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ABSTRACT

Structural Reliability treats uncertainties in structural design systematically,

evaluating the levels of safety and serviceability of structures. During the past

decades, it has been established as a valuable design tool for the description of

the performance of structures, and lately stands as a basis in the background of

the most of the modern design standards, aiming to achieve a uniform

behaviour within a class of structures. Several methods have been proposed for

the estimation of structural reliability, both deterministic (FORM and SORM) and

stochastic (Monte Carlo Simulation etc) in nature.

Offshore structures should resist complicated and, in most cases, combined

environmental phenomena of greatly uncertain magnitude (eg. wind, wave,

current, operational loads etc). Failure mechanisms of structural systems and

components are expressed through limit state functions, which distinguish a

failure and a safe region of operation. For a jacket offshore structure, which

comprises of multiple tubular members interconnected in a three dimensional

truss configuration, the limit state function should link the actual load or load

combination acting on it locally, to the response of each structural member.

The response of a structure under specific loading conditions can be

determined through Finite Element Analysis Methods. Based on that, advanced

methods (intrusive and non-intrusive) have been developed, such as the

Spectral Stochastic Finite Element Method and the Stochastic Response

Surface method. This Thesis presents a methodology for the structural reliability

assessment of an offshore jacket structure, which has been selected as a

reference application, based on a generalized Stochastic Response Surface

Method. According to the methodology that is proposed, simulation results

obtained by FEA Modelling are combined with numerical reliability procedures,

through multivariate (quadratic) polynomial regression (MPR), in order to

calculate the reliability indices of members. This procedure is particularly useful

as it enables efficient analysis of members under a stochastic perspective,

incorporating design uncertainties. By effectively dividing the analysis into
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different independent ‘blocks’ in an open sequence, the required number of

Finite Element simulations is greatly reduced. This implies that depending on

the requirements of the structure, different resolutions and tools can be used in

each of those blocks. The reduced resource requirements of this method can

later allow optimization of a complex structure in a closed design procedure.

The novelty of this methodology is in its simplicity and the ability to analyze a

wide range of structures, and further intricate reliability problems, under

complicated load combinations in a more efficient way.

Consideration of appropriate limit state functions is an essential decision for

accurate prediction of the reliability index. For the reference structure, analytical

limit states have been introduced following fundamental failure criteria for

ultimate strength and buckling resistance of ductile members. Hence, after

appropriate modelling of stochastic variables, and based on the derived limit

states, the reliability level is calculated in both a local and a system level. A

sensitivity analysis of the design parameters (surface roughness, variables’

modelling, corrosion deterioration etc) illustrates their effect on the derived

values. On a parallel study, deriving limit states based on the design

requirements of the most widely used design standards for offshore steel

structures (API RP-2A, ISO 19902) but also generic standards for steel

structures (EN 1993, AISC/ANSI), the minimum reliability indices of members

are derived and later compared to the ones obtained by the analytical limit

states. Using the same calculation procedure for the estimation or reliability,

such a comparison can be realistically executed and useful conclusions can be

drawn for the performance of different design standards

The methodology that is derived and presented in this Thesis, can be extended

to the probabilistic assessment of different engineering problems, including

problems of solid mechanics and heat transfer, where detailed analysis is

required for the derivation of the response of the structure. Further, this

methodology can stand as a generic document that can be applied in

conjunction to design standards towards a robust reliability based design.
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1 INTRODUCTION – CONTEXT OF STRUCTURAL

SAFETY

1.1 Introduction

Current evolution in engineering practices has allowed more critical and

complicated structures to be designed with greater confidence than in the past.

In addition, the constantly increasing cost of construction materials, due to

higher demand over the last years, indicates that design optimization can

provide competitive structures, compromising performance characteristics for

more cost effective designs. Structural Reliability has been established as a

valuable design tool for the description of the performance of structures;

therefore and towards this purpose, it can serve as a design restriction that will

ensure derivation of preferable structures which comply to minimum safety

requirements. The requirements set above, indicate the demand of a more

systematic assessment of the uncertainties of the basic design variables; the

functional and environmental loads, geometrical and model parameters, as well

as material properties.

Cases with limited levels of randomness can be treated deterministically,

applying a magnification factor on the loading or a reduction on the capacity

modelling, to account cumulatively for the effect of uncertainties. This

simplification in the design process produces most of the times oversized

designs without providing accurate information on the service life performance

of the structure, or ensuring adequate levels of structural safety. In contrast,

when the level of uncertainty is high, a stochastic approach of the design

variables seems essential. Following this approach, statistical representation of

the design parameters will provide the response of the structural member or

system in a stochastic way, allowing a better understanding of its service life

performance.

This contribution will focus on the reliability assessment of offshore structures,

and particularly frame-type jacket structures due to the important environmental
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phenomena they have to withstand throughout their service life and the

complicated failure mechanisms that they form. This Thesis will report the

development of the Stochastic Response Surface Method (SRSM) that allows

reliability assessment of a structure, in the form of individual design blocks. This

methodology, contrary to complicated Stochastic Finite Element Analysis

Methods that demand deep knowledge of the mathematical background in order

to express explicitly uncertainty within the analysis, treats the simulation

procedure as a ‘black box’, extracting the response of the structure and later

processing it, within an individual reliability assessment routine.

The methodology that is proposed allows reliability assessment of structural

components through a sequence of individual steps that permit calculation of

reliability, based on easy to program procedures. After execution of a finite

series of simulations, the response of each member can be identified and a

quadratic polynomial response surface can be formulated based on the values

of the limit states that are examined through data regression analysis. Later, a

separate routine can account for the estimation of the reliability index based on

one of the available numerical techniques. Those discrete steps, which may

employ different tools and procedures for each task, can handle several

problems that are difficult to be modelled in one unified simulation code. For the

problem of the design of offshore structures that has been studied, reliability

analysis took place using the specialized software DNV SESAM for a confident

representation of the response of structural members through appropriate

modelling of the environmental loads acting on the structure. Following this

methodology, specialized commercial tools for different applications may be

employed for the probabilistic assessment of several engineering problems.

Figure 1, initially presents this procedure, which will be developed in the next

chapters.

The First Chapter of this Thesis presents the background of structural reliability

and the context of structural safety. Evolution of design methods and design

standards is discussed. Target reliability requirements are included, based on
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requirements of regulatory bodies and classification societies, in order to set the

general requirements of a structural reliability assessment.

Figure 1: Response Surface Method Flow Chart

The Second Chapter presents a review of reliability assessment of steel and

offshore structures. Selection of the appropriate type of response analysis and

consideration of the integration from component to system reliability is

discussed. Finally, a comprehensive review of the Stochastic Methods for

reliability assessment will provide the background for the development of the

methodology that will be applied later in this contribution.

The Third Chapter includes the numerical procedures for the computation of

structural reliability. Deterministic methods, First and Second Order Reliability

Method (FORM/SORM), as well as Simulation Methods will be presented and

the background to the codes that have been written for the scope of this Thesis

will be set. A review of the Stochastic Response Surface Method (SRSM) and

the methodology that is introduced and will be applied in the later chapters are

analytically discussed. Finally Regression techniques are included as

fundamentals of the (weighted) regression analysis that is applied in the SRSM,

and a variation of the conventional least square method (LSM) will be proposed

for more accurate regression and prevention form ill conditioned systems of

Identification of variables

Construction of Design Matrix

Execution of FEA Simulations

Post-Processing of Results

Data Regression Analysis

Reliability Index Calculation

Formulation of Limit States Values

Chapter 4

Par. 3.3.1

Par. 3.5.2.1

Chapter 5&6

Par. 3.4

Par. 3.2
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equations. Verification of the mathematical tools that are developed is included,

providing confidence on their later application.

In the Fourth Chapter, the environmental loading and capacity modelling of

Offshore Structures will be analytically presented. Modelling of wave loads

according to different wave theories and the correlation between significant

wave height and peak spectral period based on joint distribution of statistical

distributions is presented. Wind and current modelling, are also covered. An

extensive review of literature data for material properties and methodologies for

the consideration of corrosion is included. Geotechnical data regarding piling

properties are also presented.

Once the stochastic variables and a reference structure have been identified, in

the Fifth Chapter the reliability of structural tubular members of a typical

offshore structure is assessed for ultimate strength under different combinations

of stochastic and deterministic loads. Limit states are formulated based on

fundamental failure criteria of ductile structural members, in order to

comprehensively represent multiple load actions that they are subjected to. A

sensitivity analysis of the design parameters (surface roughness, variables’

modelling, corrosion deterioration etc) is also included. System reliability

integration, based on the reliability performance of the structural members and

the failure mechanism of the structure, is also discussed.

The Sixth Chapter introduces the most widely used standards for the design of

offshore structures API RP 2A [1], [2], and ISO 19902 [3]. Further, ANSI/AISC

360-05 [4], and EUROCODE 3 [5], are included as generic codes of the design

of steel structures with strong probabilistic background. For the same reference

case structure, limit state functions will be examined based on their individual

design requirements and the minimum reliability indices of members are derived

and later compared to the ones obtained by the analytical limit states, using the

same calculation procedure.
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The final chapter of this Thesis, Chapter Seven, gathers the conclusions of this

endeavour and proposes some future work towards a completely robust design

of steel structures.

1.2 Structural Reliability

In [6], the most complete definition of reliability, which has been adopted with

minor alterations from most current design standards, summarizes that

“reliability is the ability of a structure to comply with given requirements under

specific conditions during the intended life for which it was designed”. In this

definition, the important elements of design requirements, service life period,

and design conditions are included. A more practical, direct approach defines

reliability of a structure as the opposite of its probability to fail.

Reliability is the entity that will compromise the two requirements of design;

structural integrity and economy. In [7], a fundamental requirement for design

states that “a structure should be designed and executed in such a way that it

will, during its intended life time with appropriate degrees of reliability and in an

economic way sustain all actions and influences likely to occur during execution

and use and remain fit for the use for which it is required”. Structures can be

designed to have nearly zero probability to fail. Absolute no failure is an

oversimplification and can never be achieved because every forthcoming event

cannot be realistically predicted. Therefore, failures are accepted up to a level

that all parties involved in the design and operation of the structure will agree.

Structural reliability works on the prediction of the probability of exceedance of

the structural restrictions imposed by the design requirements at any stage of its

service life. The probability of occurrence of such an event is directly correlated

to its reliability, and once this is derived, design alterations can be identified, in

order to either improve structural reliability, or optimize already adequate

designs. Techniques of structural reliability, following computational resources

and numerical methods evolution, can be applied in wider multidisciplinary
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design environments, considering the joint effect of multiple uncertain variables.

Practice can verify that structures that have been designed deterministically,

neglecting analytical modelling of uncertainty in variables, can have a greater

probability of failure compared to less expensive structures of similar service

that have been designed following a stochastic approach.

Within different application fields, different methods for reliability assessment

can be distinguished including Quantitative Risk Analysis (QRA), Structural

Reliability Analysis (SRA) and Organizational Reliability Analysis (ORA), which

is not applicable in the case of structural design. In order to better understand

the use of Structural Reliability Analysis, it is important to consider its interaction

with other disciplines.

Structural Reliability Analysis is related to the estimation of the probability of

failure of a structure or a structural member for given loading conditions.

Numerical implementation should be based on the most up-to-date modelling

techniques. Combination of fundamentals of structural reliability and modelling

techniques can allow calibration of design standards as will be discussed in a

later section. Quantitative Risk Assessment relates to the evaluation of the

overall risk of potential failure to humans, safety, environment and assets. The

main steps should include the following, according to [8]:

 Identification of hazards

 Assessments of frequency of initiating events

 Accident development

 Consequence Assessment

 Calculation of risks

A classification between probability concepts, distinguishes frequentistic to

Bayesian Probability. The first refers to the statistical interpretation of the

outcomes of stochastic experiments and its approach to probability can be

adequately predicted when the number of experimental iterations is increased

respectively. Bayesian probability, proposed by Bayes [9], is considered

subjective as it is based on the knowledge of each individual decision maker
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rather than in the outcome of a repeated experiment and it is considered as an

expression of a “degree of belief” [10], [11]. Although in literature [12] the two

concepts are considered fundamentally different, both of them satisfy the

mathematical theory of probability. Structural Reliability Assessment follows the

Bayesian approach for the definition of probability since, although it uses data

from experiments or experience of existing structures, the basic scope is to

mathematically estimate the value of reliability. Presence of uncertainty in

materials, fabrication defects, effects of loading etc, constitutes each structure

as a unique outcome of the ‘design experiment’.

Statistical modelling of uncertainties is analytically studied in [13], while in [14] a

classification of uncertainty in structural design distinguishes the following types

of uncertainty:

 Physical (intrinsic or inherent) uncertainty describes the natural

randomness of a quantity. Typical examples of this type are the yield

stress affected by production variability (manufacturing defects) or the

variability in the wave and wind loading.

 Measurement uncertainty which is caused by errors in instruments or

instrumental configurations and sample disturbance due to external

factors (eg. ‘noise’ in experimental measurements).

 Statistical uncertainty which occurs due to inadequate data or information

such as a limited number of samples.

 Model uncertainty due to imperfections and idealizations made in the

physical model, formulations for load and resistance variables as well as

the allocation of statistic distribution to the main variables.

Structural Reliability Methods are classified according to their Level, Moment

and Order:

 Level, refers to the extent of information that the reliability problem

incorporates.

 Moment, refers to the order of statistical moments applied to better

represent the stochastic nature of an uncertain variable.
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 Order, refers to the polynomial order used for the approximation of the

limit state surface.

From the above attributes, that of Level describes the development of reliability

methods [14]:

 Level I methods are deterministic reliability methods that only use one

characteristic value to describe each uncertain variable. Common design

standard formats, load-resistance and allowable stress, belong to this

category. Those methods correspond to standard deterministic design

methods. They can be combined with more advanced, higher level

methods in the case of partial safety factors calibration, which can

optimize the application of those methods.

 Level II methods use two values for the representation of each uncertain

variable (eg. the mean and the variance) and a supplementary measure

of the correlation between the variables (eg. covariance). Reliability

determined following such methods can be geometrically interpreted as a

relative distance from the mean value.

 Level III methods introduce the joint probability distribution of the sum of

the uncertain variables, calculating directly the probability of failure for a

limit state function. Advanced mathematical techniques such as

numerical integration, approximate analytical methods, including the First

and Second Order Reliability Methods, and simulation methods, such as

the Monte Carlo Simulation and the Directional Sampling methods,

belong to this category.

 Level IV reliability methods, are the most advanced, introducing the

element of target cost to the principles of engineering in order to derive a

technically feasible and at the same time economically optimized

solution. These methods can set an acceptable target reliability level for

the application of Level III methods.
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1.3 Overview of Reliability Analysis of Offshore Structures

Offshore structural reliability analysis becomes of particular importance recently

considering numerous changes within offshore industry. Introduction of the

Load Resistance Factor Design format in standards has significantly contributed

to a more systematic design of offshore structures. Further, the introduction of a

‘goal setting regime’ [15] which stands as a requirement as well as a target

restriction in the structural design, allows more flexibility in the procedure of the

design of offshore structures. This has resulted to the establishment of basic

guidelines for a thorough reliability based design.

The above changes combined with the increasing need for a better

understanding of the performance of structures throughout their service life in

aspects of inspection, maintenance and reliability have created a wider

acceptance framework for reliability assessment methods. More accurate

modeling techniques and tools together with a higher available computational

capacity, allow for analytical assessment of the reliability evaluation of

structures in different stages and under different loading and capacity

conditions.

Structural reliability analysis can provide significant benefit to the potential

safety and cost; however the level of confidence of a reliability assessment

strongly depends on the uncertainty consideration, accuracy of modeling and

simplifying assumptions made as it has already been mentioned in Chapter

One. Structural problems, and even more extensively in offshore environments,

are in most cases non-deterministic, with limited information and knowledge in

both the conceptual and the design phase. Therefore, risk quantification yields

for stochastic (random) variables to be considered.

From the variables considered, the main concern is the environmental loads

due to its great randomness. In Chapter Four, a probabilistic consideration of

the joint environmental load will be presented. Extensive literature is available

for the meteocean conditions mainly for the Gulf of Mexico and the North Sea

sites, since those areas serve as a baseline for the development of design
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standards. Application of those data in different regions might provide

inaccurate results, and calibration of the statistical properties of variables to

specific areas is essential. Stochastic modeling of capacity of structures and

structural members is less significant, as shown in [16], affecting the reliability

results in a lower scale. This phenomenon is also illustrated by design

standards consideration for partial safety factors, where those that account for

loads are significantly higher than those for material properties.

During the last decades, momentous developments have occurred in the

methodology as well as the tools for calculation of structural reliability. In a

component level, methods such as the First and Second order reliability

methods (FORM/SORM) have been widely used, proposing modifications to

account for complicated formulations of limit state functions and transformation

of complicated statistical distributions to a normalized .space-ݑ Further,

simulation techniques, such as the widely known Monte Carlo Simulation, have

been introduced overcoming limitations of the deterministic techniques. Chapter

Three that follows presents the theory and the solution algorithms of those

methods. In a structural system reliability analysis level, different methods are

used from a component-based approach to a fully probabilistic analysis where

advanced mathematical and computational effort is required. In [17], the well-

known theory for system reliability assessment of the “branch and bound”

method is described.

Based on the context presented so far the research problems that will be

covered within this Thesis are summarized as follows:

I. Development of a methodology for the reliability assessment of a

complex frame type structure, using sequential steps of high capabilities

tools and widely used numerical techniques.

II. Provide analytical guidelines for the modeling of stochastic variables for

environmental loading and capacity of offshore jacket structures.

III. For a reference structure, identify critical members and failure paths that

will result to global failure of the structure and examine the sensitivity of

the derived values of reliability to significant design parameters.
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IV. For the same reference structure, evaluate the reliability performance of

different design standards.

1.4 Design of Offshore Structures

Development of our knowledge of structures and their behaviour, and the tools

that are available, have advanced design procedures and methodologies

applied on the design of structures. In this section, a classification of design

methods will be presented, based on the way uncertainties are treated, and with

a view for classification of design standards to follow.

1.4.1 Permissible stresses

This is the first widely accepted approach to systematic design, also noted as

“allowable (working) stress method”. It is in line with the linear elastic theory.

The condition that the design should satisfy is:

ߪ ௫ < ߪ or ߪ ௫ <
ఙೝ


(1-1)

The coefficient ,݇ also noted SF by safety factor, is the only explicit measure

considered to account for all types of uncertainties. The maximum acting stress

on the structure should not exceed the critical value of the materials divided by

the coefficient k. The expressions above refer to a local effect on the structure

and therefore the comparison should be applied at its most exposed locations

(maximum stress). The basic principle of this method does not allow any

treatment of non linearity, stress distribution, ductility of materials and structural

members [18].

The inability of the method to consider analytically all the imposed uncertainties

of variables and models, the strict consideration of linear performance as well

as the fact that it does not consider combinations of loads, impose a great factor

of conservativeness in the design outcome. Different actions that should be

examined as well as use of different materials can produce different and

unreliable results.
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1.4.2 Global Safety Factor

The method of global safety factors is based on the relation between the mean

values of the structural resistance ܴ and the load effects .ܧ The ratio of the two

specifies the quantity of the global safety factor.

=ݏ
ܴ

ܧ
> ݏ (1-2)

The value of ݏ should be defined and is the target that the designer should aim

to meet. Contrary to the permissible stresses method, this method takes into

account the structural behaviour of members and their cross sections,

geometric non linearity, stress distribution and ductility in the individual

calculation of R and S.

The disadvantage of the method is that although R and S are calculated in a

more scientific method, the only explicit value is that of the global safety factor

.ݏ In addition, no special consideration of uncertainties of modeling is made and

therefore the results are forced to become conservative to account for any

unpredicted and unfavorable events. Combinations of loads and use of different

materials still cannot be handled.

1.4.3 Partial Safety factor

The method of Partial Safety Factors is the most up-to-date used method to the

establishment of design methodologies. It is also called ‘Limit State Method’

because it is applied in parallel with the concepts of limit states design for

different design conditions. The method is advanced considering that it gives

potential for mathematical optimization in several aspects. It can be

summarized as follows:

,ௗܨ)ௗܧ ௗ݂, ௗܽ,ߠௗ) < ܴௗ(ܨௗ, ௗ݂, ௗܽ,ߠௗ) (1-3)

Where: ௗܧ and ܴௗ represent the design values of actions effects and resistance

respectively, ௗܨ = ߰ ∙ ிߛ ∙ ܨ design values of variables describing the actions,

ௗ݂ =
ೖ

ఊ
describes the material properties, ௗܽ describes the geometrical
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uncertainties, and ௗߠ the model uncertainties. The design values derive from

the corresponding characteristic values of the variables ,ܨ) ݂, ܽ,ߠ), applying

the required partial factors γ, reduction factors ψ and any other specified factor,

which are the control values of the reliability of the design. It is obvious that this

method compared to the previous ones is the most analytical one, making the

fewest simplifying assumptions. Use of the method, allows handling of load

combinations as well as multiple different materials.

1.4.4 Probabilistic Methods

The Probabilistic Design Methods are the most advanced that have been

proposed. Their basic requirement is that during the service life of a structure

the probability of failure does not exceed an acceptable design value. This can

be expressed as:

ܲ ≤ ௗܲ or ߚ > ௗߚ (1-4)

The above two expressions are equivalent. The design values that should be

fulfilled can be determined by the specifications of the structure. Those methods

are not widely used yet and undergo some controversy due to their increased

complexity. However, they can achieve optimized results leading to lighter and

more economically efficient structures.

In addition to the Partial Safety Factor method, concepts of probabilistic

analysis can be used to optimize the values of the partial safety factors. This

procedure is noted as calibration and can be found on the Annexes or guiding

material of the recently introduced modern structural codes [19]. Probabilistic

design methods are very important for the design of special cases or novel

structures where previous experience does not exist and application of

accepted methodologies is not applicable.

1.4.5 Comments on design methods

The design methods as presented above, starting from the permissible loads

method and heading to the fully or partially probabilistic methods become more
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complicated, demanding greater engineering and mathematical skills. However

towards the same direction, the level of conservativeness and therefore the

over sizing of the structures is reduced leading to more efficient structures with

a better understanding of their service life performance.

Modern Standards and Codes follow the Partial Safety factor methods, giving

the engineer the ability for further optimization. This trend has been

countersigned by the fact that the most widely used standard for offshore

platforms API RP-2A – WSD (Working Stress Design) [1], has been also

published from 1993 in a Partial Factor format API RP-2A – LRFD (Load

Resistance Factor Design) [2].

1.5 Limit State Design

Since the common trend in modern design is the design according to limit

states, this will be presented more analytically in the following sections. The

general design requirement is to provide structures with adequate safety

margins in order to account for all types of uncertainties affecting its integrity

(load and capacity variability, modelling idealizations etc). A simplistic definition

of limit state design indicates that the demand (load) of a structural system

should under no conditions exceed its capacity (resistance). Considering a case

of multiple loading, the safe region criterion should be expressed as:

ௗܦ = ߛ (ߛ,ܨ)ܦ < ௗܥ = ெߛ/ܥ


(1-5)

In the above expression, index k represents the characteristic value of a load

or resistance variable while index ݀ the design values that incorporates the

required magnification or reduction to account for consideration of uncertainties.

Load variables are magnified with load factors ߛ in order to account for

unforeseen events, while the capacity is diminished with the material factor ெߛ in

order to account for capacity uncertainties (material properties, quality of

construction, corrosion etc). A further partial safety factor ߛ is added to
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consider the seriousness of the examined limit state to the integrity of the

structure.

The characteristic (nominal) value of a variable is defined by its statistical

properties. For a capacity variable, it can be based on the lower bound or 95%

excedance value, while for a load variable, the characteristic value on an upper

bound or a 5% excedance value. Derivation of partial safety factors is based on

either previous experience or through a rigorous procedure that provide

acceptable levels of safety and performance. In the previous methodology of

allowable (or working) stress design the basic concept was to make sure that

the response of the structure due to loads acting on it will remain below specific

levels throughout the service life of the structure. The limit state design

approach systematically examines the response of the structure under various

conditions it might have to withstand, as a combination of loads and capacity.

For offshore and marine structures, several limit states are proposed by

regulatory bodies and classification societies that should be examined within a

comprehensive design. Table 1, adopted by [20], presents some common limit

states for the four main types of limit states that should be considered:

 Serviceability limit state (SLS)

 Ultimate limit state (ULS)

 Fatigue limit state (FLS)

 Accidental limit state (ALS)

1.5.1 Serviceability Limit State

This type of limit states, refers to conditions where, due to extensive

deformation, vibration or noise, the structure’s functionality is influenced. The

factors mentioned are in many cases correlated. Criteria that have been

established based on practice experience of the functionality of the structure are

expressed in the form of maximum allowable deflection [5], or similar

restrictions that should be fulfilled in order for the structure to operate without

requirements of maintenance or further intervention. Buckling phenomena are
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often incorporated in order to control the behaviour of the structure and prevent

cases of extensive deflection.

Ultimate limit
states (ULS)

Loss of structural resistance (excessive yielding and buckling)

Failure of components due to brittle fracture

Loss of static equilibrium of the structure, or of a part of the structure,
considered as a rigid body, e.g. overturning or capsizing

Failure of critical components of the structure caused by exceeding the
ultimate resistance (in some cases reduced by repeated loads) or the
ultimate deformation of the components

Transformation of the structure into a mechanism (collapse or
excessive deformation).

Fatigue limit
states (FLS) Cumulative damage due to repeated loads.

Accidental
limit states
(ALS)

Structural damage caused by accidental loads

Ultimate resistance of damaged structures

Maintain structural integrity after local damage or flooding

Loss of station keeping (free drifting).

Serviceability
limit states
(SLS)

Deflections that may alter the effect of the acting forces

Deformations that may change the distribution of loads between
supported rigid objects and the supporting structure

Excessive vibrations producing discomfort or affecting non-structural
components

Motion that exceed the limitation of equipment

Temperature induced deformations

Table 1: Examples of Limit States according to DNV

1.5.2 Ultimate Limit State

In many cases, this is the most important limit state that should be considered

since it checks the ability of the structure to resist plastic collapse or reach to

ultimate strength. For an analytical description of a structural member, its post

buckling behaviour should be considered in order to avoid additional

conservatism on the strength of the element. Figure 2, illustrates this approach
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(point B) compared to a more traditional approach (point A) where the point of

elastic buckling determines the strength of the element.

Figure 2: Structural Design Consideration of the ULS

The safety margin of such members cannot be directly evaluated. However, the

practice trend is to design structures for ultimate strength. In cases of structures

that have suffered any type of damage, a new ultimate strength should be

calculated, based on the deterioration of their capacity. Structural design should

also take into account the response of the structure in the case of a potential

failure. The structure should be designed to fail in a ductile rather than brittle

manner in order to allow progressive collapse, by redistribution of stresses in

alternative load paths, rather than failing suddenly without providing any

warning and therefore potential of intervention. Ductility in a design can be

facilitated by design techniques such as avoidance of high stress

concentrations, weld defects, allowing some level of plastic deformations etc.

The design problems that are studied in this Thesis mostly deal with ultimate

limit states, so in the later sections, several issues as well as design standards

provisions will be discussed in greater depth.
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1.5.3 Fatigue Limit State

Fatigue Limit State is particularly important in structures that undergo significant

cyclic phenomena. Large offshore structures, such as wind turbines are

designed for their fatigue life in addition to ultimate strength. Offshore structures

have a long service period that might exceed 20 or even 40 years. This, in

conjunction with the inspection intervals, affects the reliability requirements of

the structural design. The effect of fatigue is preliminarily a local effect,

concerning welded joints and areas of stress concentrations.

The Fatigue Limit State criteria are based on a cumulative fatigue damage of a

structure under repeated fluctuation of loading. The fatigue damage at a crack

initiation is affected by many factors such as the stress ranges experienced

during load cycles, local stress concentration characteristics and the number of

stress range cycles.

1.5.4 Accidental Limit State

This category of limit states aims to limit the consequences in a case of a

failure, such as avoidance of loss of life and assets, environmental pollution and

financial losses. The criteria that should be satisfied are based on accidental

scenarios and associated performance that should be decided upon analytical

risk assessment. Progressive collapse in case of failure, impact, excessive

loads due to human error or machinery failure, explosions etc are some of the

scenarios that should be addressed. In order to have an economically efficient

design, a trade off should be made between ultimate safety and prevention

costs, setting realistic survivability consequences.

For Accidental limit state design, the integrity of the structure should be

assessed initially in a global level (accident events) and later in a post-accident

assessment to account for the real impact on the structure. In the case of an

impact on a jacket structure for example the major requirement is to sustain its

stability avoiding total collapse. Once this has been evaluated, the remaining
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capacity of the structure should be assessed in order to ensure that it will

remain functional after such instance.

1.6 Design Standards for Steel Structures

1.6.1 General

Historical development has provided design methods with empirical,

experimental and theoretical knowledge of mechanics and probabilistic

concepts. The systematic recording of this knowledge under a sound scientific

foundation can derive a methodology that will allow design of specific structures

in a way that defined levels of reliability may be obtained. The analytical

documentation of this methodology can help in the composition of structural

standards and design codes. In the following section, after a brief classification,

standards applied in the design of offshore structures will be introduced.

In [21], the background principles of modern offshore standards and guidelines

are summarized as follows:

i. Design criteria are formulated in terms of limit states

ii. Semi-Probabilistic Methods for ultimate limit strength design, have been

calibrated by reliability or risk analysis methodologies

iii. Fatigue design checks depending on consequences of failure and

access for inspection

iv. Explicit accidental collapse design criteria to achieve damage tolerance

for the system

v. Consideration of loads that include payload; wave, current and wind

loads, ice, earthquake loads as well as accidental loads (fires,

explosions, ship impacts)

vi. Global and local structural analysis by finite element methods for ultimate

strength and fatigue design checks

vii. Nonlinear analyses to demonstrate damage tolerance in view of

inspection planning and progressive failure due to accidental damage
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The elements referred above, are followed in order to set safety requirements to

avoid ultimate consequences such as fatalities, environmental or property

damages. The corresponding regulatory regimes set different acceptance

criteria for these consequences as it will be discussed later.

1.6.2 Categorization of Design Standards

Following the categorization of the design methods that have been presented

so far, the available structural Codes and Standards are distinguished as either

allowable (working) stress or limit state design.

The allowable stress codes, consider that the stress under the maximum

loading conditions should not exceed the material yield or ultimate strength

divided by an appropriate safety factor. Typical values for the safety factor can

be in order of magnitude of 1.5 for yield strength or 2.5-3.0 for the ultimate

strength [22]. As already discussed, the explicit calculation of the safety factor is

a very demanding task in order to incorporate all sources of uncertainty that can

impose a considerable degree of conservativeness in the resultant design.

In the limit state design, the structure is designed to resist specific loading

conditions described in each corresponding limit state. Commonly, the loads are

multiplied by partial safety factors, the resistance divided by safety factors and

combinations of loads are considered. Application of those standards can be

more complicated involving several aspects of decision making from the

engineer but will generally produce more favourable results.

1.6.3 Standards for Offshore Structures

1.6.3.1 API RP-2A: Recommended practice for planning, designing and

constructing fixed offshore platforms WSD/LRFD

This recommended practice was introduced by the American Petroleum

Industry in 1969. It is based on sound engineering principles, extensive testing

and field application experience. In its initial publication it followed the working

design stress format. In 1989, a draft was issue in a Load Resistance Factor
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Design format that was publicly released in 1993, based on the fact that two

decades of application of the WSD edition of the standard had provided

structures with sufficient reliability performance [7]. This standard is based on

data for the Gulf of Mexico environmental conditions; however complementary

documentation is available for different regions [23].

1.6.3.2 ISO 19902:2002: Petroleum and natural gas industries-general

requirements for offshore structures

The publication of the ISO 19902 [3] offshore structure standard for Fixed Steel

structures represents the culmination of significant efforts over many years.

Providing guidance and procedures for the design and fabrication of offshore

fixed steel structures, the Standard has been developed based on established

standards for fixed offshore steel structures and through direct input from many

of the countries actively engaged in the development of the offshore, including

the United States, United Kingdom, France, Norway, Canada etc. ISO

Standards are been adopted by several countries as National Standards,

introducing them as legal requirements that allow certification of structures from

world widely recognized certification bodies.

As for API, significant work has been carried for the applicability of the ISO

standard in different regions around the world [24]. This consideration, proposes

methodologies for custom derivation of load factors that lead to optimization of

resulting designs.

1.6.3.3 BS EN 1993-1-1:2005 Eurocode 3: Design of Steel Structures

EUROCODEs is a set of standards produced by the European Commission in

order to “establish a set of common technical rules for the design of buildings

and civil engineering works which will ultimate replace the differing rules in the

various Member States” [25]. EUROCODEs embody National experience and

research, presenting a world class standard for structural design. The standard

was formally released in 2007 and was subjected to a three years period until

conflicting National Standards were withdrawn. The verification procedure is
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based on the limit state concept. One of the most important aspects of those

standards is that they allow for design based on probabilistic methods [26],

giving the opportunity for further design optimization.

EN 1993:2005 [5] refers to the design of Steel structures. Although it is not yet

used for the design of offshore structures, its highly scientific, probabilistic

background provides a systematic design methodology that, if used in

conjunction with established standards for this class of structures, may provide

more efficient, optimized designs.

1.6.3.4 ANSI/AISC 360-05: Specification for structural steel buildings

This Specification provides the generally applicable requirements for the design

and construction of structural steel buildings and other structures. The American

Institute of Steel Construction incorporates in a single document both allowable

stress design (ASD) and load and resistance factor design (LRFD) methods,

allowing design according to provisions of either method. Based on previous

experience and up-to-date technical knowledge, it aims to provide design

guidelines for commonly used steel-framed buildings and other, similar

structures.

1.6.3.5 Other Standards for Offshore Structures

Petroleum industry involved with offshore oil gas platforms and marine/naval

engineering have assisted crucially the process of systematic design of offshore

structures, due to their high demands on reliability and safety. Apart from the

standards that have been referred to so far, Lloyd’s published the “LRS Code

for Offshore Platforms” [27] in 1988 and recently in 2007, Germanischer Lloyd,

published the “Guideline IV – Industrial Services: Offshore Technology” [28].

Det Norske Veritas published “DnV: Rules for the classification of Offshore

Installations” [29] in 1989, and recently in 2008 the “Offshore Standard OS-

C101: Design of offshore steel structures, General – LRFD Method” [30].

Finally, the Norwegian petroleum industry has introduced the NORSOK

standards, which refer to ISO, EN 1993 and is currently on its 5th edition [31].
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1.6.3.6 Limitations of Structural Standards

Although in general use of standards results in design of structures with

acceptable reliability, limitations arise for their application on novel and special

structures, due to the fact that they primarily refer to specific structures and are

presented in a high level that generally provides limited detail information and

guidance on the background of the methodology they follow [32]. In this aspect

the concept of reliability based design method can provide adequate results for

the design of novel structures.

Adopting the target reliability requirements from relevant standards, partial

safety factors can be calculated independently, avoiding unwanted

conservativeness imposed. Further, in areas of high uncertainty, design details

are approached in such a way that the consequences of failure can be reduced

(eg. structural redundancy, etc). The former can be realized by combination of

different standards where appropriate, resulting in solutions that provide a

reliable design that meets the specifications set.

During fabrication and service of the structure, safety elements can be

introduced such as quality control, alignment control, visual inspection,

instrumented monitoring and proof loading. Those practices provide information

about the structure, additional to those available at the design stage, reducing

the overall uncertainty. Once the manufacturing process is completed, a

structural integrity monitoring system can compare real data to ones initially

calculated, verifying the conditions of the structure. Data obtained, can provide,

throughout its service life, all the necessary information having good confidence

levels for life-cycle fitness-for-service assessments including cases following

unforeseen events such as local collision or component failure. Therefore,

current reliability can be calculated, identifying the actual condition of the

structure and indicating the actions that should be taken for any required

intervention as well as the ability of the structure to work above the initially

considered service life. Finally, the database that has been created, can provide

substantial information for relevant optimized future structures and systems.
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1.7 Target – Acceptable Reliability

Structural design aims to develop structures that are able to perform

adequately, compromising cost and safety. The consequence of failure is an

important parameter that should be assessed in order to specify the potential of

injury or life loss, economic losses (direct and indirect), environmental pollution

etc. Quantification of consequences is a very difficult task affecting the outcome

of a reliability assessment [33]. Previous experience for a class of structures is

an essential guide for the determination of target reliability levels for similar

structures.

On the other hand, innovative structures cannot follow provisions of existing

standards that refer to different structures since loading behaviour and

consequences of failure strongly depend on their service, even if more

conservative loading factors are adopted. This practice would drive the cost of

the design without ensuring sufficient levels of reliability. One typical example of

this problem, refers to the design of offshore wind turbines with jacket type

foundation; although the general layout of the structure is similar to that of an

offshore oil and gas platform, the loads added due to the rotor, the fact that the

structures are unmanned and the large scale of production, constitute standards

that refer to the latter application unable to ensure sufficient levels of reliability.

For such cases, a robust reliability based design should be adopted [34] that

would allow from basis derivation of load factors applicable to each case.

In the determination of the target reliability of structures the following

fundamental parameters should be assessed. This is particularly important for

cases when different structures or concepts are compared:

 Interpretation of calculated reliability. This identifies derived reliability not

as a property of the structure, but as the level of our knowledge of its

performance. This means that the level of uncertainty modelling (quantity

and quality of information) will influence the results of the reliability

assessment.
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 Reference Period. The reliability of a structure should be measured for a

specific period of time. This period is usually one year or its specified

service life. This is a very important parameter for the inspection and

maintenance requirements of the structure as well as for its

reassessment in cases when the initially planned service life is to be

exceeded and requalification assessment is required. Table 2, presents

an example of target reliability for different structures and different

reference periods.

 Scale of Reliability. Values of target reliability may be provided either in a

local-component level or on a global-structural system level. Limit states

may refer to the response of a member, but exceedance of this limit state

in the failure region might not lead to structural failure. Typical example

of this parameter is a local failure of a brace of a frame structure with

structural redundancy. In such a case, load paths should be identified in

a way that all possible failure mechanisms are identified and through

integration to system reliability the total reliability of the structure may be

derived.

 Structural modelling. The tools and techniques used for calculation of

reliability, both in estimating the response of the structure as well as in

the reliability calculation methods might affect the accuracy of the results.

 Stochastic modelling. This parameter refers to the statistical

representation of the stochastic variables. The more accurate the

statistical model the better uncertainties in modelling are considered.

Design according to standards can achieve minimum levels of target reliability.

Some standards clearly state the target reliability they aim for, such as the

EUROCODEs, while others rely on producing sufficient structures when the

provisions of the code are followed as close as possible. Obtaining a better

understanding of structures, may be update the reliability performance of

standards.

As it has been already mentioned, marine and offshore engineering has

provided valuable experience on the establishment of agreed target reliability
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levels for different classes of structures. In [35], an analytical assessment on the

development of target reliability for offshore structures can be found. Evaluation

of the performance of ABS (American Bureau of Shipping) ‘Rules for ship

structures’ that was carried out in [36] predicts the reliability index achieved is

between 3.15-3.65. In a study [37] of API recommended practices for Offshore

Jacket structures (LRFD edition) estimates an annual average estimated

probability of failure in the order of 4x10-4 .(3.35~ߚ) DNV [14] suggests

calibration of target reliabilities based on existing cases with previous

experience; however a very comprehensive table is proposed and adopted by

the DNV group of standards, distinguishing classes of consequence and

redundancy of a structure. Table 3 presents those recommended values of

acceptable annual probabilities of failure. ISO proposes a model that

incorporates the possibility of injury or fatality in the case of a collapse with a

mathematical correlation that accounts for the number of people at risk. A lower

boundary of 10-6 Probability (annual death per failure) is set, corresponding to a

.(4.75~ߚ Evaluation of AISC, in studies performed in [38] and [39] for structural

members of a bridge, predict target reliability in the ultimate limit state .(3.5~ߚ)

Finally, EUROCODEs, prescribe a target probability of failure of about ܲ =

10ିସ [25]. From the figures that were summarized here, it can be observed that

in the more general standards, a more conservative approach of reliability is

observed. This fact is reasonable since they should account for different types

of uncertainty for application in different structures.

Evaluation of risk is a dynamic task based on information update and

experience gained from similar cases. Serious accidents such as the Piper

Alpha offshore platform accident [40], is an example of events that initiated

assessment of rules and codes for the avoidance of similar phenomena through

a knowledge-based approach. Some analytical methods have been proposed

for a systematic determination of risk and reliability [35]:

 A risk based approach, focuses in the quantification of consequences in

an absolute measuring unit, such as loss of lives per accident or cost of
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failure in economic units [41], [42]. This method involves great

subjectivity on the valuation of human life loss.

 Life cycle cost analysis, is a method applicable especially in cases of

structures that can operate well with regular maintenance interventions.

It is based on the maximization of a cost function with the restriction of

minimized reliability [43], [44].

 Social tolerable risk for failure and fatalities. This method incorporates

the different reaction of societies to hazards and risks’ providing more

strict safety requirements in general, since the element of cost efficiency

becomes secondary [45]. In [46] and [47] mathematical expressions are

proposed for the calibration of the safety requirements according to the

social impact factor and the level of warning before failure. .

Generic standards, such as [14], [6] propose analytical methodologies for the

reliability assessment of structures. In [48] a procedure is described for this

purpose and has been adopted by many of the existing standards as a way to

achieve calibration of target reliability levels. Figure 3, illustrates in an iterative

block diagram format this risk assessment procedure. Further, Table 4

summarizes some target probabilities of failure for offshore applications based

on what has been discussed so far [35].

1.8 Summary

In this Chapter, the context of structural reliability has been set, incorporating

different sources of uncertainty in structural design. Classification of available

methods has been presented, based on the extent of information that the

problem treats, and the accuracy in the representation of the design variables.

Evolution of design methods from permissible (allowable) stresses to limit states

formats was also included, with a view for classification of design standards,

and a reference to the consideration of appropriate limit states for the latter

class. Finally, after identification of the most important available standards for

the design of offshore and steel structures, and some comments on the
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limitations they involve, an investigation of the target reliability levels that are

documented from widely accepted certification bodies have been presented.

Reliability

Classes

Consequences for loss of

human life, economical,

social and environmental

consequences

Reliability index β 

Examples of

building and civil

engineering works
βa for

Ta=1 year

βd for

Td=50

year

3-high High 5.2 4.3
Bridges, Public

Buildings

2-normal Medium 4.7 3.8
Residential and

office buildings

1-low Low 4.2 3.3

Agricultural

buildings,

greenhouses

Table 2: Reliability Index and Reliability Classes [7]

Class of failure Consequence of failure

Less serious Serious

I - Redundant structure

PF=10
-3

PF=10
-4

(βt=3.09) (βt=3.71)

II - Significant warning before the occurrence

of failure in a non-redundant structure

PF=10
-4

PF=10
-5

(βt=3.71) (βt=4.26)

III - No warning before the occurrence of

failure in a non-redundant structure

PF=10
-5

PF=10
-6

(βt=4.26) (βt=4.75)

Table 3: Values of acceptable annual probabilities of failure (PF) [14]
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Source
Allowable system
failure probability

Risk Analysis (analytical Assessment) 10
-6

/yr

CSA 10
-5

/yr

DNV 10
-6

-10
-5

/yr

ISO-1000 people 10
-7

/yr

Professional recommendations 10
-5

life time

Social Criteria 10
-7

-10
-5

/yr

Existing Structures 10
-7

-10
-5

/yr

Table 4: Comparative estimates of target Pf [35]

Figure 3: Iterative procedure for Risk Assessment [48]

DEFINITION OF THE SYSTEM

HAZARD IDENTIFICATION

PROBABILITY ANALYSIS CONSEQUENCE ANALYSIS
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START
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2 RELIABILITY ANALYSIS OF OFFSHORE

STRUCTURES

2.1 Basic formulation of the Problem

Following an initial, general approach, the behaviour of a structure can be

determined by the values of loads (actions) or load effects ܮ acting on it and its

load bearing capacity (resistance) ܴ. The following correlation between the two

variables can form the acceptance criterion of the structure for a specific failure

mode – limit state:

ܴ − <ܮ 0 or
ோ


> 1 (2-1)

The safety margin, of the structure can be expressed as:

ܼ = ܴ − ܮ (2-2)

In practice, both resistance as well as loading effects, involve a number of

variables or material properties, subject to several sources of uncertainty. In the

critical case where the resistance and load values are equal, limit state

equations can be formed as:

ܼ(ܺ) = 0 (2-3)

In the case when ܼ(ܺ) ≥ 0 the structure operates in the safe region while when

ܼ(ܺ) < 0, it is considered in the failure region. For each limit state, the

probability of failure can be expressed as:

ܲ = ܲ{ܼ(ܺ) < 0} (2-4)

Alternatively, considering probabilistic models for the assessment of the

variables ܺ = ൣܺ ଵ,ܺଶ,…,ܺ൧ and simplifying that they are described by time

independent joint probability density function ߮௫(ݔ), the expression of the

probability of failure can be described with the integral:
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ܲ = න ߮௫(ݔ)݀ݔ
()ழ

(2-5)

The expression above can be extended to become applicable to some cases of

time dependent quantities which can be transformed into time independent

ones [18]. For cases where this is not feasible, the process of calculating the

probability of failure becomes much more complicated and in practice should be

assisted by different numerical methods and software products [6].

Instead of using the term of “probability of failure”, the equivalent term of

reliability index ’ߚ‘ is usually referred to in the design standards and relevant

documentation. This is the negative value of the standardized normal variable,

corresponding to the probability of failure:

ߚ = ߔ−
ିଵ൫ܲ ൯ (2-6)

Where, ߔ
ିଵ( ܲ), is the inverse standardized normal distribution function. The

benefit of using this notation is that ߚ can provide results for several types of

statistical distributions based on deterministic methods as it will be discussed in

Chapter Three. Figure 4, illustrates the correlation between the reliability index

and the probability of failure. Considering a simple case of a single load acting

on a member and its resistance, both distributed normally, the correlation of

their means, standard deviations and ߚ can be shown in Figure 5.

A quantitative definition of risk derives it as the product between the probability

of occurrence of an adverse event and its consequences [22]. The first is

influenced by the reliability of the structure while the latter of its function and

specifications. This implies that different values of risk can exist for different

combinations of these parameters. Unmanned offshore structures for example

can experience failures that halt the operation/production but without fatalities

and therefore the measured consequences can be considered lower; the same

risk can be achieved with designs of increased probability of failure but lower

consequences in the case of potential failure. Taking this into account, the

calculated reliability levels can be interpreted.
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Figure 4: Relationship between β and Probability of failure 

Figure 5: Definition of Reliability Index

An interesting parameter of the reliability index which represents the relative

positions of the Load and Resistance distributions is its performance throughout
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mechanisms. This fact leads to a decrease in the relative difference between

mean values, which reflects to a decrease in the reliability index and therefore

an increase in the probability of failure. The importance of this characteristic is

significant for the design process and the engineer should incorporate this time

dependent component into the design model in order to avoid unwanted

residual uncertainties in the calculations.

2.2 Background and motivation

2.2.1 Development of Structural Reliability Applications

Conventional deterministic structural design has been established successfully

during the past years in the design, construction, maintenance and inspection of

structures. Although, in general, it provides structures of sufficient performance,

uncertainties are considered in a generalized way incorporating a significant

degree of conservatism. Further, requalification of structures that have

exceeded their predetermined service life demands reassessment on a basis

that will ensure safety in further operation. Both of the above facts introduce

reliability analysis, providing the framework for effective decision making in

cases where uncertainties cannot be incorporated following a deterministic

approach.

An initially application of structural reliability, as it is presented in [49], can be

found back in 1926 by Mayer, in an attempt to quantify the safety of a structure,

treating uncertain variables by using the mean and standard deviation. Initial

applications of reliability theory are focused in the field of aerospace, electronics

and nuclear industry. Interest in structural reliability begins in 1947 when in a

study of Columbia University [50], safety margins and safety factors are

analyzed in a way that allows their systematic derivation. Evolution in

computation of reliability is traced in 1969 where the Mean Value First Order

Second Moment method (MVFOSM) was proposed [51]. This is an initial

approach to the derivation of the reliability index based on mean values of load
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and resistance variables. The fact that this method was not taking into account

different formulations of limit state functions, initiated the Hasofer and Lind [52]

reliability index methodology to be formulated which was the first method to

geometrically approach the reliability index calculation as the minimum distance

of the failure surface from the origin of the normalized space. Methods for

handling non-normal random variables have been introduced and will be

discussed later in this Thesis. Following the development of FORM, SORM

managed to deal with more complicated limit state functions with multiple

minimization points and cases of non linear curves. In a very important review

paper [53], summarizing the general belief of the 1990 decade, has illustrated

that the development of deterministic methods had been completed. In addition,

competent simulation techniques have evolved, able to produce accurate

results at the expense of greater numerical effort.

Development of structural reliability is now moving towards structural

optimization schemes with reliability to stand as the basic design restriction. As

this is a relatively new practice, important issues of time performance should be

included, constituting this as a time-variant analysis [54]. Apart from this,

another very important issue is the transformation of the state-of-the-art into

state-of-practice methods in order to allow application in more essential

engineering problems.

2.2.2 Development of offshore industry

The first offshore drilling activities started in 1947, when the first platform was

built in Louisiana in the Gulf of Mexico. This was a very short structure of 5.1 m

height. During the last decades, deployment of offshore structures is moving in

deeper waters. Cognac platform [55] has been installed in a depth of 338 m,

followed by Shell’s Bullwinkle platform [56] standing in 415 m of water. An

economic sensitivity analysis, had set 300 m to be the restriction for fixed

offshore platforms however this number has been revised to 615 m.

Evolution of technology has come up with new configurations of offshore

structures in order to accommodate the harsh conditions of deeper waters. In
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mid 1990s, Shell has installed a tension leg platform (Auger TLP) in depth of

872 m [57] setting the up-to-date record for any installed offshore structure. In

[58], a review of installed offshore platforms refers to a total of 5238 platforms,

15% of which are very heavy structures (more than 5000 tn). Due to the

depleting resources in the oil reserves, the fluctuation in prices of oil and the

world’s constantly increasing demand in resources, the challenge of exploration

in harsher environments is now active. For 2005, an estimate on deployed

structures considered approximately 1100 active rigs [59].

Design of oil and gas platforms, has stood as the basis for significant

developments in offshore wind industry. Deployment of wind turbines offshore

goes back to 1930, however it was only in 1990 when the first offshore unit (220

kW, 38 m hub height, 7 m water depth) was deployed in the North Sea. Similar

structures were deployed in Denmark at the same time, accommodating wind

turbines rated up to 500 kW each at depths of up to 6 m. Several projects were

completed up to 2000, increasing the capacities of the wind turbines supported,

the depths of deployment, and the distance from shore considering harsher

environmental conditions. 2000 can be considered a breakthrough for wind

industry, initiating England’s involvement in the field, deploying units of 2 MW

on the Blyth wind park (800 m from shore, up to 11 meters water depth). Water

depths of 20 m have been reached by 2002 in Denmark, moving even further

offshore (3.5 km). The state-of-the-art installed support structure so far, refers to

the Beatrice wind farm, built in 2007, consisting of 2x5 MW wind turbines in a

site 22 km from the Scottish coast, and 45 m of water depth [60]. The constant

demand of clean energy constitutes efficient design of deep water foundations

an essential task, considering that, contrary to oil and gas platforms, wind

turbine support structures are aimed to be built in massive production.

2.2.3 Application of Reliability Analysis in the offshore industry

Application of Reliability Methods appears to provide particular benefits in the

marine environment, due to the randomness and the restricted knowledge of

the phenomena structures resist. Proper modeling of the structures’ capacity
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and loads encountered can predict its probability of failure through reliability

analysis. This analysis, for offshore structures, includes component and system

reliability analysis, specific design assessment and various forms of cost-benefit

optimization and maintenance planning. For a fixed offshore unit, the benefits

reliability analysis can provide can be summarized as follows [61]:

I. Achieve uniformity in the reliability at a component level

II. More efficient utilization of material properties, compared to over-sizing

followed by deterministic procedures

III. Account directly for randomness and uncertainties in engineering

parameters

Reliability assessment was introduced in the field of offshore structures in

1980s, following the ‘goal setting’ philosophy in the safety and economic

consideration [62]. Application of reliability methods for offshore structures was

initiated and motivated for ship hulls [63], [64] and was later applied in the

reliability of offshore structures. Important work is carried out in [65] and [66]

applying reliability analysis theory for the safety assessment of existing

structures, allowing efficient maintenance planning based on risk involved under

certain conditions of a deteriorating structure.

Reliability Analysis is also applicable in the optimization of structural design.

Setting a target level of reliability, structures can be designed compromising risk

and cost. In [67], a reliability-based design format for jacket platforms under

wave loads is presented by resizing members until the target reliability is

sufficiently approached. Reliability based design as well as design optimization

is in its infancy since several restrictions should be set for realistic designs to be

derived. However, moving towards more economic structures, this topic should

be investigated further.

The demands of reliability methods in mathematics skills, have led to the

development of reliability calculation software. PROBAN, developed by DNV, is

a general purpose reliability program able to analyze different failure modes

simultaneously, determine conditional probabilities, and derive partial safety
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factors [68]. Further, STRUREL/COMREL [69] and RASOS are some common

software packages used for the reliability of offshore structures. Apart from

those standalone general application programs, incorporation of reliability

calculation procedures is attempted by well established FEA software (ANSYS,

SOFISTIK etc) in order to provide users with a friendly interface that demand

minimum knowledge of the background theory of reliability analysis.

2.3 Response Analysis

A fundamental decision to be made before the analysis is the identification of

the type that is required. Several analytical methods are available and may be

categorized as static or dynamic, linear or non-linear, deterministic or

stochastic. Combinations of the above categories can identify the analysis

method to be employed, depending on the properties of the structure under

consideration. The type of response of a structure may require different types of

analysis. In [70], an analytical block diagram for global response analysis of

marine structures is presented, guiding selection of the most appropriate

method.

2.3.1 Static Analysis

The general equilibrium equation for static analysis can be expressed as

follows:

=࢘ࡷ ࡾ (2-7)

Where: ࡷ is the global stiffness matrix formed from the combination of the

element stiffness matrices; ,࢘ is the vector of unknown nodal displacements and

ࡾ is the nodal load vector. The typical finite element analysis based on the

above equilibrium equation should follow the steps as described in [71]:

 Discretization, where the actual structure is approximated by an

assembly of finite interconnected elements
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 Element Analysis, where the stiffness properties of each individual

element is determined and any loading is transformed into equivalent

nodal forces

 System Analysis, where the individual elements of the structure are

merged to form the elements stiffness matrix ࡷ and load vector .ࡾ The

above equation, will then determine the nodal displacement vector .࢘

 Post-processing of the results, will derive the stresses from translational

and rotational displacements in each of the structural members.

Non-linear problems can generally be solved with both analytical (e.g., the Ritz

method) and numerical methods. The numerical methods seem to be the most

prominent, based upon the principle of stepwise integration of the problem such

that any non-linear structural problem can be transformed into a series of linear

problems. Reduction of an analytical non-linear structural system, can diminish

the problem to finding the displacement vector (࢚)࢘ that produces an internal

reaction force vector (࢚)࢚ࡲ that balances the applied forces .(࢚)ࡾ The

expression of the equilibrium equation is formulated as follows and can be

solved incrementally with corrective iteration:

(࢚)࢘(࢚)࢚ࡲ = (࢚)ࡾ (2-8)

2.3.2 Dynamic Analysis

Following the same consideration, dynamic analysis includes time dependency,

damping and inertia as local and system effects:

ࡹ +̈࢘ +̇࢘ =࢘ࡷ ,࢚)ࡾ ,̇࢘ (̈࢘ (2-9)

Where: ()ࡾ is the time-dependent load, (࢚)࢘ the displacement, ࡹ the global

matrix,  is the global damping matrix, and ࡷ the global stiffness matrix. Mass

and damping properties of the system, can be derived as the assembly of the

properties of each element. The internal reaction forces for any element can

then be computed by use of virtual work equations. The above equation is

applicable both for linear and non-linear systems.
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2.3.3 Deterministic and Stochastic Processes

Deterministic process is a process for which it is possible to describe the exact

magnitude of the load at any given time. A deterministic analysis involves an

initial consideration of the statistical data for environmental loading. For extreme

response analysis, for example, a suitable event could be defined as the wave

which is expected to cause the most severe response. This requires that the

structural model is exposed to a unidirectional, periodic wave. The loading is

calculated in the time domain at given points in time during a wave cycle.

Contrary to deterministic processes, a stochastic process is described by the

use of probabilities. Therefore, a stochastic load or response may not be fully

described by exact magnitude at a given time, but rather by the probability

(statistical distribution) by which it will exceed some specified value. Further

discussion of modelling of environmental and capacity variables will be

presented in Chapter Four of this Thesis.

2.3.4 Selection of type of analysis

Literature can provide a range of methods for the selection of the most

appropriate analysis, considering that all relevant global and local effects,

dynamic as well as non-linear, are satisfactorily accounted for in the analysis

[72], [73]. In [74], a study based on different types of analysis for a reference

structure and for the same loading conditions was executed, including

combinations of linear and non-linear analysis, with regular and random wave

loads. Figure 6, adopted by [75], illustrate the results comparing the maximum

base shear that was derived.
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Figure 6: Scatter of response (Max Base Shear-MN) by different Analysis

Methods [75]

Different approaches can be considered to account for dynamic effects, either

directly by dynamic analysis, or by applying ‘correction factors’ to the results of

a static analysis, such that the analysis may be referred to as ‘quasi-static’. For

the choice between a static and a dynamic analysis approach the following

recommendations may be considered [70]:

 For typical fixed offshore structures (e.g., jacket type structures) the

effects of dynamics, for extreme global response analysis, should be

included when the global natural period of the structure is greater than

three seconds.
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 For floating structures, including compliant structures, a dynamic analysis

should always be undertaken to identify contribution of extreme response

dynamic effects.

 A dynamic analysis should be executed in order to establish structural

response when impulse or resonant effects may be governing.

 Model and/or prototype measurements should be considered for

structures or effects not amenable to analytical calculations.

