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Abstract

This thesis firstly presents a nonlinear extended deterministic Susceptible-

Infected (SI) model for assessing the impact of public health education cam-

paign on curtailing the spread of the HIV pandemic in a population. Rigorous

qualitative analysis of the model reveals that, in contrast to the model without

education, the full model with education exhibits the phenomenon of backward

bifurcation (BB), where a stable disease-free equilibrium coexists with a stable

endemic equilibrium when a certain threshold quantity, known as the effec-

tive reproduction number (Reff ), is less than unity. Furthermore, an explicit

threshold value is derived above which such an education campaign could lead

to detrimental outcome (increase disease burden), and below which it would

have positive population-level impact (reduce disease burden in the commu-

nity). It is shown that the BB phenomenon is caused by imperfect efficacy of

the public health education program. The model is used to assess the potential

impact of some targeted public health education campaigns using data from

numerous countries.

The second problem considered is a Susceptible-Infected-Removed (SIR) model

with two types of nonlinear treatment rates: (i) piecewise linear treatment

rate with saturation effect, (ii) piecewise constant treatment rate with a jump

(Heaviside function). For Case (i), we construct travelling front solutions

whose profiles are heteroclinic orbits which connect either the disease-free

state to an infected state or two endemic states with each other. For Case

(ii), it is shown that the profile has the following properties: the number of

susceptible individuals is monotone increasing and the number of infectives

approaches zero, while their product converges to a constant. Numerical sim-



ulations are shown which confirm these analytical results. Abnormal behavior

like travelling waves with non-monotone profile or oscillations are observed.
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Chapter 1
Introduction

“Policy is of course based on theory, though not always on the best theory.”

Hobsbawm (1969)

1.1 Global HIV/AIDS epidemic

Since its emergence in the 1980s, the human immunodeficiency virus (HIV),

and the associated syndrome of opportunistic infections which lead to the

late stage HIV disease, known as the acquired immunodeficiency syndrome

(AIDS), continue to be one of the most serious global public health men-

ace. Global and regional estimates of HIV have been provided by the Joint

United Nations Programme on HIV/AIDS (UNAIDS) and the World Health

Organization (WHO) since the late 1980s and country specific estimates since

1996 (UNAIDS, 2009; Garcia-Calleja et al., 2006). Unlike the early years of

1



AIDS epidemic where the majority of infected individuals were homosexuals,

hemophiliacs, and intravenous drug users, today there is no geographical area,

class, and cultural group of the world untouched by this pandemic (Koob and

Harvan, 2003). Over 33 million people are currently living with HIV (see, Ta-

ble 1.1). Based on the current trends, over 7300 persons become infected with

HIV, and 5400 die from AIDS-related causes including more than 760 chil-

dren, every day (UNAIDS, 2009). In other words, almost five people become

infected with HIV and four people (i.e., three adults and one child) die from

AIDS per minute. AIDS is the leading cause of death in sub-Saharan Africa,

especially in the southern part of the continent where nine countries with the

highest HIV prevalence worldwide are all located in this subregion, with each

of these countries experiencing adult HIV prevalence greater than 10%. With

an estimated adult HIV prevalence of 26% in 2007, Swaziland has the most

severe level of infection in the world (UNAIDS, 2008). The recent statistics

have shown that an estimate of 22.4 million [20.8 million - 24.1 million] peo-

ple (women account for approximately 60%) living with HIV in sub-Saharan

Africa at the end of 2008 (UNAIDS, 2009; Garcia-Calleja et al., 2006). More-

over, 72% of world’s AIDS-related deaths, 68% of new HIV infections among

adults and 91% of new HIV infections among children occurred in sub-Saharan

Africa (UNAIDS, 2009, 2007). In addition, the epidemic has left behind more

than 14 million AIDS orphans in the region in 2008.
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1.2 The Immunology of HIV

Once HIV has entered the body, its major target is a class of lymphocytes, or

white blood cells, known as CD4+ T cells. Thus, the immune system initiates

anti-HIV antibody and cytotoxic T cell production. However, it can take two

to ten weeks for an individual exposed to HIV to produce measurable quan-

tities of antibody. When the CD4+ T cell count, which is normally around

1000mm−3 reaches 200mm−3 or below in an HIV-infected patient; then that

person is classified as having AIDS. Because of the central role of CD4+ T

cells in immune regulation, their depletion has widespread deleterious effects

on the functioning of the immune system as a whole and leads to the immun-

odeficiency that characterizes AIDS. Therefore, HIV levels in the bloodstream

are typically highest when a person is first infected and again in the late stages

of the illness as depicted in Figure 1.1. The progression of HIV infection to

AIDS probably depends on how well the body can replace cells destroyed by

virus (Perelson and Nelson, 1999).

1.3 Modes of HIV transmission

Epidemiological evidence shows that HIV is transmitted only through the in-

timate exchange of body fluids, such as blood, semen, vaginal secretion, and

mother’s milk (Dane and Miller, 1990). Thus, HIV could be passed from an

infected mother to her child (i.e., vertical infection) during pregnancy, birth

or through infected breast milk. High-risk behaviors include unprotected sex-

ual intercourse and intravenous drug use through sharing needles or syringes.
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Figure 1.1: Time course of HIV infection in a typical infected adult. The viral
load and level of antibodies against HIV are depicted. The early peak in viral load
corresponds to primary infection. Primary infection is followed by a long asymp-
tomatic period during which the viral load changes little. Ultimately, the viral load
increases and the symptoms of full-blown AIDS appear. On average, the time from
infection to AIDS is 10 years, but still some patients progress to AIDS much more
rapidly, while others progress more slowly. The graphs here are only meant to be
schematic and are not data from any particular patient.

Many people in the past have been infected with HIV through transfusions of

infected blood or blood-clotting factors, before blood screening began in 1986.

Therefore, this is no longer a significant risk in most parts of the world today,

as blood donations are routinely tested for HIV.

1.4 Spatial spread of HIV

HIV is classified as an infectious disease which rapidly spreads amongst com-

munities and changes its distributions in space, time and “social space”(Wallace,

1991). Many factors, including increased mobility, are associated with an in-

creased risk of HIV infection (Welz et al., 2007). The transmission of HIV is

also strongly associated with the spatial distribution of high risk groups. The

5



distribution of AIDS cases not only varies by cities and states, but also by geo-

graphical regions (Lange et al., 1988). The spread of HIV has been attributed

to migration from rural to urban areas and its concomitant return migration.

Furthermore, the trends in geographic diffusion could be explained by the mo-

bility and travel patterns of high risk populations and their activities while

travelling (McCoy et al., 1996). Fullilove et al. (1992) stated that our ability

to predict the future of the HIV epidemic will depend on our understanding of

the movement of HIV from established epicenters to areas where the prevalence

of risk behaviors may be high but the prevalence of HIV infection is currently

low. Standard mathematical models of the spread of infectious diseases are

well known and have been widely applied for many diseases including HIV in

different regions in the world (Anderson and May, 1991).

1.5 Public health education campaigns

There is still no cure or vaccine for HIV, and anti-retroviral drugs (ARVs)

are still not widely accessible, particularly in the resource-poor nations (which

suffer the vast majority of the HIV burden globally). Yet, HIV remains pre-

ventable through the avoidance of high-risk behaviour, such as unprotected

sexual intercourse and sharing of drug injection needles. Thus, in the absence

of pharmaceutical interventions (such as a vaccine or ARVs) in areas where

the HIV pandemic is more rampant (notably developing nations), the effective

control of HIV would depend, primarily, on reducing behavioural risks. This

could be achieved through effective public heath education campaign.

6



Unfortunately, surveys around the world show alarming low level of

awareness and understanding about HIV and its preventive measures (Keit-

shokil et al., 2007; Pérez et al., 2008). Recent studies indicate that the most

effective available means to control the prevalence of HIV is to provide HIV-

related education, which could lead to safe lifestyles among sexually-active

members of the public (Bortolotti et al., 1992; Morton et al., 1996). Moreover,

education, as a sole anti-HIV intervention strategy, may not be sufficient to mo-

tivate behaviour change (Berker and Joseph, 1988). Studies show that public

health education increases self-efficacy, which is a determinant for controlling

risky behaviour (Lindan et al., 1991). Furthermore, as noted by Cassell et al.

(2006), the benefits of new methods of HIV prevention could be jeopardized if

they are not accompanied by positive efforts to change risky behaviour. This

is in line with the well-known fact that sexual education and awareness of the

risk and life-threatening consequences of AIDS can lower the incidence rate in

HIV infection (Valesco-Hernandez and Hsieh, 1994).

Public health education campaigns have been successfully implemented

in numerous countries and communities, such as: Uganda, Thailand, Zambia

and the US gay community (Daniel and Rand, 2003; De Walque, 2007). Be-

tween 1991-1998, HIV prevalence dramatically declined in Uganda from 21%

to 9.8% (with a corresponding reduction in non-regular sexual partners by

65% coupled with greater levels of awareness about HIV/AIDS; Daniel and

Rand (2003)). The Ugandan programme fostered community mobilization to-

wards change in risky behaviour, without increasing stigma (Green et al., 2006;

Wilson, 2004). In Zambia and Zimbabwe, the decline in HIV incidence since

7



early and late 1990s, respectively, is attributed to behavioural changes. Drops

in national HIV incidence were also reported in Tanzania between 2004 and

2008 (Fylkesnes et al., 2001; UNAIDS, 2009). There are a number of ways

(or strategies) public health education campaigns can be implemented (or tar-

geted) effectively to combat the burden of HIV disease (measured in terms of

new cases, mortality etc) in a community. This thesis amongst other things

examines the following targeted strategies and their impact:

• targeting adult (“established”) sexually-active susceptible individuals

only;

• targeting newly-recruited sexually-active susceptible individuals only;

• targeting HIV-infected individuals without clinical AIDS symptoms only;

or

• targeting HIV-infected individuals with AIDS symptoms only.

One of the primary goals of this study is to theoretically determine which

of the aforementioned targeted strategies (or combination of strategies) is (are)

the most effective in curtailing HIV spread in a community.

1.6 Treatment

Antiretroviral treatment is the best option for long lasting viral suppression

and, subsequently, for reduction of mortality. Currently available drugs do

not completely eradicate HIV infection, therefore, lifelong treatment might

8



be needed. The goal of antiretroviral treatment is to decrease the morbidity

and mortality that is generally associated with HIV infection. A combination

of three or more active drugs is needed to achieve this aim in most patients

(Simon et al., 2006).

The extremely high prevalence of HIV suggests an urgent need to allo-

cate adequate resources for HIV prevention and treatment (Welz et al., 2007).

Still the treatment access gaps remain, as more than half of all people in need

of treatment are still not receiving such services. For example, Kenya was of-

fering antiretroviral therapy to roughly 190 000 adults in nearly 500 treatment

sites in mid-2008, only 12% of the estimated 1.4 million HIV-infected adults

who required daily co-trimoxazole were receiving it in 2007 (UNAIDS, 2009).

While treatment of HIV-infected people with antiretroviral drugs and drugs

for prevention and treatment of opportunistic infections benefits individuals

and communities, in lowering AIDS-related death rates in multiple countries

and regions, it is also contributing in increasing HIV prevalence (UNAIDS,

2009; Weidle et al., 2002). Furthermore, treatment may include quarantine of

all seropositive persons as successfully practiced by Cuba between 1986 and

1994. However, by 2003, half of all HIV-positive Cubans still lived in the

sanatoriums (Hansen and Groce, 2003; Perez-Stable, 1991).

Over the last two decades, some mathematical models assessing the im-

pact of treatment on HIV have been designed and analyzed by many authors

(see, for instance, Wang and Ruan, 2004; Wang, 2006; Arino et al., 2008;

Brauer, 2008; Gul et al., 2009; Kgosimore and Lungu, 2006, and references

therein).
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1.7 Reproduction number

In Epidemiology, it is essential to quantify the severity of actual (or poten-

tial) outbreaks of infectious diseases. The standard procedure is to calculate

a parameter called the basic reproduction number (R0) that characterizes the

potential of an outbreak to cause an epidemic. Anderson and May (1991),

defined R0 as the average number of secondary infections produced when one

infected individual is introduced into a host population where everyone is sus-

ceptible. Further, if R0 is greater than one then the outbreak will lead to an

epidemic (i.e., a stable endemic equilibrium point (EEP) exists), and if R0 is

less than one then the outbreak will become extinct and the disease dies out in

time (in this case the corresponding disease-free equilibrium (DFE) is locally

asymptotically stable (LAS)). The DFE and an EEP exchange their stability

at R0 = 1 which is known as forward bifurcation (or transcritical bifurca-

tion). This phenomenon was first noted by Kermack and McKendrick (1927),

and has been observed in many disease transmission models ever since (see

for instance, Castillo-Chavez et al., 1989b; Castillo-Chavez and Song, 2004;

Hethcote, 2000, and references therein). In general, for models that exhibit

forward bifurcation, the requirement R0 < 1 is necessary and sufficient for

disease elimination (i.e., the number of infectives at steady state depends con-

tinuously on R0). In the presence of control measure, such as the use of public

health education enlightenment campaign in a community, the dynamics of

the model is governed by another threshold quantity, known as the effective

reproduction number, denoted by Reff . The threshold, Reff , represents the

average number of secondary cases a typical infected individual will generate
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in a population where a fraction of the susceptible individuals are educated.

A number of studies have shown that whilst Reff < 1 is necessary for dis-

ease elimination, this requirement may not be sufficient. This is owing to the

phenomenon of backward bifurcation, where a stable endemic equilibrium co-

exists with a stable disease-free equilibrium for Reff < 1. This phenomenon

has been observed in numerous disease transmission models such as those for

behavioral responses to a perceived risks (Hadeler and Castillo-Chavez, 1995),

multiple groups (Castillo-Chavez et al., 1989a), vaccination (Arino et al., 2008;

Elbasha and Gumel, 2006; Kribs-Zaleta and Halesco-Hernandez, 2000; Sharomi

et al., 2007), transmission of mycobacterium tuberculosis with exogenous re-

infection (Castillo-Chavez and Song, 2004), and transmission of dengue (Garba

and Gumel, 2010). In a backward bifurcation, disease control is only feasible if

Reff is reduced further to values below another sub-threshold less than unity.

The phenomenon of backward bifurcation has important public health impli-

cation, since it renders the classical requirement of reproduction number being

less than unity to be insufficient (in general) for disease elimination.

1.8 Organisation of the Thesis

After this introductory chapter, the thesis is structured as follows.

Chapter 2: The purpose of this chapter is to introduce several mathematical

concepts and tools that will be used throughout the thesis to qualitatively

analyze the models presented in the subsequent chapters. Mathematical

tools like equilibria and stability theory, their general categories and
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applications are briefly introduced. The chapter also briefly discussed

some of the principles and methods associated with dynamical system.

Other core concepts that are of particular interest to infectious disease

modelling developers and researchers were also highlighted.

Chapter 3: A basic HIV model with public health education campaign as

a sole intervention strategy is formulated and analysed in this chapter.

Threshold analysis of the effective reproduction number is conducted and

the model is used to assess the potential impact of some targeted public

health education campaigns using data from numerous countries.

Chapter 4: The existence of backward bifurcation (BB) is established in this

chapter. The process of removing such phenomenon by perfecting effi-

cacy of the public health education program is also presented and dis-

cussed.

Chapter 5: A Susceptible-Infected-Removed (SIR) model with two types of

nonlinear treatment rates model is introduced, first in its spatially inde-

pendent then in its spatially dependent form. Results on its disease-free

and endemic equilibria are stated. The existence of travelling wave front

solutions are established in Section 5.4. Finally, we concluded by briefly

discussing our results in Section 5.5. It is noteworthy that this chapter

is independent of chapters 3 and 4, and the model considered can be

applied to some infectious diseases in addition to HIV.

Chapter 6: The last chapter discusses the main contributions of this the-

sis and highlights some possible refinement of the current research and
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potential directions for future work.
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Chapter 2
Mathematical Preliminaries I

2.1 Introduction

In this chapter, some mathematical concepts, definitions and theories needed

for model analysis especially in chapters 3 and 4 will be presented. First of

all, in this chapter autonomous system of ordinary differential equations

ẋ = f(x), x ∈ Rn. (2.1)

are considered as opposed to non-autonomous system

ẋ = f(x, t), x ∈ Rn. (2.2)

where the function f can depend on the independent variable t. Here, the dot

represents differentiation with respect to t.
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2.2 Equilibria and Linearization

The following are standard definitions and theorems required to analyze the

stability of an equilibrium point of an autonomous system (see, Perko, 2001;

Hale and Koçak, 1991).

Definition 1. A point x̄ ∈ Rn is called an equilibrium point (also critical point,

steady state solution, etc.) of (2.1), if f(x̄) = 0. Further, an equilibrium point

x̄ is called a hyperbolic equilibrium point of (2.1) if none of the eigenvalues of

the matrix D f(x̄) have zero real part.

