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Abstract 

Modulation of Dendritic Cells and Autoimmunity by Apoptotic and 

Necrotic Cells 

As the principal antigen-presenting cells to T cells, dendritic cells (DCs) have a key role in the 

balance of immunity and autoimmunity. They are essential in two major, converse roles – eliciting 

T cell immune responses to pathogenic material, and maintaining peripheral tolerance to self-tissue 

by inhibiting self-reactive T cells. These functions involve the processing of pathogenic or self 

antigens and subsequent presentation of antigenic peptides on MHC to antigen-specific T cells. 

DC recognition of conserved pathogenic markers induces a mature phenotype that governs 

immunogenic presentation to T cells and, consequently, the adaptive immune response. In 

contrast, DC recognition of self tissue suppresses maturation, instead inducing a tolerogenic 

phenotype that induces self antigen-specific T cell to die, become anergised, or converted to T 

regulatory cells. Apoptotic cells are the major source of self-antigen for the maintenance of 

peripheral tolerance, and their defective clearance by DCs is implicated in autoimmunity. 

Apoptotic cells are thought to actively suppress maturation of DCs and inhibit the possible 

immune responses promoted by proinflammatory mediators released from necrotic cells. 

However, the immune function of apoptotic cells and their relative influence over necrotic cells 

are highly contested, partially due to the complex nature of immunogenicity arising from the 

sourcing and generation of apoptotic cells.  

In this investigation, various methods of inducing apoptosis and necrosis are evaluated. Definitive 

methods of inducing well-characterised cell death are then employed to compare the effects of 

apoptotic and necrotic cells on dendritic cells and in vitro and in vivo immune responses. Reported 

here are in vitro findings that support previous reports of the anti-inflammatory response of DCs to 

apoptotic cells, and the inflammatory response of DCs to necrotic cells. The previously-reported 

inhibitory effect of apoptotic cells on LPS-induced secretion of Th1 cytokines is supported here, 

but the inhibitory effect of apoptotic cells on LPS-induced upregulation of co-stimulatory 

molecules is contested. Novel findings describe the upregulation of DC expression of co-

inhibitory molecules induced by both apoptotic cells and necrotic cells. Apoptotic cells, but not 

necrotic cells, had a suppressive effect on CpG-induced upregulation of co-stimulatory molecules 

and pro-inflammatory cytokines. Apoptotic cells suppressed the capacity of untreated and CpG-

treated, but not LPS-treated, DCs to elicit IFNγ production by T cells. Apoptotic cells, but not 

necrotic cells, induced regulatory T cells and partially restored their CpG-suppressed induction. 

Finally, apoptotic cell-modulation of DCs inhibited the induction of autoimmunity in a novel 

modification of an in vivo model of diabetes. Interestingly, novel evidence for the possibility of 

necrotic cell-induced tolerance by means of direct T cell killing is addressed.         

Jonathan (Jonny) Ian Miller 

PhD Immunology 

The University of Manchester 

January 2011  
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CHAPTER 1 – Introduction 
 

 

1.1 Dendritic cells 

1.1.1 Overview of the roles of dendritic cells 

Dendritic cells (DCs) are antigen-presenting cells (APCs) which, upon detection and engulfment 

of pathogenic material, undergo a process of maturation whereby they up-regulate surface 

expression of co-stimulatory molecules and production of proinflammatory cytokines. DCs 

present antigen to antigen-specific, naïve T cells leading to T cell activation and proliferation – the 

initiation of the adaptive cell-mediated immune response. DCs are the principal initiators of the 

adaptive T cell response due to their unequalled proficiency in presentation of antigenic peptides 

on MHC to T cells. This same ability also ensures DCs’ crucial function in maintaining peripheral 

tolerance. In this role, immature DCs take up antigen by clearance of apoptotic cells, then process 

and cross-present antigenic peptides to cytotoxic T cells (1). Because dendritic cells that have 

ingested apoptotic cells do not mature, and therefore do not express the ‘second signal’ of co-

stimulatory molecules, autoantigen is presented in a tolerogenic manner which causes the anergy 

or deletion of autoantigen-specific (autoreactive) T cells. In this way, peripheral tolerance is 

maintained. Presentation by mature DCs and immature DCs is therefore synonymous with 

immunogenic and tolerogenic presentation, respectively, and thus perturbations in the maturation 

status of DCs can profoundly alter the immunological outcome (2). 
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A number of endogenous substances have been identified as being immune regulators in that they 

are capable of initiating or inhibiting DC maturation. Alarmingly, self-reactive T cells that have 

escaped the regulatory mechanism of thymic deletion have only to be presented with antigen in the 

right stimulatory circumstances for autoimmunity to ensue (3). The pivotal role of DCs in the 

prevention of autoimmunity by maintaining peripheral tolerance has been demonstrated clearly (1, 

4). In this role, DCs phagocytose dead cells, both apoptotic and necrotic. The role of dead cells in 

peripheral tolerance and immunity is highlighted in numerous associations between various 

autoimmune diseases and defective clearance of apoptotic cells (5-8), and the interaction between 

dead cells and dendritic cells has been shown to induce diverse immunological outcomes (1, 9-16).  

Due to ever increasing evidence, a widely accepted dogma exists that states that apoptosis is an 

anti-inflammatory, tolerising stimulus (13, 17), and necrosis is a proinflammatory, immunity-

activating stimulus (18). The increasingly approved view is that apoptotic cells actively inhibit DC 

maturation, which assists in minimising the possibility of immunogenic presentation of 

autoantigens, subsequent inflammation during apoptotic cell clearance, and autoimmunity. 

However, the field is rife with contradictions and these are discussed later. The dead cell-

associated factors that influence DCs in directing the course of the immune response are 

becoming increasingly identified, and this is also discussed later. However, the effect that these 

factors have on DCs and how they govern the selection between immunity and tolerance is not 

clear, and is the subject of this investigation. First, the two responses are discussed in more detail, 

and then the factors themselves in the context of apoptosis and necrosis are considered, before the 

controversy over their effects is examined. 
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1.1.2 Immunogenic dendritic cells 

Dendritic cells recognise pathogens via pattern-recognition receptors (PRRs) by binding pathogen-

associated molecular patterns (PAMPs), which are highly conserved, recognisable markers on 

pathogens (2). Toll-like receptors (TLRs) are the predominant family of PRRs, between them 

recognising a wide variety of both exogenous (e.g. microbes) and endogenous (e.g. heat shock 

proteins (HSPs)) inflammatory mediators (19). 

TLRs play a key role in many PAMP-recognition pathways. TLR2 synergises with CD14 to 

respond to peptidoglycan and lipoteichoic acid, surface components of gram-positive bacteria, 

leading to NF-κB activation in macrophages (20, 21). TLR4 recognises LPS from gram-negative 

bacteria once it is bound to LPS-binding protein (LBP) and leads to inflammation via the NF-κB 

pathway (22-24). TLR4 also has an important role in IL12 secretion by DCs that have taken up 

necrotic tumour cells (25). The receptor has been implicated in inflammation by ligation of Hsp60, 

(26) as has CD14 (27), which is required to associate with TLR4 in the receptor complex that 

mediates LPS-induced inflammation (28). Incidentally, CD14 can also mediate ingestion of 

apoptotic cells (29). TLR3 has been shown to promote DC cross-priming of T cells against 

viruses. TLR3 recognises double-stranded RNA from viruses and directs it into the cross-

presentation pathway, so allowing DCs to prime T cells that are specific to viruses that do not 

directly infect DCs (30). TLR5 is stimulated by bacterial flagellin proteins, which act via TLR5 on 

DCs to induce surface co-stimulatory marker expression and inflammatory cytokine production 

(31). TLR7 enables DCs to recognize single stranded RNA and elicit immunity against viruses (32). 

Furthermore, some guanine nucleoside analogues have been revealed to be ligands for TLR7 (33), 

so TLR7 may well also be capable of recognising oxidised lipid moieties that are specific to 

apoptotic cells. TLR9 facilitates the response to non-mammalian DNA as identified by its 

unmethylated CpG motifs (34). 
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Ligation of TLRs and other PRRs stimulates DC maturation, which is characterised by up-

regulation of co-stimulatory molecules at the cell surface, up-regulation of antigenic peptide-

bearing MHC molecules, production of inflammatory cytokines such as IL6, IL12 and TNFα, 

changes in antigen trafficking and presentation and decreased proficiency in phagocytosis (2). DCs 

are highly efficient at presenting antigen to both CD4+ and CD8+ T cells. DCs are especially 

proficient at cross-presentation, where exogenous antigen (i.e. from outside the cell) can enter the 

endogenous pathway and be presented on MHC class I molecules to CD8+ cytotoxic T cells (35). 

In this way, DCs mature to become exceptionally adept at priming CD8+ T cells (the cross-

presentation pathway is also a mechanism for tolerising CD8+ T cells to self-Ag, which is a 

constant process in the steady state (36)). The NF-κB signaling pathway is the foremost pathway 

involved in mature DC immune function, as it is a principal transcriptional regulator of 

proinflammatory cytokines and other important immunological molecules (37), (38, 39). In this 

pathway, the intracellular domains of activated TLR receptors recruit MyD88 (or TRIF, in the 

MyD88-independent pathway, which reconvenes with the MyD88-dependent pathway at NF-κB 

activation), forming an activation complex involving IRAK and TRAF6. This complex activates 

IκB kinase β, which phosphorylates the NF-κB inhibitor IκB, leading to the degradation of IκB 

and allowing NF-κB to enter the nucleus and direct proinflammatory transcription (40). 

According to the two-signal model of T cell activation first proposed over four decades ago, T cell 

activation by APCs requires antigen-specific recognition between the APC MHC-peptide complex 

and the T cell receptor (TCR), plus interaction between co-stimulatory molecules on the APC and 

their appropriate receptors on the T cell (41). Numerous co-stimulatory molecules have since been 

identified on DCs, with key molecules including CD40(42), CD83(43), and CD80 and CD86 (also 

known as B7.1 and B7.2, respectively) (44, 45). All of these molecules engage in complex positive 

feedback signalling that promotes further activation of both the DC and T cell. CD40 ligation on 

DCs by the CD40 ligand molecules on T cells, for example, induces increased expression of C80 

and CD86 which are prominent in cytotoxic T cell priming and anti-tumour immunity  (46, 47). 
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CD80 and CD86 themselves interact with CD28 on the T cell surface for promoting production 

of the cytokine IL2, which is crucial for expansion of both T cells and regulatory T cells (Tregs) 

(48) (though Treg suppressive activity is inhibited (49)). However, CD80 and CD86 also interact 

with the T cell molecule CTLA-4, which is upregulated once T cells are activated. Signalling via 

CTLA-4 inhibits T cell proliferation (50) and is essential for Treg function (51). The relatively new 

molecule CD83 is associated with induction of T cell proliferation and production of IFNγ by 

active T cells (52). These molecules can serve functions away from the DC-T cell synapse too. For 

example, by inducing the up-regulation of chemokine receptors on DCs, CD40 signalling aids DC 

migration to secondary lymphoid tissues where the DC-T cell interactions occur (53). 

Many other molecules are up-regulated on the surface of DCs as a result of proinflammatory 

signalling. CD25 is the receptor for IL2, and the usual source of IL2 for DCs is the antigen-

specific T cells with which DCs have begun to interact. Ligation of CD25 leads to increased 

proinflammatory cytokine production (54) by DCs and is thus a further positive feedback signal 

mechanism that perpetuates T cell expansion. CD25 is more celebrated in CD4+CD25+ T 

regulatory cells, one of the functions of which is to suppress IL2 production (55). 

As well as IL2, other DC-produced cytokines are essential inflammatory mediators of the immune 

response, including IL12, IL6, IL1 and TNFα. IL12 is a well established mediator of inflammation 

by activating natural killer (NK) cells, generating lymphokine-activated killer cells (LAKs), and 

inducing T cell proliferation and IFNγ production. It is primarily produced by DCs and other 

phagocytes upon microbial stimulation (56). Production is then perpetuated and guides Th1 

differentiation during DC interaction with T cells (57).  

 IL6 aids Ig production by B cells (58), enhances proliferation and survival of Th1 and Th2 T cells 

(59) but preferentially promotes Th2 differentiation (60), and recruits leukocytes to sites of 

inflammation by modifying the chemoattractant properties of local cells (61), as well as having 
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effects on many other body systems. Accordingly, IL6-deificient mice have been shown to be 

unable to control viral and bacterial infections (62). 

 

1.1.3 Tolerogenic dendritic cells 

Tolerogenic dendritic cells are currently the subject of intense research and debate. Tolerogenic 

DCs express co-inhibitory molecules that are thought to counter co-stimulatory molecules in the 

immunity-tolerance balance. Investigations have shown that these molecules can be contradictory, 

complex, and certainly controversial, and each is worthy of its own review. For conciseness, only 

key and representative findings are discussed in detail here. 

B7DC (also known as PD-L2) and B7H1(also known as PD-L1) are both expressed on human and 

mouse myeloid DCs, and both are ligands for the PD-1 (programmed death-1) receptor that is 

present on T cells and is up-regulated on activated T cells (63, 64). Ligation of PD-1 by either 

ligand may negatively regulate the activation events induced by IL2 or by ligation of T cell CD28 

by the DC co-stimulatory molecules CD80 and CD86 (63) . B7H1 has been shown to dampen 

immune responses by inhibiting IL12 secretion, increasing IL10 promotion, and promoting 

generation of Tregs (65). Ligation of PD-1 may also, as the name suggests, lead to direct cell death 

(66). Tumour cells can take advantage of this mechanism by expressing B7H1, for example, and 

inducing apoptosis in tumour-specific T cells (67). 

However, both molecules have been implicated in immunity. Transgenic overexpression of B7DC 

on tumour cells in mice significantly enhanced anti-tumour T cell-mediated immunity, though 

curiously this was via a PD-1-independent mechanism (68).  

B7H2 is also known as ICOS-ligand (ICOSL) as it interacts with ICOS on T cells, and its position 

as either stimulatory or inhibitory has been highly contentious. Extensive study has revealed a 
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complex and diverse role. Its absence is associated with impaired CD4+ and CD8+ T cell function 

(69, 70) and T cell-dependent B cell responses (71) . However, investigations suggest that the 

stimulatory role of B7H2 is restricted to acting on previously-activated T cells, as B7H2-ICOS 

signalling is not required in early activation events (72) and naïve T cells are low in ICOS (73). 

Therefore, B7H2 appears to be limited to promoting survival of differentiated T effector cells, 

rather than activation.  In contrast, both Treg activation and expansion is induced by B7H2 

expression on myeloma cells, leading to tumour immune evasion (74). Survival of splenic 

transplant mice was promoted by inhibiting B7H2 from Day 3 after surgery, but this effect was 

ablated if inhibition was commenced at Day 0 (75). However, Tregs were not involved in this 

discrepancy between early and late intervention, indicating that Treg induction may not be the only 

inhibitory effect of B7H2. The role of B7H2-ICOS signaling in both T cells and Tregs is 

excellently illustrated in work by Prevot et al (2010), who demonstrated protection against diabetes 

due to defects in diabetogenic effector T cells in ICOS(-/-) NOD, but accelerating diabetes in 

BDC2.5 ICOS(-/-) NOD mice due to a dominant defect in Treg (76). However, protection against 

diabetes was accompanied by onset of autoimmunity towards the neuromuscular system, 

indicating that B7H2 may be more crucial to inhibiting rather than promoting immunity. 

Witsch et al (2002) demonstrated on immature human Langerhans cells a low expression of B7H2 

that was not up-regulated upon maturation (77). In the interaction of mature DCs with T cells, 

B7H2-ICOS signaling made no contribution to the up-regulation of IL2 secretion but instead 

regulated CD28 signalling and helped to promote IL10 secretion. B7H2 has also been associated 

with tolerogenic DCs in Chlamydia infection (78) and with myeloma immune evasion (79). 

Despite the historical role of B7H2 in T cell stimulation, more recent investigations are providing 

increasing evidence of a role of DC B7H2 in Treg induction and tolerance. The opposing roles 

appear to be separated both temporally and in terms of effector cells.  
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B7H3 expression is associated with the high resistance of malignant mesothelioma (80), indicative 

of an immunosuppressive nature. However, transfection of B7H3 into tumour cells can elicit 

highly effective anti-tumour immunity (81), and its presence on DCs has been reported to 

stimulate T cell activation and elicit IFNγ production (82). Precisely the opposite results have been 

reported elsewhere, namely inhibition of T cell activation and cytokine production (83). 

Interference of B7H3 function has been observed to exacerbate EAE in various models (83, 84). 

The conflicting evidence may have arisen due to multiple receptors for B7H3 with contrasting 

functions. Although B7H3 is as yet an orphan ligand, TLT-2 has been identified as a potential 

receptor for B7H3 in an immunostimulatory role (85), whilst another may yet be discovered to 

perform an immunoinhibitory function, much like the contrasting functions of CD28 and 

CTLA-4.  

The tolerogenic capacity of B7H2 and B7H3 is highly contested. However, because of increasing 

support towards prominent regulatory roles, B7H2 and B7H3 are considered in the Results 

chapters alongside co-inhibitory molecules. Nonetheless, in ascertaining and discussing its role in 

this investigation, it is considered in the context of all available evidence.  

B7H4 is relatively established as a co-inhibitory molecule. Expression of B7H4 is strongly 

associated with numerous tumours (86-88). Its immunosuppressive effects have been utilised in 

improving allograft survival in mice (89), but are yet to be seen in suppression of autoimmunity in 

association with DCs. 

Anti-inflammatory cytokines are crucial to tolerance, namely IL10 and TGFβ. IL10 treatment of 

DCs is sufficient to induce tolerogenesis and prolong survival after intestine allograft (90), and 

both IL10 and TGFβ is essential for the development of regulatory T cells (91, 92). Another 

mechanism by which dendritic cells regulate immunity is by expression of the tryptophan 

metabolising enzyme indoleamine 2,3-dioxygenase. Indeed, ACs have been shown to suppress 

DCs by IFN-induced IDO (93). IDO is an enzyme that degrades the essential amino acid 
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tryptophan, and is thought to suppress the proliferation of facultative intracellular pathogens, 

tumour cells and activated T cells alike by depriving them of the nutrient (94). Amongst the first 

evidence of an immunoregulatory function for IDO was the finding of its role in inhibiting 

maternal immunity to foetal tissues (95). 
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1.2 Apoptotic cells and necrotic cells in the periphery  

Apoptotic cells are recognised and selectively phagocytosed by DCs (96) and then cross-presented 

to T cells (97, 98) in a tolerogenic manner, inducing anergy (99) or deletion (apoptosis) (100, 101) 

of autoreactive T cells. Animal model studies demonstrate that this is a constitutive and continual 

process (102, 103).  

Just as DCs are subject to endogenous inhibitory modulation, so they may be influenced by 

endogenous activation signals. Endogenous ‘danger signals’ represent a possible group of 

additional stimuli that may play a pivotal role in dichotomising DC responses by receptors that 

have both pro- and anti-inflammatory functions [Figure 1.1]. The majority of endogenous danger 

signals are simply intracellular components that elicit an inflammatory response when released 

from necrotic cells, whereas others are up-regulated during cellular stress and may be secreted to 

alert the innate immune system (18), rendering otherwise-inhibitory apoptotic cells stimulatory. 

This may represent a major regulatory system for differentiating between situations that warrant 

immune responses and those that do not. For that reason, associations between dead cells and 

danger signals will be examined here. 
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Subsequent to tissue damage or injury in vivo, DCs and other cells of the innate immune system are 

exposed to a broad range of stimuli, most of which is probably endogenous, including autocrine 

cytokines and cytokines from other innate immune cells. Consequently, DCs are subject to a host 

of opposing activating and inhibitory signals that compete with each other at either the level of 

receptor ligation or intracellular signalling. Loss of this balance between these endogenous signals 

in favour of DC activation may lead to chronic inflammatory disorders and autoimmunity. In 

contrast, if this balance is biased in tumours towards tolerance, as is often the case, then the 

immune system fails to elicit an effective immune response against dangerous cells. Ascertaining 

how these stimuli interact to determine the immunological outcome would help to substantiate the 

relative significance of each of the large number of recently recognised endogenous stimuli of 

  A 
Figure 1.1 Danger signals, 

immunity and tolerance. 

Dendritic cells initiate immunity 

or tolerance to antigens by 

presenting antigenic peptides to 

antigen-specific T cells. Usually, 

peptides from pathogens are 

presented in conjunction with 

co-stimulatory molecules such 

as IL12 and CD86 on ‘mature’ 

DCs, leading to T cell activation 

into armed effector T cells. A) In 

healthy individuals, uptake of 

self-antigen from apoptotic cells 

actively suppresses DC 

maturation and hence 

production of co-stimulatory 

molecules, so self-antigen is 

presented without co-

stimulation, leading to T cell 

deletion or anergy. B) Danger 

signals are thought to be 

capable of inhibiting the 

suppressive signalling of 

apoptotic cells. C) Inhibition of 

DC suppression causes the 

switching of tolerogenic 

presentation to immunogenic 

presentation. Image from (1) 

  B 

 C 
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DCs. This would consequently help to establish effective methods of DC modulation behaviour in 

vivo for therapy of autoimmune diseases and cancer.  

It is important to acknowledge the similar role of macrophages in apoptotic cell clearance. In a 

model of experimental autoimmune encephalitis (EAE), injection of apoptotic cells pulsed with 

myelin oligodendrocyte glycoprotein (MOG) antigen induced MOG-specific tolerance and 

suppressed development of the disease. In this example, tolerance required apoptotic cell uptake 

by two particular subsets of macrophages in the spleen, as well as by DCs  (16). 

DCs, with superior antigen-presenting capability, may bear the greater responsibility for induction 

of regulatory T cells and the persistence of tolerogenesis. The greater importance of macrophages 

may lie in the initial anti-inflammatory response: DNA from apoptotic cells has been shown to 

bind MHCII on macrophages and inhibit antigen presentation (104).  

 

1.2.1 Necrosis and endogenous danger signals 

Current concepts of immunology revolve around a central principle known as the ‘danger model.’ 

The introduction of this model saw a paradigm shift from the notion that the immune system 

distinguishes between infectious non-self and non-infectious self to the notion that it distinguishes 

between harmful and non-harmful (105). This model was adopted thanks largely to the fact that it 

encompassed plausible accounts of transplant rejection, tumour immunity and autoimmunity. This 

theory also allowed for regulation of adaptive immunity by endogenous factors. It is well 

documented that certain infections are able to break host tolerance to self-tissues, but endogenous 

danger signals may also have sufficient influence on DCs to regulate tolerance and immunity (18). 

Endogenous danger signals are molecules that are derived from the host and are capable of 
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activating DCs. They are released or produced by cells undergoing stress, damage or abnormal cell 

death, and can be distinct from the antigen(s) that are subsequently presented to T cells (105).  

Necrotic cells are those which have undergone acute, rapid death caused by mechanical damage, 

osmotic lysis or viral lysis, and are characterised by loss of membrane integrity and subsequent 

release of intracellular contents. Constitutive danger signals are normal, exclusively-intracellular 

components released by necrotic cells, hence their extracellular presence conveys information of 

tissue damage, and therefore infection risk, to DCs, causing their maturation (17, 18). For example, 

ATP and UTP, components of energy metabolism, can be released from the cell due to 

inflammation, hypoxia and mechanical stress (106). This causes proinflammatory cytokine 

production by murine DCs (107) via the DC purinergic receptor P2X7 (108). 

Some endogenous danger signals are inducible – during stress, danger signals are newly synthesised 

or innocuous molecules are modified to become immunostimulatory (109, 110). Covering both the 

inducible and constitutive classes of danger signals are the heat shock proteins (HSPs). HSPs are 

the most abundant and conserved proteins in mammals, and are involved in protein folding, 

protection and chaperoning. HSPs are soluble and restricted to intracellular compartments. During 

viral infection, the immunogenicity of HSPs from an infected cell in vivo is partially explained by 

the association of HSPs with antigenic peptides specific to the virus. This is supported by reports 

of the influenza protection elicited by complexes of the HSP gp96 isolated from influenza-infected 

cells (111), and similarly-induced protection against intracellular bacteria (112). However, HSPs 

also have innate adjuvanticity. Necrotic cell death releases the HSPs Hsp70, Hsp90, gp96 and 

calreticulin, which cause murine DC maturation and Nf-κB activation in vitro at concentrations 

comparable to physiological concentrations available after necrotic cell death in vivo (113). Gp96 

induces DC maturation in both murine and human DCs, as shown by their ability to cause DC 

secretion of TNFα and IL12, up-regulation of co-stimulatory molecules and improved T cell 

activating capabilities (114) via TLR2/4 (115). In vivo, transgenic overexpression of Hsp70 can 
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promote autoimmunity (116). Release of HSPs has been implicated in the adjuvanticity of necrotic 

tumour cells (117). This helps to explain the low adjuvanticity of apoptotic tumour cells, though 

tumour cells are often found to express remarkably high levels of HSP. It has been shown that 

increase of Hsp70 content of a tumour cell undergoing heat shock (to increase HSP expression) 

increases its adjuvanticity substantially (118, 119). It is postulated that surface expression of heat 

shock proteins by stressed and cancer cells (120, 121) may serve as a mechanism of direct immune 

activation without the requirement for preceding cell death (122).  

Uric acid is recognised as another endogenous danger signal. Uric acid, a constitutive end-product 

of purine degradation found in the cytosol, can induce inflammation when released from necrotic 

cells (123). It induces the inflammasome (a signalling pathway, in which caspases are instrumental, 

leading to IL-1β activation and secretion (124)) via NLRP3 (cias1) (125). The P2X7 receptor is also 

involved in the inflammasome process (126). Also, cell injury due to DNA and RNA degradation 

increases uric acid generation and correlates with increased adjuvanticity of stressed cells (127). 

DNA acts as a potent endogenous inflammatory mediator, being an obvious sign of cell rupture if 

located extracellularly, and one that is implicated as a major target of autoantobodies in SLE (128). 

Chromatin has been identified as an immunogenic constituent of DNA (129). DNAse 1 and the 

complement component C1q act together to degrade chromatin that has been released from 

necrotic cells (130). Efficient degradation of DNA reduces the immunogenicity of dead cells, as 

signified by the systemic autoimmunity that arises in DNAse I-deficient mice, which develop an 

SLE-like autoimmune illness (131). HMGB1 (high mobility group box 1) is another component of 

the nucleus whose extracellular presence following necrosis triggers stimulation of DCs [Rovere 

2004]. 

Oxidated LDLs (oxLDLs) are found on apoptotic cell surfaces and are immunogenic and 

proinflammatory (110). Oxidative damage can sufficiently alter nucleic acids and proteins to cause 

autoimmunity. In SLE patients some anti-DNA antibodies are found to preferentially bind 8-
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hydroxydeoxyguanosine (8OHDG), a product of oxidative damage to guanine (132), rather than 

normal DNA.  

Proteases contribute to the adjuvanticity of necrotic cells. When lysed cells are treated with 

selected serine protease inhibitors their immunogenicity is abrogated and they are even modulated 

to act in an anti-inflammatory manner similar to apoptotic cells (133).   

Virtually any incidence of infection or tissue damage will inevitably lead to the release of 

potentially immunostimulatory cell constituents within a proinflammatory environment. However, 

the prevalence of autoimmunity in humans is relatively infinitesimal given the frequency of such 

exposure. This demonstrates the importance of peripheral tolerance and the effectiveness with 

which dendritic cells limit immunogenic presentation to T cells of self-Ag.  

 

1.2.2 Apoptosis and apoptotic cell clearance 

Apoptosis is a strictly regulated and complex form of cell death, which is appropriately also known 

as ‘programmed cell death.’ Cells may be induced or may self-induce to undergo apoptosis for 

many reasons, including redundancy, improper development, DNA damage or viral infection. 

Apoptosis is characterized by autodigestion of the cell due to controlled degradation of 

intracellular components by endogenous proteases and DNA degradation by endogenous 

endonucleases. This leads to DNA fragmentation, chromatin condensation, cytoskeletal 

disruption, cell shrinkage, and cytoplasmic membrane blebbing, but one of the most apparent 

characteristics is also the most immunologically significant – the preservation of membrane 

integrity throughout the process (134, 135). Maintaining membrane integrity prevents leaking of 

potentially inflammatory intracellular contents, and ensures that only apoptotic cell signals are 

available to local immune cells. One such signal is the outer-leaflet membrane expression of the 



26 

 

phospholipid phosphatidylserine (PS), which in healthy cells is confined to the inner-leaflet and is 

therefore not accessible (136).  

DCs have a number of receptors capable of binding PS. Although external PS is a key marker of 

apoptotic cells, it is also accessible in necrotic cells. Necrotic cells do not flip PS to the outer-

leaflet as it is an active process performed by a lipid scramblase (137) that first requires 

transcription of apoptosis genes (138), and hence is not possible in necrotic cells. However, 

necrotic cells lose membrane integrity and thus expose inner-leaflet PS. Therefore, any anti-

inflammatory properties that PS has may be countermanded by endogenous danger signals 

released in necrotic cell lysates, thus PS-mediated anti-inflammatory signalling appears to remain 

exclusive to apoptotic cells.  

Links have been well established now between defective clearance of apoptotic cells and 

autoimmunity, thanks largely to investigations into the pathology of the autoimmune disease 

systemic lupus erythematosus (SLE). Defects in apoptotic cell clearance strongly correlate with 

SLE (5-7, 10). These links are discussed in more detail with the apoptotic cell clearance receptors 

below. The link between defective apoptotic cell clearance and autoimmune and inflammatory 

conditions may largely be due to apoptotic cells undergoing secondary necrosis. Secondary 

necrosis occurs when caspases and intracellular ATP decrease in availability over time, resulting in 

energy-dependent apoptotic death switching to energy-independent necrotic death (139, 140) – the 

cells and blebs lose membrane integrity and release intracellular contents into the extracellular 

milieu. Thus, defective clearance results in an abundance of autoantigens during potentially 

inflammatory conditions. 
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1.2.3 DC receptors for dead cells and bridging molecules  

Interestingly, some DC surface receptors are receptors for both apoptotic cell clearance and 

exogenous antigen. To establish how DCs are modulated by the plethora of endogenous factors, it 

must be verified whether receptors involved in apoptotic cell clearance are ever inflammatory, or 

indeed if known PRRs are ever involved in apoptotic cell clearance. To address these issues, it is 

necessary to recognize the receptors involved in apoptotic cell clearance, PAMP/endogenous 

danger signalling, and to especially note those that are involved in both. 

