-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by OpenGrey Repository

M

University of
HUDDERSFIELD

University of Huddersfield Repository

AlHamadani, Baydaa

Retrieving Information from Compressed XML Documents According to Vague Queries
Original Citation

AlHamadani, Baydaa (2011) Retrieving Information from Compressed XML Documents According
to Vague Queries. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/11179/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

* The authors, title and full bibliographic details is credited in any copy;
* A hyperlink and/or URL is included for the original metadata page; and
* The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox @hud.ac.uk.

http://eprints.hud.ac.uk/

https://core.ac.uk/display/40025179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Retrieving Information from Compressed XML

Documents According to Vague Queries

Baydaa Al-Hamadani

A Thesis Submitted to the University of Huddersfield in Partial Fulfiiment of the

Requirements for the Degree of Doctor of Philosophy

July, 2011

Acknowledgments

I would like to express my gratitude to my supervisor, Dr. Joan Lu,
for her guides and for her continuous support through the different stages
of this research. Dr. Joan was always finds the time for me not only to
advise me but to listen even to the smallest problems and does her best
to help me solving them.

My grateful and thanks go to the University of Huddersfield, who
supported me financially and morally and gave me a great opportunity to
complete my degree. Continuous thanks go to every member in this
great University specially the technician team in the School of Computing
and Engineering who never been hesitated or delayed in helping me and
all the other researchers.

Great appreciations go to Dr. Christopher Newman and Dr. Hugh
Osborn for being very helpful and for their great support to finish this
research. | am really grateful for everything they have done to me.

Uncountable thanks to my husband (Raad) for encouraging and
motivating me to complete this research. Without him this research would
never see the light. | am really grateful for whatever he did to support me
and being very patient. Moreover, | would like to thank my son (AlHasan)
and my daughter (AlZahraa) for being so patient with me and being very
understandable for my situation.

My warm appreciations go to my parents, who spent their lives
dreaming of seeing this work completed and who supported me with all
they have. | wish | can return a very small part of their favour. | also thank
my mother in law, my sisters in law and all my relatives who were praying
to see this work in this stage and who were supporting me all over the
last few years.

Through the few past years lots of people were supporting and
encouraging me. Thank you to all of my friends and colleagues.

Dedication

‘Co my only love, (Rad..
‘Co my wonderfd parents..
‘Co my son and daughter..
‘Co the unforgellable home..

ChMay Al who hold the world in Jis hand holds them all

in Jiis paim.

Abstract

XML has becomthe standard way for representing and transforming data over the World
Wide Web. The problem with XML documents is that they have a very high ratio of redundancy,
which makes these documents demanding large storage capacity and high netwerkdtiand
for transmission. Because of theixtensive useXML documents could be retrieved according to
vague queries by naive users with poor background in writing XPath query. The aim of this
thesis is to present the design of a system named “XML Compressing and Vague Querying
(XCVQ)” which has the ability of compressing the XML document and retrieving the required
information from the compressed version with less decompression required according to vague
queries.

XCVQ first compressed the XML document by separdndata into containers anthen
compress these containers usthg GZip compressor. The compressed file could be retrieved if
a vague querys submitted without the need to decompress the whole file. For the purpose of
processing the vague queries, XCVQ decomgibgequery according to the relevant documents
and then a second decomposition stamade according to the relevant containers. Only the
required informationis decompressed and submitted to the user.

To the best of our knowledge, XCVQ he ffirst XML compressor that has the ability to
process vague queries. The average compression ratio of the designed coniprassond
78% whichmay beconsidered competitive compared to other queriable XML compressors.
Based orseveral experiments, tlyiery processor part had the ability to answer different kinds
of vague queries ranging from simple exact match queries to complex ones that require

retrieving information from several compressed XML documents.

Table ofContents

W o Yo NV LTA =T Vo o aT=] o R
7= T [oT= U0 o PSSP
Y 015 1 =T
BLIR= o] (ST] @] o] =1 o £ PPNt
(0] o) gTe | g 1aRS] £= =10 1= o | SO TP PPRTP TR
IS 0 N = 1 =
LISt Of FIQUIES ...ttt e e e ettt e e e e e e s bt e e e e e e e e e e annbaeeeaaeeeanns
List Of ADDreVviationscccoo oo
CHAPTER 1 INtroduCtioncoooiiiiiii e,
1.1 INTRODUCTION 1.vteutveetrteseeeeseeeseesseessseassseessseassnsesssseessssesssssnsesesessssessnsesansessssessnssessnseesssensns
1.2 RESEARCH HYPOTHESIS AND RESEARCH METHODOLOGY ...veeuvvieereeieeeieeeieesreessseesareesseessseessseenns
1.3 RESEARCH QUUESTIONS ..teueteeutteenteesteesstesaseesubeesuseesuseessnseesuseessesesssesnsessnsessnseesssessnseesseesnsseesns
1.4 MOTIVATIONS AND OBJECTIVES ...uvveeuvreeurerreessteesseesseesseesaseesssesesseessssesmsesssessssesssseesssessnseesane
1.5 RESEARCH CONTRIBUTIONS ..cuvveeuveeeureeeseessseessseessseessseessesesssssessesesssssnsesensessssesssessssessssesssseensns
1.6 OVERVIEW OF THE THESIS «.cetieuuuuittteeeeeeiittteeeeesesitteteeesesausaanssteeeesesannnebeeeeeesaanbanaeeeesesannreaeeeeeas
CHAPTER 2 Research BackgroUndc..uuuiiiieiiiiiiiiiieiee et
2.1 INTRODUCTION ..ttteeeeeuuuttteeeseaaansteeeeessaaunteteeeeaseesaausneeeeeeseaaassabeeeeaesanseseeaeeaasannsneesaeeaeesanannnes
2.2 XML COMMENCEMENTS AND IMPORTANCEvveeuveeereesureesseenseeessaessseeesseessseessssessssesssseessseeseesnns
A (1Y o o Yol 1 L= (T Y =K SRS
2.2.2JAVA APILFOI XML (JAXP) oottt ettt ettt sttt sateesiteesaee s
2.2.3 XML RELIIEVAoeeeveeeeee ettt e st e ettt e et e e et e e e sataaeesstaaessaaaasatasanansans
2.2.4 XML QUEIY LONGUOGES.....cuvueeeeeeeiieeeaeaiseeesesesesesssesssessnnnne
3= Y1 o SR
= XQUUETY ettt ettt e e et e e st e e e e e e s e et e e e s e e eee e e e e nrnees
- XLink and XPointer........cceceeveennenne
SINEXL i
2.3 TYPES OF QUERIES .. euuuettttteeeeeiuttteeee e s ettt e e e e e s e us e ase et e e e e e s anbabeeeeeeeanbebbeeaeaesannnnneeeeeaeesananres
2.4 VAGUE QUERIES ..teeieeiitttteeeeeeattteeeeeseaabeteeeaeaa seaaaeeeeeeeesaubsbeeeeaesansebeeaeeeesansnnaeeeseaaesanannnes
2.5 CHAPTER SUMMARYiiitittteteeeititteeeeeeaiuateteeeesseauuseeaeeteeeeesaausseeeeeeeeaassebeeaesesaannnneeeeeaassesaanses
CHAPTER 3 State of the Art Technology in Compressing and Querying XML
9T Yo U0 = S 33
3.1 XML COMPRESSION TECHNIQUES ...veeuvteeuteeeseesureesueeesseeesisessessnseesssseesnseesaseessessssessseessseesnseenane 33
3.1.1.Queriable XML COMPIESSOIS:cccueeeuueeseeriieeeieesieesieesiisesieesesitesssesssseesseesseenssenaes 35
3.2 PROCESSING VAGUE QUERIES TECHNIQUES ...uvveeureeereesireesueenseeenseesseessseessesessseessseessseesssessseesnne 40
3.3 PROBLEM IDENTIFICATION. ..cttettteiuuteteeeeeaaaureeeeeeesaausteteeaeaeaesaauunseeeeeesaaannsseeeeeesaannseeeeesesansnnnens 43
3.4 CHAPTER SUMMARYoiiittttteteaeiutteteeeeseaauteteeeessaauusee et eeeeeesaausseeeeeeesaansasbeeeesesaannnbeeaeeaansenaanses 44
CHAPTER 4 XML Compressing and Vague Querying (XCVQ) Designc.ccoeeuuueeee. 45
4.1 SYSTEM ARCHITECTURE ..utveeuveesuteeeseessseesseessseessseassesessessessessnsessssessnsessssesssssessssessessnsessnseessnses 45
4.2 XCVQrC DESIGN ..evveeeitieeeeireeesiteeesirteeesiretesanseeesesnseesesnseeesnneeessreeessnreeesansneessnneeessessenenann 47
4.2.1 Creating the Structured-Tree & its ABridgmentccceeeeecveeeeeciveeeiiieeesiieeeeeenns 48
4.2.2 Creating the CONTAINEIS............ceeccueeeeeeieeesieeeeceeeeeetaa e s e sta e e st e ssstaaestaeassssesaesanees 50
4.2.3 Compressing the CONTAINEIS.............uueecueeeseiieeesiieeesteaessteeeeeesteaesiteaessseeessrseaesinees 51
- LZW CoMPression TECANIGUE......c.viiiuieiieeieeeeeeieeseeseeeteestee s sseessteesseesseeensaesneeenseesseesnseenseessnean 52
- GZip COMPresSioN TECANIGUE......ccvieceieeieeieeeieeie et et e e et e e sseessteesaeeesee e seesseeenseesseesnseeseesanean 53
4.3 XCVQ-C ALGORITHMS AND THEIR CORRECTNESS. ...uveeruveeereerureessreesseeessuesssesssseesssesessseesssessnseesanes 53
4.3.1 startElement QlGOritRMcoocvvveeeeeeeecee ettt e e e e e et a s 54
4.3.2 endElement QIGOITtRMcoocveeeeeeee et ee e e et e e st e et e e stteaesreaaesanees 56
4.3.3 endDocumeNnt QIGOITEAMcoocveveeeiee et et et e et e e et eesaa e e e eraeaennees 57
4.4 XCVQ-D DESIGN ..teettee e ettt e e e ettt e e e e ettt ettt e e e s e asbe et e e e e e e anbaeeeeeesaaansbeeeeeeeaan sannnnneaeeas 58
4.5 XCVQ-D ALGORITHM AND ITS CORRECTNESS ..ceeeiuuiertteteseaauurteeeeeesaannreeeeessaa seannreeeeesssannnnneeeens 60
4.6 XCVQ-QP DESIGN. ...eettteeeeeiiiittteeeeeeeiett e e e e e ettt e e et eeesaaunbeteeeeeaaansaeeeeeesasanbeteeeeeeaaannnneeeeas
4.6.1 XPAER QUETY.c..eeenieeeeeie ettt ettt ettt sttt s e steesateessteenaeassnanaeaes
- Path Matching Expansion
- Data Value Matching EXPanSIONcocueeueeriierieeieeriee e eieenite st ettt et et sate et sire st e naaesane s 69
- FUNCLION St EXPANSION oottt e e e s e e e e s e e e e s e s neneeeeeeeeeennes 70

4.6.2 QUEIY DECOMPOSEN ..ottt a e e et e e e e e e e e nennnes 71

4.6.3 QUEIY FEIAXALION ...cc.eeeeiieeeiit ettt se ettt et st e s e e st e sabeenaseesaaesses 74

B.6.4 RANKING......ovveeeeeeieeeeeeeeeeeeeee e e e ettt e e eae e e e ettt aeeeesasaas e s e s eeessstsssaaaaeesssssssssneaaeeeaas 78

4.6.5 DECOMPIESSION ..ottt ettt ettt ettt e e e e et et e e e e e e e e aaaaaaaaaaaaaaaaaaaaaaees 79

4.7 CHAPTER SUMMARY ...ttttteieiuutttteeeeeaautettteaesasauteeeeaesaeeaasausbeteeeesaaaanseeeeeeesaaaunreteeeessasnsennseaeeas 80
CHAPTER 5 XCVQ Testing, Evaluation and DiSCUSSION..........ccccceveeeiiiiiiiieeeee e e 81
5.1 TESTING STRATEGY 1.veeuveeurereeereeeseessesseesseesseenseassessessssesssesssessnessesssesssesseesseessesnsesseessesnssesssessnes 81
5.1.1 Testing XCVQ'S BERGQVIOULccceeesueeesieesieesieesiie et esiteeesite et st saeesiteenne e 81

5.1.2 Testing XCVQ’s Structure & FUNCLIONAIILYcc.veeeuvveveieeiiieiiesieesieesitesiee s 84

5.2 TESTING FACTORS ..veeuteeuteseeeseeesteetesseeseeesseensesseessessssesssesssesssessessesssesseesseensesnsesseessesnssesssessees 85
5.3 DATA PREPARATIONuieitittieeeaeiitieteeeeseauabeteeeeesaauusteaeeeeeeaesansseeeeaeesaansnsbeeeesesannnneeeeeaassesannes 87
5.4 TESTING ENVIRONMENT ...ettteiiieiiutetteeeeeaiuteteeeeeseausteteeeeeeessaausnreteeeeeaannneeeeeessaannseeeeeaesansnnnnes 88
5.5 XCVQ-C AND XCVQ-D TESTING -..uutetteeeeeeiiietteee e e sttt e e e s esiiteee e teeeeesesasbeeeeeaesennseeeeeeesennnnnees 88
5.5.1 XCVQ-C and XCVQ-D Testing: StAGE-1.......cccuuuueeeieeeseeieiieaeeeesiiiieaeaeeeseeesiisensaaeeeans 88

5.5.2 XCVQ-C and XCVQ-D Testing: StAGE-2.......ccvvevueeeeirsienieessieesieesieesiessesieesieeesieenne 91

5.6 XCVQ-C & XCVQ:D EVALUATION «..evvieiiireeeiieeeeeiteeesireeesneeessireeeeesnnneessneeessnsseessnnneessasseesans 92
5.7 XCVQ-QP TESTING...ttteeeuureeertteesatreeesiureeesiteessssteeesessseeesnseesassseesssssesesasseesssssesessnseeesssanseenas 95
I A N 0 o PRSP PU USSRt 95

I A 0 = PSPPSRt 96

5.8 XCVQ-QP EVALUATION. ...cttteiteaiiietteeeeeeiatetteeeesesasttteeeeeeessaausatteeaeeeaasnseeeeeeesaanneeeeaeeasannnnnes 98
5.9 CHAPTER SUMMARYiuiiititeteeeititteee e e s ettt eeeeesaateteaeteeeesesusbeeeeeeeaannsaeeeeeesaaassbeeeeeesaansannes 100
CHAPTER 6 Conclusions and fUture WOTK...........cccocccuirrireeoisiiiiieene e s sssiiieeeeee e e 102
5.1 CONCLUSION 1.vveuteenteeeeeseeeseeesseeseeseeesseesseassesseesssesssesseesssensesssssssesseensessseessessesssensssssssesseensennes 102
6.2 RECOMMENDATIONS ...veeveeteeeeneeeneesseesseesseeseesseesseessessseesseessesssesssessesssesssesssessesssesssesseensseenes 104
5.3 FUTURE WORK 1..teeuteeeieseeesttesteeeeseeeseeestseseesseessessstesseeseeessesnsesssessesssesnsesssessesnsenssessseesseensennes 105
U o] [T= 1T 1N 107
] (=] (=] o= I 108
ApPPENdixX-A: XPath’s EBNF.......ccoii it 117
Appendix-B: Implementing XCVQuuuiiiiiiiiiiiiie e 120
Appendix-C: XML Corpus & XPath Benchmark.............ccccueieiiiiiiiiiiiiniiee e 134
ApPPeNdiX-D: TESHNG RESUILS......cccciiiiiiiiieiie e e e e e 139
Appendix-E: XPath Query Evaluation Benchmark.............cccccceevviiciiieene e 141
Appendix-F: INdependent tESHINGccvvriiiie e 144
Appendix-G: XML dummy €lements ratioccveeeeeeeiiiiciiiiiree e e e e e e s ssenreee e e e 145

Copyright Statement

The author of this thesis (including any appendices and/or schedules to
this thesis) owns any copyright in it (the “Copyright”) and she has given the
University of Huddersfield the right to use such Copyright for any

administrative, promotional, educational and/or teaching purposes.

Copies of this thesis, either in full or in extracts, may be made only in
accordance with the regulation of the University Library. Details of these
regulations may be obtained from the Librarian. This page must form pant of an

such copies made.

The ownership of any patents, designs, trademarks and any and all other
intellectual property rights except for the Copyright (the “Intellectual Property
Rights”) and any productions of copyright works, for example graphs and tables
(“Reproduction”), which may be described in this thesis, may not be owned by
the author and may be owned by third parties. Such Intellectual Property Rights
and Reproductions cannot and must not be made available for use without the
prior written permission fothe owner(s) of the relevant Intellectual Property

Rights and/or Reproductions

Table 2-1:
Table 2-2:
Table 2-3:
Table 3-1:

Table 3-2:
Table 3-3:
Table 3-4:
Table 4-1:
Table 5-1:
Table 5-2:
Table 5-3:

List of Tables

Differences between Data-centric and Document-centric XML.................... 21
SAX aNd DOM FEAIUIESceveiiiiieeeeee et e e e st e e e e s 22
(O 01T V1Y 01 TP P PP PP PPPPPPPPPP 29

The main differences between XML-conscious and XML-blind compressors

.. 34
The main limitations of some queriable XML compressors.ccccceeeuvveee. 35
A comparison between different compression techniques.coccuueee. 38
Query types with the compression techniques process each....................... 43
Compression granularity COMPAariSON.uueiiiiiiiiiiiiiieeee e 52
XCVQ TeStiNG FACIOIS ... 85
Average CR for all the tested XML COMPreSSOrs.cuvvveeeivicivvieeeeeeseiinrnnnnns 93
XPathMark-FT query benchmark...........ccccooiiiii e 96

List of Figures

Figure 1-1: System Development Methodology (Morrison and George, 1995) 13
Figure 2-1: XPath Queries Examples. (a): CO query. (b) CAS query........cccccceevvinnneen. 24
Figure 2-2: The role of XPath between other XML query languages. (W3Schools.com,
200B@) ...ttt bbb b h e h et b Rt b et et e et ne e 25
Figure 3-1: The distribution of the compression techniques over the years................... 39
Figure 4-1: Preliminary Architecture of XCVQccuiiiiiiiiiiie e 46
Figure 4-2: The complete design of XCVQcooiiiiiiiiiiiiiiiiiiee e a7
Figure 4-3: AN XML @XaMPIEvvveiiieii i e e e e e 49
Figure 4-4: The structured-tree for the example in Figure 4-3.........ccooiiiiiiiiiniiiinnen. 50
Figure 4-5: Creating containers process. (a) the path-Dictionary. (b) the container...... 51
Figure 4-6: (startElement) algorithm ..o 54
Figure 4-7: (endElement) algorithm ... 56
Figure 4-8: (endDocument) algorithm ... 57
Figure 4-6: Architecture of XCVQ-D.......ccuuiiiiieii it e e 59
Figure 4-10: XCVQ-Decompression algorithm ... 62
Figure 4-11: The architecture of the query ProCeSSOr.coccvvviiieeeee i 66
Figure 4-12: String-similarity match algorithmccccco oo, 68
Figure 4-13: The design of XCVQ-Query DECOMPOSENcccuuvieeieeeeeiiiiiiieeaea e 72
Figure 5-1: XCVQ State Graphcccciiiiiiiiiiiee e seseee e e e e e e e s snaaaeeeae s 82
Figure 5-2: SCR for the XIML COMPUSuuiiiiiie ettt e e s e e e e e e ennrnaeeeee s 89
Figure 5-3: (a) Structure Compression Time for the XML corpus and (b) Structure
Decompression Time for the XIML COIPUS.cceeiiiiiiiiieiie e eeciiieee e e s e ee e e e e e nnenveeee s 90
Figure 5-4: CR fOr the XIML COMPUScouviiiiiiee et e et e e e e s e e e e e e e snenaeeeee s 91
Figure 5-5: (a) Compression Time and (b) the Decompression Time for the XML corpus.
.. 92
Figure 5-6: Evaluating XCVQ-C CR........uutiiiiiiaiiiiiiiie et 93
Figure 5-7: Evaluating XCVQ-C CTccciiiiiiee et e et e e e e e e s ssnaee e e e e e e e snnnnaeeeee s 94
Figure 5-8: Evaluating XCVQ-D DT. ...ttt e 95
Figure 5-9: Testing XCVQ-QP QUErYING tIMe......cuuuiiiiiiiiiiiiiiee e 97

Figure 5-10: XCVQ Query processing time against (a) XGrind and Xpress, (b) XQZip,
T a Lol () SN @ L G PRSP 99

API
CAS
Co

CR

CT
DOM
DR

DT
DTD
EBNF
EXI

H

INEX
JAXP
Lzw
NEXI
QFT
QPT
RD
SAX
SD
SDM
SGML
TD
w3C
XCVQ
XCVQ-C
XCVQ-D
XCVQ-QP
XML
XPath
XQuery
XSLT

List of Abbreviations

Application Programming Interface
Content and Structure

Content Only

Compression Ratio

Compression Time

Document Object Model

Data Ratio

Decompression Time

Data Type Definition

Extended Backus-Naur Form
Efficient XML Interchange

Data Compression Entropy
Initiative for the Evaluation of XML retrieval
Java API for XML
Lempel-Ziv-Welch

Narrowed Extended XPath |

Query Functional Test

Query Performance Test

Regular Documents

Simple API for XML

Structural Document

System Development Methodology
Standard Generalized Markup Language
Textual Document

World Wide Web Consortium

XML Compressing and Vague Querying
XCVQ Compressor

XCVQ Decompressor

XCVQ Query Processor

Extensible Markup Language
XPath: a XML query language
XQuery: a XML query language

XML Style sheet Language Transformation

10

CHAPTER 1lintroduction

1.1 Introduction

The eXtensible Markup Language (XML) is a World Wide Web Consortium
(W3C) recommendation which has widdbdgenusedin both commere and
research. In recent years, we have witnessgxdmaticincrease in theolume
of XML digital information that is eithecreated directly as an XML document
or converted from another type of data representation. The importance of XML
is mainly due to its ability to represent different data typiisin one document,
solving the problem of lonterm accessibility, angroviding a solutiornto the
problem ofinteroperability(Al-Hamadani et al., 2009).

Due to the replication of the XML schema in each recordXtie document
is considered to be one of the sddfscribing data files, which means that these
kinds of files have dot of data redundancy in relation to both its tags and
attributes (Ray, 2001). For the above reason the need to compress XML
documentss becoming increasingly dramatieurthermorewhat hasevolvedis
the urgent neetb retrieve information directly &m the compressed documents
and then decompress only the retrieved information (Ferragina et al., 2006).

Because of the wide range of XML documents in use and the different kinds
of users,being ableto deal with all kinds of querielsas become a key issue
Some of these queries may have imprecise constraints which cannot be
processed directly due to the grammar restrictionthe existing query
languages. However, these types of queries, which are knovagas queries
appear to be common when the users of the XML documents have little
knowledge about the document structuranasylack the skills to write a precise
and meaningful query. Another type of vague queries occurs when the query is
presented witbut the presece of aSchema or the data type definition (DTD) of
the document.

According to therelevantliterature, there ara number of techniques that
compress the XML documents and query the compressed version with no or

11

partial decompression. These techniquexgss almost all types of queries but
not the vague querieagmittedly,there area numberof researches now trying
to process vague queries on the original XML document.

The research carried ounh this thesisprimarily concerns designing and
implemening a new technique called XML Compressing and Vague Querying
(XCVQ)which consists of two stages. In the first stage, it separates the data part
of the XML document into several containers according to the path of that data
within the document. Then eaohthe containers is compressed separately using
a backend compressor. The second stage presef®e vague queries by
decomposing them into multiple sgoeries, retrieve information from the
compressed XML document according to each-cqudry, combipes the
retrieved information according to the given query, and finally decongwess
only the most relevant information.

To eliminate the amount of technologies associated with the XML documents
and to make the process of compressing and retrieving infommedger for the
inexperienced user¥CVQis designed to be schema independent in both phases

of the compressor and the query processor.

1.2 Research Hypothesis and Research Methodology

This thesis is based on the following hypotheses:

1. The existing XML compression techniques can be improved to construct
a new schema independent XML compressor witigher compression
ratio.

2. The redundancy in the XML documents significantly affects the size of
those documenisnd can beeduced tanore than half of the original file
size

3. The compressed XML document can be retrieved according to vague
queries. Vague queries are those queries wiighnot follow the
semantic rules of current query languagdesey occur when the exact
matching user’'sjuery does not retrieve the required informatsther
because of the lack of experience in writanqueryor the absence of the

document’s schema.

12

4. The necessity of retriavg information from more than one XML

documents without the need to specify aacat relative document.