Consider the linear system

ẋ = Ax, (2.3)

with the matrix A = D f(x̄). The linear function Ax = D f(x̄)x is the linear

part of f at x̄.

Definition 2. The linear system (2.3) with the matrix A x = D f(x̄)x is called

the linearization of (2.1) at x̄.

Definition 3. An equilibrium point of (2.3) is called a sink if all of the eigen-

values of the matrix D f(x̄) have negative real part; it is called a source if all

the eigenvalues of D f(x̄) have positive real part; and it is called a saddle if it

is a hyperbolic equilibrium point and D f(x̄) has at least one eigenvalue with a

positive real part and at least one with negative real part.

Theorem 1. (Grobman-Hartman).

If x̄ is a hyperbolic equilibrium point of (2.1), then there is a neighbourhood of
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x̄ in which f is topologically equivalent to the linear system (2.3).

2.3 Stability of Equilibria

The notion of stability of an equilibrium point is of considerable theoretical

and practical importance, and it has been widely discussed in the literature,

for example, books on the dynamical systems: theory (Guckenheimer and

Holmes, 2002; Lakshmikantham et al., 1989; LaSalle, 1976; Perko, 2001; Hale

and Koçak, 1991; Ruelle, 1989) and application (Murray, 2002, 2003; Brauer

and Castillo-Chavez, 2001; Anderson and May, 1991).

An equilibrium point x̄ is said to be stable if all solutions sufficiently

close to x̄ stay nearby for all t ≥ 0. It is asymptotically stable if nearby

solutions actually converge to x̄ as t →∞. Thus the formal definitions are:

Definition 4. (Liapunov Stability).

An equilibrium point x̄ of (2.1) is said to be stable if given ε > 0, there exists

a δ(ε) > 0, such that, for any x0 for which |x̄−x0| < δ(ε), the solution y(t, x0)

of (2.1) through x0 at 0 satisfies |y(t, x0)− x̄| < ε for all t ≥ 0.

Definition 5. An equilibrium point x̄ is said to be unstable if it is not stable.

Definition 6. (Asymptotic Stability).

An equilibrium point x̄ of (2.1) is said to be asymptotically stable if it is stable

and, in addition, there exists a constant c > 0 such that if |x̄ − x0| < c then

|y(t, x0)− x̄| → 0 as t →∞.

Definition 7. An equilibrium point x̄ is said to be globally asymptotically stable

if it is asymptotically stable and the domain of asymptotic stability Dx̄ = {x0 ∈
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Rn : lim
t→∞

|y(t, x0)−x̄| = 0} = Rn (i.e., every solution y(t, x0) of (2.1) possesses

the property |y(t, x0)− x̄| → 0 as t →∞).

Theorem 2. Suppose all the eigenvalues of D f(x̄) have negative real parts.

Then the equilibrium point x̄ of the system (2.1) is locally asymptotically stable,

and unstable if at least one of the eigenvalues has positive real part.

Theorem 3. If f : E → Rn and an open set E ⊂ Rn. Then f ∈ C1(E) if and

only if the partial derivatives ∂fi

∂xj
, i, j = 1, ..., n, exist and continuous on E.

Theorem 4. (The Stable Manifold Theorem).

Let E be an open subset of Rn containing the origin, let f ∈ C1(E), and let φt

be the flow of non-linear system (2.1). Suppose that f(0) = 0 and that D f(0)

has k eigenvalues with negative real part and (n− k) eigenvalues with positive

real part. Then there exists a k-dimensional differentiable manifold S tangent

to the stable subspace Es of the linear system (2.3) at 0 such that for all t ≥ 0,

φt(S) ⊂ S and for all x̄ ∈ S.

lim
t→∞

φt(x̄) = 0;

and there exists an (n − k) dimensional differentiable manifold U tangent to

the unstable subspace Eu of (2.3) at 0 such that for all t ≤ 0, φt(U) ⊂ U and

for all x̄ ∈ U

lim
t→−∞

φt(x̄) = 0.

The above Theorem is a very important result describing some local

qualitative behaviour of ordinary differential equations. The theorem refers S
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and U as local stable and unstable manifolds of the origin respectively. The

global stable and unstable manifolds of (2.1) at the origin are defined below:

Definition 8. Let φt be the flow of the nonlinear system (2.1). The global

stable and unstable manifolds of (2.1) at 0 are defined by

W s(0) =
⋃
t≤0

φt(S)

and

W u(0) =
⋃
t≥0

φt(U)

respectively; W s(0) and W u(0) are also referred to as the global stable and

unstable manifolds of the origin respectively. It can be shown that the global

stable and unstable manifolds W s(0) and W u(0) are unique and that they

are invariant with respect to the flow φt; furthermore, for all x ∈ W s(0),

lim
t→∞

φt(x) = 0 and for all x ∈ W u(0), lim
t→−∞

φt(x) = 0.

The next Theorem (see, for example, (Perko, 2001)) shows the existence

of an invariant centre manifold W c(0) tangent to Ec at 0.

Theorem 5. (The Centre Manifold Theorem)

Let E be an open subset of Rn containing the origin, let f ∈ Cr(E), and r ≥ 1.

Suppose that f(0) = 0 and that D f(0) has k eigenvalues with negative real

part, j eigenvalues with positive real part, and m = n− k− j eigenvalues with

zero real part. Then there exists a m-dimensional centre manifold W c(0) of

class Cr tangent to the centre subspace Ec of the linear system (2.3) at 0, there

exists a k-dimensional stable manifold W s(0) of class Cr tangent to the stable
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subspace Es of the linear system (2.3) at 0 and there exists a j-dimensional

unstable manifold W u(0) tangent to the unstable subspace Eu of (2.3) at 0;

furthermore, W c(0), W s(0) and W u(0) are invariant under the flow φt of

(2.1).

2.4 Liapunov Function

Liapunov function can be thought of as modified energy function. There is

no general method to construct or find a Liapunov function which proves the

stability of an equilibrium.

Definition 9. Let U be a neighbourhood of x̄. A function V : U → R is said

to be a positive definite function if

(i) V (x) > 0 for all x 6= 0,

(ii) V (x) = 0 if and only if x = 0,

(iii) V (x) →∞ as x →∞.

Theorem 6. If there exists a positive definite function V such that V̇ < 0

outside M and V̇ ≤ 0 on M , where M is a set which contains no entire tra-

jectories apart from the point 0, then the equilibrium point 0 is asymptotically

stable.

Theorem 7. Let x̄ be an equilibrium point of (2.1) and let V : U → R be a

C1 function defined on some neighbourhood U of x̄ such that

(i) V (x̄) = 0 and V (x) > 0 if x 6= x̄.

(ii) V̇ (x) ≤ 0 in U − {x̄}.
Then x̄ is stable. Moreover, if
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(iii) V̇ (x) < 0 in U − {x̄}
then x̄ is asymptotically stable.

Furthermore, if U can be chosen to be all of Rn, then x̄ is said to be

globally asymptotically stable (GAS), if (i) and (iii) hold. The idea is that

if V is a Liapunov function then V decreases along trajectories, and hence

(since V is strictly positive except at zero) trajectories tend to zero, which is

a minimum value of V . Thus, any function V that satisfies the conditions in

Theorem 7 is called a Liapunov function (Wiggins, 2003; Glendinning, 1994;

Barbashin, 1970).

2.5 Invariance Principle

Since general epidemiology models monitor human populations, it is necessary

to consider that associated population sizes can never be negative. Thus,

epidemiological models should be considered in (feasible) regions where such

property (non-negative) is preserved. Wiggins (2003), for example, gives the

following definitions.

Definition 10. A point x0 ∈ Rn is called an ω-limit point of x ∈ Rn, denoted

by ω(x), if there exists a sequence {ti}, ti →∞, such that

φ(ti, x) → x0.

Definition 11. A point x0 ∈ Rn is called an α-limit point of x ∈ Rn, denoted

by α(x), if there exists a sequence {ti}, ti → −∞, such that
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φ(ti, x) → x0.

Definition 12. The set of all ω-limit points of a flow is called the ω-limit set.

Similarly, the set of all α-limit points of a flow is called the α-limit set.

Definition 13. A set M is invariant if and only if for all x ∈ M , φ(x, t) ∈ M

for all t. A set is positively (negatively) invariant if for all x ∈ M , φ(x, t) ∈ M

for all t > 0 (t < 0) (Barbashin, 1970).

Theorem 8. (LaSalle Invariance Principle(LaSalle, 1968)).

Suppose that the equilibrium point of system (2.1) x̄ = 0 and V is a Liapunov

function on some neighbourhood U of x̄ = 0. If x0 ∈ U has its forward

trajectory bounded with limit points in U and M is the largest invariant set of

E = {x̄ ∈ U : V̇ (x̄) = 0},

then φ(x0, t) → M as t →∞.

2.6 Non-existence of Periodic Orbit

Here, we give some criteria implying that there cannot be a periodic orbit

in a given region. Such results are of interest in situations where there is an

asymptotically stable equilibrium and wish to conclude that all orbits tend to

it.

Theorem 9. (Bendixson’s Criterion).

Suppose that Fx(x, y) + Gy(x, y) is either strictly positive or strictly negative
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in a simple connected region D. Then there is no period orbit of ẋ = F (x, y),

ẏ = G(x, y) in D.

A more general result of this type is given the following theorem:

Theorem 10. (Dulac’s Criterion).

Let β(x, y) be continuously differentiable and suppose that

∂(β(x, y)F (x, y))

∂x
+

∂(β(x, y)G(x, y))

∂y

is either strictly positive or strictly negative in a simple connected region D.

Then there is no period orbit of ẋ = F (x, y), ẏ = G(x, y) in D.

Theorem 11. (Poincaré-Bendixson).

Let M be a positively invariant region for the vector field containing a finite

number of fixed points. Let p ∈ M , and consider ω(p). Then one of the

following possibilities holds.

i) ω(p) is a fixed point;

ii) ω(p) is a closed orbit;

iii) ω(p) consists of a finite number of fixed points p1, ..., pn and orbits γ with

α(γ) = pi and ω(γ) = pj.

2.7 Analytical Derivation of R0

Heffernan et al. (2005) recently reviewed the basic reproduction number R0

in a broader context, which includes various methods currently in use for the

derivation of R0 and an overview of the recent use of R0 in assessing emerg-
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ing and re-emerging infectious diseases. In compartmental models of disease

transmission, there are two methods mainly used for the analytical derivation

of R0: namely, survival function (Heesterbeek and Dietz, 1996) and next gen-

eration method (see, Diekmann et al., 1990; Diekmann and Heesterbeek, 2000;

van den Driessche and Watmough, 2002). The latter method is used in this

thesis and a brief description of it is given below.

Let us assume that there are n compartments of which m are infected.

We define the vector x = xi, i = 1, ..., n, where xi denotes the number or

proportion of individuals in the ith compartment. Let Fi(x) be the rate of

appearance of new infections in compartment i and let Vi(x) = Vi
−(x)−Vi

+(x),

where Vi
+ is the rate of transfer of individuals into compartment i by all other

means and Vi
− is the rate of transfer of individuals out of the ith compartment.

ẋi = fi(x) = Fi(x)− Vi(x). (2.4)

Note that Fi(x) should include only infections that are newly arising, but

does not include terms which describe the transfer of infectious individuals

from one infected compartment to another. Assuming that Fi and Vi satisfy

the following axioms outlined by Diekmann et al. (1990) and van den Driessche

and Watmough (2002). Let Xs = {x ≥ 0|xi = 0, i = 1, ..., m} be the disease-

free states (non-infected state variables) of the model, where x = (x1, ..., xm),

x ≥ 0.

(A1) if x ≥ 0, then Fi, Vi
+, Vi

− ≥ 0 for i = 1, ..., m.

(A2) if x = 0, then Vi
− = 0. In particular, if x ∈ Xs then Vi

− for i = 1, ...,m.
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(A3) Fi = 0 if i > m

(A4) if x ∈ Xs, then Fi(x) = 0 and Vi
+ = 0 for i = 1, ..., m.

(A5) if F(x) is set to zero, then all eigenvalues of D f(x0) have negative real

parts, where D f(x0) is the Jacobian matrix evaluated at the DFE x0.

Definition 14. (M-Matrix) An n×n matrix A is an M-matrix if and only if

every off-diagonal entry of A is non-positive and the diagonal entries are all

positive.

Lemma 1. If x0 is a DFE of (2.4) and fi(x) satisfies (A1)-(A5), then the

derivatives DF(x0) and D V(x0) are partitioned as

DF(x0) =




F 0

0 0


 , D V(x0) =




V 0

J3 J4


 ,

where F and V are the m×m matrices defined by

F =

[
∂Fi

∂xj

(x0)

]
, V =

[
∂Vi

∂xj

(x0)

]
, with 1 ≤ i, j ≤ m.

Further, F is non-negative, V is a non-singular M-matrix and all eigenvalues

of J4 have positive real part.

Following Diekmann et al. (1990), F V −1 is called the next generation matrix

for the model (2.4) and set

R0 = ρ(F V −1), (2.5)

where ρ is the spectral radius (dominant eigenvalue) of the matrix F V −1.
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Theorem 12. Consider the disease transmission model given by (2.4) with

f(x) satisfying conditions (A1)-(A5). If x0 is a DFE of the model, then x0 is

locally asymptotically stable if R0 < 1, but unstable if R0 > 1, where R0 is

defined by (2.5).

2.8 Bifurcation Theory

A study of changes in the qualitative structure of the flow of a differential

equation as parameters are varied is called bifurcation theory. The parameter

where bifurcation occurs are called bifurcation values. There are various types

of bifurcations, including saddle-node, transcritical, pitchfork, Hopf, backward,

etc. Guckenheimer and Holmes (2002); Wiggins (2003); Ruelle (1989) dealt

with bifurcation theory in great detail. However, only two types of these bifur-

cations are related to this thesis; namely, forward and backward bifurcations.

Castillo-Chavez and Song (2004), based on the general centre manifold theory,

proved an important result which we need in Chapter 4 of this thesis. Thus,

the result is mentioned below without proof.

Consider a general system of ODEs with a parameter φ:

ẋ = f(x, φ), f : Rn × R→ Rn and f ∈ C2(Rn × R). (2.6)

Without loss of generality, it is assumed that 0 is an equilibrium for system

(2.6) for all values of the parameter φ, that is

f(0, φ) ≡ 0 for all φ.
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Theorem 13. Assume

B1: A = Dx f(0, 0) = ∂fi

∂xj
(0, 0) is the linearization matrix of system (2.6)

around the equilibrium 0 with φ evaluated at 0. Zero is a simple eigen-

values of A and all other eigenvalues of A have negative real part;

B2: Matrix A has a nonnegative right eigenvector w and a left eigenvector v

corresponding to the zero eigenvalue.

Let fk be the kth component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2 fk

∂xi∂xj

(0, 0), (2.7a)

b =
n∑

k,i=1

vkwi
∂2 fk

∂xi∂φ
(0, 0). (2.7b)

The local dynamics of system (2.7) around 0 are totally determined by a and

b.

(i) a > 0, b > 0. When φ < 0 with |φ| ¿ 1, 0 is locally asymptotically

stable, and there exists a positive unstable equilibrium; when 0 < φ ¿ 1,

0 is unstable and there exists a negative and locally asymptotically stable

equilibrium;

(ii) a < 0, b < 0. When φ < 0 with |φ| ¿ 1, 0 is unstable; when 0 < φ ¿
1, 0 is locally asymptotically stable, and there exists a positive unstable

equilibrium;

(iii) a > 0, b < 0. When φ < 0 with |φ| ¿ 1, 0 is unstable, and there exists a
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locally asymptotically stable negative equilibrium; when 0 < φ ¿ 1, 0 is

stable, and a positive unstable equilibrium appears;

(iv) a < 0, b > 0. When φ changes from negative to positive, 0 changes

its stability from stable to unstable. Correspondingly a negative unstable

equilibrium becomes positive and locally asymptotically stable.

The results of Theorem 13 are summarized in the Table 2.1.

Figure 2.1: In the bifurcation diagrams, the vertical axis represents equilibrium
points x∗, and the horizontal axis is the parameter φ. Solid lines and dashed lines
symbolize stable (S) and unstable (U), respectively.
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Corollary 1.

When a > 0 and b > 0, the bifurcation at φ = 0 is subcritical (backward).

2.9 System of Reaction–Diffusion Equations

Consider the following system

ut = d1∆u + uM(u, v),

vt = d2∆v + v N(u, v), (t, x) ∈ R+ × Ω,

(2.8)

which satisfy the initial condition (u(0, x), v(0, x)) = (u0(x), v0(x)), x ∈ Ω,

together with the boundary condition

∂u/∂n ≡ n̂.∇u = 0, ∂v/∂n = 0, (t, x) ∈ R+ × ∂Ω. (2.9)

where Ω is a bounded domain in Rn and n̂ denote an outward pointing normal.