  

1.2.3.1 Scavenger receptors 

Scavenger receptors bind modified lipoproteins, which enables them to clear altered-self (141). On 

macrophages, CD36 mediates phagocytosis of apoptotic cells, requiring thrombospondin 1 

(TSP-1) which acts as a bridging molecule between CD36 and PS on apoptotic cells (142, 143). 

Albert et al (2008) found CD36 and αvβ5 integrin to be responsible for DC uptake of apoptotic 

cells and subsequent trafficking for MHCI cross-presentation (144), though the role of CD36, 

αvβ3 and αvβ5 in antigen trafficking and cross-presentation has more recently been challenged 

(145). Other studies suggest that CD36 is not required for apoptotic cell uptake by DCs at all, 

which is instead mediated preferentially by the vitronectin receptor, mentioned below (11).  

Strikingly, CD36 is shown to be directly ligated by the clonally variant protein PfEMP-1 expressed 

by Plasmodium falciparum-infected erythrocytes, leading to the inhibition of DC maturation (146). 

DCs bound in this way release TNF-α but also secrete IL10 and fail to prime T cells. The same 

group later showed that apoptotic cell uptake, like PfEMP-1-ligation, induces an anti-inflammatory 

response via CD36 and TSP-1 (146). Regardless of its role in actual clearance of apoptotic cells, 

CD36 represents an influential suppressor of DC maturation and one that is exploited by 

pathogens for that very reason.  
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Despite an anti-inflammatory role, CD36 is also involved in some inflammation. One group 

demonstrated that, in human vascular endothelial cells, H. pylori- and P. gingivalis-derived LPS is 

able to antagonise TLR4, and induce formation of heterodimer receptor complexes of TLR1, 

TLR2 and CD36, leading to NF-κB activation and TNFα secretion (147). It is interesting that 

CD36, a typically anti-inflammatory receptor, should associate with typically inflammatory 

receptors. However, with measurement of TNF-α secretion alone and no possibility of performing 

T cell-activating assays on the cell types used it is not compelling that DCs activated in this way 

could not still be tolerising in function. However, there is more evidence that suggests that CD36 

may be involved in proinflammatory signalling. CD36 also has an important role in clearance of 

oxidised low-density lipoprotein (oxLDL) (148), and oxidation of lipoproteins on apoptotic cell 

surfaces is key to their recognition and subsequent ingestion by macrophages (109). PS, the 

seminal marker to aid recognition of apoptotic cells, must itself be oxidised before macrophages 

can phagocytose apoptotic cells efficiently, and it is done so by the reactive oxygen species that are 

generated during Fas-induced apoptosis (149). Apoptotic cells display oxidised moieties of lipids 

and lipid-proteins. The oxidation-specific epitopes of oxidised phospholipids (oxPLs), which are 

increased on the apoptotic cell surface, are found to induce CD4+ T cell cytokine production and 

activate endothelial cell adhesion of monocytes. Oxididation therefore has the potential to make 

apoptotic cells proinflammatory and immunogenic (110). Moreover, oxidative modification of 

poly(G) (polyguanylic acid) causes autoantibody production against both the native poly(G) and 

the modified poly(G) in scleroderma, and autoantibodies in SLE that preferentially bind the 

modified poly(G) (150). In keeping with the recurrent theme of multiple ligands, CD36 also binds 

the heat shock protein gp96 (151). 

The class-A scavenger receptor (SRA) has been shown to contribute to apoptotic T cell clearance 

by macrophages in the thymus (152). SRA also plays a role in pathogen recognition, as it binds 

LPS (153) and enables phagocytosis of E. coli by macrophages (154). Another scavenger receptor 

with inflammatory properties has been implicated in HSP-mediated immunity. Scavenger receptor 
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LOX-1 is a promising target for cancer immunotherapy, as it binds Hsp70 and promotes cross-

presentation, and has been loaded with tumour antigen to induce antitumour immunity in vivo 

(155). 

Also critical in macrophage phagocytosis of apoptotic cells is the vitronectin receptor (αvβ3), 

which was the first receptor to be identified as mediating phagocytosis of apoptotic cells (156) and 

was later found to cooperate with CD36 and TSP-1 (143). MFG-E8 (milk fat globule-epidermal 

growth factor 8) acts as bridging molecule between macrophage αvβ3 and PS (157), and 

autoimmune disease due to impaired apoptotic cell clearance in MFG-E8 knockout mice suggests 

an active involvement in suppression of inflammation (158). It has been shown that immature 

DCs secrete MFG-E8 in exosomes, a property which is lost in the mature state, and this correlates 

with phagocytic ability, and that a MFG-E8 knockout transgenic mouse has greatly diminished 

phagocytic capabilities in apoptotic cell clearance (157). This data suggests a similar role in DCs for 

MFG-E8 as in macrophages, and it may yet be found that αvβ3 receptor on DCs mediates anti-

inflammatory signalling.  

CD31 also is involved in apoptotic cell clearance (159). Mice with CD31 deficiency develop 

autoimmunity and exhibit hyper-responsive B cells when challenged with LPS or IgM, indicating a 

possible active inhibitory function (160). Further, CD31 from Jurkat cells, a human T cell line, has 

been shown to contain an (ITIM), which, when activated, inhibits protein tyrosine kinase (PTK)-

dependent signal transduction mediated by the T cell receptor (TCR) complex, which contains an 

immunoreceptor tyrosine-based activation motif (ITAM) (161). DCs have long been known to 

express CD31 (162, 163), but any anti-inflammatory effects in DCs are yet to be reported. 

TAM (Mer), Tyro3 and Axl are related members of a family of receptor tyrosine kinases. All have 

roles in regulation of cytokine production in macrophages, and have also been shown to have roles 

in the recognition and phagocytosis of apoptotic cells (164, 165). Mer has been shown to be 

present on bone marrow-derived DCs but Behrens group found that it is not essential for DC 



30 

 

engulfment of apoptotic cells (165), whereas macrophages derived from Mer-/- mice were 90% less 

efficient at clearing apoptotic cells, leading to anti-nuclear antibodies but no autoimmunity-caused 

tissue damage (166). Mice deficient in all of the receptors Mer, Tyro3 and Axl develop 

autoimmunity (167), suggesting that these receptors act synergistically but are independently 

functional.    

 

1.2.3.2 Complement 

C1q and C4 are components of the classical complement pathway and their separate or joint 

deficiencies due to inherited null mutation are associated with strong susceptibility to systemic 

lupus erythamatosous (SLE) in humans (168). Increasing accumulation of C1q on maturing blebs 

from apoptotic keratinocytes (169) directed the way for the link between C1q and autoimmunity to 

be attributed to the requirement of C1q for apoptotic cell clearance by macrophages (6, 170). Poor 

clearance could subsequently result in an abundance of necrotic factors capable of stimulating 

inflammatory signalling in DCs. C1q, as well as mannose-binding lectin (MBL), stimulate 

macrophage ingestion of apoptotic cells by binding both the apoptotic cell surface and 

macrophage surface calreticulin, which in turn is bound to CD91 (171). CD91 also mediates 

antigen trafficking by binding the heat shock proteins gp96, Hsp90, Hsp70 and calreticulin (172). 

IC3b opsonises PS on apoptotic membranes, and binds to CR3 and CR4 on macrophages, leading 

to phagocytosis (8). Morelli et al (2003) found that not only do the scavenger receptors CR3 

(CD11b/CD18), and to a lesser extent, CR4 (CD11c/CD18), mediate phagocytosis of apoptotic 

cells in DCs via the opsonising aid of iC3b among other opsonants, but iC3b-CR3 interaction 

resulted in decreased levels of mRNA and suppressed secretion of proinflammatory cytokines 

IL1α, IL1β, IL6, IL12p70 and TNFα, with no change in the secretion of TGFβ1 (9). This is in 

keeping with the findings that CR3 ligation suppresses IL12 and IFNγ secretion in macrophages 
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(173). This anti-inflammatory response is no doubt aided by the binding of C-reactive protein 

(CRP) to apoptotic cells, which is shown to induce anti-inflammatory responses in macrophages 

(174). Here, CRP enhanced complement activation but protected the integrity of the cell 

membrane from later complement components by preventing formation of the membrane-attack 

complex. Furthermore, CRP augmented macrophage phagocytosis of apoptotic cells, which was 

associated with secretion of TGFα. Additionally, these anti-inflammatory effects were not effective 

once the cells became necrotic, indicating that CRP protects against necrotic factor-induced 

inflammation but will not counter it if it nonetheless occurs. This is some of the most promising 

evidence yet that signalling through mediators of apoptotic cell uptake actively suppresses 

inflammation. However, Gaipl et al (2001) demonstrate that complement binding does not occur 

until late apoptosis or early secondary necrosis (175). Complement may therefore be acting as an 

important but late suppressor of immunity when phagocytes are overburdened by apoptotic cells 

and many of those apoptotic cells have progressed to later stages of apoptosis and secondary 

necrosis. Certainly, most other receptors involved in the regulation of apoptotic cells, such as the 

PS receptor, appear to recognise apoptotic cells much earlier on, and apoptotic cell clearance is 

usually extremely efficient and rapid as to make the progression to late-stage apoptosis and 

secondary necrosis an infrequent occurrence (176, 177). Being a ‘last resort’ method of apoptotic 

cell clearance, or possibly one that is specific to only those cell types that progress rapidly to 

secondary necrosis, complement-mediated clearance may have obscured the true importance of 

other clearance receptors in the earlier stages of apoptosis. This may go some way to explaining 

why reports may differ in their accounts of the importance of the same receptors when using 

different apoptotic cell types for in vivo clearance assays. Regardless, it is interesting to think that 

the inhibitory effect of complement may even offset the proinflammatory signalling induced by 

necrotic factors, and warrants further investigation as to how the signalling pathways of both 

interrelate.   
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1.2.3.3 Fcγ receptors 

Autoimmune conditions sometimes have autoantibodies that bind the surfaces of apoptotic cells, 

for example anti-phospholipid autoantibodies (aPLs) bind exposed PS (178). These can then 

facilitate apoptotic cell recognition by macrophages and DCs via Fc receptors and in this way 

apoptotic cell ingestion may instigate inflammation by the release of TNF-α (179). Fcγ receptors 

bind the Fc portion of immunoglobulin G, are involved in clearance of immune complexes, 

phagocytosis of antibody-opsonised pathogens, enhancement of antigen presentation, and 

antibody-dependent cellular cytotoxicity, and are found on most immune cells (180). FcγRI 

(CD64) and FcγRIII (CD16) belong to the activation class of Fc receptors, which transmit 

activation signals via immunoreceptor tyrosine-based activation motifs (ITAMs) in the cytosolic 

domain. The FcγRII (CD32) subset receptor FcγRIIa also belongs to the activating class of Fc 

receptors, but FcγRIIb belongs to the inhibitory class of Fc receptors, which transmit inhibitory 

signals via immunoreceptor tyrosine-based inhibitory motifs (ITIMs) (181, 182). Generation of 

balanced immune responses is dependent on the synchronized expression of these sets of 

receptors on the same cell (183). FcγRIIb is particularly important for tolerance, and may have an 

important role in preventing spontaneous DC maturation, by raising the threshold for activation. 

(184). FcγRI, FcγRII and FcγRIII are all expressed on DCs (185). 

FcyRIIa is required for apoptotic cell-IgG complex-mediated IFNa production by DCs (apoptotic 

cell-IgG complex serves as a substitute for lupus sera immune complexes), where DNA-containing 

immune complexes signal through both FcγRIIa and TLR9 (186). DC FcγR ligation by IgG-

associated apoptotic cells triggers maturation and induces efficient MHC class I and II-restricted 

antigen presentation (187). These findings show that a proinflammatory receptor is involved in 

clearance, though IgG is no doubt the (predominant) DC activator. However, given that most 

immune receptors discussed so far appear to be modulated by endogenous danger and/or 

apoptotic factors, the FcγR family merit further investigation. Indeed, intravenous Ig (IVIg) 
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therapy has been used successfully for many years to treat several autoimmune and systemic 

inflammatory diseases that are characterised by excessive tissue necrosis (185). From unpublished 

findings [Miller JI and Millar DG] that FcγR blocking abrogates necrotic cell-induced DC 

maturation, it is tempting to speculate that endogenous danger signaling may act via FcγR, and that 

further elucidation of endogenous danger signaling may extend the application of IVIg therapy to 

more autoimmune diseases. 

1.2.3.4. Others 

The TIM (T cell/transmembrane, immunoglobulin and mucin) family of receptors specifically 

recognise PS on apoptotic cells, but differ in their expression and function, appearing to have both 

anti-inflammatory and highly co-stimulatory roles (188). Expression is mainly by T cells and APCs, 

where cross-linking has been demonstrated to lead to various effects including potent co-

stimulation (Th2 cells), cross-tolerance (APCs) and apoptosis (Th1 cells), amongst many other 

findings.    

CD205 (also known as DEC-205) has been identified as an important receptor in the phagocytosis 

of dead cells, recognising ligands on both apoptotic cells and necrotic cells (189). 

DC phagocytosis of ACs has been associated with a semi-mature DC state that is in conflict with 

the established bimodal model, and these semi-mature DCs have been implicated in tolerance. 

DCs exposed to a respiratory antigen expressed high levels of co-stimulatory molecules but also 

produced high IL10 and induced antigen-specific CD4+ T cell tolerance in a murine model of 

respiratory hypersensitivity and asthma (190). DCs matured by TNFα increased co-stimulatory 

molecule expression but were poor producers of proinflammatory cytokines. Upon repeated 

injections into mice, these DCs induced antigen-specific protection against EAE (191). These 

findings indicate that the cytokine profile, rather than the surface phenotype consisting of a 

repertoire of co-stimulatory and co-inhibitory molecules, is more instrumental in determining the 
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subsequent immune response. This is an interesting addendum to the long-established two-signal 

model – it is now arguable that the eponymous two signals (the antigen-receptor signal induced by 

antigen-specific recognition, and the non-specific signal from co-stimulatory molecules) are 

necessary for a T cell response but are not sufficient to commit the T cell response in the 

appropriate direction of either immunity or tolerance. It is the cytokine profile that directs and is 

crucial in ensuring the appropriate immune response.  
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1.3 Immunogenicity of apoptotic cells 

The immunogenicity of apoptotic cells is contested due to a wealth of conflicting reports. Here, 

the literature is examined for patterns that can reveal distinct circumstances for both the anti- and 

the proinflammatory behaviour of dead cells, whether or not this distinction correlates with 

apoptosis and necrosis, and whether or not it can satisfyingly reconcile the observed immunogenic 

and tolerogenic effects on DCs 

.  

1.3.1 Poor characterization of dead cells and/or progression to secondary 
necrosis 

Apoptotic cells and necrotic cells are two very distinct forms of cell death with, in theory, two very 

distinct sets of immunological properties. Unfortunately, studying one form without 

contamination of the other is extremely difficult. Furthermore, some reports disappoint with poor 

initial characterisation of the type of dead cell being used in the investigation. For example, 

Takahashi et al (2003) report that apoptotic cells, which did not induce up-regulation of co-

stimulatory molecules, induced up-regulated secretion of IL10 (as did live cells, but not necrotic 

cells) and increased production of IL12p40 and, greatly so, IL6 (unlike live cells and necrotic cells) 

(15). However, some of the apoptotic cells used were described by the authors as 92% positive for 

Annexin V and 61% positive for PI. The cells being used were, in fact, mostly necrotic, which 

accounts well for the induction of proinflammatory cytokines. Indeed, the IL6 production is 

maximum at the highest proportion of ‘apoptotic’ cells. IL12p40 production is at a maximum at 

the second highest proportion of ‘apoptotic’ cells but inexplicably falls dramatically at the highest 

proportion. So in this study, poor characterisation of the dead cells has given rise to false allusions 

as to immunogenicity of apoptotic cells. It is still, however, difficult to reconcile the necrotic cell-

induced cytokine profile with the lack of up-regulation of co-stimulatory molecules. In other 
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studies, apoptotic cells are incubated with DCs for up to 48 hours or more, but no evidence is 

provided to demonstrate that apoptotic cells that are not phagocytosed in this time (and many will 

not be) do not progress to secondary necrosis whilst in culture with DCs. Physiological secondary 

necrosis occurs usually only in cases of defective apoptotic cell clearance, which allows apoptotic 

bodies the time to begin to disintegrate, releasing potential endogenous antigen and danger signals 

much like necrosis does. Unfortunately, the semantics of apoptosis and necrosis are not always 

sufficient in the immunological context.  

 

1.3.2 Temporal specificity 

Work by Lucas’ group highlights some of the complexities of the effect of apoptotic cells on APCs 

(192). Apoptotic cells stimulated TGFβ1, although only late in phagocytosis, whereas various 

proinflammatory ligands of TLRs 2, 4 and 9 induced early and sustained secretion of TNFα, 

macrophage-inflammatory protein (MIP) 1α and MIP-2, and later secretion of IL10, IL12, and 

TGFβ1. Interestingly, combined apoptotic cells and TLR ligands augmented early secretion of 

TNFα, MIP-1α, and MIP-2 and increased late TGFβ1 secretion, while inhibiting late TNFα, IL10, 

and IL12 secretion. The authors propose that apoptotic cells thus aid recruitment of immune cells 

for inflammation as well as ensure subsequent resolution. This would certainly be beneficial in 

order to avoid advantageous conditions for pathogens. Indeed, it has been shown that 

trypanosomes may take the opportunity to flourish during apoptotic cell-mediated immune 

suppression (193). This report reveals that the concomitant pro-and anti-inflammatory responses 

of APCs may not be completely simultaneous, and emphasises the importance of monitoring 

responses.   

 



37 

 

1.3.3 Tumour cells 

Innate recognition of tumour antigens as danger signals may be the driving force behind the 

immunogenic properties of some apoptotic cells. Many immunotherapy studies in humans report 

the successful treatment of tumours by administration of DCs pulsed with apoptotic tumour cells. 

Accordingly, the immunogenic properties of apoptotic cells has been shown in the ex vivo 

apoptotic cells of many cancers (e.g. from patients with ovarian cancer (194), leukemia (195) or 

mesothelioma (196), among many others). However, this is testament more to the immunogenicity 

of tumour cells than of apoptotic cells. For example, UV appears to generate innocuous apoptotic 

cells (197, 198) unless those apoptotic cells are tumour-derived ex vivo, whereby they are 

immunogenic in many studies (for example (199), (200), (201). In fact, investigations have 

demonstrated  in vitro that the apoptotic and  necrotic state is irrelevant in the use of tumour cells 

for DC loading and priming (with a view to use in DC-based vaccines), as tumour cells are 

immunogenic regardless of the mode of death  (201, 202) and are phagocytosed at equivalent rates 

(203). These results suggest that the provenance of the cells is of more immunological 

consequence than the death state of the cell. That is, apoptotic cells may be able to suppress DCs, 

but this is irrelevant in apoptotic tumour cells because the tumourous nature of the cell offsets any 

inherent suppressive capability arising from its apoptotic state.  However, controversy still exists as 

to the relative merits of pulsing DCs with apoptotic or necrotic cells. Some studies maintain that 

tumour lysates induce DCs to generate a more potent antitumour response than DCs treated with 

apoptotic tumour cells (204, 205).  Still others have observed apoptotic tumour cells displaying 

superior immunogenicity than necrotic tumour cells(206), and producing more efficient vaccines 

(207). 

The immunogenicity of apoptotic tumours can in many studies be attributed to tumour-specific 

overexpression of particular molecules, which DCs may perceive as danger. For example, the 

immunogenicity of apoptotic cells of an allogeneic lung cancer cell line used to pulse DCs in the 
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treatment of lung cancer (208)  may reflect the tumour specific overexpression in that cell line of 

several molecules, including Her2, WT1 and survivin. The implication is that danger signals can 

overpower apoptotic signals. However, this hierarchy of signaling cannot be assumed. Of course, 

it is well known that tumours influence the local microenvironment so as to inhibit inflammation 

and immunity. This is not fully understood but many different mechanisms have been implicated. 

Danger signals and altered-self can be masked from immune detection, or cell death can be 

promoted in immune cells. Alternatively, apoptotic signals can overpower danger signals. In fact, it 

appears to be the mimicry of apoptotic cells that allows escape from immune detection by some 

tumourous cells. As such, many tumour cells are not immunostimulatory at all. For example, 

apoptotic cells from squamous cell carcinoma (SCC) may up-regulate some DC co-stimulatory 

molecules but cannot induce the IL12 secretion necessary for a complete immune response (209).   

As such, when apoptotic cells have been used to pulse DCs in DC-based immunotherapy in the 

treatment of cancers, often it is necessary to prime these DCs with, or administer them with, 

adjuvants. In the SCC example above, necrosis of the tumour cells was sufficient to induce full DC 

maturation in vitro (209) . SSC has successfully been treated in mice by pulsing DCs with apoptotic 

cells from a syngeneic cell line and co-administering them with IL2 (210). Without IL2, DCs 

treated with the UV-induced apoptotic cells were poorly immunogenic. In humans, clinical 

responses have been seen in indolent B cell lymphoma patients in a pilot study of vaccinations 

with DCs pulsed with apoptotic autologous tumour cells (211). However, before apoptosis is 

induced by UVC-irradiation, tumour cells required heat shock treatment for one hour in order to 

increase expression of HSPs. In vitro, cellular stress has been necessary to improve the 

immunogenicity of apoptotic leukaemia cells, where the up-regulation of heat shock-induced 

Hsp60 and 72 was implicated as a required stimulus to promote DC maturation and induction of 

T cell activation (212). 
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Finally, production of novel autoantigens (213), often present in tumourous cells, or which can 

caused by unusual post-translational protein modifications during apoptosis (214), may induce 

immunity if released from the cell before efficient and full degradation. The process of ordered 

degradation of intracellular proteins during apoptosis provides much opportunity for the 

generation of novel autoantigens. T cells will not have been tolerised to these autoantigens and 

antigens from immune privileged sites. Therefore, if the first exposure of these antigens to the 

immune system is under inflammatory conditions they can be registered as being dangerous and 

invoke lasting immunity. 

 

1.3.4 Cell stress and the method of apoptosis induction 

The method and intensity of apoptosis induction can be reflected in the up-regulation of danger 

signals prior to cell death, and, accordingly, may affect the immunogenicity of the apoptotic cells 

(215). For example, apoptosis of 67NR mouse carcinoma cells via the Fas (CD95) pathway or 

induced by the anticancer drug bortezomib has been associated with DC maturation whereas the 

same cell type induced to undergo apoptosis by UV has not (197). Furthermore, UV-induced 

apoptotic cells have been seen to promote tolerance in vivo (198). However, UV irradiation can 

induce dose-dependent de novo synthesis of HSPs to protect against UV-induced damage (216), 

which can lead to enhanced immunity (217, 218). The dose-dependency may reconcile the 

contradictions in the literature as to the immunogenicity of UV treated apoptotic cells. Similarly, 

some proteins are unusually phosphorylated during apoptosis and can be immunogenic, as seen in 

the autoantibody production in SLE (215).  

In another example, uptake of irradiation-induced apoptotic cells by macrophages causes 

inflammation as shown by the infiltration of neutrophils to sites of uptake (219). Lorimore et al 

(2001) showed that this effect was not caused directly by the ionizing radiation to which tissue was 
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exposed, but by the uptake of radiation-induced apoptotic cells. Ionising radiation generates 

reactive oxygen species (ROS) in cells by the oxidation of water and other molecules (220). 

Oxidative stress occurs to a cell when ROS production exceeds the cells anti-oxidant defense 

capability and results in tissue damage, potentially causing cancer, amongst other diseases (220) . 

Although ROS (particularly oxidation of PS) are required during apoptosis, including for creating 

lipid moieties at the cell surface to allow for efficient recognition and ingestion by phagocytes (109, 

149), oxidation-modified lipids can induce inflammation (110). Given that most apoptotic cell 

clearance appears to be immunologically silent, and that significant necrosis was not detected in 

radiated tissues by Lorimore et al (2001), it is possible that oxidation-modified lipids and proteins 

themselves may cause inflammation and DC maturation in the unusual circumstance that their 

quantity exceeds a particular threshold, above which apoptotic signalling is surmounted and 

negated. 

Most stresses induce up-regulation of stress proteins until the stress subsides or continues to a 

fatal level and apoptosis begins. Indeed, the proinflammatory properties of those proteins that are 

up-regulated to limit damage by e.g. oxidative stress, heat stress, damage, or any other stress that 

may be indicative of possible DNA damage or viral infection, may ensure that a stress-induced 

fatality is immediately succeeded by an inflammatory, rather than innocuous or anti-inflammatory, 

response to that cell. It makes immunological sense that apoptotic cells are inhibitory by default, 

but are conferred immunostimulatory properties by stress-induced proteins in order to stimulate 

immunity against cells that harbour danger such as viruses or properties characteristic of tumour 

cells. Stress and intracellular factors might even be more of a determinant than the mode of cell 

death, as discussed in 1.3.3. 
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1.3.5 Variety in DC subsets and responses 

An additional complication is that different combinations of stimuli could result in different types 

of immune response, as illustrated by the number of permutations of inhibitions or up-regulations 

of the various cytokines and co-stimulatory molecules seen incurred by different treatments. 

Although intriguing, this variation in responses makes comparisons between stimuli difficult, and 

requires that techniques are optimised to monitor the production and effect of cytokines and other 

DC-mediated immune molecules in vivo. Also, certain DC subsets are more specialised at apoptotic 

cell capture (4) (221) or at T cell stimulation (222), therefore some studies may not be qualitatively 

comparable with others. DC subtypes may also account for discrepancies and dissimilarities in the 

literature due to differences in anatomical location and related functions. For example, 

plasmacytoid DCs, which are CD11c-CD123hi, reside primarily in blood and lymphoid organs and 

are important for innate antiviral immunity. Myeloid DCs, which are CD11c+CD123lo, include 

Langerhans Cells, which reside in the skin and probably deal with oxidation-specific epitopes more 

than any other DC subtype, and interstitial, dermal and submucosal DCs, which bear their name 

according to their anatomical location and face their own unique repertoire of antigens. 

Furthermore, DCs subtypes may have to behave differently as they may have to rely on different 

regulatory mechanisms in vivo to avoid eliciting autoimmunity (223).  

On a more practical level, accurate conclusions may be elusive due to the sensitivity of DCs. 

Normal experimental routine, for example fresh plating, can cause mechanically-induced 

maturation and cytokine production that may mature further DCs within the same experimental 

sample (18). 
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1.4 Concluding remarks 

The uptake of apoptotic cells has a clear involvement in tolerance and autoimmunity. In vitro and in 

vivo studies have shown that apoptotic cell uptake actively suppresses DC maturation and hence 

promotes tolerance. In contrast, cell debris from necrotic cells contains danger signals which cause 

inflammation and cross-priming of autoreactive T cells by autoantigen-presenting, activated DCs. 

These danger signals may counteract inhibitory apoptotic cell signals, and so apoptotic cells may 

potentially contribute autoantigen when in necrotic, inflammatory conditions. Danger signals may 

also accumulate within apoptotic cells and have sufficient immunogenicity to negate inhibition 

without cell lysis or preceding inflammation. The importance of the difference in immunogenicity 

between apoptotic and necrotic cells is highlighted by the demonstrations that necrotic cell lysates 

or derivatives can induce anti-tumour immunity, and the implication of necrosis in SLE-like 

autoimmune illnesses. Clarification of apoptotic and endogenous danger signalling could therefore 

generate monumental progressions in tumour vaccination and autoimmunity.  

There are many danger signals released in injury and probably much immunogenic presentation of 

autoantigens which is, nonetheless, regulated due to the prior and constant maintenance of 

peripheral tolerance, as well as negative feedback mechanisms that limit inflammation and return 

sites of infection or injury to the steady state (224). It appears unlikely that danger signals have 

sufficient power or longevity to initiate or maintain autoimmune responses without supplementary 

abrogation of one or more of several regulatory mechanisms, including T regulatory cells, or 

without a multitude of activating signals (225). However, endogenous danger signals are 

nonetheless powerful as evidenced by their ability to induce anti-tumour immunity, hence their 

experimental use in clinical anti-tumour vaccines. Further, danger signals might predispose to 

autoimmunity by lowering the threshold at which DCs may be activated, making DCs more 

susceptible to activation by otherwise innocuous material. Alternatively, endogenous danger signals 

may act by negating the inhibitory signalling induced by apoptotic cells. Understanding how to 
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manipulate DCs to induce tolerance via the pathway of apoptotic cell-induced suppression will 

hopefully redress this immune imbalance and provide practical applications in the treatment of 

autoimmune disorders. 

As mentioned, apoptotic cells are currently in active clinical use for immunotherapy. Given the 

mounting evidence of the tolerogenic properties of apoptotic cells, it is extremely perilous that 

they are being used for immunostimulation in clinical settings. In successful trials, their 

immunostimulatory effect is probably down to other factors like the presence of HSPs, but these 

are by no means universal in apoptosis. In fact, apoptotic tumour cells do not constitute vaccines 

as potent as those that use tumour RNA (226), which is perhaps on account of the inhibitory 

effects of apoptotic cells. In many DC-based tumour vaccines, DCs must be treated with 

apoptotic cells alongside immunostimulants such as LPS, or apoptotic cell-treated DCs are co-

administered with immunostimulants, in order to maximise the possibility of initiation of 

immunity. However, the present study demonstrates that the suppressive capacity of apoptotic 

cells should be a major consideration in the preparation of these vaccines.  

At the core of the unpredictability of DC immunotherapy is the unique and complex 

immunogenicity of any one tumour. As such, DC priming with tumour cells is largely haphazard. 

At best, it is providentially effective, but at worst it is potentially dangerous and counterproductive. 

