) ( )P A B P A B P B P B A P A= =   (2.1) 

Equation 2.1 is a basic rule of probability calculus referred to as the product rule.  

 

( | )P A B  denotes the conditional probability distribution of A given B. For example, 

( )|  P B b A a ri i= = = represents the statement: if A=ai is true, and no other information to 

hand is relevant to B, then the probability of B=bi is r.  

 

Rearranging the product rule yields Bayes theorem given as: 

   
( | ) ( )

( | )
( )

P A B P B
P B A

P A
=    

and          
( | ) ( )

( | )
( )

P B A P A
P A B

P B
=   (2.2) 

 

where B  represents some hypothesis whose degree of truth is to be determined, A represents 

new data (evidence) from an observation. P(B|A) is the posterior probability, updated as a 

result of obtaining the evidence A . ( )P B  is the prior probability of B , and ( )|P A B  is the 

likelihood of B  given A  [Jensen, 2001] or the likelihood that B will materialize if A is true 

[Pearl, 1988].  The factor 1 ( )P A  is the normalization or proportionality constant. The ability 

to update the posterior probability of B  is the major strength of Bayes theorem infused into 

BNs, which can be applied repeatedly as new pieces of information (evidence/findings) are 

obtained.  

 

The Joint Probability Distribution (JPD) over the set of n variables, )( ,  ,  ,  1 2 3,U A A A An= … , 

in a BN, is defined recursively, by applying the product rule repeatedly, which gives the chain 

rule [100]: 
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( )  ( ,  ,  ,  ,  ,  )1 2 3 4P U P A A A A An= …  

         ( | ,..., ) ( | ,..., )... ( | ) ( )1 2 2 3 1P A A A P A A A P A A P An n n nn= −   (2.3) 

         
1

( | ,..., )1

n

i
P A A Ani i=

= +∏  

         
1

( | ( ))
n

i
P A pa Ai i

=
= ∏ , where ( )pa Ai  represents the parent set of Ai. 

The JPD can be used for belief updating in BNs, which amounts to the algorithmic estimation 

of ( )P U , in the light of new evidence. The chain rule expression depends on the way the set of 

variables,  ( )U Ai= , is ordered. Different possible orders give different expressions, but 

each expression yields the same value for ( )P U , for the same set of variables and values 

[101].  

 

 
2.6.2 Conditional Independence 

The concept of Conditional Independence (CI) is used to minimize the size of the CPT of a 

child node by restricting the number of its parents through a reduction in the number of edges 

in the model. BN structures encode CI, and the independencies determine which beliefs are 

updated given evidence.  Hence, CI is advantageous for specifying a BN compactly, and 

reduces the complexity of inference. Figure 2.2 illustrates the CI concept.  
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Figure 2.2: Sample BN models illustrating the concept of conditional independence 
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Figure 2.2 implies, with respect to the sample domain fact, that node A is independent of node 

D, given nodes B and C, and node B is independent of node C, given node D. Network-1 did 

not exploit these conditional independencies implied by the domain fact example, to reduce 

the complexity of the network, while Network-2 did. Reduced model complexity translates to 

improved computational tractability and gains in storage requirements. Reducing model 

complexity is an active issue in uncertainty reasoning with BN models. 

 

 
2.6.3 D-Separation 

The term, d-separation, is generally used in BN literature, and the author understands the d in 

the term to imply dependency. A BN implies more CIs than just those involving the parent 

nodes. In a BN, there are three different types of dependency topologies (d-connections): 

serial, converging, and diverging (depicted graphically in Figure 2.3). 

 

BA C

B

A C B

A C

Serial Diverging Converging

BA C

B

A C B

A C

Serial Diverging Converging  

Figure 2.3: Different types of dependency topologies (d-connections) 
 

Serial: Node C is conditionally dependent on node B, and B is conditionally dependent on A. 

Entering hard evidence at node A or C will lead to an update in the probability distribution 

of B. However, if evidence is entered at node B, nodes A and C become conditionally 

independent given the evidence at node B. This means that evidence at node B “blocks the 

pipeline” [99]. 

 

Diverging: Nodes A and C are conditionally dependent on node B. Entering hard evidence at 

node B will update beliefs at nodes A and C. If evidence is entered at node A, it will not 

cause belief update at node C, when there is evidence at node B. Here nodes A and C are 

conditionally independent given evidence at node B [99]. 

 

Converging: Node B is conditionally dependent on nodes A and C. Entering hard evidence at 

node A will update beliefs at node B but will have no effect on node C. Also, entering hard 

evidence at node C will update beliefs at node B but will have no effect on node A. If hard 
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evidence is entered at node B, then entering evidence at node A will update node C, and 

entering evidence at node C will update node A. Hence, nodes A and C are conditionally 

dependent given evidence at node B [99]. That is, entering evidence at node B opens the 

otherwise blocked pipeline. 

 

Generally, two variables are d-separated if evidence about one cannot influence the other. 

The paths in serial and diverging connections are blocked if node B is instantiated, so that B 

effectively d-separates A and C. If A and C converge to B, it transpires that they will be d-

separated as long as B and none of B’s descendents are observed; if B or any of its 

descendents is observed, A and C become dependent. This property of converging 

connections arises because A and C represent multiple explanations of node B. For example, 

using the analogy given by [101], suppose A is the proposition that student X has not 

mastered the topic, C, the proposition that student X performs poorly on exams, and B the 

proposition that student X failed the exam, then A and C are two possible explanations for B 

and would therefore converge to B in a Bayesian network. If B is subsequently observed, (say, 

it was found that the proposition represented by node B is true, that is student X did fail the 

exam), then B’s causes, nodes A and C, become dependent. This is because if A is 

subsequently observed to be true as well, after B had been found to be true, then it has some 

bearing on C (that is the probability of C is revised downwards) and vice versa. Thus, d-

separation characterises independence arising from lack of evidence as well as evidence. Any 

system for reasoning under uncertainty must capture these properties, as they are basic 

attributes of reasoning. “By using these ideas (d-separation topologies) we can postulate 

topologies connecting small numbers of nodes and hypothesise the effects of entering 

evidence at one node on another. The answer to the question ‘would entering data here affect 

the conclusion reached here, given that we know this datum over here?’ might help indicate 

the type of d-connection at play in the expert’s reasoning” [99]. This helps to build a good BN 

structure. Changing the direction of an edge in a BN (ensuring directed cycle is not induced) 

may change the d-separation properties of the network, but the overall JPD remains invariant. 

Hence, BNs differing only in edge directionality are considered equivalent.   

 
 
2.6.4 Marginalization 

While the product rule is used to compute JPDs, marginalisation reduces a JPD to a 

distribution over a subset of its universe of variables, in order to improve computational 

tractability. It is used to sum out variables (variable elimination) that are not directly involved 

in resolving a query. For example, for the sample BN of Figure 2.4, with the JPD, 
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( ) ( ) ( ) ( ) ( )| , |( )  ,  ,  ,  P A P B A C P C P D CP U P A B C D == , where the state of each variable is 

either true or false, resolving the query ( )|P D C true=  by complete enumeration and 

computation of ( )P U  would entail summations and multiplications over all the variables.  

 

C

DB

A C

DB

A

 

Figure 2.4: A sample BN for explaining marginalization 
 

Alternatively, the query can be resolved by eliminating (summing out) the variables A and B 

which are not directly involved in the query so that only the sub-JPD, ( )|P D C , is computed 

instead of the complete JPD, ( ) ( ) ( ) ( )| , |P A P B A C P C P D C . The marginalization function or 

rule is generally written as: 

( ) ( )
U X

P X P U
−

= ∑    (2.4) 

where ( )P X  represents the joint distribution of the subset of variables directly involved in the 

resolution of the query,  ( )P U  the complete joint probability distribution of all the variables 

in the BN, and U X−  the subset of variables that are not directly involved in the resolution of 

the query. 
U X−
∑ means marginalization (summing out) of the subset of variables, U-X, out 

of ( )P U  to get ( )P X . Marginalization is used to make query resolution more tractable, 

which is why it is seen as an inference tool in BNs. 

 

 

2.6.5 Inference 

 Once a BN model has been constructed, verified, and evaluated, it can be used for reasoning 

(inference). Inference in BNs (also referred to as belief/model update and model conditioning)  

is performed by the “flow of information” through the network, which is not limited to the 

direction of the edges [103]. Inference is essentially the computation of the posterior 

probabilities of target/query nodes, given findings/evidence. That is, given a BN model, a 

piece of evidence E=e, and a query variable Q, inference is the computation of ( | )P Q E e= . 

Reasoning is about querying and interpreting the appropriate posterior probability of an 
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unobserved node(s) of interest, given the observed data. The different types of reasoning or 

queries include [101]:  

� diagnostic query (finding causes from symptoms). This type of reasoning is mainly 

used in causal models and occurs in the opposite direction of the causal edges. 

� predictive or inferential query. This reasoning occurs in the direction of the 

orientation of the edges in the BN.  

� A combination of the above two types of reasoning, if the reasoning task does not 

neatly fit into any one of the above. 

 

The difference between the above types of reasoning is highlighted using a description by 

[101] based on Figure 2.5, which depicts a BN model of a student’s mastery of domain topics 

(T1 and T2) and concepts (C1, C2, C3). The model has the set of variables, 

( 1, 2, 1, 2, 3, 1, 2, 3, 4)X T T C C C Q Q Q Q= , and the JPD 

( )  ( 1| 1, 3) ( 2| 1) ( | 2, 3) ( | 3) ( 1| 1) ( 2| 1) ( 3| 2) ( 1) ( 2)P X P Q C C P Q C P Q C C P Q C P C T P C T P C T P T P T= 3 4 .  

Mastery of the topics implies mastery of the various concepts, which in turn influences 

performance on the test questions ( )Q Q Q Q1, 2, 3, 4 . A test question may require the student to 

have mastered more than one concept, e.g. Q3. With this BN, inferential queries, such 

as ( )QP |T = Mastered1 1 , and diagnostic queries such as( )QP T | =failed2 3 ; or a 

combination of both, such as ( )QP C | = passed,T =notMastered2 4 1  can be performed. 

Evidence for evaluating a query or inference is received when an observed node is assigned a 

value or instantiated (hard evidence).  

 

C1 C2

T2T1

C3

Q1 Q2 Q3 Q4

C1 C2

T2T1

C3

Q1 Q2 Q3 Q4
 

Figure 2.5: Student Topic and Concept Mastery BN model  
(Source: [Mayo, 2001]) 
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The two computation methods for evaluating a query are global and local. To evaluate a 

query, ( 1| 1 )P C Q failed= , for example, the global computation method  would involve the 

computation of the joint distribution, 

( )  ( 1| 1, 3) ( 2| 1) ( | 2, 3) ( | 3) ( 1| 1) ( 2| 1) ( 3| 2) ( 1) ( 2)P X P Q C C P Q C P Q C C P Q C P C T P C T P C T P T P T= 3 4 , 

in order to resolve the query. The local computation method would involve the 

marginalization (elimination) of the variables that are not directly involved in resolving the 

query so that the query resolution reduces to 

computing
(

( 1|
(

P Q
P C Q

P Q

1= | 1) ( 1)
1= ) =

1= )
failed C P C

failed
failed

.   The global computation method 

is intractable because even the simplest query would require summations and multiplications 

over all the variables in the model. Though the two methods give the same inference result, 

local computation is the more efficient approach because the local inference algorithm takes 

advantage of the conditional independence relations defined by the model, and the 

marginalization rule, to increase efficiency. Details of the two computation methods are given 

by [104] [105].  

 

 
2.6.6 Advantages of Bayesian Network Modeling 

Bayesian networks offer a wide range of advantages over other AI techniques, such as 

Artificial Neural Networks (ANN) and Fuzzy Logic (FL). These advantages, as highlighted 

by [99][106][107], include that: 

� Bayesian networks enable reasoning under uncertainty and combine the advantages of 

visual representation with sound mathematical basis.  

� expert opinions can be articulated about dependencies between different variables and 

the impact of evidence on the probabilities of unobserved variables is propagated 

consistently, in any direction.  

� not all the variables in a BN model need to be instantiated for each model update and 

inference instance. The models works by using the instantiated variables to update 

belief about the un-instantiated variables and enable inference. This is unlike FL 

where if a case is missed (a variable is not instantiated), the model would not work or 

respond properly. 

� expert knowledge can be combined with data in a very practical way.  

� a large BN can be constructed from various BN fragments which enables BN models 

to be varied from problem instance to problem instance. 
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� Bayesian networks are a convenient way to model and solve problems in which it is 

desired to arrive at conclusions that are not warranted logically but rather 

probabilistically. This is unlike FL models where each output is warranted logically, 

which makes it unsuitable for applications in uncertainty modelling, despite that FL 

applications generate outputs using approximate and ambiguities human languages, 

based on logic.  

� Bayesian networks are robust in that small alterations in the model parameters do not 

affect the performance of the system dramatically, which implies that maintaining and 

updating existing models is relatively easy since the functioning of the system changes 

smoothly as the model parameters are modified.  

� BNs facilitate clear semantic interpretation of model nodes, links, and parameters. 

That is, every edge (link), node (variable), and paramter in a Bayesian network is 

contextually relevant, and semantically meaningful and understandable to both domain 

experts and the model constructor. Hence, resulting models the resulting model can be 

analyzed and explained in understandable terms. This is unlike ANN that presents a 

“black box” approach with limited interpretability, where only the inputs and outputs 

are meaningful. 

� Bayesian networks do not require extensive training and retraining. The training 

process for Bayesian networks is taken to be the creation of its Conditional Probability 

Tables (CPTs), and the retraining process the review and modification of the 

parameters of the CPTs. Even the learning of the parameters from data does not 

necessarily require large amounts of data. This is unlike ANN that requires large 

amounts of training data, and when new data becomes available, the ANN needs to be 

retrained from the scratch. The training time needed to produce an ANN model is 

often relatively high. 

� Bayesian network models can handle different both continuous and discrete variables 

at the same time, whereas many alternative model technologies are designed for some 

single specific types of variables.  

� when sufficient amount of data is available, both the structure and the parameters of a 

Bayesian network model can be learned from data (with or without expert knowledge), 

based on well established algorithmic techniques.  
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2.6.7 Disadvantages of Bayesian Network Modeling 

While Bayesian network models are a useful way to model expert knowledge for reasoning 

under certainty, it has some disadvantages, as highlighted below:  

� In creating a BN model with expert knowledge, it may be difficult for experts to agree 

on the nodes (variables) that are important to be included in the BN model, overall 

structure of the model, and probability distributions for the nodes. Experts are said to 

rarely agree. That is, it may be more difficult to elicit expert knowledge for expert-

dependent BN models. Experts may be challenged to express their knowledge in the 

form of probability distributions; hence the knowledge elicitation is often an iterative 

process to ensure that experts are comfortable with the nodes, their states, and 

interrelationships in the BN model, and subsequently, their their statements about 

probability distributions for the variables.  

� Though Bayesian networks are good for modeling discrete variables, they may not 

model continuous variables accurately. 

� In learning a BN model from data, BN software packages are required. Most existing 

BN software packages have no or limited ability to deal with continuous data. Each 

software package may have its own strengths and shortcomings. 

� Each Bayesian Network is specifically constructed for a specific or unique 

purpose/application, such that an existing Bayesian network model may not be 

applicable to other problem areas. Therefore different problem situations require 

different Bayesian networks. 

� The reliability of a Bayesian network model depends on the reliability of the elicited 

expert knowledge, which is often said to be subjective judgement or estimation.  

� The time requirements for the construction of a Bayesian network model is relatively 

high, depending on the domain experts, and other factors, including the domain itself 

(some domains may be easier to model than others), the model constructor (in terms of 

experience and knowledge), and tools used (software packages, knowledge elicitation 

tools, model construction techniques, etc), and requires a detailed analysis of the 

domain. 

 

 

2.7 BEHAVIOUR LOG ANALYSIS FOR PERFORMANCE DATA EXTRACTION  
Behaviour logs are generated as products of User Interface (UI) events which indicate user 

behaviour with respect to the components that make up an application’s UI. UI events are one 

of the broad spectrums of Human Computer Interface (HCI) events which lend themselves to 
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the techniques for collecting observational data [108]. They are relatively high frequency 

events, usually sequential, ordered by time, and atomically detailed, and provide sufficient 

data for user characterization, classification, and performance assessment, in online 

environments [108]. The events are limited by the communication window open for 

interaction between the user and the virtual environment, and constitutes of mainly mouse-

click events, with respect to application windows, and key-press events with respect to 

application input fields.  

 

The grain size of (amount of information in) a behaviour log depends on the context and the 

actions that make sense in that particular context. A behaviour log of fine grain size affords 

more opportunities for research [109] [101], while a coarse grain size log may lead to loss of 

data [109]. However, what is important is that the granularity of the log should fit its intended 

analyses [109]. Interaction events can be logged at multiple grain sizes to facilitate multiple 

types and levels of analysis and data extraction [109]. Behaviour logs may be analyzed at 

multiple levels of abstraction [108]. For instance, one may be interested in analyzing low-

level mouse movement and timing information, or one may be more interested in higher-level 

information regarding the steps taken by users in completing tasks such as placing 

components and building a circuit or adherence to safety issues in the laboratory.  

 

There is no systematic approach to behaviour log analysis, for information and data extraction 

[111][112]. Researchers resort to different approaches, with perspective on the particular 

learning setting, in order to extract the relevant performance data from students’ behaviour 

logs. “UI events provide detailed performance information that can be searched, counted, and 

analyzed, using automated techniques” [108]. “Performance data” is any information that is 

useful in measuring (or identifying potential issues affecting) the performance of a student. 

 

Many researchers are not explicit regarding their log analysis and data extraction approaches. 

Only a few highlighted their adopted approach.  [112] indicated the use of java, mySQL, and 

machine learning technique, to analyze and extract performance data, from a database of 

interaction logs, for a mathematics VLE. The author stated that the log analyzer was not an 

automated component of the virtual laboratory. [93][95] stated that, in On-Line Assessment of 

Expertise (OLAE -- an assessment tool for the problem-solving domain) presented by [95], 

equations that consist of students’ problem solution steps are recorded as they solve problems. 

The recordings are analysed off-line, using a rule-based system that compares the student’s 

problem solving behaviour step by step to the behaviour of an ideal model that solved the 
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same problem, to determine the pieces of domain knowledge used by the student. The 

identified pieces of domain knowledge used by a student are articulated for input into the 

assessment model. [92] stated that students’ learning activities, in the form of behavioural 

portfolios, are logged and stored in a database. An information retrieval facility, IBM 

textminer, is used to extract data and information on concepts of portfolios from the logs. The 

data constitutes input to a BN model that identifies students’ learning states.  

 

[108] surveyed different approaches for extracting usability-related information and data, 

from UI events logs. The adopted behaviour log analysis technique, in this context, is based 

on ideas from those approaches and is detailed in Chapter 7.  

 

 

2.8 COGNITIVE TASK ANALYSIS 
Most systems can be modelled in terms of input, output and the operations which map the 

input to the output, introducing terminologies as needed to represent desired operation and 

data constructs [113]. The design of a system for use in a cognitive task domain often requires 

the analysis of both the task procedures and the knowledge required for the performance of 

the task, as part of the operations definition, which entails Cognitive Task Analysis (CTA). 

[114] defined CTA as "the general term used to describe a set of methods and techniques that 

specify the cognitive structures and processes associated with task performance.” That is, 

CTA is the description of the cognitive abilities/skills needed to perform a task proficiently 

[115]. It aims to capture information about both the overt observable task performance 

behaviour and the covert functions behind it to form an integrated whole, in order to facilitate 

the breakdown of the procedure into discrete identifiable steps [115].  

 

CTA grew out of the need to explicitly identify and take into account the cognitive elements 

that underlie observable task performance [117]. Hence, it is seen as being rooted in cognitive 

psychology, and has been increasingly informed by advances in cognitive science. Cognitive 

psychology is devoted to the study of human cognition (the act or process of knowing, 

reasoning, and understanding, particularly as it affects learning and behaviour, and examines 

internal mental processes with respect to learning and task performance). Often, CTA uses a 

variety of techniques to capture (elicit) from domain experts, a description of the 

abilities/skills and knowledge required to perform tasks within the context of the domain. The 

description could then be used to develop or construct the intended system [115] [118].  
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There are different methods of undertaking CTA because CTA has become an important 

component for the design of systems in many domains [118]. For example, the CTA 

framework was used to develop training programs in the Air Traffic Control domain [119]. 

CTA has also proven useful in generating models of cognitive processes and human-computer 

interaction in a number of domains, including [119]: en-route air traffic control [120], air 

antisubmarine warfare [121], and naval command and control [122].  

 

The CTA framework is relevant in this context. It is used to support the construction of the 

BN-based intelligent assessment model (detailed in Chapter 4), for the performance 

assessment of students’ laboratory activities in the VEL environment. This is because, 

laboratory work, like most learning tasks, is limited by the cognitive function. Individuals 

come to a given cognitive task with differing backgrounds of internal traits/states, including 

abilities/skills, resulting from learning which support and determine the limit of individual 

performances [121].  Internal traits/states combine to produce instances of observable 

behaviour [124]. “Teaching,  learning  and  assessment  are  all  human  behaviours  and  part  

of  the  natural  subject  matter  of psychology” [125]. The next chapter (Chapter 3) describes 

the VEL and its evaluation processes and results.  

 

 

2.9 SUMMARY  
There is a large body of work on virtual laboratories for the UE course. A review of literature 

on contextually relevant virtual laboratories has been presented. The need for more 

implementation and research efforts on virtual laboratories that can emulate the traditional 

engineering laboratory has been highlighted. In addition, literature highlighted the non-

existence of assessment tools for the performance assessment of students’ laboratory work in 

the virtual laboratory environment. These identified needs and gaps in literature constitute the 

basis of the work presented in this thesis. 

 

Performance-based assessment of students’ laboratory work, based on virtual-observation, 

using a Bayesian network-based assessment model, is proposed in this thesis as an alternative 

to the written evidence and physical observation assessment techniques, for the virtual 

laboratory environment. The behaviour log is analyzed and performance data extracted for 

input into the assessment model. The strengths of Bayesian networks are harnessed to make 

inferences about students’ competencies and performances from their observed behaviour.  A 

demonstration of this proposed performance-based assessment scheme, in a VEL 
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environment, is part of the work presented in this thesis. The next chapter gives a description 

of the VEL (implemented and evaluated as part of this work), and presents the results of its 

evaluation in two different engineering faculties. 
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A first-rate laboratory is one in which mediocre scientists 
can produce outstanding work. 

Patrick M.S. Blackett 
1897 - 1974 

 

CHAPTER 3 

 THE VIRTUAL ELECTRONIC LABORATORY: 
DESCRIPTION AND EVALUATION 
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3.0 INTRODUCTION  
The Virtual Electronic Laboratory (VEL) is aimed at facilitating the increased use of 

laboratory activities in the instructional process, in order to enhance students’ understanding 

of taught concepts. In resource constrained engineering faculties, the VEL could provide 

complimentary or alternative means to deliver meaningful and effective laboratory education. 

The expected benefits of the system include availability on a one-to-one basis, reduced 

laboratory preparation time, and meaningful laboratory learning experiences for students. The 

requirements specification, descriptions, and the evaluation processes and results, of the VEL, 

are given in this chapter.  

 

First, in section 3.1, the issues put into consideration, in the design and implementation of the 

VEL, are outlined. Next, a description of the VEL is given in section 3.2. Section 3.3 

describes the evaluation of the VEL in terms of the methodology and context, sample student 

cohorts, and the process, while section 3.4 presents the data analysis. Section 3.5 highlights 

possible individual student advantage in the VEL environment in terms of learning styles, and 

students’ feedbacks are presented in section 3.6, before summarizing the chapter in section 

3.7. 

 

 
3.1 DESIGN AND IMPLEMENTATION CONSIDERATIONS  
The design and implementation of a system often necessitates the highlight of requirement 

specifications, based on the objectives, which are driven by the identified need or problem 

situation. In this context, the system requirements are: 

� Low-cost: The virtual laboratory needs to be low-cost in order to be suitable for 

deployment in resource constrained engineering faculties. Hence, the use of 

commercial software packages that may be expensive to licence is avoided. Rather, 

freeware software tools are used.  

� Portability: Portability is a software codebase feature that enables the reuse of existing 

code instead of having to create new code when moving the software from an platform 

to another. This necessitates a generalized abstraction between the application logic 

and hardware interfaces. The VEL needs to be portable so that platform will not be a 

deployment issue. Java technologies are well suited for addressing this requirement. 

� Concurrent Client/server environment:  The VEL should present a concurrent 

client/server laboratory environment where the client, the GUI, will not reside on the 

user machine to avoid making demands on users’ resources. The client/server 
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communication connection should be persistent to eliminate unnecessary server 

overhead. The VEL will be implemented using Java technologies which are well 

suited for meeting these requirements. Java eliminates most of the problems exhibited 

by codes developed in other languages, including deceptive interactivity [126]. 

� Avoidance of user interface clustering and popup windows: This is necessary in 

making user experience in the VEL environment more intuitive. To this end, the 

classical and multi-window user interface format is avoided [127]. Rather, an 

Integrated Graphical User Interface (IGUI) approach is adopted. Popup windows are 

considered to be annoying [128]. The technique of removing panes that are not 

immediately in use and replacing them with ones that are immediately in use is 

resorted to in order to avoid popup windows. A removed pane is replaced when 

required. 

� Non-complex tools and equipment: The equipment in the traditional laboratory are 

often near-research-grade complex, multi-mode, and multi-function instruments which 

are often intimidating and difficult for students to understand and use [129]. The 

instructor ends up providing a laboratory instruction sheet that is more like a “button 

pushing recipe” that impinges on the limited laboratory time slot [129].  In view of 

this, given the target students’ level and limited experience, only instruments that are 

no more complex than is necessary to undertake laboratory activities related to 

fundamental engineering concepts will be provided in the VEL environment. 

 

 

3.2 DESCRIPTION 
The VEL is based on the client/server programming concept.  The client consists of the VEL 

workbench, designed to run in a browser and provides the user with an interactive GUI with 

which to realistically construct and simulate a circuit. The components and devices required 

to build a circuit are laid out on the workbench GUI. The server facilitates user access to the 

workbench and interfaces between the workbench, and the application software that run on 

the server, including the circuit simulator and graphic tool. That is, the server acts as the 

interface between the client and the back-end applications, and facilitates the logging of user 

behavioural events. Communication between the client and the server is achieved using the 

Remote Method Invocation (RMI) java technology. Also, java DataBase Connectivity 

(JDBC) technology is used for communication with the database. The structural overview of 

the VEL is shown in Figure 3.1, which highlights the two sides of the VEL: the front-end and 

the back-end. 
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Figure 3.1: Structural overview of the VEL 
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3.2.1 The Front-end (The client-side) 

The virtual workbench front-end, the client application, consists of a java applet that provides 

a GUI for the user. Figure 3.2 shows the workbench front-end which provides the user with 

the facilities and features to perform curriculum-based laboratory activities. The breadboard, 

used for building a circuit, is placed on the workbench, and provides both vertical and 

horizontal grids, with power and ground rails. The GUI has a number of panels including: 

Components, Tools, Workbench/Graphic display, Simulation Results, and Placed 

Components panels. The Components panel holds the components’ containers. Each container 

contains a single type of component, such as resistors or capacitors, of different values. A user 

can search for, select, and pick up a component, drop a picked up component, place a picked-

up component on the breadboard, remove a placed component from the breadboard, 

reposition the pins of components placed on the breadboard, and make connections using 

wires of different colours. The components placed on the breadboard are numbered in the 

order in which they are placed, according to their component types, such as R1, R2, R3, for 

resistors, and displayed in the Placed Components panel, together with their values and the 

nodes to which they are connected. This helps the user to identify each component on the 

breadboard at any point in time and is also used for issuing commands for circuit simulation. 

 

The Tools panel contains two basic pieces of equipment: the Power Supply (PS) and the 

Function Generator (FG). The user can use either positive or negative voltage, from the power 

supply, as desired. The function generator can be set to output either a square, triangular or 

sinusoidal signal at different frequencies.  Also, located in the tools panel is the menu bar 

which consists of the clickable buttons for clearing the workbench or the breadboard, 

switching between single and cascaded breadboard, among other functions. Laboratory 

instructions are displayed in the Instruction panel. After circuit construction, simulation is 

initiated by clicking on the SIM button in the Tools panel. This triggers a number of events at 

the back-end of the virtual workbench. The simulation output is displayed on the Simulation 

Results panel. The dummy voltage source behaves as an ammeter in accordance with Spice 

Opus use syntax [130].  

 

 

 

 

 

 

 



   CHAPTER 3: THE VIRTUAL ELECTRONIC LABORATORY (VEL): DESCRIPTION AND EVALUATION 

 

45 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Tools panel 

Instructions panel 

Simulation 
Results panel 

Placed components 
panel 

Components panel 

Power Supply and 
Function      
Generator  

Menu bar  

Breadboard 

Simulation 
Commands panel 

Figure 3.2: The VEL GUI 
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The events tracker/recorder in the VEL environment tracks and records students’ behavioural 

events, with respect to the VEL GUI components and input fields. Figure 3.3 shows a sample 

events listing. On completion of a laboratory activity by a student, the behaviour log is sent to 

the server for storage, for analysis and extraction of performance data. 

 

1242223587571  SINGLE_BB_BUTTON_CLICKED  COMPONENT_VOID : VALUE_VOID   MOUSE                            
1242223587742  SINGLE_BB_BUTTON_HOVER  COMPONENT_VOID : 421ms   MOUSE                                   
1242223587898  DOUBLE_BB_BUTTON_HOVER  COMPONENT_VOID : 141ms   MOUSE                                   
1242223593229  COMPONENT_ICON_CLICKED  Capacitor : 6.8µF   MOUSE                                        
1242223595021  FIRST_CONNECTION_POINT_CLICKED  Capacitor : 6.8µF   MOUSE                                
1242223596096  SECOND_CONNECTION_POINT_CLICKED  Capacitor : 6.8µF   MOUSE                               
1242223598762  RESISTOR_CONTAINER_SCROLLBAR_PRESSED  COMPONENT_VOID : VALUE_VOID   MOUSE                
1242223608051  RESISTOR_CONTAINER_SCROLLBAR_RELEASED  COMPONENT_VOID : VALUE_VOID   MOUSE               
1242223608518  COMPONENT_ICON_CLICKED  Resistor : 470.0?   MOUSE                                        
1242223609750  FIRST_CONNECTION_POINT_CLICKED  Resistor : 470.0?   MOUSE                                
1242223612508  SECOND_CONNECTION_POINT_CLICKED  Resistor : 470.0?   MOUSE                               
1242223615937  FUNCTION_GENERATOR_SIGNAL_TERMINAL_CLICKED  AC_Signal : VALUE_VOID   MOUSE               
1242223617247  FIRST_CONNECTION_POINT_CLICKED  AC_Signal : 1.0V   MOUSE                                 
1242223618712  SECOND_CONNECTION_POINT_CLICKED  AC_Signal : 1.0V   MOUSE                                
1242223628562  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223629450  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223629965  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223630479  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223630697  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223630915  CLICK_ON_WORKBENCH  COMPONENT_VOID : VALUE_VOID   MOUSE                                  
1242223634095  VIEW_PLOTTED_GRAPHS_BUTTON_HOVER  COMPONENT_VOID : 140ms   MOUSE                         
1242223641514  RESISTOR_COLOUR_CODE_CALCULATOR_BUTTON_CLICKED  COMPONENT_VOID : VALUE_VOID   MOUSE      

 

Figure 3.3: Sample listing of events log 
 

 

3.2.2 The Back-end (The Server-side) 

The sequence of events that take place on the server-side, on invocation of the circuit 

simulator, are highlighted graphically in the upper part of Figure 3.1. At the backend, on the 

server machine, the server program and other applications sofware, including the simulation 

software package, SpiceOpus [131], and the graph plot software, Gnuplot [132], run. Also 

running on the server is the DataBase Management System (DBMS), MySQL, and the web 

server, Apache, under XAMPP [133], an integrated server package. SpiceOpus, Gnuplot, and 

XAMPP are freeware software tools. 

 

On completion of circuit construction, and receipt of a circuit simulation invocation call from 

the client, the schematic of the constructed circuit and the simulation commands are captured 

and sent to the server where they are used to generate a netlist for input to the simulator. 