We have the following result about the stability of the system (2.8).

Theorem 14. (Conway and Smoller, 1977)

Suppose that Mv(u, v) < 0, Nu(u, v) > 0 and (ū, v̄) 6= (0, 0) be a nondegenerate

rest point of the vector field F (u, v) = (uM(u, v), v N(u, v)) which lies on the u

or v axis. Then the eigenvalues of the linearization at (ū, v̄) are both real, and

if they are both negative, u ≡ ū and v ≡ v̄ is a stable solution of the system

(2.8), in the sense that there is a rectangle R in u ≥ 0, v ≥ 0 containing

U = (u, v) such that if the initial data (u0(x), v0(x)) ∈ R for all x ∈ Ω, then

the corresponding solution of (2.8) decays exponentially to (ū, v̄), uniformly in
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x ∈ Ω, as t → ∞. Conversely, if (ū, v̄) is a stable solution of (2.8), then the

eigenvalues of the linearization at (ū, v̄) are both negative.

2.9.1 Contracting Rectangles

Following the papers of Rauch and Smoller (1978) and Mimura (1979), we

require the following definitions and lemmas:

Definition 15. A bounded convex set R ⊂ Rn is contracting for the vector

field G(J) if for every point J ∈ ∂R and every outward unit normal n at J ,

G(J).n < 0.

Definition 16. A bounded rectangle Q is called semi-contracting for a given

vector field F (U), if there exists some positive constant η such that

F (U).n1 < −η for U ∈ ∂Q1

and

F (U).n2 = 0 for U ∈ ∂Q2,

where ∂Q1 is the sub-boundary of ∂Q which consists of the upper, left and right

hand sides, ∂Q2 of the lower and ni are unit outer normal vectors to ∂Qi for

i = 1, 2.
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Chapter 3
Role of public health education program on HIV

transmission dynamics

3.1 Introduction

A number of mathematical models have been designed and used to study the

impact of preventive control strategies on the spread of HIV/AIDS in given

populations. Some of these studies have shown that a change in risky be-

haviour is necessary to prevent raging HIV/AIDS prevalence, even in the pres-

ence of a vaccine and/or treatment (see, for instance, Anderson (1988); Blower

and Dowlatabadi (1994); Del Valle et al. (2004); Kribs-Zaleta and Halesco-

Hernandez (2000)). Anderson (1988) predicts rapid transmission of HIV when

the infected individuals engage in risky behaviours. Smith and Blower (2004)

reported that disease-modifying vaccines will reduce HIV transmission if they
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cause a reduction of 1.5 log10 copies/mL or more in viral load and if risky be-

haviours do not increase. The studies mentioned above tend to emphasize the

use of pharmaceutical interventions (such as vaccine and ARVs), which are not

readily and widely available (especially in resource-poor nations, which consti-

tute the vast majority of the global HIV prevalence). Thus, it is instructive to

study models that focus on non-pharmaceutical interventions, such as the use

of public health education campaign. A few modelling studies, such as those

by Mukandavire et al. (2009); Mukandavire and Garira (2007); Del Valle et al.

(2004), have investigated the impact of public health educational campaigns

on the transmission dynamics of HIV/AIDS in some populations. The pur-

pose of the current study is to extend some of the aforementioned studies, by

designing and analyzing a new comprehensive model, for HIV transmission in

a population, that incorporates the role of public health education campaign

(and using the model to evaluate the impact of some targeted public health

education strategies).

3.2 Model Formulation

The total population at time t, denoted by N(t), is sub-divided into the fol-

lowing mutually exclusive sub-populations: uneducated susceptible individuals

(Su(t)), educated susceptible individuals (Se(t)), uneducated infected individ-

uals with no AIDS symptoms (Iu(t)), educated infected individuals with no

AIDS symptoms (Ie(t)), uneducated infected individuals with AIDS symp-

toms (Au(t)) and educated infected individuals with AIDS (Ae(t)). Here,
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(un)educated means individuals who (do not) receive proper public health ed-

ucation or counseling against risky practices that may result in HIV infection.

The model takes the form of the following deterministic system of nonlinear

differential equations:

dSu

dt
= Π(1− p)− ξSu − [λu + (1− κ)λe]Su − µSu,

dSe

dt
= Πp + ξSu − (1− ε)[λu + (1− κ)λe]Se − µSe,

dIu

dt
= [λu + (1− κ)λe]Su − σuIu − µIu − ψ1Iu,

dAu

dt
= σuIu − ψ2Au − µAu − δuAu,

dIe

dt
= (1− ε)[λu + (1− κ)λe]Se + ψ1Iu − σeIe − µIe,

dAe

dt
= σeIe + ψ2Au − µAe − δeAe,

(3.1)

where,

λu =
β(Iu + ηuAu)

N
and λe =

β(Ie + ηeAe)

N
.

The rates λu and λe above are the forces of infection associated with

HIV transmission by uneducated (at the rate λu) and educated (at the rate

λe) infected individuals, respectively. The parameter β is the effective contact
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rate (that is, contact that may result in HIV infection), while the parameters

ηu > ηe > 1 account for the relative infectiousness of individuals with AIDS

symptoms in comparison to the corresponding infected individuals with no

AIDS symptoms. Unlike in the other related modelling studies, such as those

by Mukandavire et al. (2009); Mukandavire and Garira (2007); Del Valle et al.

(2004), this study allows for the transmission of HIV by individuals with AIDS

symptoms (in line with Elbasha and Gumel (2006) and also Garba and Gumel

(2010)).

Recruitment into the sexually-active population occurs at a rate Π (all

newly-recruited individuals are assumed to be susceptible to HIV infection),

and a fraction, p, of these newly-recruited sexually-active individuals are as-

sumed to be educated about the risks and consequences of the HIV disease.

Uneducated susceptible individuals (excluding the newly-recruited individu-

als) receive education about safer sex practices at a rate ξ. Susceptible people

acquire infection following effective contact with infected individuals (at the

rates λu and λe). It is assumed that educated infected individuals (in Iu or

Au class) modify their behaviour positively, thereby reducing their risk of HIV

transmission by a factor κ, with 0 < κ < 1. In other words, it is assumed

that HIV-infected individuals that received public health education transmit

the disease at a lower rate in comparison to uneducated HIV infected indi-

viduals. Educated susceptible individuals acquire infection at a reduced rate

(1−ε)[λu+(1−κ)λe], where 0 < ε < 1 is the efficacy of public health education

in preventing new infection of educated susceptible individuals.

Uneducated infected individuals progress to AIDS at a rate σu, while
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educated infected individuals progress at a reduced rate σe < σu (in other

words, infected individuals who received public health education progress to

AIDS at a slower rate in comparison to those who do not). Uneducated infected

individuals without AIDS symptoms (Iu) are educated at a rate ψ1, and move

to the corresponding educated infected class (Iu). Individuals in all classes

suffer natural death at a rate µ. Additionally, individuals with AIDS die at

a rate δu (for the uneducated class) or δe (for the educated class) such that

δe < δu. Thus, it is assumed that AIDS patients who received public health

education die due to AIDS at a slower rate than the AIDS patients who do

not. Uneducated individuals with symptoms of AIDS (Au) are educated at

a rate ψ2, and move to the corresponding educated class (Ae). A schematic

diagram of the model is depicted in Figure 3.1, and the associated variables

and parameters are described in Table 3.1.
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Figure 3.1: Schematic Diagram of the Model (3.1)

The model (3.1) is an extension of the models by Mukandavire et al.

(2009); Mukandavire and Garira (2007); Del Valle et al. (2004), by

(i) allowing for HIV transmission by the individuals with AIDS symptoms;

(ii) offering public health education to all infected individuals (except for

the education of high-risk people with AIDS in Mukandavire and Garira
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(2007); public health education is only restricted to susceptible individ-

uals in Mukandavire et al. (2009); Del Valle et al. (2004));

(iii) stratifying the infected population in terms of whether or not they re-

ceived public health education (and those who received public health ed-

ucation are assumed to transmit HIV at a lower rate, as well as progress

to AIDS and die at a slower rate, in comparison to those who do not

receive public health education).

(iv) The model extends the model by Garba and Gumel (2010) by including

a class of susceptible individuals who receive public health education,

educating a fraction of newly-recruited sexually-active individuals and

allowing infection of educated susceptible individuals. Furthermore, in

this study, the infected individuals who received public health education

progress to AIDS at a slower rate in comparison to those who do not.

In addition to the aforemention extensions, this study will contribute to the

literature by giving detailed qualitative analysis of the model (3.1).
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Variables Description

N Adult population

Su Uneducated susceptible individuals

Se Educated susceptible individuals

Iu Uneducated infecteds with no AIDS symptoms

Ie Educated infecteds with no AIDS symptoms

Au Uneducated infecteds with AIDS symptoms

Ae Educated infecteds with AIDS symptoms

λu Force of infection of uneducated individuals

λe Force of infection of educated individuals

Parameters Description

Π Recruitment rate of susceptibles

µ Natural mortality rate

δu, δe Disease-induced mortality rates

p Fraction of educated newly-recruited individuals

ξ Rate of educating susceptibles

ψ1, ψ2 Education rates of individuals in Iu and Au classes

β Effective contact rate

ηu, ηe Modification parameters

ε Efficacy of education in preventing infection

1− κ Reduction in transmissibility of educated individuals

σu, σe Progression rates to AIDS classes

Table 3.1: Description of Variables and Parameters of the Model (3.1).
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Parameters Nominal value References

δu, δe 0.47, 0.04 Gumel et al. (2006)

p, ξ 0.5, 0.5 Assume

ψ1, ψ2 0.5, 0.5 Assume

β 0.4 Elbasha and Gumel (2006)

ηu, ηe 1.5, 1.2 Sharomi and Gumel (2008)

ε 0.8 Karen and Susan (1999)

1− κ 0.3 Assumed

σu,σe 2.6, 1/15 Gumel et al. (2006); Hyman et al. (1999);

Table 3.2: Epidemiological Data for Model (3.1).

3.2.1 Model Fitting

To test the suitability of the model (3.1) to effectively enable the assessment

of targeted public health education strategies against HIV spread in a pop-

ulation, the model is fitted using data from Uganda as follows. The average

lifespan of a Ugandan (1/µ) is assumed to be 50 years (Uganda Bureau of

Statistics Census, 1991) and the recruitment rate (Π) is estimated at 3.2% of

the total population (Uganda Bureau of Statistics Census, 1991). The total

population of Uganda, as of 1990, given by N=16.7 millions (Uganda Bureau

of Statistics Census, 1991) is used. The initial conditions used are as follows:

Su(0) = 14 million, Se(0) = 0.4121 million, Iu(0) = 2 million, Au(0) = 0.2

million, Ie(0) = 0.087 million, and Ae(0) = 0.0009 million. Thus, the total
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initial HIV-infected population (i.e., Iu(0) + Au(0) + Ie(0) + Ae(0)) is 2.2879

million (UNAIDS, 2008), corresponding to 13.7% of the total population. The

associated epidemiological data is presented in Table 3.2.

Using the aforementioned data, the model (3.1) gives a very good fit of

the Ugandan HIV/AIDS data for the period 1990-2007 (UNAIDS/WHO/Unicef,

2008), as depicted in Figure 3.2. Furthermore, to qualitatively assess the

closeness of the model against the real data, Ordinary Least Squares (OLS)

approach is employed (Kendall and Stuart, 1979). This entails regressing the

actual observed data on predicted cases from the model as follows.

Let yobs denotes the observed data. Then, the model prediction (ŷpred)

is evaluated using the OLS regression equation:

yobs = α0 + α1ŷpred + ε, (3.2)

where α0 and α1 represent the intercept and slope of the regression line, respec-

tively; and ε account for the random error. The model is said to be “perfect” if

the coefficients α0 = 0 and α1 = 1 and the coefficient of determination R2 = 1

(which measures the proportion of variation in the yobs). Using MATLAB’s

Statistical Toolbox, we obtained α0 = 0.0636 and α1 = 0.9603 (with their

corresponding 95% confidence intervals [0.0261 0.1012] and [0.9380 0.9826],

respectively) and R2 = 0.9981 for the above initial data and parameter values

in Table 3.2 and 3.3. Thus, the OLS regression analysis confirms the closeness

of the fit. Hence, the model (3.1) can be used to gain realistic insight into HIV

transmission dynamics in the presence of public health education campaign.
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Figure 3.2: Comparison of observed HIV/AIDS data from Uganda (solid lines)
and model prediction (dashed line). Parameter values used are as in Table 3.2 with
ξ=0.01, ψ1 = ψ2=0.001, p=0.3, and β=0.325.

3.3 Basic properties

Since the model (3.1) monitors human population, all its associated parameters

and state variables are assumed to be non-negative for all t ≥ 0. Before

analysing the model, it is instructive to show that the state variables of the

model remain non-negative for all non-negative initial conditions. Thus, we

claim the following result.
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Lemma 2. The closed set

D =

{
(Su, Se, Iu, Au, Ie, Ae) ∈ R6

+ : N ≤ Π

µ

}

is positively-invariant and attracting with respect to the model (3.1).

Proof. Adding all the equations in the model (3.1) gives:

dN

dt
= Π− µN − δeAe − δuAu, where N = Su + Iu + Au + Se + Ie + Ae.

Since
dN(t)

dt
≤ Π − µN , it follows that

dN(t)

dt
< 0 if N(t) >

Π

µ
. Thus,

from standard comparison theorem (Hsieh and Sibuya, 1999; Lakshmikantham

et al., 1989), N(t) ≤ N(0)e−µt + Π/µ(1 − e−µt). In particular, N(t) ≤ Π/µ

if N(0) ≤ Π/µ. Thus, D is positively-invariant. Further, if N(t) >
Π

µ
, then

either the solution enters D in finite time, or N(t) approaches Π/µ. Hence, D
is attracting (i.e., all solutions in R6

+ eventually approach, enter or stay in D).

¤

Therefore, the model is mathematically well-posed and epidemiologically

reasonable, since all the variables remain nonnegative for all t ≥ 0. Hence, it

is sufficient to consider the dynamics of the model (3.1) in D (Hethcote, 2000).

3.4 Analysis of sub-model

In this section, all education-related parameters and variables are set to zero

in order to understand the dynamical behaviour of education-free sub-model
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(i.e., model (3.1) without education). By setting Ie = Ae = p = ξ = ε = κ =

σe = ψ1 = ψ2 = 0 in (3.1), education-free model is obtained as follows:

dSu

dt
= Π− (λu + µ)Su

dIu

dt
= λuSu − (σu + µ)Iu

dAu

dt
= σuIu − (µ + δu)Au

(3.3)

where, λu =
β(Iu + ηuAu)

Nu

with Nu = Su + Iu + Au. For this model, it can be

shown, by using similar argument as above, that the region

Du = {(Su, Iu, Au, ) ∈ R3
+ : Nu ≤ Π

µ
}

is attracting and positively-invariant. Thus, the dynamics of the model will

be considered in Du.

3.4.1 Local stability of Disease-free equilibrium (DFE)

The disease-free equilibrium of (3.3) is

Y0 = (S∗u, I
∗
u, A∗

u) = (
Π

µ
, 0, 0).

It can be seen that Y0 attracts the region (stable manifold of Y0)
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Du = {(Su, Iu, Au, ) ∈ R3
+ : Nu ≤ Π

µ
}.

By using the next generation method (see, Section 2.7), the matrices F and

V for the new infection terms and the remaining transfer terms respectively,

are given by

F =




β S∗u
N∗

u
βηu

S∗u
N∗

u

0 0


 ,

and

V =




σu + µ 0

−σu µ + δu


 .

It follows that the reproduction number, denoted by R0, is given by

R0 = ρ(FV −1) =
β[µ + δu + ηuσu]

(σu + µ)(µ + δu)

Lemma 3. The DFE, Y0, of the education-free model is locally asymptotically

stable (LAS) if R0 < 1, and unstable if R0 > 1.

The quantityR0 is the reproduction number which measures the average

number of new cases of HIV infection generated by a single HIV infected

individual in a totally uneducated population.
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3.4.2 Global stability of DFE

Theorem 15. The DFE, Y0, of the education-free model is globally asymptot-

ically stable (GAS) whenever R0 < 1.

Proof.

