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Abstract

Computer models, or simulators, are widely used in a rangeieftific fields to aid understand-
ing of the processes involved and make predictions. Suchlators are often computationally
demanding and are thus not amenable to statistical analisimilators provide a statistical ap-
proximation, or surrogate, for the simulators accountioigtiie additional approximation uncer-
tainty. This thesis develops a novel sequential screeniathod to reduce the set of simulator
variables considered during emulation. This screenindnatkis shown to require fewer simulator
evaluations than existing approaches. Utilising the latwerensional active variable set simplifies
subsequent emulation analysis. For random output, orastich simulators the output dispersion,
and thus variance, is typically a function of the inputs.shlubrk extends the emulator framework
to account for such heteroscedasticity by constructingrtews heteroscedastic Gaussian process
representations and proposes an experimental desigrigaehio optimally learn the model pa-
rameters. The design criterion is an extension of Fisherimétion to heteroscedastic variance
models. Replicated observations are efficiently handleobth the design and model inference
stages. Through a series of simulation experiments on lyoithetic and real world simulators,
the emulators inferred on optimal designs with replicatbdeovations are shown to outperform
equivalent models inferred on space-filling replicateefiesigns in terms of both model parameter
uncertainty and predictive variance.

Keywords: Gaussian Process, Fisher Information, Optimal Designjtidgpendent variance,
Heteroscedasticity.
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Chapter 1 INTRODUCTION

Computer simulators of real world processes are of greapitapce in many scientific fields.
Often, these simulators are both computationally expenaivd require many inputs. Exam-
ples include climate projections (Hargreaves et al., 20€gfjmation of national carbon balances
(Kennedy et al., 2008), epidemiology (Singer et al., 2008) systems biology (Henderson et al.,
2009a), where biochemical reactions of cell processes adeled. The problem of the compu-
tational expense of simulators can be handled using eronlégchnology where the simulator is
approximated by a statistical probabilistic model knowmagmulator. Emulation of determinis-
tic computer simulators is a well established methodolbgy &llows for the statistical analysis of
complex computationally expensive simulators. Usingéh&mulators for predicting outcomes
for a limited number of input scenarios has been common ipeabut in order to quantify the
uncertainty of these predictions a large number of simulaios is required which can be pro-
hibitively expensive for computationally demanding siatats.

The emulator is very fast to evaluate and allows subsequreysis to be performed by lever-
aging the emulator as a surrogate of the simulator. In eipuolaif deterministic models, the
probabilistic model most commonly used is the Gaussiand2(GP) which allows for the spec-
ification of a wide range of prior beliefs on the propertiests simulator response such as its
smoothness and variability.

The majority of the emulator literature deals with deterigtio simulators where the output is
invariant to repeated executions of the simulator at theesaput setting. In this thesis, the focus
is on emulation of stochastic, or random output, simulat®andom output simulators typically
arise where the simulator has some internal source of ranessn common examples of which
are chemical and biological reaction models (describedhiapfer 6) and agent-based models.
In terms of analysis, stochastic simulators typically iegjunore evaluations than deterministic
systems as the additional intrinsic variability of the siator needs to be captured. For this reason
we believe emulation to be useful even for medium complestibghastic simulators.

In Section 1.1 the contribution of this thesis is discusselibwed by an outline providing a
summary of each chapter in Section 1.2. Finally Sectioni&t8 publications stemming from this

work.

1.1 Contribution

High-dimensional input spaces can make the calculatiomsined for emulation challenging. By
identifying the active variables of a simulator, known asesaing, subsequent tasks in the emu-
lation framework are simplified and fewer simulator modeissrare required for the analysis to

proceed. A sequential screening technique is developédstisanple to implement. The tech-
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Chapter 1 INTRODUCTION

nique acts in a sequential way in order to keep the numbemuflator runs down to a minimum,
whilst identifying the inputs that have non-linear effec@ur proposal is built upon the method
proposed by Morris (1991) for screening and therefore kelkastechnique’'s simplicity. The
method utilises a threshold to separate non-linear frosalireffects. As direct elicitation of this
quantity can be challenging, an alternate approach is oeedlthat allows the elicitation to be
conducted on the simulator output space. The sequentidlomiés successfully applied to the
output of a 13-dimensional stochastic rabies model andshdsvn to require fewer simulator runs
than the batch Morris method to identify the same set of facs having non-linear effects.

Following the screening procedure, the parameters of thisssan Process (GP) emulator are
inferred on the reduced active variable design space. Awdhance of stochastic simulators
is often a function of the input variables, two novel methadigperforming GP regression on
heteroscedastic datasets with replicated observatianslewreloped. The Coupled GP method
builds on the work of Kersting et al. (2007) by explicitly cidering replicate observations and
applying corrections due to finite sample size effects. Esalting model is flexible and inference
is efficient for designs with replicate observations as tleen@nts of the replicates are used rather
than repeating the observations. When the simulator \egiaasponse is sufficiently simple or
expert judgements are available, a simpler parametri@awvegi model can be utilised. For such
cases the Joint Likelihood model is introduced, where argtéstic functional form is used for
the variance response.

The process of inferring the parameters of the GP modelresjthe selection of a set of input
points, an experimental design, at which to evaluate thelsiior. A model-based experimental
design method is developed that is shown to reduce the eariahparameter estimation under
both Maximum Likelihood (ML) and fully Bayesian inferenc&he method is based on the util-
isation of the Fisher information to select the maximallfoimative set of points with respect
to parameter estimation. Using the Joint Likelihood modieMs for the analytic derivation of
the Fisher information for designs with replicate obseoret. An extensive simulation study is
presented to examine the impact of the model-based optiesaiils on both parameter estimation

and predictive variance using the Joint Likelihood GP model

1.2 Outline

In Chapter 2 an overview of the framework of emulation for poer models is presented to
set the context for the thesis. In particular this chaptersdaot provide an extensive literature
review but rather an overview of the main methods and tectasidgn the emulation of computer

simulators. An in-depth review of screening, heterosdiétl&Ps and optimal design is provided
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Chapter 1 INTRODUCTION

in the corresponding chapters.

The identification of the simulator active variables, knagrscreening, is discussed in Chapter
3. Following a review of existing screening methods, theusatjal Morris method is presented,
which is a novel approach to help identify factors with noredr effects on the simulator response
using a smaller number of simulator runs than a batch approac

In Chapter 4 the GP framework is extended to admit the casgafidependent noise, known
as heteroscedastic regression. Two novel methods of parfgiheteroscedastic GP regression on
complex datasets with replicated observations are prederthese are applied to a one dimen-
sional function and their performance discussed.

Optimal experimental design is discussed in Chapter 5. Tineo& the methodology is to
maximise the information provided by a set of input locasioknown as an experiment design,
with regards to a specified criterion. In this thesis we ugeRisher Information as the criterion
in order to minimise the generalised variance of the paramegtimation. An extensive set of
simulation results is presented to examine the impact dfngbtdesigns on emulation under both
Maximum Likelihood (ML) and fully Bayesian inference.

In Chapter 6 the screening, emulation and optimal designdveorks discussed in the previous
chapters are applied to real world stochastic models. Tipeesdial Morris method is applied to a
13-dimensional stochastic rabies model to identify théoisthat are most relevant in determining
the probability of disease extinction within five years. Tstochastic models simulating biological
reactions within a cell are utilised in Section 6.3 with tim af demonstrating the heteroscedastic
emulation and optimal design methods presented in Chaptang 5 respectively.

Finally in Chapter 7 the thesis is summarised and we condiuitiea discussion of the research

outcomes and possible directions for future research.

1.3 Disclaimer

This thesis is submitted for the degree of Doctor of PhilbgofPh.D). The work presented here
is original and has not been submitted previously for a degiloma or qualification anywhere
else. However, parts of the work have been published ancmes in the following papers,

conferences and seminars:

1. Boukouvalas, A., Cornford, D., Singer, A., Managing Umaiaty in Complex Stochastic
Models: Design and Emulation of a Rabies Model. Acceptedttd8tersburg Workshop
on Simulation (2009).

2. Boukouvalas, A. and Cornford, D., Experimental DesigrHeteroscedastic Gaussian Pro-

cess emulators. Accepted for poster presentation at thaiNatearning Summer School,
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Cambridge, (2009).

3. Boukouvalas, A., Cornford, D., Maniyar, D. M. and A. Singéaussian process emula-
tion of stochastic models: developments and applicatiaaliges modelling. Accepted for

poster presentation at the Royal Statistical Society Genfse, Nottingham, (2008).
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Chapter 2 OVERVIEW OF EMULATION FOR COMPUTER MODELS

This chapter provides a brief introduction to emulationmoeiblogy. An overview of the main
methods and techniques involved in the emulation of sirotdas provided. The discussion is not
intended as an in-depth review of each stage of emulationexdended review of the screening,
heteroscedastic emulation and optimal design aspects wh#an is provided in the chapters 3,
4 and 5 respectively.

Definitions of terms commonly used in this thesis are pravigkeSection 2.1. In Section 2.2
an overview of the emulation methodology is presentedofadld by a discussion of each stage.
An overview of experimental design is given in Section 213.Skction 2.4 the GP formalism is
presented which forms the basis of the statistical appration to the simulator. The validation

of the emulator is discussed in Section 2.5. We conclude asgthmmary in Section 2.6.

2.1 Definitions

For clarity in the discussion that follows in subsequentptées, we define some key terms:
e Experimental DesignA set of input combinations at which to evaluate the sinarlat

e Optimal Experimental Desigimhe use of mathematical and statistical methods to séiect t
minimum number of experiments for optimal coverage of dpsar or variable space. In
the context of this thesis we are considering a design oeeintbut space of the simulator

model.

e Latin Hypercube A square grid containing sample positions is a Latin sqifaf@nd only
if) there is only one sample in each row and each columha#n Hypercubes the gener-
alisation of this concept to an arbitrary number of dimensjavhereby each sample is the

only one in each axis-aligned hyperplane containing it.

e Simulator A simulation is an imitation of some real thing, state ofa@#f, or process.
The act of simulating something generally entails repriasgrcertain key characteristics
or behaviours of a selected physical or abstract systemhdrcontext of this thesis the

simulator is typically a piece of computer code (or funcjjomith a set of inputs and outputs.

e Input variablesor Inputsor Factors the set of variables required to determine the output of
the simulator. These might include both parameters of teeesy being modelled and the

initial (time) state of the system.

e Emulator The Gaussian Process emulator is a statistical appraximst the simulator
which is faster to run and allows a variety of subsequentyaralto be carried out. The

statistical approximator need not be a GP but we do not censiath cases here.
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Chapter 2 OVERVIEW OF EMULATION FOR COMPUTER MODELS

e Replicated observationgObhservations obtained through repeated evaluationsedfithu-

lator at a fixed input value.

2.2 Emulation Process

In Figure 2.1 a diagrammatic overview of emulation methodglis provided. Given a descrip-
tion of reality, the simulatoris developed. The simulator might then be validated usingt &af
observations The description of the system typically involves physieals and mechanisms or
other known structural information regarding the systerirmuators vary greatly in their com-
plexity. For highly complex systems such as the climate réselting simulators can have high
computational requirements. For certain analysis sudeasitivity analysigdescribed in Chap-
ter 3) where the effect of inputs on output uncertainty isnéxed, a prohibitively large number
of simulator runs would be required. In such casesmmulatoris constructed which acts as a
statistical surrogate of the simulator for subsequentysisal

The emulator is constructed by first identifying the mostvaht inputs by employingscreen-
ing technique. The aim of the screening procedure is to idetitdymost relevant factors in terms
of their effect on the simulator output. The least relevautdrs can be fixed to their nominal
values or discarded entirely for the subsequent steps vdaichgreatly simplify the analysis. We
discuss existing methods and propose a sequential scgemithod in Chapter 3.

Experimental desigis the process of selecting input points at which to evaltiaesimulator.

In this thesis we focus opptimal experimental design where the design is selected such that
a criterion function is maximised. In most instances sdregprecedes optimal experimental
design as the latter usually requires a numerical optiiisadf the criterion function which can

be more easily accomplished in a lower dimensional spacthelitase of adaptive experimental
design, the process can be iterated whereby new sets o @tinthich to evaluate the simulator
are proposed at each stage. Experimental design is disclugieer in Section 2.3.

The next step of the methodology involves the constructicth@emulator. This proceeds in
two stages. Firstly a prior specification of the functiorahfi of the simulator is used to construct
a Gaussian Procesprior model. The unknown parameters of the prior modelimf@rred using
the experimental design and the corresponding simulasduations. This process is described in
more detail in Section 2.4.

Prior to utilising the emulatowalidation methods are employed to check the correctness of
the emulator. This procedure aims to uncover incorrectr gpecifications or inference issues
which would lead to a poor fit of the emulator to the simulaiypically a separate experimental

design to the training set used in emulation inference id @izevalidation. Validation methods
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Chapter 2 OVERVIEW OF EMULATION FOR COMPUTER MODELS

are described in Section 2.5.

If the emulator is shown to be an acceptable surrogate toithelator, statistical analysis
techniques can be employed using the emulator rather theasldiver simulator. Examples of
such analysis anencertainty analysi¢O’Hagan et al., 1998), where the effect of input uncertaint
on the simulator output is calculated, azalibration (Kennedy and O’Hagan, 2001) where given
a set of observations oéality, the model parameters are inferred and possibly the dignogpof

the simulator taeality is estimated.

Reality

Observations

Theory | Observations

4—.

_D Simulator

<+—

Adaptive Screening

<+

|| Experimental Design

<t+—

Emulator Inference

<+

Validation <l_

!

Sensitivity Analysis Uncertainty Analysis Calibration <

Figure 2.1: Diagrammatic view of emulation methodology.

2.3 Experimental Design

In this section, we briefly review existing approaches toegixpental design for computer exper-
iments. The discussion is based on MUCM Toolkit (World WidebAelectronic publication,
Release 6, 2010), padar eadTopi cExperi nent al Desi gn, to which the reader is referred for a
more extensive discussion.

Two main classes of design are developed in the literatuzael purpose designs that can
be used for a variety of simulators or model-based desigatsatte optimal, in some sense, for a
particular model.

General purpose designs are developed utilising geonmitaria. A frequently used type
of general purpose design are space-filling designs. Susigrdeplace points so that they are
well separated and cover the input space well. The ratiasaleat for deterministic simulators

points very close to each other carry little information doehe process correlation. This does
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not hold for stochastic simulators which we consider in thesis as even replicated observations
are informative. Also for deterministic simulators disedng the range of correlation requires a
range of inter-point distances in the design.

A variety of space-filling designs have been used for conmm)periments:

e Fully Factorial Design A set of predetermineg values, called levels, is assigned to each
factor. The design is the combination of all possible lewélall factors. However even if
only 2 levels are assigned to each factor, the number of iedjuuins for ad dimensional
design space is%2 This is usually prohibitively high for most simulators aRdactional

Factorial designs have been developed that consist of tsubisine Full Factorial design.

e Optimised Latin Hypercube Design#\ Latin Hypercube (LH) is a random set of points
subject to the constraint that for each input factor the fscéme evenly spread in the design
domain. LH designs are not guaranteed to be space-fillingerentire design domain but
rather just in each dimension separately. The most comnapplied approach to enhance
the space-filling property of LH designs is to generate aclamgmber of them and select
the LH where the minimum distance between points is maxidniskhis is known as the
Maximin Latin Hypercubelesign and is employed extensively in our simulation studie

this thesis. An example is presented in Figure 2.2.

e Pseudo-Random Sequences specific set of pseudo-random generating functions have
been shown to generate space-filling designs. The Sobaleseg in particular is an exam-
ple of a low discrepancy sequence where discrepancy is auneeakdeparture of a set of
points from a uniform spread. The benefit of using such sempseis that they are very fast
to generate and can be employed in a sequential setting wiane points may be gener-
ated as needed. However, especially for small design sizessers and ridges of points may
be generated by such a sequence. For more information orotis¢raction of the Sobol’

sequence see Kuipers and Niederreiter (2005).

In some instances a more sophisticated design approactedgade Applying space-filling
designs, points will not be placed in close proximity. Ho@eto estimate certain kernel param-
eters in the GP such as the length-scale parameters, it éitiahto have points close to each
other. Further, geometrical designs cannot easily beealtts accommodate prior information
on the model parameters. Model-based design allows théispton of a model and a criterion
function with respect to which the design is optimised.

Two main types of criterion functions have been exploredhaliterature:

e Minimise average/maximum predictive uncertainty.
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Figure 2.2: Example of 30-point Maximin Latin Hypercube.

e Minimise generalised variance of parameters.

Criteria used for computer experiments are typically basechinimising predictive variance
because the quality of prediction is of critical importatmté¢he usefulness of the emulator. How-
ever all such methods that we are aware of require an indi@meter estimate and therefore could
benefit from an initial design that minimises parameter waggy. For example in Krause et al.
(2008), where the Mutual Information criterion is used toimise predictive variance at unsam-
pled locations, the GP kernel parameters are assumed tmbakin Krause and Guestrin (2007)
a hybrid approach of switching between exploration, whieeedesign is optimised for parameter
estimation, and exploitation, where the parameters ard,fisedeveloped. In Youssef (2010) a
Karhunen Loeve expansion is used to linearise the GP ctarlfunction. An initial Latin Hy-
percube design is used to estimate the parameters prioe texffansion. We therefore believe a
pragmatic approach to design should incorporate explicitmisation of parameter uncertainty as
robust parameter estimation would allow for more robustlisteon. Optimal and Hybrid design

approaches are discussed more extensively in Chapter 5.

2.4 Gaussian Processes

Formally a Gaussian Process is defined as (Rasmussen arah\/jlR006):

Definition 2.4.1. A Gaussian Process is a collection of random variables, amjefnumber of

which have a joint Gaussian distribution.

For the discussion that follows we use the observationalainod

t=f(x)+e¢,
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wheref(x) is the noise-free unknown function we wish to interpolates a Gaussian noise vari-
able and are the observed noisy functional values.

GPs are an example of a non-parametric method as they ofwdsaci prior over functions di-
rectly instead of requiring an explicit parametrisatiorthaf unknown functiorf (Mackay, 1998).
In this thesis we assume a zero-mean GP prior but we note lthasalts can be readily ex-
tended to include a non-constant mean function. GP modelslasely related to Kriging in the
geostatistical literature (Stein, 1999b).

The GP framework is derived in Section 2.4.1 and a list of demae functions used in this
thesis is given in Section 2.4.2. How GPs are used for piiediés described in Section 2.4.3
and how parameters are inferred is discussed in Sectiofh. 2 example of GP inference and
prediction is given in Section 2.4.5 and issues and extaasi the GP framework are reviewed

in Section 2.4.6.

2.4.1 Derivation of a GP

A GP can be understood by considering a finite linear-inghiemeters model= ®(X)w+ ¢
where®(X) is an x M matrix of M fixed basis functions applied erpoints,w anM-dimensional
parameter vectog a Gaussian distributioN(0,0?1) andl the identity matrix.

By placing a Gaussian prior on the parameters,
p(w) = N(0,a ),

the posterior of the noise-free functidn= ®(X)w is Gaussian with mean and covariance

The noisy observatiortscan be described by a GP:
p(t) = N(0,a td(X)®D(X)' +01) = N(0,K +0?l).

whereK = [k(x,x)] the matrix obtained via the evaluation of the kernel functa all pairs of
training points.

If an algorithm depends solely on inner products in inputcepia can be lifted into higher
dimensional spaces by replacing the inner products withraekéunctionk(x,x') (Rasmussen and

Williams, 2006). This is known as the kernel trick and allaive GP to operate even in infinite
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dimensional spaces of basis functioivs - o).

2.4.2 Covariance functions

A GP is defined by aneanand acovariancefunction, the specification of which allows the incor-
poration of prior knowledge in the emulation analysis sustha smoothness and differentiability
of the approximated function.

In this thesis we use the following covariance functionssfRassen and Williams, 2006):

e Squared Exponential:
r2
ke=(r) = 0% exp(—ﬁ> )

e Exponential, also known as Ornstein-Uhlenbeck (OU):
OU/(py _ ~2 o r
6V (1) = 03 exp(— )

e Matérn with fixed order 5/2:
Mat ) r\/§ 5I’2 B r\/§

wherer = ||x; — X;|| the Euclidean distance between support points. The kearahpeters are
0= (0%,)\). The cr% is known as the process-variance term and controls the @mpliof the
kernel response\, commonly referred to as the length-scale parameter, leasffibct of rescaling

the inputs and can be used to infer the relative importanea a@fiput - see Section 3.1.1.

2.4.3 Prediction

Assuming the GP covariance parameters are known, pretiofithe output, at a new sitex,
given the training datéx, t} can be calculated using the conditioning property of Gamsdistri-

butions. Specifically the joint distributiop(t, t, |x, X,) is:

t, K (X, X, ) + 02l K (X, X)
p(t,t*|X,X*) = N | 07
t K (X, X)T K(x,X) + +02l

and by conditioning on the training set (Appendix A.3) thedictive distributionp(t.|X,X,,t) is

also Gaussian and has mean and covariance:

Eft.] = K(x.,%) [K(,x) +02] t, (2.1)

Covt,,t,] = K(X,,%,) + 0%l —K(x,,X) [K(X,X)+O‘2|]_1K(X,X*). (2.2)
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2.4.4 Inference

Given a training sefx,t} there exist a range of methods to infer the kernel parameters
The simplest approach, known lsximum LikelihoodML), is to maximise the marginal log

likelihood of the GP:
1 2 1, 2y-1, N
Iogp(t|x,6):—§Iog|K+0 I|—§t (K+0ol) t—EIog(Zn), (2.3)

whereN the number of training points and. . | denotes the determinant. Derivatives of Equation
(2.3) with respect to the kernel parametérsan then be used to optimise the likelihood using
a non-linear numerical optimisation method such as scadejugate gradient (Nabney, 2001).
Kernel parameters required to be non-negative may still fignised using general numerical
methods by optimising their logarithm, i.e. optimising kviespect t@ = log(0).

If informative priors are available for the kernel paranmgt@Maximum-A-Posterior{MAP)

estimation is obtained by maximising the logarithm of theapaeter posterior:
log p(6]t,x) Olog p(t|x,8) +log p(8),

wherep(0) is the parameter prior.

A method known asRestricted Maximum Likelihoo(REML) (Neumaier and Groeneveld,
1998) arises when a non-zero linear-in-the-parametera riection is used in the GP prior.
Under such a setup it is possible to assign an uninformatiygdper prior on the mean function
parameters and analytically integrate them out of theilikeld. This method is not examined
further in this thesis as we do not utilise non-constant nieacations in the GP prior.

In a fully Bayesian approach, the conditioning of the likelbd on the kernel parameters can
be integrated oup(t|x) = /[ p(t|x,8)p(6). However this integral is highly intractable airkov
Chain Monte Carlomethods have been employed to perform the integration ricafigr(Neal,
1997). In Section 5.7 we utilise a Markov Chain method to drarthe effect of optimal designs

on inference for parameter posteriors.

2.45 Example

In this section a simple example of GP inference and predids presented. A zero-mean GP

Prior with a squared exponential kernel and a constant riugfgie placed on the unknown simu-
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lator functionf:

(5-xj)2
2 2
Co(Xi,Xj) =0p€e ¥ +&j0y.

The nugget parameter is constant across the entire input domain. This varianageiis known
as homoscedastic and will be extended in Chapter 4 to allothéomodelling of input dependent
variance. Even in the case of deterministic simulators,ggatis included in the GP covariance
specification as it helps with numerical stability issues.

The parameters are inferred using the ML method on a tragehgf six points. The predictive
distribution is shown in Figure 2.3. As the training set inoentrated on the first half of the design
space, the predictive GP model reverts to the mean (0) away tine training points. This is a
consistent feature of stationary GPs when extrapolatitg 1tiodel reverts to the mean and the
predictive variance reaches a maximum value equal to theduime process—varianoe% and
the nugget? (known as the sill). These features can be understood byieianthe predictive
equations (2.1)-(2.2) and setting the training-test poimtelation to zero.

Another feature of the GP fit is that variance does not colldpzero at the training points but
is equal to the nugget variana. If no nugget term was included, the GP mean would interpolat

exactly at the training points with zero variance at thosetgo

0 5 10 15 20
Figure 2.3: An example of a Gaussian Process inference atiction. The blue dots denote

the training points, the red line the simulator, the gredidsmnd dashed lines the GP mean and
variance prediction respectively.

2.4.6 Extensions

The GP formalism described previously has been extendedvariaty of ways to extend its
applicability. In this section we describe some of the esimms relevant to the field of computer

experiments. A more complete discussion of GP extensiogwésn in Rasmussen and Williams
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(2006).

GP methods are limited to small designs due to the inverditimedraining covariance matrix
K 4- 02l which appears in the likelihood (Equation (2.3)) and reggiiorderO(N3) computations
whereN the number of training points. A range of sparse approximmatnethods have been
developed to overcome this limitation and a general thaaleframework to describe them is
presented in Quinonero-Candela and Rasmussen (2005) ajit€l# we review one such method,
the Sparse Pseudo-Input GP, where the effect oNtlraining points is projected to a smaller set
of M basis points to reduce the computational load{dl M?).

Another approach to extend GPs to larger datasets is tabdigtrthe training set into a set
of disjoint sets and perform inference and prediction saeér. In Latouche (2007), a method of
combining the individual joint predictions using the BapmsCommittee Machine (Tresp, 2000)
is presented. In addition, by factorising the GP paramebstepior and employing the Laplace
propagation algorithm (Smola et al., 2004), a joint optatin across nodes is also proposed.

GPs can also be extended to multivariate outputs. The satngbproach where each output is
treated independently ignores correlations between ajtthat can be utilised for more accurate
inference and prediction. In the separable model (Conti@ihthgan, 2007; Bonilla et al., 2008)
the GP covariance is represented by a Kronecker pr&iigt>, whereXg is the between-output
covariance and; the input correlation. The drawback of this approach is #fidiough output
correlations are explicitly modelled, the smoothness lodatputs is assumed to be identical as a
common set of input correlations length-scales is used. Liear Model of Coregionalisation
(Goulard and Voltz, 1992) allows the modelling of each outpwough a linear combination of
kernels thus removing the input-output separability aggion. However a larger number of
parameters needs to be inferred.

Lastly, when no nugget parameter is included in the GP camneaé function, as is the case
for the emulation of deterministic simulators, and a Garsgirior or an improper uninformative
prior is used for the process-variance parameter, thermtieg of the parameter uncertainty can
proceed analytically leading to the Student-t process (iédy and O'Hagan, 2001). However
when adding a nugget parameter to the GP covariance theatitegcan no longer proceed unless
the nugget is entangled with the process-variance pararffResmussen and Williams, 2006,
Section 9.9). The latter refers to a reparametrisation efcthvariance as(k(.,.) +v) wheret
captures both the nugget and process-variance effectsecoutiput. The nugget in this case is
entangledy x v, and interpretation becomes more difficult as the obsemstcannot be written

as the sum of independent signal and noise contributionsnfRssen and Williams, 2006).
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2.5 Validation

Various diagnostics are used in the literature to validatelators. The Mean Squared Error
(MSE) is used to assess the predictive accuracy of the GPregfards to the mean only. We
utilise a standardised form (divided by the sample variaidbe observations):
N
E= mi;(ﬂti] —yi)?,

whereEf[t;] the GP predictive mean defined in Equation (2.1) for testtpoin{1,...,N}, y; the
observation at that point and \fr the sample variance of the observations. This is referred to
as the Standardised MSE in Rasmussen and Williams (20088, 2& For a trivial model which
predicts using the mean of the training targets, the valuee@MSE will be close to 1. Smaller
values can be interpreted as the model doing better thatrithiéd model.

The Negative Likelihood Predictive Distribution (NLPD) ighs the errors on the mean by the
predictive variance, therefore penalising incorrectamee estimates (Rasmussen and Williams,

2006, page 23):
Ny

~logp(y 0., = - 3 (loatzrof)+ 1),
where the likelihood is evaluated at the testXet However this is a univariate measure which
ignores the correlation structure between test points akeésta simple average across all test
points. For this reason we utilise the Dawid score, a muia@ extension of the NLPD, which is
defined as a loss:

Dawid= log|Z|+ (y—t)TZ *(y —t)

where|...| denotes the determinant aidhe covariance matrix of the joint predictive distribution
at the set of test points. Bastos (2010) notes that the €ifter between the Dawid scores of two
competing models can be seen as a numerical approximatibe tog Bayes factor.

Finally the Mahalanobis erroDjyp) is a more precise error measure than the NLPD since
the full predictive covariance is utilised without assugithe errors are uncorrelated. Unlike the
Dawid score, the Mahalanobis error sampling distributian be derived analytically and allows

for various decompositions to help identify the sourcesradre
Dwvp = (y — E[t.])"Covt., t.] H(y — E[t.)),

where Colt.,t.] is the predictive GP covariance defined in Equation (2.2n8iag theory given
in Bastos and O’Hagan (2009) allows interpretation andhranalysis of the Mahalanobis error.

In the case of GPs the asymptotic distribution of the Malab@distance is proven to bexg
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distribution withn degrees of freedom whends the size of the test set. In particular the theoretical
mean value oDy p for GPs is the number of validation points. Lower values ttientheoretical
mean can signify an underconfident GP where the predictivianae it too high. Higher values
on the other hand typically occur when the GP predictionaeeconfident.

The Mahalanobis error may be decomposed using the Cholesiongbosition tdyp = v'v
where the components of thevector are termed uncorrelated errors and allow for thetifiien
cation of the contribution to the total error of each validatinput point. As the uncorrelated
errors have a theoretical distribution {0, 1), errors larger than two standard deviations may be
indicative of an issue with the emulator and can be furthezstigated by examining the emulator
behaviour at the corresponding input locations. Lasthst8sand O’Hagan (2009) propose the
use of the Pivoted Choleksy Decomposition (PCD) to decompos Mahalanobis error. In PCD
the data is permuted such that the first element is the onethgtitargest variance, the second
element is the one with the largest predictive variance itiomeéd on the first element and so on.
The benefit of this decomposition is that the ordering of thvers aids in the identification of
possible causes. For instance, errors early in sequendgpacelly on test points far from train-
ing data where the predictive variance is high and possilses include non-stationarity of the
function output and misidentification of the process-var&nugget terms. Errors at the end of
the sequence are typically from test points close to trgipioints or test points close to other test
points and point to a problem in the identification of the etation structure, i.e. the covariance
validate emulators trained on different designs.

When comparing optimal designs in Chapter 5, the emulatditser structurally identical
with the only difference being the training set used in eatec We utilise both the Mahalanobis
error and Dawid score to evaluate the impact of the desigmsranator performance. In the case
of invalid emulators where the Mahalanobis error is foundhédarger than the expected range
from its theoretical distribution, the PCD of the Mahalaisobrror allows for the identification of
the likely cause of the error. The difference of the Dawidres®f two emulators is equivalent to
the log likelihood ratio of the two models evaluated at theedest set. In the case of Bayesian
inference (Section 5.7) as the same priors are used for {herbgrameters of competing emula-
tors, the difference in Dawid score is proportional to the&afactor allowing for direct model

comparison.
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2.6 Summary

In this chapter, an introduction to the concepts behind ixpatal design and emulation was
offered. In Section 2.1 definitions for terms that are fratlyeused in this thesis have been
provided.

The emulation framework was introduced in Section 2.2. Tdie of emulation within the
context of simulation of systems was discussed and eaclk stagmulation briefly described.
An overview of experimental design for computer experireemas provided in Section 2.3. The
distinction of geometric designs, that can be used for a wadge of simulators, to model-based
optimal design theory, where the design stems from the dégdiion of a functional criterion of
a probabilistic model, was discussed. Classes of geonddsigns such as the Latin Hypercube
were reviewed and will be contrasted to optimal designs aptdrs 5 and 6 through a set of
simulation experiments. A more extensive discussion ahwgdtdesign, which is the focus of this
thesis, is given in Chapter 5.

In Section 2.4 the GP framework was presented. The framewaslderived (Section 2.4.1) by
considering a finite linear-in-the-parameters fixed basidehwhere the kernel trick was applied
to arrive to the full non parametric GP model. The GP framéwadlows for flexibility in the
modelling through the specification of different covariarstructures reflecting different beliefs
of simulator behaviour. The list of covariance functiongdi this thesis was given in Section
2.4.2. The predictive equations of the GP were derived iti@e2.4.3 and a multitude of methods
on how to learn the GP parameters, a process known as inéeneace presented in Section 2.4.4.
An example of inference and prediction was given in Sectidns2and relevant extensions to the
GP framework were discussed in Section 2.4.6.

Finally, methods of validating the GP emulator approximtio the simulator were presented
in Section 2.5. In particular the Mahalanobis diagnostis @ascribed which is extensively used

in the subsequent chapters to validate the emulator fit ufitferent designs.
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Chapter 3 SCREENING

In this chapter we discuss the issues of screening withitegomf emulating of stochastic
simulators. The material presented is based on Boukougakls (2010).

Screening involves identifying the relevant input facttirat drive a simulator's behaviour
(Saltelli et al., 2000). Screening, also known as variablection in the machine learning litera-
ture, is a research area with a long history. Traditionaltyeening has been applied to physical
experiments where a number of observations of reality &entaOne of the primary aims is to
remove, or reduce, the requirement to measure inconseguguantities (inputs) thus decreasing
the time and expense required for future experiments. Mecently, screening methods have
been developed for computer experiments where a simukat®vieloped to model the behaviour
of a physical, or other, system. In this context, the quiastitepresent the input variables and
the benefit of reducing the dimension of the input space i©ieremulator model complexity and
training efficiency rather than on the cost of actually afitag the input values themselves.

With the increasing usage of ever more complex models imsei@and engineering, dimen-
sionality reduction of both input and output spaces of medels grown in importance. It is
typical, for example in complex models, to have several tertsindreds of input (and potentially
output) variables. In such high-dimensional spaces, efftalgorithms for dimensionality reduc-
tion are of paramount importance to allow effective probsiic analysis. For very high (say over
1000) sizes of input and/or output spaces open questioraimera to what can be achieved. Even
in simpler models, efficient application of screening me#oan reduce the computational cost
and permit a focused investigation of the relevant factorsfgiven model.

Screening is a constrained version of dimensionality redaavhere a subset of the original
variables is retained. In the general dimensionality rédnccase, the variables may be trans-
formed before being used in the emulator, typically using@egtion. The transformation, or
projection, may be linear as is the case for the commonly Eséttipal Components Analy-
sis method (PCA) or non-linear as is the case in the Neur@sdgbrithm, where a radial basis
function network is used to perform the mapping (Lowe andoifig, 1997). An overview of
dimensionality reduction methods for emulation is giveBoukouvalas and Cornford (2008).

Both screening and sensitivity analysis may be utiliseddeniify variables with negligible
total effects on the output variables. They can provide ltesat various levels of granularity
from a simple qualitative ranking of the importance of thpunvariables through to more exact
quantitative results of the percentage of output varianqgaa@ed by each factor. Sensitivity
analysis methods provide more accurate variable seleotisults but require larger number of
simulator evaluations, and thus entail higher computatioost as we show empirically in Section
3.1.3.2.

Screening methods can be seen as a form of preprocessingeasidiulator evaluations used
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in the screening activity can also be used to construct thdator.

The benefits of screening are many fold:

1. Emulators are simpler; the reduced input space typigalbylts in simpler models with

fewer (hyper)parameters that are more efficient, both imest and use.

2. Experimental design is more efficient, in a sequentiairggtthe initial expense of applying
screening is typically more than recouped since a lower dge@al input space can be

filled with fewer design points.

3. Interpretability is improved; the input variables ar¢ mansformed in any way and thus the
practitioner can immediately infer that the quantitiesrespnted in the discarded variables

need not be estimated or measured in the future.

Screening can be employed as part of the emulator constnuatid in practice is often applied
prior to any statistical analysis.

Single-output simulators are the focus of this chapter. mibthods presented may be extended
to the case of multiple outputs by treating each output irddpntly and active inputs for each
output identified separately. In Section 3.1 an overviewxidteng screening methods is given.
Examples of the most commonly used methods are providedheidgerformance compared.
In Section 3.2 a novel sequential screening approach basdldeoMorris screening method is
presented. A summary is provided and possible future relsetirections are discussed in Section

3.3.

3.1 Overview of existing methods

Screening methods can be placed in two broad categoriesupgngsed methods operate solely
on the inputs. An example of such a method is Principal VigglMcCabe, 1984) which is
closely related to Principal Components where the fact@samked according to a variance mea-
sure. Supervised methods, where input factors are ranlauidiag to their effect on a response
variable, are the main focus of this thesis.

Supervised screening methods have been broadly catedjoriges following categories (Guyon

and Elisseeff, 2003):

1. Screening Design methods. An experimental design isansd with the express aim of
identifying active factors. This approach is the classgtatistical method, and is typically
associated with the Morris method (Section 3.1.3). Othethous are available (Saltelli
et al., 2000) but the Morris method has been found to be the sftective in practice
(Saltelli et al., 2006).
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2. Ranking methods. Input variables are ranked accordirgptoe measure of association
between the simulator inputs and outputs. Typical measoesidered are correlation, or
partial correlation coefficients between simulator inpamsl the simulator output. Other
non-linear measures of association are possible, but thetleods tend not to be widely

used due to overly restrictive assumptions such as outpootaoicity.

3. Wrapper methods. A model is used to assess the prediadiverpf subsets of variables.

Wrapper methods can use a variety of search strategies:

(a) Forward selection where variables are progressivelgrporated in larger and larger

subsets.