When the simulation of the circuit is complete, the results are returned to the client for display 

in the Simulation Results panel. The Simulation Results panel displays the numeric 

simulation results. Any generated graphs are displayed on the workbench. The breadboarded 

circuit on the workbench is removed and the graphic displayed on the workbench. After the 

graphic display, the breadboarded circuit is returned to the workbench and the user can 

resume working on it as desired.  
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3.2.2 Netlist Generation 

A captured circuit schematic contains the list of components used to construct the circuit and 

their contact positions on the breadboard. Essentially, a schematic is a set of vectors of the 

form (<Component Name>, <Component Value>, <x1>, <y1>, <x2>, <y2>), where the x1, 

y1 and x2, y2 pairs indicate the first and second contact positions (coordinates) on the 

breadboard respectively. One aim of the netlist generation process is to covert the x1, y1 and 

x2, y2 pairs to actual node positions on the circuit. Three main steps are involved in the netlist 

generation process: 

� wire removal (circuit collapse). 

� nodes identification and node number assignment. 

� components’ left and right nodes number assignment based on their contact positions. 

First, a temporary netlist is generated and passed to a verifier which checks the file for errors 

and ensures that it meets the netlist requirements for Spice Opus before the final netlist file is 

created and passed to the simulator, which simulates the circuit and returns results to the 

server. The Netlist holds the circuit information (circuit topology, components types and 

values) required by Spice Opus for the simulation process. A netlist is a set of vectors of the 

form: (<Component Name> <Node left> <Node right> <Value> <Unit>). Figure 3.4 shows a 

sample circuit schematic and Figure 3.5 shows the same circuit after wire removal and node 

number assignment. The nodes are numbered 0 to 7 with thick black dots indicating the 

nodes. The netlist file description of the circuit is listed in Table 3.1.   

 

 

Figure 3.4: Sample circuit schematic 
(Adapted from [Harb, 2000]) 
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Figure 3.5: The sample circuit schematic after wire removal and node number assignment 
 
 

Table 3.1: Netlist file description of the circuit of Figure 3.4. 
 

 

 

 

 

 

 

 
 

 
3.3 EVALUATION  
 
3.3.1 Methodology and Context 

Carefully designed laboratory activities are required for the effective use of the VEL. They 

can make invaluable contributions to students’ learning [26]. The onus is on the instructor to 

design laboratory activities that promote students’ understanding of concepts and to ensure 

that each practical exercise fits in with the overall aims of its focus course unit. Ideas and 

practical guides for this have been given by [2].  

 

For instance, the instructor can methodically group the contents of a course unit into 

knowledge goals. Each knowledge goal can have a set of outcome and pre-requisite concepts. 

The latter are the concepts learners should have prior knowledge of, as “stepping stones” for 

learning the outcome concepts. The instructor can design concept-based laboratory activities 

and group them into sessions. Each laboratory session can address a specific knowledge goal 

while one or more laboratory activities in a session can address aspects of an outcome 

vcc 1  0  dc  12V 
r1   1   2    2.2k 
r2   2   3    2.2k 
r3   1   4    4.7k 
r4   4   3    4.7k 
r5   4   5    2k 
r6   5   6    2k 
r7   3   7    2k 
r8   7   6    2k 
r9   6   0    2k 
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concept, with clear learning objectives. Learning objectives are essential in applying an 

effective system of assessment [10]. This approach ensures that students carry out concept-

based laboratory activities aimed at enhancing their understanding of the concept. An example 

of a knowledge goal is Filters whose outcome concepts include notch, low-, high-, and band-

pass passive RC filters, at the fundamental level (see Table 3.2).  

 

Table 3.2:  A knowledge goal and its outcome and pre-requisite concepts 

S/No.
Knowledge Goal:  Passive RC Filters

Outcome Concept Pre-requisite

1 Low pass filter
R, L, C circuit 
components 

characteristics.
RC, RL, RCL 

circuits

2 High pass filter

3 Band pass filter

4 All pass filter

5 Band reject (Notch) filter

S/No.
Knowledge Goal:  Passive RC Filters

Outcome Concept Pre-requisite

1 Low pass filter
R, L, C circuit 
components 

characteristics.
RC, RL, RCL 

circuits

2 High pass filter

3 Band pass filter

4 All pass filter

5 Band reject (Notch) filter
 

 
 

Along these lines, a set of laboratory activities aimed at enhancing students’ understanding of 

passive RC filters were designed, to be undertaken by students in the VEL environment. The 

activities were designed around two related course units in two different engineering faculties 

at two separate Universities:  

1. a 2nd year unit on Analogue Electronics and Circuits at the ECE department of 

University of Portsmouth (UoP). An aspect of the unit involves the design, building 

and analysis of passive RC filter circuits.  

2. a 3rd year unit on Engineering Studio and Network Theory, at the EEE department of 

UTON, which addresses passive RC filters as part of its contents. 

This was to facilitate the evaluation of the VEL at both Universities, using the same set of 

laboratory activities, Pre-Test and Post-Test (PTPT) and feedback form, albeit at different 

time periods. 

 
 
3.3.2  Sample Student Cohorts 

At UoP, only 30% of the class that took the analogue electronics and circuits unit volunteered 

and participated in the evaluation exercise (NP = 9).  At UTON, most of the students that took 

the course unit on engineering studio and network theory were willing and eager to participate 

in the evaluation exercise, but participation was limited to only 13% of the students (NF = 52) 

for cost and logistic reasons. The UTON students were selected on a first-come-first-join 
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basis. The UoP and UTON student cohorts make up the total sample (N = 62). The gender 

distribution of the student cohorts were: 11% female (n = 1) and 89% (n = 8) male in the UoP 

cohort; and 10% (n = 5) female and 90% (n = 47) male in the UTON cohort. The samples did 

not include physics students and students from other fields of engineering who took the units 

as electives or compulsory units. All were undergraduate EEE (at UTON) and ECE (at UoP) 

students.  

 
 
3.3.3  Evaluation Process 

The aim of the evaluation process was to verify the effectiveness of the VEL as a tool for 

enhancing students’ understanding of fundamental engineering concepts taught in lectures. 

PTPT observation technique was used to generate data for statistical analysis. PTPT is a 

widely used evaluation/assessment technique and is accepted as a reliable means of assessing 

learning and changes in knowledge [134][135]. Its use cuts across numerous disciplines. 

PTPT assessment is objective and offers a valuable set of data for evidencing increased 

knowledge with respect to specific concepts [135].  

 

The PTPT consisted of Multiple Choice Items (MCIs). The items had the correct answer and 

three distracters for answer choices. The distracters were equally plausible, but incorrect and 

students were not timed for their responses to the items. The items were instruments designed 

as part of this work, in consultation with domain experts, course syllabi, proposed goals and 

course objectives. Despite the contested suggested limitations of MCIs, they are being 

increasingly used in higher education, as a result of growing student numbers, reduced 

resources and increasing use of new technologies [136]. Moreover, MCIs afford opportunities 

for rapid feedback and savings in marking time. Also, there was need to take advantage of the 

fact that the feedback provided by MCIs can be predetermined during test construction. [17], 

in addition to many other researchers, used the MCI-based PTPT technique for evaluating 

students’ learning before and after an educational intervention. 

 

Both student cohorts had taken lectures on passive RC filters, having learnt the pre-requisite 

concepts earlier. A pre-test was used to evaluate the students’ knowledge of the addressed 

concept(s) before undertaking the laboratory activities in the VEL environment. Pre-testing 

was done after the addressed concepts had been taught in lectures, but before the students 

were exposed to the VEL environment. After taking the pre-test, the students then went ahead 

to undertake a set of laboratory activities in the VEL environment. The laboratory activities 

were designed to address four types of passive RC filter concepts: low-pass, high-pass, band-
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pass, and notch. The PTPT were constructed to elicit students’ knowledge of these filter 

concepts. The students undertook the laboratory activities at their own pace. The researcher 

and other persons were available to offer students necessary support. In addition, the students 

were provided tips and procedure on the usage of the VEL.  

 

The students were aware that their work processes were being unobtrusively “observed” and 

logged.  As sample screenshots, Figure 3.6 shows one of the laboratory activities undertaken 

by students and Figures 3.7 and 3.8 show a student’s built circuit and graphical output, 

respectively, while undertaking the laboratory activity of Figure 3.6 in the VEL environment. 

The graphical output of Figure 3.8 was produced for the frequency range of 1000 (start 

frequency) to 10000 (end frequency), at 50 points per decade. On completion of the 

laboratory activities, in addition to taking a post-test, the students anonymously completed a 

usability feedback instrument.  

 

The post-test was used to assess the impact of undertaking the laboratory activities in the VEL 

environment, on the students’ learning of the addressed concept(s). The aim was not only to 

assess whether the educational intervention had had, possibly, a positive impact on the 

students’ understanding of the addressed concepts, but also, to be able to quantify the impact. 

The post-test was administered immediately, on completion of the laboratory activities. The 

post-test items contained nearly twice as many items as the pre-test. All the items in the pre-

test were included in the post-test, in addition to other items that assessed the same expected 

learning outcomes.  
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ACTIVITY-504: Passive RC Filters:  Notch filter.
AIM: To study the filtering characteristics of  Notch RC filter

Design a twin-T passive notch filter (RC only) capable of rejecting frequencies
in the 3KHz to 3.5KHz frequency band (see the figure below). Assume C = 1µF.

1.   Build the filter you have designed on a breadboard. Using a sinusoidal signal
source of 1Vrms value, generate the frequency response curve for the circuit 
(without loading the circuit). 

2. Load the circuit you have built with a 1 KΩ resistor and generate the 
frequency response curve of the loaded circuit. 

a.) Use a single word to describe the shape of the curve generated.
b.) Is the frequency response of the filter affected by the load?
c.) If the answer to question b.) is yes, state how.

3. Reading the curve of the frequency response, what is the maximum rejection 
frequency?

Passive RC notch filter

ACTIVITY-504: Passive RC Filters:  Notch filter.
AIM: To study the filtering characteristics of  Notch RC filter

Design a twin-T passive notch filter (RC only) capable of rejecting frequencies
in the 3KHz to 3.5KHz frequency band (see the figure below). Assume C = 1µF.

1.   Build the filter you have designed on a breadboard. Using a sinusoidal signal
source of 1Vrms value, generate the frequency response curve for the circuit 
(without loading the circuit). 

2. Load the circuit you have built with a 1 KΩ resistor and generate the 
frequency response curve of the loaded circuit. 

a.) Use a single word to describe the shape of the curve generated.
b.) Is the frequency response of the filter affected by the load?
c.) If the answer to question b.) is yes, state how.

3. Reading the curve of the frequency response, what is the maximum rejection 
frequency?

Passive RC notch filter
 

Figure 3.6: One of the laboratory activities undertaken by students in the VEL environment 
 

 

 

Figure 3.7: A student’s built circuit for the laboratory activity of Figure 3.6, in the VEL 
environment 
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Figure 3.8: A student’s graphical output for the laboratory activity of Figure 3.6 
 
 
 
3.4 DATA ANALYSIS 
The UoP and UTON student cohorts’ PTPT scores are shown in Appendix A, Tables A1 and 

A2, respectively. The Statistical Analysis Method (SAM) and the Concentration Analysis 

Method (CAM) were undertake with the PTPT scores and responses, respectively. The aim of 

the analyses was to highlight the impact of the educational intervention on students’ learning, 

individually (using SAM) and collectively as a cohort (using CAM). Both analysis methods 

have been used by researchers in various contexts. The SAM needs no further introduction 

because of its commonality and wide disciplinary application. The CAM, more commonly used 

by physics researchers, was used, by [137], for the analysis of students’ responses to the Force 

frequency 
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Concept Inventory, a multiple-choice test designed to categorize students' understanding of 

basic Newtonian physics concepts. [138] and [139] used the CAM to investigate students’ 

grasp of some of the basic concepts of force and motion. It was used, in this context, to 

investigate the collective impact of the use of the VEL, on each of the two student cohorts, by 

analysing the students’ responses to the PTPT items designed to elicit their knowledge of passive 

RC filters.  

 

The CAM analysis is important because, students’ responses to multiple choice tests contain 

valuable information about their knowledge which may not be highlighted by the traditional 

SAM analyses of multiple-choice tests that focuses only on students’ scores. The distribution 

of their responses can yield information on the collective knowledge state of the cohort and can be 

used to assess their collective learning [140]. In the realm of cognitive psychology, learning is 

an active and constructive mental process.  Individuals perceive, process, store, and respond 

to information based on their internal mental states related to that piece of information [141]. 

Hence, individuals come to a given cognitive task with differing backgrounds of mental states 

resulting from learning [121]. The set of an individual’s mental states, related to a particular 

concept, collectively constitute the individuals’ knowledge state for the concept. The different 

pieces of mental states in the set constitute the fragments of the knowledge state for the 

concept and inform the individual’s responses to tasks and tests items related to the concept. 

[137] asserted that students with similar knowledge states, with respect to a concept, are 

expected to respond to the same set of test items, designed to elicit their knowledge of the 

concept, in a relatively uniform manner; otherwise, their responses are expected to be 

“logically inconsistent, guided by a multiplicity of fragmented interpretations or ideas of the 

concept”. 

 

 

3.4.1  Statistical Analysis 

 
3.4.1.1  Gain Analysis  
Numerical summaries and Figures 3.9, 3.10, 3.11 and 3.12, on the face value, indicate 

improvement in the students’ knowledge of the addressed concepts.  Figures 3.9 and 3.10 

diagrammatically represent the UoP cohort’s PTPT scores and percentage gain, respectively, 

while Figures 3.11 and 3.12 represent the UTON cohort’s PTPT scores and percentage gain, 

respectively. Percentage gain, in this context, refers to the difference between the pre-test and 

post-test percentage scores of a student.  The P05, P06, P07, P09, P10, P11, P12, P13, and P14 

labels in Figure 3.9 represent the user identities assigned to the UoP participating students. The 
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user identities do not necessarily need to be in a serial order as is the case for the UTON 

participating students (Figure 3.11). The requirement is that each user identity is unique. 

 

Collectively, 79% (n = 48) showed enhancement in their knowledge and understanding of the 

addressed concepts. 10%  (n = 6) of the total student sample actually showed “decline” in 

knowledge, while 11% (n = 7) seem to have failed to benefit from the laboratory activities and use 

of the VEL, which may be attributed to lack of interest and commitment, except for the one UoP 

student with PTPT scores of 91%.  
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Figure 3.9: UoP cohort’s pre-/post-tests scores 
 

 

 

Figure 3.10: UoP cohort’s percentage knowledge gain scattergram 
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The reasons behind the “decline” in knowledge were not investigated as part of this work. 

However, there is the possibility that the affected students may have undertaken the laboratory 

activities or responded to the test items randomly, without commitment. This raises the issue of 

the realness of students’ engagement in using a VLE. If they engage on an artificial, contrived 

level rather than on a deep, authentic level, then their learning experience will not be meaningful 

[143]. This is to be expected and probably representative of normal student performance. The 

mean percentage gains of the student cohorts, 18.89% (for UoP) and 24% (for UTON) are 

encouraging, but tests for statistical significance are necessary. 
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Figure 3.11: UTON cohort’s pre-/post-tests scores 
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Figure 3.12: UTON cohort’s percentage knowledge gain scattergram 
 

 
 
3.4.1.2  Tests for Statistical Significance  

The data was subjected to two-tailed t-test, with α = 0.05. The aim was to statistically 

compare the post-test mean scores, µP2 and µF2, to the pre-test mean scores, µP1 and µF1. µP1 

and µP2 are the UoP pre-test and post-test mean scores, respectively, while µF1 and µF2 are the 

UTON pre-test and post-test mean scores respectively. The aim of the test was to determine 

the value of the probability associated with the differences between the mean scores of the 

two student cohorts, in order to find out whether there exists statistically significant difference 

between them. In order to do this, it was hypothesized as follows:  

 
1. UoP Hypothesis: 

H0: µP2 - µP1 = 0  (difference in mean scores is insignificant)  

H1: µP2 - µP1 ≠ 0 (difference in mean scores is significant) 

 
2. UTON Hypothesis: 

H0: µF2 – µF1 = 0 (difference in mean scores is insignificant) 

H1: µF2 – µF1 ≠ 0 (difference in mean scores is significant) 

 

The descriptive statistics for the pre-test and post-test scores, and the results of the tests for 

statistical significance are shown in Table 3.3. The UoP results, t(8) = 3.459 and p = 0.00859, 

compels the rejection of the UoP null hypothesis, indicating that the difference between the 

UoP pre-/post-test mean scores is statistically significant. Similarly, t(51) = 6.804 and p = 

0.000137, indicate that the difference between the UTON cohort’s pre-/post-test mean scores 
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is also statistically significant. This implies that the VEL has the capacity to enhance learning 

in a non-traditional manner. It can therefore, be suggested that the VEL can be effectively 

integrated in the laboratory education of students for the enhancement of their understanding 

of taught concepts.  

 

 

Table 3.3: Statistical significance test results 

0.000137P two-tailed

2.00758t critical two-tailed

6.8038t

5252Count (NF)

16.1814.75STD

56.0240.75Mean

UTON

0.00859P two-tailed

2.306t critical two-tailed

3.4586t

99Count (NP)

13.8814.30STD

77.8961.89Mean (µ)

UoP

Post-testPre-testMeasureCohort

0.000137P two-tailed

2.00758t critical two-tailed

6.8038t

5252Count (NF)

16.1814.75STD

56.0240.75Mean

UTON

0.00859P two-tailed

2.306t critical two-tailed

3.4586t

99Count (NP)

13.8814.30STD

77.8961.89Mean (µ)

UoP

Post-testPre-testMeasureCohort

 
 

 

The Welch-Aspin procedure [144], based on pooled variance estimate, was used to investigate 

the performance differences between the two student cohorts.  The test showed that the 

difference between µP1 and µF1 was statistically significant (t*(9, 52) = 4.08; p = 0.002). So 

also was the difference between µp2 and µF2 (t*(9, 52) = 4.25; p = 0.001). It was also sought to 

find the association between the percentage knowledge gain and total time on the task, using 

bivariate analysis, in the form of Pearson product-moment correlation measure. There was a 

weak positive correlation between them (r = 0.0897) which was not significantly different 

from zero (p = 0.486), which implies that percentage knowledge gain is independent of the 

time on task. 
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3.4.2  Concentration Analysis 

As stated at the beginning of section 3.4, the CAM, by [140] , was used in this context, to 

analyse the students’ responses to the PTPT items in order to determine the collective impact of 

the use of the VEL, on each of the two student cohorts. The analysis yielded useful results, 

highlighting interesting themes.  

 

Students’ responses to each item in a test are considered to be the results of the application of 

their knowledge states for the addressed concept.  Each item has associated with it a fragment of 

the knowledge state required to answer that question correctly.  If a multiple-choice item is 

designed with the knowledge state fragment required to answer it correctly as one of the choices 

for the item, while the distracters are equally plausible but incorrect and constitute 

misconceptions, student responses should be concentrated on the correct choice if they are 

applying the correct knowledge state fragment in responding to the item. However, if students 

have little knowledge of the concept, their responses may be close to a random distribution 

among all the choices. As an example, Table 3.4 lists an arbitrary sample set of 100 students' 

response distributions to a set of 5-choice multiple-choice test item.  

 

 

Table 3.4: An arbitrary sample set of students' response distributions for test items 
(Adopted from [Digironimo, 2007]) 

0000100III

55301050II

2020202020I

EDCBA

Item ChoiceResponses 
Distribution

Type

0000100III

55301050II

2020202020I

EDCBA

Item ChoiceResponses 
Distribution

Type

 

 

 

The way in which the students’ responses are distributed can yield information on the 

students’ knowledge states. If the students get low scores, their responses are typically either 

evenly distributed among the different distracters or concentrated on one or two of the 

distracters.  Highly concentrated responses to an item imply that many students are applying a 

common fragment of the knowledge state associated with the concept; randomly distributed 

responses indicate less uniformity in reasoning, highlighting possible lack of clue and guessing on 

the part of the students [137]. The formula and details of the concentration analysis method are 

given in Appendix B2, while the student cohorts' response distributions to the pre- and post-test 

items are given in Appendix B3.   
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The CAM uses a synergy of the Score (S), and the Concentration Factor (C), both of which are 

functions of the students’ responses, to derive the Students’ Response Patterns (SRPs) for each 

item in a test. It requires that the pre-test and post-test instruments contain the same items, in 

the same order. In this context, the post-test contained nearly twice as many items as the pre-

test, where all the items in the pre-test were included in the post-test, in addition to other 

items that assessed the expected learning outcomes. For the purposes of the analysis, pre-test 

items component of the post-test were extracted, in order, and students’ responses to the items 

matched against their responses to the pre-test items. The results of the CAM analysis, in 

terms of the students' S, C, and SRP distributions for the pre-test items and their corresponding 

post-test items, are highlighted and discussed in Appendix B 3. Table 3.5 presents a summarized 

view of the results, with respect to the defined SRPs (see  [140]), what the SRPs indicate, the 

number of the SRPs in the UoP and UTON cohorts’ responses to the pre- and post-test test items, 

and remarks. The remarks relate the indications for an SRP to each cohort’s performance for the 

items with the SRP.  
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Table 3.5: Concentration analysis of students' responses to the pre- and post-test items. 

Students’ 
Response 
Pattern 
(SRP) 
with 

respect to 
a test 
item 

Indication 

UoP 
Tests Outcome 

UTON 
Tests Outcome 

Remarks 

No of 
the 

SRP  
in the  
Pre-
Test 

No of 
the 
SRP  
in the  
Post-
Test 

No of 
the 

SRP  in 
the 
Pre-
Test 

No of 
the 

SRP  in 
the  

Post-
Test 

HH 

Most of the students generally have one 
dominant knowledge state fragment 
with respect to the item. This one 
dominant knowledge fragment the 
students have is the correct knowledge 
fragment required to respond correctly 
to the item 
 
 
 
 

4 7 0 4 

UoP:  For 4 of the items, most of the students had the 
one correct knowledge fragment, before the 
educational intervention. After the education 
intervention, the number of items for which 
most of the students had the one correct 
knowledge fragment increased from 4 to 7, 
indicating improved learning. 

 
UTON: Before the educational intervention, there 

was no item for which most of the students had 
the one correct knowledge fragment for the 
item. After the education intervention, the 
number of items for which most of the students 
had the one correct knowledge fragment 
increased from 0 to 4, indicating improved 
learning. 

MM 

 
Most of the students generally have 
either of two dominant knowledge state 
fragments. Of these two knowledge 
state fragments that most of the students 
have, one is the correct knowledge state 
fragment required to respond correctly 
to the item, while one is the wrong 
knowledge state fragment and will lead 
to incorrect responses to the item. 

5 3 4 1 

UoP:  The number of items for which over 30% of 
the students had an incorrect knowledge 
fragment was reduced from 5 to 3, indicating 
improved learning. 

 
UTON: The number of items for which over 30% of 

the students had an incorrect knowledge 
fragment was reduced from 4 to 1, indicating 
improved learning. 

LH 

 
Most of the students generally have one 
dominant knowledge state fragment 
with respect to the item. This one 
dominant knowledge fragment the 
students have is incorrect and will lead 
to incorrect responses to the item. 
 

1 0 0 1 

 
UoP:  The one dominant incorrect knowledge 

fragments most of the students had  for one of 
the test items, before the educational 
intervention, was corrected after the education 
intervention, indicating improved learning. 

 
UTON: For one of the test items, the students had no 

dominant incorrect knowledge fragment, before 
the educational intervention, but the students 
acquired an incorrect knowledge fragment for 
the item after the education intervention, 
indicating reverse learning. 

LM 

Students have two dominant incorrect 
knowledge state fragments 
 
Most of the students generally have 
one of two wrong ideas 

1 1 1 0 

 
UoP:  The two different incorrect knowledge 

fragments most of the students had  for one of 
the items before the educational intervention 
was not corrected after the education 
intervention, indicating no learning. 

 
UTON: The two different incorrect knowledge 

fragments most of the students had for one of 
the items before the educational intervention 
was corrected after the education intervention, 
indicating improved learning. 

LL 

 
Most students generally have one of 
three or more different knowledge state 
fragments, somewhat evenly 
represented among the student cohort. 
These three or more different 
knowledge state fragments may or may 
not include the correct knowledge state 
fragment required to respond correctly 
to the item. This often implies that the 
students generally have no clue and 
are guessing the answer to the item. 
 

0 0 6 1 

 
UoP:  No guessing of responses to any of the test 

items before and after the educational 
intervention. 

 
UTON: The number of items for which most of the 

students were guessing without a clue was 
reduced from 6 to 1, indicating improved 
learning. Students became surer of their 
responses to the items, 
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Table 3.5, indicates that the usage of the VEL had improved learning impact on both student 

cohorts, and more especially on the UTON cohort, which reinforces the results of the statistical 

analysis method. The outcome of the analysis has implications for instruction in that the SRPs 

inform the instructor of aspects of the addressed concept that require further instructional 

attention. For example, in Table 3.5, the SRP, LH, did not occur at all in the pre-test response 

patterns of the UTON student cohort, but occurred once in their post-test response patterns (for 

the item, Question Q6, in Table B3.2, Appendix B3). This indicates that the instructor may need 

to further address aspects of the concept represented by that item, for the UTON cohort. Also, the 

SRP, LM, occurred once (for the item, Question Q6, in Table B3.1, Appendix B3) in the pre-test 

response patterns of the UoP student cohort, and occurred again (for the same item, Question Q6, 

in Table B3.1, Appendix B3) in their post-test response patterns. This indicates that the instructor 

may need to further address issues related to that item, for the UoP student cohort, because of the 

implication of its repeated occurrence in both their pre- and post-test response patterns, for the 

same item. The implication is that most of the UoP students had one of two incorrect knowledge 

fragments about the aspect of the addressed concept represented by the item (Question Q6), and 

undertaking laboratory activities designed to enhance students understanding of the concept failed 

to correct the students’ incorrect knowledge fragment for the aspect of the concept. 

 

 

3.5 INDIVIDUAL STUDENT ADVANTAGE IN THE VEL  ENVIRONMENT  
Students learn in many different ways [86]. How much a student learns depends on the 

compatibility of the student’s  Learning Style (LS) with the learning environment [85]. A student 

may find a learning environment more favourable, in comparison to others, in terms of 

learning gains, based on his/her LS preferences, which will impact on his/her performance 

[145] [146]. Hence, LS preferences form a basis upon which to assess the relevance and 

impact of the VEL usage. The student cohorts completed the Index of Learning Styles (ILS) 

instrument by [86]. The ILS was specifically proposed for engineering students and is used to 

classify a student on a 4-dimension LS preference scale. The dimensions represent the 

[85][86] [147]:  

1. type of information readily perceived by a student (the preferred information type): 

sensory and/or intuitive.  

2. way a student best receives information (input or communication channel): visual 

and/or verbal.  

3. way a student processes perceived information (processing): active and/or reflective.  
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4. way a student progresses/works towards understanding perceived information 

(progression towards understanding): sequential and/or global.  

The results of the analysis of the ILS instrument highlighted the following distribution for 

students’ distinct LS preferences for the scales: Sensory 33%, Intuitive 20%; Visual 57%, Verbal 

13%; Active 21%, Reflective 16%; Sequential 23%, Global 13%. It was found that the results 

corroborates the findings, by [148] [149] and [150], that engineering students typically have 

preferences towards Sensory, Visual, and Active learning styles. 

 

 Positive relationships were found between percentage knowledge gain and degrees of preference 

of the following LS dimensions: sensory (r = 0.143, p = 0.547); intuitive (r = 0.214, p = 0.504); 

verbal (r = 0.20, p = 0.635); and sequential (r = 0.157, p = 0.591), but none of the relationships 

was statistically significantly different from zero. The relationship between students’ ease of use 

and enjoyment of use of the VEL (based on their responses to the feedback questions relating to 

these issues) and the LS scales was also investigated. There was a statistically significant 

correlation between quantitative responses to the question on ease of use and scores on: Sensory 

LS scale (r = 0.358, p = 0.132), and Visual LS scale (r = 0.188, p = 0.279). Also, there was a 

statistically significant correlation between quantitative responses to the question on whether the 

students enjoyed using the VEL and scores on the Sensory LS scale (r = 0.325, p = 0.175). This is 

not surprising because, according to [85], sensory learners tend to be practical oriented and are 

more likely to enjoy hands-on sessions. The correlation between ease of use and scores on the 

Visual LS scale corroborates the statistically significant correlation finding, between scores on the 

Visual LS scale and responses to a question concerning student comfortableness using the 

Universal Virtual Laboratory (UVL) [55] (r = 0.227 and p = 0.019). This implies that students 

who expressed preference for diagrammatic, pictorial and demonstration information sources find 

it easier to use virtual laboratories. 

 

 

3.6 FEEDBACK  FROM STUDENTS 
Usability feedback was elicited from students, using a 1-5 Likert instrument. [151] stated that 

Likert scale “is the most commonly used question format for assessing participants' opinions 

of usability”. This is probably because they are much easier to construct and more reliable 

than other scales with the same number of items [152]. According to [153], “the simplicity 

and ease of use of the Likert scale is its real strength”.  
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The collective responses of the students (N = 61) indicate an overall positive reaction. 90% (n 

= 55) said that the use of the VEL enhanced their understanding of the concepts addressed by 

the laboratory activities.  This is reflected in the pre-/post-test scores. 85% (n = 52) of the 

students said the VEL was easy to use and 97% (n = 59) said they enjoyed participating in the 

evaluation exercise and using VEL. 98% (n = 60) agreed that they would recommend the 

VEL for use by students. The overall rating of the VEL was encouraging.  

 

Students’ comments were uniformly and overwhelmingly positive, eager and enthusiastic, 

especially at UTON, where the VEL was well received. Comments about the best aspects of 

the VEL reflected the ability to construct and simulate circuits realistically without the need 

for real equipment. The students’ opinions and comments indicated that the VEL, in the 

words of the students: 

1. is user friendly, does not waste components, is quick to plot graphs and see results in 

real-time. “It is easier to use than fiddling with real components”. 

2. is realistic, demonstrates real-life circuit building, and “makes practicals more real-life 

than any other electronic software I know”. 

3. “will enhance our performance in laboratory” and “if implemented in our school will 

really enhance our understanding of electrical networks”. 

4. “makes room for classes with numerous students like ours to participate individually and 

actively in laboratory exercises”, “a good way to understand basic principles before 

exploring it further in detail”. It is “a very good learning tool and helps to develop 

students’ knowledge before and after lectures”. 

 

The participants suggested that the VEL should include:  

1. fault detection and correction: ability to point out errors in a breadboarded circuit and 

suggest possible solutions about the errors, with sound alert for wrong connections.  

2. clickable buttons for simulation commands instead of having to enter the simulation 

commands. 

3. Integrated Circuit (IC) components and micro-controllers. 

4. the ability to remember previously selected/placed components and their values, and the 

facility for students to ask questions and/or be asked questions, and be given suggestions 

and answers to questions.  

It is worth noting that the VEL is a laboratory environment and not an Intelligent Tutoring 

System (ITS) as some of the students recommendations are wont to suggest. In future, the 
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VEL can be improved upon to incorporate ICs for building circuits, among other possible 

improvements.  

 

 

3.6 SUMMARY  
The VEL has been described and subjected to evaluation studies on two separate occasions 

with different student cohorts. The aim of the study was to evaluate the VEL as a tool for 

facilitating students’ enhanced understanding of fundamental engineering concepts taught in 

lectures, using carefully planned laboratory learning scenarios. PTPTs were used to assess and 

quantify the students’ knowledge states before and after undertaking concept-based laboratory 

activities in the VEL environment. The analysis of the evaluation data showed that the 

remarkable positive differences in the students’ knowledge states, before and after the 

educational intervention, did not occur by chance. This implies that the VEL has the capacity 

to enhance learning, in the light of appropriate learning scenarios. Furthermore, the observed 

performance differences between the student cohorts and the greater improvement in learning 

by the UTON cohort combine to reinforce the highlighted need for complements and/or 

alternatives to the traditional engineering laboratory in faculties challenged by resource 

constraints and/or large class sizes, which is often the case for faculties in developing 

countries.  

 

The use of the same set of laboratory activities to evaluate the VEL in two different 

Universities reinforces the uniformity of fundamental engineering concepts and indicates that 

the manner in which the VEL can be integrated into laboratory learning is not faculty or unit 

specific and does not require adaptation. The VEL could also be useful in secondary schools’ 

science laboratories, and other engineering laboratories colleges and polytechnics without 

adaptation. The feedback responses suggest a generally positive and enthusiastic attitude to 

the VEL. It was well received and acknowledged as a tool with which to realistically 

undertake curriculum-based laboratory activities. The next chapter details the construction of 

the assessment model, for the performance assessment of students’ laboratory work in the 

VEL environment. 
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Intelligence is what you use when you don't know what to do. 
Jean Piaget, 
1896 - 1980 

CHAPTER 4 

 BAYESIAN NETWORK-BASED INTELLIGENT 
ASSESSMENT MODEL: STRUCTURE 
REALISATION AND CALIBRATION  
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4.0 INTRODUCTION  
The intelligent assessment model is aimed at providing the instructor a tool that facilitates the 

timely, consistent, and fair performance assessment of students’ laboratory work. The model 

is Bayesian Network (BN) –based and its construction entails two main tasks: definition of 

the model structure, and the calibration (parameterization) of the model. This chapter details 

the construction of the assessment model. 