Progress in understanding and controlling the mechanisms by which DCs are primed for 

immunity, or suppressed for tolerance, represents new opportunities to direct the immune 

response against cancers effectively and assuredly. 

This investigation was designed to evaluate various methods of induction of cell death, in order to 

find consistent methods of generating exclusive populations of well-characterised apoptotic cells 

and exclusive populations of well-characterised necrotic cells. These cells were used to illustrate 

the effect of each dead cell type on DCs, by establishing the effect on surface expression of co-

stimulatory molecules and secretion of major cytokines, and the previously unreported effect of 
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apoptotic and necrotic cells on DC expression of co-inhibitory molecules.  The effect of apoptotic 

and necrotic cells on LPS-induced maturation of DCs was determined in order to support or 

oppose previous reports of apoptotic and necrotic cell-mediated modulation of dendritic cell 

maturation. Also, the previously unreported effect of apoptotic and necrotic cells on CpG-induced 

maturation was determined, and the consequences of this interaction on CpG-induced immune 

responses in vitro and in vivo. 
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CHAPTER 2 – Methods and Materials 
 

 

2.1 Cell culture 

All cell culture incubations referred to are at 37˚C, 5% CO2, in a humidified incubator. All 

recoveries of cells by centrifugation refer to centrifugations at 400g for 5 minutes unless otherwise 

stated. ‘GMCSF’ and sGMCSF refer to GMCSF purified from the supernatant of cultures of the 

GMCSF-secreting cell line Ag8653 (227). ‘Recombinant GMCSF’ and ‘rGMCSF’ refer to 

recombinant GMCSF (Sigma-Aldrich). Bone marrow dendritic cells (BMDC) were generated 

according to the Erlangen Method (228), with minor modifications as described. Bone marrow 

from the femurs and tibias of C57Bl/6J mice was treated with ACK (0.15M NH4Cl, 10mM 

KHCO3 and 0.1mM EDTA) for 2 minutes to lyse erythrocytes, then the cells were washed and 

recovered by centrifugation and resuspended in complete media (cRPMI — RPMI-1640 (Gibco-

Invitrogen), 2mM L-glutamine, penicillin/streptomycin, 10% heat-inactivated FBS (unless 

otherwise stated) and 0.5µM BME) containing 100-200ng/ml GMCSF. Cultures were incubated 

for 6-8 days. On day 3 cells were supplemented with fresh cRPMI and GMCSF, and on d6/7 non-

adherent BMDC were recovered by centrifugation and resuspended in fresh cRPMI, with no 

GMCSF unless otherwise stated. If intended for use on d8, non-adherent BMDC were replated 

with fresh cRPMI and GMCSF on d6 for further incubation. 

FDCP-1 (factor-dependent cell Paterson-1, FDCP) cell line was cultured in cRPMI and 100-

200ng/ml GMCSF in culture flasks and incubated. FDCP were split and replenished with fresh 

cRPMI and GMCSF twice a week. Splenocytes were obtained by removing the spleen of C57Bl/6J 

mice. The spleens were crushed using frosted glass slides into HBSS (Gibco-Invitrogen), filtered 

through a disposable nylon mesh strainer then washed and recovered by centrifugation. The cells 

were treated with ACK for two minutes to lyse erythrocytes, then washed and recovered by 
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centrifugation, and resuspended in cRPMI ready for incubation with or without dead cells. 

Thymocytes were obtained by removing the thymi from C57Bl/6J mice. Thymi were then crushed 

using frosted glass slides into HBSS, washed and recovered by centrifugation, treated with ACK to 

lyse erythrocytes, washed and recovered by centrifugation again, and resuspended in cRPMI ready 

for induction of apoptosis.  

 

2.2 Induction of apoptosis and necrosis 

FDCP were induced to undergo apoptosis/necrosis during exponential growth phase to minimise 

baseline levels of apoptosis and necrosis. For heat kill (HK) treatment, FDCP were resuspended in 

cRPMI at ~1x107 cells/ml in 1.5ml Eppendorf tubes and placed in a heat block (AccuBlock, 

Labnet International Inc) at 60˚C for 30 minutes, then allowed to cool prior to dilution with 

cRPMI and coculture with BMDC. For freeze-thaw (F/T), FDCP were recovered by 

centrifugation and the dry pellets were placed in a -80˚C freezer for 20 minutes until pellets were 

solid, then allowed to defrost at room temperature before repeated twice to total three cycles of 

freeze-thaw. For growth factor withdrawal, FDCP were washed twice in HBSS, resuspended in 

cRPMI and incubated for various lengths of time as stated. For camptothecin treatment, the 

adopted method after preliminary experiments was the incubation of FDCP in fresh cRPMI and 

GMCSF with 14.4µM camptothecin (Sigma-Aldrich) for 24 hours. For UV exposure, Petri dishes 

of FDCP culture in fresh cRPMI and GMCSF were positioned under UVC-emitting light bulbs in 

a Stratolinker UV machine for 1-1000 seconds in order to receive UV doses of 0.2-200J/m2, 

before being returned to incubation for 2-72 hours. Thymocytes were induced to undergo 

apoptosis by incubation with 5µg/ml superFas ligand (sFasL, Sigma-Aldrich) for four hours. All 

spins of cells after death induction treatment were 800g for 10 minutes in order to include small 

apoptotic bodies in the pellet (NB. Cells and supernatants of HK treatments were used, in order to 

not lose intracellular components escaped from cell into media).  
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2.3 Surface antibody staining and fluorescence-activated cell sorting 

(FACS) 

Samples of variously-treated BMDC were washed and recovered by centrifugation, resuspended in 

100µl FACS buffer (PBS, 2% FBS, 0.1% NaN3) plus anti-IgG (Fc block) and incubated at 4˚C for 

30 minutes. Cells were washed again in FACS buffer and recovered by centrifugation before being 

resuspended in FACS buffer plus antibodies conjugated with fluorescein isothiocyanate (FITC), 

phycoerythrin (PE), biotin, and/or allophycocyanin (APC). Variously-conjugated antibodies were 

specific for CD40, CD80, CD83, CD86, CD25, MHCII, B7DC, B7H1, B7H2, B7H3, B7H4, 

B220, CD54, CD69, CCR5, and TRAIL (all eBiosciences). Samples were incubated at 4°C or on 

ice in the dark for 20-30 minutes, cells washed with FACS buffer, cells resuspended in 100µl 

FACS buffer + secondary antibodies conjugated with streptavidin-cychrome and incubated at 4°C 

or on ice in the dark for 20-30 minutes, washed with FACS buffer then acquired within one hour 

on a BD Biosciences FACSCalibur, using Cell Quest software. Alternatively cells were 

resuspended in 200µl neutral buffered formalin, stored at 4°C and acquired within two weeks. The 

data was analysed using FlowJo analysis software. The detected amount of antibody at and above 

which a cell was considered ‘high’ for the specific cell surface marker was determined in each 

experiment by the use of untreated negative control BMDCs and TLR ligand-treated positive 

maturation control BMDCs. For co-cultures of BMDC and FDCP, BMDCs were gated on CFSE 

if they had been stained with CFSE, or were gated on CD11c and appropriate forward-scatter and 

side-scatter in order to exclude dead cells and debris. 

Occurrence and type of cell death was determined by incubating cells with Annexin V (AnV, 

eBiosciences) and propidium iodide (PI, BD Pharmingen) at the manufacturers recommended 

dilutions in binding buffer (10mM HEPES pH7.4, 140mM NaCl, 2.5mM CaCl2, 0.1% NaN3) at 

room temperature (RT) for approximately 20 minutes before being washed and analysed according 

to the protocol described above. 
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2.4 Gel electrophoresis and fluorescence microscopy 

Death-induced FDCP were adjusted to 2x106 cells per sample and spun before the supernatant 

was removed. Each sample was resuspended in 1ml ice cold 70% EtOH and incubated at -20°C 

overnight. Samples were then thawed at RT and the EtOH removed, then the samples were 

resuspended in 40µl phosphate-citrate buffer (24 parts 0.2M Na2HPO4, 1 part 0.1M citric acid (pH 

7.8)) and incubated RT 30 minutes. Samples were spun at 1000G for 5 minutes and the 

supernatant was transferred to new tubes and supplemented with 3µl of 0.25% Nonidet NP-40 

and 3µl of 1mg/ml RNase then incubated for 30 minutes at 37°C. 3µl of 1mg/ml proteinase K 

was added to samples which were then incubated for a further 30 minutes at 37˚C. 12µl of 6x 

loading buffer (0.25% bromophenol blue, 30% glycerol) was added to samples which were then 

loaded on to agarose gel alongside DNA standard size samples (100bp, 1000bp) and run at 80V 

for 1 hour. Gel was visualised using a UVP Transilluminator. 

DNA was visualised by fluorescent microscopy by first washing cells and recovering them by 

centrifugation on to glass slides. 300µl of 300nM DAPI staining solution was added to each cell 

spot, before incubation at RT in the dark for 5 minutes. Slides were rinsed three times with PBS 

before visualisation by microscope at a 460nm wavelength.  

 

2.5 Enzyme-linked immunosorbent assay (ELISA) 

Experimental culture samples in 12-, 24-, or 96-well plates were spun in a refrigerated (4˚C) 

centrifuge for 5 minutes at 800g and the supernatants transferred to new plates and incubated at -

20˚C for at least 6 hours to ensure freezing and lysis of unwanted cells. Plates were stored for up 

to 8 weeks before ELISA. 96-well ELISA plates (Nunc) were coated with capture antibody (anti-

IL10, anti-IL12, anti-TGFβ, anti-IL6, all eBiosciences), and incubated 4˚C overnight, then washed 
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five times with wash buffer (PBS, 0.1% Tween20) using a plate washer and incubated for 2 hours 

at RT with blocking buffer (PBS, 3% bovine serum albumin), then washed five times again. After 

thawing, supernatants were added to plates as neat, 2-, 5- or 10-fold dilutions with binding buffer 

(PBS, 1.5% BSA), alongside serial dilutions of soluble cytokine controls (all eBiosciences). Plates 

incubated for 2 hours at RT or overnight at 4˚C, washed five times, then incubated for 2 hours at 

RT with binding buffer plus avidin-horseradish peroxidise (AV-HRP, BD Pharmingen) and 

biotinylated detection antibody (anti-IL10-bio, anti-IL12-bio, anti-TGFβ-bio, anti-IL6-bio, all 

eBiosciences). Plates were washed five times then incubated at RT for 2-20 minutes with TMB 

substrate (Uptima), treated with stop solution (1M H2SO4), and the developed colour was 

measured on a spectrophotometer (MRXII, Dynex Technologies, using Revelation 4.21 software) 

at OD490. 

 

2.6 Phagocytosis assay 

BMDC were incubated with 10ng/ml carboxyfluorescein diacetate succinimidyl ester (CFSE, 

Fluka) for 10 minutes at 37˚C, washed twice in HBSS, and resuspended in RPMI at 1x106 cells/ml. 

Death-induced FDCP were incubated with PKH26 (Sigma-Aldrich) for 5 minutes according to 

manufacturer’s instructions, washed twice in cRPMI and resuspended in cRPMI at various cell 

densities as indicated, before being added to BMDC in equal volumes (100µl each) in a 96-well 

plate. Duplicate samples were supplemented with the phagocytosis inhibitor cytochalasin D at 

50µg/ml. Plates were then incubated for 24hrs before antibody staining and FACS analysis. 
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2.7 T cell assays 

Splenocytes were plated in 96-well plates at 4x106 cells/ml, with or without doses of concanavalin 

A (Sigma-Aldrich) at 0.625 – 10µg/ml. The conditioned media (CM) from 

DC+(AC/NC)±(LPS/CpG) incubations was added to T cells at various concentrations, then the 

plates were incubated for three days, before the supernatants were isolated and frozen, and 

analysed for cytokines by ELISA.  If Tregs were to be measured, 5ng/ml IL2 (Peprotech) was 

added to each sample on the third day of incubation and incubation was continued for a further 2 

days. Cells were then stained according the protocol described in 2.3 above, with CD4, CD25 and 

Foxp3 antibodies (eBiosciences). 

 

2.8 In vivo model of diabetes  

DCs (6 days old) were co-incubated with ACs/NCs (or neither) at a AC/NC:DC ratio of 2:1 for 

8-12 hours (overnight) as described above, then treated with 100ng/ml CpG/LPS/neither for 24 

hours. DCs were then washed and separated by magnetic associated cell sorting (MACS) using 

CD11c-specific, high-gradient immunomagnetic beads (Miltenyi Biotec) according to the 

manufacturer’s instructions. Isolated DCs were pulsed with gp33 peptide by incubating with 10-7M 

gp33 for one hour. DCs were then washed and resuspended in HBSS and injected subcutaneously 

into the flanks (unless otherwise stated) of RIP-GP transgenic mice (C57Bl/6J mice expressing the 

LCMV glycoprotein under control of the rat insulin promoter, first described by Ohashi et al 

(1991) (3)) on Day 0 at a volume of 300µl and a cell count of 2-5x106 DCs per injection 

[Fig. 2.1A]. This process was repeated in a staggered manner, such that the second injection on 

Day 2 used 8 day-old DCs (9 day-old by time of injection) and a third injection on Day 4 used 6 

day-old DCs (7 day-old by time of injection) from a second harvest of bone marrow [Fig. 2.1B]. 

Experiments were undertaken with age- and gender-matching as much as possible.  



 

Blood glucose levels of mice were measured 

one day prior to the first injection then 

death, for indication of onset of diabetes. Diabetes was defined, as according to veterinary 

recommendations, as three consecutive measurements of blood glucose

or above. At three such measurements, or any one such measurement accompanied by clinically 

significant signs of illness (whichever was first), mice were euthanized by CO

cervical dislocation. Clinically significant

reduction of motor activity, and dishevelled coat.

conditions. 

 

appropriately aged (differentiated) BMDCs, bone marrow was harvested from two separate mice 4 days 

apart, such that BMDCs injected on Day 0 were 8 days old (6 days culture, two days of treatments), those 

on Day 2 were 10 days old (8 days culture, 2 days of treatments), and th

(second BM harvest, 6 days of culture, 2 days of treatment). 

  

A 

mice were measured using Accu-Check strips (Roche Diagnostic Systems)

one day prior to the first injection then 2-3 times per week until the end of the experiment or 

death, for indication of onset of diabetes. Diabetes was defined, as according to veterinary 

recommendations, as three consecutive measurements of blood glucose concentrations of 15mM 

or above. At three such measurements, or any one such measurement accompanied by clinically 

significant signs of illness (whichever was first), mice were euthanized by CO2 asphyxiation or 

cervical dislocation. Clinically significant signs of illness included notable weight loss, substantial 

reduction of motor activity, and dishevelled coat. All mice were kept under specific pathogen

Figure 2.1 Induction of diabetes in RIP

administration of TLR-treated, gp33-loaded DCs. 

BMDCs were incubated with apoptotic or necrotic cells 

(‘FDCP+campto’ and ‘FDCP at 60˚C,’ respectively) for 8

hours, before being treated with the TLRs LPS or

hours. DCs were then isolated by MACS, and pulsed with gp33 

peptide for 1 hour. DCs were washed again and injected SC in

the flanks of RIP-GP transgenic

B. Bone marrow harvesting and BMDC injection schedule: In 

order for injections to be made on Days 0, 2 and 4 

differentiated) BMDCs, bone marrow was harvested from two separate mice 4 days 

apart, such that BMDCs injected on Day 0 were 8 days old (6 days culture, two days of treatments), those 

on Day 2 were 10 days old (8 days culture, 2 days of treatments), and those on Day 4 were 8 days old 

(second BM harvest, 6 days of culture, 2 days of treatment).  

B 
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Check strips (Roche Diagnostic Systems) 

week until the end of the experiment or 

death, for indication of onset of diabetes. Diabetes was defined, as according to veterinary 

concentrations of 15mM 

or above. At three such measurements, or any one such measurement accompanied by clinically 

asphyxiation or 

signs of illness included notable weight loss, substantial 

All mice were kept under specific pathogen–free 
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washed again and injected SC into 

GP transgenic mice.  

Bone marrow harvesting and BMDC injection schedule: In 

be made on Days 0, 2 and 4 using 

differentiated) BMDCs, bone marrow was harvested from two separate mice 4 days 

apart, such that BMDCs injected on Day 0 were 8 days old (6 days culture, two days of treatments), those 

ose on Day 4 were 8 days old 
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2.9 Statistics 

In Chapters 3 and 4, all comparisons of No treatment (None) vs. Apoptotic cell-treatment (AC) vs. 

Necrotic cell-treatment (NC) were performed using one-way ANOVA with Tukey’s multiple 

comparison test. All comparisons of LPS/CpG+None vs. LPS/CpG+AC vs. LPS/CpG+NC 

were performed using one-way ANOVA with Tukey’s multiple comparison test. All comparisons 

of None vs. LPS/CpG+None, None vs. LPS/CpG+AC, and None vs. LPS/CpG+NC were 

performed using ANOVA with Dunnett’s multiple comparison test where None was the control. 

In Results figures, “separate experiments” is defined as experiments using BMDCs derived from 

different mice.  
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CHAPTER 3 – Dead Cells and Their Effect 
on Dendritic Cell Surface Co-Stimulatory and 
Co-Inhibitory Molecules 

 

3.1 Apoptosis and necrosis of FDCP 

3.1.1 Introduction 

In order to ascertain the effects of dead cells on DC behaviour, apoptotic cells (ACs) and necrotic 

cells (NCs) had to be generated consistently and separately. Several methods of death induction 

were investigated in order to find the techniques that could most reliably produce cell populations 

consisting of chiefly ACs or chiefly NCs. Producing a combination of AC and NC would not have 

been satisfactory due to the fact that it is difficult to sort AC from NC (the main marker of 

apoptosis, phosphatidylserine, is also accessible by antibodies/dyes in necrotic cells) without 

either: obstructing markers necessary for being recognised for phagocytosis; or, increasing the 

proportion of AC progressing to secondary necrosis due to mechanical stress or time. It was 

therefore necessary to establish cell-killing methods that induce high proportions of either type of 

cell death with little presence of the other. 

The FDCP-1 (factor-dependent cell Paterson-1) cell was identified as an ideal candidate for the 

generation of dead cells. FDCP-1 (FDCP) is an immortalised murine cell line and non-tumorigenic 

haemopoietic progenitor. It is fast growing, easy to culture and its requirements for culture are 

conveniently similar to DC. Its growth and survival are dependent on GMCSF, which immediately 

provides a straightforward method of potential cell death in the form of growth factor withdrawal. 

Another method of cell death investigated was UV exposure - a common method of inducing 
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apoptosis in various cell types and one that is prominent in the literature of DC modification. This 

warranted particular attention given the apparent conflictions in the literature of the effect of UV-

induced apoptotic cells on DC behaviour. Other killing methods investigated, although not all 

shown, included high temperature (heat kill - HK), repeated freeze-thaw cycles, the apoptosis-

inducing drug camptothecin (cam), the ER-stress-related apoptosis-inducing drug azetidine, and 

the apoptosis-inducing protein CD95 ligand (CD95L), also known as Fas ligand. 

The effect of each killing method was characterised in terms of the proportion of apoptotic and 

necrotic cells after a given time. Those methods of particular interest were then subject to further 

examination, particularly to determine the time-frame in which AC were in the majority. Levels of 

apoptosis and necrosis were determined by incubating cells with Annexin V-FITC and propidium 

iodide (PI) stain, then analysing cells by flow cytometry. Annexin V-FITC is a FITC-conjugated 

ligand that specifically binds to phosphatidylserine (PS). In live cells PS is restricted to the inner 

leaflet of the plasma membrane and therefore inaccessible to antibody. Apoptotic cells express PS 

on the outer leaflet of the plasma membrane, whereas necrotic cells have lost membrane integrity 

(making inner leaflet PS accessible to Annexin V) and so both forms of cell death stain positive for 

Annexin V. PI intercalates into DNA. It cannot permeate intact plasma membrane and is 

therefore used to distinguish between apoptotic and necrotic/secondary necrotic death [See Fig. 

3.1]. 

  



 

Figure 3.1 Example Annexin V-PI FACS plots

stained low for both AnV and PI and hence 

stained high for AnV (therefore express PS

therefore these cells were apoptotic. The upper right quadrant cells stain

these cells were dead. A. These cells were FDCP cells taken straig

69% were alive. B. FDCP were treated with camptothecin for 48 hrs, resulting in apoptosis in 93.7% of 

cells. C. FDCP were exposed to high heat for 30 mins, resulting in necrosis in 64% of cells.

A 

 

PI FACS plots. For each graph, the cells in the lower

both AnV and PI and hence were alive upon staining. Cells in the lower

express PS) and stain low for PI (therefore have membrane integrity

re apoptotic. The upper right quadrant cells stained high for AnV and PI, therefore 

These cells were FDCP cells taken straight from culture, and it can be seen that 

FDCP were treated with camptothecin for 48 hrs, resulting in apoptosis in 93.7% of 

FDCP were exposed to high heat for 30 mins, resulting in necrosis in 64% of cells.
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3.1.2 Results 

3.1.2.1 High levels of necrosis are induced in FDCP by heat kill and repeated freeze-thaw cycles 

Incubating FDCP in cRPMI for 30 minutes at 60˚C caused necrosis in 94% of cells [Figure 

3.2: ‘Heat kill’]. Exposing FDCP to three cycles of alternating incubations of -80˚C and room 

temperature caused necrosis in approximately 85% of cells (Figure 3.2: ‘Freeze-thaw’). 10% of cells 

survived freeze-thaw, appearing as neither apoptotic nor necrotic according to AnV-PI staining. 

Freeze-thaw caused cells to aggregate heavily and become difficult to manipulate and pipette. 

 

Figure 3.2 Apoptosis and necrosis of FDCP after various death-inducing treatments. FDCP were killed by 

heat treatment (60˚C, 30mins), three freeze-thaw cycles, 24hr GMCSF withdrawal (‘No GMCSF’), 20 J/m2 

UVC plus 24hr incubation, or 48hr exposure to 14.4µM camptothecin. The percentage and type of cell 

death in untreated and killed FDCP was determined by Annexin V and PI staining. Data is from at least 

three experiments for each treatment, bars indicate SD. 
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3.1.2.2 Exposure to camptothecin induces high levels of apoptosis in FDCP 

Incubation with 14µM of the topoisomerase I-inhibitor (229), camptothecin, induces a very high 

percentage (95%) of FDCP to undergo apoptosis, as indicated by AnV+PI- staining [Figure 3.2]. It 

required a minimum of approximately 24 hours constant camptothecin exposure to commit to 

apoptosis the proportion of cells that were detectable as apoptotic at 48 hours [Figure 3.3]. 

Furthermore, there is no increase in the presence of necrotic cells throughout the incubation 

period, unlike in GMCSF withdrawal.  Full execution of the apoptotic pathway was confirmed by 

demonstration of the late-stage process of DNA fragmentation, as illustrated by the laddering of 

ethidium bromide-stained DNA on agarose gel [Figure 3.6]. Thus camptothecin treatment provides 

a broad interval of time wherein ACs constitute a very high percentage of the cell sample. 

 

Figure 3.3 All FDCP that are apoptotic after 48 hrs of camptothecin-treatment are committed to apoptosis 

within 24 hrs of the start of treatment. FDCP were incubated with 14.4µM camptothecin for the indicated 

number of hours before being washed and incubated in fresh media for the remainder of a total 48hr 

incubation. 24hrs of camptothecin exposure was necessary and sufficient for virtually all cells to be detected 

as apoptotic 48hrs after beginning of treatment. Percentages of cells undergoing apoptosis were signified by 

Annexin V-positive, PI-negative, staining. Data is from at least three experiments for each treatment, bars 

indicate SD. 
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3.1.2.3 GMCSF withdrawal induces apoptosis and secondary necrosis in FDCP 

FDCP underwent apoptosis after withdrawal of the growth factor GMCSF. Within 48 hours, 

approximately 46% of cells displayed an apoptotic phenotype according to AnV-PI staining [Figure 

3.2]. However, many FDCP progressed to secondary necrosis while others were yet to begin 

apoptosis. The proportion of apoptotic cells was at a maximum at 24 hours post-withdrawal (data 

from other times not shown). This finding required confirmation using non- AnV-PI methods 

because AnV-PI data alone was misleading: In monitoring progression of apoptosis/necrosis at 

numerous intervals for all cell death methods (data not shown), it was originally shown that 

virtually all cells were apoptotic after approximately 68 hours of GMCSF withdrawal [Figure 3.4A]; 

however, the data also showed an initial increase in the proportion of NC (a maximum, at 24 

hours, of 38%) which then declined (to 9% − similar to the proportion of NC prior to any 

GMCSF withdrawal).  

Fluorescence microscopy was used to compare the staining of DNA of live FDCP, apoptotic 

(48hr camptothecin-treated) FDCP, and the suspect 68-hour GMCSF-withdrawn FDCP. Live cells 

demonstrated very clear staining of the DNA by DAPI in compact and distinct nuclei [Figure 

3.4B].  Camptothecin-treated cells showed clear staining of DNA that had disintegrated and was 

spread throughout the cell [Figure 3.4C], and close inspection shows DNA being packaged into 

apoptotic bodies forming at the cell surfaces (inset, yellow arrows). By contrast, very few GMCSF-

withdrawn FDCP showed evidence of DNA staining at all [Figure 3.4D]. This revealed that 

negative PI staining was due to a loss of DNA, which could most probably be attributed to 

secondary necrosis. Accordingly, GMCSF-withdrawal was dismissed as a method of apoptosis 

induction. 



 

 
 
 

         

Figure 3.4 GMCSF-withdrawal causes

A. FDCP were cultured without GMCSF for up to 68

determined by AnV-PI staining, which indicated that the percentage of apoptotic FDCPs increased steadily 

over time (and nears 100% of the total cell pop

inexplicably decreased after 24hr. Fluorescence microscopy and DAPI staining of

compare DNA disintegration of live 

and GMCSF-withdrawn FDCP. B. 

treated FDCP disintegrated into distinct fragments

(yellow arrows, inset). D. The nuclei of 

staining, indicating either complete disintegration of DNA and/or loss of DNA from the cell body. 
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ly indicates apoptosis. 

and the percentage and type of cell death 

, which indicated that the percentage of apoptotic FDCPs increased steadily 

ulation), whereas the percentage of necrotic FDCPs 

DNA was then used to 

camptothecin-treated) FDCP, 

of 48hr camptothecin-

. DNA was seen to be packaged into apoptotic vesicles 

were undetectable by DAPI 

staining, indicating either complete disintegration of DNA and/or loss of DNA from the cell body. Data 

experiments for each treatment, bars indicate SD. 
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3.1.2.4 UV exposure dose-dependently induces apoptosis and necrosis in FDCP 

UV exposure was investigated at various doses (0.5-200J/m2) and subsequent lengths of time of 

incubation (2-72 hours).  The maximum percentages of UV-induced ACs observed were apparent 

at 24 hours post-UV (data not shown), which was the post-UV incubation time used for the UV 

dose experiments summarised here. The incidence of cell death increased with increasing dosage 

of UV, which raised the percentage of dead cells from 25% (untreated FDCP,) to 57% at 1 J/m2, 

78% at 10 J/m2, and plateauing at ~90% at 20 J/m2 and upwards [Fig. 3.5]. The increase in dead 

cells comprised increases in both ACs and NCs. The maximum proportion of ACs (73%) was 

observed at a UV dose of 20 J/m2. Apoptosis at 2 J/m2 and 20 J/m2 was confirmed by banding of 

ethidium bromide-stained DNA on agarose gel [Figure 3.6]. Proportions of necrotic cells increased 

slowly from 7% of untreated cells and reached a maximum of 43% of cells at the highest tested 

UV dose, 200 J/m2 [Fig. 3.5]. UV exposure successfully induced apoptosis but also caused damage 

to cells such that necrosis and/or secondary necrosis incidence increased concurrently with 

apoptosis. This method of cell death was therefore insufficient for the purposes of this study. 

 

Figure 3.5 UV exposure dose-dependently induces apoptosis and necrosis in FDCP. FDCP were exposed 

to UV at various doses, incubated for 24hrs, and then analysed for cell death by AnV-PI staining. The 

maximum percentage of apoptotic cells (73%) is achieved at 20 J/m2, whereas higher doses of UV induce 

increasing proportions of necrosis. Data is from three separate experiments, bars indicate SD. 
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Figure 3.6 UV and camptothecin treatment cause

2 J/m2 UVC or 20 J/m2 then incubated for 24hrs, or 

48hrs. Untreated FDCP had intact, unfragmented DNA that

separate into different bands on agarose

camptothecin-treated FDCP separated

fragmentation. This image is representative of two separate experiments
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UV and camptothecin treatment caused DNA fragmentation in FDCP. FDCP 
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intact, unfragmented DNA that, after ethidium bromide staining, 

rate into different bands on agarose gel during electrophoresis. The DNA of the 

separated into multiple, distinct bands on the gel, indicating

image is representative of two separate experiments. 
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3.2 Alteration of dendritic cell phenotype by 

apoptotic and necrotic cells 

3.2.1 Introduction 

DCs express a range of cell surface proteins that literature demonstrates will be up- or down-

regulated in response to pro- or anti-inflammatory stimuli, and in doing so act as markers of DC 

maturation or inhibition associated with immunogenicity or tolerance. Together, these markers 

include receptors for phagocytosis, receptors and ligands for T cell interactions, and receptors for 

chemokines and cytokines. We used murine bone marrow-derived dendritic cells (BMDC) as a 

model DC type to examine how apoptotic and necrotic cells alter the expression of these markers. 