Research Problems
No theory yet Existing theory > Rese?rch
developed in question question
* \ 4
Prototyping
Conceptual Requirements Architecture/ Analysis/)
Development Identification Methodology Design Implementation
Development

A ¢

Evaluation

Revise Prototype Observation,
Testing,
Analysis

v '

Concenptual Contributions Practical Contributions
Development Confirmation/ New domain System Prototype
of new theo Refutation of knowledge o

ry existing theory 9 Specification System

Figure 1-1: System Development Methodology (Morrison and George, 1995)

The above hypotheses are tested throughout this research by using the
System Development Methodology (SDM) (Nunamaker et al., 1991; Morrison
and George, 1995; Hevner et al., 2004). This methodology has been widely used
by software developers and informatieystem specialists (Meersman et al.,

2008; .Yousof et al., 2011) As depictedrigure 1-1, this methodology consists

of four main stages:
1. Identifying research problem&his stage focuses on drawing up the
research questions due in part to the lack of theories in the research field
and/or build upon existing theories. In this thesis, the research questions
are set from two XML fields, compressing the XML documents and
guerying them. As a result, a new XML compressor is introduced
(CHAPTER4) with the ability to retrieve information from the

compressed document according to vague queries. The designed system

13

may improve the querying process rerieve information from XML
documents.

2. Prototyping and evaluationn the second stage, SDM spotlights the
implementing or prototyping the proposed system. It starts by designing
the conceptual model of the proposed system, identifying the necessary
requirements, designing the complete architecture of the system, and then
implementing the system to prepare it for the evaluation process by
testing and analysing it. In this thesis, the complete architecture and the
detailed design of the system are laidt do CHAPTER4, the
implementation part is in Appendli, and the evaluation process is
given in CHAPTER-5.

3. Conceptual and practical contribution&s a final stage, SDM sets
the main contribution to the knowledge. In this thesi$ the
contributions, conclusions, and future developments paesentedin
CHAPTERS®.

1.3 Research Questions

Following the SDM as shown iRigure 1-1, outlining the research questions

should be made before proceeding further with defining the actual prototype.

The research into this thesis focusmdtwo main partseachof which has its

own set of questions tme addressed

1.

Is it possible to design a new compression technique that has the ability
to compress XML documents and achievédetter compression ratio
without the needor the document’'schema or its DTD?

What is the influence of the structure redundancy on the overall size of
the XML document?

What are the main types of vague queries and veoeid they occur?

Has the existing XPath query language the ability to answer vague
qgueries? If ng what is the required expansion that should be made on
XPath to providet with such ability?

14

4. How does onaletermine the relevant XML document(s) from thousands
of documents without the need to scan them completely for time saving
purposes? And is it possible to retrieve information from more than one
XML document without the prspecification of these doments using

one XPath query?

1.4 Motivations and Objectives

This work is initially motivated by the need to expand the XML query
languages. These languages are treating the user's query in Boolean nature
(Campi et al., 2009) in which a specific XML node is selected if and only if it
satisfiesexactlythe query or part of it. This case applies more restrictions to the
inexperienced user or in the case of schema absence

XML has become a focus for research in both the database as well as the
document research wonunities(Harrusi et al., 2006; Moro et al., 2008his
research is motivated by the strength of XML such as its simplicity, the
separation of data from the structure, interoperability, and human and machine
readability. All these features and more m#ie XML document aeliableway
for data transformationon the web. However, the redundancy in the structure of
the XML documents enlarges their sizes, thery reason that inspired
researchers to produce compression techniques deditatedML. Other
researchers were interedtn retrieving information from the compressed XML
document to make it easier to use thesgy largedocuments with low resource
devices. Although these techniques succeeded in answering several types of
queries, they are incapable of processing vague queries, whiyat another
motivation for this research

The main objective of this research is to investigate the different types of
vague queries and set new methods to solve these queries in the exdsgnof
compressed XML document. The design and implementatiansygstem that
has the ability to compress the XML document and retrieve information from the
compressed file according to vague queriesalonethe needto decompress

only the retrieved relevaintformation is another objective of this research.

15

Since it was very difficult to have access to the source code of an XML
compressor to be used as a first stage to achieve the main objective, another
objective therefore was to design and implement a X®lk compressor that
has the ability to achieve a better compression ratio than the existing teshnique

1.5 Research Contributions

This research will contribute to the fields of XML compression and XML

retrieving inthe followingareas

1. A new XML compression technique is introduced that compresses XML
documents efficienthandindependerty from their Schema or the DTD.
The designed compressor achiewaedompression ratio df.83which is
higher than the best existing techniques.

2. Identify the exact ratio of the redundancy of the XML structure. This
redundancy is abridged by up to half the size of the original file.

3. The main contribution of this research is the introductionaafiew
method toanswer vague queries, a kind of quettest can be submitted
by naive users ovia the absence of the document’s scheiifa new
methodis adjusted to process the vague queries under the compressed
XML documents and retrieve the most related results.

4. Introduce the ideaof retrieving informatio from XML documents
without specifying the exact documents that have the required

information

1.6 Overview of the Thesis

Apart from Chapter 1he thesis hasix more chapters:

Chapter 2: Research Backgrouiithis second chapter setsrth the research
backgound including all the techniques usedhe research process. The most
important features of XML documents are listadcompanié by their types,

the API used to parse them, the techniques used to retrieve information from

16

them, and their query languages. This chapter also lists all the query types and
provides a complete definition of vague queries.

Chapter 3: Statef-the-Art Technologies. This chapter is separated into two
main parts. The first one concentrates on discussing the main XMLressign
techniques and sets the differences between them, their advantages and their
drawbacks. The second part discusses the techniques that have been used to
solve vague queries from XML documents.

Chapter 4:XCVQ Design.This chapter illustrates theesign of theXCVQ
system starting with the main architecture of the complete system. Then it sets
the detailed design of the compressor, followed by the design of the
decompressor. This chapter ends by giving the complete design of the vague
guery processo It is supported by the algorithms that are used to answer the
research questions.

Chapter5: XCVQ Testing, Evaluation and Discussiobhis chapter sets all
the testing process for thCVQcompressor to obtain the compression ratio and
for the XCVQquery processor to determine its functionality and the
performance. An extensive test has been done to co@ar® with the other
existing techniques. All the results of these tests can be seen in this chapter. |
ends with the discussion part that ilhases the main features, advantages, and
drawbacks for the designed system.

Chapter6: Conclusion and Future WorKshis chapter summarizes the main
conclusions and contribution of the research and suggests more development and

expansion for further research.

17

CHAPTER 2Research Background

2.1 Introduction

This chaptemprovidesthe backgroundo our research. lcomprisesseveral
key parts. The first one illustrates the most important techniques that motivate
and supporthis research. XMI_being the most important keyechnology,is
presented in this section, alongside the structure of the documentswahitth
be crucialin the design of the compressor. XML query languages and the main
differences between them aatso discussed because of their importance in

retrieving information fronsuchdocuments.

2.2 XML Commencements and importance

Before the rise of the internet, 1980s witnessed the inventi@taofdard
Generalized Markup LanguagéSGML) as a way to display informanh
dynamically. Later, in 1995, W3C recommended SGML to be tdsedhe
internet. Problems occurregthen using SGML includedthe lack of widely
supported style sheets, complexity and instability in the software that wege usi
it, and the difficulties in interchanging SGML data due to its varying levels
among SGML software packages.

In 1996, the first XML working draft waistendedto be a powerful substitute to
SGML. It was first recommended lijre World Wide Web Consortium (W3C)

in 1998 to be useds a mark-up language for storing and exchanging data
through the web. The most recent recommendation was published in 2008,
which is the fifth edition of the XMLW3C, 2008) In a very short period of
time, XML has become thbasis fordata exchange through the Internet. This is
due to its several features suchths following (NG et al., 2006; Gerlicher,
2007; Groppe, 2008):

18

» Readability: XML is readable by both human and machine. This
means that the data represented by XML can be used by different

users and by different parsing code.

» Interoperability: This is the ability of the hardware and software to
use XML documents without the need to make any chatoytdse
software or the data itself. This means that XML data is stripped

anydependency osoftware and machine.

» Long term usability: Since XML documents are represented using
the Unicode; these documents are exgrbtrd stay in secure storage

and usage foyears(Augeri et al., 2007; De Meo et al., 2007) .

= Extensibility: This means that there are no fixed set of tags that

should be used to represent data.

» Generality: XML documents have the ability to representetbfiit
kinds of data representation such as images, sounds, videos, texts,

etc.

» Internationality: Almost all written languages can be represented in
XML documents since they support Unico@€orbert and Kai,
2004).

In spite of all these advantages, XML has also some weaknesses:
They havea huge amount of redundancy whioiakesthese documents
demandhigh storage memory to be archives, high band width to be
transmitted, and high cost to be processed.
The huge amount of technologies surroundingpinplicateshe use of
these documents such as schema, DTD, XSLT, SAX, DOM, XPath,

19

XQuery. These technologiesender the use of these documents
somewhatdifficult especially with naive users or in casekere these
technologiesare absent,it would be justas difficult as they are
considered necessdigr dealng with XML documents

The problems that can occur when dealing with the document namespace
should be carefully sorted oubtherwise other problems and
complications could occur during the processinf these XML

documents.

2.2.1 XML document types

The main building blocks of any weibrmed XML document are nested

open tags and their equivalent close tags. &hags can be formed as follows
(Hunter, 2000; Anders, 2009; Goldberg, 2009):

Elements:each eleent starts with an open tag (<p>) and ends with an
end tag (</p>). Everything between and including these tags are an
element. The general structure of an element is as follows:
<e at="vi" at="vy’ aty="v,">did:0s...dn</e> Q)
Such that n>0, and m>0
Each element has aelemeniname (e) which should follow the
following rules:
o Case sensitive names.
o Consist of characters, numerals, underscores and tabs.
o Start with a character or an underscore.
0 Should not start wittkml or XML.

Elements can have optianelememtvalue ({d1d>ds...dmy} in (1)) which

represent the actual data values for the XML document.
Attributes: attributes (if any) appear within an element and they provide

more information about that element. Each attribute haat@ibute

name ({at;, ab, at,} in (1)) which should follow the same ruldsr an

20

elementname and amattribute-value({v 1, v, .. v} in (1)) which can be

any printable character between a pair of quotations.

3. Data text:the data in a XML document could eithse attribute-values
or elemertvalues This text can be a list of any keyboard printable
character from the Unicode set {fdds...dn} in (1)). Some escape
character should be used to embed some of the characters in the data text
such as<), (>), (&), ("), and ') to represen(<),
(>), (&), (), and (*) respectively.

4. Commentscomments can be added anywhere in the XML document to
provideany furtherdescription buts not part of the main document. In
XML, the comment start tag is (<) and the end tag is-¢).

5. Declaration:this single statement (if any) should be the very first line of
the document. It supplies the XML processor with information such as
the version, encoding and other information aboetitfitument. Its start

tag is (<?xml) and its end tag is (?7>).

Table 2-1: Differences between Data-centric and Document-centric XML

Criteria Data-centric Document -centric
XML role Superfluous Significant

Order Not very important Significant
Consumption Machine Human

Data granularity Fine Large

Examples Catalog and flight schedules | Books and advertisements

Depending on the amount of dagt(ibutevaluesand elementvalueg in
the XML documentBourret(2005) and Manninget al. (2008)classified XML

documents into two types, either datntric or documententric. Table2-1

lists the main differences between these two types accordicgrtancriteria.

21

With datacentric XML documents the rad®f the XML elements and attributes

are to arrange these data in atomics. These documents are usually created and

used by machines such as the XML documents that are generated by a Database

Management System, or those used to transfer data between different databases.
In contrast, XML role in documementric XML documentsis very

important since it is the only way to organize this documentlarge units of

information. The order of the elements inside these documents is important since

any change in the order can produce a completely different document.

2.2.2 Java API for XML (JAXP)

Java programming language, and some other languages, provides different
typesof XML Application Programming Interface (API) such as SAX, DOM,
and XSLT (Violleau, 2001; McLaughlin and Edelson, 2006; Williams, 2@©9)
order to process the XML docemts by means ofwriting a computer
progranme using several programming languag8aX (Simple API for XML
scans the XML document sequentially and throws events that the
programmer can handle. These events are thrown by the parser when it detects
the startdocument, endlocument, star¢élement including a list of all its
attributes, engtlement, and characters. The programmer should write suitable
codesfor each event to process entire XML document. Since each event
occurs only once for each element, all the required work needed to process the

document should be done in one cycle.

Table 2-2: SAX and DOM features

SAX DOM
Event based model Tree-like structure
Sequential access Random access
Required low memory Memory intensive
One scan for the document Multiple traverse for the
document
1998, David Megginson's 1998, W3C's

22

By using DOM pocument Object Modglparser, the document is
represented in the main memory of the computer as dikeestructure. The

programmer can write the code to traverse this tree as many times as s/he needs.
Table 2-2 setsout the main features of SAX and DOM. It shows that using

DOM parser is memory consuming and since the aim of this research is to
reducethe amount of memory used to process the XML documents, the designed
system used SAX parser to process these documents.

While SAX and DOM parsers should be used through a programming
language, XSLT XML StyleSheet Language Transformatjois a declaratie
language which is used to transform the XML document into another document
type (Tidwell, 2008; Williams, 2009). Its two main purposes are: (1) produce
HTML documents from XML documents for browsing purposes, and (2)
retrieve information from the XML document usitige XPath.

2.2.3 XML Retrieval

XML retrieval is considered to be one of the samnuctured retrieval
technigues (Manning et al., 2008). This adds more challetogeseeting the
user’'s needs. The first difficulty in structured retrieval is that the nezprires
only parts of the documeni@nd not the entire document like unstructured
retrieval techniques dGtamatina et al., 2006). This challenge leads to another,
which is the identification of the most relevant parts from the document to the
user’s query. To solve this difficulty there are two approaches, either toveetrie
the largest units of the document that contains the required information (top
down) (Norbeat and Kai, 2004; Jiaheng, 200&)r to retrieve the smallest unit
by starting the search from the leaves of the XML tree (bottontRuybir et al.,
2006).

Retrieving information from XML documents provides the users with the
extra abilities to specify thexact piece of information needed or to combine
different parts from of the document that meet the user's need. The user’s
gueries can specify the required information as well as the plaeee this

informationis to be found inside the document. For anse the user may ask

23

about“a table of all XPath functions in XPath description chaptdri this case
the “XPath functions” and the‘XPath description” are about the content of the
document, while th&table” and thé‘chapter” are about its structure.

XML documents can be retrieved according to their type eitheicettic
or data centric retrieval. In textentric, an approximate matching process is
used to match the text of the query with the text of the document while the
structure role is as agmework within this process (Manning et al., 2008). Since
the matching process is done with the data part of the XML document, the
retrieved information is expected to be long and they should be raDketie
other hand, dataentric retrieval retrievesnly attribute values and numeric data
using exact match. The retrieved information from this type is short and the

ranking is not significant.

//title[title = “XML and XSLT”] and sec[par = “We declare our choice of an associated
style sheet for an XML instance”]

(@)

//article/section/para[1]

(b)

Figure 2-1: XPath Queries Examples. (a): CO query. (b) CAS query

Another classification for XML retrieving techniques is done according to
which part is more significant in the user’s query: the content part or the data
part (Hunter, 2000; Sanz, 2007). Cont@mtly (CO) queries are rich of text and
focus on the data part of the XML document. The user can add some structural

constraints to the query to specify the granularity of the required information. As
seen inFigure 2-1a), the XPath query focuses on retrieving the title and the

content of a paragraph whichconsidered the data conteritthe document. To
process these queries, some of the techniques use the traditional IR techniques

by completely ignoring thstructural constraints and treat the XML document as

24

a traditional text file, while other techniques decompose the query into several
small queries and process each one separately

ContentAnd-Structure (CAS) retrieval takes into their considerations the
structural part of the XML document and provides the user with extra

advantages to accurately specify the exaatt required from the relevant
document. The XPath examplekigure2-1{b) concentrates on finding the first

paragraph which is in a section for the specific article.

2.2.4 XML Query Languages

Different kinds of query languages have been proposed in order to retrieve
specific information from an XML documenill these languages have a
common feature in that the user should specify the exact XML document(s)
wherefrom s/he would like to retrieve the information. This section spotlights
the main features of some of the query languages which are either recommended
by W3C (XPath, XQuery, XPoint, and XLink) or used by Initiative Evaluation
of XML retrieval (INEX) working group (NEXI).

- XPath

Standng for XML Path languaget is a descriptie language which takes an
XML document and a user query as an inputs and produces specific nodes from

this document as output (Kay, 2004).

20uery XPointer XLink

XSLT

Figure 2-2: The role of XPath between other XML
query languages (W3Schools.com, 2006a)

25

It is considered to be the core to all other XML query languages, as
illustrated inFigure2-2 (W3Schools.cm, 2006a). The main building blocks for

an XPath expression are: (1) expressions deal with atomic values which include

comparative and arithmetical operations, (2) expressions for selecting specific

nodes from a tree, and (3) operation on every item peaific sequences, such

as using théfor” expression.

In 1990, W3C recommesdXPath 1.0 as an XML query langua{&/3C,

1999) In 2010 W3C recommend the last version of XPath 2.0 to be a standalone

guery language or to be embedded with XSLT or XQUu&WEC, 2010a) It

comes with some developments on the first version. These changes make XPath

easy to use, improve its interoperability, simplify the manipulation of string
contents and Schentgped content, and to increase its efficiency. These

developments include: (Holman, 2002; Kay, 2004; W3C, 2007b; Kay, 2008)

1. Data types: XPath 2.0 offers new data types such as integers, single
precision, date, time, and any data type that can be defined by the user
through XML Schema.

2. Path expressions: Not very big changes on path expressiopared to
XPath 1.0, only the ability to use the function call within the path
expressions a slight change.

3. Operators: addition operators are used to support XPath 2.0 functions.
Examples of thee operators aréis” to test if two expressions return the
same set of nodes;<” and “>>" to test the order of the two operands,
“except” and “intersect” to find the difference and the intersection
between two node sets, aridq”, “ne”, “It”, “le”, “gt”, “ge” to make
a comparison between atomic values and return a node set.

4, Functions: Some new functions are added to the list of the available ones
in XPath 1.0 such as:nfax()”, “min()”, “avg()”, functions to
manipulate the me data types likedate time and QNames
generalization of string manipulation functions to deal with -deéned
types.

Path expressions thus provide a very powerful mechanism for selecting
nodes within an XML document, and this power lies at the ludarte
XPath languagé€Sigurbjornsson and Trotman, 2003; Kay, 2004).

26

- XQuery

In 2007, W3C first recommended XQuery as an XML query language and
they made théast recommendation in 20X0v3C, 2010b). This querying and
descriptive language uses XPathrétrieve information from XML documents
whereas the simplest XQuery expression is an XPath expredgienmain
engine in XQuery is thtFLWOR” expressions which stand for Foet-Where
OrderReturn. In these expressions, tha” expression selects a specific node
list from a specific documenvhich can be repeatesgeveraltimes within the
same expressiolhe “let” expression associates with each node in the node
list(s) generated by the first expressimnanother node retrieved from another
XML document. The'where” expression filters the resulting list according to a
specific condition. Théorder” expression sorts the list according to a specific
atomic. Finally, théreturn” expression specifies the reced information from
the node list(s).

The mainadvantagef XQueryover XPath is that XPath by its own cannot
organize the output of the query in a specific format while XQuery does
(McGovern et al., 2003). Although XML Style sheet Language Transfammat
(XSLT) can do organize the format of the retrieved information, but it could be
difficult for the user to use it due to its recursateucture and mixed name
spaces.

Another feature in XQuery is its capability to retrieve information from
more than one specified XML documents. XPath is suffering from the lack of
this feature.

Although it is considered to be very easy to,usQuery is a reaanly
guery language. This means that XQuery does not have the ability to exchange
or create an XML document lIK&QL to the databases

- XLink and XPointer

XLink stands for Linking Language and recommended by W3C in 2001
(W3C, 2001). The main purpose of XLink is to make eittemple” links

27

between two XML resources, textended” links between more than two XML
resources (W3Schools.com, 2006a). With*8imple” links, any element inside

the XML document can be linked with another resource such as an image, a text
file or even another XML document just like tte¢ element in HTMLwhich
performs Unidirectional link. When the link type“esxtended” this means that

the link will be bidirectional between the XML document and the other
resource(s).

XPointerstands for XML Pointer Language and recommended by W3C in
2003 (W3C, 2002) It uses XLink to point to specific data part within the XML
document. This means that XPointer query should starts with the URI of the
document followed by#” sign which indicates the starting of the XPointer

guery which is actually an XPath query with some extra functions.

- NEXI
Stands for Narrowed Extended XPath | is an XML query language that follows

the steps of XPath with some modifications. First, the NEXI retrieval engine
designed to deduce the semantics from the query in reverse to XPath which has
predefined semantics. Furthermore, NEXI extended the use of the contains()
function, which is used by XPath to indicate an element that is contain a specific
content, to be about() function to indicate the element to be about the content.
This adjustmentIbpbws NEXI to deal with fuzzy queries. NEXI has been used

for several purposes, such as question answering, multimedia searching, and
searching heterogeneous document collections. (Trotman and Sigurbjornsson,
2005)

2.3 Types of Queries

Queries are questions written by users to search, change or retrieve a specific
piece of information from different types of files such as text, image, or database
files. Depending on the query functionality, they can be categbiite three
types. The first type is theelecton querieswhich are responsible for selexy
and retrieing the relevant document or sdlocuments and retung the results
to the user. Thaction queriesare the second type. These quenmeplementa

28

specific action on the selected file or documsnth as delete, add, or update a
piece of information. The third type is tlaggregate queriesvhich find the

statistical amount for the selected attributes such as average, max, min ...etc

Table 2-3: Query types

Query type

Description

XPath Example

Simple
gueries (SQ)

Retrieve part of the
document according to

general specification

List countries names

/[countries/country/name

Criteria
gueries (CQ)

Retrieve part of the
document according to a

specific criterion.

List countries with less than 10 million
population
/[countries/country[population <
10000000]

Conjunctive
queries (JQ)

Retrieve part of the
document according to
conjunction of two or more

criteria.

List industrial countries with less than
10 million population
/lcountries/country[economy="industry”]
and //countr[population < 10000000]

Range
gueries (RQ)

Retrieve information
according to a range
between given minimum and

maximum values.

List countries with population between 6
million and 15 million
/[countries/country[population >
6000000] and
[/[countries/country[population <
15000000]

Vague
queries (VQ)

Retrieve information when
there is no Boolean matching
between the user’s query
and the relevant XML
document (Stasiu et al.,
2005; Rajpal et al., 2007).

List countries with population between 6
million and 15 million
/country/population between(6000000,
15000000)

Depending ortheir complexity, selection queries can be categorized into five
main types.Table 2-3 lists these types and describe their features suppoyted b

an example for each type and its equivalent XBatry (vritten inltalic in the

table) The amount of the retrieved information varies according to the query’s

29

level of complexity such that the simplest query retrieves general information
while themorecomplex query tries teetrieve more specifimformation

Since vague queries are the central issue in this research, the following
sectionprovidesa brief descriptiorof such queries and how they can appear in

information retrieval domain

2.4 Vague Queries

XML query languages force the users to follow their rigid rules to write a
syntactically true query. This process is not easy to be maintained even for
expert usergHuh et al., 2000). Moreover, in order to retrieve the required
information these languagesequire previous full knowledge about the
document’'s schema whis considered to be difficult to ordinary users. If the
query does not follow theemantiaules of thequeryinglanguage or it does not
meet the document’s schema, null information willrb&ieved because these
query languages use Boolean conditiatngreina condition is either true (exact
match) or false (no match) (Campi et al., 2009). On the other handlingthe
fault-tolerant for the user's query makes it easier for the user tteeve
approximate information when vague conditions appear in the query (Zhao and
Ma, 2009).

Vague queries are thoghat occur when exact matching queries fail to
retrieve the required information (Fuhr, 1999; Bodenhofer and Kiing, 2001;
Zhang and Kankanhalli, 2003; Dutta et al., 2009). In this case the vague query
needs to be generalized to retrieve the relevant information and rank this
information in the bases ofheir relevancy. Vague queries can be cause by

several factors:

1. Schemaalthough XML Schema or its DTD are very important when
creating and developing the document, their absence during the
retrieving process leads to null information retrieved since all XML
qguery languages demand complete knowledger them. Even if the
schema exists, it is difficult to figure out the exact structure of its XML
document (Sakr, 2009; Al-Hamadani et al., 2011)

30

2. Users there are two main kinds of XML retrieval users, the experts and
the naive. The experts have the ability to write syntactically true queries
depending on their knowledg#f the rules of the query language and
have the ability to navigate the documentshesma and write the
appropriate query. However, different kinds of XML schema available
such as XML Schema, DTD, and RN@&)deven expert users aonly
aware of one or two of them. On the other hand, the naive users have low
experience in the rules of tlkenguage and in the schema navigation. The
latter case could produce vague queries which has spelling errors in
either the structure or the content of the document, different case used in
the query and in the original document, or out of order or weak pat
(Florescu et al., 2000; Campi et al., 2009).

3. The query Languageall XML query languages do not have the ability to
retrieve approximate answers according to a user’s query. Moreover, the
functions in the query languages sometimes do not meet the user
requirement. All these restrictienn the languages can lead to vague
gueries(Buneman et al., 2003; Norbert and Kai, 2004).

4. Unknown documentvhenever a query is submitted, it should specify the
XML document(s) that has the required information. Ifuker does not
know the exact document or the information is disseminated in more than

one document, a vague query occurs (FAZZINGA et al., 2009).