2.3.5 System Response

Significant developments have been identified in the latest decades in the area

of system reliability assessment. A structural system with multiple failure paths

can be represented by a series of parallel sub-systems, with each subsystem

representing a failure mode. Starting from a component reliability level, the

combined structures reliability of the system can be then calculated. In the case

of complex structures such as offshore platforms, there is a number of potential

failure paths and structural components which makes this approach not

practical. Thus efforts have concentrated in developing more accurate system

reliability methods for these structures. Figure 7, presents some of the methods

for system reliability assessment [76].

The increased available computational resources for a system reliability

analysis of an offshore platform has given motivation for the development of a

number of “search algorithms”, in order to identify the most dominant failure

paths and calculate the combined system probability of failure [76]. For the case

of large structures, such as offshore platforms, the search algorithms technique

such as the ‘branch and bound method’ [77] can provide sufficient results.

Alternative methods towards identification of dominant failure paths are the

selective enumeration techniques [78] and the marginal probability and leading

probability methods [79]. Among methods, the ‘branch and bound method’ has

the drawback of computational cost while the enumeration techniques cannot

guarantee identification of every potential failure path.
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Figure 7: Classification of methods for system reliability assessment [76]

Identification of the most dominant failure path can be also performed by the so

called ‘pushover analysis’. This analysis will identify deterministically the most

critical members but will not take into account the effect of possible residual

strength after failure which may redistribute loads and result in different

sequences of failure and different combination of members. However, in [80],

for cases under extreme loading conditions, it is found that the reliability index

of the failure path identified through a deterministic pushover analysis closely

identifies the one obtained after extensive searches or simulations.

From all of the approaches that have been proposed, the component based

approach is the simplest. In this approach the whole structure is treated as one

component, with either deterministic resistance or an associated coefficient of

variation (COV) suitable to quantify the probability of system collapse of a fixed

platform [81], [82]. Based on this approach it is proposed that with accurate

representation of the resistance, a good non-linear model and a competent
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analyst it is possible to reduce significantly the modeling uncertainties

associated with the resistance.

Another, simplified, system reliability method, that can be applied as a

preliminary design tool for configuration of new platforms, has been based on a

series system where the components in series are the deck, each platform bay

and the foundations [83]. This method, considers within each component

parallel elements including deck, legs, braces, joints and piles. For each

component to fail, failure of all parallel elements should happen. The use of

simplified analytical procedures to estimate reference storm lateral loadings and

the ultimate capacities of platforms are comparably well in agreement to those

derived from more complex analysis.

The selection on the various methods discussed depends on the application.

Classification in Figure 7, distinguish the methods closer to “Α” associated in 

general with higher level of complexity which is more suitable as research tools,

while methods towards the other end of the scale (towards “Ε”) would be more 

appropriate for practical assessment [76]. However, the choice of the methods

would also be influenced by other factors such as the availability of

computational and analytical tools, significance of local effects such as

foundation uncertainties in the overall system reliability and the expertise of the

analyst.

In the application that is presented in Chapter Five, the pushover analysis

approach was selected in combination with simulation method in order to

address the possible variations and their effect. The difficulty associated with

this approach was the limiting number of simulations which can be performed

given the size of the problem and the high computational demands. Simple

approaches found in literature [81], [84] can provide useful conclusions in the

implementation of the above combination.
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2.3.6 Practical Methods of Analysis

Among the various methods available in literature, this section will present a

practical procedure for the assessment of structural system reliability. The main

assumption indicates that failure will occur at one instant, for example when the

lateral wave load reaches a maximum value, implying that failure will occur over

a short period of time, during which the load is applied proportionally. This

assumption makes the reliability calculation problem time-independent.

Local failure on a structural member will alter the structural stiffness of the

structure, redistributing stresses in alternative load paths. Residual strength is

modelled by applying appropriate forces at the nodes of the failed members, or

by changing the properties of the failed members. Once the system has been

redefined, a new stress calculation should be performed, initiating an iterative

process, which after a sufficient number of successive member failures has

occurred, the structure will be considered to have failed when the structural

failure criterion (collapse or large displacement) is met. Therefore, this

procedure can identify a potential load path. In real structures, due to their

complexity, a large number of possible failure paths exist. For this reason a

search technique should be used in order to identify the important paths.

Pushover analysis is a method that can be followed for this purpose until the

platform collapses.

This manual search of failure paths, usually expressed in the form of failure

trees, can provide sufficient information for a system reliability assessment [85].

The failure tree is a representation of all possible failure paths in the structure.

Nodes represent damaged states of the structure and the branches represent

member failures in the corresponding damaged structure. The number in the

node is the element number. In the failure tree, each path represents a failure

mode, which can be modeled as a parallel system since the structure can only

fail when all its members reach their limit state. Α redundant system might have 

several failure modes. In such case, each of the failure modes can be modeled
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as a parallel system and all modes, in turn, can be modeled as a series system

to find the reliability of the complete system.

2.3.7 Modelling of Post-Failure Behaviour

Reliability of a structural member will strongly depend on whether it behaves on

a brittle or a ductile way. This does not mainly refer to the material of the

structure but in the behaviour of the potential members to fail. The response of

the component's post-failure behaviour is one of the key factors that determine

the effective redundancy of a structure. The two extreme types of failure are the

perfect brittle and the prefect ductile failure performance. The first type

becomes completely ineffective after failure, eliminating completely its load-

bearing capacity. If a failure element maintains its load-bearing capacity after

failure it is categorized as ductile. Real materials, in most of cases lay between

the two extreme categories. One model which can be incorporated in the

probabilistic analysis is the bi-linear, two state model. In the non-failure

condition, the component is linear elastic, while in the failed condition the

component still behaves linearly but with a modified stiffness matrix. Figure 8,

illustrates this behaviour.

Figure 8: Models of Post-Failure Behaviour
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With this type of models, various component behaviours, ranging from brittle to

prefect plastic, can be described. In the semi-brittle model, the member force

increases elastically to the member capacity or resistance. After failure, if the

axial deformation in the element is increased beyond its failure value, the

element force abruptly drops to a fraction, φ, of its non-failure capacity. Based in

literature [86] a deterministic value of φ = 0.4 can be adopted for members

failing in compression and φ = 1.0 for tension failure. This assumes ductile

tension failure behaviour, maintaining the failure load and an abrupt drop by

40% capacity when failing in compression.

2.3.8 Methods in Computing System Reliability

Accurate estimation of reliability can be hesitated by the multiple failure paths

existing and any potential correlation between the failures. The later, should be

primarily identified since this correlation will affect the final results of the

calculations. Generally there are two approaches; the Hohenbichler

approximation [87] and the bounding method [88].

Hohenbichler approximation computes the probability of failure from the multi-

normal distribution function, providing a very accurate prediction of the

probability of failure of the structure. However, for complex structures, the

method becomes complicated from a computational point of view [79]. For such

structures, use of bounding techniques for the calculation of the probability of

failure, which is the simple bound and Ditlevsen bounds [89], are proven to be

more efficient methods. Τhe Ditleνsen bound is a narrower bound compared to 

the simple bound, providing a smaller range between the upper and the lower

bound. The computation of the Ditleνsen bound is calculated through numerical 

methods in order to calculate the joint probabilities.

The simple bound method can be also applied for the computation of structural

reliability however the results derived lack in accuracy compared to the

Hohenbichler approximation and the Ditleνsen bound. On the other hand, the 

limited requirements in computational demands constitute the simple bound

method widely used. The simple bound is a range between the maximum and
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minimum value of the probability of failure; however this range can be

significantly wide and it can only serve as a rough indication of the system

reliability. Before proceeding with the calculation of the simple bound method,

the types of system has to be identified, as series system, parallel system or

combination of both.

2.3.8.1 Classification

Α series system, or as is called the weakest link system, is the system where 

failure corresponds to failure of the weakest element in the system. In

describing the status of each member, each element is assumed to be either in

a functioning or in a failed state. This consideration can be expressed by

introducing a binary state indicator variables ai (=1 for functioning members,

and =0 for failed members), considering n number of elements in the structure.

The simple bound for the derivation of the probability of failure for series system

[79], is defined as:

max
ୀଵ

ܲ( ܽ= 0) ≤ ܲ௦ ≤ 1 − ෑ ൫1 − ܲ( ܽ= 0)൯



ୀଵ

(2-10)

The lower bound in the above equation is equal to the exact value of Pfs if there

is full dependence between all elements and the upper bound correspond to no

dependence between any pair of elements. When the probability of failure of

one element is predominant in relation to the other failure elements, the

probability of failure of series system is approximately equal to the predominant

probability of failure and the gap between the upper bound and lower bound is

narrow. In the opposite case, when the probabilities of failure are in the same

order, the simple bounds are wide.

For a parallel system, it is considered to be in a functioning state if at least one

element is functioning. Simple bounds for the probability of failure for parallel

system are defined as:
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ෑ ܲ( ܽ= 0)



ୀଵ

≤ ܲ௦ ≤ min
ୀଵ

ܲ( ܽ= 0) (2-11)

Following a parallel concept as for the series systems, the lower bound in the

above equation is equal to the exact value of Pfp if there is no dependence

between any pair of members and the upper bound corresponds to full

dependence between all elements.

2.3.8.2 System effects

System effects in fixed offshore platforms can distinguish deterministic effects

which relate to the redundancy of the system and probabilistic effects which

relate to the randomness of the member capacities under stochastic loading.

Deterministic system effects relate to the redundancy incorporated into the

structure, which allows load redistribution after the first member failure and

results in a higher ultimate load capacity. Due to this, it can result to lower

requirements of reliability for individual members.

For perfectly balanced structures, the system effects for overload capacity

beyond first member failure are due to the randomness in the member

capacities. Α balanced structure in this sense refers to a structure where, in a 

linear analysis, the first member to fail has the same probability as for all other

members. For a more realistic unbalanced structure, system effects are from

both deterministic and probabilistic effects. Deterministic effects are due to the

fact that the remaining members in the structure can still carry the load after one

or several members have failed, while the probabilistic effects are due to the

randomness in the member capacities [90]. Structural behavior beyond first

member-failure depends on the degree of static indeterminacy, ability of

structure to redistribute the load and ductility of individual members, as well as

by aspects such as wave-in-deck loading, the behavior of the joints and the

behavior of the foundation. In order to assess system effects, there are a

number of factors, such as reserve strength and residual strength that can be

derived from the analysis of a structural model.
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The failure of only one part of a system may not limit the capacity of the

structure as a whole; instead, a sequence of component failures may occur

before the ultimate strength is reached. The reserve strength ratio (RSR) is

generally defined as:

ܴܴܵ =
ݑ ݉ݐ݈݅ ݐܽ݁ ݈ ݐ݂ܽ ݎ݉ ݎ݁ ݐܽݏݏ݅ ݊ܿ݁

݀ ݊݃ݏ݁݅ ݈ܽ ݀
(2-12)

RSR can be quoted in terms of ratios of platform base shear or overturning

moment. For every platform, a different value of RSR will be obtained for every

different load case. Apart from that, in order to make comparisons between

different RSR values, one should note that the definition which is used to

quantify this value is the same. In [83] and [91], an extensive study on the

definition and the use of RSR value was undertaken developing a four-tier

system for the assessment of structures. An alternative definition of RSR may

be defined is:

ܴܴܵ =
ܴ

ோܵ
(2-13)

Where: Ru is ultimate lateral load capacity of the platform and SR is a reference

lateral loading. The primary objective in the four-tier system is to allow a simple

assessment and re-qualification of platforms. The more complicated levels in

this system would be used for more complex platforms including intense

analyses for re-qualification. Another definition of RSR value, used by Shell

[82], is given as:

ܴܴܵ =
݁݊ ݒ݅ ݊ݎ ݉ ݁݊ ݐܽ ݈ ݈ܽ ݀ ݐܽ ݈ܿ ݈ܽ ݏ݁

݊݅݃ݎ݅ ݈ܽ݀ ݊݃ݏ݁݅ ݁݊ ݒ݅ ݊ݎ ݉ ݁݊ ݐܽ ݈ ݈ܽ ݀
(2-14)

Considering an undamaged structure, some residual capacity may exist, the

magnitude of which can be described by its degree of in-determinacy. The

effect of a certain damage scenario can be assessed by the concept of residual

strength. This can be an important indicator of structural behavior, and can be

defined by the residual resistance factor (RIF), generally defined as follows [92]:
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ܨܫܴ =
݀ܽ݉ ܽ݃ ݁݀ ݑݎݐݏ ݎ݁ݑݐܿ ᇱ݊݁ݏ ݒ݅ ݊ݎ ݉ ݁݊ ݐܽ ݈ ݈ܽ ݀ ݐܽ ݈ܿ ݈ܽ ݏ݁

݅݊ ݐܽ ݑݎݐݏݐܿ ݎ݁ݑݐܿ ᇱ݊݁ݏ ݒ݅ ݊ݎ ݉ ݁݊ ݐܽ ݈ ݈ܽ ݀ ݐܽ ݈ܿ ݈ܽ ݏ݁
(2-15)

The ratio of the ultimate capacity of the damaged structure, when compared to

the ultimate capacity of the intact structure, can also give a useful indication of

platform behavior [92]. This can be defined as the damage tolerance ratio

(DTR), which can be expressed as follows:

ܴܶܦ =
݀ܽ݉ ܽ݃ ݁݀ ݑݎݐݏ ݎ݁ݑݐܿ ᇱݑݏ ݉ݐ݈݅ ݐܽ݁ ܿܽ ܽ ݕݐ݅ܿ

݅݊ ݐܽ ݑݎݐݏݐܿ ݎ݁ݑݐܿ ᇱݑݏ ݉ݐ݈݅ ݐܽ݁ ܿܽ ܽ ݕݐ݅ܿ
(2-16)

The value of DTR characterizes the weakening of the structure caused by the

damage. For example, a DTR of 0.9 would indicate a 10% loss in the reserve

strength.

The damage tolerance ratio has been calculated in order to investigate the

residual strength in the application of Chapter Five. Push over analysis was

carried out in 8 wave directions of the platform; 45 degrees apart as indicated

from standards for orthogonal (4 legs) cross section, to derive the DTR for each

direction. The most critical member, i.e. the member that has the highest

probability of failure was removed for each direction. After analyzing the first

damage, the second critical member was removed iteratively, in order to study

the effect of multiple damages.

2.4 Review of Stochastic Methods

2.4.1 Stochastic Expansions

Extensive use of Finite Elements in various fields of engineering has evolved

using stochastic field theory in structural engineering. The critical issue towards

this scope is the discrete representation of stochastic variables and the

corresponding interpretation of stochastic responses [93]. Stochastic expansion

is an efficient tool for reliability analysis. The purpose of stochastic expansions

is to consider uncertainties through a series of polynomials in order to

investigate the reliability of a system. Karhunen-Loeve expansion (K-L) and
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Polynomial Chaos Expansion (PCE) can serve the above purpose. Combination

of the above two techniques together with principles of the Finite Element

Analysis Methods provide a useful tool, the Spectral Stochastic Finite Element

Method (SSFEM), towards an analytical assessment of the reliability of

structural systems [94].

Applied in the Spectral Stochastic Finite Element Method (SSFEM) [95],

Polynomial Chaos Expansion (PCE) has been successfully used to represent

uncertainty in a variety of applications, including structural response. This

method uses orthogonal polynomials of random variables. Most commonly, the

random variables are standard-normal, and Hermite polynomials are used in

SSFEM. Efficiency of this method has found multiple applications in various

engineering problems such as two dimensional elasticity [95], soil mechanics

[96], heat conduction [97] and composite materials [98].

In [99] the probabilistic collocation method is introduced; according to this the

responses of stochastic systems are projected onto the PCE. In [100] the

limitation of the probabilistic collocation method for large-scale models was

indicated and a different approach was suggested, using a stochastic response

surface method that uses the partial derivatives of model outputs with respect to

model inputs. In [101] combination of PCE with MCS was applied while in [102]

extended PCE were used to represent different distribution functions by using

the Askey scheme.

Stochastic Expansions could be classified in two categories: the non-intrusive

and intrusive formulation procedures, as shown in Figure 9 [93]. An intrusive

formulation is the one in which the representation of uncertainty is expressed

explicitly within the analysis of the system. Practically this refers to methods that

use PCE and KL expansions to directly modify the stiffness matrix of a finite

element analysis procedure. SSFEM [103] and the stochastic Galerkin FEM

[104] are both intrusive formulations. On the other hand, non intrusive

formulations, represents uncertainties in a non explicit way, treating the analysis

code as a “black box” without requiring access to the analysis code. This
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method is called Stochastic Response Surface Method, and will be studied in

depth in the following sections.

Although this Thesis does not deal with the Spectral Stochastic Finite Element

Method, for reasons of completeness, it will be briefly presented in the following

sections, as the combination of stochastic expansions and Finite Element

Methods. The Stochastic Response Surface Method will be presented in the

next chapter in greater detail since it will be used in the numerical part of this

Thesis.

Figure 9: Intrusive and non-intrusive formulation [93]

2.4.2 Spectral Stochastic Finite Elements

The key aspect of SSFEM, is the appropriate transformation of a complicated

random quantity, to a set of simpler random quantities, easier to assess.

Towards this scope, two different stages can be distinguished:

 One involving representation of the random processes used to model the

corresponding random properties.

 One involving the solution process.

The properties mentioned in the first stage, are assumed to be represented

through their second-order statistics, varying continuously over space. Each of

those processes is considered as an uncountable set of random variables which

should be replaced by a finite set, able to be truncated at a presecribed level

that represents sufficient accuracy. Karhunen-Loeve expansion, or different
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expansions eigensolutions of self-adjoint operators [105], can be employed

towards this scope.

As far as the solution process is concerned, it consists of a vectorial random

process whose members represent the random solution at the nodes of the

finite element discretization. For the description of the solution in a formulation

independent to the unknown properties, Polynomial Chaos Expansion should

be employed, degrading the problem to the calculation of deterministic

coefficients representing the solution process with respect to this expansion. In

[106] and [107], expansions that refer to non-Gaussian processes can be found,

as a variation of the conventional Polynomial Chaos expansion.

2.4.2.1 Karhunen-Loeve (KL) Transform

Stochastic analysis faces the challenge of appropriate representation of

uncertainty in a computationally feasible way. The concept of random fields can

adequately represent space and time varying variables such as distributed

loads and material properties. Large numbers of variables often cause problems

to uncertainty analysis, affecting the accuracy of analysis and therefore the

predicted reliability. This fact, especially for cases with highly correlated

variables, yields a demand for compromising reduction in dimensionality and at

the same time ensuring accuracy for the uncertainty analysis.

Karhunen and Loeve, have represented the continuous-time random process in

terms of ortho-normal coordinate functions derived from the covariance function

while in [108] principle components were used to analyze the correlation among

different variables. Further, various methodologies have been presented in

order to achieve reduction of the variables and their correlation. In [109], rank

correlation is used to generate the resultant dependent random variables and in

[110] a modification of this approach was proposed using ranks of the sample

elements. In [111], [112], [113] a complete non-intrusive procedure combined K-

L transform, PCE and LHS to account uncertainties in properties in structural

reliability assessment. Finally, orthogonal decomposition is often used to

generate correlated random variables.
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K-L transform is a more advanced tool than the orthogonal transform method

and will be briefly analyzed in this section in order to later derive the

methodology of the SSFEM. It is an important tool in computational application

since it can reduce the dimensionality of the problem generating correlated

random variables [114].

Considering the stochastic process )ܧ ,(ߠ߯, the corresponding K-L expansion

will be based on the spectral expansion of its covariance function ,(ݕ,ݔ)ாாܥ

where ݔ and ݕ denote spatial coordinates and ߠ indicates the random quantity.

Common properties of the covariance function are symmetry and positive

definition, with mutually orthogonal eigen-functions. The expansion can be

formulated as:

)ܧ (ߠ߯, = (ݔ)തܧ +  ඥߣߦ(ߠ)߰(ݔ)

௫

ୀଵ

(2-17)

Where: (ݔ)തܧ denotes the mean of the stochastic process, {(ߠ)ߦ} a set of

orthogonal random variables, {߰(ݔ)} are the eigen-functions and {ߣ} are the

eigenvalues, that can be evaluated as the solution to the following equation:

න ாாܥ
ࣞ

=ݕ݀(ݕ)߰(ݕ,ݔ) ߰ߣ (ݔ) (2-18)

Where: ࣞ denotes the spatial domain over which the process )ܧ ,ߠ߯, ) is

defined.

The expression of (2-18) denotes that the random fluctuations have been

decomposed into a set of deterministic functions in the spatial variables by

combination of random coefficients that are independent of these variables. The

vector of the random variables {ߦ} will follow the properties of )ܧ .(ߠ߯,

2.4.2.2 Polynomial Chaos expansion

Polynomial Chaos Expansions is a stochastic method used for the

representation of the correlation between the basic design variables and the

response of the structure or the structural members. Considering that the
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solution process is a function of the material properties, the nodal response

vector ොݑ can be formed stochastically by a set of non linear functions .{(ߠ)ߦ}

This functional dependence can be expanded in terms of polynomials in

Gaussian random variables, referred to as Polynomial Chaoses [115], as

follows:

(ߠ)ݑ = ܽ߁ +  ܽభ
ଵ߁

௫

భୀଵ

൫ߦ(ߠ)൯+   ܽభమ
ଶ߁

భ

మୀଵ

௫

భୀଵ

ቀߦభ(ߠ),ߦమ(ߠ)ቁ+ ⋯. (2-19)

Where: ,భߦ൫߁ … … ൯ߦ, denotes the -݊th order Polynomial Chaos of the

variables ൫ߦభ, … … .൯ߦ, ,{(ߠ)ߛ} being a one-to-one mapping to a set with

ordered indices and truncating the Polynomial Chaos expansion the above can

be reduced to:

(ߠ)ݑ =  (ߠ)ߛݑ



ୀ

(2-20)

In those polynomials, the inner product ,〈ߛߛ〉 which is defined as the statistical

average of their product, is equal to zero for ݆≠ .݇ Once ݑ are calculated, the

process (ߠ)ݑ can be assessed. Increasing the amount of random variables or

the order ot PCE polynomials can refine those series. Further, PCE can be

used to represent non-Gausian processes (variables). Combination of

Karhunen-Loeve expansion and the Polynomial Chaos expansion will be

presented in the next section in order to formulate a Spectral Stochastic Finite

Element Method procedure.

2.4.2.3 Formulation of Spectral Stochastic Finite Element Method

The formulation of the global stiffness matrix for uncertain stiffness can be

expressed as:

(ߠ)ࡷ = න  ࢹ݀(ߠ,ݔ)்
ఆ

(2-21)
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Where:  is the matrix relating strains to nodal displacements and (ߠ,ݔ) is the

randomness matrix. Introducing the K-L expansion for ,(ߠ,ݔ) (2-21) can be

transformed as:

(ߠ)ࡷ = +ഥܭ  (ߠ)ߦ݅

ݔ

=݅1

න  ࢹ݀(ݔ)்
ఆ

(2-22)

Redefining, ߦ = 1 and ࡷ = ,ഥࡷ the above can be expressed as:

(ߠ)ࡷ =  (ߠ)ߦ݅

ݔ

=݅1

න  ࢹ݀(ݔ)்
ఆ

(2-23)

While, truncating the K-L expansion, the final matrix equation for the finite

element model is transformed to:

൭ (ߠ)ߦ

ெ

ୀ

(ߠ)ݑ൱ࡷ = ݂ (2-24)

Combining PCE with K-L expansions through (2-20) and (2-24), the nodal

response values can be obtained as:

ቌ  (ߠ)ߛ(ߠ)ߦ

ெ

ୀ



ୀ

ݑቍࡷ = ݂ (2-25)

Enforcing orthogoniality to the above equation, a system of linear equations can

be obtained as:

=ොݑܭ ݂ (2-26)

Where: ࡷ = ∑ ெ〈(ߠ)ߛ(ߠ)ߛ(ߠ)ߦ〉ࡷ
ୀ , ,݆݇= 0, … ,, and ොݑ is an extended

solution vector containing ݑ as its sub-vectors. Solution of the system for the

coefficient vector ,ොݑ provides the statistical properties of the nodal response

values.
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2.5 Summary

This chapter has dealt with fundamental aspects of the reliability analysis of

offshore and steel structures. After basic mathematical formulation of the

reliability estimation problem, the motivation of a reliability framework and the

evolution in its application on the assessment of structures was presented.

Selection of the appropriate type of analysis was also discussed in conjunction

with methods for integration from a local to a global level of reliability

calculation, distinguishing a practical method for the deterministic assessment

of the non linear performance of structures to failure. Finally, a review of

stochastic expansions was included, followed by a brief formulation of the

Spectral Stochastic Finite Elements Method, in order to set the background for

the development of the Stochastic Response Surface Method, which will be

analytically discussed in the next chapter.
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3 NUMERICAL METHODS FOR STRUCTURAL

RELIABILITY ANALYSIS

3.1 Introduction

In this Chapter the numerical procedures for the computation of reliability will be

presented. Solution of the integral of the joint probability distribution function

imposes difficulties in the calculation of the probability of failure equation.

Therefore, use of limit state function approximations can be employed in order

to overcome this problem. Appropriate selection of the proper technique, can

handle many engineering problems of great importance. In the following

sections, Level III reliability analysis methods will be presented analytically, as

they will be applied later in this Thesis. Both deterministic and probabilistic

formulations will be discussed. The Stochastic Response Surface Method

(SRSM) will be presented and after a literature review of this method and

multivariate regression techniques, the methodology that will be used in this

Thesis will be derived.

3.2 Numerical Methods

3.2.1 Deterministic Methods

The methods and algorithms that will be discussed in this section refer to

deterministic handling of the limit state functions through geometrical

approximation of the stochastic variables. Random variables are characterized

by their moments. Initially the First-order Second Moment Reliability Method

(FOSM) will be presented that will stand as a basis for the First-order and later

the Second-order Reliability Methods (FORM/SORM). Analytical description of

those methods can be found in [116].

The multiple variables participating in the probability of failure calculation have

yielded several methods that would simplify this procedure. Employment of first
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and second order Taylor series expansion is a common practice applied to

linearize the limit state equation. This practice refers respectively to the First

and Second Order Moment methods. FOSM is referred to as mean value first

order second moment method (MVFOSM) and is a simplistic method that

cannot provide results of sufficient accuracy for very low probabilities of failure

or non linear limit state functions [117]. Addition of the second term, in SOSM

methods cannot sufficiently handle this problem.

In order to overcome the above difficulties, a geometrical solution, the safety

index approach, transforms the problem to a mathematical optimisation problem

of finding the point of the limit state surface with the minimum distance to the

origin of the standard normal space. In [52], the Hasofer and Lind (HL)

algorithm is introduced transforming the vector of the design stochastic

variables ܺ into a vector of standardized independent variables ܷ. The design

point in the ܷ-space represents the point of greatest probability density and is

called the Most Probable failure Point (MPP). The transformed limit state

surface ݃(ܷ) = 0 can be approached with first or second order approximations

and therefore account for First and Second Order Reliability Methods

(FORM/SORM).

Figure 10: First and Second order approximations

The interpretation of the above approach is that in FORM, the limit state surface

is approximated by a tangent plane at the MPP while for SORM the MPP is

MPP

yn

yi

Limit-state function

First-order
Approximation

Second-order
Approximation

0

β
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approximated by a curve as it can be seen in Figure 10. FORM gives inaccurate

results in cases of highly non linear limit state surfaces and large curvatures.

Figure 11: Transformation to the U-space [93]

3.2.1.1 First Order Reliability Methods

3.2.1.1.1 The Mean Value FOSM (MVFOSM)

The Mean Value FOSM (MVFOSM) simplifies the calculation procedure of the

probability of failure of a limit state function. The characterization “first-order”

derives from the employment of first order expansions for the linearization of the

initial function, expressing inputs and outputs as the corresponding mean and

standard deviation. This simplifying approximation, neglects higher moments,

and therefore increases the subsequent model uncertainty. According to this

method, the limit-state function is approximated by the first-order Taylor series

expansion at the mean value point. Considering X to be the vector of statistically
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independent variables, the approximate limit-state function at the mean can be

expressed as:

݃(ܺ) ≈ ߤఄ)݃ ) + ߤఄ)݃∇ )் ∙ ൫ܺ − ௫൯ߤ (3-1)

Where: the vector of mean values is ߤఄ = ൛ఄߤ
భ
, ߤఄ

మ
, … ߤఄ


ൟ
்
, and the gradient of

g evaluated at μΧ as:

(ߤ)݃ߘ = ቊ
(ߤ)߲݃

ଵݔ߲
,
(ߤ)߲݃

ଶݔ߲
, … ,

(ߤ)߲݃

ݔ߲
ቋ

்

(3-2)

The mean (expected) value of the approximated limit-state function ݃(ܺ) is:

ߤ ≈ ߤఄ)݃]ܧ )] = ߤఄ)݃ ) (3-3)

Following some fundamental statistics transformations, the standard deviation

of the approximate limit-state function is calculated as:

ߪ = ඥܸܽݎ[ ݃(ܺ)] = ඥ[ߤఄ)݃ߘ )்]ଶ ∙ (ܺ)ݎܸܽ

=  ቆ
(ߤ)߲݃

ݔ߲
ቇ

ଶ

∙ ௫ߪ
ଶ



ୀଵ

൩

ଵ
ଶ (3-4)

The reliability index β is then calculated as:

ߚ =
ߤ

ߪ
≈

ߤఄ)݃ )

ቈ∑ ൬
(ߤ)߲݃
ݔ߲

൰
ଶ

∙ ௫ߪ
ଶ

ୀଵ 

ଵ
ଶ (3-5)

For cases of linear limit state functions, the above expression of the reliability

index can be analytically derived by expressing the safety margin between a

resistance R and a loading S of a system with normal variables as:

݃(ܺ) = ܴ(ܺ) − (ܵܺ) (3-6)

The resulting mean value ߤ and standard deviation ߪ are respectively:

ߤ = ோߤ − ௌߤ (3-7)



63

ߪ = ටߪோ
ଶ + ௌߪ

ଶ − 2 ∙ ோௌߩ ∙ ோߪ ∙ ௌߪ (3-8)

Where: ோௌߩ is the correlation coefficient between ܴ and ,ܵ and ோߤ , ௌߤ , ,ோߪ ௌߪ the

mean values and standard deviations of the ܴ and ܵ variables. The reliability

index ߚ is calculated as:

ߚ =
ߤ

ߪ
=

ோߤ − ௌߤ

ඥߪோ
ଶ + ௌߪ

ଶ − 2 ∙ ோௌߩ ∙ ோߪ ∙ ௌߪ
(3-9)

And for the case of uncorrelated variables, where: ோௌߩ = 0:

ߚ =
ߤ

ߪ
=

ோߤ − ௌߤ

ඥߪோ
ଶ + ௌߪ

ଶ (3-10)

In cases of nonlinear limit-state functions, the approximate limit-state surface

can be derived by linearization of the initial limit-state function at the mean value

point. In the generalized case with multiple independent variables, the failure

surface is a represented by a hyper plane that is defined as a linear-failure

function:

݃(ܺ) = ܿ +  ܿ∙ ݔ



ୀଵ

(3-11)

ߤ = ܿ + ଵܿߤ௫భ + ଶܿߤ௫మ + ⋯ + ܿߤ௫ (3-12)

=ߪ ඩ ଵܿ
ଶ ∙ ௫ߪ

ଶ



ୀଵ

(3-13)

The MVFOSM method is a simplistic method for the calculation of reliability

indices, using minimum representation of basic variables. This fact diminishes

the range of applicability of the method due to the following reasons:

 Non linearity or large variations cannot be efficiently handled by that

method, since linearization of the limit-state function about the mean

values can lead to inaccurate results.
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 The MVFOSM method is dependent on different - mathematically

equivalent - formulations of a same problem; both for linear and non

linear expressions of the limit state function.

3.2.1.1.2 Hasofer and Lind

The reliability index can be interpreted as the geometrical distance defined from

the origin of a dimensional-ݑ space to the Most Probable failure Point (MPP) on

the failure surface. The Hasofer and Lind reliability index method transforms the

expansion point from the mean value point to the MPP improving the approach

of the MVFOSM. To expand this practice for problems with multiple variables,

Hasofer and Lind [52] proposed a linear transformation of the basic variables ݔ

into a set of normalized and independent variables .ݑ

For the basic case with two independent, normally distributed variables of

strength ܴ, and stress, ,ܵ Hasofer and Lind transformed the initial variables to

standard normalized ones, following:

ܴ=
ܴ − ோߤ
ோߪ

, መܵ=
ܵ− ௌߤ
ௌߪ

(3-14)

Where: ோߤ and ௌߤ are the mean values and ோߪ and ௌߪ are the standard

deviations of R and S, respectively. Following, the limit-state surface ݃(ܴ, )ܵ =

ܴ − ܵ= 0 should be transformed from the original (ܴ, )ܵ coordinate system into

the limit-state surface, in the standard normalized ൫ܴ, መܵ൯coordinate system as:

݃ቀܴ ൫ܴ൯, ൫ܵܵመ൯ቁ= ො݃൫ܴ, መܵ൯= ܴ∙ ோߪ − መܵ∙ ௌߪ + ோߤ) − (ௌߤ = 0 (3-15)

The distance from the origin in the ൫ܴ, መܵ൯ coordinate system to the failure

surface ො݃൫ܴ, መܵ൯= 0 is equal to the safety-index:

ߚ = ܱܲ ∗=
ோߤ) − (ௌߤ

ඥߪோ
ଶ + ௌߪ

ଶ
(3-16)

The point ܲ∗൫ܴ∗, መܵ∗൯ on ො݃൫ܴ, መܵ൯= 0, is the Most Possible failure Point (MPP),

and corresponds to this shortest distance. In the general case with ݊ normally
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distributed and independent variables, the failure surface is described by a

nonlinear function:

݃(ܺ) = ,ଶݔ,ଵݔ})݃ … (்{ݔ, = 0 (3-17)

Transformation of the variables into their standardized forms should follow:

=ݑ
−ݔ ௫ߤ
௫ߪ

(3-18)

Where: ௫ߤ and ௫ߪ represent the mean and the standard deviation of ,ݔ

respectively. The mean and standard deviation of the standard normally

distributed variable areݑ zero and unity, respectively.

The failure surface ݃(ܺ) = 0 in X-space is mapped into the corresponding

failure surface ݃(ܷ) = 0 in U-space. Due to the rotational symmetry of the

second-moment representation of U, the geometrical distance from the origin in

U-space to any point on ݃(ܷ) = 0 refers to the number of standard deviations

from the mean value point in X-space to the corresponding point on ݃(ܺ) = 0.

The safety-index β is the shortest distance from the origin to the failure surface

݃(ܷ) = 0, as:

ߚ = min
∈()ୀ

(்ܷ ∙ ܷ)
ଵ
ଶൗ (3-19)

This value of ߚ is called the ‘Hasofer and Lind (HL) safety-index’ .ுߚ The point

ଵݑ)∗ܷ
ଶݑ,∗

∗ , … ݑ,
∗ ) on ݃(ܷ) = 0 is the design point, which can provide the

corresponding vector point in the ܺ-space.

Based on the above theoretical presentation of the method, the problem of the

calculation of the reliability index ߚ can be derived as the solution of a

constrained optimization problem in the standard normal ܷ-space.

݉ ݅݊ ݅݉ ݖ݅݁ (ܷ)ߚ: = (்ܷ ∙ ܷ)
ଵ
ଶൗ with ݃(ܷ) = 0 (3-20)

Several algorithms are available that can solve this problem, such as

mathematical optimization schemes or other iteration algorithms. In [118],
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several constrained optimization methods were used in order to solve this

optimization problem, including primal methods (feasible directions, gradient,

projection, and reduced gradient), penalty methods, dual methods, and

Lagrange multiplier methods [116]. Each method’s applicability depends on the

nature of the problem that is investigated. Following, the HL and HL-RF

methods are presented, as the most commonly used algorithms.

The HL algorithm was proposed by Hasofer and Lind, allowing consideration of

normally distributed random variables. Rackwitz and Fiessler extended the HL

method in order to handle non-Gaussian statistical distributions, forming the

extended HL-RF method. Assuming that the (linear or non linear) limit state

surface with n normally distributed and independent random variables X can be

expressed as:

݃(ܺ) = ,ଶݔ,ଵݔ})݃ … (்{ݔ, = 0 (3-21)

Based on the transformation the limit-state function becomes:

݃(ܷ) = ݃ቀ൛ߪ௫భݑଵ + ଶݑ௫మߪ,௫భߤ + ,௫మߤ … ݑ௫ߪ, + ௫ൟߤ
்
ቁ= 0 (3-22)

The normal vector from the origin ܱ to the limit-state surface ݃(ܷ) generates an

intersection point ܲ∗. The distance from the origin to the MPP is the safety-index

β. The first-order Taylor series expansion of ݃(ܷ) at the MPP ܲ∗ is:

݃(ܷ) ≈ ݃(ܷ∗) + 
߲݃(ܷ∗)

߲ܷ



ୀଵ

∙ −ݑ) ݑ
∗) (3-23)

From the transformation:

߲ො݃(ܷ)

߲ܷ
=
߲݃(ܺ)

ݔ߲
∙ ௫ߪ (3-24)

The minimum distance from ܱto the ݃(ܷ) surface may be given as:
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ܱܲ ∗ = ߚ =
݃(ܷ∗) − ∑

߲݃(ܷ∗)
ݔ߲

∙ ௫ߪ ∙ ݑ
∗

ୀଵ

ඨ∑ ൬
߲݃(ܷ∗)
ݔ߲

∙ ௫൰ߪ
ଶ


ୀଵ

(3-25)

The direction cosine of each of the transformed variables, often called

sensitivity factor, is given as follows, expressing the relative effect of the

corresponding random variable on the total variation.

ܽ= cosߠ௫భ = cosߠ௨భ = −

߲݃(ܷ∗)
ݑ߲

|∇݃(ܷ∗)|
=

߲݃(ܺ∗)
ݔ߲

∙ ௫ߪ

ቈ∑ ൬
߲݃(ܺ∗)
ݔ߲

∙ ௫൰ߪ
ଶ


ୀଵ 

ଵ
ଶൗ (3-26)

The coordinates of the point P* are computed as:

ݑ
∗ =

ݔ
∗ − ௫ߤ
௫ߪ

= ܱܲ ∗ cosߠ௫భ = ߚ cosߠ௫భ (3-27)

And, transforming them into the original space ܺ:

ݔ
∗ = +௫ߤ ,௫భߠ௫cosߪߚ (݅= 1, 2, … , )݊ (3-28)

Since P* is a point on the limit-state surface, it should satisfy:

ଵݔ})݃
ଶݔ,∗

∗, … ݔ,
∗ }்) = 0 (3-29)

In cases where the failure surface may contain several points corresponding to

stationary values of the reliability-index function (multiple MPP problem), it may

be necessary to use several starting points in order to find all the values

,ଶߚ,ଵߚ} . . . ߚ, }, deriving the HL safety-index as:

ுߚ = ݉ ݅݊ ,ଶߚ,ଵߚ} . . . ߚ, } (3-30)
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Figure 12: Algorithm of HL Reliability Index Calculation

The difference between the MVFOSM method and the HL method is that the HL

method approximates the limit-state function using the first-order Taylor

expansion at the design point X(k) or U(k) instead of the mean value point μX

[116]. Further, the MVFOSM method is a straight forward procedure, while the

HL method needs several iterations to converge, especially for nonlinear

problems. The HL method usually provides better results than the mean-value

method for nonlinear problems. The quality of the linearized limit-state function,

݃(ܷ) = 0 will determine the accuracy of the calculation of the probability of

failure ܲ.
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3.2.1.1.3 Hasofer Lind - Rackwitz Fiessler (HL-RF) Method

In the Hasofer-Lind reliability index method, the random variables X are

assumed to be normally distributed. In cases of non-Gaussian variables, the

reliability calculation procedures as presented so far are inefficient. Many

structural reliability problems involve non-Gaussian random variables; therefore

it is necessary to find a way to treat such problems. There are many methods

available for conducting transformations to the normalized space, such as those

found in [119], and [120]. A simple, approximate transformation called ‘the

equivalent normal distribution’, or ‘the normal tail approximation’, is presented in

this section. The main advantages of this transformation are:

i. Avoidance of the multi-dimensional integration of the main integral

for the probability of failure.

ii. Transformation of non-Gaussian variables into equivalent normal

variables is accomplished prior to the solution of the final equations

avoiding overcomplicated procedures.

iii. Results often agree with the exact solution of the multi-dimensional

integral of the fundamental probability integral.

Considering, mutually independent variables, the transformation is given as:

=ݑ ଵିߔ ൧(ݔ)௫ܨൣ (3-31)

Where: .]ଵିߔ ] is the inverse of .]ߔ ].

Employment of Taylor series expansion of the transformation at the MPP ܺ ∗,

neglecting nonlinear terms [121], can provide the equivalent normal distribution

as:

=ݑ ଵିߔ ݔ)௫ܨൣ
∗)൧+

߲

ݔ߲
൫ൣ ݔ|൧൯(ݔ)௫ܨଵିߔ

∗�∙ −ݔ) ݔ
∗) (3-32)

Where:

߲

ݔ߲
ଵିߔ =൧(ݔ)௫ܨൣ

௫݂
(ݔ)

߮൫ିߔଵ ݔ)௫ܨൣ
∗)൧൯

(3-33)
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After substitution of the above and rearrangement of terms:

=ݑ
−ݔ ݔൣ

∗ − ଵିߔ ݔ)௫ܨൣ
∗)൧߮ ൫ିߔଵ ݔ)௫ܨൣ

∗)൧൯/ ௫݂
ݔ)

∗)൧

߮൫ିߔଵ ݔ)௫ܨൣ
∗)൧൯/ ௫݂

ݔ)
∗)

=
−ݔ ߤ

௫
′

௫ߪ
′

(3-34)

Where: (ݔ)௫ܨ is the marginal cumulative distribution function ௫݂
,(ݔ) is the

probability density function, and ߤ
௫

′ and ߪ
௫

′ are the equivalent means and

standard deviations of the approximate normal distributions, which are given as:

ߪ
௫

′ =
߮൫ିߔଵ ݔ)௫ܨൣ

∗)൧൯

௫݂
ݔ)

∗)
(3-35)

ߤ
௫

′ = ݔ
′ − ଵିߔ ݔ)௫ܨൣ

∗)൧∙ ߪ
௫

′ (3-36)

Another way to get equivalent normal distributions is to match the cumulative

distribution functions and probability density function of the original, non-normal

random variable distribution, and the approximate or equivalent normal random

variable distributions at the MPP [119].

Figure 13: Normalized Tail Approximation [116]

This normalized-tail approximation is shown in Figure 13. Using the above

procedure, the transformation of the random variables from the ܺ-space to the

ܷ-space can be easily achieved, and the performance function ݃(ܷ) in ܷ-space

is approximately obtained.
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The RF method is also called the HL-RF method, since the iteration algorithm

was originally proposed by Hasofer and Lind and later extended by Rackwitz

and Fiessler to include random variable distribution information. For the

extended RF algorithm, the same steps as shown in Figure 12 should be

followed considering one extra block for the transformation of variables before

the definition of the initial design point.

The HL and HL-RF algorithm, approximates the limit-state function, ݃(ܷ), by the

first-order Taylor expansion at the MPP. For nonlinear problems, this approach

cannot adequately approximate ,ߚ requiring several iterations until

convergence, especially for poorly linearization of nonlinear functions ݃(ܷ).

Different approximation could be used alternatively, such as the Two-point

Adaptive Nonlinear Approximations (TANA) [122], including TANA and TANA2.

This set of approximations uses Taylor series expansion in terms of adaptive

intervening variables, overcoming non-linearity problems by using updated

information through the iteration process. TANA2 further includes a correction

term for second-order terms.

3.2.1.2 Second Order Reliability Methods

FORM approximation provides adequate results when the limit-state surface

has only one minimal distance point and the function is nearly linear close to the

design point. For cases where the failure surface has large or irregular

curvatures (high nonlinearity), the failure probability estimated by FORM, using

the safety-index β, may give unreliable and inaccurate results [121]. Introducing

second-order Taylor series expansions (or other polynomials) may overcome

this problem.

Various nonlinear approximate methods have been proposed in the literature. In

[123], [124], [125], [126], [127], and [128] SORM have been developed using

the second order approximation to simplify the original surfaces. In [129] and

[130] second-order approximations are used, forming approximate curvatures in

order to avoid exact second-order derivatives calculations of the limit state

surface.
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3.2.1.2.1 Orthogonal Transformations

Transformation of the U-space to a rotated new standard normal Y-space would

simplify the integration of the limit state function. This can be achieved by

introducing an orthogonal transformation matrix H. Formulation of this is initiated

by defining an initial matrix as:

⎝

⎜
⎜
⎛

−߲݃(ܷ∗) ߲ܷଵ⁄

|∇݃(ܷ∗)|

−߲݃(ܷ∗) ߲ܷଶ⁄

|∇݃(ܷ∗)|
…

−߲݃(ܷ∗) ߲ܷ⁄

|∇݃(ܷ∗)|
0 1 … 0
0 0 … 0
… … … …
0 0 … 1 ⎠

⎟
⎟
⎞

(3-37)

The above matrix can be orthogonalized to obtain H, using several algorithm

such as the Gram-Schmidt algorithm [131]. Denoting ଵ݂, ଶ݂, … , ݂ for the -݅th row

vector of the above matrix, respectively:

ଵ݂ = ቊ
−߲݃(ܷ∗) ߲ܷଵ⁄

|∇݃(ܷ∗)|
,
−߲݃(ܷ∗) ߲ܷଶ⁄

|∇݃(ܷ∗)|
, … ,

−߲݃(ܷ∗) ߲ܷ⁄

|∇݃(ܷ∗)|
ቋ

்

,

ଶ݂ = {0,1,0, … ,0}், …,

݂ = {0,0,0, … ,1}்

(3-38)

Setting:

ଵܦ = ( ଵ݂, ଵ݂)
ଵ
ଶ , ଵ݁ଵ =

1

ଵܦ
ଵߛ, = ଵ݁ଵ, ଵ݂,

ଶܦ = [( ଶ݂, ଶ݂) − |( ଶ݂,ߛଵ)|ଶ]
ଵ
ଶ ,

ଵ݁ଶ = −
(మ,ఊభ)

మ
, ଶ݁ଶ =

ଵ

మ
ଶߛ, = ଵ݁ଶ ∙ ଵߛ + ଶ݁ଶ ∙ ଶ݂

(3-39)

And in a general form:

ܦ = [( ݂, ݂) − |( ݂,ߛଵ)|ଶ − |( ݂,ߛଶ)|ଶ−, … , |( ݂,ߛିଵ)|ଶ]
ଵ
ଶ (3-40)
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ଵ݁ = −
( ݂,ߛଵ)

ܦ
, ଶ݁ = −

( ݂,ߛଶ)

ܦ
, … , ݁ିଵ, = −

( ݂,ߛିଵ)

ܦ
, (3-41)

Where: (݂ , )݂ and (݂ (ߛ, represent the scalar (element by element) product of

two vectors. The generated orthogonal matrix H0 is therefore:

ܪ
் = ଵߛ}

ఁ,ߛଶ
ఁ, … ߛ,

்} (3-42)

The final orthogonal matrix ܪ is derived by moving the first row of the

orthogonal matrix ܪ to the last row as:

்ܪ = ଶߛ}
ఁ,ߛଷ

ఁ, … ߛ,
ଵߛ,்

்} (3-43)

3.2.1.2.2 First-order Approximation

Parallel to what has been discussed in the presentation of the FORM, assuming

the most probable failure point (MPP) in U-space to be ܷ∗ = ଵݑ}
ଶݑ,∗

∗ , … ݑ,
∗ }், the

linear approximation of the response surface ݃(ܷ) = 0 is given by the first-order

Taylor Series expansion at the MPP:

݃(ܷ) ≈ ݃(ܷ∗) + (∗ܷ)݃ߘ ∙ (ܷ − ܷ∗) = 0 (3-44)

Considering: ݃(ܷ∗) = 0, on the response surface, and dividing by :|(∗ܷ)݃ߘ|

݃(ܷ) ≈
(∗ܷ)݃ߘ

|(∗ܷ)݃ߘ|
∙ (ܷ − ܷ∗) (3-45)

And therefore, as in (3-26), we obtain:

(∗ܷ)݃ߘ ∙ ܷ∗

|(∗ܷ)݃ߘ|
= ߚ− (3-46)

Back substituting this equation into the expanded first-order Taylor Series

expression:

݃(ܷ) ≈
(∗ܷ)݃ߘ ∙ ܷ∗

|(∗ܷ)݃ߘ|
∙ ܷ + ߚ = 0 (3-47)

Applying the transformation ܪ into a set of mutually independent standard

normal random variables:



74

ܻ = ܪ ∙ ܷ (3-48)

And (3-46) becomes:

݃(ܷ) ≈ ݕ− + ߚ = 0 ,ݎ ݕ = ߚ (3-49)

The above equation represents the first-order approximation of the response

surface in the Y-space. As in the comparison between FORM and SORM, for

linear or close to linear cases this first order approximation can provide

adequate results. In different cases, second order approximations might be

employed.

3.2.1.2.3 Second-order Approximation

Applying the second-order Taylor series expansion at the MPP for the response

surface ݃(ܷ) = 0 we obtain:

݃(ܷ) ≈ ݃(ܷ∗) + ܷ)்(∗ܷ)݃ߘ − ܷ∗)

+
1

2
(ܷ − ܷ)(∗ܷ)ଶ݃ߘ்(∗ܷ − ܷ∗) = 0

(3-50)

Where:

ଶ݃(ܷ∗)ߘ =
߲ଶ݃(ܷ∗)

∙ݑ߲ ݑ߲
(3-51)

Considering: ݃(ܷ∗) = 0, on the response surface, and dividing by :|(∗ܷ)݃ߘ|

݃(ܷ) ≈ ቆ
(∗ܷ)݃ߘ

|(∗ܷ)݃ߘ|
ቇ

்

∙ (ܷ − ܷ∗) +
1

2
(ܷ − ܷ∗)்ቆ

(∗ܷ)ଶ݃ߘ

|(∗ܷ)݃ߘ|
ቇ ∙ (ܷ − ܷ∗) (3-52)

Denoting:

ܤ = ቆ
(∗ܷ)ଶ݃ߘ

|(∗ܷ)݃ߘ|
ቇ (3-53)

Transformation from ܷ to ܻ-space, the second order approximated limit state

functions may be written as:
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݃(ܻ) ≈ ݕ− + +ߚ
1

2
∙ −ଵܻିܪ) (∗ଵܻିܪ ∙ ܤ ∙ −ଵܻିܪ) (∗ଵܻିܪ (3-54)

Where: ܻ∗ = {0, 0, … ்{ߚ, corresponding to the U-space MPP U*. Due to the

transformation in the Y-space, the yn axis is in coincidence with the β vector

geometrically approaching the calculation problem. Applying the orthogoniality

properties of ܪ , ଵିܪ = ்ܪ and substituting:

݃(ܻ) ≈ ݕ− + +ߚ
1

2
∙ (ܻ− ܻ∗)் ∙ ܪ ∙ ܤ ∙ ்ܪ ∙ (ܻ− ܻ∗) (3-55)

Where: (ܻ− ܻ∗)் = ,ଶݕ,ଵݕ) … ݕ, − ்(ߚ

By a series of orthogonal transformations, ,ଶܪ,ଵܪ ܪ… for the first (n-1)

variables, തܻ= ,ଶݕ,ଵݕ} … :்{ିଵݕ,

തܻ′ = ,ଶܪଵܪ ܪ… തܻ (3-56)

The resultant ഥ்ܪതܤഥܪ matrix may be written as:

ഥ்ܪതܤഥܪ =

⎝

⎜
⎛

ଵ݇ 0 … 0
0 ଶ݇ … 0
0 0 … 0
… … … …
0 0 … ݇ିଵ⎠

⎟
⎞

(3-57)

Where:

݇ = ,(ഥ்ܪതܤഥܪ) ( ,݆݅= 1,2, … ,݊− 1) (3-58)

Having obtained the ഥ்ܪതܤഥܪ matrix, and using Breitung’s formulation [132], the

revised value of the ܲ, can be estimated as a correction of the value obtained

by FORM:

ܲ ≈ Φ(−ߚ)ෑ (1 + ݇ߚ)ିଵ/ଶ

ିଵ

ୀଵ

(3-59)

Based on the same logic, for the calculation of ܲ different formulations can be

used, such as Tvedt’s formulation, applying two further corrective terms for the

calculation of ܲ, providing:
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ܲ ≈ Φ(−ߚ)ෑ (1 + ݇ߚ)ି
ଵ
ଶ +

ିଵ

ୀଵ

+ [Φ(−ߚ) − ቐෑ[(ߚ)߮ (1 + ݇ߚ)ି
ଵ
ଶ

ିଵ

ୀଵ

− ෑ ൫1 + ݇(ߚ+ 1)൯
ି
ଵ
ଶ

ିଵ

ୀଵ

ቑ+

+ߚ)+ 1)[Φ(−ߚ) − ቐෑ[(ߚ)߮ (1 + ݇ߚ)ିଵ/ଶ

ିଵ

ୀଵ

ቑ− ܴ݁ቐෑ ൫1 + ݇(ߚ+ 1)൯
ିଵ/ଶ

ିଵ

ୀଵ

ቑ

(3-60)

Although the second order approximation can in general provide more accurate

results for a wider range of limit state functions it involves a considerable

computational cost in the computation of the derivatives of .ܤ Especially for

problems with a high number of variables where the size of matrices increases,

this problem becomes even more extensive, yielding for appropriate selection of

calculation method or scheme.

3.2.2 Simulation Methods

Simulation methods have been proposed in literature both for the representation

of statistical distributions, but also for the solution of the complicated integral of

the probability of failure using directly the results from multiple computational

experiments. In the following sections, Monte Carlo Simulation, including

importance sampling, and Latin Hypercube Simulation will be presented as

sampling methods and Design Point, Monte Carlo Simulation, Directional and

Axis-orthogonal Simulation as simulation methods that will be used in later

sections. Presentation of simulation methods will be based on [133], since

PROBAN software will be used for the verification of the codes developed.

3.2.2.1 Sampling Methods

3.2.2.1.1 Monte Carlo Simulation

Monte Carlo Simulation is based on the work of Neumann and Ulam [134]. It

refers to a simple random sampling method that generates random sampling

sets for several types of uncertain variables. During the last decades, this tool

has been developed significantly allowing approximation of the probability of an
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event that is the output of a stochastic process. Once a distribution type has

been selected, a sampling set is generated that will later serve as input in the

simulations.

The basic concept of the method can be described by a simple problem of

calculation of the area of a specific polygon, as it is shown in Figure 14. The

area can be approximately calculated by the ratio of the number of points that

fall inside the specified area, over the total number of the sample, normalized to

the total area of sampling. The area can also be calculated geometrically, and a

simple sensitivity analysis can show that the greater the sampling number the

more accurate the results. Therefore the reference area is represented by the

probability of falling inside the area for a given number of trials.

Figure 14: Area calculation with Monte Carlo Simulation (500 and 5000

sampling points)

In problems of structural reliability, once the stochastic variables have been

identified, sampling sets are generated according to the corresponding

probability density functions. Following, simulations are executed using the

generated sampling sets in order to obtain the response of the structure. In the

area calculation example, the limit state function is represented by the

boundaries of the area to be calculated. For N trials, the probability of failure is

given as:
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ܲ =
ܰ

ܰ
(3-61)

Generation of random variables of a stochastic distribution can be realized

based on the inverse transform method. Considering ௫ܨ to be the cumulative

distribution function of the random variable ݔ with values in the range [0,1].

Assuming ݒ to be a generated random variable that follows a uniform

distribution, this method connects andݔ asݒ follows:

(ݔ)௫ܨ = →ݒ =ݔ ܨ
ିଵ(ݒ) (3-62)

Figure 15, illustrates the basic concept of the inverse transform method.

Figure 15: Inverse transformation method

3.2.2.1.2 Latin Hypercube Method

The Latin Hybercube Method, initially proposed in [135], is a method that can

represent multiple variables avoiding over-lapping data sets. Application of the

method initiates by dividing the distribution of each stochastic variable in n non-

overlapping intervals with equal probability. For each of the variables, one value

should be randomly selected from each interval and the analysis point obtained

from each dataset is then associated. The homogeneous allocation of intervals
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on the probability distribution function results in relatively small variance in the

response, compared to the conventional Monte Carlo sampling. At the same

time, the analysis is much less computationally demanding to generate. Figure

16, presents the case of a two variable sampling problem.

Figure 16: Latin Hypercube Method

3.2.2.2 Simulation on Reliability Analysis

3.2.2.2.1 Monte Carlo Simulation Method

The basic formulation of the Monte Carlo Simulation for the calculation of the

probability of success of an event, introduces the indicator function I(x), in the

-spaceݔ as follows:

(࢞)ܫ = ൜
1
0

if (࢞)ܩ ≤ 0
if (࢞)ܩ > 0

� (3-63)

The probability of success of an event is then estimated as the fraction of the

successful realizations of the iterations over the number of samples:

ܲ
ா =

1

ܰ
 (࢞)ܫ

ே

ୀଵ

(3-64)
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Figure 17: Monte Carlo Simulation Method

For cases with a large number of random variables or with a very low probability

of failure, a large number of sampling sets is required, hence increasing highly

the computational time and effort. For example, the probability of failure could

be as small as 10-9; this implies that at least a billion simulation repetitions are

required to predict this behaviour. Several techniques may be employed in

order to avoid the inefficiency of direct MCS: importance sampling, subset

simulation, line sampling, etc. Further, variance reduction techniques have been

developed for a dual purpose: to reduce the computational cost and increase

accuracy using the same number of runs [136].

The importance sampling method is a modification of Monte Carlo simulation in

which the simulation is biased for greater efficiency; the sampling is done

primarily in the tail of the distribution to ensure that sufficient simulation failures

occur [137]. Starting from the basic definition of Monte Carlo Simulation for

uncorrelated variables, the mathematical formulation of the method for the

expected value of the probability of failure is described as [138]:

൫݃ܧ (ܺ)൯=  (ݔ)݃ ݂(ݔ)

௫∈ఞ

(3-65)
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Where: (ݔ)݃ is the indicator function, and ݂(ݔ) the initial statistical distribution.