(b) Backward elimination where variables are sequentiddéieted from the set of active
inputs, according to some scoring method, where the scaypisally the root mean
square prediction error of the simulator output (or some ifieation of this such as

the Bayesian information criterion).

(c) Efroymson’s algorithm, also known as stepwise selectiwroceeds as forward se-
lection but after each variable is added, the algorithm khédicany of the selected
variables can be deleted without significantly affecting Residual Sum of Squares
(RSS).

(d) Exhaustive search where all possible subsets are erasdid

(e) Branch and Bound strategies eliminate subset choicesrysas possible by assuming
the performance criterion is monotonic, i.e. the score oues as more variables are

added.

4. Embedded methods. For both variable ranking and wrappétods, the model is consid-
ered a perfect black box. In embedded methods, the varialdet®n is integrated as part of
the training of the model, although this might proceed inqusatial manner, to allow some
benefits of the reduction in input variables to be considelidw ARD approach discussed

in Section 3.1.1 is an example of this class of methods.

In this chapter we focus on methods most appropriate for coengxperiments that are the
most general, i.e. the assumptions made are not overlyctegrto a particular class of models.
For a more general discussion of all screening methods sekoBwalas and Cornford (2007).

If the simulator is available, the Morris method (see Sec8dl.3) can be effective where a
one factor at a time (OAT) design is used to identify actiyeus. The Morris method is a simple
process, which can be understood as the construction ofigndesestimate the expected value

and variance (over the input space) of the partial derigatnf the simulator output with respect
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to the simulator inputs. The method creates efficient desigrestimate these; to use the method
it will be necessary to evaluate the simulator over the Modeésign and the method cannot be
reliably applied to data from other designs.

If the simulator is not easily evaluated (maybe simply beeawe don’t have direct access
to the code), or the training design has already been cretited design based approaches to
screening are not possible and the alternative methodsildeg@bove need to be considered. If
the critical features of the simulator output can be captiea small set of fixed basis functions
(often simply linear or low order polynomials) then a regies (wrapper) analysis can be used
to identify the active inputs. An example of a commonly usedpper method is Least Angle
Regression (Efron et al., 2002) which is a less greedy veisidraditional forward selection and
chooses a linear model from a large collection of possibleucates. We do not consider these
methods general enough, however, as their performancesiliglirelated to the specification of an
appropriate list of fixed basis functions and thus are sldgtfdy only relatively simple input-output
mappings or where strong prior information is available e mapping.

An alternative to the wrapper methods above is to employ abeelsied method, such as
Automatic Relevance Determination (ARD) which is desalibeSection 3.1.1. ARD essentially
uses the estimates of the input variable length scale hgpmreters in the emulator covariance
function to assess the relevance of each input to the owvarallator model. The method has the
advantage that the relatively flexible Gaussian Procesehi@@émployed to estimate the impact
of each input, as opposed to a finite parametric linear inrpaters regression model, but the cost

is increased computational complexity.

3.1.1 Automatic relevance determination

We describe here the method of Automatic Relevance Detatinin(ARD) where the correlation
length scale$; in a covariance function can be used to determine the infesaece. This is also
known as the application of independent priors over thettesgales in the covariance models.
The relevance of the input factors is determined by optimgighe model marginal likelihood,
described in Section 2.4. When the number of input factosgsificantly high in relation to
the number of training points, Qi et al. (2004) note that tiRDAMethod can overfit due to the
large number of parameters that need to be estimated. Theggstoptimising the parameters by
maximising the leave-one-out cross-validation scoraregtd using the expectation propagation
algorithm (Minka, 2001). In the methodology presented i fiection, we suggest that by proper
validation of the emulator such overfitting can be detect€de purpose of the procedure is to
perform screening on the simulator inputs, identifying dlcéve inputs.

ARD is typically applied using a zero mean GP emulator. Riedithe inputs have been stan-
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dardised, the correlation length scales may be directlgt asemportance measures. Another case
where ARD may be used is with a non-zero mean function GP wher@ish to identify factor
effects in the residual process. For example with a lineaarmeorrelation length scales indicate
non-linear and interaction effects. If the effect of a fadg®strictly linear with no interaction
with other factors, it can still be screened out by subtracfrom the simulator output prior to
emulation.

To implement the ARD method, a range of covariance functicars be used (see Section
2.4.2). In fact any covariance function that has a lengtteseector included can be used for
ARD; for example the commonly used squared exponentialr@vee. Another example of an

ARD covariance is the Rational Quadratic (RQ) (Rasmussdni/lliams, 2006):

V(Xp,Xq) = 0714 (Xp — Xq) P~ H(Xp — Xq) /(200)] 7,

wherea is the scale parameter afd= diag(8;)? a diagonal matrix of correlation length scale
parameters. Taking the limét— oo, we obtain the squared exponential kernel.

Assumingp input variables, each hyperparamedgeis associated with a single input factor.
Thed; hyperparameters are referred to as characteristic lengtissand can be interpreted as the
distance required to move along a particular axis for thetfon values to become uncorrelated
(Rasmussen and Williams, 2006). If the length-scale hasydarge value the covariance becomes
almost independent of that input, effectively removingt imput from the model. Thus length
scales can be viewed as a total effect measure and used tmifhetehe relevance of a particular
input.

Lastly, if the simulator produces random outputs the emulsiiould no longer exactly inter-
polate the observations. In this case, a nugget t&fshould be added to the covariance function
to capture the response uncertainty.

Given a set of simulator runs, the ARD procedure can be imgiged in the following order:

1. Standardisation It is important to first standardise the input data so alutnfactors op-
erate on the same scale. If rescaling is not done prior tonfeeence stage, length scale
parameters will generally have larger values for inputdextoperating on larger scales.

Standardisation methods are described in Appendix B.2.

2. Inference The Maximum-A-Posteriori values of the length scale hymiameters are typi-
cally obtained by iterative non-linear optimisation usstgndard algorithms such as scaled
conjugate gradients, although in a fully Bayesian treatrpesterior distributions could be
approximated using Monte Carlo methods. Maximum-A-Pastieis the process of identi-

fying the mode of the posterior distribution of the hypegraeter and is described in more
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detail in Section 2.4.4. One difficulty using ARD stems frone tuse of an optimisation
process since the optimisation is not guaranteed to coexerg global minimum and thus
ensure robustness. The algorithm can be run multiple tinoes flifferent starting points to
assess robustness at the cost of increasing the compataésources required. In case of
a very high-dimensional input space, maximum likelihood/rba too costly or intractable
due to the high number of free parameters (one length scadaét dimension). In this case
Welch et al. (1992) propose a constrained version of maxiiketihood where initially all
inputs are assumed to have the same length scale and gdratgme inputs are assigned

separate length scales based on the improvement in thiadikel score.

3. Validation To ensure robustness of the screening results, priorltsingi the length scales

as importance measures the emulator should be validatezbastibd in Section 2.5.

3.1.1.1 ARD example on synthetic data

We demonstrate the implementation of the ARD method on alsiftip synthetic example. The
simulator function isf (X1, x2) = sin(x1/10) 40 x X, i.e. a two variable function which ignores the
second input altogether. A 7 point design was used to tramuwator with a squared exponential

function:

X1 0.10| 0.23| 0.36 | 0.50 | 0.63 | 0.76| 0.90
X2 0.24|0.37] 091 | 0.64 | 0.11| 0.51| 0.77
f(x1,%2) | 0.84] 0.72| -0.50 | -0.95| 0.05| 0.98 | 0.41

Note that both input factors are operating on the same soat® standardisation is needed
in this case. The inference is done by using a scaled comgratlient algorithm to maximise
the log likelihood of the Gaussian Process emulator (thet flsis case no priors are placed over
the length scales). To check the fit of the emulator a gridgesof 1000 points is used. We can
clearly see from Figure 3.1 that both the simulator and etoul@sponses are insensitive to the
value ofx,.

To further validate the emulator and examine the outputiptigd variance, we plot in Figure
3.2 a profile of the simulator function & = 1 andx; a grid design of 1000 points. The emulator
fits the simulator function well and the uncertainty capsutiee prediction error away from the
training points.

The length scales obtained through maximum likelihooddare 0.16 andd, = 48.6 which
can be interpreted as the emulator using the first varialdeigmoring the second. The ARD

method therefore correctly identifies the second variableedundant.
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N \

Figure 3.1: Validation of ARD Emulator. The simulator vaduare plotted in black dots and the
emulation mean prediction is the smooth coloured surface.
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Figure 3.2: Profile of emulator and simulator along théactor. The simulator function is shown
in green against the emulator prediction in black with tredpative variance in grey. The training
data are shown as crosses (althoughxheoordinate varies in the training data but this clearly
has no effect on the output value from the simulator).
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3.1.2 Variance-Based Methods

The method of Sobol' (Sobol, 1993) is a variance decompmusithethod where Monte Carlo
integration yields sensitivity indices. The presentatiorthis section is based on Saltelli et al.
(2000) to which the reader is referred for further detailaridshce-based methods estimate the
variance of the conditional expectation (VCE) of each infaigtor X; in relation to the function
outputY. The importance of factors is then calculated with the dati@n ratio:

2 Vary [ECY]X)]

' Varly] '
where Vag [E(Y|X)] = [ [E(Y[X) —E(Y)]? p(X)dX; is the VCE and Val] the variance ofv.
The Sobol’ method offers an effective approach to estirgatiie VCE.

Let x be the k-dimensional input vectoxy, ..., Xk) andQk = (X0 <x <1;i=1,...,k) the

design region. The Sobol’ method relies on a decompositiadheosimulator functionf (x) into

summands of increasing dimensionality:
k
f(x) = fo+ Zlfi(xi) + 0 X))+ fra k(%) (3.1)
i= 1<i< )<k

wherefo = [« f(x)dX.
For Equation (3.1) to hold the integrals of every summand awg of its own variables must
be zero:

fiyic(Xig,- - X )dX, =0 ifl<k<s.
o e

Given this condition, Sobol’ proved that all summands in &n (3.1) are orthogonal and all

terms can be evaluated via multidimensional integrals:
1 1
ﬁm):—m+/.ﬁ/fumn%
0 0
1 1
fﬂmxﬂz—h—ﬁuo—ﬁuﬂ+4.“4f&ﬂﬁmy

where &_jj) denotes the integration over all variables excepandx;. The variance-based

sensitivity indices can now be derived. The total variabDds defined as:

D:/f%mm—@
Qk

and the partial variances are computed for each term in Equég.1):

1 1
Dil‘,m,is = fii...7is(xil7“'7Xis)dxil"‘dxis
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where 1< i; < --- <is< kands=1,...,k. By squaring and integrating Equation (3.1) og&r

and by the orthogonality constraint we obtain:

k
D= ZlDi + z Dij +---+ D12k
i= 1<i<)<k

The sensitivity indices used to measure the factor effeetgjien by:
—T'S forl <ij < --- <is<k.

The indices are identified by anwder which is the number of input factors for that effect, e.g. an
index of order one measures the effect of a single input famidhe response, while an index of
order 2 measures interaction effect between two input factbk is the number of input factors,
there are(¥), ..., (£) Sobol’ indices of order 2,... k. Specifically§ is called the first order
sensitivity index for facto; and measures the main effect»fon the output, i.e. the fractional
contribution ofx; to the variance of (x). §;, wherei # j, is known as the second order sensitivity
index and measures the interaction effect, that is the paneovariation off (x) due to factors
andx; that cannot be explained by the sum of the individual effettg andx;. We also note that
a consequence of these definitions is the sum of the setsitidices is 1 which helps interpreting
the magnitude of each sensitivity index.

The total effect index is defined as the sum of all Sobol’ indifor a specified input factor.
In particular, by partitioning into X.; andx; one can compute with a single Monte Carlo integral
the total effect for factox;:

TS=1-S,,

whereS,; is the sum of all§, _;; terms that do not include the indéx The computation of
the total effect index’ § does not fully characterise the effect of the factoon the system but
is much more reliable that the first order ind§xwhile avoiding the computation of alk2- 1
sensitivity indices that involve the factay. In practice both the first order and total order indices
are computed for each factor as part of the sensitivity aiabyf a simulator.

The Sobol’ formulation of sensitivity indices is very geakaind includes as special cases most

other sensitivity analysis methods (Archer et al., 1997).

3.1.3 Morris Method

The Morris method (Morris, 1991) is a popular and simple radttogy for the sensitivity analysis
of computer simulators. The method, which is also known astlementary Effect (EE) method,

is predicated upon global approximations to the simulasotig derivatives.
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The method works as follows. L&tbe the number of input variables for the simulator. The
design region for these factors is assumed to be linearlyjnalised to[0,1]¢. The simulator
Y(-) is assumed to be a smooth real-valued function with domaiagang the design region.
The elementary effect for thieth input variable ak € [0,1]* is the classic approximation to the
derivative ofY (-) with respect tog evaluated at point:

Y(x+Ae) —Y(X)
A :

EE(x) = (3.2)

The divisorA is a fixed step size, angl is the unit vector in the direction of theth axis for
i =1,...,k Each elementary effect is computed with observationseap#ir of pointsx, x + Ag
that differ in thei-th input variable by the fixed step si2e

The classic approach for computing elementary effects $aid from a poini, from which
a trajectory is constructed witkrandom moves of sizA, each movement in the direction of a
coordinate axe, to end in the poi-A(e; + - - - 4+ &). In this form,k+ 1 evaluations of simulator
Y(-) are performed, ending with elementary effdets; (x), ..., EE(X), see Morris (1991).

Now consider a set dR pointsxs,...,Xgr in the input space. At each poirt, r =1,....R,
we performk one-at-a-time (OAT) runs and compute elementary effEgx;) for every input

factor. The following sample moments are computed for eaphtifactor:

R R
:%Z :%Z E(x/)| ando; = \/Z (BB() — W) . (3.3)

The sample momeny; is an average-effect measure, and a high value suggestsinaiitroon-
tribution of thei-th input factor in positive or negative response valuese 3ample momeng’
is a main-effect measure; a high value indicates large infle®f the corresponding input factor.
The moment’ was proposed in Campolongo et al. (2004) sipceay prove misleading due to
cancellation of effects. Non-linear and interaction éffeare estimated witty;. The total number
of model runs needed in Morris’s method(s+ 1) x R.

An effects plot can be constructed by plottipgor | againsto;. This plot is a visual tool to
detect and rank effects. Factor effects close to the origiritee least influential. region

There is interest in doing input screening with as few runpassible but as the number of
input factorsk is fixed, the size of the experiment is controlled”RyUsually small values dR are
used; for instance, Morris (1991) usBd= 3 andR = 4 in his examples. A value & between 10
and 50 is mentioned in the more recent literature, see (Clamgo et al., 2004, 2007). A larger
value of R will improve the quality of the estimations, but at the prafeextra runs.

The step sizé is selected in such a way that all the simulator runs lie initipeit space and
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the elementary effects are computed within reasonabléspvac The usual choice @ in the lit-
erature is determined by the input space considered foriexgetation, which is & dimensional
grid constructed withp uniformly spaced values for each input. The numpés recommended

to be even and to be a multiple of I(p— 1), for exampleA = p/(2(p— 1)), see (Morris, 1991,
Campolongo et al., 2004). The stAgs usually kept at the same value for all the inputs, but the
method can be generalised to instead use different valuesuwodl p for every input.

In Morris’s original proposal, the points, ..., Xg were taken at random from the input space
grid. Campolongo et al. (2007) proposed spreading runs theedesign space by generating a
large number of trajectory designs and selecting a subsataxmising the minimum distance
between them.

In the case of deterministic systems, a potential drawb&teoOAT designs used in the EE
method, is that design points fall on top of each other whejepted into lower dimensions. This
disadvantage becomes more apparent when the design rutes laeeused in further modelling
after discarding unimportant factors. An alternative isdostruct a randomly rotated simplex at
every pointx;, from which elementary effects are computed (Pujol, 2009)e computation of
distribution momentsy, &, 0; and further analysis is similar to the EE method, with theaatizge
that projections of the resulting design do not fall on togexisting points, and all observations
can be reused in a later stage. A potential disadvantagésadpiproach is the loss of efficiency in
the computation of elementary effects, i.e. computingotfférom a rotated simplex is suboptimal

when compared with the Equation (3.2) which is optimal fanpating elementary effects.

3.1.3.1 Morris Example
An example of a two factor Morris design with the discreimatevel set top=10,A=p/(2(p—
1)) = 0.55 andR = 5 trajectories is used to identify the active factors of wiefving function:

f(x) = 3x 4 %3. (3.4)

As evidenced by Figure 3.3(a) the ensemble of the trajectesigns cover the input space reason-
ably well. The distributional moments of the Elementaryeets are plotted in Figure 3.3(b) and

are tabulated below:

Factor| . M )
X1 3 3 0
X2 0.86| 0.86| 0.37

The linear effect of factok; is evident as the EE deviatiom is zero while forx, o is 0.37

pointing to the non-linear effect of the factor. For fackgrwe note the highu and lowao values
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signify a linear effect. For factox, the largec value demonstrates the non-linear/interaction
effect. The agreement @f to W, for all factors shows a lack of cancellation effects, dueht t
monotonic nature of the input-output response in this stneglample. In general this will not be

the case, particularly for models with non-linear respense

morris design

1 3
0.4}
0.8 ?
q 03'
N 0.6 5 @@
< 3 o 0.2
0.4t
0.1}
0.2 a
0 q
Of 5
: : : : : : -0.1% : : : : :
0 0.2 0.4 0.6 0.8 1 0.5 1 1.5 2 2.5 3
X *
1 M
(a) Design with five trajectories marked 1-5. (b) Moments of Elementary Effects

Figure 3.3: Morris design and first two momengg, (o) of Elementary Effects for the synthetic
simulator function given in Equation (3.4).

3.1.3.2 Comparison To Sobol’

We demonstrate the efficiency of the Morris method compaveddre traditional variance-based
sensitivity analysis methods described in Section 3.12nlongo et al. (2004) compared the
efficacy of the Morris method to the variance-based methodeefatively low-dimensional prob-
lems.

A simple yet highly multidimensional function is used to dmmatrate the efficacy of the Mor-
ris screening technique compared to the Sobol’ method. iBeththe function are given in the
Appendix B.4. The function has 99 inputs, and each of thgseténhas one of five effects on the
function’s response: linear, periodic, polynomial of ar@eor greater, near-linear and step-linear
(Figure 3.4). In particular, gradient-based methods ssdaris’s will fail to identify step-linear
effects without sufficient coverage of the input space.

We note that since the function used to generate the syoitiaia set is not monotonic, meth-
ods such as the partial rank correlation coefficient (Sa&ehkl., 2000) which make such an as-
sumption are not appropriate and performed poorly as egget¥e therefore do not include these
results here.

In Figure 3.5, we show the Morris variable ranking computesinf 1¢ and 1¢ simulator

evaluations. The results are qualitatively stable sugugste lower sample-size effect estimates
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0 02 04 06 08 1

Figure 3.4: Five types of functions represented in the wiinfitnsional example: linear (dotted),
periodic (dotted), polynomial (dashed), near-lineari@@and step-linear (dot-dashed).

are informative.

As Campolongo et al. (2007) point out, the sample sizes redior the Sobol’ method to ob-
tain reliable estimates of the main and total effect indeeshigher than those used in the Morris
method. Our experiments confirm this conclusion. Usingrh@del evaluations, the uncertainty
of the Sobol’ indices is very high and no conclusions can bevdrwith respect to factor relevance
(Figure 3.6(a)). The Sobol’ method provides satisfactesutts when the sample size is increased
to 1P(Figures 3.6(b) and 3.6(c)). As we would expect, the Morrighnd provides reliable qual-
itative results that are useful in the early stages of modalyais. In subsequent analysis, many
more simulator runs can be obtained in the reduced inpuespabling the usage of the more ac-
curate variance-based methods. Our synthetic experireemgrically demonstrate the efficiency

of the Morris method in a high-dimensional setting.

3.2 Sequential Morris

Computer simulators are often expensive to run, sometialdag between several minutes to
hours in order to compute a single run. In such a case, sageaiross a large number of inputs
with Morris’s method requires a relatively large number afnputer simulations, which may turn
into a very expensive computation.

We propose a sequential screening method. Such a methedsdlie experimenter to per-
form a initial number of runs, and, depending on the resuitaioed, continue with extra runs if
required. The methodology aims to separate between fagttiréinear effect and with non-linear
effect. The rationale behind it is thatdf is small for a given factor, then we should investigate
whethero; remains small over other areas of the design region. At tideoémxperimentation,

those input factors for whict; remained small are considered to have linear effect, ardriafor
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Figure 3.5: Morris method applied to the 99-dimensionalisgtic data set. The x-axis indicates
main effects |(.) and the y-axis non-linear and interaction effects (Results are shown for $0
and 1@ simulator evaluations.

which g; was bigger than a threshold have a non-linear effect on ttpubuA method of eliciting
the choice of threshold is presented in Section 3.2.1.

The justification of thresholding solely on the variance lid elementary effects; is that
independent linear effects of factors may be removed fransimulator output at a preprocessing
stage or during the emulation phase. The emulator GP funotiay be parametrised such that
factors with linear effects are incorporated in the meawtion while omitted from the covariance
specification. If we denote b4 the subset of1, ... ,k} which indexes factors with linear effects,
the GP prior may be written a§(x) = B+ Sicaai X +Z* whereZ* is a stochastic process whose
covariance structure depends only on the variables withlinear effects, i.e. thosg with i €
{1,...,k} \ A. The residual procesg* is therefore placed in a reduced dimensionality space
simplifying the design and inference tasks.

For our algorithm to run, a space filling design withpoints is created. This design provides
the sequence of points at which the Morris OAT runs will beees Initially we select a good
space filling design, such as a Maximin Latin Hypercube (LMdiris and Mitchell, 1995). The
value ofM is selected such thgk+ 1)M is the maximum number of runs that can be performed
during the whole screening process.

A preprocessing stage orders the design points accordirigetdiggest distance between

46



Chapter 3

SCREENING

1.0

0.8

0.6

0.4

0.2

0.0

ct
ct

il
)
!
A
| A NIl ’

X1 X8 X15 X23 X31 X39 X47 X55 X63 X71 X79 X87 X95

(a) 1 Observations

% 01 } 50.1 % }‘
: b Ry | { - | %}
0.0 °°°""°¢¢ Wf f + ¢°°°+ o.ofoc‘mfé’?ewﬁ'l +$‘°Wmm++ﬂ+w¢#ﬁ {"°+o céé A

1 5 B ‘\31721252933174145495357016589!3/751%5899397

Input index

(b) 1 Observations Main Effects

158 ‘\31721252933’{74145495357016589!3/751%5899397

Input index

(c) 1 Observations Total Effects

Figure 3.6: Sobol’ method applied to the 99-dimensionattsstic data set. The x-axis shows the
input index and the y-axis the mean and 95% confidence irgervae confidence intervals were

obtained using 8000 bootstrap samples (Archer et al.
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points. The first two points are those whose Euclidean distas largest; then the third point
maximises the minimum distance between itself and the firstgoints, then a fourth point is
ordered in the same way, and so on. This procedure of ordpdimgs mirrors nearest-neighbour
clustering, but acts in an opposite manner as points areamtdeom those farthest apart to end up

with closest points.

Example 1. For k = 3 input factors andl = 6 runs, consider a Maximin LH design [0, 1]
with point coordinates; = (4/5,1,3/5), x2 = (1/5,0,2/5), X3 = (2/5,3/5,0), x4 = (3/5,2/5,1),

x5 = (0,4/5,4/5) andxs = (1,1/5,1/5). The preprocessing stage first selects the pontnd

X, Which are furthest apart. The next poir{, maximises the distance between those remaining
points and the first two points chosen. The procedure coggiry selectinge, thenxs and
finishes withxs4. In summary, the preprocessing stage produces the ordegeetrsce of points

X5, X, X1, X2, X3, X4, Which are relabelled agy), ..., X)-

The screening algorithm starts with the computation of eletary effects for all input fac-
tors at the first two points. OAT runs are created at those wiote and elementary effects are
computed. With this initial data, a poor estimation of thememtsy;, | and o; is available. If
for a given input factor, its sample momaenmtis larger than a specified threshadg then we say
that this output is responding non-linearly to the corresliog input. We declare that input as
active and remove it from the list of current input factoreTechnique continues by adding OAT
runs at the next point, but only for those factors not actizkementary effects are computed and
moments are updated for each added point. Factors are thmved if the condition foio; is
met. The methodology ends when all input factors have bemoved, or after computing ele-
mentary effects for alM points. On ending, the input factors are separated into twoyg: those
having non-linear effect and those with linear or no effetttioe output. Algorithm 3.1 sets out
the procedure in pseudo-code form, and a proposal for tleshibiding valuag is presented in

Section 3.2.1.

Example 2. To show how the proposed sequential algorithm works, censidx;,xz,x3) =
cogxz/5)(x2 + 1/2)*/(x¢ + 1/2)? on the design regiof0,1]3. The functionY is treated as a
simulator, from which the only information we require are Values at design points. We use
the same pre-ordered LH design of Example 1;set 10 for step sizel = 5/9 and threshold
0o = 0.15. See Section 3.2.1 for details on the construction oftttesholdog.

Random trajectories are constructed with the first two @d@oints, giving the following mo-
ments of elementary effectpy, Yo, Us) = (—6.37,—1.16,0.02) and(01,02,03) = (13.25,4.10,0.02).
The values ofo1, 0, are greater than the threshalg and thusx; andx, are separated as hav-

ing non-linear effects. A3 < a0y, further investigation is required fog. At the third design
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Algorithm 3.1 The procedure for completing our screening technique.

Screening algorithm

Input: SimulatorY(-) with k inputs; total number of one-at-a-time experimeMtsstep size;

thresholdog.
Output: Momentsy;, oj, |5; lists of factors with linear@) and with non-linear effect).

A. Preprocessing stage
1. Set design region t®, 1] and create space filling design withpointsx, ..., Xu.

2. Order the design points using maximum distance betweerispoLabel the ordered points gs
X(l),...,X(M).
B. Calculating the elementary effects

1. SetR:=2 and the initial design to kg := {x(l>,x(2>}. Set list of current factors 6 := {1,...,k}
and list of active effecté := 0.

2. For every point irD, create one-at-a-time runs only for those input factorexed byC. Run the
simulator at those points. This tota3 + 1 experiments for every point iD.

3. Using simulator runs from B2 and Equation (3.3), compleeentary effect§EE(x) : x € D,i €
C}.

4. If R= 2, compute momentg, i ando; using elementary effects for all factors. Rf> 2, only
update moments for the current list of input factors, indiexgC.

5. Fori € C, if i > og then updat€ :=C\ {i} andA:= AU{i}.

6. If C=0, then all the inputs were identified active. Algorithm ends.

7. If R=M, then all the design points available are exhausted. Algorends.
C. Producing the next design point

1. Update R:=R+1; sdd = {X(R)}.

2. Goto B2.
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point, OAT experimentation only for the factog, produces updated momenis = 0.05 and
o3 = 0.05 < 0y, that is, X3 is still under investigation. The sequential methodologyntmues
for xz until finishing with all the design points. At this final stegpdated moments for; are
kg = 0.03 andos = 0.05, i.e. the linearity of the response in termsxgfover the design region
could not be rejected. In fact, in the design region, theofact has a near-linear effect, as defined
in Section 3.2.1.

The total experimental effort was 16 runs, from which the Breuns involved trajectories for
all factors, while further 8 runs were required for the linéctor under investigation. This is a
33% reduction from th€3+ 1) x 6 = 24 runs needed to perform the complete EE method.

The moment estimates obtained for the non-linear fact@aly rough approximations of
the true moment values, but the moment estimates for tharlfaetor were computed with more
information. This asymmetry is apparent when comparindy wiact analytic sensitivity results

U= (—5.34,6.62,—0.04) ando = (8.88,7.42,0.06).

An alternative to using (and preprocessing) a design withxedfnumber of runv is to
instead consider points from an infinite sequence, from wpaints can be taken sequentially as
required. For example, points can be generated frdowadiscrepancyspace filling sequence,
such as Sobol’s or Niederreiter's sequences (Niederrdi®92). The only change required in the
pseudo-code of Algorithm 3.1 is to remove step A2. Samplioghflow discrepancy sequences
has the advantage of sequential generation of points. Hawkr small sample sizes the spread
of points of a low discrepancy sequence may not be as good fzeca §illing design with fixed

size.

3.2.1 Selection of variance threshold

In the sequential pseudo-code given in Algorithm 3.1, teeneintary effect variance threshald

is an input. However it may be quite hard in certain casesitit.eln this section an approach
to estimategg indirectly by eliciting the expected divergence from linedi the factor effect is
presented. An application of the sequential procedureesgmted on a synthetic test function in
Section 3.2.1.1 and on a real world simulator in Section lB.&ection 3.2.1.2 a simulation study
is used to empirically demonstrate the effectiveness ofttineshold calculation even in cases
where the factor effect deviates slightly from linear.

A linear (or near-linear) effect of the variabtgis represented by an additive noise model:

Y(x)=ax+b+e, (3.5

whereg is a normal random variable with zero mean and variagneed observations of are
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assumed to be independent. In other words, the marginait eftee to the factok; is modelled
with a simple regression line. We will assume that the vaganis known. In practice, this

variancey will be elicited prior to the screening experiment and it take several meanings:

1. We believe the factot; has a linear effect but the simulator runs contain a numlegitar.

In this case we expegtto be set to small value, such as a multiple of machine pretisi

2. We believe that small non-linear effects will not have ppraciable impact on the model
output. Herey should be chosen to reflect the level of variation from aghgine that we

will tolerate.

The capturing of information about the variance parameten isharp contrast to (Kadane
et al., 1980) and (Garthwaite and Dickey, 1988) where fubbability distributions are elicited
that reflect beliefs about the parameters of the linear madehe present application, we do not
wish to prejudge the behaviour of the model: we want a poititnege of how far from being
linear we can tolerate.

Given the variancg, the sampling distribution of the variance of the elemgnédfects can be

calculated according to the following lemma, whose proafiven in Appendix B.3.

Lemma 3.2.1. Let x,...,XR be univariate design points, at each of which trajectories eon-
structed. Assume that observations taken at design paiatsrajectories follow the model given
in Equation (3.5). Let elementary effects and moments beedefis in Equations (3.2) and (3.3)

and leto, = 2}. Then
2

O

wherex2 , denotes a chi-square distribution with-RL degrees of freedom.

Since the sampling distribution of the EE variance is nowkmave propose to use the 99%
quantile of the cumulative distribution function of the <juare distribution to derive the EE

variance thresholdg. The following equation

2

P(0? <o) =P (Roj’lxél < 00> =099,

which inverted yields the threshold

00 = X599r_105/(R—1), (3.7)

Whts‘re)(aggR_l is the 99% quantile of a chi-squared distribution Wik 1 degrees of freedom.

In other words,og defines a threshold over which the effect is considered maa, i.e. if
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02 > ag then the input variable will be retained. Note that LemmaBapplies directly in a
multivariate setting, in which case the comparison is perém separately for each input variable.
In Example 2 we used a single threshalgl for all variables. The valueR = 6, A = 5/9,

VY= 87x10 2 and quantile(3 g9 5 = 15.08 were used to obtaisy = 0.15.

The method we propose might be thought of as a sequentiaktmgis test, where the null
hypothesis is that data follows linear model described indfign (3.5). To simplify the algo-
rithm the thresholdg may be kept fixed for all computations rather than adaptintp the actual
number of trajectories involved. The main difference ishia tegrees of freedom for the scaled
chi-square distribution in Equation (3.7). The adaptiverapch, which is utilised in the simu-
lation experiments presented, involves recomputipgvith updated degrees of freedom prior to
step B5 in Algorithm 3.1. If the simplified approach, i.e.ngonly a single valuey is used, the
method becomes more conservative, i.e. the rejection fatsimple, linear model is higher with

fixed threshold than with a variable one.

3.2.1.1 Simulated high-dimensional example

In this section we illustrate the sequential screening owkthn the synthetic test function intro-

duced in Morris (1991). The function is defined on 20 inputs[0,1]?° as follows:

20 20 20 20
y="Bo+ ) Biwi+  Bijwiw; + Z Biji Wiwjw + Bijis Wi Wj W W, (3.8)
i=1 i<) <)<l i<|<l<s

wherew; = 2(x; — %) except fori = 3,5,7 wherew; = 2(1.1xi/(xi +0.1)— %) The coefficients
are set to; = 20 fori =1,...,10, Bjj = —15 fori,j =1,...,6, Bijy = —10 fori,j,l =1,...,5
andpijs =5fori, j,I,s=1,...,4. The remaining first and second order coefficients are gesubr
independently from a zero mean unit variance normal digioh and the remainder third and
fourth order coefficients are set to zero.

Given the range of the function defined in Equation (3.8) [grapimatelyy € [—225 139, the
threshold value is set tp= 2.6 corresponding to an approximate standard deviation fioeaf
of 0.005%.

As both Morris (1991) and Pujol (2009) show, factgs.. ., X7 have a non-linear effect on the
function output while factorsg, xg, X190 have a linear effect and factoxsy, . .., Xoo have negligible
effect.

The screening experiment was performed under the configanased in (Pujol, 2009) for 100
realisations. As in Pujol (2009) the discretisation levas lveen set tp = 20 and the number of
trajectories tdR = 10. A total of 210 function evaluations are required for thé&ch EE procedure

while for the sequential EE procedure on average 150 ardreehwith a standard deviation of 13.
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Factorsx, ..., x7 are correctly identified as having non-linear effect 99 duhe 100 realisations.
Factorsxg,...,Xyo are found to have linear effects in 92% of the realisationsie Tull batch
EE screening results and the first step of one realisatioheoséquential algorithm is shown in
Figure 3.7.

We conclude that the sequential approach results in significomputational savings com-
pared to the batch EE method as factors with clear non-lie#acts can be eliminated in the early

screening stages with high confidence.
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Figure 3.7: Applying the batch and sequential EE screeniathad on the 20 input factor Morris
test function. X axis igL. and Y axiso of Elementary Effects. Horizontal dashed red line denotes
the op threshold value for the given step.

3.2.1.2 Simulation Results

We test the previous distributional results on two funcgion

f(X) = 3x1 + %5+ N(O,y) (3.9)

g(x) = 3x3 + sin(xp) + X3 (3.10)

For f (x) we examine the threshold under a vary small prior varigrgimulating the numerical
error scenario. The prior variance is set g = 10% ~ 2-6. The Morris design was constructed
with p=10andA = p/(2(p—1)).

We perform 10 realisations of a simulation experiment with= 3, R= 10 andR = 100
trajectories and plot the sampling distributions for bdté linear and non-linear factor in Figure
3.8. ForR= 3 the quadratic effect factow is incorrectly identified as near-linear 446 out of thé 10
Morris experiments. In these cases, we would incorrectgsify the effect ok, as near-linear.

For the higher number of trajectories, no such errors odsithe assumption of independent and
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Gaussian noise is satisfied for this scenario the theotdlismibution of the EE variance matches

very well the empirical distribution.
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Figure 3.8: Sampling distributions for EE variance for efattor using 10 realisations of the
experiment. Thd (x) function in Equation (3.9) is used; has a noisy linear effect whibe has a
noisy quadratic effect. Dashed line is theoretical sangpdiistribution. Vertical dashed line is the
99% threshold.

For functiong(x) we use a truncated Taylor series to estimate the variantech stems from
the linear approximation. We wish to consider(ginas having a near-linear effect and aim to
derive an appropriate value fgr The first two terms of the Maclaurin series are § Hence
we can approximate sfr) with the linear functiony = x+ N(0,y). We get an estimate of the
variancey by examining the approximation errok= supo 1 x|3/31. We treat the approximation
error bound as three standard deviations, i.e.,3y = €. Hencey = (¢/3)2. The approximation
is shown in Figure 3.9.

The distribution of the EE variance is given in Figure 3.10Re= 10 andR = 100. The vari-
ance has been setye- 0.0031 following the Taylor approximation. We can see cleanhgismatch
of the theoretical distribution to the empirical due to tlmfGaussianity and heteroscedasticity of
the noise. This does not improve Rss increased although the separation of the non-linear term
X3 becomes clearer. Therefore, despite the approximatiar #re non-linear term is correctly

identified.
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3.3 Conclusions

In this chapter a theoretical overview of existing scregmirethods that are used in practice when
dealing with high-dimensional spaces, has been preseftexdfocus of the experiments has been
on the input space of single-output models where inputs motitlinear and interaction effects as
well as strong and weak effects on the response variableldeeme simulated.

If the simulator is quick to execute and a more detailed aslyf the effect of input variance
on the output variance is required, standard analysis édveg methods such as Sobol’ indices
(Section 3.1.2) can be used. They typically require manyemons than the Morris method as
was empirically demonstrated in Section 3.1.3.2 which Ipokes their usage on complex high-
dimensional problems but for simple simulators they cawigequite accurate results.

For complex high-dimensional systems even the standardidmethod (Section 3.1.3) can
require a prohibitively large number of simulator runs. kcfon 3.2 a sequential version of the
Morris method is proposed where factors with non-lineaec# are removed from subsequent
stages of the screening experiment. Factors that are stmwave a near-linear or no effect
on the output can be discarded from further analysis as #ffgct can be removed during a
preprocessing stage through an appropriately specified foeation as discussed in Section 3.2.
Factors identified as having linear effects by the screepingedure can be treated independently.