Across the literature, cell surface expression of CD40 and CD86 is highly sensitive to maturation 

stimuli and is (as are numerous other co-stimulatory molecules) consistently low on immature 

DCs, and high on mature DCs. As such, CD40 and CD86 are well established as standard markers 

of DC maturation, and are used to characterise the activation state of DC in initial experiments of 

this study. These early experiments were to ascertain the ideal conditions for BMDC culture and 

treatment. We then studied the direct effects of DC interaction with dead cells by incubating DC 

with apoptotic or necrotic cells at a ratio of 2:1 dead cells:DCs for 24-48 hours and examining 

phagocytosis and DC survival. Next, to determine the immunological effect of apoptotic cells and 

necrotic cells (24hr camptothecin-treated FDCP and heat-killed (60˚C for 30mins) FDCP, 

respectively, in all experiments hereafter, unless otherwise stated) on DCs, DCs were treated with 

dead cells for 24 or 36 hours and then examined for expression of a range of maturation and 

inhibition markers. To determine if dead cells affected DC ability to respond to exogenous 

maturation stimuli (in this case, TLR ligands) some DCs were treated with LPS/CpG for the last 

16 or 20 hours of incubation. Dead cells were added before TLR ligand because DC maturation 
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inhibits phagocytosis (2) and cross-presentation of antigens(230). DCs were then examined by 

antibody staining and flow cytometry for levels of expression of cell surface markers. 

DCs were analysed using flow cytometry to determine levels of expression of several well-

established co-stimulatory proteins that act as markers of maturation. The levels of expression of 

these markers on resting DCs were compared alongside the levels on DCs treated with LPS or 

CpG, which are well known to induce up-regulation of CD40, CD80, CD83, CD86 and CD25, 

amongst other markers (231). For each marker, the percentage of resting DCs expressing a high 

level of that marker was set at an amount of approximately 10%, representing non-specifically-

matured DCs (i.e. DCs that have matured in response to a mechanical, temperature or age-related 

stress rather than a specific exogenous stimulus) in order to normalise between experiments. This 

value ensured that responses to maturation stimuli could be confirmed by observing an increase in 

the percentage of cells expressing high levels of these markers, while still allowing for observation 

of any inhibition of non-specific maturation. For example, comparing CD40 expression on resting 

DCs with expression on LPS-treated DCs [Fig. 3.11] reveals that LPS at the given concentration 

induces 31% of the DCs to express high levels of CD40, compared to the 10% that are induced 

non-specifically in the untreated sample. In these measurements, where the response to LPS/CpG 

can be confidently predicted, it is the relative, rather than absolute, percentage of mature DCs that 

is of interest. In contrast to these well-studied markers of maturation, the role of the co-inhibitory 

members of the B7 family B7DC, B7H1, B7H2, B7H3 and B7H4 is not so well established, and 

even disputed. Although all linked to tolerance, most are the subject of debate, with conflicting 

evidence pointing towards dual roles. Therefore, up-regulation or down-regulation in response to 

maturation stimuli could not be taken for granted either way and so the resting expression level 

was established by comparing with antibody isotype controls. In all BMDC samples, cells were 

also gated on CD11c-high cells and by size, in order to gate out dead cells and cell debris. 
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3.2.2 Results 

3.2.2.1 DCs phagocytose both apoptotic  and necrotic FDCP 

Apoptotic (camptothecin-treated) FDCP and necrotic (heat kill-treated FDCP) FDCP (ACs and 

NCs, respectively, hereafter) were stained with the red membrane dye PKH26 and incubated with 

CFSE-labelled DCs. Phagocytosis of dead cells by DCs was measured by detecting DCs that were 

PKH26-positive. ACs were phagocytosed with an incidence approximately equal to NCs (by 22% 

and 19% of DCs, respectively, p>0.05) [Figure 3.7]. Co-incubations were repeated with the addition 

of cytochalasin D (cytD), which blocks actin polymerisation and thus phagocytosis (232). The 

addition of cytD significantly decreased the association of DCs with dead cells (to 3% and 5% for 

ACs and NCs, respectively), confirming that the association is actin-dependent and therefore due 

to phagocytosis rather than surface adhesion between cells. 

 

Figure 3.7 DCs phagocytose both apoptotic and necrotic FDCP. Apoptotic cells (camptothecin-treated 

FDCP) and necrotic cells (heat-killed FDCP) were stained with PKH26 and incubated with CFSE-labelled 

DCs for 24hrs. CD11c+CFSE+ DCs that were positive for PKH26, in a manner negated by the presence 

of the actin-inhibitor cytochalasin D (cytD), were indicative of DC phagocytosis of the dead cells. 

Apoptotic cells were phagocytosed by 22% of DCs, but in the presence of cytD were phagocytosed by only 

3% of DCs. Necrotic cells were phagocytosed by 19% of DCs (p>0.05 compared to apoptotic cells), but in 

the presence of cytD were phagocytosed by only 5%. ‘a’ and ‘b’ signify significantly different means, 

two-way ANOVA. Data is from three separate experiments, bars indicate SD. 
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3.2.2.2 DCs remain alive after phagocytosing apoptotic cells or necrotic cells   

To determine if phagocytosis of dead cells induces cell death in DCs, or if DC viability was 

inadvertently affected by the method of FDCP killing (for example by residual camptothecin), DC 

cell death was examined following 48-hour incubation with dead cells. AnV-PI staining was used 

to determine that the percentage of live DCs was unaffected by incubation with either dead cell 

type, remaining as it did at approximately 70% [Fig. 3.8]. DCs co-incubated with ACs or NCs 

incurred similar levels of apoptosis and necrosis (approximately 10% and 20%, respectively) as 

untreated DCs. Therefore, neither ACs nor NCs induce DC death. Continued population growth 

was observed after the 48-hour incubation period, suggesting that DCs remained viable for longer 

than 48 hours after incubation with dead cells. 

 

Figure 3.8 DCs remain alive after 48hr co-culture with apoptotic cells (ACs) or necrotic cells (NCs). DCs 

were cultured with dead FDCP for 48hrs, then the incidence of death in the DCs themselves was examined 

using AnV-PI staining. DCs co-incubated with either ACs or NCs incurred similar levels of apoptosis and 

necrosis (approximately 10% and 20%, respectively) as untreated DCs. Therefore, ACs and NCs do not 

induce death of DCs. Data is from three separate experiments, bars indicate SD. 
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3.2.2.3 Ag8-secreted GMCSF generated immature BMDCs, except in high concentrations which 

increases resting levels of co-stimulatory proteins 

GMCSF for use in DC generation from bone marrow was produced using the GMCSF-secreting 

murine cell line Ag8. To validate the use of Ag8-secreted GMCSF (that is, cultured in-house) 

rather than use of purchased, certified endotoxin-free, recombinant GMCSF, the two were 

examined alongside each other for proinflammatory properties. At 40ng/ml, both recombinant 

and secreted GMCSF generated DCs with low levels of the cell surface maturation markers CD40 

and CD86 (compared to LPS exposure in the final 24 hours) at Day 6 of bone marrow culture 

[Figure 3.9]. This indicated that GMCSF produced in-house from the Ag8 cell line was suitable for 

generating immature DCs for this investigation. 500ng/ml GMCSF induced higher amounts of 

CD40- and CD86-high DCs by Day 6 than low GMCSF, but also a higher yield of DCs (data not 

shown). ~100ng/ml was used in all subsequent DC culture for maximum production of CD11c-

high, CD40/CD86-low DCs. None of the GMCSF amounts examined induced secretion of 

IL12p40 (data not shown). 
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Figure 3.9 Ag8-secreted GMCSF generated immature BMDCs, except in high concentrations which 

increases resting levels of co-stimulatory proteins. BMDCs (DCs) were generated by culturing bone marrow 

for 6 days in cRPMI supplemented with either certified endotoxin-free recombinant GMCSF (rGMCSF) or 

various doses of GMCSF purified from the supernatant of the GMCSF-secreting cell line Ag8 (sGMCSF). 

Low doses (40-250ng/ml) of sGMCSF induced the same percentage of CD40/CD86-high DCs that 

40ng/ml rGMCSF did (10% and 9%, respectively), demonstrating that the Ag8-produced GMCSF was 

adequately non-inflammatory for generation of DCs for this study. However, 500ng/ml sGMCSF 

generated DCs with a higher percentage of CD40/CD86-high cells (20% compared to 10-12% in low-

GMCSF DCs). ‘a’ and ‘b’ signify significantly different means, one-way ANOVA. Data is from at least three 

experiments for each treatment, bars indicate SD. 
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3.2.2.4 Necrotic cells, but not apoptotic cells, induce DC up-regulation of co-stimulatory proteins 

DCs incubated for 24 hours with ACs or NCs were compared with each other and with untreated 

DCs for changes in expression of co-stimulatory proteins.  

CD40, CD80 and CD86 expression was not up-regulated on DCs that had been incubated with 

ACs [ 

 

 

]. ACs induced slight up-regulation of CD25 from 9% to 14%, though this was not statistically 

significant. ACs did induce significant up-regulation of CD83, increasing the proportion of DCs 

expressing high levels of CD83 from 9% to 15% (p<0.05). 

NCs induced significant up-regulation of CD40 from 10% to 19%, CD80 from 11% to 20%, 

CD83 from 9% to 25%, and CD86 from 11% to 18% (p<0.001 for each). Expression of CD25 

was significantly up-regulated after NC treatment from 9% to 24% (p<0.01). ACs and NCs had 

significantly different effects on the levels of DC expression of all of the selected co-stimulatory 

molecules, with the exception of CD25. In general, NCs induced up-regulation of co-stimulatory 

molecules to a highly significant degree whereas ACs did not. Statistically significant changes in 

expression of co-stimulatory molecules (compared to untreated DCs) are summarised in Table 1. 
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Figure 3.10 Necrotic cells (NCs), but not apoptotic cells 

(ACS), induce DC up-regulation of co-stimulatory 

proteins. DCs were incubated for 24hrs with or without 

ACs or NCs, then treated with fluorescent antibodies and 

analysed by FACS to determine any differences in 

expression levels of a range of co-stimulatory molecules. 

ACs did not induce DC up-regulation of CD40, CD80, 

CD86 or CD25, but did induce up-regulation of CD83. 

NCs induced significant increase in expression of CD40, 

CD80, CD83, CD86 and CD25. ‘a,’  ‘b’ and ‘c’ signify 

significantly different means, one-way ANOVA. Data for 

each molecule is from three separate experiments or 

more, bars indicate SD. 



 

Figure 3.11 (Below) DC co-stimulatory molecule FACS plots
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molecule expression levels (i.e. fluorescence intensity) plotted against CD11c

gated during analysis, such that only CD11c+ cells were analysed

 

 

 

 

 

                                       

              
 

                
 

 

 

Figure 3.11 (1/3) See above. 

  

100 101 102 103 104
0

50

100

150

200

FL2-H: CD40-PE

# 
C

el
ls

10.1

100
0

20

40

60

80

# 
C

el
ls

100 101 102 103 104
100

101

102

103

104

FL2-H: CD40-PE

F
L3

-H
: C

D
11

c-
bi

ot
in 10.1

100
100

101

102

103

104

F
L3

-H
: C

D
11

c-
bi

ot
in

CD40 

N
o

. 
ce

ll
s 

CD40 

C
D

1
1

c 
stimulatory molecule FACS plots. FACS plots representative of the results 

graphed in Figure 3.10 are shown below. Histograms are shown for each co-stimulatory m

), depicting the expression level of the relevant molecules 

treated DCs (‘+Apoptotic’), necrotic cell-treated DCs (‘+Necrotic’) and LPS

LPS’), as indicated. Below these are shown the corresponding graphs of the co

molecule expression levels (i.e. fluorescence intensity) plotted against CD11c (on which the molecules were

gated during analysis, such that only CD11c+ cells were analysed). 

                                       

101 102 103 104

FL2-H: CD40-PE

9.9

100 101 102 103 104
0

50

100

150

200

250

FL2-H: CD40-PE

# 
C

el
ls

17.9

101 102 103 104

FL2-H: CD40-PE

9.9

100 101 102 103 104
100

101

102

103

104

FL2-H: CD40-PE

F
L3

-H
: C

D
11

c-
bi

ot
in 17.9

70 

. FACS plots representative of the results 

stimulatory molecule (CD40, 

the expression level of the relevant molecules on untreated DCs 

Necrotic’) and LPS-treated 

of the co-stimulatory 

on which the molecules were 

                 

 

  

4 100 101 102 103 104
0

50

100

150

200

FL2-H: CD40-PE

# 
C

el
ls

30.4

4 100 101 102 103 104
100

101

102

103

104

FL2-H: CD40-PE

F
L3

-H
: C

D
11

c-
bi

ot
in 30.4



 

                                       

 

              
 

              

              
 

              

 

Figure 3.11 (2/3) See p68. 
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Figure 3.11 (3/3) See p68. 
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3.2.2.5.Apoptotic cells and necrotic cells both induce DC up-regulation of co-inhibitory proteins 

(but induce dissimilar combinations) 

DCs incubated for 24 hours with ACs or NCs were compared with each other and with untreated 

DCs for changes in expression of co-inhibitory proteins.  

ACs did not induce significant up-regulation of B7H1 from a resting level of 21% or B7DC from a 

resting level of 30%, but significantly increased B7H2 from 20% to 38% (p<0.001), B7H3 from 

5% to 12% (p<0.001), and B7H4 from 5% to 10% (p<0.001) [Error! Reference source not found.].  

NCs induced significant up-regulation of B7DC from 30% to 38% (p<0.001), B7H1 from 21% to NCs induced significant up-regulation of B7DC from 30% to 38% (p<0.001), B7H1 from 21% to 

29% (p<0.001), B7H2 from 20% to 34% (p<0.01), and B7H4 from 5% to 8% (p<0.05). NCs 

induced up-regulation of B7H3 but not to a significant degree.  

AC-induced levels of expression of B7H2, B7H3 and B7H4 were not significantly different from 

NC-induced levels, though AC-induced levels were consistently higher. NC-induced expression 

was significantly higher than AC-induced expression for B7DC (p<0.001) and B7H1 (p<0.05). In 

general, ACs induced high increases in co-inhibitory molecule expression, and NCs induced 

relatively moderate increases. Statistically significant changes in expression of co-inhibitory 

molecules (compared to untreated DCs) are summarised in Table 1. 

 

 

 



74 

 

 

 
 

 

  

B7DC

None Apoptotic Necrotic
0

10

20

30

40

50

b

a a

Dead cells added

%
 o

f D
C

s 
hi

B7H1

None Apoptotic Necrotic
0

10

20

30

40

a

a

b

Dead cells added

%
 o

f D
C

s 
hi

B7H2

None Apoptotic Necrotic
0

10

20

30

40

50

a

b

b

Dead cells added

%
 o

f D
C

s 
hi

B7H3

None Apoptotic Necrotic
0

5

10

15

a

b

ab

Dead cells added

%
 o

f D
C

s 
hi

B7H4

None Apoptotic Necrotic
0

5

10

15

a

b

b

Dead cells added

%
 o

f D
C

s 
hi

Figure 3.12 Apoptotic cells (ACs) and necrotic cells 

(NCs) induce DC up-regulation of different 

combinations of cell surface co-inhibitory proteins. DCs 

were incubated for 24hrs with or without ACs 

(camptothecin-treated FDCP) or NCs (heat-killed 

FDCP), then treated with fluorescent antibodies and 

analysed by FACS to determine any differences in 

expression levels of a range of co-inhibitory molecules. 

ACs significantly increased DC expression of B7H2, 

B7H3 and B7H4. NCs significantly increased DC 

expression of B7DC, B7H1, B7H2 and B7H4. ‘a’ and ‘b’ 

signify significantly different means, one-way ANOVA. 

Data for each molecule is from three separate 

experiments or more, bars indicate SD. 



 

Figure 3.13 (Below) DC co-inhibitory

graphed in Figure 3.12 are shown below. Histograms are shown for each co

B7H1, B7H2, B7H3, B7H4), depicting the expression level of the relevant molecules on untreate

(‘None’), apoptotic cell-treated DCs (‘+Apoptotic’), necrotic cell

DCs (‘+LPS’), as indicated. Below these are shown the corresponding graphs of the co

plotted against CD11c, on which the

were analysed. 

 

 

 

 

 

 

                                       

             
 

              

 

Figure 3.13 (1/3) See above. 
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. FACS plots representative of the results 

inhibitory molecule (B7DC, 

B7H1, B7H2, B7H3, B7H4), depicting the expression level of the relevant molecules on untreated DCs 

treated DCs (‘+Necrotic’) and LPS-treated 

DCs (‘+LPS’), as indicated. Below these are shown the corresponding graphs of the co-inhibitory molecules 

gated during analysis, such that only CD11c+ cells 
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Figure 3.13 (2/3) See p73. 
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Figure 3.13 (3/3) See p73. 
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Table 1 Significant changes in DC surface expression of co-stimulatory and co-inhibitory molecules after 

24 hour incubation with apoptotic or necrotic cells. 

 

 CD40 CD80 CD83 CD86 CD25 B7DC B7H1 B7H2 B7H3 B7H4 

Apoptotic cells ↔ ↔ ↑ ↔ ↔ ↔ ↔ ↑↑↑ ↑↑↑ ↑↑↑ 

Necrotic cells ↑↑↑ ↑↑↑ ↑↑↑ ↑↑↑ ↑↑ ↑↑↑ ↑↑↑ ↑↑ ↔ ↑ 

↑, ↑↑, ↑↑↑ = Increased expression where p<0.05, 0.01, 0.001, respectively 

↔ = No significant change 

Red and pink indicate changes associated with inflammation in the literature 

  Greens indicate changes associated with tolerance/suppression/resolution of inflammation in the literature 

Red and deeper green indicate increases of ≥x1.75 
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3.2.2.6 Neither apoptotic cells nor necrotic cells affect LPS-induced up-regulation of co-

stimulatory molecules 

The ability of dead cells to inhibit or enhance PAMP-induced DC maturation, as indicated by 

alteration of expression of co-stimulatory and co-inhibitory molecules, was investigated. First, the 

response to LPS alone was determined. Then DCs were incubated with ACs or NCs, and 

supplemented with LPS for a further incubation period. AC- and NC-treated DCs that were 

subsequently treated with LPS were analysed by FACS alongside LPS-treated DCs (not pre-treated 

with dead cells) and statistically compared by one-way ANOVA (for details of multiple 

comparison tests please see 2.9). 

The proportion of DCs with high expression of CD40 was increased three-fold from 10% to 31% 

(p<0.001) by treatment with LPS [Fig. 3.14]. DCs incubated with ACs prior to the addition of LPS 

responded similarly, with a proportion of 28% CD40-high (also p<0.001 compared to untreated 

DCs), and DCs pre-incubated with NCs also responded similarly, with 32% (also p<0.001 

compared to untreated DCs). DCs pre-treated with ACs, those pre-treated with NCs, and those 

not pre-treated with dead cells, increased CD40 to levels that were not significantly different from 

one another. That is, up-regulation of CD40 in response to LPS was not significantly different 

between DCs, AC-treated DCs or NC-treated DCs (p>0.05). 

LPS treatment increased CD80 expression from 11% to 36% (p<0.001) [Fig. 3.14]. LPS increased 

CD80 in AC- and NC-treated DCs to 39% and 40%, respectively (both also p<0.001 compared 

with untreated DCs). Up-regulation of CD80 in response to LPS was not significantly different 

between DCs, AC-treated DCs or NC-treated DCs (p>0.05). 

CD83 increased from 9% to 33% after LPS treatment (p<0.001) and to 34% and 45% in DCs pre-

treated with ACs or NCs, respectively (both also p<0.001 compared with untreated DCs) 

[Fig. 3.14]. The LPS response of NC-treated DCs was notably higher than the response to LPS of 
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non-pre-treated DCs, though up-regulation of CD83 in response to LPS was not significantly 

different between DCs, AC-treated DCs or NC-treated DCs (p>0.05). 

LPS treatment induced an increase in CD86 from 11% to 30% (p<0.001), and to 33% and 45% in 

DCs pre-treated with ACs or NCs, respectively (both also p<0.001 compared with untreated DCs) 

[Fig. 3.14]. The LPS response of NC-treated DCs was markedly higher than the response to LPS 

of non-pre-treated DCs (a 50% relative increase in the number of CD86-high DCs), though up-

regulation of CD86 in response to LPS was not significantly different between DCs, AC-treated 

DCs or NC-treated DCs (p>0.05). 

LPS treatment considerably increased CD25 expression from 9% to 54% (p<0.001). LPS also 

increased CD25 in AC- and NC-treated DCs to 54% and 54%, respectively (both also p<0.001 

compared with untreated DCs) [Fig. 3.14]. Up-regulation of CD25 in response to LPS was not 

significantly different between DCs, AC-treated DCs or NC-treated DCs (p>0.05). 

LPS-induced up-regulation of CD40, CD80, CD83 and CD86 was not significantly different 

between DCs, AC-treated DCs or NC-treated DCs (one-way ANOVA for each molecule, 

p>0.05).  In summary, neither ACs nor NCs affected LPS-induced DC up-regulation of CD40, 

CD80, CD83, CD86, or CD25. However, there were non-significant synergistic effects of LPS and 

NCs in the up-regulation of CD83 and CD86, and, notwithstanding the one-way ANOVA results, 

only in CD40 was the pattern of NC-treated DCs having the highest expression levels significantly 

ablated by the LPS response (two-way ANOVA: CD40, p<0.01; all others, p>0.05).  
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Figure 3.14 Neither apoptotic cells (ACs) nor necrotic cells 

(NCs) affect LPS-induced up-regulation of co-stimulatory 

molecules.  LPS induced significant up-regulation of CD40, 

CD80, CD83, CD86 and CD25 (‘None’ compared with 

‘None + LPS’, all p<0.001). Pre-incubation with ACs or 

NCs did not affect the LPS-induced expression of CD40, 

CD80, CD83, CD86 and CD25 (all p>0.05, one-way 

ANOVA between ‘+LPS’ bars). ‘a’ and ‘b’ signify 

significantly different means, one-way ANOVA. Data for 

each molecule is from three separate experiments or more, 

bars indicate SD. 
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3.2.2.7 Apoptotic cells, but not necrotic cells, partially suppress CpG-induced DC up-regulation of 

co-stimulatory molecules  

Similarly, to the above studies with LPS-induced maturation, the ability of dead cells to inhibit or 

enhance DC stimulation by PAMPs was investigated using the TLR9 ligand CpG.  

The proportion of DCs with high expression of CD40 was increased more than three-fold from 

10% to 34% (p<0.001) by treatment with CpG [Fig. 3.15]. DCs incubated with ACs prior to the 

addition of CpG responded with a proportion of 28% CD40-high (also p<0.001 compared to 

untreated DCs), whilst the response of DCs pre-incubated with NCs was considerably less 

pronounced at 23% (p<0.01 compared to untreated DCs). Up-regulation of CD40 in response to 

CpG was not significantly different between DCs, AC-treated DCs or NC-treated DCs (one-way 

ANOVA, p>0.05). 

CpG treatment increased CD80 expression from 11% to 37% (p<0.001) [Fig. 3.15]. CpG 

increased CD80 in AC- and NC-treated DCs to 30% and 39%, respectively (both also p<0.001 

compared with untreated DCs). Up-regulation of CD80 in response to CpG was not significantly 

different between DCs, AC-treated DCs or NC-treated DCs (one-way ANOVA, p>0.05). 

CD83 increased from 9% to 17% after CpG treatment, but was not significant [Fig. 3.15]. CD83 

increased to 15% in DCs that were pre-treated with ACs, also not significant compared to 

untreated DCs.  CD83 increased to 38% in DCs that were pre-treated with NCs (p<0.001 

compared with untreated DCs). CD80 expression was not affected by CpG treatment. Regardless 

of CpG-treatment, up-regulation of CD80 in NC-treated DCs was significantly higher than in AC-

treated DCs or DCs not treated with dead cells (one-way ANOVA, p<0.001). 

CpG treatment induced an increase in CD86 from 11% to 40% in DCs, and to 43% in DCs pre-

treated with NCs (both p<0.001 compared with untreated DCs) [Fig. 3.15]. CpG induced a 

significant up-regulation of CD86 in AC-treated DCs to 25% (p<0.01 compared to untreated 
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DCs), though this was a significantly smaller increase in expression than that by both DCs and 

NC-treated DCs (p<0.05). 

CpG treatment considerably increased CD25 expression from 9% to 30% (p<0.001) [Fig. 3.15]. 

CpG also increased CD25 in AC- and NC-treated DCs to 25% and 27%, respectively (both also 

p<0.001 compared with untreated DCs). Up-regulation of CD25 in response to CpG was not 

significantly different between DCs, AC-treated DCs or NC-treated DCs (one-way ANOVA, 

p>0.05). 

CpG induced significant DC up-regulation of CD40, CD80, CD86 and CD25, but not CD83. Pre-

treatment with NCs did not affect this up-regulation, other than an insignificant reduction in the 

up-regulation of CD40. NC-treated DC expression of CD83 after CpG treatment was significantly 

higher than after treatment with CpG alone (p<0.05) or NCs alone (p<0.01), suggesting a possible 

synergistic effect. ACs, on the other hand, caused significant reductions in CpG-induced up-

regulation of CD86. 

The effect of dead cells on CD40 expression is significantly different between DCs and DCs that 

are subsequently treated with CpG (p<0.001, two-way ANOVA): there is a shift from there being 

significant differences between dead cell treatments to there being no significant differences after 

CpG treatment (where the CD40 expression levels appear to have reached a maximum, regardless 

of prior dead cell treatment). 

For CD80, CD83 and CD25 expression, the effect of dead cells on DCs is not significantly 

different from their effect on CpG-treated DCs (p>0.05, two-way ANOVA), despite the fact that 

ACs and NCs have significantly different effects on DCs but not after CpG treatment. 

Consequently, not much can be inferred from this statistic. 

The effect of dead cells on CD86 expression is significantly different between DCs and CpG-

treated DCs (p<0.001, two-way ANOVA). This is due to two shifts. Firstly, similarly to CD40 
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expression, there is a shift from: NC-induced expression that is significantly higher than untreated 

DCs; to, after CpG, DCs and NC-treated DCs having the same, high level of expression.  Secondly, 

the AC-suppressed expression of CD86 is limited to CpG-treated DCs. That is, ACs appear to 

have no effect on resting levels of CD86, but inhibit its CpG-induced up-regulation.  
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Figure 3.15 3.2.2.7 Apoptotic cells, but not necrotic cells, 

partially suppress CpG-induced DC up-regulation of co-

stimulatory molecules.  CpG induced significant up-

regulation of CD40, CD80, CD86 and CD25 (‘None’ 

compared with ‘None + CpG’, all p<0.001), but did not induce 

significant up-regulation of CD83. Pre-incubation with ACs 

significantly reduced the CpG-induced up-regulation of CD86 

(p<0.05, one-way ANOVA between ‘+LPS’ bars), but did not 

significantly affect the up-regulation of CD40, CD80, CD83, 

and CD25 (all p>0.05, one-way ANOVA between ‘+LPS’ 

bars). Pre-incubation with NCs significantly increased 

expression of CD83 (p<0.05) but did not significantly affect 

CpG-induced expression of CD40, CD80, CD86 or CD25. ‘a,’  

‘b’ and ‘c’ signify significantly different means, one-way 

ANOVA. Data for each molecule is from three separate 

experiments or more, bars indicate SD. 
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3.2.2.8 Apoptotic cell-induced up-regulation, and some necrotic cell-induced up-regulation, of co-

inhibitory proteins persists through LPS treatment  

The ability of dead cells to affect PAMP-induced DC alteration of expression of co-inhibitory 

molecules was investigated. First, the response to LPS alone was determined. 

LPS treatment increased B7DC expression from 30% to 39% (p<0.001). LPS increased B7DC in 

AC- and NC-treated DCs to 38% and 46%, respectively (p<0.01 and p<0.001, respectively, 

compared with untreated DCs) [Fig. 3.16]. Up-regulation of B7DC in response to LPS was not 

significantly different between DCs, AC-treated DCs or NC-treated DCs (p>0.05). 

Treatment with LPS induced up-regulation of the co-inhibitory molecule B7H1 from 21% to 47% 

(p<0.001) [Fig. 3.16]. LPS increased B7H1 in AC- and NC-treated DCs to 54% and 51%, 

respectively (both also p<0.001 compared with untreated DCs). Up-regulation of B7H1 in 

response to LPS was not significantly different between DCs, AC-treated DCs or NC-treated DCs 

(one-way ANOVA, p>0.05). 

LPS treatment significantly decreased expression of B7H2 from 20% to 12% (p<0.01) [Fig. 3.16]. 

This decrease was not apparent in LPS-treated DCs that were pre-treated with ACs or NCs, where 

B7H2 remained at 23% and 19%, respectively (p>0.05 compared to untreated DCs). As such, the 

LPS-induced response of AC-treated DCs was significantly higher than that of DCs (p<0.05), 

however, the LPS response of NC-treated DCs was not significantly different from that of DCs or 

AC-treated DCs.  

B7H3 after LPS treatment was 6%, compared to 5% before (p>0.05) [Fig. 3.16]. LPS treatment 

did not inhibit AC-induced up-regulation of B7H3, rising at it did to 9% (p<0.001) compared to 

untreated DCs). This was not significantly higher than B7H3 expression of LPS- (alone) treated 

DCs or DCs that had been pre-treated with NCs (both 6%), which were also not significantly 

different to untreated DCs. 
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B7H4 was slightly reduced from 5% to 4% after LPS treatment though not significantly [Fig. 3.16]. 

AC-induced up-regulation of B7H4 persisted despite LPS challenge, with expression rising to 8% 

(slightly, but not significantly, lower than the 10% induced in the absence of LPS). In the presence 

of LPS, AC-induced up-regulation of B7H4 is no longer significant compared to untreated DCs, 

but is significant compared to LPS- (alone) treated DCs (p<0.01). NC-induced up-regulation of 

B7H4 persisted, being significant compared to both untreated DCs (p<0.05) and LPS- (alone) 

treated DCs (p<0.001). 
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Figure 3.16 Apoptotic cell-induced up-regulation, and 

some necrotic cell-induced up-regulation, of co-

inhibitory proteins persists through LPS treatment. 

LPS-induced increase of B7DC and B7H1 was unaffected 

by prior incubation with ACs or NCs. LPS-induced 

reduction of B7H2 expression was significantly inhibited by 

pre-treating DCs with ACs, but not NCs. B7H3 expression 

was unaffected by LPS treatment, including after pre-

treatment with NCs, but was significantly increased if pre-

treated with ACs. B7H4 was not significantly affected by 

LPS treatment. Pre-treatment with either ACs or NCs 

significantly increased LPS-induced B7H4 expression levels. 