2.5 Chapter Summary

This chapter described the origins thhe XML technique and its
development. It showed theportance of the XML documents and their usage
as well agheir drawbacks. Since these documents l@esfgecial structure, this
chapterprovided abrief description of this structure and the different types of
documents. To deal with XML documents, manlé& have appeared. This

31

chapter listed the well known APIs and described their features and differences.
Because this research lies in the field of XML retrieval, the chapgétighted

different kinds of XML retrieval techniques and query languages used to retrieve
parts of the entire XML document. The main features of all types of queries are

illustrated with thefocus being on vague queries.

32

CHAPTER 3State oftheArt Technology in
Compressing and Querying XML Documents

Since this research consists of two main parts, the XML compressor and the
vague query processor, this chapter disesitee main XML compression
techniques in its first part. It will highlighihe advantages amdiisadvantagesf
these techniques and discusses the differences between them. The second part of
this chapterwill focus on the vague query processors used to retrieve

information from XML documents.

3.1 XML compression techniques

Recently, large numbers of XMlcompression techniques have been
proposed. Each of which has different characteristics. This section disdesses t
differences between these compressors and their main features.

XML compressors can be classified into two classes either XMieblind
or XML-consciouscompressors. XMiblind or general purposeompressors
deal with the XML document as a traditional text document ignoring its
structure and apply the general purpose text compression techniques to compress
them. These techniques can be classified into two main classes (Salomon, 2007),
either to be statistical or dictionary based compresgdugeri et al., 2007,
Augeri, 2008) The statistical or the arithmetic compressors represent each string
of characters using a fixed number of bits per character. PPM, CACMS3, and
PAQ are examples of this kind of compressors (Cleary and Witten, 1984;
Moffat., 1990; Alistair et al., 1998). On the other hand, dictionary compression
techniques substitute each string in the input by its reference in a dictionary
maintained by the encoder. WinZip, GZIP, and BZIP2 are examples of this
compression clag®VinZip, 1990; GZip, 1992; BZip2, 1996).

33

Table 3-1: The main differences between XML-conscious and XML-blind compressors

XML -conscious compressors

XML- blind compressors

Information about XML documents is usually
available in schema which can be optimized
XML -conscious compressors to get better

compression.

Cannot take advantage of the schema to ge

hysefulinformation about the file.

They utilize the structure of XML document

and the type of the data inside.

They do not take in consideration the entire

file structure or data types.

Some of them abridge the original XML tree

a summary or compact tree foetter ratio.

They @nnot exploit redundancies in the XMl

tree structure.

Most of them are powerful in compressing

small or large files.

They d not efficiently compress small files

that can bausedin transactions for-business

(Hung, 2009)

On the other hand, XMiconscious compressors try to utilize the structural

behaviour of XML documents in order to achieve better compression ratio and
less time in comparative with the XMahlind type. Table 3-1 sets the main

differences between the two aforementioned compressors types.

The main theory of data compression, which described in (Shannon, 1948), is
the formulation of the entropy rafel) which indicates the limit to lossless data
compression. The value @) depends on the probability of each symbol in the
information source. The most popular entropy value is:

(2)

H=', Pilogpli (Shannon, 1948)

Where,P; is the probability of the symbal,;.

In this paper, Shannon proved that the compression ration cannot exceed the
value of(aH), where(a) is the number of symbols in the source.

Since XML are heterogeneous data, the theory of XML compressors is to
separate the data from the structure, separate the data into containers according
to the type of the data, and apply a general purpose compressor for each
container. This process can dedo produce an optimal compressor over
heterogeneous datéliefke and Suciu, 2000)eveloped the entropy value for
XML compression to be:

34

H =2 (Ho +piHy++piH) (Liefke and Suciu, 2000) 3)

Where,Hy, Hq, ..., Hy, are the entropies for the sources, gndp,, ..., py are
the probabilities of these sources.

XML -conscious compressors can be classified according to their ability to
querying the compressed documents into two mainckgses; these are
queriableand nonqueriable compressoré/hile the queriable compressors have
the ability to retrieve information from the compressed XML document without
the need to completely decompress the document, theguerable XML
compressors are used to compress the XML documents for archival purposes

only and they achieved better compression ratio than the queriable compressors.

3.1.1 Queriable XML Compressors:

The main goal of this type of compressors is to provide the ability to the
compressed version of the XML document to be queried without complete
decompression them. The compression ratio for these compression techniques is
lower than the blind-XML or the non-queriable techniques.

Table 3-2: The main limitations of some queriable XML compressors.

Compression Limitations
technique
XGrind o Requires partial decompression to handle range and partiahatch queries.

o Lower compression ratio comparative with other compressors.

XPress o Limited experimented data corpus to depth 5 and 6 only and large documen{>12MB).

o Handlesonly exactmatch, partial-match, and range queries.

XQzp o Ignoring IPs and comments from being compressed.
o Critical in choosing the appropriate block size tdbalance between the good compression ratid
and efficient query processing.

o The needfor partial decompression to handle string matching queries.

XQueC 0 Using too many structures with their pointers which yield to huge spaceverhead.

o Long compression and écompression time.

XSAQCT o Lossless compressor since it does not taking into consideration theler of the attributes in
an element.

0 Queriesonly the exact match queries.

35

SXSI o Designed to increase the querying speed.

o0 The compression ratio has not beetested.

0 Supports only navigational queries and string matching predicates.

However, these techniques are important when dealing with redouries
applications and mobiles. Some of these techniques are homomorphic
compressors, which mean that the compressed file is asseriuredone In

the next sectigna brief descriptin of some of these techniques will be given,
andTable3-2 explains theimain limitations

The first queriable compressorX&rind by (Tolani and Haritsa, 2000). This
technique replaces the elements and attribute names with the ‘&tteend
“A” respectively, followed by a unique identifier which represents the
substituted element or attribute name. Moreover, it replaces the end tags with
“I" sign.The data part of the document is encoded using Huffman encoding. For
the purpose of querying the compressed document, XGrind’'s query processor
finds the simple path to check whether it satisfies the path in the given query.
The main drawback with XGrinid that whileit has the ability to process exact
match and prefsmatch queries on the compressed documantsolerangeof
or partiatmatch queries require partial decompression to be handled.

In order to solveXGrind's partial decompression problemXpress(Min et
al., 2003)uses theeverse arithmetic encodingethod to encode the label paths
of the XML document as a distinct interval in [0.0, 1.0) . Using the relationships
between these intervals walllow for the ability to evaluate path expressions
more efficiently on the compressed XML document. Furthermore, by using this
method, XPress uses patiby-path matching instead of elemdiy-element
matching that has been usedX@rind. To encode the data part of the XML
documentXPressuses different compression techniques depending on the type
of the data and without the need to the human interference. (Min et al., 2009)

BecauseXGrind and Xpressare homomorphic, the relationship between the
size of the compressed document and the @fizbe original one is linear. To
solve this problem (Cheng and NG, 20@dposed a new techniqu¥@zip
that depends on extracting tB&ucture Index Tree (SITjom the tree structure

of the original document. The SIT depth is fimear to the struare tree which

36

makes this technique accomplishes higher compression ratio and faster query
evaluation.

Instead of using (SIT)XQueC (Arion et al., 2007)uses thestructure
sumnary tree in order to efficiently stores the XML documents. The space

neede to store the structure summagg(is:

CSaux = Y ,css(|tag(n)| + log,(|SS|)) (Arion et al., 2007) (4)

This represents the summation of the space needed to store a tag node plus
the space needed to store all its successive nodes. Furthermore, instgiagd of
hash table to store the tags and attribute naX@sieCused thestructural
identifiers which has been used in some querying techniqueKlgalif A et al.,

2002; Grust, 2002; Halverson et al., 2003; Paparizos et al., 2003) in order to
uniquely identify a node in the XML tree. This technique considered to be the
first one that uses XQuery as a quengiaage.

In their work, (Muldner et al., 200@yeated an annotation tree to succinctly
store the structure of the XML document and use the containers to store the data
part of the document. Their compressor, natd8AQCT has two versionghe
first was depenehton the XML Schema and the second was schieega They
showed that the first version is better than the second frorstéimelpoint of
compression ratio even thoughvas slower

Finally, (Arroyuelo et al., 2010) proved in theiropposedSXSlcompressor
that the XPath queries can be performed better when wmsingndexing
technique to compresshe XML document. This techniquas basedon
producing a labelled tree from the XML Tree structure and then indexing this
tree into a bit amy and compregsy the data part of the document using a
general baclend compressor. Although the compression ratio of SXSI is not
calculatedthe querying time and the retrieving quakinebetter than traditional

retrieving techniques

37

(WinZip,
1990)

BZip2
(BZip2, 1996)

GZip
(GZip, 1992)

XMill
(Liefke and
Suciu, 2000)

Millau

(Girardot and
Sundaresan,
2000)
xmlppm
(Cheney,
2001)
dtdppm
(Cheney,
2005)
XWRT
(Skibinski et
al., 2007)
RNGzip
(League and
Eng, 2007)

LXC

(Bonifati et
al., 2009)

Table 3-3: A comparison of different compression techniques.

No No No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

Yes

No

Yes

No

Yes

No

No

No

No

No

No

No

No

No

No

38

Reducing
algorithm+
AES
encryption
Burrows
Wheeler+
Huffman
LZ77+
Huffman

Dictionary
based

Dictionary
based

Statistical
models

Statistical
models

Dictionary
based

Deterministic
automaton
Tree
words
abbreviation

Gzip, Bzip2,
PPM

GZip, deflate

PPM

PPM

Gzip, LZMA,

PPM

Gzip

0.48

0.24

0.36

0.55

0.58

0.57

0.58

0.54

0.58

0.59

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard�
http://en.wikipedia.org/wiki/Encryption�

Table 3-3 shows the main differences between thaious compression

techniques mentioned above. It is clear that the compression ratio of & XM
conscious compressors are better than traditionat-bbmpressors and the
compression ratios of the queriable compressors are still less than those of non
gueriable techniques.

m 2000-2001

= 2002-2003

m 2004-2005
W 2006-2007
m 2008-2009

o B N W~ U

NQC Qc 2010-2011

Figure 3-1: The distribution of the compression techniques over the
years

Figure 3-1 demonstrates the distribution of the compression techniques over

the years, where NQC and QC refer to the -qoeriable and queriable
compressors respectively. It shows that the years 2006 and 2007 witarssed
increasing amount of compressidior both queriable and nequeriable
techniques. The overwhelmingise in the number of queriabl¥ML
compressions in the years 2008 and 2009 reflects the importance of this type of

compressors.

39

3.2 Processing Vague Queries techniques

In order to elevate the flexibility of querying XML documents, many
researchers haygoducedvaried approaches to meet that need

In their work (Damiani and Tanca, 200@roposed a technique to solve
what they called “blind geries” which refers to the queries submitted with the
absence of XML schema. This technique first transforms the XML document
into a labelled graph and provides each node a number which represent the
importance of this node in the XML document. The graph then is expanded to
perform a fuzzy graph. To process the vague queries, it creates a grapé for
query and performed a similarity match between the two graphs.

According to the importance of approximate retrieval, (Schlieder, 2001)
proposed a query langge namedapproXQL since the existing XML query
languages have the ability to answer queries according to exact matching only.
This language is designed to answer vague queries onceldtac XML
documents by encoding them into a labelled tree. Ittinsespointers to encode
each node of the document’s tree by associating it with iterger number, the
number of its ancestors, and the-prder number of its most right leaf. To
answer vague queries, it makes useful node transformation on them wdich ar
insertion, deletion and renaming. Each transformation is associated with its cost
and the results that require less transformation cost are the most relevant once.

Instead of expanding a query langua@eamir-Yahya et al., 2002proposed
a new algorithnthat depends on converting the XML document and the user’'s
query into a tredike structure and perform some relaxation process on the latest
tree by deleting, inserting and renaming the nodes in that tree to be matched with
the original XML document. Eacbf these processes attached with a score in
order to compute the Tedprelevant answers. This technique solves the problem
of generating large amount of sghberies when using the query-weiting
algorithm which has been usedapproXQL In this paperthe authors debate
applying the traditional IR techniques to retrieve approximate answers and the
prove that those techniques are not sufficient enough when dealing with XML
documents, however, converting the document to alikeestructure and

applying approximate matching on it is more appropriate.

40

In 2004, FleXPath technique has been proposed @ymer-Yahia et al.,
2004). FleXPathdepends on merging the XPath query language that has exact
matching with full text search that has approximate matching. First, the query is
converted to a tree and used it as a template to find the approximate matches
within the XML document. The query relaxation process used-lb)XPath
depends on deleting a structural predicate if at least one of its nodes does not
belongto the document structure and the deletion process will not affect the tree
structure of the query. Furthermore, this technique performs more relaxation
such agontains-relaxatiorby replacing the parameter of tbentains()function
with its ancestor, tag-relaxationby replacing a tag with its super taglue-
relaxation,andtyperelaxation

Instead of relaxing the query, (Lalmas and Rolleke, 2@@#isforms the
query to a conjunction query by adding an “OR” between the query’s path and
its predicateand changes each “AND” in the query with an “OR” to increase the
recall precision. In this technique the XML document passes into two
probabilistic transformation processes. In the first pass, each elemehtteattr
name, attribute value and element eals attached with a probability value to
indicate the importance of this element in the whole document using
probabilistic objecbriented logic. The output from the first pass is transformed
into probabilistic relational algebra expressions. This technique changes the
XML document into a new one which is much bigger than the aligin

In the same yearMandreoli et al., 2004proposed a new approach for
answering approximate queries to retrieve all the relevant parts of the XML
document not only the exact matching. This approach finds the syntactic
similarity between the XML Schema and the user’s query, written in XQuery
query language, and rewrites the query to match this Schema. It works with the
XML Schema instead of working with the XML document directly in order to
retrieve relative information from a repository of documents. Although this
technique has the ability to retrieve 90% of the relevant information, it shows
conflicts when the root node of the different schemas are the same as the root
node in the query.

In 2006 (Li et al., 2006proposed~LUX to process only range queries in
their fuzzy appearance. It uses -Bee in order to identify the relevant leaf

nodes to the given user’s query. The path from the root to the relevant leaves is

41

used as signatures to be matched with the path in the query to determine their
relevancy. Using the Bloom filteFELUX converts the path in the query and the
path signatures into hash tables and compare between them to extract the most
relevant paths. Thenplementation process fdfLUX is limited only to two

XML documents and the 100 tested queries include only the year and date range
queries with random selections. Their test explains Eh&iX perform good
retrieval with higher speed that other relatigehniques.

While FLUX tried to process fuzzy range queri€s]JAH (Mihajlovic et al.,

2006) tried to process only two vague cases in NEXI query language. This
technique finds the list of synonyms for each element name in the user’s query
using WordNet “AlLexical Database for the English Language”, and it uses
these synonyms as new keywords to be searched in the XML document by
rewriting the query using the new elements. Furthermore, this technique
generalizes the path in the query in order to look foretements in the whole
XML tree.

Depending on the aforementionEtkXPathapproach, (Campi et al., 2009)
proposed a new technique callédizzyXPaththat expands XPath query
language to include fuzzy cases. The main purpose of this work was to
determine thalegree of similarity between two trees by providing a weight to
each node to determine its importance within the document. The weight is
calculated depending on the level of the node within the XML document and the
number of its childrenFuzzyXPathaddsnew functions to the list of available
functions in XPath such &SIMILARto find the similarity between the given
node and the nodes in the document, @h@SEto find the similarity between
the given value and the data in the document. It provides heaibility in path
structure by addinglEARandBELOWfunctions.

In our previous work (AHamadani et al., 2009) we proposed a new
technigue to process vague queries by decomposing it into CAS and CO queries
and then apply the normal retrieval process for each part. The results from the
retrieval process are combined again to obtain the final results. The technique
applied on health care record and it shows good retrieval precision.

(Fredrick and Dr.G.Radhamani, 200@joposed a framework to extend
XQuery knguage to include fuzzy queries. They tried to generalizELtWEOR

to include natural language words, such as good, bad, etc. to get more precise

42

results. It depends on the fuzggt theory by (Zadeh, 1965) to transfer each
fuzzy word to a range of valseand then retrieve the most relevant parts from
the document.

3.3 Problem Identification

The previous sections list several compression techniques that have the ability
to process different kinds of queridable 3-4 lists all the discussed queriable

compression techniques and shows the types of queries that can be processed by
each technique. Some of the compressors require partial decompression to the
compressed XML document in order to process some of these queries.

Table 3-4: Query types with the compression techniques process each.

EREEEEREE
Kx @ B B

" Partial decompression required

It is clear that the entire existingpmpressors do not Y& the ability to
process vague queries since this type of qué&iesmplex and needs intensive
research taresolveit.

For this reason, the research in this thesis is &tas: how to handle
different types of vague queries intrreving information from compressed XML
documents.

43

3.4 Chapter Summary

This chapter illustrated the maiypes of general purpose compressors and
focused on XML compression techniques whrely on two types either as
gueriable or nomueriable techniques. Since this research is dealing with a
queriable compressor, this chapter concentrated on the existing techniques, liste
their main featureandthe differences between them and the types of quieries
the processinally, the chaptealso demonstratedifferent techniques that have

the ability to process vague queries and thediégrences between them

44

CHAPTER 4XML Compressing and Vague
Querying (XCVQ)Design

As shown in the literature reviewwom the previous chaptethere area
good number ofstudiesin the field of compressing XML documents and
querying the compressed version without the need to fully decompress.
However, vague queries, which are one ofrtlfestimportant query types, have
been processed to retreeinformation from raw XML documentnd not from

compressed ones.
Depending on the SDM as illustrated higure 1-1, the design of the

complete system should be made, followed by its implementation which can be
seen in AppendpB. This chapter illustrates the design architecture oXG¥Q

(an XML Compressing and Vague Querying) which has the ability to compress
the XML documents and use the compressed files in order to retrieve
information according to vague queries. It starts with the main architecture of the
system followed by the design of each of its parésnelyXCV(Qs compressor,
Decompressgmand the query poessor

4.1 System Architecture

As illustrated inFigure 4-1, the XCVQ system consists of two main stages.

The first is designing a new XML compression technique which converts the
normal XML documents to a compressed version. The second is designing a
retrieving technique that processes the XPath vague queries in ordereeretri

the relevant information from the compressed document accordingly.

45

XML
Documents

Retrieve Doc. to
the user

XCVQ-
Compressor

XCVQ-Query

Compressed
Processor

Files Repository

Figure 4-1: Preliminary Architecture of XCVQ

The design of th&XCVQdoes notely on the XML Schema or the DTD of the
document. Thigs due to several reasons:

1. The main purpose of designilCVQis to process vague queries which
areusually written, as illustrated in a previous section, by inexperienced
userswho maynot want tohave another technology linked with their
documents.

2. Even if the schema for a document exists, it coulchaue been
accessibldo the user.

3. Since the main purpose of any compressor is to reduce the storage
memory and the transition bandwidKCVQsaves the amount of
memory required to store the schema.

As illustrated in the design of th&CVQ,all the compressed XML documents
are stored in a repository which is going to be used in the retrieving process. To
the best ofour knowledge,XCVQ may well beconsidered to be the first
retrieving technique that has the ability to retrieve informatiomfroore than
one XML document without requiring the pspecification of the documents

neededo be retrieved and without dependence on the document’s schema. This

46

approach helps users retmewnore relative information no matter which

documents contain thiinformation. The complete design of the XCVQ is

illustrated inFigure 4-2.

XML
Document

7

XCVQ Compressor

) 4
XML Analyser (SAX) XPath .
query > XCVQ
¢ $ l e Query
Structured -Tree Path- Processor
Dictionary » Compressed >
Data Structure XML l
Document
i ¢ | Y 4 Relevant
Gzip Structure information
compress Abridgment .
v v <
Containers

Figure 4-2: The complete design of XCVQ

The following sections demonstrate the design of each part of the system
starting withXCVQCompresso(XCVQC), passing byXCVQDecompressor
(XCV@D), and ending wittKCVQQuery Processor (XCV-QP).

4.2 XCVQ-C Design

XCVQC compressor takes an XML documentthe input and creates the

compressed version from this document by passing through several steps. An

47

example inFigure 4-3 from (W3Schools.com, 2006byill be usedin the

following sections in order to simplify the exact process of each step.

4.2.1 Creating the Structured-Tree & its Abridgment

As illustrated inFigure 4-2, the first step in compressing the XML

document is to create the structutezeusing the SAX parsefhis parser scans

the XML documents only once and it cached several events such as start
document, startlement, enetlement, and endocument. Sectio.2.2 contains

more details about this parser and its advantages. During this parsing pnecess t
completepath-dictionarywas created and separates the data part of the XML
document from its structure to be abridged to the structmeedThe structured

tree for the running example is shownHFigure4-4. The data under each reot

leaf path are stored in containers linked to that path.

48

<CATALOG>
<CD no="1">
<TITLE>Empire Burlesque </TITLE>
<ARTIST>Bob Dylan </ARTIST>
<COUNTRY>USA</COUNTRY>
<PRICE>10.90</PRICE>
<YEAR>1985</YEAR>
</CD>
<CD no="2">
<TITLE>Hide your heart </TITLE>
<ARTIST>Bonnie Tyler </ARTIST>
<COUNTRY>UK</COUNTRY>
<PRICE>9.90</PRICE>
<YEAR>1988</YEAR>
</CD>
<CD no="3">
<TITLE>Romanza </TITLE>
<ARTIST>Andrea Bocelli </ARTIST>
<COUNTRY>EU</COUNTRY>
<PRICE>10.80</PRICE>
<YEAR>1996</YEAR>
</CD>
<CD no="4">
<TITLE>When a man loves a woman </TITLE>
<ARTIST>Percy Sledge </ARTIST>
<COUNTRY>USA</COUNTRY>
<COMPANY>Atlantic </COMPANY>
<PRICE>8.70</PRICE>
<YEAR>1987</YEAR>
</CD>
<CD no="5">
<TITLE>Black angel </TITLE>
<ARTIST>Savage Rose </ARTIST>
<COUNTRY>EU</COUNTRY>
<PRICE>10.90</PRICE>
<YEAR>1995</YEAR>
</CD>
<CD no="6">
<TITLE>1999 Grammy Nominees </TITLE>
<ARTIST>Many</ARTIST>
<COUNTRY>USA</COUNTRY>
<PRICE>10.20</PRICE>
<YEAR>1999</YEAR>
</CD>
</CATALOG>

Figure 4-3: An XML example

Each data item is accompanied with a nunibBgfqer that represestthe
order of this item within the document (the number between the brackets in
Figure 4-4). IDyqger cOunts each start element, data value, attribute name,
attribute value and end element. According to this number, each node is
uniquely identified for the purposes of decompression process and in the
guerying process. Previous XML compressors used two numbers for each node
in the structuredree to identify this node uniquely. These numbers represented
by the preorder and posbrder traversal of that nodi ,, IDpos] (Cheng and
NG, 2004; Arion et al., 2007; Arroyuelo et al., 2010) which required:

49

Ssir = 2(N +log; N)

(®)

WhereS¢;r represents the number of bits needed to store the strutteeed

that containsN nodes. While the number of bits required to store the same

structureetree inXCVQC is shown in equation (6).

Ssir = (N *log, N)

(6)

Since XCVQC uses only one number to store a node, the number of bits
required to store a single noddadg, N. In this stageXCVQC saves half the

number of bits required to store the structuiree-

. (0

| CATALOG
‘ (1)
CD
| G
(2) (9) (16) (23) (30) (37)
NO TITLE ARTIST COUNTRY PRICE YEAR
\S \S \S \S . \S
b . L s B e . P B
Sﬂi?ﬂf ((17)BobDylan | (24) USA (31) 10.90 (38) 1985
(11) H%e your (18) Bonnie Tyler (25) UK (32)9.90 (39) 1988
e (19) Andrea (26) EU (33) 10.80 (40) 1996
(12) Romanza Bocelli (27) Atlantic (34) 8.70 (41) 1987
(13) When a man (20) Percy Sledge (28) EU (35) 10.90 (42) 1995
loves a woman g;; i/lavage fose (29) UsA (36) 10.20 (43) 1999
any N —

(15) Grammy

(14) Black angel ‘
Nominees

Figure 4-4: The structured-tree for the example in Figure 4-3

4.2.2 Creating the Containers

XCVQC creates the containers from the structured aeeeen ifrigure

4-2. First each node is replatwith a numbetthat represents the entry of that

50

node’s name inhie path-dictionary The structuredree is traversed to create the
containers. Each container has an index and data set. The path from the root to a
leaf is used as index to the container and all the data under that path are the data
set to this container.

For the running example, tipath-dictionaryand the containers are

illustratedasin Figure4-5, (a) and (b) respectively.

CATALOG
CD

NO

TITLE
ARTIST
COUNTRY
PRICE
YEAR

(@)

N[OOI~ IW|IN|(F|O

0/1/@2 | (3)"1"(4) "2" (5) "3" (6) "4" (7) "5" (8) "6"

/0/1/3 (10)Empire Burlesque(11) Hide your heart(12)Romanza(13) When a man loves a
woman(14) Black angel(15) Grammy Nominees

/0/1/4 (17) Bob Dylan(18) Bonnie Tyler(19) Andrea Bocelli(20) Percy Sledge (21) Savage
Rose(22) Many

10/1/5 (24) USA(25) UK(26) EU(27) Atlantic(28) EU(29) USA

10/1/6 (31) 10.90(32) 9.90(33) 10.80(34) 8.70(35) 10.90(36) 10.20

101177 (38) 1985(39) 1988(40) 1996(41) 1987(42) 1995(43) 1999

(b)

Figure 4-5: Creating containers process. (a) the path-Dictionary. (b) the container.