The resulting screening procedure requires fewer simutates than the standard batch Morris
method. In order to apply the sequential Morris method, thelyst must make a number of
choices. To create the ordered design of OAT-experimentsténts, the maximum number of
trajectoriedVl must be specifiedVl is recommended to be chosen with respect to the effort needed
to run the simulator; at worst, the simulator will need to be (k+ 1) x M times. The step siz&
should be chosen so that the screening method will covega [aortion of the input space. The
threshold valuegy, for discarding an input from subsequent OAT experimentsheaset to zero
so that only true linear- and no-effect inputs are investiga Even in the case of deterministic
simulators however, it is suggested to use a threstigld 0 due to the computational errors in
simulators.

The threshold may be set using the elicitation method desdiin Section 3.2.1. This method
allows the prior specification of the divergence from linetthe factor effect in terms of a variance
term. More restrictive forms may be desired that allow d@éwiefrom linear only in certain regions
of the input domain and this is a direction for future reskaia Section 6.2.4 an application of
the sequential Morris method to a stochastic model is ptedeand contrasted to the batch Morris
method.

A direction for future research would be to utilise higheseomy trajectory designs in the
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Morris method and to theoretically prove for a given numifesimulator evaluations the optimal-
ity of a design with respect to economy. L€the the number of variables, witRtrajectories in
a Morris designA the total number of elementary effects calculated Bhthe total number of

model executions. Then as defined by Morris (1991) the ecgrism

A
E= M
For the standard Morris trajectory design, a single poisthiared for two elementary effect cal-
culations. The starting point is random and then shiftedachecoordinate in sequence. The
economy then i€ = 5.

As noted by Morris (1991) higher-economy designs can beegeliif the number of points
in each trajectory is increased beyokd- 1. The higher-economy designs modify the sampling
strategy so the samples for each set of elementary effectgagable are no longer taken inde-
pendently. As shown in Morris (1991) this is equivalent tastér sampling and valid inferences
about the population can still be made. In Section 5.1 of Mdr991) a class of designs similar
in structure to the standard Morris design but with higresr@my is proposed but no proof is
offered that for a given number of model evaluations the psed design offers the maximum
possible economy. In Boukouvalas and Cornford (2007) weeptbat for a design size of‘2he

maximum economy design is a hypercube. However a more damstdt for any design size

would be needed in practice.
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4.1 Introduction

Gaussian Processes (GPs) offer a principled way to perfoamyrtasks including non-linear re-
gression. They are applied in a multitude of problem domaimd recent developments have
shown how they can be extended to handle large datasets (gsen@ro-Candela and Rasmussen
(2005) for a review). In this chapter we are specifically iested in large datasets which contain
replicate observations of outputs for given inputs. Exaspf such datasets, which arise where
the underlying process truly behaves asachastic processclude WiFi network signal strengths
and stochastic computer (simulation) models.

In this chapter we present two novel methods of performingégRession on complex datasets
with replicated observations under heteroscedastic,ingut dependent, noise. An overview of
existing work on heteroscedastic GPs is given in Section 4.2

The Coupled Model presented in Section 4.4 extends the wokersting et al. (2007) by
considering replicate observations and applying cowastdue to finite sample size effects. The
method of Kersting et al. (2007) is first discussed in Sectidhand a new interpretation of its
working is offered that offers insight into the implicit ajggimations made in the method. We
also describe how to correct a systematic bias error in th@adenhich results in significations
gains in predictive accuracy.

We introduce the issue of experimental design, that is thegohent of input points, and
provide empirical evidence on the effectiveness of utiisreplicate observations compared to
a space-filling design. The Coupled Model however is too dex be utilised in the model-
based design approach we develop in Chapter 5. The JoirliHdke model, in which a simpler
parametric variance model is used, retains tractabilitytHe design framework and is discussed
in Section 4.5.

A comparison of the Coupled Model and two variations of thiatJbikelihood model on a
one-dimensional synthetic data set is given in Sectio4.5inally in Section 4.6 we discuss

possible model extensions.

4.2 Relation to Existing Work

One approach to modelling heteroscedastic noise within dr&@®ework is to use a system of
coupled GPs modelling the mean and variance functions cégply. In Goldberg et al. (1998)
a Monte Carlo approach was utilised to incorporate the taicty of the variance GP into the
overall predictive uncertainty. The computational exgeokthis method however motivated an
approximation whereby only the most likely value of the aiade is utilised and the associated

uncertainty around this estimate is discarded (Kerstiad £2007). In both methods, the logarithm
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of the variance is modelled using an independent GP on thsftnaned space(x) = log(r(x))
wherer(x) is the variance. A different training set may in principle used for the log variance
GP although in practice the same training set as for the méais Gsed.

Specifically, the predictive distribution at a new paintgiven a training sef = (x;,t)N 1 Is:

P(t*]x*,ﬂ))://P(t*]x*,z,z*,ﬂ)) P(z z.|x., D)dzdz.,

wherez = log(r(x1),r(x2),...,r(Xn)) the vector of variance predictions at the training pointd an
z. =log(r(x,)) the predictive noise level at the new test pointGoldberg et al. (1998) use Monte
Carlo to evaluate this integral by sampling fra¥e, z.|x., D). Kersting et al. (2007) propose to
use only the most likely values for the noise levels and apprate the predictive distribution
P(ti|X., D) ~ P(t.|X.,2,Z., D) whereZZ, the most likely values for the noise levels estimated
using the mean value of the log variance GP. As pointed outdrgtitg et al. (2007) this approx-
imation is reasonable when the predictive variance of tgeviriance GP is sufficiently small so
ignoring it will not have a significant impact on predictioocaracy. The Kersting et al. (2007) is
extensively discussed in Section 4.3 as it forms the basithéoCoupled model we proposed in
Section 4.4.

The Goldberg et al. (1998) and Kersting et al. (2007) typeppir@ach which we follow for
the Coupled Model in Section 4.4 allows for the specificabbdifferent GP priors for the mean
and variance response. Itis quite straightforward to ipom@te most of the sparse approximations
(Quinonero-Candela and Rasmussen, 2005) to handle vgeydatasets in these methods.

Snelson and Ghahramani (2005) proposed the Sparse PsgudodP (SPGP) as a sparse
representation of a GP. The B dimensional covariance, whelethe number of training points,
is approximated by a lower dimensional projection of dize The M support points, known as
pseudo-pointsneed not be a subset of the original training set and areettes model parameters
optimised through the maximisation of the likelihood. Thmmstruction allows for the implicit
modelling of heteroscedastic variance through the lonaind density of the support points.

Snelson and Ghahramani (2006) propose a modification to SR&GEafter SPGP+HS) where
an uncertainty parameter is associated with each pseudbgrtd results in more accurate het-
eroscedastic prediction. The extra set of model parametarsol the influence of each pseudo-

input on the predictive distribution. The SPGP+HS predectistribution is:

E(t|x., D) = QI 1,

Var(t,|x,, D) = K, — QunE 'Qu, + 021,
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wherea? is a nugget parameter, the training data mafrix Qy + diagKy — Q) + 02l andt

the training data observations. The full GP covariance otk aKy andK, for the training

and test data respectively. The sparsity is achieved thréugQ matrix whereQn = Knm(Kv +
diag(h))~ Ky for training data an@.n = K. (K + diag(h)) ~1Ky. for the test datah denotes

the vectorh = (hy, hy, ..., hy) of M parameters introduced in the SPGP+HS model to control the
influence of each support point. Examining the equationsseeethat the approximation is exact
for the diagonal of the training data mat&x Theh vector affects the predictions through Qegy
matrix where the correlation of the test to support pointsalsulated.

However no functional form of the variance is available smoiporating prior beliefs on the
smoothness of the variance response as well as certairsasalych as variable selection for the
variance of the output are not handled naturally in this &ark.

Also as was noted in Snelson and Ghahramani (2006), thisomhelites not perform well when
small numbers of observations are available due to the fligxibf the model. Large training set
sizes are uncommon in the emulation context where simulatws are typically expensive to
obtain — where the simulator is very cheap, its direct usenhtrtig preferred. The SPGP+HS
method could be used in our design framework discussed ipt€h& as the method is equivalent
to the specification of a non-stationary kernel for the GP thredcalculations remain tractable.
However the large number of free parameters would be pradilerfor small design sizes and for
larger designs experimental design has less impact oreimderefficiency. Walder et al. (2008)
extend the SPGP method so that each basis function can baneritlength scale. This improves
predictive performance in some scenarios but requires phienisation of twice the number of
parameters.

Kleijnen and van Beers (2005) consider transformationshefdutput to remove the het-
eroscedasticity of the variance but are quite limited inrthpplication. A “Studentising” trans-

formation is suggested to transform the simulator outpetah design point:

5 200 —S(X)
Z(x) = 50/ /m

whereZ(x) the mean value of the simulator outp8tx) the “signal function” used to detrend the
data,G(x) a variance model anch the number of replicate observations. The signal function i
specifieda priori such that the data are of zero mean in the transformed spasieg the same
number of replicates at each design point, a zero-mean GPavgiingle nugget parameter can be
used in the transformed space as the distribution of thefwamed variables is:

Z(x) ~N(0, ——5).
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For the variance functiod(x) the authors recommend to use the empirical sample varimads i
a training point and otherwise use piecewise linear infatjpm between the variances of the two

neighbouring training points. This method of interpolatevoids predicting negative variances.

4.3 The Kersting method

An extensive overview of the Kersting method is first proddie Section 4.3.1. We subsequently
correct a systematic bias in the method in Section 4.3.3 fiedaonew interpretation of the method
in Section 4.3.4 which allows for a fuller understanding leé timplicit approximations made. In

Section 4.4 we extend the Kersting model to allow for effitiaference when the training data

contain replicated observations.

4.3.1 Overview of the Kersting method

In this section we describe the Kersting approach (Kerstingl., 2007) referring to it when we
say “the authors”. We thank the authors for providing codeeficate most of the simulation
experiments presented in their paper.

As in Goldberg et al. (1998) the noise variance is modelledgua second GP in addition to
the GP governing the noise-free output value. In contragdtulberg et al. (1998), rather than
using a Monte Carlo approach to approximate the posterigenariance, a most likely approach
is adopted, i.e. the uncertainty of the variance GP is nbsedi.

The authors describe an iterative optimisation schemesfoning both the hidden noise vari-
ances and the kernel hyperparamet@s- {6y,8,}. Unlike Goldberg et al. (1998), the noise free
y values are not explicitly represented. In fact Kerstingralhe Goldberg et al. (1998) notation
and write down the observation modeltas: f(x)+ A (0,r(x;)) wherer(x ) the input dependent
variance noise and the noise free values are denotédather thary. However here we will use
y to keep the notation consistent with Goldberg et al. (1998 noisy observed output value at
locationx; is denoted by;. As in Goldberg et al. (1998) the authors place a GP prioy and

conditional on the noise leveR= diagiexp(z )] the predictive distributiorp(t*|t,R,6y) is:

E[t'] =K (Ky+R) ™'t (4.1)

Varlt] = K" + R — K (Ky + R) KT (4.2)

In Kersting et al. (2007) the squared exponential or a Matigya covariance function is used
for Ky andK,. In the code an estimated nugget is used on both the y and egses, i.eR =

diagexp(z)] + 02l wherea? the nugget variance.
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To ensure the predicted variances are always positive,atiance GP prior is placed on the
logarithms of the noise levels, denotedgy) = log(r(x)). The authors state that in principle the
training set locationX for the z-process could be different than for yhgrocess but for notational
convenience they are taken to be the same.

The authors state that as the noise ratewe independent latent variables in the combined

regression model, the predictive distribution is:

p(t*[t) = / / p(t']2,2" 1) p(z,2'[t)dzdz". 4.3)

This is equation (4) in the Kersting paper where we have abéutige notation slightly to remove
the explicit conditional orX and have replace with t to be consistent with the Goldberg et al.
(1998) notation. The explicit inclusion af in Equation (4.3) is not important and the equation
can be understood by considering only the training point&algiberg et al. (1998) do (see first
equation in Section 2.1 of the paper).

The first termp(t*|z,z*,t) is a Gaussian prediction with mean and variance given by titmsa
(4.1)-(4.2). As the authors note the problematic term indfign (4.3) isp(z,z*|t). In Goldberg
etal. (1998) a set of sampl¢$z1,7;), (22,25), ..., (%,Z)} is generated and the integrals in Equa-
tion (4.3) are approximated by:

p(t|t) =

k
Z p(t*[z;,Zj,t

7\_|H

This sampling procedure is computationally demanding e@tithors propose to approximate the

integral by the most likely values:
p(t"[t) = p(t*[2,2",1). (4.4)
where(Z,z*) the most likely values, that is:

(2,°) = argmaxp(z, 2*|t). (4.5)

2,2*

This will be a good approximation if most of the probabilityass ofp(z,z*|t) is concentrated
around the most likely values.

The authors state that now computing the most likely noigel$e(Equation (4.5)) and the
predictive densityp(t*|t) (Equation (4.4)) requires only standard GP inference. Rerlatter
this is clearly the case as computing the predictive demgitgn the most likely noise values is

straightforward. However the former is not clear, since &imésation overp(z,z*|t) is required.
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The approach taken by the authors is described in the follpwéection.

4.3.2 Optimisation

In this section we discuss how Kersting et al. (2007) progosmlve the maximisation problem
in Equation (4.5). In fact as we shall see the authors breatheproblem by estimating the
empirical noise levels first without direct reference to Waeance GP and subsequently utilising
the variance GP to smooth the estimates.

In particular the iterative optimisation algorithm propdsseparates the estimation of the noise
levels and the parametes= {6y,0,}. The authors state that learning would be easy if the noise
level values were known for all data points.

The algorithm involves the following steps:

1. Given the observed datawe estimate the parametdigof a standard homoscedastic GP,
G1 by maximum likelihood. Specifically the optimisation preb is argmay p(t|8y,02)
wherea? an input-independent nugget parameter. After this stepave & density estimate

for the noise-free values, i.@(y|t,0?).

2. GivenGy, the empirical noise levelsfor the training data are estimated, i.e. (earti, G1(x,t)]).
This is a crucial step in the algorithm and is discussed hefitsgentially this is a smoothing
step across the (very noisy) empirical noise estimategwsinther GRG,. In this stepb,

is estimated by maximum likelihood.

3. The combined heteroscedastic GPis estimated usin- to predict the logarithmic noise
levels. In this stefy is re-estimated. In the Kersting code a nugget term is alsmated.

Hence the optimisation problem solved is:

(8y,0%) = argmaxp(t|o?,8y,z), (4.6)

9%0—%
wherez the smoothed logarithmic noise levels estimated using thet fikely value ofG,.

4. If not converged, seB1 = G3 and go to step 2. In the code the number of iterations is
actually set a priori and no convergence criterion is usedterdatively a metric of the
difference of the current parameter estimates to the pue\dtep estimates could be utilised

as a convergence criterion.

The authors note that the algorithm is not guaranteed toawepthe likelihood at each step
(as it is not strictly speaking EM) and may oscillate as itsidars only most-likely completions

of the data.
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The authors identify the estimation of the empirical noseels (step 2) as the crucial step in
the algorithm. The authors describe the problem ti@&isenthe observationsand the predictive
distribution of the current GP estimaté3,(), find an estimate of the noise levels {taiG;(xi,1)],

i.e. the variance of the observations at sigth respect to the GP prediction at that site. The GP
predictive densityp(t.|t,8y,z) utilises the most likely prediction of the smoothed noiseelsz
obtained at the previous iteration. In the first iteratiogythre set to the input-independent nugget
of the homoscedastic GP, i 2= log(c?).

A set ofssamples is obtained from the GP predictive density and areteldtij, je{l,...,s}
for training pointi. The authors state that viewing the observatj@nd each samplé as two in-
dependent observations of the same noise-free, unknoget téineir arithmetic meaft; —tij)z/z
is a natural estimate of the empirical noise level at sitd he usage of the arithmetic mean is
further discussed in Section 4.3.4. Finally they take thgeetation of the arithmetic mean with

respect to alk samples:

UJlI—‘

4.7)

I\)IH

varti, G1(x,t)]

3

The authors conclude by stating that this calculation mis@s1the average distance between the
predictive distribution and the observatipmnd hence for a large enough number of samples (
100), will be a good estimate for the empirical noise lev@l& note the authors took a different
optimisation approach for a similar modelling scenario legemann et al. (2008) where an outer
cross-validation loop is used to infer the GP hyperpararsetdereby within each iteration a
numerical minimisation of the model likelihood is used téeinthe noisy observations for the

latent GP.

4.3.3 Correcting systematic bias

As we saw in Section 4.3 only the most likely prediction of tiwése levels is used in the Kersting
framework to keep the calculations tractable. However irskieg et al. (2007) the mean value of
the prediction from the variance GP is directly exponeadafThis results in under-predicting the
true noise levels by introducing a bias from the log transfation. The correct way to account for

the transformation can be found in the description of Wai®&d (Snelson, 2007):

Elr.] = [ expz N(z|.,0?)dz., (4.8)

whereN(z. |, 0.) the posterior variance GP prediction. This integral canrimyaically solved
and corresponds to the mean value for the Log Normal disioibgi.e. E[r.] = exp(W, +02/2). A
simulation experiment demonstrating the effectivenegh@torrection is shown in Figure 4.1. It

can be clearly seen that without the correction, the Kegstiethod does not recover the true func-
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tion even using an very dense training data set whereasingjlthe log correction, the prediction

is accurate with no systematic error apparent.

L L L L L L L )
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1

(a) Variance No Correction (b) Variance with Correction

Figure 4.1: Correcting the bias in the Kersting method dughéolog transformation. Synthetic

experiment using 1080 training points, showing the vaeame@diction for the Yuan and Wahba
test function (Equation (4.17)). Red solid line denotestthie variance and blue dashed lines
denote the prediction obtained using the heteroscedaflidr&nework proposed by Kersting

with and without the log correction described Section 4.3 Be systematic bias due to the log
transformation is evident when not corrected as the vagiamanderestimated everywhere in the
design region.

4.3.4 A new interpretation

The crucial step in the Kersting algorithm is the samplirgrfrthe GP of the previous step (ini-
tially a homoscedastic GP) to create variance observafimnthe variance GP inference (see
Equation (4.7)).

Examining the Monte Carlo sampling described by equatior) (de realise it is approxi-
mating an integral. Denotingf ** the estimated variance observation at iteration stef, the
integral is:

Ar+l 1slobs jZNl obs ¢ \2 ./t T g.)dt: 4
_EZEt —t) ~5 (> =) p(tift,r*, 8y)dy;, (4.9)

wheret?s the observation at poing, t the training data observations anfdthe estimated noise
levels obtained at the previous iterationinitially r® is obtained from the homoscedastic GP and
is equal to the nugget term, i.el = 62. The hyperparameters for the heteroscedastidGite
fixed during this step. The conditioning on the training itgpuandx; is omitted for brevity. The

reason for th% term will be explained later in this section.
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The distributionp(ti|t,r,8y) is simply the predictive GP distribution for training point

Efti] = Kj(Ky+R) ™'t

Varlti] = K;* +rf — K (K, + R KT,

whereR" = diag(ri,...,ry) is the diagonal matrix of variances obtained at the preveiapt
from the variance GP prediction.

Note that the observatiaii®® appears both in the conditioning pft; |t, rt,6y) and in the vari-
ance expressio(t®®s—t;)2. The resulting double counting may be rectified by conditigron all
the sites exceqt i.e. p(t|t_i,r*,6y) wheret_; denotes the set of all training observations except
theit". This density differs in that the training data matRxdoes not include the variance at point
i, rl - see Equations (4.13)-(4.14).

We can reformulate the above expressions in terms of thehdison of the latent noise-free

variablesy:

Efti] = E[yi]

Varlt] = rf + o,

wherey; ~ N(E[yi],cf;i) the predictive distribution of the noise-free latent vhalgaat sitei. Note
than both the predictive med#y;] and variances? depend on the estimated variance levels ob-
tained at the previous iteratiarthrough theR' matrix.

The integral in Equation (4.9) can be solved analytically:

(t°—E[t])?+r{ + 07 | . (4.10)

NI =

~ 1
=3 / (t2P5— ;) 2p(ti[t i, 17,8y )t =

If we treat the predictive density(ti|t_;,r*,6y) as a likelihood and maximise with respect to

ri we obtain the maximum likelihood solution:
M+ of = (t—E[t])% (4.11)

If we fix the observed valug = t°°Swe can re-express Equation (4.10):

M

Fit = +05. (4.12)

' 2

We can interpret this expression as the variance estiméaration ste + 1 which is taken to be

the average of the maximum likelihood noise estimatidh and the previous smoothed estimate
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of the noise levet]. The termcr)z,i expresses our uncertainty of the noise free function walue

The inclusion of the noise-free variano§ in the estimation of the noise levelstems from
our inability to disambiguate the two sources of uncenaitite intrinsic function variance and
our uncertainty due to not knowing the true noise-free modalesy. When a large amount of
training data is available;f,i — 0 and can be ignored. In sparse training data scenarios eowev
it acts as a regulariser by ensuring the variance estimajeciter than a minimum threshold.
Examining the maximum likelihood expression for the nomseel in Equation (4.11), we note if
(tobs— E[ti])2 < 0% the sample?™is too small and no useful estimate Bf- is available. In
such cases the inclusion of the noise-free uncertaiﬁlt'yl Equation (4.12) prevents the algorithm
from considering very small or zero empirical varianceraates which would lead to overfitting
the observed data by the variance GP. An alternative viewj®io state that wheft®®s— E[t;])? <
Gi’ the uncertainty on the noise free valyeloes not allow for a direct estimation of the variance
ri at that point.

In summary the Kersting method may be directly implementé@omt need for sampling by

directly evaluating:

ot = 5 [0 —t2plult1r, )t = 5 (62— E]) 2+ varl),
where
Efti] =Ky (Ky+R) 't (4.13)
Varft] = K;* +rf — K; (Ky+R%) KT, (4.14)
whereR"; =diag(ri,...,r{_;,re.,...,ry) the diagonal matrix of variances obtained at the previous

steprt for all training points except;.

The use of the previous estimate of the noise variance hieg{ term in Equation 4.12, which
stems from a GP regression step on the log variances, allmvalgorithm to take into account
the correlation between the variances of neighbouringtpoidther approaches such as doing di-
rect maximum likelihood of the multivariate likelihoqalt|r) lead to overfitting as the correlation
between variances is not considered. By placing a GP prigrdirect optimisation is challeng-
ing and a sampling type approach may be preferable such &ddftiepolis algorithm originally
proposed by Goldberg et al. (1998), which is guaranteed ngarge to the optimal solution. We
therefore see that the iterative nature of the Kerstingritguo allows for the variance correlation
to be considered without the need for computationally egjpensampling or high dimensional

non-linear optimisation. The heuristic nature of the apptohowever implies that no conver-
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gence guarantees are available although as both Kerstoshgvarhave observed, in numerical
experiments it performs reasonably well.

In Appendix A.1 we provide an alternate interpretation @& Kersting method by explicitly
deriving the empirical variance estimation step (Equaif)) from the posterior distribution of
the noise process (Equation (4.5)). The derivation allosvbetter understand the nature of the

approximations implicit in the Kersting method:

e Univariate optimisation The optimisation of the empirical noise levels is perfothume
point at-a-time rather than jointly. Further, a batch ojettion is used where the new
estimates for each variance level are not used in the estimattthe other noise levels until

the subsequent iteration.

e Noise-free targets The noise-free latent variablgsare assumed to be known, i.e. the
variancely = 0. This is a reasonable assumption only under strong priowlatge on the

noise-free process or for very dense training data whereahancel, is negligible.

e Equal-weighing The maximum likelihood estimate of the noise level at edetation is
averaged with the smoothed noise level from the previouatite (see Equation (4.12)).

The two terms are weighed equally by taking their arithmetéaan.

e Variance of variance GP ignoredit no point in the algorithm is the variance of the variance
GP taken into account. Therefore in scenarios where thertaitty of the variance GP
varies significantly (for e.g. under a clustered training,sthe estimates of the variance
GP are all treated equally despite the differing amount akuiainty associated with each

prediction.

In our opinion therefore the method can only be justifiablgdug scenarios where either dense
training data are available or strong prior knowledge candma to justify some of the approxi-

mations.

4.4 Coupled Model

We show how to extend the most likely heteroscedastic GPdwanrk of Kersting et al. (2007) to
use replicate observations which permits more accuratestiizient learning of heteroscedastic
GPs. This section is an extension of Boukouvalas et al. (2009

As in Kersting et al. (2007) we use a coupled system of GPsddigrthe mean and het-
eroscedastic variance. Our framework can learn the GP aginigture of single and replicate ob-

servations, utilising the first two moments of the lattere Mariance GP operates on log space to

69



Chapter 4 HETEROSCEDASTIC EMULATION

ensure the predicted variance is always non-negative. dgherdnsformation however introduces
a bias whose effect can be significant since we expect relatigw replicates at each input point.
For this reason we introduce a correction to the sample lagrwee described in Section 4.4.1.

The modifications to the Kersting model and optimisationhodtused to infer the parameters
is described in Section 4.4.2.

Another issue commonly occurring in the context of complatadets is that of experimental
design, i.e. where to obtain the observations in input sy the related sequential problem of
active learning. Using our framework we assess in Sectis 4he efficiency of different designs,
comparing the use of replicates against single obsengtishich better cover the input space. A
more principled approach to design is presented in Chapter 5

Lastly, in Section 4.5.4 we demonstrate the Coupled Moddhateon a known test function

and compare it with the Joint Likelihood model described éctidn 4.5.

4.4.1 Log sample variance bias correction

When computing the logarithm of the sample variance a biagrsduced in the estimation due
to the non-linear transformation. The bias can be signifiempecially when using relatively
few observations. Standard theory (Cox and Solomon, 2008ysus to estimate the bias and

variance of the log sample variance estimator:

z=log(S?) -y <n%1> —log2+log(n—1) (4.15)

wherez s the true log variances? is the sample variance estimate aHdhe digamma function.
The uncertainty of the estimate of the log variance can atsadmputed (Cox and Solomon,
2003):

0% = W2((n—-1)/2), (4.16)

whereW; is the trigamma function. A proof of these results is giveAppendix A.2.

These corrections can be applied directly to the estimaifoB, by using Equation (4.15)
to correct the sample log variance for each design point. cbBnesponding uncertainty of the
log variance estimates can be included in the likelihoo&gising Equation (4.16). The main
rationale for suggesting these improvements is to make tthad more robust to smaller sample

sizes where the bias due to the log transformation can béisagrt.
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4.4.2 Utilising repeated observations

Explicitly considering replicated observations requicggy small modifications to the Kersting
model. In particular for design points where only singleaskiations are available, the inference
proceeds as in the original Kersting method described itiGed.3.

We split the observations to two setsyeplicate observations arsgdsingle observations. For
replicated observations, the sample mean outpaihd corrected sample variancgis calculated
for each input point in the training set.

To initialise the algorithm, a standard homoscedastic GB (s estimated by by maximum
likelihood on the two sets of observatiot)s= {ts,t; } wherets = (y1,...Ys) the vector of single
observations anty = (yi,...Yr) the vector of empirical means for the replicated obseraatié-or
the set, the observation error can be estimated as the distribufitresample mean for Gaussian
variables isy; ~ N[ (M,ﬁ—g wherey; the true meang? the true variance and the number of
replicate observations. By using the sample varia®@s an estimate of the true variance, a fixed
nugget of size‘f]—2 can be used in the covariance®f.

As in the original Kersting algorithn3; is used to provide an initial estimate of the variance
at design points where only single observations are avail@ee Step 2 in Section 4.3.2). For
replicate observations, the empirical variance of theingi data ak; is computed. To correct for
the biased estimate due to the log transformation Equatibt$s) and (4.16) are used.

The combined set of estimated empirical variances for ginglservations and corrected log
samples variance for replicated observations is used itrdi@ing of the variance G5,. We
note here that typically the number of replicated obseowatis much smaller than the samples
obtained fromG; when no replicate observations are available at the desigmt.p Thus the
training of G, takes into consideration the noise on the variance, cordusgieg Equation (4.16),
which is particularly important in the small sample case mghtbe second moment estimates can
be quite noisy. This allow&, to smooth the variance estimates based on the prior GP sukcifi
and produces more reliable estimates of the underlyingen@sance. Specifically the predictive

distribution equations foG,; are:

Moe = K'(K+Re,) 'tg,

ks ok %1 — *
Yoy = K™+Rg,—K* (K+Rg,) 'K,

where the target valuds, are the sample log variances either estimated in the prewtp in
the case of single observations or computed directly froensimples in the case of replicated

observationsK is the training point covarianc&** the test point covariance aid the training-
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test point covariance. The mati, is defined as:

Vs

Re, = 0&,| +
0 V

02g) is the variance of the log

wherea? is the noise hyperparameter (nuggaf) = diag(a?,,. .

variance from Equation (4.16) for the single observatiomgene typically the number of sam-
ples is high since sampling from a GP is cheap. Hevicavill be nearly zero in most cases.
Vi = diag(oéi,...,oge) on the other hand contains the variance of the log variancesfteated
observations where the assumption is that there will be &plaates per training point and hence
the variance calculated in Equation (4.16) will be highehe Variance at the replicate points
should in fact be lower than for the non-replicate sktit we are not aware of any suitable uncer-
tainty estimate of the variances for the latter. Heurissigsh as settinys = maxV; are possible
but have not been used in the simulation experimeRgg.= 0% | is the predicted noise level at
the test points.

As in the Kersting method, the hyperparameters of the hetedastic GB&3, are then inferred
to jointly predict the mean and variance. The equationg=gare slightly more involved since
the most likely value of the variance fro@; is included and the effect of utilising moments of
replicated observations must be considered. The denivafiGs is given in Appendix A.3. The

predictive distribution equations f@3 are:

Moy = K*(K+Rg,P ) 'ty

st* _ K**—FRE:S—K*T (K—{—RG3P71)_1K*,

whereP = diag(ny, ..., ny) the number of samples at each training pdiaf, = diagir (x1), ..., (xn)]
the variance estimate fro@; at the training points anBy_ the G, variance estimate at the test
points. Note that the training target valuesvithin t, are the sample means and not individual ob-
servations of the underlying random process. Since thamveeiof the empirical mean is inversely
proportional to the number of replicated observations fg@endix A.3) the variance prediction
from G, has to be divided by the number of replicates

The algorithm is iterated until a suitably defined convemgenriterion is satisfied (see the

discussion in Section 4.3.2 for a discussion of convergence

4.4.3 Experimental Design Simulation Study

In this section we compare the approach of Kersting et al0O{R@vith the replicate approach

presented in Section 4.4.2 on a variety of designs to exath@effect of replication on predictive
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performance.

The synthetic datasét originally used by Yuan and Wahba (2004) is utilised in tla@st®n:
y = 2(e 300029 4 gin(mp)) — 2.+ 8™ o\ (0,1), (4.17)

whereA[(0,1) is the standard normal distribution. In Figure 4.2 a visalon of the function is
provided. The validation measures used are the Mean Sgiared(MSE) and the Dawid score
described in Section 2.5 to assess the goodness of the me@aaariance prediction. A 2000

point single observation random design is used for vatiati
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Figure 4.2: Visualisation of the Yuan and Wahba functionuy@&apn (4.17)) used in the simulation
study in Section 4.4.3. (a) Mean (solid line) and two staddiviation error bars (dashed line).
(b) Variance.

The training design we have used is space-filling where wheeitave single observations only
or the same number of replicate observations across afiesiints. For each realisation of the
experiment, 1000 realisations of random designs were giteand the design with the maximum
minimum distance is selected as the training set. Clearbuirframework more complex designs
are allowed with different number of replicates per tragnooint but we have focused on these two
extremes to highlight the effect of replicate observatiaithout making unrealistic assumptions
of prior knowledge on the shape of the true function mean aménrce. Note that for the case
where only single observations are made for all design ppirg. no replicate observations are
made, our method reduces to that of Kersting et al. (2007).

In Figure 4.3 the predictive performance of the Coupled Mode progressively sparser set of
designs with more replicated observations is examined.tdtaénumber of simulator evaluations
is kept fixed at 90, 300, 400, 600 and 1600. The benefit of a caelpl space-filling design

where only single observations are used is contrasted wiaeser training design with more
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replicate observations per design point. For example, diiwim box corresponds to a total of 90
observations, being either a training set 90 observatio3§ training points of sample means and

variances computed using 3 replicate observations.
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Figure 4.3: Performance of replicate and non-replicatéggdeswith the total number of observa-
tions fixed. Notation 30T3 = 30 training points each with Jiegies. Results shown for a total of
90, 300, 400, 600 and 1600 observations used in the traieithghgest set of 2000 points is used
for validation. For each input configuration 100 realisasiof the experiment were performed
except for the 1600 simulator evaluation designs where 2@lsealisations have been used.

Overall there is little difference in terms of MSE and Mudtiiate NLPD signifying similar
performance with regards to the accuracy across all desgoan be seen in Figure 4.3. The dif-
ferences in Mahalanobis error are discussed below. Fontlhdest training size examined where
only 90 model observations are available, the highly chest80x 3 design performs worse than
the space-filling 9& 1 design in terms of both validation measures. In fact asheiltonfirmed
in Chapter 5, highly clustered designs generally achievessevdISE compared to space-filling
designs as the latter allow for more accurate interpoladiomto the better coverage of the space.
For the larger training sizes examined, the input spacdfisismtly covered so all designs achieve
similar errors.

The replicate designs are however substantially fastesédrom a computational perspective,

i.e. inference time, as the number of replicates increablis can easily be understood since as
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the number of replicates increases, the number of trainmgtg decreases. The latter of course
determines the size of the GP training covariance matrixtéads to be inverted during inference.
We have replicated these results on the synthetic datagétally used in Goldberg et al. (1998)
and obtained similar results.

We note here that the results presented here differ from &owddas et al. (2009) where the
replicate designs were shown to achieve lower Mahalanahisseand the conclusion drawn was
that they more accurately capture the variance responsgevdo the large errors observed were
due to the bias error in the most likely variance predictiSedtion 4.3.3) which has a larger
impact on single observation designs rather than replidesgyns. Correcting the bias error, the
Mahalanobis error is smaller for all designs and especglfor the single replicate cases as can
be seen in Figure 4.3(d). Furthermore as noted by Basto®)20& Multivariate NLPD is more
appropriate for emulator comparison where different trgjrsets are used. We will see however
in Chapter 5 that in higher-dimensional scenarios withspadesigns, replicate designs do in fact
capture the variance response more accurately than sibgévation designs.

We conclude from these experiments that using the first twmemds of replicate observations
proves beneficial in terms of inference time without sigaifity affecting predictive accuracy
given sufficient coverage of the design space. In Chapter fuvtieer investigate the effect of

replicated observations through a more rigorous expetiaheesign approach.

4.5 Joint Likelihood Model

The model we develop in this section is similar to the SPGP#e&ribed in Section 4.2 but
allows different mean and variance response structures.

In the most likely heteroscedastic framework of Kerstingle{2007) and the extension pre-
sented in Section 4.4 only the predictive mean value of thanvee GP is used whereas its predic-
tive variance is discarded. The complexity of explicitlytiopising the variance GP therefore seems
unnecessary and a simpler interpolation model could sufiiée introduce a new heteroscedas-
tic model, which simplifies previously proposed models, ingkhe optimal experimental design
problem more tractable. In addition, we believe that for smystems the variance response will
be less complex than the mean response allowing for the iadopt a simpler model for the
former while retaining the full non-parameter probabitiséP for the latter.

In this section we present the Joint Likelihood model whée aptimisation of the mean
and variance model parameters proceed jointly. The crsaiaplification is the consideration
of only deterministic variance models. The stochastic @secfor the variance GP is discarded

and replaced with a variance model of the fofga(x, 3) with unknown parameter8. The het-
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eroscedastic GP prior is thus:

P(HI8,x) = N (0, Ky, + diag(exp( foz(x, B))P™)) .

where diag denotes the diagonal matrix of the input vedfqris the usual covariance matrix
which depends on parametegrepresenting process variance and length scflése variance
model parameters arfél a diagonal matrix containing the number of replicated olse@ns at
each training point site. The set of free parameters fortiudel is6 = {6, B}.

The likelihood for the model when considering replicatedatations is derived in Section
4.5.1. The two forms forf;. used in this thesis, the Fixed Basis and Latent-Kernel nsodee

described in Sections 4.5.2 and 4.5.3 respectively.

45.1 Derivation of Likelihood

Assuming normality, the sample variance is distributed asadedXx? distribution withn; — 1

degrees of freedom:
SI2 ~ f0'2 (Xa B)

n—1

X3 1

wheren; the number of replicates at locatian This can also be expressed as a Gamma distribu-

tion:

R e

A zero-mean GP prior is placed on the mean:
P(HB) = GP(0,Ke), (4.18)

whereKg is the input dependent correlation abithe kernel hyperparameters.
The joint log likelihood of the sample mearand variances? for N observations can then be

derived:

N
log p(fL$*(X,6,) = (_Zlog P(s7IB. %, ni)> +10gN(fi0,Ke +RP ™), (4.19)

whereR the diagonal matrix with elements ekfy2 (i, B)) andP the diagonal matrix of the number

of replicated observations. The derivation is given in Ampgtig A.4.

45.2 Fixed Basis

In the Fixed Basis variance model, the log variance fundsanodelled as a linear-in-parameters

regression using a set of fixed basis functions:
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fo2(x,B) =exp(H(X)"B) (4.20)

whereH (x) is the set of fixed basis functions with known parameters. mps example in 2D
space is a linear variance modélz(x, ) = exp(Bo + X1B1 + X2B2).