The Importance Sampling introduces another distribution (ݔ) called ‘the

sampling distribution’ from which samples will be drawn instead of ݂(ݔ).

൫݃ܧ (ܺ)൯=  (ݔ)݃ ݂(ݔ)

௫∈ఞ

=  (ݔ)݃
݂(ݔ)

(ݔ)
(ݔ)

௫∈ఞ

(3-66)

Thus,

෨൫݃ܧ (ܺ)൯=
1

݊
 (ݔ)݃

݂(ݔ)

(ݔ)



=1

=
1

݊
 (ݔ)݃ (ݔܾ)



=1

(3-67)

Where:

(ݔܾ) =
݂(ݔ)

(ݔ)
(3-68)

The basic idea of importance sampling is to draw from a similar distribution and

then modify the result to correct the bias introduced by sampling the wrong

distribution. For the normal distribution, using a density function with a higher

standard deviation in Monte Carlo analysis leads in more samples being drawn

from the extremes of the distribution [139].

This importance sampling density function satisfies the four following properties

[137]:

 (ݔ) > 0 whenever ݂(ݔ) ≠ 0

 (ݔ) should be close to being proportional to | ݂(ݔ)|

 It should be easy to simulate values from (ݔ)

 It should be easy to compute the density (ݔ) for any value ݔ

Another variance reduction technique is that of the subset sampling. The main

concept behind this is to express the failure event as a sequence of partial

failure events (subsets) [140]:

ଵܨ ⊃ ଶܨ ⊃ ⋯ ⊃ ܨ = ܨ (3-69)

Then:
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ሩ ܨ



ୀଵ

= ܨ ∀݇≤ ݉ (3-70)

Hence the probability of failure is a product of conditional probabilities:

ܲ = ܨ)ܲ ) = ܲ൭ሩ ܨ



ୀଵ

൱ = ܲ൭ܨ | ሩ ܨ

 ିଵ

ୀଵ

൱ܲ൭ሩ ܨ

 ିଵ

ୀଵ

൱

= ܨ)ܲ ܨ| ିଵ)ܲ൭ሩ ܨ

 ିଵ

ୀଵ

൱

(3-71)

And finally:

ܲ = ܨ)ܲ ) = (ଵܨ)ܲ ෑ (ܨ|ାଵܨ)ܲ

 ିଵ

ୀଵ

(3-72)

The determination of a small probability of failure using Monte Carlo simulation

requires high computational effort. The division into subsets allows transferring

the simulation of rare events to a set of simulations of more frequent events

where the probabilities of failure are easier to calculate in terms on

computational effort. The probabilities (ଵܨ)ܲ and (ܨ|ାଵܨ)ܲ can be made

sufficiently large so that their estimation can be performed efficiently by direct

Monte Carlo Simulation [141].

3.2.2.2.2 Design Point Simulation

This method was introduced in [142] and it refers to application of MC sampling

around the design point. After initial approximation of the MPP in the u-

dimensional space, Monte-Carlo simulation is executed around this point

instead of running simulations in the wider range of each distribution. As for the

Monte Carlo Simulation, a weighted indicator function for each simulation is

introduced in the sampled u-space point =ݑ ݀+ whereݒ d is the design point

u* or optionally a point shifted from the design point, and ݒ the normal

independent variables from which the Monte-Carlo simulation method samples

from. The indicator function I(u) for each simulation is:
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(࢛)ܫ = ൜
1
0

if (࢛)݃ ≤ 0

if (࢛)݃ > 0
� (3-73)

The probability of success of an event is then estimated as:

ܲ
ா =

1

ܰ
 (ݑ)ܫ

ே

ୀଵ

ቌෑ ߪ



ୀଵ

ቍ
∑൫ݔ݁ ,ݑ

ଶ
ୀଵ ൯

−ቆݔ݁ ∑ ൬
−,ݑ ݀,

ߪ
൰
ଶ


ୀଵ ቇ

(3-74)

Where: di is the design point coordinate, and σi is the standard deviation of the

sampling density. Back substituting v = u - d, the probability of success of an

event is:

ܲ
ா = ߮(݀)

(ߨ2) ଶ⁄

ܰ
 (ݑ)ܫ

ே

ୀଵ

ቌෑ ߪ



ୀଵ

ቍ −ݒ்݀−൮ݔ݁  ,ݒ
ଶ



ୀଵ

ቆ1 −
1

ߪ
ଶቇ൲ (3-75)

Considering standard deviation to be equal to 1 for standardized variables and d

is the design point:

ܲ
ா = (∗ݑ)߮

(ߨ2) ଶ⁄

ܰ
 (ݑ)ܫ

ே

ୀଵ

(ݒ்(∗ݑ)−)ݔ݁ (3-76)

Figure 18: Design Point Simulation
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3.2.2.2.3 Directional Simulation

The Directional Simulation method, introduced in [143], samples different

directions, uniformly distributed on the -݊dimensional surface at the origin of the

.space-ݑ Different variance reduction methods have been proposed in order to

increase efficiency of the method. The method allows unbiased and efficient

sampling of small probabilities, provided that the number of variables is not

large. The probability of success of an event is expressed as:

ாܲ = න ௫݂
మ(ݒ)݀݀ݒ ߗ

(௨ࢇ)ஸ

(3-77)

Where: v is a ݔ
ଶ-distributed random variable, a is a unit vector and dΩ is the

surface element of the -݊dimensional unit sphere. Each unit direction ai is

sampled and the function ݔ
ଶ conditioned on ܽ is integrated. This is done by

finding the upper bound ௨,ݒ and the lower bound ,ݒ of the intervals where

(ࢇݑ)݃ ≤ 0 and by adding these contributions to the integral.

(ࢇ)ܲ =  ቀݔ
ଶ൫ݒ௨,൯− ݔ

ଶ൫ݒ,൯ቁ



ୀଵ

(3-78)

The estimated probability of occurrence of the event sampled in ܰ total

directions is:

ܲ
ா =

1

ܰ
 (ࢇ)ܲ

ே

ୀଵ

(3-79)
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Figure 19: Directional Simulation

3.2.2.2.4 Axis-Orthogonal Simulation

The method, proposed in [144] and [145] defines an axis for a small intersection

domain, and a sampling density in a plane orthogonal to this axis. The method

approximates the boundaries of an event by a set of linear surfaces obtained by

using the FORM linearization of small intersection domains. The probability of

the linearized domain is obtained by methods available for the multi-normal

distribution. The axis-orthogonal simulation method estimates an approximation

of the true probability; the quality of this approximation follows that of the quality

of the multi-normal integral. A method for correction of the approximate results

is described in [146].

Considering: ܽ, to be the averaged gradient of a set of normalized gradients ܽ

for the single events, pointing into the interior of at the design point as:

ܽ = −
∑ ܽ

ୀଵ

ห∑ ܽ

ୀଵ ห

(3-80)

A new axis is defined rotating the initial coordinates as:

௨ܽ = ݑ + ݑ ݁ (3-81)

Where: ݑ is the design point in the new coordinates and ݁ is the unit vector in

direction of .ݑ The probability of the event ܧ is calculated as follows:
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ாܲ = ܲ න
ܲ(ݑ)

൯(ݑ)ݑ−൫ߔ
(௨)ஸ

ெܪ =ݑ݀(ݑ) ܲܥ (3-82)

Where: ܲ is the probability of the linearized domain, ܥ is the multiplicative

correction, (ݑ)ݑ is the intersection of the linearized domain and

(ݑ)ܫ = +ݑ ݑ ݁ (3-83)

ܲ(ݑ) is the true probability of the event conditioned on the line defined by I(un).

The estimator for ܥ is:

=መܥ
1

ܰ


ܲ(ݑ)

൯(ݑ)ݑ−൫ߔ

ே

ୀଵ

(3-84)

The integral estimator is implemented:

ܲ(ݑ) = න (ݑ)ߔ

(௨,௨)ஸ

ݑ݀ (3-85)

The integral is evaluated through a search for the points un(Ii) and un(ui)

denoting the lower and upper bounds of the intervals where is less than zero,

and then to sum up for ݉ intervals as:

ܲ(ݑ) =  ቀߔ൫ݑ(ݑ)൯− )ݑ൫ߔ ݈)൯ቁ



ୀଵ

(3-86)
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Figure 20: Axis-Orthogonal Simulation

3.3 Stochastic Response Surface Method

3.3.1 General Concept

In complex three-dimensional structures, such as a jacket structure, A

mathematical relationship between the actual loading acting on the whole

structure (eg. wave or wind loads) and the actions that each member is

subjected to (eg. axial force and bending moments) is difficult to be explicitly

expressed. For such cases of complicated failure processes, simulation

techniques can deal with the complexity of the problem; however, they are often

inefficient for the calculation of small values of probability of failure, since a

great number of iterations is required until sufficient results are derived. In [147]

an analytical procedure from Rubinstein is presented. Alternative procedures for

the calculation of the optimum sampling number can also be found in [148],

[149], but comprehensive presentation is beyond the scope of this Thesis.

For such cases, where simulation techniques are computationally intensive, the

stochastic response surface method (SRFM) [150], [151], can provide an

accurate estimation of structural reliability, regardless of the complexity of the

system under consideration. The concept of this method is the approximation of

the actual limit state function, which in some cases can be unknown, using
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simple and explicit mathematical functions of the random (stochastic) variables

affecting the response of the structural member or system. Those functions can

be simple polynomials (eg. second or of higher order) with coefficients that can

be calculated by fitting the response surface function to a number of sample

points from calculation of the response of the member. In this explicit

expression of the limit state function First and Second Order Reliability Methods

can be applied for the estimation of the reliability index and therefore the

probability of failure. Further, although the number of variables is the same in

the response surface function and the initial limit state function, simulation

techniques are more computationally efficient since this expression is less

complicated than matrix manipulation.

Limitations of the Stochastic Response Surface Method arise in cases where

the initial limit state includes non linearities or in cases where very low

probabilities of failure should be accurately calculated. The above comments

are highlighted in [152] and [153], and are caused due to the improper

representation of the response surface based on arbitrary sample points that

might be relatively far from the MPP. In order to overcome these restrictions,

several methods have been proposed based on the adaptation of the response

surface function to the location close to the design point, as this will be indicated

by the FORM, are included in [154], [155], [156], [157], [158], and will be

presented later in this chapter. In [159], the accuracy of a highly non-linear limit

state depends on the initial selection of sampling points.

In most cases, the order of polynomials that is selected for the approximation of

the response surface function is 2 (quadratic terms) since it demands few

sample points - (2݊+ 1) - for the approximation of the coefficients of the

function. In [159], the use of higher order polynomials is investigated in depth.

The disadvantage of this practice is that it needs more sampling points,

requirement that is not always feasible, due to difficulty in the computational

process and the fact that ill conditioned matrices are structured for the

derivation of the coefficients of the polynomials through regression [160], [161].

The latter problem can be overcome through use of Chabyshev polynomials
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and statistical analysis of the high-order response surface [160]. In Figure 21, a

chart representing the regression coefficient based on the Least Square Method

(LSM) and the R2 criterion is presented for the estimation of the stress (v.

Mises) response of a structural member under combined loading, modelled with

three stochastic variables and using 25 sampling points from the original limit

state function. The oscillation of the regression coefficient due to the quality of

the regression design matrix can be observed.

Figure 21: Regression vs. Order of Polynomial

Figure 22: Different Sampling Approaches [160]

In [162], an algorithm is presented that uses quadratic response surface

obtained from central composite designs (ARERSA - Adaptive Reliability

Estimation Response Surface Algorithm). After a global search and once the

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0 1 2 3 4 5

R
2

Order of Polynomial



90

most likely failure point domain is identified, an updated response surface is

fitted locally, in order to apply the reliability calculation routines. Complementary

checks for valid solutions might be executed in order to ensure validity of the

results. In [163], an algorithm is proposed (RSAED - Response Surface with

Adaptive Experimental Design) which approximates the response surface in the

standardized u-space. This algorithm uses previous results and calculations

and reduced numerical procedures. In cases of highly non linear target limit

state surfaces, the ‘gradient projected technique’ [164] would approximate the

actual limit state surface with a linear one. Further to this work, a ‘cumulative

response surface method’ has been proposed [165] according to which a

design point is calculated based on FORM and an initial linear response

surface. Second order terms are then employed to more accurately

approximate the limit state function and SORM should be used to find the new

design points. Further refinement of the response surface is done in the area

around the current design point.

Most of the methods and algorithms that are available in literature, concentrate

of the use of polynomials with quadratic terms due to the simplicity of the linear

systems and the limited sample points required. In [166], a method is proposed

that aims to reduce the number of samples based on statistical properties of

polynomials to account for the dependence of the stochastic variables with the

response of the system.

3.3.2 Review and Notation

Considering a vector ܺ = ,ଶݔ,ଵݔ] … [ݔ, to be the vector containing ݊ stochastic

variables of a system, and (ݔ)݃ to be the limit state function that represents the

critical failure surface, the probability of failure of the system is described as

ܲ = (ݔ)݃]ܲ < 0]. The approach of the response surface method, introduces a

new polynomial function ݃(ݔ), of -݇th order, that will use adequate sample

points to determine the coefficients of the polynomial. The most common

notation of the function, as it has been initially proposed [150] uses second

order – quadratic – polynomials:
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݃(ݔ) = ܽ+  ܾܺ 



ୀଵ

+  ܿܺ 
ଶ



ୀଵ

(3-87)

In order to calculate the (2n+1), ,ܽ ܾ and ܿ coefficients, an equal or a greater

number of sample points is required. Determination of sampling points can be

done in a way that the measured response is mapped in a better way.

According to different methods, the number of samples can be from (2n+1) to

3n, commonly combining ߤ and ±ߤ ߪ݂ where ߤ and ߪ are the mean value

and standard deviation of stochastic variable ܺ, and ݂ is a coefficient (typical

value is 3). Figure 22, presents different patterns of samples combinations for a

two variables problem [160].

In cases of linear limit states, selection of parameter ݂ is less significant than for

those with a non linear performance. In the later cases, selection of sampling

points is significant for the approximation of the initial limit state functions.

Another expression of the generic polynomial approximation of quadratic limit

states is presented in [167], and includes mixed terms of the stochastic

variables. Although this expression increases the complexity of the design

matrix for the calculation of the polynomial coefficients, it may capture non-

linearity of a limit state. The required number of sample points among the -݊

dimensional space is between ቀ
(ିଵ)

ଶ
+ 2݊+ 1ቁ and (3), and the

corresponding mathematical formulation:

݃(ݔ) = ܽ+  ܾܺ 



ୀଵ

+  ܿܺ 
ଶ +   ݀ܺ ܺ 



ୀାଵ

ିଵ

ୀଵ



ୀଵ

(3-88)

Table 5, presents an example of approximation of a quadratic limit state

function of 3 stochastic variables, approached by (2n+1)=7 and 3n=27

neglecting mixed terms since, for the problem considered (response of a

member), linear performance was expected. Reliability index was calculated

with FORM and SORM Methods. From those results it can be observed that the

smaller sample can approximate the limit state for reliability index calculation

introducing an error in estimation.
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β Pf

N FORM SORM FORM SORM

3
n

4.6661 4.6488 1.54E-06 1.67E-06

3n+1 4.2853 4.2853 9.13E-06 9.13E-06

Table 5: Reliability Index and Probability of Failure vs. Sampling Number

3.3.3 Adaptive Response Surface Method

In [168], a procedure of weighted regression is been presented and in [169]

examples are examined in order to illustrate the benefits of the method. An

initial sample, as it was been described in Figure 22, ‘maps’ the whole range of

each variable, and the sample points contribute equally in the formation of the

design matrix for the calculation of the regression coefficients. Conventional

formulation of the least square method, as it can be found in [170] or other

regression analysis handbooks, denotes that for quadratic approximation and 

sampling points, the design matrix ௨ܯ of the independent variables and the

vector ݃with values of the response (dependent variables) as:

௨ܯ = 

1 ଵଵݑ .
. . .
1 ଵݑ .

ଵݑ ଵଵݑ
ଶ .

. . .
ݑ ଵݑ

ଶ .

ଵݑ
ଶ ଵݑ ∙ ଵݑ
. .

ݑ
ଶ ݑ ∙ ݑ



݃̅ = [ ଵ݃ . ݃]்

(3-89)

Calculation of coefficients vector തܽ, based on normal regression, is obtained by

solving the following linear system:

തܽ= ܯ)
ܯ)ିଵܯ்

்݃̅ (3-90)

The weighted regression introduces a diagonal weighted matrix ܹ ீ that gives

greater weights in the points closer to the limit state function. Therefore, the

equation in a matrix form, that includes the weighted regression would become:

തܽ= ܯ)
்ܹ ܯ)ିଵܯீ

்ܹ ீ݃̅ (3-91)
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According to [168], for the construction of ܹ ீ, after an initial set of simulations,

a limit state function is obtained and the best design value ො௦௧ݕ (or ݃ ) is

selected as the one that minimizes the initial response surface:

ො௦௧ݕ = ݉ ݅݊ ห݃ ′
௫
ห (3-92)

The elementݓ in the diagonal weight matrix ܹ , would be obtained as:

=ݓ −ቆݔ݁
−(ݔ)݃′ ො௦௧ݕ
ො௦௧ݕ

ቇ (3-93)

Based on this weight matrix, weighted regression formulas can be executed,

correcting the initial approximation. This formulation of the weight coefficients

has the drawback that if one of the sample points lies on or very close to the

limit state function, ො௦௧ݕ ≈ 0 and therefore the regression system becomes ill

conditioned, providing inconsistent results. In order to overcome this problem,

two different expressions for the weight coefficients are proposed in [169].

Initially, a different reference point is selected rather than .ො௦௧ݕ This is the value

of the limit state function at the origin of the standardized space ,(ݑ)݃ which for

commonly measured probabilities of failure is different than zero. Therefore:

ீݓ = −ቆݔ݁
−(ݔ)݃′ (ݑ)݃

(ݑ)݃
ቇ (3-94)

Further optimization of the procedure, based on CQ2RS (Complete Quadratic

Response Surface with Resampling) Method [171], imports an additional

‘penalty factor’. For each iteration of the reliability calculation procedure, the

relative distance ܦ between the sampling points and the current design point

ܲ is used to form the weight factors as:

ݓ = −ቆݔ݁
ܦ
ଶ

2
ቇ (3-95)

The resulting weight matrix for the linear regression system is:

ܹ ீ = ீݓ ∙ ݓ (3-96)
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3.3.4 Algorithms of the Stochastic Response Surface Method

Based on the work that has been carried out so far, algorithms that combine

FORM/SORM with linear and quadratic response surfaces approximation are

developed. The normal Response Surface Method is initiated by formulation of

combinations of different sets of variables, as presented in Figure 22. From the

responses that are obtained, quadratic regression can be executed and the limit

state surface can be formulated. This algorithm provides sufficient results for

cases where the response of the system under investigation behaves linearly as

a function of the basic stochastic variables. Especially for cases such as the

complex jacket structure that will be investigated in the next chapters, where

simulations are obtained by an external software package, this method provides

efficient results both in accuracy and in computational effort considering that the

number of simulations can be obtained by (2݊+ 1) combinations Figure 22 (a).

In cases where the simulation procedure can be programmed to automatically

execute new simulations, the adaptive Response Surface Method can be

formed, which can perform better in cases of non-linear limit state functions and

accurate calculation of small probabilities. The first step of application of the

method suggests characterization of main variables as either favourable

(resistance variable) or unfavourable (load variables). In order to achieve this, a

reference value ݃( തܺ) should be obtained by calculating the value of the limit

state function for the mean values of the stochastic variables തܺ. For each of the

variables a value of =ݔ పഥݔ − ߪ݂ (value for ݂ can be selected as 3 in order to

represent a point at the tail of the distribution) is calculated, and the comparison

|݃(ܺ)| < |݃( തܺ)| will mark for the variable an indicator -1 else wise +1. The

above procedure will provide (n+1) points that will allow linear regression to be

executed.

Having obtained an initial, linear response surface function based on samples

that lie within the whole range of each variable, a first iteration of FORM will run,

based on the mean values of the stochastic variables. An initial value for ߚ and

a new design point can then be obtained as:
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ଵݔ = పഥݔ + ௫ܽߪߚ 

= పഥݔ +
݃(ܷ∗) − ∑

߲݃(ܷ∗)
ݔ߲

∙ ௫ߪ ∙ ݑ
∗

ୀଵ

ඨ∑ ൬
߲݃(ܷ∗)
ݔ߲

∙ ௫൰ߪ
ଶ


ୀଵ

௫ߪ

߲݃(ܺ∗)
ݔ߲

∙ ௫ߪ

ቈ∑ ൬
߲݃(ܺ∗)
ݔ߲

∙ ௫൰ߪ
ଶ


ୀଵ 

ଵ
ଶൗ

(3-97)

Based on this new series of n points combined with the mean value point and

including the previous (n+1) points, quadratic regression can be executed. A

weight matrix will account for the contribution of each of the sample points to

the actual response surface giving a higher weight to the points closer to the

design point.

ீݓ = −ቆݔ݁
−(ݔ)݃′ (ଵݔ)݃

(ଵݔ)݃
ቇ (3-98)

Following this procedure of a dynamically constructed response surfaces and

considering that linear limit state functions converge after only a few iterations,

this procedure can provide adequate results in the calculation of FORM/SORM

reliability index.

3.4 Regression methods

3.4.1 Linear Regression

In the problem where two (or more) variables are required to be expressed as a

function, linear regression is the fundamental concept to follow. In an

experimental procedure this can represent the problem of correlating

measurements to properties. Linear regression refers to approaching the

dependent variable as a linear function of some parameters (independent

variables); otherwise regression should be characterized non-linear.

Graphically, this approach assumes that the plotted sets of dependent and

independent variables can be represented efficiently with one straight line. The

earlier method proposed by Gauss and Legendere is referred to as the Least

Squares Method (LSM), and provides a solution by minimizing the absolute
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distance between the data provided and the potential function (residuals) to find

the optimum fit. Following a mathematical notation it can be expressed as:

(ݔ)ݕ = ܽ + ଵܽ ∙ ଵ݂(ݔ) + ଶܽ ∙ ଶ݂(ݔ) + ⋯ + ௩ܽ ∙ ௩݂(ݔ) + ݁ (3-99)

Where, ܽ݅= 1,2, . . . ݒ, is the regression coefficient vector and ݁ the error of the

model equation. Forming the above equation in a matrix form:

ܻ = ܺ ∙ +ߙ ݁ (3-100)

Where,

ܻ = 

ଵݕ
ଶݕ
⋮
ݕ

, ܺ = ൦

1 ଵ݂(ݔଵ) ଶ݂(ݔଵ) … ݂ (ଵݔ)

1 ଵ݂(ݔଶ) ଶ݂(ݔଶ) … ݂ (ଶݔ)

⋮
1

⋮

ଵ݂(ݔ)
⋮

ଶ݂(ݔ)
⋮
…

⋮

݂ (ݔ)

൪, ܽ= 

ଵܽ

ଶܽ

⋮
ܽ

, ݁= 

ଵ݁

ଶ݁

⋮
݁



The least squared method, expressed in a matrix form, is expressed as follows

in order to derive the regression coefficients vector :ܽ

ܽ= (்ܺ ∙ ܺ)ିଵ ∙ ்ܺ ∙ ܻ (3-101)

Having calculated the regression coefficients, the values of the dependent

variables for the sampled dependent ones and the error for each of them is:

തܻ= ܺ ∙ ܽ and ݁= ܻ− തܻ (3-102)

The total sum of squares SST, regression sum of squares SSR and error sum

of squares SSE are calculated as:

ܵܵ ܶ = ்ܻ ∙ ܻ

ܵܵ ܴ = ்ܻതതതത∙ തܻ= ்ܽ ∙ ்ܺ ∙ ܻ

ܵܵ ܧ = ܵܵ ܶ− ܵܵ ܴ

(3-103)

In order to evaluate the level of accuracy of the modelled equation, a coefficient

of determination (ܴଶ) can be calculated as follows. The practical meaning of this

equation, implies that when the regression sum of errors equals zero, and
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therefore ܴଶ = 1 the modelled function satisfies all of the sets of (ݔ,ݕ) and

therefore absolute regression has been achieved.

ܴଶ = 1 −
ܵܵ ܧ

ܵܵ ܶ
(3-104)

3.4.2 Multivariate Regression

For the case where more than one independent or dependent variables are

present, the fundamental equation can be solved providing adequate sets of

.(ݔ,ݕ) The general problem can be described as:

(ݔ)ݕ =  ∙ࢇ ,ଶݔ,ଵݔ) … (ݔ,



+ ݁ (3-105)

Considering monomials, this can also be described as:

(ݔ)ݕ =  ∙ࢇ ଵݔ
ఈ ∙ ଶݔ

ఉ…



ݔ
ఠ+ ݁ (3-106)

Where: ࢇ are the regression coefficients and ߚ,ߙ ,…, ߱ are the power

coefficients for the independent variables.

For a case where the maximum monomial degree is 2, with 2 independent

variables, the expression can be rewritten as:

(ݔ)ݕ = ܽ + ଵܽ ∙ ଵݔ + ଶܽ ∙ ଶݔ + ଷܽ ∙ ଵݔ
ଶ + ସܽ ∙ ଶݔ

ଶ + ହܽ ∙ ଵݔ ∙ ଶݔ + ݁ (3-107)

Considering ܻ to be a (݊× (ݍ data matrix containing the dependent variables, ܺ

to be a (݊× ( data matrix containing the independent variables, ܣ a ×) (ݍ

data matrix with the regression coefficients and ܧ is (݊× (ݍ matrix with the error

terms. It forms the above equation in a matrix form:

ܻ = ෨ܺ∙ ܣ + ܧ (3-108)

Where ෨ܺ denotes a matrix formed from X, containing the different powered

values of X.
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The above dimensions of the participating matrices imply that in order for the

system to have a solution, ×) (ݍ sets of data should be available. An

important observation that can ensure accuracy in the regression coefficients

results is the level of how well conditioned the matrix ்ܺ ∙ ܺ is.

3.4.3 Alternative Regression Methods

For a higher quality of response surface, schemes such as the central

composite design method [172] might be employed allowing redundancy in

some of the data sets. Drawback of this scheme is that it requires a large

number of data (N=2n+2n+1) in order to approach the exact limit state function

with a quadratic equation by regression. Increase in the number of variables

exponentially increases the required computational effort. A different approach,

suitable for asymptotic behaviour of the structural behaviour is the selection of

inverse polynomials as interpolating functions [173] providing good regression

results but increasing the complexity of the problem.

A different method for regression analysis is ‘kriging’, which is a procedure for

constructing a minimum error variance linear estimate at a location where the

true value is unknown. Initially used for geological applications its use has been

extended to a wide variety of different applications including aerodynamics,

structures, and multi objective problems [174]. Extensive background theory of

the method can be found in [175] and [176] while an initial application in the

response surface method is presented in [177] for the solution of the problem of

the reliability analysis of damaged steel structures using finite element analysis.

Corresponding to the common regression expressions, the predicted results

from the kriging model may be obtained from:

=ොݕ +መߚ −ݕଵ൫ିܴ(ݔ)்ݎ መ൯ߚ݂ (3-109)

Where ’ݕ’ is predicted response value at x, ’x’ are the sample points, ’ ’ߚ is the

constant underlying global portion of the kriging model, ’ ’ݎ is the correlation

vector of length n, ’ ܴ’ is an n×n symmetric matrix with ones along the diagonal
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and ’ ’݂ is column vector of length n. The method can in general approach

complicated surfaces with multiple variables.

3.5 Numerical model Developed

3.5.1 Description

The algorithm that has been implemented for the reliability calculation in the

application sections of this Thesis is based on the methodology that has been

presented in paragraph 3.3 and 3.4. MATLAB was selected as the proper

programming language for this scope due to its simplicity and the wide range of

tools that are available in order to simplify and optimize the programming

procedure.

In the case when a methodology is proposed and a new code is conducted,

verification is a very important step towards establishing its accuracy and

efficiency. In the next sections, the algorithm that has been proposed using a

normal and an adaptive response surface and FORM/SORM reliability methods,

will be compared to results obtained by direct simulation for the problem of a

simple 3-dimensional truss under stochastic loading. For this to be achieved an

FEA code will be initially conducted and the corresponding sequence of steps

will be followed. The Matlab FEA code has been verified for a deterministic case

using the commercial software ABAQUS (and DNV SESAM Genie), while the

reliability estimation routine has been verified according to DNV SESAM

PROBAN software for different cases of estimation of the probability of failure

within different range of values and using different numerical techniques. In all

cases the algorithms and the codes have been found to provide adequately

good results. Figure 23 to Figure 25 present in a block diagram form the

reliability analysis procedure based on direct simulation as well as the normal

and adaptive Response Surface Method.
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Figure 23: Calculation of reliability based on Direct Simulation

Figure 24: Calculation of reliability based on Normal Response Surface

Method

DEFINITION OF VARIABLES AND
FEA MODEL DIMENSIONS

DEFINITION OF SAMPLING NUMBER

GENERATION OF SAMPLING SETS
FROM INDEPENDENT VARIABLES

SOLUTION OF THE FEA PROBLEM
FOR EACH DATA SET AND

CALCULATION OF THE LIMIT STATE
FUNCTION

FROM THE VALUES OBTAINED
DERIVE THE PROBABILITY OF

FAILURE AND ANALYTICALLY β

Chapter 4

Par. 3.2.2.1

Par. 3.5.2.1

Par. 3.2.1

DEFINITION OF VARIABLES AND
FEA MODEL DIMENSIONS

SOLUTION OF THE FEA PROBLEM
FOR EACH DATA SET AND

CALCULATION OF THE LIMIT STATE
FUNCTION

CREATE (2n+1) SETS OF
VARIABLES (xi±fσi), xi

APPLY REGRESSION FOR (2n+1) DESIGN
POINTS

APPLY ITERATIVE FORM/SORM AND
CALCULATE β

Chapter 4

Par. 3.3.1

Par. 3.5.2.1

Par. 3.3.1

Par. 3.2.1



101

Figure 25: Calculation of reliability based on Adaptive Response Surface

Method
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3.5.2 Verification Process

3.5.2.1 FEA Code

3.5.2.1.1 Basic Theory of FEA

The FEA code that is conducted is based on the fundamental idea of the Finite

Element Analysis method to numerically find approximate solutions of the partial

differential equations (or integral equations) that model the system. Basic

literature can be found in [178], [179] and [180]. Here the case of a 3

dimensional frame structure will be considered. Based on linear interpolation

and matrix calculations, programming of this method is feasible and obtaining of

a solution with a low computational cost. The most significant operation in

computational effort is the derivation of the inverse of a square matrix. The

background theory modelled is mainly based on [181].

For a 3D frame two-node element, each node has 6 global degrees of freedom:

3 in translation, 3 in rotation. A vector of displacements in the local coordinates

system can be formulated as:

்࢛ = ௫ݑ] ௬ݑ ௭ݑ ௫ߠ ௬ߠ ௭ߠ ௫ݑ ௬ݑ ௭ݑ ௫ߠ ௬ߠ [௭ߠ (3-110)

Following an analytical method starting from single beams, moving to 2D

frames and extending to 3D frames, the derived stiffness matrix is defined in

local coordinates as:
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Where: ܩ is the shear modulus and theܬ polar moment of inertia. Adapting the

above to the global coordinates system, the following basis for transformation

may be used:

=ࢇࢉ࢛ ࡹ ࢇ࢈ࢍ࢛ (3-112)

ࡹ = 

݉ 0
0 ݉

0 0
0 0

0 0
0 0

݉ 0
0 ݉

 (3-113)

݉ = 

௫ܥ ௫ܥ ௫ܥ
௬ܥ ௬ܥ ௬ܥ
௭ܥ ௭ܥ ௭ܥ



௫ܥ = cos (௫ߠ)

(3-114)

Where: angles ௫ߠ , ௫ߠ and ௫ߠ are measured from global axis ܺ, ܻ and ܼ with

respect to the local axis ,ݔ respectively. Hence the stiffness matrix in global

coordinates system is defined by:

=ࢇ࢈ࢍࡷ ࡹ ் ࡹࢇࢉࡷ (3-115)
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For a system composed of bars and beams, once the stiffness matrix ܭ is

derived, the vector of nodal forces ݂ to statically represent the system is:

ࡷ ࢛ = ࢌ (3-116)

where is ݑ is the displacement vector.

This system can be solved to obtain the displacement vector u:

࢛ = ࢌିࡷ (3-117)

Many processes can be used to solve easily and quickly this system: Cholesky

resolution, QR or LU decomposition.

Further post processing can transform displacements and rotations to axial

forces and bending moments, following a procedure that can be widely found in

literature.

3.5.2.1.2 Verification Results

Figure 26 presents the hypothetical truss structure that has been considered for

the verification process. This is a 3D structure, fixed at the bottom, with lateral

(e.g. wind forces) and vertical forces (e.g. weight loads). Here the structure is

considered only in tension-compression. Table 6, presents the four stochastic

variables, normally distributed, considered in this application; ࣨ (ߪ,ߤ)

represents a normal distribution of mean ߤ and standard deviation .ߪ

The first step is to verify the ‘core’ of the whole procedure: the Finite Element

Analysis. The code has been verified using the software ABAQUS on this

simplified structure. The purpose was to compare the axial stresses obtained

with both methods for the mean (deterministic) values of the stochastic

variables. The stresses are listed in Table 7 to compare the results between

ABAQUS and the MATLAB code, while Figure 27 illustrates the relative

deformations of the two cases.
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Figure 26: Reference structure

Parameters Probability’s law

Loads F × N(1, 0.2)

Elasticity N(21×1010, 1×1010)

Area A × N(1, 0.01)

Allowable stresses N(100000, 10000)

Table 6: Stochastic Loads Consideration
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Figure 27: ABAQUS and Matlab code deformed model

Element Matlab Abaqus Element Matlab Abaqus

1 0 -1.6676E-11 21 0 1.1117E-11

2 0 2.2235E-11 22 64031.2 64031.2

3 40000 40000 23 1E-10 -2.7793E-11

4 40000 40000 24 64031.2 64031.2

5 0 4.4469E-12 25 0 1.6676E-11

6 -64031.2 -64031.2 26 -50000 -50000

7 -64031.2 -64031.2 27 -40000 -40000

8 80000 80000 28 -64031.2 -64031.2

9 0 2.2235E-11 29 -120000 -120000

10 -50000 -50000 30 0 0

11 -3E-10 0 31 50000 50000

12 50000 50000 32 -80000 -80000

13 -80000 -80000 33 0 2.2235E-11

14 0 1.4369E-37 34 0 1.6676E-11

15 -50000 -50000 35 -40000 -40000

16 64031.2 64031.2 36 0 -4.4469E-11

17 0 -2.2235E-11 37 0 -2.2235E-11

18 80000 80000 38 0 0

19 0 2.7793E-11 39 120000 120000

20 0 -5.5587E-12 40 50000 50000

Table 7: Verification of FEA code: results (kPa)
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From the above data, the coincidence obtained for the results of the two

different methods provide adequate verification of the code.

3.5.2.2 Reliability calculation codes

After execution of Direct Simulation as well as the normal and the Adaptive

FORM/SORM procedure, focus is been concentrated on the members of the

reference structure that have a probability of failure different from 0 in every

procedure. This is due to the fact that, as it has been described so far, Direct

Simulations cannot describe low probabilities of failure, while FORM/SORM

methods do. Table 8, presents a sensitivity analysis of Direct Simulations with

different sampling numbers.

(sample size) 10000 100000 10000000

Elapsed time 20s 4min 4h

ELEMENT PF Beta PF Beta PF Beta

18 0,001500 2.97 0,001720 2.93 0,001790 2.91

21 0.00E+00 Inf 0 Inf 5.70E-03 4.39

22 0,021900 2.02 0,020580 2.04 0,020568 2.04

23 0.00E+00 Inf 0 Inf 5.70E-03 4.39

25 0,003700 2.68 0,004480 2.61 0,004489 2.61

26 0,025400 1.95 0,023980 1.98 0,024213 1.97

27 0,003700 2.68 0,004480 2.61 0,004489 2.61

28 0,000300 3.43 0,000270 3.46 0,000351 3.39

Table 8: Sensitivity Analysis of MCS Probability of failure results

(sample size) DS (10000000) Normal-RSM ARSM

Elapsed time 4h 18s 12m

ELEMENT PF Beta PF Beta PF Beta

18 0.001790 2.91 0.000860 3.13 0.000692 3.19

21 5.70E-03 4.39 8.03E-08 5.24 3.850E-08 5.37

22 0.020568 2.04 0.018430 2.09 0.016752 2.12

23 5.70E-03 4.39 8.03E-08 5.24 3.850E-08 5.37

25 0.004489 2.61 0.002897 2.76 0.002454 2.81

26 0.024213 1.97 0.022259 2.01 0.020378 2.04

27 0.004489 2.61 0.002897 2.76 0.002454 2.81

28 0.000351 3.39 0.000084 3.76 0.000060 3.84

Table 9: MCS vs ARSM Probability of failure results
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In Table 9, comparative results between the direct Simulation and the

application of the normal and the adaptive Response Surface Method (ARSM)

are presented for the meaningful members as before. It can be concluded that

the difference between the deterministic and the simulation methods are

acceptable for the validation of the method selected for the numerical

application of this Thesis. Especially for the members with greater probability of

failure (lower reliability index), such as members 22 and 26, the results appear

to coincide significantly. Among the normal and the adaptive Response Surface

Methods, the latter seems to provide a correction to the results; however due to

the fact that the normal method is more conservative and the small difference in

the results is small in the expense of computational cost, the normal SRSM

seems to perform adequately and can be applied in the application section.

However, in different cases with non-linear performance, the adaptive

Stochastic Response Surface Method is expected to produce significantly more

accurate results than the normal Response Surface Method.

3.5.3 Validation of the FORM/SORM code

For a typical jacket structure, where multiple members exist and their reliability

should be assessed initially in a local level, a MATLAB code was conducted

based on the theory that has been developed earlier in this Chapter. MATLAB

has been selected as the most appropriate programming language due to the

convenience in handling partial derivatives, a fact that minimizes the required

computational time. This code, that was conducted and has been verified using

the PROBAN commercial software provided by DNV, will allow combination with

FEA codes and facilitate the procedure of multiple iterations required due to the

large number of element comprising the structure. A simple case of a complex

structure has been considered with four variables stochastically modelled.

Figure 28, illustrates the FEA model created in DNV SESAM Genie software

from which corresponding von Mises stresses were exported in order to

formulate the limit state function that was later solved with both the MATLAB

code and the commercial software. Table 10, presents the stochastic loads

considered.
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Figure 28: FEA model in DNV Genie software

Load Description Distribution Characteristics Unit

1
Force on top of the structure
acting on x direction

Weibull
ܽ= 2129, b = 7.1867

(kN)

2
Force on top of the structure
acting on y direction

Normal =ߤ ߪ,2200 = 200 (kN)

3 Modulus of Elasticity Normal =ߤ ߪ,210 = 10 (GPa)

4 Material Yield Log-Normal =ߤ ߪ,275 = 25 (MPa)

Table 10: Stochastic loads on verification model

The MATLAB code that was conducted, applies the First and Second Order

Reliability Methods (FORM/SORM), with the ability to handle different types of

limit state functions (with some small alterations). Input to the code is a set of

stresses obtained from a series of simulations in the DNV Genie FEA software
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that are automatically converted in utilization ratios that will be used to derive

the limit state functions, and a matrix of basic variables corresponding to the

variable combinations of the cases that were executed. A separate function for

multivariate data regression will return the regression coefficients for the

quadratic variables of the linearized limit state function. This function has been

verified with corresponding functions included in Microsoft Excel and was found

to provide sufficient results. The scaling that is included in the code, prevents

from ill conditioned results in cases where data with significant difference in

order of magnitude exists. Those intermediate results from the code will be

used both in the MATLAB reliability estimation routine and in the DNV PROBAN

software. DNV PROBAN software can solve limit state integrals using both

deterministic and probabilistic methods. From the later, the Axis Orthogonal

simulation, the Directional simulation and the Design Point simulation will be

applied in conjunction to FORM and SORM results and will be compared to the

results obtained from the MATLAB code. Comparison of the results obtained is

listed in Table 11. The test structure has been designed in a way that a wide

range of reliability indices can be obtained, in order to better verify the validity of

the comparison results.

From the results that have been obtained, it can be observed that for almost all

cases, the results of the two methods used coincide with excellent accuracy.

Therefore the Matlab code that is derived can be used with confidence for the

analytical part of this Thesis. Among First and Second order deterministic

methods, the results coincide significantly, which should be expected due to the

high linearity of the limit state function. Between the three simulation

techniques, the Axis Orthogonal simulation was found to be the most accurate

one for the input parameters examined (50 simulations, standard normal

density). Sufficient results, were also provided by the other two methods, with

the Design Point simulation (1000 simulations) providing better results than the

Directional simulation (100 simulations, 0.5 step, probability limit: 1.0e-080)

which presents some small variation for the cases of large values of beta.
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MATLAB PROBAN

FROM SORM FROM SORM AXIS ORT. DIRECT DES.P.

1 Bm46 13.18 13.15 13.17 13.13 13.13 13.12 13.15

2 Bm49 N/A N/A N/A N/A N/A N/A N/A

3 Bm50 0.40 0.40 0.39 0.39 0.39 0.38 0.42

4 Bm51 9.22 9.22 9.24 9.24 9.24 9.26 9.25

5 Bm53 22.24 22.21 22.22 22.19 22.19 N/A 22.20

6 Bm54 26.75 26.83 26.72 26.81 26.72 N/A 26.71

7 Bm5 9.33 9.33 9.36 9.36 9.36 9.43 9.36

8 Bm6 8.22 8.22 8.17 8.17 8.17 8.15 8.18

9 Bm7 8.06 8.06 8.09 8.09 8.09 8.09 8.10

10 Bm8 9.51 9.51 9.46 9.46 9.46 9.45 9.44

11 Bm9 14.32 14.32 14.32 14.32 14.32 14.89 14.36

12 Bm10 13.62 13.55 13.63 13.56 13.63 13.93 13.65

13 Bm11 13.56 13.56 13.56 13.56 13.56 13.56 13.56

14 Bm12 14.41 14.41 14.40 14.40 14.40 14.67 14.40

15 Bm16 5.48 5.48 5.49 5.49 5.49 5.44 5.47

16 Bm13 6.30 6.30 6.32 6.32 6.33 6.31 6.31

17 Bm48 25.24 25.22 25.24 25.21 25.21 N/A 25.16

18 Bm14 5.58 5.58 5.55 5.55 5.55 5.55 5.55

19 Bm15 6.39 6.39 6.40 6.40 6.40 6.49 6.43

20 Bm17 13.41 13.41 13.41 13.41 13.41 13.45 13.40

21 Bm18 1.80 1.80 1.76 1.76 1.75 1.76 1.76

22 Bm19 16.77 16.77 16.76 16.76 16.76 16.75 16.78

23 Bm20 2.55 2.55 2.52 2.52 2.52 2.50 2.49

24 Bm21 1.84 1.84 1.81 1.81 1.81 1.83 1.78

25 Bm22 14.32 14.32 14.32 14.32 14.32 14.33 14.34

26 Bm23 15.66 15.66 15.65 15.65 15.65 15.67 15.68

27 Bm27 10.44 10.44 10.44 10.44 10.44 10.43 10.46

28 Bm24 2.50 2.50 2.46 2.46 2.46 2.47 2.46

29 Bm25 4.72 4.72 4.68 4.67 4.67 4.70 4.66

30 Bm26 11.08 11.08 11.08 11.08 11.08 11.18 11.08

31 Bm29 9.99 9.99 9.99 9.99 9.99 10.28 10.00

32 Bm28 4.57 4.57 4.53 4.53 4.53 4.62 4.54

33 Bm30 4.47 4.47 4.51 4.51 4.51 4.48 4.48

34 Bm31 11.51 11.51 11.51 11.51 11.51 11.44 11.51

35 Bm32 4.82 4.82 4.80 4.80 4.80 4.74 4.79

36 Bm33 6.86 6.86 6.88 6.88 6.88 6.89 6.89

37 Bm34 8.92 8.92 8.91 8.91 8.91 8.89 8.91

38 Bm35 8.95 8.95 8.90 8.90 8.90 9.00 8.90

39 Bm36 6.45 6.45 6.42 6.42 6.42 6.48 6.41

40 Bm37 6.65 6.65 6.65 6.65 6.65 6.70 6.66

41 Bm38 9.29 9.29 9.33 9.33 9.32 9.42 9.32

42 Bm39 8.60 8.60 8.61 8.61 8.61 8.58 8.60

43 Bm40 6.67 6.67 6.63 6.63 6.63 6.73 6.62

44 Bm41 N/A N/A N/A N/A N/A N/A N/A

45 Bm42 12.63 12.61 12.58 12.51 12.49 12.58 12.51

46 Bm43 N/A N/A N/A N/A N/A N/A N/A

47 Bm44 1.24 1.24 1.28 1.28 1.28 1.28 1.29

48 Bm45 10.57 10.57 10.57 10.57 10.57 10.56 10.60

49 Bm47 16.12 16.11 16.12 16.10 16.10 16.16 16.13

50 Bm52 15.88 15.87 15.88 15.87 15.87 15.91 15.87

Table 11: Results of comparative analysis of test case structure
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The conclusions of this verification analysis is that for this type of linear limit

state function derived by linear elastic analysis, deterministic methods provide

sufficient results compared to the more complicated simulation methods. This

can reduce required computational effort significantly allowing more simulations

to be executed and more parameters to be examined. Between the MATLAB

code and the DNV PROBAN code, both provide results that coincide, allowing

the first to be used in the analysis that will be presented later in this Thesis. For

the simple test case, the computational time required for the regression analysis

and the computational of the reliability index with the FORM and SORM is less

than 30 sec, while the manual input of coefficients in the less user friendly

commercial software required more than 15 minutes; considering that this is a

reduced time that has been achieved through an intermediate code conducted

in Visual Basic.

3.5.4 Codes Included

In Appendix D of this Thesis the following codes are included:

 Response Surface Method code for FEA

 Adaptive Response Surface Method code for FEA

 Standalone code for FORM/SORM (limited to 4 variables)

 Multivariate Regression Analysis code with scaling

All the above codes have been modelled in MATLAB 2010a version, and use

the MATLAB Statistics and Symbolic Math Toolboxes.

3.6 Summary

In this Chapter, the numerical methods for structural reliability assessment have

been discussed. Deterministic Methods, including First and Second order

reliability methods have been presented according to the procedure that has
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been followed for the formulation of codes that have been developed.

Simulation methods were also briefly discussed. The Stochastic Response

Surface Method (SRSM) has been extensively presented, and the procedures

for the normal and the adaptive SRSM were derived. Polynomial Regression

analysis was also included as it is required for the transformation of the

simulation output to a multivariate quadratic limit state surface. The Chapter

closes with an extensive verification of the MATLAB codes that were derived,

based on established tools/techniques, in order to obtain confidence for their

application in the later chapters.
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4 STOCHASTIC MODELING OF ENVIRONMENTAL

LOADING AND LOAD CAPACITY OF OFFSHORE

STRUCTURES

4.1 Introduction

In this Chapter, the issue of appropriate stochastic modelling of environmental

loads as well as the load bearing capacity variables will be discussed.

Treatment of variables is a very important decision that should be based on well

informed data and experienced engineering judgement, as it should account for

the extreme conditions the structure may suffer from throughout its service life.

As far as the environmental loads are concerned wave is the most important

due to its volatile magnitude. Complementary to this, current wind and

operational loads form a combination of loads that should be considered for the

design of offshore structures. On the other hand, the load capacity of the

structure should consider variables such as the material properties of members

(yield strength, Young’s Modulus and Poisson’s Ratio, etc), geometrical

properties and geotechnical conditions. Deterioration of capacity is also a

significant issue to be considered due to its increasing effect throughout the

service life of the structure. Incorporation of the above in the design will be

discussed in the next sections.

4.2 Classification of Loads

In reliability analysis, appropriate consideration of loading is one of the most

critical issues. During its operation, an offshore structure is subjected to several

different types of loading depending on its service and the environmental

conditions in the location of deployment. Those loads may be categorized as:

dead loads, live loads, environmental loads, construction loads, removal and

reinstallation loads, and dynamic loads [2].
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Dead loads are the weight of the entire structure and any permanent equipment

mounted on the platform which does not change with the mode of operation.

Dead loads should include the hydrostatic forces acting on the structure below

the waterline, including external pressure and buoyancy.

Live loads are the loads imposed on the structure during its operation. They

include the weight of any drilling and production equipment, the weight of living

quarters, heliport and other life support equipment, life saving equipment, diving

equipment and utilities equipment, the weight of consumable supplies and

liquids in storage tanks, the forces exerted on the structure from operations and

the forces exerted on the structure from deck crane usage. Live loads are

usually idealized as uniform distributed loads [182].

Environmental loads are loads imposed on the platform by the natural

phenomena including wind, current, wave, earthquake, snow, ice and earth

movement. Environmental loads also include the variation in hydrostatic

pressure and buoyancy on members caused by changes in the water level due

to waves and tides. Those loads are random in nature and can be accurately

quantified combining sufficient meteocean data with probabilistic properties.

Construction loads are loads resulting from fabrication, load out, transportation

and installation. Removal and reinstallation loads are those arising from

removal, on loading, transportation, upgrading and reinstallation particularly for

platforms which are to be relocated to new sites.

Dynamic loads are the loads imposed on the platform due to response to any

excitation of cyclic nature caused by waves, wind, earthquake or machinery; or

due to reaction to impact. Impact may be caused by a barge or boat

approaching the platform or by drilling operations.

From the above loads, the environmental loads are the most important in the

design of offshore structures due to their high level of randomness; therefore in

this chapter they will be presented analytically. Especially for offshore
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structures, wave is found to dominate the total loading of the structure [183],

therefore different methods for wave modelling will be presented extensively.

4.3 Environmental Loading

Hydrodynamic forces play the most significant role in the design of offshore

structures that are subjected to both steady and time dependent forces due to

the action of winds, currents and waves. Parts of the structure that exceed the

sea water level suffer from both steady wind forces but also from significant

gusts which induce high unsteady local forces on structural components. In the

part of the structure that stands below the sea surface, steady forces in

conjunction with localized forces of vortex shedding induce substantial unsteady

forces on structural members. For both wind and current loads a steady or

unsteady flow will exert a correspondingly steady or unsteady (line) force

parallel to the incident flow direction; however, the localized interaction between

flows corresponding to a structural member will also cause flow irregularities

and will induce unsteady transverse forces perpendicular to the incident flow

direction.

Although several models are proposed for the modelling of wind and current

loads, waves are found to induce the largest force on most offshore structures.

For efficient structural design, it is essential to establish and appropriately select

methods for the transformation of environmental loads into the resultant steady

and time dependent forces acting on the structure. In this chapter the most

important of those methods will be presented. This procedure of moving from a

global level-environment to a structural level could categorize the following

three steps [184]:

 Definition of design environmental conditions, i.e. design parameters to

define waves, currents and winds
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 Evaluation of water particle motions (kinematics) resulting from the

waves and currents, assuming that the structure does not affect the

gross kinematics

 Derivation of external forces on the individual members of the structure

resulting from the water particle motions and wind velocity

4.3.1 Design Environmental Conditions

As discussed earlier in the definition of the parameters that should be

considered in a reliability assessment, the reference return period should be set

in order to relate the environmental conditions which are exceeded on average

of ߋ years. For offshore structures, a reference return period of 100-years is

proposed by API in [2]. Different organizations, such as the UK Department of

Energy, propose a different reference return period of 50-years. Use of widely

applied statistical techniques can expand observations of a limited time period,

1-5 year time scale, to project the probability of failure of the 50 or 100 years

that should be considered by standards.

Since the contribution of different environmental loads to the response of the

structure cannot be defined, each of those loads is supposed to act at the same

time and towards the same direction to account for the worst case scenario.

Although this assumption is conservative, it can provide realistic results for the

design against structural failure; however it cannot consider fatigue damage on

the design. While in the North Sea sites, design values for the reference period

of 100-years are assumed to act simultaneously on the structure, for the sites of

the Gulf of Mexico, current is neglected completely or accounted in a smaller

scale.

The most important load parameters for the evaluation of the extreme

environmental loading are: significant wave height, mean zero-crossing period,

wind speed averaged over a suitable time interval, and current speed and

profile. Those parameters will be presented extensively in the following

sections.
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4.3.2 Environmental Loads

4.3.2.1 Sea State Condition

The sea state conditions for a selected site can be effectively described by the

wave and current parameters. As it has already been mentioned, the design

wave is the most important element in the determination of the forces acting on

the structure. Design wave heights are expressed in terms of wave heights that

have a low probability of occurrence within the prescribed reference design

period (50 or 100 years) and achieve adequate safety considering the shorter

life period of offshore structures (usually 20 years).

4.3.2.1.1 Wave Load

Prediction of wave conditions is based on collections of observed data and

interpolation to the reference (return) period of investigation. Correlation

between significant wave height and wave period should be based on joint

probability distribution models, as it will be later described in greater detail.

Different directions of wave loads should be considered for the offshore

structure since in several cases different directions yield for different load

distributions on the structure; therefore the dominant direction should be

identified. In some cases, different combination of wave heights and

corresponding periods should be also investigated, in order to determine the

critical wave loading on a structure.

4.3.2.1.2 Current Load

Current refers to the motion of water due to reasons different than surface

waves. Depending on the deployment sites, this load can contribute significantly

to the total force applied in the submerged part of the structure. Common

categories of currents are: tidal currents, circulation currents and storm-

generated currents. The vector sum of these three currents is the total current,

and the speed and direction specified elevations constitute the current profile.

Appropriate consideration of the current properties is an important aspect in the

design of the structure as it might affect the location and orientation of
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deployment as well as that of boats approaching the structure. Forces due to

currents are added in those due to the wave, therefore magnitude and relative

direction of the two should be specified in a way that realistically represents the

current’s profile from sea water level to seabed.

Determination of the force induced by current is based on the maximum design

velocity. Selection of this value should be based on actual measurements

and/or suitable data tables. For cases of shallow waters, where not sufficient

data are available, the vertical distribution of current velocity can be described

as [185]:

்ܷ = ்ܷௌቀ
ݖ

݀
ቁ

ଵ
 (4-1)

Where: ்ܷௌ is the speed of current in the sea water surface, ݖ is the distance

above the seabed and ݀ is the total water depth.

For the case of deep waters that in general correspond to more slender

structures, wave and current interaction should be taken into account. In such

cases the drag loading is proportional to the square of the wave and current

velocity, therefore the response of the structure will be significantly affected by

any change in the current velocity. The simplest model for the consideration of

this interaction is the superposition of current and wave velocity. In [186], three

methods to account for the combination of wave and current are described:

 Current profile stretching to the instantaneous surface

 Mass continuity with profile stretching

 Cut off in through, uniform current addition in crest

The above methods are pictorially illustrated in Figure 29. Reviewing the above

methods, the first one seems the most appropriate since it represents the

convection of water particles in a wave considering its horizontal velocity with

an added component to account for the presence of the current [187].
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Figure 29: Methods for combining current and wave [186]

In cases where the wave ‘rides’ upon current, a current in the wave direction

tends to stretch the wave length, while an opposing current shortens it [188].

Therefore, the frequency of the wave varies along the wave. This phenomenon

is called “Doppler Effect” on wave frequency; a detailed mathematical

explanation of this can be found in [189].
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Further theoretical models on the description of wave-current interaction may be

found [190], where two wave models are developed (the linear and bilinear

shear current models) for the representation of symmetric finite amplitude water

waves of arbitrary order, propagating on currents with velocity profiles which are

described by two or three straight lines.

4.3.2.2 Wind Load

Wind load on the structure refers to the forces induced in the part that exerts

above the sea water level and contains equipment, decks and irregularities that

cause drag from the air particles motion. Wind speed is classified as either

sustained or gust wind speed with direction varying in time and space. Data for

values of wind speed should refer to specific elevation and duration of

measurements.

The sustained wind speed is defined as the average wind speed over a time

interval of 1 minute measured at an elevation of 10 m above still water level

(SWL). The wind velocity varies significantly with height due to the boundary

layer induced by viscosity. The speed at a height aboveݖ sea water level could

be estimated by the following semi-empirical relationship [191]:

ܷ௪ (1݉ (ݖ, = ܷ௪ (1݉ , 10) ∙ ቀ
ݖ

10
ቁ
,ଵଵଷ

(4-2)

Where: ܷ௪ (1 ݉ , 10) is the 1 minute mean sustained wind speed at 10 m above

sea water level. A similar expression, proposed in [2], connects the 1 hour

mean speed to different elevations as:

ܷ(1ℎݖ,ݎ) = ܷ௪ (ℎݖ,ݎோ) ∙ ൬
ݖ

ோݖ
൰
,ଵଶହ

(4-3)

The gust wind speed is defined as the average wind speed over a time interval

of 3 seconds measured at an elevation of 10 meters above SWL. Following the

same description adjustments for elevation are given by the following equation

[191]:
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(ݖ)ீܷ = ܷீ(10) ∙ ቀ
ݖ

10
ቁ
,ଵ

(4-4)

Where: ܷீ(10) is the gust wind speed at 10m above SWL.

The gust factor is defined as:

(ݖ,ݐ)ܩ = 1 + (ݐ)݃ ∙ (ݖ)ܫ (4-5)

Where: (ݖ)ܫ is the turbulence intensity and isݐ the gust duration in seconds and

can be estimated as follows:

(ݖ)ܫ = ቐ
0.15 ∙ ൫ݖ ௦ൗݖ ൯

ି.ଵଶହ
≥ݖ, ௦ݖ

0.15 ∙ ൫ݖ ௦ൗݖ ൯
ି.ଶହ

<ݖ, ௦ݖ

� (4-6)

Where: ௦ݖ is measured in elevation of 20 m. The factor (ݐ)݃ is calculated as:

(ݐ)݃ = 3.0 + ݈݊ [.(ݐ/3)] (4-7)

The wind force acting on a structure is the sum of the wind forces acting on

individual members. Loads from wind and waves are assumed to act

simultaneously in the structure, since in most cases in the presence of high

winds, severe wave phenomena are observed. The equation for the drag force

of an object within a flow is applied in the case of a member exposed to a wind

of uniform velocity ܷ:

ܨ =
1

2
ܷߩௌܥ

ଶܣ (4-8)

Where: ߩ is the air density, ܣ is the characteristic area of the body facing the

wind and depends on the shape of the exposed member and ௌܥ is a shape

coefficient. The values of this parameter will be extensively discussed in a later

section, however typical values are provided by design standards.
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4.3.3 Wave Modelling

4.3.3.1 Fundamentals of Wave Modelling

In [192], the most probable maximum wave height is approached by a Reyleigh

distribution, based on the significant wave height, the mean zero-crossing

period and the reference storm duration. This wave can be efficiently

approached by a deterministic two dimensional wave with an associated period

in order to be considered in the evaluation of water particle kinematics. A

current profile is combined with the wave consideration to produce the total

water particle motion. Several wave theories have been proposed for the

combination of waves and currents.