‘a,’  ‘b’ and ‘c’ signify significantly different means, one-way 

ANOVA. Data for each molecule is from three separate 

experiments or more, bars indicate SD. 
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3.2.2.9 Apoptotic cell-induced up-regulation, and some and necrotic cell-induced up-regulation, of 

co-inhibitory proteins persists through CpG treatment/challenge 

The ability of dead cells to affect CpG-induced DC alteration of expression of co-inhibitory 

molecules was investigated. 

CpG treatment increased B7DC expression from 30% to 36% (p<0.001) [Fig. 3.17]. CpG induced 

DC up-regulation of B7DC was significantly inhibited by pre-treating DCs with ACs (, p>0.05). 

NCs induced a slight abrogation of CpG-induced up-regulation of B7DC to 33%, which, although 

not itself significant, was a reduction of CpG-induced up-regulation from a significant increase to a 

non-significant increase – there was not a significantly lower expression of B7DC in CpG-/NC-

treated DCs than in CpG-treated DCs. 

Treatment with CpG induced up-regulation of the co-inhibitory molecule B7H1 from 21% to 67% 

(p<0.001) [Fig. 3.17]. CpG increased B7H1 in AC- and NC-treated DCs to 80% and 69%, 

respectively (both also p<0.001 compared with untreated DCs). Up-regulation of B7H1 in 

response to CpG was not significantly different between DCs, AC-treated DCs or NC-treated 

DCs (p>0.05). 

CpG treatment significantly decreased expression of B7H2 from 20% to 14%. AC- and NC-

induced up-regulation of B7H2 increased after CpG in AC- and NC-treated DCs to 49% and 

46%, respectively (both p<0.001 compared to untreated DCs, and compared to CpG- (plus no 

dead cells) treated DCs).  

B7H3 did not change after CpG treatment, remaining as it did at 5% [Fig. 3.17]. CpG treatment 

did not inhibit AC-induced up-regulation of B7H3, which increased to 18% (p<0.001 compared to 

untreated DCs). This was also significantly higher than B7H3 expression of CpG-treated DCs that 
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had been pre-treated with NCs, which remained at levels not significantly different to untreated 

and CpG- (alone) treated DCs (7%). 

B7H4 was slightly reduced from 5% to 4% after CpG treatment though not significantly 

[Fig. 3.17]. AC-induced up-regulation of B7H4 persisted despite CpG challenge, with expression 

rising to 9% (slightly, but not significantly, lower than the 10% induced in the absence of CpG). In 

the presence of CpG, AC-induced up-regulation of B7H4 is no longer significant compared to 

untreated DCs, but is significant compared to CpG- (alone) treated DCs (p<0.01). NC-induced 

up-regulation of B7H4 was ablated after CpG-treatment, with B7H4 remaining at 5% (p<0.05 

compared to both untreated and CpG- (alone) treated DCs). 
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Figure 3.17 Apoptotic cell-induced up-regulation, and 

some and necrotic cell-induced up-regulation, of co-

inhibitory proteins persists through CpG 

treatment/challenge. CpG treatment significantly increased 

B7H1 and B7DC expression on DCs. ACs inhibited the 

B7DC increase but otherwise these increases were 

unaffected by prior incubation with ACs or NCs. CpG-

induced down-regulation of B7H2 was inhibited by pre-

treating DCs with ACs or NCs, both of which significantly 

increased B7H2. B7H3 and B7H4 expression were 

unaffected by CpG treatment, including with NCs, but were 

significantly increased if pre-treated with ACs. ‘a,’  ‘b’ and ‘c’ 

signify significantly different means, one-way ANOVA. Data 

for each molecule is from three separate experiments or 

more ore, bars indicate SD. 
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3.3 Effects on dendritic cells of alternative apoptotic 

cell sources/treatments 

3.3.1 Introduction 

As shown above, ACs increased the expression of co-inhibitory markers in our model of AC-

induced DC modification. However, maturation markers were generally unaffected in this study, in 

contrast to the findings of some other groups, who report the AC-induced suppression of LPS-

induced up-regulation of maturation markers. The induction of co-inhibitory molecules thus far in 

this study suggested that camptothecin-treated FDCP would be an adequate model of AC for the 

further investigation of AC-induced modification of DCs (see Chapter 4). However, further 

improvements of the method were investigated in order to corroborate or refute published 

findings, and to potentially maximise the possibility of AC-induced suppression of DCs in this 

study. To this end, alternative incubation media supplements and sources of apoptotic cells were 

studied.  

 

  



93 

 

3.3.2 Results 

3.3.2.1 Various media supplements do not aid apoptotic cell-mediated suppression of DC 

maturation 

DC suppression by ACs has been achieved by using IMDM (Iscove’s Modified Dulbecco’s 

Medium) as the media for culture and co-incubation (233). We explored the possibility that 

components of IMDM endow DC-AC interactions with greater suppressive potential by using 

complete IMDM (cIMDM – IMDM with supplements identical to those in cRPMI), rather than 

cRPMI, as the media in which DCs were grown and co-incubated with ACs. The shift in DC 

expression of CD40 after co-incubation with ACs was insubstantially different between cRPMI 

and cIMDM cultures, with increases in expression of 2% and 4%, respectively [Fig. 3.18A]. This 

difference is even less substantial given that an expected proportion of resting cRPMI DCs (10%) 

were CD40-high, whereas, using the same FACS gates, 27% of resting cIMDM DCs were CD40-

high. In cRPMI, LPS-induced up-regulation of CD40 to 28% was abrogated to 23% by pre-

incubating DCs with ACs [Fig. 3.18B]. In contrast, in cIMDM cultures the LPS-induced up-

regulation of CD40 was itself enhanced to 35%, and the pre-treatment of DCs with ACs further 

augmented this increase to 43%. Thus, IMDM failed to enhance AC-induced suppression of 

CD40 up-regulation, and, furthermore, actually itself induced high expression of CD40. However, 

although consistent with further observations in this study, data was not available for statistical 

analysis. 

DCs were incubated with ACs in cRPMI supplemented with serum variations in order to 

investigate the role of serum factors in AC-mediated suppression of DC. This exploration was 

prompted by the findings of some groups indicating that serum factors such as complement may 

be required for DC suppression by ACs, and by the possibility that the serum used thus far may be 

inadequate. Heat-inactivated (HI) FBS was replaced with either: FBS that had not been heat-
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inactivated (non-HI FBS); fresh mouse serum, to a final concentration of 1%; fresh mouse serum, 

5%. For each media supplement, there was no significant difference in CD40 expression between 

DCs and DCs pre-treated with ACs [Fig. 3.18C]. This is also true of LPS-treated DCs [Fig. 3.18D]. 

However, non-HI FBS significantly increased the percentage of resting DC expressing high levels 

of CD40 from 5% to 9%, regardless of ACs being present (p<0.001, two-way ANOVA). Non-HI 

FBS made no significant difference to LPS-induced up-regulation of CD40. These findings suggest 

that neither additional serum nor IMDM enable or enhance AC-mediated suppression of LPS-

induced up-regulation of CD40 by DCs. Moreover, IMDM and non-HI FBS appear to induce 

maturation of DCs. 
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Figure 3.18 Various media supplements do not aid apoptotic cell-mediated suppression of DC maturation. 

DCs were cultured with apoptotic FDCP (ACs) for 24 hours in normal conditions or with various 

alterations of culture media and analysed by FACS antibody staining for reductions in CD40 expression. A. 

ACs did not decrease DC CD40 expression any more when co-incubated in IMDM than when co-

incubated in RPMI. Moreover, IMDM appeared to increase CD40 expression of ‘resting’ DCs. B. ACs did 

not suppress LPS-induced DC up-regulation of CD40 expression any more when co-incubated in IMDM 

than when co-incubated in RPMI. C. DCs were co-incubated with ACs in media that had heat-inactivated 

FBS (HI FBS) exchanged for either: non-heat-inactivated FBS (non-HI FBS); 1% mouse serum; 5% mouse 

serum. Neither non-HI FBS nor either concentration of mouse serum enabled ACs to decrease CD40 

expression of ‘resting’ DCs. Moreover, non-HI FBS increased the CD40 expression of ‘resting’ DCs. D. 

Neither non-HI FBS or either concentration of mouse serum enabled ACs to suppress LPS-induced DC 

up-regulation of CD40. Data is from two (A and B) or three (C and D) experiments for each treatment, 

bars indicate SD. 
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3.3.2.2 Apoptotic primary thymocytes are no more efficient than camptothecin-treated FDCP at 

suppressing up-regulation of DC co-stimulatory receptors or inducing up-regulation of co-

inhibitory receptors 

To investigate the prospect that AC-mediated immune suppression could be more successful if 

employing primary cells, rather than cell lines, ACs were generated from ex vivo thymocytes. 

Thymocytes were treated with super-Fas ligand (sFasL), which induced apoptosis in a high 

percentage of cells (84% apoptotic, 12% necrotic, 4% alive) within 6 hours – Apoptotic 

thymocytes were then incubated with DCs for 12 hours, with and without a subsequent 24hr LPS-

treatment. DCs were then analysed by FACS for changes in expression of some of the key co-

stimulatory and co-inhibitory markers.  

Co-incubation with sFasL-treated thymocytes (sFasL-thymocytes) did not alter the percentage of 

DCs that expressed high levels of CD40, CD86 or B7DC (p>0.05 compared with untreated DCs), 

which remained at approximately 10%, 10%, and 30%, respectively [Fig. 3.19]. This was similar to 

DCs after co-incubation with camptothecin-FDCP, as seen in Fig. 3.10. SFasL-thymocytes did not 

induce up-regulation of B7H1, but did induce up-regulation of B7H2 from 20% (in untreated 

DCs) to 33% (p<0.001 and B7H4 from 5% to 9% (p<0.05) [Fig. 3.19A]. The proportions of DCs 

expressing high B7H1, B7H2 and B7H4 after co-incubation with sFasL-thymocytes were all 

statistically similar to the corresponding proportions of DCs after co-incubation with 

camptothecin-FDCP [Fig. 3.12].  

Co-incubation with sFasL-thymocytes did not significantly alter LPS-induced up-regulation of 

CD40, CD86 or B7DC (p>0.05 compared with LPS-treated DCs) [Fig. 3.19B], similarly to co-

incubation with camptothecin-FDCPs [Fig. 3.14], though up-regulation of CD86 was enhanced 

from 30% to 45% and up-regulation of B7DC was enhanced from 39% to 62%. Similarly to 

camptothecin-FDCP [Fig. 3.16], LPS-induced up-regulation of B7H1 was not affected by pre-

treatment with sFasL-thymocytes as it increased to 49% (p>0.05 compared to 47% in DCs treated 
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with LPS alone) [Fig. 3.19B], and sFasL-thymocytes maintained up-regulation of B7H4 to 10% 

(p<0.001, compared with 4% in DCs treated with LPS alone).  However, unlike treatment with 

camptothecin-FDCP, the up-regulation of B7H2 induced by sFasL-thymocytes was negated by 

LPS challenge (15%, p>0.05, compared with 12% in DCs treated with LPs alone). Nonetheless, 

expression of B7H1, B7H2 and B7H4 in LPS-treated DCs that were pre-treated with sFasL-

thymocytes was statistically similar to the corresponding expression of LPS-treated DCs that were 

pre-treated with camptothecin-FDCP. This suggests that apoptotic primary thymocytes have no 

more suppressive potential than apoptotic cell line FDCP.   
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Figure 3.18 Apoptotic primary thymocytes are no more efficient than camptothecin-treated FDCP at 

suppressing up-regulation of DC co-stimulatory receptors or inducing up-regulation of co-inhibitory 

receptors. Ex vivo thymocytes were induced to undergo apoptosis by treating with super Fas ligand for 4hrs. 

DCs were incubated with apoptotic thymocytes (sFasL Thym) for 24hrs, with or without LPS for the last 

12hrs. A. Apoptotic thymocytes made no significant difference to expression levels of CD40, CD86, B7DC 

or B7H1 on resting DCs. Apoptotic thymocytes induced up-regulation of B7H2 and B7H4. B. Apoptotic 

thymocytes made no significant difference to expression levels of CD40, CD86, B7DC, B7H1 or B7H2 on 

LPS-treated DCs. LPS-challenge negated apoptotic thymocytes-induced up-regulation of B7H2 but not of 

B7H4, which remained significantly higher. * = p<0.05, *** = p<0.001, referring to significant difference 

between the indicated and the untreated DCs (None), one-way ANOVA. Data for each molecule is from 

three separate experiments, bars indicate SD. 
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3.4 Discussion 

3.4.1 Apoptosis and necrosis of FDCP 

The first task in this investigation was to establish methods of producing apoptotic and necrotic 

cells. Due to the reportedly opposed influences of both dead cell types, it was necessary to 

produce cultures of as pure a dead cell type as possible. It was therefore necessary to employ 

methods that were both uniform and consistent in their effects. However, the challenge in 

producing cultures of high proportions of apoptotic cells or of necrotic cells was multifarious.  

Firstly, the transient nature of apoptosis imposes certain time-frame requirements on the method 

of apoptosis induction. Apoptosis is transitory in that apoptotic cells can progress to secondary 

necrosis whereby they disintegrate and lose membrane integrity, potentially releasing 

proinflammatory contents. Indeed, this process has been implicated as the key trigger of pathology 

in SLE (234). In this study, therefore, all cells must be treated with and respond to the inducer of 

apoptosis with enough time left for DCs to interact with these cells before some or all of the 

population progress to secondary necrosis and counteract the effect of apoptotic cells. For some 

treatments though, many FDCP progress to secondary necrosis before others begin the apoptotic 

process. More specifically, many FDCP progress to secondary necrosis before others express PS. 

Because surface PS expression is one of the earliest stages of apoptosis, and PS is necessary for 

identifying AC both by the experimental observer and by dendritic cells (which do also recognise 

other, but later, markers), it can be supposed that surface PS expression is synonymous with the 

beginning of apoptosis. 

The challenge in producing cultures with high proportions of apoptotic cells for a sufficient length 

of time was compounded by the fact that cells of the same type may respond differently towards 

the same stress depending on their proximity to the stress, stage of cell cycle, and/or general 
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health. For example, cells in culture being exposed to UV can shield other cells, further away from 

the UV source, from exposure. Increasing UV dose increased overall cell death, but death 

plateaued at 90%, possibly due to cell density preventing UV from penetrating through the entire 

cell culture. Furthermore, higher or longer doses of UV increased the risk of superfluous exposure 

to other cells that could result in secondary necrosis - necrosis increased in a dose-dependent 

manner and reached 40% of the cell sample (at 200J/m2), and we may well presume that this figure 

would have increased with higher doses of UV [Fig. 3.5]. Lack of uniform exposure may therefore 

have been one reason why it was not possible to generate apoptotic cells by UV exposure without 

also increasing the incidence of necrosis [Fig. 3.2] – the maximum proportion of cells undergoing 

apoptosis at any one time was 73% (at 20J/m2), with a continually increasing proportion of 

necrotic cells. 

Another reason why it was not possible to generate apoptotic cells by UV exposure without also 

increasing the incidence of necrosis could have been the varying stages of cell cycle between 

different cells within the culture. This is because UV exposure triggers apoptosis through detection 

of DNA damage at the cell division stage of cell growth – some cells may have been already 

progressing to secondary necrosis when others were only just experiencing an aborted cell division 

and the beginning of apoptosis. However, this is unlikely considering that camptothecin-exposure, 

which also initiates apoptosis upon a faulty cell division attempt, induces a very high percentage of 

apoptosis (virtually all cells – up to 98%) in the same cell type before any secondary necrosis 

occurs [Fig. 3.2]. As camptothecin appeared to represent a more convenient and reliable source of 

apoptotic cells, it was deemed unnecessary to improve UV-induced apoptosis induction by 

synchronising cell cycle phases within a culture (by withdrawing growth factor for a period 

sufficient to halt cell growth, before reintroducing it).  

The health of a cell may also have had an influence on the effectiveness and consistency of death 

inducing treatments. We may speculate that GMCSF-withdrawal affected cells at different rates 
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according to their health. For example, young cells may have been able to tolerate the lack of 

growth factor for longer than older cells. What is known is that many cells did not remain 

apoptotic for long before progressing to secondary necrosis – the percentage of necrotic cells grew 

from 7% to 38% within 24 hours of withdrawal [Fig. 3.4A], a surprisingly fast progression and one 

that rendered GMCSF-withdrawal inadequate for the purposes of this investigation.  

A further complication with GMCSF-withdrawal exposed a flaw in the method of apoptosis 

detection itself. AnV-PI staining indicated that the proportion of necrotic cells began to decline, 

from a percentage of 38% at 24 hours post-withdrawal, to 9% at 68 hours [Fig. 3.4A]. Most living 

animal cells can repair small or even moderately large tears in the plasma membrane, and at a 

reasonably rapid pace (235).  However, it appeared unlikely that this could have happened on such 

a scale as this, not least due to the absence of growth factor (which some evidence suggests is 

required for membrane repair (235)). Also, the ‘return’ of the staining pattern to not that of 

healthy cells but instead to that of apoptotic cells was reasonably deemed as suspect. Therefore, it 

was suspected that the assay demonstrated AnV-positive, PI-negative staining not due to repaired 

membrane integrity, but due to failed PI staining of DNA. Consequently, DAPI staining and 

fluorescence microscopy was used to visualise the DNA of untreated FDCP, 48-hour 

camptothecin-treated FDCP, and the suspect 68-hour GMCSF-withdrawn FDCP [Fig. 3.4B-D]. 

This showed clear and compact nuclei in the untreated FDCP, and revealed disintegration of the 

nuclei of camptothecin-treated FDCP into distinct fragments, indicating DNA fragmentation – a 

key stage late in the apoptotic process. DNA can even be seen to be packaged into small bodies 

budding from the periphery of the main cell bodies – these are apoptotic vesicles. In contrast, the 

nuclei of 68hr GMCSF-withdrawn FDCP were undetectable by DAPI staining (save in a few 

cells). This revealed that negative PI staining was due to the insufficient presence of DNA, which 

had either disintegrated into components too small to be clearly detected or had escaped out of the 

necrotic membranes and been lost from the degenerating cell bodies altogether. Without further 

investigation, advanced apoptosis could not be assumed, whilst secondary necrosis seemed most 
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probable. Accordingly, GMCSF-withdrawal was dismissed as a method of apoptosis induction. 

Furthermore, this revealed that AnV-PI staining, as a method of determining the type of cell 

death, is innacurrate once a cell type may start to succumb to secondary necrosis. 

DNA staining with DAPI helped to reveal that there was no longer any DNA present in 68-hour 

GMCSF-withdrawn FDCP. Staining of DNA with ethidium bromide, and subsequent 

electrophoresis, would no doubt have also have shown a lack of any DNA at all. This 

electrophoresis method confirmed DNA fragmentation in UV- and camptothecin-treated FDCP 

by demonstrating DNA laddering across the gel – evidence that DNA had disintegrated and thus 

was able to move through the gel in separate units [Fig. 3.6].  

 Camptothecin, as mentioned, induced very high rates of apoptosis. Furthermore, there was no 

increase in the induction of necrosis throughout the 48 hour incubation period [Fig. 3.3], unlike in 

GMCSF-withdrawal. Thus camptothecin treatment created a broad interval of time wherein ACs 

represented a very high percentage of the FDCP sample. In addition, treatment was simple and 

possible on a large scale. However, there remained doubts that what effectively constituted 

chemical insult could generate a non-danger signal-inducing apoptotic cell. However, 

photochemotherapy has been used to generate apoptotic cells that successfully suppress graft-

versus-host disease (GVHD) by inhibiting DC maturation (236). Camptothecin treatment was 

therefore the preferred method of apoptosis induction and was used, bar a few peripheral 

experiments where indicated, in all subsequent generation of apoptotic cells in this investigation. 

Induction of necrosis was expectedly simple in relation to apoptosis. This is primarily because 

necrotic cells are by definition damaged, decaying and potentially inflammatory (this much was 

their purpose in this study) and cannot revert to an apoptotic cell phenotype. Also, some necrotic 

cell-released danger signals are base materials and chemicals that do not easily degrade 

extracellularly, for example uric acid. Accordingly, generation of necrotic cells was straightforward 

and entailed exposing cells to a stress sufficient to cause damage to all cells. In this effort, 
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mechanical damage was preferable to chemically-induced damage, as the washing of necrotic cell 

lysates would have been a time-consuming addition to the method. Also, chemicals may have 

altered the immunological properties of the dead cells. Heat kill (maintaining the culture at 60˚C 

for 30mins) was not only non-chemical but ensured reasonably even exposure to the stress, and so 

was an ideal candidate. Heat kill produced successful results where FDCP were killed virtually 

totally (average 94%), uniformly and consistently [Fig. 3.2]. 

Necrosis induction was not without some complications. Repeated freeze-thaw cycles were 

employed to kill cells and were successful in doing so (inducing necrosis in 85% of FDCP) 

[Fig. 3.2]. However, freeze-thaw necrotic cells were adhesive and they aggregated heavily. 

Separation of cells into a uniform culture was impossible despite physical manipulation. This was 

inadequate for a method of necrosis induction, of which was required consistency and simplicity, 

and accordingly heat kill was used as the method of necrosis induction for the duration of the 

investigation. 

 

3.4.2 Phagocytosis of apoptotic and necrotic cells by DCs 

Phagocytosis of apoptotic cells and necrotic cells by DCs was examined in order to confirm that 

our generated DCs would indeed phagocytose camptothecin-treated (apoptotic) and heat kill-

treated (necrotic) FDCP, and determine if they did so with any difference in frequency. DCs were 

stained with CFSE, which covalently binds cytoplasmic amines and is cleaved by intracellular 

esterases into a yellow-green fluorescent dye (237). Apoptotic and necrotic FDCP were stained 

with PKH26, a red fluorescent dye that stably integrates into the plasma membrane (238). 

Phagocytosis of dead cells was measured by detecting DCs (CFSE-positive cells) that were also 

PKH26 positive. The percentage of DCs that associated with apoptotic cells was statistically 

similar to the percentage associated with necrotic cells (both approximately 20%) [Fig. 3.7]. This 



104 

 

association was confirmed as phagocytosis by its reduction in the presence of cytochalasin D, to 

approximately 5% for each dead cell type. This matches another report that demonstrates that 

apoptotic and necrotic forms of the same cell type are phagocytosed by rat BMDCs at equal rates 

(203), though in that study the tumour cell line PROb was phagocytosed at a much higher rate of 

approximately 70-80% (239). The rates of phagocytosis in the current study are, however, 

comparable to the observed DC uptake of non-opsonised apoptotic neutrophils in a previous 

study (233). In that study, opsonisation of apoptotic cells with IgG almost doubled the number of 

DCs that phagocytosed apoptotic neutrophils but there was no difference in DC phenotypical 

changes between opsonised AC- and non-opsonised AC-treated DCs. This suggests that the 

number of DCs phagocytosing ACs in the current study is sufficient for the observation of DC 

modulation by ACs.  

To determine if incubation with either apoptotic or necrotic cells induces cell death in DCs, d6 

DCs were incubated for 48 hours alone or with dead cells, then the percentage and type of cell 

death of the DCs themselves was determined by AnV-PI staining. This experiment examined 

whether DC viability was inadvertently affected by the method of FDCP killing, for example 

residual camptothecin or cell-damaging reactive oxygen species generated by heat damage. Such 

effects have been caused by residual apoptosis-inducing agents in another study (240), and could 

possibly result in false negatives for molecule up-regulation or cytokine production in this 

investigation. However, the percentage of live DC was unaffected by incubation with either dead 

cell type, remaining as it did at approximately 70%, hence neither apoptotic nor necrotic cells 

induce DC death (within 48 hours).  

 

3.4.3 Generation of immature DCs 
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DCs were generated by incubating murine bone marrow with GMCSF for 6-8 days. BMDCs 

generated thus are an artificial, in vivo model of DCs, with similarities to both myeloid and 

lymphoid murine DCs. GMCSF was produced in-house using the GMCSF-secreting murine cell 

line Ag8653 (murine myeloma cell line transfected with cDNA encoding for GMCSF (227). Using 

cell line-produced GMCSF from culture flasks increased the possibility of potentially 

proinflammatory contaminants, for example mycoplasma, being introduced into DC cultures. 

Resultant activation of DCs into maturity would potentially render them unresponsive to further 

stimuli, whether pro- or anti-inflammatory. Furthermore, high doses of GMCSF have been shown 

to induce DC maturation in vitro (228) and confer DC co-stimulatory activity in vivo (241). Our 

own GMCSF was therefore examined alongside endotoxin-free recombinant GMCSF from 

Peprotech for proinflammatory activity, in order to evaluate its use in this study for the generation 

of immature DCs. The secreted GMCSF was effective at stimulating the generation of immature 

DCs, and was used at ~100ng/ml in all subsequent experiments for optimal DC production. 

For further validation of DCs generated from bone marrow, cells were examined for their 

responsiveness to TLR-ligand PAMPs. DCs exhibited responsiveness to LPS [see Fig. 3.14], CpG 

[see Fig. 3.15], and pam3CSK4 (as indicated by up-regulation of CD40, CD86, and secretion of 

IL12 [data not shown]) that was typical of immature BMDCs (231). DCs were unresponsive to the 

poly(I:C) used in this study (data not shown), though this was not investigated further. 

 

3.4.4 The effect of apoptotic cells on the expression of co-stimulatory and 

co-inhibitory molecules of resting DCs  

The apparent effect of apoptotic cells on DC expression of co-stimulatory molecules was minimal: 

Expression levels of CD40, CD80, CD86, and CD25 after AC treatment were, in general, 

extremely similar to expression levels in untreated DCs, with no significant changes [Fig. 3.10]. 
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These findings were consistent with many published reports, including the findings of Williams et 

al (2008), where neither apoptotic (by incubation with anti-Fas antibody) Jurkat cells nor 

autologous T cells (at an AC:DC ratio of 5:1) significantly increased CD80, CD83 or CD86 (93). 

The present results were also consistent with those of Clayton et al (2003) where low numbers of 

human ex vivo apoptotic (by survival signal-deprivation) neutrophils (AC:DC ratio of 1:1) made no 

significant difference to CD40, CD80 and CD86 expression in DCs generated from peripheral 

blood mononuclear cells (PBMCs) (233). It is important to note, however, that high numbers of 

apoptotic cells (20:1) in the same study induced significant down-regulation of CD40, CD80 and 

CD86. Sauter et al’s (2000) panel of apoptotic (by UV) cell lines also had no effect on DCs 

cultured from human ex vivo PBMCs. The exception to the present trend of no-difference 

observed in this study was CD83, which was up-regulated after AC treatment. This was 

unexpected but it does have precedent in the findings of Clayton et al (2003) (233). However, 

there is no evidence to suggest that CD83 may perform a regulatory role or why it would perform 

alone in an immune role. The lack of up-regulation of CD25 induced by ACs is consistent with a 

non-inflammatory role (222, 242). 

The active influence of apoptotic cells can be seen much more clearly in the up-regulation of co-

inhibitory molecules. Although B7DC and B7H1 were not significantly affected, the expression of 

B7H2, B7H3 and B7H4 were all significantly increased approximately two-fold [Fig. 3.12].  

 

3.4.5 The effect of necrotic cells on the expression of co-stimulatory and 

co-inhibitory molecules of resting DCs  

The response of DCs to necrotic cells was clear and invariable in the co-stimulatory molecules 

examined. Necrotic cells induced significant up-regulation of CD40, CD80, CD83, CD86 and 

CD25 [Fig. 3.10]. CD83 incurred the largest increase, having increased almost threefold from 9% 
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to 25%. The induced levels of all molecules were significantly higher than corresponding levels of 

apoptotic cell-treated DCs, except that of CD25, which, although higher, was not significantly 

different. These increases indicate a certain proinflammatory phenotype, and are consistent with 

the findings of many other groups and the generally accepted paradigm that necrotic cell lysates 

activate DCs (18). For example, Williams et al (2008) reported the up-regulation of CD80, CD83 

and CD86 in response to F/T (four cycles) necrotic T cells (NC:DC at 5:1), regardless of whether 

the T cells were Jurkat cells, or allogeneic or autologous T cells (93). This is in contrast to the 

findings of Clayton et al (2003) where F/T (four cycles) necrotic neutrophils (NC:DC at 5:1) 

induced the same down-regulation of CD80 and CD86 as that induced by apoptotic cells, and a 

significantly larger decrease in CD40 (this was also the case for cells allowed to undergo secondary 

necrosis by culturing for 40 hours ex vivo) (233). The disparity between the Williams and Clayton 

studies is hard to explain with no more details about their methods being available. The present 

study is similar to the Williams study, but there appears to be no connection with the source of 

necrotic cell. We may speculate that loss of lysate may explain the Clayton findings, but it would be 

pure conjecture. Kushwah et al (2009) found that necrotic BMDCs did not induce maturation in 

live BMDCs, however, only CD86 was examined, and the method of necrosis was one cycle of 

F/T which, from anecdotal evidence and first-hand experience, does not reliably induce sufficient 

rates of necrosis (198). Sauter et al (2000) observed up-regulation of CD40, CD83 and CD86 in 

response to various F/T (4-5 cycles) necrotic cells lines, but interestingly this response was not 

echoed in the use of autologous primary cells as the source of necrotic cells (17). The up-

regulation of CD25 by NCs is consistent with a proinflammatory role (222, 242). 

Necrotic cells, like apoptotic cells, also induced significant up-regulation of co-inhibitory 

molecules, though a different combination of molecules compared to those up-regulated by 

apoptotic cells [Fig. 3.12]. Unlike apoptotic cells, necrotic cells induced significant, though small, 

up-regulations of B7DC from 30% to 38% and of B7H1 from 21% to 38%. Necrotic cells also 

increased B7H3 from 5% to 8%, however, again unlike ACs, this was not significant. Similarly to 
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apoptotic cells, necrotic cells induced significant up-regulation of B7H2 and B7H4. These 

increases were smaller than those induced by ACs, but statistically similar. 