Consider the following Liapunov function:

F = βIu(µ + δu + σuηu) + βηuAu(µ + σu),

with Liapunov derivative given by (where a dot represents differentiation with

respect to t)

Ḟ = βİu(µ + δu + σuηu) + βηuȦu(µ + σu)

= β[λuSu − (σu + µ)Iu](µ + δu + σuηu) + βηu[σuIu − (µ + δu)Au](µ + σu)

= βλuSu(µ + δu + σuηu)− β(µ + δu)(µ + σu)[Iu + ηuAu]

= βλuSu(µ + δu + σuηu)− (µ + δu)(µ + σu)λuNu

= λuNu(µ + δu)(µ + σu)

(
βSu(µ + δu + σuηu)

(µ + δu)(µ + σu)Nu

− 1

)

≤ λuNu(µ + δu)(µ + σu)

(
β(µ + δu + σuηu)

(µ + δu)(µ + σu)
− 1

)
; since Su ≤ Nu

= β(Iu + ηuAu)(µ + δu)(µ + σu)(R0 − 1) ≤ 0 for R0 < 1.

Since all the model parameters are assumed to be non-negative, it follows that
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Ḟ ≤ 0 if R0 < 1 with Ḟ = 0 if and only if Iu = Au = 0. Hence, Ḟ is

a Liapunov function on Du. At DFE Su → Π/µ as t → ∞. Since Du is

invariant and attracting, it follows that the largest compact invariant set in

{(Su, Iu, Au, ) ∈ Du : Ḟ = 0} is the singleton {Y0}. Therefore, by the LaSalle

Invariance Principle (LaSalle, 1968), every solution to the equations in the

education-free model (3.3), with initial conditions in Du, approaches Du as

t →∞. ¤

This result shows that HIV will be eliminated from the community within

a certain period of time if the threshold R0 < 1.

3.4.3 Existence of endemic equilibrium

The education-free model has a unique positive endemic equilibrium point

(EEP), where at least one of the infected components (Iu or Au) is non-zero,

given by Y ∗∗ = (S∗∗u , I∗∗u , A∗∗
u ). To establish this, the equations in model (3.3)

are solved in terms of the force of infection at steady-state (λ∗∗u ), given by

λ∗∗u =
β(I∗∗u + ηuA

∗∗
u )

N∗∗
u

. (3.4)

Setting the right hand sides of the model to zero gives

S∗∗u =
Π

λ∗∗u + µ
, I∗∗u =

Πλ∗∗u
(λ∗∗u + µ)(σu + µ)

, A∗∗
u =

σuΠλ∗∗u
(δ + µ)(λ∗∗u + µ)(σu + µ)

,(3.5)
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substituting the expressions in equation (3.5) into equation (3.4), and simplify,

gives

a11λ
∗∗
u − a12 = 0, (3.6)

where,

a11 = µ + δu + σu, a12 = (R0 − 1)(σu + µ)(δ + µ).

Since all the parameters are nonnegative the a11 > 0, and a12 > 0 for R0 > 1.

Thus, the linear system (3.6) has a unique positive solution, given by λ∗∗u = a12

a11
,

whenever R0 > 1. Further, a12 < 0 whenever R0 < 1, thus, if R0 < 1 then

the force of infection at steady-state (λ∗∗u ) is negative. Hence, the model has

no positive equilibria in this case. These results are summarized as follows:

Lemma 4. The education-free model (3.3) has a unique positive endemic

equilibrium wherever R0 > 1, and no positive endemic equilibrium whenever

R0 < 1.

Global stability of the endemic equilibrium

The lemma 4 shows the existence of a unique endemic equilibrium if R0 > 1.

Now study the global stability of the unique positive endemic equilibrium

Y ∗∗ = (S∗∗u , I∗∗u , A∗∗
u )

when the disease-induced mortality rate is negligible. We claim the following:
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Theorem 16. The endemic equilibrium of education-free model (3.3) with

δu = 0 is globally asymptotically stable (GAS) in Du \ Y0 whenever R0 > 1.

Proof. Since Su = Nu − Iu −Au and Nu → Π/µ as t →∞, substituting

these in last two equations of model (3.3) with δu = 0 gives

dIu

dt
= λu[Π/µ− Iu − Au]− (σu + µ)Iu

dAu

dt
= σuIu − µAu

(3.7)

which forms a system in D1 = {Iu > 0, Au > 0, Iu + Au ≤ Π/µ}. Using the

Dulac’s multiplier 1/IuAu, it follows that

∂

∂Iu

(
İu

IuAu

)
+

∂

∂Au

(
Ȧu

IuAu

)
=

∂

∂Iu

[
1

IuAu

(λu(Π/µ− Iu − Au)− (σu + µ)Iu)

]

+
∂

∂Au

(
1

IuAu

(σuIu − µAu)

)

= −βηu

I2
u

− βµ

ΠAu

+
βηuAu

I2
uΠ/µ

− σu

A2
u

= −
(

βµ

ΠAu

+
βηu

I2
u

(1− Au

Π/µ
) +

σu

A2
u

)
< 0,

since Au ≤ Π/µ in D1. It follows from the Bendixson-Dulac criterion (Hale

and Koçak, 1991) that there can be no periodic orbit. Since system (3.7)

is two-dimensional, the Poincaré-Bendixson theorem (Hale and Koçak, 1991)

shows that the equilibrium (I∗∗u , A∗∗
u ) is globally asymptotically stable in D1.

Thus, Iu → I∗∗u and Au → A∗∗
u as t → ∞. Since N → Π/µ as t → ∞ then
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Su → Π/µ− I∗∗u −A∗∗
u as t →∞. Hence, Y ∗∗ is globally asymptotically stable

in Du \ Y0. ¤

In conclusion, for R0 > 1, the disease remains endemic in education-free

model (3.3) with negligible mortality rate induced by the disease.

3.5 Analysis of the Full Model

In this section, system (3.1) (i.e., the full model) is analyzed and some results

of public health importance are obtained.

3.5.1 Local stability of Disease-free equilibrium (DFE)

The model (3.1) has a unique disease-free equilibrium, obtained by setting the

right-hand sides of the equations in the model (3.1) to zero, given by

X = (S∗u, S
∗
e , I

∗
u, A∗

u, I
∗
e , A∗

e) =

(
Π(1− p)

ξ + µ
,
Π(pµ + ξ)

µ(ξ + µ)
, 0, 0, 0, 0

)
. (3.8)

It can be shown that X attracts the region (the stable manifold of X )

DX = {(Su, Se, Iu, Au, Ie, Ae) ∈ D : Iu = Au = Ie = Ae = 0}.

Using the next generation operator method (see, Section 2.7), the associated

matrices Fe, for the new infection terms, and Ve, for the remaining transition

terms, are, respectively, given by (noting that N∗ =
Π

µ
at X )
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Fe =




β
S∗u
N∗ ηuβ

S∗u
N∗ β(1− κ)

S∗u
N∗ β(1− κ)ηe

S∗u
N∗

0 0 0 0

β(1− ε)
S∗e
N∗ β(1− ε)

S∗e
N∗ηu β(1− κ)(1− ε)

S∗e
N∗ β(1− κ)(1− ε)ηe

S∗e
N∗

0 0 0 0




,

and,

Ve =




K1 0 0 0

−σu K2 0 0

−ψ1 0 K3 0

0 −ψ2 −σe K4




,

where,

K1 = µ + σu + ψ1, K2 = µ + δu + ψ2, K3 = µ + σe and K4 = µ + δe.

It follows that the effective reproductive number, denoted by Reff , is

given by

Reff = ρ(FeVe
−1) =

β(A + B + C)

K1K2K3K4(ξ + µ)
, (3.9)
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where ρ is the spectral radius, and

A = K1K2(1− ε)(1− κ)(pµ + ξ)(K4 + ηeσe),

B = µK4K3(1− p)(K2 + σuηu),

C = µ(1− p)(1− κ)(ψ1K2K4 + ψ2σuK3ηe + σeηeψ1K2).

Biologically-speaking, the effective reproduction number measures the aver-

age number of new infections generated by a single HIV infected person in a

community where a public health enlightenment campaign is used as a con-

trol strategy (Anderson and May, 1991; Hethcote, 2000; van den Driessche

and Watmough, 2002). Moreover, in the absence of public health education

(Ie = Ae = p = κ = δe = ξ = ε = σe = ψ1 = ψ2 = 0), the quantity

Reff =
β(µ + δu + ηuσu)

(σu + µ)(µ + δu)
= R0, where R0 is the basic reproduction number

(i.e., R0 represents the average number of new cases generated by a single

infected individual in a completely susceptible population).

Using Theorem 12 of Chapter 2 (i.e., Theorem 2 of van den Driessche

and Watmough (2002)), the following result is established.

Theorem 17. The DFE, X , of the system (3.1), given by (6), is locally asymp-

totically stable (LAS) if Reff < 1, and unstable if Reff > 1.

Theorem 17 implies that HIV can be eliminated from the community

when Reff < 1, provided the initial sizes of the sub-populations of the model

(3.1) are within the domain of attraction of X . To ensure that HIV elimination

is independent of the initial sizes of the sub-populations, we need to show that

the DFE is globally asymptotically stable (GAS). This is established in the
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next Chapter, for the special case where the efficacy of public health education

is assumed to be 100% (i.e., ε = 1).

3.5.2 Assessment of Impact of Public Health Education

Before using the model (3.1) to assess the impact of public health education in

combatting HIV spread in a population, it is instructive to assess the behaviour

of the model under the worst case scenario (i.e., the case where no public

health education is provided in the community). By setting all education-

related parameters to zero (i.e., p = κ = δe = ξ = ε = σe = ψ1 = ψ2 =

0) and using the data in Tables 3.2 and 3.3, simulations of the model (3.1)

show that India, Nigeria, China, Ethiopia, and Russia will record around 23.5

million, 12.5 million, 10.1 million, 8.8 million and 6 million total HIV/AIDS

cases in eight years, respectively (Figures 3.3A and 3.3B). These projections

of the model (3.1) are consistent with the estimates given by the US-based

National Intelligence Council (2002), which predicts that, by the year 2010,

India, Nigeria, China, Ethiopia, and Russia could have about 20 to 25 million,

10 to 15 million, 10 to 15 million, 7 to 10 million, and 5 to 8 million HIV/AIDS

cases if the governments of the respective countries do not take serious action

against the spread of HIV/AIDS.
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Figure 3.3: Worst-case scenarios for: (A) China, India and Nigeria; and (B) Russia
and Ethiopia. Parameter values used are as in Table 3.2 with all education-related
parameters set to zero.

Threshold analysis

In this section, the impact of public health education campaign will be assessed

by carrying out threshold analysis on the effective reproduction number, Reff ,

as follows.

Let ω =
S∗e
N∗ be the fraction of susceptible individuals educated at the

DFE X . Hence, Reff can now be rewritten as a function of ω.

Reff = Reff (ω) =
β(Z1 + Z2)

K1K2K3K4

, (3.10)
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where,

Z1 = ωK1K2(1− ε)(1− κ)(K4 + ηeσe),

Z2 = (1− ω)[(1− κ)(ψ1K2K4 + ψ2K3σeηe + ψ2K2σuηe) + K3K4(K2 + ηuσu)].

Differentiating Reff , given in (3.10), partially with respect to ω gives

∂Reff (ω)

∂ω
= −Z3(1−∇),

where,

Z3 =
β[(1− κ)(ψ1K2K4 + ψ2K2σeηe + ψ2K3σuηe) + K3K4(K2 + ηuσu)]

K1K2K3K4

> 0,

∇ =
K1K2(1− ε)(1− κ)(K4 + ηeσe)

(1− κ)(ψ1K2K4 + ψ2K3σeηe + ψ2K2σuηe) + K3K4(K2 + ηuσu)
> 0.

(3.11)

Since Z3 and ∇ are both non-negative (noting that 0 < κ < 1 and 0 < ε < 1),

then
∂Reff (ω)

∂ω
< 0 whenever ∇ < 1. Further,

∂Reff (ω)

∂ω
> 0 if ∇ > 1. This

result is summarized below.

Lemma 5. The use of public health education campaign would have

(i) a positive population-level impact (reduce disease burden) if ∇ < 1;

(ii) no population-level impact if ∇ = 1;

(iii) a detrimental population-level impact (increase disease burden) if ∇ > 1.
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Biologically-speaking, ∇ could be interpreted as the measure of increase

or decrease in risky behaviour (or negative attitude) of the individuals in the

community who received public health education. That is, ∇ < 1, ∇ = 1 and

∇ > 1 mean that public health education campaign is able to reduce, cause

no change of, and induce an increase in risky behaviour amongst the individ-

uals who received such education, respectively. It is worth noting that if the

efficacy of public health education is 100% (i.e., ε = 1), then ∇ = 0, so that

public health education campaign will always have positive population-level

impact. Thus, the detrimental effect of public health education is only feasible

if the efficacy is not perfect (0 < ε < 1).

Alternatively, the impact of public health education campaign can be

assessed by re-writing Reff as

Reff = R0

[
1− Ω

(
1− R0e

R0

)]
, (3.12)

where,

R0 =
β(µ + δu + ηuσu)

(σu + µ)(µ + δu)
, (3.13)

55



and,

R0e =
β(1− ε)(1− κ)(K4 + σeηe)

K3K4

. (3.14)

The quantity R0 is the basic reproduction number (defined earlier) and R0e is

the reproduction number for the case when every individual in the community

received public health education against risky practices that could lead to HIV

infection. Furthermore,

Ω =
(σu + µ)(µ + δu)(γ1 + γ2)

γ3K1K2(ξ + µ)[K1K2K3K4(ξ + µ)R0 + β(A + B + C)]
,

where,

γ1 = R0
2K1

2K2
2K3

2K4
2(ξ + µ)2 + β2(A + B + C)2,

γ2 = βK3K4(µ + δu + σuηu) + (1− ε)(1− κ)(K2 + σeηe)(σu + µ)(δu + µ),

γ3 = βK3
2K4

2(µ + δu + σuηu)
2 + (1− ε)2(1− κ)2(K2 + σeηe)

2(σu + µ)2(δu + µ)2.

(3.15)

It follows from (3.12) that the education impact factor (denoted by Υ)

is given by

Υ = Ω

(
1− R0e

R0

)
.

Thus, we have established the following result.

Theorem 18. The use of public health education campaign in the community
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will have

(i) positive population-level impact if Υ > 0 (R0e < R0);

(ii) negative population-level impact in the community if Υ < 0 (R0e > R0);

and

(iii) no population-level impact in the community if Υ = 0 (R0e = R0).

Numerical simulations of the model, using appropriate demographic and

epidemiological data for Ethiopia, given in Tables 3.2 and 3.3, show the fol-

lowing interesting cases:

∇ < 1: Using the aforementioned realistic set of parameter values (Tables

3.2 and 3.3), it follows that ∇ = 0.0517 < 1, Reff = 0.6898 and

R0e = 0.6619 < R0 = 1.3712, so that the use of public health education

campaign will have positive population-level impact (Figure 3.4A). In

other words, the public health education campaign results in positive

behaviour change (in reducing risky practices) in the individuals who

received such education (in this case).

∇ > 1: Consider the case with ξ = 0.01, p = ψ1 = ψ2 = 0.001 and ε = 0.4

(that is, the efficacy of public health education is low) and all other

parameters as above. Here, ∇ = 1.4211 > 1, Reff = 1.5866 and

R0e = 1.9857 > R0 = 1.3712. The simulation results obtained, depicted

in Figure 3.4B, shows that in this setting, the use of public health educa-

tion increases the number of HIV cases in comparison to the worst-case

scenario. This result could be interpreted as follows: the use of “inef-

fective” public health education campaign (characterize by low efficacy)
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induces an increase in risky behaviour amongst people after receiving

it. For example, an individual who believes that consistent and cor-

rect use of condoms provides absolute protection against HIV may in-

dulge in risky behaviour that could be avoided. In this way, the rate of

HIV/AIDS transmission will actually increase over time. Furthermore,

Richens et al. (2000) reported that a condom-based approach, which cre-

ates a false sense of security on the part of users, has exacerbated the

problem of HIV.
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Figure 3.4: Simulation of the model (3.1) showing the total infected population
as a function of time, using appropriate demographic and epidemiological data for
Ethiopia, given in Tables 3.2 and 3.3. Dashed line represents the model with public
health education campaign and solid line represents the model without education
public health education campaign (i.e., all education parameters are zero). For:
(A) ∇ = 0.0517 < 1, Reff = 0.6898 and R0e = 0.6619 < R0 = 1.3712; and (B)
∇ = 1.4211 > 1, Reff = 1.5866 and R0e = 1.9857 > R0 = 1.3712, with ξ = 0.01,
p = ψ1 = ψ2 = 0.001 and ε = 0.4.

Contour plots of Reff as a function of efficacy of public health education
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and the fraction of individuals who received public health education (i.e., pub-

lic health education coverage level) at steady-state are depicted in Figure 3.5.