4.2.3 Compressing the Containers

After preparing all the containers and replacing the element’s names in the
containers with their entry in thpathDictionary now the contents of the
containers should be compressed using a-badkcompressor. To do this,
XCVQC uses two compressors to make comparison between them, LZW and
GZIP compressors.

The granularity used bXCVQC is container/path, which means that after
all the data parts of the document are sgitietheir appropriate containers, the
backend compressor is applied to compressch one of the containers

separately. The decision made to choose this granularityasdeachiewng a

51

balance between the compression ratio and the decompression process required.
When dealing with backnd compressors, the highttile amount of datathe

betteris the compression ratio achieved. At the same,time amount of data
should not be theentire data part of the document, since they need to be
decompressed in order to answer queries concerning them, so the technique
needs to minimize the arant of data being decompressed. The previous XML

compression techniques used different granularities to compress the XML

documents using one of the back-end compressors, as shboanlé-1.

Table 4-1: Compression granularity comparison.

XML compression Compression
technigue granules
XGrind Value/tag
XPress Value/path
XQzip Blocks
XQueC Container item/tag
XSAQCT Container/tree-
structure
SXSI
XCVQ Container/path

- LZW Compression Technique

Thisis one of the dictionarpased lossless compressors which developed in
1984 from LZ78 by Lempel, Ziv and Welch (Salomon, 2007). It has been used
in UNIX as a program compressor in 1986 and it is still basegl by GIF, TIFF
and PDF files to compress imagddurray and VanRyper, 1996). The tokens in
LZW are pointers to their entries in the dictionary which starts with tee2b6
positions occupied by the first 256 ASCII characters before any other entry.

Although it performs good compression ratio it suffers from problems. All
the pointers to the dictionary should be larger thdut &ince the first 256

52

entries are occupd from the beginning. This makes these pointers to be at least
3-bytes to accommodate all the entries in a document. Moreover, this technique

is considered to be slow since its progress is one character at a time.

- Gzip Compression Technique

This is another example of dictionatyased lossless compression software
which is based obeflate compression algorithm. This software used by many
applications such as HTTP protocol, the PNG (Portable Network Graphics),
PNG images, and PDF files. Tieflate algorithm was designed in 2003 by
combining the LZ77 and Huffman algorithms (PKWare, 2003; Salomon, 2007).
Deflateuses different block sizes in order to compress the input data. The size of
the blocks is determined according to the available memory and the size of the
data. This algorithm provides three modes for each block, (1) No compression
when the file is already compressed or it is random; (2) A fast mode that uses
two fixed code tables in the encoder and they will not been written in the
compressed I; and (3) A powerful mode that uses several code tables
generated by the encoder and they should be written in the compressed file.

4.3 XCVQ-C Algorithms and Their Correctness

Since putting the complete compressing process in one algorithm could
not be very clear, the designed algorithm is separated into thredgeumithms.
The separation process is made depending on the main parts of the XML
document: starélement or attriole name, enélement, data, and end
document. This section illustrates the design of the algorithms in each of the
previous XML parts and the formal correctness proof of each one of them. The
process of correctness proof depends on specifying the setooinplitionsP:{
P1, P2, ..., R} and the postcondition®:{ Qi, @, ..., Qn} and the algorithmA

A
such that? - Q [ref]. The algorithm is considered to be true is it terminates and

all the postconditions are true upon completion.

53

1. Algorithm startElement(String eNameg String data)

2. let pathDictionary = [BT nl

3. let structured -Tree =[j o] 1y eeer] l

4. let pathStack =k p K p1,..uk ol

5. let IDOrder = the current order

6. if (eName ¢ pathDictionary)

7. pathDictionary =00 1y e n] U eNameg,.;

8. Q'= n+1l

9. else

10. Q"= g where i4 =eName

11. pathStack=[k p, k p1, ..., K o U[Q"pul

12. currentPath «ko+k,+..+k b

13. if (currentPath ¢ structured - Tree)

14. Add currentPath to structured - Tree

15. IDOrder++

16. if (data is not empty)

17. Add (IDOrder,data) to the leaf node of [j 0] 1
. |

18. End.

Figure 4-6: (startElement) algorithm

4.3.1 startElement algorithm

This algorithmin Figure4-6 is processed whenever a start element or an

attribute name occurs in the XML document. In this algorithm, each elament
attribute nam¢eNameg encounteredh the XML document must be added to the
list of path-dictionaryif it is not added before (line&-8). The index o{eNamé

in the path-dictionaryis used from now on instead of the element’'s name itself
to be added to the structurgde (lines 1-14). When there is a value idata

this means that the algorithm is dealing with an attribitethis case, the
attribute value alongside with its order is added to the leaf of the current path in
the StructuredTree(lines 16-17.

54

To proof the formal correctness of this algorithm, the preconditions and the

postconditions shoulfirst be specified:

P:{ eName=a, data=b are two strings,

pathDictionary =[i gy 4, e] =c represerdthe current
pathDictionary,

structured -Tree =[j o,j 1,] . =d represerdthe currenstructure
treeg

pathStack =[k p, K p1, ..., K o] =e represents the current path elements

stored in a stagk

Q:{a € ¢
a € e,

e € d,

In case of attribute®, € d}

Correctness:

{eNane=a, data=b, pathDictionary=c, structured-Tree=d, pathStack=e}
if (eName ¢ pathDictionary)
{agc, data=b, pathbDictionary=c, structured-Tree=d, pathStack=e}
pathDictionary =i g0 g el n] UeName.;
Q’ =n+l
{a € c, data=bh, pathDi ctionary=c, structured-Tree=d, pathStack=e}
else
Q"= g wherei 4 =eName
{a € c, data=b, pathDi ctionary=c, structured-Tree=d, pathStack=e}

pathStack=[k p, Kk p1, ...,k ol Ul Q"pul
{a € ¢, data=b, structured-Tree=d, a € e}

currentPath <ko+tkyi+.+k

if (currentPath ¢ structured-Tree)
Add currentPath to structured -Tree
{a € ¢, data=b, e € d, a € e}
IDOrder++
if (data is not empty)
Add (IDOrder,data) to the leaf node of [j ol 1
B

{aec, bed ee€d aee}=Q

55

Algorithm endElement (String eName, String data)
let pathStack Sk p K pas ok ol
let structured -Tree =[] o,] 1y nl

If data = null

a N e

Add (IDOrder,data) to the leaf node of [k o K ps e
Kol

Figure 4-7: (endElement) algorithm

4.3.2 endElement algorithm

The algorithm inFigure4-7 is processed when the end of an XML element

encountered which means that there is a piece of data ready to be inserted in a
leaf node otthe structuredree (if that element holds datdhe suitablecurrent

path can be known from the contents of paghStackand thedata should be

added in the leaf node of that path.

P:{ eName=a, data=b are two strings,

pathStack =[K p, K p1, ..., K o] =c represents the current path elements
stored in a stagk

structured -Tree =[j o,] 1,] . =d represent the currestructural-

tree

Q: {b € d}
Correctness:

{eNane=a, data=b, pathStack=c, structured-Tree=d}
If data =+ null
{eNane=a, data=b, pathStack=c, structured-Tree=d}
Add (IDOrder,data) to the leaf node of [k o K p1,.aK ol

{bed}=Q

56

Algorithm endDocument ()

let pathDi ctionary=[i o,i 1,...,1 nl
let structured-Tree=[j o,] 1, -] l
let F be the compressed file = 0]

Add pat hDictionary to F
For all the N branches in structured-Tree

i ndex= Collect all the nodes [0r] 1y eeer]

© No g bk~ wDdPRE

dat a= the contents of the leaf node for the path

0 od 1) Kl
9. dat a = GZipCompress(dat a)
10. Add a Container(index, data) to F
11. End.

]

Figure 4-8: (endDocument) algorithm

4.3.3 endDocument algorithm

When the whole XML document traversed, the algorithiRigure4-8is

processed. First the complete pathDictionary should be added to the output
compressed file (line 7). The second step is to create the containershéom t

structureektree and fill them witlthe compressed data (lined.6).

P :{ pathDictionary =[i o,i 1,...,1i] =a represent the complete
pathDictionary,
structured -Tree =[j o,] 1, ...] .« =b represent the currestructure
tree
F= ¢}

Q: {a € F, NContainers F}
Correctness:

{Pat hDi ctionary=a, structured-Tree=b F=0}
Add pat hDictionary to F
{a € F, structured-Tree=b }
For all the N branches in structured-Tree

57

{a € F, structured-Tree=b }

i ndex= Collect all the nodes [0r] 1y eeer] k]
{a € F, structured-Tree=b, index=path nodes}
dat a= the contents of the leaf node for the path [j o] 1

| k]
dat a = GZipCompress(dat a)

{a € F, structured-Tree=b, index=path nodes, data is
conpr essed}
Add a Container(i ndex, data)to F

{a € F, structured-Tree=b, a container€ F}
end

{a € F, structured-Tree=b, N Containers € F }1=Q

4.4 XCVQ-D Design

As shown inFigure4-6, to decompress the compressed XML HEVQD

first applies the backnd decompression technique, either LZW or Gzip, to

decompress only the contents of all the containers in order to get the data shown
in Figure4-5 for the running example.

The second step is to reconstruct the XML document from the indexes and
the contents of the containers, and plagh-dictionary The main operation here
IS to determine the order of each element, attribute, and data value within the
XML document. This order is thi® q4er Which is accompanied with the data in
the containers but it should beerked against the number of data items written
in the decompressed XML documei@’) so far. To check the consistency of

the orderXCVQD uses equation (7) such that:

58

Index-1

Cor——p

Index-2

Cpp—p|

Index-3

Cos—p

Index-n

Con——p|

Data Decompression Technique
Gzip | LZW

Index-1

Path-Dictionary

v

\

L pD1—— |

Index-2

\

L e

Index-3

\

_>D3/

Index-n

\

N

>

4

]
XML

| 4
XML Re-constructor

4

Document

Figure 4-9: Architecture of XCVQ-D

Definition-1: If XCVQ-D has a piece of data [(o)d], where o denotes

the IDyqger @accompanied with the data in a container, o

!

is the

ID'orqer Which denotes the order of the data written so far in (D"),

then the new order of D should be calculated by getting the

difference between (o) and the (¢’) taking into consideration the

number of the elements and attribute names still not written in

(D"), such that;

Where:

Corder =0 — (0’ + [up — uC])

up: The number of elements and attribute names written in D’.

Uc: The number of elements and attribute names in the index of

the container having this data.

Then the value of C,q4e, is checked and a performance made as

shown in equation(8).

if Corder {

=0

newlD .40 = O

59

#0 D'=D"U ([up] —[ucl)

()

(8)

If Coger €quals to (0) this means that the current IDgger IS
consistent with the number of elements and attribute names in D",
Otherwise, the difference between the current path in D'and the
index path for the current container should be added to D" before

adding the required data.

Since the decompressianethod depends on the eriste of data, the
resulted decompressed XML document is lossless from the datalsidethe
dummy nodes (the element that has no data but cews$isih open tag and a
close tag) could be lost. This case appéadocuments that are converted from

a database system wipploorly structured documents.

4.5 XCVQ-D Algorithm and its Correctness

The algorithm irFigure 4-10 illustrates the process &CVQD which takes

the pathDictionaryand the compressed containassits parameter list. The main
idea of the decompression algorithm is to look for a data value which has the
minimum IDoger and put it in the decompressed file in its appropriate place.
From the design of th€CVQC the first data value in each container always has
the minimum order within this container, the process of looking for the
minimum order will check onlyn) item, where(n) represents the number of
containers instead of searching all the data in the ceamgiThis process
reduces the time required to decompress the containe@(npinstead of
O(nxm)wherem represents the number of data items in each container.

If this piece of data is the first data value in the XML document (line 9)
then, all the path’s elements in the index of the container holding this data are
pushed in a stack which represent the curseotking path and add these
elements (or attribute name®) the new XML documentD) as an open tags
(lines 10-12).

60

Before adding the data to tlaitput file, a consistency check is mabg
following the instructions inlines 16-19,where ({}) means set difference
between the contents of the stack and the index path. If there is no consistency
(line 17) then the difference between the stack corded the index path is
added to the output file as losing tags and then the piece of data is added to the
output file. In every addition to the output file, the value d&t&Orde) is
updated (lines 12, 19, and 21) to check the consistency betweeetie time.

After adding the data to the output file, this data alongside with its order is
deleted from the container. This process is done to keep the order of the first
data items in all the containers in their minimum values and to release the

memory stoage used by these data values.

61

content of the stack is added to the output filelased tags to finish the new

This process is continued until all the containers are empty, then all the

decompressed XML document.

o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

Algorithm XCVQ@D (pathDictionary [Po,P 4, ...,P o, containers
[C01 C 1 -"1C n])

let currentPathStack =[Sk S k1 S ol
let dataOrder = number of elements, attribute names, and data
values in the outputFile D
While (the containers are still having data) Do
fori=0ton

let minDataSet[(O 0.Do), (O 1,D1),... (O mDn)] « first

element i n each container
minOrder =min(O o, O 4,..., O n)
minData « D; from(minOrder ,D ;)
if currentPathStack =@
currentPathStack « C;.index
D « opentagsof C ;.index
dataOrder =dataOrder+ number of open tags added
}
Else
currentPathStack « [Ci.index] -[currentPathStack]
dataCons= minOrder — (dataOrder + {[C;. index] — [currentStackPath]})
if dataCons #0
D « closetag {[C;.index] — [currentStackPath]}
dataOrder =dataOrder+ number of close tags added
D < Di
dataOrder=dataOrder+1

remove (minOrder, D i)

Figure 4-10: XCVQ-Decompression algorithm

62

The next paragraph discuss the correctness of the decompression algorithm
by guarantee the ofte-one mapping from the compressed document to the

decompressed document.

The core of the decompression technique is to make sure that each part of
the compressed XML document should return to its place in the original XML
document. This is done KCVQby using thdD orger Which counts the order of
each single part of the orial document, such that:

Odata(I D Order): Ddata(I D Order)

Where,Ogata andDyata represent a single piece of data in the original and the

decompressed XML documents, respectively.

As seen inFigure 4-5, the only Ogats(IDorder) Stored in the compressed
document are for the data part of the document to save the storage required. For
instance, in the first container indexg@/1/@2) in Figure 4-5, the first data

item (“1”) has itsOgatd(IDorger)=3. This means that there are three pieces should
be transferred to the decompressed XML document before transferring this part
of data. These pieces are the three nodes in the container's(ladék, and

1@2).

To make this balance betwe&Dgaw(IDorder) and Dgata(IDorder) in the
decompression algorithm, thdataOrder variable was used (to represent
Daata(IDorger)) t0 count every single piece of data written in the XML document.
Before adding a data value to the decompressed XML document, the
decompressin algorithm checks if it is in its right place (i.e. if
Ovata(ID order)=Dyata(ID orger) after taking onto consideration the expected number
of pieces from the). Otherwise a process is required to solve this ineongist
between the two values and as folfo

1. Find the difference between the tWdoqeS
D:Odata(I DOrder) - Ddata(I DOrder)

63

This means that there abepieces should be added to the decompressed
file first.
2. Add theD pieces of data that are in the current working path but not in the
container’s index.
3. UpdateDgata(IDorder)
Daata(ID orde)= D data(ID orden)+D

4, Since
D:Odata(IDOrder) - Ddata(IDOrder)
Then

Ddata(lDOrder): Ddata(lDOrder)+ Odata(lDOrder) - Ddata(lDOrder)

Daata(IDorde)= Oudata(IDorder) Which is the target of the decompression

technique.

4.6 XCVQ-QP Design

The design of the query processas,illustrated inFigure 4-7, consists of

various stages. The output($fom each stage is used as ingat the other

stage. The role of each stage and its design are discussbe imext sections

using the same runmy example ifFigure4-3.

4.6.1 XPath Query

The current XPath query language does not have the ability to answer vague
queries, since its work is based ormrestricted Boolean matchingither the
query matches part(s) of the existing document and resrignaseparts,or no
retrievalat all isachieved if there is no matcKCVQQP uses XPath as a query
language afteexpandingthe original language to givié the ability to solve
vague user’s gueries. This expansion includes adding more flexibility in both
path matching and data value matching in addition to adding some functions to

the list of available XPath functions.

64

- Path Matching Expansion

To increase the flexibility of XPath axes matchingCVQQP provides
some generalization to the XPath query that gives the uset€v¥Q QP the
ability to retrieve the most relevant information to their quefiésust, 2002;
Amer-Yahia et al., 2004; Campi et aR009) These generalizations atiee
following:

1. Eliminating the use ofthe recursive descent sign (/) and replga with
the child operator (/) sign. This elimination increases the flexibility of

XCVQas shown in the following examples:

Example (1): to retrieve all the {ITLE) elements from the XML
example in Figure 4-3, an XPath query should be

¢catAaLoc/cDmITLE) . In this case the user shouldve a complete
idea about the XML schema for that file to indicate the complete
path from the root to thel'(TLE) element. To retrieve the same
information, XCVQquery is eitheyco/miTLE) OF (CATALOGITITLE) ,
which is simpler than XPath queries and does not need any
previous knowledge about the schema.

Example (2): if the user need th& [TLE) element for th&€€D
with (no) equals to “2”. The XPath query is
(CATALOG/CD[@no="2"yTITLE) While theXCVQquery is

(/CD[@no="2")/TITLE) which is again much simpler than XPath
query.

2. If the query tries to retrieve sibling elemertteen using XPath would
need to write two separate queries or one qutytwo parts

connected byogical (and operator.

65

XPath Query

Compressed Query
XML Decomposer
Repository
A
Relevant
XML
document(s Sub-Queries

Sub-queries Relaxation

Relevant
Container

XCVQ-C

Ranking

Decompressing

XML
I Document
results

Figure 4-11: The architecture of the query processor.

Example (3): The elementsTITLE) and the element¥ EAR are
both siblings in the XML tree. The XPath query to retrieve all
the data from the two elementdsraLoG/CDTITLE |
cATALOG/CDIYEAR) While theXCVQquery to retrieve the same

information iSyTITLE/YEAR)

Example (4): if the user interesting in retrieving all thEITLE)
elements only for th€D published afterl990. The XPath

66

3.

query IS ((CATALOG/CDITITLE and /CATALOG/CD[YEAR>1990]), while

the relevanXCVQquery iS¢TITLE[YEAR>1990])

If the order of the path is not arranged properly, XPath query does not
have the ability to retrieve information from the specified document,
while XCVQdoes.

Example (5): using the same requirementskofample (3) XPath
user should follow the same path from the root to the required

element, while XCVQ query could be written as follows:
(TITLE/CD/YEAR)

Using XPath queries, the user should follow the case of the leiters, s

the XPath query is case sensitive language. This feature adds more
complexity to the user and to the XML creator who has to fotloege
specific rules.XCVQ queries are case insensitive, which retrieve the

information from the XML document even ifdltase is different

Example (6): all the XCVQ queries in Examples (1-5) can be

written as following:

cd/TITLE
/CD[@no="2")/title
ITITLE/year
title[year gt 1990]
title/cd/YEAR

When the system does not find a specific element within the XML
compressed database, it tries to look for elements that are similar to it.
For that reasonXCVQQP uses astring-similarity algorithm (White,
2008) in order to match any misspelling in the elements or attribute
names. If an element within the path is writterairong way, then the
system will look for the nearest s|wef) element in the retrieved
documents such that the similarity ratio should not be below 40%. After
many experimentsve noticed that this percent is the bfestretrievng

the required element. If this number is less than 40, therelated

elements could be retrieved.

67

The choiceof string-similarity algorithm is madeon the ground thait
meets most oKCVQQP needs since this algorithm has the following
features:

. If two strings haveminor differencesthey are considered to be sitar

(ex: heap, heard)

. If two strings have the same words but in different order, tey
considered to be similae(. data base management system, managing
data base)

As shown inFigure 4-12 the string-similarity match algorithm

takes two strings, and for each string it produces sets each of which has
two adjacent letters in that string. Then the similarity is computed as in

line (5) to determine the similarity ratio between them.

1. Algorithm string - similarity (String stl, st2)

2. let stl =[s ;S,83 ...] and Sst2 =[c 1€,C3 ...C 4
3. stlSet =[s 1S,][s 2S3][S 3S4]--.[S n-1 Snl

4, st2Set =[c iC,][c sCsllc 3C4)-[C m-1eml

5. SimilarityRatio = —let'j;if:r;‘;sse‘:'

6. End.

Figure 4-12: String-similarity match algorithm

XCVQQP has the ability to retrieve information from more than one file
(FAZZINGA et al., 2009even if the user does not specify these files in
prior. As a simple example, if the user has the query (title/year) then s/he
might get information about the titles and year of publication for CDs,
movies, books or journals. MoreoveXCVQQP has the abily to
compare the results from one file with the data from another file and

retrieve the results accordingly.

Example (7): Suppose the following user query:
(catalog/book/author/bookstore[author= "Erik Ray "). This query is
considered to be a merged from two queries

(catalog/book/author= "Erik Ray ") and(bookstore/book/author: " Erik

68

rRay") . Each one is to retrieve all the books for the author’'s name
(ek Ray " from two separate XML documents that follow

different schemas.

Example (8): suppose the following user query:
(cars/carlprice It carType/Ford[model eq 2008]/price)
In this query the user is interesting in looking for all the cars that

their pricees are less thdt) the 2009 Ford car prickCVQQP
first looks for the smallest price)(in the path

(carType/Ford[model eq 2008)/price) and then retrieve all the
information from the patRarsicariprice) which are less than
(X). Notice that the two paths are from two separate XML

documents.

- Data Value Matching Expansion

In order to make more expansion on XPath queries to retrieve more
relevant data from the XML documeMCVQQP adds a set of functions that
deal with the data part of the documé@ampi et al., 2009). Although some of
these functions are adopted to beduse structural retrieval as well. The

extended functions with examples of their use are illustrated in the next section.

1. Synonym(x): This function is created to be used to retrieve information
from both the structure and the data parts. It has only one parameter
and returns a list of synonyms far

To do soXCVQQP uses th&VinterTree thesauruses engine
(WinterTree, 2006)which provides a wide multipurpose dictionary. This
engine provides the user the ability to modify its dictionary by adding new
words with their synonyms or adding more synonyms to the existing
words.

If the list of synonyms i$S,, S, ..., §), thenXCVQQP processs (n)
gueries by replacing each Si instead of the function call.

Example (9): Suppose the queryritie/synonyms("time"). XCVQ

QP replaces this query with 3 queries:

69

[cdltitle/duration
[cd/title/interval
[cd/title/date

It is clear that the use of tifienction in this example is for

structure retrieving purposes.

Example (10): Suppose the queryicountry eq
synonyms("Britain"), which retrieves information from the data part of

the XML document. This query is replaced with two queries:

/cd/country eq " UK"
/cd/country eq "The United Kingdom"

2. Similar(x): This function uses the Strirtgimilarity algorithm, shown in
Figure4-8 in order to retrieve information according to one of the

following conditions:

a) If the user has doubt on the spelling of a string as sholrample
(11).

b) If the similar strings ta are required as shown lExample (12)This
function works on both the structure and the data parts of the XML

documents depending on the previous conditions.

Example (11): In the queryrcadritie/similar(artest) , the wordartest

has spelling error. The role XCVQQP here is to find the similar
element name from the retrissy documents and retrieve the required
information accordingly. This query is replaced wéthitie/artist

for the running example.

Example (12): In the queryicdyeartitle eq similar("keep your
hearty ~ for the running example, the data required isilainto "keep your

heart" Which is replaced bXCVQQP with cdiyeartitle eq "hide

your heart".

- Function Set Expansion

The list of available functions in XPath query language includes string,
Boolean and number functionKCVQQP adds four functions to the number

functions set.

70

Average(x):the avg() function in XPath provides the user the ability to
get the average of a list of numbers specified as a parameter list for the
function. This function is expanded BYCVQQP to provide the user the
ability to specify an element from the XML document and find the
average of the numerical values under that element.

Example (13):The query /cd/title/average(price) retrieves all the data
values of the title element and the average of the numbers of the price

elemaent.

Median(x): This function is used to find the median for the list of

numbers in the selected path.

Example (14): If the queryicatalogicd median(year) is applied, the user

will get the median number for all the data values ofdfieelement.

Between(x,y): Instead of using and logical operator to retrieve
information lying between two different intervalSCVQQP introduce

this function. It has two parameters which represent the data interval.

Example (15): The querycdtitie[price=between(9.0,10.0)] retrieves all
the ite elements if and only if the value of itece element is

between the given interval.

4.6.2 Query Decomposer

This part of theXCVQQP is responsibldéor decomposing the XPath query

into several sugueries. This stage consists of two decomposition stages, as

shown inFigure 4-9. Each stage has specific roles and resnol set of sub

queries am the following:

Decomposition Stagel: The main purpose of this stage is to specify the

relevant documents from the compressed XML repository. This case occurs

71

when the user’'s query does not specify thacexXXML document to retrieve
information from it. XCVQQP decomposes this query intn) (queries, where

(n) represents the number of the relevant documents.