Although perhaps counter-intuitive, necrotic cell-induced up-regulation of co-inhibitory molecules 

is consistent with a proinflammatory response, which requires a slower-acting anti-inflammatory 

response in order to resolve the inflammation. Evidence is increasing that suggests that resolution 

of inflammation is an active process, rather than a passive diminishing of inflammation. The early 

expression of co-inhibitory molecules may play a crucial role in resolving, as well as preventing, 

inflammation. This is discussed further in 3.4.7.  

Table 1 summarises the changes in co-stimulatory and co-inhibitory molecules induced by ACs 

and NCs. It can be seen that apoptotic cells appear to have a net anti-inflammatory effect, whereas 

necrotic cells appear to have a net inflammatory effect. However, as the relative influence of each 

molecule is unknown, this can only be confirmed by exploring the functions of these DCs, which 

is discussed in Chapters 4 and 5. 

 

3.4.6 The effect of apoptotic cells on the expression of co-stimulatory and 

co-inhibitory molecules of activated DCs  

After LPS challenge, DCs significantly and substantially up-regulated CD40, CD80, CD83, CD86 

and CD25, with the largest increase being an increase of ~x5 (CD25) [Fig. 3.14].This was a typical 

mouse or human DC response to LPS (231, 242). Pre-treating DCs with apoptotic cells had no 

effect at all on the LPS-induced up-regulation of any of the co-stimulatory molecules examined. 

This was consistent with the passive role described in the findings of Sauter et al (2000) (17) and 

Takahashi et al (2003) (15). However, the current results were in contrast with the findings of 

Williams et al (2008) where ACs actively lowered the CD80, CD83 and CD86 response to LPS or 



109 

 

NCs (93), and Clayton et al (2003), where ACS inhibited CD40, CD80 and CD86  in response to 

LPS(233), and Kushwah et al (2009), where ACs suppressed LPS-induced up-regulation of CD86 

(198). 

CpG treatment induced significant up-regulation of CD40, CD80, CD86, and CD25 (i.e. all 

examined co-stimulatory molecules except CD83), all increasing by approximately threefold 

[Fig. 3.15]. This was generally consistent with reported responses to CpG in mouse or human DCs 

(54, 231). Already we can see that CpG appeared to provide a slightly less powerful stimulation of 

DCs than did LPS. This is substantiated by the successful suppression of some CpG-induced 

increases by pre-treating DCs with apoptotic cells, in contrast to LPS-induced increases. The CpG-

induced up-regulation of CD86 was significantly inhibited (but not totally ablated) by apoptotic 

cells. Apoptotic cells also notably inhibited (though not significantly) up-regulation of CD80. To 

wit, no such examination has been undertaken before. 

The apoptotic cell-mediated up-regulation of B7H2, B7H3 and B7H4 [Fig. 3.12] persisted through 

LPS and CpG challenge (though B7H3 was no longer significant after LPS) [Fig. 3.16]. There 

exists little evidence for the effect of CpG on co-inhibitory molecules, though it has been reported 

to decrease B7DC expression on ex vivo murine plasmacytoid DCs (243). As tests were not 

undertaken to determine how long it takes for expression of these molecules to begin, it is not 

know if LPS/CpG challenge inhibited their expression or if they caused a subsequent down-

regulation of their expression. 

The failure of apoptotic cells in this study to suppress LPS-induced up-regulation of co-

stimulatory molecules contrasts with previous studies that specifically demonstrate otherwise. The 

generated DCs were certainly suppressible (in terms of co-stimulatory molecules), as observed in 

CpG treatment. Therefore, the LPS used in the present study, though at a lower dose than some 

of the previous studies, may have been from a source (E. Coli) too immunogenic for co-

stimulatory molecules to be actively suppressed. The difference between LPS and CpG in the 
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effect on co-inhibitory molecules is less conspicuous but nonetheless present. In both treatments, 

up-regulation of co-inhibitory molecules is largely maintained, and PAMP-induced down-

regulation of B7H2 countered. However, up-regulation of B7H2, 3 and 4 are all markedly higher 

in CpG-treated cells than LPS-treated cells (B7H2 significantly so, p<0.05). 

 

3.4.7 The effect of necrotic cells on the expression of co-stimulatory and 

co-inhibitory molecules of activated DCs 

Pre-treating DCs with necrotic cells had no significant effect on LPS-induced maturation 

[Fig. 3.14], though it did induce a non-significant but notable enhancement of the LPS-induced 

up-regulation of CD83 and CD86. Necrotic cells made no significant difference to the CpG-

induced up-regulation of CD40, CD80, CD86 or CD25 [Fig. 3.15]. Expectedly, necrotic cells 

induced up-regulation of CD83. Less expectedly, given that CpG alone had very little effect on 

CD83, was the synergistic effect of necrotic cells and CpG, which in combination induced 

expression of CD83 that was significantly higher than after necrotic cells alone (p<0.001). 

Curiously, necrotic cells in combination with CpG induced less (but not significantly so) CD40 

than necrotic cells in combination with apoptotic cells, or CpG alone. This is largely in contrast to 

the effect of necrotic cells on other co-stimulatory molecules, either alone or in combination with 

PAMPs.  

The necrotic cell-induced up-regulation of B7DC, B7H1 and B7H4 [Fig. 3.12] persisted after LPS 

challenge [Fig. 3.16] (though the up-regulation of B7DC was no longer significant), whereas B7H2 

up-regulation was ablated. The induced up-regulation of B7H1 and B7H2 persisted after CpG 

challenge [Fig. 3.17], whereas B7H4 up-regulation was ablated. The significance of this variation in 

co-inhibitory molecules is not yet understood, and merits detailed investigation as it may 

potentially indicate a distinction between two separate pathways of inhibition – one effected by 
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ACs, another by NCs. Also, the NC-induced up-regulation of B7H1 and B7H2 is markedly higher 

in CpG-treated cells than LPS-treated cells (B7H2 significantly so, p<0.001), whereas B7H4 is 

lower. It appears that necrotic cells may perhaps more easily increase the inhibitory phenotype of 

CpG-challenged cells than LPS-challenged cells.  

The data suggests that necrotic cells do enhance PAMP-induced maturation, though in these 

experiments the expression level of many of the markers may already have been at or near a 

maximum, particularly LPS-induced maturation. The LPS stimulus may have been too strong to be 

inhibited, whereas CpG stimulation could to an extent be suppressed. CpG was nonetheless a 

substantial stimulus: The relative effects of necrotic cells on untreated DCs are significantly 

different to their relative effects on DCs that are subsequently treated with CpG (p<0.001, two-

way ANOVA): For CD40 and CD86, significantly more necrotic-treated DCs are high in 

expression than untreated DCs; however, after CpG treatment, this significant difference no 

longer exists. This demonstrates that CpG treatment is powerful enough to maximise CD40 and 

CD86, surpassing the stimulus from endogenous inflammatory signals and rendering necrotic cell-

induced up-regulation insignificant. This in itself is testament to the influence of ACs, given that 

AC-treatment is sufficient to significantly reduce even this effective stimulation. 

  

3.4.8 Effects on DCs of alternative apoptotic cell sources/treatments 

Previous studies have highlighted the significant role of serum proteins in apoptotic cell−DC 

interactions, such as opsins and other linker molecules (e.g. IgM (244)). It was contemplated that 

apoptotic cell-mediated suppression of DC co-stimulatory molecules (considered, at this stage in 

the investigation, to be crucial to tolerogenic suppression of T cell-mediated immunity) may be 

more successful with various media supplements. These supplements, including mouse serum, may 

have proved to contain crucial accessories to DC suppression. It transpired, however, that neither 

IMDM, nor mouse serum, nor non-heat-inactivated FBS contained anything that improved DC 
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suppression [Fig. 3.18]. If any linker molecules were crucial to the (later confirmed) generation of 

tolerogenic DCs, they were present in sufficient quantities in complete RPMI media.  

This series of experiments was limited to studying CD40 alone, which was taken to represent co-

stimulatory molecules in general. Although this was deemed sufficient, given the time restraints, 

for this branch of investigation, attention must be drawn to the fact that we have shown that co-

stimulatory molecules may have dissimilar responses to the same stimuli. As such, a full study of 

the effects of media supplements, representing various reconstructions of the in vivo milieu, should 

include examination of a wider range of co-stimulatory and co-inhibitory molecules, as well as 

cytokines. Indeed, such a study constitutes a large undertaking that warrants its own dedicated 

investigation. 

One of the key functions of DCs in vivo is detecting elements of potential danger, and thus DCs 

have an innate ability to react to non-self agents. The FDCP cells used thus far in this investigation 

are derived from a B6 background and are therefore, in essence, clone cells of the B6 mice from 

which DC were generated in this project. FDCP are therefore likely to be recognised as ‘self’ by 

our B6 DC. Also, the nature of the in vitro system employed here dismisses the possibility of 

proinflammatory responses against foreign bodies by memory cells. However, given the sensitivity 

of DC to exogenous material, and the possibility that the FDCP cell line has mutated sufficiently 

to be no longer recognised as self-tissue by B6 immune cells, there existed the possibility that cell 

line apoptotic cells would be less efficient at suppression of DC maturation in this model than 

would primary B6 apoptotic cells. Indeed, many studies of apoptotic cell-mediated suppression of 

DCs have employed apoptotic cells generated from primary cells.  

To investigate the prospect that apoptotic cell-mediated immune suppression in vivo could be more 

successful if employing primary cells, rather than cell lines, apoptotic cells were generated from ex 

vivo thymocytes. Thymocytes were isolated from the C57Bl6/J mouse spleen and treated with 

super-Fas ligand (sFasL), which induced apoptosis in a high percentage of cells within 4 hours (the 

initiation of apoptosis after sFasL exposure does not depend on the stage of the cell cycle, unlike 
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camptothecin). Moreover, this method of induction of apoptosis is a reconstruction of a common 

and naturally-occurring mechanism – therefore, it can be argued, it has a higher physiological 

relevance than camptothecin-induced apoptosis. SFasL-treated thymocytes had similar properties 

to camptothecin-induced FDCP in that they demonstrated no significant effect on the expression 

of select co-stimulatory molecules on resting or LPS-treated DCs [Fig. 3.19A]. This is similar to 

the parity between apoptotic Jurkat cells and autologous T cells in their suppressive effects on 

DCs, as observed by Williams et al (2008) (93).  SFasL-treated thymocytes induced significant up-

regulation of B7H2 and B7H4 in resting DCs, and maintained significant B7H4 up-regulation in 

LPS-challenged DCs [Fig. 3.19B], similarly to camptothecin-treated FDCP. Unlike camptothecin-

FDCP, sFasL-treated thymocytes failed to maintain up-regulation of B7H4 in LPS-challenged 

DCs. Overall, sFasL-treated thymocytes were similar to camptothecin-treated FDCP. Accordingly, 

it was felt that camptothecin, with similar suppressive potential but a simpler methodology, 

represented a far better prospect for the purposes of this investigation.  

On account of their regular use as a source of apoptotic cells in previous investigations, the effect 

of UV-induced apoptotic cells on DCs was briefly investigated. At no tested exposure of UV did 

FDCP have the capacity to reduce the LPS-induced up-regulation of CD40 and CD86. The UV 

method used in this investigation appeared to be too destructive to maintain membrane integrity. 

However, photochemotherapy has been demonstrated to produce apoptotic cells that induce a 

tolerogenic phenotype in human DCs (245).   

 

3.4.9 Summary 

In this stage of the investigation homogenous populations of apoptotic cells and of necrotic cells 

were generated successfully, by means of camptothecin treatment or heat kill, respectively, of 

FDCP. The type of cell death was verified by several methods and was conclusive in both 
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treatments. Crucially, both the apoptotic state and the necrotic state could be maintained for 

sufficient lengths of time to allow for co-incubation with DCs and subsequent PAMP treatment. 

Several other methods of cell death induction were discounted as inefficient. DCs were generated 

successfully from bone marrow, and were responsive to both PAMPs and dead cells. 

Apoptotic cells had no effect on expression of co-stimulatory molecules of resting DCs, or on the 

up-regulated expression on LPS-treated DCs. However, apoptotic cells did suppress some CpG-

induced up-regulation of co-stimulatory molecules. In all treatments, apoptotic cells induced up-

regulation of co-inhibitory molecules, but less so in LPS-treated DCs than in resting or CpG-

treated DCs.  

Necrotic cells induced up-regulation of co-stimulatory molecules on resting DCs. They had little 

effect on LPS- or CpG-induced up-regulation, though there was evidence of enhancement by 

necrotic cells. Necrotic cells induced up-regulation of co-inhibitory molecules on resting and LPS- 

and CpG-treated DCs, though, in general, not as considerably or uniformly as did apoptotic cells.  

In summary, apoptotic cells appeared to induce an inhibitory phenotype in resting DCs, suppress 

the inflammatory phenotype of CpG-treated DCs, and have no effect on the inflammatory 

phenotype of LPS-treated DCs. Necrotic cells appeared to generally induce or enhance a 

proinflammatory phenotype, whilst simultaneously inducing anti-inflammatory features, in resting 

and LPS- and CpG-treated DCs. The net effect of non-up-regulated co-stimulatory molecules, and 

up-regulated co-inhibitory molecules, demonstrates that apoptotic cells are not merely 

immunologically innocuous in their failure to induce maturation of DCs, but are active inducers of 

a potentially tolerogenic DC phenotype. 

The chief results of the current investigation, consisting of the non-inflammatory effects of 

apoptotic cells and the proinflammatory effects of necrotic cells, are supported by both recent and 

landmark studies where similar examinations of apoptotic and necrotic cells have been made. The 
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studies used in comparisons above were selected to cover a range of murine and human in vitro 

models using different sources of DC and a variety of methods of apoptosis and necrosis 

induction, but not including ex vivo tumour cells. The current findings are distinctive in their lack 

of conspicuous suppression of PAMP-induced proinflammatory phenotypes. To wit, no studies 

have examined the expression of co-inhibitory molecules in response to apoptotic or necrotic cells. 

With no precedents for comparison, these results are discussed in the context of the downstream 

immune events (T cell responses and in vivo effects) in Chapters 4 and 5. 

  



116 

 

CHAPTER 4 – The Effect of 
Apoptotic Cells and Necrotic Cells on 
Dendritic Cell-Produced Cytokines and 
Their Influence on T Cell Function 
 

 

4.1 Introduction 

Cytokine production and secretion by DCs is crucial to their function in initiating an immune 

response. To fully characterise dead cell-induced modulation of DCs, the cytokine profile – 

consisting of pro- and anti-inflammatory cytokines – was ascertained. The downstream functional 

effects of AC- and NC-treated DCs were then investigated. This was originally done by co-

incubating DCs with ACs or NCs, then separating DCs from the dead cells by MACS, culturing 

the DCs with splenocytes for 3 days, and analysing the cultures for T cell-produced cytokines. 

These results showed no differences between DC treatments (data not shown). It was speculated 

that cytokine secretion by dead cell-treated DCs had ceased within the DC-dead cell co-incubation 

period, and that consequently DCs from different treatments were no longer functionally 

dissimilar (the possible implications of this are discussed in 4.3.2). Instead, T cell functional assays 

were performed using the culture media from DC-dead cell co-incubations. The post-incubation 

culture media, or conditioned media (CM), was combined with low numbers of fresh DCs and co-

incubated with splenocytes treated with the lymphocyte mitogen concanavalin A (conA), which 

induces T cell proliferation. Significant differences were found in T cell behaviour between those 

incubated with AC-treated DC CM and those incubated with NC-treated DC CM. 
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4.2 Results 

 

4.2.1 Necrotic cells, but not apoptotic cells, induce DC secretion of proinflammatory cytokines 

Low levels of IL12p40 (IL12) and IL6 were detected by ELISA in the culture supernatant of 

untreated DCs (624 pg/ml and 347 pg/ml, respectively) [Fig. 4.1]. Co-incubation with NCs 

significantly increased the concentration of IL12 in the culture supernatant to 2660 pg/ml. Co-

incubation with NCs increased the concentration of IL6 to 1600 pg/ml.  Treatment of DC with 

ACs did not significantly alter the amounts of IL12 or IL6 detected in the culture media. The 

proinflammatory cytokines IL1β and TNFα were not detected in the culture supernatants of DCs 

treated with dead cells or with LPS (data not shown). These results demonstrate that NCs 

significantly increase secretion of a proinflammatory cytokine profile, whereas ACs do not. 

 

Figure 4.1 Necrotic cells, but not apoptotic cells, induce DC secretion of proinflammatory cytokines. The 

culture supernatant of DCs that had been incubated with or without apoptotic cells (camFDCP) or necrotic 

cells (HKFDCP) for 24hrs was analysed by ELISA for various cytokines. Necrotic cells induced a 

significant increase in secretion of both IL12p40 and IL6. Apoptotic cells did not induce any significant 

changes in IL12 or IL6 secretion. ‘a’ and ‘b’ signify significantly different means, one-way ANOVA. Data is 

from 3 separate experiments or more, bars indicate SD. 
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4.2.2 Apoptotic cells, but not necrotic cells, induce DC secretion of anti-inflammatory cytokines 

IL10 was present in the culture supernatant of untreated DCs at a concentration of 10pg/ml 

[Fig. 4.2]. Treatment with ACs significantly increased this concentration to 78pg/ml (p<0.001). 

NCs increased IL10 to 15pg/ml, which was not significant.  

TGFβ was present in the supernatant of untreated DCs at 780pg/ml, and was significantly 

increased to 2340pg/ml by pre-treating DCs with ACs (p<0.001) [Fig. 4.2]. NCs had the opposite 

effect and significantly decreased the concentration of TGFβ to 155pg/ml (p<0.05). 

     

Figure 4.2 Apoptotic cells, but not necrotic cells, induce DC secretion of anti-inflammatory cytokines. The 

culture supernatant of DCs that had been incubated with or without apoptotic cells or necrotic cells for 

24hrs was analysed by ELISA for various cytokines. Apoptotic cells induced significantly increased 

secretion of both IL10 and TGFβ. Necrotic cells did not induce any significant change in IL10 secretion, 

but significantly decreased TGFβ secretion. ‘a,’  ‘b’ and ‘c’ signify significantly different means, one-way 

ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 
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4.2.3 DC secretion of IL12 in response to CpG is inhibited by apoptotic cells, but not necrotic 

cells 

CpG induces significantly increased secretion of IL12 from 620pg/ml in untreated DC to 

6630pg/ml [Fig. 4.3], p<0.001, one-way ANOVA). This up-regulated secretion was significantly 

abrogated to 3370pg/ml (p<0.05) by pre-treating DCs with ACs (but not completely inhibited, as 

IL12p40 secretion remained significantly higher than that by untreated DCs). In contrast, the 

CpG-induced secretion of IL12 was significantly enhanced to 9920pg/ml by pre-treating DCs with 

NCs (p<0.05) [Fig. 4.3].  

 

                              

Figure 4.3 DC secretion of IL12 in response to CpG is inhibited by apoptotic cells, but not necrotic cells. 

CpG treatment induced a significant increase in secretion of IL12p40 by DCs. This increase was 

significantly inhibited by pre-treating DCs with apoptotic cells, and significantly enhanced by pre-treating 

DCs with necrotic cells. ‘a,’ ‘b,’ ‘c’ and ‘d’ signify significantly different means, one-way ANOVA. Data is 

from 3 separate experiments or more, bars indicate SD. 
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4.2.4 DC secretion of IL6 in response to CpG is inhibited by apoptotic cells, but not necrotic cells 

CpG induces significantly increased secretion of IL6 (from ~750pg/ml in untreated DCs to 

~3000pg/ml [Fig. 4.4], p<0.001, one-way ANOVA). This up-regulated secretion was significantly 

abrogated to ~1600pg/ml by pre-treating DCs with apoptotic cells (but not completely inhibited, 

as IL6 secretion remained significantly higher than that by untreated DCs). Surprisingly, the up-

regulation of IL6 in response to CpG was slightly abrogated by pre-treating DCs with necrotic 

cells, though not significantly [Fig. 4.4] 

                               

Figure 4.4 DC secretion of IL6 in response to CpG is inhibited by apoptotic cells, but not necrotic cells. 

CpG treatment induced a significant increase in secretion of IL6 by DCs. This increase was significantly 

inhibited by pre-treating DCs with apoptotic cells. The increase was slightly, but not significantly, inhibited 

by pre-treating DCs with necrotic cells. ‘a,’  ‘b’ and ‘c’ signify significantly different means, one-way 

ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 
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4.2.5 Apoptotic cell suppression of IL12 production by CpG-stimulated DCs is not IL10-

dependent 

After induction of proinflammatory cytokine secretion in an immune response, anti-inflammatory 

cytokine production and secretion commences as a means to resolve inflammation. We 

investigated whether one such anti-inflammatory cytokine, IL10, is accountable for the AC-

induced suppression of CpG-induced IL12 secretion. DCs were cultured from the bone marrow 

of wildtype mice and of IL10-/- mice from the same background (246) (IL10-/- DCs produced no 

IL10 in response to LPS, CpG, or either dead cell type, data not shown) then treated with or 

without dead cells. The experiment showed that DCs from the knockout mice have enhanced 

IL12 secretion, regardless of cell treatment [Fig. 4.5A]. The experiment was then repeated with a 

subsequent CpG challenge after all treatments [Fig. 4.5B]. The experiment shows an AC-specific 

significant suppression of CpG-induced IL12 secretion from 4690pg/ml to 3360pg/ml (p<0.05, 

one-way ANOVA). Similar suppression is seen in the identical treatments of DCs from IL10-

knockout mice, from 4800pg/ml to 3390pg/ml (p<0.05, one-way ANOVA). CpG/dead cell 

response by DCs was not affected by the Wt/IL10ko background of the mice (p>0.05, two-way 

ANOVA). This indicates that AC-induced secretion of IL10 is not essential for AC-mediated 

suppression of IL12 secretion by DCs. 
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Figure 4.5 Apoptotic cell suppression of IL12p40 production by CpG-stimulated DCs is not IL10-

dependent. DCs from wildtype (‘Wt’) and IL10-/- (‘IL10ko’) mice were incubated with or without apoptotic 

cells or necrotic cells for 24hrs (A), and treated with CpG for the last 12hrs (B). The wildtype mice 

demonstrated apoptotic cell-specific significant suppression of IL12p40 secretion into the culture 

supernatant. This significant suppression was also demonstrated by IL10ko mice. * = p<0.05, referring to 

significant difference between the indicated and the corresponding untreated DCs (‘None’), one-way 

ANOVA. Data is from 3 separate experiments, bars indicate SD. 
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4.2.6 IFNγ production by mitogen-stimulated T cells is suppressed by the CM of apoptotic cell-

treated DCs, and enhanced by the CM of necrotic cell-treated DCs 

Murine splenocytes were isolated and cultured with 0-10µg/ml concanavalin A (conA) for three 

days in the CM of untreated DC, AC-treated DC or NC-treated DC. Treatment with conA 

induced dose-dependent and significant secretion of IFNγ by splenocytes regardless of the type of 

CM in which they had been cultured [Fig. 4.6]. However, the CM of AC-treated DCs (AC-CM) 

and that of NC-treated DCs (NC-CM) have significant (p<0.001, two-way ANOVA [asterisks 

mark significance at each conA concentration in comparison to the CM of untreated DCs, one-

way ANOVA], but opposite, effects on IFNγ production in response to conA, compared with the 

CM of untreated DCs. AC-CM significantly abrogates overall IFNγ production whereas NC-CM 

enhances it. NC-CM alone is sufficient to double mitogen-independent IFNγ production from a 

baseline of 4100pg/ml by splenocytes treated with CM of untreated DCs, to 9170pg/ml, which is 

similar to the level of IFNγ production by splenocytes treated with CM of untreated DCs plus a 

conA dose of 1.25µg/ml, or IFNγ production by splenocytes treated with apoptotic CM plus a 

conA dose of 10µg/ml.  
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Figure 4.6 IFNγ production by mitogen-stimulated T cells is suppressed by the CM of apoptotic cell-

treated DCs, and enhanced by the CM of necrotic cell-treated DCs. Two-way ANOVA confirms that the 

CM of apoptotic cell-treated DCs (‘AC-CM’) and the CM of necrotic cell-treated DCs (‘NC-CM’) both 

have a significant effect on the overall dose-dependent conA-induced increase of IFNγ secretion by T cells, 

compared to the CM of untreated DCs (‘None-CM’). Specifically, AC-CM suppresses IFNγ secretion and 

NC-CM enhances IFNγ secretion. * = p<0.05, referring to significant difference between the indicated and 

the corresponding None-CM value, one-way ANOVA. Data is from 3 separate experiments or more, bars 

indicate SD. 

 

 

 

  

0 0.625 1.25 2.5 5 10
0

5000

10000

15000

20000

None-CM

AC-CM

NC-CM*

*

*

*

*

*

ConA (µg/ml)

IF
N

γ  
(p

g/
m

l)



125 

 

4.2.7 The CM of LPS-treated DCs enhances IFNγ production by mitogen-stimulated T cells, and 

neither pre-treatment of DC with apoptotic cells nor pre-treatment with necrotic cells affects this 

enhancement 

Splenocytes were cultured with the CM from DCs that were treated with dead cells and LPS or the 

CM of DC treated with LPS alone. LPS-treatment of the DCs had a significant effect on the dose-

dependent influence of CM in the splenocyte culture, resulting in enhanced IFNγ production in 

response to conA [Fig. 4.7], compared to when CM of untreated DCs is used  [Fig. 4.6] (p<0.001, 

two-way ANOVA). Neither the CM of DCs treated with ACs then LPS, nor the CM of DCs 

treated with NCs then LPS, caused conA-response curves that were statistically different to that 

caused by the CM of DCs treated with LPS alone (p>0.05, two-way ANOVA), demonstrating that 

pre-treatment of DCs with ACs or NCs did not affect the overall capacity of LPS-matured DCs to 

enhance IFNγ secretion by T cells. However, one-way ANOVA of separate conA doses revealed 

that pre-treatment with ACs does have a slight but significant inhibitory effect on IFNγ 

production by T cells treated at a dose of 5µg/ml conA. 
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Figure 4.7 The CM of LPS-treated DCs enhances IFNγ production by mitogen-stimulated T cells, and 

neither pre-treatment of DCs with apoptotic cells nor pre-treatment with necrotic cells affects this 

enhancement. Two-way ANOVA revealed that pre-treatment with either apoptotic or necrotic cells does 

not affect the capacity of LPS-treated DC CM to enhance secretion of IFNγ by conA-stimulated T cells. 

That is, None-LPS-CM, AC-LPS-CM and NC-LPS-CM have no difference in their effect on T cell IFNγ 

production. * = p<0.05, referring to significant difference between the indicated and the corresponding 

None-LPS-CM value, one-way ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 
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4.2.8 The CM of CpG-treated DCs enhances IFNγ production by mitogen-stimulated T cells, and 

pre-treatment of DCs with apoptotic cells, but not with necrotic cells, suppresses this 

enhancement 

Splenocytes were cultured with the CM from DCs that were treated with dead cells and CpG, or 

the CM of DCs treated with CpG alone. CpG-treatment of the DCs had a significant effect on the 

dose-dependent influence of CM in the splenocyte culture, resulting in enhanced IFNγ production 

in response to conA [Fig. 4.8], compared to when CM of untreated DCs is used [Fig. 4.6] 

(p<0.001, two-way ANOVA). The CM of DCs treated with NCs then CpG did not cause conA-

response curves that were statistically different to that caused by the CM of DCs treated with CpG 

alone (p>0.05, two-way ANOVA), demonstrating that pre-treatment of DCs with NCs did not 

affect the capacity of CpG-matured DCs to enhance IFNγ secretion by conA-stimulated T cells. 

However, the CM of DCs treated with ACs then CpG caused a conA-response curve that was 

significantly lower to that caused by the CM of DCs treated with CpG alone (p<0.001, two-way 

ANOVA), demonstrating that pre-treatment of DCs with ACs abrogates the capacity of CpG-

matured DCs to enhance IFNγ secretion by conA-stimulated T cells. 
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Figure 4.8 The CM of CpG-treated DCs enhances IFNγ production by mitogen-stimulated T cells, and 

pre-treatment of DCs with apoptotic cells, but not with necrotic cells, suppresses this enhancement. Two-

way ANOVA revealed that None-CpG-CM and NC-CpG-CM were not significantly different, i.e. pre-

treatment with necrotic cells did not affect the capacity of CpG-treated DC CM to enhance secretion of 

IFNγ by conA-stimulated T cells. Two-way ANOVA revealed that AC-CpG-CM was significantly lower 

IFNγ secretion than either None-CpG-CM or NC-CpG-CM, i.e. pre-treatment with apoptotic cells reduced 

the capacity of CpG-treated DC CM to enhance secretion of IFNγ by conA-stimulated T cells. * = p<0.05, 

referring to significant difference between the indicated and the corresponding None-CM value, one-way 

ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 
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4.2.9 The CM of DCs treated with necrotic cells, but not the CM of DCs treated with apoptotic 

cells, increases secretion of IL17 by mitogen-stimulated T cells 

Mitogenic stimulation of splenocytes from this stage in the project was limited to a single dose of 

5µg/ml conA only, for conservation of resources (mice, media, etc). This concentration of conA 

produced the most significant differences in IFNγ between different DC treatments thus far in the 

study. Splenocytes cultured in CM from untreated DCs secreted 270pg/ml IL17 in response to 

5µg/ml conA [Fig. 4.9]. This concentration was enhanced by culturing splenocytes in CM from 

DCs that had been incubated with NCs, increasing IL17 secretion significantly to 580pg/ml, 

whereas CM from DC incubated with ACs caused an insignificant increase to 300pg/ml [Fig. 4.9]. 