 

First, the derivation of the foundational framework is detailed in section 4.1. Section 4.2 

describes the process of realization of the model structure, while section 4.3 details its 

calibration process. The chapter is summarized in section 4.4. 

 
 
 
4.1 THE MODEL FOUNDATIONAL FRAMEWORK  
 

4.1.1 Psychology of Learning: the Basis for Derivation of the Foundational Framework 

Psychology of learning (focused on understanding how the learning process works and the 

effect of learning on behaviour) provides the base framework for the assessment model. There 

is a large amount of literature on learning, learning theories, and learning models. Learning 

theories and models are ideas about how learning may happen (conceptualization of the 

learning process), and are meant to be applied in the instructional process, in order to facilitate 

learning by instruction and assessment [153]. Assessment drives learning [40]. Researchers 

give different definitions of learning, each emphasizing different aspects [155]. These 

differences in emphasis reflect the multidimensional nature of learning and the difficulty of 

having a single definition or model that will satisfy different purposes and learning situations 

[155]. The goal herein is not a detailed discussion of learning theories and models, as that is 

outside the scope of this thesis. It is instead, to integrate aspects of literature on learning in 

order to derive a foundational framework for realization of the BN-based assessment model 

structure.  

 

Hence, the foundational framework of the assessment model is based on a model of learning, 

formulated as part of this work, from various definitions and theories of learning. The 

framework constitutes the basis for Cognitive Task Analysis (CTA -- discussed in Chapter 2 

(section 2.8)), in order to identify and factorize the cognitive abilities/skills necessary to 

successfully undertake laboratory activities as part of an undergraduate electronic engineering 

course. Factorisation, in this context, implies the decomposition of a cognitive ability/skill 
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into its constituent atomic (representative) abilities/skills. That is, complex abilities/skills are 

broken down into constituent abilities/skills and their interrelationships identified. There is the 

tendency to differentiate between abilities and skills as internal general and specific 

potentials, respectively. In this context, abilities and skills are used jointly to mean context 

specific potentials and are often written together as abilities/skills. 

 

 

4.1.2 Derivation of the Foundational Framework 

It is possible to account for the various theories and definitions of learning with a model of 

learning that incorporates the common factors (emphasised either explicitly or implicitly) in 

most of the theories and definitions, in such a way that learning can be addressed by 

instruction and assessment. This implies the need for concern with the basic components of 

learning that are assessable. Thus the adopted model of learning, in this context, is constrained 

to the basic framework of learning as consisting of:  

� Knowledge-- acquiring and storing facts, rules and principles about a concept;  

� Understanding (meaning making)-- understanding of expressed or implied 

interconnections and relationships between facts, rules and principles about concepts, 

in relation to specific tasks or problem situations;  

� Abilities/Skills-- mastering the procedures and techniques required to apply knowledge 

and understanding in specific task or problem situations, in a domain context.  

This framework, based on the theories of learning by [155][156][157] and definitions of 

learning by [158][158][160], is consistent with the definition of assessment as a generic term 

for a set of processes that measure the outcomes of learning, in terms of knowledge acquired, 

understanding developed, abilities/skills gained by [40] and [161]. It is also consistent with 

[11] and [162] definition of engineering education outcome as consisting of knowledge and 

understanding and abilities/skills, and the assertion by cognitive psychologists [121], that the 

acquisition of knowledge, understanding, and abilities/skills results in improved performance 

which reflects learning. The basic framework of learning, represented graphically in Figure 

4.1, highlights the main learning related variables or factors that directly influence students’ 

performance of a given task.  
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Figure 4.1: Basic framework of learning 
 

 

Learning is viewed from three schools of thought: behaviourism, cognitivism and 

constructivism.  The Behaviourist position on learning is that learning takes place as the result 

of a repeated Stimulus (S) - Response (R) cycle which conditions an individual into repeating 

that particular response whenever the same stimulus is present (experience acquisition) [163]. 

Behaviourism is concerned with external behaviour only, viewing learning as controllable 

through behaviour modification by experience, rejecting the role of mental 

processes/activities in the learning process. Cognitivism acknowledges the need to examine 

the internal mental processes that take place between the stimulus and the response, viewing 

learning as an active process that involves the internal traits/states and processes/activities of 

the learner. Learners do not merely respond to stimuli, rather their responses are consequences 

of their internal traits/states and processes/activities which play a key role in determining the 

responses. Learning would be impossible without internal mental traits/states and 

processes/activities [164]. Constructivism also acknowledges the role of traits/states and 

processes/activities in learning, but asserts that learners construct their own reality 

(knowledge formation) based on their experiences. New knowledge is formed from the 

learner’s previous experience based on existing internal structures and beliefs which are used 

to interpret learning events. Furthermore, constructivism advocates that learning should take 

place in realistic settings to enable the learner construct knowledge better adapted to the 

context in which it will be applied. Essentially, cognitivists/constructivists agree that learning 

is an active and constructive process that involves the use of internal mental traits/states and 

processes by the learner. 
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Laboratory work, like most learning tasks, is limited by the cognitive function. Individuals 

come to a given cognitive task with differing backgrounds of internal traits/states resulting 

from learning which support and determine the limit of individual performances [121].  

According to [124], internal traits/states, including abilities/skills, may combine to produce 

instances of observable behaviour. Abilities/skills, according to [121], exist from their effects 

in terms of performance and are measurable or inferable from observable behaviour. [164] 

asserted that in order to measure or make inferences about the internal traits that cannot be 

observed or measured directly, experimental situations that will elicit or reflect the traits in the 

learner’s behaviour have to be created. These assertions further extend the framework of 

Figure 4.1, resulting in the graphical model of Figure 4.2, the foundational framework of the 

LA boratory Performance (LAP) assessment model.  
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Figure 4.2: The foundational framework of the LAP model  
 

The framework is consistent with the behaviour-observation-trait-inference assessment 

perspective of [89]. It facilitates the realization of the BN-based assessment model for 

students’ laboratory work performance assessment, from a holistic perspective and constitutes 

the basis on which to derive a set of students’ laboratory performance indicators and rubrics. 
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4.2 STRUCTURE REALIZATION  
Defining the graph structure syntax for a BN model is still a major challenge [165]. This 

challenge is multifaceted: identifying the set of,  { }iX x= , variables that will constitute the 

nodes of the model and choosing their possible values (states); deciding which nodes should 

be connected by edges; and choosing the direction of the edges for each pair of connected 

nodes. The first aspect is a general BN modelling problem, but the later two are especially a 

challenge for non-causal models, which, in addition, demand semantics identification. Hence, 

in defining the structure of the LAP model, the following issues are taken into consideration 

[165]: 

� when there are many states for a node in a BN model, and the number of its parents 

become greater than two, it becomes increasingly difficult to elicit its conditional 

probabilities exhaustively. As the number of states increases to seven and the number 

of parents become greater than two, exhaustive elicitation becomes infeasible. As 

highlighted in section 2.6, there is, an exponential relationship between the size of the 

CPT of a node, the number of its parent nodes, and the number of possible states of its 

parent nodes. Generally, the number of entries in the CPT of a child node, A, that has k 

number of parents, where each parent has n possible states, is nk. For example, the 

node, A, has k parents and each parent has two possible states, then the CPT for node 

A will contain, 2k entries (k = 2, k = 8, and k = 16, will result in 4, 256, and 65536 

entries respectively). If each of the parents has three possible values, 3k entries are 

required (k = 2, k = 8, and k = 16, will result in 9, 6561, and 43046721 entries 

respectively). 

� a BN model need not necessarily model the same type of relationship throughout the 

network. Different sections or fragments can model different relationships. 

 

First, the cognitive abilities/skills necessary to successfully undertake laboratory activities as 

part of an undergraduate electronic engineering course had to be identified, and where 

necessary and possible factorised, using the CTA framework (discussed in Chapter 2, section 

2.8). In this context, the CTA framework assumed that simpler cognitive abilities/skills form 

the basis for higher level abilities/skills so that the start of the CTA was the identification of 

the key cognitive abilities/skills (the high level or critical cognitive abilities/skills) related to 

the undertaking laboratory activities within the context of the domain. This entailed the 

development of a vocabulary associated with the domain, in order to facilitate the CTA. As 

part of the CTA process, laboratory instruction manuals and task assignment sheets were 
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reviewed, students undertaking laboratory activities in the traditional laboratory environment 

were physically observed, and the help of domain experts and Cognitive Psychologists were 

elicited, in order to identify and factorize the laboratory-related cognitive abilities/skills at the 

undergraduate level of electronic engineering.  

 

Key laboratory activity tasks were identified and represented with the action verbs: design, 

analyze, construct, modify, measure, plot, observe. In this context, these verbs, referred to as 

the High-Level Abilities/Skills (HLAS), are taken to mean:  

� design-- devise the schematic of a circuit to meet specified need(s);  

� construct-- connect electronic components together to create a circuit whose collective 

behaviour meets a given specification(s);  

� analyze-- practically examine a given circuit in order to detect behaviour patterns and 

draw conclusions;  

� modify-- alter or adapt a circuit to meet a new purpose, application, or specification;  

� measure-- determine the size or amount of, express as a number or quantity; 

�  plot-- generate vector graphics using a set of experimental data; and  

� observe-- look at experimental result with a view to its interpretation and data 

extraction. 

The verbs all represent cognitive abilities/skills. Psychomotor and interpersonal abilities/skills 

are not considered relevant in this context. Some of the HLAS are amenable to factorization 

into Basic Ability Components (BACs) because, according to [123], performance activities 

can be described in terms of BACs most of which can be considered as attributes of 

behaviour. Table 4.1 highlights a HLAS and its associated BACs. A BAC can further be 

factored into Lower Level BACs (LLBACs). Table 4.2 highlights a BAC and its associated 

LLBACs. The LAP model structure is based on such factorizations to create a structure that 

models relationships that are not necessarily causal. To reduce the complexity of the model, 

the variables were limited to abilities/skills that have: 

� minimum overlap in their BACs and LLBACs factorization. 

� potential to impact on performance 
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Table 4.1: A HLAS and its associated BACs 

HLAS ASSOCIATED BACs

Ability to Construct 

a Circuit

Ability for Proper Use of Equipment 

(PUE)

Ability to Work With Components 

(WWC)

Ability to Adapt (ADA)

Ability to Adhere to Constraints 

(ADC)
 

 

 

 
Table 4.2: A BAC and its associated LLBACs 

BAC ASSOCIATED LLBACs

Ability to Work with Components 

(WWC)

Ability to Use Correct Components 

(UCC)

Ability for Correct Placement of Components 

(CPC)

Ability to Use Correct Alternative Component 

(UAC)

BAC ASSOCIATED LLBACs

Ability to Work with Components 

(WWC)

Ability to Use Correct Components 

(UCC)

Ability for Correct Placement of Components 

(CPC)

Ability to Use Correct Alternative Component 

(UAC)
 

 

Other cognitive abilities considered to have contributory effect on laboratory activity 

performance are Spatial and Receptive Communication (SRC) abilities. Spatial ability is one 

of the most important abilities a student should possess to be successful in the engineering 

profession [165]. It is the ability to understand spatially-based information which can also be 

received in textual descriptions [38]. Receptive communication is the ability to understand 

instructions which is key to carrying out a task. It is believed that performance may be 

compromised without these abilities.  

 

In addition to cognitive abilities/skills, learning-related factors that have the potential to 

influence students’ laboratory activities performance in the VEL environment, such as 

learning style, were identified. Though [167] suggested that literature fails to provide 

adequate support for applying LS in educational contexts, LS was considered a possible 

influential factor, because LS has been shown to serve as a stable indicator of how learners 

perceive, interact with, and respond to a learning environment [168]. Students learn in many 

different ways [86]. How much a student learns depends on the compatibility of the student’s 
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learning style with the learning environment [85]. A student may find a learning environment 

more favourable, in comparison to others, in terms of learning gains, based on his/her LS 

preferences, which will impact on his/her performance [145] [146]. Student’s LS was 

evaluated, in this context, using the Index of Learning Styles (ILS) instrument [86]. The ILS 

was chosen for the following reasons:  

� it was specifically proposed for engineering students,  

� the instrument has been validated [169][170][171],  

� the four LS dimensions are numerically coded and easily quantified.  

 

Also, experience using the VEL is considered an influential factor in student performance 

based on the assertion that a user will develop a more efficient process, over time, with the 

usage of a system, which will impact on his/her performance [109].  A student’s experience 

using the VEL environment is derived as a function of the total time the student has spent, on 

tasks within the environment, to date. The time for task completion is said to be a reliable and 

powerful predictor of learning and performance [172]. [173] used time-on-task to measure 

experience in a computer aided instruction learning environment. 

 

Furthermore, background knowledge is considered an influential performance factor, because 

a student’s historical data, such as pre-laboratory test score and pre-requisite unit test/exam 

score, among others, are indicative of prior learning with respect to the concept addressed by 

the laboratory activities and are therefore expected to impact on their performance. In 

addition, a memory/feedback node was introduced into the LAP model to facilitate 

incorporating previous performance estimates into current belief estimates, if desired.  

 

Figure 4.3 represents a graphical view of the LAP assessment model. The variables (nodes) in 

the model have been named to reflect, as much as possible, what they are intended to 

represent. The nodes have been numbered (the numbers above the blocks for the nodes in 

Figure 4.3) for ease of reference. The nodes are categorized as follows:  

� performance (node 40): the main target node of inference that gives a measure of 

belief in (a global view of) a student’s performance with respect to laboratory 

activities.  

� memory/feedback (node 35): creates a feedback loop so that previous performance 

belief estimates can be taken into consideration in the current estimation for belief in 

performance;  
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� performance factors (nodes 24, 37, 39): variables constituting the broad framework of 

learning that directly influence performance. 

� High Level Abilities/Skills (HLAS) (nodes 15, 16,17,18,22): the identified key 

laboratory tasks that are targets of inference for a task-level view of a student’s 

abilities/skill;  

� performance indicators (nodes 4, 7, 10, 11, 14, 17, 18, 21, 22): BACs that are targets 

of inference for a deeper and more robust view of a student’s abilities/skills. 

� other influential factors (nodes 29, 32, 33): other extraneous factors that can influence 

performance;  

� intermediate nodes (nodes 23, 34): used for simplifying the CPTs of affected nodes 

(nodes 24 and 40) and for the purposes of clarity. For example, nodes 18, 21, and 22 

(APG, SRC, and IER, respectively) have been grouped together under the umbrella of 

the intermediate node, “GenericAbilitiesAndSkills (GAS)” (node 23), for reasons of 

simplifying the CPT of node 24 and also because they cut across a wide range of other 

disciplines and are therefore generic.  

�  evidence variables (performance indices or criteria) (nodes 1, 2, 3, 5, 6, 8, 9, 12, 13, 

17, 18, 19, 20, 22, 25, 26, 27, 28, 30, 31, 33, 36, 38): includes the set of LLBACs to 

which some of the HLAS could be factored, and other variables, which are the 

observable attributes of behaviour, in addition to the evidential attributes from 

students historical data. These serve as evidence (findings) for network update. 

These node categories are highlighted graphically in Figure 4.4, which gives a more compact 

representation of Figure 4.3.  

 

The HLAS that are not amenable to factorization are those that are directly observable from 

behaviour in which case they also serve as performance indicators (because they contribute to 

the robust view of a student’s abilities/skills) and indices (because they are directly observable 

from behaviour and do not need to be inferred) namely, nodes 17, 18, and 22.  
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Figure 4.3: Graphical view of the LAP model. 
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Figure 4.4: Categorization of the LAP model nodes. 
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4.3 CALIBRATION  
After building the model structure, the network has to be calibrated because the model is a 

measurement tool. Measurement, in this context, is taken to mean a repeatable procedure for 

assigning metrics to hypotheses or phenomena and calibration (parameterization) is the 

elicitation of parameter values and quantification of the CPTs and PPTs of the nodes in the 

model. A model can be parameterised using: 

� domain expert knowledge [95],  

� data [[174][175],  

� a combination of domain expert knowledge and data [89][176].  

The data could be historical or empirical. It may be expensive to conduct empirical studies for 

every student laboratory performance related cognitive ability/skill in order to obtain data for 

calibrating the model, and lack of existing historical data, cost and time constraints make the 

use of domain expert knowledge more attractive. [165] assert that domain knowledge is the 

most suitable alternative in a situation where there are no existing structures, data, and 

methods, and where empirical means is economically infeasible.  

 

Furthermore, expert knowledge is the best approach to parameterization, in this context, 

because it is the expert domain knowledge that makes the model an expert system, so 

eliminating or limiting expert involvement may undermine the overall “expert” quality of the 

model [177].  Moreover, a BN model for assessment should be expected to rely on calibration 

by domain experts [177]. There are key benefits to be derived from domain expert calibration, 

as highlighted in Chapter 5 (section 5.1.1). However, domain expert model calibration is not 

without challenges, as also highlighted in Chapter 5 (section 5.1.1). One of the main 

challenges is said to be the difficulty of eliciting expert knowledge. Literature clearly outlines 

strategies for addressing the challenges which have proven effective. For example, Guidelines 

for easing the knowledge elicitation process, and elicitation methods (including the Number 

Line method—a visual scale), have been outlined by [178][179][180].  

 

 

4.3.1 Knowledge Elicitation 

The number line knowledge elicitation instrument, shown in Figure 4.5, was modified as part 

of this work, and used for knowledge elicitation.  
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Figure 4.5:  Number line knowledge elicitation instrument 
(Source: [178]) 

 

The linguistic terms were replaced with numbers from 0 to 10. Domain experts were required 

to rate the importance/relevance of the impact of each parent node to its child node 

(represented by the directed edge from the parent to the child), on the scale. This is referred to 

as link rating. A rating of zero meant zero importance/relevance which implies the expert does 

not believe that a relationship exists between the two nodes. This gave the experts a chance to 

suggest modifications to the network structure, if they have had a rethink since the last 

discussion on the design of the network structure.  

 
 
4.3.2  The Calibration Process 

The data for network calibration was obtained from the analysis of the elicited expert 

knowledge, the link ratings, because most often, expert knowledge does not come in the form 

of raw probabilities. Also, the values in the CPT of a node reflect the strength of the links 

with its parent nodes. The ratings were first transformed into percentage link weights from 

which percentage probability values were derived for the CPTs. For example, given the 

simple BN of Figure 4.6, if the parent-child links, a, b, c, and d, are given the following 

importance/relevance ratings by a domain expert: a = 5, b = 3, c = 1 and d = 7 (note: a, b, c, 

and d do not necessarily have to add up to 10. Rather each can have any value between 1 and 

10). 

 

A

Q

DCB

a b c
d

A

Q

DCBA

Q

DCB

a b c
d

 

Figure 4.6: A Simple five node BN. 
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The percentage link weights, wa, wb, wc, and wd are derived thus: Let y = a + b + c + d and x = 

100/y. y is the sum of the importance/relevance ratings for all the parent node links to node Q 

in Figure 4.6. x is the multiplier, derived using y, for the importance/relevance ratings, a, b, c, 

and d, for the parent node links, A-Q, B-Q, C-Q, and D-Q, respectively (Figure 4.6), such that  

x(a+b+c+d)=100. If, for example, y = 16, then  x = 100/16 = 6.25, then ax = wa = 31.25%, bx 

= wb = 18.75%, cx = wc = 6.25%, dx = wd = 43.75%. The requirement is that wa + wb + wc + 

wd = 100% (for percentage probability). Once the percentage link weights are calculated, 

assuming that the parent nodes A, B, C and D each have two possible states (e.g. High (H) 

and Low (L)), the CPT for the child node, Q, is parameterized as shown in Table 4.3. Thus, 

the CPT for each child node is built, with respect to its parents, by summing the contributed 

percentage link weights of its parents [91].   

 

Table 4.3: Parameter assignment. 

wa + wb + wc + wd0+0+0+0LLLL

wa + wb + wc + 00 + 0 + 0 + wdHLLL

wa + wb + 0 + wd0 + 0 + wc + 0LHLL

wa + wb + 0 + 00 + 0 + wc + wdHHLL

wa + 0 + wc + wd0 + wb + 0 + 0LLHL

wa + 0 + wc + 00 + wb + 0 + wdHLHL

wa + 0 + 0 + wd0 + wb + wc + 0LHHL

wa + 0 + 0 + 00 + wb + wc + wdHHHL

0 + wb + wc + wdwa + 0 + 0 + 0LLLH

0 + wb + wc + 0wa + 0 + 0 + wdHLLH

0 + wb + 0 + wdwa + 0 + wc + 0LHLH

0 + wb + 0 + 0wa + 0 + wc + wdHHLH

0 + 0 + wc + wdwa + wb + 0 + 0LLHH

0 + 0 + wc + 0wa + wb + 0 + wdHLHH

0 + 0 + 0 + wdwa + wb + wc + 0LHHH

0+0+0+0wa + wb + wc + wdHHHH

LH

Q
DCBA

wa + wb + wc + wd0+0+0+0LLLL

wa + wb + wc + 00 + 0 + 0 + wdHLLL

wa + wb + 0 + wd0 + 0 + wc + 0LHLL

wa + wb + 0 + 00 + 0 + wc + wdHHLL

wa + 0 + wc + wd0 + wb + 0 + 0LLHL

wa + 0 + wc + 00 + wb + 0 + wdHLHL

wa + 0 + 0 + wd0 + wb + wc + 0LHHL

wa + 0 + 0 + 00 + wb + wc + wdHHHL

0 + wb + wc + wdwa + 0 + 0 + 0LLLH

0 + wb + wc + 0wa + 0 + 0 + wdHLLH

0 + wb + 0 + wdwa + 0 + wc + 0LHLH

0 + wb + 0 + 0wa + 0 + wc + wdHHLH

0 + 0 + wc + wdwa + wb + 0 + 0LLHH

0 + 0 + wc + 0wa + wb + 0 + wdHLHH

0 + 0 + 0 + wdwa + wb + wc + 0LHHH

0+0+0+0wa + wb + wc + wdHHHH

LH

Q
DCBA

 

 

Having created a CPT for the child node, Q, based on the percent weights of its parents’ links, 

the leaf nodes, A, B, C and D, have no parents and PPTs have to be created for each of them. 

The PPTs were set to fair priors. A fair prior reflects the belief that all values of a variable are 

equally likely and therefore that the most likely values for a two-valued variable, A, are as in 

Table 4.4. 

 
 
 
 



                                     CHAPTER 4: BN-BASED INTELLIGENT ASSESSMENT MODEL: STRUCTURE REALIZATION AND CALIBRATION 

     

 

80 

 

Table 4.4: Fair Prior values for an Observable variable, A. 
Variable ( )P high  ( )P low  

A 0.5 0.5 

 

Essentially, the CPT for a child node models the interactions between or the combined effects 

of its parent nodes by building appropriate constraints in the table [181]. The interaction can 

be compensatory, conjunctive, disjunctive, or inhibitory (see [181] for details). The 

interactions between the parents of a child node in the LAP model are not modelled as 

compensatory because a low level on one of the parents of a child node would not be 

compensated for with a corresponding high level of one or more of the other parents. For 

example, in Figure 4.3, depicting the graphical view of the LAP model, a LOW on the ability 

for “ProperUseOfEquipment” (PUE), node 7, cannot be compensated for by a HIGH on the 

“AbilityToWorkWithComponents” (WWC), node 4, or the “AbilityToAdapt” (ADA), node 11, 

and so on.  This is because abilities differ from each other and are mutually exclusive as each 

supports a specific aspect of performance. For example, looking at Figure 4.3 again, a student 

rated high on circuit construction proficiency, “AbilityToConstructCircuit” (CC), is not only 

able to construct a workable circuit whose overall behaviour meets given specifications, but 

has used equipment correctly; made appropriate measurements; adapted where necessary; 

adhered to constraints; and worked well with components. Working with components requires 

the student to select and use the correct components, place the components well in the circuit, 

and used correct alternative components where necessary.  

 

The interactions in the model are modelled as conjunctive in which a high level status of the 

child node requires high levels on all its parent nodes. Table 4.5 shows the CPT for node 4, 

AbilityToWorkWithComponents” (WWC). Line 7 in Table 4.5 indicates that if a student, while 

building a circuit, used the correct components, did not correctly place the components, but 

used correct alternative components, where necessary, there is a 70% chance that the student 

is able to work with electronic components. But if the student only partially used correct 

alternative components, then there is only 55% chance that the student is able to work well 

with components. The states of the unobservable nodes (the proficiency variables), indicate 

what a student is actually able to do with respect to laboratory activity performance.  The 

parameter values in the CPTs and PPTs are used for belief estimation. 
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Table 4.5: The CPT for Node 4 of Figure 4.3: “AbilityToWorkWithComponents” 

 

 

 

 
4.4 OVERVIEW OF THE MODEL BELIEF ESTIMATION PROCESS 
The main reason for using BNs is to enable reasoning under uncertainty.  Uncertainty in this 

context refers to students’ behaviour with respect to problem scenarios. This implies their 

knowledge and understanding, demonstrations of relevant abilities/skills, and performances, 

are uncertain and can only be inferred from observed behaviour.  For example, in Figure 4.7 

(a subset of the LAP model, where the nodes UCV, ACF, MAC, and KNC correspond to nodes 

9 (“UseCorrectValues” (UCV)), 8 (“ApplyCorrectFormulae” (ACF)), 10 

(“AbilityToMakeAppropriateCalculations” (MAC)), and 28 (“KnowledgeOfConcept” (KNC)), 

respectively, in the LAP model (see Figure 4.3), the expressions,( )p KNC high= and 

( )p MAC high= , referred to as marginal probabilities, represent measures of beliefs in the 

hypothesis represented by the variables. It cannot be stated with certainty that a student has 

knowledge of the addressed concept(s) or that he/she has applied the correct formulae for a 

laboratory activity yet to be undertaken. The marginal probabilities can be evaluated using the 

parameter entries in the CPTs and PPTs of the nodes. For example, 

( ) ( | ) ( )p KNC high p KNC high ACF applied p ACF applied= = = = × =   +   

( | ) ( )p KNC high ACF partiallyApplied p ACF partiallyApplied= = × = +  
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( | ) ( )p KNC high ACF notApplied p ACF notApplied= = × =   (4.1)  

All the values required to evaluate this expression are derived from the parameter entries in 

the CPT of the node, KNC, and PPT of the node, ACF. For the purposes of this example, it is 

assumed that there is no other node with a link to the node, KNC.  

  

UseCorrectValues (UCV)
used
partiallyUsed
notUsed

33.3
33.3
33.3

ApplyCorrectFormula (ACF)
applied
partiallyApplied
notApplied

33.3
33.3
33.3

AbilityToMakeApproCalculations (MAC)
low
high

50.0
50.0

KnowledgeOfConcept (KNC)
low
high

50.0
50.0

 

Figure 4.7: A sub-model of the LAP Model 
 

If after undertaking the laboratory activity, it is evidenced that the student had applied the 

correct formulae (ACF = applied) and used the correct values (UCV = used) for the specified 

calculation, the evidence is entered into the model by clamping nodes ACF and UCV to their 

evidenced or instantiated states. It still, at this point, does not mean with certainty that the 

student definitely made appropriate calculations or that he/she definitely has knowledge of the 

addressed concept(s). However, there is increased probability (belief) that the student made 

appropriate calculations, and that he/she has knowledge of the addressed concept(s). In this 

case, the value of the expression, ( | )p KNC high ACF applied= = , referred to as 

conditional probability, is directly obtained from the CPT of node KNC. That is, the measure 

of believe in the student’s knowledge of the addressed concept is revised after receiving the 

evidence.  

 

The most important use of BNs is in revising measures of belief in the light of actual 

observations of events. Suppose that it was not known (not evidenced) that the student applied 

the correct formulae, probably because the given laboratory activity did not include a task that 

would elicit the necessary behaviour from the student to facilitate the derivation of the 

evidence, but the instructor had ascertained, through some other means of assessment (e.g. 

physical observation), that the student definitely has knowledge of the addressed concept. 

This information can be entered into the model by clamping the node, KNC, to high, and then 

used to determine the revised probability that the student; applied the correct formulae, 

( | )p ACF applied KNC high= = ; made appropriate calculations, ( )p MAC high= ; and 

used correct values, ( )p UCV high= . In this case, ( | )p ACF applied KNC high= =  is 
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calculated using Bayes formula, values from the CPT and PPT of nodes ACF, and KNC, and 

the marginal probability of KNC, ( )p KNC high= , as: 

( | ) ( )
( | ) ( )

p KNC high ACF applied p ACF applied
p ACF applied KNC high

p KNC high
= = × == = = =  

The calculation of the revised marginal probability of MAC, ( )p MAC high= , will depend on 

the value derived for ( | )p ACF applied KNC high= =  and no longer on the value of  

( )p ACF applied=  in the PPT of node ACF. Thus, any evidence or information received is 

used to revise the measures of belief for all affected hypotheses. This is referred to as network 

update or evidence/information propagation. 

 
 
 
4.5 SUMMARY  
The construction process of the LAP model, with the assistance of domain experts, has been 

described from structure realization to calibration. The model belief estimation process has 

also been highlighted. Though the assistance of domain experts were used for the construction 

of the model, BN-based models can also be constructed from data. The next chapter 

investigates the optimal approach for the construction of the assessment model for the 

performance assessment of students’ laboratory work in the VEL environment, with respect to 

expert-centred and data-centred BN construction approaches. That is, to empirically 

investigate if the expert-centred approach is the best approach for constructing the LAP 

model, or if it is possible to derive an improved or better model using the data-centred BN 

model construction approach. 
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The whole difference between construction and creation is exactly this: that a thing 

constructed can only be loved after it is constructed; but a thing created is loved 

before it exists.  

Charles Dickens 
1812 - 1870 

 

CHAPTER 5 

 INVESTIGATION OF THE OPTIMAL 
CONSTRUCTION APPROACH FOR THE 
BAYESIAN NETWORK-BASED ASSESSMENT 
MODEL 
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5.0 INTRODUCTION  
A BN -based model (the LAP model) for performance assessment of students’ laboratory 

work, in the VEL environment, was constructed with the assistance of domain experts. The 

details of its construction process and evaluation are given in Chapter 4.  Though BN model 

constructors (researchers working with BN models), ab initio, relied only on domain experts 

to define both the structure and parameters of a model (which line was toed in constructing 

the LAP model), currently algorithms exist to construct BN models from data. Hence, BN 

model construction can be categorized under two approaches: expert- and data- centred. 

Consequently, there are three techniques to BN model (structure + parameters) construction:  

� total expert-centred (tecen)  

� total data-centred (todacen) 

� semi data-centred (sedacen).  

In tecen approach, the BN model is a product of domain analysis, whereby domain expert(s) 

completely specify both the qualitative and quantitative components of the model. The 

todacen approach uses algorithms to generate both the qualitative and quantitative 

components of a BN model from data. The generation of the qualitative component from data 

is referred to as structure learning, and the generation of the quantitative component referred 

to as parameter learning. The sedacen approach is a hybrid framework whereby domain 

experts assist in the creation of the qualitative component of a BN model, while the 

quantitative component is learnt from data.  

 

Having constructed the LAP model with the assistance of three domain experts, it was 

necessary to find out if the LAP model (a tecen model) is the best or optimal model for the 

assessment of students’ laboratory work in the VEL environment. That is, to empirically 

investigate if the expert-centred approach is the best approach for constructing the LAP 

model, or if it is possible to derive an improved or better model using the data-centred BN 

model construction approach. This required the construction of sedacen and todacen models 

from data, based on the same set of domain variables as the tecen model. The aim is to 

compare the performances of the sedacen and todacen models to the performance of the tecen 

LAP model (the reference model), based on a set of performance metrics.  

 

There are two possible sources of sample datasets that can be used for the construction of the 

sedacen and todacen models. First, sample domain historical sample dataset(s) on students’ 

laboratory work performance assessment, with respect to a set of performance indicators and 

their respective criteria, could be used if available.  This option was not possible as there are 
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no existing historical sample datasets, for the domain of engineering students’ laboratory 

education (with respect to performance-based assessment of students’ laboratory work), to the 

best of the author’s knowledge. The second option is the use of simulated sample datasets.  