Definition- 2 (relevant document): If Q = [eq,e3,€3,...€,] IS
the set of elements in the wusers query, and
X = [xq,X9,%3,...X] is the set of all the compressed XML
documents in the repository. x € X is considered to be
relevant document if Je;:e; € x] PD, where PD is the path-
dictionary for the specified document. If so, add x]'- to the

relevant repository and add e; to q';.

Compressed XPath
XML Query
Repository
==
- - - I
= ________::=__::_I |
I ! ! 11 I
3 o L AR~
S |1 D e— Q1 12 | 8
> X ! Q; ! 13 | IS
a2 2= > <2 \wr | CI>.>
. O x’—|—>Q3 21 N Qo
o | 3 ' 139
D . ! : 31 S Y
% g ! ' ! Qi |1 S5
. * » b
g | ! . ! L=
2 ! : ! f ! . 1 s
8 1 x;! : Qn I . | g
—’ | ’
g : 1 Qn,m 1 S}
! 1
1 ! 1 Qn,m+1 |
__________ e — |
! 1
.. 1
~~~~~ 1
S~ 1
Te~a |
-~

Figure 4-13: The design of XCVQ-Query Decomposer

According to the definition above, a XML document is considered to be
relevant if it has one or more of the query elements in itsgiationary. Al the
relevant documentX’ = xj,x,,...x; are collected in a small repository for
relevant XML documents each of which is accompanied with its relevant sub
queryQ’' = q4, 45, ...q;. All the elements and attribute namesginare replaced
with its location in the patldictionary of the relevant document. This process is

done to prepare the sujueies for the second decomposition stage. As an

72



example, if a sulguery is: title/cdlyear from the running example, it is

replaced withs/1/7  where 3,1, and7 represent the entries aiie, cd,
andyear respectivelyas shown irFigure 4-5.

In the case when the user’'s quddyis submitted to retrieve information
from a specific document, then the query does not pass by this stage and the list
of subqueriesQ’ has only the original query, i.@ = [Q] and the related

document’s repository contains only the specified document.

Decomposition Stage?: After specifying the relevant documents, the role
of this stage is to specify the relevant containers withése documents. This

process causes further decomposition to thegsigiies

Definition-3 (Relevant Container): Given € ={cq, €3, €.}
represents the set of n containers for a relative document and
each of these containers has an index with k elements P =
{p1, P2, P}, and q; = {eq, e,,-- e} represents the set of m
elements in the sub-query accompanies C, to select the
relevant container follow the steps:
Vc; €C
k = the last element in the set
if px € q;
Add c; to €' to denote the list of relevant containers
Ve, if e, €P, copy e, and add it to the list of the
elements in q;; to denote a new sub-query.
k=k-1
Repeat the above steps until the entire element in q; are copied

to a new sub-query.

At the end of this stage only the relevant containers taken from the itelevan
documents are uploaded into the memory for ranking process. Each of these

containers is accompanied with is sub-query as showigure4-13.

73



4.6.3 Query relaxation

In this stage, the list of stdueriesQ’ is being relaxed to determine the

relevancy of each of these queries to the document. To dC36Q QP relaxes

all the members o’ according to each of the containersxinto compute the

cost of this relaxation process for ranking purposes. To reach thisxgoaQ

QP adopts different kinds of relaxation processes. These types and theireosts a

listed below:

1.

Nodeinsertion:
This type of relaxation is done by inserting one node or more in the list
of available query nodes. To do ¥&€;VQQP compares each container

of the relevant XML documents with its sub-query.

Definition-4 (Node-Insertion): Given a container ¢; € €' has an
index with k elements P = {p,, p,,---pr}and given gq;; =
{e1, e3,-- e} represents the set of m elements in the sub-

query accompanies the i™ relevant document and jth relevant

container. The relaxed sub-query q;;=q;; U (P \ q;;)

The cost of the insertion node(s) in a single sub-query is specified as follows:

costy, = —l (P \ q:'])l ©
In |P|

Node renaming:
After completing the first stage of relaxation, each-guéry is going to

pass through the following procedure:

Let q;; = {e1, e3,"- e;y} be the set of elements in

the current sub-query, P = {p4, p2, - Px} be the set

74



of elements of the index for the current container
associated with q;}.
Foralle; € q;},
if e; € P then find the value of SimilarityRatio
by applying the  string-similarity(e;, p;)
algorithm in Figure 4-8 suchthat 1 <j <m.
if (SimilarityRatio>50%) then
replace e; with p;

changes++

The cost of the node renaming process is calculated as

follows:

changes (10)

coStpen = |q”
ij

Node deletion:
After inserting all the required nodes from the index of a container, the

extra nodes from the query should be removed.

Definition-5 (Node-deletion): Given a container ¢; € €’ has an
index with k elements P = {p,, p,,---pr}and given gq;; =
{e1, €3, e} represents the set of m elements in the sub-

query accompanies the i™ relevant document and jth relevant

container. The relaxed sub-query q;; = q;; — [q:'] \ P].

The cost required to delete node(s) from a sub-query is:

75



|qi; \ P| (1)
COStDel = f
q;;

The deletion cost of all the sub-queries will never be equal to 1 (which
means all the elements in the query are deleted), since all these queries

passed by the insertioalaxation first and all the irrelevant containers

are dismissed.

4. Order relaxation:
This is the last relaxation process which arranges the order of the nodes
in each resulted sufpueries. The cost of this relaxation is shown in
equation (11) such thahangesepresent the number of changing in the

order of the elements in the sub-query.

changes (12)
Q"

CoStorder =

Example (16):For the running example, the lists of containers indexes are as

follows:

C, = {CATALOG,CD,NO}

C, = {CATALOG, CD, TITLE}

C; = {CATALOG, CD, ARTIST}
C, = {CATALOG,CD,COUNTRY}
Cs = {CATALOG, CD, PRICE}

C; = {CATALOG,CD,YEAR}

Suppose the following vague query:

Q1=document(“cdcatalog.xml”)/title/cd/artest[year between(1990,
1996)]

Q ={TITLE,CD,ARTIST,YEAR}

76



Since this query specifies the XML document to retrieve information from it, it
is going to pass through stage-2 directly to specifydlaed containers. The
following list illustrates the related containers alongside with thegsiginy
accompanied it:

C, = (CATALOG,CD,TITLE} & ¢, = {TITLE,CD}
C3 = {CATALOG,CD,ARTIST} = q}; = {CD,ARTEST}
Cs = (CATALOG,CD,YEAR} & ¢4 ={CD,YEAR}

The insertion relaxation process updates the sub-queries to be as follows:
qi, = {CATALOG,TITLE,CD}

qyi3 = {CATALOG,CD,ARTEST}

qi¢ = {CATALOG,CD,YEAR}

The cost of insertion the required nodes are as follows:
_ |{CATALOG,CD,TITLE} \ {TITLE,CD}| _ 1

oSt = [{CATALOG, CD, TITLE}| 3
. _(CATALOG,CD, ARTIST) \ {CD, ARTEST}| _ 1
€05ty = [{CATALOG, CD, ARTIST}] -3
. _l(cATALOG,CD YEAR)\ (CD,YEAR)| _1
€Oty = [{CATALOG, CD,YEAR)]| -3

The node renaming relaxation process updates the sub-queries to be as follows:
q'l'yz = {CATALOG,TITLE,CD}

q'l'yg = {CATALOG,CD,ARTIST}

q'1'V6 = {CATALOG,CD,YEAR}

77



The only subguery affected by this stageq'é3 and the cost of this process is as

follows:

1 1
t = -3
€OStRen, = \(CATALOG, CD, ARTEST}| _ 3

The node reordering relaxation process updates the sub-queries to be as follows:
q'{yz = {CATALOG,CD,TITLE}

q'1,3 = {CATALOG,CD,ARTIST}

q'1,6 = {CATALOG,CD,YEAR}

The only subguery affected by this stageq'fsf,z and the cost of this process is as

follows:

t _ 1 1
COStorder,. = \(CATALOG,TITLE,CD}| 3
4.6.4 Ranking

After relaxing all the sulgueries, the process of finding the similarity
between the conitzers’ index and the sub-queries is computed according to the

following equation:

Definition-6 (Query Similarity): To find the similarity between the
given query (Q) and the relevant XML document, first the cost of
all the relaxation process, that has been done on (i) sub-queries,
should be found as follows depending on the previous equations
in (9), (10), (11), and (12):

(Z?zI(COStIn)+(COStRen)+E}COStDel)+(c°3t0rder)) (13)

costy = i

78



Then the similarity is computed as follows:

sim(X,Q) = 1 — costy (14)

All the subqueries are sorteatcording to their value gim(X, Q), the

higher similarity the sub query has, the higher order it takes.

Example (16): continue

To find the similarity of the quer@l, first find the value otostg as

follows:
lio+o+d 1.li0+0 lio+o+o0
3 3 + 3 '3 + 3
4 4 4
tp =
costp 3
=0.134

And the similarity between the que®l and the prespecified XML document
is:

sim(cdcatalog.xml,Q1) =1 —-0.134 = 0.866

4.6.5 Decompression

During all the previous stages no decompression required except when the
query has to retrievenformation about the data part of the document. In this
caseonly the relevant contairewere decompressdd answer the suQuery
having that part of data.

79



To retrieve the relevanparts of the XML document to the user, all the

retrieved, ranked contarswere decompressed using the same decompression
technique discussed in section #h4his chapter.

Although there may be more than ae&vant containengetrieved fromone
or more XML documents, all these containeese combinedand decompressed
into one XML document to perform one tree instead of a forest of multiple XML
trees.

If the user needs more queries to be processedeoretiulteddocument,
then this document should be compressed first to be within the XML repository
and then it can be used in its compressed version. This feature is called
compositiorand is borrowed from XQuery, in which the retrieved information is

stored in a temporary XML file for further retrieving.

4.7 Chapter Summary

This chapter setkorth the main features in the designtbeé XCVQ system
which has the ability to compress and/or decompreddviindocument without
losing its data. The significant featu of XCVQ is its ability to retrieve
information from the compressed version according to different kinds of queries
and especially vague queries. This required an expansion of the existing XPath
queriesthrough addingcertainfeatures to provide it witlthe ability to answer

imprecise queries

80



CHAPTER 5XCVQTesting, Evaluation and
Discussion

Since the testing and evaluation processes are part of SDM, this chapter
illustrates the detailed testing ¥€CVQand its ensuing evaluation. Because the
XCVQmodel consists of three main paX€VQC, XCVQD, and XCVQQP,
the testing strategy wilhvolve tesing each stagen its own. This chapter
describes the testing of the three parts oXG& Qmodel.

5.1 Testing Strategy

For the purposes of testing the qaate model, the testing strategies &re
be specifiedirst. The next sections describe the behaviour testing strategy used
(state graph) and then the functional testing strategies (white and black boxes)

5.1.1 Testing XCVQ’s Behaviour

For the purposes ofgeng the complete model, first the state diagram was
defined to describe the behaviour XtVQ and to implement the State Graph
testing strategy (Beizer, 1990; Farfélihay, 2008).

81



Figure 5-1: XCVQ State Graph

The following is the detailed description of each state of the state graph in

Figure5-1.:
State-A This state is the GUI dahe designed model. It represents the isigrt
statein orderto deal with allthe other states. This state has three outputs:

Out-1: to compress an XML document, go to stBte-

Out-2: to decompress an XML document, go to Statdhis output is

true only if (Outd) is performed at least one time.

Out-3: to write a query, go to Staie. This output is true only if (Out

1) is performed at least one time.

State-B This state represents the process of compressing an XML document. It
has two outputs:
Out-4: to decompress an XML document, go to State-

Out-5: to submit a query, go to Staie

State-C This stage represents the process of decompressing an XML document
and it has two outputs:

Out6: return to the starig state.

Out-7: submit the decompressed document to the user, go tol State-

82



State-D this is the most important state in the system which represents the query
submission and checking its syntax. It has the following five outputs:
Out8: if the submitted querkias syntactical errgs), return to the same
stage to resubmit another query.
Out9: if the syntactically true query specifies the exact XML document
to retrieve information from, go to Stage-
Out10: if the syntactically true query does not specify the exact XML
document to retrieve information from, go to St&ge-
Out-11: take the oubf-errors query and the relevant XML document(s)
as inputs to Stat6.
Out12: from this stage the user can return back to thdargjatate.

State-E This state is responsible on retrieving the required XML document
which specified by the query. It has only one output:
Out13: carry the unique XML document which is specified by the
query to Staté>.

State-F In the state, the set of relevant XML document is specified depending
on the submitted query. This state has one output:

Out-14: carry the set of the relevant XML document(s) rettefrom

the repository to Statb.

State-G In this state, the query is processed and the required information is
retrieved from the relevant XML document(s). It has three outputs:
Out-15: to ignore the current query, return to Sthte-
Out16: if more retrieval process requirdor the retrieved document,
go to StateB to decompress the retrieved document first.
Out-18: to submit the results of the querying process to the user, go to
Statel

State-H This state returns the retrieved information as an XML document to the

compressor to compress it and add it to the XML repository for further querying

process and it has only one

83



Out17: if the user required more querying on the retrigaéatrmation,
go to StateB.

State-l This state is the final state where the resulted document(s) are submitted

to the user.

5.1.2 Testing XCVQ’s Structure & Functionality

Both White-Box and BlaclBox testing strategies are used in order to test
the structure and the functional ¥€CVQrespectively. In the Whit8ox testing
strategy all the subroutines in the system were tested to check every single
statement. Depending on this testing strategy, different kinds of XML
documents were derived to guarantee that all paths, logical decisions, loops, and
data structures have been tested at least once. Firstly, the colipt@
system was divided into three main systems:XCVQC, XCVQ@D, and
XCVQQP in order to make it easier to follow the whiiex testing strategy.
Secondly, each subystem was divided into small units to follow ti&t white
box testing typeFor each unit three whitaex tests were made:

(1) Conditional est In this test all the condition statements were tested
checking the values of the Boolean variables and the correctness of
the conditions.

(2) Data lifecycle & data structure testhe second whitbox tests the
lifecycle of the variables, their initiabtions, their value changing,
and theirexpiring.It also checks the created data structures by testing
their boundaries, applicability, initializations, and updating their data.

(3) Loop testing:In this box all the loops in each unieretested. The
test ircludes the control variable initialization value, the truth of the
control condition, the change in control variable, and the guarantee of

its termination.

While the structure of the designed system is cruoidhe WhiteBox

testing strategy, it has no role in the Bldbx strategy since this strategy is

84



aimed at observing the outputs of the designed system for certain inputs. The
main aim of this strategy is to test all the functional requirements, and hence it
attempts to derive the necessary dataafidnieving that aim. In this chapter, the

intensive test for the chosen XML data corpus and the independent test were

both achieved.

During both previous strategies, a huge amount of XML data was used to
cover different data ratios, depths, resources,saa@b. The overall tested data
amounted to more than 1500 MB with 45 XML documéaée AppendibC)

5.2 Testing Factors

To test the performance of th€VQ all the factors listed imable5-1 were

used. The following is the complete description of th&seors and their

importance in the testing process:

Table 5-1: XCVQ Testing factors

Sub-system Testing factor

XCVQ-C - Structure Compression Ratio
- Structure Compression Time
- Compression Ratio

- Compression Time

XCVQ-D - Structure Decompression Time

- Decompression Time

XCVQ-QP - Functionality test

- Performancdest

85



— Compression Ratio (CRdhis factor is used to test the difference
between the original XML file size and the compressed file size
as illustrated in Eq.8) (Salomon, 2007). It is used in two stages.
In the first stage, only the structure part of the document was
compressed anth the second stage the data and the structure
parts were compressed. Depending on this factor, the relation
between CR and the Data Ratio (DR) and the relation between
CR and the size of the file were found. For this purpose a corpus
of XML documents was used. Its complete description is

discussed in the next paragraph.

Size of compressed file) (15)

R=1-
¢ ( Size of original file

— Compression Time (CTT:his factoris used to determine the time
required to compress each XML documensaaonds (s) and to
specify its relation with the file size.

— Decompression Time (DT)rhis is the measure of the time
required to decompress the XML documemnbrderto obtain the
origind one. The effect of the file size on DT walstained.

— Query Functional Test (QFT)The purpose of this test is to
determine the main types of queries that can be pratdsse

XCVQQP. For this purpose, a query benchmasdstested.

86



— Query Performance TefQPT): This factoris used to determine
the time required to process each of the XPath query in the

benchmark and retrieve the relevant results

All the time comparison factors shown in the following figures are scaled
by (logio) to make the figurecleaer. All the negative values in these figures

mean that the actual time values were less than (1).

5.3 Data Preparation

To test theXCVQmodel, a setcomprisingof different types of XML
documents has been chosen. These documents shouldifferent sizes,
number of elements, number of nodes, the depth of the longest path, and the data
ratio (DR) which iscalculated as follows (Sakr, 2009):

WhereDR, is the data ratio for the XML documerdl),((D) is the data, and

(Si) represents the size of the XML document.

According to their main characteristics, XML documentsloagategorized

into three typegManeth et al., 2008; Sakr, 2009):

1. Textual documents (TD): THeRy of this type of documents exceeds
70%. The structure of these documents is very simple. Books and articles
are examples of this type.

2. Structural documents (SD): In this type of XML documents[iRgis
less than 30%. Baseball box score and itieet shipping are two
examples of this type.

3. Regular documents (RDThese documents haiddy betweerd0% and
60% Relational databases are examples of this type.

87



The complete descriptions of the XML corpus with all the required
informationand the detailed description of all the groups in the caapaisisted

in Appendix-C.

5.4 Testing Environment

All the testing werecarried outon a personal computer with Intel(R)
Core(TM)2 Due CPU processor that has the speed of 5.50 GHz. The RAM
memory of the tested environment is 4.00GB and 300GB of hard disk drive. It
has 32bit Windows Vista operating system.

5.5 XCVQ-C and XCVQ-D Testing

Thetesting technique for théCVQC is made in two stages. The first stage
is done by compressing only the structure of the XML document and creating
the path-dictionarywithout compressing the data part of the document. The
second stage is done by compressing the structure and the data parts to obtain
the final XML compressed document whiefil be used in the querying

process.

5.5.1 XCVQ-C and XCVQ-D Testing: Stage-1

The main purpose of this stage is to examine the effect of redundancy
the structure of the XML documeandits overall size. In this stagéhe data
part of the documeritasnot been compressed atidiskeeys its original size,
while the structure part is abridged and replaced witleldr®entsndexand the
attribute nameentries in thepath-dictionary The compressed XML document,
at this stage, contains thmath-dictionaryand the created containers excyait

the data inside these containers arecompressed.

This test includes finding the Structure Compression REHGR),
specifying the Structure Compression Time (SCT) and its relatiotwsthp size

88



of the XML document,as well as determininghe Structure Decompression
Time (SDT) and its relationship tbe size of the XML document.

B Structure Compression ratio (SCR)

40
1oi
0 - L L I LU LT UL L
= -~ X - =
EEFLEESL e L sz EsRo0 2 g2
8 £t § X3 9= 90 =05 22 5 23T oy g S o 4
g gz e8I ge g reysegggagzky
w = ¥ 15 = 5 2 = X oo 2
SE L ETEXRSGEI TSR A £ 30 ¢
O e A < 'S E S » z zZ =
X 7] "} ] c =2 S c
= n o T w wi
Q
w <
[S] ©
= >
Q
c
[
o
<

Figure 5-2: SCR for the XML corpus

Figure5-2 explains the Structure Compression Ratio (SCR) for the XML
corpus. By keeping the data in its original size and compressing only the
structure part of each document, the resulted SCR is betv@03 and85.43
and the average SCR49.47 The value of SCR depends on the structure ratio
of each document, which is listed in apperDixand the repetition of the
schema in this document. This test explains the role of the redunohatioy

structureof the XML document.

89



IS
J

w

N

[any

o

'
[

Structure Decompression time/Sec (log scale)
=
[,
Structure Compression time/ Sec (log scale)

0.274
0.632
2.226
3.213
10.578
24.622
81.397
113.061

™
~
0
Q
S

1
N
L

XML document size/MB

XML Document Size/MB

(a) (b)

Figure 5-3: (a) Structure Compression Time for the XML corpus and (b) Structure
Decompression Time for the XML corpus.

Figure 5-3-(a) shows the relation between the size of the XML document (X)

and the structure compression tif\§, while Figures-3-(b) illustrates the time

(Y) requiredfor decompressing the XML document and restoring the original
one. It is clear from the above figures that the relationships between dhe tw
variables in both cases agpandingalmostlinearly. The correlation coefficient
between X and Y wais= 0.886607in the compression case and 0.£96626n

the decompression case. These valndgcate the strong positive relationship
between the size of the XML documentlire ane handand the compression and
decompression time on the othdhe actual SCR, SCT, and SDT for the
complete XML corpus are listed in Apndix-D.

90



5.5.2 XCVQ-C and XCVQ-D Testing: Stage-2

In this testing stage, thkilly designedXCVQC and XCVQD were
tested. The maiaimsof this test is to determine the average compression ratio
for the XML corpus and the compression ratio for each of the docuntents,
specify the compression and decompression time and their relatidostig
size of the XMLdocument, and to generate the XML repository which is going
to be used in the testing BCVQ-QP.

B Compression ratio (CR)

Figure 5-4: CR for the XML corpus

The compression ratio of the complete XML corpus is showkfigares-4. The

resulted compressed file contains theth-dictionaryand the containers after
compressing their data using Gzip barid compressor. Bhminimum resulted
compression ratio i$8.51 for Richard 1l and the maximum i93.52 for
Sweden-meta. The average compression ratio for the complete XML corpus is
78.45

91



Compression Time/Sec (log scale)
Decompression Time/Sec (log scale)
=

0 ~

o N

> n o

) Q =N
o

XML Document Size/MB XML Document Size

@) (b)

Figure 5-5: (a) Compression Time and (b) the Decompression Time for the XML corpus.

Figure 5-5-(a) shows the compression time for the complete XML corpus

according to the size of the XML documaenitile Figures-5-(b) shows the time

required to decompress the XML documents. Again, the relationship between
the compression/decompression time and the size of the XML document is
almost linear and the correlation coefficient between tmpcession time and

the XML document size is: 6971702, while it is r=0.888598 the case of
decompressianThis illustrates the strong positive relation between the two
tested variables. The complete tested files alongside with their CR, CT, and DT

arelisted in Appendix-D.

5.6 XCVQ-C & XCVQ-D Evaluation

For thepurpose okvaluatig XCVQC and XCVQD, comparisons were
made betweerXCVQ and other competitive techniques. Depending on the
availability of the techniques and the XML corpus used in the testing of these
techniques, four queriable XML compressors were chosen for the purpose of

92



comparison: XGrind (Tolani and Haritsa, 2000), Xpress (Min et al., 2003),
XQzip (Cheng and NG, 2004)XQueC (Arion et al., 2007), and (Mildner et al.,

2009). The XML corpus used in the testing and the compression ratio for each
documentis shown in Figure 5-6. The evaluation of the XCVQ includes

comparing the following factors: CR, CT, and DT.

100

2 80 3
c - @XGrind
.§ 60 - E OXPress
g 40 - E oxQzip
§ = mXQueC
e 20 - :: OXSAQCT

0 - = @xcva

Shakespear  SwissProt UW course  TreeBank Lineltem NASA DBLP
data

Figure 5-6: Evaluating XCVQ-C CR.

It is clear thatXCVQC achieveda better compression ratio than other
compressors except when dealing with high structural documents, since
XSAQCTachieved better ratio. But when dealing with querying the compressed