Figure 30: Ranges of appropriate wave theories [1]

Among different environments, different wave theories are applicable, based on

different environmental parameters such as, water depth, wave height and

wave period. Figure 30 [1] and Figure 31 [193], present the different areas of

applicability of the different wave theories based on the above parameters.
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The coordinate system employed in wave theories is a three dimensional

(ݖ,ݕ,ݔ) with ݔ following the direction of wave propagation, and ݖ is measured in

the vertical depth direction. Those two dimensions are sufficient to describe a

normal wave as it is described in Figure 32. Waves are assumed to be periodic,

with a period ܶ, and uniform with a height ܪ . Further, fluid is assumed to be

incompressible, the flow to be irrotational, and that the free surface

uncontaminated [194].

For a periodic wave, the speed of a given crest or trough is called celerity. This

parameter links the length and period of the wave as:

ܿ=
ܮ

ܶ
(4-9)

Alternative applicable definitions are that of the angular frequency, ߱ = ߒ/ߨ2

and the wave number, ݇= .ܮ/ߨ2

Figure 31: Ranges of appropriate wave theories [193]
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Figure 32: Coordinate system of wave propagation [194]

4.3.3.2 Formulation of Wave Theories

The existing different wave theories, attempt to determine the velocity potential

ߔ or equivalently, the stream function, ߖ pertaining to the fluid region. This

should satisfy the Laplace equation:

߲ଶߔ

ଶݔ߲
+
߲ଶߔ

ଶݖ߲
= 0 (4-10)

Considering (ݐ,ݔ)ࣁ to be the free surface elevation measured above the still

water level ݖ = 0, the following boundary conditions should be satisfied:

ߔ߲

ݖ߲
= 0 ݐܽ =ݖ −݀

ߟ߲

ݐ߲
+
ߔ߲

ݔ߲
∙
ߟ߲

ݔ߲
−
ߔ߲

ݖ߲
= 0 =ݖݐܽ ߟ

ߔ߲

ݐ߲
+

1

2
∙ ቈ൬

ߔ߲

ݔ߲
൰
ଶ

+ ൬
ߔ߲

ݖ߲
൰
ଶ

+ ݃ ∙ =ߟ 0 ݐܽ =ݖ ߟ

(4-11)

From the above boundary conditions, the first one corresponds to the fact that

at the seabed a zero vertical component on the fluid particle velocity is

assumed, while the other two represent the kinematic and dynamic free surface

boundary conditions respectively. Solution of this complicated problem is a

difficult task because the free surface boundary conditions are nonlinear and

must be satisfied at the free surface which is constantly changing. Analytical
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methods for the wave modelling, corresponding to available wave theories, can

be found to Appendix A of this Thesis.

4.3.3.3 Comparison and Application of Wave Theories

Selection of the most appropriate wave theory for each particular application is

a significant decision as it will be shown later in this Thesis. Based on values of

ܪ , ܶ and ,݀ different wave theories are expected to describe differently the

water particle motion. As mentioned in the introduction of this Chapter, empirical

charts will prescribe the areas of applicability of each one of the methods,

Figure 30, and Figure 31.

Figure 33: Applicability regions of wave theories based on the relative

error on the fit of the two nonlinear free surface boundary conditions [195]

In [195], a comprehensive comparison of several available wave theories is

presented. The wave theories examined include linear wave theory, Stokes

third and fifth order theories, cnoidal, solitary and the stream function theories;

the ranges of each theory is illustrated in Figure 33. Considering that the

Laplace and bottom boundary condition are satisfied in all the theories included,

the relative error of fit to the two nonlinear free surface boundary conditions was

used in order to benchmark the performance of the methods. In the cumulative

graphs that are available, the basic variables are combined in terms of ଶܶ݃/߅
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and ݀/݃ܶଶ. It can be observed that all those charts relatively agree on the

regions of applicability they indicate.

Once the water particles motion has been derived by applying the appropriate

wave theory, hydrodynamic forces can then be calculated. The non-linear

relation between water particle kinematics and water surface displacement, the

turbulent flow process about a structural member, the natural variability of wave

forces and the possibility of resonance between waves and structures are some

of the difficulties imposed in the calculation of hydrodynamic forces.

4.3.3.4 Hydrodynamic Wave Forces

Based on the type and size of structural members on an offshore structure,

different formulations for wave forces may be applicable. Mainly three different

ways are applied for this calculation and a classification of those methods can

be found, and are presented in [196]:

 Morison Equation

 Froude-Krylov theory

 Diffraction theory

Morison equation theory, as was presented in [197], describes the forces acting

on a vertical pile subjected in a viscous, unsteady flow; this method is applied in

cases when the structure is small compared to the water wave length and when

the drag force is significant. In different cases, with small drag forces or inertia

dominant, but still referring to relatively small structures, the Froud-Krylov theory

is applicable. Finally, the diffraction theory is applied in cases when the size of

the structure can be compared to that of the waves.

Morison proposed that the forces exerted on a vertical cylindrical pile which

extends from the bottom to the free surface is composed of two components;

that of drag and inertia. Combination of the two provides the total force as

follows:
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݂= ெܥ ூܣ
࢛߲

ݐ߲
+ ܣܥ ݑ|ݑ| (4-12)

Where: ெܥ and ܥ are the inertia and drag coefficients, ݑ is the velocity of the

wave particles,
డ࢛

డ௧
is the local water particle acceleration at the centre line of the

cylinder and ,ூܣ ܣ are the characteristic areas for each members calculated

as:

=ூܣ ߩ
గ

ସ
ଶܦ and ܣ =

ଵ

ଶ
ܦߩ (4-13)

Where: ߩ is the mass density of water and ܦ is the member’s diameter. In the

above equation, the inertia term is proportional to the acceleration of the water

particles while the drag term is proportional to the square of the velocity. The

absolute term is applied to ensure that the drag force will coincide with the

direction of the flow. The wave velocity and acceleration of water particles

decay with depth; therefore the force distribution is expected to follow the same

pattern [198]. The previous expression provides the force for the unit length of a

vertical cylinder; the total force will be derived by integration as follows:

ܨ = න ݂݀ =ݏ

ௗ



න ܥெ ூܣ
࢛߲

ݐ߲
+ ܣܥ ൨݀ݑ|ݑ| ݏ

ௗ



(4-14)

In the above formulation of the total wave force, hydrodynamic coefficients ெܥ ,

ܦܥ should be appropriately selected. Based on experimental research, those

coefficients are found to be correlated to the Reynolds and Kuelegan-Carpenter

(KC) numbers [194]; ெܥ increases with Re while K is related to the diameter D of

the member and the amplitude of the wave A. Figure 34 and Figure 35, adopted

from [199], show the correlation between coefficients and characteristic values.

The analysis shows that at higher values of Re (Re > 105), ܦܥ approaches 0.65

and CM approaches 1.8. The coefficients ெܥ and ܦܥ were also found to depend

on both Re and a frequency parameter ߚ) = ܴ (ܥܭ݁/ when the coefficients

were plotted against KC. Further extensive results based on field tests may be

found at [200] showing extensive scatter of results due to the complexity of
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wake structures in oscillatory flows which cannot be fully covered by Morison’s

equation.

Figure 34: CD-KC number for different values of Re and β=Re/KC [199] 

Selection of hydrodynamic coefficients in practice is driven by the provisions of

different standards and societies such as the American Petroleum Industry

(API), Det Norske Veritas (DNV), International Organization for Standardization

(ISO). A typical example is the classification of coefficients based on different

roughness of the surface of the member; for a smooth cylinder, API suggests

ܦܥ = 0.65 and ெܥ = 1.6 while for rough cylinders ܦܥ = 1.05 and ெܥ = 1.2.

Figure 35: CM-KC number for different values of Re and β=Re/KC [199] 
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A comparative study for the different proposed values for the hydrodynamic

coefficients can be found in [201]. Design practice for global deterministic

analysis combines a low drag factor with conservative estimates of the wave

kinematics and current. API combines the wave kinematics factor with a low

current value, current blockage and shielding.

Further literature, available in [184], considers that for tubular members of fixed

offshore structures under extreme storm conditions, the Reynolds number lies

in the post-critical regime (ܴ݁ > 2 (10ݔ and ܥܭ exceeds 10. Large scale

laboratory experiments are presented in [202], for ܴ݁ numbers exceeding this

value, ܥܭ numbers up to 90 and including rough and smooth cylinders

undergoing random oscillations in an attempt to realistically approximate tubular

members of fixed offshore structures under extreme storm conditions. Table 12,

summarizes the values of the hydrodynamic coefficients for smooth and rough

cylinders as a function of the ܥܭ number. For the cases of rough cylinders, ܴ݁

was found to have a low dependency on the value of the hydrodynamic

coefficients.

KC
Number

Smooth Force Coefficients Rough Force Coefficients

Cd Cm Cd Cm

0.0 0.7 2.0 1.5 2.0

6.0 0.7 2.0 1.5 2.0

30.0 0.7 1.7 1.3 1.5

60.0 0.7 1.6 1.2 1.3

90.0 0.7 1.6 1.2 1.3

high 0.6 1.6 1.1 1.3

Table 12: Values of hydrodynamic coefficient for circular cylinders [202]

Extensive research on oscillatory flows around cylinders have studied

separation from the surface of the cylinder and formation of wake behind it,

correlating vortex shedding behaviour at different values of the ܥܭ number

[203]. An empirical formulation of the vortices formed around tubular sections is

given in [191], correlating the Strouhal number valid for a range of Reynolds

number between 60 − 2 × 10ହ.
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The majority of fixed offshore structures are drag dominated, considering

ultimate limit state, and therefore the inertia coefficient has a lower influence.

However, this becomes important for structures with large buoyancy legs and

for other purposes such as fatigue design.

4.3.4 Joint Probability of Environmental Parameters

4.3.4.1 Wave Current Interaction

The first step in order to obtain the environmental design value is to consider

the oceanographic data of the site where the structure is due to be deployed.

The design wave method is a widely used method for the extrapolation of the

data to obtain the extreme value for the environmental parameters; this has

been an active research area, especially for the characterization of the extreme

wave heights. Published research in [204], [205] and [206], have used real

measurements to derive values from the meteocean data. The same method is

also applicable for the estimation of extreme values for wind. The total loading

experienced by the structure is based upon a set of design values of the

individual environmental parameters such as the summation of the forces of

wind, wave and current for the 50 or 100 year return period.

Drawback of the method is that it considers all the extreme environmental loads

to occur at the same time, causing the worst case scenario to the structure. For

example, occurrence of extreme wave current is not directly correlated to the

instance of the extreme wind speed or extreme current speed. This implies that

the initial assumption of simultaneous occurrence of all three extreme events,

leads to over conservative consideration of forces.

Extensive studies have been carried out in order to systematically model the

effects of joint probability of environmental loading on the structural response

and are presented in [207] and [208]. Unlike the design wave method, a joint

probability approach, assumes non correlated occurrence of the extreme

events. The concept, widely used in the reliability analysis to quantify the design

condition, has received increasing attention as the measured data set of the
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metocean conditions becomes available and confidence in the hindcast model

is constantly growing.

Over the years several techniques of joint probability have been developed. The

joint probability of winds, waves and currents are mainly studied since these

loads dominate the total loads applied on the structure. Combination of

parameters in [208] have verified the model’s ability to provide acceptably

accurate results in cases of wave dominant structures, and describe

complicated loading patterns for a wide range of environmental conditions.

Application of the method has led to the reduction of loads which are exerted on

the structure compared to the individual ܰ -year wind, wave and current; in

specific cases allowing reduction of even 20% [207]. Parallel studies for the

Norwegian environments have concluded that wave and current loads during a

storm rarely occur simultaneously at the same direction and therefore a more

systematic consideration might substantially reduce the calculated

hydrodynamic loads on drag dominated offshore structures [209]. Further

studies [210] have verified this tendency for overestimation.

Another important issue that will be discussed in depth in the following sections

is the incorporation of the design period in the extreme design conditions.

4.3.4.2 Wave Height- Period Joint Distribution

A systematic recording of environmental conditions for several locations in the

North Sea is available in [211]. Most of the oceanographic data available are

measured for typical time intervals of 10-20 minutes [212]. In cases of poor

data, hind casting is the common method; different approximation methods are

presented in [212]. In [213] and [214] where storm data have been studied,

problems regarding limitations in computation of using hind casting and use of

poor data are addressed and a threshold is proposed in order to obtain the joint

probability of wave height and its period for the extreme waves.

For a probabilistic design of an offshore structure a joint distribution of

significant wave height and wave period is required to describe the long term
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wave climate. Those two variables are used as primary parameters to specify a

set of stationary wave spectra, where the structural response is easily

computed. [215], presents a review between the joint distributions of wave

height and wave period, summarizing the work of several researchers. Among

different available joint distribution models which may be applied, the

applicability of each model should be checked for each specific location.

Evaluation of different bi-variate distribution functions should be done

empirically in order to ensure that the selected distribution provides a sufficient

basis for the prediction of sea states.

Collected data for the significant wave height ߅ and the spectral period ܶ are

classified in scatter diagrams which provide a convenient and simple to interpret

way of summarizing pairs of random variables. The spectral peak period is

chosen due to the fact that it is less correlated to the significant wave height

[216]. The significant wave height and peak spectral period can adequately

describe the sea state, and are important parameters in characterization of a

wave spectrum [217].

Once the data are binned appropriately, the probability of occurrence of each is

calculated. A three dimensional surface can be then constructed and smooth

contour lines of same probability can be distinguished, giving an estimate of the

bivariate probability distribution. Similar scatter diagrams and contour plots may

be constructed from a fitted distribution and comparison between the two will

show which bivariate probabilistic model has the best fit. Among several

available bivariate probability density functions of the joint distribution available,

three will be discussed here and will be applied in a later chapter.

4.3.4.2.1 Bivariate Log Normal Distribution

This model, proposed in [218] forms the joint probability density function based

on five basic parameters (μx,σx,μy,σy and Ρxy), where x=ln Χ, y=ln Υ and the μx, μy

σx, σy Ρxy. Therefore the density function is formulated as:
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As would be considered for a bivariate normal probability density function, it is

implied here that if the characteristic of wave height and wave period follow the

log normal probability law, then the combined statistic properties should follow

the bivariate log normal probability law.

4.3.4.2.2 Bivariate Weibull Distribution

Weibull distribution is widely used for the description and prediction of the

extreme value of significant wave height. The form of the bivariate Weibull

distribution is formulated as follows considering ߛ,ߚ,ߙ and ߣ are the parameters

of the two distributions:

௫݂௬(ߣ,ߛ,ߚ,ߙ;ݕ,ݔ) =
௬ംషభߛ

ఊߟ
∙ ൜−൬ݔ݁

ݕ
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∙ ቊ−ቀݔ݁

ݔ

ߙ
ቁ
ఉ

ቋ (4-16)

This biνariate distribution consists of a marginal Weibull distribution for the 

spectral peak period with parameters ߛ and ߟ and the conditional Weibull

distribution for significant wave height ,ߙ ;ߚ these parameters may be estimated

by the methods of moments.

4.3.4.2.3 Marginal Weibull and Conditional Log-Norma Distribution.

Combination of the above distributions derives the marginal Weibull and

conditional log-normal distribution. This is one of the joint distributions which are

used to describe the significant wave height and the spectral peak period, in

cases where the 2-parameter Weibull distribution does not provide adequate

results within the full range of wave heights. In [216] a combination between the

2-parameter Weibull distribution for large heights with a log-normal distribution

for low heights is presented. An abbreviation of the method names it as the

'Lonowe' distribution (from LOgNOrmal and WEibull) and has shown to provide

good fit to many sets of wave data. The transition point between the two
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distributions is a decision that has some effect on the calculated probability of

extreme wave heights. The joint probability density function is conveniently

written:

ு݂௦் ൫ܪ௦, ܶ൯= ்݂
 ுೞ⁄ ൬

ܶ

௦ܪ
൰ ு݂௦(ݏܪ) (4-17)

Where ு݂௦(ݏܪ) and ்݂
 ுೞ⁄ ൫ܶ  ⁄௦ܪ ൯ are the marginal probability density function

and the conditional probability density function for the significant wave height

and the spectral peak period for a given wave height respectively. The

probability density functions are fitted to the observations separately. Values of

those probabilities are calculated as follows:

ு݂௦(ݏܪ) =
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Where: ߠ and ݇ଶ are the mean and variance of ݈݊ (௦ܪ) and where additionally,

continuity is required for ு݂௦(ݏܪ) at =ݏܪ ,ߟ and ߚ and areߩ the shape and

scale parameter for the Lonowe model. Altematively, the 3-parameter Weibull

distribution may be adopted.

The conditional distribution of ܶ given ௦ܪ is herein modeled by the lognormal

distribution as follows:

ு݂௦் ൫ܶ  ⁄௦ܪ ൯=
1

ඥ2ߒߪߨ
∙ −൝ݔ݁

൫ln ܶ − ൯ߤ
ଶ

ଶߪ2
ൡ (4-19)

Where =ߤ ܧ lൣn ܶ൧and ଶߪ = ݎൣܸܽ ln ܶ൧

4.3.5 Estimation of Extreme and Design Values

Estimation of extreme values of environmental variables is defined by the

marginal probabilities of exceedance which are determined by statistical
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processing of an extreme value probability distribution of available data. Based

on appropriate fitting, extrapolation of the data to small exceedance probabilities

can be realized. Long term values of environmental variables can be obtained

based on empirical procedures. In [219], the procedure of estimation of extreme

values through statistical extrapolation distinguishes the following steps:

 Obtain a dataset through hind cast or measured data

 Statistical model fit

 Derive the required return value

In the following Sections, the above topics will be briefly discussed.

4.3.5.1 Data sampling

The most common methods to produce sub-sets of data for the derivation of

extreme values are:

 Initial Distribution (ID) method

 Annual Maxima (ΑΜ) method 

 Peaks Over Threshold (ΡΟΤ) method. 

In the Initial Distribution (ID) method, as is presented in [212], all available data

are considered for extrapolation, including data that might include multiple

values generated by the same storm event. The estimation will be executed

using an appropriate statistical model to a distribution of data that does not

necessarily describe properly the distribution of extremes. This practice might

impose an error in the derived extreme design values.

In the case of the Annual Maxima (ΑΜ) method, extremes are derived as the 

single most severe observation within a year period, providing a series of

uncorrelated observations. Some issues raised from the definition of a year in

temperate climates, such as the North Sea, and for significant rare events that

do not occur in a location every year, in tropical climates such as the Gulf of

Mexico [220].
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In the Peaks Over Threshold (ΡΟΤ) method, the extremes are assumed to be 

generated differently than the other methods. Following this approach, an

extreme is considered each time a value exceeds a given limit. The major issue

in this method is an appropriate selection of this limit. Adequate time intervals

can allow for several measurements to be taken, providing independent and

uncorrelated observations. For the most important environmental variable which

is the wave height in regions such as the Gulf of Mexico, this method is

particularly applicable [205]. Further this method can distinguish severity of

environmental phenomena.

4.3.5.2 Statistical model fit

Following the selection of the dataset, extreme values will be derived from

statistical fitting based on an appropriate theoretical model. Selection of the

most suitable fit should be done based on the best fit of available distributions

[221]. Through the available probability distributions for the calculation of the

extreme values the most widely used are the following:

 Log-Normal distribution

 Fisher – Tippett Type I (FT-I), Type II (FT-II), Type III (FT-III)

 Weibull 2 and 3 Parameter

Log-Normal Distribution is widely used in reliability analysis due to the fact that

it can take only positive values and is the first to be used for extreme value

calculation. Together with the Weibull distribution, those are the two

representative distributions to describe the long-term behavior of the significant

wave height. Apart from the selection of the selection of distribution functions,

the following methods are used for the derivation of the parameters of the

extreme distributions:

 Method of moments

 Least squares method

 Maximum likelihood method
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The method of moments is simple and directly applicable and is based on the

equation of the first two or three moments of the distribution to those of the data

and therefore establishes relationships between estimated parameters and the

sample mean, variance and skewness.

The least squares method is applicable to the Log-Normal, FT-I and FT-II

distributions. This method initially transforms variables in a way that will

linearize the cumulative density in a graph with a new set of variables; fitting a

line to the transformed set will determine the parameters of the distribution.

Although this method is widely used, it has the drawback of a bias [221].

The method of maximum likelihood may overcome this problem providing

estimated parameters with small variance, based on the concept of constructing

a likelihood function which depends on the probability density function of the

observations, which are expressed in terms of the unknown parameters of the

distribution; maximization of the logarithm of this function determines the value

of the parameters. According to [222], advantage of this method is in its good

asymptotic properties, since as the number of observations increases, the

parameters estimators converge to the true values [223].

Further to the above, commonly used methods for the determination of the

distribution parameters, combinations of the least squares method, least

absolute deviation method and optimization method may be used. This method,

proposed in [224], evaluates distribution parameters by automated search of

optimal curve type based on the least absolute deviation between the empirical

frequency point and distribution curve on ordinate.

The selection of an appropriate distribution for the estimation of extreme values

is based on the level that data are represented by a line when variation of this

line can be estimated by fitness tests. The advantage of using such methods is

based on empirical distribution function (EDF). These EDF tests are distribution

free and therefore could be useful for distinguishing between the various

possible distributions [221]. Statistic tests that are used for this purpose are the

Kolmogorov-Smirnov, the Crammer-Von Mises and the Anderson-Darling
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statistic tests. Further reference to those tests is beyond the scope of this

Thesis. An important note is the consistent selection of a single plotting position

throughout the testing procedure [221].

4.3.5.3 Design Value

Once a particular probability distribution has been selected following the

procedure that has been described above, the design value may be determined

based on a return period, ோܶ or encounter probability, .ܧ The return period, ோܶ,

is defined as the average time interval between successive events being

exceeded, and is directly related to the probability of exceedence as:

ோܶ =
ݎ

ܳ(ܺ)
=

ݎ

1 − ܲ(ܺ)
(4-20)

Where: r is the recorded interval associated with each data point and Q(X) is the

probability of exceedence. The probability ܧ is defined as the probability that

the successive event is exceeded during a prescribed period ,ܮ which will

describe the design lifetime of a structure, and may be preferable instead of

using ோܶ to correspond to the prescribed values of ܧ and ܮ and is defined with

the following formula [225]:

ܧ = 1 − ܮ−൫ݔ݁ ோܶ⁄ ൯ (4-21)

4.3.6 Fluid Loading on Offshore Structures

In reliability analysis, loading is the most important concern to the response of

the structure. During the operational life of a jacket structure, it is subjected to

different loads depending on the type of service and the environmental

conditions in the location of its deployment. The previous sections have covered

the methods for the derivation of the environmental parameters. Some

difficulties though arise from application of those parameters to structural

analysis, setting the determination of analysis as an important step in the study

of an offshore structure. Good engineering judgment combined with sound
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scientific knowledge is essential for the validity of the results obtained in order

to minimize errors.

The methods existing for the analysis of fluids can distinguish three main

categories: deterministic, probabilistic and spectral. The deterministic approach

[226], which is the simplest and most widely applied so far, analyses the fluid

load by taking into account nonlinearities, but having the drawback of the

restriction to incorporate uncertainties related to the sea state conditions [196].

Studies have shown that a deterministic model may produce unrealistic force

distributions among the height of the structures, underestimating actual loads by

10% compared to a more advanced probabilistic model [227].

The probabilistic model is an extensively studied technique in the analysis of

fluid loading, incorporating randomness of sea and wave forces with their

statistical properties and enabling elaboration of the period’s statistical

properties prior to evaluation of the 50 or 100-year design wave. In the

probabilistic method, a distribution is usually formed to describe the significant

wave height, zero mean crossing period and the extreme conditions. In order to

transfer from a deterministic to a probabilistic mode [228], some of the normal

wave theories should be employed by selection of an appropriate wave height

(eg. ଵܪ
ଷൗ
, ,ଵܪ ܪ ௫). Having selected the appropriate design wave, a

corresponding period can be allocated, as was described in the relevant

section, based in studies such as [229], [230] and [231].
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Figure 36: Frequency domain analysis [232]

Finally, the spectral method is the more comprehensive approach to the

representation of the fluid loading, as it fully describes the loads and response

of the structure statistically. It incorporates directly the variability of sea surface

associated kinematics. Application of the method is based on linear super

position or linearization of non-linear processes. The method is often used for

the dynamic and fatigue response assessment of deepwater structures in

severe environmental conditions [233]. Figure 36, adopted from [232], illustrates
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the sequence of spectral analysis; time discritization is applied to account for

variation in time, and transfer functions are established to calculate the wave

force response from the sea surface spectrum. The sea surface spectrum

ௐܵ (߱) is the input to the wave force transfer function while the ிܵ(߱) is the

output. The wave force spectrum will be used in the structural analysis in order

to obtain displacements by multiplying the wave force spectrum with the transfer

function of the structure.

4.3.7 Response of Structure under Environmental Loading

In [194] and [232], the issue of structural loading is studied. Starting from

definition of environmental conditions through elaboration of meteorological

data, the wave conditions can be established. The appropriate wave theory will

analyze the kinematics properties of the fluid, deriving the hydrodynamic forces

and therefore calculating the structural response. It has been discussed in

Chapter Two that static or dynamic approach can be followed for the structural

analysis assessment and criteria for the selection of each approach, based on

the natural frequency, have been established. In [196], the dynamic problem

can be categorized as follows:

 Lowest natural frequency, which refers to the case where the natural

frequency of the structure is lower than the resonance frequency. In

such cases static analysis is sufficient; in different cases where the

dynamic part of the load is significant then dynamic analysis might be

required.

 One, or more, of the natural frequencies of the structure is in the range

of the frequency of resonance. In such cases, dynamic analysis is

definitely required.

A useful graph, presented in Figure 37, illustrates the areas of applicability of

static and dynamic analysis. In cases where the response is controlled by

stiffness, the analysis might follow the quasi-static method, while for the case

where the response is controlled by mass and damping, the dynamic analysis

should be employed. As far as dynamic analysis is concerned, it can be
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classified in either frequency or time domain. The first method is more time and

computationally efficient; however if the amount of data is restricted, the time

domain analysis might be used, since it allows consideration of the drag term in

the force equation without linearization, eliminating errors due to non linearity in

sea states.

Figure 37: Static and Dynamic analysis response curve

4.4 Capacity of Offshore Structures

4.4.1 Resistance Model

Derivation of the resistance part of a limit state function defines the performance

of a structure under specific load conditions, as a function of a number of

different basic variables. For a realistic model of resistance, all the relevant

variables should be identified and included, while the variables that have a

lower significance on the model may be omitted.

Theoretical and empirical methods are available to derive a resistance model;

however for a comprehensive selection, validation based on comparisons of the

above techniques is essential. Comparison between the two sets of obtained

data can be done using appropriate plots that will allow correlation between
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variables. If the calculation method accounts adequately for the respective

variables, correlation between theoretical and experimental values can be

established. The types of plots that can be drawn are:

 Plot of the observed resistance values against the calculated values

using the measured properties

 Plot of the observed resistance against each of the basic variables

Significant deviations in the plot of the second type should lead to

reconsideration of the theoretical model. Insufficient consideration of all of the

important variables and incompleteness of the resistance equation, without

considering every design parameter, may impose a significant source of

uncertainty on the reliability estimation.

4.4.2 Material Data

Material properties, for each grade of materials, are derived from relevant

experiments on samples of sufficient number, following appropriate

standardized procedures. For the reliability assessment, the properties of

interest are the yield strength, Young’s modulus, Poisson’s ratio, and fracture

toughness. Those properties are presented in this section.

4.4.2.1 Yield Strength of Steel Specimens

As it has been referred in the description of the Limit State Design Method in

Chapter Two, the characteristic yield strength is defined as the 5 percent

quantile of the test data [234] and [25]. In Table 13, the results of a study

presented in [235] are presented. In this study, different grades of steel

specimens have been tested and the Coefficient of variation has been derived

showing that as the nominal value increases, this value decreases. Another

interesting result of the experiments is that the yield strength follows a Log-

Normal distribution; a fact that is countersigned by the DNV standards’

provisions for reliability assessment of offshore structures [14].
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Material Distribution Yield Strength CoV

(MPa) (%)

Steel Lognormal

<350 8.0

350-400 6.0

>400 5.0

Table 13: Yield Strength Properties [235]

4.4.2.2 Young’s Modulus and Poisson’s Ratio

The property of Young’s modulus for steel specimens is found to follow a

Normal distribution while for different materials, such as aluminium and

concrete, a fixed value might be selected. In [236], a mean value of 2.1x1011

(Pa) with a coefficient of variation of 5% is proposed, while in [237] a value of 6

%. Poison’s ratio can be represented by a fixed value of 0.3 for steel. Table 14

presents cumulatively data for Young’s modulus and Poisson’s ratio.

Material Distribution Young’s modulus
Poisson’s ratio

Mean CoV Mean CoV

(MPa) (%) (%)

Steel

Normal

210x10
3

5.0 0.3 -

Aluminium 7.0x10
4

- 0.3 -

Concrete 3.0x10
4

- 0.2 -

Table 14: Young’s modulus and Poisson’s ratio

4.4.2.3 Fracture Toughness

Fracture toughness in steel specimens is characterized by stress intensity

factors ூܭ and Crack Tip Opening Displacements (CTOD). Although initially

considered to follow lognormal distributions, a two-parameter Weibull

distribution was found to provide a better fit for (CTOD), as is documented in

[238]. Due to the fact that fracture analysis will not be covered in this Thesis,

further details for the consideration of fracture is beyond this scope and will not

be included.
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4.4.3 Geometry Data

Geometrical data refer to the physical quantities that describe the shape, size,

cross sections and tolerances of members and structures. Compared to the

material and loading properties, uncertainties in geometrical data are

significantly less important since they depend on the production procedure of

the elements and the quality of manufacturing and also the accuracy of the

post-manufacture measurements; factors that can be efficiently controlled by

means of quality assurance etc. Geometrical properties may be assumed to be

deterministic variables, however in cases where their deviation has a significant

effect on the structural response of the structure they can be considered as

stochastic variables or as parameters of variables that describe actions or

structural properties.

Eccentricities, misalignments, inclinations and curvatures are geometrical

anomalies due to poor fabrication of members or inefficient assembly. Further

than affecting the actual capacity of the members and as a result of the

structure, eccentricities, misalignments and inclinations might amplify dynamic

loads and therefore might cause fatigue issues on the structure while curvatures

may have important influence in the buckling capacity of members.

Material Distribution Thickness CoV

(mm) (%)

Steel Normal

12.7 1.8

25.4 1.0

50.8 0.7

Table 15: Variation in thickness of steel plates [239]

In the fabrication process of steel members, physical wearing in the shaping

rollers of the steel mill will cause variation in the corss sectional dimensions of

the members. Further, selection of the acceptable levels of tolerance will

determine the accuracy of the manufacturing process. An extensive study made

in [239] in I shaped beam elements has shown that the relative variation in

height and flange width of the specimens is small, compared to the variation in

thickness. Further, it is observed that flanges tend to be thinner while the web to
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be thicker than its nominal values. Table 15 presents statistical properties of

experimental data for specimens of different thicknesses [239].

4.4.4 Capacity of Members and Joints

This section deals with the buckling performance of structural members.

Buckling curves illustrate the capacity performance of members to plastic

deformation; extensive work is available in [239]. Design standards of steel

structures extensively describe the consideration of buckling in members, while

an important background reference is [240]. Further background literature in

buckling curves is available in [241] and [242]. Although elastic analysis is used

in traditional design, consideration of non-linear plastic analysis might be used

in order to take advantage of post-buckling plastic performance of structural

members. Due to the complicated requirements for the consideration of a non-

linear performance several items should be considered in the implementation in

conjunction to design standards [8]:

 Procedure for the identification of failure modes should be appropriately

included taking into consideration the non-linear analysis.

 Modelling of joints should incorporate the effect of local details for end

restraints or force-deformation relationships.

 Fabrication tolerances (member straightness and joint eccentricities)

should be effectively included.

 Residual stresses on buckling capacity should also be considered.

 Failure criteria in terms of maximum strain at failure for components

containing relevant imperfections from, e.g., welding and at regions

containing notches.

 Repeated yielding in case of reversed loading due to, e.g., wave action.

 Sensitivity of input parameters and analysis assumption for evaluation of

acceptance criteria.

Application of non-linear analysis definitely requires more effort and skill from

the engineer than that of traditional deterministic analysis of working within the

elastic region of materials; however if appropriately executed it might produce
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more optimized structures. It should be noted that a systematic procedure for

the use of non-linear analysis of offshore structures does not presently exist.

Regarding the axial capacity of stiffened plates a comparative study presented

in [243] summarizes the provisions of different design codes. Data for those

properties are essential for the design of floating structures and therefore will

not be discussed further here. As far as the design of shell members and shell

frame structures are concerned, several standards have been developed, while

uncertainties have been studied in [244] and [245]. Most updated studies should

be considered and design standards should be updated.

In [246] and [247], the design equations for static strength of grouted joints are

derived. Test data for static capacity of tubular joints are available in [248].

Further work on the formulation of capacity equations is available in [244] and

[249]. In a reliability assessment, background of the databases and equations

used should illustrate the failure criterion used for each analysis. Therefore,

definition of the characteristic design equations in various design standards

varies since they are associated with different bias. Background literature for

the derivation of those equations in standards can be found in [250] and [251].

4.4.5 Geotechnical Data

Modelling of geotechnical data may include aleatory and epistemic uncertainty;

therefore stochastic representation can be applied through appropriate

probability distribution functions. Statistical properties of soil depend on a

number of parameters and can be obtained by several methods including a

Monte-Carlo simulation scheme. Different statistical tools may be more suitable

for problems of different nature and depending on the number of data points

and simulations that can be realized. Although variables that are related to

geotechnical data will not be considered in the application part of this Thesis, a

brief reference will follow for reasons of completeness.
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4.4.5.1 Soil Characteristics

An initial statistical approach is that of short-cut estimates, that can be used in

cases of little data available. The method can obtain the mean and variance and

gives a bound for standard deviation, and has been proven useful for cases of

‘symmetrical’ data. Benefit of the method is that it can be applied relatively

quickly. The stochastic interpolation approach, proposed in [252] and [253] can

be also applied to describe and present the properties of a site. The method can

derive several soil properties but demands adequate data to be available. A

more empirical method suggests use of histograms or fitted probability

distribution functions. This method is maybe the most preferable one and

should be used whenever the data sample allows so, deriving the distribution

function by plotting in probability paper or by using statistical fit-tests.

Soil characteristics are summarized in Table 16 together with proposed

appropriate probability distribution functions. Summary of statistical properties

can be found in [254]. It can be observed that most of the characteristics follow

a Normal or Lognormal distribution, however in specific cases may be described

by uniform distributions. In the presence of adequate data, validation of the

stochastic representation of each characteristic should be executed through

appropriate distribution fit tests.

In cases of large soil volumes, in order to avoid local fluctuations of soil

properties, the averaged property is used. In order to avoid negative values in a

distribution, the lognormal distribution may be prefered. Therefore,

characterization of the soil volume under consideration is an essential decision

before proceeding to statistical analysis. In cases of large volumes, the site

description strategy might be employed [252] and [253]; two steps are

distinguished:

 Identification of the structure of the soil data.

 Use of the ‘kriging’ stochastic interpolation technique to estimate the soil

property at the location of interest.
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Soil Characteristic Soil Type
Probability

distribution function
Mean

Values
CoV

Cone Resistance
Sand Lognormal * *

Clay Normal/Lognormal * *

Undrained Shear
Strength su

Marine
Clay

Lognormal * 5-20%

Clay Lognormal * 10-35%

Clay silt Normal * 10-30%

su normalised w.r.t.
Vertical effective stress

Clay Normal/Lognormal ** 5-15%

Plastic Limit Clay Normal 0.13-0.23 3-20%

Liquid Limit Clay Normal 0.30-0.80 3-20%

Submerged unit weight All soils Normal 4.5-11 0-10%

Friction angle Sand Normal * 2-5%

Void ratio and porosity,
including intial void
ration

All soils Normal * 7-30%

Over consolidation ratio Clay Normal/Lognormal 1.2-40 10-35%

*: Site and Soil type-dependent

**: Function of over consolidation ratio

Table 16: Probability Density Function for Soil Characteristics [254]

Those methods can increase the quality of data and overcome the natural

heterogeneity of the soil characteristics. The uncertainties involved in the soil

characteristics, represent values for the parameters that are used for the

analysis of bearing capacity of gravity structures, jack-up platforms and suction

anchors, where "shallow" type of foundation failure is modelled. For piled

structures, relevant uncertainties are studied in the following section.
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4.4.5.2 Piled Foundations

Empirical methods derived from onshore tests on piles of small scale for the

axial pile capacity have derived design parameters applicable to piles for

offshore applications. The design variables considered for clay volumes are the

skin friction factor along the pile, the undrained shear strength, the end bearing

factor and appropriate factors to account for the correlation between site

specific effects. As far as sand volumes are concerned, the design variables

considered include coefficient of lateral soil stress, soil-pile friction angle,

limiting skin friction, bearing capacity factor and limiting end bearing. API

suggests values for pile design parameters in clay.

As far as sand characterization is considered, differences among available

methods exist due to the following factors [8]:

 The value of the earth pressure coefficient, and thus the value of the

effective stress, allowed in the calculations of axial pile capacity for

compression and tension loading.

 The limiting side friction value, and the extent to which it depends on

relative density.

 The limiting end bearing value and its dependence on relative density.

4.4.5.3 Uncertainty in Calculation Model and Load Effects

Uncertainties in the calculation model depend on the problem under

consideration. The statistical properties of the soil model are difficult to

determine, however a useful approximation can be based on literature review,

comparisons of model test results with calculations, survey of expert opinions or

relevant case studies and back-calculation. Further, discussion on studies of the

uncertainty in different calculation models can be found in [255] while extensive

studies exist for the modelling uncertainty for shallow types of foundations and

quantification of model uncertainties [256] and [257]. Modelled uncertainty is

characterised through the parameter of bias; value of bias greater than unity

implies a conservative model, under predicting the actual capacity while a value
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less than unity refers to a calculation model that over predicts the actual

capacity.

Uncertainties in loads and load effects, either aleatory or epistemic, should be

considered in a systematic way as they might significantly affect the

geotechnical analysis. Engineering practice shows that load uncertainties are

dominant in the structural response when compared to geotechnical

uncertainties. Since influence of load effects depends on soil properties,

parametric and sensitivity studies should be included to illustrate the actual

effect of an incremental change on the deterministically modelled soil properties

to the load effects.

4.4.6 Fatigue Data

Although fatigue limit states are not covered within this Thesis, this section will

include some information regarding consideration of capacity of structures

under fatigue loading. [258], gives S-N data for welded connections for different

classes of structures in different environments (air, seawater and corrosion free)

in the region between 105-107 cycles to failure. This is a common number for

offshore structures. In cases where this range is exceeded, S-N data might be

un-proportionally larger than that of the standard. Further data for crack growth

parameters, such as ܥ and ݉ for Paris’ crack growth formula are also included.

From a stochastic perspective, ݉ is modelled as a fixed parameter while ݈݊ ܥ

follows a normal distribution, implying that ܥ follows a lognormal distribution.

Further literature on the stochastic modelling of those variables can be found in

[259] and [260].

It is common practice in offshore and further large scale structures to avoid

using steel of normal grade and instead use high strength steel with yield

strength of more than 450 MPa. Initiation period of this kind of steel will be

longer and this should be taken into account since most of the available S-N

data are derived from experiments in normal graded steel specimens. This fact

may impose a level of extra conservatism.
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Based on experimental work and finite element analysis models, starting from

simpler geometries and moving to more complicated configurations, parametric

formulas for the derivation of stress concentration factors are available in

literature [261], [262], [263]. Stochastic properties of the ratio between

measured and predicted values are summarized in [264]. This ratio indicates

the bias of the experimental procedure. The derived mean values are in the

range 0.81 − 1.01 and the corresponding COV's in the range 0.13 − 0.25.

Finally for the cumulative damage on a structure, the Miner-Palmgren

Hypothesis can be applied for calculation of reliability. For steel structures, the

Miner’s damage ratio is proposed to follow a lognormal distribution with mean

value 1 and CoV of 0.3 [265].

4.4.7 Corrosion Modelling

4.4.7.1 Definition of corrosion

Offshore and marine structures are designed to survive harsh and very

corrosive environments. The level of capacity deterioration due to this effect

should be considered throughout its service life, in order for the structure to

sustain adequate safety levels. Systematic maintenance and corrosion

protection systems, that refer to surface coating and cathodic protection

arrangements are often employed to restrict the effect of corrosion on the

structures. Extensive research is available regarding the performance of

vessels or pipelines deployed offshore.

In [266], a classification of marine corrosion may be divided into the following

categories, based on the deterioration mechanisms that are developed on the

surface of plate materials:

 Immersion

 Splash/tidal zone

 Atmospheric

 Semi-enclosed space
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Characterization of corrosion may be also based on the fact that the depth

profile of a corrosion instance might distinguish a single defect or a cluster of

defects through the thickness of the material. A definition based on this

performance distinguishes [267]:

 Pitting corrosion, which refers to corrosion with length and width less

than three times that of the un-corroded wall thickness.

 General corrosion (wastage), which refers to corrosion with length and

width more than three times the un-corroded wall thickness.

From a structural reliability perspective, corrosion together with fatigue have

time-dependent effects on the structure. In particular, there is a monotonic

decreasing performance in the deterioration of Resistance as a function of time

accompanied by an increase in uncertainty in the remaining strength. Figure 38

[268] and Figure 39 [269] present those two facts. In Figure 39, it can be

observed that the distribution that describes the probability density function of

the structural resistance ‘flattens’ with time and the mean value decreases,

increasing the overlapping between the load (effect) and resistance curves.

There are a number of parameters that influence the corrosion performance of a

structure. Environmental factors, such as biological, chemical factors and

physical parameters might significantly determine the corrosion effect on

structural members. From this category, the physical factors are the most

important ones, since they account for temperature, pressure (significant in pipe

lines), water velocity, suspended solids and percentage wetting. In general it

has been observed that increased temperature will increase the corrosion rate,

as it is observed in Figure 40 [269]. Water particles velocity has the same effect,

as presented in Figure 41 [268], as increased velocity will increase corrosion

losses. Further, factors such as pollution and water salinity may influence

corrosion on the structure.
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Figure 38: Continuous load process and potential exceedance of the

deteriorating structural Resistance [268]

Figure 39: Strength Deterioration Structural Reliably Problem [269]
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Figure 40: Corrosion depth as a function of sea water temperature [269]

Figure 41: Effect of water velocity on early loss corrosion [268]
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4.4.7.2 Corrosion Models

Several models have been proposed for consideration of thickness deterioration

due to corrosion, both considering different periods of the life of the structure as

well as for its whole service life. Most of the models are initially based in

experimental work followed by scientific foundation of findings. The simplest

way to account for corrosion is through constant annual rate deterioration.

Based on the work of [270] and [271], typical values of annual deterioration can

be found, and are illustrated in Table 17. Although those values can be reliable

for initial design of structures, in case of reassessment of existing structures a

more advanced model should be employed.

Environmental conditions Corrosion rate (mm/year)

Immersed steel specimens, ocean conditions 0.05 – 0.20

Steel sheet piling – immersion zone 0.08

Tidal zone 0.10 – 0.25

Atmospheric zone 0.05 – 0.10

Ship deck plating (uncoated) 0.10 – 0.50

Table 17: Typical annual corrosion rates [270], [271]

Although in most of the studies executed so far the effect of corrosion is

represented by a constant corrosion rate, which corresponds to a linear

decrease of the plate thickness throughout its service period, there is

experimental evidence that a non linear model would be more appropriate.

Before proceeding to description of those models, a reference to the

background of corrosion should be made. General corrosion is of main interest

in this aspect since pitting corrosion cannot affect the main in plane stress

distribution in a steel plate [272].

As it has already been mentioned, corrosion is affected by a number of

parameters therefore a probabilistic model such as the one presented in [269]

including a mean value expression and an expression for randomness and

uncertainty can more systematically describe the expected corrosion:
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(ܧ,ܲ,ݐ)ܥ = ݂(ܧ,ܲ,ݐ) + (ܧ,ܲ,ݐ)ߝ (4-22)

Where: (ܧ,ܲ,ݐ)ܥ is the total weight loss of material, ݂(ܧ,ܲ,ݐ) the mean function

and (ܧ,ܲ,ݐ)ߝ the zero mean error function, isݐ the time parameter, ܲ is a vector

with parameters for the corrosion protection systems included, and ܧ is a vector

of environmental conditions. Throughout the service life of the structure,

different corrosion processes can be distinguished and are illustrated in Figure

42 [269]:

 initial corrosion

 oxygen diffusion controlled by corrosion products and micro-organic

growth

 limitation on food supply for aerobic activity

 anaerobic activity

Figure 42: Different corrosion mechanism as a function of time [269]

For general corrosion several models exist for a more systematic description of

corrosion deterioration. In [273], Southwell proposes a linear and a bilinear

model while Melchers [269] extends this model, calculating coefficients based

on available experimental data. As presented in [272], the extended Southwell

linear model may be stochastically formulated as:

(ݐ)ௗߤ = 0.076 + ݐ0.038 (4-23)
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(ݐ)ௗߪ = 0.051 + ݐ0.025

Correspondingly, the extended Southwell bilinear model may be written as:

(ݐ)ௗߤ = ൜
,ݐ0.09 0 < >ݐ 1.46 ܽ݁ݕ ݏݎ

0.076 + ,ݐ0.038 1.46 < >ݐ 16 ܽ݁ݕ ݏݎ
�

(ݐ)ௗߪ = ൜
,ݐ0.062 0 < >ݐ 1.46 ܽ݁ݕ ݏݎ

0.035 + ,ݐ0.017 1.46 < >ݐ 16 ܽ݁ݕ ݏݎ
�

(4-24)

The exponential model proposed by Melchers, based on the Southwell linear

formulation, is the Melchers-Southwell non linear model, and is expressed as

follows:

(ݐ)ௗߤ = .଼ଶଷݐ0.084

(ݐ)ௗߪ = .଼ଶଷݐ0.056
(4-25)

Finally, in [274], a tri-linear and a different power approximation model are

suggested for the corrosion wastage thickness as:

(ݐ)݀ = ൝
,ݐ0.170 0 < >ݐ 1

0.152 + ,ݐ0.0186 1 < >ݐ 8
−0.364 + ,ݐ0.083 8 < >ݐ 16

� (4-26)

A different nonlinear model, based on observation data, has been proposed in

[275]. According to this, the corrosion process is divided in three phases; the

first where no corrosion is present due to effectiveness of corrosion protection

means, the second which is initiated when the corrosion protection becomes

damaged and the third which corresponds to the phase where the corrosion

process stops. The practical interpretation of the last period implies that due to

the corroded external surface of the plate, protection is provided. This should be

taken into account since partial or full removal of this layer will initiate a new

corrosion cycle in the corroded thickness of the plate. Appropriate formulations

of the model can be described as the solution of a differential equation of the

corrosion wastage:

ஶ݀ (ݐ)݀ + (ݐ)݀ = ஶ݀
̇
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Where: ஶ݀ is the long-term thickness of the corrosion wastage, (ݐ)݀ is the

thickness of the corrosion wastage at time ,ݐ and (ݐ)݀ is the corrosion rate. The

solution of the above equation leads to:

(ݐ)݀ = ቊ ஶ݀ ൫1 − ݁(ି(௧ି ఛ)/ఛ)൯,ݐ> ߬

>ݐ,0 ߬

�

௧߬ =
ஶ݀

ݐ݃ ߙ

(4-27)

In the above equations, ߬ is the coating life (1.5-5.5 years), equal to the time

interval between the painting of the surface and the time when its effectiveness

is lost, and ௧߬ is the transition time (5-10 years) time and ߙ is the angle as

formed in Figure 43.

Figure 43: Thickness of corrosion wastage as a function of time [275]

Interesting work presented in [272], develops a parametric approach to the

corrosion modelling introducing the Weibull function. The advantage of this

distribution is that based on the values of specific parameters, different shapes

of distributions can be derived. Further, by setting specific values in some of the

parameters of the model, the more straight forward models that were described

above can be obtained. Due to the strong mathematic formulation of this

method, it will not be presented in this Thesis; however a comparative example

that was executed among methods based on experimental data and using
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statistical-fit methods to derive the best approach illustrates that this new

method has a very good potential.

As far as pitting corrosion is considered, the problem that might be cause on the

structure is deep holes that could lead to penetration. The local character of

pitting corrosion makes it less significant than that of wastage corrosion. For

reasons of completeness, following similar logic as for the general corrosion, a

refined model is presented in Figure 44 [276], [277]. The parameters of this

figure are explained in Table 18 together with a calculation model.

Figure 44: Model for maximum pit depth as a function of exposure period

[276]

Phase Phase description
and corrosion
controlling mechanism

Governing parameters
as function of ࢀ

0 Initial pit growth

1 and 2
Pit growth under overall
aerobic conditions under rust cover

ݐ = 6.61 ∙ ݔ݁ ∙ (−0.088 ∙ ܶ)
ܥ = 0.99 ∙ ݔ݁ ∙ (−0.052 ∙ ܶ)

3
Rapid pit growth under overall
anaerobic conditions under rust cover

ݎ = 0.596 ∙ ݔ݁ ∙ (0.0526 ∙ ܶ)

4
Steady-state pit growth under
overall anaerobic conditions
under rust cover

ܥ = 0.641 ∙ ݔ݁ ∙ (0.0613 ∙ ܶ)

ݎ = 0.353 ∙ ݔ݁ ∙ (−0.0436 ∙ ܶ)

Table 18: Phases in pitting corrosion and calibrated functions for model

parameters [276]
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4.4.7.3 Corrosion Protection Systems (CPS)

Painting coatings and cathodic protection schemes are the main techniques

applied for the protection of steel members against corrosion, and are included

in Appendix B of this Thesis. Those measures, together with appropriate

maintenance, should be able to efficiently treat corrosion. However, practice

from field observations shows that maintenance in offshore structures might not

always be effective and CPS might be ineffective. Further, some parts of an

offshore or marine structure are difficult to access and therefore apply any

maintenance action.

4.5 Summary

This Chapter has presented the stochastic modelling of environmental loads

and load bearing capacity of offshore structures. Wind, wave and current loads

have been considered analytically. Especially for wave loads, after a thorough

discussion of the transformation of sea state conditions to loads acting on the

structural members, the joint probability modelling of environmental variables

has been discussed. The capacity of offshore structures is also included in this

Chapter. Stochastic modelling of material data has been presented in detail

while geotechnical data are also briefly included. Finally, this chapter presents

analytically the mechanisms of corrosion that lead to capacity deterioration of

structures, and the available models to account for general corrosion during the

design process.
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5 APPLICATION OF THE RESPONSE SURFACE

METHOD IN A TYPICAL JACKET STRUCTURE

5.1 Introduction

Based on the theory and methodology that has been presented previously, this

chapter will present the application of structural reliability assessment for a

typical reference offshore jacket structure. This analysis will start with a

discussion on the analytical formulation of the limit state functions based on

widely acceptable and used failure criteria. Following that, an application of the

joint probability distribution of wave height and peak spectral period will be

presented for a typical North Sea site, in order to determine an analytical

relationship between the two correlated variables. Having obtained this, and

after description of the reference structure that has been selected, its reliability

will be derived in a local and later global-system level considering stochastic

modelling of variables, based on the Stochastic Response Surface Method.

Material properties, sea state conditions, selection of appropriate wave theory,

effect of different statistical distributions in the modelling of the variables will be

examined in addition to a thorough investigation of the effect of corrosion on

structural members based on different thickness deterioration models.

5.2 Limit State Formulation

Appropriate formulation of limit states should link the performance of the

structure with appropriate failure mechanisms that might occur on each

member. For the scope of this PhD, limit state functions will be formulated

based on the failure criteria commonly applied in structural design. For the

reference structure that will be used, static analysis will determine its ultimate

strength; therefore static strength will be of interest here.

Strength of a structural member is a property that is determined by its identity,

the treatment and processing during and after manufacturing, and the loading at
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which it will be subjected during its service life. For cases of complex structures,

like the ones that will be studied here, the position of each element will also

determine its criticality as a result of the effect of the loads acting on the whole

structure.

Static loads refer to the case where a stationary force or a couple (moment) is

applied to a member and remains unchanged in magnitude, point and direction

of application. Result of a static load might be axial tension or compression, a

shear load, a bending load, a torsional load, or any combination of these. In this

section, the relation between static loading and strength is discussed, in order

to later focus the attention on the predictability of potential failures that might

result in degradation of reliability and eventually lead to failure.

In Chapter 2, reference has been made to brittle and ductile failure performance

of structures. The same classification can be followed for members’ failure,

characterizing them in a way that will identify the member’s loading

performance and allocate appropriate applicable failure mechanisms in order to

efficiently design against failure. Although structural members belong to one of

those categories, a ductile material can fail in a brittle manner under specific

loading conditions. The basic limit for the characterization of a material as

ductile is based on the maximum strain (elongation) before failure ߝ and

suggests [278]:

ߝ ≥ 0.05 (5-1)

Ductile materials have a yield strength which is considered the same for

compressive and tensile loads ௬ܵ௧ = ௬ܵ = ௬ܵ. Contrary to that performance,

brittle materials do not have an identifiable yield strength, constituting

engineering decision making more difficult, and are classified by individual

consideration of ultimate tensile and compressive stresses ௨ܵ௧ and ௨ܵ

respectively. After years of engineering hypothesis, accepted practices have

been formally developed to theories that are currently applied in modern

engineering. Different theories are distinguished for different types of materials

resulting to the following been proposed [278]:
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Ductile materials (yield criteria):

 Maximum shear stress (MSS). Commonly referred to as the Tresca or

Guest theory, it predicts that ‘yielding begins whenever the maximum

shear stress in any element equals or exceeds the maximum shear

stress in a tension test specimen of the same material when that

specimen begins to yield’.

 Distortion energy (DE). Alternatively called the von Mises or von Mises–

Hencky theory, shear-energy theory or octahedral-shear-stress theory, it

predicts that ‘yielding occurs when the distortion strain energy per unit

volume reaches or exceeds the distortion strain energy per unit volume

for yield in simple tension or compression of the same material’.

 Ductile Coulomb-Mohr (DCM). Also known as internal-friction theory, it is

applicable for materials with different tensile and compressive strength

and provides a geometrical representation of stress states.

Brittle materials (fracture criteria):

 Maximum normal stress (MNS)

 Brittle Coulomb-Mohr (BCM)

 Modified Mohr (MM)

A universally applicable theory for any material is not currently available

therefore different theories are more suitable for different problems. In the

following sections, the above mentioned yield criteria will be briefly presented

based on [278], [279] and [280]. After presentation of the criteria a critical

comparison between them, will distinguish the applicability region of each of

them. Presentation of the fracture criteria for brittle materials is beyond the

scope of this work and therefore will not be included.
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5.2.1 Maximum shear stress (MSS) – Tresca or Guest Theory

Following the observation that on an element that undergoes a tensile load, slip

(Lüder) lines are formulated at approximately 45° with the axis of the strip

declaring initiation of yield, and in parallel observations in cases of loading to

fracture where shear stress is maximized at 45° from the axis of tension, a

failure criterion is suggested to describe this failure mechanism. For the

fundamental case of a simple tensile test, the corresponding stress might be

given as:

ߪ =
ܲ

ܣ
(5-2)

Considering the fact that the maximum shear stress occurs on a surface 45°

from the tensile stress, the maximum shear stress should be described and

correlated to yield strength ௬ܵ as follows:

߬ ௫ =
ߪ

2
=

௬ܵ

2
(5-3)

Following connotation from Mohr’s circles for three dimensional stress, for a

general stress state three principle stresses might be determined as ଵߪ ≥ ଶߪ ≥

.ଷߪ Expressing the shear stress using principal stresses, the above equation

might be expressed as:

߬ ௫ =
ଵߪ − ଷߪ

2
(5-4)

And the corresponding failure criterion:

߬ ௫ ≥
ௌ

ଶ
or ଵߪ − ଷߪ ≥ ௬ܵ (5-5)

An application of safety factor ݊might be considered for design purposes as:

߬ ௫ ≥
ௌ

ଶ
or ଵߪ − ଷߪ ≥

ௌ

 (5-6)
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Considering formulation of limit state functions in the form of the difference

between supply (allowable load) and demand (actual load) the corresponding

LSF is derived denoting failure for the MSS criterion:

ெܩ ௌௌ =
ௌ

ଶ
− ߬ ௫ ≤ 0

ெܩ ௌௌ =
௬ܵ

݊
− ଵߪ) − (ଷߪ ≤ 0

(5-7)

Plane stress (or membrane state stress) are problems which refer to cases

where all loads applied, are symmetric to the mid-plane direction and at the

same time in-plane displacements, strains and stresses can be considered to

be uniform through the thickness, and the normal and shear stress components

in the ݖ direction are negligible. In such problems, one of the principal stresses

is zero therefore only two components can be distinguished ߪ) and .(ߪ Table

19, summarizes the formulation of the criterion for each case of principle

stresses while Figure 45 represents the MSS theory in plane stress problems.