Two types of basis functions have been considered in th@ghecal (e.g. radial basis func-
tions) and global (e.g. polynomial) to provide the input eleglent nugget term. An advantage
of local basis functions is the interpretability of priora the B coefficients as they relate to a
particular region of input space. However the number ofllbeeis functions required for do-
main coverage grows exponentially with the input dimensi@alynomial and other global basis
are therefore better suited for higher-dimensional sphoesmply a relatively simple variance

response.

45.3 Latent-Kernel

In high-dimensional cases a non-parametric method coutdbsidered using an additional ‘vari-
ance kernel'. For the Coupled Model, the variance prediahioG; is not utilised in the prediction
of Gz. We further simplify this model by explicitly incorporatithe mean prediction db, as a

deterministic function int@s;:

fs2(%,2) = ki (Ks +02) "1z,

whereKs = Kk(Xz, X;) andks = k(Xz, X;) are the variance kernel functions, depending on parameters
05 ando? a nugget term. In this casds a variance ‘pseudo observation’ vector. In principle the
latent pointsX; could be set to the entire training data Xeof the GPK|, but for quicker inference
it can be set to a much smaller set without the need to be atsoilXe

Note that sparse approaches to this parametrisation asitoibnelson and Ghahramani (2006),
are likely to be more computationally attractive. The maffecence of this model from the model
of Snelson and Ghahramani (2006) is that we do not entanglm#éan and variance response, al-
lowing separate kernels for each. This will be important rehthe complexity of the mean and
variance response is different. This model also bears fgs@ce to the Kersting et al. (2007)
model, however here we directly represent the log varianoetion as a non-parametric kernel
regression rather than employing a Gaussian process modi¢hen using the most likely value.
This enables us to write down a simpler model, with the sanxéfliy as Kersting et al. (2007),
for which we can evaluate the design criterion in Chapter 5.

The parameters of the model aXg z and 65 the parameters of the kernel functigpn. Al-

though all could in principle be optimised, in the experitsgoresented we simplify the optimisa-
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tion task by fixingX; to a Latin Hypercube design and fixifg to constant values. For example
for a squared exponential kernel (Section 2.4.2), the keagdle is replaced by the location of the
latent variables{; and the process variance by the optimised coefficients

This model is of intermediate complexity. It is more flexilthan the Fixed Basis model (Sec-
tion 4.5.2) allowing the specification of any kernel funatir the variance response. However it
is more limited than the Coupled Model as the simulator vexgsis no longer treated as a random
variable but rather the variance responses are interpotierministically. An example of the

Latent-Kernel model is provided in Section 4.5.4.

4.5.4 Example of all three variance models

In this section a comparison of the Coupled (Section 4.4ehtaKernel (Section 4.5.3) and Fixed
Basis (Section 4.5.2) variance models via a simple one{tSioeal example is provided.

The test function used in Section 4.4.3 is utilised as thehststic simulator and a Latin Hy-
percube 200 point design with 4 replicates at each pointed as the training design. A squared
exponential kernel is used in all models, including for tlagiance GP in the Coupled Model.
The Coupled Model also includes a nugget parameter in thana@e GP kernel specification.
The Latent-Kernel model consists of three latent poMytshosen to be equally spaced in the de-
sign space. Finally a quadratic function is used for the dFiRasis variance model. All models
therefore have a total of five free parameters.

In Figure 4.4 the mean and variance prediction for all motbetgven. In terms of predictive
performance, the Coupled Model offers the best match toithelator output. The Latent-Kernel
overestimates the variance in the high variance regionesiimulator output when the distance
from the closest latent point increases. The variance @iedifor the quadratic model is poor due
to the inherent inflexibility of the model. Due to the largaiting set size, the Coupled Model,

being the most flexible of the three, does best in this example

4.6 Conclusions

The investigation of the Kersting method in Section 4.3 Hasvad for a clear understanding
of the theoretical underpinnings of the method and the agmettions implicit in its original
formulation. Furthermore the correction of the bias dueh® rion-linear transformation of the
most likely variance (Section 4.3.3) has significantly ioyad the accuracy of the method.

In Section 4.4 we have introduced the Coupled model whicthéurextends the Kersting
model to the case of designs with a mixture of single andeefdd observations. The introduction

of finite sample size corrections to the variance estimatorpnjunction with the corresponding
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Figure 4.4: Comparison of the Coupled, Latent-Kernel anddpatic polynomial variance models.
(a)-(b)-(c) combined plots of mean and two standard denagirediction. (d)-(e)-(f) standard
deviation prediction. Training set consists of using 20pdesign with 4 replicate observations
at each site. Dots are the empirical means of the samples.blabk solid lines are the true
function mean and standard deviation and the blue dasheslitle GP predictions.

uncertainty estimates allowed us to create coupled mearaiahce GPs using only small num-
bers of replicates per design point. Through a set of sinamaxperiments discussed in Section
4.4.3, the inference speed up when using replicated olismrsavas clearly demonstrated. In
Chapter 5 we will develop a model-based design methodologtyexplicitly considers replicated

observations.

The Coupled Model however is still too complex to allow fadtability in the design calcu-
lations described in Chapter 5. We have therefore presensadpler class of variance models in
Section 4.5 where a deterministic function explicitly misdihe variance. Unlike existing meth-
ods which are either not tractable (Kersting et al., 2007id3&rg et al., 1998) or do not allow
for a straightforward specification of the variance modelglSon and Ghahramani, 2006; Walder
et al., 2008), the Fixed Basis class of models allow for bahtability and convenient elicitation
of prior beliefs about the simulator variance responsehdrfiiture, alternative parametrisations of
the Latent-Kernel model (Section 4.5.3) can be investijatther than fixing the variance kernel
parameters or using a Latin design for the latent points.

In Section 4.5.4 we compared the Coupled and Fixed BasisIsioda simple one-dimensional
toy example. Using a dense training set the Coupled Modébmeed best. However we envisage

that for sparser data sets the constrained nature of thd Biasis models will prove beneficial.
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All models presented in this chapter can be combined withtiexj GP extensions such as
online learning, dependent outputs, non-stationary ¢awee functions and sparse approxima-
tions. In the original paper Kersting et al. (2007) had alsemded the heteroscedastic model to
include a projected process approximation (Rasmussen dllidrivg, 2006) and more sophisti-
cated sparsity approximations (e.g. Csato (2002); SneladriGhahramani (2005)) can easily be
incorporated to help deal with larger data sets.

Our framework allows further analysis to be carried out intraight-forward and efficient
manner using the emulator as a proxy for the simulator. Eurtbre the computer model parame-
ter space can be explored without the necessity of a largdeuai (computationally demanding)
simulator runs. In combination with a discrepancy modeladtworld observations, these meth-

ods could facilitate the efficient statistical calibratioinstochastic models.
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Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

5.1 Introduction

Experimental design plays a crucial role in the building meaulator (Sacks et al., 1989), where
unlike data-driven learning we are able to choose the ingutghich the simulator is evaluated
with almost complete freedom. The simulator is typicallpemsive to run, thus it is beneficial to
optimise the input points at which the simulator is run gitlemavailablea priori knowledge. The
GP emulator is then trained on the selected design set aresponding simulator evaluations.
Section 5.2 reviews the current literature on experimetésign with a particular focus on
optimal design for parameter estimation. Our optimal desigproach is presented in Section
5.3 which allows the calculation of optimal designs unddetescedastic models with replicated
observations. The Bayesian formulation of optimal desigpens the design criterion is integrated
over the parameter prior is review in Section 5.4. The isgumptimisation in optimal design is
discussed in Section 5.5. The properties of our design apprare examined through a series of
simulation studies for Maximum Likelihood estimation incBen 5.6 and for Bayesian inference
using Hybrid Monte Carlo in Section 5.7. Conclusions aneations for future research are

discussed in Section 5.8.

5.2 Optimal Design For Parameter Estimation

In this section a brief overview of the theory of optimal dgsis presented. We begin with
an overview of traditional optimal design theory (SectioB.5) followed by a discussion of the
asymptotic results motivating the usage of the finite sarkjgher information in the presence of
correlated errors in Section 5.2.2. A description of thaésshat arise in the correlated error setup
are given in Section 5.2.3. A discussion of extensions tchteroscedastic, multiple objective

and adaptive setups and a review of criticisms of optimalpesss given in Section 5.2.4.

5.2.1 Optimal Design For Linear Models

Optimal design theory was first developed for linear moddiene several analytical results are
known on the properties of optimal designs. The relevardrihis reviewed and the most impor-
tant theorems described. The theory described here is pplicable to linear models. Where an
extension to a specific class of non-linear models has bemmprit is explicitly stated. In opti-
mal design theory for linear models a function of the infotimramatrix of the model parameters
is optimised. Formally the design criterion is defined inmterof the Fisher Information Matrix
(FIM), a p x p symmetric matrix, wherg is the number of unknown paramet&sThe FIM for

a desigrg is defined as:
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2
7.8 =~ [ st x5 ) Lixie&) ax,

whereL(X|6,&) is the likelihood function. The most common design criteaia D-optimality
where the negative log determinant of the FIM is minimiseal,+ log| 7 (€, 0)| and A-optimality
where the trace of the inverse is minimised, i.€t(€,0)~1) (Atkinson and Donev, 1992).

A designg of sizeM is typically denoted as :

X1, X2, -, XM

w1, W, -+, Wum

wherexy, Xo, ..., Xu are theM design points. Denote by = z{\"zl N; the total number of simulator
evaluations. The weights associated with each design p®iat N; /N usually represent or are
proportional to the number of replicate observations. Tleéghtswy can also be regarded as
precision or duration of the measurements (Mdller, 2005heWN; andN are positive integers the
design is known as exact but a large part of optimal desigoryhe@ms to approximate the discrete
& with a continuous-irw design measur&(x) such that the optimisation problem is reduced in
complexity (Muller, 2005). The design in the latter caseeisrted approximate.

For approximate optimal designs, the General Equivalerf@moiiem (GET) can be used to
check the optimum design is minimally supported, i.e. desigith fewer points are not optimal.
Also for approximate designs, G-optimal design where thegligtive variance is minimised is
equivalent to D-optimality where we minimise the geneslisariance of the parameter estimates
or equivalently maximise the information gain of the partanékelihood (Atkinson and Donev,
1992, p57).

Chaloner and Larntz (1989) derive a generalisation of th& @®Econcave design criteria for
non-linear models and present simulation results on atlogigression example for Bayesian D
and A optimality. In Bayesian optimal design, the criterfonction is the integral of the corre-
sponding criterion function over a parameter prior, ifef (§,0)p(8). In their simulation exper-
iments they demonstrate that as the prior becomes lessriafiwe, the number of support points
required for a minimally supported optimal design growshwitt bound. This intuitive result was
later proven formally by Braess and Dette (2007).

Formally the GET is defined below. If the design criteriorcancavethen ag-optimal &*

design can be equivalently characterised by any of the ttorditions:
1. & maximisesp(g).
2. & minimises sup.y d(&,x) where d&, x) the directional derivative af(§) at& in the direc-

tion of x.
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3. supcxd(&*,x) =0

whereX is the candidate set. For the theorem to applsnust be a compact set, the derivatives
for @ must exist and be continuous in x. The directional derieat{£,x) is also known in the
literature as the sensitivity function. The GET allows omeheck the optimality of a given design
by examining the sensitivity function.

The GET can be used to construct an efficient optimisatiotimedior optimal designs known
as the exchange algorithm which proceeds sequentially ingdhe pointx that maximises the
sensitivity function and removes the point that has thetlgapact on the sensitivity function
(Mdller, 2005).

For linear models the number of support points can be bouddedo additivity of information
matrices top(p+ 1)/2. Additivity does not hold for non-linear models so no bousidknown.
Bayesian or composite designs for linear models are notdexlisince the criterion is a linear
function of multiple information matrices (Atkinson and By, 1992, p165). The GET however
still holds for the Bayesian design of linear models (Atkingnd Donev, 1992, p165).

Optimal designs for linear models place points on the edfekeodesign space (Fedorov,
1972). MacKay (1992) proves this results also holds for Beyreoptimal design of linear models
with homescedastic noise. This can also hold for non-lineadels where a Gaussian approxima-
tion used in the proof is valid, i.e. the second derivativéhefinterpolator function with respect to
the parameters is neglected in the expansion of the intigrahround its most probable value. In
particular MacKay (1992) finds that to obtain maximal infation about the parameter posterior
of the interpolant, the next observation should be sampleerevthe variance of the interpolant is
largest. For many interpolators, including linear modtis, variance is largest beyond the most
extreme points where data has been gathered. This appraadd therefore place the design

points on the edges of the design space.

5.2.2 Justification for FIM under Correlated Errors

When considering correlated processes, the majority ofebelts described in the previous sec-
tion do not apply. The theoretical basis on which the usag@sbfer information for design under
correlated errors relies is described here.

In GP regression, a parametric covariance function is usedadel the variance and corre-
lation of the unknown function. The parameters of the cararé are usually estimated using
Maximum Likelihood (ML) or sampling. By utilising asympiotresults of parameter estimators,
useful approximations to finite sample properties can bstcocted. Two asymptotic frameworks

are used in the literature (Zhang and Zimmerman, 2005; StépPa):
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e Increasing domainThe minimum distancé between neighbouring points does not collapse
to 0, i.e.d > 0, as the number of design points goes to infinity. The domhtheodesign

space is unbounded.

e Infill domain The design domain is bounded and as the number of pointstgadefnity,

o—0.

Zhang and Zimmerman (2005) have found that for certain stersily estimable parameters of
exponential kernels with and without a nugget under ML eatiom, approximations correspond-
ing to these two asymptotical frameworks perform about gueell. A parameter is consistently
estimable under a given estimator (e.g. ML) if the sequelfi@stimators converge in probabil-
ity to the quantity being estimated as the sample size groitfsout bound. Mathematically, a

sequence of estimatotg n > 0 is a consistent estimator &fif and only if, for alle > 0, we have:
r!moprﬂtn -0} <e}=1

For parameters that are not consistently estimable howéwerinfill asymptotic framework is
preferable. The finite sample Fisher information is foundbéoa compromise between the two
frameworks.

Mardia and Marshall (1984) showed under increasing dormgimatotics that the Maximum
Likelihood (ML) estimatord converges in probability to the true paramelef — N(6,171(8))
wherel (0) is the Fisher information matrix. Unfortunately no such g results exist under
infill asymptotics. Abt and Welch (1998) show that under Irdgymptotics for the triangular,
exponential and Gaussian kernels, the variance of the Minagir still asymptotically converges
to the inverse of the Fisher information matrix. The Gausk&rnel result was demonstrated using
simulation and not a formal proof.

Pazman (2007) provides justification of the FIM for smallseolevels without using asymp-
totics in the proof but rather using a truncated functionaggion which is only valid for very low
process noise levels. No bound is given on how small the psogariance has to be for the proof
to be valid. Furthermore no nugget is included in the model.

An experimental justification for the use of the FIM under ltmzedastic noise was given in
Zhu and Stein (2005) where simulations from Matérn covagafiunction based GPs were used to
study whether the inverse Fisher information matrix is aoeable approximation to the empirical

covariance matrix of ML estimators.
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5.2.3 Issues in Optimal Design for Correlated Processes

When non-linear models with non-concave design critergacansidered the GET and additivity
of the information matrices do not hold. The focus of thissteés on optimal design when a
correlation structure is present and the aim of the desighesstimation of the parameters of
the correlation function. Unfortunately the nice featuoésvell established design theory, such
as additivity of the information matrix and concavity of @gscriteria, do not carry over to this
setting (Miller and Stehlik, 2009). In the particular case@mputer experiments, Miller and

Stehlik (2009) identify the following issues:

e Asymptotic unidentifiability. As Zhang and Zimmerman (2DGHhow the finite sample
Fisher information matrix approximation breaks down whertain kernel parameters are

not consistently identifiable under infill asymptotics.

e Non-replicability. In the field of computer experimentsplieation in experimental design
is not desirable in the case of deterministic simulatorseré&fore, some authors (Bursztyn
and Steinberg, 2006) use other approaches to design of tengxperiments such as space-
filling designs, discussed in Section 2.3. Another apprascha optimisation to consider
only replication-free designs altough the resulting designo longer optimal. When con-
sidering stochastic simulators as in this thesis, this isanassue as replicated observations

are informative.

e Non-additivity of the information matrix. The informatiolnom different design points

cannot be separated as in standard theory.

e Choice of correlation structure and design robustness.c&ain kernels such as the ex-
ponential, the optimal design without a nugget collapses single point which for other
choices of kernel would carry little information. Thus npssification of the covariance

function can lead to very ineffective designs.

e Nugget effect. For certain kernels such as the exponettialoptimal design has been
shown to collapse to a single point for two point designs.hShehaviour is avoided by the

introduction of a nugget parameter.

5.2.4 Extensions and Criticisms of Optimal Design

Most of the literature on optimal experimental design asssiimmoscedastic noise. Tack et al.
(2002) examine optimal design under a fixed basis linesinénparameters model. Although

stochastic processes are not considered, the variancd usedes similar to the fixed basis model
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utilised in this work. They follow a Bayesian approach toigesand demonstrate that informative
priors lead to more efficient designs.

In certain cases there may exist multiple objective fumstiehich depend upon different infor-
mation matrices. Compound optimal design provides a geapmoach of combining multiple
such objective functions such as model discrimination pIk@ality) and parameter estimation
(A- or D-optimality) via a weighted average of their infortitem matrices (McGree et al., 2008).
Compound designs may also be used to generate designs witbgual emphasis on the trend
and covariance parameters (Miller and Stehlik, 2010).

Hybrid criteria that explicitly combine prediction and pareter estimation also have been
developed (Zimmerman, 2006; Zhu and Stein, 2006). Zimmer(@806) proposes local EK-
optimality, a linear combination of the maximum predictivariance and a scalarisation of the
covariance of the ML parameter estimate. While this citeselects observations which reduce
parameter uncertainty and predictive uncertainty givendhrrent parameter, it does not take
into account the effect of parameter uncertainty on preaicerror (Krause et al., 2008). To
address this issue, Zhu and Stein (2006) propose an ameiritgeidie, which they term Estimation
Adjusted, and derive an iterative algorithm which alteesabetween optimising the design for
covariance estimation and spatial prediction. Krause .e28008) note that the hybrid design
criterion is not a submodular function and no theoreticalrats are available on its optimisation.
Optimisation issues are discussed further in Section 5.5.

Seeger (2008) presents a sequential adaptive optimaldesthod using a linear model with
a sparsity prior on the model parameters. The expectatiopagation (EP) algorithm is used
for inference. For optimal design the information gain of ffrarameter posterior is used as the
design criterion. Seeger (2008) does not contrast the peapdesign to other designs such as
space-filling (see Section 2.3).

In the case of GPs, Krause and Guestrin (2007) present aoratiph-exploitation approach,
where initially the parameter uncertainty is reduced foid by the near-optimal selection of
observations where the parameters are assumed known. €heg d bound on the benefit of
continuing the exploration phase which is used as a stoppilegto decide to switch to the ex-
ploitation phase. Intuitively, if the parameter postei®highly peaked, very little benefit can be
gained from further exploration steps as opposed ta priori batch exploitation design.

Several papers criticise traditional optimal design foedr models as the points are placed on
the boundary of the design region. O’Hagan and Kingman (LSdg§gest such a design strategy
is not robust to model error and specifying the design regeomin practice be very difficult. To
protect against model error, the authors argue the regudsign should cover the space well and

use as many distinct points as possible in order to detecy émen of deviation from the proposed
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model.

MacKay (1992) states that placing points on the edges ofiat ispace might be considered
non-ideal behaviour because in fact the practitioner igmtetested in the interpolant behaviour
in those regions. He proposes a transductive approach vaineeatropy criterion is maximised
with respect to future unsampled design locations. A tractek approach is also taken by Yu
and Bi (2006) where the predictive variance of a linear masl@hinimised. The authors apply
reproducing kernels to kernelise the criterion and addiiessscalability issue with an EM-like
iterative two step optimisation algorithm. The non-liné&arnel criterion is maxtr[Kyx(Kxx +
ul)~YKxy] subject taX c V,|X| = mwhereV is the candidate and the selected set of sizs, pa
positive regulariser and K the specified kernel matrix wegrel functiork(.,.). This criterion can
be interpreted as maximising the trace of the test-traintpmirrelation in the variance prediction

of a GP.

5.3 Fisher information for Replicated Observations

In this section we derive the Fisher information for the ddikelihood model (Section 4.5).

In the case of multivariate normal distributions the FIM dacomputed analytically. The
parameters may also appear in the mean function of the pkoous the focus of this work is on
identifying covariance function parameters and we wiluass the mean function parameters are
known or of no interest. Therefore I¥tbe distributed adl(0,%(0)), the j, pth element of theF
is:

FP = %tr (zl%zl%;) , (5.1)
where tr denotes the trace. For a proof see Pazman (2004).
The(j, p)th element of the FIM for paramete®s, 6, of the heteroscedastic model with repli-

cate observations is:

) M .
FIP= ZFS‘MFN”’, (5.2)

where

e M is the number of design points.

o FJP— ’“—Elaafgf %g’s wheren; is the number of replicate observations at design pioarid
aa%’jz the derivative of the variance modg)(8) (Section 4.5) with respect to parameégr
In the case of the fixed basis model (Section 4.52)Jx,B) = exp(H(x)"B) and F)? =

2(ni — HH(x)TIjH (x)T I, whereJ; the zero vector withj*" element 1 andH (x) the basis
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function matrix.

stip reflects the contribution of the sample variance to the patarmuncertainty. If we
examine the formuleal,:sjip = O unless botl®; and6, are parameters of the variance modlel

and the number of replicates is at least 2,me> 1.
o FIP= %tr(Z‘lg—ng*%) as defined in Equation (5.1).

A complete proof is given in Appendix A.5.

For illustrative purposes, the FIM for a fixed basis varianuzdel is derived. The GP prior
is N(0,K + RP~1) andR = diag(exp(Bx)) the Log-Linear fixed basis variance model for a one-
dimensional input space with zero nugget. ABe- diag(n;) the diagonal matrix of the number
of replicate observations. The model specification is cetepl by specifying the kern&l with a

single parameter, the length-scaleFor this model, the FIM is:

16:,8;— | A B
2
A St (z1%%) lir(z 19Kz 1Rp)
2
B Str(z 198p-13106) L (3 10Rp1) g molp2

where> = K +RP 1, %R = R@® X, and® denotes the Hadamard element-wise matrix multiplica-

tion.

5.4 Bayesian Design

The calculation of the FIM is defined for a given parameteu&alectorfy. If a point estimate for
0 is used the design is termed locally optimal, in the senseath@ptimal design is obtained for
that specific parameter valfig. In practiced will not be knowna priori so a Bayesian approach
is preferred. In full generality, a Bayesian design craer{Chaloner and Verdinelli, 1995) is
specified as:

U@E = [ [U(e.E2)p6IZ.2)p(ZIE) dBdZ

whereg the proposed desigp(0|Z,&) the parameter posterige(Z|&) = [ p(Z|6,&)p(0) db is the
marginal distribution of the response daaver the prior distribution 06. The utility function
uU(6,&,2) is problem specific. When the design goal is the minimisatioparameter uncertainty,
several authors (Chaloner and Verdinelli, 1995; Zhu andhS#905) have proposed Shannon
information as a useful utility.

Defining the utility as the Shannon information and utilgsima Normal approximation to the
parameter posterige(6|Z,S), Chaloner and Verdinelli (1995) arrive at the following idgscrite-

rion;
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U(® =~ [ In|7(€.6)| p(6) de 53)

where p(0) is the prior on the parameters and (§,0)| the determinant of the FIM given by
Equation (5.2).

Intuitively, as the finite sample FIM approximates the astotip distribution of the ML esti-
mator (Section 5.2.2), this criterion integrates the logarece of the ML estimates of the param-
eters over the prior distribution (Zhu and Stein, 2005).

The integral in (5.3) can be approximated using Monte Cadbriques:
1N |
U@~ -5 3 Inl# (2.6 (5.4)

for N samples from the priop(6). As in Zhu and Stein (2005), in the simulation studies (®ecti

5.6) a coarse uniform discrete prip(0) is used to speed up the evaluation of the design criterion.

5.5 Optimisation

To complete the specification of the experimental desigordlgn the method of optimisation
must be defined. The most commonly employed approach is eéctslsubset of points from a
large candidate design set (Zhu and Stein, 2005). A complaimeration of all possible designs
quickly becomes infeasible as the number of candidate painteases. Various search strategies
have been proposed in the literature to address this limitaSome authors have suggested us-
ing a stochastic algorithm like simulated annealing withtiple restarts to guarantee robustness
(Zhu and Stein, 2005) or random sampling where an informagain is estimated for each can-
didate point by averaging the design score over all seaiiohgbich this point was included (Xia
et al., 2006). Computational aspects of the optimisatiothots we have utilised are discussed in
Section 5.5.1.

We have implemented a simulated annealing (SA) type algoriDréo et al., 2003) which
is described in Algorithm 5.1 and includes multiple restdat ensure robustness. The algorithm

parameters were set to the following values:

Parameter Value

Degree of Parallelism d=8

Fitness function fr(X) = —log| |
Initial steps to determine temperature\; = 200
Maximum iteration count M =5x10*

The perturbation function used in SA is described in Aldorit5.2. In step A of the SA algorithm
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described in Algorithm 5.1, the design is perturbed in aiooius fashion and it is not until
step B that the optimal design is matched to the candidateTdes discretisation process may
significantly alter the continuous design depending on ti@seness of the candidate set. This
approach was taken to ensure that the SA optimisation omgrgées designs that are subsets of
the candidate set and may therefore be directly comparala#hér optimisation schemes such as
the greedy approach discussed below.

Greedy optimisation, described in Algorithm 5.3, is a sedjaé procedure where at each step
the input point from a candidate set which maximises thessgam is included in the selected set.
In Xia et al. (2006) the greedy approach is shown to be suptrisimple stochastic optimisation
schemes through a set of simulation experiments. We cortismesult, providing further experi-
mental results supporting the effectiveness of the grepdgoach in Section 5.6.3. Computational
aspects for both the Greedy and Simulated annealing meéredfiscussed in Section 5.5.1.

If the score function is in fact a monotone submodular funttithen the solution obtained via
the greedy algorithm is guaranteed to be within constatfax 1— 1/e of the optimum solution
(Krause et al., 2008). A submodular function must satis® ‘timinishing returns” condition
where for set\ C B CV andy € V \ Bit holds thatF (AUy) — F(A) > F(BUy) — F(B).

In the machine learning area, the Fisher information has lsed for active learning (Hoi
et al., 2009) where a submodular function was found to be d gpproximation to the FIM in the
case of classification assuming small length-scales.

In the case of linear models under conditional suppressanéss (Das and Kempe, 2008),
Bayesian A-optimality is a submodular function (Krausel @2#08). A variableX; is a suppressor
variable if it "suppresses"” the correlation between sorherd§ and the predictor variable Z, in the
sense thak; appears not correlated with Z but is much more correlated ®ibnceX; has been
sampled (Das and Kempe, 2008). As an example, Das and Keid@&)(&ate that if variableX;
and Z are independent adg= X; + Z thenX; would be a suppressor variable. In most other cases
of optimal design such as Bayesian D-optimal design Kratiaé €£008) have demonstrated that
the corresponding objective functions are not submodlaspite the lack of submodularity, the
greedy optimisation method has performed well in our sitreexperiments.

As Zimmerman (2006) notes, the Fisher information of stetiy isotropic GPs is invariant
to translations of the design so optimisation can be spedyupobconsidering designs that are
equivalent. Such optimisation has been not implementedrirexperiments.

One challenge with the sequential greedy optimisation ageiinitialisation. It is necessary
to have at least two points to compute the Fisher score intiequéb.4), with more providing
better numerical stability. A potentially useful initigdition is to evaluate the Fisher score for all

point pairs. Alternatively a space-filling design, such las Latin Hyperube, could be used for
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initialisation. In our simulation experiments, we initsd the algorithm by selecting the centroid
point of the candidate set as the initial design point. Thimpromise appears to have little effect

on the final designs found as shown in Section 5.6.3.

Algorithm 5.1 Simulated Annealing algorithm based on Dréo et al. (2003).
Simulated Annealing algorithm

Input: Candidate pointXc, Target Design size, degree of parallelisnd, fithness functiorn
ft (X), perturbation functiorfy(x), initial steps to determine temperatig maximum iteratior
countM. Output: Local optimum desigiXo.

I. Initialisation. Generatel Latin Hypercube designs to use as starting points. For editdl idesign use
the SA algorithm below to find optimum the desigﬁ.

1. PerformN; random perturbations (Algorithm 5.2) and evaluate theayeichange in fithess, also
known as energy, denoted byAE >.

2. Calculate the initial temperatufg = ﬁ.

A. Generate Continuous Desig('g. Loop until one of the termination criteria is met.
1. Perform perturbation on current design and calculateggrehange\E.

2. Metropolis Acceptance Rule: £E < 0 the perturbation is accepted. AE > 0 perturbation i$
accepted with probability eXp-AE /T) whereT is the current temperature.

3. Check termination conditions. If any are met proceedep &

(&) Has the maximum number of iteratioMisbeen reached?

(b) Has thermodynamic equilibrium been reached and is teesydeemed frozen? In prac-
tical terms, Dréo et al. (2003) suggest iff@erturbations accepted or 10@erturbations
attempted the system may be deemed to have reached eguilibfihe system is deemed
frozen if three temperature changes have been performbdutiany perturbations accepted.

—

4. If the system has reached equilibrium and is not frozemteéimperature is lowered according to

the annealing schedule. We use a linear schefiule= 0.9Ty.
B. Discretise Continuous Design

1. Match optimum continuous desig(@ to candidate seXc by minimising the Euclidean distance|of
the optimum set to candidate points. Replicate points magtbeduced in this process dependjng
on the granularity of the candidate set and the clusteririgeobptimum design.

5.5.1 Computational Complexity

In the simulation experiments presented in this thesis tptimaesation methods have been utilised
to generate the Fisher-optimal design, the Greedy and StetiAnnealing algorithms described
in Section 5.5. In this section we examine the computatiooalplexity of each algorithm in terms
of both the number of function evaluations of the Fishereciin and the number of primitive

arithmetic operations.
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Algorithm 5.2 Perturbation function used in the Simulated Annealing ratigm.
Perturbation function

Input: Current desigrXc, current temperatur€, maximum temperatur,. Output: Perturbed
designXo.

A. Generate a random numbeimU|0,1]. If r > 0.5 use perturbation method; Pelse B.
P1. Shift Single Point.

1. Pick pointx} in designX to change at random.

2. Calculate range of shift dependant on temperature @ty and shiftx, within the feasible
region. At maximum temperature the entire design spaceslite. Specifically given the upper
and lower bounds for each dimensiqre [l;,u;], a random value is generated by

i — XL+(U!_XL)TLr...D+1+|i .11 >05
¢ XI(:_(XL_Ii)mr...DJrl-’-'i .11 <05

wherer = {r1,r_p+1} areD + 1 samples from the uniform distributid#(0, 1), whereD the di-
mensionality ofXe.

P,. Replace Points.

1. Calculate the number of points to replace dependant otethperature ratid /Ty. At maximum
temperature all the points are replaced. Specifically timelar of points replaced for a design sjze
M is roundM x %) where round denotes the integer rounding operation.

2. Replace the selected number of points with randomly ggeemoints that may lie anywhere
the design domain.

n

Algorithm 5.3 Greedy optimisation for optimal design generation.
Greedy Algorithm

Input: Target design sizg, design fitness functiori (X), Candidate set desigKc of size
C, Initial designX, of sizel;. Output: Optimal designXo. Internal state: Current proposg
designXp.

A. Initialise current proposal design to passed in initial dgs Xp = X .
B. Add to the current proposal desigroXhe candidate set point which maximises the fithess function
ft(X) unless the size of the proposal design has reached the @egan size p.

1. Append each point in the candidate set to the proposaigss. X5' = [Xp; Xz (i)]Vi € {1,..., C}.
2. Evaluate the criterion function for each proposﬁal(Xﬁi).

3. Permanently add the point the maximises the criterioheactirrent proposal design. Since repli-
cation is allowed, the selected pointistremoved from the candidate set.
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The Greedy method described in Algorithm 5.3 requires

Ns=(p—li)xC (5.5)

evaluations of the Fisher criterion function, wherthe target design sizg,the initial design size
(see the discussion on Section 5.5 for how the Greedy ahgoris initialised) and” the size of
the candidate design size. The dependence of the algocittomiplexity on the candidate design
size is problematic since the candidate size is a disctietisaf the design space which grows
exponentially with the dimensionality of the space. Thikriswn as the curse of dimensionality
and effectively restricts the usage of the presented Gralgadyithm to low-dimensional problems.

Unlike the Greedy method, the Simulated Annealing (SA)roation method described in
Algorithm 5.1 does not depend on the candidate design sizkeotarget design size. Rather
the worse-case complexity depends on the number of intégissused to determine the temper-
atureN; and the maximum number of iterations allowdd Therefore the worse-case number of
evaluations of the fitness function is

N =N+ M. (5.6)

The SA algorithm therefore does not suffer from the cursaraedsionality. However the settings
of the algorithm have to be carefully tuned to the problemaatchas several authors have noted
(Dréo et al., 2003). In particular. we have observed thattireent maximum iteration limit of
5 x 10* may be too low for our synthetic examples, as it is reached astrof our simulations
prior to any other convergence criterion being met. In adidjtthe linear annealing schedule
(Step A.4 in Algorithm 5.1) used may also be too fast as thertitecal convergence guarantees of
the algorithm apply only when a logarithmic schedule is ugela result, in our experiments the
SA algorithm on occasions finds a worse solution than the @yrakyorithm. Therefore, although
the SA algorithm appears attractive for higher-dimendiaiesign problems, care must be taken
to check the parameter settings and convergence of thathlgor

For the local design simulation experiments presented ¢ti@e5.6.4, a design of size= 30
is constructed using an initial design of one point (the edf the candidate set) and a candidate
set of 1024 points. By Equation (5.5) therefore 29,696 aetans of the Fisher criterion function
are required. On a standard desktop this takes of the ordeoohinutes The SA algorithm using
M = 5 x 10* maximum iterations withN\; = 200 initial steps, requires 50,200 evaluations of the
Fisher fitness function which on the same hardware takeseobittier of 5 minutes of elapsed
time. As the Greedy algorithm steps B.1 and B.2 may be runialled the elapsed time may be
reduced by using multiple cores.

The computational cost of both algorithms is increasedtankially when the Bayesian Fisher
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criterion (Equation 5.4) is used since the integration npusteed numerically. In this case, the
total number of the local Fisher fitness function (Equatia2) ®valuations has to be multiplied
by the number of Monte Carlo samples used to compute the Beawyesterion. In the Bayesian
design experiments presented in Section 5.6.5, we utits®dnte Carlo samples requiring a
total of 50200x 16 = 803 200 evaluations of the local Fisher function for the SA desagd
29,696x 16 = 475136 evaluations for the Greedy algorithm. We therefore kmtecthat a quick
low cost approximation to the integration will be of greanb#ft to optimal design optimisation
time and consequently to the applicability of the optimadigea method we advocate.

The Fisher score criterion itself requires the evaluatiba Iy x lg symmetric matrix where
lg the number of model parameters. Each ofﬁﬁ'%i) elements of the Fisher matrix requires
the calculation of Equation (5.1). The inversion of the p training data covariance matrix re-
quires O(p*) operations for the worst-case scenario of single obsenati If replicated design
sites are considered, the matrix inversion reduces to th&au of unique input training points.
The inversion operation can be performed once for the eRtgleer matrix but the matrix multi-
plication> 1 x %J has to be performed for each parameter separately requixilag< p?) opera-
tions. Finally for each pair of parameters the final prodequires a further matrix multiplication.
Therefore the total computational cost of a Fisher critegwaluation is:

Csr=0(p*)+ 0(lgx p?)+ 0O <w p2> . (5.7)

The individual cost of a Fisher criterion evaluation (Egomt(5.7)) may then be multiplied by
the cost of the corresponding algorithm (Equations (5.5bd)) given above to obtain the total
computational cost of the optimisation method.

Lastly we note that the computational cost of generatingpther designs considered such as
the Latin Hypercube and Grid designs (Section 5.6.4) isidensd negligible since these designs

are constructed using simple geometric criteria.

5.6 Simulation Experiments on Maximum Likelihood Estimato rs

In this section properties of Fisher-information optintiskesigns are investigated through a range
of synthetic examples. The focus is on Maximum Likelihootineation and Bayesian inference is
tackled in the next section. Further, in all experimentegx&ection 5.6.8, the model used in de-
sign generation is the correct model, i.e. the same modahipked from to generate observations,
used in the Fisher criterion to generate the optimal desiginparform inference.

In Section 5.6.2 we show the monotonicity of the Fisher imfation to the empirical parameter

covariance of the kernel parameters under different n@igiemes. The monotonicity is required
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to demonstrate the validity of the Fisher score as a desitgrion for parameter estimations.

In Section 5.6.3 a one-dimensional example is used to damadmghe design optimisation
problem as well as the effectiveness of the greedy optiioisapproach. Profile likelihood plots
are also presented to visualise the effect on the likelihofbd Fisher and a space-filling grid
design. The effectiveness of Fisher designs for local desgdlemonstrated in Section 5.6.4
utilising a range of models of increasing variance compjexi

In Section 5.6.5 a study of Bayesian designs is presenteteveheoarse discrete prior is used
for the kernel parameters. To better understand the difée®between designs, the Bayesian op-
timal and Grid designs are examined using a single GP ré&alisa Section 5.6.6. The behaviour
of Fisher-optimal designs for different design sizes isdsed in Section 5.6.7 and we conclude
in Section 5.6.8 by examining the case of structural errbene the assumed model used in design

generation is incorrect.