Often, researchers needing to undertake empirical investigations, with respect to structure 

and/or parameter learning, create frameworks that would allow them to generate the required 

sample datasets from a reference model. This approach has been adopted by a number of 

researchers including [181][183][184][185]. The procedure starts with an existing model (the 

reference model), generates datasets from the Joint Probability Distribution (JPD) represented 

by the model, and then uses learning algorithms to attempt to retrieve the reference model 

from the datasets. The retrieved (learnt) model is then compared with the original model that 

generated the dataset [185]. This procedure is commonly used for evaluating learning 

algorithms, and was deemed appropriate for this empirical investigation because of lack of 

existing historical sample datasets. The idea is that if, using the above procedure, the 

algorithms fail to retrieve (induce) the reference model, a comparable model, or a better 

model (in terms of performance) from the sample datasets generated using the JPD encoded 

by its structure, then it may imply that the algorithms will also fail to induce a comparable 

model, or a better model from sample datasets generated from other sources. That is, failing to 

retrieve the reference model, the algorithms should at least learn a model whose performance 

is comparable to or better than that of the reference model. It is assumed that the reference 

model is the existing optimal model. If the algorithms learn a model whose performance is 

significantly better than that of the reference model, then the learnt model is taken to be the 

optimal model, else the reference model is taken to be the optimal model. Optimal, in this 

context, refers to the model which is best in terms of the adopted optimality criteria [186].  

 
First, section 5.1 details the different BN model construction approaches. Section 5.2 

describes the procedure for the empirical investigation, highlighting how the different sedacen 

and todacen models used in the investigation were constructed, and the model test process, 

while section 5.3 highlights the criteria and comparative tools used to compare the models. 

The results of the investigation are presented in section 5.4, while the observations and 

attendant discussion are given in section 5.5. The chapter is summarised in section 5.6.  
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5.1 BAYESIAN NETWORK MODEL CONSTRUCTION APPROACHES 

 

5.1.1 Expert-Centred Approach 

“Manually” building a BN model involves three ordered tasks: identification of the network 

variables and their possible values (states), definition of the relationships between the 

variables for graphical representation, and model calibration (parameterization). There are no 

formal foundations for “manual” BN model construction, and the process is still essentially an 

art [187]. It depends on the model constructor to use suitable techniques and tools for 

undertaking the knowledge elicitation tasks. Expert-centred BN model construction approach 

offers a number of benefits: 

� the model embeds reasonably accurate domain knowledge because it is built 

interactively with, often, more than one expert. The, model variables, their states, and 

relationships are fully appreciated. Hence, the reasoning and rationale behind the BN 

model can be clearly articulated and communicated.  

� model creation is often based on the consensus or average of information and opinions 

of more than one domain expert, thereby enabling the capture of uncommon or rare 

scenarios and knowledge.  

� the technicalities of the domain represented by the model can be verified/discussed in 

details at each stage of the development cycle.  

� expert probability elicitation codifies knowledge so that the knowledge is available in 

the future for other projects and systems thereby promoting reliability in assessment of 

a family of systems that change within a changing usage environment [187].  

 

However, knowledge elicitation is said to be a major challenge of the expert-centred BN 

model construction approach because it is difficult to elicit expert knowledge, which is often 

biased, and experts rarely agree. Guidelines for easing the elicitation process and elicitation 

methods have been outlined by [178][179][180]. Experts’ opinion disagreement is generally 

acknowledged [189]. Methods for resolving expert opinion conflicts and how to obtain 

composite or consensus opinion are addressed by [189]. Also, [165] argued that the issue of 

bias no longer holds as a range of techniques and tools that minimize the effort required for 

probability elicitation have been developed. In addition, the issue of bias is often addressed 

through the involvement of more than one domain expert and the knowledge elicitation 

process often goes through review stages, after which the model is subjected to sensitivity 

analysis. Moreover, BNs have been found not to be too sensitive to inaccuracies in their 
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parameters [190], so determining good parameter values is in many application areas is quite 

feasible [106]. 

 

 
5.1.2 Data-Centred Approach 

Let ,B G θ=  be a discrete BN model, where G is the network structure with nodes 

corresponding to the set of random variables, ( )1, , mX X X= …… , in the focus domain, and θ 

represents the set of parameters for the network. B encodes the JPD 

( ,..., ) ( | ( )1 1

m
p X X p x pa xm i ii

= ∏
=

, where ( )ipa x represents the parent set of node ix . The 

probability distribution, ( | ( ))i iP x pa x , for each discrete node, iX , is represented as a CPT at 

node iX  in B. The data-centred approach entails learning the structure, G, and/or the 

parameters, θ , from a given sample dataset. 

 

A dataset, D, is a table (matrix) consisting of records of observations (findings) for the 

network variables, such that 1 2[ , ,......., ]Nd d dD = , where N = total number of records in D, 

and 1 2[ ], [ ],......., [ ]{x x x }l ml l ld = Є D , l = 1 to N, represents a record of  observation (a single 

set of findings or instantiation of all the variables, X). A form of a dataset is shown in Figure 

5.1 

 

Figure 5.1: A form of a dataset 
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A dataset can be complete or incomplete because incompleteness (missingness) is sometimes 

a feature of datasets. A complete dataset contains No Missing Values (NMV) (no missing 

instantiation or finding) for any of the variables, implying full observability. An incomplete 

dataset contains missing values for some variables in some or in all the cases in the dataset, 

implying partial observability or presence of latent (hidden) variables, respectively.  

Percentage missingness refers to the percentage of data values that are missing in a dataset.  

 
 
5.1.2.1  Parameter Learning 

In parameter learning, the structure, G, is known and the problem is to learn the parameter, θ , 

from the given dataset, D (a sample set of records of observations of X). That is, the 

estimation of { } 
1,...,i i m

θ θ= = , where iθ  is the set of numerical entries in the CPT of node 

iX  from D, given G. θ  is the complete set of parameters that can best explain the set of 

observations, D [191]. Parameter learning could be single or multiple (multinomial) 

parameters learning.  

 

Single Parameter Learning implies that the variable,Xi , whose parameters are to be 

estimated, has only two possible mutually exclusive states denoted, xi  and xi , such that the 

probability mass function )(p Xi is defined by: ( )p X xi i iθ= =  and ( ) 1p X xi i iθ= = − . 

Multinomial Parameter Learning implies that Xi  is a multinomial variable with r > 2 

possible states, ,.......,  ,1x x ri i  such that Xi  has the set of probabilities, ( ),.......,  1 ri i iθ θ θ= , 

respectively, where 1
1

r
i kk

θ =∑
=

.  

 
 
5.1.2.2  Structure Learning 

Given the dataset, D, the structure learning problem is to find, using D, the most probable 

network structure,Gi , from among the set of possible network structures, 

( ), ,.......,1 2G G GΦ λ= , where λ  is the cardinality of the search space. That is, discover the 

BN structure that most likely generated D. That is, Gi is the network that best describes the 

conditional independences suggested by the given dataset, D [174]. This is often referred to as 

model selection in literature, which term will not be used in this thesis because, in this 
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context, BN model refers to a complete Bayesian network (structure + parameters). Once G is 

found, its parameters, θ, are derived as described in section 5.1.2.1. 

 

Structure learning algorithms are either based on Conditional Independence (CI) tests or 

Search and Score (SaS). The CI approach uses constraint-based algorithms to find the 

structure whose implied independence constraints “match” those found in the data by 

performing CI tests on tuples of variables, using statistical tests or information theoretic 

measures [192]. CI-based algorithms include the PC algorithm by [193]. The SaS approach 

consists of three components: the search space, the scoring function, and the search engine. 

The search space consists of the set of all possible BN structures, Φ , given the domain 

variables. The main operation in the search space is the modification of one structure to 

produce another structure with the operators ‘‘add an edge’’, ‘‘delete an edge’’, and ‘‘reverse 

an edge’ [194].  

 

The score metric takes the dataset and a possible structure and returns a score reflecting the 

goodness-of-fit of the data to the structure [195]. There are two categories of scoring 

functions: Bayesian and information-theoretic. The information-theoretic score functions 

include: the Log-likelihood (LL) [196], Minimal Description Length (MDL) [197], Akaike 

Information Criterion (AIC) [198], and the Bayesian Information Criterion (BIC) [199]. The 

MDL is said to be equivalent to the BIC function; hence they are often written as MDL/BIC. 

The Bayesian scoring metrics include: Bayesian Dirichlet (BD) [200], likelihood-equivalence 

Bayesian Dirichlet (BDe) [200], the uniform joint distribution Bayesian Dirichlet (BDeu) 

[201], and the K2 [182]. The K2 has been described as one of the most successful scoring 

metrics [202].  

 

The search engine (search algorithm) works to identify structures with high scores by 

exploring the search space. It makes comparisons of network structures as it searches 

heuristically for the most likely structure [203]. Essentially, the dataset D, the scoring 

function, and the search space constitute the inputs to the search algorithm while the output is 

a network that maximizes the score, ( | )P D Gi , the probability of the most probable structure, 

Gi , given the dataset, D [204].   

 

One of the main challenges of the data-centred approach is that structure learning is NP-hard 

[205]. Researchers have attempted to reduce the complexity of BN structure learning by 

various algorithmic means, but the problem remains complex and hard, without exact and 
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exhaustive solution [192]. Consequently, heuristic algorithms are often employed for the 

learning process. The latter help produce an acceptable solution to a problem in many 

practical scenarios, though it is not certain to arrive at an optimal solution.  It begins with an 

approximate method of solving the problem within the context of the goal, and then uses 

feedback from the solution to improve its performance, searching for a satisfactory solution 

rather than optimal solution.  

 

The complexity of the search space is another major challenge of structure learning because 

the number of possible structures grows super-exponentially with the number of variables, n, 

in the problem domain [192].  For, n variables, the cardinality of the search space is given by 

[206] as the recursive function: 

( ) ( ) ( ) ( ) ( )1

1

1 2
n

k k n k

k

n
kf n f n k

+ −

=

= − −∑ , where ( )1 1f =   (5.1 ) 

Table 5.1 lists the possible number of BN structures for some values of n. 

 

Table 5.1: Number of possible BN structures for various numbers of variables. 
(source: [192]) 

4,175,098,976,430,598,10010

1,213,442,454,842,8819

78,370,2329,3438

1,138,779,2657
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No of possible BN structuresNo of variables, n
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11

No of possible BN structuresNo of variables, n

 

 

This super-exponential relationship between the number of variables and the number of 

possible structures is a major source of computational complexity [207].  

 
 

5.2 INVESTIGATION PROCEDURE 
First, sample datasets were generated with the reference model in such a way that the 

investigation was undertaken from two different approaches referred to, in this context, as 

non-parameteric and parameteric approaches. The non-parameteric approach entailed the use 

of the unparameterised version of the reference model (structure without the elicited 

parameters) to generate some of the sample datasets for the investigation. The parameteric 
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approach entailed the use of the parameterised version of the reference model (structure with 

elicited parameters) to generate some of the sample datasets for the investigation. A set of 

four training (learning) datasets were generated using each of the two approaches. Hence, 

there were a total of eight training datasets, ( )1 , 2 , 3 , 4Dnp D np D np D np D np=  

and ( )1 , 2 , 3 , 4Dp D p D p D p D p= . The np and p at the end of the dataset names indicate non-

parameteric and parameteric approaches to the generation of the datasets, respectively. 

Models constructed with training datasets generated using the non-parameteric approach are 

referred, in this context, as non-parameteric  models, while models constructed with training 

datasets generated using the parameteric approach are referred as parameteric  models.  Also, 

a set of four test datasets, ( 1, 2, 3, 4)T T T T T= , different from the training datasets, were 

generated for the evaluation of the models. Several training datasets were used to facilitate the 

acquisition of meaningful data for the intended analysis.  

 

The BN software tools, Genie [208], Netica [209], SamIam [210], and WinMine Toolkit 

[211] were used for the investigation. Genie is the graphical interface to SMILE [208], a 

Bayesian inference engine. Netica is a complete program for working with belief networks. 

SamIam (Sensitivity Analysis Modeling Inference And More) is a tool for modelling and 

reasoning with Bayesian networks, developed in Java, and includes a GUI for editing 

Bayesian networks. 

 
 
5.2.1 Construction of the Data-centred Models used for the Investigation 

A total of twenty four (24) sedacen models were constructed, consisting of three sets of four  

non-parameteric models, ( )1 , 2 , 3 , 4PNDnp PND np PND np DPN np PND np= , 

( )1 , 2 , 3 , 4PGDnp PGD np PGD np PGD np PGD np= , and ( )1 , 2 , 3 , 4PSDnp PSD np PSD np PSD np PSD np= ; and 

three sets of four  parameteric models, ( )1 , 2 , 3 , 4PNDp PND p PND p DPN p PND p= , 

( )1 , 2 , 3 , 4PGDp PGD p PGD p PGD p PGD p= ,  and ( )1 , 2 , 3 , 4PSDp PSD p PSD p PSD p PSD p= . 24 

sedacen models were constructed because there were 8 training datasets (4 parameteric and 4 

non-parameteric) and 3 software tools, whereby each software tool is used construct sedacen 

models from each of the 8 datasets. The model names indicate the type of learning 

undertaken, and the software tool and the dataset used for the construction of the model. For 

example, 1PND np indicates that the model was constructed by parameterizing, using Netica, a 

known structure from the training dataset,1D np . Netica, Genie and SamIam were used for the 

construction of the sedacen models, based on the Expectation Maximization (EM) algorithm, 
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implemented by all three software tools.  The plan to also undertake parameter learning using 

Gibbs sampler, for comparative purposes, was jettisoned because, according to [212], EM and 

Gibbs sampler are substantially equivalent in their parameter estimates.  

 

It was possible to use the same sets of datasets with the three different software tools, Netica, 

Genie, and SamIam, because they all support text data file formats, albeit with different file 

extensions (.cas, .txt/.dat, and .dat, respectively). All that was required was to save the data 

file with the appropriate file extension for each software tool and edit as may be necessary 

(for example, Netica requires the inclusion of the row number for each record of the data file, 

while Genie and SamIam do not) . Also, all the software tools used similar network file 

formats (.dne, .dnet, and .net) so it was possible to open any of the networks with any of the 

tools.  

 

It was aimed to construct a total of thirty two (32) todacen models from the two sets of four 

training datasets, ( )1 , 2 , 3 , 4Dnp D np D np D np D np= and ( )1 , 2 , 3 , 4Dp D p D p D p D p= , using Genie and 

WinMine, but only twelve (12) complete todacen models were realised due to the limitations 

of the software tools which will become highlighted in section 5.4. WinMine supports SaS-

based structure learning approach, while Genie supports both CI- and SaS-based. Exploiting 

this, in order to exact more investigative effort at inducing a better model than the reference 

model, the todacen model construction using Genie was done as per the following three steps: 

a. first, eight todacen models were constructed based on the CI approach with the PC 

algorithm, using each training datasets in the two sets of training datasets. Search time 

limit was not imposed. This step generated the 

( )1 , 2 , 3 , 4SPGaDnp SPGaD np SPGaD np SPGaD np SPGaD np=  and 

( )1 , 2 , 3 , 4SPGaDp SPGaD p SPGaD p SPGaD p SPGaD p=  groups of models.  The model name, 

1SPGaD np, for example, indicates that the model was constructed by learning both 

structure and parameters, using Genie, this step, a, and the training dataset, 1D np . 

b. next, another eight  models were constructed with the Greedy Thick Thinning (GTT) 

search algorithm and the K2 score metric, based on the SaS approach, using each training 

datasets in the two sets of training datasets to get 

the ( )1 , 2 , 3 , 4SPGbDnp SPGbD np SPGbD np SPGbD np SPGbD np=  and 

( )1 , 2 , 3 , 4SPGbDp SPGbD p SPGbD p SPGbD p SPGbD p=  groups of models.  The model name, 
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1SPGbD np, for example, indicates that the model was constructed by learning both 

structure and parameters, using Genie, this step, b, and the training dataset, 1D np . 

c. finally, eight models were constructed with the Greedy Thick Thinning (GTT) search 

algorithm and the BDeu score metric, based on the SaS approach using each training 

datasets in the two sets of training datasets to get  

( )1 , 2 , 3 , 4SPGcDp SPGcD p SPGcD p SPGcD p SPGcD p=  groups of models.  The model name, 

1SPGcD np, for example, indicates that the model was constructed by learning both 

structure and parameters, using Genie, this step, c, and the training dataset, 1D np . 

Factors related to the learning algorithms and score metrics, such as maximum adjacency size 

(for the PC algorithm) and number of parents constraints (for the K2 and BDeu score 

metrics), were varied, aimed at increasing the chances of inducing a model structure that will 

yield a better model than the reference model.  

 

Furthermore, two groups of models, ( )1 , 2 , 3 , 4SPWDnp SPWND np SPWD np SPWD np SPWD np=  and 

( )1 , 2 , 3 , 4SPWDp SPWD p SPWD p SPWD p SPWD p= , were constructed from the two sets of four 

training datasets, using WinMine Toolkit. The letters, SP, in the model names imply structure 

and parameter learning, W implies WinMine Toolkit, and 1D np  and 1D p  highlight the 

particular training dataset used for the construction of the model. 

 
 
5.2.2 Evaluation Method 

The reference, sedacen, and todacen models were evaluated using the set of four test datasets. 

The test procedure consisted of entering findings at selected evidence nodes of a model, and 

querying one or more target nodes. The nodes of the model are divided into two sets: evidence 

and target nodes. Any node can belong to any one of the two sets, for the purposes of the test. 

It is often preferable to choose as target, the node that in the real context would be target of 

inference. The values in each record of the test dataset are split into two sets: values for the 

chosen evidence nodes, and values for the chosen target nodes. The values for the evidence 

nodes are entered as findings into the network, the network is updated, and inference made at 

the target nodes. This process is repeated for each record in the test dataset. For each network 

update, the probability distribution of the target node is recorded and its prediction 

determined. That is, after each network update, the state with higher belief value (the most 

likely or maximum likelihood state), based on a cut-off threshold probability, is taken to be 

the prediction for the target node. For example, for a 50% cut-off threshold probability, of the 

two states of the target node, the state which belief level is higher than 50% is taken to be the 
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prediction. The predictions are then compared with the observations (the set of values for the 

target node in the test dataset taken as the actual “observations”), for each record of the test 

dataset. If a prediction corresponds to the observation, it is recorded as a success otherwise it 

is recorded as a failure. The statistics are then collected and used to assess the performance of 

the model, generating values for the various performance metrics that constitute the optimality 

criteria. 

 
 
5.3 OPTIMALITY CRITERIA AND COMPARATIVE TOOLS 
 
5.3.1 Structure Comparison 

Structural difference measures are often used to compare the structural differences between an 

induced model structure and a reference model structure [185]. The comparison may 

sometimes not take into consideration the orientation of the edges. If the focus is causality, 

then the orientation of the edges becomes extremely important. Otherwise, the orientation of 

the edges can be deemphasized as the exact topology of the network may be immaterial and 

the emphasis is on performance [185]. A causal model is a “Bayesian network with added 

property that the parents of each node are its direct causes” [213]. This implies an asymmetric 

relationship between parent and child nodes, such that in the case edge of reversal, the 

resulting network will not be equivalent in terms of representational ability.  In induced non-

causal model structures, it is possible to ignore the direction of the reversible edges but not 

those of the compelled edges. The reversible edges are the edges that occur in the opposite 

direction in some other DAG that is equivalent (in terms of representational ability) to the 

current DAG [214]. “If two DAGs encode the same conditional independencies, they are 

called Markov equivalent. The set of all DAGs can be paritioned into Markov equivalence 

classes. Graphs within the same class can have the direction of some of their arcs reversed 

without changing any of the CI relationships. Each class can be represented by a PDAG 

(partially directed acyclic graph) called an essential graph or pattern. This specifies which 

edges must be oriented in a certain direction (compelled edges), and which may be reversed. 

When learning graph structure from observational data, the best one can hope to do is to 

identify the model up to Markov equivalence” [215].  

 

In this context, ignoring some edge directions (those highlighted by the software tool as 

reversible), the link statistics of the induced structure are categorized as:  

� correct positive (cp)-- a link is learnt between two nodes where a link exists between 

the same two nodes in the reference model (correct link) 
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� false positive (fp)-- a link is learnt between two nodes where a link does not exist 

between the same two nodes in the reference model (extra link) 

� correct negative (cn)-- no link is learnt between two nodes where a link does not exist 

between the same two nodes in the reference model (correct nolink) 

� false negative (fn)-- no link was learnt between two nodes where a link exists between 

the same two nodes in the reference model (missing link).  

 
 
5.3.2  Performance Comparison Metrics 

Scoring functions or rules are appropriate for evaluating the performance of probabilistic 

predictive models [216].  Mathematically convenient scoring rules are most commonly used 

[217].  These include, error rate, logarithmic (logloss) score, and Briers score 

[192][216][218][219]. Sensitivity is also, often used as a model performance measure 

[192][219]. 

 
The error rate, based on the maximum likelihood state of the target node [209], is a way to 

analyze model predictions by dividing the number of predictive errors by the number of test 

cases in the test dataset. It gives the percentage failure rate. It identifies the percentage of the 

cases in a test dataset for which the network predicted a wrong value for the query node. For 

example, an error rate of 24% implies that in 24% of the cases for which the test dataset 

contains a value for the target node, the predictions did not match the observed values. 

 

The logarithmic (logloss) score was suggested by [209], and is defined as follows: let X 

denote a discrete random variable, with m (mutually exclusive) possible 

states, 1 2( , , , ., )mix x x x… … , which is to be observed for a sequence of cases, i = 1,…….,N. 

Let ( )ip x  denote the estimated probability (referred to as the predicted value for the purposes 

of the test) for the i th state.  Suppose the j th state is actually observed, then the particular 

observation is associated with a logloss score for the j th state given by [174][221] 

as:
1

log ( )
( )

logj j
j

p x
p x

= −=ℓℓℓℓ . Then, by accumulating the scores for the N cases, a total 

penalty for the N observations is obtained by:  
1

N

j
j=

= ∑ℓ ℓℓ ℓℓ ℓℓ ℓ , and the average logloss score for 

the N cases is:  
1 1

1 1
log ( )

N N

avg j j
j j

p x
N N= =

= −= ∑ ∑ℓ ℓℓ ℓℓ ℓℓ ℓ . The logloss value lies in the range [0, ∞], 

where smaller (lower) values of the score imply better model performance.   
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The Brier score (b), also referred to as Quadratic Loss (QL) or Mean Squared Error of 

Prediction (MSEP), measures the accuracy of a set of probability assessments. The Brier score 

function, as used in BN model performance comparison, is given by [174][192][219][221] as: 

( ) 2

1

1
( | ) ( | )1 2

1

N

i i
i

p y c x p y j x
N

k
b

j=

  
  = =

    

= − × + ∑
=

∑   (5.1) 

 where ( | )ip y c x= is the probability predicted for the actual (observed) state, c , of the target 

variable, y (the state of y in the particular record of the test dataset), given the evidence 

variables, ix ; ( | )ip y j x= is the probability predicted for the j th state of y, given the evidence 

variables; k is the number of states of the target variable, y; N is the number of records in the 

test dataset. The QL is a measure of the average quadratic loss that occurred on each instance 

in the test dataset. It is averaged over all the records in the test dataset and not only accounts 

for the probability assigned to the actual (observed) state, but also the probabilities assigned 

to the other possible states of y. The value of Brier score lies in the range [0, 1], with b = 0 

indicating higher prediction accuracy, thus better performance. 

 

Sensitivity (also referred to as the recall rate) is a statistical measure of model performance. It   

measures the proportion (in percentage) of actual values (observations) which are correctly 

predicted. A sensitivity of 100% means that the model correctly predicted all actual 

observations for the target variables (100% actual or true positives). 

 

These metrics are often used together, in any one investigation, by researchers [192][219], in 

order to facilitate the drawing of more robust conclusions. The different metrics, though not 

complementary, evaluate performance from different perspectives, thereby collectively giving 

a more robust picture of the performance of a model. Error rate informs on the percentage 

failure rate of a model, the Brier score gives a measure of the accuracy of the probability 

estimates made by the model, and sensitivity informs on the percentage success rate of the 

model. The logloss score is similar to Brier score, however, the logloss score is local in that it 

only depends upon the probability assigned to the particular state and not on any of the 

probabilities assigned to the other states.  

 
 
5.4 RESULTS 
As stated earlier (in section 5.2), the models constructed for the purposes of this investigation 

are broadly grouped as parameteric and non-parameteric models (based on the training 
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dataset used for the construction model), and the type of model (sedacen and todacen). Table 

5.2 highlights the different sample training and test datasets and their respective sizes.  

 
Table 5.2: Training and Test Datasets 

270, 5000, 35000, 70000, respectivelyT1, T2, T3, T4TTest

24000, 72000, 142000, 240000, respectivelyD1np, D2np, D3np, D4npDnp

24000, 72000, 142000, 240000, respectivelyD1p, D2p, D3p, D4pDp
Training

Sizes of the DatasetsMember DatasetsName of set of DatasetsType of Dataset

270, 5000, 35000, 70000, respectivelyT1, T2, T3, T4TTest

24000, 72000, 142000, 240000, respectivelyD1np, D2np, D3np, D4npDnp

24000, 72000, 142000, 240000, respectivelyD1p, D2p, D3p, D4pDp
Training

Sizes of the DatasetsMember DatasetsName of set of DatasetsType of Dataset

 
 

The sizes of the training datasets were chosen to represent an increasing reasonably spaced 

size range, for the purposes of the investigation. Full observability was assumed, for the 

purposes of the investigation. It was also assumed that the data samples, generated using a BN 

software tool, are representative of the larger set of baselines samples. As highlighted in Table 

5.2, four different sizes of test datasets were used for evaluating the models. One of the 

reasons was to investigate the relationship between model performance and the size of the test 

dataset. The second reason was for repeatability of the test for evaluating the performances of 

the models in order to facilitate the drawing of more robust conclusions from the 

investigation.  

 

The results of the empirical investigation are hereby presented with respect to the models’ 

performance indices. Rather than use the performance metric values (error rate, logloss, Brier 

score, and sensitivity) individually, for each of the four test instances, to compare the models, 

a single performance index was derived for each model, based on the metrics. The function, 

ψ, for calculating the performance index of a model is defined, in this context, is defined as: 

[ ](100 ) (1 ) *100 (1 ) *100normalizede b s lψ = − + − + + − , where e = error rate, b = brier score, l = logloss, 

and s = sensitivity. The function, ψ, takes the values of the performance metrics for a model 

as input, and yields a performance index for the model, for a test instance. The function 

assumes equal importance for all the performance metrics. Table 5.3 lists the performance 

indices for the parameteric models, with respect to the four test instances, while Figure 5.2 

graphically highlights the average performance indices of the parameteric models and that of 

the Reference model. Also, Table 5.4 lists the performance indices for the non-parameteric 

models, with respect to the four test instances, while Figure 5.3 graphically highlights the 

average performance indices of the non-parameteric models and that of the Reference model. 
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Table 5.3: Parameteric Models: Performance indices  

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

SPWDp
(WinMine
Toolkit)

0.6310.6290.6330.6230.63835
SaS

(GTT/BD
u)

SPGcD4p

0.6300.6280.6320.6220.63635
SaS

(GTT/BD
u)

SPGcD3p

0.6290.6280.6320.6210.63735
SaS

(GTT/BD
u)

SPGcD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/BD
u)

SPGcD1p

SPGcDp
(Genie)

0.6300.6280.6320.6220.63735
SaS

(GTT/K2)
SPGbD4p

0.6300.6290.6330.6230.63835
SaS

(GTT/K2)
SPGbD3p

0.6300.6290.6330.6230.63735
SaS

(GTT/K2)
SPGbD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/K2)
SPGbD1p

SPGbDp
(Genie)

0.6300.6280.6320.6220.63735
CI-Test

(PC)
SPGaD4p

0.6300.6290.6330.6230.63835
CI-Test

(PC)
SPGaD3p

0.6320.6290.6330.6230.64335
CI-Test

(PC)
SPGaD2p

0.6300.6290.6330.6220.63835
CI-Test

(PC)
SPGaD1p

SPGaDp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4p

0.3260.3260.3270.3260.328--PSD3p

0.3260.3260.3270.3260.328--PSD2p

0.4800.4900.4890.4790.461--PSD1p

PSDp
(SamIam)

0.6300.6290.6330.6220.638--PGD4p

0.6300.6290.6330.6230.638--PGD3p

0.6300.6290.6330.6230.638--PGD2p

0.6300.6300.6290.6290.633--PGD1p

PGDp
(Genie)

0.6310.6290.6330.6230.638--PND4p

0.6300.6300.6290.6290.633--PND3p

0.6300.6300.6290.6290.633--PND2p

0.6300.6300.6280.6290.633--PND1p

PNDp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index 
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model

Model Group
and 

(Software 
Tool)

Type

PARAMETERIC MODELS

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

*****35
SaS

(?/BDu)
SPWD1p

SPWDp
(WinMine
Toolkit)

0.6310.6290.6330.6230.63835
SaS

(GTT/BD
u)

SPGcD4p

0.6300.6280.6320.6220.63635
SaS

(GTT/BD
u)

SPGcD3p

0.6290.6280.6320.6210.63735
SaS

(GTT/BD
u)

SPGcD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/BD
u)

SPGcD1p

SPGcDp
(Genie)

0.6300.6280.6320.6220.63735
SaS

(GTT/K2)
SPGbD4p

0.6300.6290.6330.6230.63835
SaS

(GTT/K2)
SPGbD3p

0.6300.6290.6330.6230.63735
SaS

(GTT/K2)
SPGbD2p

0.6300.6280.6320.6220.63735
SaS

(GTT/K2)
SPGbD1p

SPGbDp
(Genie)

0.6300.6280.6320.6220.63735
CI-Test

(PC)
SPGaD4p

0.6300.6290.6330.6230.63835
CI-Test

(PC)
SPGaD3p

0.6320.6290.6330.6230.64335
CI-Test

(PC)
SPGaD2p

0.6300.6290.6330.6220.63835
CI-Test

(PC)
SPGaD1p

SPGaDp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4p

0.3260.3260.3270.3260.328--PSD3p

0.3260.3260.3270.3260.328--PSD2p

0.4800.4900.4890.4790.461--PSD1p

PSDp
(SamIam)

0.6300.6290.6330.6220.638--PGD4p

0.6300.6290.6330.6230.638--PGD3p

0.6300.6290.6330.6230.638--PGD2p

0.6300.6300.6290.6290.633--PGD1p

PGDp
(Genie)

0.6310.6290.6330.6230.638--PND4p

0.6300.6300.6290.6290.633--PND3p

0.6300.6300.6290.6290.633--PND2p

0.6300.6300.6280.6290.633--PND1p

PNDp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index 
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model

Model Group
and 

(Software 
Tool)

Type

PARAMETERIC MODELS

 
* Could not evaluate the models based on the performance metrics, using the WinMine toolkit. 
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Figure 5.2: Average performance indices of the parameteric models and the Reference model 

 
 
 

Tables 5.3 and 5.4, and Figures 5.2 and 5.3, highlight performance differences between the 

parameteric and non-parameteric models, relative to the performance of the Reference 

model. The performance indices of the SPWDp group of models were not listed in Table 5.3 

because they could not be evaluated with respect to the performance metrics, using WinMine 

toolkit. The WinMine BN network file format (.xmod) did not allow for its conversion to 

network file formats supported by other software tools that facilitate model evaluation with 

respect to the performance metrics. Also, the performance indices of the non-parameteric 

todacen groups of models (with the exception of one) were not listed in Table 5.4 because no 

structures or meaningful structures were learnt, hence no model to evaluate.  
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Table 5.4: Non-parameteric models: Performance indices 

*****0
SaS

(?/BDu)
SPWD4np

*****0
SaS

(?/BDu)
SPWD3np

*****0
SaS

(?/BDu)
SPWD2np

*****0
SaS

(?/BDu)
SPWD1np

SPWDnp
(WinMine
Toolkit)

*****0
SaS

(GTT/BDu)
SPGcD4np

*****0
SaS

(GTT/BDu)
SPGcD3np

*****0
SaS

(GTT/BDu)
SPGcD2np

*****0
SaS

(GTT/BDu)
SPGcD1np

SPGcDnp
(Genie)

*****0
SaS

(GTT/K2)
SPGbD4np

*****0
SaS

(GTT/K2)
SPGbD3np

*****0
SaS

(GTT/K2)
SPGbD2np

*****0
SaS

(GTT/K2)
SPGbD1np

SPGbDnp
(Genie)

0.4930.4930.4930.4880.495
25

(3 nets)
CI-Test

(PC)
SPGaD4np

*****
10

(8 nets)
CI-Test

(PC)
SPGaD3np

*****
9 

(7 nets)
CI-Test

(PC)
SPGaD2np

*****
6

(4 nets)
CI-Test

(PC)
SPGaD1np

SPGaDnp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4np

0.3260.3260.3270.3260.328--PSD3np

0.3260.3260.3270.3260.328--PSD2np

0.3260.3260.3270.3260.328--PSD1np

PSDnp
(SamIam)

0.4870.4900.4880.4870.484--PGD4np

0.4350.4310.4330.4380.436--PGD3np

0.4490.4540.4530.4550.436--PGD2np

0.4720.4690.4690.4690.480--PGD1np

PGDnp
(Genie)

0.4500.4540.4530.4560.436--PND4np

0.4870.4900.4880.4870.484--PND3np

0.4350.4310.4330.4380.436--PND2np

0.4720.4710.4690.4690.480--PND1np

PNDnp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model
Model Group

and
(Software Tool)

Type

NON-PARAMETERIC MODELS

*****0
SaS

(?/BDu)
SPWD4np

*****0
SaS

(?/BDu)
SPWD3np

*****0
SaS

(?/BDu)
SPWD2np

*****0
SaS

(?/BDu)
SPWD1np

SPWDnp
(WinMine
Toolkit)

*****0
SaS

(GTT/BDu)
SPGcD4np

*****0
SaS

(GTT/BDu)
SPGcD3np

*****0
SaS

(GTT/BDu)
SPGcD2np

*****0
SaS

(GTT/BDu)
SPGcD1np

SPGcDnp
(Genie)

*****0
SaS

(GTT/K2)
SPGbD4np

*****0
SaS

(GTT/K2)
SPGbD3np

*****0
SaS

(GTT/K2)
SPGbD2np

*****0
SaS

(GTT/K2)
SPGbD1np

SPGbDnp
(Genie)

0.4930.4930.4930.4880.495
25

(3 nets)
CI-Test

(PC)
SPGaD4np

*****
10

(8 nets)
CI-Test

(PC)
SPGaD3np

*****
9 

(7 nets)
CI-Test

(PC)
SPGaD2np

*****
6

(4 nets)
CI-Test

(PC)
SPGaD1np

SPGaDnp
(Genie)

todacen
(structure and 

parameter learning)

0.3260.3260.3270.3260.328--PSD4np

0.3260.3260.3270.3260.328--PSD3np

0.3260.3260.3270.3260.328--PSD2np

0.3260.3260.3270.3260.328--PSD1np

PSDnp
(SamIam)

0.4870.4900.4880.4870.484--PGD4np

0.4350.4310.4330.4380.436--PGD3np

0.4490.4540.4530.4550.436--PGD2np

0.4720.4690.4690.4690.480--PGD1np

PGDnp
(Genie)

0.4500.4540.4530.4560.436--PND4np

0.4870.4900.4880.4870.484--PND3np

0.4350.4310.4330.4380.436--PND2np

0.4720.4710.4690.4690.480--PND1np

PNDnp
(Netica)

Sedacen
(known structure, 

parameter learning)

0.6300.6290.6330.6230.638--REF-tecen

Average 
Performance 

Index
T4T3T2T1

Performance Index
No of 
links 
learnt

Structure 
Learning 
Approach

Model
Model Group

and
(Software Tool)

Type

NON-PARAMETERIC MODELS

 
* No structure or meaningful structure was learnt, hence no model to evaluate 
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Figure 5.3: Average performance indices of the non-parameteric models and the Reference 

model 
 
It was observed, as highlighted and indicated by Tables 5.3 and 5.4, and Figures 5.2 and 5.3, 

that the: 

� best performing model is the SPGaD2p with an average performance index of 0.632, 

as against the Reference model’s average performance index of 0.630. 