Figure 45: The MSS theory for plane stress problems (two nonzero

principal stresses)
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Case
Principle
Stresses

Principle Stresses
Correlation

Failure
Criterion

1 ߪ ≥ ߪ ≥ 0 ଵߪ = ߪ ଷߪ = 0 ߪ ≥ ௬ܵ

2 ߪ ≥ 0 ≥ ߪ ଵߪ = ߪ ଷߪ = ߪ ߪ − ߪ ≥ ௬ܵ

3 0 ≥ ܣߪ ≥ ܤߪ ଵߪ = 0 ଷߪ = ߪ ߪ ≤ − ௬ܵ

Table 19: MSS Failure Criterion for Plane stress problems

5.2.2 Distortion energy (DE) – von Mises Stress Theory

This theory was developed through the observation that ductile materials

stressed hydrostatically exhibited greater yield strength compared to the values

given by a simple tensile test. This phenomenon integrates the problem to a

more complicated one, considering the yielding that is related to the angular

distortion of the stressed element rather than been described as a simple

tensile or compressive test. Introducing the term of hydrostatic stress ௩ߪ in

each principal direction of the three dimensional stress states, the correlation

between principal stresses is given as:

௩ߪ =
ଵߪ + ଶߪ + ଷߪ

3
(5-8)

Considering the above, in a member under tri-axial stress, that undergoes both

volume change and energy distortion, each stress component can be described

by a hydrostatic ௩ߪ and a distortional component −ߪ) .(௩ߪ For the three

dimensional element, the strain energy per unit volume can be described as:

ݑ =
1

2
ଵߪଵߝ) + ଶߪଶߝ + (ଷߪଷߝ =

1

ܧ2
ଵߪ]

ଶ + ଶߪ
ଶ + ଷߪ

ଶ − ଶߪଵߪ)ݒ2 + ଷߪଶߪ + [(ଵߪଷߪ (5-9)

Substituting the above two equations, the strain energy for producing volume

change ௩ݑ is given as:

௩ݑ =
௩ߪ3

ଶ

ܧ2
(1 − (ݒ2 =

1 − ݒ2

ܧ6
ଵߪ]

ଶ + ଶߪ
ଶ + ଷߪ

ଶ + ଶߪଵߪ2 + ଷߪଶߪ2 + [ଵߪଷߪ2 (5-10)

The distortion energy is obtained as:
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ௗݑ = −ݑ ௩ݑ =
1 + ݒ

ܧ3
ቈ
ଵߪ) − ଶ)ଶߪ + ଶߪ) − ଷ)ଶߪ + ଷߪ) − ଵ)ଶߪ

2
 (5-11)

Considering that for a simple tensile test, the distortion energy is given as:

ௗݑ =
1 + ݒ

ܧ3 ௬ܵ
ଶ (5-12)

The general state of stress the failure criterion is then formulated as:

=ᇱߪ ቈ
ଵߪ) − ଶ)ଶߪ + ଶߪ) − ଷ)ଶߪ + ଷߪ) − ଵ)ଶߪ

2


ଵ
ଶൗ

≥ ௬ܵ
(5-13)

Where: ᇱߪ is the von Mises stress.

For a plane stress problem with two non zero principal stresses, as it was

presented before, the expression for the von Mises stress is written as follows,

representing a rotated ellipse as shown in Figure 46, including both DE and

MSS theories:

=ᇱߪ ߪ)
ଶ − ߪߪ + ߪ

ଶ)
ଵ
ଶൗ (5-14)

Moving to a Cartecian coordinate system for the three dimensional stress state,

the von Mises stress can be rewritten as:

ᇱ௫௬௭ߪ =
1

√2
ቂ൫ߪ௫ − ௬൯ߪ

ଶ
+ ൫ߪ௬ − ௭൯ߪ

ଶ
+ ௭ߪ) − ௫)ଶߪ

+ 6൫߬ ௫௬
ଶ + ௬߬௭

ଶ + ௭߬௫
ଶ ൯൧

ଵ
ଶൗ

(5-15)

And for plane stress problems:

ᇱ௫௬௭ߪ = ൫ߪ௫
ଶ − ௬ߪ௫ߪ + ௬ߪ

ଶ + 3 ௫߬௬
ଶ ൯

ଵ
ଶൗ (5-16)

Following the same principles for the formulations of the limit states for the

failure region in reliability analysis:

ாܩ =
௬ܵ

݊
− ≥ᇱߪ 0 (5-17)
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Figure 46: Distortion Energy Theory for plane stress problems

5.2.3 Ductile Coulomb-Mohr (DCM)

The ductile Coulomb-Mohr Theory is applicable for materials where strength

against compression is different than that due to tension. Based on the Mohr

theory of failure, it is a simplified procedure with results easy to be geometrically

interpreted. The concept of the theory is based on combination of tension,

compression, and shear tests observing performance to yield or fracture. Based

on results of such tests, a graph such as the one in Figure 47 may be drawn

and a closed region may be distinguished as the (non-straight) line ABCDE in

the figure, above the ߪ axis in order to describe the stress state of a body.

This theory also known as the internal-friction theory, assumes that the BCD

part of the envelop boundary is straight, implying that only tensile and

compressive strengths are necessary. Considering a circle with centre ,ଶܥ as

illustrated in Figure 47, that connects the maximum and minimum principal

stresses, geometrical relationships of similar triangles denote:
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ଶܥଶܤ − ଵܥଵܤ
ଶܥܱ − ଵܥܱ

=
ଷܥଷܤ − ଵܥଵܤ
ଷܥܱ − ଵܥܱ

→

ଵߪ − ଷߪ
2 − ௧ܵ

2
௧ܵ

2 −
ଵߪ + ଷߪ

2

=

ܵ

2 − ௧ܵ

2
ܵ

2 + ௧ܵ

2

→

→
ଵߪ

௧ܵ
−
ଷߪ

ܵ
= 1

(5-18)

Where: ௧ܵ and ܵ denote the tensile and compressive strength respectively. As

for the case of the MSS theory, Table 20 and Figure 48, summarize the stress

state of the plane stress problem.

Figure 47: Mohr Cycles and Coulomb-Mohr Failure criterion

Case
Principle
Stresses

Principle Stresses
Correlation

Failure
Criterion

1 ߪ ≥ ߪ ≥ 0 ଵߪ = ߪ ଷߪ = 0 ߪ ≥ ௧ܵ

2 ߪ ≥ 0 ≥ ߪ ଵߪ = ߪ ଷߪ = ߪ
ߪ

௧ܵ
−
ߪ

ܵ
≥ 1

3 0 ≥ ܣߪ ≥ ܤߪ ଵߪ = 0 ଷߪ = ߪ ߪ ≤ − ܵ

Table 20: CM Failure Criterion for Plane stress problems
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Figure 48: Coulomb-Mohr Failure criterion for Plane Stress problems

The corresponding limit state function ,ܩ will be formulated as follows for the

failure region:

ெܩ =
1

݊
− ൬

ଵߪ

௧ܵ
−
ଷߪ

ܵ
൰≤ 0 (5-19)

5.2.4 Comments on Failure Criteria

Based mainly on work presented in [281], performance of different ductile

materials has been studied in order to evaluate the applicability of each failure

theory and corresponding design criteria. Elaboration of those experimental

results illustrates that use of both the maximum shear stress theory and the

distortion energy theory is applicable to the design and analysis of ductile

materials. Selection of one theory rather than another is subjected to the

engineer’s decision and available tools. In general, the MSS theory is easier to

implement but it is more conservative leading to overdesigned structures (by a

percentage of approximately 15 %, which can be derived analytically for the

simple case of a tensile specimen). Coulomb-Mohr’s theory is applicable in

cases of ductile materials with unequal tensile and compressive strengths,

providing a simple equation where only those strengths participate and are

compared with principal stresses.
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A useful comment on the different failure criteria that have been presented

above is that for the case of loaded members where stresses are present in one

of the axis, and one principal stress is zero due to the two dimensional nature of

the problem. The formulation of the principal stresses from the corresponding x-

y-z directions can be expressed as:

ଵ,ଶߪ =
௫ߪ + ௬ߪ

2
± ඨ൬

௫ߪ + ௬ߪ

2
൰
ଶ

+ ௫߬௬
ଶ (5-20)

Where for the axially loaded member:

௫ߪ = ,௫௫ߪ + ටߪ,௫௬
ଶ + ,௫௭ߪ

ଶ

௬ߪ = 0

(5-21)

From (5-20), and neglecting shear stresses:

ଵߪ = ௫ߪ = ,௫௫ߪ + ටߪ,௫௬
ଶ + ,௫௭ߪ

ଶ

ଶߪ = 0

(5-22)

Applying the above in the limit state functions that have been derived earlier,

the following expression can be derived, corresponding and verifying all of

them:

ܩ =
௬ܵ

݊
− ଵߪ =

௬ܵ

݊
− ,௫௫ߪ + ටߪ,௫௬

ଶ + ,௫௭ߪ
ଶ ≤ 0 (5-23)

Or, alternatively expressed as:

ܩ =

,௫௫ߪ + ටߪ,௫௬
ଶ + ,௫௭ߪ

ଶ

௬ܵൗ݊
≤ 1 (5-24)

The above equation is adopted with minor alterations, mainly in the

consideration of the safety factor of the material yield and the vectorial sum of
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the two stresses due to bending moments, by the standards’ provisions for

ultimate limit state. The provisions of different standards will be presented in the

next chapter. For cases where torsion and shear loads can be neglected, and

only axial load and bending moment are present, as in the general case of

frame structures, the above limit state corresponds to both the Tresca and the

von Mises yield criteria.

Commercial FEA packages can provide values of principal stresses that will

allow use of any of the criteria described above. Table 21, Summarizes the limit

state functions derived, based on each of the failure criteria.

Maximum shear stress (MSS) - Tresca or Guest

theory

ெܩ ௌௌ =
ௌ

ଶ
− ߬ ௫ ≤ 0

ெܩ ௌௌ =
௬ܵ

݊
− ଵߪ) − (ଷߪ ≤ 0

Distortion energy (DE) - von Mises–Hencky

theory
ாܩ =

௬ܵ

݊
− ≥ᇱߪ 0

Ductile Coulomb-Mohr (DCM)- Internal-friction

theory
ெܩ =

1

݊
− ൬

ଵߪ

௧ܵ
−
ଷߪ

ܵ
൰≤ 0

Table 21: Limit states for different Failure Criteria

5.2.5 Buckling Limit state

Further to failure criteria for the ultimate strength of structural members, an

additional limit state should be introduced for the analysis of members under

compression in order to avoid buckling phenomenon. For the appropriate

consideration of each case, members undergoing compressive loads should be

categorized as either long or intermediate long, with central or eccentric loads.

The term column is used for members where the principle stress derives mainly

from axial forces that usually fall along the centreline of the member.

For a vertical column that undergoes an axial force ܲ along its centroidal axis,

simple compression will occur for relatively low values of this force. Increasing

the value of ܲ, and under specific conditions, the column might become



177

unstable, leading to extensive bending. The critical force between those two

states, can be derived following the bending deflection equation of the member,

providing a differential equation where appropriate boundary conditions may be

applied for each problem and finally resulting in the critical load for unstable

bending (Euler column formula):

ܲ =
ܫܧଶߨܥ

ଶ݈
(5-25)

Where: ܧ is the Young modulus of the material, ܫ the moment of inertia and ݈

the free length of the member. The parameter ,ܥ accounts for the end

conditions of the member: ܥ = 1 for both ends rounded or pivoted; ܥ = 4 both

ends fixed; ܥ = 0.25 one end free and one end fixed; ܥ = 2 one end rounded

and pivoted, and one end fixed. An alternative useful expression for the critical

load can be obtained as:

ܲ

ܣ
=
ܧଶߨܥ

( /݈ )݇ଶ
(5-26)

Considering: =ܫ ,ଶܭܣ where: ܣ is the area and ݇ the radius of gyration, and

( /݈ )݇ is called the slenderness ratio which classifies the length of a column. The

ratio ܲ/ܣ is called ‘crucial unit load’; it has the same units as strength and it

represents the necessary load per unit area that should be applied on the

column in order to exceed the stability equilibrium. It depends on Young

modulus and slenderness ratio, implying that it is independent of the material

yield strength.

Based on diagrams between the slenderness ratios and the unit load, also

called PQR ratios, a critical value of the slenderness ratio is proposed, in order

to distinguish different classes of beams (long, intermediate). A typical value

selected for this scope denotes that the Euler’s formula is applicable for cases

where slenderness ratio is greater than that:

൬
݈

݇
൰
ଵ

=
ܧଶߨܥ2

௬ܵ
(5-27)
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Several formulas have been proposed for cases of slenderness ratio below

( /݈ )݇ଵ, most based on a linear relationship between slenderness ratio and unit

load. Applying appropriate boundary conditions, the corresponding formula

suggests:

ܲ

ܣ
= ௬ܵ − ൬

௬ܵ

ߨ2

݈

݇
൰
ଶ 1

ܧܥ
(5-28)

Formulation of the corresponding limit states, will be derived by comparison of

the critical load to the actual axial force of each member. Therefore the

following LS functions represent failure:

ଵܩ = ܲଵ − ܰ௫௫ =
గమா

(/)మ
− ܰ௫௫, for ቀ




ቁ> ቀ




ቁ
ଵ

ଶܩ = ܲଶ − ܰ௫௫ = ܣ ܵ ௬ − ቀ
ௌ

ଶగ




ቁ
ଶ ଵ

ா
൨− ܰ௫௫, for ቀ




ቁ≤ ቀ




ቁ
ଵ

(5-29)

It should be noted that in most design standards, as it will be pointed out in the

next chapter, distinguish between different classes of members is presented,

following the above theory. This PhD has focused on the yield, buckling and

corrosion which are the main failure mechanisms in the design of structural

members. Further from that, for the comprehensive consideration of the integrity

of structural members, additional mechanisms such as the following should be

also considered:

 Creep, is a mechanism that forms gradually over time and can be

described as the tendency of solid materials to deform permanently

under the effect of stresses below the yield strength of materials. The

magnitude and rate of this mechanism is influenced by exposure to high

temperature and can lead to failure (ULS) or extensive deformation

(SLS).

 Fatigue, is another progressive, localized effect occurring at members

subjected in cyclic loading. The formation of the mechanism is initiated

by microscopic cracks that are formed in the surface of a member, and it

gradually propagates resulting to failure. Fatigue corrosion is another



179

mechanism that combines corrosion and cyclic loading. As it has already

been mentioned, this failure mechanism is of great importance for

offshore structures that undergo dynamic loads.

 Fracture, is described as the separation of a member subjected to stress

in to two or more pieces. Ductile and brittle materials have a different

fracture strength which is determined by tensile tests and stress-strain

curves.

 Impact, is considered as a sudden force or acceleration applied on a

member over a short period of time which forces the member to react in

an unforeseen, and often non linear way. The load bearing capacity of a

damaged member should be considered, in order to assess the

performance of the structure throughout the rest of its service life.

 Wear, is the erosion of a member due to the action of another surface

acting on it, due to the interaction of particles between the two surfaces.

This mechanism might result to cross sectional loss of the material which

might affect its load bearing capacity.

 In a global level de-pilling is another mechanism that might lead to global

failure, when the extensive lateral loads or seabed movement, tends to

dislocate the structure.

5.3 Application of Joint Probability Distribution

Before proceeding to the reliability assessment of the selected offshore jacket

structure, an example of the application of the joint probability distribution

between significant wave height and peak spectral period will be included, as it

is required for the next steps of this application, in the formulation of the variable

input matrix. Data for this analysis are obtained by [211] for a typical site (Grid

Point 14212 - 61.507°N, 0.942°W) in a binned data form for ௦ܪ and ܶ. For this

analysis, different Matlab codes have been conducted and have been verified

for the case presented in [282]. The matrix of the bivariate scatter diagram ܼ

and the mean values of the classes are the input of the initial code that
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processes the real data. Linear and logarithmic contours of equal probability are

then drawn for this data; the later type deals with the fact that peaks that

correspond to more observations that occur at regions of lower interest gather

more of the contour lines underestimating the significance of lower probabilities

regions. Figure 49 and Figure 50 present those plots.

.

Figure 49: Linear Plot of real data (Hs (m), Tp (s))

Figure 50: Logarithmic Plot of real data (Hs (m), Tp (s))
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The next code that has been conducted, applies statistical fit in order to

generate the coefficients of distribution for ܶ and ௦ܪ for lognormal and Weibull

distributions. Before proceeding to approximation of the joint distribution

function, further analysis has been carried out in order to estimate the

correlation between the two variables. In order to achieve this, the following

procedure is introduced: starting from the scatter diagram, and taking the

coordinates of the centre of each bin, Cartesian points with a number equalling

to that of the observations were generated in order to apply the calculation

formula. For the generation of those points, a routine was followed that

produces points in a circular or elliptical pattern of radius equalling the half width

of each bin dimension. The results of this approach, after verification, have

been found to approximate the analytical solution sufficiently. Figure 51,

presents a contour generated by those reconstructed data. Table 22, presents

the coefficients estimated for this case.

Figure 51: Linear Plot of regenerated data (Hs (m), Tp (s))
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Lognormal Approximation Weibull Approximation Correlation coefficient

TP μ = 2.1805 σ = 0.2709 λ = 10.1157 κ = 3.9406 ρ 0.5624

HS μ = 0.9792 σ =0.5027 λ = 3.4227 κ = 2.0934

Table 22: Distribution coefficients

Once the distributions’ coefficients have been estimated, three different codes

have been conducted in order to produce different contours that will allow

selection of the most appropriate distribution. Each code will generate bivariate

correlated random numbers. The procedure followed, starts with generation of a

sequence of sets of values following normal distributions ܰ(0,1) taking into

account a correlation coefficient. After that, for each set, the value of the Normal

cumulative distribution function isܨ calculated and the final values of each

distribution will be derived as the inverse cumulative distribution function of

ܨ
ିଵ( )݅ which corresponds accordingly to any statistical distribution. This is an

easy procedure to program. The code will later bin data in a new scatter matrix

and finally linear and logarithmic contours will be plotted. Using Lagrange

interpolation, smoothened contours are produced. For the three different joint

distribution functions, the results are presented in Figure 52 through Figure 54.

Although linear plots are generated as well, the logarithmic ones will be

presented since they include more information for the contours of lower

probability.
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Figure 52: Logarithmic plot of LogN bivariate joint distribution

(smoothened) (Hs (m), Tp (s))

Figure 53: Logarithmic plot of Weibull bivariate joint distribution

(smoothened) (Hs (m), Tp (s))
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Figure 54: Logarithmic plot of LogN-Weibull bivariate joint distribution

(smoothened) (Hs (m), Tp (s))

From the above plots, and based on visual observation [282], the bivariate

Weibull distribution provides poor approximation of the original data

underestimating the extreme values of ܶ and allocating more points in .ௌܪ

Further, the area of the higher contour is larger, providing a less steep peak.

The bivariate Lognormal and the marginal Lognormal-Weibull joint distributions

provide a better fit on the approximation of the original data with the later having

a close shape of the outer contour that is the one of interest, since it represents

the area of low probability. The codes that have been conducted also provide

the relative error contours between the original and the generated data in a

logarithmic plot, distinguishing regions of greater error concentration. According

to [283], the Lognormal distribution can provide good fit for cumulative

probabilities below 0.99, while it deteriorates above this threshold. Figure 55,

shows the comparison between the (reconstructed) original data, the Lognormal

and the marginal Lognormal-Weibull cumulative distribution functions for the

region of higher probabilities. It can be observed that the latter distribution

function approximates better the curve of the original data.
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Figure 55: Comparison of best fit on the tail region of the CDF for Hs (m)

Having determined the most appropriate joint distribution model, the long term

response of wave climate should be determined. There are two main

approaches for the prediction of the design value of waves [284]; the 100 years

storm and the 100 years design curve. The design curve approach refers to the

use of the joint distribution function defining the region that the return period,

which corresponds to the average period between exceedance of one value,

probability is exceeded. This method will be followed here and the return period

of 100 years will be selected since this is considered by most researchers and

modern standards.

From the marginal Lognormal-Weibull distribution function, for the tail region of

the cumulative distribution function, the extreme value corresponding to the 100

year return period can be evaluated, once the cumulative probability [(௦ܪ)ܲ]
ೝ்
of

a given return period ܶ is calculated as [285]:

[(௦ܪ)ܲ]
ೝ்

= 1 −
1

8 × 365 × ܶ
(5-30)

Applying the inverse Weibull probability distribution function for the above

probability, will derive the corresponding value for the significant wave height as
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௦ܪ = 11.47 m. The conditional probability of the spectral peak period for a given

significant wave height is calculated as [283]:

ܶ = |்ߤቈݔ݁ − ට1 − ு்ߩ
ଶ ߪ் 

Where:

|்ߤ = ்ߤ + ு்ߩ
ߪ்

ுߪ
(݈݊ −௦ܪ (ுߤ

(5-31)

For the distributions that have been derived, and for the specific value of ௦ܪ the

corresponding ܶ = 11.0 sec. Based on literature [191], the results derived

above, are reasonable. The extreme value with the return period of 100 years is

a probabilistic value, so in order to derive a deterministic value of this value

several approaches have been proposed and are presented in Table 23, [286].

From this table, that summarizes the work of several researchers [287], [288],

[289], [290], [291], [292], [293], [294], Wiegel’s work [295], the following formula

correlates significant wave height to the maximum design wave height:

ܪ ௫ = ௦ܪ1.87 (5-32)

The procedure described and followed above has been verified with the

example case presented in [230].

Reference Data Type ࡿࡴ ⁄ࡻࡴ ࡴ ⁄ ⁄ࡿࡴ ࡴ ࢞ࢇ ⁄ࡿࡴ

Munk [287] Field data 1.53 --- ---

Seiwell [288] Field data 1.57 --- ---

Wiegel [290] Field data --- 1.29 1.87

Barber [289] Theoretical 1.61 --- 1.50

Putz [292] Field data 1.63 --- ---

Longuet-Higgins [291] Theoretical 1.60 1.27 1.77

Putz [292] Theoretical 1.57 1.29 1.80

Darbyshire [293] Field data 1.60 --- 1.50

Hamada et al. [294] Experimental 1.35 --- ---

Table 23: Wave Height Statistical Correlations [286]
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The values that are presented in Table 23, refer to a Reyleigh distribution fit of

observed data, which stands as a special case of the Weibull distribution. The

statistical values of interest of the Reyleigh distribution as presented in a

parametric plot in Figure 56, are the following:

 The average wave height ܪ

 The significant wave height ௦ܪ or ଵ/ଷܪ

 The 1/10 highest have height ଵ/ଵܪ

Figure 56: The Reyleigh distribution of wave heights
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massive deployment of wind turbines, sets a reference depth between 40-50 m.

Benefits of the jacket configuration compared to others, are discussed in [296]

and [297]. Selection and implementation of a jacket support structure for the

Beatrix wind farm, which has been deployed in a depth of 45 m, and stands as

the deepest location so far, countersigns its applicability for this water depth

[60].

For the application of the reliability assessment procedure that has been

developed in the previous chapters, a typical structure will be examined for the

reference depth of 50 m. The design depth in conjunction with the operational

loads, will determine the general layout of the structure, in aspects of number of

required legs, general layout and consideration of loading conditions. The depth

of interest allows a four-legged configuration located in the corners of a square

cross section at each elevation.

The structure is assumed to be constructed of tubular steel members of

common 355 MPa steel with Young modulus of 200 GPa. Each of the legs is

supported with a pile driven through the legs and extended to the seabed. The

four legs are battered to achieve better stability against toppling, with a common

bat angle with ratio 1:10. It has 5 elevations of horizontal and 4 of inclined full X

bracing. The base elevation, which is positioned on the seabed, has dimensions

of 25.0 m x 25.0 m and the structure extends above the water surface by 12 m,

resulting to a total height of 62 m.

On top of the jacket support structure, an additional load will be considered to

account for any operational loads acting on top of the support structure eg. the

loads due to machinery on the top of an oil and gas platform, including the drag

force imposed by the complicated geometry of the top side, or the aerodynamic

loads induced by the operation of a wind turbine including the drag of the

turbine tower. For this scope, an additional load will be applied on the top of the

support structure proportional to the square of wind speed. The technique of

ultra-stiff elements was employed in order to transfer the point loads to the legs,

avoiding extensive stresses and deflection to the members of the top elevation.
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The structure has been designed with the commercial software DNV SESAM

[298], specialized for the design of offshore steel structures. This software

allows efficient modelling of environmental loads, including wave loads and

piling, providing the static and dynamic response of structural members in the

form of, bending moments, axial forces and principal stresses. The basis for the

design of this structure was selected to be API RP 2A WSD, since this is the

most conservative existing design standard, as it will be discussed in the next

chapter. Design according to the provisions of this standard, has ensured that

both buckling and ultimate strength capacity of members have been achieved.

Table 24, presents the design load input parameters for dimensioning of the

structure. For the numbering of members the following common notation has

been followed: for legs, the string ܤ0ܣ characterizes the member, for horizontal

braces, ,ܤ1ܣ while for vertical braces ,ܤ5ܣ where ܣ represents the elevation

and ܤ the orientation of the member.

Although selection of different loading conditions describing the wave sea state

is common in offshore structures taking into account deployment along

preferential directions, having a greater significance for larger scale and more

complicated structures, the symmetry of the reference structure allows

consideration of two directions of ‘wave attack’ (0 and 45 degrees), and

application of the same derived cross sections to the corresponding members.

Having ensured that the operational loads have been considered in the worst

case direction combined to the environmental loads, this simplification

diminishes significantly the number of load cases that need to be examined,

and in the present study will allow investigation of more parameters.

Figure 57, illustrates the structure of reference, while in Appendix C, details on

the cross sections of members are included.
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Parameter Value Unit

Significant Wave Height 11.47 m

Design Wave Height 21.46 m

Associated Wave Period 13.3 sec

Drag Coefficient 1.05

Morison Coefficient 1.2

Wind Speed 25 m/sec

Current Profile
MWL: 1

-25 m: 0.5 m/sec

Table 24: Design load input parameters for dimensioning of the structure

Figure 57: FEA model of a jacket structure developed in DNV GeniE

software
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5.5 Component Structural Reliability Assessment

5.5.1 Base case

The case that will stand as the basis for comparison in the later sections,

accounts for four stochastic variables that will be considered in this analysis.

Incorporation of more variables is feasible, however as it will be derived from

the analysis, fewer variables should be modelled stochastically that have a

greater effect on the structural response. For the derivation of the reliability

indices of each member, several simulations have been executed in FEA

software and the results are imported in the MATLAB code that has been

developed for the data regression and later the calculation of the FORM and

SORM reliability index. The four variables that are considered stochastically are

summarized in Table 25.

Variable Distribution Type Coefficients Units

1ݔ Wave height Reyleigh ܣ = 8.08 m

2ݔ Wind Force Normal (400,40) kN

3ݔ Current Normal (0.8,0.15) m/sec

4ݔ Yield LogNormal (2.55,1.398) MPa

Table 25: Properties of stochastic variables

The structure has been modelled according to 5th order Stokes wave theory,

considering drag and Morison coefficients for rough members’ surfaces

ௗܥ) = 1.05 and ܥ = 1.2). The effect of those assumptions, as well as the

contributions of each of the variables will be examined in the later sections.

Table 26 to Table 28, summarize the results of reliability indexes of members,

for directions of 0 and 45 degrees for this base case.
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Member ID
ࢼ ࢌࡼ

Member ID
ࢼ ࢌࡼ

0 degs 45 degs 0 degs 45 degs 0 degs 45 degs 0 degs 45 degs

b116 35.01 35.01 ∞ ∞ b316 20.87 9.05 4.83E-97 7.08E-20

b115 35.01 35.01 ∞ ∞ b315 20.86 14.8 6.64E-97 7.03E-50

b114 54.83 54.83 ∞ ∞ b314 6.94 7.68 1.99E-12 8.14E-15

b113 54.83 54.83 ∞ ∞ b313 10.48 7.52 5.40E-26 2.69E-14

b112 54.83 54.83 ∞ ∞ b312 6.96 7.5 1.65E-12 3.16E-14

b111 54.83 54.83 ∞ ∞ b311 10.46 7.76 6.55E-26 4.23E-15

b216 18.71 26.7 2.04E-78 2.30E-157 b416 8.37 6.02 2.84E-17 8.92E-10

b215 18.72 16.38 1.70E-78 1.43E-60 b415 8.36 9.64 3.03E-17 2.80E-22

b214 9.33 11.43 5.45E-21 1.45E-30 b414 5.76 6.91 4.24E-09 2.42E-12

b213 12.33 9.52 3.14E-35 8.36E-22 b413 8.98 6.7 1.31E-19 1.05E-11

b212 9.70 9.48 1.53E-22 1.27E-21 b412 6.00 6.72 9.61E-10 9.01E-12

b211 12.34 10.62 2.60E-35 1.14E-26 b411 8.98 7.04 1.36E-19 9.50E-13

Table 26: Reliability Index of Horizontal Members

Member ID
ࢼ ࢌࡼ

Member ID
ࢼ ࢌࡼ

0 degs 45 degs 0 degs 45 degs 0 degs 45 degs 0 degs 45 degs

b158 6.74 6.08 7.67E-12 5.96E-10 b358 6.16 5.37 3.62E-10 3.95E-08

b157 6.76 6.81 6.89E-12 4.93E-12 b357 6.16 5.24 3.59E-10 8.14E-08

b156 5.7 6.77 5.95E-09 6.48E-12 b356 5.31 5.12 5.46E-08 1.56E-07

b155 5.55 5.92 1.44E-08 1.64E-09 b355 5.33 5.19 5.04E-08 1.05E-07

b154 6.94 5.93 1.99E-12 1.48E-09 b354 6.09 5.21 5.69E-10 9.37E-08

b153 6.93 6.63 2.10E-12 1.64E-11 b353 6.08 5.14 6.04E-10 1.38E-07

b152 5.54 6.78 1.50E-08 6.10E-12 b352 5.33 5.2 5.02E-08 9.75E-08

b151 5.7 6.05 5.86E-09 7.08E-10 b351 5.3 5.35 5.65E-08 4.44E-08

b258 7.79 5.79 3.28E-15 3.62E-09 b458 3.72 4.48 9.86E-05 3.79E-06

b257 7.81 5.88 2.89E-15 2.06E-09 b457 3.72 4.48 9.99E-05 3.69E-06

b256 5.27 5.68 6.84E-08 6.58E-09 b456 6.37 4.35 9.53E-11 6.85E-06

b255 5.26 5.66 7.26E-08 7.37E-09 b455 6.34 4.64 1.18E-10 1.73E-06

b254 7.51 5.69 3.01E-14 6.38E-09 b454 3.79 4.69 7.65E-05 1.35E-06

b253 7.51 5.71 2.87E-14 5.70E-09 b453 3.79 4.32 7.57E-05 7.74E-06

b252 5.25 5.85 7.71E-08 2.47E-09 b452 6.33 4.45 1.22E-10 4.23E-06

b251 5.27 5.74 6.93E-08 4.78E-09 b451 6.37 4.51 9.75E-11 3.20E-06

Table 27: Reliability Index of Vertical Members
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Member
ID

ࢼ ࢌࡼ

0 degs 45 degs 0 degs 45 degs

b404 14.72 10.82 2.32E-49 1.40E-27

b403 10.66 10.20 7.76E-27 1.03E-24

b402 10.66 10.88 7.80E-27 7.17E-28

b401 14.73 19.52 2.13E-49 4.03E-85

b304 8.72 13.87 1.44E-18 4.54E-44

b303 8.14 7.36 1.99E-16 9.24E-14

b302 8.15 13.83 1.83E-16 7.84E-44

b301 8.71 7.23 1.54E-18 2.37E-13

b204 5.74 19.27 4.78E-09 4.54E-83

b203 7.45 6.26 4.52E-14 1.95E-10

b202 7.46 19.96 4.39E-14 5.78E-89

b201 5.74 5.72 4.76E-09 5.29E-09

b104 4.79 10.07 8.45E-07 3.93E-24

b103 5.23 4.50 8.62E-08 3.41E-06

b102 5.22 10.13 8.74E-08 2.09E-24

b101 4.79 4.66 8.41E-07 1.59E-06

Table 28: Reliability Index of Legs Members

From the results presented above it can be observed that reasonable values

are derived for the reliability indices of the members. The large values that

occur in members b111-b116 and refer to the horizontal members of the

seabed elevation are due to the stiff piling conditions that have been selected in

this analysis that result them to carry very small loads. In general, horizontal X

brace elements are designed to carry small loads, but should be included in the

design for practical reasons.

Variation in the direction of loading shows the worse case that should be

considered in the minimum reliability that will eventually size the members. For

the example of the legs, this fact is more obvious since in the 0 degrees of

approach there is symmetry in loading for two sets of legs while in 45 degrees,

two legs have symmetrically equal reliability, while the other two have different

values referring to the different loads acting on them.

As far as the legs reliability index of different parts along its length is concerned,

due to the uniform cross section that has been selected it is observed that

reliability index values follow the cumulative load distributed along each of the
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elevation of the structures; this indicates that members at lower elevations

which suffer from greater stresses, will have lower values of reliabilities

ߚ) = 4.79 − 14.73 for 0 degrees and ߚ = 4.50 − 10.20 for 45 degrees).

Smaller values that have can noticed on the top vertical X-braces of the

structure (members b457-b458, ߚ = 3.72), are due to the fact that the topside of

the structure has not been analytically designed so those members locally

suffer from increased loads that carry the loads of the topside. In a more

realistic structure this phenomenon would have been avoided by appropriate

design of the topside-structure interaction with adequate load paths that would

transform those loads more uniformly to the rest of the structure.

Small deviations on the reliability indexes of symmetrical members in 45

degrees case is due to the fact that wind load is acting in a constant direction (0

degrees) compared to the different directions of the wave and current loads

slightly “disturbing” this symmetry. However, the small scale of this deviation

illustrates that the effect of the wind load is minimum compared to that of the

sea state loads. Further, it should be essential to point out that the large values

that are presented on the above tables refer only to two cases of loading where

some of the members suffer more than others while considering the different

directional load cases other members would be in this place. This means that in

order to derive the total reliability index of each member, every possible

direction of loading should be indentified and examined, and the final reliability

of each member would equal the minimum of the values that have been partially

calculated. For the case that has been examined, and due to the assumption

that the same loading conditions act on the structure every 90 degrees, the final

values of reliability indices can be derived based on the geometrical symmetry

of the structure. Table 29, summarizes those results incorporating 8 different,

but symmetrical, directions acting on the structure.
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Member
ID

 (ࢼ)
Member

ID
 (ࢼ)

Member
ID

 (ࢼ)
Member

ID
 (ࢼ)

b116 35.01 b416 6.02 b104 4.50 b252 5.25

b115 35.01 b415 6.02 b103 4.50 b251 5.25

b114 54.83 b414 5.76 b102 4.50 b358 5.12

b113 54.83 b413 5.76 b101 4.50 b357 5.12

b112 54.83 b412 5.76 b158 5.54 b356 5.12

b111 54.83 b411 5.76 b157 5.54 b355 5.12

b216 16.38 b404 10.20 b156 5.54 b354 5.12

b215 16.38 b403 10.20 b155 5.54 b353 5.12

b214 9.33 b402 10.20 b154 5.54 b352 5.12

b213 9.33 b401 10.20 b153 5.54 b351 5.12

b212 9.33 b304 7.23 b152 5.54 b458 3.72

b211 9.33 b303 7.23 b151 5.54 b457 3.72

b316 9.05 b302 7.23 b258 5.25 b456 3.72

b315 9.05 b301 7.23 b257 5.25 b455 3.72

b314 6.94 b204 5.72 b256 5.25 b454 3.72

b313 6.94 b203 5.72 b255 5.25 b453 3.72

b312 6.94 b202 5.72 b254 5.25 b452 3.72

b311 6.94 b201 5.72 b253 5.25 b451 3.72

Table 29: Minimum Reliability index of members, incorporating 8 different

directions

Further to the above analysis for ultimate strength of members, reliability

assessment for those under compression for buckling was performed. During

the analysis, two different values of the parameter ܥ in the critical buckling force

calculation were considered, 1.2 (recommended value) and 4 (theoretical value)

as it can be found in [278], in order to evaluate the effect of this parameter on

the derived values of reliability indices. Results of this analysis for the 10 more

critical members are presented in Table 30 which corresponds to vertical

diagonal bracing members. From those values the conclusion that can be

drawn is that coefficient ܥ plays a significant role to the outcome of this analysis

affecting significantly the value of .ߚ
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Member
ID

 =   = .

0 degs 45 degs 0 degs 45 degs

b155 7.58 8.44 3.55 4.02

b152 7.58 10.82 3.55 5.25

b255 8.09 9.51 3.84 4.63

b252 8.09 10.61 3.85 5.17

b154 17.38 8.45 9.00 4.05

b355 9.04 10.72 4.45 5.38

b352 9.05 11.54 4.45 5.77

b254 28.32 9.53 15.10 4.68

b258 25.77 9.70 13.76 4.84

b257 25.74 10.65 13.76 5.25

Table 30: Reliability indices for buckling limit states (10 critical members)

5.5.2 Sensitivity analysis of design parameters

In this section, the effect of design parameters in the resultant values of

reliability index will be investigated. Surface roughness, expressed through

appropriate consideration of ௗܥ and ܥ coefficients, selection of wave modelling

theory, effect of different statistical distributions and variation in stochastic loads

properties are studied as the main model uncertainties; further sources of model

uncertainty will not be investigated as they stand out of the scope of this

contribution. A further analysis regarding the effect of corrosion modelling to the

resulting values of willߚ show the reliability deterioration of the structure

throughout its service life. For each case, the results with the major effect of the

parameter examined will be illustrated.

5.5.2.1 Wave modelling

5.5.2.1.1 Effect of surface roughness

The effect of surface roughness of structural members will be examined based

on provisions of standards for drag and inertial coefficients. Based on the fact

that the base case accounts for rough cylinders ܦܥ) = 1.05 and ெܥ = 1.2)

according to API’s provisions, smooth surface cylinders should be modelled

with appropriate coefficients ܦܥ) = 0.65 and ெܥ = 1.6). It is expected that

members of greater surface roughness will generate greater drag force and

therefore their relevant reliability index would be higher. Table 31 summarizes
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the results of ߚ and the related difference to the base case for the 30 members

with the greatest effect for 0 degrees.

Member
ID

ࢎࢍ࢛࢘ࢼ ࢙ࢼ ࢎ࢚

Relative
error

(%)

Member
ID

ࢎࢍ࢛࢘ࢼ ࢙ࢼ ࢎ࢚

Relative
error
(%)

b415 8.36 15.05 80.03 b257 7.81 10.65 36.32

b416 8.37 15.06 79.98 b201 5.74 7.81 36.11

b301 8.71 13.62 56.33 b204 5.74 7.81 36.09

b304 8.72 13.63 56.29 b151 5.70 7.75 36.00

b158 6.74 9.61 42.62 b156 5.70 7.75 35.93

b157 6.76 9.63 42.53 b302 8.15 10.96 34.48

b404 14.72 20.54 39.54 b303 8.14 10.95 34.48

b401 14.73 20.55 39.50 b212 9.70 13.03 34.36

b357 6.16 8.56 39.02 b403 10.66 14.27 33.90

b358 6.16 8.56 38.99 b402 10.66 14.27 33.90

b458 3.72 5.13 37.80 b414 5.76 7.63 32.52

b457 3.72 5.12 37.67 b312 6.96 9.16 31.66

b152 5.54 7.56 36.55 b256 5.27 6.91 31.06

b155 5.55 7.58 36.49 b251 5.27 6.90 31.00

b258 7.79 10.62 36.39 b352 5.33 6.97 30.80

Table 31: Reliability index of smooth and rough cylinders (30 critical

members)

The increase of reliability index is greater for members that have already

greater values of ߚ in both cases. Further, due to the increase to the distributed

loads along the height of the structure, the resultant load acting on the structure

with the rougher members will be greater on the members of the lower

elevation, leading to greater difference of reliability compared to a structure with

smoother components. This phenomenon, illustrates that as the structure ages,

and the smoothness of the members’ surfaces change due to corrosion, marine

growth etc, the effect of environmental loads acting on the structure becomes

more significant. This verifies the assumption presented in theory regarding

deterioration of reliability due to decrease in the relative distance between load

effect and resistance of the structure.

5.5.2.1.2 Different wave theories

Selection of the appropriate wave modelling theory is another decision that has

a crucial impact on the accuracy of the prediction of the performance of the
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structure for given input conditions. Increased complexity of more analytical

methods may raise restriction to engineers, especially when appropriate

software for modelling is not available; however, this fact might under or

overestimate the actual performance of the structure. The effect of this

inaccuracy is therefore transferred in the reliability calculation misjudging the

actual performance of members. The base case has been modelled using 5th

order Stokes equations model. Table 32, presents the results of the 20

members with the most significant deviation when modelled with different wave

modelling theories, for the case of 0 degrees of wave angle. For this

comparison, Airy wave theory and Stream function theory (3rd and 11th order)

have been considered.

ࢼ Deviation from Stokes 5
th

order

Member
ID

Stokes 5
th

Order
Theory

Airy
Theory

Stream
function

(3
rd

order)

Stream
function

(11
rd

order)

Airy
Theory

(%)

Stream
function

(3
rd

order)

(%)

Stream
function

(11
rd

order)

(%)

b301 8.71 14.16 8.73 8.73 62.5 0.3 0.2

b304 8.72 14.17 8.74 8.74 62.5 0.2 0.2

b203 7.45 11.23 7.55 7.54 50.8 1.3 1.3

b202 7.46 11.24 7.55 7.55 50.6 1.2 1.2

b302 8.15 12.07 8.20 8.19 48.1 0.6 0.5

b303 8.14 12.05 8.19 8.18 48.0 0.6 0.5

b452 6.33 8.89 6.38 6.38 40.5 0.8 0.8

b455 6.34 8.90 6.39 6.39 40.4 0.7 0.7

b456 6.37 8.81 6.43 6.43 38.3 0.9 0.9

b451 6.37 8.80 6.42 6.42 38.2 0.9 0.8

b102 5.22 7.05 5.29 5.29 35.1 1.3 1.3

b103 5.23 7.05 5.29 5.29 34.9 1.1 1.1

b453 3.79 5.00 3.82 3.82 31.8 0.9 0.9

b454 3.79 4.99 3.82 3.82 31.7 0.8 0.8

b458 3.72 4.79 3.75 3.74 28.9 0.7 0.6

b457 3.72 4.79 3.74 3.74 28.8 0.6 0.5

b403 10.66 13.71 10.77 10.78 28.6 1.0 1.1

b402 10.66 13.71 10.77 10.77 28.6 1.0 1.1

b352 5.33 6.81 5.38 5.38 27.7 1.0 1.0

b355 5.33 6.81 5.38 5.38 27.7 1.0 1.0

Table 32: Reliability index for different wave theories (20 members with

critical effect)
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From the figures above, the conclusion that can be derived is that compared to

the 5th order Stokes wave theory, Airy wave theory tend to underestimate the

environmental loads, resulting to greater values of reliability indices. Greater

deviation is found to occur in the mid elevation members. Stream function

produces similar results than the base case with limited deviation (up to 4.3 %).

The order of the stream function does not seem to provide a significant

difference on the values of reliability index for the case studied. Finally from the

sea state conditions that have been selected and the structure that has been

examined, the results provided from the 5th order Stokes wave theory, which

compiles to API’s provisions for given environment, provide the most

conservative results. This comparison illustrates the significance of the selection

of the appropriate wave theory.

5.5.2.2 Effect of statistical distributions

Appropriate modelling of the stochastic variables is another issue that should be

treated efficiently in the pre-processing of the reliability assessment. In the

literature review of this Thesis, different statistical distributions have been

proposed for different loads and design parameters. In the base case, relevant

distributions have been selected based on the nature of the variables. In this

section, the values of ߚ that have been derived for the base case will be

compared to values obtained by a new calculation of reliability derived by

considering equivalent normal distributions for all of the variables modeled

stochastically. Table 33 presents the properties of those equivalent normal

distributions while Table 34 provides comparative results of the 20 members

with greater deviations on the results (0 degrees).

Variable Coefficients Units

1ݔ Wave height (8.799,4.5932) m

2ݔ Wind Force (400,40) kN

3ݔ Current (0.8,0.15) m/sec

4ݔ Yield (355,25) MPa

Table 33: Parameters of equivalent normal distributions



200

Member
ID

ࢋ࢙ࢇ࢈ࢼ ࢘ࢼ ࢇ
Deviation

(%)
Member

ID
ࢋ࢙ࢇ࢈ࢼ ࢘ࢼ ࢇ

Deviation
(%)

b101 4.79 5.19 8.4 b304 8.72 9.13 4.7

b104 4.79 5.19 8.4 b258 7.79 8.15 4.6

b201 5.74 6.20 8.0 b212 9.70 10.14 4.6

b204 5.74 6.20 8.0 b303 8.14 8.51 4.6

b415 8.36 8.96 7.2 b411 8.98 9.39 4.5

b416 8.37 8.96 7.1 b413 8.98 9.39 4.5

b404 14.72 15.49 5.2 b313 10.48 10.95 4.5

b401 14.73 15.49 5.2 b158 6.74 7.04 4.5

b402 10.66 11.19 5.0 b315 20.86 21.79 4.5

b403 10.66 11.19 5.0 b302 8.15 8.51 4.4

Table 34: Reliability indices for equivalent normal distributions

From the above results, it can be concluded that consideration of the equivalent

normal variables overestimates values of reliability indices. This results in less

conservative approximation of .ߚ In the list provided, greater deviation occurs in

the lower elevation legs members which are the most significant members in

the design of a jacket structure. The maximum of 8.4 % in the value of ߚ

highlights the significance of appropriate statistical modeling of the stochastic

variables.

5.5.2.3 Stochastic variables variation

5.5.2.3.1 Loading variables

Each of the variables that are considered stochastically in the reliability

assessment of a structure, has a different contribution in the resultant value of

.ߚ This section presents the comparison of the base case, with three different

simulations of cases where the three environmental loads, wave, wind and

current, have been decreased by 25 %. The effect on sߚ are presented in Table

35, for the case of the 30 more critical members (lower values of ߚ in the base

case) and wave angle of 0 degrees.
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Member
ID

ࢋ࢙ࢇ࢈ࢼ ࢋ࢜ࢇ࢝×.ૠࢼ ࢊ࢝×.ૠࢼ ࢛࢘࢘ࢉ×.ૠࢼ
Member

ID
ࢋ࢙ࢇ࢈ࢼ ࢋ࢜ࢇ࢝×.ૠࢼ ࢊ࢝×.ૠࢼ ࢛࢘࢘ࢉ×.ૠࢼ

b457 3.72 5.52 3.72 3.76 b352 5.33 7.67 5.33 5.35

b458 3.72 5.53 3.72 3.75 b355 5.33 7.66 5.33 5.35

b453 3.79 5.62 3.79 3.82 b152 5.54 7.96 5.55 5.57

b454 3.79 5.61 3.78 3.82 b155 5.55 7.96 5.56 5.57

b101 4.79 5.81 4.79 4.79 b151 5.70 8.18 5.71 5.71

b104 4.79 5.82 4.79 4.80 b156 5.70 8.18 5.71 5.73

b102 5.22 7.52 5.24 5.24 b201 5.74 7.09 5.73 5.74

b103 5.23 7.53 5.23 5.24 b204 5.74 7.08 5.74 5.74

b252 5.25 7.57 5.26 5.28 b414 5.76 8.23 5.75 5.80

b255 5.26 7.56 5.25 5.28 b412 6.00 8.56 6.00 6.05

b251 5.27 7.58 5.27 5.29 b353 6.08 8.68 6.09 6.13

b256 5.27 7.58 5.27 5.30 b354 6.09 8.67 6.09 6.13

b351 5.30 7.64 5.31 5.34 b357 6.16 8.77 6.16 6.20

b356 5.31 7.64 5.32 5.34 b358 6.16 8.78 6.16 6.21

b352 5.33 7.67 5.33 5.35 b452 6.33 9.01 6.34 6.36

b355 5.33 7.66 5.33 5.35 b455 6.34 9.01 6.34 6.36

Table 35: Reliability indices for cases of 25% reduced loads

The above results show that the wave loading has the most significant effect on

the structure. A decrease in this load decreases crucially the loads acting on the

structure and therefore increases the reliability indices of the members. This

deviation increases to the members with higher reliability in the base case. The

effect of wind and current is less important on the structure, verifying that the

assumption made for symmetrical wave load sets every 90 degrees, is not

influenced significantly by the different direction of the wind loads.

A useful note in this comparison is that the code that has been developed

incorporating FORM and SORM can provide sensitivity factors of each of the

variables, which illustrate the relative contribution of each to the calculated

reliability index.

5.5.2.3.2 Material Yield

Different grades of steel, with different yield strength influence the reliability of

the members since it directly forms the utilization ratio (ratio of actual stress to

yield) that will later form the response surface of the structure. In this

comparison, the S355 steel that has been used in the base case simulation is
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compared to a steel of lower grade, S275, and the results are presented in

Table 36.

Member
ID

ࢼ ૠࢼ
Member

ID
ࢼ ૠࢼ

Member
ID

ࢼ ૠࢼ

b101 4.79 4.11 b213 12.33 10.43 b353 6.08 5.06

b102 5.22 4.35 b214 9.33 7.94 b354 6.09 5.05

b103 5.23 4.36 b215 18.72 15.56 b355 5.33 4.43

b104 4.79 4.11 b216 18.71 15.53 b356 5.31 4.44

b111 54.83 36.36 b251 5.27 4.43 b357 6.16 5.07

b112 54.83 36.36 b252 5.25 4.38 b358 6.16 5.07

b113 54.83 36.36 b253 7.51 6.36 b401 14.73 12.43

b114 54.83 36.36 b254 7.51 6.37 b402 10.66 9.12

b115 35.01 22.57 b255 5.26 4.38 b403 10.66 9.13

b116 35.01 22.57 b256 5.27 4.43 b404 14.72 12.44

b151 5.70 4.82 b257 7.81 6.62 b411 8.98 7.57

b152 5.54 4.68 b258 7.79 6.63 b412 6.00 4.94

b153 6.93 5.91 b301 8.71 7.50 b413 8.98 7.57

b154 6.94 5.92 b302 8.15 6.96 b414 5.76 4.75

b155 5.55 4.69 b303 8.14 6.96 b415 8.36 7.10

b156 5.70 4.82 b304 8.72 7.50 b416 8.37 7.09

b157 6.76 5.80 b311 10.46 8.83 b451 6.37 5.38

b158 6.74 5.81 b312 6.96 5.92 b452 6.33 5.35

b201 5.74 4.91 b313 10.48 8.84 b453 3.79 3.13

b202 7.46 6.30 b314 6.94 5.87 b454 3.79 3.13

b203 7.45 6.30 b315 20.86 17.49 b455 6.34 5.35

b204 5.74 4.90 b316 20.87 17.50 b456 6.37 5.38

b211 12.34 10.41 b351 5.30 4.45 b457 3.72 3.05

b212 9.70 8.25 b352 5.33 4.43 b458 3.72 3.05

Table 36: Reliability indices for S355 and S275 steels

The results that have been derived illustrate as it was expected, that the steel of

lower yield strength leads to lower values of target reliability. This deviation is

greater in members of higher reliability. For the critical members (b457-b458)

minimum derived values of ߚ become very low form S275 steels, getting out of

the acceptable limits set by standards, as it has been discussed earlier in this

Thesis.
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5.5.2.4 Corrosion models

Corrosion is one of the most important phenomena related to capacity

deterioration of the structure. Different models for this time-dependent

phenomenon have already been presented and express this problem as a time-

independent one through a relative decrease in the thickness of members. In

this section, different models have been considered in the reliability assessment

and the corresponding reliability deterioration throughout the structure’s service

life is presented. In Figure 58, the cumulative relative degradation in members’

thickness is expressed based on the models examined. For the models where

thickness decrease is expressed through statistical distributions (mean value

and standard deviation) the thickness value that corresponds to probability of

occurrence of 95% is considered. From the results that have been collected,

Figure 60 (i-iv) presents graphs that illustrate the degradation of the reliability

index according to each method for 4 members of one leg, as they represent

values of reliability index of different range. Table 37, shows the degradation of

reliability between 0 and 20 years, since this is the most common prescribed life

of offshore structures, for the 20 more critical members according to each

method.

Figure 58: Thickness deterioration as a function of time
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Member
ID

Base
case

Linear
0.5

Linear
1.0

Linear
1.5

Southwell
Linear

Southwell
Extended

Melchers-
Southwell

b457 3.72 3.59 3.47 3.33 3.62 3.50 3.46

b458 3.72 3.60 3.47 3.33 3.62 3.50 3.46

b453 3.79 3.66 3.54 3.40 3.69 3.57 3.52

b454 3.79 3.66 3.53 3.40 3.69 3.57 3.53

b101 4.79 4.75 4.70 4.72 4.73 4.70 4.70

b104 4.79 4.75 4.70 4.72 4.73 4.70 4.70

b102 5.22 5.11 4.99 4.85 5.13 5.02 4.98

b103 5.23 5.11 4.99 4.86 5.13 5.02 4.98

b252 5.25 5.08 4.93 4.76 5.13 4.98 4.92

b255 5.26 5.09 4.94 4.77 5.14 4.99 4.92

b251 5.27 5.11 4.96 4.79 5.15 5.01 4.95

b256 5.27 5.11 4.97 4.79 5.16 5.01 4.95

b351 5.30 5.15 5.01 4.83 5.20 5.05 4.99

b356 5.31 5.15 5.01 4.84 5.20 5.05 4.99

b352 5.33 5.15 5.00 4.81 5.21 5.05 4.98

b355 5.33 5.15 5.00 4.81 5.21 5.04 4.99

b152 5.54 5.35 5.18 4.99 5.40 5.23 5.18

b155 5.55 5.36 5.19 5.00 5.41 5.24 5.17

b151 5.70 5.51 5.32 5.11 5.55 5.37 5.31

b156 5.70 5.50 5.32 5.11 5.55 5.37 5.31

Table 37: Reliability indices for 20 years for different corrosion models

Figure 59: Reliability index deterioration of critical members (b454, b458)
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Figure 60: Reliability index deterioration of members (b403-b103)
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For critical members, as it can be observed in Figure 59, appropriate modelling

of the structures can classify them within an acceptable region of reliability or in

an unsafe region yielding intervention when in operational phase or re-

dimensioning when in the design phase. Further, in a more accurate

assessment, different parts of the structure at different elevations shall be

modelled according to different corrosion models.

The above analysis has considered general (wastage) corrosion on the

structural members that accounts for wall thickness reduction and is considered

by appropriate models. Additionally, pitting corrosion may occur locally on

members leading to stress concentration effects. Wall thinning due to corrosion

(of any type, including corrosion fatigue), can be largely mitigated against by

use of an appropriate corrosion protection system, as it has been referred to

earlier and is presented in Appendix B of the Thesis.

5.5.3 System Reliability Integration

Although the main interest of this Thesis is the estimation of reliability in a

component level since this is the approach followed by design standards, in this

section the effects of uncertainties on the structure as a system will be

examined following the background theory that has been presented earlier.

For the purpose of this study, pushover analysis has been selected among

other methods for the identification of the most dominant failure path of the

structure. This analysis identifies in a deterministic way the most critical

members of the structure forming a failure path that will derive the resultant

global reliability of the structure. Available studies, verify that for cases of

extreme loading conditions, the level of reliability of the identified failure path

based on a pushover analysis is in accordance to values that may be obtained

using extensive methods of search and simulations [299], [300].

Design simulation was combined with pushover analysis to address the stress

variation on the structure and identify the sequence of failure of structural

members as well as the global response of the structure. The difficulty of this



207

approach is that due to the simulations required, in structures of high

complexity, the computational effort required increases; therefore it is not

indicated for failure paths with large number of members. In [301] and [302],

guidelines for simple methods of failure paths identification can be found.

An important assumption following this approach is that global failure occurs at

one instance, for example in the case when the lateral wave load reaches its

maximum, and all of the members of a failure paths fail at the same time.

Failures are considered to occur over a short period of time during which the

load is applied proportionally. This assumption transforms the problem to a time

independent one, without demanding recalculation of reliability of the members

of the damaged structure.

Once a member’s failure is identified, its stiffness and therefore the global

stiffens of the structure is modified by modelling a residual strength either by

applying appropriate forces at the failed member or by changing its structural

properties. Figure 61, presents the post-failure behaviour that has been

considered in this analysis based on [86]. A new structural stress calculation is

initiated and this loop continues until a successive sequence of members’

failures is identified. The global response of the structure will illustrate the step

where the global failure is considered to occur through criteria of extensive non

linear deformation or displacements. In order to proportionally increase loads,

the design case is selected as a base case and the loads are factored until the

structure collapses.
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Figure 61: Post failure behaviour
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Figure 63: Displacement vs overturning moment (intact structure)

Figure 64: Displacement vs load factor (intact structure)
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to deform linearly. For the case of 45 degrees, the first member to fail is 103,

resulting to nonlinear displacement following the first failure of the structure,

indicating absence of redundancy in this direction.

Calculation of the reserve strength ratio as the ratio of the base overturning

moment of the ultimate resistance of the structure over that of the design load

case derives a value of 3.7. The corresponding value for the case of 45 degrees

is 3.1.

Further analysis has been executed for the case of damaged structure, by

completely removing structural members, simulating the case when the two

most likely to fail members are sequentially removed. The diagrams that

correspond to those cases are presented in Figure 65 to Figure 68 presenting

displacement as a function of overturning base moment and load factor.

From the results obtained, the capacity of the damaged structure can be

determined and the residual strength can be expressed by calculation of the

residual resistance factor (RIF) and the damage tolerance ratio (DTR). The RIF

for the first case where the member b457 is removed is calculated as 0.96 while

for the second case where additionally member b458 is removed, RIF is found

to be 0.92. Those results show that for both damage scenarios, removal of

members reduce the maximum environmental load the structure might resist.

The DTR calculated for the first case is 0.92 while for the second case 0.88.

Those numbers indicate the reduction in the reserve strength of the structure.

The values of the DTR obtained, indicate that the platform has a high tolerance

to damages.
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Figure 65: Displacement vs overturning moment (one member removed)

Figure 66: Displacement vs overturning moment (two members removed)
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Figure 67: Displacement vs load factor (one member removed)

Figure 68: Displacement vs load factor (two members removed)
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considered to act on the structure, the total reliability of the structure will equal

that of anyone of the branches. For the calculation of the reliability of each

branch, the laws of parallel systems are applied.