5.6.1 Experimental Methodology

The designs are assessed using two main attributes, poedactd parameter estimation. A GP
with known parameters is sampled in order to be able to assegpuality of the ML parameter
estimates.

In our simulation experiments the GP subsequently usedhferénce has an identical mean
and covariance function specification to avoid introducstigictural error in our results. This
assumption is examined in more detail in Section 5.6.8.

In order to measure the accuracy of parameter estimatioretatve RMSE (rRMSE) (Zhu
and Stein, 2005) is useq; (6 — 85)2/|60| whered is the ML point estimate an®,| the absolute
value of the true parameter. The rescalingdgyensures the rRMSEs for different parameters are
comparable. To ensure robustness in the calculation oRMSE, the maximum likelihood opti-
misation is restarted five times from random initial coratis for all parameters. The solution with
the highest likelihood is selected for subsequent validatiThe initial value for the log length-
scale parameter was set4¢(—2,0.01) , i.e. a Normal distribution centred at2 corresponding
to a length-scale of 0.1. All other parameters were initialised 2¢(0, 1).

Another measure of parameter estimation accuracy usethigedethe log determinant of the
ML estimates or in short the empirical parameter covariatidés defined as the log determinant of
the covariance of the ML estimates of all parameters acitbssatisations of the experiment under
consideration. It is a measure of dispersion of the ML egtimand does not capture the error
of the estimations with respect to the true parameters (wiie rRMSE does). However the log
determinant of the finite sample FIM should approximate tigedeterminant of the ML estimates

(see the asymptotic theory discussion in Section 5.2.2}aduality of this approximation is a
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useful diagnostic for the performance of the Fisher-optidesign. Confidence intervals for the
log determinant estimate are computed using the bootskgaptam described in Appendix B.1.

The measures used to assess predictive performance areatiaddobis error, the Dawid
score and the RMSE (Section 2.5). The predictive performafithe model is measured using a
random Latin Hypercube test set. Multiple realisationshef éxperiment are performed and the
resulting validation and parameter accuracy metrics artggal using a box whisker plot where the
{0.05, 0.25, 0.5, 0.75, 0.95} quantiles are plotted. Values beyond tb& and 095 quantiles are
not plotted.

Lastly, in our experiments the design space is s&t ®[0, 1] whered the dimensionality of
the space. In the simulatiods= 1 ord = 2. To demonstrate the invariance of the properties of the
FIM to the choice of kernel, two kernels are utilised in thaglation experiments, the exponential

and Matérn with fixed order = 5/2.

5.6.2 Monotonicity

In this section we show that under different signal-to-aawtios the Fisher score remains mono-
tonic to the log determinant of the empirical parameter davae.

The Matérn covariance function is used for the mean, andealdimodel for the log variance.
The parameters of the generative GP were set to length-scal@5, process varianog, = 0.75
and the variance model linear coefficientf3io= 0.01 andp, = —30 which correspond to a high
noise level in the initial part of the design space quicklgiuging to low noise. Finally the em-
pirical parameter covariance was calculated using ML patanestimates from 1000 realisations
of the generative GP. The resulting approximation errothi®as in Figure 5.1(a) for different
design sizes where we observe that the inverse of the FIMdasa lower bound to the empirical
parameter covariance and the bound becomes tighter asriiteenof design points grows.

The next experiment demonstrates the monotonicity of thledfiinformation to the empirical
parameter covariance. We generate six designs of 50 poititshe distance between neighbour-
ing points determined by the quantiles of exponential itistions with different rate parameters
(Figure 5.1(b)). In addition three random designs and anlldgipercube design were also used.

In the low noise case, a Log-Linear basis variance model wes with the parameters of the
GP set to the same values as in the previous experiment. &high noise case a two-Gaussian
basis RBF model was used. The basis functions were pogitiah@33 and 066 in the one-
dimensional design space with their variance set to theredudistance between their centres.
The parameters were set to length-s@ate 0.33, process varianae, = 1.8 and variance model
coefficientsp; = —3.7, B> = —0.8. Finally, we calculate confidence intervals for our estesa

of the log determinant of the empirical parameter covagamging 1000 bootstrap samples (see

97



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

-5

-10

15 20 40 60 80 100 0 1

(a) Score (y axis) for design sizes (x axis) (b) Designs used in (c) and (d)

-2
-6
S -3 3] %
I 2
= 8 -6.5
g -4 b 3 %
3 3
S 3 -7
£ 3
26 8 gx -75
u P =
T _7 T _
fa} 8
E Iﬁilél S
S-8 S
o ¥ -8.5]
-0
-9 -8 -7 -6 -88 -86 -84 -82 -8 -7.8 -7.6
Fisher Information Fisher Information
(c) Low noise (d) High noise

Figure 5.1: Monotonicity experiment for Fisher Informatio(a) The FIM (solid) and empirical
parameter covariance (dashed) for designs of size 10 to(bpThe non-random designs used in
(c) and (d). (c)-(d) Relation of log determinant of the Fishdormation (x axis) to the log de-
terminant of the empirical parameter covariance (y axibe @approximation for 50-point designs
under different noise levels for a linear basis variance eh@) and an RBF variance model with
two Gaussian basis functions centred at the 0.33 and 0.6@ ofite-dimensional design space (d).
Designs 7-9 are random and 10 is a uniform Latin Hypercube.
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Appendix B.1). The results are shown in Figure 5.1(c)-(demehwe observe that for the higher
noise level case the approximation error is larger but theatamicity still holds.

We repeat this experiment on larger designs and varyingkigrnoise ratios. We use designs
of 100 points where we sample from a GP with different levdlfeteroscedastic noise. Two
Gaussian basis functions were used with their centres adithsvset as before. Samples from the
GP for the different noise scenarios are shown in Figure@s(®). The length-scale and process
variance of the Matérn covariance were unchanged. Therlowdficients for the variance model
were set to3; = —4.7, B, = —2.8 for the low noise casd3; = —3.7, 3> = —0.8 for the the
medium noise case affld = —2.7, B, = 1.2 for the high-noise case. We see in Figures 5.2(a)-(c)
that although the approximation of the FIM to the parametgiance gets progressively worse as
the noise level increases, the monotonicity holds evendlatively high noise levels.

The monotone relationship between the log determinanteoflM and the log determinant
of the empirical parameter covariance holds in all scesassted in this section and affirms the
use of the FIM as a design criterion for minimising paramategertainty. This conclusion agrees

with the findings of Zhu and Stein (2005) which showed thisitiehship in the homoscedastic

case.
-9.5 ]3 -8.5
— — _9
[¢] —10 [¢]
(e [a
2 ]2 2 -9.5
3 —105%‘ }1 I -10
-11 -10.5
-11 -10.5 -10 -10.6 -10.1  -9.6 -9.8 -9.3 —8.8
Fisher Information Fisher Information Fisher Information

(@) Low (b) Medium (c) High

(d) Low (e) Medium () High

Figure 5.2: (a)-(c) Effect of noise on the monotonicity oé thRIM (x axis) to the log determinant
of the empirical parameter covariance (y axis). DesignsideBeasing distance designs (Fig-

ure 5.1(b)), 4 a Latin design and 5 is random. (d)-(f) lllastre GP realisations for the various
noise levels.
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5.6.3 Complete Enumeration

In this simulation study the optimisation problem is exagadirin more detail. Using a simple
one-dimensional example, the properties of the searchesage explored through a complete
enumeration of all possible solutions.

The experiment considers the selection of 9 locations frazaralidate set of 29 points in a
locally optimal design. The design is given the point par@mgrior8y = (A = 0.5,0, =0.7,31 =
0.1,32 = —10) and the FIM score of alngg) combinations is computed. To reduce computational
time we have not considered replicate observations in tper@ment. The Matérn covariance
and a Log-Linear basis function for the variance model islué&e Fisher scores for the solution
obtained using greedy optimisation and an approximate dg&dgn selected from the candidate

set are also shown in Figure 5.3(b).

Grid
] | [ ] I | [ | 3
2
Greedy
L X 2 ¢ ¢ L X2/
Optimal
X ] ® o ©® o
Candidate
DA A AA AAA ADL A A AAMAAA A A AA
-4

0 0.2 0.4 0.6 0.8 1
(a) Designs (b) FIM solutions

Figure 5.3: Complete enumeration of designs for a locallynogd design. Candidate Set (green
triangle), optimal design (red circle), greedy designéldiamond) and grid design (black square).

In terms of Fisher score, the greedy solution is very clogbdéooptimum while the score for
the grid design is significantly worse. Additionally, evem this simple example we notice a very
large number of local optima close to the optimum demoristfahe near equivalence of a large
number of designs.

The optimal, greedy and grid designs are shown in Figurepaongside the candidate set.
The relatively long length-scale of the GP means the nogeasidominates and the optimal de-
signs place the points near the boundaries due to the legrfliiorm of the variance function.

Since the motivation of using the Fisher information as agesriterion is to minimise pa-
rameter uncertainty, we expect the likelihood for the optiglesigns be more informative about
the optimum® than the grid design. We demonstrate this effect by plottiregprofile likelihood

for each parameter (Figure 5.4) using a single GP samplerasaining data. For all four param-
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eters using only nine training points, the likelihood on dpéimal design excludes larger portions

of the parameter domain than the grid design.

.....

(a) logh (b) logop (©) B1 (d) B2

Figure 5.4: Profile likelihoods for locally optimal desigdaghed blue) and a grid design (solid
black). The true parameter value is also shown (verticaline).

5.6.4 Local Design

In this section Fisher information is applied directly aseaidn criterion using the true parameter
values as used by the sampled GP. This is commonly referiadtte literature as locally optimum
design. This approach cannot be used in real-world apgitatas the parameter values of the
underlying process will not be known. However the approdldwa us to examine some of the
properties of optimal designs without the complexity ofoprspecifications for the covariance
parameters.

The following six designs are utilised in the experiments &0 provide the acronyms that

are used to reference these designs in the plots.

1. Greedy F). We obtain the design using greedy optimisation. The &lgoris initialised by

placing the first point in the centre of the design space.

2. Grid (G). A standard grid design where the distance between neigimgppoints is a con-
stant. If the design size is not a perfect square, the reraajpoints are placed randomly.
For a design size of 30 points in two dimensional space fomgka (Figure 5.5(b)) a 25

point Grid is placed with the remainder 5 points placed ramigio
3. Replicated GridRg). A standard grid design with two replicate observationsaath point.

4. Maximin Latin Hypercubel(). Maximise the minimum Euclidean distance between nearest
neighbour points by selecting from 1000 randomly generatefibrm Latin Hypercube de-

signs.

5. Replicate Maximin Latin Hypercub®). We use the same configuration as for the Maximin

Latin Hypercube but two replicate observations are useddt design point.
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6. Simulated AnnealingS). We generate a locally optimum design using the Simulated A

nealing algorithm described in Section 5.5 to minimise ttshér score.

Examples of the space filling designs (G,Rg,L,R) are showkigare 5.5.
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Figure 5.5: Examples of space filling designs used in the Isitiomn experiments. Numbers indi-
cate replicated points.

All designs were generated using a 1024 grid space of catedjmzints by pickingn = 30
points allowing for replication. A test set of 1024 pointsigeated using a random uniform Latin
Hypercube design is used to compute the Mahalanobis ertbtrenDawid score. The GP is
sampled 500 times, with ML inference and validation perfednmdependently for each realisa-
tion. The maximum likelihood optimisation is performed fire independent realisations with
different initial conditions to ensure robustness in thietson obtained. The exact initialisation
and experimental methodology are described in Sectiod.5.6.

Three main cases are explored in our simulation study reftgttcreasing levels of complex-

ity in the variance model:

e Nugget: The variance response is constant across the disigain.
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e Log-Linear: A fixed-basis linear polynomial model is used floe variance. Fixed basis

variance models are described in Section 4.5.2.

o Latent-Kernel: A Latent-Kernel model is used for the vacen Latent-Kernel variance

models are described in Section 4.5.3.

5.6.4.1 Nugget Model

In this simulation experiment a Matérn kernel is used to rhaaieut correlations and a ho-
moscedastic constant noise parameter, referred to as guenus used to model the simulator
at-a-point variance.

The hyperparameters for the sampled GP were @t tm,, 31) = (0.1,1,0.01) corresponding
to a short length-scale process with low noise. The regulliesign are presented in Figure 5.6.
The Greedy and Simulated Annealing (SA) optimisation apgines yield quite different designs,
with the SA design covering the space more uniformly. Thesigs, as well as the replicate Grid
and Maximin Latin Hypercube (LH) designs, achieve similehér score (Figure 5.7) confirming
the existence of multiple local optima in the search spabe. éimpirical parameter covariance for
all designs calculated using the ML point estimates, whighRisher score approximates, shows
a similar effect.

As observed by Zhu and Stein (2005), in the homoscedasteasathe noise level increases,
the design becomes more clustered with more sample pointlyster. The experiment in this
section corresponds to the smallest level of noise coreidey Zhu and Stein (2005). Though
the Greedy design appears highly clustered, there is goeerage of the space. In contrast,
Zhu and Stein (2005) show for higher noise levels that ther@tdesigns include few clusters
spread evenly in the design space with very small intertptigtances within a cluster. Therefore
replicate observations become more prevalent as the raigkihcreases. The experiment in this
section establishes a baseline from which to compare thadtgd the heteroscedastic variance
models on design.

The performance of the designs in terms of parameter estimean be further investigated
by examining the relative RMSEs and biases for each hypampeter. These are shown in Figure
5.8 and summarised in Table 5.1. All the replicate desigastify the parameters more robustly,
especially the nugget, both in terms of relative RMSE and.bi@ihe replicate Grid, Grid and
Latin designs appear less robust in the estimation of thgitescale parameter where significantly
longer tails exist in the relative RMSE distribution comgéito the other designs.

Lastly, the predictive performance of the designs is exanhin terms of Mahalanobis error,

Dawid score and root mean squared error (RMSE). The disitvibwf errors is shown in Figure
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Figure 5.6: Fisher designs obtained for the Nugget varianodel using Greedy and Simulated
Annealing optimisation methods under Matérn kernel.

Table 5.1: Relative Parameter RMSE for the Nugget model.

Design A Op B1

Greedy 0.17+0.14 | 0.17£0.13| 0.08+ 0.06
Replicate Grid 0.644+0.40 | 0.144+0.10| 0.074+0.05
Grid 15.794+ 160 | 0.19+0.19| 0.62+ 0.29

Replicate Maximin LH 0.504+0.34 | 0.154+0.11| 0.07+ 0.05
Maximin Latin Hypercube 25.95+ 407 | 0.19+ 0.19 | 0.54+ 0.27
Simulated Annealing 0.97+ 14.48| 0.15+0.12| 0.15+ 0.13

5.9 and is summarised in Table 5.2. A Latin Hypercube tesbfs&024 design points is used to
validate each ML estimate realisation. Higher Mahalanehisr and Dawid score is observed for
the non-replicate designs. In particular, the distributid the Mahalanobis error and Dawid score
for the Grid and Maximim Latin Hypercube non-replicate dasishow significant tails reflecting
the lack of robustness in parameter estimation achievedigirthese designs.

In terms of the RMSE (Figure 5.9(c)), the space filling noplicate designs achieve somewhat
smaller errors compared to the replicate designs. As thradbcover the space more fully we
expect an overall smaller interpolation error on the meahis Effect is observed later in the
heteroscedastic scenarios as well. We conclude therdfateéhte lower Dawid and Mahalanobis
errors for the replicate designs stem from a more accuradigtion of the model covariance
which is expected from the lower parameter estimation srespecially with regards to the nugget

parameter.

5.6.4.2 Log-Linear Model

We now use a fixed-basis Log-Linear model on the two dimemsiorput space of the form

exp(B1+ Box1 + B3x2). The hyperparameters of the sample GP were sék oy, 31, B2,B3) =
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Figure 5.7: Log Determinant and Fisher Scores for all desigging the Nugget model.

o
A p Bl A 0—p Bl
3 H 0.2
. | 1 * 0.15 3
H 0.6 o, Lo 0.15
25 Vo o vy o1
3 ! 1 .
yoa 08 v 08 01 2
v ! 0.05
2 S P S 0.05 1
Lo L iyl 06 0
1 1 0.3} LI n -
15 : : : 1 : : : ' : 0 0.05 0 H H
Yoo ! 0.4 T 0.1
1 : 1o, ! 0.2f 1 1 :
1 1 —f
o, o 005 -0.15 -1
1 v ! 1
0.1} 02f + 1, _
0.5 'u : oo Lt 1 ! :“ -0.1 0.2 -
“I n of + 44 “ﬂ ﬂ " -0.25
' 0
op ¢ty o L L 015 -0.3
FRGGRL S FRGGRL S FRGGR L S FRGGRL S FRgGGRL S FRGGRL S
(a) rRMSE (b) Parameter Bias

Figure 5.8: Relative RMSE and parameter bias for the Nugaiéance model. Designs compared
at the (F)isher design obtained through Greedy optimisaReplicate Grid (Rg), (G)rid, Maximin
Latin Hypercube with Replicates (R), Maximin Latin Hypebeu(L) and Fisher design obtained
through Simulated Annealing optimisation (S).
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Figure 5.9: Validation performance in terms of Dawid scand &ahalanobis errors using 1024
test points in a Latin Hypercube design and RMSE for the Nuggslel.
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Table 5.2: Mean and standard deviation of Mahalanobis (1 @wid score and RMSE.

Design Mahalanobis| Dawid RMSE

Greedy 1208+ 420 | -2220+ 217 | 0.86+0.11
Replicate Grid 1796+ 1908 | -1274+ 1202 | 0.93+ 0.18
Grid 4664+ 7508 | 1626+ 6313 | 0.67+ 0.16

Replicate Maximin LH 13504+ 1176 | -1537+ 777 | 0.844+ 0.15
Maximin Latin Hypercube| 2501+ 3620 | -241+4+ 2703 | 0.60+ 0.16
Simulated Annealing 1561+ 1027 | -1951+ 677 | 0.74+0.14

(0.2,1,—4.6,—1.6,—1.6). The standard deviation on the input domain using this misdéls-
trated in Figure 5.10. The noise level(8t0) of the design space is exactly the nugget value used

in the previous section. The GP prior mean is zero and the Isammgan is not shown for brevity.
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Figure 5.10: Standard Deviation of the Log-Linear model.

The resulting designs using the Greedy and Simulated Amgeaptimisation methods are
shown in Figure 5.11 where as in the previous section, thigmkesire quite different in terms of
domain coverage but achieve similar Fisher scores (Figur2(5)). The log determinant of the
empirical parameter covariance (Figure 5.12(a)) agreasdy with the Fisher score with regards
to separating the poorly performing, in terms of paramettimation, non-replicate designs from
the replicate designs.

In terms of parameter estimation accuracy (Figure 5.18)aslance parameter are bet-
ter identified in the replicate designs in terms of relatin$E. In terms of the length-scale and
process variance parameters, all designs achieve simitase In this scenario the replicate de-
signs are therefore superior in identifying the varianceleigarameters without sacrificing the
estimation of the other parameters.

The predictive validation results (Figure 5.14 and Tab®) &gain show a high Mahalanobis
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Figure 5.11: Fisher designs for the Log-Linear model.
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Figure 5.12: Log Determinant and Fisher score for the Laggar model.
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Figure 5.13: Relative RMSE of the ML parameter estimatestferLog-Linear model.

error and Dawid score for the non-replicate designs. Theremre higher than when using a
nugget model since the variance response is more completharaffect of the misidentification
of the variance coefficients is thus more pronounced. Ingesfimean prediction, we observe a
lower RMSE for the non-replicate designs which cover theégiespace more uniformly, espe-
cially when compared to the Greedy and Simulated Annealasighs which are highly clustered,
and thus achieve a larger interpolation error. We thereforeclude that as in the Nugget model
case, the non-replicate designs have higher Mahalanabisaard Dawid score mainly due to in-
accurate variance prediction. In the approach of Krausezarastrin (2007), discussed in Section
5.2.4, the Fisher design can be considered during the extfgorphase to minimise the parameter
uncertainty and can be followed by an exploitation phaseitomise the interpolation error.
Comparing the optimal homoscedastic designs (Figure 6.8)et heteroscedastic designs for
the Log-Linear model, the latter place emphasis on the eofghs design space. This is especially
evident for the SA design, which achieves the best Fisheesadere only a single point is placed
in the interior of the design space. For the homoscedastimapdesigns however, the majority
of points are placed in the interior of the design space inlegty spaced clusters. The difference
arises due to the nature of the variance model in each catgke lomoscedastic case, the input
location where the nugget is sampled is immaterial and thgnihade of the noise level as well
as the choice of covariance function and length-scale tdi¢ctee placement of the points in the

optimal design. In addition to these considerations, fer lieteroscedastic Log-Linear model
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a design that is optimal for the identification of the coeffits of the linear variance model is
required. As is well known in the case of linear regressiotkiffdson and Donev, 1992), the
optimal design for parameter estimation places points edhners of the space and this is exactly
the effect we observe in the optimal designs for the Log-&imaodel. The parameter estimation
errors lend further credence to this conclusion as the @ptaesigns achieve lower errors for
the variance model parametegdsthan the non-replicate space-filling designs while the tleng
scale and process variance parameters are identified veithatime accuracy across all designs.
The good performance of the replicate space-filling desigiagso explained by this effect since
replicated design points are placed on the edges of therdepare. As the noise level is quite
low across the design space, design points with just twacegpd observations are sufficient to
capture the variance response. In the case of the nonatpbpace-filling designs however, the
single observation design points on the edge of the spaceaegs informative with regards to the

variance process.

Table 5.3: Mean and standard deviation of Mahalanobis (1@24wid score and RMSE for the
Log-Linear model.

Design Mahalanobis Dawid RMSE

Greedy 1749+ 1898 -3690+ 1711 | 0.80+0.24
Replicate Grid 1398+ 1033 -3652+ 776 0.494 0.23
Grid 32863+ 79388| 27460+ 78524 | 0.23+ 0.14
Replicate Maximin LH 1420+ 872 -3848+ 697 0.46+4+ 0.22
Maximin Latin Hypercubel 30058+ 88207 | 24627+ 87575| 0.22+ 0.15
Simulated Annealing 1612+ 949 -3941+ 584 0.59+0.23
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Figure 5.14: Validation results for the Log-Linear model.

5.6.4.3 Latent-Kernel Model

We conclude the set of simulation experiments for localglebly examining the performance of
Fisher-based designs under a Latent-Kernel variance ni®detion 4.5.3). The variance response

is more complex than in the previous experiments as showeiatandard deviation plot in Figure
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5.6.4.3. A modified isotropic Gaussian kernel is used fowdreance model where the length-scale
and process variance parameters are fixed to one. The oelp&r@ameters in the Latent Kernel
variance model are the linear coefficients

The hyperparameters of the sampled GP are sgt,,,z,2,23) = (0.5,1,-1.1,-3.8,4.2)
and the latent points are setXg= {(0,0)(1,1)(0.5,0.5)}, corresponding to two corners and the
mid point of the design space. Finally the exponential Kemesed to model input correlations.

The designs obtained through optimisation of the Fisheresate shown in Figure 5.15. The
Simulated Annealing design covers the design space moferony while the Greedy design is
highly clustered on the corners and mid-point of the despats. Both designs place clusters of
points around the latent poin¥ of the variance model which we interpret as the most inforraat

locations to learn the parameters of the variance model.
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Figure 5.15: Fisher designs for the Latent-Kernel model.

The Fisher score and corresponding log determinant of trenpeter covariance are shown
in Figure 5.16. In terms of both Fisher score and the empipaeameter covariance both Fisher-
optimised designs are considerably better than the sping-fiesigns. In this case the extra
complexity of the Latent-Kernel variance model separdtesrodel based designs from the repli-
cate space filling designs. Further the Fisher score of tleedyrdesign is smaller than for the
Simulated Annealing design, suggesting more optimisaftort is required in the Simulated An-
nealing algorithm for this problem. The monotonicity of kM to the parameter covariance is
violated however in this case with large approximation er@pparent. The log determinant of
the parameter covariance for these designs also has tlestiangors bars signifying difficulty in
estimating parameter uncertainty.

Examining the errors of individual hyperparameters (Feguid 7 and Table 5.4) we observe the
Fisher-based designs achieve smaller relative RMSE phatig for the variance model parame-

tersz; andz,. Thezz parameter, corresponding to the mid latent pfr8, 0.5], is identified by all
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Figure 5.16: Log Determinant and FIM for Latent-Kernel miode

designs while the other variance model parameters are dahjified by the replicate designs. We
believe this is because the effect of thgparameter dominates the variance response ehiéad

2, which are related to the corners of the design space havaigsst on the variance response
across the design space. Additionally the space-fillinggdesare informative about the mid-point
of the design space as opposed to the corners of the spaa#riastdo the Fisher-optimised design

which explicitly emphasize the corners of the space comeding toz; andz.

Table 5.4: Relative Parameter RMSE for the Latent-Kerned@ho

Design A Op 4] v4) 3

Greedy 1625+ 16610| 0.36+ 0.25 | 0.43+0.35| 0.13+0.10| 0.11+ 0.09
Replicate Grid 3574+ 22580 | 0.49+4+ 0.34 | 0.89+ 0.75| 0.39+ 0.34 | 0.09+ 0.07
Grid 5517+ 31676| 0.53+0.34 | 1.34+ 1.86| 0.56+ 0.88 | 0.08+ 0.06
Replicate Maximin LH 1580+ 6128 | 0.544+0.43 | 0.96+0.80| 0.42+ 0.37| 0.08+ 0.07
Maximin Latin Hypercubel 2057+ 9172 | 0.57+0.55| 1.67+2.82 | 0.67+ 0.94 | 0.10+ 0.31
Simulated Annealing 5980+ 37893 | 0.42+ 0.35| 0.53+ 0.44| 0.14+ 0.12 | 0.08+ 0.07

We also note the very large errors in identifying the lengthle parameter for all the designs
considered. Examination of the profile likelihoods under @rid and SA designs (Figure 5.18)
for one realisation of the experiment allows for a clearestarstanding of the issue. The profile
likelihoods were constructed by setting the other modedipaters to their ML values although as
the other parameters are identified with high precisionptiofile is not altered if the true values
are used instead. In the case of both designs, the issue @aadf an incorrect optimisation
as the true length-scale value does not lie on a minimum. drcése of the Grid design where
the rRMSE is very high, the multiple restarts avoid the usafge low likelihood local minimum
corresponding to a very small length-scale value. The Mutsmh however is very far from the
true value and the likelihood is flat in the region of very Rgngth-scales effectively signifying
that the training design is not informative and cannot eXela large range of possible large values.

We conclude that due to the complexity of the model, the streithing size used (30 points) is
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Figure 5.17: Relative RMSE for the Latent-Kernel model.

unable to identify the length-scale of the process.
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Figure 5.18: Profile likelihood for the length-scale paréanainder the Latent-Kernel model.
Solid green line is true value, dashed blue is maximum likeld value under 5 multiple restarts
with different initial values. For this realisation the rF8& is 299,397 for the Grid design and 43
for the SA design. The x-axis denotes the log length-scdleeva

Examing the validation errors (Figure 5.19(b), Table 5.6)nate the differences in the metrics
are quite small. The RMSE is nearly identical for all desiggftecting the same level of accuracy
in mean prediction. The SA design achieves the lowest arterins of both the Mahalanobis error
and Dawid score reflecting a more robust covariance estimafilthough the Greedy design has
the lowest parameter estimation error, the highly clusteagure of the design results in the model

extrapolating in large areas of the design space and heoggiitg higher errors compared to the
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more space-filling SA design.

Table 5.5: Local Design Evaluation for the Latent-Kerneld®alo Mean and standard deviation of
Mahalanobis (1024) and RMSE.

5500

Design Mahalanobis| Dawid RMSE

Greedy 1361+ 731 | 4170+ 340 | 1.01+0.01
Replicate Grid 1384+ 586 | 4228+ 352 | 1.01+0.02
Grid 1549+ 2010 | 4405+ 1819 | 1.01+ 0.02
Replicate Maximin LH 155141078 | 4395+ 992 | 1.01+0.02
Maximin Latin Hypercubel 1551+ 1165| 43974+ 982 | 1.01+4+ 0.02
Simulated Annealing 1258+ 556 | 4119+ 277 | 1.014+0.02
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Figure 5.19: Validation results and Standard DeviatiorttierLatent-Kernel model.

5.6.5 Bayesian Design

In the simulation results presented thus far only locallfiropm designs have been considered.
However such designs cannot be used in practice as theyadaquiwledge of the true parameter
values to compute the Fisher score. In this section Bayds&rer designs are examined where
the resulting design is a compromise across a range of yooplimum designs.

Following Zhu and Stein (2005) a discrete uniform prior isdi$or ease of computation and
interpretation. The designs are computed as in the predeason, the only difference being
the criterion function is the Fisher score numerically gngged over the discrete prior (Equation
(5.4)).

The evaluation of the designs is performed across all patioas of values of the discrete
prior. For each permutation of discrete prior values, theokdesigns is evaluated as in the local
design case. The simulation experiment in this sectionlvanetore be considered as a set of local
simulation experiments where the sample GP parametersack fAll evaluation metrics such as
the Mahalanobis error and parameter accuracy are plottedsaall prior permutations, that is the
errors from different prior combinations are plotted jbirit the same figure. The log determinant

of the empirical parameter covariance is computed per pgamutation.
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We have examined two scenarios:

e Log-Linear A Log-Linear variance model with a Matérn covariance fimtt The discrete
prior was set to\ = {0.1, 0.5}, op =1 andP; = {-1.1, —0.5}, B> = {-3.8, 0.2}, B3 =
{4.2,1.2}.

o Latent-Kernel A three-parameter Latent-Kernel model with an exponéotigariance func-
tion to model input correlations. As in the previous sectitire latent points were set to
X, = {(0,0),(1,1),(0.5,0.5)}, The discrete prior was set o= {0.2,0.6}, 0, = 1 and
71 ={0.01, 0.1}, = {0.01, 0.2}, zz = {0.01, 0.2}.

For both scenarios, the discrete prior has 16 possible gatimiis. Each prior permutation is
treated as a local design and evaluated 30 times, givenl®tdi0 realisations of the experiment.

The Fisher-optimal designs are contrasted against the sgraef space-filling designs that
have been used previously (Figure 5.5). The Fisher baségndesbtained through Greedy and
Simulated Annealing optimisation are shown in Figure 5.28e Latent-Kernel optimal designs
are clustered around the latent poiKtsn both the Greedy and Simulated Annealing cases unlike
the local design case discussed in Section 5.6.4.3 wher8Ahgesign was more space-filling
than the Greedy design. We believe this is due to the coraidaerof a small length-scale in
the scenario examined here whereas for the local desigativedy long length-scale of 0.5 was
used. For the Log-Linear model on the other hand, the desigtaned are quite similar to those
obtained for the local design case in Section 5.6.4.2 withGneedy design placing points on
a ridge pattern while the SA algorithm results in points ggdtaced on the edges of the design
space. Although for both the Log-Linear and Latent-Kernetlais the Greedy and SA designs are
geometrically quite different, they achieve similar Fiskeores and parameter estimation errors
(Figure 5.23) demonstrating the near equivalence of theieobk.

The predictive performance for both models in terms of Mahabis error, Dawid score and
RMSE is shown in Figure 5.21. For the Log-Linear model the-replicate designs are not as
robust over the wide range of prior values as the replicas@ds. In particular we see very large
errors in terms of Mahalanobis and Dawid score whilst the ENM§Smallest for these designs. As
in the local design experiment (Section 5.6.4.2), the pukation performance of the space-filling
design is superior but in terms of the covariance predictiny large errors are incurred.

For the Latent-Kernel model on the other hand, the RMSE padace is nearly identical
across all designs. The covariance performance is alse gintilar as reflected by the Maha-

lanobis error and Dawid score, although we note longer taithe errors for the non-replicate

5.6.4.3.
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For the Latent-Kernel model, the large differences amorgdifferent designs become ap-
parent when the parameter accuracy is examined (Figuré. 5422in the local design case, the
variance parameters are better identified in the Fisheémad designs with clear differences ap-
parent in the performance of the replicate and Fisher-aggidhdesigns. As in the local design
case, the high magnitude of the errors in all designs of thgttescale parameter implies it is not
identifiable for this model using such a small training siZer the Log-Linear model, the variance
process parameters are better identified in the replicaigreas expected in agreement with the
local design experiment.

The log determinant of the empirical parameter covariamcktlae Fisher score for all designs
are shown in Figure 5.23. For the Log-Linear model, the Fislere is similar for all replicate
designs. In the Latent-Kernel model both Fisher designe Hialowest Fisher score which is also
reflected in the empirical parameter covariance. As in thalldesign experiments, we therefore
see broad correspondence between the Fisher score andcahymrameter covariance for both
models.

Overall both in terms of validation and parameter accuraeysee significant benefits when
using replicate designs. For the more complex Latent-Kemgance model, the Fisher designs
are more differentiated in terms of parameter error perémre from the space-filling replicate
designs. Due to the higher complexity of the variance respamthe Latent-Kernel model, space-
filling replicate designs are no longer local optima and tpenaisation of the Fisher score is
justified. In this section therefore the conclusions dravamfthe local design experiments pre-

sented in Section 5.6.4 have been generalised to the Baydsiégn setting.

5.6.6 Specific Case Example

The results presented above summarise the various validateasures across multiple samples
of the GP. In this section the Simulated Annealing Bayesiesigh examined Section 5.6.5 and
shown in Figure 5.20(b) is compared to a grid design and fleetedf the difference in parameter
estimation accuracy on prediction is more closely inveséd.

A Matérn kernel is used as before with a Log-Linear fixed$basiriance model. The true
parameters of the GP sample are- 0.2, 0, = 1 andp = (4.6, —1.6, —1.6).

The Mahalanobis score for the Grid design was 8933 and folFthleer design 741 with
1024 being the theoretical optimum. The corresponding Dasgbre was 4218 and -4364 in
agreement with the Mahalanobis results. The corresporRMGES on the mean were 0.45 and
0.53, reflecting a more accurate prediction of the mean vauthe Grid design. The rRMSE
score and bias for the parameters are presented in TabldBbed3 parameters for the variance

process and the length-scale parameter are better iddntifien the Fisher design is utilised for
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ML estimation as reflected by the improved bias and rRMSEeslu

Utilising a 1024 Latin Hypercube test set, the predictiveamand standard deviation for the
two designs are shown in Figure 5.24. The mean predictioassdaptured by the Grid design. In
terms of the standard variance prediction both designsfisigntly overestimate the true standard
deviation of the sampled GP. However the predictive vagaigsca combination of the variance
model as well as uncertainty due to distance from the trgipioints. The latter factor is more
critical for the Simulated Annealing design due to the higiilistered nature of the design points.

If the training set is fixed to the test set with no parametegstimation the two sources of
uncertainty can be separated. For this purpose, the pamrettimates obtained for the Grid
and Simulated Annealing designs were plugged in a GP withitigaset the entire test set with no
replicate observations. The usage of the test set as tgagrinessentially cancels the impact on the
variance prediction of the uncertainty due to distance sifttetraining points. The corresponding
mean and standard deviation predictions for the two setsaddmpeter estimates are shown in
Figure 5.25. The mean prediction is similar under both setghe standard deviation is more
accurately predicted by the Simulated Annealing paranseter Examining solely the predictive
variance modelR(X.)) in Figure 5.26, we confirm the variance model has been marerately
learnt by the Simulated Annealing design. Further, theavee prediction for the Grid design is
dominated by the variance model as the distance of therigag@t to the test points is considerably
less than for the clustered designs such as the Simulateelading design.

To better understand the differences in predictive peréoce we decompose the Mahalanobis
error to a vector of individual uncorrelated errors whosmtletical distribution idN(0O,I). As pro-
posed by Bastos and O’Hagan (2009) the Mahalanobis erroedendposed using the Pivoted
Cholesky Decomposition (PCD) where the order of the indigiderrors is determined by their
conditional variance, i.e. the first point has the highesiange, the second has the highest vari-
ance conditioned on the first etc. Diagnostics are furthecrileed in Section 2.5.

This diagnostic allows for the interpretation of the errassunusually large or small errors
early in the sequence suggest poor estimation,abr non homogeneity while errors in the latter
part point to poor estimation of the correlation structurlbe errors in this example are shown in
Figure 5.27 where an incorrectly specified correlationcstne is suggested for the Grid design

which agrees with the parameter errors in Table 5.6.

5.6.7 Increasing Design Size

Thus far the simulation experiments have been performed fingle design size. In this section
we examine the performance of Fisher-optimised desigriseasumber of available observations

increases. For simplicity, we perform locally optimal dgsusing the same single nugget model
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Figure 5.24: Specific Case Example: Predictive mean andatdrmeviation (std)) using 30 point
designs for the Grid and Simulated Annealing designs. Trrgidesign points depicted by blue
circles.
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Figure 5.25: Specific Case Example: Predictive mean andatdmeviation (std) using 1024 test
point design as training set for the Grid and Simulated Alingalesigns. Training design points
depicted by blue circles.
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lated Annealing designs.
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Table 5.6: rRMSE and bias of parameter for Grid and Fishegdss
Statistic | Design| A Op B1 B2 Bs
'RMSE Qrid 0.71 0.19 1.34 2.62 6.62
Fisher | 0.0241| 0.1816| 0.0468| 0.0446| 0.06
Grid 0.14 -0.19 | -6.18 | 4.22 10.66
Fisher | -0.01 | 0.18 0.21 0.07 -0.10

Bias

as in Section 5.6.4.1. The design sizes considere{Bar#00,200.