As expected, an increase in efficacy and coverage level leads to a decrease in

Reff . This is an important result because the main objective of public health

education is to reduce Reff as much as possible (since reduction in Reff is

positively correlated with a reduction in disease burden), which could lead to

effective disease control or elimination.
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Figure 3.5: Contour plot of Reff as a function of the fraction individuals educated
at steady state (ω) and education efficacy (ε). Parameter values used are as in Table
3.1 with ψ1 = ψ2 = 1.

It is evident from Figure 3.5 that the prospect of effective control of

HIV increases with increasing efficacy and coverage rate of the public health

education campaign. For instance, a public health education program with

efficacy and coverage level of 60% (each) will fail to control the disease (since
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Reff > 1 in this case). On the other hand, the use of public health education

campaign with efficacy and coverage level of 90% (each) could eliminate HIV

from the population (see also Figure 3.6 below).

3.5.3 Evaluation of Targeted Education Strategies

The model is used to evaluate the impact of the following targeted public

health education strategies:

• Strategy I: educating adult (“established”) sexually-active susceptible

individuals only (at the rate ξ),

• Strategy II: educating a fraction p of newly-recruited sexually-active sus-

ceptible individuals only,

• Strategy III: educating HIV-infected individuals without clinical AIDS

symptoms only (at the rate ψ1), or

• Strategy IV: educating HIV-infected individuals with clinical AIDS symp-

toms only (at the rate ψ2).

Using demographic data from India, Nigeria, China, Ethiopia, and Rus-

sia, tabulated in Table 3.3 together with the associated epidemiological data

given in Table 3.2, simulations of model (3.1) show that Strategy I can pre-

vent more than 0.8642 million, 0.5474 million, 0.3321 million, 0.4064 million,

and 0.2116 million new cases in India, Nigeria, China, Ethiopia, and Russia

respectively within a year (see Table 3.4A). Furthermore, Strategy I seems to

be the most effective amongst all targeted single group strategies. It is also

61



0 50 100 150
0

0.5

1

1.5

2

2.5

3

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s 

(m
ill

io
ns

)

Time (years)

(A)

 

 

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s 

(m
ill

io
ns

)

Time (years)

(B)

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s 

(m
ill

io
ns

)

Time (years)

(C)

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s 

(m
ill

io
ns

)

Time (years)

(D)

0 50 100 150
0

1

2

3

4

5

6

T
ot

al
 n

um
be

r 
of

 in
fe

ct
ed

 in
di

vi
du

al
s 

(m
ill

io
ns

)

Time (years)

(E)

Figure 3.6: Simulations of the model (1) showing the time needed to eliminate HIV
in (A) Ethiopia (B) Russia (C) Nigeria (D) China and (E) India. Parameter values
used are as in Tables 3.2 and 3.3 with ξ = p = ε = 0.9, ψ1 = ψ2 = 0, κ = 0.8 and
β = 0.2 (so that, ∇ = 0.1609 < 1, Reff = 0.1115 and R0e = 0.1103 < R0 = 0.6856).
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shown that combining Strategies I and IV gives the most effective strategy for

reducing new HIV cases in comparison to all other possible 2-group combined

strategies. Moreover, Table 3.4C shows that the combination of Strategy I,

Strategy III and Strategy IV is the best in reducing the total number of new

cases than any of the others except the universal strategy (i.e., educating ev-

ery class of uneducated individuals at a certain rate). The Universal Strategy

can prevent more than 1.1590 million, 0.7580 million, 0.3858 million, 0.5731

million, and 0.253 million new cases of HIV in India, Nigeria, China, Ethiopia,

and Russia respectively within a year (see Table 3.4D).

Table 3.4 further shows that the use of single-group strategy can be more

effective than some 3-group or 2-group strategies. For instance, Strategy I is

more effective in reducing the number of new infections than the combination

of Strategies II, III and IV. Additionally, a 2-group combined strategy can

be better in curtailing the number of new cases than a 3-group strategy (this

table shows that combining Strategies I and IV gives fewer new cases than

some 3-group strategies, which include the combination of Strategies I, II and

III and also the combination of Strategies II, III and IV).

3.6 Conclusions

A realistic deterministic model, which incorporates public health education

campaign as a sole intervention strategy for HIV/AIDS prevention, is designed

and rigorously analyzed to get insight into its dynamical features and to obtain

associated epidemiological thresholds. Some of the main theoretical findings
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Education strategy India Nigeria China Ethiopia Russia
(millions) (millions) (millions) (millions) (millions)

(A)

Strategy I 0.8642 0.5474 0.3321 0.4064 0.2116
Strategy II 0.3633 0.2108 0.2584 0.1390 0.1510
Strategy III 0.5266 0.3095 0.2912 0.2321 0.1770
Strategy IV 0.5862 0.3718 0.2938 0.2510 0.1805

(B)

Strategies I and II 0.8717 0.5564 0.3331 0.4140 0.2119
Strategies I and III 0.9918 0.6290 0.3588 0.4831 0.2320
Strategies I and IV 1.0359 0.6760 0.3604 0.4966 0.2344
Strategies II and III 0.5353 0.3200 0.2924 0.2408 0.1773
Strategies II and IV 0.5946 0.3818 0.2950 0.2595 0.1808
Strategies III and IV 0.7440 0.4723 0.3250 0.3449 0.2046

(C)

Strategies I, II and III 0.9986 0.6373 0.3597 0.4899 0.2322
Strategies I, II and IV 1.0425 0.6839 0.3613 0.5033 0.2347
Strategies I, III and IV 1.1530 0.7508 0.3850 0.5670 0.2531
Strategies II, III and IV 0.7516 0.4814 0.3260 0.3526 0.2049

(D)

Universal Strategy 1.1590 0.7580 0.3858 0.5731 0.2534

Table 3.4: Total new cases averted within a year using (A) Single targeted public
health campaign strategy (B) Pair combination of targeted public health campaign
strategies (C) Combination of three strategies (D) Universal strategy. Parameters
as in Tables 3.2 and 3.3.
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of the study are:

• The case when the public health education program is 100% effective,

the disease-free equilibrium of the model (3.3) is globally-asymptotically

stable whenever the basic reproduction number is less than or equal to a

quantity less than unity.

• Threshold analysis of the effective reproduction number shows that the

use of public health education campaign could have positive, no, or detri-

mental impact depending on whether or not an impact factor, defined

as Υ, is less than, equal to, or greater than unity (this result is also

expressed in terms of a measure of risky behaviour, denoted by ∇, given

by (3.11)).

The impact of public health education strategies are assessed numerically

by simulating the model with a reasonable set of parameter values (mostly

chosen from the literature) and initial (demographic) data from five different

countries (India, Nigeria, China, Ethiopia, and Russia) where the number of

HIV-infected people is expected to grow. Numerical simulations of the model

show the following:

• The universal use of public heath education campaign in India, Nigeria,

China, Ethiopia, and Russia could avert more than 1.1590 million, 0.7580

million, 0.3858 million, 0.5731 million, and 0.253 million new HIV cases

within a year, respectively.
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• The universal strategy is more effective than any other strategy in re-

ducing new HIV cases.

• Combining Strategies I, III and IV is the next most effective in reducing

the total number of new cases (after the universal strategy).

• Amongst the 2-group combined strategies, combining Strategies I and

IV is most effective than some 3-group combined strategies.

• Strategy I averts more new cases in comparison to all other single-group

strategies (and some 3-group combination of strategies).

• The prospect of effective control of HIV increases with increasing efficacy

and coverage rate of the public health education campaign.
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Chapter 4
Backward Bifurcation

4.1 Introduction

Backward, or subcritical, bifurcation in epidemiological models is typically

associated with the co-existence of disease-free equilibrium and endemic equi-

libria when the basic reproduction number (R0) is less than unity. This phe-

nomenon has been found in many epidemiological settings (see, for instance,

Elbasha and Gumel, 2006; Hadeler and van den Driessche, 1997; Kribs-Zaleta

and Halesco-Hernandez, 2000, and references therein). Furthermore, such phe-

nomenon has been established in a model for public health education cam-

paign by Mukandavire et al. (2009). The epidemiological implication of such

a phenomenon is that the classical requirement of having the associated re-

production number less than unity, while necessary is not sufficient condition

for disease control. Following the result in Mukandavire et al. (2009), it is in-
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structive to determine whether or not the model (3.1) also undergoes backward

bifurcation. This is explored below.

4.2 Existence of Backward Bifurcation

In this Section, we consider model (3.1) and show the existence of backward

bifurcation. Let

G∗∗ = β
[I∗∗u + ηuA

∗∗
u + (1− κ)(I∗∗e + ηeA

∗∗
e )]

N∗∗ (4.1)

be the force of infection at an arbitrary equilibrium of (3.1), denoted by

E = (S∗∗u , S∗∗e , I∗∗u , A∗∗
u , I∗∗e , A∗∗

e ).
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Thus, at steady-state, the equations of the model (3.1) can be re-written as:

S∗∗u =
Π(1− p)

µ + ξ + G∗∗ ,

S∗∗e =
Π(pµ + ξ + pG∗∗)

(µ + ξ + G∗∗)[(1− ε)G∗∗ + µ]
,

I∗∗u =
Π(1− p)G∗∗

K1(µ + ξ + G∗∗)
,

A∗∗
u =

σuΠ(1− p)G∗∗

K1K2(µ + ξ + G∗∗)
,

I∗∗e =
G∗∗Π(G∗∗C∗ + D∗)

K1K3(µ + ξ + G∗∗)[(1− ε)G∗∗ + µ]
,

A∗∗
e =

G∗∗Π(G∗∗A∗ + B∗)
K1K2K3K4(µ + ξ + G∗∗)[(1− ε)G∗∗ + µ]

,

(4.2)

with,

A∗ = (1− ε)[(1− p)(ψ2σuK3 + ψ1σeK2) + K1K2σep],

B∗ = σeK1K2(1− ε)(pµ + ξ) + µ(1− p)(σeK2ψ1 + σuK3ψ2),

C∗ = [K1p + ψ1(1− p)](1− ε),

D∗ = K1(1− ε)(ξ + pµ) + ψ1µ(1− p).

Substituting (4.2) into (4.1), and simplifying, leads to G∗∗ = 0 (corresponding
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to the DFE, X ) and the following quadratic equation (in terms of G∗∗):

a∗11(G
∗∗)2 + a∗12G

∗∗ + a∗13 = 0, (4.3)

where,

a∗11 = K3K4(1− ε)(1− p)(K2 + σu) + C∗ + A∗,

a∗12 = K1K2K3K4[(1− p)(1− ε) + p] + µK3K4(1− p)(K2 + σu) + K2K4D
∗ + B∗

−β[K3K4(1− p)(1− ε)(K2 + σuηu) + (1− κ)(K2K4C
∗ + ηeA

∗)],

a∗13 = K1K2K3K4(µ + ξ)(1−Reff ).

(4.4)

Thus, the following results from the quadratic equation (4.3).

Theorem 19. (a) If a∗12 > 0 then model (3.1) has forward bifurcation at

Reff = 1.

(b) If a∗12 < 0, then the model (3.1) undergoes backward bifurcation at Reff =

1.

Theorem 20. (a) If a∗12 > 0 and

(i) a∗13 ≥ 0, the model (3.1) has no positive equilibrium

(ii) a∗13 < 0, the model (3.1) has a unique positive equilibrium

(b) If a∗12 < 0 and a∗13 > 0 and

(i) (a∗12)
2 − 4a∗11a

∗
13 > 0, the model (3.1) has two positive equilibria,

(ii) (a∗12)
2 − 4a∗11a

∗
13 = 0, the model (3.1) has a unique positive equilibrium,
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(iii) (a∗12)
2 − 4a∗11a

∗
13 < 0, the model (3.1) has no positive equilibrium.

(c) If a∗12 < 0 and a∗13 ≤ 0, the model (3.1) has a unique positive equilibrium.

Since all the model parameters are non-negative (and 0 < ε < 1, 0 < κ < 1),

it is clear that a∗11 > 0. We consider the following cases:

Case I. Suppose Reff > 1. Then, clearly a∗13 < 0. Thus, the quadratic

equation (4.1) is concave up and has two real roots of opposite signs.

This implies that the model has a unique positive equilibrium whenever

Reff > 1.

Case II. Suppose Reff = 1. Then a∗13 = 0 and the quadratic reduces to

G∗∗(a∗11G
∗∗+a∗12) = 0, with roots G∗∗ = 0 (corresponding to the disease-

free equilibrium, X ) and G∗∗ =
−a∗12
a∗11

. Thus, for Reff = 1, the model has

a unique positive endemic equilibrium when a∗12 < 0.

Case III. Suppose Reff < 1. Then a∗13 > 0 and equation (4.3) has either

zero, one or two positive real roots. In order to obtain two positive

real roots we need (a∗12)
2 − 4a∗11a

∗
13 > 0 and a∗12 < 0. If a∗12 < 0 and

(a∗12)
2 − 4a∗11a

∗
13 = 0, then there is one positive real root. Otherwise,

there is no positive solution. This case indicates the possibility of a

backward bifurcation in the model (3.1) whenReff < 1 (since it suggests

the possibility of multiple endemic equilibria when Reff < 1).

It should be noted that Theorem 19 does not give a local description of

the bifurcating curve including its stability. Thus, it is instructive to determine
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the local behaviour of the bifurcating branch. Therefore, we alternatively use

centre manifold theorem (Carr, 1981), in line with Theorem 13 of Chapter 2,

to prove the existence of backward bifurcation.

Theorem 21.

If (4.10) holds, then the model (3.1) has a backward bifurcation at Reff = 1

and the bifurcating branch is unstable near Reff = 1.

Proof. The centre manifold theorem is used (see, Theorem 13 of Chapter

2) to show the existence backward bifurcation in the model (3.1) when Reff =

1. For convenience, let Su = x1, Se = x2, Iu = x3, Au = x4, Ie = x5, Ae =

x6, so that N = x1 + x2 + x3 + x4 + x5 + x6. The model (3.1) can be written

as follows:

dx1

dt
= φ1 = Π(1− p)− (ξ + µ)x1 − βx1[(x3 + ηux4) + (1− κ)(x5 + ηex6)]

x1 + x2 + x3 + x4 + x5 + x6

,

dx2

dt
= φ2 = Πp + ξx1 − β(1− ε)x2[(x3 + ηux4) + (1− κ)(x5 + ηex6)]

x1 + x2 + x3 + x4 + x5 + x6

− µx2,

dx3

dt
= φ3 =

βx1[(x3 + ηux4) + (1− κ)(x5 + ηex6)]

x1 + x2 + x3 + x4 + x5 + x6

−K1x3,

dx4

dt
= φ4 = σux3 −K2x4,

dx5

dt
= φ5 =

β(1− ε)x2[(x3 + ηux4) + (1− κ)(x5 + ηex6)]

x1 + x2 + x3 + x4 + x5 + x6

+ ψ1x3 −K3x5,

dx6

dt
= φ6 = σex5 + ψ2x4 −K4x6.

(4.5)
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The Jacobian of Φ = (φ1, φ2, φ3, φ4, φ5, φ6)
T , around the DFE X , denoted by

Jβ, is given by

Jβ =




−ξ − µ 0 −βH1 −βηuH1 −β(1− κ)H1 −βηe(1− κ)H1

ξ −µ −βH2 −βηuH2 −β(1− κ)H2 −βηe(1− κ)H2

0 0 βH1 −K1 βηuH1 β(1− κ)H1 βηe(1− κ)H1

0 0 σu −K2 0 0

0 0 βH2 + ψ1 βηuH2 β(1− κ)H2 −K3 βηe(1− κ)H2

0 0 0 ψ2 σe −K4




,

where, H1 =
µ(1− p)

ξ + µ
and H2 =

(1− ε)(pµ + ξ)

ξ + µ
. It can also be shown from

Jβ, as in (3.9), that

Reff =
β(A + B + C)

K1K2K3K4(ξ + µ)
. (4.6)

Consider the case when Reff = 1 and β is chosen as a bifurcation parameter.