The values that have been derived both for the reserve strength ratio, residual

resistance factor and damage tolerance ratio are reasonable and close to ones

found in similar studies [92]. The value of the lower and upper bounds of the

system reliability that have been calculated are presented in Table 38.

Lower Bound Upper Bound

ࢼ ࢌࡼ ࢼ ࢌࡼ

10.97 2.66E-28 5.76 4.21E-09

Table 38: Bounds of System Reliability

The analysis that has been executed quantifies the level of system reliability of

a typical jacket structure based on a simplified method. More accurate

approximation of the index can be obtained through a more accurate method

such as the Hobhenbicler approximation. The reliability index that has been

calculated from the system of failure paths equals 5.76. This result, that equals

the minimum reliability index of the members included in a failure path, is based

on a new un-corroded platform. Capacity deterioration due to corrosion, weld

imperfections, marine growth etc, will change the response of the structure and

in some cases may create different load and failure paths; therefore an

individual analysis should be executed varying members’ thicknesses and

surface properties in order to reflect the structure’s deteriorated conditions.

5.6 A Note on the dynamic loading of structures

Although the main aim of this PhD has been the investigation of the response of

the response of complex offshore structures due to static or quasi-static loads,

dynamic loads might have significant effect on structures and therefore a

separate complementary analysis should then be considered. This effect is due
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to the inability of the structures to respond instantly to the loading applied. The

increase of the effect in the response of a structure under dynamic load can be

given by a Dynamic Amplification Factor (DAF) which will magnify stresses or

displacements derived from static analysis to represent the corresponding

values for dynamic loads:

ܨܣܦ =
ݑ ௫
௦௧௧ݑ

(5-33)

The Dynamic Amplification Factor is practically a function of the geometry of the

structure and the material properties, and corresponds to its ability to dissipate

energy [303]. In [304], values for DAF are provided within a range of 1.10 − 1.30

based on a classification according to the scale of the structure, while in [305]

values between 1.5 − 2.0 are given for wind turbine structures that are

subjected to severe dynamic loads; the later values are considered as the most

conservative ones [306].

Another effect of dynamic loads is the corrosion fatigue phenomenon. This

refers to the mechanical deterioration of a material under combination of

corrosion and cyclic loading. This phenomenon can be initiated by pitting,

facilitating crack initiation and has a more significant effect to steels of higher

grades, constituting a constraint on their extensive application. Fatigue

corrosion can be avoided by addition of appropriate alloy or surface treatment of

the members.

In those cases where cyclic loads are significant, direct application of the

amplification factor to static loads obtained by ultimate strength do not produce

accurate results; therefore a fatigue limit state should be employed as it can be

found in literature [307], [308] and [309]. Further presentation of fatigue limit

states is beyond the scope of this Thesis.
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5.7 Summary

This Chapter has presented an application of the Stochastic Response Surface

Method for the reliability assessment of ultimate strength for a typical offshore

jacket structure, deployed in a hypothetical site in the North Sea. Basis of the

analysis have been analytical limit states that have been derived, based on

failure criteria of structural mechanics. An application of the joint probability

distribution, which has been presented in Chapter 5, is included for the

reference site. For a reference structure, the reliability of structural members

has been executed, based on the theory and data, and using the computational

tools that have been presented in the previous chapters considering four

stochastic variables (wave, wind, current, material yield). Using a consistent

methodology, a sensitivity analysis of the effect of different design parameters

of the design, such as the angle of loads, buckling coefficients, statistical

distribution and relative effect of variables has been presented. After an

extensive investigation of different corrosion models and their effect on the

estimated reliability indices, integration from a local to system reliability has

been realized illustrating the structure’s potential to redundancy.
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6 COMPARISON OF THE ULTIMATE STRENGTH

RELIABILITY PERFORMANCE OF RELEVANT

DESIGN PROCEDURES

6.1 Introduction

In this Chapter, the reliability assessment of offshore jacket structures will be

investigated based on limit states formulated by design standards’

requirements. The basic clauses of each standard have been included in this

Chapter. For the four standards that reference has been made in the first

chapters of this Thesis, API LRFD [2], ISO 19902 [3], EN 1993 [5], AISC/ANSI

[4], the applicable design provisions will be initially presented, resulting to the

formulation of corresponding limit state functions. For the definition of loads and

load combinations, load factors on both loads and material properties have

been considered to equal unity, while reduction (resistance) factors for the

strength of members under different loading modes have been selected

deterministically following standards’ recommendations.

Once this background is set, reliability indices for the members of the reference

structure that was described in the previous Chapter will be calculated based on

the new limit states. This study will illustrate the level of conservatism of

standards, comparing obtained results to the ones that have been derived by

the limit state that was based on the von Mises failure criterion in the previous

Chapter. This study will focus on the component reliability assessment since

this is the approach that design standards adopt; however following the

procedure that was described and applied in the last section of the previous

chapter, integration to a systemic level can be achieved.
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6.2 API RP-2A: Recommended practice for planning, designing

and constructing fixed offshore platforms LRFD

This section, will present the design procedure of tubular members subjected to

tension, compression, bending, shear, hydrodynamic pressure, or combined

action of the above loads, as included in Chapter D of the standard. Ultimate

strength and stability criteria are derived. The recommendations provided, are

considered to be applicable for stiffened or un-stiffened members with thickness

of ≤ݐ 6 ݉݉ and materials with yield of less than 414 MPa [2].

6.2.1 Design Provisions

6.2.1.1 Members in Tension

For cylindrical members that are subjected to tension, the condition that should

be satisfied is:

௧݂ ≤ ߮௧ܨ௬ (6-1)

Where:

௬ܨ : Nominal yield strength (MPa)

௧݂ : Axial tensile stress (MPa)

߮௧ : Resistance factor for axial tensile strength (= 0.95)

6.2.1.2 Members in Compression

For cylindrical members that are subjected to compression, the condition that

should be satisfied is:

݂ ≤ ߮ܨ (6-2)

Where:

ܨ : Nominal axial compressive strength (MPa)

݂ : Axial compressive stress (MPa)

߮ : Resistance factor for axial compressive strength (= 0.85)
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An additional check should take place for members subjected to column or local

buckling. For column buckling, the nominal axial compressive strength ܨ

should be determined as:

ܨ = [1.0 − ,௬ܨ[ଶߣ0.25 for >ߣ √2

ܨ =
ଵ

ఒమ
,௬ܨ for ≤ߣ √2

=ߣ
ܮܭ

ݎߨ

௬ܨ

ܧ
൨
.ହ

(6-3)

Where:

ߣ : Column slenderness parameter (see Table 39)

ܧ : Young’s modulus of Elasticity (MPa)

ܭ : Effective length factor

ܮ : Un-braced Length (m)

ݎ : Radius of gyration (m)

௬ܨ : Nominal yield strength (smaller of ௫ܨ and (௫ܨ

The nominal elastic local buckling strength ௫ܨ should be determined from:

௫ܨ = ܧ௫ܥ2 ݐ) ⁄ܦ ) (6-4)

Where:

௫ܥ : Critical elastic buckling coefficient (= 0.3 − 0.6)

ܦ : Outside diameter (m)

ݐ : Wall thickness (m)

ݔ : Subscript for the member longitudinal axis

The nominal inelastic local buckling stress ௫ܨ should be determined from:

௫ܨ = ,௬ܨ for ܦ) ⁄ݐ ) ≤ 60

௫ܨ = 1ൣ.64 − 0.23 ∙ ܦ) ⁄ݐ )ଵ ସ⁄ ൧ܨ௬, for ܦ) ⁄ݐ ) > 60
(6-5)
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6.2.1.3 Members in Bending

For cylindrical members subjected to bending stress, the condition that should

be satisfied is:

݂ ≤ ߮ܨ (6-6)

Where:

݂ : (= ܯ / )ܵ bending stress (MPa)

ܵ : Elastic section Modulus (mm3)

ܯ : Applied bending moment (Nm)

߮ : Resistance factor for bending strength (= 0.95)

ܨ : Nominal bending strength (MPa)

ܨ =


ௌ
,௬ܨ for



௧
≤

ଵହ

ி

ܨ = ቂ1.13 − 2.58 ∙
ி ∙

ா௧
ቃ


ௌ
,௬ܨ for

ଵଷସ

ி
<



௧
≤

ଶ଼

ி

ܨ = ቂ0.94 − 0.76 ∙
ி ∙

ா௧
ቃ


ௌ
,௬ܨ for

ଶ଼

ி
<



௧
≤ 300

(6-7)

Where:

ܼ : Plastic Section Modulus (mm3)

6.2.1.4 Shear loads

For cylindrical members subjected to shear loads, the condition to be satisfied

is:

௩݂ =
2ܸ

ܣ
≤ ߮௩ܨ௩ (6-8)

Where:

௩ܨ : ൫= ௬/√3൯Nominalܨ Shear strength (MPa)

௩݂ : Maximum shear stress (MPa)

ܸ : Beam shear (N)
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ܣ : Cross sectional area (m2)

߮௩ : Resistance factor for beam shear strength (= 0.95)

For cylindrical members subjected to torsional loads, the condition to be

satisfied is:

௩݂௧ =
ܦ௩௧ܯ

ܫ2
≤ ߮௩ܨ௩௧ (6-9)

Where:

௩௧ܨ : ൫= ௬/√3൯Nominalܨ torsional strength (MPa)

௩݂௧ : Torsional shear stress (MPa)

௩௧ܯ : Torsional moment (Nm)

ܫ : Polar moment of inertia (m4)

6.2.1.5 Hydrostatic Pressure

For the consideration of the hydrostatic pressure, the design hydrostatic head

should be derived as:

= ௭ܪݓߛ

௭ܪ = +ݖ
௪ܪ
2
ቈ
ℎ൫݇ݏܿ (݀− ൯(ݖ

݀݇)ℎݏܿ )


(6-10)

Where:

 : Hydrostatic Pressure (MPa)

ߛ : Hydrostatic pressure load factor

ݓ : Sea water density (MN/m3)

ݖ : Depth below still water surface (m)

௪ܪ : Wave Height (m)

݇ : (= ,(ܮ/ߨ2 where ܮ : Wave length (m)

݀ : Still water depth (m)
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For cylindrical members subjected to external (hydrostatic) pressure the

condition to be satisfied is:

݂ =
ܦ

ݐ2
≤ ߮ܨ (6-11)

Where:

݂ : Hoop stress due to factored hydrostatic pressure (MPa)

߮ : Resistance factor for hoop buckling strength (= 0.80)

ܨ : Nominal critical hoop buckling strength

The elastic buckling nominal critical strength ܨ should be determined as:

ܨ = ,ܨ for ܨ ≤ ௬ܨ0.55 (6-12)

The inelastic buckling nominal critical strength ܨ should be determined as:

ܨ = ௬ܨ0.7 
ி

ி
൨
.ସ

≤ ,௬ܨ for ܨ > ௬ܨ0.55 (6-13)

Where the elastic hoop buckling stress ܨ is determined as:

ܨ = ܧܥ2 ݐ) ⁄ܦ )

ܥ =
.ସସ௧


, for ܯ ≥ ݐ/ܦ1.6

ܥ =
.ସସ௧


+

.ଶଵ(/௧)య

ெ ర
, for ≥ݐ/ܦ0.825 ܯ ≤ ݐ/ܦ1.6

ܥ = ܯ)/0.737 − 0.579) for ≥ݐ/ܦ1.5 ܯ ≤ ݐ/ܦ0.825

ܥ = 0.8 for ܯ < 1.5

(6-14)

Where:

ܯ =



ට
ଶ

௧
: Geometrical parameter

ܮ : Length of cylinder between stiffeners (m)

6.2.1.6 Members under combined loads

For cylindrical members under axial tension and bending loads, the condition

that should be satisfied is:
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ܷ = 1 − ቈݏܿ
ߨ

2

( ௧݂)

߮௧ܨ௬
+

ቂ൫݂ ௬൯
ଶ

+ ( ݂௭)ଶቃ
.ହ

߮ܨ
≤ 1.0 (6-15)

Where:

݂௬, ݂௭ : Bending stresses about y and z- axis (MPa)

For cylindrical members under combined axial compressive and bending loads,

the conditions that should be satisfied is:

ܷ =
݂

߮ܨ
+

1

߮ܨ
⎩
⎨

⎧
൦
ܥ ௬ ∙ ݂௬

1 − ݂

߮ܨ௬

൪

ଶ

+ ൦
ܥ ௭ ∙ ݂௭

1 − ݂

߮ܨ௭

൪

ଶ

⎭
⎬

⎫
.ହ

≤ 1.0 (6-16)

ܷ = 1 − ቈݏܿ
ߨ

2

( ݂)

߮ܨ௫
+

ቂ൫݂ ௬൯
ଶ

+ ( ݂௭)ଶቃ
.ହ

߮ܨ
≤ 1.0 (6-17)

ܨ < ߮ܨ௫ (6-18)

Where:

ܥ ௬, ܥ ௭ : Reduction factors (Table 39)

௬ܨ = ௬ߣ/௬ܨ
ଶ, ௭ܨ = ௭ߣ/௭ܨ

ଶ : Euler buckling strengths (MPa)

,௬ߣ ௭ߣ : Column slenderness parameters (eq. 7-3c)

Incorporating the hydrostatic pressure, the condition that should be satisfied for

members subjected to longitudinal tensile stresses due to axial tension and

bending, and hoop compressive strength is:

ܷ = ቆ
௧݂+ ݂ − (0.5 ݂)

߮௧ܨ௬
ቇ

ଶ

+ ൬
݂

߮ܨ
൰
ଶ

+ ቤݑ2
௧݂+ ݂ − (0.5 ݂)

߮௧ܨ௬
ቤ

݂

߮ܨ
≤ 1.0 (6-19)

Where:

ݑ : Poisson’s Ration (= 0.3)

For members subjected to longitudinal compressive stresses due to axial

compression, bending, and hoop compressive strength the fundamental

equations for combined loads should be applied. Further, when the axial
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utilization factor exceeds 0.5 ( ௫݂ > 0.5߮ܨ), the following condition should be

satisfied:

ܷ =
௫݂ − 0.5߮ܨ

߮ܨ௫ − 0.5߮ܨ
+ ൬

݂

߮ܨ
൰
ଶ

≤ 1.0 (6-20)

Where: ௫݂ = ݂ + ݂ + (0.5 ݂)

Situation K Cm
1

Superstructure legs

Braced 1.0 a)

Portal (un-braced) K2 a)

Structure legs and piling

Grouted composite section 1.0 c)

Un-grouted legs 1.0 c)

Un-grouted piling between shim points 1.0 b)

Jacket Braces

Face to face length of main diagonals 0.8 b) or c)

Face of leg to centerline of joint length of K-braces 0.8 c)

Longer segment Length of X-Braces 0.9 c)

Secondary Horizontals 0.7 c)

Deck Truss Chord Members 1.0 a) b) or c)

Deck truss web members

In plane action 0.8 b)

Out of plane action 1.0 a) or b)

a. Cm values for the three cases defined in this table are as follows:

1) 0.85;

2) 0.40 < ܥ = 0,6 − 0,4 ∙
ଵܯ

ଶܯ
ൗ < 0.85, where ଵܯ ⁄ଶܯ is the ratio of smaller to larger moments at the ends

of the unbraced portion of the member in the plane of bending under consideration. ଵܯ ⁄ଶܯ is positive

when the member is bent in reverse curvature, negative when bent in single curvature.

3) ܥ = 1,0 − 0,4 ∙ ߪ) ݂⁄ ), or 0,85, whichever is less

b. Use effective length alignment chart. This may be modified to account for conditions different from those assumed

in the development of the chart.

c. At least one pair of members framing into a joint shall be in tension, if the joint is not braced out-of-plane.

Table 39: Effective length and bending reduction factors

6.2.2 Numerical Results

Table 40, summarizes the limit states that have been considered in the

reliability assessment of the reference structure. The corresponding paragraph

and number of each limit state as it is referred to in the standard is included, as
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well as the identification number that corresponds to this limit states in this

Chapter. Following, in Table 41 to Table 43, the results of reliability analysis of

each limit state are presented for the different classes of members.

Limit State Description Equation

ufShear Usage factor due to shear action 6-8

ufTorsion Usage factor due to torsional action 6-9

ufD211 Usage factor according to equation (D.2.1-1), i.e. axial tension 6-1

ufD252 Usage factor according to equation (D.2.5-2), i.e. hydrostatic pressure 6-11

ufD311
Usage factor according to equation (D.3.1-1), i.e. axial tension and
bending

6-15

ufD321
Usage factor according to equation (D.3.2-1), i.e. axial compression and
bending

6-16

ufD322
Usage factor according to equation (D.3.2-2), i.e. axial compression and
bending

6-17

ufD323 Usage factor according to equation (D.3.2-3), i.e. axial compression 6-18

ufD331
Usage factor according to equation (D3.3-1), i.e. axial tension, bending
and hydrostatic pressure

6-19

ufD341
Usage factor according to equation (D.3.4-1), i.e. axial compression,
bending and hydrostatic pressure

6-20

Table 40: Limit States according to API-LRFD

ufShear ufTorsion ufD211 ufD252 ufD311 ufD321 ufD322 ufD323 ufD331 ufD341

b101 0.00 21.43 5.97 0.00 15.30 7.80 13.26 10.78 0.00 0.00

b102 33.85 18.32 0.00 0.00 0.00 4.76 6.33 5.73 0.00 0.00

b103 33.82 18.33 0.00 0.00 0.00 4.76 6.32 5.74 0.00 0.00

b104 0.00 21.41 5.97 0.00 15.32 7.80 13.26 10.80 0.00 0.00

b201 0.00 26.62 7.06 0.00 0.00 7.36 12.81 10.05 0.00 0.00

b202 53.40 27.99 0.00 0.00 0.00 6.62 10.52 7.06 0.00 0.00

b203 53.33 28.00 0.00 0.00 0.00 6.62 10.51 7.07 0.00 0.00

b204 0.00 26.66 7.04 0.00 0.00 7.36 12.82 10.05 0.00 0.00

b301 37.35 30.82 10.49 0.00 9.56 0.00 0.00 29.69 0.00 0.00

b302 24.56 26.08 0.00 0.00 0.00 7.75 11.32 10.02 0.00 0.00

b303 24.56 26.06 0.00 0.00 0.00 7.76 11.30 10.03 0.00 0.00

b304 37.37 30.85 10.51 0.00 9.56 0.00 0.00 29.64 0.00 0.00

b401 16.84 11.74 0.00 0.00 0.00 31.61 17.49 0.00 0.00 0.00

b402 18.31 12.91 0.00 0.00 0.00 11.65 13.73 23.61 0.00 0.00

b403 18.32 12.91 0.00 0.00 0.00 11.65 13.73 23.58 0.00 0.00

b404 16.84 11.73 0.00 0.00 0.00 31.59 17.47 0.00 0.00 0.00

Table 41: Reliability indices for Leg Members
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ufShear ufTorsion ufD211 ufD252 ufD311 ufD321 ufD322 ufD323 ufD331 ufD341

b111 0.00 0.00 0.00 0.00 0.00 59.43 59.43 0.00 0.00 0.00

b112 0.00 0.00 0.00 0.00 0.00 59.43 59.43 0.00 0.00 0.00

b113 0.00 0.00 0.00 0.00 0.00 59.43 59.43 0.00 0.00 0.00

b114 0.00 0.00 0.00 0.00 0.00 59.43 59.43 0.00 0.00 0.00

b115 0.00 0.00 0.00 82.54 0.00 43.01 38.75 0.00 0.00 0.00

b116 0.00 0.00 0.00 82.54 0.00 43.01 38.75 0.00 0.00 0.00

b211 0.00 53.23 0.00 0.00 13.84 0.00 0.00 0.00 0.00 0.00

b212 30.24 30.21 13.24 0.00 14.53 0.00 0.00 0.00 0.00 0.00

b213 0.00 53.21 0.00 0.00 13.84 0.00 0.00 0.00 0.00 0.00

b214 31.94 31.94 57.97 0.00 6.50 10.28 0.00 12.49 0.00 0.00

b215 0.00 53.05 0.00 92.59 0.00 0.00 0.00 0.00 0.00 0.00

b216 80.00 44.07 0.00 92.64 0.00 0.00 0.00 0.00 33.45 0.00

b311 56.65 71.67 57.76 0.00 11.70 0.00 0.00 0.00 0.00 0.00

b312 20.90 20.89 15.89 0.00 8.75 0.00 0.00 0.00 0.00 0.00

b313 56.62 71.65 57.78 0.00 11.69 0.00 0.00 0.00 0.00 0.00

b314 22.57 22.58 32.73 0.00 6.15 7.24 0.00 14.18 0.00 0.00

b315 46.56 71.55 0.00 85.05 0.00 0.00 0.00 0.00 35.53 0.00

b316 46.60 71.61 0.00 85.06 0.00 0.00 0.00 0.00 35.58 0.00

b411 53.26 38.70 0.00 0.00 10.19 0.00 0.00 0.00 0.00 0.00

b412 18.54 18.53 20.55 0.00 7.00 0.00 0.00 0.00 0.00 0.00

b413 53.17 38.70 0.00 0.00 10.18 0.00 0.00 0.00 0.00 0.00

b414 17.75 17.74 36.06 0.00 0.00 4.29 4.69 17.09 0.00 0.00

b415 22.83 19.25 0.00 59.57 0.00 7.11 6.64 80.46 0.00 0.00

b416 22.81 19.27 0.00 59.60 0.00 7.11 6.63 80.39 0.00 0.00

Table 42: Reliability indices for Horizontal Brace Members

ufShear ufTorsion ufD211 ufD252 ufD311 ufD321 ufD322 ufD323 ufD331 ufD341

b151 0.00 26.31 0.00 0.00 0.00 0.00 0.00 0.00 8.26 0.00

b152 0.00 0.00 0.00 82.54 0.00 0.00 8.63 6.11 0.00 18.92

b153 29.71 23.02 0.00 82.54 0.00 0.00 8.61 14.24 0.00 24.20

b154 29.69 23.01 0.00 82.53 0.00 0.00 8.62 14.24 0.00 24.20

b155 0.00 0.00 0.00 82.53 0.00 0.00 8.64 6.10 0.00 18.91

b156 0.00 26.33 0.00 0.00 0.00 0.00 0.00 0.00 8.26 0.00

b157 27.85 22.12 0.00 82.54 0.00 11.14 0.00 21.59 11.79 0.00

b158 27.83 22.12 0.00 82.54 0.00 11.14 0.00 21.52 11.80 0.00

b251 40.07 22.59 0.00 0.00 0.00 0.00 0.00 0.00 7.01 0.00

b252 0.00 29.70 0.00 92.69 0.00 0.00 7.47 6.00 0.00 18.38

b253 22.92 20.95 0.00 92.71 0.00 0.00 8.99 20.81 0.00 32.79

b254 22.93 20.96 0.00 92.70 0.00 0.00 8.99 20.80 0.00 32.77

b255 0.00 29.70 0.00 92.69 0.00 0.00 7.47 6.00 0.00 18.41

b256 40.07 22.62 0.00 0.00 0.00 0.00 0.00 0.00 7.01 0.00

b257 23.45 20.25 0.00 92.72 0.00 0.00 0.00 0.00 12.35 0.00
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ufShear ufTorsion ufD211 ufD252 ufD311 ufD321 ufD322 ufD323 ufD331 ufD341

b258 23.45 20.29 0.00 92.72 0.00 0.00 0.00 0.00 12.35 0.00

b351 65.11 23.30 0.00 0.00 0.00 0.00 0.00 0.00 7.10 0.00

b352 32.76 19.94 0.00 0.00 0.00 0.00 7.32 6.29 0.00 18.89

b353 19.72 14.84 0.00 11.15 0.00 0.00 7.33 16.61 0.00 20.05

b354 19.73 14.83 0.00 11.15 0.00 0.00 7.34 16.61 0.00 20.05

b355 32.73 19.95 0.00 0.00 0.00 0.00 7.32 6.30 0.00 18.91

b356 65.14 23.31 0.00 0.00 0.00 0.00 0.00 0.00 7.11 0.00

b357 46.43 0.00 0.00 17.12 0.00 0.00 9.25 0.00 0.00 21.42

b358 46.44 0.00 0.00 17.15 0.00 0.00 9.25 0.00 0.00 21.43

b451 0.00 0.00 6.68 0.00 7.85 0.00 0.00 0.00 0.00 0.00

b452 59.92 29.74 0.00 0.00 0.00 4.56 18.59 7.40 0.00 0.00

b453 13.68 11.57 0.00 0.00 0.00 3.03 4.40 0.00 0.00 0.00

b454 13.68 11.56 0.00 0.00 0.00 3.02 4.41 0.00 0.00 0.00

b455 59.86 29.73 0.00 0.00 0.00 4.56 18.58 7.41 0.00 0.00

b456 0.00 0.00 6.67 0.00 7.84 0.00 0.00 0.00 0.00 0.00

b457 9.80 9.81 0.00 15.57 0.00 4.45 4.10 24.76 0.00 0.00

b458 9.81 9.82 0.00 15.57 0.00 4.44 4.10 24.73 0.00 0.00

Table 43: Reliability indices for Vertical Brace Members

The final value of the reliability index for every member will be derived as the

minimum value calculated from each of the limit states examined. Results

referring to the legs members, starting from the first elevation, distinguish one

set of members in axial compression and bending (b102-b103) with ߚ = 4.76

and one set in axial tension (b101-b104) with ߚ = 5.97. Due to the uniform

cross section of the legs, it is expected that the values of ߚ of this elevation will

be the lowest one, sizing the rest of the corresponding leg parts. Moving to the

second elevation the same pattern is followed with members (b202-b203) in

axial compression and bending with ߚ = 6.62 and the second set (b201-b204)

in axial tension with ߚ = 7.06. The same pattern can be observed in the third

elevation with the set of members (b302-b303) subjected to axial compression

and bending with ߚ = 7.75 and the set of (b301-b304) subjected to axial tension

with ߚ = 10.51. A different behaviour can be observed in the fourth elevation leg

members which are characterized by their performance to torsion with ߚ =

11.73 for (b401-b404) and ߚ = 12.91 for (b402-b403); this varying pattern is due

to the fact that topside loads have been incorporated in the design using ultra
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stiff elements. An analytical representation of those loads would reduce this

effect on the reliability assessment.

Horizontal bracing members of the first elevation, have great values of reliability

due to the insignificant loads they carry based on the piling conditions that have

been applied. Members of the first elevation that stand parallel to the flow

(b211-b213) have ߚ = 13.24 due to axial tension and bending, while for the

members vertical to the flow, the one that meets the flow first (b214) has a

lower value of ߚ = 6.50 due to axial tension and bending and the second one

(b212) has ߚ = 13.24 due to axial tension. The two X-bracing members (b215-

b216) have great values of reliability since they carry minimum loads as they

have a non functional load to the operation of the structures. In the third

elevation, the reliability indices of all of the members forming the square braces

are determined by the axial tension and bending limit states where the two

symmetrical members, parallel to the flow (b311-b313) have ߚ = 11.69, the first

vertical to the flow (b314) ߚ = 6.15 and the second (b312) ߚ = 8.75. The

members parallel to the flow of the fourth elevation (b411-b413) have ߚ = 10.18

due to axial tension and bending, the first member vertical to the flow (b414)

ߚ = 4.29 due to axial compression and bending while the second member

(b412) ߚ = 7.00 due to axial tension and bending. At this elevation, the X brace

members show values of ߚ = 6.63 due to the axial compression and bending

criterion, due to the loads transmitted by the topside loads.

For the vertical X-braces of the first elevation, the two symmetrical sets of

members parallel to the flow, have one of their member (b152-b155) defined by

the axial compression limit state with ߚ = 6.10 and the other of their members

(b151-b156) with ߚ = 8.26 subjected to axial tension, bending and

hydrodynamic pressure. From the sets vertical to the flow, the first (b157-b158)

has ߚ = 11.14 due to axial compression and bending, while the second one

(b153-b154) has ߚ = 8.61 due to axial compression and bending. From the

members of the second elevation that stand parallel to the flow, members

(b252-b255) are subjected to axial compression with ߚ = 6.00 while members

(b251-b256) are subjected in axial tension, bending and hydrostatic pressure
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with ߚ = 7.01. From the sets vertical to the flow, the first (b257-b258) has

ߚ = 12.35 due to axial tension, bending and hydrostatic pressure, while the

second one (b253-b254) has ߚ = 8.99 due to axial compression and bending.

From the members of the third elevation that stand parallel to the flow,

members (b352-b355) are subjected to axial compression with ߚ = 6.29 while

members (b351-b356) are subjected in axial tension, bending and hydrostatic

pressure with ߚ = 7.10. From the sets vertical to the flow, the first (b357-b358)

has ߚ = 9.25 due to axial compression and bending, while the second one

(b353-b354) has ߚ = 7.33 due to axial compression and bending. Finally for the

members of the fourth elevation, those that stand parallel to the flow, (b452-

b455) are subjected to axial compression and bending with ߚ = 4.56 while

members (b451-b456) are subjected in axial tension with ߚ = 6.68. From the

sets vertical to the flow, the first (b457-b458) has ߚ = 4.44 due to axial

compression and bending, while the second one (b453-b454) has ߚ = 3.02 due

to axial compression and bending.

6.3 ISO 19902:2002: Petroleum and natural gas industries-

general requirements for offshore structures

In this section, the relevant provisions of ISO 19902 will be presented, as they

are included in Chapter 13 of this standard. After an initial reference to the

design requirements of members subjected to individual tension, compression,

bending, shear or hydrostatic pressure, and provisions for combined forces

results, of the numerical application will be presented [3].

6.3.1 Design Provisions

6.3.1.1 Members in Axial Tension

For members subjected to axial tension, the design condition that should be

satisfied is:
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௧ߪ ≤
௧݂

ோ,௧ߛ
(6-21)

Where:

௧ߪ : Axial tensile stress (MPa)

௧݂ : Representative Axial tensile strength ௧݂ = ௬݂ (MPa)

௬݂ : Representative yield strength (MPa)

ோ,௧ߛ : Partial resistance factor for axial tensile strength (= 1.05)

The derived utilization of a member subjected to tension is therefore:

ܷ =
௧ߪ

௧݂

ோ,௧ߛ

(6-22)

6.3.1.2 Members in Axial Compression

Members subjected to axial compression should be checked both for ultimate

as well as buckling strength. The corresponding utilization factor for ultimate

strength would be:

ܷ =
ߪ

݂

ோ,ߛ

(6-23)

Where:

ߪ : Axial compressive stress (MPa)

݂ : Representative Axial compressive strength as will be derived below (MPa)

ோ,ߛ : Partial resistance factor for axial compressive strength (= 1.18)

The representative axial compressive strength for tubular members ݂ without

hydrostatic pressure would be derived by the smallest values of the following

equations:

݂ = (1.0 − (ଶߣ0.278 ௬݂, for ≥ߣ 1.34

݂ =
.ଽ

ఒమ ௬݂, for ≥ߣ 1.34
(6-24)
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=ߣ ඨ
௬݂

݂
=
ܮܭ

ݎߨ
ඨ ௬݂

ܧ

Where:

௬݂ : Representative local buckling strength, as will be derived below (MPa)

ߣ : Column Slenderness parameter

݂ : Euler buckling strength (MPa)

ܧ : Young’s Modulus of Elasticity (MPa)

ܭ : Effective length factor

ܮ : Un-braced length (m)

ݎ : Radius of gyration ൫= ඥܣ/ܫ൯(m)

:ܫ Moment of inertia (kg·m²)

ܣ : Cross-sectional area (m2)

The representative local buckling strength ௬݂ shall be determined as:

௬݂ = ௬݂, for


ೣ 
≤ 0.170

௬݂ = ቀ1.047 − 0.274


ೣ 
ቁ ௬݂, for



ೣ 
> 0.170

(6-25)

௫݂ = ܦ/ݐܧ௫ܥ2 (6-26)

Where:

௫݂ : Representative elastic local buckling strength (MPa)

௫ܥ : Elastic critical buckling coefficient (= 0.3 − 0.6)

ܦ : Outside diameter of member (m)

:ݐ Wall thickness of member (mm)

6.3.1.3 Bending

The corresponding utilization factor for members subjected to bending should

be:
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ܷ =
ߪ

݂

ோ,ߛ

=
ܯ / ܼ

݂

ோ,ߛ

≤ 1.0
(6-27)

Where:

ߪ : Bending stress (MPa)

݂ : Representative bending strength (MPa)

ோ,ߛ : Partial resistance factor for bending strength (= 1.05)

ܯ : Bending moment (Nm)

ܼ : Elastic section modulus (mm3)

The representative bending strength should be determined as:

݂ = ቀ



ቁ ௬݂, for



ா௧
≤ 0.0517

݂ = ቂ1.13 − 2.58ቀ


ா௧
ቁቃቀ




ቁ ௬݂, for 0.0517 <



ா௧
≤ 0.1034

݂ = ቂ0.94 − 0.76ቀ


ா௧
ቁቃቀ




ቁ ௬݂, for 0.1034 <



ா௧
≤ 120



ா

(6-28)

6.3.1.4 Shear

For members, subjected to shear force, the utilization factor should be derived

as:

ܷ =
߬

ఔ݂

ோ,ఔߛ

=
ܣ/2ܸ

ఔ݂

ோ,ఔߛ

≤ 1.0
(6-29)

Where:

߬ : Maximum beam shear stress (MPa)

ఔ݂ : Representative shear strength ൫= ௬݂/√3൯(MPa)

ோ,ఔߛ : Partial resistance factor for shear strength (= 1.05)

ܸ : Beam shear (N)
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For members subjected to torsional shear force, the utilization factor should be

derived as:

ܷ =
௧߬

ఔ݂

ோ,ఔߛ

=
ܫ2/ܦ௩,௧ܯ

ఔ݂

ோ,ఔߛ

≤ 1.0
(6-30)

Where:

௧߬ : Torsional shear stress (MPa)

௩,௧ܯ : Torsional moment due to factored actions (Nm)

ܫ =
గ

ଶଵ
ସܦ] − ܦ) − [ସ(ݐ2 : Polar moment of inertia (m3)

6.3.1.5 Hydrostatic Pressure

Provisions of ISO 19902 for calculation of hydrostatic pressure and formulation

of utilization criteria for hoop buckling stress are exactly the same as the ones

included in API RP-2A LRFD and have been presented in the previous section.

Therefore, they will not be analytically presented here. The utilization factor of a

member under external pressure is derived as:

ܷ =
ߪ

݂

ோ,ߛ

=
ݐ2/ܦ

݂

ோ,ߛ

≤ 1.0
(6-31)

6.3.1.6 Members subjected to combined forces without hydrostatic

pressure

For tubular members subjected to combined axial tension and bending forces,

without hydrostatic pressure, the condition that should be satisfied is:

ܷ =
ோ,௧ߛ ∙ ௧ߪ

௧݂
+

ோ,ௗߛ ∙ ටߪ,௬
ଶ + ,௭ߪ

ଶ

݂
≤ 1.0

(6-32)

Where:

,,௬ߪ ,௭ߪ : Bending stress about the member y and z-axis (MPa)



234

For tubular members subjected to combined axial compression and bending

forces without hydrostatic pressure, the condition that should be satisfied is:

ܷ =
ோ,ߛ ∙ ߪ

݂
+
ோ,ߛ

݂
∙ ቆ

ܥ ,௬∙ߪ,௬

1 − ߪ ݂,௬⁄
ቇ

ଶ

+ ቆ
ܥ ,௭∙ߪ,௭

1 − ߪ ݂,௭⁄
ቇ

ଶ

൩

,ହ

≤ 1.0 (6-33)

ܷ =
ோ,ߛ ∙ ߪ

௬݂
+

ோ,ߛ ∙ ටߪ,௬
ଶ + ,௭ߪ

ଶ

݂
≤ 1.0

(6-34)

Where:

ܥ ,௬, ܥ ,௭ : Moment reduction factors corresponding to the member y- and z-

axes (see Table 44)

݂,௬ =
గమா

൫∙ ⁄ ൯
మ, ݂,௭ =

గమா

(∙ ⁄ )మ
: Euler buckling strengths corresponding to the

member y- and z-axes (MPa)

,௬ܭ ௭ܭ : Effective length factors for the y- and z-directions (see Table 44)

,௬ܮ ௭ܮ : Un-braced lengths in the y- and z-directions (m)

6.3.1.7 Members subjected to combined forces with hydrostatic pressure

In the presence of hydrostatic pressure, for tubular members subjected to

combined axial tension, bending and hydrostatic pressure shall be designed to

satisfy:

ܷ =
ோ,௧ߛ ∙ ௧,ߪ

௧݂,
+

ோ,ߛ ∙ ටߪ,௬
ଶ + ,௭ߪ

ଶ

݂,
≤ 1.0

(6-35)

Where:

௧݂, = ௬݂ ∙ ቀඥ1 + 0,09 ∙ ଶܤ − ଶఎܤ − 0,3 ∙ ቁܤ : Representative axial tensile strength

in the presence of external hydrostatic pressure

݂, = ݂ ∙ ቀඥ1 + 0,09 ∙ ଶܤ − ଶఎܤ − 0,3 ∙ ቁܤ : Representative bending strength in

the presence of external hydrostatic pressure
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ܤ =
ఊೃ ,∙ఙ


≤ 1.0, =ߟ 5 − 4 ∙





For tubular members subjected to combined axial compression, bending and

hydrostatic pressure shall be designed to satisfy:

ܷ =
ோ,ߛ ∙ ,ߪ

௬݂
+

ோ,ߛ ∙ ටߪ,௬
ଶ + ,௭ߪ

ଶ

݂,
≤ 1.0

(6-36)

ܷ =
ோ,ߛ ∙ ߪ

݂,
+
ோ,ߛ

݂,
∙ ቆ

ܥ ,௬∙ߪ,௬

1 − ߪ ݂,௬⁄
ቇ

ଶ

+ ቆ
ܥ ,௭∙ߪ,௭

1 − ߪ ݂,௭⁄
ቇ

ଶ

൩

,ହ

≤ 1.0 (6-37)

ܷ =
௫ߪ − 0,5 ∙ ݂ ⁄ோ,ߛ

௫݂ ⁄ோ,ߛ − 0,5 ∙ ݂ ⁄ோ,ߛ
+ ൬

ோ,ߛ ∙ ߪ

݂
൰
ଶ

≤ 1.0 (6-38)

Where:

݂, : Representative axial compressive strength in the presence of external

hydrostatic pressure (MPa)

݂, =
ଵ

ଶ ௬݂ቈ(1,0 − (ଶߣ0,278 −
ଶఙ


+ ට(1,0 − ଶ)ଶߣ0,278 + ଶߣ1,12

ఙ


,

for ≥ߣ 1,34ඨ൬1 −
ଶఙ


൰
ିଵ

݂, =
,ଽ

ఒమ
∙ ௬݂,for ≥ߣ 1,34ඨ൬1 −

ଶఙ


൰
ିଵ

(6-39)

ߪ = ߪ0.5 : Compressive axial strength due to capped end hydrostatic action

(MPa)

ߪ : Hoop stress due to forces from factored hydrostatic pressure (MPa)
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Structural component K Cm
a

Topsides legs

Braced 1,0 1)

Portal (unbraced) Kb 1)

Structure legs and piling

Grouted composite section 1,0 3)

Ungrouted legs 1,0 3)

Ungrouted piling between shim points 1,0 2)

Structure brace members

Primary diagonals and horizontals 0,7 2) or 3)

K-braces c 0,7 2) or 3)

X-braces

Longer segment length c 0,8 2) or 3)

Full length d 0,7 2) or 3)

Secondary horizontals 0,7 2) or 3)

a. Cm values for the three cases defined in this table are as follows:

1) 0,85;

2) for members with no transverse loading, other than self weight,

ܥ = 0,6 − 0,4 ∙
ଵܯ

ଶܯ
ൗ

where ଵܯ ⁄ଶܯ is the ratio of smaller to larger moments at the ends of the unbraced portion of the member

in the plane of bending under consideration;

ଵܯ ⁄ଶܯ is positive when the member is bent in reverse curvature, negative when bent in single curvature.

Cm shall not be larger than 0,85;

3) for members with transverse loading, other than self weight,

ܥ = 1,0 − 0,4 ∙ ߪ) ݂⁄ ), or 0,85, whichever is less,

and ݂ = ݂௬ or ݂௭ as appropriate.

b. See effective length alignment chart in A.13.5. This may be modified to account for conditions different from those

assumed in the development of the chart.

c. For either in-plane or out-of-plane effective lengths, at least one pair of members framing into a K- or X-joint shall

be in tension, if the joint is not braced out-of-plane.

d. When all members are in compression and the joint is not braced out-of-plane.

Table 44: Effective length and moment reduction factors for member

strength checking

6.3.2 Numerical Results

Table 45, summarizes the limit states that have been considered in the

reliability assessment of the reference structure. The corresponding paragraph

and number of each limit state, as it is referred to in the standard, is included,

as well as the identification number that corresponds to this limit state in this
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Chapter. Following, in Table 46 to Table 48, the results of reliability analysis of

each limit state are presented for the different classes of members.

Limit State Description Equation

(13.2-2) Usage factor according to (13.2-2) – Axial Tension 6-22

(13.2-4) Usage factor according to (13.2-4) – Axial compression 6-23

Euler Usage factor with respect to Euler load capacity

(13.2-12) Usage factor according to (13.2-12) – Bending 6-27

(13.2-17) Usage factor according to (13.2-17) – Shear 6-29

(13.2-19) Usage factor according to (13.2-19) – Torsion 6-30

(13.3-2) Usage factor according to (13.3-2) – Tension and bending 6-32

(13.3-7) Usage factor according to (13.3-7) – Compression and bending 6-33

(13.3-8) Usage factor according to (13.3-8) – Compression and bending 6-34

(13.2-31) Usage factor according to (13.2-31) – Hoop Buckling 6-31

(13.4-12) Usage factor according to (13.4-12) – Tension, Bending, hydrostatic pressure 6-35

(13.4-19) Usage factor according to (13.4-19) – Compression, Bending, hydrostatic pressure 6-36

(13.4-20) Usage factor according to (13.4-20) – Compression, Bending, hydrostatic pressure 6-37

(13.4-21) Usage factor according to (13.4-21) – Compression, Bending, hydrostatic pressure 6-38

Table 45: Limit States according to ISO 19902

(13.2-2) (13.2-4) Euler (13.2-12) (13.2-17) (13.2-19) (13.3-2) (13.3-7) (13.3-8) (13.2-31) (13.4-12) (13.4-19) (13.4-20) (13.4-21)

b101 6.16 9.64 25.02 11.88 32.06 22.76 5.41 7.26 8.92 0.00 0.00 0.00 0.00 0.00

b102 0.00 5.52 15.22 12.22 33.82 21.42 0.00 4.71 4.95 0.00 0.00 0.00 0.00 0.00

b103 0.00 5.52 15.21 12.20 33.85 21.42 0.00 4.71 4.96 0.00 0.00 0.00 0.00 0.00

b104 6.16 9.64 24.99 11.89 32.04 22.78 5.41 7.26 8.91 0.00 0.00 0.00 0.00 0.00

b201 6.86 10.22 24.99 18.22 25.38 33.66 6.05 16.55 13.07 0.00 0.00 0.00 0.00 0.00

b202 0.00 6.82 18.75 39.88 53.37 33.69 0.00 6.56 6.85 0.00 0.00 0.00 0.00 0.00

b203 0.00 6.82 18.72 39.94 53.36 33.68 0.00 6.56 6.85 0.00 0.00 0.00 0.00 0.00

b204 6.88 10.24 25.00 18.19 25.36 33.68 6.05 16.51 13.07 0.00 0.00 0.00 0.00 0.00

b301 10.49 41.79 90.92 10.16 19.35 0.00 7.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b302 0.00 9.42 22.84 27.19 50.18 0.00 0.00 7.75 9.01 0.00 0.00 0.00 0.00 0.00

b303 0.00 9.42 22.85 27.20 50.19 0.00 0.00 7.75 9.02 0.00 0.00 0.00 0.00 0.00

b304 10.48 41.76 90.96 10.18 19.37 0.00 7.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b401 0.00 0.00 0.00 17.02 25.49 19.43 0.00 35.07 29.35 0.00 0.00 0.00 0.00 0.00

b402 0.00 19.06 40.03 18.01 25.52 20.11 0.00 11.05 12.79 0.00 0.00 0.00 0.00 0.00

b403 0.00 19.09 40.04 18.04 25.52 20.08 0.00 11.05 12.79 0.00 0.00 0.00 0.00 0.00

b404 0.00 0.00 0.00 17.03 25.51 19.42 0.00 35.08 29.34 0.00 0.00 0.00 0.00 0.00

Table 46: Reliability indices for Leg Members
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(13.2-2) (13.2-4) Euler (13.2-12) (13.2-17) (13.2-19) (13.3-2) (13.3-7) (13.3-8) (13.2-31) (13.4-12) (13.4-19) (13.4-20) (13.4-21)

b111 0.00 0.00 0.00 63.25 0.00 0.00 0.00 63.25 63.25 0.00 0.00 0.00 0.00 0.00

b112 0.00 0.00 0.00 63.25 0.00 0.00 0.00 63.25 63.25 0.00 0.00 0.00 0.00 0.00

b113 0.00 0.00 0.00 63.25 0.00 0.00 0.00 63.25 63.25 0.00 0.00 0.00 0.00 0.00

b114 0.00 0.00 0.00 63.25 0.00 0.00 0.00 63.25 63.25 0.00 0.00 0.00 0.00 0.00

b115 0.00 0.00 0.00 40.05 0.00 0.00 0.00 0.00 0.00 82.54 0.00 37.50 0.00 0.00

b116 0.00 0.00 0.00 40.05 0.00 0.00 0.00 0.00 0.00 82.55 0.00 37.50 0.00 0.00

b211 0.00 0.00 0.00 13.85 0.00 80.45 13.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b212 13.45 0.00 0.00 15.61 30.22 0.00 9.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b213 0.00 0.00 0.00 13.86 0.00 80.44 13.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b214 57.94 7.96 9.26 15.74 31.93 0.00 6.43 9.44 0.00 0.00 0.00 0.00 0.00 0.00

b215 0.00 0.00 0.00 20.97 79.86 53.37 0.00 0.00 0.00 92.58 22.67 0.00 0.00 0.00

b216 0.00 0.00 0.00 20.99 79.92 53.38 0.00 0.00 0.00 92.68 22.72 0.00 0.00 0.00

b311 57.73 0.00 0.00 11.70 56.63 0.00 11.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b312 15.89 0.00 0.00 8.85 20.89 0.00 7.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b313 57.71 0.00 0.00 11.71 56.68 0.00 11.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b314 32.77 8.32 9.54 9.26 23.55 0.00 6.02 7.01 0.00 0.00 0.00 0.00 0.00 0.00

b315 0.00 0.00 0.00 19.59 0.00 46.39 0.00 0.00 0.00 85.05 27.92 0.00 0.00 0.00

b316 0.00 0.00 0.00 19.59 0.00 46.42 0.00 0.00 0.00 85.06 27.94 0.00 0.00 0.00

b411 0.00 0.00 0.00 10.31 53.22 0.00 10.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b412 18.98 0.00 0.00 7.45 18.54 0.00 6.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b413 0.00 0.00 0.00 10.31 53.27 0.00 10.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00

b414 36.09 11.42 13.16 7.14 17.76 0.00 0.00 4.28 4.55 0.00 0.00 0.00 0.00 0.00

b415 0.00 0.00 0.00 9.70 21.95 44.36 0.00 0.00 0.00 59.63 9.65 0.00 0.00 0.00

b416 0.00 0.00 0.00 9.70 21.96 44.37 0.00 0.00 0.00 59.60 9.65 0.00 0.00 0.00

Table 47: Reliability indices for Horizontal Brace Members

(13.2-2) (13.2-4) Euler (13.2-12) (13.2-17) (13.2-19) (13.3-2) (13.3-7) (13.3-8) (13.2-31) (13.4-12) (13.4-19) (13.4-20) (13.4-21)

b151 6.44 0.00 0.00 13.73 0.00 25.38 0.00 0.00 0.00 0.00 5.67 0.00 0.00 0.00

b152 0.00 0.00 3.23 0.00 84.93 80.48 0.00 0.00 0.00 83.16 0.00 6.03 2.20 20.07

b153 0.00 0.00 8.34 22.20 0.00 37.33 0.00 0.00 0.00 0.00 0.00 11.60 5.10 0.00

b154 0.00 0.00 8.34 22.21 0.00 37.42 0.00 0.00 0.00 0.00 0.00 11.59 5.09 0.00

b155 0.00 0.00 3.23 0.00 84.83 80.48 0.00 0.00 0.00 83.15 0.00 6.04 2.20 20.06

b156 6.45 0.00 0.00 13.72 0.00 25.39 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00

b157 13.34 0.00 0.00 8.90 27.85 37.39 0.00 0.00 0.00 82.53 6.08 0.00 0.00 0.00

b158 13.34 0.00 0.00 8.90 27.87 37.39 0.00 0.00 0.00 82.54 6.08 0.00 0.00 0.00

b251 6.71 0.00 0.00 11.32 40.11 29.49 0.00 0.00 0.00 10.69 5.43 0.00 0.00 0.00

b252 0.00 0.00 3.47 60.04 84.98 40.61 0.00 0.00 0.00 0.00 0.00 5.99 2.24 23.17

b253 0.00 0.00 13.88 14.80 0.00 42.39 0.00 0.00 0.00 0.00 0.00 12.34 6.76 0.00

b254 0.00 0.00 13.88 14.80 0.00 42.35 0.00 0.00 0.00 0.00 0.00 12.35 6.76 0.00

b255 0.00 0.00 3.47 60.07 84.98 40.64 0.00 0.00 0.00 0.00 0.00 5.99 2.24 23.19

b256 6.71 0.00 0.00 11.32 40.12 29.50 0.00 0.00 0.00 10.68 5.44 0.00 0.00 0.00
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(13.2-2) (13.2-4) Euler (13.2-12) (13.2-17) (13.2-19) (13.3-2) (13.3-7) (13.3-8) (13.2-31) (13.4-12) (13.4-19) (13.4-20) (13.4-21)

b257 26.77 0.00 0.00 9.08 23.47 42.44 0.00 0.00 0.00 92.66 6.31 0.00 0.00 0.00

b258 26.77 0.00 0.00 9.07 23.47 42.41 0.00 0.00 0.00 92.68 6.32 0.00 0.00 0.00

b351 6.84 0.00 0.00 9.88 38.75 30.01 0.00 0.00 0.00 17.32 5.41 0.00 0.00 0.00

b352 0.00 0.00 4.01 15.59 30.27 30.10 0.00 0.00 0.00 0.00 0.00 5.93 2.65 26.79

b353 0.00 0.00 19.92 9.72 84.91 32.76 0.00 0.00 0.00 0.00 0.00 9.02 6.36 46.37

b354 0.00 0.00 19.93 9.71 84.97 32.81 0.00 0.00 0.00 0.00 0.00 9.02 6.35 46.44

b355 0.00 0.00 4.01 15.62 30.28 30.07 0.00 0.00 0.00 0.00 0.00 5.91 2.65 26.74

b356 6.84 0.00 0.00 9.89 38.74 30.03 0.00 0.00 0.00 17.35 5.40 0.00 0.00 0.00

b357 28.38 0.00 99.26 5.85 11.76 18.34 0.00 0.00 0.00 0.00 4.71 0.00 0.00 0.00

b358 28.40 0.00 99.28 5.85 11.78 18.35 0.00 0.00 0.00 0.00 4.71 0.00 0.00 0.00

b451 7.91 0.00 0.00 12.75 31.73 25.50 0.00 0.00 0.00 80.91 6.51 0.00 0.00 0.00

b452 0.00 5.28 5.05 25.72 53.41 30.05 0.00 4.73 9.25 0.00 0.00 7.91 3.87 46.46

b453 0.00 7.64 26.26 3.86 10.12 22.95 0.00 2.82 3.28 0.00 0.00 0.00 0.00 0.00

b454 0.00 7.64 26.26 3.86 10.12 22.95 0.00 2.83 3.28 0.00 0.00 0.00 0.00 0.00

b455 0.00 5.28 5.05 25.73 53.39 30.07 0.00 4.72 9.25 0.00 0.00 7.91 3.87 46.42

b456 7.90 0.00 0.00 12.75 31.75 25.47 0.00 0.00 0.00 80.83 6.52 0.00 0.00 0.00

b457 0.00 9.44 0.00 4.38 11.42 80.38 0.00 4.90 8.32 0.00 0.00 4.53 4.66 13.16

b458 0.00 9.43 0.00 4.39 11.42 80.43 0.00 4.91 8.32 0.00 0.00 4.53 4.65 13.15

Table 48: Reliability indices for Vertical Brace Members

The final value of the reliability index for every member will be derived as the

minimum value calculated from each of the limit states examined. Results

referring to the leg members, starting from the first elevation, distinguish one set

of members in axial compression and bending (b102-b103) with ߚ = 4.71 and

one set in axial tension and bending (b101-b104) with ߚ = 5.41. Due to the

uniform cross section of the legs, it is expected that the values of ߚ of this

elevation will be the lowest one, sizing the rest of the leg members. Moving to

the second elevation a different pattern is followed with members (b202-b203)

in axial compression and bending with ߚ = 6.56 having a greater value of

reliability index than the second member (b201-b204) subjected in axial tension

and bending with ߚ = 6.05. The same pattern as in the second elevation can be

observed in the third elevation with the set of members (b302-b303) subjected

to axial compression and bending with ߚ = 7.75 and the set of (b301-b304)

subjected to axial tension and bending with ߚ = 7.17. A slightly different

behaviour can be observed in elevation 4 leg members with the set of members
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(b402-b403) subjected to axial compression and bending with ߚ = 11.05 and

the set of (b401-b404) subjected to bending with ߚ = 17.02.

Horizontal bracing members of the first elevation, have great values of reliability

due to the insignificant loads they carry due to the piling conditions that have

been applied. Members of the first elevation that stand parallel to the flow

(b211-b213) have ߚ = 13.77 due to axial tension and bending, while for the

members vertical to the flow, the one that meets the flow first (b214) has a

lower value of ߚ = 6.43 and the second one (b212) has ߚ = 9.90 both due to

axial tension and bending. The two X-bracing members (b215-b216) have great

values of reliability since they carry minimum loads as they have a non

functional load to the operation of the structures. In the third elevation, the

reliability indices of all of the members forming the square braces are

determined by the axial tension and bending limit states where the two

symmetrical members, parallel to the flow (b311-b313) have ߚ = 11.48, the first

vertical to the flow (b314) ߚ = 6.02 and the second (b312) ߚ = 7.57. The

members parallel to the flow of the fourth elevation (b411-b413) have ߚ = 10.31

due to bending, the first member vertical to the flow (b414) ߚ = 4.28 due to axial

compression and bending while the second member (b412) ߚ = 6.75 due to

axial tension and bending. At this elevation the X brace members show values

of ߚ = 9.65 due to the axial compression and bending criterion, due to the loads

transmitted from the topside loads.

For the vertical X-braces of the first elevation, the two symmetrical sets of

members parallel to the flow, have one of their members (b152-b155) defined

from the axial compression, bending and hydrodynamic limit state with ߚ = 2.20

and the other of their members (b151-b156) with ߚ = 5.67 subjected to axial

tension, bending and hydrodynamic pressure. From the sets vertical to the flow,

the first (b157-b158) has ߚ = 6.08 due to axial tension, bending and hydrostatic

pressure, while the second one (b153-b154) has ߚ = 5.10 due to axial

compression, bending and hydrostatic pressure. From the members of the

second elevation that stand parallel to the flow, members (b252-b255) are

subjected to axial compression, bending and hydrodynamic pressure with
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ߚ = 2.24 while members (b251-b256) are subjected in axial tension, bending

and hydrodynamic pressure with ߚ = 5.43. From the sets vertical to the flow, the

first (b257-b258) has ߚ = 6.31 due to axial tension, bending and hydrostatic

pressure, while the second one (b253-b254) has ߚ = 6.76 due to axial

compression, bending and hydrodynamic pressure. From the members of the

third elevation that stand parallel to the flow, members (b352-b355) are

subjected to axial compression, bending and hydrodynamic pressure with

ߚ = 2.65 while members (b351-b356) are subjected in axial tension, bending

and hydrostatic pressure with ߚ = 5.41. From the sets vertical to the flow, the

first (b357-b358) has ߚ = 4.71 due to axial tension, bending and hydrodynamic

pressure, while the second one (b353-b354) has ߚ = 6.35 due to axial

compression, bending and hydrostatic pressure. Finally for the members of the

fourth elevation, those that stand parallel to the flow, (b452-b455) are subjected

to axial compression, bending and hydrodynamic pressure with ߚ = 3.87 while

members (b451-b456) are subjected in axial tension, bending and

hydrodynamic pressure with ߚ = 6.51. From the sets vertical to the flow, the first

(b457-b458) has ߚ = 4.38 due to bending, while the second one (b453-b454)

has ߚ = 2.82 due to axial compression and bending.

6.4 BS EN 1993-1-1:2005 Eurocode 3: Design of Steel

Structures

In this section, the design requirements of Eurocode 3 will be discussed.

Provisions for cylindrical cross sections will be presented resulting to derivation

of limit states that will be used later in the analysis. The basic requirement

demands that ‘the design value of one or several action effects in each cross

section shall not exceed the corresponding design resistance for that action or

the corresponding combination’ [5]. The design values of resistance should

depend on the classification of the cross-section, while four classes can be

distinguished:
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 Class 1 cross-sections are those which can develop their plastic moment

capacity and provide significant amount of rotation resistance.

 Class 2 cross-sections are those which can develop their plastic moment

resistance, but have limited rotation capacity because of local buckling.

 Class 3 cross-sections are those in which the stress in the extreme

compression fibre of the steel member assuming an elastic distribution of

stresses can reach the yield strength, but local buckling is liable to

prevent development of the plastic moment resistance.

 Class 4 cross-sections are those in which local buckling will occur before

the attainment of yield stress in one or more parts of the cross-section.

Table 49, presents the criteria for classification of members based on design

yield and geometrical properties.