� performances of the parameteric groups of model (with the exception of one) are 

comparable (equivalent) to the performance of the Reference model. That is, the 

performances of 67% of the parameteric sedacen and 100% of the parameteric 

todacen models were comparable (equivalent) to that of the reference model. 

� The performances of the non-parameteric models were relatively poor compared to 

the performance of the Reference model. That is, taking 0.500 as the threshold 

between comparable and poor performance, the performances of 100% of both the 

non-parameteric sedacen and todacen models were relatively poor. The learnt CPT 

entries were more or less inconclusive. 

� In 15 (94%) of the 16 cases in which the Dnp set of datasets (non-parameteric 

datasets) were used for the construction of todacen models (structure and parameter 

learning), no structures or meaningful structures were learnt. 

In addition, a weak negative correlation (r = -0.0734) was found between the size of the 

training dataset and model performance. Also, a weak negative correlation (r = -0.0569, p = 

0.94400) was found between the size of the test dataset and model performance. 
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5.6 COMMENTS  
The results of the empirical investigation are encouraging. The results provide additional 

insight for BN model constructors and contribute to the literature providing supportive 

evidence for the conceptual feasibility and efficiency of structure and parameter learning 

algorithms and approaches. The induction of models which performances were comparable 

(equivalent) to, and in one case better than (albeit marginally by 0.002 (0.32%)) the 

performance of the Reference model is significant. However, the results show that it may not 

have been possible to construct the sedacen and todacen models with performances that are 

comparable to or better than the performance of the Reference model without first 

constructing the complete Reference model (structure + parameters), with assistance of 

domain experts.  

 

Though the performances of all the models (parameteric  and non-parameteric,  sedacen and 

todacen) constructed using the SamIam software tool were relatively poor, it is assumed to 

imply inefficiency of the software tool, which however, may be due to some uncontrolled 

factor(s) and therefore may require further investigation. The results also indicate that the 

Conditional Independence (CI) test based PC structure algorithm is equivalent in its learning 

outcomes to the Score and Search (SaS) based GTT/K2 and GTT/BDeu structure learning 

algorithms, with respect to the parameteric models. The PC algorithm performed better than 

the SaS-based algorithms with respect to the non-parameteric models. It was able to learn 

some links (in 100% of the cases), though the links did not yield meaningful models in 75% 

of the cases. Furthermore, the sizes of the training and test datasets did not seem to have any 

relationship with model performance. However, the results showed that in 100% of the 12 

non-parameteric sedacen models, almost equal probability values were assigned to all 

possible parent combinations. The parameter values seemed logically and realistically 

unacceptable for the purpose for which the models are aimed, as highlighted in Figure 5.4, the 

CPT of one of the nodes in a non-parameteric sedacen model.  
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Figure 5.4: The CPT of a node in a non-parameteric sedacen model, PND2np. 

 

Finally, the results have also highlighted an important area that may require further 

investigation. The results showed that a complete Reference model (that is knowledge of the 

relationship between the domain variables and their Conditional Probability Distributions) is a 

requirement for simulating sample datasets for structure and/or parameter that will yield 

meaningful and comparable models for the domain. This suggests the need for further 

research in order to investigate the outcome of structure and/or parameter learning using 

historical sample datasets from the domain that may not have been generated with knowledge 

of the relationship between the domain variables and their Conditional 

Probability Distributions.  The main challenge to this investigation will be the obtainment of 

historical sample datasets for the domain.   
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5.7 SUMMARY  
The best approach for the construction of the BN-based model for the performance 

assessment of students’ laboratory work in the VEL environment has been empirically 

investigated. The optimisation exercise yielded a better model (albeit marginally). This 

provides reassurance that the procedure followed in the derivation of the assessment model 

(Chapter 4) was fit for purpose. The results contribute to the literature providing supportive 

evidence for the conceptual feasibility and efficiency of structure and parameter learning 

algorithms and approaches. In addition, they also highlighted the need for further 

investigation with respect to data-centred BN model construction approach for the domain.  

 

Furthermore, from our experience, the data-centred BN model construction approach depends 

on the availability of appropriate software tools and sample training datasets. Model 

construction may be limited by the software tools available. Commercial software tools may 

be inaccessible, in which case freeware tools, which may have limited capabilities, are used. 

Also, there seems to be no standardized data and network file formats for BN software tools. 

Different tools support different data and network file formats. For example, some software 

tools may support only numeric data files, some string data files, while some may require the 

inclusion of record occurrence frequencies. This may be counterproductive for the data-

centred BN construction approach. 
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6.0 INTRODUCTION  
The performance data required to generate evidence for updating the LAP model is generated 

from the analysis of students’ laboratory work behaviour log. The extraction of the necessary 

performance data for the quantization of evidence variables and their instantiation processes 

are detailed in this chapter. In addition, some valuable information derivable from the 

inspection of students’ laboratory work schemas, generated from their behaviour logs, are 

highlighted.  

 

First, section 6.1 describes the behaviour log analysis and performance data extraction 

processes. Section 6.2 details the evidential data extraction and evidence variable quantization 

for some of the evidence variables, while section 6.3 addresses evidence instantiation using a 

fuzzification engine. Section 6.4 highlights some valuable information derivable from the 

inspection of student’s laboratory work schemas. The chapter is summarized in section 6.5. 

 
 
 

6.1 PERFORMANCE DATA EXTRACTION  
The application of a BN model requires that evidence variables are instantiated for network 

update/inference. In this context, the evidence variables are first quantified, using the 

performance data extracted from the behaviour log, and then instantiated, using a fuzzification 

engine.  Figure 6.1 diagrammatically highlights these processes. A behaviour log consists of 

the following performance (evidential) data sources:  

1. laboratory activity results and answers to laboratory questions 

2. built circuit schematics and simulation commands (a set of netlists) 

3. responses to pre-/post-laboratory test items.  

4. interaction events log (mouse click stream and key presses).  

Data sources 1, 2, and 3 are referred to as explicit sources and 4 is referred to as implicit 

source, which is subjected to transformation and analysis. In addition to extracting 

performance data, information from the analysis of a student’s interaction events log can be 

visualised in order to gain insight into the student’s laboratory work schema, can uncover 

aspects of a student work process (such as areas where a student had difficulties, and 

conformance to safety issues) that are difficult to capture otherwise. It is also useful for 

student characterization and grouping, with respect to laboratory work behaviour.  
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Figure 6.1: Data extraction and evidence quantization and instantiation processes. 
 

 

The events log is first filtered to remove noise and then subjected to selection and 

aggregation. Transformation involves filtering, selection, aggregation, and abstraction. The 

concepts of selection, aggregation, and abstraction are depicted diagrammatically in Figures 

6.2 and 6.3. 

 

Interaction Events Selected Events

Description: Selection is the process of separating events 
of interest from the rest of the event stream. The log is 
first filtered of noise before selection.
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Figure 6.2: Interaction events transformation: Selection and Aggregation 
(Adapted from: [108]). 
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Events Actions

Description: Abstraction is the process of formulating generalized ideas or 
concepts by extracting specific instances of relevant actions and/or events.

ABSTRACTION

Higher-Level Concepts

 

Figure 6.3: Interaction events transformation: Abstraction 
(Adapted from: [108]). 

 

 

Selection involves separating events of interest from other events. For example, it was chosen 

to disregard all events associated with mouse movements in order to focus analysis on more 

relevant actions such as circuit component selection, pickup, and placement on the 

breadboard. Aggregation is the process of synthesizing actions from event stream. Events 

occur serially and actions are composed of a number of events that occurred in sequence. An 

event can, in itself, constitute an action. Rules are used to characterize and aggregate events 

occurring in sequence. For example, the power supply is seen to have been connected to the 

breadboard, if the following events have occurred in sequence, as highlighted in Figure 6.4.  
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if (eventn = POSITIVE_POWER_SUPPLY_TERMINAL_CLICKED) AND
(eventn+1 = FIRST_CONNECTION_POINT_CLICKED)AND
(eventn+2 = SECOND_CONNECTION_POINT_CLICKED)

OR

if (eventn = NEGATIVE_POWER_SUPPLY_TERMINAL_CLICKED) AND
(eventn+1 = FIRST_CONNECTION_POINT_CLICKED) AND
(eventn+2 = SECOND_CONNECTION_POINT_CLICKED) THEN

action = POWER_SUPPLY_ CONNECTED _TO_THE_BREADBOARD

Events 
occurring in 
sequence

Events 
occurring in 
sequence

Action

if (eventn = POSITIVE_POWER_SUPPLY_TERMINAL_CLICKED) AND
(eventn+1 = FIRST_CONNECTION_POINT_CLICKED)AND
(eventn+2 = SECOND_CONNECTION_POINT_CLICKED)

OR

if (eventn = NEGATIVE_POWER_SUPPLY_TERMINAL_CLICKED) AND
(eventn+1 = FIRST_CONNECTION_POINT_CLICKED) AND
(eventn+2 = SECOND_CONNECTION_POINT_CLICKED) THEN

action = POWER_SUPPLY_ CONNECTED _TO_THE_BREADBOARD

Events 
occurring in 
sequence

Events 
occurring in 
sequence

Action

 

Figure 6.4: Aggregation of atomic events to highlight an action. 
 

First and second connection points refer to contact positions on the breadboard where the 

student connected the red (live) and black (ground) wires from the terminals of the power 

supply. Table 6.1 lists some of the actions that can be taken in the VEL environment. 

Abstraction involves relating actions, and possibly relevant events, to higher-level concepts of 

interest. For example, it could be abstracted from a student’s actions if the student observed 

an instance of safety procedure, such as first connecting the terminals of the power supply to 

the breadboarded circuit before switching the power supply on. 

  

Table 6.1: A list of some of the actions that can be taken in the VEL 
•SELECT_A_COMPONENT_IN_A_COMPONENT_CONTAINER
•DESELECT_A_COMPONENT_IN_A_COMPONENT_CONTAINER
•PICK_UP__A_COMPONENT_FROM_A_COMPONENT_CONTAINER,
•DROP_A_PICKED_UP_OMPONENT
•PLACE_ONE_BREADBOARD_ON_THE_WORKBENCH
•PLACE_TWO_BREADBOARDS_ON_THE_WORKBENCH
•REMOVE_A_PLACED_COMPONENT_FROM_THE_BREADBOARD
•SET_VOLTAGE_VALUE_ON_THE_POWER_SUPPLY
•REMOVE_BREADBOARD_FROM_THE_WORKBENCH
•CASCADE_TWO_BREADBOARDS
•DECASDE_TWO_BREADBOARDS
•CONNECT_POWER_SUPPLY_TO_THE_BREADBOARD 
•DISCONNECT_POWER_SUPPLY_FROM_THE_BREADBOARD 
•CONNECT_FUNCTION_GENERATOR_TO_THE_BREADBOARD
•DISCONNECT_FUNCTION_GENRATOR_FROM_THE_BREADBOARD
•SIMULATE_CONSTRUCTED_CIRCUIT
•PLACE_A_COMPONENT_ON_THE_BREADBOARD
•CLEAR_THE_WORKBENCH
•CLEAR_THE_BREADBOARD
•SEEK_INFORMATION
•SWITCH_ON_THE_POWER_SUPPLY
•SWITCH_OFF_THE_POWER_SUPPLY
•SWITCH_ON_THE_FUNCTION_GENERATOR
•SWITCH_OFF_THE_FUNCTION_GENERATOR
•VIEW_PLOTTED_GRAPHS
•SELECT_THE_SIGNAL_TYPE_FOR_AC_ANALYSIS
•SET_SIGNAL_RMS_VALUE_ON_THE_FUNCTION_GENERATOR
•SET_FREQUENCY_RANGE_FOR_FUNCTION_GENERATOR
•SEARCH_FOR_RESISTOR
•SEARCH_FOR_CAPACITOR
•SEARCH_FOR_INDUCTOR
•SEARCH_FOR_WIRE
•REPOSITION_COMPONENT_PIN_ON_BREADBOARD
•SELECT_A_COMPONENT_ON_BREADBOARD
•DESELECT_A_COMPONENT_ON_BREADBOARD
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6.2 EVIDENCE QUANTIZATION CASE STUDIES 
Each evidence variable is quantized using the relevant data extracted from the performance 

data sources, a set of rules, sequence detection (see Figure 6.5), and count and summary 

statistics (see Figure 6.5). The purpose of sequence detection is to recognize sequences of 

actions that, for example, violate or meet particular expectations, such as safety procedure. 

 

Description: Count and summary statistics are numeric 
values calculated based on UI events to characterize user 
behaviour

SEQUENCE DETECTION

Actions Target Sequences

Description: Sequence detection is the process of 
identifying occurrences of specified target sequences.

Events Count and Summary 
Statistics

COUNT AND SUMMARY STATISTICS

• Time on task

• % idle time

• Component   
removal count

• simulation attempts 
count

 

Figure 6.5: Sequence detection and count and summary statistics 
(Adapted from: [108]). 

 

 The quantization process uses a reference data set, as the “gold standard”, where necessary. 

The processes of data extraction and quantization of evidence variables, node 1, 

“UseOfCorrectComponents” (UCC), node 2, “CorrectPlacementOfComponents” (CPC), and 

node 33, “ExperienceUsingVEL” (EUV), (see Chapter 5, Figure 5.3) are hereby described. 

The quantization of the remaining evidence variables is described in Appendix C. The 

quantization of nodes 1 (UCC) and 2 (CPC) involves the comparison of a student’s built 

circuit with the reference circuit, for equivalence, by the CircuitComparator, which consists 

of two component parts: ComponentComparator and TopologyComparator. Two electrical 

circuit networks are equivalent if they both contain the same set of components in type and 

value, and the manner in which the components are connected result in the same branch 

currents and voltages [222]. The circuits are represented in the system as netlists.  

 
 
6.2.1 Quantization of Node 1: “UseOfCorrectComponents” 

The Quantization of UCC entails checking if a student’s built circuit is component- and value-

wise equivalent to the reference circuit, by the ComponentComparator. The variable, UCC, is 

then quantized as:  
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100

1

n xiUCC q mn i

 
= × ∑ 

= 
   (6.1) 

Where, in this case, n = number of different types of reference circuits, m = number of circuits 

built and simulated by a student in the process of undertaking an activity, xi = number of 

circuits built and simulated by student that are component- and value-wise equivalent to 

reference circuit type i, and q = number of xi’s not equal to zero (q is an indication that a 

circuit of a particular type is built with the correct components and values, at least once).  

 
 
6.2.2 Quantization of Node 2: “CorrectPlacementOfComponents” 

The quantization of CPC necessitates that a student’s built circuit be compared to the 

reference circuit for topological equivalence, by the TopologyComparator. Two circuits are 

considered to be topologically equivalent if they have the same voltage/current characteristics 

across all terminals of the networks [222]. That is, the topological comparison of two circuits 

requires the explicit comparison of the branch voltage/current characteristics of the circuits. 

For this purpose, a directed graph, G, without self-loops, is used to completely describe the 

circuit (network) and the KVL and KCL equations of the network are then derived from the 

graph, using the relevant component of the graph [223]. A graph, G, is a pair (U,E) where U is 

the set of all the vertices on the graph and E is the set of pairs (u,v) called edges such that 

u,v∈U, u≠v [224]. The nodes and branches of the network make up the vertices and the edges 

of the graph, respectively. The orientations of the edges reflect the reference direction of the 

currents/voltages across the branches of the network. The relevant components of the graph, 

G, required for the derivation of the matrices/equations necessary for the characterization of 

the network represented by G include path, subgraph, loop, cutset, tree, and cotree (see 

[223][225] for details). The matrices include the Incident Matrix (IM), Aa, and Reduced 

Incident Matrix (RIM), A; Loop Matrix (LM), Ba, and Fundamental Loop Matrix (FLM), B; 

Cutset Matrix (CM), Da, and Fundamental Cutset Matrix (FCM), D. The IM, Aa, is generated 

directly from G. For example, the network of Figure 6.6, is described by the graph, G, of 

Figure 6.7.  
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Figure 6.6:  Circuit schematic of one of the laboratory activities used for the evaluation of the 
VEL: Twin-T Notch filter. 
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Figure 6.7: The graph, G, describing the network of Figure 6.6. 
 

 

In G, the edges represent the branches of the network, so that a, b, c, d, e, f, g, and h represent 

vcc, c1, c2, c3, r1, r2, r3, and r4, respectively. G has n vertices and b edges corresponding to 

the n nodes and b branches of the network. The graph, G, is used to generate the KCL and 

KVL equations describing the network, such that, in this context, the check for topological 

equivalence between a student’s built and the reference circuit reduces to matrix comparison. 

The details of the generation of the KCL and KVL equations, from G, are given in Appendix 

C1. The result of the comparison is used to generate the quantized value for the node, CPC, 

using equation 6.1.  

100

1

n xiCPC q mn i

 = × ∑ = 
  (6.1) 

Where, in this case, n = number of different types of reference circuits, m = number of circuits 

built and simulated by a student, xi = number of circuits built and simulated by a student that 

are topologically equivalent to reference circuit type i, and q = number of xi’s not equal to 

zero (q is an indication that a circuit of a particular type is built topologically correctly at least 

once).  
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6.2.3 Quantization of Node 33: “ExperienceUsingVEL” 

In order to quantize the variable, “ExperienceUsingVEL (EUV)”, the total time on task to date 

is used. The measure of experience is a real number, β, such that0 100β≥ ≤ .  β = 0 if a 

student has not previously undertaken any laboratory activity in the VEL environment. Each 

time a student undertakes a laboratory activity in the VEL environment, the activity counter is 

increased, and a value for the total time on activity to date, x, is derived, as cdx t t= + , where 

dt is the total time on task to date, before undertaking 1nactivity − , and ct  is the total time on 

task for 1nactivity − . That is, since nactivity  is the activity being assessed, the experience that 

will impact on the performance of nactivity  is the experience up to 1nactivity − . Using x, the 

measure of experience, β, is evaluated as a percentage of the set maximum total time on 

activity, 418 10mt = × . mt is set based on the assumption/expectation that a student would have 

mastered the use of the VEL by the time of undertaking up to 50 laboratory activities in the 

environment, where the average time per activity is 3600secs (1 hr).  Hence, using x, the 

measure of experience, β, is evaluated as follows:  

( ) 0,    0, , 100xif x else tm
β β= = = ×    (6.2) 

In this way, a student’s measure of experience, β, increases with each activity. The number of 

activities and average time per activity could in practical settings be varied to suit specific 

educational needs. 

 

 

6.3 EVIDENCE INSTANTIATION  
The quantization process generates a numerical value (a score), for an evidence variable, 

which serves as input into the fuzzification engine. Fuzzification is the process of making a 

crisp quantity fuzzy [Ross, 1995].The fuzzification process (shown in Figure 6.8) transforms 

the score into one of the linguistic values (states) of the evidence variable. The technicalities 

of the fuzzification process are documented in literature on fuzzy sets, logic, and systems such 

as [226].  

Fuzzification 
Engine

Crisp (numerical) Values 
(fuzzy singletons)

Linguistic values 
(fuzzy variable)

Limited to the universe 
of discourse

Fuzzy degree of 
membership in the 
qualifying linguistic set

Fuzzification 
Engine

Crisp (numerical) Values 
(fuzzy singletons)

Linguistic values 
(fuzzy variable)

Limited to the universe 
of discourse

Fuzzy degree of 
membership in the 
qualifying linguistic set

 

Figure 6.8: Fuzzification Engine. 
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In this context, the fuzzification process is based on the universe of discourse, X = {0, 100}, 

the set of possible numerical scores for the evidence variables. The score, xi X∈ , for an 

evidence variable, Ai , is fuzzified by generating its membership value in ( ) ( , , )1 2 3T A t t ti = , the 

linguistic term set (states) of Ai . ( )xiµ  maps each element, xi X∈ , to a degree of membership 

between 0 and 1, in ti , where ti is the set of ordered pair: { , ( ) | }x x x Xi i iµ ∈ . The trapezoidal 

function (equation 7.15) is the core of the fuzzification engine used in this work.  
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 −

−
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 −


−


  iif x a<

[ ] ,iif x a m∈

[ ] ,iif x m n∈

[ ] ,iif x n b∈

 iif x b>
    

 

The equivalent notation for equation 7.15 is:  

( , , , , ) max{min[( ) / ( ), 1, ( ) / ( )], 0}a x a m n b x a m a b x b ni i i i= − − − −   

The trapezoidal membership function is shown graphically in Figure 6.9, for node 1 of Figure 

4.3, “UseCorrectComponents (UCC)” , with states used, partiallyUsed, notUsed), for 

example. The partitions, P1, P2, and P3 are created using the mark-grade mapping scheme of 

one of the pilot Universities. The crossover points for the partitions are at ( )  0.5xiµ = .  

 

(6.3) 

(6.4) 
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Figure 6.9: The trapezoidal function representation for node 1 of Figure 4.3, 
“UseCorrectComponents” 

 

If, for example, UCC = 44, then (44) 0.2usedµ =  and (44) 0.8partiallyUsedµ = , based on 

which UCC will be instantiated to the state, partiallyUsed. A node is instantiated to the state 

for which the membership value of its score is greater. The fuzzification rules, based on the 

membership values of xi , are sumarilly highlighted in Table 6.2. 

 

 
Table 6.2: Summary highlight of the fuzzification rules 

S/No. Score (xi)
Membership

Value
Partition segment

Linguistic Term 
(State)

1 0 ≤ xi ≤ 40 µ(xi) = 1 P1 core notUsed

2 40.01 ≤ xi≤42.99 
0.5<µ(xi) <1 in P1

and 
0.0<µ(xi) <0.5 in P2

p1-p2  boundary, left notUsed

3 xi  = 42.5 µ(xi) = 0.5 p1-p2 boundary, centre notUsed

4 42.51 ≤ xi≤44.99
0.0<µ(xi) <0.5 in P1

and 
0.5<µ(xi) <1 in P2

p1-p2 boundary, right partiallyUsed

5 45 ≤ xi ≤ 60 µ(xi) = 1 p2 core partiallyUsed

6 60.01 ≤ xi ≤ 64.99
0.5<µ(xi) <1 in P2

and 
0.0<µ(xi) <0.5 in P3

p2-p3 boundary, left partiallyUsed

7 xi  = 65 µ(xi) = 0.5 p2-p3 boundary, centre used

8 65.01 ≤ xi≤69.99
0.0<µ(xi) <0.5 in P2

and 
0.5<µ(xi) <1 in P3

p2-p3 boundary, right used

9 70 ≤ xi 100 µ(xi) = 1 P3 core used

S/No. Score (xi)
Membership

Value
Partition segment

Linguistic Term 
(State)

1 0 ≤ xi ≤ 40 µ(xi) = 1 P1 core notUsed

2 40.01 ≤ xi≤42.99 
0.5<µ(xi) <1 in P1

and 
0.0<µ(xi) <0.5 in P2

p1-p2  boundary, left notUsed

3 xi  = 42.5 µ(xi) = 0.5 p1-p2 boundary, centre notUsed

4 42.51 ≤ xi≤44.99
0.0<µ(xi) <0.5 in P1

and 
0.5<µ(xi) <1 in P2

p1-p2 boundary, right partiallyUsed

5 45 ≤ xi ≤ 60 µ(xi) = 1 p2 core partiallyUsed

6 60.01 ≤ xi ≤ 64.99
0.5<µ(xi) <1 in P2

and 
0.0<µ(xi) <0.5 in P3

p2-p3 boundary, left partiallyUsed

7 xi  = 65 µ(xi) = 0.5 p2-p3 boundary, centre used

8 65.01 ≤ xi≤69.99
0.0<µ(xi) <0.5 in P2

and 
0.5<µ(xi) <1 in P3

p2-p3 boundary, right used

9 70 ≤ xi 100 µ(xi) = 1 P3 core used  
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6.4 STUDENT LABORATORY WORK SCHEMA  
In addition to the extraction of performance data from students’ interaction events logs, 

inspection of a student’s laboratory work schema can divulge valuable information, such as 

patterns of actions, and highlight areas where a student is possibly experiencing some 

difficulties. Figures 6.10, 6.11, and 6.12 represent the graphical depiction of the laboratory 

work schemas of three different students, Stud_A, Stud_B, and Stud_C, for the same 

laboratory activity.  
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Figure 6.10: Stud_A laboratory work schema 
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Figure 6.11: Stud_B laboratory work schema 
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Figure 6.12: Stud_C laboratory work schema 
 

 

Inspection of these schemas highlights interesting themes. Stud_A, on starting the activity, 

searched for, selected, picked up and dropped components severally before placing the first 

component on the BreadBoard (BB) and then went on to peruse the resistor colour code 

calculator (UsedRColCodeCalc), after which the student placed two more components on the 

BB, before simulating the breadboarded circuit. The student, obviously, used the Power 

Supply (PS) instead of the Function Generator (FG) and probably realized this mistake after 

three attempts to simulate the circuit. This realization made the student disconnect the PS and 

connect the FG. It can be seen that the student has not observed safety procedures at all. He 

first switched on the PS before connecting its terminals to the BB and disconnected the PS 

from the BB without switching it off first. Again, the student switched on the FG before 

connecting its terminals to the BB and while the FG was on and its terminals still connected 

to the BB, the student modified the breadboarded circuit by repositioning the pin of one of the 

components on the BB.  

 

Stud_B seems to be struggling with the laboratory activity. First, the student picked up a 

component from a component container, dropped the component, and used the resistor colour 

code calculator before then picking and placing a component on the BB, a process which the 

student repeated. In the course of undertaking the activity, the student simulated the 

breadboarded circuit over twelve times, in-between repositioning component pins on the BB. 

At a point, the student cleared the entire breadboard, restarting the activity. Also, the student 

did not observe safety procedure. The student switched on the FG before connecting its 

terminals to the BB and severally modified the circuit while the FG was on and its terminals 

still connected to the BB.  
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Stud_C has a much shorter signature for the activity than students A and B and seems more 

precise and partially safety conscious. The student did not go through the process of pick and 

drop. The student first connected the terminals of the FG to the BB before switching it on. 

However, it can be seen that the student was randomly flicking the FG on and off, connecting, 

disconnecting, and reconnecting the FG to the BB which does not indicate proper equipment 

use. Also, the student modified the breadboarded circuit while the FG was on and its 

terminals still connected to the BB.  

 

Essentially, visualizing students’ laboratory work schema can highlight whether students are 

behaving consistently or if there is a consistently wrong or erroneous behavioural trend on the 

part of the students. For example, it can be seen from the work schemas represented in the 

above three figures that all the three students, A, B, and C, seem to have problems with safety 

related issues. Also, students can possibly be categorised based on their work schemas, and 

monitor the transition of a student from one category to another.  

 
 
 

6.5 SUMMARY  
The use of the LAP assessment model entails the derivation, from students’ behaviour logs, 

data necessary for the generation of evidence to update the model. The processes for 

extracting performance data from a student’s log have been highlighted and the process of 

quantizing the evidence variables detailed. The process of using a fuzzification engine to 

instantiate an evidence variable from its quantized value has also been described. At this 

juncture, the LAP model is ripe for verification and evaluation. Its verification and 

evaluation methodologies and results are presented in the next chapter. 
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CHAPTER 7 

 ASSESSMENT MODEL VERIFICATION, 
EVALUATION AND APPLICATION 

Not everything that can be counted counts, and not everything 
that counts can be counted 

Albert Einstein 
1879 - 1955 
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7.0 INTRODUCTION  
Bayesian network models are often subjected to verification and evaluation.  Verification is 

concerned with knowledge elicitation review, functional verification, and sensitivity analysis. 

Elicitation review involves addressing issues related to the elicitation process and the elicited 

data. The review process enables the domain expert to reconstruct his/her thought processes, 

thereby giving the expert a chance to rethink his/her judgements. In this context, elicitation 

review and model (structure and parameter) refinements were inherent parts of the knowledge 

elicitation processes and so will not be addressed further. Functional verification is basically a 

check of the functional correctness of the model, while sensitivity analysis is broadly 

concerned with investigating the relationship between network input parameters and the 

inference output of the network. Sensitivity analysis is useful in a number of areas, including 

model debugging.  The evaluation of a model is a systematic assessment of its performance in 

terms of reliability and validity.  

 

First, the verification of the model (functional verification and sensitivity analysis) is 

presented in section 7.1, while the evaluation (reliability and validity assessments) processes 

and results are detailed in section 7.2. Section 7.3 highlights areas of possible application of 

the model, while section 7.4 summarizes the chapter. 

 
 
 
7.1 VERIFICATION  
 

7.1.1 Functional Verification 

The model was functionally verified by instantiating evidence nodes and checking whether 

the evidence was correctly propagated through the network. For example, when information 

about a student’s placement of components is received and it is ascertained that the student 

has placed all the components correctly, node 2 is instantiated and clamped to the state 

“placedAllCorrectly”.  Figure 7.1 shows the relevant part of the LAP model before node 2 

was instantiated, with the resulting updating of beliefs shown in Figure 7.2. As expected, the 

hypotheses, nodes 4, 15, and 16, that are influenced by node 2 have become more likely. The 

belief estimation for node 4, “AbilityToWorkWithComponents”, rose from 50% to 65.4%. 

Also, there was a rise in the measure of belief, from 50% to 54.8%, in the ability to construct 

circuits and an increase in belief in node 16, “AbilityToModifyCircuit”, from 49.9% to 53.1%. 

There was a 1.00% increase in the measure of belief for performance.  
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Figure 7.1: Extract from LAP model before node 2 was instantiated. 
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Figure 7.2: Extract from LAP model after node 2 was instantiated. 
 