The Mahalanobis error and Dawid score (Figure 5.28(a)) shevbiggest differences in pre-
dictive performance for the smaller design size in agreeméth the results in Section 5.6.4.1.
The Fisher optimised design provides the most robust estimaEven for the largest design size
the Grid design underestimates the variance reflected ihitieMahalanobis error. In terms of
parameter error (Figures 5.28(c) - 5.28(d)) the Fishergtebas the smallest error with larger
errors for the non-replicate designs. The differences nampater estimation are greatest for the
nugget parameter where even for the largest design sizédeoad the non-replicate designs per-
form poorly.

In terms of Fisher score (Figure 5.28(f)) and the corresjpgnempirical parameter covariance
(Figure 5.28(e)) a similar picture emerges where the Fidbgign consistently achieves the small-

est error although the differences with the other desigasettuced as the design size increases.

5.6.8 Structural Error

We have so far assumed the absence of structural errothéenadel used in the design process
is the correct one. We now consider the effects on the pednoa of Fisher-optimised designs
when the true underlying model does not match the assumedlmsed in inference. This effect
is simulated by using GPs with different kernel specifiaagiin the design and inference stages.
The same models and designs are utilised as in Section &ubtbebmethodology is modified

to introduce structural error:

e Log-Linear to Latent The Bayesian designs generated using the “assumed” LruggL.i

model are evaluated using the Latent-Kernel model as tleepirocess.

e Latent to Log-Linear The “assumed” Latent-Kernel model designs are evaluated)uhe

Log-Linear model as the true process.

The designs utilised are shown in Figure 5.20.
In the first experiment, a design generated assuming a Logakivariance model is evaluated
on the more complex Latent-Kernel model variance (Figu2@).All designs achieve similar pre-

dictive accuracy as reflected by the Mahalanobis error. Tawi@®score is omitted as it provides
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Figure 5.28: Effect of increasing design size on Fisherrmétion (Section 5.6.7). F=Greedy
design, Rg=Replicate Grid, G=Grid, R=Replicate Maximirihadypercube, L=Maximin Latin

Hypercube.
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an identical picture.

Further, in terms of parameter estimation accuracy (Fi§2e(b)) there are small differences,
mostly in the tails of the distributions between the desigrige length-scale as was noted in Sec-
tion 5.6.4.3 is not identifiable under this model for such alstnaining size and the differences
are not meaningful. For the variance model parameters, weeuiitising the correct model leads
to more accurate estimation, especially with regards tpdnemeters corresponding to the corners
of the design space; andz, where the Log-Linear designs do not place as strong an &igpha
as the Latent-Kernel optimal designs. In terms of Fisheresend the corresponding empirical
parameter covariance, we confirm that model misspecific&ids negatively impacted the param-
eter accuracy The Fisher score (Figure 5.29(d)), compgied) the correct model for all designs,
corresponds well to the empirical parameter covariancgufEi5.29(c)). We note the impact of
the model misspecification, however, has been minor as msédeby the small separation in the
latter and the lack of detriment on the predictive perforogan

The reverse experiment of assuming a more complex vari@sponse when the true process
has a simpler log-linear form is summarised in Figure 5.8Ghis case we see large differences
in performance both in terms of the Mahalanobis error andréfetive RMSE of the variance
parameters for the Latent-Kernel designs. As in the preveperiment, the Dawid score is not
included as it provides an identical ranking. In terms ofypaeter estimation (Figure 5.30(b)), we
observe very large errors in the identification of the higheler variance coefficientf, and 33
when utilising the Latent-Kernel designs while the lengtiale, process variance and first order
variance coefficientf1, are estimated with similar accuracy across all designsantixing the
designs shown in Figure 5.20, we note the Latent-Kernelddsgplace most points in a diagonal
across the design space while the Log-Linear design havespioi at least three corners of the
space allowing for the separation of the effects of the twauirfactors. As was noted in Sec-
tion 5.6.4.2, the linear form of the Log-Linear variance mlagquires placement of points on the
edges of the design space to allow for the accurate estimatithe model coefficientg.

The Fisher score (Figure 5.30(d)) and empirical covarigRragure 5.30(c)) reflect the higher
errors for the Latent-Kernel designs. Specifically withenels to the latter, we note a large separa-
tion in the performance of the optimal and model misspeciesigns. We conclude therefore the
Latent-Kernel designs assume a more complex variance raaodéience can capture a more lim-
ited set of models than the designs generated under theesitogd-Linear variance model. The

latter designs thus appear more robust to structural erothe misspecification of the model.
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Figure 5.29: Structural Error: Evaluating Log-Linear dgs (Figure 5.20) on the Latent-Kernel
model. F=Fisher design optimised using the Greedy optiinisainder the Latent-Kernel model,
S=Simulated Annealing Design for the Latent-Kernel modelFisher Greedy design optimised
under the Log-Linear model, SA=Simulated Annealing desigder the Log-Linear model.
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Figure 5.30: Structural Error: Evaluating Latent-Kernesins (Figure 5.20) on the Log-Linear
model. F=Fisher design optimised using the Greedy optiinisainder the Log-Linear model,
S=Simulated Annealing Design for the Log-Linear model, /sher Greedy design optimised
under the Latent-Kernel model, SA=Simulated Annealinggteander the Latent-Kernel model.
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5.7 Bayesian Inference

In this section, the effect of the Fisher, uniform replicatel non-replicate designs on the GP pa-
rameter posterior using Bayesian inference is examined. Hybrid Monte Carlo (HMC) (Nab-
ney, 2001; Bishop, 2007) algorithm is utilised to perforrmpéing over a vague prior on the GP
parameters and the posterior under the different desigtisdassed.

In Section 5.7.1 a brief overview of the sampling approachntwlation is given. The issue of

convergence is discussed in Section 5.7.2 followed by thelsition results in Section 5.7.3.

5.7.1 Methodology

A sampling approach is used to incorporate parameter wicBrtinto the predictive GP vari-
ance. The HMC algorithm combines the Metropolis-Hastingsrithm with dynamical simula-
tion methods utilising gradient information to bias theediions of exploration (Nabney, 2001).
The resulting transitions have the ability of making largeps while keeping the rejection rate
small (Bishop, 2007). Specifically HMC tries to avoid randemlk behaviour by introducing an
auxiliary momentum vector and implementing Hamiltoniamayics where the potential func-
tion is the target density. The momentum samples are disdafier sampling. The end result of
Hybrid MCMC is that proposals move across the sample spat@ger steps and are therefore
less correlated and converge to the target distributioremegidly. We refer the reader to Nabney
(2001) or Bishop (2007) for a detailed description and dis@mn of the HMC algorithm.

Given GP hyperparameter samples from the HMC procedurepriédictive mean and vari-
ance are calculated using the corresponding mean and earédrthe GP samples (see MUCM
Toolkit (World Wide Web electronic publication, Release26,10) Pr ocPr edi ct GP page). Us-
ing N samples{6;,6-,...,6y} from the GP parameter posterior for a training desigrgsetach
sampled; corresponds to a conditional GP prediction at a new paqimtith meany (x,|€, 6;) and

covarianceV' (x,|€,6;). The combined predictive meafi(x,|&) and covarianc®¥°(x, |€) are:

o (X[8) = &IV H (X[&,8), i.e. the combined mean is the average of the conditional pre

dictive means.
e The calculation of the predictive covariance is more comiple

1. Calculate the average covariante- & sNVI(x.[€,6)).

2. Calculate the covariance of the conditional means

Z|H

N
S (1 (% JE.8) — 1)) (M (x.[E.8) — HE(x.[E))"
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3. The predictive covariance W&*(x,|&) =V +W.

5.7.2 Convergence Diagnostics

The convergence of the HMC chain was assessed by startinguBspahains from perturbed ini-
tial conditions. The ML estimate of the parameters was peet by adding independent Gaussian
noise,N(0, 1), which was used to initialised the HMC chain. A total of 50@0nples was used
with a trajectory size of 200 and step size of 0.025.

We also use the EPSR measure to check if the chains have gedv@gelman and Rubin,
1992). This compares the within-chain variability to betwehain variability and as a guide
should be less than 1.1 which was the case in our experimiéoliswing the recommendation in
Nabney (2001), the first half n/2=2500 of samples is ignored.

In the pilot runs of the HMC simulation, the chains did not wenge when no prior was
used. When the vague prior described in Section 5.7.3 wakhm&ever, all chains converged.
This phenomenon was observed under both Matérn and Expainkeerinels and was especially
pronounced for the length-scale parameter. An exampleraferging and non-converging chains
for the length-scale parameter is shown in Figure 5.31. dtbeg in the subsequent experiments,
the prior was utilised as it has been shown to stabilise the&CHilgorithm and ensure convergence

within the allotted 5000 time steps.

350 -1

300

200
150
100

50

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
(a) No Prior (b) Prior

Figure 5.31: Effect of Prior on convergence of chain for kbrgcale parameter. When no prior is
used the chain is not converging to a stable distributionredee under the vague prior described
in Section 5.7.3 it does.

5.7.3 Simulation Results

A simulation study of the Nugget and Log-Linear variance gisdlescribed in Section 5.6.4 is
presented. The locally optimum designs are utilised anthi®purposes of Bayesian inference a

vague prior is placed on all GP parameters.

128



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

Independent normal priors are used for all GP parametensthEdog length-scale the prior
is N(—1,5), the log process variandd(—1,8) and for the nugget and higher order variance
coefficientsN(0,6). This translates in the following 95 percent intervals: Aog (—5.4,3.4),
logo, = (—6.6,4.6) andf; = (—4.8,4.8).

The true parameter values for the Nugget model ara leg-1.6, logo, =0, 31 = —4.6 and
for the Log-Linear model loy = —2.3, logo, = 0, 31 = —4.6, B2 = B3 = —1.6. Thus, the priors
contain the true values within the 95 intervals but are notreel at those values and in some cases
such as for the nugget, the true parameter value is at thef thig prior distribution. The prior was
determined to allow a wide range of length-scales and neiggd. Specifically, the length-scale
prior covers any credible value in tf@ 1] design region used.

For the prediction and histograms shown in the simulatienlts, the HMC chain is subsam-
pled to every 2% sample to ensure the remaining samples are approximatebyrratated. The
subsample size was derived by examining the autocorrelaiible HMC implementation in the

Netlab (Nabney, 2001) software is used.

5.7.3.1 Nugget Model

An HMC simulation experiment for the Nugget model descrilre®ection 5.6.4 is presented.
Three realisations of the experiment are utilised to exarttie impact of the Fisher-optimal and
other designs on the parameter posterior. The Nugget modsists of three parameters, a Matérn
kernel and a single nugget. The locally optimal designs shiovirigure 5.6 are utilised.

The validation errors, presented in Table 5.7, are caledlasing a 1024 Latin Hypercube test
set. The high uncertainty in most of the designs leads tolegryMahalanobis score reflecting the
underconfidence of the predictors. The smallest error isrobd for the Greedy design and the
largest for the replicate Grid, Grid and replicate Latiniges. Of note is the high Mahalanobis
error for the SA design which as explained below is causedhbyhigh posterior variance for
the nugget parameter. In terms of the Dawid score, the GraedySimulated Annealing Fisher-
optimised designs are again ranked better than the corgpsiarce-filling designs confirming the
Mahalanobis score ranking.

The parameter accuracy of the ML estimates is shown in TaBlénSterms of the relative
RMSE score. The posterior mode accuracy results are givéahte 5.9 and in general we see
broad agreement with the ML errors signifying that the partamn posterior mode agrees with
the ML estimate. The errors for the Replicated Latin are areption with the errors for the
length-scale and nugget parameters being significantifllesnfar the posterior mode. For the
non-replicate Maximin Latin design, a significant drop afoerfor the length-scale parameter is

also observed. Of note is the high error of the SA design ferniigget parametg¥; which is
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Table 5.7: HMC Validation results for the Nugget model. Meatue and standard deviations

across three realisations of the experiment.

Design | Mahalanobis (1024) RMSE Dawid Score
Greedy 745+368 0.86+0.03 | -2124+243
RGrid 249+64 0.92+0.12 | -887+242
Grid 370+£197 0.92+0.04 | 2254206
RL 164+64 0.86+0.06 | -530+428
Latin 414+139 0.87+0.12 | -77+418
SA 543+217 0.87+0.15 | -1906+148

higher than for the other replicate designs. Overall, tiehé&i-based designs have on average the
lowest parameter errors.

The posterior variances are summarised in Table 5.10 anfiith@osterior distributions are
shown in Figures 5.32, 5.33 and 5.34 for a single realisadiothe experiment. In general, a
larger variance in parameter posterior leads to largeameé in prediction. In the case of the
non-replicate designs large posterior variances are widdor all parameters and are reflected in
very high Mahalanobis errors demonstrating underconfielefithe HMC prediction.

For the length-scale parameter, the Fisher-optimisedydgdiave the lowest variance in the
posterior. and appear to be more effective in restrictieg#mge of plausible values for the length-
scale parameter than all other designs.

For the process variance parameter the replicate desigievacimilar variance in the poste-
rior while the non-replicate Grid and Latin designs havehighest posterior variance.

Finally the posterior variance for the nugget parameteovsfor the Greedy, replicate Grid
and replicated Latin designs while for the SA, Grid and Lasigns it is higher. Examining the
relative RMSE results of the posterior mode in Table 5.9 Advaxee noted the SA algorithm has a
high average relative RMSE for the nugget parameter cordgarthe other replicate designs (Ta-
ble 5.9) and the corresponding posterior variance is atgoeniwhich explains the large predictive
variance and hence low Mahalanobis score of the SA desigs.iFhlso supported by the Fisher
scores (Figure 5.7) where the SA design achieved a worserfsshre than the Greedy design so
we would expect the Greedy design to have lower errors irettperiment.

Overall, the Fisher-optimal design, the Greedy designhdsve to lead to robust estimation
of all GP parameters and as expected by the Fisher scoragdFigr) the replicate designs out-
perform and non-replicate Grid and Maximin Latin Hyperculesigns. However we caution that

due to the small number of realisations of the experimestctnclusions drawn are preliminary.
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Table 5.8: Relative RMSE of the ML estimate for the Nugget eiofflean and standard deviation
for three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA

Length Scale | 0.28+0.21 | 0.48+0.64 | 4.56+4.85 | 6.68+11.19 | 4.08+6.22 | 0.30+0.34
Process Variance 0.29+0.35 | 0.0940.05 | 0.70+0.25 | 0.16+0.17 | 0.4940.30 | 0.05+0.06
B1 0.05+0.02 | 0.084+0.05 | 0.96+0.08 | 0.374+0.59 | 0.78+£0.27 | 0.20+0.14

Table 5.9: Relative RMSE of the posterior mode for the Nuggedel. Mean and standard devia-
tion for three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA
Length Scale | 0.29+0.21 | 0.56+0.16 | 3.66+5.29 | 0.44+0.14 | 1.16+0.48 | 0.26+0.20
Process Variance 0.30+0.39 | 0.10+0.04 | 0.66+0.41 | 0.15+0.20 | 0.52+0.35 | 0.07+0.04
B1 0.05+0.03 | 0.10+0.05 | 0.95+0.08 | 0.04+0.02 | 0.83+0.15| 0.21+0.13

Table 5.10: Parameter posterior variance for the Nuggetemddean and standard deviation for
three realisations of the experiment shown.

Parameter Greedy RGrid Grid RL Latin SA
Length Scale | 0.09+0.06 | 1.44+0.20 | 4.984+1.07 | 1.50+0.26 | 3.56+1.89 | 0.13+0.03
Process Varianceé 0.07+0.01 | 0.04+0.01 | 2.69+1.65 | 0.04+0.00 | 2.994+1.07 | 0.04+0.00
B1 0.20+0.02 | 0.18+0.01 | 1.08+0.62 | 0.14+0.01 | 1.47+0.94 | 0.56+0.17
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Figure 5.32: Posterior variance for the log Length scaleupater of the Nugget model. Solid
magenta line is true value and green dashed line is the Minat#i
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Figure 5.34: Posterior variance for the Nugget parametdreoNugget model. Solid magenta line
is true value and green dashed line is the ML estimate.
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5.7.3.2 Log-Linear Model

A single instance of HMC prediction for the Log-Linear modekxamined in this section. The
Matérn kernel is also used but the variance model now hasa@miers. The locally optimum
designs are shown in Figure 5.11 and the model is describ®ddtion 5.6.4.

In Table 5.11 we see the validation results on a 1024 poihs&tsn terms of the Mahalanobis
error, Dawid score and RMSE. The SA design performs well WithGreedy design performing
less well but significantly better than the other designsciviaill make underconfident predictions
as reflected by the very low Mahalanobis score. The Dawidestsults in an identical design

ranking with the Mahalanobis error.

Table 5.11: HMC Validation results for the Log-Linear madel

Design | Mahalanobis (1024) RMSE | Dawid score
Greedy 515 0.72 -4073
RGrid 35 0.59 -744
Grid 93 0.39 -1657
RL 48 0.61 -1387
Latin 128 0.37 -1947
SA 1036 0.48 -4294

The relative RMSE of the ML estimate for all parameters issprged in Table 5.12 and the
corresponding errors for the posterior mode in Table 5.13td®ior parameter variance is shown
in Figure 5.14. As before, the posterior for the length-sgadrameter is lowest for the Fisher-
optimised designs though in this example the non-replitaten design also has small variance.
It is worth noting that the ML relative RMSE for the lengthase is lowest for the Replicated Grid
design for which the corresponding posterior mode erroiawae is high. The process variance
parameter is identified with similar accuracy for all desigmcept the SA design, in terms of both
relative RMSE and posterior variance. The SA design in tkésrgple has a higher relative RMSE.

For the variance model parameters, the non-replicate mesigve consistently high posterior
variance even though the corresponding relative RMSE istioms quite low. For instance, the
Latin design has the smallest relative RMSE fgrbut the second highest posterior variance for
that parameter. The SA design which has the lowest Fishee s€all considered designs (Figure
5.12(b)) consistently achieves the lowest posterior wagaeven though it does not have the lowest

rRMSE for every variance parameter.
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Table 5.12: Relative RMSE of the ML estimate for the Log-lanenodel.
Parameter Greedy| RGrid | Grid | RL | Latin | SA
Length Scale 0.05 0.02 | 474] 0.25| 0.19 | 0.39
Process Variance 0.04 0.10 | 0.14| 0.05| 0.13 | 0.44

\U

B1 0.01 0.18 | 0.89| 0.11| 0.62 | 0.00
B2 0.45 0.18 | 0.50| 0.27| 1.29 | 0.22
Bs 0.12 1.12 | 1.28 | 0.53| 0.01 | 0.10

Table 5.13: Relative RMSE of the posterior mode estimaté¢hieLog-Linear model.
Parameter Greedy| RGrid | Grid | RL | Latin | SA
Length Scale | 0.06 | 0.57 | 0.10| 0.43| 0.16 | 0.37
Process Variance 0.02 0.16 | 0.02| 0.01| 0.03 | 0.44

B1 0.04 0.15 | 0.49| 0.08| 0.52 | 0.02
B2 0.38 0.20 | 0.79] 0.35| 0.79 | 0.04
Bs 0.16 1.17 | 0.44| 0.32| 0.01 | 0.04

Table 5.14: Parameter posterior variances for the Logdringodel.
Parameter Greedy| RGrid | Grid | RL | Latin | SA
Length Scale 0.11 2.18 | 0.43| 1.36| 0.13 | 0.10
Process Variance 0.13 0.04 | 0.13| 0.05| 0.09 | 0.10

\U

B1 0.62 094 | 3.23]0.81| 2.12 | 0.50
B2 1.77 093 | 4.01| 249| 5.14 | 0.73
Bs 1.64 151 | 470|1.60| 3.50 | 0.81
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5.8 Conclusions

This chapter has presented a new approach to model basathbgésign for heteroscedastic GP
emulators and examined empirically the performance of théyred designs through an extensive
set of simulation studies.

In Section 5.2 an overview of the optimal design literatugswgiven. When the design cri-
terion function is concave, such as for linear models, theeGd Equivalence Theorem applies
which allows to check whether the proposed design is themailty supported optimal design.
Further, the additivity of the information matrices fordar models allows us to calculate a bound
for the design size. However in the correlated error setuysidered in this thesis, neither result
applies as the criterion is not concave. The motivation fngi Fisher information in this context
stems from the asymptotic analysis of Mardia and Marsh&84) who showed under increas-
ing domain asymptotics that the ML estimafdiconverges in probability to the true parameter
0, 8 — N(6,171(8)) wherel (8) is the Fisher information matrix. Therefore the minimieatof
the finite sample FIM is justified when the goal is to minimisggmeter uncertainty. Some au-
thors (Zhang and Zimmerman, 2005) argue that infill asynggtptvhere inter-point distances go
to zero, are more appropriate for interpolation and compaxperiments. Under this asymptotic
framework however, the convergence of the finite sample Fabsirot been proven in general and
results exist only for specific cases.

In the current design literature for computer experimeatdy deterministic simulators are
considered and as a result replicated observations areamolidd (Muller and Stehlik, 2009).
The extension of the Fisher criterion for replicated obatons under our likelihood model was
presented in Section 5.3. The Bayesian formulation of tiesggdeproblem was discussed in Sec-
tion 5.4 where the parameter uncertainty is numericallggrdated out using Monte Carlo. The
design methodology is completed by specifying the optitiieamethod used. We have consid-
ered the Greedy and Simulated Annealing algorithms. Thadotis simple to implement and
requires little computational effort although as was désadl in Section 5.5.1 it cannot be utilised
in high-dimensional spaces due to the curse of dimensignafiowever as the criterion used is
not a submodular function, no theoretical guarantee exists performance. The Simulated
Annealing algorithm does not suffer from the curse of dinn@mality and is a well known global
optimisation method which has been shown to avoid localmmeértbut requires significantly higher
computational effort as well as tuning of a set of parameters

The first set of simulation experiments in Section 5.6 foduse Maximum Likelihood (ML)
estimators. The monotonicity of the FIM to the log determinaf the parameter covariance was

demonstrated for the fixed basis variance model under diffaroise levels in Section 5.6.2. The
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approximation error was found to increase as the noise leaslincreased but the monotonicity
relationship was not violated.

In Section 5.6.3 a complete enumeration of all nine-poimt-replicate designs from a twenty
nine-point candidate set was used to demonstrate the mséstdf multiple local minima in the
optimisation search space and the effectiveness of thelygmadgorithm to locate a near-optimal
solution. Further, the profile likelihoods of all model paeters for the optimal and a grid design
were compared. The FIM design was found to exclude a largeyeraf parameter values from
consideration and hence identify the ML estimate with higlestainty.

The performance of FIM designs was examined in more deptkdtic® 5.6.4. The utilisation
of local designs, where the true parameters values are nsiEbign generation, allowed for the
study of the Fisher approximation without errors due to thimerical integration of the Bayesian
criterion (Equation (5.4)). The experiments were perfatraeross multiple realisations and the
performance examined in terms of both predictive and pat@mastimation accuracy. The three
models used ranged in order of complexity. For the Nuggeteh@@ection 5.6.4.1), where a
constant variance model is used, the predictive performaiiall replicate designs was found to
be superior to that of the non-replicate Grid and MaximinilLé&typercube designs. The finite-
sample FIM design ordering corresponded to the empiricarpater covariance with the lowest
Fisher score design also having the lowest parameter aestioiiibterms of the empirical parameter
covariance and the relative RMSE of individual parameters.

These results extend to the Log-Linear model (Section 2pwhere a linear variance model
was used. The approximation of the FIM to the parameter @vee was worse than for the
Nugget model with the replicate designs achieving lowehéiiscore and higher parameter es-
timation accuracy as reflected by the log determinant of #Hrarpeter covariance than the non-
replicate Grid and Maximin Latin Hypercube designs. Thatieé RMSE showed the Fisher-
optimised designs obtained through Simulated Annealir@reedy optimisation identified the
length-scale parameter more reliably than the other dssifime variance-model parameters were
identified by all replicate designs with the non-replicagsigns showing significantly higher er-
rors.

The largest approximation error is observed for the Lak@arel model (Section 5.6.4.3)
where the ordering of the space-filling designs as predioyetie Fisher score does not match the
empirical parameter covariance. However the Fisher-apéichdesigns achieve the lowest score
in terms of both measures as well as the individual parantetative RMSEs. Thus, although
the approximation error is larger, the Fisher designs anemidferentiated from the space-filling
designs in terms of parameter accuracy than for the simpleyght and Log-Linear variance

models considered.
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The local design experimental results are summarised ite Fab5 where both the computa-
tional complexity necessary to generate each design ara/érage error in the estimation of the
variance model parametefsare shown. As discussed in Section 5.5.1, the computatewstlof
generating the space-filling designs is negligible and dwésdiepend on the model complexity
as is reflected by the constant cost of generating the Gridvindmin Latin Hypercube designs.
The Simulated Annealing design is the most expensive torganand is roughly 10 times as ex-
pensive to calculate as the Greedy design for the configmsatised in the experiments. In terms
of parameter estimation error for the variance model patarsethe computational complexity of
model-based design based on the Fisher information is aatified for the Latent-Kernel model,
where the variance model is the most complex. For the sinuligiget and Log-Linear variance
models, the geometric space-filling designs with uniforsyead replicated observations have

performed as well as the Fisher optimal designs.

Table 5.15: Summary of design performance for all localglesixperiments. The elapsed time
T to generate each design is provided in seconds. The optiamstr both the Greedy and
Simulated Annealing designs was run in parallel as destii&ection 5.5 and the elapsed time
is reported for the entire optimisation process. Also sh@ithe average rRMSE for all variance
model parametei where the lowest errors are marked in bold.

Design | Nugget | Log-Linear| Latent-Kernel
T |B T |B T |B
Greedy 28 | 0.08| 65 | 065 68 | 0.22
Replicate Grid <1007 <1]047| <1| 046
Grid <1]062| <1|230| <1| 0.66
Replicate Maximin Latin Hypercube 3 0.07 || 3 055 3 0.49
Maximin Latin Hypercube 3 0541 3 210 3 0.82
Simulated Annealing 301| 0.15 || 743 | 0.43 || 903 | 0.25

In general, these results suggest that the approximation @irthe FIM to the empirical co-
variance increases with the complexity of the variance rmddievever the benefits of optimising
the Fisher score become more apparent under such compledsndtie usage of Fisher-optimal
designs can be justified up to the point where the approximagiror is too large and the mono-
tonicity of the designs considered is violated. However weavare of no theoretical results to
help estimate the magnitude of the approximation error audlitic approaches have to be used.

In terms of prediction error of the simulator mean as refetbigthe RMSE, the non-replicate
space-filling designs on average achieve lower error. Bvaungh such designs have higher errors
in parameter estimation, they cover the space more unifoamdl hence are more likely to predict
accurately the mean value. However, as reflected by the Mablais error and Dawid score, the
replicate designs capture the variance response moreadeiyuas the length-scale and variance

parameters are estimated more precisely. The length-peaéaneter is most reliably identified
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by the lowest Fisher score design while for the non-remickesigns, consistently large errors are
observed in length-scale estimation. The variance modahpeters are identified reliably by all
replicate designs in the case of the simpler Nugget and Lingar models or by the Fisher-optimal
designs in the case of the more complex Latent-Kernel mdded. similarity in performance for
the replicate and Fisher-optimal designs in the case of thgght and Log-Linear models, is
reflected by the Fisher score .

We note that in the entirety of simulation experiments pmes in this chapter, the Dawid
score agrees with the Mahalanobis error in the ranking oftimepeting designs. Therefore in the
subsequent chapter, for brevity of presentation we focuthermMahalanobis error which can be
interpreted more readily due to its known sampling propsr{Bection 2.5). Different rankings of
emulators are possible through the two metrics but suchdrlydbeen observed in our experience
when the difference of the Mahalanobis error between twoetsod small, i.e. less than two
standard deviations of the Mahalanobis error samplingiligion. In particular as Bastos (2010)
discusses, the validity of an emulator may be judged by dhgdkat the Mahalanobis error is
within two standard deviations of the expected value. Irréselts presented in this chapter, large
differences in the Mahalanobis error have signified a corsparbetween a valid and an invalid
emulator. In our experience under such a circumstance, gvdadscore will provide the same
ranking as the Mahalanobis error.

Regarding the optimisation methods used, the solutionddmnthe Simulated Annealing
algorithm for the Nugget (Section 5.6.4.1) and Latent ke(Bection 5.6.4.3) local design ex-
periments, has a larger Fisher score than the Greedy solstiggesting further effort in terms
of computational time is required for the algorithm to findausion closer to optimal than the
Greedy solution. As was seen in Section 5.7.3.1, the lowsndfiscore for the Greedy design
in the case of the Nugget model was reflected in lower paranpeigerior variance and more
accurate prediction. To improve the performance of the &itad Annealing algorithm, the an-
nealing schedule could be changed from linear to a more oaatse (e.g. log) schedule and the
maximum number of iterations increased.

In Section 5.6.5 a set of Bayesian design simulation reswdtspresented. For design gener-
ation, as in Zhu and Stein (2005) a discrete prior was used.didtrete values were selected to
represent a wide range of simulator behaviours with shattlamg correlation length-scales and
varying levels of noise. The Log-Linear and Latent-Kerneld®ls from Section 5.6.4 were used
and the evaluation of the Bayesian designs included all petions of prior values to ensure per-
formance was measured across the entire parameter donfimieaddiey the prior. The conclusions
from the local design simulation experiments continue tid lhader the Bayesian framework. All

variance models parameters were better identified by tHeagp designs in the case of the Log-
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Linear model whereas solely the Greedy and Simulated Amgedesigns captured accurately
the variance model parameters in the case of the LatenteKerodel. The non-replicate Grid and
Maximin Latin Hypercube design perform poorly under bothdels with very high Mahalanobis
errors and Dawid scores evident.

The performance of the Fisher-optimal Simulated AnneaBagesian design was examined
more closely in Section 5.6.6 where it was compared to a Geg&lgth for a specific realisation
of the GP using the Log-Linear model. The two sources of uac#y in prediction, code un-
certainty, (Kennedy and O’Hagan, 2001) which stems fronadise of test to train points, and
intrinsic model variance, which is present only in stocitasbmputer models, were separated by
using the test set as the training set. In this setup, thetaffethe more accurate parameter es-
timation of the Simulated Annealing design is evident aspiteslictive variance closely matches
the true variance while for the Grid design the variancenegtion is highly inaccurate. Under
the smaller thirty-point training design, the intrinsic debvariance dominates the predictive vari-
ance for the space-filling Grid design while for the highlystered Simulated Annealing design
code uncertainty dominates as the true variance is signifjcamaller. The decomposition of the
Mahalanobis score using the Pivoted Cholesky Decompasitimfirms the higher error for the
Grid designs stems from an inaccurately identified colieastructure. This validation method
suggested by Bastos and O’Hagan (2009) offers a practictilaneof validating emulators and
can point to the source of estimation error.

In Section 5.6.7, the performance of Fisher designs was ieeghunder increasing design size
for the Nugget model. The parameter and prediction errocsedse for all designs but even for
the largest design size considered (200) the Grid desighigasr errors than the other designs.
The parameter estimation error as reflected by the log detaniof the parameter covariance is
smaller for the Fisher design even under the larger desigas.s

Structural error, where the model used in design generainat the correct one, is discussed
in Section 5.6.8. When the Log-Linear design was used wéh_ttent-Kernel model little loss of
predictive or parameter estimation accuracy was obsertedever the reverse experiment where
the Latent-Kernel optimal design was used with the Log-ammodel resulted in large errors in
terms of both sets of measures. As the principle of parsinsoggests, optimal designs generated
using simpler models are more robust to model misspecificati

In Section 5.7 Fisher-optimal designs were examined undge&ian inference. The parameter
posterior for three realisations of the Nugget and one gatidin of the Log-Linear models was
examined. Incorporating prior uncertainty into the prédicinflates the predictive variance for all
designs considered as reflected by the low Mahalanobisscbi@vever Fisher-optimal designs

achieve the lowest Mahalanobis errors and Dawid scoresegshidive the lowest variance in the
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parameter posterior in addition to lower ML estimation err&ven for parameters where the
ML error is higher than for other designs, Fisher-optimaiges have lower parameter posterior
variance reflecting the informativeness of the design tetrain the range of plausible parameter
values. This effect was also observed in a more limited soirteSection 5.6.3 where the profile

likelihoods were examined for a one-dimensional nine-pdasign.

Overall explicit optimisation of the Fisher criterion hasam shown to facilitate reliable infer-
ence of model parameters under a range of models of diffedngplexities. This conclusion is
corroborated by predictive and parameter accuracy refultsoth ML and Bayesian estimation.
The effect is more pronounced under the latter where thevmtea uncertainty is included in the
model prediction. Our work agrees and extends the resutewand Stein (2005) where only ML

estimation of single nugget models was considered andgiivezlperformance was not examined.

5.8.1 Future Work

The Fisher design methodology we have presented could baded in a variety of ways.
Adaptive experimental design where the new simulator elasiens are requested and incor-

porated in the design approach was briefly discussed inddesi?.4. The Fisher-based approach

can directly be extended in this direction. Rather than exiny the GP prior process, the GP

posterior may be used in the design criterion:

L = K§C't

z* — KZ** + R** - Kg*CElKZ*,

wheret the observed values. The correlation parameieqgpear both in the mean and covariance
of the GP posterior. GiveX distributed asN(p(8),%(0)), thei, j element of the FIM is:

Fij= o 1 4Tt )

o' _qop 1 s10Z o 102
06 09, 2 06; 006 '

This result can be readily extended to the replicated obtens using the approach presented in
Section 5.3. Further research is required however to shewghfulness of this approach.

In addition, Fisher-based designs can be incorporateddi@sign approaches that minimise
other criteria. In particular, we envisage utilisation @gtter designs for design approaches that lin-
earise the correlated process using expansions that depgratameter accuracy. In Fedorov and
Mdller (2004) the GP covariance is approximated by a triggtaigenvector expansion. Youssef

(2010) proposes the usage of Haar wavelets for the expanBi@napproximation error of the ex-

140



Chapter 5 EXPERIMENTAL DESIGN FOR PARAMETER ESTIMATION

pansion critically depends on the parameter accuracy.9é5{8010) proposes a Latin Hypercube
for the initial design but a much more natural choice wouldsésher design where the parameter
estimation variance is explicitly minimised.

Following the discussion in Section 5.2, Zhang and Zimmer(2805) suggest that the infill
asymptotic framework is preferable when interpolationhis &im. However when considering
infill asymptotics, the issue of parameter consistency mestddressed. Under increasing domain
asymptotics all kernel parameters are consistently ebteandJnder infill asymptotics this is no
longer the case and consistency must be established. Zhdrigjrmmerman (2005) demonstrate
through simulation that for parameters that are not caersiigt estimable, infill asymptotic results
seem to approximate finite sample properties more closely iticreasing domain. We propose
that for specific models, consistency of parameters is ksti@ld and when this is not true use
approximations based on infill asymptotic results rathan thisher information or other increasing
domain results. However such an approach would be modeifispec

In this work the focus has been exclusively on design fortifigng the covariance parameters.
A mean function in the GP prior is used in practice in the emacontext as prior information
can be easily incorporated and the residual process is ri@lg to be stationary. It is well
known in the literature (e.g. Miller and Stehlik (2010))ttHasign for trend parameters is usually
antithetical to that of covariance parameters. Combinggigh for trend and covariance parameter
estimation in the heteroscedastic emulation context igea far future research.

One limitation of the approach proposed in this work is ttsedite nature of the optimisation.
The utilisation of a candidate set, which is typically ob&d by a discretisation of the design
region, for optimisation scales poorly with the input direiemality. This effect is known as the
curse of dimensionality (Bishop, 2007) and limits our metktmlow-dimensional spaces. A possi-
ble extension would be to use a continuous global optinteatiethod such as genetic algorithms
to remove this restriction.

The computational requirement of design generation mawtbledr reduced by approximating
the Bayesian criterion integral in Equation (5.4) using ensophisticated approaches than Monte
Carlo. One possibility would be the emulation of the intégrsing a GP. The introduction of

another approximation error in the design process howewetdneed further consideration.
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Chapter 6 APPLICATIONS

6.1 Introduction

In this chapter, the screening, emulation and optimal desgmeworks discussed in the previ-
ous chapters are applied to real-world stochastic modelSettion 6.2, the sequential screening
described in Chapter 3 is applied to a stochastic rabies hsogglied to us by the Food and
Environment Reseach Agency (FERA). The most importanbfacas identified by the screen-
ing procedure are compared to published results utilisorgputationally intensive methods and
verified by subsequent emulation.

The optimal design methods discussed in Chapter 5 are dgpligvo stochastic System Bi-
ology models in Section 6.3. The resulting designs are atdid through a range of simulation

experiments.

6.2 Screening: Rabies Model

In this section we discuss the application of the Morris setjal screening method described
on Section 3.2 on a stochastic model provided by the Food awmddament Reseach Agency
(FERA) (Singer et al., 2008, 2009).

An overview of the stochastic simulator is given in SectioR. 8, followed by a description
of the screening methodology (Section 6.2.2) and a disoussithe results (Section 6.2.3). The
effect of screening on emulation is discussed in Sectiod&&d the a summary of the screening

results is provided in Section 6.2.5.