 

Figure 4.9 The CM of DCs treated with necrotic cells, but not the CM of DCs treated with apoptotic cells, 

increases secretion of IL17 by mitogen-stimulated T cells. Incubating DCs with necrotic cells generated CM 

(NC-CM) that induced significantly higher IL17 production by conA-stimulated T cells than was induced 

by the CM of untreated DCs (None-CM) or apoptotic cell-treated DCs (AC-CM). ‘a’ and ‘b’ signify 

significantly different means, one-way ANOVA. Data is from 3 separate experiments or more, bars indicate 

SD. 
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4.2.10 Pre-treatment of DC with apoptotic cells, but not pre-treatment with necrotic cells, 

suppresses the capacity of CpG-treated DC CM to enhance IL17 secretion by mitogen-stimulated 

T cells 

 The CM of CpG-treated DCs (None-CM + CpG) significantly enhances IL17 secretion by 

5µg/ml conA-stimulated T cells to 1020pg/ml, compared to the 270pg/ml induced by the CM of 

untreated DCs (None-CM) (p<0.01) [Fig. 4.10].  Pre-treatment of CpG-treated DCs with ACs 

completely suppressed this enhancement, such that IL17 secretion by conA-stimulated T cells was 

limited to 260pg/ml (p<0.01), which is similar to the measure of IL17 secreted after incubation 

with the CM of untreated (that is, no CpG or dead cells) DCs (p>0.05). Pre-treatment of CpG-

treated DCs with NCs had no statistical effect on stimulation of IL17 secretion.  

 

Figure 4.10 Pre-treatment of DC with apoptotic cells, but not pre-treatment with necrotic cells, suppressed 

the capacity of CpG-treated DC CM to enhanced IL17 secretion by mitogen-stimulated T cells. Using the 

CM of DCs treated with CpG (‘None-CM + CpG’) to culture splenocytes significantly enhanced T cell 

secretion of IL17 in response to ConA (‘None-CM’). Pre-treating CpG-treated DCs with apoptotic cells 

(‘AC-CM’) significantly suppressed CpG-treated DC capacity to enhance IL17 secretion by conA-

stimulated T cells (‘None-CM + CpG’). Pre-treating with necrotic cells did not affect the capacity to 

enhance IL17 secretion. ‘a’ and ‘b’ signify significantly different means, one-way ANOVA. Data is from 3 

separate experiments or more, bars indicate SD. 
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4.2.11 DCs treated with apoptotic cells, but not DCs treated with necrotic cells, suppress IL2 

secretion by mitogen-stimulated T cells 

5µg/ml conA-stimulated T cells cultured in the CM of untreated DCs secreted 530pg/ml IL2. Pre-

treatment of the DCs with ACs caused IL2 secretion to be significantly less, at 240pg/ml (p<0.05). 

Pre-treatment of DCs with NCs induced an increase in IL2 secretion to 610pg/ml, which was not 

significant [Fig. 4.11A].  

CpG-treatment of DCs enhanced DC induction of IL2 secretion by conA-stimulated T cells from 

530pg/ml to 1500pg/ml [Fig. 4.11B] (p<0.05). This enhancement is decreased by pre-treating 

DCs with ACs, but not significantly, to 930pg/ml. The enhancement is increased by pre-treating 

DCs with NCs, but again not significantly, to 2060pg/ml. Pre-treatment with NCs results in 

significantly higher induction of IL2 secretion than does pre-treatment with ACs (p<0.05). 
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Figure 4.11 A. The CM of DCs treated with 

apoptotic cells, but not the CM of DCs treated with necrotic cells, inhibits secretion of IL2 by mitogen-

stimulated T cells. Incubating DCs with apoptotic cells generated CM (AC-CM) that induced significantly 

lower IL2 production by conA-stimulated T cells than was induced by the CM of untreated DCs (None-

CM) or necrotic cell-treated DCs (NC-CM). ‘a’ and ‘b’ signify significantly different means, one-way 

ANOVA. B. Using the CM of DCs treated with CpG (‘None-CM + CpG’) to culture splenocytes 

significantly enhances T cell secretion of IL2 in response to ConA (compared to ‘None-CM’). Pre-treating 

CpG-treated DCs with apoptotic cells (‘AC-CM’) suppresses CpG-treated DC capacity to enhance IL2 

secretion by conA-stimulated T cells (‘None-CM + CpG’), but not significantly. Pre-treating with necrotic 

cells does not affect the capacity to enhance IL2 secretion. ‘a’, ‘b’ and ‘c’ signify significantly different 

means, one-way ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 

 

None-CM AC-CM NC-CM
0

200

400

600

800

a

b

a

DC conditioned media added to splenocytes

IL
2 

(p
g/

m
l)

A B 

None-CM None-CM AC-CM NC-CM
0

500

1000

1500

2000

2500

a

bc

ab

c

+CpG
DC conditioned media added to splenocytes

IL
2 

(p
g/

m
l)



133 

 

4.2.12 DCs treated with apoptotic cells, but not DCs treated with necrotic cells, suppress 

proliferation of mitogen-stimulated T cells 

We determined the ability of variously treated DCs to induce immune responses, by using the CM 

to culture splenocytes with 0-10µg/ml conA and measuring the T cell proliferation. Proliferation 

was measured by incubating cells with WST-1 and measuring population-correlated absorbance 

with a spectrophotometer. WST-1 is a tetrazolium salt cleaved by mitochondrial dehydrogenases 

into a formazan dye: the greater the number of cells, the greater the mitochondrial metabolic 

activity and the more dye that is formed. Splenocytes cultured in the CM of untreated DCs 

demonstrate a significant dose-response curve to conA (two-way ANOVA, p<0.001). CM from 

DCs that have been treated with NCs significantly enhances the T cell proliferation curve in 

response to conA (p<0.001, two-way ANOVA) [Fig.4.12], consistent with data above that NC-

treated DCs enhance T cell secretion of IL2 [Fig. 4.11]. CM from DCs that have been treated with 

ACs significantly suppress the T cell proliferation curve in response to conA (p<0.001, two-way 

ANOVA). NC- and AC-treatment of DCs have significantly different effects on the T cell 

response to conA (p<0.05, two-way ANOVA).  
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Figure 4.12 DCs treated with apoptotic cells, but not DCs treated with necrotic cells, suppress 

proliferation of mitogen-stimulated T cells. The CM of necrotic cell-treated DCs (NC-CM) 

significantly enhances proliferation of T cells in response to conA compared to the CM of 

untreated DCs (None-CM) (p<0.001, two-way ANOVA). The CM of apoptotic cell-treated DCs 

(AC-CM) suppresses proliferation of T cells in response to conA compared to the CM of 

untreated DCs (None-CM) (p<0.001, two-way ANOVA). * = p<0.05, ** = p<0.01, referring to 

significant difference between the indicated and the corresponding None-CM value, one-way 

ANOVA. Data is from 3 separate experiments or more, bars indicate SD. 
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4.2.13 Apoptotic cells enhance, and necrotic cells abrogate, DC ability to induce generation of 

regulatory T cells 

One of the key mechanisms for the induction and maintenance of tolerance is the generation of 

regulatory T cells (Tregs). We examined how ACs and NCs influenced DC capacity to induce Treg 

differentiation from splenocytes. Splenocytes were treated for 5 days with 5µg/ml conA and 

various concentrations of CM from untreated and dead cell-treated DCs, and were supplemented 

on d3 with IL2. Splenocytes were then stained for CD25, CD4 and Foxp3, of which the 

expression of all three is indicative of a Treg. The CM of untreated DCs induced significant 

generation of Tregs in correlation to the concentration of the CM, with a maximum Treg count of 

15.3% of the total cell population [Fig. 4.13]. Pre-treatment of the DCs with ACs significantly 

enhanced generation of Tregs (p<0.001, two-way ANOVA), with observable differences from as 

little as 1/32 of the culture media being CM. Pre-treatment with ACs did not significantly affect 

the maximum Treg population (16.7%) but decreased the concentration of CM at which the 

maximum, and other percentages, of the Treg population was induced. Pre-treatment of the DCs 

with NCs significantly abrogated generation of Tregs (p<0.01, two-way ANOVA), such that the 

maximum Treg population induced was 9.6% of the total cell population. Differences between 

untreated DC CM and NC-treated DC CM were only observable from 1/4 of the culture media 

being CM and upwards. Interestingly, for all treatments, the percentage Treg population began to 

plateau or decline from 50% (1/2) CM upwards, most notably in the NC treatment. 
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Figure 4.13 Apoptotic cells enhance, and necrotic cells abrogate, DC ability to induce generation of 

regulatory T cells. Splenocytes were incubated for 5 days with various concentrations of the CM from 

untreated DCs (‘None-CM’), apoptotic cell-treated DCs (‘AC-CM’) or necrotic cell-treated DCs (‘NC-CM’). 

AC-CM induced generation of significantly more Tregs than did None-CM (p<0.001, two-way ANOVA). 

NC-CM induced significantly fewer Tregs than did None-CM (p<0.01, two-way ANOVA). ** = p<0.01, 

referring to significant difference between the indicated and the corresponding None-CM value, 

one-way ANOVA. Data is from 3 separate experiments, bars indicate SD. 
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4.2.14 Apoptotic cells partially prevent the CpG-induced reduction of DC capacity to induce 

generation of regulatory T cells 

The CM of DCs that have been treated with CpG [Fig. 4.14] generated significantly less Tregs, 

than did the CM of untreated DCs [Fig. 4.13] (p<0.001, two-way ANOVA), producing a 

maximum Treg population of just 2.6% of the total cell population. However, pre-treatment with 

ACs slightly abrogated this reduction by enabling CpG-treated DCs to produce CM that induces 

significantly more Tregs than the CM from DCs treated with CpG alone (p<0.01, two-way 

ANOVA) [Fig. 4.14], including a maximum of 6.5%. This amount was, however, still significantly 

lower than the generation of Tregs by DCs treated with ACs alone [Fig. 4.13] (p<0.001, two-way 

ANOVA). Pre-treatment with NCs did not affect the generation of Tregs induced by the CM of 

CpG-treated DC (p>0.05, two-way ANOVA).  
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Figure 4.14 Apoptotic cells partially prevent the CpG-induced reduction of DC capacity to induce 

generation of regulatory T cells. Splenocytes were incubated for 5 days with various concentrations of the 

CM from CpG-treated DCs (‘None-CpG-CM’), or CpG-treated DCs that had been pre-incubated with 

apoptotic cells (‘AC-CpG-CM’) or pre-incubated with necrotic cells (‘NC-CpG-CM’). None-CpG-CM 

induced generation of significantly less Tregs than the CM of untreated DCs (None-CM of Fig. 4.13) 

(p<0.001, two-way ANOVA). Pre-treating DCs with ACs slightly inhibited this decrease, as AC-CpG-CM 

induced the generation of significantly more Tregs than did None-CpG-CM (p<0.001, two-way ANOVA). 

Pre-treating DCs with NCs slightly enhanced this decrease, as NC-CpG-CM induced significantly fewer 

Tregs than did None-CpG-CM (p<0.01, two-way ANOVA). Data is from 3 separate experiments, bars 

indicate SD. 
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4.3 Discussion 

4.3.1 The apoptotic-cell induced cytokine profile in resting and activated 

DCs 

It is important to note that it is only secretion of cytokines that is represented in these results – the 

assays employed here detect cytokines released into the culture media, and as such make no 

distinction between cytokines released from pre-formed vesicles and cytokines arising from de novo 

synthesis. Apoptotic cells had no significant effect on secretion of the proinflammatory cytokines 

IL12p40 or IL6 by resting DCs. ACs significantly increased secretion of the anti-inflammatory 

cytokines IL10 (almost 8-fold) and increased TGFβ (more than two-fold). 

These in vitro results correlate well with in/ex vivo cytokine measurements by Kushwah et al (2009). 

They examined the cytokine positivity of DCs taken from lymph nodes local to recent injections 

of apoptotic cells or necrotic cells. It was found that apoptotic cells did not induce IL12 in DCs 

(5% of DCs were IL12-positive compared to 30-35% after LPS injections). Contrary to the current 

findings, necrotic cells also induced no increase in IL12. However, apoptotic cells, but not necrotic 

cells, induced an increase of TGFβ (198), similar to the findings of the current study.  

Apoptotic cells suppressed LPS-induced L12 and IL6 secretion in this investigation, consistent 

with the effect observed by Williams et al (2008), where apoptotic cells also suppressed TNFα and 

DC-produced IFNγ (93), indicating that apoptotic cells in the current study may also suppress a 

wider range of proinflammatory cytokines than just the two examined. DC-produced IFNγ was 

not studied here, but is implicated in DC expression of IDO, in turn implicated in CD4+ T cell 

suppression (93). Curiously, though, IL6 has also been acknowledged in a tolerogenic role (247), 

but this is not supported by the evidence from the current study. The inhibition of IL12 secretion 

in response to CpG echoes, but is not as dramatic as, landmark findings by Stuart et al (2002) 
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whereby ACs completely inhibited the IL12 response to substantial doses of LPS (14). This partial 

abrogation of IL12 secretion is consistent with (and may be due to) earlier findings of the current 

investigation where up-regulation of some, but not all, co-stimulatory molecules in response to 

CpG were inhibited.   

IL10 secretion after LPS treatment in the current study is similar to that induced by similar 

concentrations of LPS in other studies e.g. (231) (anti-inflammatory cytokines are induced by co-

inflammatory stimuli, as essential mediators of resolution, like co-inhibitory molecules). The 

apoptotic cell-mediated suppression of IL12 production was observed in wildtype and IL10-/- 

mice, demonstrating that IL10 is not essential for apoptotic cell suppression of IL12 production. 

IL10 may indeed cause suppression of DC in this system, either directly on IL12 or otherwise, but 

this data suggests that if this is a mechanism of suppression it is a redundant one. In this case, 

TGFβ may be a more important cytokine for tolerance, though some reports indicate that neither 

IL10 nor TGFβ are required for apoptotic cell-mediated suppression of IL12 production (14). 

However, this is in contrast with growing evidence that IL10 is pivotal in apoptotic cell-mediated 

immune suppression (248). Clearly, this requires further investigation. 

 

4.3.2 The apoptotic cell influence on the DC mediation of T cell function 

As discussed, the cytokine profile, and the changes in the CpG-induced cytokine profile, induced 

in DCs by apoptotic cells, is consistent with an anti-inflammatory role and consistent with other 

studies that use non-tumourous apoptotic cells generated with minimal cell stress. This profile was 

also consistent with the downstream effects, such as suppressed production of the key Th1 

cytokine IFNγ by T cells treated with the conditioned media (CM) of DCs treated with apoptotic 

cells, compared to production by T cells treated with the CM of untreated DCs. However, 

apoptotic cell treatment did not suppress the capacity of the CM of LPS-treated DCs to induce 
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IFNγ production by T cells. This may be due to there still being sufficient concentrations of IL12 

to allow T cell activation, or connected to the possibility of IL12-independent activation of T cells 

as executed by some DC subsets (249).This is consistent with reports that IL12 is not solely 

responsible for activation of T cells. It is regrettable that there was no time for a thorough 

investigation of dead cell effects on LPS-induced maturation, including determining the effect of 

apoptotic cells on cytokine production by LPS-stimulated DCs, in order to compare the findings 

with those of others. The lack of apoptotic cell-mediated suppression of LPS-enhanced IFNγ 

production is yet reconcilable with reports of apoptotic cell-mediated suppression of LPS-induced 

immunity, as IFNγ can elicit the production of IDO (250). Indeed, suppression of LPS-induced 

immune responses in vitro by apoptotic cells has been demonstrated to occur via an IFNγ-IDO-

dependent mechanism (93).    

Apoptotic cells did not suppress the capacity of DCs to induce IL17 production by T cells, though 

nor did they increase IL17 production from the baseline level induced by untreated DCs. 

However, apoptotic cells induced a complete abrogation of the ability of CpG-treated DCs to 

induce IL17 production by T cells. This is consistent with suppression of DC IL6 production (IL6 

in combination with TGFβ induces Th17 (251)) and suggests that apoptotic cells are efficient at 

suppressing CpG-induced Th17 immune responses. 

Interestingly, T cell assays in this investigation required CM, rather than modified (but possibly no 

longer actively secretive) DCs themselves. This suggests that the cytokine milieu induced by dead 

cells is necessary and sufficient, without the presence of directly dead cell-influenced DCs, to 

modify downstream cellular responses. Whether or not this is sufficient to influence an 

autoimmune response in vivo cannot be answered here, though injections of CM in the 

autoimmune diabetes model described in this study would provide answers – could CpG-treated, 

gp33-loaded DCs be prevented from inducing diabetes by administering them simultaneously with 
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media conditioned by apoptotic cell-treated DCs? This presents implications for both the initiation 

– and treatment – of autoimmune disorders. 

Certainly, targeting cytokines alone is sufficient to allay the symptoms of autoimmune disorders. 

Current biologics in development for the treatment of rheumatoid arthritis include the JAK (Janus 

kinase) inhibitors, which specifically inhibit the production of TNFα, IL2 and IL6 among other 

cytokines. It is not yet known if this novel class of treatment is disease-modifying, but Phase 3 

clinical trials have shown great success in improving symptoms of the disease, such that clinical 

studies have also moved into exploring the benefits of the drugs in other indications, including 

psoriatic arthritis, psoriasis, and kidney allograft rejection. The question remains – could 

administration of AC-induced DC cytokines effectively suppress autoimmune inflammation? The 

evidence provided in this study supports the notion that it could. Could such treatment exact a 

sustained reduction in inflammation? It is unlikely, if not administered at the time where 

autoimmunity began, in order to prevent the initiation of autoimmunity at the outset, as in our 

murine model (See Chapter 5). Of course, this is of little practical use – immunosuppressive 

cytokine therapy would have too great a risk of adverse effects (for example, opportunistic 

infections) to be of any use as a constant prophylactic. However, the slight reduction of CpG-

mediated inhibition of Treg induction suggests that induction of Tregs by AC-treated DC 

cytokines may prevail even within the throes of inflammation. Indeed, such mechanisms are 

important for the resolution of inflammation throughout and subsequent to immune responses. If 

such a mechanism can have a sufficiently deleterious effect on effector T cells, then there may 

exist the opportunity to maintain tolerance and induce remission in autoimmune disease. 
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4.3.3 The necrotic cell-induced cytokine profile and its effect on T cell 

function 

Necrotic cells induced significant levels of IL12 and IL6, such that each equated to as much as half 

of the corresponding CpG-induced levels. Furthermore, necrotic cells enhanced the CpG-induced 

secretion of IL12. Also, unlike apoptotic cells, no IL10 or TGFβ was induced. This is highly 

suggestive of a proinflammatory response. Although the increases in proinflammatory cytokines 

are smaller than those induced by CpG, they nonetheless translated into enhanced secretion of 

IFNγ by T cells. In fact, the CM of necrotic cell-treated DCs induced IFNγ production that is 

significantly greater than that induced by the CM of CpG- or LPS-treated cells. Curiously, the 

enhancement by necrotic cells of CpG-induced DC IL12 production does not equate to 

enhancement of IFNγ production by T cells. IFNγ secretion confirms that necrotic cells induce 

inflammation, as IFNγ is a key cytokine of the Th1 immune response.  

Necrotic cell-treated DC CM enhanced IL17 production by T cells. This provides an interesting 

connection between the association of autoimmunity with both IL17 and secondary necrosis-

induced inflammation in autoimmune disorders such as SLE. Curiously, however, these results do 

not support findings that IFNγ suppresses IL17 and Th17 differentiation (252). 

 

4.3.4 The effects of apoptotic cells and necrotic cells on induction of the 

generation of regulatory T cells 

Untreated DC CM induces dose-dependent generation of Tregs, therefore immature DC appear to 

constitutively promote tolerance. This has also been reported elsewhere in the constitutive 

generation of CD8+ T cells (253). Apoptotic cell-treatment enhanced the induction of Tregs, 

which, considered with the DC cytokine profile induced by apoptotic cells, is consistent with the 



144 

 

conventional understanding of Treg development by means of IL10 and TGFβ from DCs (91). 

Further, Tregs are well established as mediators of tolerance and prevention of autoimmunity, 

indicating that apoptotic cells have an active role in the maintenance of peripheral tolerance. This 

matches recent similar reports (198). 

CpG treatment of DCs abolished their ability to induce Tregs, consistent with the cytokine profile 

of CpG-treated DCs. Interestingly, CpG treatment of human plasmacytoid DCs has been reported 

to actually promote generation of CD4+CD25+Foxp3+ Treg (254). Apoptotic cell-treatment of 

DCs prior to CpG-treatment helped to partially prevent reduction of Tregs, demonstrating an 

ability of apoptotic cells to protect against the effects of subsequently encountered pro-

inflammatory mediators. This in turn suggests that the effect of apoptotic cells persists and is 

powerful enough to limit the inflammatory effects of as-yet-unphagocytosed apoptotic cells that 

progress to secondary necrosis. 

Because the gp33 peptide is only 9 amino acids in length, it cannot bind to, and therefore cannot 

be presented on, MHCII. Therefore, gp33 can only be presented on MHCI to CD8+ T cells, and 

so the CD4+ Tregs produced in the assay described are polyclonal and not gp33-specific. Jonuleit 

et al (2000) induced CD4+CD25+ Tregs by repeatedly stimulating CD4+ T cells (from human cord 

blood) with immature DCs (255). These Tregs were capable of suppressing Th1 cells in an 

antigen-specific manner. In addition, this was as a result of direct Treg-Th1 cell-cell contact, 

independent of IL-10 or DC-Th1 contact. It is possible to speculate that the CD4+ Tregs in this 

study are behaving similarly in vitro, and could have a similar influence in the in vivo setting of the 

diabetes model described later. 
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4.3.5 Summary 

Apoptotic cells induce secretion of the anti-inflammatory cytokines IL10 and TGFβ by DCs. 

Apoptotic cells also have the power to partially suppress the secretion of inflammatory cytokines 

secreted in response to CpG. However, IL10 may be redundant in this suppression. This is 

consistent with reports of a non-exclusive role for IL10 in suppression of autoimmunity in a 

murine model of EAE (191).  We may speculate that IL10 and TGFβ act synergistically in the 

suppression of DC, and that TGFβ may be a non-redundant mechanism. It appears likely that 

IL10 plays a very minor role in the instigation of apoptotic cell-mediated suppression. However, 

IL10 may still be important in the longer term inhibition of immune responses. These effects of 

apoptotic cells describe the conditions necessary for the increased induction of 

CD4+CD25+Foxp3+ Tregs by apoptotic cell-treated DCs, and explain the ability of apoptotic cells 

to partially prevent the reduced Treg induction by DCs that is caused by CpG. 

A more extensive examination of cytokine production by apoptotic cell- and necrotic cell-treated 

DCs was regrettably not undertaken due to time and resource constraints, but such an extension is 

much required for a thorough understanding of the effects of dead cells on DCs. Additionally to 

IL12p40, IL6, IL10 and TGFβ, it is highly recommended that production/secretion of the 

cytokines IL1α, IL1β, TNFα, IL23 and prostaglandins are assessed, in order to fully ascertain the 

mechanisms of possible AC-induced tolerance, NC-induced inflammation, and any other 

peripheral events that may be incurred as a result. It would also be interesting to examine more 

Th2 cytokines (IL10 can promote Th2 immunity, as well suppress Th1 immunity) and see if 

humoral immunity is at all affected, to complement the surmounting information acquired 

regarding Th1 and Th17 immunity: IL2 and IFNγ are consistent with the Th1 cytokine profile that 

mediates cell-mediated immunity, and Th17 is central to the Th17 immune response, therefore, the 

results are indicative of apoptotic cells ability to suppress Th1 and Th17 immune responses. 
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Cytokine immunology is complicated by the apparent dual roles of many cytokines. In this respect, 

the current findings can support or contrast with various reports of downstream events. This 

investigation demonstrates anti-inflammatory effects of apoptotic cells on DCs, associated with 

increased IL10 and TGFβ secretion, and reduced IL12. Consequently, apoptotic cells reduce the 

capacity of DCs to elicit Th1 responses, as corroborated by reduced T cell production of IFNγ 

and IL2, and reduce the capacity to elicit Th17 responses as seen in reduced IL17 production. 

Overall T cell proliferation induced by conA is also reduced, indicating an inhibitory capacity of 

apoptotic cell-treated DCs, whilst necrotic cells enhance. 
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CHAPTER 5 – The effect of  
apoptotic cells and necrotic cells on the 
adaptive immune response in vivo 

 

5.1 Introduction 

Dendritic cell expression of co-stimulatory and co-inhibitory receptor ligands, production and 

inhibition of cytokines, and interaction with T cells, all culminate in vivo in what is dichotomised 

into either the initiation of an adaptive immune response or the induction of tolerance. Apoptotic 

and necrotic cells have been associated in various ways to immune tolerance and autoimmunity. 

To fully examine the effect of dead cells on DCs, therefore, it was important to determine their 

influence on DC capacity to generate an autoimmune response in vivo. To this end, RIP-GP 

transgenic mice (first described by Ohashi et el (3)) were bred in order to adapt an established 

model of inducible antigen-specific autoimmune diabetes. RIP-GP mice contain the gene for the 

lymphocytic choriomeningitis virus (LCMV) glycoprotein under the control of the rat insulin 

promoter (RIP). These mice express the glycoprotein (GP) on the insulin-producing islet β cells of 

the pancreas. Thus, a GP-specific immune response causes destruction of the islet β cells and 

results in diabetes.  

Here, a new model of inducing such an immune response and inducing diabetes in RIP-GP mice is 

described. This model is novel in the use of CpG to activate DCs that are then pulsed with gp33 

peptide – the immunodominant MHCI epitope (33-41) of the LCMV GP [Fig. 5.1] – before being 

administered according to a specific schedule [Figure 5.2]. Our results showed that DCs that are 

treated in this way and then injected into RIP-GP mice induce an autoimmune reaction that results 

in diabetes. Finally, these DCs were pre-treated with apoptotic and necrotic cells (after dead cell-
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DC coincubation DCs were isolated from non-phagocytosed dead cells by using CD11c-specific 

magnetic beads for MACS) in order to investigate the effect of dead cells on DC-induced 

autoimmunity. We hypothesised that the apoptotic cell-mediated suppression of CpG-induced DC 

maturation, as observed in the in vitro assessment of surface phenotype and cytokine profile, would 

elicit gp33-specific tolerance and inhibit the onset of autoimmune diabetes [Fig. 5.3] 
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Figure 5.3 Hypothesised model of apoptotic cell

RIP-GP model. Pre-treating DCs with apoptotic cells inhibits CpG

presented to T cells by immature, tolerogenic DCs. Gp33

anergy or conversion to Tregs. Gp33

immune destruction and no diabetes is induced

 

  

model of apoptotic cell-mediated suppression of DC-induced diabetes

treating DCs with apoptotic cells inhibits CpG-induced maturation, such that gp33 is 

presented to T cells by immature, tolerogenic DCs. Gp33-specific T cells are induced to undergo deletion, 

anergy or conversion to Tregs. Gp33-specific tolerance ensues, ensuring that Islet β cells are safe from 

immune destruction and no diabetes is induced.  
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5.2 Results 

5.2.1 Self-antigen- and maturation-dependent DC immunisation induces diabetes in RIP-GP 

transgenic mice 

DCs were treated with CpG/LPS/neither, then pulsed with gp33 peptide. They were then injected 

subcutaneously into RIP-GP mice on day 0, day 2 and day 4, at 2-5x106 DCs per injection [Figs. 

5.1 and 5.2]. Blood glucose levels of the mice were measured one day prior to the first injection 

then three times a week until the end of the experiment or death, for indication of onset of 

diabetes. Diabetes was defined, as according to veterinary standards, as three consecutive 

measurements of blood glucose concentrations of 15mM or above. 

Injections of DCs that had been treated with gp33 alone or CpG alone failed to induce diabetes as 

indicated by blood glucose concentrations of all mice in these groups remaining below 15mM 

throughout the experiment [Figs. 5.4A & Fig. 5.4B, respectively].  

Injections of DCs that had been treated with both CpG and gp33 induced diabetes rapidly in five 

of six mice [Fig. 5.4C], which is a significant increase in diabetes incidence compared to control 

injections (no CpG treatment) (p<0.05). The earliest blood glucose measurement of >15mM 

occurred on Day 9, in one mouse, 5 days after the final injection. The first measurement of 

>15mM (1˚15mM) occurred in mice most commonly on Day 11, whilst the third measurement of 

>15mM (3˚15mM) (that is, confirmed diabetes) occurred most commonly on Day 16. 

Other routes of administration were explored, and mice administered with CpG-treated, gp33-

pulsed DCs by means of peritoneal injection also induced diabetes, in two of three mice 

[Fig. 5.4D]. 1˚15mM and 3˚15mM occurred on Day 7 and 11, respectively, for one mouse and Day 

9 and 14, respectively, for the other.  
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Administration of only two SC injections of CpG-treated, gp33-pulsed DCs was not sufficient to 

induce diabetes in any mice [Fig. 5.4E]. Three injections of LPS-treated, gp33-pulsed DC induced 

diabetes in only one of three mice [Fig. 5.4F], where 1˚15mM and 3˚15mM occurred on Day 9 and 

14, respectively. 1˚15mM was achieved with a ‘borderline’ measurement of 15.3, therefore 

measurements were continued until a fourth reading of >15mM before euthanasia. 

A regimen of three SC injections of CpG-matured, gp33-loaded DCs efficiently induces a high 

incidence of diabetes in RIP-GP mice. In this RIP-GP model of diabetes, it is a necessary 

condition for the DCs to be both mature and gp33-loaded, and to be administered on no less than 

three consecutive occasions. Diabetes can also be induced with LPS-matured, gp33-loaded DCs, 

though seemingly less effectively. 