 

7.1.2  Sensitivity Analysis 

Sensitivity analysis (SA) is a technique for systematically investigating the effects of 

variations in inputs on a model’s output.  That is, analysis of the extent to which imprecision 

in the input probabilities affect the estimated probabilities. There are two types of SA: 
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sensitivities oriented to evidence (Evidence-based Sensitivity Analysis (ESA)) and 

sensitivities oriented to parameters (Parameter-based Sensitivity Analysis (PSA)) [176]. ESA 

determines the variables that have the highest or lowest impact on the belief estimation of a 

target variable, X, while PSA measures the impact of changes in the parameters of a node, A, 

on the probability distribution of a target node, X. Researchers often employ only one of these 

two types of analysis in any one study, mostly ESA, for instance [227][228][229][230]. ESA 

is often used to detect and minimize the effects of poorly calibrated network or bias in 

knowledge elicitation by identifying the excessively influential variables. 

 

ESA estimates the extent to which the posterior probability of a target variable, X, is changed 

when finding is entered at a node, A, and the network updated. The influence of node A on X, 

referred to as the sensitivity of X to A, or the contribution of A to the reduction of the 

uncertainty at X, is measured using Shannon’s measure of mutual information based on the 

entropy function [231][232]. The total uncertainty reduction potential of A, with respect to X, 

is expressed as [231]: 

( , )
( ) ( | ) ( , ) log

( ) ( )

P x a
S H X H X A P x a

A X P x P a

∑∑= − = −
  (7.1) 

where H(X) is the initial uncertainty in X, before receiving the evidence, A, and updating the 

network, and H(X|A) is the average residual uncertainty in X, summed over all possible values 

of A.   

 

ESA was used to check the sensitivity of the performance node to all the evidence nodes in 

the LAP model. This type of analysis is relevant in the context of the LAP model because it is 

important that performance estimation is not excessively influenced by a particular 

performance index. The sensitivity of the target node, node 40, “performance” (PF), to all the 

23 indices (evidence variables) in the LAP model, and the Memory/Feedback node , node 35, 

“PreviousPerformance” (PP), is depicted graphical in Figure 7.3. Nodes 35, 

“PreviousPerformance” (PP), and 8, "ApplyCorrectFormula" (ACF), have excessive 

influence on performance. The influence of node 8, "ApplyCorrectFormula" (ACF), was 

moderated through the adjustment of its contributing weights in the parameters of its children 

(nodes 10, "AbilityToMakeApproCalculations" (MAC), and 37, "KnowledgeOfConcept" 

(KNC), the result of which is highlighted in Figure 7.4. Its influence was reduced by 72.58%. 

In the process, the influences of nodes 38, "ConceptualUnderstanding" (CUN), and 36, 

"FactualKnowledge" (FKN) were acceptably increased. Experts agreed that the level of 
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influence of node 35, “PreviousPerformance” (PP), was acceptable so its influence did not 

require moderation. Also, the levels of influence of nodes 38, "ConceptualUnderstanding"  

(CUN) and 36, "KnowledgeOfConcept" (FKN), on performance was considered acceptable 

because it is in line with the domain experts’ opinion that they should impact equally and 

significantly on performance.  
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Figure 7.3: Initial sensitivity of the target node to the evidence nodes. 
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Figure 7.4: Sensitivity of the target node, after parameter adjustment. 
 

The parameters were adjusted in order to reduce the excessive influence of the two nodes, 8 

and 35, because it is generally desirable to obtain similar and low sensitivities to the variables, 

which signifies model robustness. Robustness of a system refers to the quality of the system 

being able to cope well with abnormalities in input (such as invalid or unexpected inputs), or 

variations in its operating environment, with minimal alteration or loss of functionality. 

Consequently, the robustness of a Bayesian network can be defined as the maximization of 
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operational flexibility and simultaneously the minimization of uncontrolled effects such as 

disturbances, noise, changes in inputs and/or the state, etc.  

 

Sensitivity (robustness) analysis employs sets of distributions to model perturbations in the 

parameters of a probability distribution. Robust Bayesian inference is the calculation of 

bounds on posterior values given such perturbations. This is necessary because, in the real 

world all the assumptions of a Bayesian model can rarely be met. First, there are the 

imperfections in the elicited expert beliefs, as it may not be possible to elicit exact probability 

values. Second, domain experts have the tendency to disagree among themselves, each 

specifying a differing set of probability distributions. There is some empirical evidence that 

Bayesian networks are not too sensitive to parameters [233]. This is mostly true in cases 

where changes in one variable do not affect many variables (such as in sparsely inter-

connected networks), and changes are not large relative to the magnitude of the probability 

values, then it is likely that the changes may not produce significant variations in inferences 

and robustness may be present [234]. Otherwise, robustness may be an issue, especially in 

situations where the network is heavily inter-connected, in which case the robustness analysis 

aspect of inference has to be explored [234]. 

 

 
  
7.2 EVALUATION  
 
7.2.1 Reliability 

Reliability is concerned with the extent to which an assessment, if repeated, would give the 

same results [235]. It is an estimation of the consistency or repeatability of an assessment. An 

assessment can be considered reliable if the assessment outcome for two students with similar 

abilities/aptitude is similar, for the same assessment scenarios. If an assessment is item-based 

and the assessment outcome a single score, the conventional reliability evaluation method is 

to use a test-retest method to generate two sets of assessment data or to use a single test and 

partition the test items into two subsets and check if students scores on one subset correlate 

with their scores on the second subset. [95] asserted that assessment models for cognitive 

constructs cannot be appropriately evaluated for reliability using this conventional test-retest 

method but did not give the reason for the assertion.  

 

Another method of reliability evaluation is the derivation of predictive accuracy measure, 

based on the use of training and test data sets [93][236]. This method is most appropriate for 
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models induced from data [93]. It is therefore not applicable to LAP model reliability testing. 

To evaluate the reliability of the LAP model, simulated students evaluation approach was 

adopted. This approach has been used by other researchers for the evaluation of assessment 

models and systems including [95][237]. It has also been used for other purposes such as 

improvement of teaching skills [238][239], instructional development testing [239], 

assessment of document retrieval system [240], and training/testing of neural network-based 

models [237].  

 

Simulated students are models of human learning and have been categorized based on their 

granularity: large and fine-grained [239]. The granularity of a simulated student refers to the 

amount of detail in its representation [239]. Large-grained simulated student models, with 

known states of performance indices and scores for the performance criteria, and therefore 

known overall performance scores, were constructed and used for the evaluation. The overall 

performance score is arrived at by normalizing the sum of the contributing link weights of the 

known states of the performance indices with respect to the maximum link weights of the 

nodes.  The LAP model was run for each of the simulated students, with the evidence 

variables instantiated to their known states, in order to obtain the model’s performance belief 

estimates for the students.  

 

There was a strong positive correlation between the students’ known performance scores and 

the estimated beliefs (r = 0.87685, p = 0.0000). For reliability, “an assessment with a 

correlation coefficient that is less than 0.70 is generally not considered suitable for individual 

student evaluations” [95]. A high correlation between scores obtained from two assessments 

indicates that the assessment is reliable [241]. Where the known performance scores had 

mean, µ = 51.79 and standard deviation, σ = 18.11, the estimated measures of belief in 

performance had µ = 50.23 and standard deviation = 14.46. Figure 7.5 is a graphical depiction 

of the known performance scores compared to the estimated measures of belief in 

performance. 
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Figure 7.5: Test for reliability.  
 
 
 
7.2.2  Validation 

The different types of validation checks include face, content, criterion, and construct validity 

[95]. Face validation checks if, on the face value, an assessment process and the outcome 

appear relevant to the assessed construct. Content validation checks the assessment tasks for 

relevance and representativeness of the domain [242]. Content validity is often established by 

agreement in the judgements of domain experts [243]. Criterion validity is of two types: 

predictive and concurrent.  Predictive validity check is deemed most appropriate for 

assessment models that predict future performance, such as aptitude tests [95]. Construct 

validity checks the extent to which an assessment model measures the specific construct for 

which it is designed [244]. Concurrent validation checks the accuracy of assessment 

outcomes for a set of assessment scenarios.  

 

In this context, domain experts established the face validity of the assessment outcomes of the 

LAP model, having been key participants in the design and parameterization of the model. 

Content validity is assumed implicit because domain experts’ were actively involved in the 

design of the assessment tasks. Predictive validation is not relevant to this work because the 

LAP model is not for use to predict future performance. The focus was on concurrent validity. 

 

Evaluating the concurrent validity of an assessment involves administering another 

assessment of the target construct, using a similar assessment model and comparing the two 

assessment outputs. Alternatively, the historical-case technique can be employed. The 
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procedure is to assess a set of historical scenarios, using the assessment model being 

evaluated, and then check how well the model’s assessment outcomes match the existing 

assessment outcomes for the scenarios [95]. This is may be feasible where historical data 

exists and where the assessment methodology and concepts do not represent a paradigm 

change. In such situations, the assessment model would have been designed to model that 

historical case or a similar case. Another possible method is the physical-observation 

validation technique which entails that students physically undertake a set of assessment tasks 

while the instructor physically observes and scores their performance based on the 

observations. The performance scores then serve as a “gold standard” for the validation of the 

assessment outcome from the model, based on the same set of assessment tasks. This method 

is time, space, and assessor intensive, especially for large class sizes, and is logistically 

demanding.   

 

The LAP model was evaluated using the virtual-observation technique. The validation process 

involved a team of four assessors. The assessors, rather than physically observe the students 

themselves, used the “observations” (students’ behaviour logs) made and recorded by the 

events tracker/recorder component of the VEL, while students’ were undertaking laboratory 

activities in the VEL environment, to assess students’ laboratory work performance. They 

used the four performance data source instruments that make up the behaviour log to score a 

set of performance indicators, based on their respective sets of scoring criteria.  

 

The assessors were familiarised with the research work, the nature and content of the 

assessment instruments, and the assessment process. Assessors worked individually in the 

same physical space, with minimal discussions between them to avoid any undue influence on 

each other. One of the researchers facilitated the assessment process by answering assessors’ 

questions and clarifying any relevant seemingly unclear issues. The assessors each assessed 

the same laboratory activities for each of 52 students, with respect to a set of performance 

indicators and their related criteria. The focus was on seven of the nine performance 

indicators in the LAP model, considering time and cost. The LAP model was then used to 

assess the same laboratory activities, for the 52 students, using the same set of performance 

data sources. 

 

As part of the validation process, it was sought to answer the following questions:  

� Q1-- are the assessors consistent in their assessment (assessor consistency)? 

� Q2-- to what extent do the assessors agree with each other (inter-assessor correlation)?  
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�  Q3-- to what extent do the assessor-assigned students’ performance scores agree with 

the LAP model estimated beliefs in students’ performance (assessor-model 

correlation)? 

 

 
7.2.2.1  Assessor Consistency 

In order to verify assessor consistency, each assessor assessed one of the laboratory activities 

twice for each student, using the same set of performance data sources. Scores from the two 

independent assessments were then compared. At � = 0.05 and two tailed significance tests, 

the assessors were statistically significantly consistent in their assessment, with respect to the 

assigned scores for the performance indicators.  Assessors A1, A2, and A3 were highly 

consistent (0.50878 ≤ r ≤ 0.84319, and 0.000000 ≤ p ≤ 0.000118). Assessor A4 was 

moderately consistent (0.33141 ≤ r ≤ 0.67701, and 0.000000 ≤ p ≤ 0.024006), providing a 

positive answer to Q1.  Figures 7.6, 7.7, 7.8, and 7.9 highlight the 1st and 2nd assessment 

scores for the performance factor, WWC, by assessors A1, A2, A3, and A4, respectively. The 

remainder of the diagrammatical representations of assessor consistency are presented in 

Appendix D. Also, the correlation factors and the p-values for the repeated assessment, for all 

assessors and all the assessed performance indicators, are presented in Appendix D.  
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Figure 7.6: Assessor A1 1st and 2nd assessment scores for the performance factor, WWC 
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Assessor A2 Consistency: WWC
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Figure 7.7: Assessor A2 1st and 2nd assessment scores for the performance factor, WWC 
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Figure 7.8: Assessor A3 1st and 2nd assessment scores for the performance factor, WWC 
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Assessor A4 Consistency: WWC
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Figure 7.9: Assessor A4 1st and 2nd assessment scores for the performance factor, WWC 
 

 

 
7.2.2.2  Inter-Assessor Correlation 

Next, inter-assessor scores correlation was verified, in order to answer question Q2. Table 7.1 

lists the inter-assessor scores correlation factors, r, with respect to a set of performance 

indicators. A1 was in agreement with A2, on average, 75.63% of the time, with A3, 64.88%, 

and with A4, 33.94%. A2 was in agreement with A3 67.86% of the time, and with A4, 37.77%. 

A3 agreed with A4 only 41.99% of the time, on average. Assessors A1, A2, and A3 agreed 

with each other more than 64% of the time. Figures 7.10 and 7.11 show the assessors scores 

for the performance indicators PUE and WWC, respectively. The remainder of the figures 

showing the assessors scores for the performance indicators SRC, MAM, IER, MAC, and APG 

can be found in Appendix E.  
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Figure 7.10: Assessors scores for the performance factor, PUE 
 

 

Assessors Scores (WWC)
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Figure 7.11: Assessors’ scores for the performance factor, WWC 
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Table 7.1: Inter-Assessor correlation factors, r. 
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7.2.2.3  Assessors vs. LAP Model 

In order to answer question Q3, the LAP model was used to assess the same laboratory 

activities as the assessors and the assessment outcomes were compared to those of the 

assessors. Performance data were extracted from the same sources used by the human 

assessors, for the quantization of evidence variables, which were then instantiated into 

findings or hard evidence. The findings were entered into the network and the model updated. 

The estimated beliefs for the target nodes were recorded and compared to the scores assigned 

by the human assessors. The human assessors had access to the same set of assessment 

instruments and data as the LAP model, and used the same set of criteria for scoring the 

performance indicators. Hence, the human performance assessment outcomes were used as 

the “gold standard”, for the validation of the assessment outcome of the LAP model.  

 

Comparison of the human assessor assigned scores and the corresponding belief estimates by 

the LAP model indicated strong positive, statistically significant, correlations between the 

human assessment outcomes and the LAP model performance belief estimation outcomes. 

Figures 7.12, 7.13, 7.14, and 7.15 show assessors A1, A2, A3, and A4 scores, respectively, 

for the performance factor, PUE, against the corresponding belief estimates by the LAP 

model. Figure 7.16 shows the average scores by all the assessors, for the performance factor 

PUE, against the belief estimate for PUE by the LAP model.  Similarly, Figures 7.17, 7.18, 

7.19, and 7.20 show assessors A1, A2, A3, and A4 scores, respectively, for the performance 

factor, WWC, against the corresponding belief estimates by the LAP model, while Figure 7.21 

shows the average scores by all the assessors, for the performance factor WWC, against the 

belief estimate for WWC by the LAP model. Other assessors’ scores compared to model belief 

estimates are presented in Appendix F. 
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A1 Scores vs Belief Estimates (PUE)
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Figure 7.12: Assessor A1 scores vs. model belief estimates for PUE. 
 

 

 

 

A2 Scores vs Belief Estimates (PUE)
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Figure 7.13: Assessor A2 scores vs. model belief estimates for PUE. 
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A3 Scores vs Belief Estimates (PUE)
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Figure 7.14: Assessor A3 scores vs. model belief estimates for PUE. 

 
 

 
 

A4 Scores vs Belief Estimates (PUE)
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Figure 7.15: Assessor A4 scores vs. model belief estimates for PUE. 
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Assessors' Average Score vs Belief Estimates (PUE)
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Figure 7.16: Assessors average scores vs. model belief estimates for PUE. 

 

 

 

A1 Scores vs Belief Estimates (WWC)
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Figure 7.17: Assessor A1 scores vs. model belief estimates for WWC. 
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A2 Scores vs Belief Estimates (WWC)
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Figure 7.18: Assessor A2 scores vs. model belief estimates for WWC. 

 

 
 
 
 

A3 Scores vs Belief Estimates (WWC)
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Figure 7.19: Assessor A3 scores vs. model belief estimates for WWC. 
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A4 Scores vs Belief Estimates (WWC)
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Figure 7.20: Assessor A4 scores vs. model belief estimates for WWC. 

 
 
 
 

Assessors' Average Score vs Belief Estimate (WWC)
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Figure 7.21: Assessors average scores vs. model belief estimates for WWC. 
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The above figures give a pictorial representation of the assessors score assignments, based on 

specific criteria, to the individual  performance factors, and the comparison of the scores to 

the model estimated measures of belief in the hypotheses represented by the performance 

factors. Each assessor’s scores for all the assessed performance factors were averaged to 

obtain the generalized performance score by that assessor, with respect to the assessed 

performance factors only. Figures 7.22, 7.23, 7.24, and 7.25 show assessors A1, A2, A3, and 

A4 performance scores, with respect to the seven assessed performance factors, against the 

belief estimates for performance, given the evidencing of the performance indices for the 

seven assessed performance factors, while Figure 7.26 shows the average performance scores 

by all the assessors, against the estimated measure of belief in performance by the LAP 

model. 

 

 

A1 Performance Score vs Model Belief Estimate (Perf ormance)
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Figure 7.22: Assessor A1 performance scores vs. model belief estimates for Performance. 
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A2 Performance Score vs Model Belief Estimate (Perf ormance)
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Figure 7.23: Assessor A2 performance scores vs. model belief estimates for Performance. 
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Figure 7.24: Assessor A3 performance scores vs. model belief estimates for Performance. 
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Figure 7.25: Assessor A4 performance scores vs. model belief estimates for Performance. 
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Figure 7.26: Assessors average performance scores vs. model belief estimates for 

Performance. 
 

 

It was also sought to find the association between the assessors’ scores assignment to the 

performance factors, PUE, WWC, SRC, and MAC, and PERFORMANCE and the measures of 

belief in the hypotheses estimated by the LAP model, using bivariate analysis, in the form of 

Pearson product-moment correlation measure. There were strong positive correlations 

between them. The relationships were statistically significant. Table 7.2 highlights the 

correlation factors and p-values for the associations. 

 

 
Table 7.2: Correlation Factors and P-values of Assessors Scores for PUE, WWC, SRC, MAC, 

and Performance, Compared to the Model Belief Estimates. 

Hypothesis

Model Belief Estimate

A1 A2 A3 A4
Assessors 
Average 

Score

PUE
r = 0.773485
p = 0.000000

r = 0.742712
p = 0.000000

r = 0.65564
p = 0.000000

r = 0.269926
p = 0.052985

r = 0.777951
p = 0.000000

WWC
r = 0.909431
p = 0.000000

r = 0.847425
p = 0.000000

r = 0.715468
p = 0.000000

r = 0.438325
p = 0.001154

r = 0.889819
p = 0.000000

SRC
r = 0.845432
p = 0.000000

r = 0.564213
p = 0.000013

r = 0.695996
p = 0.000000

r = 0.249134
p = 0.074944

r = 0.761581
p = 0.000000

MAC
r = 0.767547
p = 0.000000

r = 0.838831
p = 0.000000

r = 0.740793
p = 0.000000

r = 0.366913
p = 0.007463

r = 0.882051
p = 0.000000

Performance
r = 0.896886
p = 0.000000

r = 0.754626
p = 0.000000

r = 0.552468
p = 0.000022

r = 0.231143
p = 0.099276

r = 0.801572
p = 0.000000
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7.3 MODEL APPLICATION  
This section highlights areas of intended application of the LAP assessment model. The 

model was built for the purposes of estimating measures of belief in a student’s 

abilities/skills, grasp of addressed concept, and performance, with respect to a laboratory 

activity. An overview of the belief estimation process has been given in Chapter 4 (section 

4.4). The application of the model is based on entering the findings at the evidence nodes, 

updating the network and reading off the estimated beliefs (posterior probability distribution) 

of the target nodes. Findings are generated based on the performance data extracted from the 

student’s laboratory work behaviour log.   

 

Generally, the LAP model is aimed at being used for the following types of assessment, for a 

laboratory activity: instantaneous, cumulative and selective.  

 

Instantaneous assessment, in this context, requires that:  

� previous belief estimates, based on previously entered evidence, are cleared from the 

network and the network reset to its original state with fair priors.  

� the model is used without the memory/feedback node (the node is deactivated),  

� new findings are entered into the model and inference made in order to obtain belief 

estimates for target variables.  

 

Cumulative assessment, in this context, means that assessment is based on the combined 

effects of: 

� previous belief estimates (previous belief estimates are absorbed into the network),  

� past performance outcomes (the model is used with the memory/feedback node),  

� new findings, which are entered into the model and inference made in order to obtain 

belief estimates for target variables.   

 

Selective assessment, in this context, means that the instructor determines what is assessed. 

The instructor may: 

� choose to test only specific aspects of a student’s laboratory work 

� turn off/on different nodes of the LAP model  

� choose to instantiate only a specific set of evidence variables.   

In this case, the model serves as an inquiry tool to possibly diagnose areas of improvement. 

These assessment options are selectable from the instructor interface GUI (Figure 7.27).  
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Figure 7.27:  A view of the instructor interface GUI. 
 

 
There are 23 evidence variables in the LAP model. It may not be possible to generate findings 

for all the evidence variables for every laboratory activity because a laboratory activity may 

not present the scenarios that will elicit some relevant constructs. Moreover, it may not be 

necessary to assess everything all of the time. Each laboratory activity does not necessarily 

have to generate performance data to evidence all the observable nodes and the decision to 

enter all or some of the findings, at any assessment instance, depends on the instructor. For 

example, if a laboratory activity does not involve calculations, then nodes 8 (ACF) and 9 

(UCV) (see Figure 6.9) cannot be evidenced. Also, the instructor may seek to evidence a 

specific set of variables in order to make inference about a specific variable(s). In order to do 

this, the instructor may choose the nodes to evidence and the target nodes to query, using the 

instructor interface GUI which has options to enable the instructor turn the evidencing and 

querying of variables on and off. For example, the instructor may design an activity that will 

specifically require students to adapt, then turn off the evidencing of other nodes, except those 

required to infer a student’s ability to adapt. If no variables are turned off, findings are 

generated for all evidence nodes, where possible, and reasoning is generalized.  

 

At runtime, the topology of the model remains the same while the parameters of the 

memory/feedback node, node 35 “PreviousPerformance” (PP), changes after each runtime 
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instance (model update), for cumulative assessment. The change is defined by the relationship 

between node 35, “PreviousPerformance” (PP), and node 41, “Performance” (PF), is 

expressed as: 

( ) ( )|1 1P M P H Et t t= − −   (8.2) 

where ( )P Mt  represents the probability distribution of the memory/feedback node at time, t, 

and ( )|1 1P H Et t− −  represents the probability distribution of node 40 (PF) at time, t-1, given 

the set of evidence, E, at time, t-1. In addition to the parameters of the memory/feedback node 

changing at each run time instance, the memory/feedback node is clamped to one of its states 

when the state of node 41, “Performance” (PF), reaches or exceeded a certain specified 

threshold value. 

 
 
 
7.4 SUMMARY  
The evaluation of the BN-based assessment tool for the performance assessment of students’ 

laboratory work has been presented.  The evaluation results demonstrate the applicability of 

the model and the practicability of the proposed virtual-observation based assessment scheme. 

The possibilities offered by the synergy of the assessment tool and methodology are only 

limited by the instructor’s assessment needs. The next chapter presents a discussion of the 

work presented in this thesis, its limitations, contributions, and further work, before 

concluding the thesis. 
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Now this is not the end. It is not even the beginning of the end. But it is, perhaps, the 

end of the beginning.  
Winston Churchill 

1874 - 1965 
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8.0 INTRODUCTION  
This thesis has dealt with the implementation and evaluation of a Virtual Electronic 

Laboratory (VEL), and the application of probabilistic reasoning AI technique to the 

construction of an assessment tool, the LAP assessment model, for the the performance 

assessment of students’ laboratory work, in the VEL environment. The VEL has been shown 

to be a feasible instruction aid for enhancing students understanding of taught fundamental 

engineering concepts. Also, the effectiveness of the LAP model, as an assessment tool, within 

the context of the VEL environment, has been demonstrated. 

 

Essentially, this chapter summarizes the thesis as follows: section 9.1 discusses the work that 

has been presented in this thesis, while the limitations of the research work are highlighted in 

section 9.2; section 9.3 outlines the contributions of the research work; while section 9.4 

highlights possible further work and future research directions that build on the contributions 

outlined in section 9.3. Section 9.5 concludes the thesis. 

 
 
 
8.1 DISCUSSION 
The VEL was evaluated in one of each of the two categories of engineering faculties, at two 

separate Universities: an engineering faculty in United Kingdom (UK) (i.e. UoP); and an 

engineering faculty in Nigeria (i.e. UTON). UTON is challenged by resource constraints and 

large UE class sizes. As part of the evaluation process, pre-/post-tests were used to assess and 

quantify the knowledge states of the two sets of student cohorts, before and after undertaking 

laboratory activities in the VEL environment. The tests results showed that there were 

positive, statistically significant, differences in the students’ knowledge states after the 

educational intervention, for both student cohorts, with respect to the concepts addressed by 

the laboratory activities. This shows that the VEL has the capacity to enhance learning, in the 

light of appropriate learning scenarios. Furthermore, the observed performance differences 

between the UoP and UTON student cohorts and the greater improvement in the learning of 

the UTON cohort combine to reinforce the highlighted need for complements and/or 

alternatives to the traditional laboratory in engineering faculties challenged by resources 

constraints and large class sizes, which may especially be the case for engineering faculties in 

developing countries.  

 

Feedback from the student cohorts, about the VEL, indicated an overall positive reaction and 

the instructors of the course units around which the evaluation laboratory activities were 
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designed responded well to the virtual electronic laboratory. Students unanimously agreed 

that the evaluation activities addressed concepts related to the taught course units they had 

undertaken.  The majority of students said the use of the VEL enhanced their understanding of 

the concepts addressed by the laboratory activities. This is reflected in the PTPT results of the 

student cohorts. Generally, the feedback indicated a positive and enthusiastic attitude to the 

VEL, especially at UTON. It was well received and acknowledged as a tool with which to 

realistically undertake curriculum-based laboratory activities. 

 

The evaluation of the VEL afforded the opportunity to generate the data required for the 

evaluation of the assessment tool. As students were undertaking laboratory activities in the 

VEL environment, their behaviours (mouse click streams and key presses) were captured in 

real-time and logged. Performance data, for the evaluation of the LAP model, were extracted 

from the behaviour logs.  

 

The construction of the LAP model was undertaken with the committed participation of three 

domain experts, consisting of a Principal Lecturer, a Senior Lecturer, and a Reader, from the 

Electronic/Computer and Electrical/Electronic Engineering (ECE and EEE) departments of 

UoP and UTON, respectively, which have different instruction and laboratory practices. Each 

expert had over 10 years classroom and instructional laboratory experience. The model was 

evaluated with the performance data extracted from the behaviour logs of the UTON student 

cohort because of their larger number, to facilitate drawing more robust conclusions. The 

assessors involved in the evaluation of the assessment model were domain experts, different 

from the instructors that taught the course units around which the VEL evaluation laboratory 

activities were designed, and the domain experts that helped formulate the model. The 

assessors were unfamiliar with the VEL, the assessment tool, and the proposed assessment 

methodology. Introductory meetings, demonstrations, and briefing sessions facilitated their 

understanding and appreciation of the research work, which increased their motivation. After 

the first assessment session, assessors had time to reflect on the assessment methodology and 

their experiences, the noticeable effect of which was increased speed of assessment, shorter 

pause durations, and fewer questions to the researcher. At the end of the assessment exercise, 

the assessors’ feedback on the VEL, the assessment tool, and the assessment methodology 

were encouraging, indicating that all three had been well received.  The assessors 

acknowledged the capability of the entire system to infuse vigour into engineering laboratory 

education and change the way students’ laboratory work is assessed. They opined that the 
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assessment tool and scheme can avail the instructor of useful information, with respect to 

students’ laboratory work.  

 

Though the virtual-observation-based assessment methodology was relatively time 

demanding when undertaken by human assessors, it is much less time, space, and logistically 

demanding than the physical-observation scheme, and when automated, the time demand 

pales into insignificance. The virtual-observation-based assessment methodology has the 

ability to offer the same benefits as the physical-observation-based methodology. This ability 

is further strengthened by the strong positive correlations that existed between the assessors’ 

scores and the belief estimates by the LAP model. 

 
 
 
8.2 CHALLENGES  
The research work encountered a number of challenges or constraining factors including: 

� Student Participation: It was difficult getting students to participate in the evaluation 

of the VEL, especially at UoP, despite the offer of participation tokens. This is 

probably because students are not in the university to be used for research work but to 

earn a degree. Therefore, they are mainly interested in assessable learning activities 

that will earn them inclusive marks. 

� Student population: The resource conditions and student populations at UoP and 

UTON, differ significantly, which may not give proportionate effectiveness results.  

� Access to domain experts: Access to domain experts is limited. Also, it is difficult to 

bring all the domain experts to a central location for knowledge elicitation, because 

instructors are busy, each having a totally different time schedule. 

� Paradigm change: the assessment tool and methodology represent a paradigm change 

in the way students’ laboratory work is assessed, which necessitated attitudinal, 

perception, and orientation change on the part of the domain experts who are 

accustomed to thinking of laboratory work assessment in terms of logbooks and 

written reports. Instead, they were required to think of laboratory work assessment in 

terms of concepts relating to knowledge, understanding, and abilities/skills.  

� Expert Opinion Disagreement: Domain experts’ disagreement is generally 

acknowledged.  Though methods of resolving expert opinion conflicts and how to 

obtain composite or consensus opinion are detailed in literature, the disagreements 

introduced significant delays in the work. The disagreement in domain experts’ 
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opinions, in this context, may be attributed to the fact that instructors, in an 

assessment, tend to be looking for the same things in different ways. 

� Natural Language Processing (NLP): NLP is necessary for free text responses to 

assessment questions but NLP is outside the scope of this work. 

� Non existence of similar models and historical data: There were no similar 

existing models to reference and historical data to use in the empirical 

investigation for the optimal approach for the construction of the assessment 

tool.  

� Ethical issues: Ethical considerations apply to every activity in the University, 

including research. The student participants had to be given sufficient time and 

information to enable them decide if they want to be part of it. The volunteers 

had to sign participation consent forms which they may perceive as connoting 

commitment on their part. This may have scared away potential participants, 

thereby limiting the number of actual participants.  

 
 
 
8.3 CONTRIBUTIONS  
The contributions of this research work include:  

1. The conception and implementation of a virtual electronic laboratory, a tool with 

which the instructor can increase the use of laboratory activities in the instruction 

process, to support learning and enhance students’ understanding of fundamental 

engineering concepts. This will help lay a more solid foundation for students on which 

to build in later undergraduate, postgraduate, and professional years. The tool, which 

can be used to undertake curriculum-based laboratory activities in a realistic manner, 

may be particularly beneficial to the neophyte engineer challenged by the need to 

grasp the fundamental concepts. This is a major contribution because although some 

work on the implementation of virtual laboratories has taken place, they are still not 

available for the whole spectrum of engineering. For various fields of engineering, 

research is on-going on virtual laboratories that can emulate the traditional laboratory 

processes. Hence, more efforts are required because of the numerous diverse 

experiential needs and requirements of the engineering curriculum. Moreover, existing 

virtual laboratories address specific concepts or a group of concepts and are therefore 

not designed for undertaking a range of instructor-designed curriculum-based 

laboratory activities. In addition, they are mostly based on commercial software tools 
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which involve licensing costs. The VEL does not involve licensing costs (at least until 

its back-end freeware application software, such as Spice Opus, cease to be freeware) 

and is therefore suitable for use in resources constrained engineering faculties.  

 

2. The quantification of the impact of a virtual electronic laboratory, in terms of students’ 

knowledge gain, for a given set of laboratory activities, at two different engineering 

faculties, provides appropriate evidence and support to justify the use of virtual 

laboratories in the educational context generally, and engineering laboratory education 

particularly. Literature fails to provide appropriate support for the use of virtual 

laboratories in the educational context, highlighting a gap in the virtual laboratory 

literature despite its large size. Evidence provided by other studies, for the use of 

virtual laboratories in the educational context, was based on the use of survey 

instruments to evaluate the usability, acceptability, and effectiveness of the virtual 

laboratories, and elicit students’ perceptions of their learning experiences.  

 

3. The quantification of students’ knowledge gain from undertaking concept-based 

laboratory activities in the virtual electronic laboratory provides evidence and support 

of the effectiveness of the use of carefully designed concept-based laboratory activities 

and an intuitive laboratory learning tool to enhance students’ understanding of taught   

engineering concepts.   

 

4. The quantification and comparative analysis of the learning gains of a student cohort 

in an engineering faculty in a University in a developed country (UoP), and a cohort in 

an engineering faculty in a University in a developing country (UTON) indicated a 

greater learning improvement in the UTON student cohort. This provides evidence 

and support of the greater need for complements and/or alternatives to the traditional 

laboratory in engineering faculties challenged by resource constraints and/or large 

class sizes, which is especially the case for engineering faculties in developing 

countries. 