Class Section in bending and/or compression

1 ≥ݐ/݀ ଶߝ50

2 ≥ݐ/݀ ଶߝ70

3 ≥ݐ/݀ ଶߝ90

fy 235 275 355 420 460

=ߝ ට235/ ௬݂

ε 1,00 0,92 0,81 0,75 0,71

ε2 1,00 0,85 0,66 0,56 0,51

Table 49: Classification of members

6.4.1 Design Provisions

For elastic verification, the following conservative yield criterion should be

satisfied along the length of the member under consideration:

ቆ
௫,ாௗߪ

௬݂ ெߛ ⁄
ቇ

ଶ

+ ቆ
௭,ாௗߪ

௬݂ ெߛ ⁄
ቇ

ଶ

− ቆ
௫,ாௗߪ

௬݂ ெߛ ⁄
ቇ ∙ ቆ

௭,ாௗߪ

௬݂ ெߛ ⁄
ቇ+ 3 ∙ ቆ

ா߬ௗ

௬݂ ெߛ ⁄
ቇ

ଶ

≤ 1 (6-40)

Where:

௫,ாௗߪ : Design value of the longitudinal stress at the point of consideration (MPa)

௭,ாௗߪ : Design value of the transverse stress at the point of consideration (MPa)

ா߬ௗ : Design value of the shear stress at the point of consideration (MPa)
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ெߛ  : Resistance partial factor of cross section applicable to all classes (1.00)

Another conservative approximation applicable to all cross section classes

introduces a linear summation of the utilization ratios for each stress resultant.

ܰாௗ
ܰோௗ

+
௬,ாௗܯ

௬,ோௗܯ
+
௭,ாௗܯ

௭,ோௗܯ
≤ 1 (6-41)

Where:

ܰோௗ, ,௬,ோௗܯ ௭,ோௗܯ : Design values of the resistance depending on the cross

sectional classification and including any reduction that may be caused by

shear effects

ܰாௗ, ,௬,ாௗܯ ௭,ாௗܯ : Design values of the action at point of consideration

6.4.1.1 Members in Tension

For members in tension, the design value of the tension force ܰாௗ at each cross

section should satisfy:

ܰாௗ
ܰ௧,ோௗ

≤ 1.0 (6-42)

Where,

ܰ௧,ோௗ = ݉ ݅݊ ቀܰ ,ோௗ =
∙

ఊಾ బ
,ܰ௨,ோௗ =

,ଽ∙ೠ

ఊಾ మ
ቁ

ெߛ ଶ : Resistance of cross section in tension to fracture

6.4.1.2 Members in Compression

For members in compression, the design value of the compression force ܰாௗ at

each cross-section should satisfy:

ܰாௗ
ܰ,ோௗ

≤ 1.0 (6-43)

Where:

ܰ,ோௗ =
∙

ఊಾ బ
, for class 1, 2 or 3 cross-sections
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ܰ,ோௗ =
∙

ఊಾ బ
, for class 4 cross-sections

6.4.1.3 Bending

For members under bending moment, the design value of the bending moment

ாௗܯ at each cross-section should satisfy:

ாௗܯ

,ோௗܯ
≤ 1.0 (6-44)

,ோௗܯ = ,ோௗܯ =
ௐ ∙

ఊಾ బ
, for class 1 or 2 cross sections

,ோௗܯ = ,ோௗܯ =
ௐ ,  ∙

ఊಾ బ
, for class 3 cross sections

,ோௗܯ =
ௐ ,  ∙

ఊಾ బ
, for class 4 cross sections

Where: ܹ ,  and ܹ ,  is the maximum elastic stress (MPa).

6.4.1.4 Shear

For members under shear loads, the design value of the shear force ாܸௗ at each

cross section should satisfy:

ாܸௗ

ܸ,ோௗ
≤ 1.0 (6-45)

Where: ܸ,ோௗ is the design shear resistance (N)

In the absence of torsion the design plastic shear resistance is given by:

ܸ,ோௗ =
൫݂ܣ ௬ √3⁄ ൯

ெߛ 
(6-46)

Where: ܣ ܣ2 ⁄ߨ is the shear area for cylindrical cross sections.

A conservative verification based on elastic design, suggests:
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ாܸௗ ∙ ܵ
∙ܫ ݐ

௬݂ ൫√3 ∙ ெߛ ൯⁄
≤ 1.0 (6-47)

ாܸௗ : Design value of the shear force (N)

ܵ : First moment of area about the centroidal axis of that portion of the cross-

section between the point at which the shear is required and the boundary of

the cross-section (m3)

:ܫ Second moment of area of the whole cross section (mm4)

:ݐ The thickness at the examined point (mm)

6.4.1.5 Torsion

For members subject to torsion for which distortional deformations may be

disregarded the design value of the torsional moment ாܶௗ at each cross-section

should satisfy:

ாܶௗ

ோܶௗ
≤ 1.0 (6-48)

Where:

ோܶௗ : Design torsional resistance of the cross section.

For the elastic verification the yield criterion, eq. (6-40) can be applied.

6.4.1.6 Buckling Resistance of members

Members in compression should also be verified against buckling as follows:

ܰாௗ
ܰ,ோௗ

≤ 1.0 (6-49)

Where:

ܰாௗ : Design value of the compression force (N)

ܰ,ோௗ : Design buckling resistance of the compression member (N)

The design buckling resistance of a compression member ܰ,ோௗ should be taken

as:
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ܰ,ோௗ =
ఞ∙∙

ఊಾ భ
, for class 1,2 and 3 cross sections

ܰ,ோௗ =
ఞ∙∙

ఊಾ భ
, for class 4 cross sections

Where:

ெߛ ଵ : Resistance of members to instability (1.00)

߯ : Reduction factor for the relevant buckling mode and should be determined

as follows based on the relevant buckling curve according to:

߯ =
1

ߔ + ඥߔଶ − ଶߣ̅
≤ 1.0

ߔ = 0,5 ∙ උ1 + ߙ ∙ ൫̅ߣ− 0,2൯+ ଶඏߣ̅

(6-50)

The non-dimensional slenderness ߣ̅ is given by:

=ߣ̅ ට
∙

ேೝ
=

ೝ


∙
ଵ

ఒభ
, for class 1,2 and 3 cross sections

=ߣ̅ ට
∙

ேೝ
=

ೝ


∙
ට
ಲ

ಲ

ఒభ
, for class 4 cross sections

ଵߣ = ටߨ
௲


= 93, =ߝ ට

ଶଷହ


൫݂ ௬ ݅݊ ܰ ݉݉ ଶ⁄ ൯

Where:

ߙ : Imperfection factor (see Table 50)

ܰ : Elastic critical force for the relevant buckling mode based on the gross

cross sectional properties.

ܮ : Buckling length in the buckling plane (m)

݅: Radius of gyration about the relevant axis, determined using the properties of

the gross cross-section (m)

Buckling curve a0 a b c d

Imperfection factor α 0,13 0,21 0,34 0,49 0,76 

Table 50: Imperfection factors for buckling curves
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Figure 69: Buckling curves

Buckling effects may be ignored for slenderness ≥ߣ̅ 0,2 or for
ேಶ

ேೝ
≤ 0,04.

For a laterally unrestrained member subject to major axis bending should be

verified against lateral-torsional buckling as:

ாௗܯ

,ோௗܯ
≤ 1.0 (6-51)

Where:

ாௗܯ : Design value of the moment (Nm)

,ோௗܯ : Design buckling resistance moment (Nm)

The design buckling resistance moment should be considered as:

,ோௗܯ = ்߯ ∙ ܹ௬ ∙
௬݂

ெߛ ଵ
(6-52)

Where:

ܹ௬ : Appropriate section modulus as follows:

ܹ௬ = ܹ ,௬, for Class 1 or 2 cross-sections



248

ܹ௬ = ܹ ,௬, for Class 3 cross-sections

ܹ௬ = ܹ ,௬, for Class 4 cross-sections

்߯ : Reduction factor for lateral-torsional buckling.

ெߛ ଵ : Resistance of members to instability

Estimation of ்߯ for lateral torsional buckling should be determined as:

்߯ =
1

்ߔ + ටߔ்
ଶ − ்ߣ̅

ଶ

≤ 1.0

்ߔ = 0,5 ∙ උ1 + ்ߙ ∙ ൫̅ߣ் − 0,2൯+ ்ߣ̅
ଶ ඏ

(6-53)

்ߣ̅ = ඨ
ܹ௬ ∙ ௬݂

ܯ

Where:

்ߙ : Imperfection factor (see Table 50)

ܯ : Elastic critical moment for lateral-torsional buckling

For slenderness ்ߣ̅ ≤ ்ߣ̅ , or for
ெ ಶ

ெೝ
≤ ்ߣ̅ ,

ଶ
lateral torsional buckling effects

may be ignored and only cross sectional checks apply.

6.4.1.7 Bending and axial force

In the case of axial force acting on members, its effect on plastic resistance

should be investigated. For class 1 and 2 cross sections, the following criterion

shall be satisfied:

ாௗܯ ≤ ேܯ ,ோௗ (6-54)

Where:

ேܯ ,ோௗ : design plastic moment resistance reduced due to the axial force ܰாௗ

For circular cross sections, the criterion applied for bi-axial bending denotes:
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ቈ
௬,ாௗܯ

ேܯ ,௬,ோௗ


ଶ

+ ቈ
௭,ாௗܯ

ேܯ ,௭,ோௗ


ଶ

≤ 1

ேܯ ,௬,ோௗ = ேܯ ,௭,ோௗ = ,ோௗܯ ∙ (1 − ݊ଵ,)

(6-55)

For Class 3 and class 4 cross sections, in the absence of shear force, the

maximum longitudinal stress shall satisfy the criterion:

௫,ாௗߪ ≤
௬݂

ெߛ 
(6-56)

Where:

௫,ாௗߪ : Design value of the longitudinal stress due to moment and axial force

In the presence of shear, provided that the design value of shear force does not

exceed 50% of the design plastic shear resistance, no reduction to the

resistances defined for bending and axial force should be made. In the opposite

case, a reduction in yield strength should be employed as:

(1 − (ߩ ∙ ௬݂

=ߩ ൫2 ாܸௗ ܸ,ோௗ − 1⁄ ൯
ଶ

(6-57)

6.4.1.8 Members in bending and axial compression

For members which are subjected to combined bending and axial compression

should satisfy:

ܰாௗ

௬߯ ∙ ܰோ
ெߛ ଵ

+ ௬݇௬ ∙
௬,ாௗܯ + ௬,ாௗߊ߂

்߯ ∙
௬,ோܯ

ெߛ ଵ

+ ௬݇௭ ∙
௭,ாௗܯ + ௭,ாௗߊ߂

்߯ ∙
௭,ோܯ

ெߛ ଵ

≤ 1

ܰாௗ

௭߯ ∙ ܰோ
ெߛ ଵ

+ ௭݇௬ ∙
௬,ாௗܯ + ௬,ாௗߊ߂

்߯ ∙
௬,ோܯ

ெߛ ଵ

+ ௭݇௭ ∙
௭,ாௗܯ + ௭,ாௗߊ߂

்߯ ∙
௭,ோܯ

ெߛ ଵ

≤ 1

(6-58)

Where:

ܰாௗ, ,௬,ாௗܯ ௭,ாௗܯ : Design values of the compression force and the maximum

moments about the y-y and z-z axis along the member, respectively
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,௬,ாௗߊ߂ ௭,ாௗߊ߂ : Moments due to the shift of the centroidal axis (=0 for classes

1, 2, 3; = ே݁ ,௬(௭)ܰௗ for class 4)

௬߯, ௭߯ : Reduction factors due to flexural buckling

்߯ : Reduction factor due to lateral torsional buckling

௬݇௬, ௬݇௭, ௭݇௬, ௭݇௭ : Interaction factors (App. A and B of standard)

6.4.2 Numerical Results

Table 51, summarizes the limit states that have been considered in the

reliability assessment of the reference structure. The corresponding paragraph

and number of each limit state, as it is referred to in the standard, is included,

as well as the identification number that correspond to this limit state in this

Chapter. Following, in Table 52 to Table 54, the results of reliability analysis of

each limit state are presented for the different classes of members.

Limit State Description Equation

ufEuler Usage factor equal ratio for axial compression / Euler capacity 6-43

ufAxial Usage factor equal ratio for axial load / design resistance for axial loading 6-42

ufTorsion Usage factor due to torsion 6-48

ufShearz Usage factor due to shear in local z direction 6-45

ufSheary Usage factor due to shear in local y direction 6-45

ufXSection
Cross section usage factor according to section 6.2.9 (Bending and Axial Froce) and
6.2.10 (Bending Shear and axial Force)

6-54/6-56

uf646 Usage factor according to equation (6.46) (Buckling Resistance - Compression) 6-49

uf655 Usage factor according to equation (6.55) (Buckling Resistance - Bending) 6-51

uf661 Usage factor according to equation (6.61) (Bending and Axial Compression) 6-58a

uf662 Usage factor according to equation (6.62) (Bending and Axial Compression) 6-58b

Table 51: Limit States according to EN 1993

ufEuler ufAxial ufTorsion ufShearz ufSheary ufXSection uf646 uf655 uf661 uf662

b101 25.00 5.44 22.26 0.00 80.60 0.00 10.54 0.00 7.69 8.18

b102 15.21 6.31 23.19 44.40 44.44 11.21 6.09 0.00 5.16 5.21

b103 15.22 6.32 23.17 44.36 44.45 11.19 6.09 0.00 5.17 5.21

b104 25.01 5.45 22.27 0.00 80.51 0.00 10.53 0.00 7.69 8.18

b201 25.01 5.85 29.45 30.33 53.38 17.81 11.32 0.00 21.35 19.14

b202 18.74 7.69 37.43 56.85 0.00 17.99 7.46 0.00 7.19 7.20

b203 18.72 7.69 37.43 56.78 0.00 17.99 7.45 0.00 7.19 7.20

b204 24.99 5.86 29.50 30.34 53.44 17.77 11.31 0.00 21.34 19.18
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ufEuler ufAxial ufTorsion ufShearz ufSheary ufXSection uf646 uf655 uf661 uf662

b301 91.11 10.30 0.00 25.06 37.39 11.57 0.00 0.00 0.00 0.00

b302 22.83 10.67 0.00 53.38 72.05 23.69 10.39 0.00 8.38 8.45

b303 22.86 10.67 0.00 53.39 71.98 23.69 10.39 0.00 8.38 8.44

b304 90.97 10.29 0.00 25.07 37.43 11.59 0.00 0.00 0.00 0.00

b401 0.00 0.00 19.70 31.16 36.07 20.54 0.00 0.00 23.90 24.45

b402 40.06 21.84 19.73 40.55 29.01 21.94 19.20 0.00 11.55 11.58

b403 40.04 21.83 19.76 40.56 29.01 21.97 19.20 0.00 11.54 11.57

b404 0.00 0.00 19.73 31.15 36.04 20.55 0.00 0.00 23.88 24.44

Table 52: Reliability indices for Leg Members

ufEuler ufAxial ufTorsion ufShearz ufSheary ufXSection uf646 uf655 uf661 uf662

b111 0.00 0.00 0.00 0.00 0.00 68.20 0.00 0.00 0.00 0.00

b112 0.00 0.00 0.00 0.00 0.00 68.20 0.00 0.00 0.00 0.00

b113 0.00 0.00 0.00 0.00 0.00 68.20 0.00 0.00 0.00 0.00

b114 0.00 0.00 0.00 0.00 0.00 68.20 0.00 0.00 0.00 0.00

b115 0.00 0.00 0.00 0.00 0.00 41.17 0.00 0.00 0.00 0.00

b116 0.00 0.00 0.00 0.00 0.00 41.17 0.00 0.00 0.00 0.00

b211 0.00 0.00 80.56 56.72 0.00 20.19 0.00 0.00 0.00 0.00

b212 0.00 13.87 0.00 0.00 33.83 19.49 0.00 0.00 0.00 0.00

b213 0.00 0.00 80.46 56.67 0.00 20.19 0.00 0.00 0.00 0.00

b214 9.25 13.39 0.00 80.26 33.88 46.12 8.30 0.00 10.72 7.78

b215 0.00 0.00 53.41 0.00 56.88 24.63 0.00 0.00 0.00 0.00

b216 0.00 0.00 53.36 0.00 56.83 24.65 0.00 0.00 0.00 0.00

b311 0.00 0.00 0.00 0.00 72.00 13.67 0.00 0.00 0.00 0.00

b312 0.00 16.23 0.00 0.00 30.93 7.00 0.00 0.00 0.00 0.00

b313 0.00 0.00 0.00 0.00 71.97 13.68 0.00 0.00 0.00 0.00

b314 9.54 14.92 0.00 46.27 30.94 8.87 8.74 0.00 9.18 6.81

b315 0.00 0.00 46.35 57.72 72.00 33.86 0.00 0.00 0.00 0.00

b316 0.00 0.00 46.43 57.77 72.07 33.86 0.00 0.00 0.00 0.00

b411 0.00 0.00 0.00 0.00 72.00 10.01 0.00 0.00 0.00 0.00

b412 0.00 21.24 0.00 32.77 22.86 7.65 0.00 0.00 0.00 0.00

b413 0.00 0.00 0.00 0.00 72.01 10.01 0.00 0.00 0.00 0.00

b414 13.15 16.53 0.00 53.24 24.61 7.06 11.94 0.00 4.64 4.18

b415 46.43 0.00 53.36 0.00 20.57 10.29 40.18 0.00 6.26 5.89

b416 46.46 0.00 53.42 0.00 38.81 32.04 40.19 0.00 6.25 5.89

Table 53: Reliability indices for Horizontal Brace Members

ufEuler ufAxial ufTorsion ufShearz ufSheary ufXSection uf646 uf655 uf661 uf662

b151 0.00 7.00 96.23 80.22 56.85 10.61 0.00 0.00 0.00 0.00

b152 3.11 6.72 80.52 84.92 80.48 0.00 2.81 0.00 2.53 2.54

b153 8.07 15.07 42.41 0.00 33.87 7.96 7.54 0.00 5.44 5.11

b154 8.07 15.07 42.41 0.00 33.85 7.96 7.53 0.00 5.44 5.11
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ufEuler ufAxial ufTorsion ufShearz ufSheary ufXSection uf646 uf655 uf661 uf662

b155 3.11 6.71 80.51 85.04 80.42 0.00 2.81 0.00 2.53 2.54

b156 0.00 7.01 96.18 80.32 56.91 10.60 0.00 0.00 0.00 0.00

b157 12.71 11.91 42.40 0.00 33.88 8.37 11.71 0.00 0.00 0.00

b158 12.70 11.91 42.38 0.00 33.87 8.37 11.72 0.00 0.00 0.00

b251 0.00 6.72 31.86 56.75 71.96 9.18 0.00 0.00 0.00 0.00

b252 3.39 6.61 31.14 0.00 80.47 15.32 3.05 0.00 2.59 2.58

b253 13.51 25.14 50.22 0.00 32.80 8.92 12.64 0.00 7.79 6.94

b254 13.49 25.13 50.14 0.00 32.81 8.92 12.63 0.00 7.78 6.94

b255 3.39 6.61 31.17 0.00 80.47 15.33 3.05 0.00 2.59 2.59

b256 0.00 6.72 31.86 56.75 72.06 9.17 0.00 0.00 0.00 0.00

b257 0.00 35.90 42.46 0.00 30.27 9.20 0.00 0.00 0.00 0.00

b258 0.00 35.90 42.44 0.00 30.33 9.20 0.00 0.00 0.00 0.00

b351 0.00 6.99 28.73 53.31 0.00 9.35 0.00 0.00 0.00 0.00

b352 3.95 6.93 28.77 40.33 0.00 10.55 3.55 0.00 2.90 2.89

b353 18.60 28.23 36.05 0.00 26.36 8.23 16.80 0.00 7.86 6.41

b354 18.56 28.26 36.08 0.00 26.35 8.22 16.81 0.00 7.87 6.41

b355 3.95 6.93 28.76 40.29 0.00 10.56 3.55 0.00 2.90 2.89

b356 0.00 6.99 28.73 53.34 0.00 9.35 0.00 0.00 0.00 0.00

b357 0.00 0.00 36.11 56.80 26.34 8.32 0.00 0.00 11.80 8.26

b358 0.00 0.00 36.03 56.81 26.36 8.32 0.00 0.00 11.79 8.27

b451 0.00 8.11 26.98 40.50 44.43 14.52 0.00 0.00 0.00 0.00

b452 5.02 8.00 28.74 36.07 0.00 11.91 4.57 0.00 3.84 3.82

b453 26.27 40.14 0.00 30.30 20.10 5.83 24.86 0.00 5.22 4.14

b454 26.24 40.10 0.00 30.30 20.09 5.84 24.84 0.00 5.23 4.14

b455 5.02 8.01 28.77 36.04 0.00 11.91 4.57 0.00 3.84 3.82

b456 0.00 8.10 26.97 40.50 44.43 14.52 0.00 0.00 0.00 0.00

b457 0.00 0.00 80.59 53.27 20.76 5.81 0.00 0.00 5.36 4.13

b458 0.00 0.00 80.56 53.34 20.79 5.82 0.00 0.00 5.36 4.13

Table 54: Reliability indices for Vertical Brace Members

The final value of the reliability index for every member will be derived as the

minimum value calculated from each of the limit states examined. Results

referring to the leg members, starting from the first elevation, distinguish one set

of members in axial compression and bending (b102-b103) with ߚ = 5.16 and

one set in axial tension (b101-b104) with ߚ = 5.44. Due to the uniform cross

section of the legs, it is expected that the values of ߚ of this elevation will be the

lowest one, sizing the members. Moving to the second elevation, a different

pattern is followed with members (b202-b203) in axial compression and bending

with ߚ = 7.19 having a greater value of reliability index than the second member
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(b201-b204) subjected in axial tension with ߚ = 5.85. The same pattern as in

the second elevation can be observed in the third elevation with the set of

members (b302-b303) subjected to axial compression and bending with

ߚ = 8.38 and the set of (b301-b304) subjected to axial tension with ߚ = 10.30. A

different behaviour can be observed in the fourth elevation leg members with

the set of members (b402-b403) subjected to axial compression and bending

with ߚ = 11.54 and the set of (b401-b404) subjected to torsion with ߚ = 19.70.

Horizontal bracing members of the first elevation, have great values of reliability

due to the insignificant loads they carry, according to the piling conditions that

have been applied. Members of the first elevation that stand parallel to the flow

(b211-b213) have ߚ = 20.19 due to the cross section usage factor limit state,

while for the members vertical to the flow, the one that meets the flow first

(b214) has a lower value of ߚ = 7.78 due to bending and axial compression and

the second one (b212) has ߚ = 13.87 due to axial tension. The two X-bracing

members (b215-b216) have great values of reliability since they carry minimum

loads, as they have a non functional load to the operation of the structure. In the

third elevation, the two symmetrical members, parallel to the flow (b311-b313)

have ߚ = 13.67 due to the cross section usage factor limit state, the first vertical

to the flow (b314) ߚ = 6.81 due to axial compression and bending, and the

second member (b312) ߚ = 7.00 due to the cross section usage factor limit

state. The members parallel to the flow of the fourth elevation (b411-b413) have

ߚ = 10.01 due to the cross section usage factor limit state, the first member

vertical to the flow (b414) ߚ = 4.18 due to axial compression and bending while

the second member (b412) ߚ = 7.65 due to the cross section usage factor limit

state. At this elevation the X brace members show values of ߚ = 5.89 due to

axial compression and bending criterion, due to the loads transmitted from the

topside loads.

For the vertical X-braces of the first elevation, the two symmetrical sets of

members parallel to the flow, have one of their member (b152-b155) defined

from the axial compression and bending limit state with ߚ = 2.53 and the other

of their members (b151-b156) with ߚ = 7.00 subjected to axial tension. From
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the sets vertical to the flow, the first (b157-b158) has ߚ = 8.37 due to the cross

section usage factor limit state, while the second one (b153-b154) has ߚ = 5.11

due to axial compression and bending. From the members of the second

elevation that stand parallel to the flow, members (b252-b255) are subjected to

axial compression and bending with ߚ = 2.59 while members (b251-b256) are

subjected in axial tension with ߚ = 6.72. From the sets vertical to the flow, the

first (b257-b258) has ߚ = 9.20 due to the cross section usage factor limit state,

while the second one (b253-b254) has ߚ = 6.94 due to axial compression and

bending. From the members of the third elevation that stand parallel to the flow,

members (b352-b355) are subjected to axial compression and bending with

ߚ = 2.89 while members (b351-b356) are subjected in axial tension with

ߚ = 6.99. From the sets vertical to the flow, the first (b357-b358) has ߚ = 8.26,

while the second one (b353-b354) has ߚ = 6.41 both due to axial compression

and bending. Finally for the members of the fourth elevation, those that stand

parallel to the flow, (b452-b455) are subjected to axial compression and

bending with ߚ = 3.82, while members (b451-b456) are subjected in axial

tension with ߚ = 8.10. From the sets vertical to the flow, the first (b457-b458)

has ߚ = 4.13, while the second one (b453-b454) has ߚ = 4.11 both due to axial

compression and bending.

6.5 ANSI/AISC 360-05: Specification for structural steel

buildings

The design procedure for the design of members under load actions is

described in Chapters A-H of this standard. Axial force and bending (flexure as

it will be referred to herein) about one or both axes, with or without torsion, and

to members subject to torsion only is analytically derived both in a limit state

and in a working state design. In this section, the limit state provisions will be

presented for symmetric members subjected to bending and axial force, since

the members of the structure of reference is of this type. Different sections in

this standard include modified provisions for unsymmetrical members. Finally,
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provisions for members under combined torsion, flexure, shear and/or axial

force will be presented [4].

6.5.1 Design Provisions

The standard defines that design according to its provisions should be satisfied

when ‘the design strength of each structural component equals or exceeds the

required strength determined on the basis of the load combinations considered’.

The typical for LRFD standard basic equation that should be satisfied is:

ܴ௨ ≤ ܴ߮ (6-59)

Where:

ܴ௨ : Required strength (MPa)

ܴ : Nominal strength, as specified for each case of loading (MPa)

߮ : Resistance factor, as specified for each case of loading

ܴ߮ : Design strength (MPa)

6.5.1.1 Members in tension

For members in tension, the design tensile strength ߮௧ܲ  shall be derived by the

lower value of the limit states corresponding to tensile yielding and tensile

rapture:

ܲ = ,ܣ௬ܨ ߮௧ = 0.90

ܲ = ,ܣ௨ܨ ߮௧ = 0.75
(6-60)

Where:

ܣ : Effective net area (mm2), calculated as the product of the net area ܣ and

the shear lag factor ܷ specified for different connections of tension members.

:ܣ Gross area of member (mm2)

:௬ܨ Specified minimum yield stress (MPa)

௨ܨ : Specified minimum tensile stress (MPa)
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6.5.1.2 Members in compression

For design of members in compression the design compressive strength ߮ ܲ

shall be determined as the lowest value obtained by the limit states of flexural

buckling, torsional buckling and flexural - torsional buckling. The reduction

factor referring to compression is ߮௧ = 0.90. The nominal compressive strength

ܲ for the case of flexural buckling should be:

ܲ = ܣܨ (6-61)

Where the flexural buckling is determined as:

ܨ = ቈ0.658
ಷ

ಷܨ௬, when ܨ ≥ ௬ܨ0.44

ܨ = ,ܨ0.877 when ܨ < ௬ܨ0.44

ܨ =
ܧଶߨ

ቀ
ܮܭ
ݎ ቁ

ଶ

(6-62)

Where:

ܨ : Elastic critical buckling (MPa)

ܮ : Laterally un-braced length of member (mm)

:ݎ Radius of gyration (mm)

ܭ : Effective length factor in plane of bending equals 1 unless different analysis

indicates a smaller value

6.5.1.3 Members in Flexure

For the design of flexural strength, ߮ܯ, the corresponding reduction factor

would be ߮௧ = 0.90. The nominal flexural strength ܯ should be determined by

the lower value obtained by the limit states corresponding to yielding and plastic

buckling as follows:

ܯ = ܯ = ௬ܼܨ (6-63)
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ܯ = ቆ
.ଶଵா

ವ



+ ௬ቇܨ ,ܵ for non-compact sections

ܯ = =ܵܨ
.ଷଷா
ವ



,ܵ for sections with slender walls

Where:

ܵ : Elastic section modulus (mm3)

ܼ : Plastic section modulus about the axis of bending (mm3)

6.5.1.4 Members in Shear

Design shear strength, ߮௩ ܸ should be determined by applying ߮௩ = 0.90 and

for cylindrical cross sections, the nominal shear strength should be determined

according to limit states of shear yielding and shear buckling as:

ܸ =
ܣܨ

2
(6-64)

Where ܨ should be derived by the maximum of the values:

ܨ =
ܧ1.60

ටܮ௩
ܦ ቀ

ܦ
ቁݐ

ହ
ସ

ܨ =
ܧ0.78

ቀ
ܦ
ቁݐ

ଷ
ଶ

(6-65)

Where:

ܣ : Gross area of section based on design wall thickness (mm2)

ܦ : Outside diameter (mm)

௩ܮ : Distance from maximum to zero shear force (mm)

=ݐ (0.93 − ݐ(1 : Design wall thickness (mm)

6.5.1.5 Members subject to Flexure and Axial Force

The fundamental relationship that should constrain the interaction between axial

force and flexure is:
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ܷ =
ೝ


+

଼

ଽ
∙ ൬

ெೝೣ

ெ ೣ
+

ெೝ

ெ
൰≤ 1.0, For

ೝ


≥ 0.2

ܷ =
ೝ

ଶ
+

଼

ଽ
∙ ൬

ெೝೣ

ெ ೣ
+

ெೝ

ெ
൰≤ 1.0, For

ೝ


< 0.2

(6-66)

Where:

ܲ : Required axial compressive (tensile) strength, (N)

ܲ = ߮ ܲ : Available axial compressive strength, (N)

ܲ = ߮௧ܲ  : Available axial tensile strength, (N)

߮ = 0.90 : Resistance factor for compression

߮௧ : Resistance factor for tension (as described above)

߮ = 0.90 : Resistance factor for flexure

ܯ : Required flexural strength (N-mm)

ܯ = ߮ܯ : Available flexural strength (N-mm)

ݔ : Subscript relating symbol to strong axis bending

ݕ : Subscript relating symbol to weak axis bending

6.5.1.6 Members under torsion and combined torsion, shear and/or axial

force

The design torsional strength, ்߮ ܶ should consider ்߮ = 0.90 and nominal

torsional strength:

ܶ = ܨ ∙ ܥ (6-67)

Where:

ܥ =
గ∙(ି௧)మ∙௧

ଶ
: Torsional constant

ܨ : The greatest of (without exceeding :(௬ܨ0.6

ܨ =
ܧ1.23

ටܮ
ܦ ∙ ቀ

ܦ
ቁݐ

ହ
ସ (6-68)
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ܨ =
ܧ0.60

ቀ
ܦ
ቁݐ

ଷ
ଶ

Where:

ܮ : Length of the member (mm)

ܦ : Outside diameter (mm)

For cylindrical members subjected to combined torsion, shear, flexure and axial

force: when ܶ ≤ 20, provisions of the fundamental relationship between axial

force and flexure should be followed. In the case when ܶ > 20, interaction of

torsion, shear, flexure and/or axial force shall be limited by:

൬
ܲ

ܲ
+
ܯ

ܯ
൰+ ൬

ܸ

ܸ
+

ܶ

ܶ
൰
ଶ

≤ 1.0 (6-69)

Where:

ܲ : Required axial strength (N)

ܲ = ߮ ∙ ܲ, design tensile or compressive strength (N)

ܯ : Required flexural strength (N-mm)

ܯ = ߮ ∙ ,ܯ Design flexural strength (N-mm)

ܸ : Required shear strength (N)

ܸ = ߮௩ ∙ ܸ : Design shear strength (N)

ܶ : Required torsional strength (N-mm)

ܶ = ்߮ ∙ ܶ Design torsional strength (N-mm)

6.5.2 Numerical Application

Table 55, summarizes the limit states that have been considered in the

reliability assessment of the reference structure. For this standard, the final

value of the reliability index for each member is determined by dominant limit

state referring to symmetrical members subjected to bending and axial force.

Therefore this case will describe the effect of any action or combination of
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actions. Following, in Table 56 to Table 58, the results of reliability analysis of

each limit state are presented for the different classes of members.

Limit State Description Equation

ufH1 Usage factor according to section H1 6-66

Table 55: Limit States according to ANSI/AISC 360-05

ufH1 ufH1

b101 4.64 b301 9.78

b102 4.25 b302 8.65

b103 4.26 b303 8.65

b104 4.64 b304 9.79

b201 7.62 b401 14.91

b202 5.47 b402 10.90

b203 5.47 b403 10.92

b204 7.63 b404 14.88

Table 56: Reliability indices for Leg Members

ufH1 ufH1

b111 61.99 b311 10.26

b112 61.99 b312 8.90

b113 61.99 b313 10.26

b114 61.99 b314 6.06

b115 37.69 b315 17.11

b116 37.69 b316 17.11

b211 10.99 b411 9.01

b212 10.58 b412 6.30

b213 10.97 b413 8.99

b214 7.54 b414 5.42

b215 15.82 b415 8.59

b216 15.81 b416 8.59

Table 57: Reliability indices for Horizontal Brace Members

ufH1 ufH1

b151 4.90 b351 4.85

b152 2.07 b352 2.64

b153 4.40 b353 5.80

b154 4.40 b354 5.80

b155 2.06 b355 2.64

b156 4.90 b356 4.85

b157 7.52 b357 6.27

b158 7.52 b358 6.28
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ufH1 ufH1

b251 4.79 b451 7.43

b252 2.26 b452 3.50

b253 7.40 b453 3.82

b254 7.39 b454 3.82

b255 2.26 b455 3.50

b256 4.79 b456 7.43

b257 8.58 b457 3.88

b258 8.58 b458 3.88

Table 58: Reliability indices for Vertical Brace Members

Investigating results for the leg members, starting from the first elevation,

distinguish one set of members (b102-b103) with ߚ = 4.25 and one set (b101-

b104) with ߚ = 4.64. Due to the uniform cross section of the legs, it is expected

that the values of ߚ of this elevation will be the lowest one, sizing the members.

Moving to the second elevation, members (b202-b203) have ߚ = 5.47 while

(b201-b204) have ߚ = 7.63. In the third elevation, members (b302-b303) have

ߚ = 8.65 and the set of (b301-b304) has ߚ = 9.78. For members in the fourth

elevation, the set of (b402-b403) is found to have ߚ = 10.90 and the set of

(b401-b404) with ߚ = 14.88.

Horizontal bracing members of the first elevation, have great values of reliability

due to the insignificant loads they carry, according to the piling conditions that

have been applied. Members of the second elevation that stand parallel to the

flow (b211-b213) have ߚ = 10.99, while for the members vertical to the flow, the

one that meets the flow first (b214) has a lower value of ߚ = 7.54 and the

second one (b212) has ߚ = 10.58. The two X-bracing members (b215-b216)

have great values of reliability since they carry minimum loads, as they have a

non functional load to the operation of the structures. In the third elevation, the

two symmetrical members, parallel to the flow (b311-b313) have ߚ = 10.26, the

first vertical to the flow (b314) ߚ = 6.06, and the second member (b312)

ߚ = 8.90. The members parallel to the flow of the fourth elevation (b411-b413)

have ߚ = 9.01, the first member vertical to the flow (b414) ߚ = 5.42 while the

second member (b412) ߚ = 6.30. At this elevation the X brace members show

values of ߚ = 8.59, due to the loads transmitted from the topside loads.
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For the vertical X-braces of the first elevation, the two symmetrical sets of

members parallel to the flow, have one of their members (b152-b155) with

ߚ = 2.07 and the other of their members (b151-b156) with ߚ = 4.90. From the

sets vertical to the flow, the first (b157-b158) has ߚ = 7.52, while the second

one (b153-b154) has ߚ = 4.40. From the members of the second elevation that

stand parallel to the flow, members (b252-b255) have ߚ = 2.26 while members

(b251-b256) have ߚ = 4.79. From the sets vertical to the flow, the first (b257-

b258) has ߚ = 8.58, while the second one (b253-b254) has ߚ = 7.40. From the

members of the third elevation that stand parallel to the flow, members (b352-

b355) have ߚ = 2.64 while members (b351-b356) have ߚ = 4.85. From the sets

vertical to the flow, the first (b357-b358) has ߚ = 6.27, while the second one

(b353-b354) has ߚ = 5.80. Finally for the members of the fourth elevation, those

that stand parallel to the flow, (b452-b455) have ߚ = 3.50 while members

(b451-b456) have ߚ = 7.43. From the sets vertical to the flow, the first (b457-

b458) has ߚ = 3.88, while the second one (b453-b454) has ߚ = 3.82.

6.6 Discussion

Table 59 to Table 61, summarize the minimum values of reliability indices

based on different limit states that have been investigated based on provisions

of different standards as well as values obtained by the analytical limit state

derived in the previous Chapter (based on the von Mises failure criterion).

Although in general similar trends of figures can be observed, differences in

individual members are found due to the different design considerations that

each standard suggests. The basic difference in those design provisions relates

to the reduction (or resistance) factors that are used in each of the potential

load actions, and are listed in Table 62. EN and AISC, propose more

conservative reduction factors for members under tension (0.8 and 0.9-0.75

respectively), while API LRFD and ISO propose more conservative values for

members in compression (0.85 for both). API LRFD and ISO have propose the

same values for bending, shear and torsion (0.95), and for hoop buckling (0.80).
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EN’s values for bending, shear and torsion is 1.00 while AISC/ANSI proposes a

value equals to 0.90. Work on the derivation of the strength reduction factors

has been performed in the background documents of the API standards [310].

For every case of action, von Mises criterion has not accounted for any

reduction factor. Further, differences in the expressions for combinations of

actions in standards provide different results, distinguishing from a simple

summation, vectorial summation or weighted summation of action resultants. It

should also be noted here that application of EN and ANSI/AISC is not directly

applicable to offshore structure since they are generic documents for steel

structures and do not have special clauses for actions such as external

pressure on members etc; however useful conclusions can be derived by

including them in this analysis.

For leg members, difference in the pattern of minimum value of reliability is

observed between members in axial tension and compression, combined with

bending, based on reduction of members’ strengths. The lowest elevation

members, which will eventually size the rest of the member’ parts, based on von

Mises criterion, indicate a minimum value of ߚ = 4.79 based on member in

tension, while API and ISO derive values of 4.76 and 4.71 respectively based on

members in compression. Respective values derived by EN and AISC/ANSI are

5.16 and 4.25 based on members in compression. For the second elevation leg

members, von Mises criteria follow the same trend, dominated by members in

tension, with a minimum ߚ = 5.74. The same trend is followed by ISO (6.05), EN

(5.85) and AISC/ANSI (5.47), while API LRFD members are characterized by

their members in axial compression (6.62). For the members of the third

elevation, all standards (8.15, 8.38, 8.65 respectively) and the von Mises limit

state (8.15), are dominated by their members in axial compression, apart from

ISO (7.17) where axial compression prevails. Finally, for the fourth elevation

both the von Mises limit states (10.66) and the standards minimum limit states

(API LRFD: 11.65, ISO: 11.05, EN: 11.54 AISC/ANSI: 10.90) are determined by

their members in axial compression.
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For the horizontal brace members of the first elevation, all standards agree in

great values of ;ߚ those values imply zero value of probability of failure and

therefore great numerical differences are insignificant. From the six members of

the horizontal bracing of the second elevation, the most sever effect is for all

cases derived by the first member located vertical to the flow (API LRFD: 6.50,

ISO: 6.43, EN: 7.78, AISC/ANSI: 7.54, v.Mises: 9.33) suffering from axial

tension. X braces show great values of ߚ due to the lower acting stresses. The

members of the third elevation are dominated by the ones subjected to axial

compression and bending while members of the fourth elevation are dominated

by the ones subjected to axial tension and bending (el3: API LRFD: 6.14, ISO:

6.02, EN: 6.81, AISC/ANSI:6.06, v.Mises: 6.94 / el4: API LRFD: 4.29, ISO: 4.28,

EN: 4.18, AISC/ANSI: 5.42, v.Mises: 5.76). X bracing members on the fourth

elevation, affected by the topside loads, have a lower value or ߚ based on EN

(5.89) while other values derived are (API LRFD: 6.63, ISO: 9.62,

AISC/ANSI:8.41, v.Mises: 8.37).

Vertical X brace members present lower values of reliability index, illustrating

greater differences between standards. For the members of the first elevation,

AISC/ANSI provides the most conservative values of ,ߚ apart from the case of

the set of members located vertical to the flow where ISO provides more

conservative values. All values derived, agree that the most critical members

are those subjected in axial compression and bending (API LRFD: 6.10, ISO:

2.20, EN: 2.53, AISC/ANSI:2.06, v.Mises: 5.55). The same pattern is followed for

the second and third elevations where ISO and AISC/ANSI provide the most

conservative results based on the members parallel to the flow, subjected in

axial compression and bending (el3: API LRFD: 6.00, ISO: 2.24, EN: 2.59,

AISC/ANSI:2.26, v.Mises: 5.25 / el4: API LRFD: 6.29, ISO: 2.65, EN: 2.89,

AISC/ANSI: 2.64, v.Mises: 5.33). Finally, the most critical members of the fourth

elevations, are the second vertical to the flow (API LRFD: 3.02, ISO: 2.83, EN:

4.14, AISC/ANSI:3.82, v.Mises: 3.79).

The above analysis concludes that a global characterization between the most

or least conservative standard cannot be made since different standards are
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more conservative in different classes of members than others. The general

comment that can be concluded from the values obtained is that the ISO and

AISC/ANSI standards provide more conservative results than API LRFD and

EN respectively. As far as the von Mises criterion is concerned, in most of the

cases, the values derived lay between minimum and maximum of the values

derived by design standards, therefore providing a good initial estimate of .ߚ

The benefit of the use of this limit state is that it can account universally for

different actions and combinations of actions of members, allowing simulation of

the response with any non specialized software.

From the application of the derived methodology in the analysis above, both

considering the global von Mises criterion, as well as the different limit states

proposed by each standard, have proven the efficiency of this method to rapidly

calculate reliability in structural design. Further, it can be concluded that the

implied reliability of different standards can be achieved by procedures that do

not necessarily follow their provisions. The procedure that has been derived can

be also applied for the evaluation of the minimum levels of reliability that is

achieved, by assessing the reliability of structures that are designed in a way

that the utilization factor is lower, but as close as possible to unity. This

comparison which could benchmark the performance of design standards,

would verify that certain standards’ provisions are followed, once the provisions

of a different less conservative standards are met.

vMises API ISO EN AISC vMises API ISO EN AISC

b101 4.79 5.97 5.41 5.44 4.64 b301 8.71 9.56 7.17 10.30 9.78

b102 5.22 4.76 4.71 5.16 4.25 b302 8.15 7.75 7.75 8.38 8.65

b103 5.23 4.76 4.71 5.17 4.26 b303 8.14 7.76 7.75 8.38 8.65

b104 4.79 5.97 5.41 5.45 4.64 b304 8.72 9.56 7.17 10.29 9.79

b201 5.74 7.06 6.05 5.85 7.62 b401 14.73 11.74 15.00 15.11 13.14

b202 7.46 6.62 6.56 7.19 5.47 b402 10.66 11.65 11.05 11.55 10.90

b203 7.45 6.62 6.56 7.19 5.47 b403 10.66 11.65 11.05 11.54 10.92

b204 5.74 7.04 6.05 5.86 7.63 b404 14.72 11.73 14.98 15.10 13.14

Table 59: Minimum Reliability indices for Leg Members
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vMises API ISO EN AISC vMises API ISO EN AISC

b111 54.83 59.43 63.25 68.20 61.99 b311 10.46 11.70 11.48 13.67 10.19

b112 54.83 59.43 63.25 68.20 61.99 b312 6.96 8.75 7.57 7.00 8.90

b113 54.83 59.43 63.25 68.20 61.99 b313 10.48 11.69 11.48 13.68 10.26

b114 54.83 59.43 63.25 68.20 61.99 b314 6.94 6.14 6.02 6.81 6.06

b115 35.01 38.75 37.50 41.17 37.69 b315 20.86 35.53 19.59 33.86 15.39

b116 35.01 38.75 37.50 41.17 37.69 b316 20.87 35.58 19.59 33.86 15.38

b211 12.34 13.84 13.77 20.19 10.86 b411 8.98 10.19 10.31 10.01 9.01

b212 9.70 13.24 9.90 13.87 10.58 b412 6.00 7.00 6.75 7.65 6.30

b213 12.33 13.84 13.80 20.19 10.87 b413 8.98 10.18 10.30 10.01 8.99

b214 9.33 6.50 6.43 7.78 7.54 b414 5.76 4.29 4.28 4.18 5.42

b215 18.72 53.05 20.16 24.63 15.47 b415 8.36 6.64 9.63 5.89 8.40

b216 18.71 53.45 20.17 24.65 15.49 b416 8.37 6.63 9.62 5.89 8.41

Table 60: Minimum Reliability indices for Horizontal Brace Members

vMises API ISO EN AISC vMises API ISO EN AISC

b151 5.70 8.26 5.67 7.00 4.90 b351 5.30 7.10 5.41 6.99 4.85

b152 5.54 6.11 2.20 2.53 2.07 b352 5.33 6.29 2.65 2.89 2.64

b153 6.93 8.61 5.10 5.11 4.40 b353 6.08 7.33 6.36 6.41 5.80

b154 6.94 8.62 5.09 5.11 4.40 b354 6.09 7.33 6.35 6.41 5.80

b155 5.55 6.10 2.20 2.53 2.06 b355 5.33 6.30 2.65 2.89 2.64

b156 5.70 8.26 5.66 7.01 4.90 b356 5.31 7.11 5.40 6.99 4.85

b157 6.76 7.41 6.08 8.37 7.52 b357 6.16 9.25 4.71 7.35 6.27

b158 6.74 7.40 6.08 8.37 7.52 b358 6.16 9.25 4.71 7.35 6.28

b251 5.27 7.01 5.43 6.72 4.79 b451 6.37 6.68 6.51 8.11 7.43

b252 5.25 6.00 2.24 2.58 2.26 b452 6.33 4.56 3.87 3.82 3.50

b253 7.51 8.99 6.76 6.94 7.40 b453 3.79 3.03 2.82 4.14 3.82

b254 7.51 8.99 6.76 6.94 7.39 b454 3.79 3.02 2.83 4.14 3.82

b255 5.26 6.00 2.24 2.59 2.26 b455 6.34 4.56 3.87 3.82 3.50

b256 5.27 7.01 5.44 6.72 4.79 b456 6.37 6.67 6.52 8.10 7.43

b257 7.81 12.35 6.31 9.20 8.47 b457 3.72 4.10 4.38 4.13 3.84

b258 7.79 12.35 6.32 9.20 8.47 b458 3.72 4.10 4.39 4.13 3.84

Table 61: Minimum Reliability indices for Vertical Brace Members

API ISO EN AISC

Tension 0.95 1/1.05 1/1.25 0.9/0.75

Compression 0.85 1/1.18 1 0.9

Bending 0.95 1/1.05 1 0.9

Shear 0.95 1/1.05 1 0.9

Torsion 0.95 1/1.05 1 0.9

Hoop Buckling 0.8 1/1.25

Table 62: Reduction factors of different standards
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6.7 Summary

This Chapter has performed a comparison of the ultimate strength reliability

performance of structural members, based on relevant procedures proposed by

design standards. Based on a consistent methodology, the minimum values of

reliability indices have been derived, giving the opportunity for direct

comparison of the obtained results. This study has shown that, although design

standards meet minimum levels of reliability, they do not perform in a uniform

way, in order to classify one of the standards as the more or least conservative.

Further, the von Mises criterion that has been derived earlier, seems to provide

an accurate estimate of ,ߚ accounting for multiple actions on members.
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7 CONCLUSIONS AND RECCOMENTATIONS

This final chapter will summarize what has been presented in the previous

chapters of this Thesis and will identify the contribution of the research that has

been carried out. The main aim of this PhD has been to study the design of

offshore structures through a stochastic perspective and provide a generic

methodology that will efficiently assess reliability levels of structural members,

allowing combination and integration with available design methods and

numerical tools/procedures. Application of the methodology on a hypothetical

jacket structure, deployed in a theoretical site, has provided useful results and

conclusions. Finally, some recommendations for future work will illustrate

aspects of potential improvements and extensions of the method established,

as well as different applications that this method might be related to.

7.1 Summary

The First Chapter of this Thesis has presented the background of structural

reliability and has set the context of structural safety. Through an initial

presentation of the evolution of design methods, development of design

standards was presented. With a view to performance-based-design, which is

freely followed by modern design standards, target reliability requirements are

introduced based on commonly accepted sources, in order to set the threshold

which the reliability performance of structures should aim to meet.

The Second Chapter has presented a review of reliability assessment of steel

and offshore structures, providing fundamental formulations of reliability

calculation and analyzing important decisions for comprehensive reliability

analysis. Selection of the appropriate type of response analysis and integration

from component to system reliability has been discussed. Finally, an initial

review of the Stochastic Methods for reliability assessment will provide the

background for the development of the methodology that will be applied later in

this Thesis.



270

The Third Chapter introduced the numerical procedures for the computation of

structural reliability. First and Second Order Reliability Methods (FORM/SORM)

as well as Simulation Methods are presented, setting the background of the

codes that have been developed for the scope of this Thesis, and are followed

by the established tools that have been used in order to verify the different

steps of the methodology that is proposed. A review of the development of the

Stochastic Response Surface Method (SRSM) and the methodology that has

been applied in the reference application has been analytically discussed.

Regression techniques have been included as fundamentals of the regression

analysis that has been applied in the SRSM, and a variation of the conventional

least square method (LSM) has been proposed for more efficient regression

and prevention form ill conditioned systems of equations. Verification of the

codes for the FEA simulation, the multivariate polynomial regression, and the

FORM/SORM estimation routine that have been developed, based on

commercially available software, have shown that the codes written provide

sufficiently accurate results and can be later used in the analysis. Validation of

the SRSM method, based on results obtained by direct simulations for a

reference structure, have given proof that the SRSM methodology provides

accurate results, and can be confidently used for the later application chapters.

In the Fourth Chapter, the environmental loading of offshore structures has

been presented, considering modelling of wave loads according to different

wave theories and a procedure for the correlation between significant wave

height and peak spectral period based on the joint distribution of statistical

distributions. Modelling of wind and current loading have also been covered.

Further, modelling of capacity of offshore structures has been included, through

an extensive review of literature data for material properties and methodologies

for the consideration of capacity deterioration due to corrosion.

The Fifth chapter presents the assessment of the reliability of structural tubular

members of a typical offshore structure based on ultimate strength under

stochastically represented loads and capacity properties. Analytical derivation of

limit states based on yield failure criteria has been presented for ductile

materials providing the limit state according to which reliability of the structure
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has been evaluated. An application of the procedure for the correlation between

the significant wave height and peak spectral period for the calculation of the

joint probability distribution function has been also presented. A sensitivity

analysis of the main variables and different models of corrosion has been

included. Finally, integration from component to system reliability, based on the

reliability performance of the structural members and the failure mechanism of

the structure, has been discussed.

Chapter Six, introduces the design requirements of the most widely used

standards for the design of offshore structures API RP 2A [1], [2], and ISO

19902 [3]. Further, ANSI/AISC 360-05 [4], and EUROCODE 3 [5], have been

included as generic codes of the design of steel structures with strong

probabilistic background. Based on their provisions, limit states were formulated

based on different actions or combinations of actions that members are

subjected to. For the same reference case structure, the minimum reliability

index of each member according to those standards was calculated, drawing

conclusions from the results obtained.

7.2 Contribution of this PhD

Design of offshore and steel structures is currently based on provisions of

relevant design standards. This practice can achieve compliance to minimum

levels of reliability; however their generalized character imposes a degree of

conservatism, often overestimating members and structures. Modern standards

derive safety factors based on probabilistic and statistical procedures, therefore

having a reliability based background, but express them deterministically

restricting potential of optimization. This yields for a procedure to be developed

allowing validation of partial factors based on the fundamental requirement of

target reliability. Verification and calibration of design standards is mainly based

on simplistic models considering fewer variables, or even statistical

approximations of resistance and loading performance for a specific set of

loads, representing them with distributions that can explicitly be transformed to

values of reliability index. This method, although significantly easier to
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implement, lacks flexibility and, especially moving towards limit state formats of

standards, should be expressed with a stronger mathematical formulation.

The contribution of this PhD research can be summarized in the following:

 The methodology that is proposed allows reliability assessment of

structural components through a sequence of individual steps that permit

calculation of reliability, based on easy to program procedures. After

execution of a finite series of simulations, the response of each member

can be identified and a quadratic polynomial response surface based on

the values of the limit states that are examined through data regression

analysis can be formulated. Later, a separate routine can account for the

estimation of the reliability index based on one of the available numerical

techniques. Due to the linear nature of the response surfaces of the

problem investigated, deterministic methods are proven to calculate

adequately values of reliability indices. This methodology was proven to

be efficient, allowing accurate and rapid calculation of reliability.

Those discrete steps, which may employ different tools and procedures

for each task, can handle several problems that are difficult to be

modelled in one unified simulation code. For the problem of the design of

offshore structures that has been studied, reliability analysis took place

using the specialized software DNV SESAM for a confident

representation of the response of structural members through

appropriate modelling of the environmental loads acting on the structure.

Following this methodology, specialized commercial tools for different

applications may be employed for the probabilistic assessment of several

engineering problems.

 Due to combined actions on structural members, different limit states

should be examined in order to derive the minimum reliability index of a

structural member. Analytical derivation of limit states based on widely

accepted failure criteria can account for combinations of actions on a

structural member incorporating multiple limit states into one. This

facilitates representation of the response of structural members since
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principal stresses or even equivalent von Mises stresses are easy to be

obtained through available commercial tools. Application of such limits

states in this analysis has provided results that can be compared with the

ones derived from analytical limit states following guidelines of design

standards, suggesting a simplified methodology for the consideration of

limit states. Incorporation of a more analytical or stochastic

representation of members’ strength under different actions (tension,

compression, bending, etc.) or employment of resistance factors for the

correction of the stochastic distribution of yield strength could provide

even more accurate results for the calculation of reliability.

 Based on the von Mises limit state that has been analytically derived, a

reference structure has been introduced and based on stochastic

representation of the basic design variables (wave, wind, current, yield

strength), the reliability indices of each member has been calculated for

two different angles of load application (0 and 45 degrees) in order to

obtain the minimum value. Further, a buckling limit state has been

introduced and applied for different values of buckling coefficient. For the

base case of the 0 degrees angle of approach, and based on the

consistent methodology that has been developed, a sensitivity analysis

was executed benchmarking the effect of variation of loads magnitude on

the structure. This analysis has illustrated that for the load cases and

materials studied, the wave load and material yield strength are the most

important factors in the formulation of the reliability index of the structure,

while the current and wind loads play an insignificant role. The effect of

accurate modelling of statistical distributions was also examined and

found to affect the derived results. A separate analysis has shown that

roughness of the surface of members has a considerable effect on the

reliability index of the structure, contributing to the increase of the effect

of environmental loads on members as the structure ages. Different

wave theories have also been examined illustrating that appropriate

selection of the most suitable theory can provide different results. Finally,

capacity deterioration of structural members has been studied for
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different corrosion models and the corresponding variation of the

reliability index has been illustrated.

 From the procedure that has been established, different limit states were

formulated according to different provisions of widely used design

standards for different potential actions and combinations of actions on

members. API RP 2A, ISO 19902, ANSI/AISC 360-05 and EUROCODE

3 have been studied. For the base case of the reference structure that

has been considered, reliability indices for all different limit states

proposed in each standards’ have been calculated, obtaining the

minimum value of reliability index for each member and each standard.

This has allowed comparison of standards performance, illustrating that

ISO and AISC/ANSI provide more conservative results than API LRFD

and EN. A different conclusion of this study illustrates that although

standards meet relative levels of reliability, they do not perform uniformly

among different classes of members.

 This Thesis illustrates a different approach on the use of design

standards. Towards performance-based-design, where values of target

reliability suggest the main design constraint, this methodology can use

fundamental expressions of standards that incorporate scientific

evidence as well as previous experience information for the calculation of

reliability. Therefore, instead of designing for compliance to maximum

permitted strength requirements, design could aim to achieve additionally

minimum levels of reliability. This approach will provide a better

understanding of the actual structural performance. Further, as it can be

derived from the results of the analysis, transferring from a deterministic

analysis that considers maximum strength to a probabilistic-stochastic

that characterizes members’ performance through reliability indices,

different members are found to be the critical ones. Figure 70, Figure 71

and Table 63, present the stress distribution and the reliability indices of

the reference structure based on the von Mises limit state function,

illustrating different sequence of critical members.
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Figure 70: Stress distribution

Figure 71: Reliability distribution
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ࢼ vMises ࢼ vMises

(MPa) (MPa)

1 b457 3.72 b458 230278 11 b251 5.27 b414 132287

2 b458 3.72 b457 230277 12 b256 5.27 b356 129416

3 b453 3.79 b453 219414 13 b351 5.30 b351 129415

4 b454 3.79 b454 219414 14 b356 5.31 b251 128804

5 b101 4.79 b102 140430 15 b352 5.33 b256 128804

6 b104 4.79 b103 140430 16 b355 5.33 b412 125771

7 b102 5.22 b252 136741 17 b152 5.54 b357 122132

8 b103 5.23 b255 136741 18 b155 5.55 b358 122132

9 b252 5.25 b352 136389 19 b151 5.70 b152 118106

10 b255 5.26 b355 136389 20 b156 5.70 b155 118106

Table 63: Critical Members

From the above results, excluding the top elevation braces where

extreme values are obtained due to the topside loads, the next elements

in the list follow a different pattern when comparing reliability indices

rather than maximum stresses. This fact implies that throughout the

service life of the structure, the members that will require maintenance

are the ones with lower levels of reliability rather than those that suffer

from greater stresses.

 From the results that have been derived, both using the von Mises limit

state as well as the analytical limit states dictated by the provisions of

design standards, are found to follow a similar trend. A different

conclusion that can be drawn is that the implied reliability of each

standard can be met by procedures that do not necessarily follow their

provisions. The level of minimum reliability that standards aim to achieve

can be estimated using the method described and has been followed in

Chapter 6, by assessing the reliability of structures that are designed in a

way that the utilization factor is lower, but as close as possible to unity.