  

 

 

 

 

 

Figure 5.4 (Below) CpG-treated DCs that have been pulsed with gp33 peptide induce diabetes in RIP-GP 

mice. RIP-GP mice were injected (orange arrows) with variously-treated DCs and the blood glucose 

concentrations were recorded. Three consecutive readings of blood glucose above 15mM, or until the need 

for euthanasia, were considered indicative of diabetes. A. Three subcutaneous injections of gp33-pulsed 

DCs did not induce diabetes in any mice. B. Three subcutaneous injections of CpG-matured DCs did not 

induce diabetes in any mice. C. Three subcutaneous injections of CpG-matured, gp33-pulsed DCs induced 

diabetes in five of six mice. D. Three intraperitoneal injections of CpG-matured, gp-33 pulsed DCs induced 

diabetes in two of three mice. E. Two subcutaneous injections of CpG-matured, gp33-pulsed DCs did not 

induce diabetes. F. Three subcutaneous injections of LPS-matured, gp33-pulsed DCs induced diabetes in 

one of three mice.  
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Figure 5.4 See p149. 
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5.2.2 Self-antigen- and maturation-dependent DC immunisation requires sufficient activation of 

DCs by CpG, in order to induce diabetes in RIP-GP transgenic mice 

The minimum stimulation required to confer on self-antigen-loaded DCs a capacity to induce 

diabetes was determined, in order to maximise the possibility of suppression by ACs. As 

established in 5.2.1, a treatment of 1µg/ml CpG for 24hrs was sufficient to activate DCs enough 

that, after being pulsed with gp33 and injected according to the regimen described in 5.2.1, they 

induced diabetes in five of six mice [Fig. 5.4]. 100ng/ml CpG for 24 hours was tested next and 

found to also be sufficient to activate DCs enough that diabetes was induced in three of three mice 

[Fig. 5.5A]. 50ng/ml for 24 hours was sufficient for induction of diabetes in two of three mice 

[Fig. 5.5B]. 20ng/ml for 24 hours was insufficient for induction of diabetes in any of three mice 

[Fig. 5.5C].  

Shorter CpG treatment times were then tested, where 1µg/ml and 100ng/ml for 8 hours were 

sufficient to cause diabetes in two of three mice each [Figs. 5.5D and 5.5E, respectively]. 8 hours 

of 50ng/ml CpG was sufficient to cause diabetes in just one of three mice [Fig. 5.5F]. 8 hours of 

100ng/ml CpG was deemed close to minimum stimulation to infer diabetes-inducing capabilities 

upon DC, and was therefore the treatment used subsequently in all diabetes experiments. 

Figure 5.5 (Below) Self-antigen and maturation-dependent DC immunisation requires a minimum 

activation of DCs, in order to induce diabetes in RIP-GP transgenic mice. RIP-GP mice were injected 

(orange arrows) with DCs that had been incubated with various CpG treatments then pulsed with gp33. 

Three consecutive readings of blood glucose above 15mM, or until the need for euthanasia, were 

considered indicative of diabetes. A. 100ng/ml CpG for 24 hours was sufficient to activate gp33-loaded 

DCs enough that diabetes was induced in three of three mice. B. 50ng/ml for 24 hours was sufficient DC-

activation for induction of diabetes in two of three mice. C. 20ng/ml for 24 hours was insufficient DC-

activation for induction of diabetes in any of three mice. D. 1µg/ml for 8 hours was sufficient DC-

activation for induction of diabetes in two of three mice each. E. 100ng/ml for 8 hours was sufficient DC-

activation for induction of diabetes in two of three mice. F. 8 hours of 50ng/ml CpG was sufficient DC-

activation to cause diabetes in just one of three mice. 
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Figure 5.5 See p151.  
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5.2.3 CpG/gp33-DC immunisation causes an adaptive immune response that is localised to the 

pancreas 

To confirm that CpG/gp33-DC immunisation induced diabetes via an adaptive immune response, 

DC and T cell populations of the pancreatic draining lymph nodes (PDLN), the inguinal lymph 

nodes (ILN) (for comparison) and the spleen (representing circulating T cells in the blood) were 

examined. The ILNs, PDLNs and spleens were removed on Day 10 (six days after final injection 

of DCs treated with 8hr 100ng/ml CpG and pulsed with gp33). 

Diabetic mice (i.e. injected three times with DCs treated with 100µg/ml CpG for 24 hours, plus 

gp33 peptide) and pre-diabetic mice (injected similarly, but as demonstrated earlier, not all diabetic 

mice are symptomatic by Day 10), both referred to from herein as diabetic mice, were compared 

with control i.e. non-diabetic mice (mice injected with DCs that had been pulsed with gp33 alone). 

Diabetic mice had significantly more CD40-high, i.e. mature, DCs in the PDLN and spleen 

(p<0.01 and p<0.05, respectively) [Fig. 5.6C], compared with the non-diabetic mice. There was no 

significant difference between the ILN DC populations of each group. Diabetic mice had 

significantly more active CD4+ T cells than non-diabetic mice, as indicated by high expression of 

CD44, in the spleen (p<0.05) [Fig. 5.6A]. Diabetic mice also had significantly more active CD8+ T 

cells in the PDLN and spleen than non-diabetic mice (p<0.05 for both PDLN and spleen) [Fig. 

5.6B]. There was no significant difference in populations of activated T cells in the ILNs of 

diabetic mice compared with the ILNs of non-diabetic mice.  Together, these results indicate that 

gp33-loaded mature DCs initiate an adaptive immune response that localises to the pancreas.  
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Figure 5.6 See p155. 
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Figure 5.6 (p154) CpG/gp33-DC immunisation causes a pancreas-specific adaptive immune response. 

Inguinal lymph nodes (ILN), pancreatic draining lymph nodes (PDLN) and spleens were removed on Day 

10 from mice injected with gp33-loaded DCs (Non-diabetic) and mice injected with CpG-treated, gp33-

loaded DCs (Diabetic), according to the regimen described in 5.2.1. A. Diabetic and non-diabetic mice have 

similarly low numbers of activated (CD44-hi) CD4+ T cells in the ILN. Both sets of mice have similarly 

low numbers of CD4+ T cells in the PDLN. Diabetic mice have significantly more activated CD4+ T cells 

in the spleen than do non-diabetic mice (p<0.05). B. Diabetic and non-diabetic mice have similarly low 

numbers of activated (CD44-hi) CD8+ T cells in the ILN. Diabetic mice have significantly more activated 

CD8+ T cells in the PDLN than do non-diabetic mice (p<0.05). Diabetic mice have significantly more 

activated CD8+ T cells in the spleen than do non-diabetic mice (p<0.05). C. Diabetic and non-diabetic 

mice have similarly low numbers of activated (CD40-hi) DCs in the ILN. Diabetic mice have significantly 

more activated DCs in the PDLN than do non-diabetic mice (p<0.01). Diabetic mice have significantly 

more activated DCs in the spleen than do non-diabetic mice (p<0.05). Significance by unpaired T test. Each 

open circle represents the average reading of triplicate samples of a single mouse, as does each closed 

triangle. 
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5.2.4 The capacity of CpG-activated, gp33-loaded DC to induce diabetes in RIP-GP mice is 

suppressed by apoptotic cells, and also (non-significantly) by necrotic cells   

Once established, the CpG-RIP-GP model of diabetes was utilized to assess the effect of dead 

cells on DC function in the context of autoimmunity and tolerance in vivo. Diabetes-inducing DCs 

were treated with ACs or NCs then injected according to the regimen described in 5.2.1. When not 

pre-treated with dead cells, CpG-treated gp33-loaded (CpG-gp33) DCs induced diabetes in eight 

of nine mice (89% incidence) [Fig. 5.7A]. CpG-gp33 DCs that were pre-treated with ACs induced 

diabetes in just two of seven mice (29% incidence) [Fig. 5.7B], significantly less than DC that were 

not pre-treated (p<0.05). Surprisingly, pre-treatment of DCs with NCs also decreased diabetes 

induction, though not to a statistically significant extent, as these DCs induced diabetes in just 

three of six mice (50%)  [Fig. 5.7C]. The incidence rate of mice injected with CpG-gp33 DCs is 

significantly different to the incidence rate of mice injected with AC-pre-treated CpG-gp33 DCs 

[Fig. 5.7D] (p<0.05, log-rank (Mantel-Cox) test), whereas the incidence rate of mice injected with 

NC-pre-treated CpG-gp33 DCs is not significantly different to either rate. 

 

 

 

 

 

Figure 5.7 (p157) The capacity of CpG-activated, gp33-loaded DC to induce diabetes in RIP-GP 

mice is suppressed by apoptotic cells, and also (non-significantly) by necrotic cells. Mice were 

injected three times (Days 0, 2 and 4, orange arrows) with DCs that had been treated with CpG and pulsed 

with gp33 peptide. Blood glucose was monitored for elevations indicative of diabetes. A. This treatment 

induced diabetes in 89% of mice. B. When the DCs were incubated with ACs before CpG and gp33 

treatment, diabetes incidence fell significantly to 28% (p<0.05). C. DCs incubated with NCs before CpG 

and gp33 treatment also induced a lower incidence of diabetes than DCs treated with CpG and gp33 alone, 

though not significantly. D. Diabetes incidence graph compares the three treatments directly. For graphs A, 

B and C, each line represents the blood glucose concentrations of a single mouse.   
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Figure 5.7 See p156. 
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5.2.5 Necrotic cells, but not apoptotic cells, induce DC expression of TRAIL, CD69 and CD95 

The unexpected decrease in the incidence of diabetes by way of pre-treating DCs with necrotic 

cells was, though not statistically significant, of huge interest. Necrotic cells, but not apoptotic 

cells, increased number of DCs expressing high levels of TNFα-related apoptosis-inducing ligand 

(TRAIL) from 20% to 37% (p<0.05, one-way ANOVA), increased the number of DCs expressing 

high levels of CD69 from 17% to 39% (p<0.05), one-way ANOVA), and increased the number of 

DCs expressing high levels of CD95 (Fas) from 5% to 13% [Fig. 5.8 left-hand side column]. CpG-

treatment did not affect expression of TRAIL, CD69 or CD95 or their upregulation induced by 

necrotic cells [Fig. 5.8 right-hand side column].  
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Figure 5.8 Necrotic cells, but not apoptotic cells, induce DC expression of TRAIL, CD69 and CD95. 

Necrotic cells induced DC upregulation of TRAIL, CD69 and CD95 (Fas) (all p<0.05). CpG treatment did 

not affect expression of either the resting level expression of the molecules or the necrotic cell-induced 

upregulation. ‘a,’  and ‘b’ signify significantly different means, one-way ANOVA. Data for each molecule is 

from three separate experiments or more, bars indicate SD. 
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5.3 Discussion 
 

5.3.1 Diabetes induction by treated DCs 

This investigation demonstrated diabetes induction by means of treating DCs with the TLR-ligand 

CpG and pulsing them with gp33 peptide before injecting them into RIP-GP mice. Surprisingly, 

LPS, appearing in in vitro experiments to be the less acquiescent to AC-induced suppression, was 

less effective at inducing diabetes. Induction with CpG-treated gp33-loaded DCs required three 

injections with doses of approximately 2-5x106 DCs per injection. This regime and dosage 

correlates well with a previous report of diabetes induced in the RIP-GP model by transgenic, 

LCMV-GP-expressing DCs (256). In the same study, single injections failed to induce diabetes, 

but 50% of mice injected with three doses of 105 DCs in 6-day intervals, or four doses of 104 DCs 

in 2-day intervals, developed diabetes between Days 10-14. A further 40% developed 

hyperglycaemia between Days 18-21. 

The requirement to pulse DCs with gp33 peptide in order for them to induce diabetes was 

indicative of gp33-specific immunity. Diabetes can be induced in mouse models by non-immune 

methods. For example, very high doses of streptozotocin can rapidly induce the disease by direct, 

chemical destruction of islet β cells, rather than β cell-specific killing by immune cells (257). To 

confirm that CpG/gp33-DC immunisation induced diabetes via an adaptive immune response, 

DC and T cell populations of the pancreatic draining lymph nodes (PDLN) were compared with 

those of the inguinal lymph nodes (ILN), and populations in the spleen (representing circulating T 

cells in the blood) were also examined. The ILNs, PDLNs and spleens were removed on Day 10 

(six days after final injection of DCs treated with 8hr 100ng/ml CpG and pulsed with gp33), 

which, according to initial tests demonstrating symptomatic diabetes by Day 10 in most mice, 

would be the optimum time for an immune reaction to be confirmed by the detection of activated 
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DCs and T cells in the PDLN and in the blood (spleen).  Diabetic mice had significantly more 

CD40-high DCs and CD44-high CD8 T cells in the spleen and PDLN than in the ILN, whereas 

non-diabetic mice did not. Diabetic mice also had significantly more CD44-high CD4 T cells in 

the spleen than in the ILN, unlike non-diabetic mice. The presence of activated DCs and T cells in 

the PDLN and not the ILN demonstrated that a systemic immune response occurred that was 

locally active in the pancreas. This response no doubt initiated in the draining lymph nodes at the 

injection site, where naive T cells were primed, entered the blood circulation (hence high numbers 

in the spleen) and then the pancreas. This would have been followed by a second wave of T cell 

activation and proliferation in the pancreatic lymph node induced by the initial β cell destruction.  

 

5.3.2 Apoptotic cell-mediated suppression of diabetes 

Apoptotic cells were effective at inhibiting the ability of CpG-treated gp33-loaded DCs to induce 

diabetes in the RIP-GP model. Although this was accurately hypothesised due to the suppressive 

effects seen in the in vitro stages of the investigation, it was no less encouraging to observe the 

effects in a complete immune response in vivo. This is a novel demonstration of apoptotic cell-

mediated suppression of autoimmune diabetes, and a novel demonstration of apoptotic cell-

mediated suppression of a CpG-induced immune response. The latter findings are supported by a 

demonstration of PS-mediated inhibition of CpG-induced immunity in vivo (258). The 

confirmation of the tolerogenicity of apoptotic cells has substantial implications both for practical 

applications and for the direction of future research, as is discussed in the Concluding Discussion.  

Whereas we cannot be sure of the AC-treated DC-mediated generation of gp33-specific CD8+ 

Tregs and their role in the suppression of diabetes in this model (though they are almost certain to 

play a role), we have described in Chapter 4 the induction of CD4+CD25+ Tregs by AC-treated 

DCs. We may speculate as to how they suppress CD8+ T cell immunity, the primary mediator of 
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islet β cell damage. CD4+C25+ Tregs can suppress polyclonal CD4+ T cells (259), which of 

course has an impact on T cell-mediated immunity because CD4+ T cells are required for a full 

and efficient CD8+ T cell response (260). Also, CD4+C25+Foxp3 Tregs have been shown to 

directly suppress CD8+ T cells by cell-bound TGFβ-mediated suppression (261) or by inducing 

Fas-mediated apoptosis (262). In addition, polyclonal CD4+C25+ Tregs that are not specific to 

gp33 in the in vivo model here may nonetheless induce immunosuppression specific to a range of 

islet β cell antigens. In a mechanism known as ‘infectious tolerance,’ Tregs induce tolerance not 

only to a specific antigen but also to others co-expressed by the same APC, generating new Tregs 

that will do likewise to create an increasing tolerance repertoire (263). In the ‘bystander 

suppression’ mechanism, a common APC is not even required, as soluble factors mediate the 

induction of tolerance (264). The CD4+CD25+ Tregs described n Chapter 4 therefore have a 

potentially key role in the suppression of diabetes observed in the in vivo model. Just how essential 

that role is, though, could be determined in future experiments by selective deletion of CD4+ 

Tregs in the tolerance model – failure for tolerance to be achieved would indicate an indispensable 

function.  

The accomplishment of apoptotic cells in generating successfully tolerogenic DCs in this model 

transforms some findings from earlier in the investigation into more noteworthy results. Firstly, it 

can now be deduced that total inhibition of co-stimulatory molecules is not necessary for deletion 

of or induction of anergy in autoreactive T cells. Suppressed induction of diabetes by pre-treating 

CpG-treated DCs with apoptotic cells, despite some co-stimulatory markers remaining highly up-

regulated, is consistent with reports that DCs can direct Treg expansion regardless of their 

maturation state (265). Once again, the cytokine profile appears to be of key significance in driving 

tolerance.  

 

5.3.3 Reduction of diabetes incidence by necrotic cells 
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The decrease in the incidence of diabetes by pre-treating DCs with necrotic cells was very 

unexpected. Srivastava and Basu et al (2000) postulated that necrotic cell-induced maturation of 

DCs may be a slower, much more regulated form of maturation than that induced by LPS and 

other PAMPS (113). Involvement of this as-yet hypothetical pathway in this case may have 

interrupted the CpG-mediated pathway of maturation and prevented DCs from reaching their T 

cell-stimulatory potential.  

Although not statistically significant, the necrotic cell-induced reduction was of huge interest and 

prompted closer inspection of necrotic cell-treated DCs. Because the in vitro evidence 

accumulated thus far in the investigation suggested that necrotic cell-treated DCs have a high 

capacity to stimulate T cells, especially by way of pro-inflammatory cytokines, it was hypothesised 

that necrotic cell-treated DCs inhibit immune responses by direct inhibition of (already activated) 

effector cells. Although necrotic cells induced upregulation of co-inhibitory molecules, they also 

induced upregulation of co-stimulatory molecules, unlike apoptotic cells, so suppressive effects by 

these means seemed implausible. Other surface molecules were examined and it was found that 

molecules involved in cell death were upregulated by necrotic cells but not apoptotic cells. 

Necrotic cells induced significant upregulation of the death inducer TRAIL, the death receptor 

CD95 (Fas), and the T cell activation marker CD69.    

CD69 is fairly ubiquitous in lymphocytes but it is chiefly associated with being a T cell activation 

marker involved in promoting early T cell proliferation (266). However, CD69 also appears to 

have a regulatory role in reducing infection-induced immunopathology, as its absence is associated 

with inflammatory diseases subsequent to Listeria monocytogenes infection (267).  Furthermore, 

diminished CD69 has been associated with compromised Treg function and subsequent systemic 

sclerosis (268), and exacerbated disease in collagen-induced arthritis (269).  

TRAIL, an apoptosis inducing molecule, is constitutively expressed on many cell types. Over-

expression of TRAIL on DCs can help protect mice from GVHD and leukaemia relapse (270).  
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TRAIL-upregulation may be the pathway responsible for findings observed by Liang et al (2006) 

whereby DCs can be mature but nonetheless tolerogenic – by inducing T cell death (271). 

Furthermore, TRAIL expression has been observed to induce Tregs (272), though necrotic cell 

treatment of DCs is not associated with an increase in Tregs in this study. 

Increased Fas expression increases the potential for apoptosis induced by Fas-ligand 

(FasL)-bearing cells or soluble FasL. Necrotic cell-upregulated expression of death receptors on 

DCs warrants that the DC death studies performed earlier in the investigation [Section 3.2.2.2] be 

extended to longer periods of time. This may indicate the promotion of death in activated, self-Ag-

carrying DCs, though the real-life, functional implications of this degree of Fas up-regulation 

requires further study, particularly in vivo. It is tempting to speculate that the potential promotion 

of death in necrotic cell-treated DCs represents a simple immunoregulatory mechanism that 

ensures such DCs do not survive long enough to induce serious autoimmunological consequences.  

Confusingly, these three molecules are involved in three different mechanisms – direction of T cell 

responses, inducing apoptosis in others, and inducing its own apoptosis. However, with some 

conjecture, all can be associated with a diminished immune response: Modulation of T cell 

behaviour towards anergy or Treg conversion; induction of apoptosis in activated T cells that do 

not respond to the first option; or, failing the first two options, self-destruction in order to prevent 

prolonged release of proinflammatory cytokines (indeed, the initial secretion of proinflammatory 

mediators may be important for tolerance by recruiting professional phagocytes to clear a site of 

extensive necrotic damage).  

 

5.3.4 Summary 

This investigation has demonstrated a novel method of inducing diabetes in a modified version of 

an established experimental system. Confirmed autoimmune diabetes was induced by way of a 
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reliable method and a well characterised immune response. The DC-mediated induction of 

diabetes in this model allowed for well-controlled modifications of DCs in vitro to be examined in 

the context of full immune responses in vivo. As such, the full implications of the distinct 

differences between apoptotic cells and necrotic cells in their effects on DCs could be observed.  

Apoptotic cells accurately conveyed their in vitro tolerogenic characteristics in their suppression of 

the DC-induced onset of diabetes. Interestingly, necrotic cells, which in vitro displayed distinct 

pro-inflammatory effects, partially (not significantly) suppressed the onset of diabetes. Upon closer 

inspection of surface molecules, it is possible to hypothesise that upregulation of Fas, CD69 and 

TRAIL represents a comprehensive immunoregulatory mechanism involving immediate 

recruitment of immune cells (by pro-inflammatory cytokine secretion), deletion and/or anergy in 

self-reactive T cells, and death.   
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CHAPTER 6 – General Discussion 

 

6.1 Key findings 

In this investigation, various methods of inducing cell death were evaluated. Reliable methods of 

generating homogenous populations of well-characterised apoptotic cells or necrotic cells, namely 

24-hour camptothecin-treated FDCP and 60˚C incubation for 30 minutes, respectively, were 

developed. These methods were employed to show effects of apoptotic and necrotic cells on 

dendritic cells and in vitro and in vivo immune responses for the first time. 

In vitro findings support previous reports of the anti-inflammatory response of DCs to apoptotic 

cells, and the inflammatory response of DCs to necrotic cells. The previously-reported inhibitory 

effect of apoptotic cells on the LPS-induced Th1 response is supported here, such as the 

production of IL10 and TGFβ and suppression of IL12. However, the previously-reported 

inhibitory effect of apoptotic cells on LPS-induced upregulation of co-stimulatory molecules is 

contested. Apoptotic cells, but not necrotic cells, are shown for the first time to have a suppressive 

effect on CpG-induced upregulation of co-stimulatory molecules and pro-inflammatory cytokines. 

Novel observations of the upregulation of DC expression of co-inhibitory molecules B7DC and 

B7H1-4 induced by both apoptotic cells and necrotic cells have been described here.  

Apoptotic cells suppressed the capacity of untreated and CpG-treated, but not LPS-treated, DCs 

to elicit IFNγ production by T cells. Apoptotic cells, but not necrotic cells, suppressed CpG-

induced DC capacity to enhance T cell proliferation and production of IL2 and IL17. Apoptotic 

cells, but not necrotic cells, induced regulatory T cells and partially restored the induction that was 

suppressed by CpG-treated DCs. Finally, apoptotic cell-modulation of DCs inhibited the induction 
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of autoimmunity in a novel modification of an in vivo model of diabetes. Interestingly, the 

proinflammatory phenotype of necrotic cell-treated DCs did not translate into enhanced immunity 

in vivo. Instead, a tolerogenic outcome occurs, that the data indicates is not mediated by 

CD4+CD25+Foxp3+ Tregs.  Novel evidence for the possibility of necrotic cell-induced tolerance 

by a variety of means, including direct T cell killing, has been described. 

 

 

6.2 Uptake of apoptotic cells 

Since earlier experiments show that a significant proportion of DCs do not phagocytose ACs, it 

may be argued that DCs that have not phagocytosed dead ACs respond to LPS in the normal 

manner and inhibit or subdue (presumably by the action of cytokines) the response of those that 

have phagocytosed ACs. That is, ACs would inhibit PAMP-induced CD40 (etc) up-regulation were 

it not for the presence of other, matured, DCs. This would suggest that AC-suppressed DCs may 

be subservient to the influence of mature DCs. It also raises the question of whether DCs require 

direct interaction with ACs in order to become tolerogenic, or can become suppressed by 

association (directly or otherwise) with other, AC-suppressed DCs. 

However, we have demonstrated that these populations of AC-treated DCs, of which less than 

25% have phagocytosed ACs [Fig. 3.7], incur suppression of proinflammatory cytokines, up-

regulation of anti-inflammatory cytokines, and suppression of capacity to induce diabetes in vivo. 

This would suggest that inhibition of up-regulation of co-stimulatory molecules is not essential for 

the tolerogenic (or at least, reduced inflammatory) function of DCs. Without further 

experimentation, it is difficult to confirm if a) cytokine and functional changes occur in only those 

DCs that have phagocytosed ACs, in which case the influence of these tolerogenic DCs is 
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sufficient to negate that of non-tolerogenic DCs that presumably respond to PAMPs in the normal 

manner (i.e. there is a net tolerogenic effect), or b) DCs that have phagocytosed ACs confer 

tolerogenic status upon those DCs that have not phagocytosed ACs (i.e. there is a total tolerogenic 

effect). The lack of PAMP-induced proinflammatory cytokines in cultures of DCs with ACs does 

not corroborate the case for either situation, considering that the methods of tolerogenesis by DCs 

are not fully known. For example, in situation a, tolerogenic DCs may absorb, destroy or otherwise 

nullify proinflammatory cytokines nearby (or counter them by induction of IL10, TGFβ and/or 

IDO). Or, in situation b, there is simply no inflammatory response because effectively all DCs 

become tolerogenic. Further experiments that may help clarify, including the use of cytokine-

permeable membranes, whereby a cytokine-permeable membrane separates two identical 

populations of DCs, to only one of which are added ACs, could be very informative.  

 

6.3 Co-inhibitory molecules 

Although the immune effects of B7H2 and B7H3 are very much contested in the literature, the 

findings of this investigation support the notion of an inhibitory role in the context of DC 

responses to CpG. B7DC, B7H1 and B7H4 are also associated with tolerance in this experimental 

system. It is tempting to speculate that certain molecules are prominent or more influential in the 

behavioural switch from immunogenic to tolerogenic DC. For example, B7H3 has the greatest 

relative increase in expression after AC-treatment both in comparison to untreated DCs and in 

comparison to NC-treated DCs, in no-PAMP, and LPS-  and CpG-treated DCs. However, the co-

stimulation interaction between DCs and T cells is complex, and the balance between co-

stimulation and co-inhibition is not yet fully understood. It would be up to future studies to report 

the relative influence of each co-stimulatory and co-inhibitory molecule in the DC functional 

outcome, through the use of Ab-blocking and knockouts. However, B7DC and B7H1 have been 
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directly linked to reducing DC capacity to stimulate T cells (68) and anti-inflammatory 

B7DC/B7H1-PD-1 signalling is thought to specifically interfere with pro-inflammatory 

CD80/CD83-CD28 signalling. Although using the mean fluorescence intensity of each treatment 

would probably provide a more accurate assessment, the percentage of DCs expressing high levels 

of CD80, CD86, B7DC and B7H1 in response to various treatments may be of some use in 

predicting ensuing T cell responses. For each treatment combination of DCs ± none/ACs/NCs ± 

none/LPS/CpG , below is calculated the ratio of:  

(%CD80-high DCs + %CD86-high DCs) / (%B7DC-high DCs + %B7H1 DCs) 

 
Ratio of CD80 and CD86 expression to B7DC and B7H1 expression, after various treatments: 

 Dead cell type added 

None AC NC 

T
LR

 

a
d

d
e

d
 No TLR 0.44 0.44 0.57 

LPS 0.76 0.78 0.87 

CpG 0.75 0.51 0.81 

 

The relative values of the ratios correlate well with the average IFNγ secretion by T cells cultured 

with the CM of the corresponding DC treatment (see below). Between the two sets of data can be 

observed the following parallels: The increase of the LPS and CpG treatments compared to No 

TLR; the necrotic-cell induced increase compared to None, in the No TLR treatment; the high 

values across all LPS treatments; the apoptotic cell-induced decrease in the CpG treatment.   

 
IFNγ secretion (mean, across all tested doses of ConA, pg/ml to nearest hundred): 

 Dead cell type added 

None AC NC 

T
LR

 

a
d

d
e

d
 No TLR 11200 8000 15100 

LPS 14100 13600 13900 

CpG 12500 10600 13100 

 

Of course, more robust statistical analysis would be necessary, and the MFI would no doubt be a 

more accurate factor, but the statistical relationship between the co-stimulatory molecules CD80 

and CD86 and the co-inhibitory molecules B7DC and B7H1 could prove useful as a predictive 

model of immunological outcome. If proved accurate, the time and resources saved by removing 
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the need for T cell assays could be valuable for clinical or commercial diagnostic purposes. The 

method could even prove useful for predicting the effectiveness of tumour vaccines in dendritic-

cell based immunotherapies. 

 

6.4 Recommended future work 

The confirmation of the influence of the apoptotic cells generated in this investigation 

corroborates the earlier in vitro findings. In confirming their influence, camptothecin-treated 

FDCPs can now be considered as an ideal model of tolerogenic apoptotic cell. The novel model of 

suppression of autoimmunity in vivo has enormous use for its ability to distinguish between 

tolerogenic and immunogenic dendritic cells and provide a clear readout.  

The model of apoptotic cell-mediated suppression of autoimmunity can be used in future work to 

address several questions. Firstly, it is important to ascertain if the Treg-induced mechanism of 

tolerance suggested by the in vitro results of this investigation is implicated in the in vivo model. To 

this end, it is proposed that the blood and spleen of non-diabetic mice in this model is sampled for 

circulating Tregs – in particular, gp33-specifc Tregs. This would determine whether apoptotic cell 

modulation in this model merely inhibits immunity or it actively induces tolerance towards the 

apoptotic cell-expressed autoantigens. Further to ascertaining Treg development, the roles of IL10 

and TGFβ in suppression of diabetes in the present model must be clarified. IL10/TGFβ blocking 

in vivo or the use of transgenic knockout mice could help to discover the mechanism of 

suppression. 

DCs are a crucial part of maintenance of peripheral tolerance, but other mechanisms are also 

important, e.g. B cell autoantibodies etc. It would be useful to observe how AC-induced 

suppression interacts with these pathways. 
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The distinction between suppression of LPS and CpG immune responses could have significant 

implications, and also prove a useful tool in narrowing down the possible mediators of tolerance. 

Between CpG and LPS it was somewhat surprising that CpG, appearing to be the more 

acquiescent of the two to AC-induced suppression in vitro, was the more effective at inducing 

diabetes. And indeed it was unanticipated that LPS was as ineffectively inhibited as it was, given 

the weight of previous findings.  

Several distinctions between LPS and CpG signalling may be responsible for the difference 

between their respective potentials for suppression by apoptotic cells. These distinctions may help 

to elucidate the mechanisms of immune response regulation by endogenous dead cells. Factors 

that are worthy of consideration include: TLR9s role in antiviral immunity versus the antibacterial 

immunity elicited by TLR4, the LPS receptor; the internal location of TLR9 versus the cell surface 

location of TLR4; the role of each TLR in dead cell clearance (TLR9 also recognises mammalian 

DNA); any other functions of each TLR, for example CpG encourages macrophage phagocytosis 

of apoptotic neutrophils (273). 
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