6.2.1 Model Description

Although wildlife rabies was eradicated from large partskofrope, there is a remaining risk
of disease re-introduction. The situation is aggravate@rmynvasive species, the raccoon dog
(Nyctereutes procyonoidethat can act as a second rabies vector in addition to theose@/tilpes
vulpes. The purpose of the rabies model is to analyse the risk désadpread in this new type
of vector community (Singer et al., 2008). The individuakbd, non-spatial, time-discrete model
incorporates population and disease dynamical proceasbsas host reproduction and mortality
rates as well as disease transmission. These processesdeau stochastically to reflect natural
variability (e.g. demographic stochasticity). Thus maalglysis (e.g. sensitivity analysis) has to
contend with stochastic, indeed heteroscedastic, modelib(Boukouvalas et al., 2009).

The model includes two vector species: raccoon dogs and.fokbe model is non-spatial
and disease propagation is calculated solely with respgmbpulation dynamics. As depicted in

Figure 6.1 the model consists of an input generation phageadtual calculation of the model
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which is implemented in Java and two types of output, timeseand summary statistics.

There are 132 individual inputs to the Java code but typicalbst are varied in a dependent
fashion, being separated in 16 different groups. Eachiididal input has a deterministic relation-
ship with its respective grouping variable. Thus the modellge run in two configurations; in the
stand-alone setup 132 inputs can be independently setdandidel run, while in the hierarchical
setup 16 grouping variables are set from which the indiMid32 inputs are generated.

In the experiments that follow only the hierarchical modased as this is the setup currently
employed by FERA. The grouping variables are shown in Table &or each input variable,
FERA has specified upper and lower bound values which aresalsan. For our experimental
results to be comparable to Singer et al. (2008) the numbstept input variable was kept fixed
to 400 steps, the cross infection input at 0.002 and the &@eas5400kn?. We therefore allow

13 parameters to vary freely in the simulator.

User specified values

v

Grouped Inputs (16)

v

Individual Inputs (132)

v

Java Model

P NN

Time Series For each Run Summary Statistics for each Scenario

v

Output Processing

Figure 6.1: Overview of the rabies model.

After the inputs have been generated, the model is run. ltigently implemented in the
Java programming language and is relatively computatiprhleap to run; each run taking ap-
proximately one minute on a recent desktop machine. The eragputational time depends on
the ‘number of steps’ input variable (NumSteps) which datees the maximum number of time
steps in a single simulation. The simulation will terminateen the rabies disease becomes extinct
in both species populations or the number of steps reackasadkimum specified by NumSteps.

Thus the computational runtime depends on the input corafigur at which the simulator is run.
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Table 6.1: Grouping parameters for the rabies model anddksociated Lower and Upper Bounds

(LB & UB).
| id | Grouping Parameter | Description LB |UB |
1 Number of repetitions of the experiment 200 | 300
NumRuns o ;
at a specific parameter setting.
2 | FoxStableDensityWir] Fox population winter density (individualsi?) 0.1 0.5
3 | RacStableDensityWin Raccoon Dog population winter density (individutsf) | 0.1 1
4 RacInfProbl Shape paramet_er for.the probability distribution 0.39 | 0.47
of raccoon dog infection
5 | dummy Dummy variable with no influence 0.9 1.1
6 | fox.death Fox population mortality 0.9 1.1
7 | rac.death Raccoon Dog population mortality 0.9 1.1
8 | win.hunting.prop Winter hunting proportion 0.9 1.1
9 | fox.birth Fox population birth rate 0.9 1.1
10 | rac.birth Raccoon Dog population birth rate 0.9 1.1
11 | fox.inf Fox population infection rate 0.9 1.1
12 | fox.rabid Fox population rabies individual density 0.95 | 1.05
13 | rac.rabid Raccoon Dog population rabies individual density 0.95 | 1.05
14 | cross.inf Cross infection rate 0.002| 0.002
15 | NumSteps Length of simulation run 400 | 400
16 | AreaSize Area size knr) 5400 | 5400

For input regions where the disease becomes extinct quitdysimulator is quick to evaluate
while in other input regions, the simulator can take a maximuntime determined by the Num-
Steps input variable. In the future, design for screenimtjeanulation could take into account this
input-dependent simulator cost.

The model itself is stochastic in nature and thus in our amlgach simulation is repeated
multiple times to enable estimation of the stochastic pgecd he output of each simulation is a
time series data file, th& row corresponding to the state of the system ai'théme step.

At the end of each simulation, summary statistics are catedlfor the time series data and
stored as a single row in a scenario file. The latter contaires row for each repetition of a
simulation for a given set of inputs. The time series datanoa®een investigated at this point for
the purposes of screening and remains an open research area.

The summary outputs are further processed and the outguntesures the probability that
the rabies disease becomes extinct in both species aftear§ ieused for subsequent analysis
(Both.Inf.percent.ext.5years). This output is importientdleciding on the response to a potential
rabies outbreak since it indicates the risk of long termeasluisease persistence (Singer et al.,
2008, 2009).

The probability is calculated by first measuring the time thibok the disease to become ex-
tinct in both species. Provided the disease started in tt@osm dog population and went extinct in
both populations during the run the formula used is: maxii®B&tTimelLast, FoxInfExtTimelLast)-

RaclinfFirstint. The output RaclInfFirstint records the dirstep when the rabies infection in the
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raccoon dog population commenced. Note that this formuldadee the value Not Available (NA)

if the disease did not become extinct in the maximum numbetegs allowed. The probability is
then calculated by measuring the frequency of instances $imgle scenario that are less than 20
time steps since disease introduction (1 time step eqgalimonths bringing the total to 5 years).
Thus the output Both.Inf.percent.ext.5years is availailly once for each scenario and cannot
hold the NA value by its definition (if for all the runs in theestrio the disease did not become
extinct the probability will be 0). Furthermore, to caldalahe probability of disease extinction
to a high accuracy requires multiple repetitive runs of fineutator for a fixed parameter set. The
number of repetitions is determined by the NumRuns modelmpater and the dataset generation
for a single output can now be computationally demanding.

The probability output for the two dominant inputs and agechover all others is shown in

Figure 6.2.
0.8}
0.6
0.4
0.2 ,

Figure 6.2: Probabilistic Output of Rabies simulator udimguts Fox winter density (X axis) and
Raccoon Dog winter density (Y axis) and averaging over &iecs.

6.2.2 Screening Methodology

Singer et al. (2008) performed sensitivity analysis on #i@as model using a variety of standard
sensitivity analysis methods. In particular, results hiaeen obtained using the Morris (Section
3.1.3) and Sobol’ (Section 3.1.2) methods.

In order for our experimental results to be directly complrave have used the same setup
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as in Singer et al. (2008). The setup used is based on a Mesigrdwith number of trajectories
R =20 resulting in(k+ 1) x R= 14 x 20= 280 simulator evaluations, whekes the number of
input variables. Two experimental designs are employedhéneixperiments, a Morris standard
design without clustering and a Latin Hypercube design. [atier design is used to validate the
emulators constructed on the screened input factors. EoMibrris screening method we use
the meanu, of the absolute values of the Elementary Effects to rank ripetifactors. Follow-
ing Singer et al. (2008) we set the number of levelp te 6.

The sequential Morris method (Section 3.2) requires theipation of a variancey from
which the threshold on the Elementary Effect deviatmnis derived. We sey = 3.5 which
reflects a prior belief that individual factor effects on theput are considered near-linear if the
effect on the output is within three standard deviationswely linear, i.e.£3,/y= 5.6. Since
the output is hard bounded in the raff@el00 a factor has near-linear effect if the output varies
no more than %% from linear. This variability encapsulates both the riné variability of the

stochastic model and our prior definition of a near-lineéeaf

6.2.3 Screening Results

Singer et al. (2008) performed sensitivity analysis onitiglel using the standard Morris method
with the same setup as here as well as the Sobol’ method,iloledén Section 3.1.2. They noted
the most important parameters are species winter denaitiésnortalities. They also noted the
least influential factors are the dummy variable that hasxptict influence on the model output
and RacInfProbl, a shape parameter for the probabilityildision of raccoon dog infection. It
is also noted that the Sobol method is prohibitively expensind offers low accuracy with a
sample size of 300. They suggested increasing the samplarsizreducing the dimensionality of
the problem by fixing some of the factors to their nominal ealuFor expensive simulators this
motivates the usage of the Morris method.

The standard Morris method variable ranking wih= 20 trajectories is presented in Figure
6.3(a) and agrees with the results of Singer et al. (2008Yavtiee four dominant factors were
found to be the winter densities for both species and thecaged mortality rates. Singer et al.
(2008) conclude that both Sobol and Morris methods showtkteatnain effects are not sufficient
to characterise the parameter sensitivity in this model,the dominant factors have strong non-
linear and interaction effects which is reflected in the kiglalue in the Morris method.

The sequential Morris method is initialised with= 2 trajectories on all 13 factors requiring
(k+ 1)R = 28 simulator runs. We note that since the same jufyps used for all factors, the
computed threshold is the same for all factors. The Morrig plith the associated threshold

value is shown in Figure 6.3(b). Two factors are significantler the threshold, the Raccoon Dog
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winter density (3) and the Raccoon population rabies iddigl density (13), and are eliminated
from further consideration since they have strong noralireffects on the simulator output.

Another trajectory design for the remaining 11 factors ialested and requires 12 further
simulator evaluations (Figure 6.3(c)). The NumRuns (1 Wwmter density (2) and Raccoon Dog
population birth rate (10) parameters are found to havelinear effects and are removed from
further consideration. As evidenced by the Morris plot, thealue for parameter 10 changed
significantly from the previous step where the effect wassm®erably below the threshold and
very close to linear.

For the third step, the eight-factor trajectory requires &ensimulator evaluations (Figure
6.3(d)). Four further parameters are eliminated, the fgxa(@&l raccoon dog (7) mortality rates,
the fox birth rate (9) and the fox population rabies indiatldensity (12) where large changes in
the moments of the elementary effects are again observetbdbe increased accuracy from the
increased Morris design size.

No more factors are eliminated until step 7 requiring a fertfd + 1) x 4 = 20 simulator
evaluations (Figure 6.3 (e)-(h)). At step 7 the winter hogitproportion (8) and fox population
infection rate (11) parameters are removed from furthesictanation.

The remaining two factors, the shape parameter for the pilityadistribution (4) and the
dummy variable (5) are found to be below théhreshold for all subsequent twelve steps requiring
(24 1)12= 36 simulator evaluations.

The total number of simulator evaluations for the sequéptizcedure is 105 compared to the
280 evaluations required by the standard batch Morris ndetith R = 20 trajectories.

We have also performed the threshold calculation on thé/fattis set withR= 20 trajectories
and the same factors as with the sequential version ardfiddrdas near-linear.

In summary, the sequential Morris method for the Rabies iuaebeen successfully used to
identify factors with no or near-linear effects on the siatal response at a significant savings to

the standard Morris method.

6.2.4 Standard Gaussian Process Emulation

In this section, the screening results are further examiyggerforming emulation on the rabies
simulator using different sets of input factors. In patgecuthe predictive performance of the

following configurations is compared:
e All. The entire set of thirteen input factors is used.

e Low Order. The shape parameter for the probability distribution () the dummy variable

(5) factors identified by the sequential procedure as havéag-linear effects are discarded.
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Figure 6.3: Morris Screening on Rabies simulator. X axjs.iand Y axiso of Elementary Effects.
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denotes th@g threshold value for the given step.
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e Neg Low Order Only the shape parameter for the probability distributdrand the dummy

variable (5) factors are used.

e High Order. Only the four dominant factors are used by the emulator.dé&stified in the
previous section these are the raccoon dog and fox populatioter density factors (2,3)

and their associated mortality rates (6,7).
¢ Neg High Order The remaining eight factors are used by the emulator.

The emulator used is a zero-mean Gaussian Process with alffferéntiability v = 5/2 Matérn
kernel and a single nugget. A nugget is used as the simulatpubis stochastic.

The emulators were trained on three instances of Morriggdesif 280 model observations
(R=20), each instance being validated using a separate Laterddybe test set of 280 points.
The Morris designs are used for training since model obsens obtained during screening
should be usable in subsequent stages of emulation.

The validation results for all five input configurations ah@wn in Table 6.2 in terms of the
Mahalanobis and RMSE scores. In order to compute the priifyadnitput at each design point,
multiple repetitions of the simulator output are requiretiherefore due to the computational
expense only six designs have been used, three trainindheemltest sets, to generate three reali-
sations of the experiment. The validation measures havedegaged over the realisations of the
experiment.

When discarding the two parameters identified in the se@lgmbcedure (Low Order) the
emulation predictive performance actually improves. Hmting unimportant factors benefits
the emulation as the inference is performed on a lower-déimeal space which can be critical
especially when a relatively small training set is avaiabl

When considering only the two unimportant factors (Neg Lowdéd) the predictive perfor-
mance both in terms of RMSE and Mahalanobis score detez®sdtarply signifying the inability
of the emulator to predict the simulator output using thepeits.

For the High Order scenario, in terms of RMSE there is littkesl of accuracy from not includ-
ing the eight least influential simulator factors in the gsi. The Mahalanobis score shows a loss
of predictive power which is however much greater when the éominant factors are discarded
(Neg High Order).

We note that for factors with linear effect on the simulatotput, as reflected by a high
meanp, and low deviationo values in the Morris procedure (Section 3.1.3) a preprangsstep
whereby the linear effect is removed from the output couldutiésed to further minimise the

impact of discarding such factors from subsequent emulafibis is discussed in Section 3.3.
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Table 6.2: Validation of Emulators on Rabies model usinfed#int sets of input factors as de-
scribed in Section 6.2.4. Mean and 2 standard deviationsheown based on three realisation of
the experiments. Emulators trained on Morris design antliated on a Latin Hypercube design
of the same size (280 points).

| InputSet | Mahalanobis (280 RMSE |

All 3819+14512 | 28.65+4.91

Low Order 2742+593 279+5.62
Neg Low Order| 12369+ 14955 325+1.34
High Order 559841363 29.424+5.15
Neg High Order| 2349+118326 | 3375+3.14

In Boukouvalas et al. (2009) and Boukouvalas and Cornfof®92 the number of steps to
disease extinction output of the rabies simulator has beamated using the Coupled Model
described in Chapter 4 as, unlike the probability of disesdimction output, the variance is het-
eroscedastic. Therein, it was found empirically that the@ed Model utilising Latin Hypercube
training designs with replicate observations obtainetebetlidation results than without replica-
tion. The heuristic nature of the design generation maivats to examine model-based optimal

design (Chapter 5), an application of which is discussetiéemext section.

6.2.5 Conclusions

In Section 6.2 the application of the sequential screenirthod described in Section 3.2 to the
rabies model has demonstrated the effectiveness of theothetha real-world high-dimensional
stochastic simulator. The number of required model evangatwas considerably less than would
be required from a straightforward application of the staddMorris method with the same num-
ber of trajectories.

The only requirement of the method is the definition of ng@zadr effects via the specification
of they variance parameter. In the case of stochastic simulatossparameter includes the inter-
nal simulator variability whereas for deterministic siars near-linear definitions only include
errors due to machine precision and degree of departuretfrdynlinear effects on the output.

Lastly, the effect of screening on emulator performance exasnined in Section 6.2.4 where
discarding the two factors identified as near-linear attuaiproves predictive performance and
using the four dominant input factors incurred a small lospredictive accuracy compared to
a full model with a much higher degree of complexity. Suchdowimensional representations

simplify subsequent stages of the analysis such as opties#dnl generation.
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6.3 Optimal Design: Systems Biology Simulators

In this section we present a case study of systems biologyelmadth the aim of demonstrating
the emulation and design aspects discussed in Chapters5irasgectively.

In Section 6.3.1 an introduction to stochastic modellingsfgstems biology is provided, fol-
lowed by a review of existing work on emulation of such systdmSection 6.3.2. In Sections
6.3.3 and 6.3.4 the experimental results on emulation asjlere presented for two systems
biology models, the Dimerisation Kinetics and Prokary&igo-regulatory Network models. A

discussion of the results and directions for future redeare presented in Section 6.3.5.

6.3.1 Introduction to Systems Biology Modelling

In this section we provide a short introduction to the staticasimulation of systems biology
models. The discussion is heavily based on the book by Véidan(2006) to which the reader is
referred for further detalils.

The traditional method of modelling the kinetics of biologli processes is via the solution of
a deterministic system of differential equations. Howeatethe intra-cellular level the kinetics
are inherently stochastic and cellular functions canngproperly understood without explicitly
modelling that stochasticity.

The deterministic approach to kinetics fails to capturediserete and stochastic nature of the
molecular reactions involved, especially when at leastesofrthe reactant molecules appear at
low concentrations where stochastic variability can di@grally change system behaviour away
from the deterministic solution.

The approach we follow is to perform exact stochastic sitariaof a system of molecular

reactions. A reactioR may be represented as:
Xet Yot -+ Xa S Vi Yo -4 Yo,

whereX, are the molecules reacting, known as reactant spekiésthe rate constant which is
linked to the likelihood of the reaction occurring avidare the resulting molecules.

Provided the volume and temperature are fixed and the distibof molecules is uniform,
the probability of the reaction occurring, known as the In@z# provably constant. The rate
constank; associated with a reactid® is necessary but not sufficient to describe the hazard of a
reaction. The hazard also depends on the quantities of #utarg molecules and can be written
ashi(x,k) wherex = (x1,X,...,X,) the current state of the system, i.e. the number of molecules

for each reactant species.
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Formally, conditional on the state being x at time t, the pimlity that a reactiorr; will occur
in the interval(t,t + dt] is given byh; (x,k; )dt.
The exact form oh; depends on therder of the reaction.
A zeroth-order reaction is of the form:
05 x.
The hazard function depends solely on the rate pararhgtek;) = k;. In some cases, it is conve-
nient to model an external influx of molecules via a zerottieorreaction.

A first-order reaction is of the form:

X; %2

where ? is any outcome. Giveqy number ofX; molecules, the probability of each molecule
reacting isk;. Therefore the probability of any one reacting is the corabihazardy (x, ki) = kix;.

A second-order reaction is of the form:
X 4+ _>'“ 2

There exisi; x X, different pairs of molecules that may react. Therefore thelmined hazard is

hi (x,ki) = kix;x. A special type of second-order reaction is:
2x; %2

In this case only;(x; —1)/2 pairs of molecules may react and the combined hazard become
hi(x, ki) = kix;(xj —1)/2.

Most higher-order reactions can be modelled as a set of demaler reactions which quite
often is chemically more realistic and may result in différdynamics compared with modelling
the higher-order reaction directly. A set of second-ord=ctions is generally believed to be
more biologically plausible as reactions where three orenspiecies react simultaneously are rare
(Wilkinson, 2006).

For simple systems where all reactions in a system are zerfiratorder mass action kinetics,
the deterministic solution will correctly describe the egfed value of the stochastic kinetic model
(Section 6.7 of Wilkinson (2006)). However no estimate @& thariability will be available and
this link fails for systems with higher-order reactions.

Since the hazards only depend on the current state of theaeaystems, the dynamics can

be modelled as a continuous-time Markov process with aelisatate space. Detailed mathemat-
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ical analysis of such systems is usually not tractable mahststic simulation of the dynamics is
straightforward. The Gillespie algorithm is one option &fprm simulation from such systems

and is described in Algorithm 6.1.

Algorithm 6.1 Description of the Gillespie algorithm for exact simulatiof stochastic systems.

Gillespie Algorithm

Input: U reactants with initial concentration§ = {x1,...,%}, V reactionsR = {Ry,...,Ry}

with rate constantk = {ki,k,...,ky }, number of timesteps.
Output: Time series of state vectotr.

A. Iterate until the number of timesteps exceeds threshold T.

1. For each reactioR; calculate its hazark;(x, k).
Calculate the combined hazard of any system reactiomaeging (X, k) = 1 hi(X, k).
Simulate the time to next eveniby sampling from an exponential distribution with= ho(X, k).

Move the currenttime tb=t +t’.

A S A

Probabilistically select which reaction will occur byngaling from a discrete distribution with
probabilitiesh; (X, ki) /ho(X,k) fori=1,2,....V.

6. Update the current sta¥eaccording to the selected reaction and append it to the &mesX.

6.3.2 Existing Work

Emulation of systems biology stochastic systems is a velgtinew research area and we are
only aware of the work of Henderson et al. (2009a) that diyeeickles the emulation of these
biologically inspired models.

Henderson et al. (2009a) present a method to perform emlatid calibration of a five re-
action system that describes mitochondrial DNA deletionSubstantia Nigra neurons. Due to
conservations laws in the system only two rate parameteraegded. The authors state that al-
though exact Bayesian inference via Markov Chain Montedzah still proceed in theory, using
simulations from the biological model, it becomes infekbssib practice due to the computationally
demanding simulator. They propose to replace the simulat@n inexpensive statistical surro-
gate, an emulator. Due to the heteroscedasticity of thelatorwariance, the proposed emulator
is an independent set of two GPs that model the mean and lodasthdeviation of the response
respectively. Both GP priors are set with a constant mearaaugiared exponential kernel with a
nugget parameter.

The authors tackle the design by heuristically combiningdhdesigns (Henderson et al.,
2009b). The design space is four-dimensional, the two ratarpeters, a threshold value for
cell death and the age of the individual. A 250-point desgyeanstructed from the following

combination of designs:

154



Chapter 6 APPLICATIONS

e A 2% factorial design on the extreme points of the input space.o¥erview of factorial

designs is given in Section 2.3.

e A Cartesian product of an 8-point Latin Hypercube on the fhiste parameters with a 13

unique value design for the age parameter where obseragatiata are available

e A 130-point design consisting of a random sample from thergdistribution of the rate
and threshold parameters and a corresponding sample froifoan distribution of integer

values for the age parameter.

The authors state this composite design aims to give goograge over the support of the prior
distribution, i.e. provide an emulator that is a good appnation to the simulator across the
whole parameter space. Furthermore, it is hoped that tige lawmber of inter-point distances
available in this design will be of benefit when estimating @ziPameters.

The simulator is run for each of the 250 input configuratiof8QLtimes to obtain replicated
observations. In some cases the simulation experimentuaesprematurely due to cell death and
these runs are discarded. The authors do not utilise thetissction due to the log transformation
of the sample variance described in Section 4.4.1.

In order to speed up computation two GP emulators are traingtle mean and log standard
deviation of the replicated observations where to achielastness in the estimation of the sample
moments, the authors further restrict the training desigpdints where at least four replicates
observations resulted in successful runs. The final desigil points.

Finally uniform priors are assigned to all kernel paranseterd a two step MCMC scheme is
used to perform emulation and calibration. The authors imemtvo further simplifications they
have found had little impact on the performance of their seheThe MAP estimate is used for
the GP hyperparameters and only the mean predictions of ¢a@ mnd variance GPs are utilised
in the MCMC inference.

In the case study we present, the focus is exclusively ondgbiggd and emulation aspect of the
analysis and calibration is not considered. The emulatiodets we use also utilise the moments
of replicated observations but the mean and variance medelgoupled for better predictive
performance. Since the emphasis is on design, the variandelmwe use is simpler than a full
GP although in Section 6.3.4.3 we present emulation rebaksed on the latent GP model which
is similar to a GP model for the log variance.

The design question is approached using the Fisher infammatiterion to obtain an optimal
design for parameter estimation rather than heuristiclystructing a design with a large set of

inter-point distances.
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6.3.3 Dimerisation Kinetics

The first model simulates the dimerisation kinetics relsesieaction (Wilkinson, 2006). It con-

sists of two reactions:

2P—>P2

P2—>2P

The two reactants are the proteir@andP.. The rate parametekg andk, control the proba-
bility of the reaction firing.

Given the initial conditions, i.e. the number®fndP, molecules, and values for the rate con-
stantsk; andk;, the ordinary differential equation describing this modat @e solved analytically
to describe the full dynamical behaviour of the system. Tdua$ in this section is on emulation
of the stochastic simulator under uncertain rate values.

The Gillespie algorithm described in Section 6.3.1 is usesirhulate from this model. The in-
put domain space is two-dimensional with the domairkfaf [0.00050.03] andk, € [0.0005 0.5].
The initial number of molecules were setRe= 301 and?, = 0. The model was run to time= 10
with stepdt = 0.1.

The mean and standard deviation of the simulator acrossiphe domain is shown in Figure
6.4.

The distribution of the output at a point for this model is mpgimately normal as discussed
in Wilkinson (2006) so we expect the mean and variance toritesthe output reasonably well.
Simulation results confirming the normality approximateme shown in Figure 6.5.

The near-normal output and the input dependency of the madigince motivates the usage
of the heteroscedastic emulation methods.

More details on this model can be found in Wilkinson (2006).

6.3.3.1 Design and Emulation Results

As the variance plot of the simulator (Figure 6.4(b)) shaaviinear variance model would appear
to be appropriate.

We discretise the input space into a grid of 2025 candidatagpfrom which we wish to select
a 30-point design allowing for replication. A Latin Hypebzidesign of 2025 design points with
1000 replicates at each design point is used to validatentutagor.

The model used both in design and emulation is a zero-meanriGPwith a Matérn kernel

with fixed differentiabilityv = 5/2 and a log-linear function for the variance. A non-statigna

156



Chapter 6 APPLICATIONS

mean YCandidate replicates 1000 overall mean —4.49367 Std YCandidate 1000 replicates

< Q 9 ? ®
Y o : e
_ ﬂ\\“ C :
: T 2 8 @ 5
S a8 7y In & N4
' ~ f - r IN
e 0.6f = ~ 7
Vel Ry 78 A
/"LCj & 05% P eg 4 1A
C
/ 04F )
03fd S
A A0 §(
40/// 02t
0/ 01l
o560 — 60 é/\
0.4 0.6 0.8 1 0
k1
(a) Mean (b) Standard Deviation

Figure 6.4: Mean and standard deviation of dimerisationehattime step 10, using 1000 reali-
sations on a grid of 2025 input points. The inputs are thepatameters and the initial conditions

are kept fixed.
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Figure 6.5: Dynamics from the Dimerisation Kinetics modebwing 10 realisations. Initial con-
ditions P = 301,P, = 0 andk; = 1.66e— 3, ko = 0.2. Output plotted is number ¢ molecules.
Also plotted histogram and QQ-plot of 1000 realisations afded output at time stefy = 10
which can be seen to be approximately normal. The QQ-plavshibe Standard Normal Quan-
tiles (X-axis) vs the Quantiles of the input sample (Y-axis)
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GP prior with non-constant mean function would be more gmiate as the exploratory plots
of the simulator output in Figure 6.4 suggest. However @liitin and design for such a model
is more complex and could be pursued as a future researditidire A discrete prior is placed
on all the model parameters; for the length-sdale (0.2,0.6,1.5), the process varianeg, = 1
and the variance coefficienfg € (—4.6,—2.3), B2,B3 € (—1.6,1.6). The prior is constructed to
allow for short and long length-scale values, a range ofentdsels and slopes for the variance
function. Following Zhu and Stein (2005) a point prior is f@tthe process variance since only
the signal-to-noise ratio is of important for model-basedign.

The validation results are obtained using Maximum LiketithdML) optimisation without
reference to the discrete prior. This was done to separatértpact of the design on the ML
parameter estimates from the impact of the prior on the gée@iFisher designs.

Lastly the model is fit on the entire candidate set with foylicates at each design point to
obtain a reliable estimate of the model hyperparametershnduie treated as the true values for
the purposes of calculating the RMSE of the ML parametemedés of the different candidate
designs. The estimated parameter values from utilisingtitiee candidate set ade= 3.8, 0, =
3x10%, By =3.9, B, = —0.99 andpBs = 0.99.

The Fisher-generated design are shown in Figure 6.6, wintheGreedy and Simulated An-
nealing optimisation methods result in the placement ofgaificant proportion of the design
points on the corners of the design space. As the variancelnusdd in the emulator is linear,
this is consistent with traditional optimal design where tariance of the coefficients of a linear
model is minimised.

The predictive validation results are shown in Table 6.3tehms of Mahalanobis score the
non-replicate designs do badly with significant high valirethe tail of the distribution which
skew the mean values. The RMSE score is worse for the Greailyndehose Mahalanobis score
is closest to optimal which leads to the conclusion that Hréance prediction is the source of the
predictive improvement. The replicated Latin design astgethe smallest RMSE. We note here
that as was described in Section 5.8, the Dawid score is ghidad as it provides an identical
emulator ranking under such large differences in the Maiudil error.

The predictive performance results can be better undetdtgexamining the parameter ac-
curacy of the designs. In terms of relative RMSE on the patarsgFigure 6.7), the biggest
differences are observed in terms of the estimation of tigena@riance termB; andf,. Of note
is also the error for the length-scale parameter when tleegnte is done under the Greedy design.
The Fisher information and the empirical log determinaniaf estimates are calculated using
the logarithm of the length-scale parameter while the ikedeRMSE is computed on the natural

space. For this reason larger differences in RMSE may noéspond to large differences in the
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Figure 6.6: Fisher Designs Produced for the Protein Diragds model.

empirical log determinant.

The Fisher information score for each design is providedigufeé 6.8 and we see a clear
correspondence to the empirical log determinant. The ffieattell replicate designs achieve similar
Fisher scores may stem from either optimisation gettingped in local minima for the Greedy
and Simulated Annealing schemes or from the fact that umifaplicate designs are close to
optimum for this choice of prior. Due to the good performant¢he Greedy/SA algorithms in
our previous experiments we believe the latter is moreyikethis scenario.

In summary, in terms of both parameter accuracy as refleotéakiempirical log determinant

and prediction accuracy the replicate designs outperfbembn-replicate designs.

Table 6.3: Mean and standard deviation of the Mahalanobie$2025) and RMSE for the Protein
Dimerisation model. 1000 realisations of the experimenewessed.

Design Mahalanobis RMSE

Greedy 2866.28+ 1476.09 | 23.14+ 3.24
Replicate Grid 3985.77+ 2346.76 | 20.28+ 2.04
Grid 38x 10°+355x 10° | 15.65+ 2.71
Replicate LH 3399.83+ 1873.07 | 13.91+ 2.38
LH 7x10°P+82x 10° 14.13+ 2.09
Simulated Annealing 3704.42+ 2261.49 | 16.65+ 3.05

6.3.4 Prokaryotic Auto-regulatory Network

The simulator used in this section describes a simple ggmegsion auto-regulation mechanism
often present in prokaryotic gene networks. It is compodefilve reactant species, the gege
proteinP and its dimelP,, and the mRNA molecule. The eight reactions complete theifspation

of the model:
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ro ey +P Translation
2P ﬁ P, Dimerisation
P, ﬁ> 2P Dissociation
r 0 MRNA degradation
P 0 Protein degradation

Dimers of the protein PR,) coded for by the gengrepress their own transcription by binding
to a repressive regulatory region upstrearg.ofhis model is minimal in terms of biological detail
included but contains many of the interesting features o&uato-regulatory feedback network
(Wilkinson, 2006).

Figure 6.9 shows the dynamics for all five species for 500@ tsteps. The mRNA tran-
script events producing the react@re comparatively rare and random in their occurrence (top
Figure 6.9(a)). The number of protein dimé?sjumps abruptly at random times and coincides
with the mRNA transcription events. So even though therstexlarge number of protein dimer
molecules, their behaviour is strongly stochastic due ¢ofélat they are affected by the number
of mMRNA transcripts which are few in number (Wilkinson (20@&ge 173). Due to this inher-
ent randomness, a continuous deterministic model will degaately capture its behaviour and

stochastic simulation is justified in the analysis of thisdelo
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Figure 6.9: Dynamics for all five species up to time T=500,0dt=of the Prokaryotic Auto-
regulatory Network. Initialised witlg.P, = 10,g =r = P = P, = 0 number of molecules.

Figure 6.10 shows histograms of the empirical distribugiohall species. Due to the approxi-

mate normality of speciegP2, it is utilised for the design and emulation experimeng follow
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in next section.
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Figure 6.10: Histograms of all five species taken at time T=t80.1 using 10,000 realisations
for the Prokaryotic Auto-regulatory Network. The QQ-plbbsvs the Standard Normal Quantiles
(X-axis) vs the Quantiles of the input sample (Y-axis).

In Section 6.3.4.1 different design strategies are evatlasing multiple realisations of the
experiment. In Section 6.3.4.2 a specific validation instais examined for the Greedy and Grid
designs to better understand the sources of design erran &sattion 6.3.4.3 the impact on design

performance of a more complex variance model is examined.

6.3.4.1 Design and Emulation Results

In this section the performance of six different designscamapared both in terms of predictive
performance and parameter estimation error.

A single nugget variance model is used as a more complex mamnétl require the specifica-
tion of prior beliefs for parameters whose effect on the oesp is complex and does not facilitate
elicitation. Furthermore, as was demonstrated in Chapter Bcorrect prior specification on a
complex model can lead to very inefficient designs.

Thirty points are selected from a candidate set of 1024 poivife use 2025 test points and
perform 500 realisations of the experiment. An exponemkahel with a single nugget variance
model is used. The prior used & = (0.1,5,10), 0, = (1,3,5) andt = (0.1,0.5,4) which allows
a wide range of noise levels and correlation length-scales.

As before the Greedy and Simulated Annealing designs aatmrough the minimisation of
the Fisher score are compared to Grid and Maximin Latin Hyydes designs with and without
replicate observations. The Fisher designs are shown imé&g11.

As in the Protein Dimerisation model study (Section 6.3p@yameter accuracy is estimated

by treating as true the hyperparameters values inferredh Waweraging the entire candidate set
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Figure 6.11: Fisher Designs obtained for the ProkaryotitoAegulatory Network.

with four replicates at each site as the training set.
In terms of predictive validation (Table 6.4) the Mahalaisadzore is closer to optimal for the

replicate designs and the RMSE is similar for all designs.

Table 6.4: Mean and standard deviation of Mahalanobis 4@825) and RMSE for the Prokary-
otic Auto-regulatory Network. 500 realisations of the esipeent were performed.

Design | Mahalanobis RMSE

Greedy| 2490.84+ 808.29 | 2.35+0.11
RGrid | 2521.42+ 1043.49| 2.21+ 0.09
Grid 5520.03+ 6763.81| 2.30+ 0.14
RLatin | 2098.68+ 546.42 | 2.39+ 0.14
Latin 4361.50+ 4603.53| 2.34+ 0.12
SA 2284.77+ 730.00 | 2.28+ 0.10

The Fisher score approximates the log determinant (Figl@ 6vith significant error but the
overall ordering of the non-replicate to replicate design®aintained. In terms of the empirical
log determinant the Greedy and Replicated Grid designs tievemallest dispersion. Both of
these designs place replicated design points on the bouatidne variance response and therefore
perform better than predicted by the Fisher score in ternmzacimeter estimation. The larger
approximation error of the Fisher score to the empiricaldeterminant suggests the prior used is
not completely appropriate for the simulator data. A moferimative prior closer to the simulator
function would improve the Fisher approximation.

In terms of relative RMSE (Figure 6.13) very high errors dreayved for the nugget parameter
in the case of the non-replicate designs. Differences imasibn of the process variance term are
also evident with the replicate Latin Hypercube design iiguthe highest error. However due

to the log transformation of the length-scale and procesisnee terms mentioned previously
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Figure 6.12: Log Determinant and Fisher Information for Brekaryotic Auto-regulatory Net-
work. For the log determinant, .5 and .95 quantiles caledlaising bootstrap. For Fisher calcula-
tion 2 standard deviations error bars are estimated frorvittrete Carlo sample.

(Section 6.3.3.1) in the optimisation, the observed eromly have a small contribution to the

empirical log determinant where the error on the nugget tlsminates.

6.3.4.2 Individual Example

In this section a specific realisation for the Greedy and @ddigns is more closely examined
to better understand the differences in behaviour of thécegp and non-replicate designs. The
realisation selected has relative RMSE close to the avesages presented in the Section 6.3.4.1
and can therefore be considered representative.

The predictive validation and parameter relative RMSE lfigs tealisation are shown in Table
6.5. The Greedy design has significantly lower Mahalanolvis end lower RMSE. In terms of
relative RMSE there exists a striking difference in the efos the nugget parameter consistent
with the summary results across multiple realisations efekperiment shown in Figure 6.13 and
discussed in Section 6.3.4.1.

Visually the differences in mean (Figure 6.14) and standardation (Figure 6.15) prediction
are apparent between the two designs. For the mean respanfedchieved using the Greedy
design is functionally closer to the simulator output thia@ inference based on the Grid design.
The standard deviation appears too large for the Greedygmbsi that is deceptive. As was noted
in Section 5.6.6 for highly clustered designs the code uairgy arising from the distance of test to
training points dominates the predictive variance. Thee@yedesign is highly clustered (Figure
6.11) and as revealed by the Mahalanobis score and parapwieration errors, the variance
response is captured well. For the Grid design the standaidtibn is unrealistically small close
to training points reflecting the problem in estimating thigget and this is mirrored by the high

Mahalanobis error. The Greedy design places replicatattgpon the corners of the space and is
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Figure 6.13: Parameter accuracy (RMSE) for the Prokary#ito-regulatory Network.
F=Greedy design, Rg=Replicate Grid, G=Grid, R=Replicataxihin Latin Hypercube,
L=Maximin Latin Hypercube.

able to approximately capture the functional form of théaraze response.

Table 6.5: Prokaryotic Auto-regulatory Network: Validati Measures and relative RMSE for
length-scale X), process variances(,) and nugget parameters) for two realisations from simu-
lator. 30-point design.

Design | Mahalanobis (2025) RMSE | Relative RMSEA, 0, T)
Greedy 1904.26 2.23 (0.96,0.44,0.05)
Grid 5178.24 2.49 (0.98,0.37,0.99)

6.3.4.3 Fitting Complex Variance Model

The constant variance model used to generate the modehigyciecorrect as the simulator vari-
ance exhibits structure, especially at the boundary of #s&ggd domain.