XML document,XSAQCThas the ability to answer only exact match queries
since it transfers the structure of the document into an anndtagedhich can
be compressed better than structitre@é. The average CR of th&€CVQC is

considered to be the best between all the other techniques for the selected

documets, as listed imables-2.

Table 5-2: Average CR for all the tested XML compressors.

XGrind 57.39
XPress 57.55

93



XQzip 66.95

XQueC 68.4

XSAQCT 80.02

XcvQ 81.85

3.5
) 3 “"
/ a
;o" 2.5 / A
5 , 9 4 !
E i LA E A ! @ XGrind
E 9 4B
= 1.5 - E E . D XPress
=] |
g 1 4 ¥ A BXQzip
£ g g EXSAQCT
(=] .
§ 03 @xcva
0 .
{g&* & &7, @3& e\@& @"Y
& & & <& N
o
S

Figure 5-7: Evaluating XCVQ-C CT

As seen irFigure5-7, the time required by théCVQC to compress the

XML document was higher than the other compressors in most ddgess
due to the SAX parsebeing used byXCVQC, which traversg the XML
document onlyonce during which time the complete containers and the

structured tree were constructed. While the time required to decompress and
regenerate the XML document, showrFigure5-8, was better than some of the

XML compressors

94



w

O)
5 25 /I 7
-1
:, . 1
3 - T . ‘E OXGrind
@ - ;.'::_: ~ ,-_.,1
E 15 N | A= || ? OXQzip
< N 1 =t N % @XQueC
2 1 L | | e |- ue
g N N e N @XSAQCT
£ N N ﬁﬁ:- N%7
s 05 - |~ - Po=EE N ? oxcva
g N N e NAZ
~ A B ~ L
0 ~ | ’l'l'=: - F"Ii

Shakespear  SwissProt  UW course  TreeBank Lineltem NASA DBLP
data

Figure 5-8: Evaluating XCVQ-D DT.

5.7 XCVQ-QP Testing

For the purpose of testing the performance of X@&/QQP, a XPath
benchmark is used from XPathMark (Franceschet, 2005) since it covers sll type
of XML queries. The queries in this benchmark are divided into two main
categories either Query Functional Te&F{) or Query Performance Test

(QPT).

5.7.1 QFT

XPathFT queries are used to check the completeness and correctness of the
guery processor and are grouped into five asp€atde5-3illustrates hesefive

aspects. Since the main concernrX@VQQP is to process vague queries, only
the vague cases each of the aspects are tested. Since the third aspect could not

be as vague, the testing processhis stage ignores this aspect. Furthermore,

95



oneadditional aspect was added to the existing aspects {Mldtaspect) to test
the ability of XCVQQP to retrieve the required information even if it is

disseminated in more than one XML document.

Table 5-3: XPathMark-FT query benchmark

parent, descendant, preceding
predicates
Comment(), text(), node()
Relational operators (<, =,...) and Boolean
operators (and, or)

String manipulating functions and
mathematical functions
Retrieving information from more than one

XML document

Table G2 in AppendixC lists all the QFT concepts alongside with the
queries associated with each concept by applying the example XML document

in Figure 4-3 as a case study. All the listed queries were successfully processed

by XCVQQP and retrieve the required information.

5.7.2 QPT

The QPT queries test the exact time required to answer a specific query
(Franceschet, 2005). For this purpose, the same conceptisidrs-4 were ugd

to test the performance of tbCVQ QP by testing the time required to process
the set of querieBr each concept and retrietiee information from a specific

XML document chosen from the used XML corpus with different sizes.

96



180

160 /<
140 /

120 / —
100 /

/ =>¢=Function

80
60 / //. Operation
40 / =i Filter

20 / —— Axes

Querying Time/Sec

XML File Size/MB

Figure 5-9: Testing XCVQ-QP Querying time

The testing results ifrigure 5-9 includes all the concepts of the selected

benchmark after averaging the time required to process the set of queries within
each concept. These sets were applied to retrieve informatiorvémous XML
documents with different sizes. It is clear from the aforementioned figate t

the axes queries need less time to be processed than the other concepts. This is
due to the structure of the compressed XML document which requires searching

only the indexes of the containers to process these queries.

Since the queries belonging tthe Filter concepts required partial
decompression onlfor the retrieved containers, this set of queries needs more
time than the queries in the first set. Because the setenieg in the Operation
concept neeslpartial decompression for the relevant containers plus filtering the
values in the retrieved information according to the given operation, they need
even more time to be processed. Finally, the set of queries angt&imction
calls require processing either the synonym or similafthe given parameter
which need the highest time among other concepsthese functions require

searching the dictionary or other similar data respectively.

97



Another test was made ttveck the performance of the queries in the last
concept(multi-file). The test concludes that the time required to process a query
from that set was depe@idt on several factors such as the size of the relevant
documents, the number of relevant documents, and the size of the XML
repository.It could thus be concluded thdtese entire factors hawepositive

relationship with the query processing time

5.8 XCVQ-QP Evaluation

To evaluateXCVQQP, a test wadirst made to check the functionality of
the model and its capability to process different kinds of queries. All the existing
XML queriable compressors were testedd&terminethe types of queries each
compressor can process. All the existing queriable cosgnefave the ability
to process SQ, while some of them were designed to process specific types of
gueries. As discussed befodéCVQQP has the ability to process the vague
queries plus all the other kinds of queries whiehdersit the only queriable

XML compressor with suchfaature.

Another evaluation test was made to compare the time required to
process a query and retrieve the relevant information accordingly. Since each of
the previous XML compressors usadifferent set of queries and documers t
test their querying time, several tests were made to com¥@xwQQP with

these compresseusing their queries and XML document sets.

The evaluation tests were made to compare the querying time with
XGrind and Xpress, XQZip, and XSAQCT using the sequeries and the XML
documents listed in Appendi (Setl) (Min et al., 2003), (S€2) (Yang et al.,
2006), and (Set-3) (Muldner et al., 2009) respectively.

98



@)

20
oo »
£ . y
&, (8] 15 o a . y
) by " "
g4 y N ] R
& g 10 ¥ M 8 Xgrind
> .= ) A
g™ 5 - ; T HAT @ Xpress
g 7 WA B B B B B RO B e
0 i i ] H H B # | H H B : B EXCVQ
Bl B2 B3 B4 C1 C2 C3 C4 S1 S2 S3 <4
Query Name
(b)
15
b0
£
wn
g8
O =~ i
a g 5 A XQZip
. dal
C=1 0 - il m H [ B XCVQ
L1 L2 L3 L4 L5 T1 72 T3 T4 T5 S1 S2 S3 S4 S5
Query Name
(c)
15
[-T¢]
£
"
g3 T
S 3 4 5
TE 5 :: {1 / = @ XSAQCT
L= ’ i
§ o M ¥ Vo Pl of] om .'j fam Al ] BXcova
D1 D2 L1 L2 S1 S2 P1 P2 Ul U2
Query Name

Figure 5-10: XCVQ Query processing time against (a) XGrind and Xpress, (b)
XQZip, and (c) XSAQCT.

As declared irFigure 5-10 the time required to process the querissgl

XCVQQP was less than the time required to process the same queries using
almost all the previous XML queriable compressors, except for the queries that
require data retrieval such as the queries in the filter concept. This is due to the
fact that XCMQ-QP needs to decompress the relevant containers in order to

retrieve the required information. The timeXsfVQ QP was even more than the

99



other compressors when retrieving information from the textual XML
documents since the size of the containers in these documents were higher than

other types of documents.

The designed query processor is considered to be the first processor which
has the ability to retrieve information according to all types of queries fiem t
compressed XML documents. Comparingwmth the techniques that retrieve
information from the original XML documentXCVQQP covers different sides
of vague queries (path expansion, data value expansion, and function set
expansion)On the other handhe previous techniques are dedicatedolwisg
only one side (path expansioniagGrust, 2002; Ameiyahia et al., 2004) and
or two sides (path expansion and function expansion &ampi et al., 2009)

or path expansion and data value expansion as in (Brisaboa et al., 2010).

5.9 Chapter Summary

In this chapter, extensive tests were carriedtoutheck the performance
and functional abilities cKCVQ.In the compressor part of the model, the model
wastested using a corpus of XML documents that have different features. After
comparing the compre®n ratio with other XML compressor¥CVQ showed
better ratios in most of the tested documents iemdverage ratio was higher
than allothertested techniques. On the other hand, the compression time was
high and neeslfurther development in the future. An independentuesalso
made to test the compression ratioX@VQC and the results of the tested data

are listed in Appendi¥-.

From the decompression sid¢CVQD was fast enough compared ttoe
existing techniques and the decompressed documestes lossy when there
weredummy elements in the XML document. The ratio of the dummy elements
and that of the structure loss are listed in Apperalix-

Finally, XCVQQP was tested to checkor its ability to retrieve
information according to several kinds of vague queries and other kinds of
gueries. A benchmark of queries was chosen and téstede functional and

100



the performance abilities of the designed model. The results were very
encourag, since the model proved its ability to process different kinds of

gueriesn acompetitive processing time

101



CHAPTER 6 Conclusions and future work

This thesis introduced a new moagiich has the ability to compress
XML document efficiently and retrieve imfmation from the compressed file
according to vague queries and even various other types of queries. This chapter
will outline the main conclusions of the reseaashwell aghe main advantages
and limitations of the designed model. Finally, the chapirlso list possible

future trend in this researcim terms ofdevelopng the proposed model.

6.1 Conclusion

As the importance of XML usader storing and transferring data via the
World Wide Webbecomes increasingly clear, theraisorrespondingeed o
compress the size of XML documentgalng with themin their compressed
modeso ago make them accessible to devices with limited resources. When
these compressed documents are usesinyyleusers, in aituationwhere there
is absence of schemar if such auser has no exact ideadwhat ghe is looking
for, there should be a special techniquailableto adequately deal with these
types of queriesThe questions had been raised by this research and their

answers are as follows:

1. Is it possble to design a new compression technique that has the
ability to compress the XML documents and achieve better
compression ratio without the need to the document’s Schema or
its DTD?

The answer to this question XCVQ compressor. Thdesign of
the model showed the best average compression ratio (78.45)
among the other XML queriable compressaithout the need to
the XML schema to be available. This was due to several reasons,
such as: (1) limiting the storage of each element anibuwtr

name in the document to only one number, which represents the

102



order of that element or attribute in the XML document, instead
of being two numbers, and (2) increase the granularity of the data
to be compressed in order to perform better compressitim r
Although this design issue increased the compression ratio, but it
affects the time required to compress the document by increasing
this time to be higher than the time require to compress these
documents using other techniques. However, the coniqness
process usually made only once, while the querying process can
be done hundreds of times to retrieve information from the

compressed files.

What is the influence of the structure redundancy on the overall

size of the XML document?

To answer this quésn, XCVQ Structure Compressowras
designedIn the compression process of the XML documents, the
research found the strong affect of the redundancy in the structure
of the document on its overall size. By succinctly storing the
structure part of the XML document and keeping the data part as
it is, the experiments showed good compression ratios which were
up to 85.43 and averaged 49.47 for the tested XML corpus. This
shows the big redundancy in the structure part of the document,
apart which is consideretb be very important for several

purposes and retrieving information is one of them.

What are the main types of vague queries and when they can be
occur? Have the existing XPath query language the ability to
answer vague queries? If no, what is the required expansion that

should be made on XPath to give it this ability?

Vague queries are one of the important types of queries. They
occur in different situations and require special ways to be
processedsince the existing query languages do not have the

ability to answer these queries. THEVQQP can deal with

103



simple and complex queries by forcing each query to pass by two
decomposition stages in order to make it easier to retrieve
information from the relevant document(s) and then combine the
subtesults to be decompressed and submitted to the Tisisr.
process required the expansion of XPath query language in
different sides: the path expansion, the data value expansion, and
the set of functions expaion. The time required to process the
queries are very competitive especially when dealing with
structurebased queries, since the compressed structure of the

document helps in accelerating the retrieving process.

4, How to determine the relevant XML document(s) from thousands
of documents without the need to scan them completely for time
saving purposes? And is it possible to retrieve information from
more than one XML document without the-ppecification of
these documents using one XPath query?

Instead of scanning the complete document to search for a
specific bit of dataXCVQQP uses the patdictionary, which
contains all the elements and attributes names, to specify the
relevant documents from thousand of XML documents. In this
way, it is now possie to retrieve information from unspecified
document(s). While all the existing XML query processors
required the user to pipecify the required documents to retrieve
information from them,XCVQQP has the ability to retrieve
information from one or morthan one XML document without

the need to specify exactly which document could contain the

required information.

6.2 Recommendations

— The main purpose of designiXgCVQis to process vague queries
on compressed XML documents. For that reasie first

104



recomnendation for the model is to be used in cases where vague
queries could be submitted, such as when dealing with naive
users,where there is absence sthema, andvhen the required
information is scatteredmongmany files

— The model is recommended to bsed in retrieving information
from XML documents when these documents have to be stored in
devices with limited resources. The required documents can be
compressed once and then queried several times with very limited

resources requirements.

6.3 Future Work

Several research issues can be expléoachprove the model:

— The model in this research can be developed to coR@Qinto a
complete XML management system wikie ability to manage XML
document in its compresdstage. The management process includes
adding, deleting, or editing elements or attributes names. This
process does not require any decompression, since the change is only
madeto the structure part of the document. The management process
can include editing in th part of the document. In thicaseonly the
container(syvith the required data should be decompressed using the
Gzip backend decompressor. They could also be usecdiing

the data and reompresig the container(s).

— Another development is providirige ability to retrieve iformation
from XML documents written in languages other than English. This
could be done by adding a translator to translayedata part into
other languages and retrieve thiormation accordingly.

— The model can be enriched by adding a Natural Language Processor

that can convert a user’s query into a vague XPath query and then

105



retrieve the required information from the compressed XML

document.

— Remains to be fullymplemenédis the complete set of XPath

statements such as “for” and “if”

106



Publications

Baydaa Al-Hamadani, Joan Lu. Processing Vague Queries on Abridged
XML Documents. To be published in the journal of Philosophical
Transaction of the Royal Society.

Baydaa Al-Hamadani, Joan Lu, and Raad F. Alwan. A new Schema-
Independent XML Compression Technique. Accepted for publication in the
International Journal of Information Retrieval Research, 2011.

Nael Hirzallah, Dead Al-Halabi, and Baydaa Al-Hamadani. University
Grades System Application using Dynamic Data Structure. IJCSI Volume 8,
Issue 1, January 2011.

Daed Halabi, Nael Hirzallah, and Baydaa Al-Hamadani. Dynamic Grading
System for Universities. 3rd International Conference on Advanced
Computer Theory and Engineering, 2010.

Baydaa T. Al-Hamadani, Raad F. Alwan, and Joan Lu, XQPoint: A Queriable
Homomorphic XML Compressor, IEEE 6th International Conference on
Innovations in Information Technology. Al-Ain, UAE, Page 100-104.
December PP: 15-17, 2009.

Baydaa T. Al-Hamadani, Raad F. Alwan, Joan Lu, and Jim Yip, Vague
Content and Structure (VCAS) Retrieval for XML Electronic Healthcare
Records (EHR), Proceeding of the 2009 International Conference on
Internet Computing, USA, PP: 241-246, 2009.

Baydaa T. Rashid, Raad F. Alwan, Joan Lu, and Jim Yip, Recent
Development in XML-IR, proceeding of the School of Computing and
Engineering Annual Researchers’ Conference, University of Huddersfield,
UK, PP: 106-109, 2008.

107



Reference List

GZip Compressor, . http://www.gzip.org/.

Yousof, M. M., Shukur, Z. & Abdullah, A. L. (2011) CuQuP: A Hybrid Approach for
Selecting Suitable Information Systems Development Methodology Information

Technology Journal.

Al-Hamadani, B., Lu, J. & Alwan., R. F. (2011) A new Schema-Independent XML
Compression Technique. Accepted for publication in the International Journal of

Information Retrieval Research.

Al-Hamadani, B. T., Alwan, R. F., Lu, J. & Yip, J. 2009. Vague Content and Structure
(VCAS) Retrieval for XML Electronic Healthcare Records (EHR). Proceeding of
the 2009 International Conference on Internet Computing, USA. P: 241-246.

Al-Khalif a, S., Jagadish, H., Patel, J., Wu, Y., Koudas, N. & Srivastava, D. (2002).
Structural Joins: A Primitive for Efficient XML Query Pattern Matching. 8th

International Conference on Data Engineering, San Jose, CA, USA.

Alistair, M., Radford, M. N. & lan, H. W. (1998) Arithmetic coding revisited. ACM Trans.
Inf. Syst., 16, 256-294.

Amer-Yahia, S., Lakshmanan, L. V. S. & Pandit, S. 2004. FleXPath: Flexible Structure
and FullText Querying for XML. ACM, SIGMOD., Paris, France. PP: 83-94.

Amir-Yahya, S., Cho, S. & Srivatava, D. (2002). Tree Pattern Relaxation. EDBT 8th
International Conference on Extending Database Technology, Prague, Czech

Republic.
Anders, M., (2009). An Introduction to XML and Web Technologies, Pearson Education.

Arion, A., Bonifati, A., Manolescu, |. & Pugliese, A. (2007) XQueC: A query-conscious
compressed XML database. ACM Trans. Internet Technol., Vol. 7, 10.

Arroyuelo, D., Claude, F., Maneth, S., M"Akinen, V., Navarro, G., Nguyen, K., SirEn, J.
& V'Alim“Aki, N. 2010. Fast In-Memory XPath Search using Compressed
Indexes. In Proceedings of the IEEE Twenty-Sixth International Conference on
Data Engineering (ICDE 2010), California, USA.

Augeri, C. (2008), On Some Results in Unmanned Aerial Vehicle Swarms, Ph.D Thesis,
Air Force Institute of Technology, San Diego, CA, USA.

108



Augeri, C. J., Bulutoglu, D. A., Mullins, B. E., Baldwin, R. O. & Leemon C. Baird, I.
(2007). An analysis of XML compression efficiency. Proceedings of the 2007

workshop on Experimental computer science, ACM, San Diego, California. 7.
Beizer, B., (1990). Software Testing Techniques, Second Edition.

Bodenhofer, U. & King, J. 2001. Enriching vague queries by fuzzy orderings. European
Society for Fuzzy Logic and Technology - EUSFLAT, Pages 360-364.

Bonifati, A., Lorusso, M. & Sileo, D. (2009) XML lossy text compression: A preliminary
study. Lecture Notes in Computer Science, Pages: 106-113.

Bourret, R. (2005) XML and Databases. Ronald Bourret.

Brisaboa, N. R., Cerdeira-Pena, A., Navarro, G. & Pasi, G. 2010. An Efficient
Implementation of a Flexible XPath Extension. Recherche d'Information
Assistee par Ordinateur - RIAO, Pages 140-147.

Buneman, P., Grohe, M. & Koch, C. (2003) Path Queries on Compressed XML. IN
JOHANN-CHRISTOPH, F., PETER, L., SERGE, A., MICHAEL, C., PATRICIA,
S. & ANDREAS, H. (Eds.) Proceedings 2003 VLDB Conference. San

Francisco, Morgan Kaufmann.
Bzip2 (1996) http://www.bzip.org/.

Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G. & Spoletini, P. (2009) A fuzzy
extension of the XPath query language. Journal of Intelligent Information
Systems, 33, 285-305.

Cheney, J. (2001). Compressing XML with multiplexed hierarchical models. IEEE Data
Compression Conference (DCC 2001), IEEE Computer Society, pages 163-
172.

Cheney, J. (2005). An Empirical Evaluation of Simple DTD Conscious Compression
Techniques. Eighth International Workshop on the Web and Databases
(WebDB 2005), Maryland, USA.

Cheng, J. & Ng, W. 2004. XQZip: Querying Compressed XML using Structural Indexing.

International Conference on Extending Data Base Technology (EDBT),

Cleary, J. & Witten, I. (1984) Data Compression Using Adaptive Coding and Partial
String Matching. Communications, IEEE Transactions, 32, 396 - 402.

109



Damiani, E. & Tanca, L. 2000. Blind Queries to XML Data. Proceedings of the 11th
international conference on database and expert systems applications, . pp:
345-356.

De Meo, P., Palopoli, L., Quattrone, G. & Ursino, D. (2007) Combining Description
Logics with synopses for inferring complex knowledge patterns from XML

sources. Information Systems, 32, 1184-1224.

Dutta, A. K., Idwan, S. & Biswas, R. (2009) A Study of Vague Search to Answer
Imprecise Query. International Journal of Computational Cognition(IJCC),
Volume 7 Pages 70-75.

European, E., Agancy, (2003) http://www.eea.europa.eu/data-and-maps/data/airbase-

the-european-air-quality-database-1

Exi (2009) http://www.w3.org/XML/EXI/.

Farrell-Vinay, P., (2008). Manage Software Testing, Auerbach.

Fazzinga, B., Flesca, S. & Pugliese, A. (2009) Retrieving XML Data from
Heterogeneous Sources through Vague Querying. ACM Transactions on

Internet Technology, Vol. 9, pages: 7-35.

Ferragina, P., Luccio, F., Manzini, G. & Muthukrishnan, S. (2006). Compressing and
searching XML data via two zips. Proceedings of the 15th international
conference on World Wide Web, ACM, Edinburgh, Scotland. 751-760.

Florescu, D., Kossmann, D. & Manolescu, I. (2000) Integrating keyword search into
XML query processing. Computer Networks, 33, 119-135.

Franceschet, M. (2005) XPathMark: Functional and Performance Tests for XPath.
Lecture Notes in Computer Science, Springer, vol. 3671, 129--143.

Fredrick, E. J. T. & Dr.G.Radhamani (2009) Fuzzy Logic Based XQuery operations for
Native XML Database Systems. International Journal of Database Theory and
Application, Vol. 2.

Fuhr, N. 1999. A probabilistic framework for vague queries and imprecise information in
databases. 16TH INTERNATIONAL CONFERENCE ON VERY LARGE
DATABASES

Fuhr, N., Lalmas, M. & Trotman, A., (2006). Comparative evaluation of XML information

retrieval systems, 5th Edition, Springer.

110



Gerlicher, A. R. S. (2007), Developing Collaborative XML Editing Systems, PhD thesis,

University of the Arts London, London.

Girardot, M. & Sundaresan, N. (2000) Millau: an encoding format for efficient
representation and exchange of XML over the Web. Computer Networks, 33,
747-765.

Goldberg, K. H., (2009). XML: Visual QuickStart Guide Second Peachpit Press-Pearson
Education.

Groppe, J. (2008), SPEEDING UP XML QUERYING, PhD thesis, Zugl Liibeck

University, Berlin.

Grust, T. (2002). Accelerating XPath location steps. ACM SIGMOD International
Conference on Management of Data, Madison, WI, USA.

Gzip (1992) http://www.gzip.org/.

Halverson, A., Burger, J., Galanis, L., Kini, A., Krishnamurthy, R., Rao, A., Tian, F.,
Viglas, S., Wang, Y., Naughton, J. & Dewitt, D. (2003). Mixed Mode XML Query
Processing. 29th International Conference on Very Large Data Bases, Berlin,

Germany.

Harrusi, S., Averbuch, A. & Yehudai, A. 2006. XML Syntax Conscious Compression.

Proceedings of the Data Compression Conference (DCC’06),

Hevner, A., March, S., Park, J. & Ram, S. (2004) Design Science in Information
Systems Research. MIS Quarterly, Volume 28, pages 75-105.

Holman, G. K., (2002). XSLT and XPath, Prentice Hall PTR.

Huh, S. Y., Moon, K. H. & Lee, H. (2000) A data abstraction approach for query
relaxation. Information and Software Technology, 42, 407-418.

Hung, P. C. K., (2009). Services and Business Computing Solution with XML, IGlI
Global.