Solving (4.6) for Reff = 1 gives

β = β∗∗ =
K1K2K3K4(ξ + µ)

A + B + C
.
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Note that the above linearized system, of the transformed system (4.5) with

β = β∗∗, has the eigenvalues −(ξ + µ) < 0, −µ < 0 and the eigenvalues of the

sub-matrix

J1 =




β∗∗H1 −K1 β∗∗ηuH1 β∗∗(1− κ)H1 β∗∗ηe(1− κ)H1

σu −K2 0 0

β∗∗H2 + ψ1 β∗∗ηuH2 β∗∗(1− κ)H2 −K3 β∗∗ηe(1− κ)H2

0 ψ2 σe −K4




. (4.7)

It is clear that 0 is one of the eigenvalues of J1, and the other three are the

roots of

λ3 + c1λ
2 + c2λ + c3 = 0,

where, c1 =
m1 + m2

m3

, c2 =
m4 + m5 + m6 + m7

m3

and c3 =
m8 + m9 + m10 + m11

m3

,
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with,

m1 = (K1 + K2 + K3 + K4)[(1− ε)(1− κ)(pµ + ξ)K1K2σeηe + B + C],

m2 = (K1 + K2 + K4)(1− ε)(1− κ)(pµ + ξ)K1K2K4,

m3 = A + B + C,

m4 = (1− ε)(1− κ)(pµ + ξ)K1K2[(K1K2 + K1K4 + K2K4)(K2 + σeη)

+(K1K3 + K2K3)σeηe],

m5 = (1− p)(1− κ)µ[(K1K2 + K1K4 + K2K3 + K2K4 + K3K4)(ψ1K2K4

+ψ2K3σuηe + ψ1K2σeηe)],

m6 = (1− p)(1− κ)µK1K3(ψ2K3σuηe + ψ1K2σeηe),

m7 = (1− p)µK3K4[(K2K3 + K2K4 + K3K4)(K2 + σuηu) + σuηuK1(K3 + K4)],

m8 = K1
2K2K4(1− ε)(1− κ)(pµ + ξ)(K4 + σeηe),

m9 = (1− p)µ(1− κ)ψ1K2
2σeηe(K1K3 + K1K4 + K3K4),

m10 = (1− p)(1− κ)µ{[K1K2 + (K1 + K2)K4]K3
2ψ2σuηe + (K1 + K3)K2

2K4
2ψ1},

m11 = µK2K3
2K4

2(1− p)(K2 + σuηu) + K1K3K4σuηu.

According to the Routh-Hurwitz criterion, the necessary and sufficient condi-

tions for all the eigenvalues of J1 to have negative real parts are (i) c1 > 0 and

c3 > 0 and (ii) c1c2−c3 > 0. Since all the parameters of the model are nonneg-

ative and 0 < p, κ, ε < 1, then (i) holds. It can be shown that (ii) holds. Thus,

all the eigenvalues of J1 have negative real part. Hence, the center manifold

theory (Carr, 1981) can be used to analyze the dynamics of (4.5) near β = β∗∗.

Eigenvectors of Jβ |β=β∗∗:

The right and left eigenvectors associated with the zero eigenvalue of the Jaco-
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bian Jβ evaluated at β∗∗ are given, respectively, by w = [w1, w2, w3, w4, w5, w6]
T

and v = [v1, v2, v3, v4, v5, v6], where

w1 = −β∗∗H1{w3 + ηuw4 + (1− κ)w5 + ηe(1− κ)w6}
ξ + µ

< 0,

w2 =
ξw1 − β∗∗H2{w3 + ηuw4 + (1− κ)w5 + ηe(1− κ)w6}

µ
< 0,

w3 = w3 > 0, w4 =
σu

K2

w3,

w5 = w5 > 0, w6 =
ψ2w4 + σew5

K4

,

v1 = v2 = 0, v3 = v3 > 0, v4 =
β∗∗ηuH1v3 + β∗∗ηuH2v5 + ψ2v6

K2

,

v5 = v5 > 0, v6 =
β∗∗ηe(1− κ)(H1v3 + H2v5)

K4

.

To determine the direction of bifurcation, following Castillo-Chavez and Song

(2004), we find the signs of a and b, where

a =
6∑

k,i,j=1

vkwiwj
∂2φk

∂xi∂xj

(0, 0) and b =
6∑

k,i=1

vkwi
∂2φk

∂xi∂β∗∗
(0, 0).

It can be shown, after using the associated nonzero partial derivatives of Φ at

the DFE (X ), that

a =
2β∗∗µP11

Π(ξ + µ)
(P12 − P13), (4.8)
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where,

P11 = w3 + ηuw4 + (1− κ)w5 + (1− κ)ηew6 > 0,

P12 = −v3µ(1− p)(w1 + w2)− v5(1− ε){(pµ + ξ)w1 + (1 + p)µw2} > 0,

P13 = (v3µ(1− p) + (1− ε)(pµ + ξ)v5)(w3 + w4 + w6 + w5) > 0,

(4.9)

Hence, a > 0 iff

P12 > P13 (4.10)

For the sign of b, we substitute vectors v and w and the respective

associated nonzero partial derivatives of Φ at the DFE into

b =
6∑

k,i=1

vkwi
∂2φk

∂xi∂β∗∗
(0, 0),

which gives,

b =
(1− ε)(pµ + ξ)v5 + v3µ(1− p)

ξ + µ
P11 > 0.

¤

To illustrate this phenomenon with respect to the above Theorem, the

same parameter values for Figure 3.4B are used and the backward bifurcation

diagrams are depicted in Figure 4.1. For this set of parameter values, the

associated backward bifurcation coefficients (a and b) have the values: a =

0.02069982715 and b = 1.930595939. It is worth noting that when ε = 1 (i.e.,

public health education campaign is 100% effective), the threshold quantity
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Reff reduces to

R̃eff = Reff

∣∣∣
ε=1

=
β(B + C)

K1K2K3K4(ξ + µ)
. (4.11)

Similarly, the coefficients of the quadratic (4.3) reduce to

a∗11 = 0,

a∗12 = K1K2K3K4p + µ(1− p)[K3K4(K2 + σu) + K2ψ1(K4 + σe) + σuK3ψ2] > 0,

a∗13 = K1K2K3K4(µ + ξ)(1− R̃eff ).

Thus, the quadratic equation (4.3) becomes linear in G∗∗, with G∗∗ =

−a∗13
a∗12

. In this case, the model (3.1) has a unique endemic equilibrium if and

only if R̃eff > 1 (i.e., a∗13 < 0) and no endemic equilibria when R̃eff < 1

(since, in this case, G∗∗ =
−a∗13
a∗12

< 0). Hence, backward bifurcation is ruled

out in this case (since no multiple endemic equilibria exist when R̃eff < 1).

Alternatively, it can easily be seen that the inequality (4.10) fails whenever

ε = 1. This result is summarized below.
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Figure 4.1: Backward bifurcation diagrams using demographic data from Ethiopia.
Parameter values used are as in Table 3.2 and 3.3 with ξ = 0.01, p = ψ1 = ψ2 = 0.001
and ε = 0.4 (so that, a = 0.02069982715 and b = 1.930595939).
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Theorem 22.

The model (3.1) with ε = 1 does not have a positive endemic equilibrium when

R̃eff < 1.

Further, to show that HIV elimination is independent of the initial sizes

of the sub-populations of the model when ε = 1 (i.e., the efficacy of public

health education is 100%), we claim the following result:

Theorem 23. The DFE of the model (3.1) with ε = 1 is GAS in D if R̃eff ≤
S∗u
N∗ ≤ 1.

Proof. Consider the model (3.1) with ε = 1. Further, consider the

Lyapunov function

F = f1Iu + f2Au + f3Ie + f4Ae,

where,

f1 = (1− κ)[ψ1K2K4 + ηeψ2σuK3 + ηeσeψ1K2] + K3K4(K2 + ηuσu),

f2 = K1K3[ηuK4 + ηeψ2(1− κ)],

f3 = K1K2(1− κ)[K4 + ηeσe],

f4 = K1K2K3ηe(1− κ),

with Lyapunov derivative given by (where a dot represents differentiation with

respect to t)
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Ḟ = f1İu + f2Ȧu + f3İe + f4Ȧe,

= f1

[
λuSu + (1− κ)λeSu −K1Iu

]
+ f2(σuIu −K2Au)

+ f3(ψ1Iu −K3Ie) + f4(σeIe + ψ2Au −K4Ae),

= K1K2K3K4

(
N∗Su

S∗uN
R̃eff − 1

)
Iu + K1K2K3K4ηu

(
N∗Su

S∗uN
R̃eff − 1

)
Au

+ K1K2K3K4

(
N∗Su

S∗uN
R̃eff − 1

)
Ie + K1K2K3K4ηe(1− κ)

(
N∗Su

S∗uN
R̃eff − 1

)
Ae

− Iu[K1(1− κ)(ψ1K2K4 + ηeσeψ1K2)]

= K1K2K3K4(Iu + ηuAu + Ie + ηe(1− κ)Ae)

(
N∗Su

S∗uN
R̃eff − 1

)

− Iu[K1(1− κ)(ψ1K2K4 + ηeσeψ1K2)]

≤ K1K2K3K4(Iu + ηuAu + Ie + ηe(1− κ)Ae)

(
N∗

S∗u
R̃eff − 1

)

− Iu[K1(1− κ)(ψ1K2K4 + ηeσeψ1K2)] since Su ≤ N in D

≤ 0 for R̃eff ≤ S∗u
N∗ ≤ 1.

Thus, Ḟ ≤ 0 if R̃eff ≤ S∗u
N∗ with Ḟ = 0 if and only if Iu = Au = Ie = Ae = 0.

Further, the largest compact invariant set in {X : (S∗u, S
∗
e , I

∗
u, A∗

u, I
∗
e , A∗

e) ∈
D : Ḟ = 0} is the singleton DX . It follows from the LaSalle Invariance

Principle (LaSalle, 1968), that every solution to the equations in (3.1) with

initial conditions in D converge to DX as t →∞. That is, the disease dies out.

Further, substituting Iu = Au = Ie = Ae = 0 in the model shows that Su → S∗u

and Se → S∗e as t → ∞. Thus, (Su, Se, Iu, Au, Ie, Ae) → (S∗u, S
∗
e , 0, 0, 0, 0) as

t → ∞. Hence, since the region D is positively-invariant, it follows that the

DFE of (3.1), with ε = 1, is GAS in D for all non-negative initial conditions,
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whenever R̃eff ≤ S∗u
N∗ ≤ 1. ¤

In summary, it is clear from Theorems 22 and 23 that the backward

bifurcation phenomenon of the model is caused by the imperfect nature of the

public health education campaign (i.e., 0 < ε < 1). In the case where the

public health education is perfect, R̃eff ≤ S∗u
N∗ ≤ 1 is necessary and sufficient

condition for the effective control of HIV in the community. In other words,

the public health education with perfect efficacy could lead to effective control

(or theoretical elimination) of HIV in the community provided the associated

threshold quantity, R̃eff , is brought to (and maintained at) a value less than

S∗u
N∗ . Thus, this study emphasizes the pressing need for the design of perfect

public health education campaign to handle HIV.

Theorem 24. The DFE of the model (3.1) with ε = 1 does not undergo

backward bifurcation at R̃eff = 1.

Proof. The result follows from Theorem 22, where the model has no

positive equilibrium when R̃eff < 1, and Theorem 23, where the DFE of the

model (1) is GAS in D if R̃eff ≤ S∗u
N∗ ≤ 1. ¤

4.3 Conclusions

Some of the main theoretical findings of the study are:

• Under certain conditions, the model (3.1) undergoes backward bifur-

cation, when the reproduction number (Reff ) is less than unity. The
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backward bifurcation phenomenon resulted from the imperfect nature of

the public health education program.

• For the case when the public health education program is 100% effective,

the disease-free equilibrium of the model (3.1) is globally-asymptotically

stable whenever the associated reproduction number is less than or equal

to a quantity less than unity.
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Chapter 5
Travelling waves for an SIR model with nonsmooth

treatment rates

5.1 Introduction

Since the pioneering work of Kermack and McKendrick (1927), mathemati-

cal epidemiology developed an extensive body of literature and SIR models

have been playing an important role in modelling epidemics of infectious dis-

eases (such as measles, chickenpox, SARS, HIV, flu and poliomyelitis). The

SIR model is suitable for: (i) a directly transmitted disease such as measles,

rubella, or mumps, for which an infection confers permanent immunity (i.e.,

the individual once recovered is not susceptible to infection again) (Hethcote,

1989, 2000; Fuentes and Kuperman, 1999), (ii) diseases that allow permanent

removal some of the infectives from the infectious class due to quarantine,
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isolation, treatment, etc (Wang and Ruan, 2004; Altmann, 1995; Gul et al.,

2009). Many researchers have studied the classical SIR model (e.g., Wang and

Ruan, 2004; Altmann, 1995; Wang, 2006; d’Onofrio et al., 2007; Anderson and

May, 1991, and the references therein), which describes the infection and re-

moval process of individuals during an epidemic of an infectious disease. The

SIR model is one of the simplest and yet most accurate of all biological mod-

els (May and Anderson, 1979; Keeling et al., 2001). Deterministic models for

studying dynamics of epidemics are based on ordinary differential equations.

In recent years, some mathematical models incorporating treatment have

been studied by many researchers (e.g., Wang and Ruan, 2004; Wang, 2006;

Arino et al., 2008; Brauer, 2008; Gul et al., 2009). We define treatment as an

act or manner of managing patients medically which may include isolation or

quarantine. Further, this type of treatment has been successful in reducing

the burden and spread of diseases such as HIV/AIDS, TB, and SARS (Hyman

and Li, 1998; Jung et al., 2002; Gumel et al., 2004; Yan and Zou, 2008). Thus,

in this Chapter, the infected individuals are removed from the infected class

due to the treatment at a certain rate.

In mathematical epidemiology, some models for spatial spread of epi-

demics have been analyzed (Mulone et al., 2007; Mulone and Straughan, 2009;

Murray, 2003; Rass and Radcliffe, 2003; van den Bosch et al., 1990; Webb,

1982; Marcati and Pozio, 1980). A fascinating question is whether a disease

could remain endemic by the geographic motion of individuals. Mobility for-

mulation as a random diffusion process in epidemic models takes the form

of reaction-diffusion equations, which have been successful in modelling the
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spatial spread of diseases as illustrated in Murray (2003). In the theory of

reaction-diffusion equations, travelling waves play an important role and many

techniques have been developed to prove existence or stability of such waves

(see, Conley (1975); Conley and Gardner (1984); Dunbar (1984); Gardner and

Smoller (1983) for their existence, and stability results can be found in Volpert

et al. (1994); Rauch and Smoller (1978) and references therein). In general,

Murray (2003), Gardner (1995), Fife (1979) and Volpert et al. (1994) provide a

great detail on the subject. The investigations on travelling wave solutions for

epidemic models are attracting more and more attention (Rass and Radcliffe,

2003).

In this Chapter, we consider epidemiological models introduced by Wang

and Ruan (2004) and Wang (2006) which have certain non-smooth nonlinear-

ities. After adding diffusion terms to the system like in Liu and Jin (2007), we

analyze travelling-wave solutions. We consider two different cases for nonlin-

ear and non-smooth treatment terms: (i) piecewise linear treatment rate with

saturation effect, (ii) piecewise constant treatment rate with jump (Heavi-

side function). In Case (i), we observe some effects which are not present

for travelling waves in classical SIR systems with constant coefficients such

as non-monotone profiles for both susceptible individuals and infectives, os-

cillations of the profiles due to complex eigenvalues. In Case (ii), we observe

a profile for which the susceptible individuals tend to infinity, the infectives

converge to zero and their product approaches a constant at the forward end of

the profile. Finally, numerical simulations are presented which confirm these

analytical results.
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5.2 Basic Model

Following Liu and Jin (2007); Wang and Ruan (2004) and Wang (2006), we

consider, as basic model because of its interesting dynamical behaviour, the

following deterministic system of nonlinear differential equations which repre-

sent an SIR model with nonlinear and non-smooth treatment rate:

dS

dt
= A− dS − λSI,

dI

dt
= λSI − dI − T (I),

dR

dt
= T (I)− dR,

(5.1)

where S(t), I(t) and R(t) denote three classes, namely, susceptible to disease,

infected and infectious, and removed (infected, but no longer infectious due to

treatment) individuals at time t, respectively. The constant A is the recruit-

ment rate of the population, d is the natural death rate of the population and

λ is the force of infection associated with the transmission of the disease by the

infectives, T (I) is the treatment rate of infected individuals. In most epidemic

models it is assumed that T (I) = cI for some constant c > 0. To take into

account the limited capacity of treatment facilities, Wang (2006) considers a

treatment rate which is proportional to the number of the infectives below the

maximal capacity and remains constant otherwise. Furthermore, Wang and

Ruan (2004) adopts a piecewise constant treatment rate with a jump. Thus,
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we consider both cases with regard to the definition of T (I) as follows;

(i) T (I) =





rI, if 0 ≤ I ≤ I0,

k, if I ≤ I0,

(ii) T (I) =





m, if I > 0,

0, if I ≤ 0,

(5.2)

as defined in Wang and Ruan (2004) and Wang (2006) respectively, where the

constants r > 0, m > 0, k = rI0 and I0 is the capacity of treatment resources.

Note that for (i) we have a piecewise linear treatment rate with saturation

effect and for (ii) a piecewise constant treatment rate with jump (Heaviside

function).

5.3 Spatial SIR Model

Following Liu and Jin (2007), we add diffusion effects to the basic model.