This comparison, which could benchmark the performance of design

standards, would verify that certain standards’ provisions are followed,

once the provisions of a different but less conservative standard are met.
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7.3 Future recommendations:

This study has derived some useful conclusions that might initiate further work

on several aspects. Potential topics of interest might be found among the

following:

 Although deterministic methods were found to provide efficient

calculation for the type of limit state functions that were considered in this

application, simulation methods can be also included, allowing handling

of more complicated types of statistical distributions where the

cumulative distribution functions cannot be directly derived as well as

consideration of more complicated limit state functions, including highly

correlated stochastic variables. Subset simulation is a method that could

provide adequate approximation of the reliability index of members

having relatively low computational requirements.

 For the reliability assessment that took place, deterministic values of the

reduction factors of the different actions that members are subjected to

have been used. Those values account for different sources of

uncertainty due to geometrical and structural imperfections, residual

stresses etc. Application of those values on the representative value of

yield strength, in order to derive the design value of resistance of each

action, which is stochastically modelled, transforms the distribution

properties of strength for each different action. Following a fully

probabilistic approach, different statistical distributions should be

considered for different actions adequately describing strength for each

action, as is described in relevant clauses regarding “Design assisted by

testing”.

 Based on the derivation of the limit state functions that were used in this

Thesis, relevant limit states can be derived for brittle materials,

corresponding to appropriate fracture criteria. This practice will allow

assessment of various problems including the continuously evolving

application of composite materials. The special performance of those
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materials that combine brittle and ductile behaviour before failure can be

adequately assessed in the absence of specific design rules.

 Incorporation of the methodology in one unified code for a specific

application (eg. steel structures) will allow automated iterations of

required simulations for the reliability assessment of members. This will

allow consideration of numerous stochastic variables providing even

more accurate results. Further, combination of such code in a multi-

disciplinary optimization routine (MDO), can automate a procedure that

will lead to a robust design of an optimized structure compromising, but

achieving, minimum acceptable levels of target reliability for the lowest

possible weight. Although the mathematic skills for such an endeavour

are high, the tools and procedures required are already available

constituting incorporation in an iterative design routine feasible. Figure

72, presents a block diagram of the reliability based design approach

concept in structural design. This is an approach that provides significant

advantages for the design of novel and special structures or the

verification of structures in new design environments where data from

previous experience are not available.

 Combining a methodology that allows efficient calculation of reliability of

structural members with techniques that provide real-time data of a

structure (eg. thickness deterioration, surface condition, etc), its reliability

evaluation can be updated for any given time instance. This practice

would provide a more accurate understanding of the actual performance

of the structure, allowing modification of its maintenance schedule,

extending or reducing the intervals between interventions as indicated,

and restoring its safety levels.

 Finally, design standards focus their analysis in a component level,

implying that the minimum system reliability will equal that of the

minimum value of the reliability of the sum of the components. This fact

restricts application of techniques of structural design such as structural

redundancy through alternative load paths. In such cases, the acceptable
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reliability requirements in a component level may be considered lower

than in the case where the whole structure is considered failed, following

failure of the first member. Therefore, methodical investigation of

structural reliability in a system level can show potential benefits, as it

may prove to have a better reliability performance for the same total cost

of the structure.

CONCEPTUAL DESIGN

DEFINITION OF STRUCTURAL
PROPERTIES

DEFINE TARGET RELIABILITY
AND FAILURE MODES

DEFINITION OF LOADS PROCESSING OF DATA

MODELING OF STRUCTURE

RESISTANCE REQUIREMENTS

RESULTS EVALUATION

DESIGN VERIFICATION

DESIGN CERTIFICATION

DESIGN OPTIMISATION

Figure 72: Reliability Based Optimization
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APPENDICES

APPENDIX A

In this Appendix, complementary to what has been presented in Chapter Four,

the different wave theories will be briefly presented in a way that program

modelling for combination with FEA is feasible.

A.1. Linear Wave Theory

This theory, also known as amplitude, sinusoidal or Airy wave theory is based

on the assumption that the wave height is much smaller than both the wave

length and the water depth. Considering the boundary conditions set, the free

surface boundary conditions can be linearized by neglecting the wave height

term beyond the first order and are satisfied at the mean water level, rather than

at the oscillating free surface. Considering small amplitude waves, the free

surface boundary conditions are reduced to:

ߔ߲

ݖ߲
−
ߟ߲

ݐ߲
= 0 =ݖݐܽ 0

ߔ߲

ݐ߲
+ ݃ ∙ =ߟ 0 =ݖݐܽ 0

(A.1-1)

The free surface profile is given by the following equation:

=ߟ −
1

݃
∙ ൬
ߔ߲

ݐ߲
൰ ݐܽ =ݖ 0 (A.1-2)

Combining the two boundary conditions, eliminating ,ߟ gives:

߲ଶߔ

ଶݐ߲
+ ݃ ∙

ߔ߲

ݖ߲
= 0 =ݖݐܽ 0 (A.1-3)

Assuming the velocity potential ߔ to be described with the following formula and

substituting to the basic Laplace equation:

ߔ = −ݔ)ߔ(ݖ)߄ (ݐܿ (A.1-4)
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߲ଶܼ

ଶݖ߲
− ݇ଶܼ = 0

߲ଶߔ

ଶݔ߲
− ݇ଶߔ = 0

Where: ݇ଶ is a constant suitably chosen. Integrating the above differential

equations, the general solutions of ߄ and ߔ are:

ܼ = ଵܣ ∙ cosh( (ݖ݇ + ଶܣ ∙ sinh( (ݖ݇ (A.1-5)

ߔ = ଷܣ ∙ cos[ −ݔ݇) [(ݐܿ + ସܣ ∙ sin[ −ݔ݇) [(ݐܿ (A.1-6)

Where: Α1, Α2, Α3 and Α4 are constants to be determined by the boundary

conditions, therefore:

ଶܣ = ଵܣ = tanh(݇݀ )

=ݐ 0 → =ݔ 0 → ଷܣ = 0
(A.1-7)

Rewriting the above equations, the velocity potential maybe written in the form:

ߔ = ܣ ∙
cosh[ +ݖ݇) ݀)]

sinh(݇݀ )
∙ sin[ −ݔ݇) [(ݐܿ (A.1-8)

Where: ܣ = ଵܣ ∙ .ସܣ ܣ can be derived as a function of ܪ , ,(ܶ,ܮ݇) and (ܶ,ܮܿ) as

follows in order to derive :ସܣ

ܣ =
ு

ଶ
, ସܣ =

ு

ଶ୲ୟ୬୦(ௗ) (A.1-9)

The velocity potential may finally be derived as:

ߔ =
ܪ݃ ∙ cosh( (ݏ݇

2߱ ∙ sinh(݇݀ )
∙ sinߠ =

ܪߨ ∙ cosh( (ݏ݇

݇ܶ ∙ sinh(݇݀ )
∙ sinߠ

(Error!

Reference

source not

found.Error!

Reference

source not

found.-10)

Where: =ݏ +ݖ ݀ and ߠ = ݇ ∙ −ݔ) (ݐܿ = −ݔ݇ isݐ߱ the wave phase angle.
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Having obtained a solution for ߔ , other variables of interest might be calculated

based on formulations presented in Table 64 [194] .

Shallow Water Deep Water

Range of validity ݇݀ <
గ

ଵ
,
ௗ


<

ଵ

ଶ
,

ௗ

்మ
< 0.0025 ݇݀ < ,ߨ

ௗ


<

ଵ

ଶ
,

ௗ

்మ
< 0.08

Velocity potential ߮ =
గ௴

మఁௗ
∙ =ߠ݊ݏ݅

௴

ଶఠ
∙ ߠ݊ݏ݅ ߮ =

߅ߨ

ߒ݇
∙ ݁௭ ∙ ߠ݊ݏ݅ =

߅݃

2߱
∙ ݁௭ ∙ ߠ݊ݏ݅

Dispersion relation ଶܿ =
߱ଶ

ଶ݇
݃݀ ଶܿ = ܿ

ଶ ∙
߱ଶ

ଶ݇
=
݃

݇

Wave length =ܮ ܶඥ݃݀ =ܮ ܮ = ݃ܶଶ ⁄ߨ2

Surface elevation =ߟ
߅

2
∙ ߠݏܿ =ߟ

߅

2
∙ ߠݏܿ

Horizontal particle
displacement =ߦ −

߅

2݇݀
∙ ߠ݊ݏ݅ =ߦ −

߅

2݇݀
∙ ݁௭ ∙ ߠ݊ݏ݅

Vertical particle
displacement =ߞ

߅

2
∙ ቀ1 +

ݖ

݀
ቁ∙ ߠݏܿ =ߞ

߅

2
∙ ݁௭ ∙ ߠݏܿ

Horizontal particle velocity ݑ =
߅ߨ

ܶ(݇݀ )
∙ ߠݏܿ ݑ =

߅ߨ

ܶ
∙ ݁௭ ∙ ߠݏܿ

Vertical particle velocity ݓ =
߅ߨ

ܶ
∙ ቀ1 +

ݖ

݀
ቁ∙ ߠ݊ݏ݅ ݓ =

߅ߨ

ܶ
∙ ݁௭ ∙ ߠ݊ݏ݅

Horizontal particle
acceleration

ݑ߲

ݐ߲
=

߅ଶߨ2

ܶଶ(݇݀ )
∙ ߠ݊ݏ݅

ݑ߲

ݐ߲
=

߅ଶߨ2

ܶଶ
∙ ݁௭ ∙ ߠ݊ݏ݅

Vertical particle
acceleration

ݓ߲

ݐ߲
= −

߅ଶߨ2

ܶଶ
∙ ቀ1 +

ݖ

݀
ቁ∙ ߠݏܿ

ݓ߲

ݐ߲
= −

߅ଶߨ2

ܶଶ
∙ ݁௭ ∙ ߠݏܿ

Pressure = +ݖ݃ߩ−
1

2
ܪ݃ߩ ∙ ߠݏܿ = +ݖ݃ߩ−

1

2
௭݁ܪ݃ߩ ∙ ߠݏܿ

Group velocity ܥீ = ܥ ܥீ = 1 2⁄ ܥ

Average energy density ܧ = 1 8⁄ ଶܪ݃ߩ ܧ = 1 8⁄ ଶܪ݃ߩ

Energy flux ܲ = ܧ ܲ = 1 2⁄ ܧ

Radiation stress ܵ = 3 2⁄ ,ܧ ܵ = ܵ = 0,

ܵ = 1 2⁄ ܧ
ܵ = 1 2⁄ ,ܧ ܵ = ܵ = 0

ܵ = 0

Table 64: Shallow and deep water approximation to linear wave theory

[194]
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A.2. Stokes Finite Amplitude Wave Theory

The linear wave theory, as it was presented in the previous section, can provide

an initial, rather simplistic approximation of the water particles motion due to

wave loading. For a more accurate and complete solution, the perturbation

technique might be used [311]. Stokes, has proposed an extension of the linear

wave theory for waves of finite height when the following conditions are met:

ு

ௗ
≪ (݇݀ )ଶ for ݇݀ < 1, and

ு


≪ 1 (A.2-1)

The velocity potential maybe written as:

ߔ =  ߝ
ஶ

ି

ߔ (A.2-2)

Where: ࢿ is the perturbation parameter, defined in terms of wave slope (H/L) as

ε = kH/2, and ࢶ  is the nth order solution for ߔ . Substituting the above

expression in the basic Laplace equation and considering the boundary

conditions at the seabed and separation of terms of different polynomial orders,

the following equations may be derived:

߲ଶߔ
ଶݔ߲

+
߲ଶߔ
ଶݖ߲

= 0 ݎ݂ ݊ = 1,2, …

ߔ߲
ݖ߲

= 0 =ݖݐܽ −݀ ݊ݎ݂ = 1,2, …

(A.2-3)

From the above equations set, the difficulty of defining the free surface

boundary conditions due to nonlinear term consisting of product exists, in order

to apply them to the unknown surface elevation rather than mean waterline. In

[312], an expansion of the Stokes wave theory to the fifth order has raised a

widely used method in engineering practice. The velocity potential ߔ and the

free surface elevation ,ߟ are written in a series form of fifth order as:
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ߔ =
ܿ

݇
 ߔ

ᇱ

ହ

ି

cosh(݊ (ݏ݇ sin(݊ߠ) (A.2-4)

=ߟ
1

݇
 ߟ

ᇱ

ହ

ି

cos(݊ߠ) (A.2-5

In the above formulas, the coefficients ߔ
′ and ߟ

′ are expressed as functions of

ߣ and a series of coefficients Α and Β, as are presented in Table 65, Table 66 

and Table 67. The wave celerity is now:

ܿଶ = ܥ
ଶ ∙ (1 + ଶߣ ∙ ଵܥ + ସߣ ∙ (ଶܥ (A.2-6)

Where: ܥ is the celerity given by linear wave theory for the same depth and

wave number:

ܥ
ଶ = (݃ ݇⁄ ) ∙ ݐܽ ℎ݊ ݇݀ (A.2-7)

Considering appropriate values for the coefficients ܤ and ,ܥ parameters ߣ and

݇ should be initially defined solving the system:

1

݇݀
∙ +ߣ] ߣଷଷܤ

ଷ + ଷହܤ) + (ହହܤ ∙ [ହߣ =
ܪ

2݀

݇݀ ∙ tanh(݇݀ ) ∙ [1 + ߣଵܥ
ଶ + ߣଶܥ

ସ] = ଶ࣊4 ∙
݀

݃ܶଶ

(A.2-8)

The final values of ࣅ and ݇ are determined from above equation through an

iterative procedure.

߮ଵ
ᇱ = ଵଵߣ + ଵଷଷߣ + ଵହହߣ ଵߟ

ᇱ = ߣ

߮ଶ
ᇱ = ଶଶଶߣ + ଶସସߣ ଶߟ

ᇱ = ଶଶ߀ଶߣ + ଶସ߀ସߣ

߮ଷ
ᇱ = ଷଷଷߣ + ଷହହߣ ଷߟ

ᇱ = ଷଷ߀ଷߣ + ଷହ߀ହߣ

߮ସ
ᇱ = ସସସߣ ସߟ

ᇱ = ସସ߀ସߣ

߮ହ
ᇱ = ହହହߣ ହߟ

ᇱ = ହହ߀ହߣ

Table 65: Φn' and ηn' the coefficients [194]
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Velocity potential, ߮ k߮

c
=  ߮୬

ᇱ

ହ

୬ୀଵ

∙ cosh(nks) ∙ sin(nߠ)

Wave length, ܿ
ଶܿ

݃݀
=

tanh(݇݀ )

݇݀
∙ [1 + ଵܥଶߣ + [ଶܥସߣ

Surface elevation, ߟ =ߟ݇  ୬ߟ
ᇱ

ହ

୬ୀଵ

∙ cos(nߠ)

Horizontal particle velocity, ݑ ݑ

ܿ
=  n߮୬

ᇱ

ହ

୬ୀଵ

∙ cosh(nks) ∙ cos(nߠ)

Vertical particle velocity, ݓ ݓ

ܿ
=  n߮୬

ᇱ

ହ

୬ୀଵ

∙ sinh(nks) ∙ sin(nߠ)

Horizontal particle acceleration,
ݑ߲ ⁄ݐ߲

ݑ߲ ⁄ݐ߲

߱ܿ
=  nଶ߮୬

ᇱ

ହ

୬ୀଵ

∙ cosh(nks) ∙ sin(nߠ)

Vertical particle acceleration,
ݑ߲ ⁄ݐ߲

ݑ߲ ⁄ݐ߲

߱ܿ
= −  nଶ߮୬

ᇱ

ହ

୬ୀଵ

∙ sinh(nks) ∙ cos(nߠ)

Temporal derivative of ߮ ߲߮ ⁄ݐ߲
ଶܿ = −  ݊߮୬

ᇱ

ହ

୬ୀଵ

∙ cosh(nks) ∙ cos(nߠ)

Pressure,  

݀݃ߩ
= 1 −

ݏ

݀
−

ଶܿ

݃݀
ቊ
߲߮ ⁄ݐ߲

ଶܿ +
1

2
ቀ
ݑ

ܿ
ቁ
ଶ

+ ቀ
ݓ

ܿ
ቁ
ଶ

൨ቋ

Table 66: Stokes fifth-order wave theory [194]
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ଵଵܣ = 1 ܵ⁄

ଵଷܣ =
ଶܥ5)ܥ− + 1)

8ܵଶ

ଵହܣ =
ଵܥ1184)− − ଼ܥ1440 − ܥ1992 + ସܥ2641 − ଶܥ249 + 18)

1536 ଵܵଵ

ଶଶܣ = 3 8ܵସ⁄

ଶସܣ =
଼ܥ192) − ܥ424 − ସܥ312 + ଶܥ480 − 17)

768 ଵܵ

ଷଷܣ =
(13 − (ଶܥ4

64ܵ

ଷହܣ =
ଵଶܥ512) − ଵܥ4224 − ଼ܥ6800 − ܥ12,808 + ସܥ16,704 − ଶܥ3154 + 107)

4096 ଵܵଷ ∙ ଶܥ6) − 1)

ସସܣ =
ܥ80) − ସܥ816 + ଶܥ1338 − 197)

1536 ଵܵ ∙ ଶܥ6) − 1)

ହହܣ =
ଵܥ2880)− − ଼ܥ72,480 + ܥ324,000 − ସܥ432,000 + ଶܥ163,470 − 16,245)

61,440 ଵܵଵ ∙ ଶܥ6) − 1) ∙ ସܥ8) − ଶܥ11 + 3)

ଶଶܤ = ܥ ∙
ଶܥ2) + 1)

4ܵଷ

ଶଶܤ = ܥ ∙
଼ܥ272) − ܥ504 − ସܥ192 + ଶܥ322 + 21)

384ܵଽ

ଷଷܤ =
3 ∙ ܥ8) + 1)

64ܵ

ଷହܤ =
ଵସܥ88,128) − ଵଶܥ208,224 + ଵܥ70,848 + ଼ܥ54,000 − ܥ21,816 + ସܥ6264 − ଶܥ54 − 81)

12,288 ଵܵଶ ∙ ଶܥ6) − 1)

ସସܤ =
ܥ ∙ ଵܥ768) − ଼ܥ448 − ܥ48 + ସܥ48 + ଶܥ106 − 21)

384ܵଽ ∙ ଶܥ6) − 1)

ହହܤ =
ଵܥ192,000) − ଵସܥ262,720 + ଵଶܥ83,680 + ଵܥ20,160 − (଼ܥ7280

12,288 ଵܵ ∙ ଶܥ6) − 1) ∙ ସܥ8) − ଶܥ11 + 3)

+
ܥ7160) − ସܥ1800 − ଶܥ1050 + 225)

12,288 ଵܵ ∙ ଶܥ6) − 1) ∙ ସܥ8) − ଶܥ11 + 3)

ଵܥ =
ସܥ8 − ଶܥ8 + 9

8ܵସ

ଶܥ =
ଵଶܥ3840) − ଵܥ4096 + ଼ܥ2592 − ܥ1008 + ସܥ5944 − ଶܥ1830 + 147)

512 ଵܵ ∙ ଶܥ6) − 1)

ଷܥ = − 1 4 ⁄ܥܵ

ସܥ =
଼ܥ12) + ܥ36 − ସܥ162 + ଶܥ141 − 27)

ଽܵܥ192

Table 67: The coefficients for Stokes fifth-order wave theory [311]
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A.3. Stream Function Wave Theory

A different method for the representation of non linear waves is that of the

steam function wave theory [313]. Two different types of this theory distinguish:

 Symmetric or Regular Stream Function Theory that describes periodic

waves of symmetric, permanent form with prescribed period, height and

still water depth.

 Irregular Stream Function Theory that represents a stream function and

associated kinematics of a wave with a predetermined profile. This

theory is suitable in analyzing wave tank or field test data.

The Irregular Stream Function wave theory sets no restrictions on the wave

form; therefore the wave can change form as it propagates through its motion. It

is more suitable in cases were a measured wave surface profile is available and

the water particle kinematics and dynamics are required for this wave profile

and is applied to a single wave in the wave profile (eg. the largest wave). The

Symmetric or Regular Stream Function Theory is the one tackled by other wave

theories which assumed to propagate at a constant speed and without a change

in its form.

This method will be presented for the special case of a constant free surface

pressure, neglecting any underlying current. Moving from a Cartesian to a

relative coordinates system, considering ҧܿto be the speed vector, the problem

is reduced to a steady flow, with the horizontal component of velocity to move in

the u–c plane. Proportionally to the previous theories, for the two dimensional

flow, a steam function ߖ can be formulated, satisfying the Laplace equation as

follows:

߲ଶߖ

ଶݔ߲
+
߲ଶߖ

ଶݖ߲
= 0 (A.3-1)

Assuming ܳ to be the Bernoulli’s constant, the corresponding boundary

conditions are:
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ߖ߲

ݔ߲
= 0 ݐܽ =ݖ −݀

ݓ

−ݑ ܿ
=
ߟ߲

ݔ߲
ݐܽ =ݖ ߟ

+ߟ
1

2݃
ቈ൬
ߖ߲

ݔ߲
൰
ଶ

+ ൬
ߖ߲

ݖ߲
൰
ଶ

= ܳ =ݖݐܽ ߟ

(A.3-2)

In the Cartesian, two dimensional (ݖ,ݔ) system, the N-order symmetric steam

function ߖ is given as follows, satisfying the bottom boundary condition and the

kinematic free surface condition:

ࢸ (ݖ,ݔ) = +ݖܿ  ܺ

ே

ୀଵ

∙ sinh[݊݇ ∙ +ݖ) ݀)] ∙ cos(݊ (ݔ݇ (A.3-3)

Where: the coefficients Xn, the wave number ݇ and the surface value of stream

function are determined using the dynamic free surface boundary condition for a

given ߅ , ߒ and .݀ Differentiation of the steam function can give the individual

horizontal and vertical water particle velocities as:

−ݑ ܿ= −
߲ ∙ ࢸ

߲ ∙ ݖ
= −ܿ−  ݊݇ܺ 

ே

ୀଵ

∙ cosh[݊ +ݖ݇) ݀)] ∙ cos(݊ (ݔ݇

ݓ =
߲ ∙ ࢸ

߲ ∙ ݔ
= −  ݊݇ܺ 

ே

ୀଵ

∙ sinh[݊ +ݖ݇) ݀)] ∙ sin(݊ (ݔ݇

(A.3-4)

For the Bernoulli constant ܳ, the mean square value ,ܧ is defined as:

=തܧ
1

ܫ
 (ܳ∙ തܳ)ଶ
ூ

ୀଵ

(A.3-5)

Where: i=1,…,l, x takes successive values spanning one complete wave length,

and തܳ represents the average value of the Bernoulli constant. Then, Xn, ݇ and

ߖ are obtained in an iterative way with an initial estimate derived from linear

theory of the wave number, ݇ and the stream function, ߖ such that തܧ is

minimized.
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APPENDIX B

B.1. Painting coatings

Coatings and combinations of coatings with cathodic protection (for the

immersion zone of the structure) is the most common method employed for the

protection of structures from corrosive environments. The actual performance of

coating systems and thus the efficiency of the CPS is subjected on several

fundamental parameters that should be considered in the design process. The

most important of those are the following:

 Type and condition of the substrate

 Environment and possible additional stresses

 Surface preparation

 Quality of the coatings

 Selection of the coating systems (Generic types, thickness etc.)

 Application

 Quality control

The substrate of interest in offshore structures is steel. This parameter refers to

the state where the structure is in the fabrication process and should illustrate

the basic specification of the coating system to be applied. The parameter of

environment includes apart from the obvious loading conditions, different

sources of stresses due to thermal, chemical or different nature. The

preparation of the surface is the most important parameter since it can

significantly damage the applied coating. The degree of cleaning (removal of

rust, particles, grease, salts etc.), the final roughness and the preparation of

sharp edges, welding seams and imperfections are critical elements towards

this scope. Selection of coatings should be appropriate and paint of good quality

should be selected and usually certified by appropriate classification bodies.

Coating systems, is the parameter that refers to the combination of different

layers of appropriate coating each providing a different level of protection to the

structure. In conjunction with coatings that target to limit corrosion, for the
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immersion zone anti-fouling coatings should be used in order to delay or ease

removal of fouling. Table 68, proposes typical coating types and systems for

each of the areas of the offshore structure.

Proper application of the coating or the coating systems is crucial for the

maximization of the efficiency of the protection. It is important to apply the

prescribed thickness of film (within the tolerance range) since smaller thickness

might lead to premature corrosion while thicker layers might result in

undesirable effects such as solvent retention, reduced adhesion etc. [314]. The

problem of variation of the film thickness during application can be avoided by

applying more coats of the same total thickness distributing the variation to all

over the member.

Area Coating types Coating system

Atmospheric zone
Zinc-rich primer, Epoxies
and UV durable topcoat

Minimum 320 μm/13 mils in minimum 3 coats. 

Splash zone Epoxy or Polyester Minimum 600 μm/24 mils in minimum 2 coats. 

Immersion Epoxy Minimum 450 μm/18 mils in minimum 2 coats. 

Table 68: Typical coating systems used for offshore structures

Since coatings are applied most of the times manually, areas of the structure

where proper access is not available should be pointed out. Critical points of

this category are welding seams, edges, and corners. For those cases, stripe

coating, corrosion protection schemes or application of CPS within

manufacturing phase should be considered in order to sufficiently protect the

structure.

The wide application and great significance of the painting coatings has raised

an interest for systematic recording of the procedures and the requirements into

design and application standards. NORSOK [315] has published a standard

describing the surface preparation and protective coatings. Within its provisions,

different steps in the coating process are illustrated and the qualifications of the

painters, inspectors and coating systems are included. ISO [316] has published

a standard that illustrates the basic factors that determines the effectiveness of
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the paint coating systems. These are summarised to the ‘choice and formulation

of the products used in differently classified environments and the standard of

workmanship and execution of their contract’. An additional relevant standard

published by ISO, [317], is a complementary standard to the previous one

referring to the special offshore environment, proposing tougher testing of the

coating systems. Finally, a series of publications from NACA (National

Association of Corrosion Engineers) are available covering different aspects of

application of the method.

B.2. Cathodic protection

Cathodic protection is a widely used technique nowadays to control the

corrosion on a metal surface by transforming it to the cathode of an

electrochemical cell [318]. Initially introduced in the early 1820s by Davy, it

became practically applicable in 1945 and had a rapid development since then.

Application of the method can be found in pipelines, ship hulls, storage tanks,

harbour structures, tubular and foundation pilings and offshore platforms,

floating and subsea structures.

The basic concept of cathodic protection requires connection of the metal to be

protected to another more easily corroded metal that will act as an anode of the

electrochemical cell, as is presented in Figure 73. Three different types of

cathodic protection methods are available:

 Galvanic or Sacrificial Corrosion Protection

 Impressed-Current Corrosion Protection

 Galvanization

For the Galvanic or Sacrificial Corrosion Protection, reactive metals are

employed as anodes that are directly electrically connected to the steel that

needs to be protected. In order to achieve transformation of the structure to a

cathode, it becomes negatively charged by considering the natural potentials

between the anode and the steel, causing a positive current to flow in the

electrolyte, from the anode to the steel. Metals commonly used as sacrificial
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anodes are zinc, aluminium and magnesium. Standards that describe

application of cathodic protection can be found in [319] and [320].

Impressed-Current Corrosion Protection Systems, that refer mainly to structures

of larger scale, where application of Galvalnic anodes is not economically

feasible, employ inert (zero or low dissolution) anodes and use an external

source of dc power (rectified ac) to impress a current from an external anode

onto the cathode surface. Those anodes are of tubular, rod-type shaped or

continuous ribbons of materials such as high silicon cast iron, graphite, mixed

metal oxide, platinum and niobium wires.

Galvanizing is a technique that accounts for coating steel with a layer of metallic

zinc. This coating is very durable even in harsh environments, since they

combine benefits of coating and cathodic protection. Even in cases with local

damage to the treatment, the method retains effectiveness since the

surrounded areas of the ‘wounded’ one form a galvanic cell with the exposed

steel and protect it from corrosion, as a form of corrosion protection where zinc

acts as an anode.

A very important parameter that should be considered for the more effective

performance of the cathodic protection is the cathodic ‘shielding effect’. This is

based on the fact that in practice solid film backed anti-corrosion coatings such

as polyethylene tapes, shrinkable pipeline sleeves, and factory applied single or

multiple solid film coatings are used. The high electrical resistivity of those

patches protects electrical current to flow from the cathodic protection, blocking

it from reaching to the metal to be protected.

Table 69, adopted by [321], presents the requirements of a Galvanic and an

Impressed-Current Corrosion Protection System.
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Figure 73: Corrosion Cell

Galvanic System Impressed-Current System

Sacrificial anodes
Inert anodes (clusters of which, connected
together often in a backfill, are called the
“groundbed”)

Direct welding to the structure or a conductor
connecting the anode to the structure

A dc power source.

Secure and minimum resistance connections
between conductor and structure, and between
conductor and anode.

Electrically well insulated, minimum resistance
and secure conductors between anodes and
power source

Secure and minimum resistance connections
between power source and structure

Table 69: Requirements of Galvanic and an Impressed-Current Corrosion

Protection System



327

APPENDIX C

In this Appendix, the details regarding the geometry of the reference structure is

given. In Figure 74, the numbering of the structural members is presented.

Further in Table 70, the dimension of each group of members is included.

Figure 74: Numbering of the structural members

bX0X

pX00

b11X

b21X

b31X

b41X

t51X

b15X

b25X

b35X

b45X
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Type ID Diameter Thickness

(m) (mm)

Legs bX0X 1.25 0.028

Piles pX00 1.5 0.024

V1 b15X 0.6 0.018

V2 b25X 0.6 0.018

V3 b35X 0.6 0.018

V4 b45X 0.6 0.018

H1 b11X 0.6 0.018

H2 b21X 0.6 0.018

H3 b31X 0.5 0.016

H4 b41X 0.5 0.016

Topside t51X 0.6 0.016

Table 70: Dimension of group of members
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APPENDIX D

% Matlab Code for the Response Surface Method

% This code requires input of a matrix with the geometry of the

% structure,and the corresponding loads and properties as well as a

% complementary FEA code for the execution of simulations and a code

% for regression analysis.

% Output of the code is a vector of PFs and Betas for each of the

% members of the complex structure.

%

% Athanasios Kolios - Cranfield University 2010

clear

clc

format long e

tic

a=open('Data23.mat');

Coord=a.Coords;

Con=a.Connections;

Re=a.BC;

Load=a.Loading;

E=a.Elasticity;

A=a.Area;

er=10^-50;

x1_m=500;

x2_m=21e10;

x3_m=0.5;

x4_m=1000000;

x1_s=200;

x2_s=0.1e10;

x3_s=0.01;

x4_s=100000;

A=[x1_m-3*x1_s x1_m x1_m+3*x1_s];

B=[x2_m-3*x2_s x2_m x2_m+3*x2_s];
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D=[x3_m-3*x3_s x3_m x3_m+3*x3_s];

E=[x4_m-3*x4_s x4_m x4_m+3*x4_s];

c=num2cell([A; B; D; E],2);

[c{:}] = ndgrid(c{:});

c=reshape(cat(length(c)+1,c{:}),[],length(c));

siz=size(c);

[nel,~]=size(Con);

[n,~]=size(c);

[xL,yL]=size(Load);

for i=1:n

L=Load;

for k=1:xL

for l=1:yL

if L(k,l)~=0

L(k,l)=c(i,1);

end

end

end

[~,~,SAX]=FEA(Coord,Con,Re,L*c(i,1),c(i,2)*ones(nel,1),c(i,3)*on

es(nel,1),1);

S_all=c(i,4)*ones(1,nel);

G(i,:)=abs(SAX)./S_all;

end

for i=1:nel

y_var=G(:,i);

x_var=c;

b=reg_an(x_var,y_var,2);

[Pf_form,b_form]=FORM_SORM(b,x1_m,x2_m,x3_m,x4_m,x1_s,x2_s,x3_s,x4_s);

Pf(i)=Pf_form;

beta(i)=b_form;

end

toc

%end of program
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% Matlab Code for Adaptive Response Surface Method

% This code requires input of a matrix with the geometry of the

% structure, and the corresponding loads and properties as well as a

% complementary FEA code for the execution of simulations and a code

% for regression analysis.

% Weighted Regression is incorporated after the first iteration in

% order to ‘tune’ the accuracy of the response surface.

% Output of the code is a vector of PFs and Betas for each of the

% members of the complex structure.

%

% Athanasios Kolios - Cranfield University 2010

clear

clc

format long e

tic

a=open('Data23.mat');

Coord=a.Coords;

Con=a.Connections;

Re=a.BC;

Load=a.Loading;

E=a.Elasticity;

A=a.Area;

x1_m=1;

x2_m=21e10;

x3_m=1;

x4_m=100000;

x1_s=0.2;

x2_s=1e10;

x3_s=0.01;

x4_s=10000;

[nel,~]=size(Con);

[xL,yL]=size(Load);

er=10^-40;
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% Step 1.1

[~,~,SAX]=FEA(Coord,Con,Re,Load,x2_m*ones(nel,1),A,1);

S_all=x4_m*ones(1,nel);

Gmean=abs(SAX)./S_all;

%Step 1.2-1.5 : Load

L=Load;

for k=1:xL

for l=1:yL

if L(k,l)~=0

L(k,l)=(x1_m-3*x1_s)*Load(k,l);

end

end

end

[~,~,SAX]=FEA(Coord,Con,Re,L,x2_m*ones(nel,1),A,1);

S_all=x4_m*ones(1,nel);

GL=abs(SAX)./S_all;

if GL(18)<Gmean(18)

kLoad=-3;

else

kLoad=3;

end

%Step 1.2-1.5 : Elasticity

[~,~,SAX]=FEA(Coord,Con,Re,Load,(x2_m-3*x2_s)*ones(nel,1),A,1);

S_all=x4_m*ones(1,nel);

GE=abs(SAX)./S_all;

if GE(18)<Gmean(18)

kElast=-3;

else

kElast=3;

end

%Step 1.2-1.5 : Area

[~,~,SAX]=FEA(Coord,Con,Re,Load,x2_m*ones(nel,1),(x3_m-3*x3_s)*A,1);

S_all=x4_m*ones(1,nel);

GA=abs(SAX)./S_all;

if GA(18)<Gmean(18)

kArea=-3;
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else

kArea=3;

end

%Step 1.2-1.5 : Stress Allowed

[~,~,SAX]=FEA(Coord,Con,Re,Load,x2_m*ones(nel,1),A,1);

S_all=(x4_m-3*x4_s)*ones(1,nel);

GSA=abs(SAX)./S_all;

if GSA(18)<Gmean(18)

kSall=-3;

else

kSall=3;

end

%Step 1.6 Calculation of ybest

L=Load;

for k=1:xL

for l=1:yL

if L(k,l)~=0

L(k,l)=(x1_m+kLoad*x1_s)*Load(k,l);

end

end

end

[~,~,SAX]=FEA(Coord,Con,Re,L,(x2_m+kElast*x2_s)*ones(nel,1),(x3_m+kAre

a*x3_s)*A,1);

S_all=(x4_m+kSall'*x4_s)*ones(1,nel);

ybest=abs(SAX)./S_all+er*ones(1,nel);

%Design matrix

c=[x1_m x2_m x3_m x4_m;

x1_m+kLoad*x1_s x2_m x3_m x4_m;

x1_m x2_m+kElast*x2_s x3_m x4_m;

x1_m x2_m x3_m+kArea*x3_s x4_m;

x1_m x2_m x3_m x4_m+kSall*x4_s];

[n,~]=size(c);

%Step 1.6 Calculation of W

W=zeros(n,nel);

for j=1:n

L=Load;
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for k=1:xL

for l=1:yL

if L(k,l)~=0

L(k,l)=c(j,1)*Load(k,l);

end

end

end

[~,~,SAX]=FEA(Coord,Con,Re,L,c(j,2)*ones(nel,1),c(j,3)*A,1);

S_all=c(j,4)*ones(1,nel);

G(j,:)=abs(SAX)./S_all;

W(j,:)= exp(-(G(j,:)-ybest)./ybest);

end

%Step 2-3 Weighted regression, FORM/SORM

for j=1:nel

x_var=c;

[xs,ys]=size(x_var);

regs=ys+1;

for i=1:xs;

X=x_var;

X(i,regs)=1;

end;

Y=G(:,j);

Weight=diag(W(:,j));

b(:,j)=(X'*Weight*X)\(X'*Weight*Y);

%b(:,j)=inv(X'*Weight*X)*(X'*Weight*Y);

% Definition of Limit State Functions

syms x1 x2 x3 x4

a1=b(1,j)+er;

a2=b(2,j)+er;

a3=b(3,j)+er;

a4=b(4,j)+er;

a5=b(5,j)+er;

%a6=b(6,j)+er;

%a7=b(7,j)+er;

%a8=b(8,j)+er;

%a9=b(9,j)+er;
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%g=1-(a1*x1^2+a2*x1+a3*x2^2+a4*x2+a5*x3^2+a6*x3+a7*x4^2+a8*x4+a9);

g=1-(a1*x1+a2*x2+a3*x3+a4*x4+a5);

% Calculation of Partial derivatives

dgx1=diff(g,x1);

dgx2=diff(g,x2);

dgx3=diff(g,x3);

dgx4=diff(g,x4);

% Express functions in a amatlab complex form

g_m=matlabFunction(g);

dgx1_m=matlabFunction(dgx1);

dgx2_m=matlabFunction(dgx2);

dgx3_m=matlabFunction(dgx3);

dgx4_m=matlabFunction(dgx4);

% First Iteration

i=1;

%Initial point (mean)

x1_v(i,j)=x1_m;

x2_v(i,j)=x2_m;

x3_v(i,j)=x3_m;

x4_v(i,j)=x4_m;

g_v(i,j)=g_m(x1_v(i,j),x2_v(i,j),x3_v(i,j),x4_v(i,j));

%dgx1_v(i)=dgx1_m();

%dgx2_v(i)=dgx2_m();

%dgx3_v(i)=dgx3_m();

%dgx3_v(i)=dgx4_m();

b_v(i,j)=g_v(i,j)/((((dgx1_m()*x1_s)^2)+((dgx2_m()*x2_s)^2)+((dgx3_m()

*x3_s)^2)+((dgx4_m()*x4_s)^2))^0.5);

a1_v(i,j)=-

(dgx1_m()*x1_s)/((((dgx1_m()*x1_s)^2)+((dgx2_m()*x2_s)^2)+((dgx3_m()*x

3_s)^2)+((dgx4_m()*x4_s)^2))^0.5);
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a2_v(i,j)=-

(dgx2_m()*x2_s)/((((dgx1_m()*x1_s)^2)+((dgx2_m()*x2_s)^2)+((dgx3_m()*x

3_s)^2)+((dgx4_m()*x4_s)^2))^0.5);

a3_v(i,j)=-

(dgx3_m()*x3_s)/((((dgx1_m()*x1_s)^2)+((dgx2_m()*x2_s)^2)+((dgx3_m()*x

3_s)^2)+((dgx4_m()*x4_s)^2))^0.5);

a4_v(i,j)=-

(dgx4_m()*x4_s)/((((dgx1_m()*x1_s)^2)+((dgx2_m()*x2_s)^2)+((dgx3_m()*x

3_s)^2)+((dgx4_m()*x4_s)^2))^0.5);

%New design point

x1_v(i+1,j)=x1_m+b_v(i,j)*x1_s*a1_v(i,j);

x2_v(i+1,j)=x2_m+b_v(i,j)*x2_s*a2_v(i,j);

x3_v(i+1,j)=x3_m+b_v(i,j)*x3_s*a3_v(i,j);

x4_v(i+1,j)=x4_m+b_v(i,j)*x4_s*a4_v(i,j);

g_v(i+1,j)=g_m(x1_v(i+1),x2_v(i+1),x3_v(i+1),x4_v(i+1));

end

%Step 4 New centre point

Xmean=[x1_v(1,:); x2_v(1,:); x3_v(1,:); x4_v(1,:)];

Xdesign=[x1_v(2,:); x2_v(2,:); x3_v(2,:); x4_v(2,:)];

for i=1:nel

alpha(i)=g_v(1,i)/(g_v(1,i)-g_v(2,i));

for j=1:4

Xnew(j,i)=Xmean(j,i)+(Xdesign(j,i)-Xmean(j,i))*alpha(i);

end

end

for i=1:nel

%Step 5 New design matrix

c2=[x1_m x2_m x3_m x4_m;

x1_m+kLoad*x1_s x2_m x3_m x4_m;

x1_m x2_m+kElast*x2_s x3_m x4_m;

x1_m x2_m x3_m+kArea*x3_s x4_m;

x1_m x2_m x3_m x4_m+kSall*x4_s

Xnew(1,i) x2_m x3_m x4_m;
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x1_m Xnew(2,i) x3_m x4_m;

x1_m x2_m Xnew(3,i) x4_m;

x1_m x2_m x3_m Xnew(4,i);];

[n,~]=size(c2);

%Step 6 Calculation of W

W=zeros(n,nel);

for j=1:n

L=Load;

for k=1:xL

for l=1:yL

if L(k,l)~=0

L(k,l)=c2(j,1)*Load(k,l);

end

end

end

[~,~,SAX]=FEA(Coord,Con,Re,L,c2(j,2)*ones(nel,1),c2(j,3)*A,1);

S_all=c2(j,4)*ones(1,nel);

G(j,:)=abs(SAX)./S_all;

W(j,:)= exp(-(G(j,:)-

Gmean+er*ones(1,nel)))./(Gmean+er*ones(1,nel)));

end

%Step 7 Reliability Calculations

xexp=c2;

[xs,ys]=size(xexp);

regs=2*ys+1;

for k=1:xs;

X(k,regs)=1;

for j=1:ys;

X(k,2*j-1)=xexp(k,j)^2;

X(k,2*j)=xexp(k,j)^1;

end;

end;

Y=G(:,i);

Weight=diag(W(:,i));

b2=(X'*Weight*X)\(X'*Weight*Y);
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[Pf_form,b_form]=FORM_SORM(b2,x1_m,x2_m,x3_m,x4_m,x1_s,x2_s,x3_s,x4_s)

;

Pf(i)=Pf_form;

beta(i)=b_form;

end

toc
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% This code performs multivariate polynomial regression (MPR)

% analysis.

% A scaling of the design parameters is included in order to prevent

% from ill-conditioned systems.

% The vector y_var, includes values of dependent variables (y) while

% the matrix x_var includes the values of independent variables (xi).

%

% An example of 3 variables is included.

%

% Athanasios Kolios - Cranfield University 2010 {R)

clc

clear

format short g

% Input of dependent variables

x_var=[15 15 15 10 10 10 5 5 5 15 15 15 10 10 10 5

5 5 15 15 15 10 10 10 5 5 5;

15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5

15 10 5 15 10 5 15 10 5;

600000 600000 600000 600000 600000 600000 600000 600000 600000

700000 700000 700000 700000 700000 700000 700000 700000 700000

800000 800000 800000 800000 800000 800000 800000 800000

800000;]';

%Input of independent variables

y_var=[0.784426667 0.655335 0.527383333 0.652808333 0.522951667

0.394113333 0.522345 0.39159 0.261475 0.672365714 0.561715714

0.452042857 0.55955 0.448244286 0.337811429 0.447724286 0.335648571

0.224121429 0.58832 0.49150125 0.3955375 0.48960625 0.39221375

0.295585 0.39175875 0.2936925 0.19610625]';

% power_f: This matrix is formed as the exponential factor of each of

the % variables for each coefficient.

% For the example of a 4th order regression and 2 variables, the

results will % return:

% power_f=[1,0;0,1;2,0;0,2;3,0;0,3;4,0;0,4;0,0;];
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% obtain sizes

[n,p] = size(x_var);

% model terms loop

nv=p;

np=2; % degree of the polynomial

% Size of matrix transpose

k=nv*np;

% Formation of matrix with I's

B= repmat(eye(nv),np,1);

% Scaling of variables

std_s = sqrt(diag(cov(x_var)));

x_var_s = x_var*diag(1./std_s);

% Vector of coefficients

F=(1:1:np);

FT=transpose(F);

FTT=zeros(k,1);

% Expand F

for i=1:nv;

for j=1:np;

FTT(i+(j-1)*nv)=FT(j);

end;

end;

% Multiply with B and get BT

for i=1:k;

for j=1:nv;

power_f(i,j)=B(i,j)*FTT(i);

end;

end;

for i=1:nv;

power_f(k+1,i)=0;
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end;

nt = size(power_f,1);

% build the design matrix

M = ones(n,nt);

sf = ones(1,nt);

for i = 1:nt;

for j = 1:p;

M(:,i) = M(:,i).*x_var_s(:,j).^power_f(i,j);

sf(i) = sf(i)/(std_s(j)^power_f(i,j));

end;

end

% Calculation of Coeff_fact

Coeff= M\y_var;

y_calc = M*Coeff(:);

Coeff_fact=transpose(Coeff)

% Reverse scaling

Coeff_fact=Coeff_fact'*sf;

% variance of the regression parameters

s_var = norm(y_var - y_calc);

% R^2

R2 = 1 - (s_var/norm(y_var-mean(y_var)) )^2;

% RMSE

RMSE = sqrt(mean((y_var - y_calc).^2));

clear B Coeff F FT FTT M i j k n p np nt nv

% End of code



342

% FORM-SORM_v1_0.m

%

% This code calculates the reliability of a four variable function,

% with second order polynomials, where variables are normal, according

% to the Hasofer, Lind, Rackwitz and Fiessler index method.

% A convergence criterion for the FORM is included in the code.

% SORM has been also incorporated.

%

% This version of the code has been verified with DNV PROBAN Software

% Example of 3 variables incorporated

%

% Athanasios Kolios - Cranfield University 2010

tic

clear

clc

er=10^-50;

% Input of dependent variables - Load patterns

xinp=[15 15 15 10 10 10 5 5 5 15 15 15 10 10 10 5

5 5 15 15 15 10 10 10 5 5 5;

15 10 5 15 10 5 15 10 5 15 10 5 15 10 5 15 10 5

15 10 5 15 10 5 15 10 5;

600000 600000 600000 600000 600000 600000 600000 600000 600000

700000 700000 700000 700000 700000 700000 700000 700000 700000

800000 800000 800000 800000 800000 800000 800000 800000

800000;];

x_var=xinp';

%Input of independent variables - Response

yinp=[0.784426667 0.655335 0.527383333 0.652808333 0.522951667

0.394113333 0.522345 0.39159 0.261475 0.672365714 0.561715714

0.452042857 0.55955 0.448244286 0.337811429 0.447724286 0.335648571

0.224121429 0.58832 0.49150125 0.3955375 0.48960625 0.39221375

0.295585 0.39175875 0.2936925 0.19610625];

y_var=yinp';
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[xs,ys]=size(x_var);

%Definition of Variables

x1_m=12;

x2_m=12;

x3_m=700000;

x4_m=er;

x1_s=2;

x2_s=2;

x3_s=80000;

x4_s=er;

% Expand x_var to X

regs=2*ys+1;

xexp=x_var;

for i=1:xs;

X(i,regs)=1;

for j=1:ys;

X(i,2*j-1)=xexp(i,j)^2;

X(i,2*j)=xexp(i,j)^1;

end;

end;

Y=y_var;

b=X\Y;

%b=inv(X'*X)*X'*Y;

% Definition of iterations

n_iter=40;

err=0.01; % Convergence criterion

% Definition of Limit State Functions

syms x1 x2 x3 x4

a1=b(1);

a2=b(2);
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a3=b(3);

a4=b(4);

a5=b(5);

a6=b(6);

a7=er;

a8=er;

a9=b(regs);

g=1-(a1*x1^2+a2*x1+a3*x2^2+a4*x2+a5*x3^2+a6*x3+a7*x4^2+a8*x4+a9);

%g=1-(a1*x1+a2*x2+a3*x2+a4*x4+a5*x1^2+a6*x2^2+a7*x3^2+a8*x4^2+a9);

gm=matlabFunction(g);

% U-dimensional space

% Definition of x1

x1_pdf=@(x1f)normpdf(x1f,x1_m, x1_s);

x1_cdf=@(x1f)normcdf(x1f,x1_m, x1_s);

x1_pdf_v=x1_pdf(x1_m);

x1_cdf_v=x1_cdf(x1_m);

x1_s=normpdf(norminv(x1_cdf_v))/x1_pdf_v;

x1_m=x1_m-(norminv(x1_cdf_v))*x1_s;

% Definition of x2

x2_pdf=@(x2f)normpdf(x2f,x2_m, x2_s);

x2_cdf=@(x2f)normcdf(x2f,x2_m, x2_s);

x2_pdf_v=x2_pdf(x2_m);

x2_cdf_v=x2_cdf(x2_m);

x2_s=normpdf(norminv(x2_cdf_v))/x2_pdf_v;

x2_m=x2_m-(norminv(x2_cdf_v))*x2_s;

% Definition of x3

x3_pdf=@(x3f)normpdf(x3f,x3_m, x3_s);

x3_cdf=@(x3f)normcdf(x3f,x3_m, x3_s);

x3_pdf_v=x3_pdf(x3_m);

x3_cdf_v=x3_cdf(x3_m);

x3_s=normpdf(norminv(x3_cdf_v))/x3_pdf_v;

x3_m=x3_m-(norminv(x3_cdf_v))*x3_s;
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% Definition of x4

x4_pdf=@(x4f)normpdf(x4f,x4_m, x4_s);

x4_cdf=@(x4f)normcdf(x4f,x4_m, x4_s);

x4_pdf_v=x4_pdf(x4_m);

x4_cdf_v=x4_cdf(x4_m);

x4_s=normpdf(norminv(x4_cdf_v))/x4_pdf_v;

x4_m=x4_m-(norminv(x4_cdf_v))*x4_s;

% Calculation of Partial derivatives

dgx1=diff(g,x1);

dgx2=diff(g,x2);

dgx3=diff(g,x3);

dgx4=diff(g,x4);

% Express functions in a matlab complex form

g_m=matlabFunction(g);

dgx1_m=matlabFunction(dgx1);

dgx2_m=matlabFunction(dgx2);

dgx3_m=matlabFunction(dgx3);

dgx4_m=matlabFunction(dgx4);

% First Iteration

i=1;

x1_v(i)=x1_m;

x2_v(i)=x2_m;

x3_v(i)=x3_m;

x4_v(i)=x4_m;

g_v(i)=g_m(x1_v(i),x2_v(i),x3_v(i),x4_v(i));

dgx1_v(i)=dgx1_m(x1_v(i));

dgx2_v(i)=dgx2_m(x2_v(i));

dgx3_v(i)=dgx3_m(x3_v(i));

dgx3_v(i)=dgx4_m(x4_v(i));

b_v(i)=g_v(i)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*x2_s)^2)+

((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);
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a1_v(i)=-

(dgx1_m(x1_v(i))*x1_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a2_v(i)=-

(dgx2_m(x2_v(i))*x2_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a3_v(i)=-

(dgx3_m(x3_v(i))*x3_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a4_v(i)=-

(dgx4_m(x4_v(i))*x4_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

x1_v(i+1)=x1_m+b_v(i)*x1_s*a1_v(i);

x2_v(i+1)=x2_m+b_v(i)*x2_s*a2_v(i);

x3_v(i+1)=x3_m+b_v(i)*x3_s*a3_v(i);

x4_v(i+1)=x4_m+b_v(i)*x4_s*a4_v(i);

u1_v(i+1)=(x1_v(i+1)-x1_m)/x1_s;

u2_v(i+1)=(x2_v(i+1)-x2_m)/x2_s;

u3_v(i+1)=(x3_v(i+1)-x3_m)/x3_s;

u4_v(i+1)=(x4_v(i+1)-x4_m)/x4_s;

i=0 ;%%%% zero counter

% (2-n_iter) Iteration

for i=2:n_iter

g_v(i)=g_m(x1_v(i),x2_v(i),x3_v(i),x4_v(i));

dgx1_v(i)=dgx1_m(x1_v(i));

dgx2_v(i)=dgx2_m(x2_v(i));

dgx3_v(i)=dgx3_m(x3_v(i));

dgx4_v(i)=dgx4_m(x4_v(i));

b_nom_prod(i)=

dgx1_v(i)*x1_s*u1_v(i)+dgx2_v(i)*x2_s*u2_v(i)+dgx3_v(i)*x3_s*u3_v(i)+d

gx4_v(i)*x4_s*u4_v(i);

b_v(i)=(g_v(i)-

b_nom_prod(i))/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*x2_s)^2)

+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

pf_v(i)=normcdf(-b_v(i));
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a1_v(i)=-

(dgx1_m(x1_v(i))*x1_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a2_v(i)=-

(dgx2_m(x2_v(i))*x2_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a3_v(i)=-

(dgx3_m(x3_v(i))*x3_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

a4_v(i)=-

(dgx4_m(x4_v(i))*x4_s)/((((dgx1_m(x1_v(i))*x1_s)^2)+((dgx2_m(x2_v(i))*

x2_s)^2)+((dgx3_m(x3_v(i))*x3_s)^2)+((dgx4_m(x4_v(i))*x4_s)^2))^0.5);

x1_v(i+1)=x1_m+b_v(i)*x1_s*a1_v(i);

x2_v(i+1)=x2_m+b_v(i)*x2_s*a2_v(i);

x3_v(i+1)=x3_m+b_v(i)*x3_s*a3_v(i);

x4_v(i+1)=x4_m+b_v(i)*x4_s*a4_v(i);

u1_v(i+1)=(x1_v(i+1)-x1_m)/x1_s;

u2_v(i+1)=(x2_v(i+1)-x2_m)/x2_s;

u3_v(i+1)=(x3_v(i+1)-x3_m)/x3_s;

u4_v(i+1)=(x4_v(i+1)-x4_m)/x4_s;

e=abs(b_v(i)-b_v(i-1));

if e<err break,

end;

end;

b_form=b_v(i)

Pf_form=pf_v(i)

% Calculation of SORM Pf and beta

x1_MPP=x1_v(i);

x2_MPP=x2_v(i);

x3_MPP=x3_v(i);

x4_MPP=x4_v(i);

u1_MPP=u1_v(i);

u2_MPP=u2_v(i);

u3_MPP=u3_v(i);

u4_MPP=u4_v(i);
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% Second order partial derivatives

d2gx1=diff(dgx1);

d2gx2=diff(dgx2);

d2gx3=diff(dgx3);

d2gx4=diff(dgx4);

d2gx1_m=matlabFunction(d2gx1);

d2gx2_m=matlabFunction(d2gx2);

d2gx3_m=matlabFunction(d2gx3);

d2gx4_m=matlabFunction(d2gx4);

% Transform to Matlab functions

% Check the variables in each Partial Derivative

d2gx1_v=d2gx1_m();

d2gx2_v=d2gx2_m();

d2gx3_v=d2gx3_m();

d2gx4_v=d2gx4_m();

% Check the variables in each Partial Derivative

dgx1_v=dgx1_m(x1_MPP);

dgx2_v=dgx2_m(x2_MPP);

dgx3_v=dgx3_m(x3_MPP);

dgx4_v=dgx4_m(x4_MPP);

% First order tensor

tens_u=((dgx1_v*(x1_s^2))^2)+((dgx2_v*(x2_s^2))^2)+((dgx3_v*(x3_s^2))^

2)+((dgx4_v*(x4_s^2))^2);

% Second order tensor (table)

tens_u2=zeros(4,4);

tens_u2(1,1)=d2gx1_v;

tens_u2(2,2)=d2gx2_v;

tens_u2(3,3)=d2gx3_v;

tens_u2(4,4)=d2gx4_v;

B_mat=(1/tens_u)*tens_u2;
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F_mat=[(-(dgx1_v*x1_s)/tens_u) (-(dgx2_v*x2_s)/tens_u) (-

(dgx3_v*x3_s)/tens_u) (-(dgx4_v*x4_s)/tens_u);

0 1 0 0 ;

0 0 1 0 ;

0 0 0 1 ;];

F_11=-dgx1_v*x1_s;

F_22=1;

F_33=1;

F_44=1;

D1=((((F_11)^2)+((F_11)^2)));

e11=1/D1;

g1=e11*F_11;

D2=(((((F_22)^2)+((F_22)^2)))-((abs(((((F_22)^2)+(g1^2))))^2))^0.5);

e12=-(((((F_22)^2)+(g1^2)))^0.5)/D2;

e22=1/D2;

g2=e12*g1+e22*F_22;

D3=(((((F_33)^2)+((F_33)^2)))-abs((((((F_33)^2)+(g1^2))))^2)-

abs((((((F_33)^2)+(g2^2))))^2))^0.5;

e13=-(((((F_33)^2)+(g1^2)))^0.5)/D3;

e23=-(((((F_33)^2)+(g2^2)))^0.5)/D3;

e33=1/D3;

g3=e13*g1+e23*g2+e33*F_33;

D4=(((((F_44)^2)+((F_44)^2)))-abs((((((F_44)^2)+(g1^2))))^2)-

abs((((((F_44)^2)+(g2^2))))^2)-abs((((((F_44)^2)+(g3^2)))))^2)^0.5;

e14=-(((((F_44)^2)+(g1^2)))^0.5)/D4;

e24=-(((((F_44)^2)+(g2^2)))^0.5)/D4;

e34=-(((((F_44)^2)+(g3^2)))^0.5)/D4;

e44=1/D4;

g4=e14*g1+e24*g2+e34*g3+e44*F_44;

H_mat=[g1 g2 g3 g4];

H_mat_fin=[g2 0 0 0;

0 g3 0 0;
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0 0 g4 0;

0 0 0 g1 ];

H_mat_fin_tr=transpose(H_mat_fin);

% Construction of f matrix

F_mat2=H_mat_fin*B_mat*H_mat_fin_tr;

k11=F_mat2(1,1);

k22=F_mat2(2,2);

k33=F_mat2(3,3);

k44=F_mat2(4,4);

k1=real(k11);

k2=real(k22);

k3=real(k33);

k4=real(k44);

b_form=b_v(i);

Pf_sorm=(normcdf(-b_form))*((1+k1*b_form)^-0.5)*((1+k2*b_form)^-

0.5)*((1+k3*b_form)^-0.5)

b_sorm= -(norminv(Pf_sorm))

%Pf_form

%end of program

toc