Hunter, D., (2000). Beginning XML, Wrox Press Ltd.

Jiaheng, L. (2006), Efficient Processing of XML TWIG Pattern Matching, PhD thesis,
NATIONAL UNIVERSITY OF SINGAPORE, SINGAPORE.

Kay, M., (2004). XPath 2.0 Programmers Reference, Wiley Publishing, Inc.

111



Kay, M., (2008). XSLT 2.0 and XPath 2.0 Programmer's Reference, Wiley Publishing,

Inc.

Lalmas, M. & ROlleke, T. 2004. Modelling Vague Content and Structure Querying in
XML Retrieval with a Probabilistic Object-Relational Framework Proceedings of
the 6th International Conference on Flexible Query Answering Systems, FQAS

volume 3055 of Lecture Notes in Computer Science, Springer. Pages 432-445.

League, C. & Eng, K. (2007). Schema-Based Compression of XML Data with Relax NG.

IEEE data compression conference (DCC), Utah.

Li, H.-G., Aghili, S. A., Agrawal, D. & Abbadi, A. E. 2006. FLUX: Fuzzy Content and
Structure Matching of XML Range Queries. In Proceeding of WWW 2006
Edinburgh, Scotland.

Liefke, H. & Suciu, D. 2000. XMill: an Efficient Compressor for XML Data. ACM,

Mandreoli, F., Martoglia, R. & Tiberio, P. 2004. Approximate Query Answering for a
Heterogeneous XML Document Base. Proceedings of the 5th int. conf on web

information systems engineering. , Brisbane, Australia.

Maneth, S., Mihaylov, N. & Saker, S. 2008. XML Tree Structure Compression.
XANTEC'08, IEEE Computer Society,

Manning, C. D., Raghavan, P. & Schitze, H., (2008). Introduction to Information

Retrieval, Cambridge University Press.

Mcgovern, J., Bothner, P., Cagle, K., Nagarajan, V. & Linn, J., (2003). XQuery: Kick
Start, SAMS Publishing.

Mclaughlin, B. & Edelson, J., (2006). Java and XML Third Edition, O'Reilly.

Meersman, R., Tari, Z., Herrero, P., Abdelaziz, T., Elammari, M. & Branki, C. (2008)
MASD: Towards a Comprehensive Multi-agent System Development
Methodology. On the Move to Meaningful Internet Systems: OTM 2008
Workshops. Springer Berlin / Heidelberg.

Mihajlovic, V., Hiemstra, D. & Blok, H. E. (2006) Vague Element Selection and Query
Rewriting for XML Retrieval. Proceedings of the 6th Dutch-Belgian Information
Retrieval Workshop (DIR 2006). Delft, The Netherlands.

Min, J.-K., Park, M.-J. & Chung, C.-W. (2003). XPRESS: a queriable compression for
XML data. Proceedings of the 2003 ACM SIGMOD international conference on
Management of data, ACM, San Diego, California. 122-133.

112



Min, J.-K., Park, M.-J. & Chung, C.-W. (2009) Method of Performing Queriable XML
Compression using Reverse Arithmetic Encoding and Type Inference Engine.
IN PATENT, U. S. (Ed. USA, Korea Advanced Institute of Science and
Technology.

Moffat., A. (1990) Implementing the PPM data compression scheme. IEEE Trans. on
Comm., 38(11), 1917-1921.

Moro, M. M., Ale, P., Vagena, Z. & Tsotras, V. J. 2008. XML Structural Summaries.
PVLDB '08, Auckland, New Zealand.

Morrison, J. & George, J. (1995) Exploring the Software Engineering Component in MIS
Research. Communication of the ACM, Volume 38, pages 80-91.

Mdldner, T., Fry, C., Miziotek, J. K. & Durno, S. 2009. XSAQCT: XML Queryable
Compressor. Balisage: The Markup Conference 2009,

Murray, J. D. & Vanryper, W., (1996). Encyclopedia of graphics file formats, O'Reilly.

Ng, W., Lam, W.-Y. & Cheng, J. (2006) Comparative Analysis of XML Compression
Technologies. World Wide Web: Internet and Web Information Systems, Vol. 9,
Pages 5-33.

Norbert, F. & Kai, G. (2004) XIRQL: An XML query language based on information
retrieval concepts. ACM Trans. Inf. Syst., 22, 313-356.

Nunamaker, J., Chen, M. & Purdin (1991) Systems Development in Information
Systems Research. Journal of Management Information Systems, Volume 7,
pages 89-106.

Paparizos, S., Al-Khalifa, S., Chapman, A., Jagadish, H., V., Lakshmanan, L. V. S,
Nierman, A., Patel, J. M., Sirvastava, D., Wiwatwattana, N., Wu, Y. & Yu, C.
(2003). TIMBER: A Native System for Querying XML. ACM SIGMOD

International Conference on Management of Data, ACM, San Diego, CA, USA.
Pkware (2003) http://www.pkware.com.
Plays, S. (2000) http://www.cafeconleche.org/examples/shakespeare/.

Rajpal, S., Doja, M. N. & Biswas, R. (2007) A method of vague search to answer
queries in relational databases. Information-an International Interdisciplinary
Journal, 10, 865-880.

113



Ray, E. T., (2001). Learning XML Guide to Creating Self-Describing Data, O'Reilly

Media Inc.

Sakr, S. (2009) XML compression techniques: A survey and comparison. Journal of

Computer and System Sciences, 75, 303-322.
Salomon, D., (2007). Data Compression: The Complete Reference, Springer.

Sanz, I. (2007), Flexible Technique for Heterogeneous XML Data Retrieval, PhD

Thesis, Universitat Jaume, Spain.

Schlieder, T. 2001. Similarity Search in XML Data using Cost-Based Query
Transformations. In Proceeding of ACM SIGMOD WebDB, pp. 19-24.

Schmidt, A., Waas, F., Kersten, M. & Carey, M. J. 2002. XMark: A Benchmark for XML
Data Management. Proceedings of the 28th VLDB Conference, Hong Kong,
China.

Shannon, C. E. (1948) A mathematica theory of communication. Bell System Technical
Journal, 27, Pages: 379-423.

Sigurbjornsson, B. & Trotman, A. 2003. Queries: INEX 2003 working group report. 2nd

workshop of the initiative for the evaluation of XML retrieval (INEX),

Skibinski, P., Grabowski, S. & Swacha, J. (2007). Effective Asymmetric XML
Compression. CADSM,

Stamatina, B., Mounia, L., Anastasios, T. & Theodora, T. (2006). User expectations
from XML element retrieval. Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in information retrieval, ACM,
Seattle, Washington, USA.

Stasiu, R. K., Heuser, C. A. & Da Silva, R. (2005) Estimating recall and precision for
vague queries in databases. IN PASTOR, O. & CHUNHA, J. F. E. (Eds.)
Advanced Information Systems Engineering, Proceedings. Berlin, Springer-

Verlag Berlin.
Tidwell, D., (2008). XSLT, O'Reilly.

Tolani, P. M. & Haritsa, J. R. (2000). XGRIND: A Query-friendly XML Compressor. IEEE

18th international conference on Data Engineering,

Trotman, A. & Sigurbjornsson, B. 2005. Narrowed Extended XPath | (NEXI) Advances
in XML Information Retrieval Berlin / Heidelberg. Pages 16-40.

114



Violleau, T. (2001) Java Technology and XML. ORACLE.

W3c (1999) XML Path Language (XPath) - Version 1.0. W3C.

W3c (2001) XML Linking Language (XLink) Version 1.0. W3C.

W3c (2002) XML Pointer Language (XPointer). W3C.

W3c (2007a) XML Path Language (XPath) 2.0. World Wide Web Consortium.

W3c (2007b) XQuery 1.0 and XPath 2.0 Functions and Operators. W3C.

W3c (2008) Extensible Markup Language (XML) 1.0 (Fifth Edition).

W3c (2010a) XML Path Language (XPath) 2.0. World Wide Web Consortium.

W3c (2010b) XQuery 1.0 and XPath 2.0 Functions and Operators. W3C.

W3schools.Com (2006a) XLink and XPointer.

W3schools.Com (2006b) XML Examples.

Washington (2002) http://www.cs.washington.edu/research/xmldatasets/data/.

Waterloo (2003) http://softbase.uwaterloo.ca/~ddbms/projects/xbench/index.html.

White, S. (2008) How to Strike a Match. Catalys Web Site.

Wikipedia (2001) http://download.wikipedia.org/enwikinews/.

Williams, 1., (2009). Beginning XSLT and XPath: Transforming XML Documents and

Data, Wrox Press.

Wintertree (2006) http://www.wintertree-software.com/index.html. Canada.

Winzip (1990) http://www.winzip.com/.

Yang, Y., Ng, W., Lau, H. L. & Cheng, J. 2006. An Efficient Approach to Support
Querying Secure Outsourced XML Information. In Proceedings of the 18th
Conference on Advanced Information Systems Engineering (CAISE), pages
157-171.

Zadeh, L. A. (1965) Fuzzy sets. Information and control, Vol. 8, pp: 338-353.

Zhang, Q. & Kankanhalli, M. S. 2003. Semantic video annotation and vague query. 9th
International Conference on Multimedia Modelling (MMM 2003)

115



Zhao, F. & Ma, Z. M. 2009. Vague Query Based on Vague Relational Model. AISC 229-
238.

116



AppendixA: XPath’'s EBNF

The complete EBNF of the XPath query language is listed in this appendix. This

form had been used IKCVQ to check the correctness of the syntax of the

submitted query.

(1]
(2]
(3]

(4]
(5]

(6]

(7]
(8]
[0l
(10]

(11]
(12]
(13]
(14]
(15]
(16]
(17]
(18]
(19]
(20]
[21]
(22]
(23]
[24]
[25]

(26]
(27]
(28]
[29]

XPath
Expr
ExprSingle

ForExpr

SimpleForClause

QuantifiedExpr

IfExpr
OrExpr
AndExpr

ComparisonExpr

RangeExpr
AdditiveExpr
MultiplicativeExpr
UnionExpr
IntersectExceptExpr
InstanceofExpr
TreatExpr
CastableExpr
CastExpr
UnaryExpr
ValueExpr
GeneralComp
ValueComp
NodeComp
PathExpr

RelativePathExpr
StepExpr
AxisStep
ForwardStep

Expr

ExprSingle ("," ExprSingle)*
ForExpr

| QuantifiedExpr

| IfExpr

| OrExpr

SimpleForClause "return" ExprSingle

"for" "$" VarName "in" ExprSingle ("," "$" VarName "in"
ExprSingle)*

"some" | "every") "$" VarName "in" ExprSingle ("," "S"
VarName "in" ExprSingle)* "satisfies" ExprSingle

"if" "(" Expr ")" "then" ExprSingle "else" ExprSingle
AndExpr ( "or" AndExpr )*

ComparisonExpr ( "and" ComparisonExpr )*

RangeExpr ( (ValueComp

| GeneralComp

| NodeComp) RangeExpr )?
AdditiveExpr ( "to" AdditiveExpr)?

MultiplicativeExpr ( ("+" | "-") MultiplicativeExpr )*

UnionExpr ( ("*" | "div" | "idiv" | "mod") UnionExpr )*
IntersectExceptExpr ( ("union" | "|") IntersectExceptExpr )*
InstanceofExpr ( ("intersect" | "except") InstanceofExpr )*

TreatExpr ( "instance" "of" SequenceType )?

CastableExpr ( "treat" "as" SequenceType )?

CastExpr ( "castable" "as" SingleType )?
UnaryExpr ( "cast" "as" SingleType )?
("-" | "+")* valueExpr

PathExpr

R R

"eq" | "ne" | "It" | "le" | "gt" | "ge"
Mis" | << | "S>

("/" RelativePathExpr?)

| ("//" RelativePathExpr)

| RelativePathExpr

StepExpr (("/" | "//") StepExpr)*

FilterExpr | AxisStep

(ReverseStep | ForwardStep) PredicatelList
(ForwardAxis NodeTest) | AbbrevForwardStep

117


http://www.w3.org/TR/xpath20/#doc-xpath-XPath�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-Expr�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ForExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-QuantifiedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IfExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-OrExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ForExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SimpleForClause�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-SimpleForClause�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-QuantifiedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-IfExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-OrExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-AndExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ComparisonExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ValueComp�
http://www.w3.org/TR/xpath20/#prod-xpath-GeneralComp�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeComp�
http://www.w3.org/TR/xpath20/#prod-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-RangeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-AdditiveExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-MultiplicativeExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-UnionExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-IntersectExceptExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-InstanceofExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-TreatExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#doc-xpath-TreatExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-CastableExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#doc-xpath-CastableExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-CastExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SingleType�
http://www.w3.org/TR/xpath20/#doc-xpath-CastExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-UnaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-SingleType�
http://www.w3.org/TR/xpath20/#doc-xpath-UnaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ValueExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-ValueExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PathExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-GeneralComp�
http://www.w3.org/TR/xpath20/#doc-xpath-ValueComp�
http://www.w3.org/TR/xpath20/#doc-xpath-NodeComp�
http://www.w3.org/TR/xpath20/#doc-xpath-PathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-RelativePathExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-StepExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-FilterExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-AxisStep�
http://www.w3.org/TR/xpath20/#doc-xpath-AxisStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ReverseStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#doc-xpath-ForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ForwardAxis�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AbbrevForwardStep�

(30]

(31]
(32]
(33]

(34]
(35]
(36]
(37]

(38]
(39]
(40]
[41]

[42]
[43]
(44]
[45]
(46]
(47]
(48]
[49]
(50]

(51]
(52]
(53]
(54]

ForwardAxis

AbbrevForwardStep
ReverseStep

ReverseAxis

AbbrevReverseStep
NodeTest
NameTest
Wildcard

FilterExpr
Predicatelist
Predicate

PrimaryExpr

Literal
NumericlLiteral
VarRef

VarName
ParenthesizedExpr
ContextltemExpr

FunctionCall

SingleType
SequenceType

Occurrencelndicator
ItemType
AtomicType
KindTest

("child" "::")

| ("descendant" ")

| ("attribute" "::")

| ("self" "::")

| ("descendant-or-self" "::")
| ("following-sibling" "::")

| ("following" "::")

| ("namespace" "::")

"@"? NodeTest
(ReverseAxis NodeTest) | AbbrevReverseStep
("parent" "::")

| ("ancestor" "::")

| ("preceding-sibling" "::")

| ("preceding" "::")

| ("ancestor-or-self" "::")

KindTest | NameTest
QName | Wildcard

nkn

| (NCName II:II II*II)
| (II*II II:II NCName)
PrimaryExpr PredicateList
Predicate*
II[II Expr II]II
Literal | VarRef | ParenthesizedExpr | ContextltemExpr |
FunctionCall | FunctionCallList
FunctionCallList ::= "synonyms" " (" StrinLiteral ")"
| "similar(" StrinLiteral ")"
| "avg(" pathExpr")"
| "median" " (" pathExpr")"
| "between" " (" IntegerLiteral
| DecimallLiteral
| DoubleLiteral "," IntegerLiteral
| DecimalLiteral
| DoubleLiteral ")"

NumericLiteral | StringLiteral

IntegerlLiteral | DecimalLiteral | DoubleLiteral
"S" VarName

QName

"(" Expr? ")"

QName "(" (ExprSingle ("," ExprSingle)*)? ")"

AtomicType "?"?

("empty-sequence" "(" ")")

| (ItemType Occurrencelndicator?)

E R

KindTest | ("item" "("")") | AtomicType
QName

DocumentTest

118


http://www.w3.org/TR/xpath20/#doc-xpath-ForwardAxis�
http://www.w3.org/TR/xpath20/#doc-xpath-AbbrevForwardStep�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#doc-xpath-ReverseStep�
http://www.w3.org/TR/xpath20/#prod-xpath-ReverseAxis�
http://www.w3.org/TR/xpath20/#prod-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AbbrevReverseStep�
http://www.w3.org/TR/xpath20/#doc-xpath-ReverseAxis�
http://www.w3.org/TR/xpath20/#doc-xpath-AbbrevReverseStep�
http://www.w3.org/TR/xpath20/#doc-xpath-NodeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-NameTest�
http://www.w3.org/TR/xpath20/#doc-xpath-NameTest�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#prod-xpath-Wildcard�
http://www.w3.org/TR/xpath20/#doc-xpath-Wildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#doc-xpath-FilterExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PrimaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#doc-xpath-PredicateList�
http://www.w3.org/TR/xpath20/#prod-xpath-Predicate�
http://www.w3.org/TR/xpath20/#doc-xpath-Predicate�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-PrimaryExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Literal�
http://www.w3.org/TR/xpath20/#prod-xpath-VarRef�
http://www.w3.org/TR/xpath20/#prod-xpath-ParenthesizedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-ContextItemExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-FunctionCall�
http://www.w3.org/TR/xpath20/#doc-xpath-Literal�
http://www.w3.org/TR/xpath20/#prod-xpath-NumericLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-NumericLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-IntegerLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-DecimalLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-DoubleLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-VarRef�
http://www.w3.org/TR/xpath20/#prod-xpath-VarName�
http://www.w3.org/TR/xpath20/#doc-xpath-VarName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-ParenthesizedExpr�
http://www.w3.org/TR/xpath20/#prod-xpath-Expr�
http://www.w3.org/TR/xpath20/#doc-xpath-ContextItemExpr�
http://www.w3.org/TR/xpath20/#doc-xpath-FunctionCall�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#prod-xpath-ExprSingle�
http://www.w3.org/TR/xpath20/#doc-xpath-SingleType�
http://www.w3.org/TR/xpath20/#prod-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#doc-xpath-SequenceType�
http://www.w3.org/TR/xpath20/#prod-xpath-ItemType�
http://www.w3.org/TR/xpath20/#prod-xpath-OccurrenceIndicator�
http://www.w3.org/TR/xpath20/#doc-xpath-OccurrenceIndicator�
http://www.w3.org/TR/xpath20/#doc-xpath-ItemType�
http://www.w3.org/TR/xpath20/#prod-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#doc-xpath-AtomicType�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-KindTest�
http://www.w3.org/TR/xpath20/#prod-xpath-DocumentTest�

[55]
(56]
(57]
(58]
(59]
(60]
(61]
(62]
(63]
(64]

(65]
(66]
(67]
(68]
(69]
[70]
[71]
[72]
(73]
[74]
[75]
[76]
[77]
(78]
[79]
(80]
(81]
(82]

AnyKindTest
DocumentTest
TextTest
CommentTest

PITest

AttributeTest
AttribNameOrWildcard
SchemaAttributeTest
AttributeDeclaration

ElementTest

ElementNameOrWildcard
SchemaElementTest
ElementDeclaration
AttributeName
ElementName
TypeName
IntegerLiteral
DecimallLiteral
Doubleliteral
StringLiteral
EscapeQuot
EscapeApos
Comment

QName

NCName

Char

Digits
CommentContents

| ElementTest

| AttributeTest

| SchemaElementTest
| SchemaAttributeTest
| PITest

| CommentTest

| TextTest

| AnyKindTest

2= "node""("")"

== "document-node" "(" (ElementTest | SchemaElementTest)? ")"
= Mtext" (M )"

2= "comment" "("")"

= "processing-instruction" "(" (NCName | StringLiteral)? ")"

m= "attribute" "(" (AttribNameOrWildcard ("," TypeName)?)? ")"
= AttributeName | "*"

n= "schema-attribute" "(" AttributeDeclaration ")"

:=  AttributeName

w= "element" "(" (ElementNameOrWildcard ("," TypeName
II?II?)?)? II)II

= ElementName | "*"
= "schema-element" "(" ElementDeclaration ")"
@= ElementName
= QName
= QName
= QName
Digits
("." Digits) | (Digits "." [0-9]*)
(("." Digits) | (Digits ("." [0-9]*)?)) [eE] [+-]? Digits
(" (EscapeQuot | [*"])* ™) | (""" (EscapeApos | [M'])* ")

"(:" (CommentContents | Comment)* ":)"
[http://www.w3.0org/TR/REC-xml-names/#NT-QName]"*"**
[http://www.w3.0org/TR/REC-xml-names/#NT-NCName]"*"**
[http://www.w3.0rg/TR/REC-xmI#NT-Char]™"

[0-9]+

(Char+ - (Char* ('(:" | ":)') Char*))

119


http://www.w3.org/TR/xpath20/#prod-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaAttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-PITest�
http://www.w3.org/TR/xpath20/#prod-xpath-CommentTest�
http://www.w3.org/TR/xpath20/#prod-xpath-TextTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AnyKindTest�
http://www.w3.org/TR/xpath20/#doc-xpath-AnyKindTest�
http://www.w3.org/TR/xpath20/#doc-xpath-DocumentTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#doc-xpath-TextTest�
http://www.w3.org/TR/xpath20/#doc-xpath-CommentTest�
http://www.w3.org/TR/xpath20/#doc-xpath-PITest�
http://www.w3.org/TR/xpath20/#prod-xpath-NCName�
http://www.w3.org/TR/xpath20/#prod-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttribNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-TypeName�
http://www.w3.org/TR/xpath20/#doc-xpath-AttribNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#doc-xpath-SchemaAttributeTest�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeDeclaration�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeDeclaration�
http://www.w3.org/TR/xpath20/#prod-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-TypeName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementNameOrWildcard�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementName�
http://www.w3.org/TR/xpath20/#doc-xpath-SchemaElementTest�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementDeclaration�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementDeclaration�
http://www.w3.org/TR/xpath20/#prod-xpath-ElementName�
http://www.w3.org/TR/xpath20/#doc-xpath-AttributeName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-ElementName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-TypeName�
http://www.w3.org/TR/xpath20/#prod-xpath-QName�
http://www.w3.org/TR/xpath20/#doc-xpath-IntegerLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-DecimalLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-DoubleLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#prod-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-StringLiteral�
http://www.w3.org/TR/xpath20/#prod-xpath-EscapeQuot�
http://www.w3.org/TR/xpath20/#prod-xpath-EscapeApos�
http://www.w3.org/TR/xpath20/#doc-xpath-EscapeQuot�
http://www.w3.org/TR/xpath20/#doc-xpath-EscapeApos�
http://www.w3.org/TR/xpath20/#doc-xpath-Comment�
http://www.w3.org/TR/xpath20/#prod-xpath-CommentContents�
http://www.w3.org/TR/xpath20/#prod-xpath-Comment�
http://www.w3.org/TR/REC-xml-names/#NT-QName�
http://www.w3.org/TR/REC-xml-names/#NT-NCName�
http://www.w3.org/TR/REC-xml/#NT-Char�
http://www.w3.org/TR/xpath20/#doc-xpath-Digits�
http://www.w3.org/TR/xpath20/#doc-xpath-CommentContents�
http://www.w3.org/TR/xpath20/#prod-xpath-Char�

AppendixB: ImplementingKCVQ

The implementation oKCVQ is done using=clipseenvironment for java
programming language. The GUI for the system uses the (visualswing4eclipse)
plug4in to makes the design more powerful, friendly, and easy to use. The main
window of the system is shown figure B-1. Using this GUI the user can

compress, decompress and querying XML documents.

Compnus
Docomgress
Gy

Figure B-1: The main screen of XCVQ

This section illustrates the implementation part X€VQ compressor,

decompressor, and the vague query processor.

1. Implementation of XCVQ-C

According to all the advantages of using SAX parser mentioned in section
2.2.2 to parse the given XML document, SAX parser (frdbclipse

environmet for java programming language) is used to scan the XML
document. This type of parsing scans the document only once by detecting
several events from that document. During each ev&VQC collects
information from the document in order to use it in the compression process.
The events and the work through each one are listed below and illustrated in

the class diagram iFigure B-2:

120



Figure B-2: XCVQ-C Class Diagram

4. (startbocument ): this event is cached only once by SAX when it detects the
first tag of the document. In this stag€VQC only initializes the used
variables and prepares the used data structures and the output file to
receive the data. Furthermore it specifies the name space used in that
document and save it for further processes.

5. (startElement): this event is coached by SAX each time it detects an open
tag. It holds the name of the elemeghNéme and the list of attribute
names and values associated with this element (if any). In this stage,

XCVQC performs the algorithm iRigure 4-6.

121



Algorithm characters (chaArray ch[] )
data+= ch[] ;
ignoreWhiteSpaces(data)
10.  End.

Figure B-4: (character) algorithm

(chracters ): this event occurs when a data value appeared in the XML
document. SAX could process this event more than once to deal with the
same data. The data value is accumulated and added to the list of data in

a leaf node in its appropriate path as illustrateglgire B-4.

(endElement ): SAX processes this event when it catches the end of an
element, a case means that there is a piece of data ready to be inserted in
a leaf node of the structurécee (if that element holds data). The suitable

path can be known from the contents of gaghStackas described in

Figure 4-7.

(endDocument ): this event is processed only once by SAX when it

catches the very end of the XML document. In this stage the containers
first are created from the structurede as illustrated iAigure 4-5. Each

container has an index which represents the path fromotheo the leaf

for the data contained in this container. Secondly, the contents of each
container are compressed using one of the -badkgeneral purposes
compression techniques either Gzip or LZW. The complete algorithm for
LZW compressor is shown igure B-7.

122



26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.
41.

Algorithm LZW(String input )

input= {c {,C 5, ...C n}

let dictionary ={all the 256 printable characters}

lookUpString=c  ;

forall c i € input :i=2,3,...n
lookUpString=lookUpString+ ¢ i
if (lookUpString) ¢ dictionary

add(lookUpString)to the end of dictionary

output the position of lookUpString+c i in

dictionary
lookUpString= ¢ i+1
else

lookUpString=lookUpString+ ¢ i+1

While (lookUpString + ¢ i+1 € dictionary )
i++
lookUpString=lookUpString+ ¢ i

Output the position of lookUpString in

dictionary

Figure B-7 :(LZW) algorithm

The LZW algorithm starts with filling the first 256 positions in the