Whereas Liu and Jin (2007) analyze Turing instability and simulate stripy

patterns, we are interested in travelling waves. Random movement of indi-

viduals in space was further incorporated into model (5.1) by adding some

diffusion terms, so that Fick’s law holds. Letting S(x, t) and I(x, t) be the re-

spective densities at a spatial position x and time t, this results in the following

system of PDEs:
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St = A− dS − λS I + Ds Sxx, (5.3a)

It = λS I − d I − T (I) + Di Ixx, (5.3b)

Rt = T (I)− dR + Dr Rxx, x ∈ R, t > 0, (5.3c)

where Ds, Di and Dr are the diffusion rates for the susceptible, infected and

recovered individuals, respectively. Since the first two equations of system (5.3)

are independent of the last one, it suffices to consider the following reduced

reaction diffusion model:

St = A− d S − λS I + Ds Sxx,

It = λS I − d I − T (I) + Di Ixx, x ∈ R, t > 0.

(5.4)

After solving system (5.4), R can be determined from (5.3c) which is a linear

equation for R. It is assumed that the parameters A, d, λ, Ds, Di are all pos-

itive constants. The system (5.4) has a disease-free equilibrium E0 = (A/d, 0).

For Case (i), the basic reproduction numbers are given by R0 =
λA

d(d + r)
if

0 ≤ I ≤ I0 and R′
0 =

λA

d2
if I > I0, which measure the average number of

new infections generated by a single infected person in a community. For Case

(ii), R′
0 is always used. Note that R0 =

λA

d(d + r)
< R′

0 =
λA

d2
. The number

of infected individuals is expected to decline towards zero whenever R′
0 < 1,

because each infected individual on average infects less than one susceptible

person. The disease will persist whenever R0 > 1.
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We now consider homogeneous equilibria of system (5.4). For Case (i)

there will be a positive endemic equilibrium E1 = (S1, I1) of the system (5.4)

provided 1 < R0 ≤ 1 +
λ k

d r
, where

S1 =
d + r

λ
, I1 =

d(R0 − 1)

λ
< I0.

Further, define b = d2 + (k − A) λ and ∆ = b2 − 4 d2 k λ. Following Wang

(2006), if ∆ ≥ 0 then we have positive endemic equilibria of system (5.4),

namely, E2 = (S2, I2) and E3 = (S3, I3), where

S2 =
A

(d + λI2)
, I2 =

−b−√∆

2dλ
> I0,

S3 =
A

(d + λI3)
, I3 =

−b +
√

∆

2dλ
> I0.

From Theorems 2.1 and 2.2 of Wang (2006), we deduce the following result.

Proposition 1. Consider the system (5.4), where T (I) is given by Case (i),

and define p0 = 1 +
λ k − d r

d(d + r)
+

2
√

λ k

(d + r)
, p1 = 1 +

λ k − d r

d(d + r)
+

2λ k

r(d + r)
and

p2 = 1 +
λ k

d r
. Suppose that R0 ≥ p0 and R0 > 1 then

(a) E1 is the unique endemic equilibrium if R0 ≤ p2 and R0 < p1.

(b) The endemic equilibrium points E2 and E3 co-exist whenever

p1 < R0 < p2.

We will investigate travelling wave solutions whose profiles are hetero-

clinic orbits connecting different equilibrium points of system (5.4) in Section

5.4.
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5.3.1 Stability of Disease-free Equilibrium

Here, we are concerned with the stability of the disease-free equilibrium E0 =

(A/d, 0) of the system (5.4). Therefore, we claim the following result.

Theorem 25. Suppose that R0 < 1 in the system (5.4), where the nonlinearity

T (I) is given in Case (i) of equation (5.2). Then the disease-free equilibrium

E0 = (A/d, 0) is locally asymptotically stable.

Proof. Consider the vector field

(f1(S, I), f2(S, I)) = (S M(S, I), I N(S, I)),

where

f1(S, I) = A− dS − λS I, f2(S, I) = λS I − d I − T (I),

M(S, I) = A/S − d− λI and N(S, I) = λS − d− T (I)/I.

Note that MI(S, I) < 0 and NS(S, I) > 0 (where subscripts denote differen-

tiation). The Jacobian J of the vector field (S M(S, I), I N(S, I)) around the

disease-free equilibrium E0 is given by

J =




−d −λ A
d

0 λ A
d
− (d + r)




.

Thus, the eigenvalues of J are both negative if R0 < 1. From Theorem 4.1 of

Conway and Smoller (1977), there exists an open neighourhood Σ of E0 which
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Figure 5.1: Semi-contracting rectangle.

is contained in {(S, I) : S ≥ 0, I ≥ 0} such that every solution to the system

(5.4) with initial conditions in Σ decays exponentially to E0 as t →∞. ¤

Under slightly stronger assumptions (replacing R0 < 1 by R′
0 < 1) we

are able to prove a result which includes both Cases (i) and (ii) for T (I) and

explicitly locates a set of initial conditions for which asymptotic stability holds.

Theorem 26. Suppose that R′
0 < 1, then the disease-free equilibrium E0 =

(
A

d
, 0) of the system (5.4) is locally asymptotically stable. More precisely,

(S(t, x), I(t, x)) → (
A

d
, 0) if (S(0, x), I(0, x)) ∈ Σ+ where Σ+ = (0,

A

d
) ×

(0, Imax) for all x ∈ R, and Imax = d
2λ

.

Proof.

Consider the rectangle Σ+ = (0,
A

d
)×(0, Imax) given in Figure 5.1, where

Imax = d
2λ

.

Let f1(S, I) = A− dS − λS I and f2(S, I) = λS I − d I − T (I). We can
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easily see that f1 is negative on the “right edge” of Σ+, and positive on the

“left edge” of Σ+. On the other hand, on the “top” of Σ+,

f2(S, Imax) = λS Imax − d Imax − T (Imax).

Since S ≤ A
d

and R′
0 < 1 then f2(S, Imax) < 0. On the “bottom” of Σ+,

f2(S, 0) = 0. Thus, Σ+ is a semi-contracting rectangle as defined in Definition

16 (see also Mimura, 1979).

In the same way we now show that

γΣ+ + (1− γ)(
A

d
, 0) = [(1− γ)

A

d
,
A

d
]× [0, γImax] := [Sl,

A

d
]× [0, Il]

is a family of similar semi-contracting rectangles for 0 < γ < 1 centered at the

point (A
d
, 0). By definition, it is clear that this is a similar family of rectangles.

Further, as in the case Il = Imax, this is a semi-contracting family if

A− dSl − λSl Il > 0, (5.5)

where Sl = (1− γ)A
d

and Il = γImax for all 0 < γ < 1. From (5.5), we obtain

λ(1− γ)

d
Imax < 1 for all 0 ≤ γ ≤ 1.

The condition (5.5) is satisfied if Imax < d
λ
. Choosing Imax = d

2λ
, we have a

similar semi-contracting family of rectangles centered at (A
d
, 0).

Finally, by using the same argument as in the proof of Lemma 3.8 of

Rauch and Smoller (1978), from the existence of similar semi-contracting fam-
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ily of rectangles centered at (A
d
, 0) follows the convergence of any solution

whose initial condition lies in Σ+ for all x ∈ R to (A
d
, 0). ¤

Remarks:

(1) Theorem 25 considers the non-linearity in Case (i) of equation (5.2) only,

while Theorem 26 deals with both non-linearities of equation (5.2).

(2) It is assumed that R0 < 1 and R′
0 < 1 in Theorems 25 and 26, re-

spectively, where R0 < R′
0 < 1. Thus, the condition in Theorem 25 is

stronger.

(3) Σ+ is located to the left of the point (
A

d
, 0) in Theorem 26, whilst there

exists Σ around (
A

d
, 0) in Theorem 25.

(4) Mulone et al. (2007) introduced Liapunov functions to prove nonlinear

stability of some epidemic models of SI type. Their method is elegant

and shows global stability, but it requires special transformations and

works only on bounded domains.

5.4 Travelling-wave solutions

The spatial model (5.4) is the starting point of the analysis in this Chapter.

We are interested in the question of the existence of travelling wave solutions.

Now, we look for travelling wave solutions of the form S(x, t) = u(x+ct) = u(z)
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and I(x, t) = v(x + ct) = v(z) with z = x + ct and c is the travelling wave

speed. We assume that susceptible individuals and infectives diffuse at the

same rate (i.e., Ds = Di = 1) and substitute u and v into (5.4). These result

in the coupled system of ordinary differential equations below

uzz − cuz + A− du− λuv = 0, (5.6a)

vzz − cvz + λuv − dv − T (v) = 0. (5.6b)

Biologically speaking, the introduction of few infected individuals at one end

of linear habitat (e.g., coastline), which is initially uniformly saturated with

susceptible individuals at the carrying capacity of the environment, may result

in a “wave of propagation” of infected individuals. Therefore, a zone of tran-

sition from one equilibrium point to another is possible and the traveling wave

profiles occurs when this transition zone moves across the population (Dunbar,

1984). In order to investigate the existence of such wave (i.e., travelling wave)

of system (5.4), let f = uz and g = vz, so that fz = uzz and gz = vzz , which

leads to the four-dimensional system

uz = f, (5.7a)

fz = c f − A + d u + λu v, (5.7b)

vz = g, (5.7c)

gz = c g − λu v + d v + T (v). (5.7d)

Now we state the following Corollary about the non-existence of certain

travelling waves which follows immediately from Theorem 25.
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Corollary 1. Suppose that R′
0 < 1, then there is no travelling wave profile

from the disease-free equilibrium E0 = (
A

d
, 0) of the system (5.6) provided the

initial sizes of the sub-populations are within the semi-contracting set Σ+ =

(0,
A

d
)× (0, Imax).

Proof. Corollary 1 follows directly from the result of Theorem 25. ¤

In the following subsections, we consider the Case (i) piecewise linear

treatment rate with saturation effect and Case (ii) piecewise constant treat-

ment rate with jump separately.

5.4.1 Piecewise linear treatment rate with saturation

effect

In this section, we assume that the treatment rate is proportional to the num-

ber of the infected individuals when the capacity of treatment is less than or

equal to the number of infected individuals and takes the maximal capacity

otherwise (i.e., we are considering Case (i)). We shall first establish the ex-

istence of a heteroclinic connection in R4. In other words, a travelling wave

solution must correspond to a trajectory that connects two steady states in R4.

A travelling wave solution of system (5.4) exists if there exists a heteroclinic

orbit connecting at least two of the following critical points of (5.7), which are

related to the equilibrium points found in Section 5.3.
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E ′0 =




0

A/d

0

0




, E ′1 =




0

S1

0

I1




, E ′2 =




0

S2

0

I2




and E ′3 =




0

S3

0

I3




.

Linearization of (5.7) about E ′0 has a characteristic equation

λ4−2 cλ3+
(−2 d2 − rd + λA + c2d) λ2

d
−c (−2 d2 − rd + λA) λ

d
+d2+rd−λ A = 0.

Thus, it has the following eigenvalues

Λ1,2 =
c±√c2 + 4 d

2
and Λ3,4 =

c±
√

c2 − 4(r + d)(R0 − 1)

2 d
. (5.8)

SinceR0 > 1, then for c > c∗, where c∗ = 2
√

(r + d)(R0 − 1), the stable mani-

fold at E ′0, denoted byMs(E ′0), is three dimensional (that is, dim(Ms(E ′0)) =

3) while the dimension of the unstable manifold is one (that is, dim(Mu(E ′0)) =

1). If c ≥ c∗ then all the four eigenvalues in equations (5.8) are real.

However, if 0 < c < c∗ then Λ3 and Λ4 are a pair of complex conjugate

eigenvalues with positive real part. From Theorems 6.1 and 6.2 in Hartman

(1973), we have a two-dimensional unstable manifold at E ′0 and the disease-

free equilibrium point is a spiral point on this unstable manifold. A trajectory

approaching E ′0 must have v(z) < 0 for some z. This contradicts the fact that

the traveling wave solutions are non-negative. Therefore c∗ is a minimal wave

speed. Hence, we summarize the result as follows.
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Theorem 27. Suppose that R0 > 1 and 0 < c < c∗, then the system (5.7)

with Case (i) of equation (5.2) has no heteroclinic orbit connecting E ′0 with

any of the endemic equilibrium points.

Let Ms(E ′ i) and Mu(E ′ i) denote the local stable and unstable manifolds

associated with E ′ i, i = 0, 1, 2, 3. We claim the following result.

Lemma 6. Suppose that Case (a) of Proposition 1 holds, then

dim(Ms(E ′0)) + dim(Mu(E ′1)) = dim(R4) + 1.

Proof. Let Case (a) of Proposition 1 hold, then E ′1 exists and we linearize

(5.7) around E ′1. Thus, we have the following characteristic polynomial

λ4 − 2 cλ3 +
(
c2 − dR0

)
λ2 + c dR0λ + d (R0 − 1) (d + r) = 0,

and the corresponding eigenvalues

Λ1,2 =
c±

√
c2 + 2 dR0 − 2

√
∆2

2
,

Λ3,4 =
c±

√
c2 + 2 dR0 + 2

√
∆2

2
,

where ∆2 = d2R0
2 − 4 d(d + r)(R0 − 1). This implies dim(Ms(E ′1)) =

dim(Mu(E ′1)) = 2. Since dim(Ms(E ′0)) = 3 and dim(Mu(E ′0)) = 1, then

dim(Ms(E ′0)) + dim(Mu(E ′1)) = dim(R4) + 1.

¤
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Lemma 7. Suppose that Case (b) of Proposition 1 holds, then

dim(Ms(E ′0)) + dim(Mu(E ′3)) = dim(R4) + 1.

Proof. Let Case (b) of Proposition 1 hold, then E ′3 exists. By us-

ing similar argument above, we linearize around E ′3 and obtain the following

eigenvalues

c±√c2 + 4d

2
and

c±
√

c2 + 4
d

√
∆

2
,

with dim(Ms(E ′3)) = dim(Mu(E ′3)) = 2 where ∆ = b2 − 4 d2 k λ and b =

d2 + (k − A) λ. Hence,

dim(Ms(E ′0)) + dim(Mu(E ′3)) = dim(R4) + 1.

¤

The Lemmas 6 and 7 show thatMs(E ′0) can potentially intersect transver-

sally along a one-dimensional curve withMu(E ′ i) in R4 for i = 1 and 3 (Ashwin

et al., 2002; Guckenheimer and Holmes, 2002; Beyn, 1990a). If this happens,

then the existence of a heteroclinic connection between the equilibrium points

E ′0 and E ′ i for i = 1 and 3 follows.

The linearization about E ′2 leads to the following eigenvalues

Λ4 − 2 cΛ3 − γ1Λ
2 + γ2Λ +

∆ + b
√

∆

b +
√

∆
= 0,
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and the corresponding eigenvalues
c±√c2 + 4 d

2
and

c±
√

c2 − 4
d

√
∆

2
, where

γ1 =

(
d2 b + ∆− c2d2(d− λ k + λA)− (c2d + λ k − λA)

√
∆

)

d
(
b +

√
∆

) ,

γ2 =
c
(
d2 b + ∆ + d2b

√
∆

)

d
(
b +

√
∆

) ,

∆ = b2 − 4 d2 k λ and b = d2 + (k − A) λ. Therefore,

dim(Ms(E ′2)) = 3 and dim(Mu(E ′2)) = 1,

with a critical speed c∗∗ = 2

√√
∆

d
where ∆ ≥ 0.

We summarize the result as follows.

Lemma 8. Suppose that Case (b) of Proposition 1 holds, then

dim(Ms(E ′2)) + dim(Mu(E ′3)) = dim(R4) + 1.

It should be noted that E ′2 = (0, S2, 0, I2) does not have zero components

corresponding to the subpopulation densities. Therefore, it will be instructive

to study oscillation of trajectories around this equilibrium point. For 0 <

c < c∗∗, which means travelling wave fronts travel with a speed smaller than

the critical value c∗∗, there are two complex conjugate eigenvalues which lead

to small oscillations in the travelling wave profiles around E ′2. Numerical

examples of heteroclinic orbits for all cases in lemmas 6, 7 and 8 will be
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presented in Section 5.4.3.

5.4.2 Piecewise Constant Treatment Rate with a Jump

Here, we assume that the treatment rate is piecewise constant with a jump,

i.e.,

T (I) =





m, if I > 0,

0, if I ≤ 0.

(5.9)

(Case (ii)). Due to the discontinuity of T (I), we cannot use our approach

in Section 5.4.1 to construct travelling waves. Further, we will see that the

jump of T (I) creates a jump in the second derivative of v(z) and in the fourth

derivative of u(z) at z = 0. We claim the following result.

Theorem 28. Suppose that we have Case (ii) for the treatment rate and that

(
λA

d
− d)v(z0) > m for some z0 > 0. (5.10)

Then a positive travelling front solution (u(z), v(z)) of (5.7), if it exists, has

the following properties: for all c < 0, u(z) is monotone increasing for all z ∈
(0,∞) and v(z) has at least one local maximum point z0 ∈ (0,∞).