 

5. The quantification and comparative analysis of the knowledge gain of the student 

cohorts which indicated a greater improvement in the learning of the UTON student 

cohort also provides evidence of the need for more implementation efforts on low-cost 

virtual laboratories for the various other fields of engineering, in order to extend (to 

needy engineering faculties) and consolidate the gains of the widely advocated 
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student-centred learning paradigm, which is already adopted by most engineering 

faculties in Universities in developed countries.  

 

6. A Bayesian Network-based assessment tool (the LAP model) has been proposed for 

the performance assessment of students’ laboratory work in the virtual laboratory 

environment. Literature search failed to highlight assessment models for virtual 

laboratory environments generally, and virtual electronic laboratory environment 

particularly. The LAP model has the capacity to address the problems of time demand, 

bias, inconsistency, fairness, and increasing student numbers. This is in addition to 

facilitating that laboratory work assessment conforms to statements of criteria for 

engineering learning and assessment. The assessment perspective of the model is also 

in line with the principles of the prevailing educational paradigm which demands that 

students demonstrate their abilities/skills for laboratory work, and their knowledge and 

understanding of concepts addressed by laboratory activities. The effectivenes of the 

model as an assessment tool, within the context of the VEL, has been demonstrated. 

The model is anchored on psychological learning models and theories, assertions by 

cognitive psychologists, and other researchers, while domain expert knowledge and 

physical observational information are used to define the variables and semantics of 

the model.  

 

7. The practicability of the performance assessment of students’ laboratory work from 

their observed laboratory work behaviour, based on the concept of virtual-observation, 

has been demonstrated and proposed as an alternative or complement to the written 

evidence technique often extended from the traditional laboratory setting to the virtual 

laboratory environment, and the physical observation assessment technique that was 

proposed as an alternative to the written evidence technique, by researchers.   

 

8. A new method of validating BN-based assessment models, in virtual learning 

environments, the virtual-observation technique, has been proposed and its 

practicability demonstrated. The validation method was applied in the validation of the 

BN-based assessment tool reported in this thesis. The validation method uses the 

assessment outcome of human assessors, based on the performance data derived from 

the virtually observed work behaviour of students, as the “gold standard”, to validate 

the assessment outcome of the BN-based model, using the same set of performance 

data used by the human assessors, for the same assessment scenarios. The technique 
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has the capacity to provide adequate evidence needed to justify the validity and use of 

an assessment model in an educational setting. It satisfies the key criteria for construct 

validity and gives the research design credibility. 

 

9. The work presented in this thesis has resulted in the following publications: 

Articles 

i. E. Chika, “Building Better Engineers: Extending and Consolidating the Gains”, IEEE 
GOLDRush, September, 2008, pp. 12 - 13 

 
Conference Proceedings  

i. I. E. Achumba, D. Azzi, and R. Khusainov, "Bayesian Network Model for Students’ 
Laboratory Work Performance Assessment: An empirical investigation of the optimal 
construction approach", Accepted for oral presentation at the International Conference on 
Computational Intelligence (ICCI 2011), Paris, France, July 27 – 29, 2011. 

 
ii.  I. E. Achumba, "The Virtual Electronic Laboratory (VEL): Description and Demonstration", 

European Conference on Library of Labs (LILA 2011), Selwyn College, University of 
Cambridge, United Kingdom (UK), 11 - 12 April, 2011. 
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8.4 FURTHER WORK 
The areas of further work include the following:  

� Evaluation of the VEL based on pre-test/post-test control group experimental design 

such that:  

� the assignment of participants to experimental (treatment) and control groups are 

randomised so that all participants have equal chances of being in the 

experimental or control group. The experimental group is the group that will 

undertake a set of laboratory activities in the VEL environment, while the 

control is the group that will undertake the same set of laboratory activities in 

the traditional laboratory environment. 

� it can be assumed that the two groups are equivalent on all important dimensions 

(such as group size) and that there are no systematic differences between the two 

groups. 

� participants in the two groups are matched on most relevant characteristics that 

could possibly affect the outcome of the research. 

� both group experience the same conditions, with the exception of the 

experimental group, which receives the influence of the independent variable 

(the treatment) in addition to the shared conditions of the two groups. 

� relevant experimental conditions are controlled so that nothing but the 

intervention of the independent variable (the treatment) is assumed to produce 

the observed changes in the values of the dependent variable (knowledge gain). 

 

� Extension of the capabilities and flexibility of the VEL by: 

� creating the facility to save and retrieve a  constructed circuit  

� the inclusion of an oscilloscope 

� enabling the use of both active components and Integrated Circuit (IC) chips to 

build circuits.  
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� Create an Adaptive/Intelligent Tutoring System (ATS/ITS) version of the VEL 

which will incorporate personalized feedback mechanism and adaptive/tutoring 

component. This demands the incorporation of an instructor/laboratory 

assistant support system into the virtual laboratory environment by translating 

human laboratory guidance into an expert system that supervises laboratory 

undertakings by students.  

� Incorporate graphical user interfaces for circuit design and analysis. 

 

� Creation of a student modelling component of the LAP model such that the system can 

automatically learn a personalized assessment model for each student, based on their 

laboratory work behaviour, in order to predict a student’s laboratory work 

performance difficulties. The outcome of the student model can be used to adapt 

laboratory activities and assessment questions to the student (using decision-theoretic 

problem selection), and will also impact on the design choices for the feedback 

mechanism which should not be intrusive or obstructive (e.g., interrupting students’ 

work in order to provide feedback), nor preventive (e.g., preventing a student from 

asking for help). In this context, feedback will be personalised and more meaningful. 

 

� Investigation of the potential of facial expression characterization and recognition for 

identifying and classifying engineering students’ mood changes while undertaking 

laboratory activities in virtual laboratory environment, with a view to predict/diagnose 

students' areas of difficulties. This is in addition to the information that can be gleaned 

from the analysis of the student’s behaviour log. 

 
 
 
 
8.5 CONCLUSION 
It is imperative that students achieve a deeper understanding of fundamental engineering 

concepts if they are to mature into the much coveted skilled real-life problem solvers needed 

in the society at large and specially in the industry. It may not be possible to achieve this 

deeper understanding without meaningful laboratory experiences because laboratory work lies 

at the heart of the relationship between theory, practice, and meaning making, hence, the 

important role accorded to laboratory work in the undergraduate engineering course. The 

increased  use of the traditional engineering laboratory in the instructional process, to 

integrate theory and practice, has proven challenging, which catalyzed the adoption of virtual 
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laboratories as complements, or alternatives in extreme cases. However, the existing virtual 

laboratories are not designed for undertaking curriculum-based laboratory activities and are 

based mostly on relatively expensive commercial software tools that require licensing.  

 

The VEL, a low-cost virtual laboratory, which can be used to realistically undertake a range 

of instructor-designed curriculum-based laboratory activities, has been presented. A 

description of its architecture and implementation related issues have been given, in addition 

to a detailed description of its evaluation processes and results. Students can do and re-do 

laboratory activities several times and the instructor has a veritable and flexible platform for 

integrating theory and practice in order to enhance learning.  The instructor also, has the 

opportunity to synchronize laboratory activities with lectures as it is possible to achieve a one-

to-one student-equipment ratio, without time constraints. Also, there is room for increase in 

the number of laboratory activities, without the distraction of equipment setup and teardown.  

 

The VEL was evaluated on two separate occasions with different student cohorts, using 

carefully planned laboratory learning scenarios aimed at enhancing students’ understanding of 

concepts taught in lectures. The use of the same set of laboratory activities to evaluate the 

VEL in two different engineering faculties reinforces the uniformity of fundamental 

engineering concepts and indicates that the manner in which the virtual laboratory can be 

integrated into laboratory learning is not faculty or unit specific and does not require 

adaptation.  

 

Furthermore, the critical role of laboratory in undergraduate engineering course makes the 

ongoing challenge of performance assessment of students’ laboratory work one of utmost 

importance, and more so in the virtual laboratory environments, considering its increased 

adoption in the undergraduate engineering laboratory education. Assessment drives learning 

and the performance assessment of students’ laboratory work is challenging and demanding in 

the face of increased student numbers. Literature highlighted the conventional laboratory 

work assessment practices, in the traditional laboratory setting, based on marking students’ 

laboratory logbooks and written reports, among engineering faculties. This assessment 

method was criticised as failing to address espoused aims, coupled with the inherent potential 

for bias, and inconsistency. The physical-observation-based assessment method that was 

proposed as an alternative to the written evidence technique is costly (time, space, human 

resource, logistics), and difficult to apply to large class sizes. Consequently, the virtual-

observation-based assessment method, using a BN-based assessment tool (the LAP model), 
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for the performance assessment of students’ laboratory work in the VEL environment has 

been proposed. The model has been described in details and its evaluation results presented.  

 

The results have demonstrated the effectiveness of the LAP model as a performance 

assessment tool, within the context of the VEL; the practicability of performance assessment 

of students’ laboratory work from their “observed” behaviour; and the practicability of the 

virtual-observation-based method for validation evaluation of BN-based assessment models. 

The LAP model and the virtual-observation-based assessment method could reduce the cost 

and burden of marking students’ laboratory work, promote fair, consistent and timely 

assessment, especially for large class sizes. The model is intended to assess not only what a 

student knows and understands about the concept(s) addressed by a laboratory activity, but 

what the student is actually able to do, through the analysis of a log of discrete behaviours. 

Inference about a student’s performance is made on the basis of evidence extracted from the 

student’s behaviour log. The model, though designed within a VEL environment, can be 

adapted for use in other virtual laboratory environments. 

 
The assessment of undergraduate engineering students’ laboratory work is an ongoing 

challenge for engineering faculties and constitutes a significant problem in the virtual 

laboratory environment, which adoption in undergraduate engineering laboratory education 

has increased. The work presented in this thesis demonstrates that the application of Bayesian 

network artificial intelligence technique to the solution of the problem is feasible. However 

more work remains to be done. Just as the domains of cognitive psychology, psychology of 

learning, artificial intelligence, graph theory, probability theory, and human-computer 

interaction were combined to produce the result of the work presented in this thesis, future 

work will almost certainly require an even broader interdisciplinary approach.  

 

The work presented in this thesis has built on existing literature on virtual laboratories, 

performance assessment in virtual learning environments, and students’ laboratory work 

assessment. It is the belief and hope of the author that the work has contributed to: the field 

Bayesian Network (BN) -based modelling (focused on reasoning under uncertainty), 

particularly with respect to assessment model validation; and the growing field of intelligent 

performance assessment in the virtual learning environment. 
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APPENDIX A: PRE-TEST AND POST-TEST SCORES 
 
 
 
 

Table A1:  UoP participants’ pre-/post-test Scores and Percentage Gain 
UoP Cohort Pre-Test and Post-Test Scores and Gain
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ΜPg= 18.89µp2 = 77.89µP1 = 61.89Mean (µ)
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Table A2:  UTON participants’ pre-/post-test Scores and Percentage Gain 

6464Spread

MdFg= 25MdF2 = 55MdF1 = 45
Median (Md)

ΜFg= 24µF2 = 56.02µF1 = 40.75Mean Score
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APPENDIX B: CONCENTRATION ANALYSIS FORMULA, 

DETAILS, AND STUDENTS' RESPONSE 
DISTRIBUTIONS 

 
 
 
 

APPENDIX  B1:  THE CONCENTRATION ANALYSIS FORMULA AND DETAILS  
The CAM uses a synergy of the Score (S), and the Concentration Factor (C), both of which are 

functions of the students’ responses, to derive the Students’ Response Patterns (SRPs) for each 

item in a test. The C value for each test item is derived using equation B1.  

 

2

1 1

1

m

i

j

n
m

c
Nm m

 
 
 = × −
 −
  
 

∑
  (B1.1) 

where j = 1 to k (k = no of test items), m = no of choices per item, ni = no of selections for 

choice i, and N = total no of responses to item j. C  maps the response of a class on a test item  

to the interval [0,1] with zero corresponding to students selecting a random distribution of 

answers and one corresponding to all students selecting the same answer. The S value for an 

item is the ratio of the number of correct responses to the total number of students that responded 

to the item. S also takes values in the range [0, 1]. Combining the codes for the score, S, and the 

concentration factor, C, gives the SC coding, the SRPs, for each of the items [Bao & Redish, 

2001]. The SRP is based on the 3-level coding scheme of Table B1.1, where “L” stands for 

low, “M” for medium and “H” for high. A situation of low score (S < 0.4) but high 

concentration value (C > 0.5) is represented with an LH type of response pattern and often 

indicates that students are likely to have a very popular incorrect knowledge state fragment. In 

a situation of medium score (0.4 ~ 0.7) and medium concentration (0.2 ~ 0.5), referred as an 

MM type of response pattern, students are often in a mixed state between the correct and 

incorrect knowledge state fragment (two different dominant knowledge state fragments: one 

correct, one incorrect). 
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Table B1: Three-level coding scheme for Score and Concentration Factor  
(Source: items [Bao & Redish, 2001]) 

H0.5 ~ 1.0H0.7 ~ 1.0

M0.2 ~ 0.5M0.4 ~ 0.7

L0 ~ 0.2L0 ~ 0.4

LevelConcentration Factor (C)LevelScore (S)

CONCENTRATION FACTOR 
RANGE AND LEVEL

SCORE RANGE AND 
LEVEL

H0.5 ~ 1.0H0.7 ~ 1.0

M0.2 ~ 0.5M0.4 ~ 0.7

L0 ~ 0.2L0 ~ 0.4

LevelConcentration Factor (C)LevelScore (S)

CONCENTRATION FACTOR 
RANGE AND LEVEL

SCORE RANGE AND 
LEVEL

 

 
 
 

 

APPENDIX  B2:  STUDENTS'  RESPONSE DISTRIBUTION FOR THE PRE-TEST 

   POST-TEST ITEMS 
 

Table B2.1: UoP Response Distribution for each Choice of the Pre-Test Items 

9360011
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Total Number of 
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Pre-test Items

9360011

8161010

980109

900278

900727

900636

950135

900184

903603

902252

910621

Total Number of 
AnswersDCBA

Item 
Number
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Table B2.2: UoP Response Distribution for each Choice of the Post-Test Items 

9090011

8044010

990009

900188

900907

900636
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900184
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910621

Total Number of 
AnswersDCBA
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Number

UoP Response Distribution for each Choice of the 
Post-test Items

9090011

8044010

990009

900188

900907
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900184
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Total Number of 
AnswersDCBA

Item 
Number

UoP Response Distribution for each Choice of the 
Post-test Items

 

 

 

Table B2.3: UTON Response Distribution for each Choice of the Pre-Test Items 

52152611011
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518912229
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Total Number of 
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Pre-test Items

52152611011

5052611810

518912229

501920208

511828147

5110521156

5114414195

522510354

526281173

5110177172

52363671

Total Number of 
AnswersDCBA
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Number
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Table B2.4: UTON Response Distribution for each Choice of the Post-Test Items 
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52184398
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Number

UTON Response Distribution for each Choice of the 
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Total Number of 
AnswersDCBA

Item 
Number

UTON Response Distribution for each Choice of the 
Post-test Items

 

 

 
 

 

APPENDIX  B3:  THE CONCENTRATION ANALYSIS RESULTS AND DISCUSSION 
 
The results of the CAM analysis, in terms of the students' S, C, and SRP distribution for the 

pre-test items and their corresponding post-test items, are shown in Tables 3.4 and 3.5. The 

Questions (Q) are numbered 1 to 11 (Q1, Q2, ... ,Q11) for the purposes of the analysis result 

presentation. 

 

Table B3.1:  Score, Concentration factor, and SRPs for the UoP Cohort 

HHMMHHHHHHLMMMHHHHHHMMSRP

1.00.411.00.791.00.490.420.790.790.790.42C

1.00.441.00.891.00.330.670.890.890.890.67S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Post-Test (UoP)

MMLHHHHHHHLMMMHHMMMMMMSRP

0.490.540.790.620.620.490.310.790.490.280.42C

0.670.110.890.780.780.330.560.890.670.560.67S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Pre-Test (UoP)

HHMMHHHHHHLMMMHHHHHHMMSRP

1.00.411.00.791.00.490.420.790.790.790.42C

1.00.441.00.891.00.330.670.890.890.890.67S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Post-Test (UoP)

MMLHHHHHHHLMMMHHMMMMMMSRP

0.490.540.790.620.620.490.310.790.490.280.42C

0.670.110.890.780.780.330.560.890.670.560.67S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Pre-Test (UoP)
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Table B3.1 shows the UoP student cohort's response analysis results, which highlights some 

interesting themes as itemized below: 

1. are four HH in pre-test responses and 7 HH in post-test responses, an indication of 

knowledge convergence and improved learning in the UoP cohort after, undertaking the 

laboratory activities in the VEL.  

2. is no LL in both the pre-test and post-test responses, implying the absence of guessing in 

the UoP student cohort’s responses for both tests. 

3. is one LH in the pre-test responses (for Q10) and no LH in the post-test responses, 

implying that the one incorrect knowledge state fragment some of the students had, in 

relation to item Q10, before undertaking the laboratory activities in the VEL, was 

corrected such that almost half of the affected students now have the correct knowledge 

state fragment, while the remaining half retained the incorrect knowledge state fragment, 

after undertaking the laboratory activities in the VEL environment. 

4. is one LM in both the pre-test and post-tests for the same test item, Q6, which indicates 

that undertaking the laboratory activities in the VEL environment failed to correct the 

students incorrect knowledge state fragment for this item. 

5. are five MM in pre-test responses (for Q1, Q2, Q3, Q5, Q11) and 2, out of these five  

MMs in pre-test responses still exist in the post-test responses (for Q1, Q5), while the 

other three (for Q2, Q3, Q11) had been replaced by HH. This means that the three items 

for which the cohort had two different dominant knowledge state fragment (one correct, 

one incorrect), after undertaking the laboratory activities in the VEL environment, their 

knowledge was corrected to one dominant correct knowledge state fragment (HH), which 

indicates improved learning for the student cohort. 

 

Table B3.2: Score, Concentration factor, and SRPs for UTON Cohort 

HMMMMLHHHHLHMLHHMLLLHHSRP

0.470.290.120.540.670.540.140.660.190.180.74C

0.710.480.450.750.830.170.460.840.500.310.86S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Post-Test (UTON

MMLLLLLLMMLLLLMMLMLLMMSRP

0.230.190.090.190.270.100.090.420.210.060.43C

0.500.220.160.400.550.290.270.670.210.330.69S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Pre-Test (UTON)

HMMMMLHHHHLHMLHHMLLLHHSRP

0.470.290.120.540.670.540.140.660.190.180.74C

0.710.480.450.750.830.170.460.840.500.310.86S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Post-Test (UTON

MMLLLLLLMMLLLLMMLMLLMMSRP

0.230.190.090.190.270.100.090.420.210.060.43C

0.500.220.160.400.550.290.270.670.210.330.69S

Q11Q10Q9Q8Q7Q6Q5Q4Q3Q2Q1Q

Pre-Test (UTON)
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Table B3.2 shows the UTON student cohort's response analysis results, which also highlights 

some interesting themes as itemized below: 

1. no HH in the pre-test responses and 4 HH in the post-test responses for (Q1, Q4, Q7, Q8), 

where, before undertaking the laboratory activities in the VEL environment, the pre-test 

SRP indicated two different dominant CKS fragments (one correct, one incorrect) for the 

items, Q1, Q4, and Q7, and a guessing (LL) for Q8. 

2. 6 LL in the pre-test responses and only 1 LL in the post-test responses, implying that the 

six items, Q2, Q5, Q6, Q8, Q9, and Q10, for which most students had no clue about the 

correct response, thereby resorting to  guessing, has been reduced to only 1 LL (for item 

Q2), after perusing the VEL.   

3. 4 MM in the pre-test responses (for Q1, Q4, Q7, Q11) and 3 of which were corrected (for 

Q1, Q4, Q7) to HH in the post-test responses. This means that the three of the fours items 

for which the cohort had two different dominant CKS fragments (one correct, one 

incorrect), after undertaking the laboratory activities in the VEL environment, their 

knowledge was corrected to one dominant correct CKS fragment (HH), which indicates 

improved learning for the student cohort. 
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APPENDIX C: STUDENTS' SCORES ON THE LEARNING 

STYLE PREFERENCES SCALES AND 
USABILITY SURVEY ITEMS 

 
 
 
 

Table C1: UoP students’ scores on the LS preferences scales 

7791P149

7571P138

19113P127

171111P116

3593P105

3191P094
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5791P062
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active
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visual 
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intuitive 
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Sensing 
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Sequential/GlobalActive/ReflectiveVisual/VerbalSensing/Intuitive

Method of Progression 
Towards Understanding

Information 
Processing Method

Input Source 
(Communication 

Channel)

Type of Information 
Readily Perceived

LS

Learning Style (LS) Points

Participant 
ID
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Table C2: UTON students’ scores on the LS preferences scales 

7175p5252

3331p5151

1137p5050

5753p4949

5511p4848

1193p4747

3115p4646

1151p4545

1577p4444

7355p4343

1755p4242

3113p4141

3513p4040

1179p3939

5573p3838

5133p3737

3579p3636

33113p3535

1515p3434

11115p3333

3151p3232

33115p3131

7777p3030

3135p2929

1131p2828

5517p2727

33115p2626

5151p2525

1775p2424

5357p2323

7317p2222

5375p2121

1519p2020

3373p1919

7759p1818

5175p1717

1135p1616

3135p1515

5351p1414

3135p1313

1155p1212

7155p1111

3315p1010

1373p99

5151p88

11113p77

7157p66

3775p55

1551p44

1553p33

1375p22

1773p11

global 
(G)

sequential 
(Seq)

reflective 
(R)

active
(A)

verbal 
(Ver)

visual 
(V)

intuitive 
(I)

Sensing 
(Sen)

Sequential/GlobalActive/ReflectiveVisual/VerbalSensing/Intuitive

Method of Progression 
Towards Understanding

Information 
Processing Method

Input Source 
(Communication 

Channel)

Type of Information 
Readily Perceived

LS

Learning Style Points

Participant 
ID

S/No

7175p5252

3331p5151

1137p5050

5753p4949

5511p4848

1193p4747

3115p4646

1151p4545

1577p4444

7355p4343

1755p4242

3113p4141

3513p4040

1179p3939

5573p3838

5133p3737

3579p3636

33113p3535

1515p3434

11115p3333

3151p3232

33115p3131

7777p3030

3135p2929

1131p2828

5517p2727

33115p2626

5151p2525

1775p2424

5357p2323

7317p2222

5375p2121

1519p2020

3373p1919

7759p1818

5175p1717

1135p1616

3135p1515

5351p1414

3135p1313

1155p1212

7155p1111

3315p1010

1373p99

5151p88

11113p77

7157p66

3775p55

1551p44

1553p33

1375p22

1773p11

global 
(G)

sequential 
(Seq)

reflective 
(R)

active
(A)

verbal 
(Ver)

visual 
(V)

intuitive 
(I)

Sensing 
(Sen)

Sequential/GlobalActive/ReflectiveVisual/VerbalSensing/Intuitive

Method of Progression 
Towards Understanding

Information 
Processing Method

Input Source 
(Communication 

Channel)

Type of Information 
Readily Perceived

LS

Learning Style Points

Participant 
ID

S/No
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Table C3: UoP Scores for some of the Usability Survey Items 

555445Max

444233Min

0.330.500.330.730.330.60SD

4.114.334.113.443.893.89Mean

454444P149

444243P138

554344P127

444444P116

444344P105

444344P094

444444P073

455435P062

444443P051

Q6
Excellent

Q5
Recommended

Q4
Enjoyed

Q3
Not Difficult

Q2
Enhanced

Q1
Easy

Participant
ID

S/No

UoP Scores of the Usability Survey Items

555445Max

444233Min

0.330.500.330.730.330.60SD

4.114.334.113.443.893.89Mean

454444P149

444243P138

554344P127

444444P116

444344P105

444344P094

444444P073

455435P062

444443P051

Q6
Excellent

Q5
Recommended

Q4
Enjoyed

Q3
Not Difficult

Q2
Enhanced

Q1
Easy

Participant
ID

S/No

UoP Scores of the Usability Survey Items
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Table C4: UTON Scores for some of the Usability Survey Items 

555555Max

333122Min

0.610.510.650.970.800.77SD

4.464.704.483.444.344.02Mean

455444p5252

554454p5151

444343p5050

555344p4949

455555p4848

555355p4747

443344p4646

555353p4545

555554p4444

555345p4343

555454p4242

454444p4141

555555p4040

555554p3939

444345p3838

455254p3737

555355p3636

454245p3535

555354p3434

555325p3232

554334p3131

444255p3030

444445p2929

555453p2828

455445p2727

444343p2626

555353p2525

453444p2424

544334p2323

555354p2222

555354p2121

555154p2020

454444p1919

555553p1818

444323p1717

554334p1515

454445p1414

444354p1313

444244p1212

553444p1111

555555p1010

555553p99

333233p88

444344p77

454443p66

455453p55

545354p44

345454p33

355242p22

555555p11

Q6
Excellent

Q5
Recommend

Q4
Enjoyed

Q3
Not Difficult

Q2
Enhanced

Q1
Easy

Participant 
ID

S/No

UTON Student Cohorts’ Scores of the Survey Items

555555Max

333122Min

0.610.510.650.970.800.77SD

4.464.704.483.444.344.02Mean

455444p5252

554454p5151

444343p5050

555344p4949

455555p4848

555355p4747

443344p4646

555353p4545

555554p4444

555345p4343

555454p4242

454444p4141

555555p4040

555554p3939

444345p3838

455254p3737

555355p3636

454245p3535

555354p3434

555325p3232

554334p3131

444255p3030

444445p2929

555453p2828

455445p2727

444343p2626

555353p2525

453444p2424

544334p2323

555354p2222

555354p2121

555154p2020

454444p1919

555553p1818

444323p1717

554334p1515

454445p1414

444354p1313

444244p1212

553444p1111

555555p1010

555553p99

333233p88

444344p77

454443p66

455453p55

545354p44

345454p33

355242p22

555555p11

Q6
Excellent

Q5
Recommend

Q4
Enjoyed

Q3
Not Difficult

Q2
Enhanced

Q1
Easy

Participant 
ID

S/No

UTON Student Cohorts’ Scores of the Survey Items
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APPENDIX D: DOMAIN EXPERTS’ LINK RATINGS 
 

 
Table D1: Domain Expert Link Weight Assignments 

Expert Link Weight Assignments 

2529 (LSE)28 (PTU)49

2529 (LSE)27 (MIP)48

2529 (LSE)26 (ICC)47

2529 (LSE)25 (PIT)46

5353.33360505032 (BGK)31 (PUT)45

4746.66740505032 (BGK)30 (PTS)44

2121.66720252034 (OFA)29 (LSE)43

5756.66760506034 (OFA)32 (BGK)42

2221.66720252034 (OFA)33 (EUV)41

1817.50020201540 (PF)35* (PP)40

815.0005201040 (PF)34 (OFA)39

2525.00025252540 (PF)37 (KNC)38

2525.00025252540 (PF)39 (UNC)37

2422.50025202540 (PF)24 (LAS)36

4746.66750504023 (GAS)22 (IER)35

2121.66730152023 (GAS)18 (APG)34

3231.66720354023 (GAS)21 (SRC)33

2323.33320302024 (LAS)23 (GAS)32

2726.66730203024 (LAS)17 (MAM)31

2020.00010203024 (LAS)16 (CM)30

3030.00040302024 (LAS)15 (CC)29

4040.00040404037 (KNC)36 (FKN)28

4040.00040404037 (KNC)8 (ACF)27

2020.00020202037 (KNC)21 (SRC)26

3736.66720504039 (UNC)38 (CUN)25

2221.66720252039 (UNC)21 (SRC)24

4241.66760254039 (UNC)10 (MAC)23

5353.33360505021 (SRC)19 (FOI)22

4746.66740505021 (SRC)20 (RDG)21

2828.33330253016 (CM)10 (MAC)20

2221.66710253016 (CM)11 (ADA)19

2424.1674012.52016 (CM)4 (WWC)18

1515.00010251016 (CM)14 (ADC)17

1110.8331012.51016 (CM)7 (PUE)16

2020.00020202015 (CC)11 (ADA)15

3433.33330403015 (CC)4 (WWC)14

2323.33320203015 (CC)14 (ADC)13

2323.33330202015 (CC)7 (PUE)12

5050.00050505014 (ADC)13 (GLC)11

5050.00050505014 (ADC)12 (SAC)10

5555.00050655010 (MAC)8 (ACF)9

4545.00050355010 (MAC)9 (UCV)8

3736.66750501011 (ADA)10 (MAC)7

6363.33350509011 (ADA)3 (UAC)6

5050.0005050507 (PUE)6 (OEC)5

5050.0005050507 (PUE)5 (OSP)4

2726.6672020404 (WWC)3 (UAC)3

3333.3334040204 (WWC)2 (CPC2

4040.0004040404 (WWC)1 (UCC)1

Child
node

Parent
node

Link Weight 
Used

Average Link 
Weight

Expert 3
Weighting

Expert 2
Weighting

Expert 1
Weighting

LINK

S/No

Expert Link Weight Assignments 

2529 (LSE)28 (PTU)49

2529 (LSE)27 (MIP)48

2529 (LSE)26 (ICC)47

2529 (LSE)25 (PIT)46

5353.33360505032 (BGK)31 (PUT)45

4746.66740505032 (BGK)30 (PTS)44

2121.66720252034 (OFA)29 (LSE)43

5756.66760506034 (OFA)32 (BGK)42

2221.66720252034 (OFA)33 (EUV)41

1817.50020201540 (PF)35* (PP)40

815.0005201040 (PF)34 (OFA)39

2525.00025252540 (PF)37 (KNC)38

2525.00025252540 (PF)39 (UNC)37

2422.50025202540 (PF)24 (LAS)36

4746.66750504023 (GAS)22 (IER)35

2121.66730152023 (GAS)18 (APG)34

3231.66720354023 (GAS)21 (SRC)33

2323.33320302024 (LAS)23 (GAS)32

2726.66730203024 (LAS)17 (MAM)31

2020.00010203024 (LAS)16 (CM)30

3030.00040302024 (LAS)15 (CC)29

4040.00040404037 (KNC)36 (FKN)28

4040.00040404037 (KNC)8 (ACF)27

2020.00020202037 (KNC)21 (SRC)26

3736.66720504039 (UNC)38 (CUN)25

2221.66720252039 (UNC)21 (SRC)24

4241.66760254039 (UNC)10 (MAC)23

5353.33360505021 (SRC)19 (FOI)22

4746.66740505021 (SRC)20 (RDG)21

2828.33330253016 (CM)10 (MAC)20

2221.66710253016 (CM)11 (ADA)19

2424.1674012.52016 (CM)4 (WWC)18

1515.00010251016 (CM)14 (ADC)17

1110.8331012.51016 (CM)7 (PUE)16

2020.00020202015 (CC)11 (ADA)15

3433.33330403015 (CC)4 (WWC)14

2323.33320203015 (CC)14 (ADC)13

2323.33330202015 (CC)7 (PUE)12

5050.00050505014 (ADC)13 (GLC)11

5050.00050505014 (ADC)12 (SAC)10

5555.00050655010 (MAC)8 (ACF)9

4545.00050355010 (MAC)9 (UCV)8

3736.66750501011 (ADA)10 (MAC)7

6363.33350509011 (ADA)3 (UAC)6

5050.0005050507 (PUE)6 (OEC)5

5050.0005050507 (PUE)5 (OSP)4

2726.6672020404 (WWC)3 (UAC)3

3333.3334040204 (WWC)2 (CPC2

4040.0004040404 (WWC)1 (UCC)1

Child
node

Parent
node

Link Weight 
Used

Average Link 
Weight

Expert 3
Weighting

Expert 2
Weighting

Expert 1
Weighting

LINK

S/No

 

 



                  APPENDIX D 

 

184 

 

 
 
 
 
 

Table D2: Pearson Correlation factor of the expert link weightings  

Pearson Correlation Factor of the Domain Expert Link Weight Assignments

1r = 0.6419 (p = )r = 0.5469 (p = )DE3

1r = 0.62032 (p = )DE2

1DE1

DE3DE2DE1
Domain 
Expert

Pearson Correlation Factor of the Domain Expert Link Weight Assignments

1r = 0.6419 (p = )r = 0.5469 (p = )DE3

1r = 0.62032 (p = )DE2

1DE1

DE3DE2DE1
Domain 
Expert
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APPENDIX E: EMPIRICAL INVESTIGATION RESULTS 
 
 
 
 
Table E1: Average performance metric values for the parameteric groups of models and their 

maximum standard deviation 
(models constructed with the Dp set of training training datasets) 

****EM100
SaS

(GSA/BDu)

WinMin

e

D1p, D2p, D3p, 

D4p, 

respectively

SPWD1p, SPWD2p, 

SPWD3p, SPWD4p
SPWDp

71.2525

(0.6868)

0.3677

(0.0101)

0.5423

(0.0138)

28.3150

(0.3142)
EM100

SaS

(GTT/BDeu)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGcDp

71.2525

(0.6868)

0.3673

(0.0094)

0.5414

(0.0133)

28.3150

(0.3142)
EM100

SaS

(GTT/K2)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGbDp

71.2525

(0.6868)

0.3674

(0.0190)

0.5413

(0.0136)

28.3150

(0.3142)
EM100

CI-Test

(PC)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGaDp

todacen

14.3169

(0.7753)

0.5018

(0.0178)

0.7007

(0.0245)

48.1556

(0.6107)
EM--

SamIa

m

D1p, D2p, D3p, 

D4p, 

respectively

PSD1p PSD2p, 

PSD3p, PSD4p
PSDp

71.2525

(0.6868)

0.3670

(0.0096)

0.5408

(0.0136)

28.3150

(0.3142)
EM--Genie

D1p, D2p, D3p, 

D4p, 

respectively

PGD1p PGD2p, 

PGD3p, PGD4p
PGDp

71.6800

(0.2956)

0.3694

(0.0016)

0.5451 

(0.0016)

28.1500 

(0.2364)
EM--Netica

D1p, D2p, D3p, 

D4p, 

respectively

PND1p PND2p, 

PND3p, PND4p,
PNDp

sedacen

Group 

Average 

Sensitivity 

and 

(max STD)

Group 

Average Brier 

Score and 

(max STD)

Group 

Average 

Logloss and 

(max STD)

Group 

Average Error 

Rate and

(max STD)

Parameter 

Learning 

Algorithm

% of CP

Links 

Learnt

Structure 

Learning 

Approach

Softwar

e Tool 

Used

Training 

Dataset used 

for the 

Construction 

of the models

Names of Member 

models of the Group

Model 

Group 

Name

Model 

Group 

Type

****EM100
SaS

(GSA/BDu)

WinMin

e

D1p, D2p, D3p, 

D4p, 

respectively

SPWD1p, SPWD2p, 

SPWD3p, SPWD4p
SPWDp

71.2525

(0.6868)

0.3677

(0.0101)

0.5423

(0.0138)

28.3150

(0.3142)
EM100

SaS

(GTT/BDeu)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGcDp

71.2525

(0.6868)

0.3673

(0.0094)

0.5414

(0.0133)

28.3150

(0.3142)
EM100

SaS

(GTT/K2)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGbDp

71.2525

(0.6868)

0.3674

(0.0190)

0.5413

(0.0136)

28.3150

(0.3142)
EM100

CI-Test

(PC)
Genie

D1p, D2p, D3p, 

D4p, 

respectively

SPGaD1p, SPGaD2p, 

SPGaD3p, SPGaD4p
SPGaDp

todacen

14.3169

(0.7753)

0.5018

(0.0178)

0.7007

(0.0245)

48.1556

(0.6107)
EM--

SamIa

m

D1p, D2p, D3p, 

D4p, 

respectively

PSD1p PSD2p, 

PSD3p, PSD4p
PSDp

71.2525

(0.6868)

0.3670

(0.0096)

0.5408

(0.0136)

28.3150

(0.3142)
EM--Genie

D1p, D2p, D3p, 

D4p, 

respectively

PGD1p PGD2p, 

PGD3p, PGD4p
PGDp

71.6800

(0.2956)

0.3694

(0.0016)

0.5451 

(0.0016)

28.1500 

(0.2364)
EM--Netica

D1p, D2p, D3p, 

D4p, 

respectively

PND1p PND2p, 

PND3p, PND4p,
PNDp

sedacen

Group 

Average 

Sensitivity 

and 

(max STD)

Group 

Average Brier 

Score and 

(max STD)

Group 

Average 

Logloss and 

(max STD)

Group 

Average Error 

Rate and

(max STD)

Parameter 

Learning 

Algorithm

% of CP

Links 

Learnt

Structure 

Learning 

Approach

Softwar

e Tool 

Used

Training 

Dataset used 

for the 

Construction 

of the models

Names of Member 

models of the Group

Model 

Group 

Name

Model 

Group 

Type

 
 
 

* The performance of the models constructed using the WinMine Toolkit could not be 

evaluated in a similar manner as the other models because of its network file format (.xmod). 