dictionary with the 256 printable characters (line 3). The scanning
process for the input string starts character by character in an
attempt to look for the maximum sequence of characters belongs to
the dictionary and add the index of this sequence to the output fil
(Salomon, 2007). Otherwise, if this sequence has not been added to
the dictionary yet, the algorithm adds it to the end of the dictionary.
For the Gzip compressoXCVQ-C uses the jav§ava.util.zip)

package in order to compress the required data.pHuisage has

several classes and one of therGZIPOutputStreamglass

123



which consists of more than one constructor, each of which is used

to convert the input stream into a zip file.

After implementing the compressor algorithm, some information about the
compressed file is appeared to the user, as showfydie B-8, including the
compression ratio. The new compressed file is saved with the same name and in
the same path as the origilrKML document with ip) extension.

[= ol B2

File Querying Help

The Compression Ratio (CR) = 75.579326
The Compressing Time (CT) = 0.218Sec
Tag number = 183

Attribute number = O

element number =8

Maximum depth =3

Figure B-8: GUI for compression results.

2. XCVQ-D Implementation

The implementation of thECVQD depends restore the compressed XML

document into the same containers used in the compression stage as illustrated i
Figure B-9. Before applying the decompression algorithnfigure 4-6, XCVQD

decompresses the container’s contents using GZip decompression technique and
then uses these containers alongside withptetlDictionaryto reproduce the
XML document.

124



KEA DasCon sy
#Tﬁ g ‘i
[secmprezs Sy - shoet - —
& +

Figure B-9: (XCVQ-D) class diagram

The new decompressed XML document is gawvethe same path as the
compressed XML document, carrying its name followed by.xm) to
differentiate it from the original XML document.

3. XCVQ-QP Implementation

The implementation oKCVQQP passes through several stages. Each stage

has specific roles and certain classes which are illustrategliia B-10.

125



Figure B-10: XCVQ-QP class diagram

The main steps of each stage and the detailed roles are listed in the
following sections.

a. XPath’s EBNF expansion

When the user writes a vague query using the GBigine B-11, this syntax
of this query is checked against the XPath Extended Badkus Form (EBNF)
(W3C, 2007a) which specifies the grammar of XPath language. The complete
EBNF for XPath query language can be seen in Appendix-A.

126



Bl XKCVQ o] [ ] |

File Querying Help

Enter your Query, Please...

catalogicd/titie and catalog/cd[year gt 1990]

Process The Quer_v | s Reset |

Show Retriev}ng Results |
[|"I"'.£Ji <

The relevancy of the query to the related Document
Mo.(1)=0.5555556
The relevancy of the query to the related Document No.(2)=0.75

Figure B-11: GUI for XCVQ-QP

SinceZXCQQP performs expansion on XPath grammars to provide it the
capability of accept vague conditions, an expansion process is performed on the
XPath EBNF. This expansion includes:

PrimaryExpr = Literal | VarRef | ParenthesizedExpr
| ContextltemExpr | FunctionCall |
FunctionCallList

FunctionCallList ;= “synonyms” “(* StrinLiteral “)”
| “similar(* StrinLiteral “)”
| “avg(" pathExpr “)”
| “median” “(* pathExpr “)”
| “between” “(* IntegerLiteral
| DecimalLiteral
| DoubleLiteral “,” IntegerLiteral
| DecimalLiteral
| DoubleLiteral “)”

127



Using Java Compile€ompiler(JavaCC), the expanded EBNF for XPath is
converted into executable java source code to makes it possible to follow the
instructions of the EBNF and checks the syntax and lexical errors in the user’s
query. If the query does not meet the XPath grammarnranmessage appears
to the user determining the exact place of the error within the query.

The syntactically correct query is converted into a tree structure depending
on the semantic of the XPath query. As an exanfijere B-12- (a) shows a
guery and l§) shows its semantic tree. The semantic tree for each query
determines the type of each part of that query. In this example the query is
divided into two main branches since it has the (AndExy), each branch is a
(PathExpr). The first branch holds t(@ATALOG, CD, andTITLE) QNames,
while the second branch holdSATALOG, CD, and Year) QNames with the
(IntegerLiteral) accompanied theEAR) element.

The tree structure of the given query is usedKBWQQP to determine the
type of each QName and bwild the required data structure in order to process

the query as discussed in the next section.

128



XPath2
XPath
Expr
AndExpr and
PathExpr
Slash /
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName CATALOG
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName CD
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName TITLE
PathExpr
Slash /
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName CATALOG
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName CD
PredicateList
Predicate
Expr
ComparisonExpr >
StepExpr
AbbrevForwardStep
NodeTest
NameTest
QName YEAR
IntegerLiteral 1990

(b)

Figure B-12: An XPath query (a) and its semantic tree (b)

b. Storing the Query
XCVQQP uses a prelesigned data structure namegth{o) in order to store

all the required information from the query. This structure has the following
fields:

129



10.

11.

12.

13.

14.

Table B-1: The set of types provided by XCVQ-QP to gName

predicateLiteral predicateString comparisonLiteral comparisonString

comparisonPath functionName andExpr orExpr
ifVariable forVariable ifExpr forExpr
pathExpr

Name this field stores all th©@Namesappear in the query.

Attribute it is a Boolean field which is true if ti@Names an attribute
and is false otherwise.

Type in this field the type of ead@Nameis stored XCVQ QP provides
eachQNamea specific type according to its position and role in the
guery. The set of provided types is showmahle B-1. These types cover
all the kinds of XPath query that can be processed@yQ QP.

Value if there is a literal or a string value in the query, then it is

associated with the propgName

Table B-2: the glnfo structure for the query in Figure B-13

Name | Attribute Type Value | Operation | FunctionCall
CATALOG False andExpr
CD False pathExpr
TITLE False pathExpr
CATALOG False andExpr
CD False predicateLiteral
YEAR False comparisonLiteral 1990 >

Operation this field stores the arithmetical and logical operations in the

query.
FunctionCall: stores the list of parameters for the function if there is one

in the query.

130



Table B-2 illustrates theginfo structure for the query exampleFigure B-12.

44,  Algorithm  processXPathQuery (structure ginfo )
45, let qlInfo =[a i,a 5, ..., a,]suchthat:

46. let fileDB =[f 1, f o ..., o

47, let relevant =[r ,r 5 ..., 0 ]

48. for all a;.Name € ginfo

49. for all f ; € fileDB

50. if a.Name €f ;.pathDictionary

51. relevant.pathDictionary f
52. relevant.query —a;

53. for all r i € relevant

54. subQuery = Decpmpose(r ;.query)

55. cost=relax(r ;. subQuery )

56. if cost>threshold

57. remove (r ;) from relevant

58. tree=retrieveData

59. allTrees =Combine all the retrieved trees

Figure B-13: Processing an XPath query algorithm.

c. Query decomposition: Stage-1

After collecting the important information from the query and store them in
(qInfo) structure, the algorithm iRigure B-13 is processed. This algorithm starts
by collecting the relevant documents from the compressed XML repository.
During this process each compressed document is scanned for onéNaftbe
field in theqglInfo structure, if it contains one of them in gath-dictionary then
this file is candidate to be one of the relevant documentgn)lfrelevant
document encountered, only thath-dictionaryfor these documents are loaded

into the memory and the originalinfo structure is decomposed infm)

131



structures edt of which is associated with its relevant document (lin€g.5
This process decomposes the XPath query into severgjusutes according to

their relevancy to a specific document.

d. Query Decomposition: Stage-2

After completing the first stage decompasit the second stage of the
decomposition is started by applying the decomposition functiciyine B-14
on each sulguery to produce a new set of sgireries (linell irFigure B-13).
This function determines the relevant containers from the compriesethis
is done through checking if alNamefield of the given sulguery is contained
within the index of that container. In this case the relevant container is uploaded

into the memory alongside with its relevant part from thecgudry.

Function decompose (query Q
let Containers =[c ,C 2, ..., C 4]
For all ¢ i

If Q.name ; €c ;.index
newSub- queries < Q.name,

newSub- query «

© N o g M wDdhpRE

End.

Figure B-14: Query decomposition function

For all the new sulgueries, each one is relaxed against the index of its
relevant container, (line 12). This relaxation is done by performing a matching
process between the sghery and the index of its relevant container. This
process performs changes on the originalqury in order to fit it with the
index by adding, removing, renaming, or reordering position in the nodes of the
guery. After each change, the cost of that change is computed and the total cost

of relaxation is checked against a -plefined threshold to determine if this

132



query should be removed from the list of relevant queries if it has high cost
(lines 13-14).

e. Retrieving and combining results

At this stage, (line 17), each container accompanied with itgjgety is on
the memory eady to be retrieved. The retrieving process taking into
consideration the type of eacfNameand its operation and retrieve only the
required information. If the query required retrieving information from tha dat
set attached in the container, decompoesprocess is performed only on this
single container in order to retrieve the required data. The example query in
Figure B-12 has a predicate requiring the values of IEAR data to be greater
than 990 which requires the performance of the decorsgica only on one
container that has the data and filter these data to retrieve only the data that meet
the condition.

Until this stage no decompression required when the query is structured

based one. After combining all the retrieved -dobuments, each one is
decompressed, using the same decompression algorithAyuie 4-6, and

combined under one XML document to form single tree instead of a forest.
The resulteddocument can be compressed again if the user needs to

make further querying on it.

133



AppendixC: XML Corpus & XPath Benchmark

This appendix contains the XML corpus that were used in the testing
process (Table @), the description of its groups, and tbemplete XPath

benchmark that were used in the testing process (TaBje C-

Table C-1: XML Corpus

. o Element | Attributes Max

Group# XML file name File Size/MB %SR Tag no o o depth
321gone 2.441E2 38.06 311 32 0 6
Ebay 3.515E2 11.14 156 32 0 6
Ubid 2.050E2 42.63 342 32 0 6
Yahoo_Shopping 2.539E2 34.1 342 32 0 6
Homeseekers 2.603 58.12 59322 35 0 5
Nky 3.213 70.43 112051 50 0 5

1 Texas 3.177 58.7 84577 54 0 5
Yahoo_Homes 0.419 56.77 11038 33 0 3
XMark -1 11.325 30.16 520546 74 0 12
XMark -2 113.061 30.03 5167121 74 0 12
(Schmidt et al., 2002;

Washington, 2002)

2 Baseball 0.632 92.95 28306 46 0 6

(Washington, 2002)
Berkeley 9.277E2 32.96 1143 15 0 6
Cornell 3.027E2 45.64 833 15 0 6
Michigan 6.738E2 46.68 1899 15 0 6
Texas 3.222E2 44.88 859 15 0 6

3 Washington 5.175E2 33.28 1025 15 0 6
Read 0.283 63.22 10546 16 0 5
uwm 2.226 58.41 66729 16 6 6
Wsu 1.558 73.99 74557 16 0 5
(Washington, 2002)

4 CD-Catalog 0.598 63.68 183 8 0 3
DBLP 131.167 45.1 4718588 32 3 5
(Washington, 2002)

EnWikiNews 69.421 10.13 2103778 20 4 6
EnWikiQuote 124.532 3.69 2672870 20 4 6

6 EnWikiVersity 81.397 10.64 3333622 20 4 6
EnWikTionary 556.612 26.26 28656178 20 4 6
(Wikipedia, 2001)

134



EXI-Array 22.062 43.7 226523 47 0 14

EXI -factbook 4.042 47.47 55453 199 0 8
7 EXI-GeogCoord 15.828 0.003 17 30 0 11

EXI-Invoice 0.934 65.41 15075 52 28

EXI-weblog 2.526 72.49 93435 12 0

(EXI, 2009)

GB-meta 48.82 71.32 886419 97 18 13
8 Swedenmeta 3.35 71.14 60614 101 17 12

Turkey-meta 5.85E3 73.66 100 48 2 8

(European, 2003)

Henry IV, Part | 0.274 34.21 4334 14 0 7

Richard Il 0.251 32.48 4116 16 0 8
9 j_caesar 0.181 37.95 4455 16 0 8

Shakespeare 7.529 36.56 179690 22 0 9

(plays, 2000)

Lineltem 30.799 83.47 1022976 18 0 3

XBench-DCSD-Normal 105.368 57.24 2242699 50 0 10
10 XBench-DCSD-Small 10.578 57.3 2259292 50 0 10

(Washington, 2002;
Waterloo, 2003)

11 Mondial 1.778 48.74 22423 23 45 8
(Washington, 2002)

1 2 NASA 24.622 37.13 476646 61 0 11
(Washington, 2002)

13 SwissPort 112.761 56.5 13917441 85 0 5
(Washington, 2002)

14 Tree Bank 85.416 31.65 10795711 250 0 36

(Washington, 2002)

The selected XML documents in the corpus were organized into many

groups according to their origins and the purpose of their use, as follows:

Group-1: It consists of many XML documents that are used in online
shopping processes through differergah®pping and auction web sites. These
documents are converted from database systems and they contain many empty

elements with neither data nor sellements iside them.

Group-2: the XML document in this group provides a complete
description to all the teams including all the details about their players who

participated in 1998 national league.

Group-3: This group contains XML documents from different academic

department. Some of the documents describe simple CVs for the academic staff

135



in these departments and the courses they teach. The other documents describe
the detailed information for the courses submitted by some academic

departments in different univetigis.

Group-4: The Document in this group gives details about many songs

CDs such as their name, publication year, and their country.

Group-5: This group has only one document that illustrates different
papers published in proceeding of conferences and journals in the field of

computer science.

Group-6: different backup documents from Wikipedia web site are

collected in this group.

Group-7 This group contains sample documents from a collection of
documents collected by the Efficient XML Interchange (EXbrking group
which is part of the W3C. These documents contain the needed information in

data exchanging.

Group-8: The XML documents that describe the detailed climate
changes in different countries around the world are listed in this group.

Group-9: This group has some of Shakespeare’s plays which considered

being (TD) document type.

Group-10: This document contains a huge amount of shipping

information for online shopping for different items taken from Google web site.

Group-11:The XML document in thigroup contains lots of statistical
information about many countries around the world such as their population,

area, available natural resources, etc.

Group-12: This document is transferred from NASA database which

includes summarization of some of the NMBrojects converted from text file.

Group-13: The complete description of the DNA sequence is described
in the XML document in this group.

136



Group-14:This document contains many parsed and encrypted English

sentences taken from the Wall Street Journal.

Table C-2: XPath Query Benchmark

QFT [ Query N
Query Description
Concept Name
Q1 /catalog/cd normal path (exact
matching)
Q2 /catalogttitle/cd Path out of order
Qs /cd/year/catalog Does not start from the root
[catalog/title a gap exists , the actual
Axes o path is (/catalog/cdltitle)
Q5 [/catalog/yeer miss spelling in the element
name
Q6 /cd/catelogelyeer miss spelling in more than
one element name
Q7 [/catalog/cd/yearititle Sibling elements(year, title)
Q8 /catalog/cd/year[5] Normal partial match
(position filter)
Q9 [/catalog/cd/year["1990"] Normal partial match (value
filter)
Filters Q10 /cd/catalog/country["uk"] Out of order path +
predicate
Q11 | /cdftitle/year/country[8] Siblings + predicate
Q12 cataloge/yeer/cuntry[ "USA"] Spelling errors + predicate
Q13 [/catalog/cd[year It 2000] Normal predicate with
comparative operator
Q14 [cd/title/artist[year ge 1990] Sibling + comparative
operator
Q15 [cd/title[year It 1990][country More than one comparative
eq "uk"] operator
Q16 [cd/title/country["uk"][yeer le Predicate + comparative
1990] operator
Operators Q17 | /cdttitlelyear eq 1990 comparative operator
without predicate
/cd/year=2000 Relational operator (the
Q18 result is either True or
False)
Q19 cd/title/yeer 1=1998 Siblings + miss spelling +
operation
Q20 | /cd[year gt 1990] and (and) operator
/cd[country eq "uk"]
Q21 [cd/title/synonyms("date") Find the synonyms of an
element name
cd/country eq Find the synonym of a data
Functions Q22 o value
synonyms("Britain™)
Q23 [cd/title/similar(artest) Find the similar element
name

137



/cd/similar(artest)/title

Find the similar element

Q24
name
Q25 /cdlyearltitle eq similar("keep Find the similar data value
your heart")
Q26 [/cd/artist/count(title) Find the number of
occurrences of an element
Q27 | /cd/book/yearttitle Exact match
Q28 | /cd/bookititle/artist/author/year Siblings
Q29 | booki/title/cd/yeer/acther Miss spelling
Multi -File Q30 | /cd/booki/title/year[*1990”] Data value predicate
book/title/year[4] and Order predicate
Q31 :
[cdftitle/year
Q32 /cd/book[year It 1990][country Multiple predicates

eq "uk"]

138




AppendixD: Testing Results

The complete set of data that had been used to test and evaaRC
and XCVQD is listed in the following table. This table contains all the actual
results for these testing

XML file name SCR SCT/Sec SDC/Sec CR CT/ Sec | DT/Sec
Turkey-meta 48.02 0.031 0.47 78.17 0.047 032
Ubid 60.34 0.032 031 83.35 0.047 0.47
321gone 38.99 0.042 0.46 73.31 0.078 0.47
Yahoo_Shopping 42.47 0.051 0.62 76.54 0.087 0.64
Cornell 68.66 0.062 0.31 87.5 0.102 0.47
Texas 45.71 0.063 0.32 81.75 0.13 0.78
Ebay 1651 0.031 0.48 70.29 0.163 0.75
Washington >0.55 0.031 0.78 81.1 0.2 0.63
Michigan 7083 0.047 0.41 89.3 0.42 1.09
Berkeley 5081 0.094 0.47 81.94 0.538 0.62
j_caesar 30.32 0.14 0.64 70.91 0.58 11
Richard Il 24.9 0.22 0.8 68.51 0.72 1.56
Henry IV, Part | 26.85 0.37 1.59 68.8 0.85 11
Read 64.82 0.583 1.85 87.33 0.988 1.14
Yahoo_Homes 43.32 0.68 3.04 83.35 0.96 2.19
CD-Catalog >7.67 0.77 413 75.53 0.94 2.32
Baseball 62.19 0.95 >:53 83.56 1.078 2.34
EXI-Invoice >8.98 0.98 >.62 73.63 1.28 3.12
Wsu 64.81 2185 2062 87.35 1.56 3.59
Mondial 59.37 14.64 3281 85.35 4.42 6.56
Umw 66.37 39.17 31.56 90.35 4.43 437
EXI-weblog 44.6 >4.8 5781 72.38 7.3 4.84
Homeseekers 47.9 36.98 72.75 86.21 126 32.41
Texas 67.24 42.93 797 86.8 16.75 36.04
Nky 50.75 29.54 921 83.69 123 36.4
Sweden-meta 78.23 5753 97.6 93.52 12.4 36.41
EXI-factbook 375 61.71 103.94 74.2 80.8 29.07
Shakespeare 26.01 855 148.6 69.32 130.8 32.09
XBench-DCSD- 27.76 103.7 155.7 69.92 194.6 38.28

139



Small

XMark-1 3845 120.8 165.3 75.38 225.6 39.01
EXI-GeogCoord 0.0031 169.1 198.8 75.61 374.7 40.1
EXI-Array 22.062 210.9 226.4 72.56 458.5 43.4
NASA 39.18 256.3 254.2 88.51 517.3 43.9
Lineltem 30.799 3128 297.7 81.51 692.4 78.6
GB-meta 77.22 3706 337.2 75.67 734.2 81
EnWikiNews 69.421 398.9 4123 68.52 810.6 89.89
EnWikiVersity 81.397 a17.7 489.8 70.55 894.7 97.39
Tree Bank 37.68 4263 >04.4 79.8 956.2 99.87
XBench-DCSD-

Normal 3049 1869 0456 71.38 1069.8 100.19
SwissPort >8.12 >02.6 702.4 81.2 1296.4 | 105.75
XMark-2 37.89 >24.5 826.5 77.02 13688 | 113.65
EnWikiQuote 68.25 2658 924.3 69.69 1438.1 123.9
DBLP 68.16 605.1 1022.3 79.54 15787 | 157.45
EnWikTionary 85.43 11047 3750.7 70.85 41527 260.9

140




AppendixE: XPath Query Evaluation Benchmark

This appendix contains the complete set of queries that had been used to

evaluateXCVQQP and comparing the results with other queriable XML

compressors. It consists of three sets of queries:

Set-1: The queries listed in this set were used to test thenpeahce of

XGrind and Xpress compressors, and were used to evaX2w) QP and

compare the results with these two techniques.

XML document | Query Query
Name
BaseBall Bl SEASON/LEAGUE/DIVISION/TEAM/PLAYER/GIVEN NAME
B2 /ITEAM/PLAYER/SURNAME
B3 /SEASON/LEAGUE/ITEAM/TEAM CITY
B4 /SEASON/LEAGUE//ITEAM[TEAM CITY >= Chicago and TEAM CITY
Toronto]
Umw C1 /root/course/selection/session/place/building
C2 /Isession/time
C3 /root/course//session/time/start time
C4 /root/coursel//session/time[start time >= 800 and start time <= 1200]
Shakespeare S1 /PLAY/ACT/SCENE/SPEECH/STAGEDIR
S2 /IPGROUP/PERSONA
S3 /PLAY/ACT//SPEECH/SPEAKER
S4 /PLAY/ACT//ISPEECH[SPEAKER>= CLEOPATRA and SPEAKER <=

PHILO]

141




Set-2: this set of queries, listed in the following table, was used to

evaluateXCVQQP against XQzip compressor.

XML document | Query Query
Name
Lineltem L1 [ltable/T/L_TAX
L2 /table/T[L_TAX ="0.02"]
L3 /table/T[L_TAX[[. >="0.02"]]]
L4 /IT[L_ORDERKEY =" 100"]
L5 /IL_DISCOUNT
TreeBank T1 /I_ QUOTE_//_NONE_
T2 /|_QUOTE_//_ BACKQUOTES _
T3 /I_QUOTE_/INP[_NONE_ = " FTTVhQZv7pnPMt+Ee0eOSx" |
T4 /I_QUOTE_/ISBARI//VPIVBG
T5 /|_QUOTE_/INP/PRP_DOLLAR _
Shakespeare S1 /ISPEAKER
S2 /IPLAY//SCENE//STAGEDIR
S3 /I[SPEECH[SPEAKER =" PHILO"]/LINE
S4 /ISCENE/SPEECH/LINE
S5 /ISCENE[TITLE="SCENE Il. Rome. The house of EPIDUS"]/LINE

Set-3: the queries listed in the following table were used to evaluate
XCVQQP against XSAQCT compressor.

XML document | Query Query

Name
dblp D1 /dblp/article/cdrom
D2 /dblp/master sthesis/@key

142




Lineltem L1 /table/T/L_COMMENT
L2 /table/T/L_ORDERKEY
Shakespeare S1 /PLAYS/PLAY/TITLE
S2 PLAYS/PLAY/ACT/SCENE/STAGEDIR
SwissPort P1 /root/Entry/@id
P2 [/root/Entry/Ref/Comment
uwm Ul [/root/course_listing/course
u2 [/root/course_ligting/restrictions/ A/@HREF

143




AppendixF: Independent testing

The following table contains the XML documents that have been used in an
independent testing to find the compression ratio uSDYQ To find the
compression ratio, the following equation was used:

Originalyy file size — Compressedypfile size
Originalyy, file size

Compression ratio =

The independent testing wamade on environment Qudtbre Intel Xeon
processor that has the speed of 2.8 GHz. The operating system was Mac OS X
10.6.4 with 8GB of hard drive.

XML File Name Compression Ratio
Setup of points 50%
books1 50%
cd_catalog 60%
TURKY_meta 66.7%
data_20101111102811 57.9%
ubid 81%
321gone 0.72%
yahoo 73.1%
cornell 87.1%
texas 84.8%
ebay 69.4%
washington 81.1%
berkeley 81.4%
j_caesar 71%
rich_ii 68%
Hen vi 1 68.7%
reed 87.2%
yahoo_homes 83.3%
BaseBall 83.4%
EXI-Invoice 79.8%
Mondial 85.3%
uwm 90.35%
EXI-weblog 88.3%
homeseekers 86.2%
texas_house 81.7%
nky.xml 83.7%
SWEDEN_meta 93.6%
EXI-factbook 81.5%

144



AppendixG: XML dummy elements ratio

The following table lists the ratio of the dummy elements in the tested XML
documentswhich is the same ratio that represents the loss in the structure of
these documents.

XML file name %Dummy_elements
ratio
321gone 7.4
Ebay 1.3
Ubid 16.8
Yahoo_Shopping 9.2
Homeseekers 6.2
NKy 3.8
Texas 6.3
Yahoo _Homes 2.2
XMark -1 1.5
XMark -2 04
Baseball 1.2
Berkeley 12.2
Cornell 19.3
Michigan 19.5
Texas 4.1
Washington 4.7
Read 4.3
Umw 14.6
Wsu 12.4
CD-Catalog 0.0
DBLP 0.0
EnWikiNews 0.9
EnWikiQuote 0.3
EnWikiVersity 1.2
EnWikTionary 1.1
EXI-Array 0.0
EXI -factbook 0.0
EXI-GeogCoord 0.0
EXI -Invoice 0.0
EXI-weblog 0.0
GB-meta 0.0
Swedenmeta 5.9
Turkey-meta 0.0
Henry IV, Part | 1.6
Richard Il 1.4
|_caesar 1.2
Shakespeare 2.4
Lineltem 0.0
XBench-DCSD-Normal 0.0
XBench-DCSD- 0.0

Small.xml

145



Mondial 9.2
NASA 0.0
SwissPort 0.0
Tree Bank 0.0

146




	Introduction
	Introduction
	Research Hypothesis and Research Methodology
	Research Questions
	Motivations and Objectives
	Research Contributions
	Overview of the Thesis

	Research Background
	Introduction
	XML Commencements and importance
	XML document types
	Java API for XML (JAXP)
	XML Retrieval
	XML Query Languages
	- XPath
	- XQuery
	- XLink and XPointer
	- NEXI


	Types of Queries
	Vague Queries
	Chapter Summary

	State of the Art Technology in Compressing and Querying XML Documents
	XML compression techniques
	Queriable XML Compressors:

	Processing Vague Queries techniques
	Problem Identification
	Chapter Summary

	XML Compressing and Vague Querying (XCVQ) Design
	System Architecture
	XCVQ-C Design
	Creating the Structured-Tree & its Abridgment
	Creating the Containers
	Compressing the Containers
	- LZW Compression Technique
	- Gzip Compression Technique


	XCVQ-C Algorithms and Their Correctness
	startElement algorithm
	endElement algorithm
	endDocument algorithm

	XCVQ-D Design
	XCVQ-D Algorithm and its Correctness
	XCVQ-QP Design
	XPath Query
	- Path Matching Expansion
	- Data Value Matching Expansion
	- Function Set Expansion

	Query Decomposer
	Query relaxation
	Ranking
	Decompression

	Chapter Summary

	XCVQ Testing, Evaluation and Discussion
	Testing Strategy
	Testing XCVQ’s Behaviour
	Testing XCVQ’s Structure & Functionality

	Testing Factors
	Data Preparation
	Testing Environment
	XCVQ-C and XCVQ-D Testing
	XCVQ-C and XCVQ-D Testing: Stage-1
	XCVQ-C and XCVQ-D Testing: Stage-2

	XCVQ-C & XCVQ-D Evaluation
	XCVQ-QP Testing
	QFT
	QPT

	XCVQ-QP Evaluation
	Chapter Summary

	Conclusions and future work
	Conclusion
	Recommendations
	Future Work