Proof. We first show that u(z) is monotone increasing. Considering

(5.7), we derive from the fact that T (v) has a jump at v = 0, that vzz has

a jump where v = 0 and v, vz are both smooth functions. Because of the

jump for vzz there is also a jump for uzzzz and u, uz, uzz, uzzz are all smooth
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functions.

Since u(z) = A
d

for z < 0, we derive u(0) = A/d and uz(0) = uzz(0) =

uzzz(0) = 0. Using again (5.7), we derive uzzzz(0
+) =

λAm

d
. Thus,

u(z) =
A

d
+

λAm

d

z4

24
+ O(z5) for z > 0 small.

This implies that u(z) > A
d

and u(z) is increasing for z small enough. Suppose

that u(z) has a local maximum point z0 with u(z0) >
A

d
, then uz(z0) = 0 and

uzz(z0) ≤ 0. This implies that f(z0) = 0 and fz(z0) ≤ 0, but the right-hand

side of (5.7b) is strictly positive (i.e., c f − A + d u + λu v > 0) which is a

contradiction. Hence, u(z) has no local maximum.

Next we show that v(z) has at least one local maximum. Using again

(5.7), we derive v(0) = vz(0) = 0 and vzz(0
+) = m. Therefore,

v(z) = m
z2

2
+ O(z3) for z > 0 small.

Hence, v(z) is monotone increasing for z > 0 small.

Assuming that v(z) is monotone increasing for all z > 0 (i.e., v(z2) >

v(z1) for all z2 > z1 > 0) we will derive a contradiction. Then from (5.6b) we
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have for z > z0

vzz − c vz = −λu v + d v + m

≤ −λA
d
v + d v + m since u is increasing (implying u(z) ≥ A/d)

= v
(−λA

d
+ d

)
+ m

≤ v(z0)

(
−λ

A

d
+ d

)

︸ ︷︷ ︸
<0 by (5.10)

+m since v(z) > v(z0) for all z > z0

≤ L < 0, where L is a negative constant by (5.10).

Using that vzz−c vz ≤ L < 0 for all z > z0, we derive gz−cg ≤ L, where

g = vz. Setting g(z) = exp(cz)h(z), we have hz exp(cz) ≤ L. Integrating

this inequality gives h(z) ≤ −L
c

exp(−cz) + D for some real constant D. This

implies g(z) ≤ −L
c
+D exp(cz) < 0 for z large enough since L < 0. Integrating

again, we get v(z) = B1 exp(c z) + B2 − L

c
z for some constants B1, B2. This

implies that v(z) < 0 if z is large enough. This is a contradiction to the

positivity of v. Therefore v is not monotone.

Since v is a continuously differentiable function which is monotone in-

creasing for small enough z > 0 and monotone decreasing for some other

z > 0, it must have a local maximum somewhere in between by the Interme-

diate Value Theorem for the derivative of v(z).

¤
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Remark: The technical assumption (5.10) seems quite strong. However, we

have not been able to prove the non-monotonicity or the existence of a local

maximum for v without it.

Next we state a result about the behavior of the solution as z →∞.

Theorem 29. If u(z) → ∞ and v(z) → 0 as z → ∞, then u(z) v(z) ap-

proaches a constant.

Proof. Let u(z) → ∞ and v(z) → 0 , then u(z) v(z) >> v(z), u(z) >>

u(z) v(z) and u(z) >> A as z →∞. Thus, (5.7) in leading order reads

uz = f, (5.11a)

fz = c f + d u (5.11b)

vz = g, (5.11c)

gz = c g − λu v + d v + m. (5.11d)

From (5.11a) and (5.11b), we have uzz − cuz − d u = 0. Solving this linear

equation for u, leads to the characteristic equation µ2− c µ− d = 0 which has

the solutions

µ± =
c±√c2 + 4 d

2
.

Since u(z) →∞, we take

µ+ =
c +

√
c2 + 4 d

2
.
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Further, considering the original system (5.7) we arrive at

u(z) = u0 exp(µ+ z) + O(1) as z →∞ (5.12)

since all the terms neglected when going from (5.7) to (5.11) are of order O(1).

This requires the estimate v(z) = O(exp(−µ+ z)) which will be shown below.

We now determine the decay for v, assuming that v(z) → 0 as z → ∞.

From (5.11c) and (5.11d), we obtain

vzz − c vz − d v + λu v −m = 0. (5.13)

Using asymptotic expansion, we consider the following estimate:

v(z) = H0 exp(−µ+ z) + O(exp(−2µ+ z)).

Substituting u(z) and v(z) into (5.13) gives, at order 1,

λu0 H0 −m = 0; =⇒ H0 =
m

λu0

.

Thus, for the solution of (5.7) we have the estimate

v(z) =
m

λu0

exp(−µ+ z) + O(exp(−2µ+ z)).

Hence, for the solution (u, v) of (5.7) we have derived the estimate

u(z)v(z) =
m

λ
+ O(exp(−µ+ z)).
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¤

5.4.3 Numerical simulations

In this section, before mentioning our numerical results with regard to sections

5.4.1 and 5.4.2, it will be instructive to briefly describe the numerical methods

used. For Case (i), since T (I) is continuous, let ξ = (ξ1, ξ1) and Φ = (Φ1, Φ1)

be two equilibrium points we are interested in connecting. Then the travelling

wave solutions, if exist, must satisfy the following asymptomatic boundary

conditions: u(−∞) = ξ1, u(∞) = ξ2 and v(−∞) = Φ1, v(∞) = Φ2. We

truncate the interval R = (−∞,∞) by a finite interval [Z−, Z+] where Z− <

0 < Z+ and Z± ∈ Z. We obtain the travelling wave solutions by simulating

system (5.7) with T (I) as defined in Case (i) as a Boundary Value Problem

(BVP). We implement this on MATLAB using solver bvp4c together with the

projected boundary and phase conditions given by (Beyn, 1990a,b; Champneys

et al., 1996; Bai et al., 1993). By setting the truncated domain to be [−30, 30],

we use the following piecewise functions as initial conditions:

u(z) =





ξ1, if −30 ≤ z ≤ 0,

ξ2, if 0 ≤ z ≤ 30,

v(z) =





Φ1, if −30 ≤ z ≤ 0,

Φ2, if 0 ≤ z ≤ 30.

(5.14)

Here, however, we do not fix the model variables and parameters throughout

the simulations due to the existence conditions of the equilibrium points men-

tioned in Proposition 1. At first, we demonstrate the results for Theorem 27
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with the following set of parameter values:

A = 2.8, λ = 0.001, r = 0.001, d = 0.02, k = 1. (5.15)

This leads to E ′0 = (0, 140, 0, 0) and E ′1 = (0, 21, 0, 113.3333). Further, the

condition for the existence of E ′1 is fulfilled (i.e., p0 = 6.345 < R0 = 6.6667 <

p2 = 51 R0 = 6.6667 < p1 = 98.5714). Figure 5.2 shows that there is no

travelling wave front connecting the disease-free equilibrium E ′0 and the en-

demic equilibrium E ′1 with speed c = 0.1099 < c∗ = 0.6899, because v(z)

takes negative values, which is unrealistic, and oscillates around the disease-

free equilibrium E ′0. Hence, the simulation agreed with Theorem 27.

The subpopulation densities of susceptible individuals and infected indi-

viduals are represented as Subfigures A1 and A2 respectively, for most of the

simulation. Figures 5.3 and 5.2 indicate that as c decreases from c∗ more and

more oscillations observed.
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Figure 5.2: Assuming (5.15) with c∗ = 0.6899 > c = 0.1099.
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Figure 5.3: Assuming (5.15) with c∗ = 0.6899 > c = 0.2899.

Now, we numerically illustrate the results obtained in Lemmas 6, 7 and 8,

by carrying out some simulations. Lemma 6 suggests the connection between

E ′0 and E ′1 and we have the following:

∆2 ≥ 0 : all the eigenvalues of the jacobian evaluated at E ′1 are strictly real

and hence a smooth travelling wave profiles, corresponding to the system

(5.7) with T (I) as defined in Case (i), connecting E ′0 and E ′1 are obtained

as depicted in Figure 5.4.
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Figure 5.4: Assuming (5.15) with ∆2 = 0.0083 and c = 0.9899.

∆2 < 0 : non-monotone travelling wave solutions connecting E ′0 = (0, 140, 0, 0)

and E ′1 = (0, 30, 0, 73.3333) are obtained as shown in Figure 5.5. Here,

we observed a hump in the wave profile for v(z) and a corresponding dip

in that for u(z).
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Figure 5.5: Assuming (5.15) with r = 0.01 and c = 0.6643. This leads to ∆2 =
−8.8889 · 10−5, p0 = 4.4415 < R0 = 4.6667 < p2 = 6, R0 = 4.6667 < p1 = 9.

Lemma 7 suggests the connection between E ′0 and E ′3 and Figure 5.6 depicts

non-monotone wave fronts connecting the two equilibria. This shows a zone

of transition from the disease-free equilibrium E ′0 to the endemic equilibrium

E ′3 where the level of susceptible individuals decreased and that of infected

individuals first increased then decreased.
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Figure 5.6: E ′0 = (0, 91.6, 0, 0), E ′3 = (0, 44.4788, 0, 11.7712), R0 = 1.8320, ∆ =
3.7779 · 10−8, p0 = 1.7220, p1 = 1.3332, p2 = 1.9090, A = 0.916, λ = 0.0009,
r = 0.035, d = 0.01, I0 = 10.1.

Lemma 8 suggests the connection between E ′2 and E ′3 if Case (b) of

Proposition 1 holds (i.e., E ′2 and E ′3 exist simultaneously). Thus, the model

parameters and variables are fixed as follows:

A = 0.916, λ = 0.003, r = 0.035, d = 0.02, k = 0.35. (5.16)

The conditions for the existence of E ′3 and E ′3 are satisfied (i.e., p0 = 2.4965 <

R0 = 2.4982 < p2 = 2.5 R0 = 2.4982 > p1 = 2.4091). We investigate the
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travelling wave solutions connecting E ′2 = (0, 18.0609, 0, 10.2391) and E ′3 =

(0, 16.9057, 0, 11.3943) as follows:

If c ≥ c∗∗ then there are travelling wave profiles which connect E ′2 and E ′3
without any oscillations as depicted in Figure 5.7. The wave profiles for

both u(z) and v(z) are monotone and smooth.
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Figure 5.7: Assuming (5.16) with ∆ = 4.8040 · 10−9, c∗∗ = 0.1177 < c = 0.1277

If c < c∗∗ then there is a travelling wave profile connecting E ′2 and E ′3 which

oscillates near E ′2 as shown in Figure 5.8.
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Figure 5.8: Assuming (5.16) with ∆ = 4.8040 · 10−9, c∗∗ = 0.1177 > c = 0.0176.

Finally, we consider system (5.7), with T (I) defined in Case (ii), as Ini-

tial Value Problem (IVP) with condition (A/d, 0, 0, 0) due to the discontinuity

of T (I). We show the results obtained in Theorems 28 and 29, by carrying

out some simulations as depicted in Figures 5.9(A & B) and 5.9C respectively.

The observed behaviour of the system is qualitatively different from that of

the case analysed previously, and the travelling wave connects the disease-free

equilibrium state to another disease-free state for which u → ∞. In the last

part of Figure 5.9 it can be seen that u(z)v(z) → m
λ

= 110 (compare with the
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proof of Theorem 5).

It is evident from Figure 5.10 that travelling wave profile for the density

of the infected individuals v(z) oscillates in the initial phase as the removal rate

of the infected individuals m increases. Furthermore, the decay rate of v(z),

as calculated in Theorem 29, is independent of the removal rate m. It can also

be seen that the gradient of log(v(z)) approaches approximately 0.03 which

corresponds reasonably well with the value µ+ ≈ 0.06 for the approximate

solution (see the proof of Theorem 29).

With increasing removal rate m of the infected individuals, the region

where the disease presents high incidence shrinks, and the maximum of v(z)

increases with m.
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Figure 5.9: A = 0.916, d = 0.02, λ = 0.001, m = 0.11, c = −0.6.
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5.5 Conclusion

In this Chapter, we incorporate reaction-diffusion terms in a simplified form of

the systems in Wang and Ruan (2004) and Wang (2006) to model the spatial

spread of an epidemic in the presence of a treatment in a given populations.

This work has been motivated by our effort to analyze the effect of the na-

ture of treatment rate in model (5.1). That is, nonlinear and non-smooth

treatment terms; namely, (i) piecewise linear treatment rate with saturation

effect, (ii) piecewise constant treatment rate with jump (Heaviside function).
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We have analyzed the linear stability of the disease-free equilibrium of the

model with both treatment terms. Travelling waves are constructed and their

existence is numerically shown in both cases. Furthermore, when treatment

rate is piecewise-linear with saturation effect we have shown that the travel-

ling wave trajectory that connects the disease-free state to an infected state

and also between two endemic states, while with piecewise constant rate of

treatment, which has a jump at the disease-free state, we can only connect the

disease-free state to itself. Biologically, the latter is indeed of public health

importance because it shows that if few infecteds are introduced into a com-

pletely susceptible population, then there will be a moving transition zone of

the infected individuals only for a while and then returns to the initial state at

the end of the wave front. However, the former demonstrates the conditions

of reaching the endemic state from the disease-free state and how two infected

states are connected. For piecewise linear treatment rate with saturation ef-

fect, we observe some phenomena which are not present for travelling-waves in

classical SIR systems with constant coefficients such as non-monotone profiles

for both susceptible individuals and infectives, or oscillations of the profiles

due to complex eigenvalues. If the treatment rate is piecewise constant and

has a jump, the wave profile for susceptible individuals tends to infinity, whilst

the infecteds converge to zero and their product approaches a constant at the

forward end of the profile. Furthermore, we have shown that if the removal

rate m of the infected individuals increases, oscillations of the wave profile

occur and their amplitude also increases.
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Chapter 6
Discussion and Suggestions for Further Development

6.1 Discussion

This thesis provides some useful epidemiological insights about the impact

public health education campaign as a sole intervention strategy for HIV/AIDS

prevention in chapters 3 and 4. Amongst other things, the measure of increase

or decrease in risky behaviour (or negative attitude) of the individuals in the

community who received public health education is calculated and an alterna-

tive measure called an impact factor is also provided. Furthermore, it is shown

that an optimal strategy for administering public health education campaign is

universal strategy. It is also shown that the backward bifurcation phenomenon

existed and caused by imperfect efficacy of the public health education pro-

gram. However, the overall result of chapters 3 and 4 shows that an effective

public health education campaign which focuses on change of risky behaviour
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with a reasonable coverage level could help in stemming HIV/AIDS in the

countries studied. This requires a concerted effort from all the stake holders

especially the governments of the respective countries.

In chapter 5, we search for travelling wave solutions for a model with

nonlinear and non-smooth treatment terms. We found that when treatment

rate is piecewise-linear with saturation effect there is a travelling wave trajec-

tory that connects the disease-free state to an infected state and also between

two endemic states and we observe oscillations of the profiles due to complex

eigenvalues and non-monotone profiles for both susceptible individuals and in-

fectives. However, if the treatment rate is piecewise constant the wave profile

for susceptible individuals tends to infinity, whilst the infecteds converge to

zero and their product approaches a constant at the forward end of the profile.

Furthermore, if removal rate m of the infected individuals increases then the

wave profile oscillates, its amplitude increases and the region where the disease

presents high incidence shrinks.

6.2 Future Directions

Although we have shown that an optimal strategy for administering public

health education campaign is universal strategy, this result could change if we

consider the cost of implementing the public health education campaign policy.

Thus, it would be instructive to study the cost effectiveness of public health

education campaign policy implementation. This is particularly important for

developing countries.
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Several interesting mathematical questions still remain wide open. For

instance, what is the impact public health education in relation to sexually

transmitted diseases (STD) on HIV transmission, since there is evidence in the

literature that the presence of STD increases the probability of HIV transmis-

sion (Rottingen et al., 2001). Similarly, European Study Group on Heterosex-

ual Transmission of HIV (1992) reported that the probability of transmitting

HIV from male-to-female is greater than female-to-male. Thus, it would be

prudent to assess the effects of gender-wise public health education campaign

against HIV. Furthermore, pharmaceutical interventions (such as vaccine and

ARVs) could be incorporated into our model for further study.

In model (5.1), it would be desirable and instructive to study the sta-

bility and instability (such as bifurcations to see more complicated profiles)

of travelling waves and to investigate the spatial spread in higher-dimensional

space. The mathematical analysis for the resulting model is considerably more

complicated and so, we leave it for future work. The assumption that suscep-

tible individuals and infectives diffuse at the same rate is not necessary, one

could also study the effects of different diffusion rates on the travelling wave

profile.
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