The file extension .xmod is a representation of the abbreviated words Export Module, and it 

stores the various graphics and images that are required to generate high resolution outputs. 

The .xmod network files constructed with WinMine could not be opened by other software 

tools that support facilities for the evaluations undertaken in this context. 
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Table E2: Average performance metric values for the non-parameteric groups of models and 
their maximum standard deviation  

(models constructed with the Dnp set of training training datasets) 

----EM0/0
SaS

(GSA/BDu)
WinMine

D1np, D2np, 

D3np, D4np, 

respectively

SPWD1np, SPWD2np, 

SPWD3np, SPWD4np
SPWDnp

----EM0/0
SaS

(GTT/BDeu)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGcDnp

----EM1/2
SaS

(GTT/K2)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGbDnp

50.2125

(1.8934)

0.5

(0.0001)

0.6931

(0.0001)

50.0825

(0.0002)
EM6/16

CI-Test

(PC)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGaDnp

todacen

0.0000

(0.0000)

0.5000

(0.0000)

0.6931

(0.0000)

50.0925

(0.0000)
EM

-

-
-SamIam

D1np, D2np, 

D3np, D4np, 

respectively

PSD1np PSD2np, 

PSD3np, PSD4np
PSDnp

52.5038

(2.3618)

0.4997

(0.0006)

0.6932

(0.0006)

48.9206

(0.0006)
EM

-

-
-Genie

D1np, D2np, 

D3np, D4np, 

respectively

PGD1np PGD2np, 

PGD3np, PGD4np
PGDnp

52.5475

(0.8283)

0.4997

(0.0006)

0.6929

(0.0006)

48.9056

(0.0006)
EM

-

-
-Netica

D1np, D2np, 

D3np, D4np, 

respectively

PND1np PND2np, 

PND3np, PND4np,
PNDnp

sedacen

Group 

Average 

Sensitivity 

Group 

Average 

Brier Score

(Max STD)

Group 

Average 

Logloss

(max STD)

Group 

Average 

Error Rate

(max STD)

Parameter 

Learning 

Algorithm

Min/Max No of 

Links Learnt

Structure 

Learning 

Approach

Software 

Tool 

Used

Training Dataset 

used for the 

Construction of 

the models

Names of Member 

models of the Group

Model 

Group 

Name

Model 

Group 

Type

----EM0/0
SaS

(GSA/BDu)
WinMine

D1np, D2np, 

D3np, D4np, 

respectively

SPWD1np, SPWD2np, 

SPWD3np, SPWD4np
SPWDnp

----EM0/0
SaS

(GTT/BDeu)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGcDnp

----EM1/2
SaS

(GTT/K2)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGbDnp

50.2125

(1.8934)

0.5

(0.0001)

0.6931

(0.0001)

50.0825

(0.0002)
EM6/16

CI-Test

(PC)
Genie

D1np, D2np, 

D3np, D4np, 

respectively

SPGaD1np, SPGaD2np, 

SPGaD3np, SPGaD4np
SPGaDnp

todacen

0.0000

(0.0000)

0.5000

(0.0000)

0.6931

(0.0000)

50.0925

(0.0000)
EM

-

-
-SamIam

D1np, D2np, 

D3np, D4np, 

respectively

PSD1np PSD2np, 

PSD3np, PSD4np
PSDnp

52.5038

(2.3618)

0.4997

(0.0006)

0.6932

(0.0006)

48.9206

(0.0006)
EM

-

-
-Genie

D1np, D2np, 

D3np, D4np, 

respectively

PGD1np PGD2np, 

PGD3np, PGD4np
PGDnp

52.5475

(0.8283)

0.4997

(0.0006)

0.6929

(0.0006)

48.9056

(0.0006)
EM

-

-
-Netica

D1np, D2np, 

D3np, D4np, 

respectively

PND1np PND2np, 

PND3np, PND4np,
PNDnp

sedacen

Group 

Average 

Sensitivity 

Group 

Average 

Brier Score

(Max STD)

Group 

Average 

Logloss

(max STD)

Group 

Average 

Error Rate
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APPENDIX F: QUANTIZATION OF EVIDENCE VARIABLES 
 
 

APPENDIX F1:  Quantization of Node 2: “CorrectPlacementOfComponents” 

The quantization of CPC necessitates the given circuit or network is completely described by 

a graph, G, without self-loops, so that the KVL and KCL equations of the network can be 

derived from the graph by using the relevant components of the graph (path, subgraph, loop, 

cutset, tree, and cotree) to generate the necessary matrices (Incident Matrix (IM), Aa, and 

Reduced Incident Matrix (RIM), A; Loop Matrix (LM), Ba, and Fundamental Loop Matrix 

(FLM), B; Cutset Matrix (CM), Da, and Fundamental Cutset Matrix (FCM), D). The IM, Aa, is 

generated directly from G. For example, the network of Figure F1.1, is described by the 

graph, G, of Figure F1.2.  

 

 

Figure F1.1:  The schematic of one of the circuits constituting part of the laboratory activities 
designed for the evaluation of the VEL: the Twin-T Notch filter. 
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Figure F1.2: G: The graph description of the network of Figure F1.1. 
 

 

In G, the edges represent the branches of the network, so that a, b, c, d, e, f, g, and h represent 

vcc, c1, c2, c3, r1, r2, r3, and r4, respectively. G has n vertices and b edges corresponding to 
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the n nodes and b branches of the network. The IM, aA  (equation C1.1), is the n x b matrix, 

[ ]a ijA a= , where: 1ija =  if the branch j is incident at node i and the arrow is pointing away 

from node i; 1ija = −  if branch j is incident at node i, and the arrow is pointing towards node 

i; and 0ija =  0 if branch j is not incident at node i. 0aA i = , where i is the b x 1 column 

vector, representing the branch currents. 

 

0 1 0 0 1 0 0 1 1

1 1 1 0 0 1 0 0 0
 

2 0 0 0 1 1 1 0 0

3 0 0 1 0 0 1 0 1

4 0 1 1 0 0 0 1 0

a

nodeNo a b c d e f g h

adgh

abe
A

def

cfh

bcg

 
 − − − − 
 

=  − 
 − −
 

− 

  (F1.1) 

and      0aA i =                      (F1.2) 

 

where i is the b x 1 column vector,  

( )

a

b

c

d

e

f

g

h

i

i

i

i
i t

i

i

i

i

 
 
 
 
 
 =
 
 
 
 
 
  

    (F1.3) 

representing the branch currents. Each row of aA corresponds to a vertex, i, i=1 to n, of G, 

and each column corresponds to an edge, j, j = 1 to b.  0aA i =  is the set of n KCL equations 

characterizing the network. The equations are not linearly independent. The required n-1 

linearly independent KCL equations are obtained by transforming the IM, aA , to the RIM, A 

(equation C1.4) in order to derive the equation, 0Ai = , which is the required set of n-1 

independent KCL equations.  
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1 1 1 0 0 1 0 0 0

 2 0 0 0 1 1 1 0 0

3 0 0 1 0 0 1 0 1

4 0 1 1 0 0 0 1 0

nodeNo a b c d e f g h

abe

A def

cfh

agh

 
 − 
 = −
 − − 
 − − 

          (F1.4) 

 

and     0Ai =     (F1.5) 

 

G can be partitioned into a chosen tree, T, and its cotree, TC, so that all its edges are split into 

two groups: those that form the tree and those that form the cotree. Hence, A can be 

partitioned as A=[AT|AC] where the columns of AT correspond to the tree branches of the 

chosen tree, T, and the columns of AC correspond to the branches of the cotree, TC (referred to 

as chords), and det 0TA ≠ . If, for example, the chosen tree is as shown in Figure F1.3, with 

branches (b c d h), then A can be portioned as in equation F1.6. 
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Figure F1.3: A chosen tree, T, of the graph, G. 
 

 

1 1 0 0 0 1 1 0 0

 2 0 0 1 0 0 1 1 0

3 0 1 0 1 0 0 1 0

4 1 1 0 0 0 0 0 1

n o d e N o b c d h a e f g

A

 
 − 
 = −
 − − 
 − − 

        (F1.6) 

 

The LM, Ba (equation 7.8), is formed from the q oriented loops of G, highlighted in Figure 

F1.4.  
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Figure F1.4: Oriented Loops of the graph, G. 
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   (F1.7) 

 

and     0aB V =     (F1.8) 

 

 Equation F1.7 is the set of q KVL equations describing the network, where v is the b x 1 

column vector (equation F1.9),  
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    (F1.9) 

 

representing the branch voltages. Hence, the LM, [ ]a ijB b= , is a q x b matrix, where 1ijb =   if 

the branch j is in loop i, and their arrow directions agree; 1ijb = −  if branch j is in loop i, and 

their  arrow directions oppose; 0ijb =  if branch j is not in loop i.  0aB V =  is the set of q KVL 

equations describing the network, where V is the b x 1 column vector representing the branch 
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voltages. The q KVL equations are not linearly independent. The required set of linearly 

independent KVL equations is 0BV = , where B is the FLM and is systematically generated 

from G, using the chosen tree, T and its cotree, TC. B can also be generated from the 

systematic transformation of aB .  The columns of B can be partitioned as  [ | ]T CB B B= , 

where the columns of TB  and CB  correspond to the branches of the tree, T, and the chords of 

its cotree, TC, respectively.  

 

Furthermore, the oriented cutsets of G, highlighted in Figure F1.5, based on chosen tree, T, 

are used to form the CM, Da. G has m = n-1 oriented cutsets so that  Da is the m x b matrix, 

[ ]a ijD d= , where 1ijd =  if the branch j is in cutset i, and their arrow directions agree; 

1ijd = −  if branch j is in cutset i, and their  arrow directions oppose; 0ijd =  if branch j is not 

in cutset i. 0aD i =  is a set of linearly dependent KCL equations.  
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Figure F1.5: FSC associated with the tree, T, of the graph G. 
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        (F1.10) 

 

The FCM, D, an m x b matrix (m = n -1), required to form the set of linearly independent 

KCL equations, 0Di = , is derived from the FSC. The FSC is systematically generated from 

G using the tree, T and cotree, TC. Or, D can be systematically generated directly from Da 
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such that D consists of the maximum number of independent rows of Da. D can also be 

partitioned as D=[DT|DC]. The rows of D are linearly independent and 

0Di =   (F1.11) 

Equation F1.11 represents a more generalized set of KCL equations for the network [Chua 

and Lin, 1975].  

 

So far, the generation of three sets of KCL and KVL equations have been described. From the 

way B is generated, using T and Tc, each chord of TC in BC constitutes a unit column matrix of 

BC so that B = [BT|1U], where 1u b n= − +  and T = tree. Similarly, each branch of T in DT 

constitutes a unit column matrix of DC so that C[1 | ]PD D= , where p = n – 1 and c = chords. 

The check for topological equivalence of two networks is done by comparing their sets of 

KCL equations ( 0iB = ) and/or KVL equations ( 0iA = , or 0iD = ), which, in this context, 

reduces to matrix comparison. Hence, for the purpose of the work presented in this thesis, a 

student’s built circuit is compared to the reference circuit, for topological equivalence, by 

comparing their D matrices, since 0iD = , according to [Chua and P. Lin, 1975], represents 

the set of more generalized KCL equations for a network. The result of the comparison is used 

to generate the quantized value for the node, CPC, using equation F1.12.  

100

1

n xiCPC q mn i

 = × ∑ = 
  (F1.12) 

where n = number of different types of reference circuits, m = number of circuits built and 

simulated by a student, xi = number of circuits built and simulated by a student that are 

topologically equivalent to reference circuit type i, and q = number of xi’s not equal to zero (q 

is an indication that a circuit of a particular type is built topologically correctly at least once).  

 

 

 

APPENDIX F2:  Quantization of the node 3: “UseCorrAlternativeComponent” 

This node is quantified if and only if (iff) a laboratory activity requires students to adapt in the 

face of non availability of a specified component. For example, if a given laboratory circuit 

diagram specifies the use of a 220kΩ resistor which is not among the provided components in 

the Resistor component container, students are expected to adapt by using other resistor 

values, combing them serially or in parallel to obtain the same circuit effect as a 220kΩ 

resistor. In this case, the quantization of the node takes a transfer function approach by 

comparing the student’s built circuit to the reference circuit, not for component/value and 
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topological equivalence, but for equivalence in their output characteristics. If the student and 

reference circuits have the same output characteristics, then the student is assumed to have 

used a feasible alternative component. Hence, UAC   is quantized as follows:  

1

100 n
i

i

xUAC q mn =

 = ×  
 
∑   (F1.12) 

where n = number of different types of reference circuits in which adaptation is required, m = 

number of circuits built and simulated by student, xi = number of circuits built and simulated 

by student in which adaptation has been made and their output characteristics are equivalent 

to that of reference circuit type i (i= 1…n) that required adaptation, and q = number of xi’s not 

equal to zero (q is an indication that a circuit of a particular type is built with the correct 

alternative components, at least once). 

 
 
 
APPENDIX F3:  Quantization of the node 5: “ObserveSafetyProcedure” 

In the traditional laboratory, there usually are safety related issues that students must 

necessary observe. It may not be possible to completely observe all laboratory safety related 

procedures in the VEL. However, there is a number of breadboarding related and equipment 

use safety procedures that students can and should be expected to observe, even in the VEL 

environment, because it is possible to observe them and they need to imbibe the culture of 

being safety conscious. Safety requires that the Power Supply (PS) or Function Generator 

(FG) be: 

� connected to the breadboard after the circuit has been built, and not before.  

� connected to the breadboard first before it is switched on and not the other way round. 

� switched off before disconnection from the breadboard. 

� be switched off and possibly disconnected before making changes to the breadboarded 

circuit such as:  

� repositioning the pins of a component  

� removing a component  

� adding additional components to the circuit  

� rewiring. 

� the two pins of a component should not be connected to the same hole on the breadboard. 

The quantization of OSP requires that the actions log is checked for the violation or non-

violation of any of these safety related issues. Let n = total number of violations observed and 
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m = total number of good safety practices observed, then k = m + n (k = total number of safety 

related actions taken by student).  

( )100 100nOSP k= − ×   (F3.1) 

 

 

APPENDIX F4:  Quantization of the node 6: “OperateEquipmentCorrectly” 

Laboratory equipment should not be mishandled and should be used in the best possible way 

that promotes safety and longevity. The precautions that can possible be taken in the virtual 

laboratory environment with respect to correct equipment use include: 

� the +V and ground (GND) terminals of the PS/FG should not be connected to the same 

hole on the breadboard 

� the PS should not be used where the FG is supposed to be used, and vice versa 

� PS/FG switch flickering should be avoided. Flickering occurs when equipment is switched 

on, off, on, off, on, etc in succession. 

� housekeeping: switch off and disconnect the PS/FG on finishing a laboratory activity, 

before quitting the laboratory environment. 

� the two pins of a component should not be connected to the same hole on the breadboard. 

The quantization of OEC requires that the actions log is checked for the violation or non-

violation of any of these good equipment use issues. Let n = total number of misuses observed 

and m = total number of correct-uses observed, then k = m + n (k = total number of correct 

equipment use related actions taken).  

( )100 100nOEC k= − ×   (F4.1) 

 

APPENDIX F5:  Quantization of the nodes 8: “ApplyCorrectFormula” 

These nodes can be quantified iff a laboratory activity requires students to make specific 

calculations for which they are expected to apply specific formulae. MCQs are used to elicit, 

from a student, the formulae used for the particular calculation. The selected formula applied 

by the student is checked against the formula specified by the instructor. Let y = no of 

different types of formulae to be applied for the specified calculations to be made; x = no of 

formulae used by a student that are correct and right for the specified calculations, then  

100xACF y= ×   (F5.1) 
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APPENDIX F6:  Quantization of the node 9: “UseCorrectValues” 

These nodes can be quantified iff a laboratory activity requires students to make specific 

calculations for which they are expected to apply specific formulae, with certain values for the 

variables in the formulae, to arrive at expected results. The quantize the variable: 

� check if the correct formula was applied 

� check if the calculation result is correct by comparing the student calculation result 

with the expected result specified by the teacher. 

Correct values are assumed to have been used if the correct formula was applied and the 

calculation result is correct. The assumption is that each calculation requires the use of only 

one specific formula. Let y = no of different calculations to be made; w = no of time correct 

values used in the calculations, then  

100wUCV y= ×   (F6.1) 

 

 

APPENDIX F7:  Quantization of the node 12: “SpecificActivityConstraints” 

This node can be quantified iff for a laboratory activity, the instructor highlights a set of 

specific constraints that must be adhered to. For example, the instructor may specify a 

constraint such as: c1 = ½c2. The form of constraint specified by the instructor determines the 

source of data extract for the quantification of this node. Let y = no of specific activity 

constraints specified and x = no of specific activity constraints adhered to, then  

100xSAC y= ×   (F7.1) 

 

 

APPENDIX F8:  Quantization of the node 17: 
“ AbilityToMakeAppropriateMeasurements” 

The variable, MAM, is quantized as:  

100

1

n xiMAM q mn i

 = × ∑ = 
  (F8.1) 

where n = number of different types of measurements instructed, m = total number of 

measurement attempts made by a student, xi = number of measurements by student that are 

the same as the instructed measurement type i, and q = number of xi’s not equal to zero (q is 

an indication that an instructed measurement type is made correctly, at least once).  
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APPENDIX F9:  Quantization of the node 18: “AbilityToPlotGraph” 

This node is instantiated iff a laboratory activity requires students to plot a graph(s). It is 

quantified as follows: 

1

100 n
i

i

xAPG q mn =

 = ×  
 
∑   (F9.1) 

where n = number of different types of graph plots to be made; m = number of graph plot 

attempts made by a student, xi = number of graph plot attempts that are correct, corresponding 

to a specified graph plot (with the correct signal frequency range specified, where necessary), 

and for which the student constructed circuit that yielded the data used for the graph plot is 

equivalent to its reference circuit, q = number of xi’s not equal to zero (q is an indication that 

an instructed graph plot type is done correctly, at least once). 

 

 

APPENDIX F10:  Quantization of the node 19: “FollowInstructions” 

The variable is quantized with respect to the instructional tasks for a laboratory activity such 

as: construct a circuit, plot graph (with or without given specifications, e.g. frequency range), 

modify a constructed circuit, calculate, make a measurement, give all answers to two decimal 

places, etc). The number of decimal places for a student answer, for example, is verified by 

checking if all the student’s numerical results/answers are rounded to the number of specified 

decimal places. Hence, the FOI node is quantized as:   

100xFOI y= ×   (F10.1) 

where y = total number of different instructions given, and x = the number of instructions 

actually carried out by the student. The outcome of carrying out the instruction may or may 

not be correct but it is only checked that attempted has been made to do as instructed. The 

order in which the instructions are  carried out is not taken into consideration in this context.  

 

 

 

APPENDIX F11:  Quantization of the node 20: “ReadDiagramsAndGraphs” 

This node can be quantified either partially or fully, or not at all, for every laboratory activity, 

because the quantization involves two different aspects: reading of diagrams and reading of 
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graphs. The reading of diagrams can possibly always be quantized for every laboratory 

activity that includes a circuit diagram, as part of its instructions or if some laboratory activity 

questions involve reading a diagram(s) in order to answer the questions. For example, if a 

student’s built circuit is equivalent to the reference laboratory schematic then the student has 

read the given diagram well. The reading of graphs aspect can be quantified iff a laboratory 

activity requires students to read off values from plotted graph(s) or to express their 

understanding of a plotted graph. Each laboratory activity question has an indicator, 

highlighting what it is designed to elicit. All the questions that elicit the RDG construct are 

profiled and used for the quantization. Let y = number of laboratory questions and post-

laboratory items that elicit reading diagrams and/or graphs, and x = number of laboratory 

questions and post-laboratory items that elicit reading diagrams and/or graphs for which 

student’s answers/responses are correct. Then, RDG is quantized as: 

( )100xRDG avg UCC CPC y= + + ×   (F11.1) 

 
 
 
APPENDIX F12:  Quantization of the node 22: “AbilityToInterpretExpResults” 

This node is quantized and instantiated iff a laboratory activity requires students to read off 

data, explain and/or extract information from a laboratory activity result(s). For example, 

students’ may be asked to state the reason for the difference between two plotted graphs. Each 

laboratory activity question has an indicator, highlighting what it is designed to elicit. The 

questions that elicit the IER construct are profiled and used for the quantization. Let q = total 

number of laboratory questions and post-laboratory items that elicit students’ ability to 

interpret experimental results, and p = total number of laboratory questions and post-

laboratory items that elicit students’ ability to interpret experimental results for which 

student’s answers/response are correct. Then  

100pIE R q= ×   (F12.1) 

 

 
 
 
APPENDIX F13:  Quantization of the node 38: “ConceptualUnderstanding” 

This node is quantified from marking a student’s answers/responses to laboratory questions 

and post-laboratory items designed to elicit students’ understanding of the concept addressed 

by a laboratory activity. Each laboratory question and post-laboratory item has an indicator 



                  APPENDIX F 

 

198 

highlighting what it is designed to elicit. The questions that elicit students’ understanding of 

the concept addressed by a laboratory activity are profiled and used for the quantization. Let y 

= total number of laboratory activity questions and post-laboratory items designed to elicit 

students’ understanding of the addressed, and x = total number of laboratory activity questions 

and post-laboratory items designed to elicit students’ understanding of the addressed for 

which students answers/responses are correct. Then 

100xCUN y= ×   (F13.1) 

 

 

APPENDIX F14:  Quantization of the node 36: “FactualKnowledge” 

This node is quantified from marking a student’s answers/responses to laboratory questions 

and post-laboratory items designed to elicit students’ knowledge of the concept addressed by 

a laboratory activity. Each laboratory question and post-laboratory item has an indicator 

highlighting what it is designed to elicit. The questions that elicit students’ knowledge of the 

concept addressed by a laboratory activity are profiled and used for the quantization. Let y = 

total number of laboratory activity questions and post-laboratory items designed to elicit 

students’ knowledge of the addressed, and x = total number of laboratory activity questions 

and post-laboratory items designed to elicit students’ knowledge of the addressed for which 

students answers/responses are correct. Then 

 100xFKN y= ×   (F14.1) 

 

 
APPENDIX F15:  Quantization of the node 30: “PreLaboratoryTestScore” 

This node is directly quantified from the database as students’ pre-laboratory test scores are 

stored in the database. 

 

 

 

APPENDIX F16:  Quantization of the node 31: “PreRequisiteUnitTestScore” 

This node is directly quantified from the database as students’ test scores for pre-requisite 

units are stored in the database.  
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APPENDIX F17:  Quantization of the node : “PerceivedInfoType”; 
“InfoCommChannel”; “InfoProcessing”; and “Progressi onToUnderstanding” 

These nodes are not quantized; rather, they are instantiated directly from the database. 

Students preferred Learning Styles (LSs) were evaluated with the [Felder and Silverman, 

1988] Index of Learning Styles (ILS) instrument. Students LS preferences on the four 

dimensions of the ILS were generated and stored in the database.  Since the nodes are not 

quantized, they do not require fuzzification.  
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APPENDIX G: ASSESSOR CONSISTENCY 
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Figure G1: Assessor A1 1st and 2nd assessment scores for the performance factor, APG 
 
 
 
 

Assessor A1 Consistency: IER
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Figure G2: Assessor A1 1st and 2nd assessment scores for the performance factor, IER 
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Assessor A1 Consistency: MAC
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Figure G3: Assessor A1 1st and 2nd assessment scores for the performance factor, MAC 
 

Assessor A1 Consistency: MAM
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Figure G4: Assessor A1 1st and 2nd assessment scores for the performance factor, MAM 
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Figure G5: Assessor A1 1st and 2nd assessment scores for the performance factor, PUE  
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Assessor A1 Consistency: SRC
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Figure G6: Assessor A1 1st and 2nd assessment scores for the performance factor, SRC 
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Figure G7: Assessor A2 1st and 2nd assessment scores for the performance factor, APG 
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Figure G8: Assessor A2 1st and 2nd assessment scores for the performance factor, IER 
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Assessor A2 Consistency: MAC
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Figure G9: Assessor A2 1st and 2nd assessment scores for the performance factor, MAC 
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Figure G10: Assessor A2 1st and 2nd assessment scores for the performance factor, MAM 
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Figure G11: Assessor A2 1st and 2nd assessment scores for the performance factor, PUE 
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Assessor A2 Consistency: SRC
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Figure G12: Assessor A2 1st and 2nd assessment scores for the performance factor, SRC 
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Figure G13: Assessor A3 1st and 2nd assessment scores for the performance factor, APG 
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Figure G14: Assessor A3 1st and 2nd assessment scores for the performance factor, IER 
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Assessor A3 Consistency: MAC
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Figure G15: Assessor A3 1st and 2nd assessment scores for the performance factor, MAC 
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Figure G16: Assessor A3 1st and 2nd assessment scores for the performance factor, MAM 
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Figure G17: Assessor A3 1st and 2nd assessment scores for the performance factor, PUE 
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Assessor A3 Consistency: SRC
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Figure G18: Assessor A3 1st and 2nd assessment scores for the performance factor, SRC 
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Figure G19: Assessor A4 1st and 2nd assessment scores for the performance factor, APG 
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Figure G20: Assessor A4 1st and 2nd assessment scores for the performance factor, IER 
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Assessor A4 Consistency: MAC
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Figure G21: Assessor A4 1st and 2nd assessment scores for the performance factor, MAC 
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Figure G22: Assessor A4 1st and 2nd assessment scores for the performance factor, MAM 
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Figure G23: Assessor A4 1st and 2nd assessment scores for the performance factor, PUE 
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Assessor A4 Consistency: SRC
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Figure G24: Assessor A4 1st and 2nd assessment scores for the performance factor, SRC 
 
 
 

Table G1: Assessor Consistency Correlation factors and p-values  

r = 0.35832, 
p = 0.009103
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p = 0.000000
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p = 0.000000
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APPENDIX H: INTER ASSESSOR AGREEMENT 
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Figure H1: Inter Assessor Agreement: Assessors scores for the performance indicator, SRC 
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Figure H2: Inter Assessor Agreement: Assessors scores for the performance indicator, MAM 
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Figure H3: Inter Assessor Agreement: Assessors scores for the performance indicator, IER 
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Figure H4: Inter Assessor Agreement: Assessors scores for the performance indicator, MAC 
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Figure H5: Inter Assessor Agreement: Assessors scores for the performance indicator, APG 
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APPENDIX J: HUMAN ASSESSORS VS MODEL 
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Figure J1: Human-Model Agreement--Assessor A1 scores vs. model belief estimates for SRC. 
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Figure J2: Human-Model Agreement--Assessor A2 scores vs. model belief estimates for SRC. 
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A3 Scores vs Belief Estimates (SRC)
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Figure J3: Human-Model Agreement--Assessor A3 scores vs. model belief estimates for SRC. 
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Figure J4: Human-Model Agreement--Assessor A4 scores vs. model belief estimates for SRC. 
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Assessors' Average Scores vs Belief Estimates (SRC)
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Figure J5: Human-Model Agreement--Assessors average scores vs. model belief estimates for 

SRC 
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Figure J6: Human-Model Agreement--Assessor A1 scores vs. model belief estimates for 

MAC. 
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A2 Scores vs Belief Estimates (MAC)
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Figure J7: Human-Model Agreement--Assessor A2 scores vs. model belief estimates for 

MAC. 
 

 

A3 Scores vs Belief Estimates (MAC)

0

20

40

60

80

100

120

p1 p2 p3 p4 p5 p6 p7 p8 p9 p1
0

p1
1

p1
2

p1
3

p1
4

p1
5

p1
6

p1
7

p1
8

p1
9

p2
0

p2
1

p2
2

p2
3

p2
4

p2
5

p2
6

p2
7

p2
8

p2
9

p3
0

p3
1

p3
2

p3
3

p3
4

p3
5

p3
6

p3
7

p3
8

p3
9

p4
0

p4
1

p4
2

p4
3

p4
4

p4
5

p4
6

p4
7

p4
8

p4
9

p5
0

p5
1

p5
2

Student

S
co

re
 (

A
3)

/B
el

ie
f E

st
im

at
e

A3

Belief Estimate

 

Figure J8: Human-Model Agreement--Assessor A3 scores vs. model belief estimates for 
MAC. 
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A4 Scores vs Belief Estimates (MAC)
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Figure J9: Human-Model Agreement--Assessor A4 scores vs. model belief estimates for 

MAC. 
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Figure J10: Human-Model Agreement--Assessors average scores vs. model belief estimates 

for MAC 
 

 

 

 
 