In this section, a more complex model is assumed for the vegiaand the resulting fit is
examined for both a replicate and a non-replicate Grid desikfom Section 6.3.4.1, we expect
the former design to identify the model parameters moresthpand lead to lower prediction
errors when compared to the Grid design. This conclusiomimditned under a more complex

variance model where the simulator variance can be captured
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Figure 6.14: Prokaryotic Auto-regulatory Network: Conipan of Mean Prediction for two real-
isations from simulator.

0.5

(a) Simulator (b) Greedy (c) Grid

Figure 6.15: Prokaryotic Auto-regulatory Network: Conipan of Standard Deviation Prediction
for two realisations from simulator.

A latent kernel GP model is used for the variance with sixigints arranged in a Maximin
Latin Hypercube design. Due to the higher complexity of tiferired model the training design
size is increased from 30 to 50 points.

As in the previous section, the test set is a 2025 grid poisigde The predictive validation
results are shown in Table 6.6. The replicated Grid desitjieaes lower Mahalanobis error and
RMSE than the non-replicate Grid design.

The emulator fit in terms of mean and standard deviation isvehino Figures 6.16 and 6.17
respectively. Note all the plots are on the same scale tlitéaeicomparison. In terms of the mean
prediction the replicate design is smoother and approxastite simulator mean more accurately
than the non-replicate design mean prediction. The stdrdkaiation plots reveal that the simula-
tor variance response is best captured under the repliGiddiesign while for the non-replicate
Grid design the functional form of the variance is not cagdurThe replicate Grid design captures
the variance structure in this case because it places aggiigoints on the corners of the space

where the simulator variance varies significantly from thevjpusly assumed constant nugget.
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Table 6.6: Validation Measures for 50 training point desigrthe Latent Kernel Variance model.

Design Mahalanobis (2025) RMSE
Replicated Grid 1727.48 2.10
Grid 16220.3 2.18
4 : 5
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(a) Simulator (b) Replicated Grid. (c) Grid.

Figure 6.16: Prokaryotic Auto-regulatory Network: Prdidio of mean simulator value using a
latent GP variance model.

(a) Simulator (b) Replicated Grid. (c) Grid.

Figure 6.17: Prokaryotic Auto-regulatory Network: Preitio of standard deviation simulator
value using a latent GP variance model.
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6.3.5 Conclusions

The applicability of Fisher and uniform replicate desigm$wo complex systems biology models
was examined in Section 6.3. Section 6.3.1 motivated thgeusistochastic simulation methods
for systems hiology models and provided a brief overview @ifvfexact simulation from such
models may be achieved using the Gillespie algorithm. Thstieg literature on emulation of
stochastic models for systems biology was reviewed in 8&e&i3.2 where the main differences
to our work were highlighted.

The experimental results for the Dimerisation Kinetics eladere presented in Section 6.3.3.
A linear variance model with a vague prior was used for desfdhreplicate designs considered
achieved similar Fisher score and the approximation eorting empirical log determinant of the
maximum likelihood estimates was small. In addition thedftive performance of all replicate
designs was superior to the non-replicate designs comsiddre Grid and Maximin Latin Hyper-
cube designs. The similar Fisher and log determinant sdomely that for this simulator there
exist multiple near-equivalent designs that perform wethtin terms of minimising parameter er-
ror and predictive performance. The presence of replicasemwations however seems necessary
at least when considering smaller design sizes in ordemtiucathe variance response reasonably
well.

Another issue that was raised was the impact on the Fishez soasidering the logarithm of
the length-scale and process variance parameters veesugtiral space of the variance coeffi-
cients. This has the effect of emphasising the minimisatiotine variance coefficient parameter
errors in the Fisher score as was clearly seen in Figure 6ereathe larger error for the length-
scale parameter in the Greedy design was not reflected iardhle Fisher information or the
empirical log determinant of the ML parameter covariance.

The other model examined was the Prokaryotic Auto-regrjaktetwork in Section 6.3.4
where a simple nugget variance model was used rather thampleo variance response which
would fit the simulator variance more closely on the edgesefdesign space due to the cor-
responding difficulty in specifying a prior for such a complaodel. We therefore selected to
use the simpler nugget model rather than imposing an umirgtive prior on a complex variance
model. As was noted in Section 5.6.8 optimal design undemptaxmodels is less robust to model
misspecification. We envisage the usage of complex variarumels for optimal designs only in
cases where informative priors can be elicited for the mpdeameters.

The approximation error of the Fisher information to the &ioal log determinant was sig-
nificantly larger than for the previous model (Figure 6.1R)particular, the dispersion as revealed

by the empirical log determinant was much smaller than ptediby the Fisher information for
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the Greedy and Replicated Grid designs. Both of these degigice replicated design points on
the boundary of the variance response and therefore pelfettar than anticipated in terms of
parameter estimation.

In Section 6.3.4.2 a representative instance of inferersieguthe nugget model with the
Greedy and Grid designs was examined in detail. The crudi@rehce between the designs
was in the identification of the nugget parameter which catise predictive variance of the Grid
model to be too small close to the training points. The Gresdelign which placed replicated
points on the edge of the design space provided a closer fietsinulator variance.

In Section 6.3.4.3 we abandon the nugget model and compaiiafdérence of a latent kernel
variance model on Replicated Grid and non-replicate Griigahes. The replicated design achieved
better predictive performance than the non-replicate Geglgn and was able to capture the func-
tional form of the simulator variance response. This expernit provides some indication that, as
the principle of parsimony suggests and as discussed int&hapoptimal designs under simpler
models are likely to provide support for inference of morenptex models provided the original
simpler model is a reasonable approximation to the truetimmc

The application of optimal design on the systems biologyusitors has highlighted the im-
portance of prior elicitation for model-based design. ddairly uninformative priors limits the
complexity of models that can be used as the approximatiam ef an incorrect complex model
can be very high (see Section 5.6.8). We have chosen to upéesimodels for design which are
more robust to prior misspecification. However one can measly expect with expert elicitation
reducing prior uncertainty, model-based design for stsiihaimulators to be more efficient in
terms of number of points required and further reduce patemumcertainty and hence errors in
predictive uncertainty.

A complementary approach to prior elicitation would be dd@psequential design where the
simulator observations are acquired sequentially and &s&gd can be adapted as more obser-
vations are collected. Some initial thoughts on how thidatde achieved in the case of Fisher
design were outlined in Section 5.8. We envisage this appré@ be most useful in instances

where little prior information can be obtained and the setwrd response is complex.
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Chapter 7 CONCLUSIONS AND FUTURE DIRECTIONS.

7.1 Thesis Summary

In this section the thesis is summarised and in Section 7.pregose directions for future re-
search. The focus of this thesis has been on extending thiagonumethodology of deterministic
simulators to high-dimensional input spaces and stoahaitiulators. Emulation for determinis-
tic simulators is a well developed field where Gaussian RseEshave been successfully applied as
probabilistic surrogate models of the simulator. The etimianethodology was briefly described
in Chapter 2.

One of the first stages in the emulation methodology is thel@mpent of screening tech-
nigues to reduce the input dimensionality of the simulatpidentifying inactive variables. In
Chapter 3 screening methods for scalar output simulatore veviewed and a new sequential
method based on the method of Morris (1991) proposed. Thieadetf Morris also known as the
Elementary Effects method, has found wide-spread use iartee of computer experiments due
to its simplicity and effectiveness. A reliable ranking eraf factor effects can be produced with
a fraction of simulator runs typically required by traditad sensitivity analysis techniques such as
the method of Sobol'. In some cases the number of simulate required by the Morris method
can still be prohibitively large. The proposed sequentiairii4 method can be utilised when the
goal of the screening process is to separate factors witHinear effects from factors with linear,
near-linear or no effects. Near-linear effects are defiretin@ar within some elicited variance
y (see Section 3.2.1.2 for an example). Linear and nearrlieffects can be removed from the
simulator output at a preprocessing stage prior to emulatia only factors with non-linear and
interaction effects need to be considered in the subsegtegts of the emulation methodology.
This results in performing optimal design and emulationowér-dimensional spaces which can
simplify inference and validation.

The sequential Morris method relies on the specification thf@shold value for the elemen-
tary effect variance of each factor. This quantity can biadilt to elicit directly and a new method
is proposed to elicit the variangeinstead. We prove that the elementary effect variance is dis
tributed as a scaled chi-square distribution viRth 1 degrees of freedom, whelRethe number of
trajectories. The threshold is then defined as tHe @ércentile of this distribution. A simulation
experiment has demonstrated the utility of the threshosshevhen the factor effect is near-linear
but the additional noise is not i.i.d Gaussian as assumeléogidrivation.

The Morris method is applicable to deterministic as welltagtsastic simulators with a high
signal-to-noise ratio as the method does not account ferriat simulator variability. In Chapter
6 the Morris and sequential Morris methods were applied toehsstic simulator that models the

propagation of the rabies disease in a two-species populalihe screening methods were applied
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on the “probability of disease extinction within five yeamitput. This output is of great interest
to the users of this simulator and is appropriate for the Malass of screening methods as it is
approximately deterministic with a small amount of noise dol the finite number of simulator
repetitions used to calculate the probability output. Tdwilts of the Morris and sequential Morris
screening procedures identified the same two inputs asdhaear-linear effects. The sequential
Morris method however required considerably fewer sinmulavaluations than the batch Morris
method.

The next stage in the emulation framework is to construcstatstical surrogate model using
the GP formalism. In Chapter 4 two new types of heteroscied&® were introduced. The
Coupled Model allows for the flexible, non-parametric méidglof both the mean and variance
response of a simulator through a coupled system of two Gliksniethod is based on the model
of Kersting et al. (2007), extended to efficiently handlelicgppe observations and to correct the
bias introduced by the log transformation of the sampleaveré. A new interpretation of the
method of Kersting et al. (2007) was also discussed and aat@n given for a systematic bias
due to the non-linear transformation of the most likely &ade prediction.

The Coupled Model however is too complex for the purposesptifral design. The Joint
Likelihood model was proposed as a simpler alternative wheteterministic function is used to
model the variance response. Elicitation of prior beliefisthe model parameters is simplified
under this model as their effect on the variance output ieessunderstand.

The issue of optimal experimental design was discussed apteh5. Geometric model-free
designs such as the Maximin Latin Hypercube are used for #liriplicity and good coverage
of the input space (see Chapter 2). Such model-free desigithwan be used for a variety of
simulators, are quick to generate and permit the checkingadelling assumptions across the
entire input domain. Model-based experimental designsamgutationally more demanding to
generate but allow for the incorporation of prior beliefglaptimisation of desired criteria such
as the minimisation of parameter uncertainty.

A model-based Bayesian approach is suggested in Chaptéednéthodology is based on the
approach taken by Zhu and Stein (2005) and extended to teeoketdastic GP framework with
explicit consideration of replicated design points. Th&her Information for the Joint Likelihood
model with replicate observations is analytically derivddhe Fisher Information for non-linear
models depends on the unknown parameters and thereforeeaiBayapproach is needed in prac-
tice where the Fisher Information is integrated over a patanprior. In this work as in Zhu and
Stein (2005) a coarse discrete prior is used and the Baymségral is approximated using Monte
Carlo integration.

A series of simulation experiments was performed to ingesti the performance of Fisher-
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optimal designs under both Maximum Likelihood (ML) and yuBayesian inference. The mono-
tonicity of the Fisher score to the logarithm of the detemminof the parameter covariance of ML
estimates for a range of noise levels was first establisimedhli and Stein (2005) a similar result
was established via simulation but this was extended aniirowed for the case of heteroscedastic
variance models.

Three sets of locally optimal design simulation experiradot the Nugget, Log Linear and
Latent Kernel variance models were presented in Chapter6cally optimal designs, the Fisher
score is calculated at the true parameter values and emwertodorior misspecification or Monte
Carlo approximation in the Bayesian integral are absenerdfore this set of simulation exper-
iments focuses solely on the effectiveness of the Fishegegoominimise parameter uncertainty
and the ability of the Greedy and SA optimisation methodsno & solution close to optimal.

In all experiments, the designs with lowest Fisher scorelted in GPs with the smallest pa-
rameter estimation and prediction errors. In terms of thierdalower Mahalanobis errors and
Dawid scores were observed which reflect a more accuratéctioedof the variance response.
Both the Fisher-optimal and uniform replicate space-fillitesigns achieved similar Fisher scores
and prediction errors for the Nugget and Log Linear modets.tife more complex Latent Kernel
model however, the Fisher scores of the optimal designs easiderably lower than all other
designs considered, including the uniform replicate desid he lower Fisher score was reflected
by lower parameter estimation and prediction errors fooghtemal designs, although the approx-
imation of the Fisher score to the empirical log determir@rihe ML parameter covariance was
worse than for the simpler models. Thus it can be said thaFiteer score is overall a good pre-
dictor of ML parameter estimation error and predictive aacy although the approximation gets
worse for the more complex models. These conclusions extetite Bayesian optimal design
context where a parameter prior is specified rather thamgasjriug-in estimate.

In addition, the case of structural error was examined wtiezenodel used during design is
incorrect. A simulator experiment was conducted where implger Log Linear model is used
to generate an optimal design on which the parameters of dkent. Kernel model are inferred.
Although the design generated is clearly sub-optimal, #rameter accuracy and prediction errors
under the Log Linear optimal design compared to utilisingdptimal Latent Kernel design, were
only marginally increased. The converse simulation expent was also performed where the
Latent Kernel design was utilised for inference of the Logdar model. In this case larger errors
were observed. We conclude that optimal designs generabed simpler models are more robust
to model misspecification compared to more complex models.

The simulation experiments were concluded by examiningfteet of Fisher-optimal designs

under fully Bayesian inference where all GP hyperpararaedes integrated out of the predictive
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distribution. The hybrid Monte Carlo algorithm was used ttog integration with a set of vague
independent priors for all GP parameters. It was found tigltef-optimal designs minimise the
parameter posterior variance and result in more robustigiieel The Fisher-optimal designs
are more informative about the parameter posterior andruintlg Bayesian inference this has
a stronger effect on the predictive variance. Thereforebieefits of utilising Fisher-optimal
designs under Bayesian inference are magnified.

The optimal design approach was applied in Chapter 6 to tvetesy biology models. A
Joint likelihood model with a single nugget was used to etedl#he Prokaryotic Auto-regulatory
Network simulator. The Protein Dimerisation simulator vessulated using a Joint likelihood
model with a Log Linear variance model. Previous work on eting this type of simulator
utilised independent emulators to model the mean and \@isgsponses. For both simulators,
the uniformly replicate space-filling designs achievedilsint-isher scores to the optimal designs
and performed quite similarly in terms of predictive errolstilising non-replicate space-filling
designs resulted in significantly higher errors.

In summary, Fisher-optimal designs can be used to more tighdentify the model param-
eters and this results in more accurate prediction of theuvee response especially when con-
sidering fully Bayesian inference. Minimising estimatiermor of parameters can also be of use
when an interpretation is attached to the GP hyperparamgteh as in the case of ARD (Section
3.1.1) where the kernel length scales are used for screeingn for simpler variance models,
considering replicate observations in the designs has lemmn to be of benefit in terms of both

parameter estimation and prediction.

7.2 Future Work

In the future, the Morris method may be extended by invesitiganore economical designs where
more elementary effects are calculated using the same mwhbienulator runs. A more complex
one-at-a-time design is required and correlation is intoed in the calculation of the moments
of the elementary effect distribution. However how to camst maximum economy designs re-
mains an open question. Extending the Morris method to asichsimulators would widen the
applicability of the approach. Another direction of futuessearch would be to develop screening
methods for multiple simulator outputs where the betwegipat correlation is utilised to discover
a common set of relevant factors.

The heteroscedastic models developed in Chapter 4 coulth@ksxtended in a variety of ways.
The assumption of Gaussian errors could be relaxed by imgjuather noise models and perform-

ing approximate inference using algorithms such as Expient®ropagation (Minka, 2001). This
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could be extended further by modelling the output distidduhon-parametrically using methods
such as indicator Kriging (Oh and Lindquist, 1999) where dtiple output emulator is utilised to
predict the quantiles of the output distribution.

The optimal design framework presented could also be egtbimda variety of ways. Future
research directions include a modification of the Fisheaedn for adaptive design where model
observations made at previous emulation stages are intindbe design criterion (see Section
5.8.1). This would allow for larger designs sizes to be adergd and reduce the impact of the prior
on the design process as more observations are includedevdouhe validity of the proposed
criterion needs to be investigated. Further we envisageénttiesion of Fisher-optimal designs,
also known as D-optimal, in hybrid criteria that include tiple design goals such as minimising
predictive variance and maximising information around mianction parameters. Such criteria
often lead to very different designs so a hybrid approachrerhenultiple objective optimisation is
performed could potentially yield designs useful for a ritudte of purposes and of great practical
use. Also optimal designs that focus on specific input regionoutput threshold such as in
Picheny et al. (2010) can be investigated in the contextoahststic emulation.

The impact of optimal designs on parameter posteriors wikarguully Bayesian inference
was examined in Section 5.7. However we stress that the afionlresults presented are based on
only a few realisations of the experiment. A more extenstue\s considering more realisations
and possibly a wider range of priors and models can be pumssiedpossible future research to
test these conclusions more generally.

In the framework developed, the Greedy and Simulated Aimgealptimisation methods are
used to obtain the optimal designs. The search space fombetinods is a discretised version of
the design space. This approach allows for arbitrary caim$rto be easily imposed on the design
region but suffers from the curse of dimensionality probknte the number of candidate points
grows exponentially as the number of input dimensions am@e. A continuous optimisation
strategy may alleviate this problem and would allow the ropti design approach proposed to

scale to higher-dimensional input spaces.
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Heteroscedastic Gaussian
Process Derivations

In the chapter, the derivations related to the Heterostieda® framework are given.

A.1 Obtaining the Kersting approach through explicit maxim isation

In this appendix we discuss how the Kersting method predent&ection 4.3 may be obtained
through an explicit maximisation of the posterior densifytlee noise levels. Specifically we
examine how Equation (4.9), used to estimate the empiric@enevels, is arrived at through a
maximisation of Equation (4.5).

To obtain maximum likelihood (ML) estimates of the most likeoise levels, the explicit
maximisation problem we wish to solve during the trainiragstis:

argmaxp(z, z-it).
Z4,Z
In step 1 of the Kersting algorithm, we obtain estimates li@r noise-free process hyperpa-
rametersPy, and an input-dependent nuggeg,, which is useful to obtain initial estimates on the
noise process.
We reformulate the problem:

ag maxp(|z-i, ) p(z-i[t).

We now make a crucial simplification to maximise the noiselgwne point at a time. This is
clearly suboptimal but allows for a simpler derivation amdpbasizes the iterative nature of the
algorithm since the values for the non-optimised noiseléexg may be used from the previous
iterative step. We note here that although it is possiblentoédiately use the new estimate #or
at the optimisation for the next point similar to a Gibbs stmfor simplicity and to minimise
computational complexity we have elected to utilise the @timised estimates for the noise
levels only at the subsequent iteration of the Kerstingritlym. The optimisation problem is thus
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simplified to:
argmaxp(z(z-i,t) p(z-it).
Z

Only the first term is relevant as the latter does not inclgdeUsing Bayes’ theorem we can
reformulate the distribution of interest to:

P(z|z-i,t) O p(t|z,z-i)p(z|z-i) = N(t|0,Ky + R)INA(z |z, A7),

where I\’ denotes the Log Normal distribution with meppnand variance\,. Note these are
related to the mean and variance of the variance GP but alidertdical - see Section 4.3.3. As
before theR matrix is diadz, ..., zy).

The likelihood term can be further decomposed:

pP(tzi,z-i) = ptilt—i,z,z-) p(t-i|z,z-i) = p(ti[t—i,z,z-i) p(t—i|z—i).

The last step follows from the model dependency structwe Goldberg et al. (1998)), i.e. given
Z_j, the distribution of the noisy observatiohs can be uniguely determined without reference to
z. The latter term is thus irrelevant to the optimisation tsisice it does not depend an

To summarise the optimisation task is:

argmaxp(z, 2 i[t) = argmaxp(tlti.,21) p(z[z-1): (A1)
Z Z

As mentioned previously the terp(z|z_;) is a Log Normal whose moments are determined by
the variance GP inferred at the previous iteration step.Himeoscedastic nugget temd can be
used to initialise this distribution for the first step.

The univariate likelihood term is a Gaussian distributiathvmeany; and variance; + Ay as
described by the heteroscedastic GP predictive equatfoh3)¢(4.14).

The log posterior in Equation (A.1) is:

_In(Ay+2) _ In(Ay) (l—In@)*  (k—t)°

= 2 > @) 25, 20+ 27

wherep(z|z-i) = In?\((z |1, = exp(E[z] + Var(z] /2), A, = (exp(Var[z]) - 1) exp(2E [z] + Var[z])
the Log Normal posterior whose moments are determined bydhance GP utilising hyper-
parameters and training set obtained at the previousidarafThe posteriomp(ti|t_i,z_i,z) =
N (ti |k, z + Ay) wherel, the variance of the noise-free values.

Setting the derivative to zero:

2—-t)> 1 1 p-In()
(2N +27)? 2N+2Z 7 Az7

—0. (A.2)

This cannot be solved analytically with respectitoRather than employing numerical optimisa-
tion methods to solve Equation (A.2) we can approximaig|z_;) by a Gaussian in which case
Equation A.2 is a cubic equation with exactly one real root..

t—W3?-z-N _ 2z-2
(@+M)? Az

(A.3)

However the expression farthen no longer guarantees positive values. By the intermbedalue
theorem we know there will be at least one real root for a cehigation with real coefficients. In
experiments we have confirmed there is exactly one real ovahis cubic.

Further, by setting the variance on the noise values te 2(z +)\y)2 and the meanp; = 7,
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i.e. the value obtained at the previous step, Equation (girBplifies to:

which is very similar to Equation (4.10) used in the Kerstagproach except for the sign of
the variance on noise-free valudg. If we assume this value is negligible, we have obtained
the Kersting approach as described in Section 4.3. In factd#rivation is exact if we assume
the noise-free targets are known, i%g. = 0, which is an assumption mentioned in Section 4 of
Kersting et al. (2007) to justify the sampling step of theoaidm (see Section 4.3.4 - Equation
(4.9)).

A.2 Correcting bias in sample log variance

The log transformation of the sample variance introducegs in the estimation. In Cox and
Solomon (2003) the mean and variance of the log varianceldisbn are given but as there are
typos, we rederive here the proof.

Assuming the observations are normally distributed, ts&ibution of the sample variance is
a Chi square distribution, which is a special case of a Ganigtakdition:

i—1 202
Zor (D =
2 'n-1)’

wheren the number of observations aod the true variance.
The derivation requires the following theorem:

Theorem A.2.1. If X is Gamma distributed with X- Gammagk, 8), the mean and variance of the

natural log transformation ar&(logX) = W(k) +log(8) andVar(logX) = Wz (k) wherey and
the digamma and trigamma functions respectively.

Proof. The parametrisation of the Gamma distribution used is:

Gammak,8) = X1g /8,

okI (k)
Let ®d(s) the moment generating function (Papoulis and Pillai, 2@929g transformed X :

+oo
®(s) :/ Gammak, 8) e%°9™dx

1
Bk (K)

/ Xt+s-1e /8y Gamma Integral

_ L k+s
- 5T F(k+9)6

o r(k—|—S) es

(k)

To get the first two moments of the distribution, the first tvesidatives are calculated:

oP(s) 1 [or(k+s) S
s K [ 3 0°+ T (b+5)6°logb

0°0(s) 1 [0°T(k+9),s OT(K+S) i s )
3 TN [ P 6 +2Te log8+TI' (k+s)0>(logb)
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Settings = 0, the central moments are obtained:

00(s)|
o) 1 [0r(k+s) ar(k+s) o
FE; &0"rw){ o7 T2 gg 1090+ T(k+s)8(l0gH)

Finally the first two moments are

am@qzaif =0l +1ogo
2 2
Var(logX) = ag;gs) e <ad;és) 0) = Pz(K).

In the above the definitions of the digamma and trigamma fonstare utilised:

(x) = alog):(x)
2
Wa(x) = s L I%?(zr 9 m

Given theorem A.2.1, the mean and variance of the log sanapiance is :
n—1 )
E(logs?) = Y )+ log 2+ loga? — log(n— 1)
Var(logs?) = g, (n%l>

Therefore the bias corrected sample variance estimate is:

logo? = E(logs®) — y (%) —log2+log(n—1)

Approximations of the digamma and trigamma functions arssiibe through truncated series
expansions though we do not utilise them (Cox and Solomad3)20
A.3 Heteroscedastic Prior GP Derivation

We assume the noise process has zero mean and is indepeivedenthg design point. Given

these conditions, the distribution of the sample mgaa (Hayter, 2002):

0%(xi)
N

P(FR[k) = N (P, );
wheren; the number of replicate observatiom(x; ) the true variance at locationandy the true
mean.

Due to the independence of the noise we can write the likethio matrix form for all obser-
vations 1..N:

p(AW) = N(HRP 1),

whereR = diag(c?(x))N , andP = diag(m)N ;.
Our zero mean GP prior is:
(W) = N(H0,K).
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The marginal observation density can then be calculated:
() = [ PEWP(HAN= [ N(EIRPIN(WO.K)du=N(HO.C, =K +RP ). (AS)
The last step stems from applying the identity (2.115) (Bist2007), that is given by
p(y) = / p(Y|X) p(x)dx = / N(y|AX+b, LN (X, A~ dx = N(y|Ap+b, L1+ AN TAT).

We get the result of Equation (A.5) by settidAg=1,b=0,L~*=RPtandu=0,A"t =K. This
result can also be obtained directly by noticing that théridistion of [1is the sum of two normal
distributions,p(ft) = p(K) +N(0,RP~1), which are independent and therefore their variances add.

We can use Equation (A.5) to now derive the predictive distion by conditioning on the
known observations. We can partition the joint distribatioy the unobserved sites and the
observed sitep. "Use Equation (A.5) we can write this partitioned joint disition as:

p(iL,f) =N ([ %‘ ] 0, [ K(X*’X*HXS(ST)P(X*)_l K(x,x)}i();(’g)P(X)l D

wherex, andx the unobserved and observed design sites respectiRely) andP(x.) the variance
and number of replicates at the unknown sites. For the affiatial termsR(x, x, ) = 0 due to the
independence of noise (R diagonal).

To make predictions of the sample mgan We condition on the known sitgs(this can be
done by completing the square - see page 86 of (Bishop, 20@7@@uations (2.81) (2.82)).

PRI =N( KT (K(x,%) +ROOPX) ),
K (% %) +RO)P() ™+ K (%, )T (K%, %) +RX)PX) ™ K (x,,%)).
We note that the sample meancdincides with a single observation when the number of

replicates is 1. Thus we can defx.) = | to obtain the predictive equations for single replicate
test sites.

A.4 Derivation of likelihood for the Joint Model

In this section, the likelihood of the joint model describadSection 4.5 is derived. The joint
likelihood of the sample megnand sample varianc is:

p(R.S71X.0.8) = [ p(R.S.1X.0.B)dp
= [ p(B.S11X.0.B)p(HO)dn
= P(1X.B) [ P(RIH.O,B.X)P(1O)dH

N
- (Up(sﬂxi,s)> /p(ﬂ\u,e,&x)p(u)du

(A.6)

N
= (U D(S|2|Xa,B)> N (0, Ko +RgP ™)

The last equality follows from Section A.3 Equation (A.5).
The log likelihood can then be written:

N N
log p({1.§*(X.6.B) = (_leog p(SF\B,m)) +10gN(f0,K +RP™) = (Zl—si) +v (A7)
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where the latter term is a GP standard likelihood with thegigovariance and the former can be
expanded:

09 (18 %) =" (lg(ns ~ 1) - log(2) ~ log f(x. ) ~ log (" -5)
n—3 (n — 1)§2 (A.8)
+ 2 |Og($|2) - m.

A.5 Proof of Fisher Information for Heteroscedastic Noise M odels

The Fisher Information is defined as

7= [ (oa(Lx10)) LI

whereL(X|0) is the likelihood function.
For the heteroscedastic GP mo@ek {f3,6« }, i.e. the variance coefficients and the kernel
hyperparameters. For paramet@y$, the corresponding element in the FIM is:

2
_//<agjep Ing(a,32|e)> p(fL,2/6) dids?,

where we have omitted the dependency on the inguts
The log likelihood term can be decomposed into two terms awslin Equation (4.19), a sample
variance ternlgj and a Gaussian Process tdrm

5o = [ [ [saq 2| pagioraios — [ [ |32 1] o0 ducs
- [ g 2] pspics i [ [ 5o ta] puch [ po

wherep, = N({|0,Kg + RgP~1). Note [ p,dfi= 1 and p(s*|X,B)ds* = 1 since they are density
functions. Lastly we are able to separate the sample variamegrals to the individuad terms
due to the noise independence assumptionp(&|X,B) = [N, p(s?|x, B).

ﬂpz_/[a%;ii s,]l_lpsﬂc ))ds? + Fy
5 ([ [y et [ognnes ) +n @9

I
= ZFSi+ FNa
i=

where

fu = [ [sag loape)] pisx s,

02
N = /|:ae epLN:| pudu

The solution to thém integral is known and for a zero mean GRis(z 192510 5:) (Pazman,
2004). TheF; integral can be solved by rewriting the integral given theosel order derivative
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and the sample variance distribution:

[ Plogp(st|B.x) _
ERR e e SR

n—1 62f
I m/p(siz’&xi)dﬁz

(n—1) of of
- [ (1) 55 exel faBBJ/SFDSF\M g

The integral can be analytically solved. For notationalitydet fy. = fg2(xi,B) = exp(f).

éfcz 73 72,;—’2132
[ p(ipx)dst = / $()"% e "7 g (n.10)
The last integral is the mean of Gamma distribution. Thessfbe Gamma integral is:
2f02 n—1 _
—1 2

To conclude the Fisher information contribution of the slmariance term of the log likelihood

n
Fsi=

1 0 _(ni—l)[ (01 of [ O
2 Bipy 2 =035 5, TP Vopg, | |
_ni—l( ala +ﬂ£>
2 \0BjBp OBiBp 9B 0By

The final result is:

_nm—10f of
ST T2 BBy

In the case of the fixed basis variance mo%%:lz HT(x)J; and theFs; for parametergB;,Bp}:

n—1
Far= o= HT ()3 HT ()35,

whereJ; the zero vector wittj'" element 1.
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Details of Methods Used

B.1 The bootstrap method

We use a method suggested in Efron and Tibshirani (1993)tesrde the number of bootstrap
samples required to estimate the standard error in SectiB.5As usual, bootstrap is done by
random sampling with replacement.

In particular we first estimate the bi&§ootstrap— Edata, WhereEpoatstrapthe mean value across
all bootstrap samples ari}j,5 the estimated value from data. If the bias / standard ertar i
less then 0.25, we judge we have enough samples in our amtstr

B.2 Data Preprocessing and Standardisation

In this section we describe the process of preprocessiray dditich might often be undertaken
prior to for example screening or more general emulationis €an take several forms. A very
common preprocessing step is centring, which produceswdttaero mean. If the range of vari-
ation is knowna priori a simple linear transformation to the range [0,1] is oftesdudt might also
be useful to standardise (sometimes called normaliseYa@ataduce zero mean and unit variance.
For multivariate data it can be useful to whiten (or sphdrne)data to have zero mean and identity
covariance, which for one variable is the same as standaiatis The linear transformation and
normalisation processes are not equivalent since the lateeprobabilistic transformation using
the first two moments of the observed data. This section iscbas the MUCM Toolkit (World
Wide Web electronic publication, Release 6, 20RQ)cDat aPr ePr ocessi ng page.

B.2.1 Centring

It is often useful to remove the mean from a data set. In gétiezanean, B, will not be known
and thus must be estimated and the centred data is givex byx — E[x]. Centring will often be
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used if a zero mean GP is being used to build the emulatoguadthin general it would be better
to include an explicit mean function in the emulator.

B.2.2 Linear transformations
To linearly transform the data regiore [c,d] to another domaiw’ € [a, b]:

W =2X=C

d_c(b—a)+a.

In experimental design the convention is farb] = [0, 1].

B.2.3 Standardising

If the domain of the design region is not known, samples frobexdesign space can be used to
rescale the data to have 0 mean, unit variance by using tlegsof standardisation. If on the
other hand the design domain is known we can employ a linsaalieg.

The process involves estimating the mgesa E[x] and standard deviation of the dateand
applying the transformatior’ = ’%“ It is possible to standardise each input / output separatel
which rescales the data, but does not render the outputsretated. This might be useful in
situations where correlations or covariances are difficuéistimate, or where these relationships
need to be preserved, so that individual inputs can stillisinduished.

B.2.4 Sphering / Whitening

For multivariate inputs and outputs it is possible to whitles data, that is convert the data to zero
mean, identity variance. The data sphering process ins@sémating the mean and variance
matrix of the data Vdk]|, computing the eigen decompositi®AP' of Var[x] and applying the
transformationy’ = PA~Y2PT (x— E[X]).

B.3 Proof of Lemma 3.2.1.

In this appendix the proof for Lemma 3.2.1 is presented. Asina 3.2.1 is defined for a single
factor, at this stage design points are considered unteagiad the elementary effect of Equation
(3.2) is computed for a single factor.

Proof. We first note that at the poing, the elementary effedEE(x) = (Y(x +4) — Y (x))/A
follows a normal distribution, i.eEE(x) ~ N(a, i—}’). The independence of elementary effects
EE(x1),...,EE(xg) follows directly from independence of observations of theddl (3.5) at
different points.

The rest of the proof uses a classic decomposition of sumsjudres of iid normal ran-
dom variables. The mean of elementary effqcts %zfilEE(xi) follows a normal distribution

N(a, %). To compute the distribution of the variance of elementéfigceso? = g SR 1 (EE(x) —
W)2, the following sum of squares is used
2

i EE(x)—a :(R—l)%2+R(u;ya)2.
AN A

The left hand side of the above expression is a sum of squadegéndent standard normal
random variables and thus it has a chi-squared distribwtitim R degrees of freedorg. The
quantity that interests us is the first summand on the rightifside above. By the independence
of panda?, this quantity has a chi-squared distribution wRh- 1 degrees of freedorx ,, that

is, o follows a scaled chi-squared distribution ~ (Rf—zl’mzx%fl. O
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B.4 Screening Test function

We describe the function used in Section 3.1.3.2 to gené¢hatsimulated data. The function
has 99 input variables, with one dummy varialbkgg). The effects are classified into linear,
polynomial of order 2 or greater and step-linear:

f(X) _ fLinear(Xl’lo) + fPOIy(Xll.SS) + fPeriodiC(X39776) + fStep(X7g’93)

where
_ 8
flinearix 1) = 24 ZBQ + —Xg — X10,
Pol =
fPWY(x1138) = 2([] %) — x)+3([1] x) XF) + %2964 — X25XGg
T3,
—Xo7Xa8 — 2930+ 6X35oX33 — HXGay/Xa5 + /XaeXG7 — X3,
fPerodic(xag76) =  5Sin(xagXa0/5) + (5/2)siN(2xa1Xa2/5) + (5/3)sin(3x43%44/5)

+(5/4)sin(4xesxas/5) + Sin(xa7xa/5) + (5/6)sin(6xasxs0/5)
+(5/7)sin(7x51%52/5) + (5/8)siN(8x%s3%54/5) + (5/9)SiN(9xs5%56/5)
+(5/10)sin(10xs57x58/5) + Sin(13Xsg) + Sin(10Xsg) + SiN(7Xs1)

+sin(4xe2) + Sin(Xe3) — €0 13Xs4) — €0 10xg5) — COY 7Xs6)

—cog4xs7) — COXpg) + 2SiN(2X0X70)COY 2X71%72) + €0 0.1 x 3.1472x 5x73)
+sin(0.3 x 6 x 3.147X74) — cO4X75) + 8X78X77SiN(3X76)

fS®Ax7908) = H(x79 < 0.05,3x79+ 0.1,3%79) 4+ H (xg0 < 0.1, 3xg0— 0.5, 3xg0)
—H(xg1 < 0.15,0.1,0.5) + H (g2 < 0.2,0.5xg2 — 4, 5Xg2)
—H (xg3 < 0.25,xg3+ 1,Xg3) + H(xg4 < 0.3,3xga+ 0.1, 3%g4)
H (xg5 < 0.35,2%g5— 1.5, 2xgs)H (Xgs < 0.4,0.1,0.5)
H (xg7 < 0.45,0.5xg7 — 4,0.5Xg7) — H(xgs < 0.5,Xgg+ 1, Xgs)
Xgg < 0.05,Xgg+ 0.2, ng) +H (Xgo < 0.1,2x90— 0.2, 2X90)
Xo1 < 0.15, 0.17 0.5) +H (ng < 0.2, 0.66%g2 — 4-7 0.66X92)
X93 < 0.25,x93 — 0.2,X93)H (X94 < 0.05,3%g4+ 0.1, 3X94)
Xo5 < 0.1, 3Xg5 — 0.57 3X95) —H (Xge < 0.157 0.1, 0.5)
Xg7 < 0.2,0.5%97 — 4, 0.5X97) —H (ng < 0.25,x98+ 1, ng)

+H

H
H
+H
+H(x

AAAA,_\/_\/_\,_\

b(x) if ais true
c(x) otherwise °

whereH (a,b(x),c(x)) = {
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