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Abstract 
The University of Manchester 
Duncan Matthew Forster 
Doctor of Philosophy (PhD) 
Investigation of a transgenic model of Alzheimer's Disease, the  
TASTPM mouse, using magnetic resonance spectroscopy  and  
matrix assisted laser desorption imaging 
2010 
There is currently no definitive biomarker for Alzheimer’s Disease (AD), 
confirmation of diagnosis is only possible post-mortem. Magnetic resonance 
spectroscopy (MRS) has potential in aiding diagnosis, an MRS scan can be 
performed during an MRI scan, only adding around 10 minutes to scan time. 
Use of data from the two scans may allow more accurate diagnosis of AD. This 
thesis investigates a transgenic mouse model of AD, the TASTPM mouse using 
in vitro and in vivo MRS as well as matrix assisted laser desorption ionisation 
mass spectrometry imaging (MALDI MS Imaging). The first aim of the study 
was to search for a biomarker of AD that may allow better diagnosis or further 
our understanding of the pathology of the disease. The second aim was to 
evaluate the TASTPM mouse as a model of AD for use in preclinical testing of 
amyloid lowering agents. The third aim was to investigate a thalamic pathology 
in the TASTPM mice using MALDI MS Imaging. Metabolically, we found 
differences between the brains of TASTPM mice and their wild type base strain 
in both in vitro and in vivo scans. These differences may be exploited in the 
preclinical testing of novel amyloid lowering therapies. We also found 
similarities with human AD and other mouse models, lower N-acetylaspartate, 
lower glutamate and higher myo-inositol are all observed in human AD, as well 
as the TASTPM mice in vivo. We also found further evidence of impaired 
neuronal energy metabolism in TASTPM mice, such as lower succinate. 
Cerebral hypometabolism is a symptom of human AD. The TASTPM mouse 
seems to be a fairly good approximation of the human disease, sharing several 
traits. In our investigation of the thalamic pathology, we discovered a peptide 
which was strongly localised to the regions of the pathology and isolated it, but 
were unable to identify it, the work in this area will continue. 
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Chapter 1. Introduction 

1.1. Aims of Thesis 

Alzheimer’s disease (AD) is a progressive, irreversible neurodegenerative 

disease associated with β-amyloid (Aβ) neuritic plaques, neurofibrillary tangles 

and neuronal and synaptic degeneration (Selkoe, 2001; Blennow et al., 2006). 

There is a need to develop a biomarker for AD, to aid in drug development, 

treatment monitoring, diagnosis and patient monitoring. An ideal biomarker 

must be easy to measure, non-invasive, related to disease progression and 

specific for AD. There is currently no definitive biomarker for AD. Magnetic 

resonance imaging (MRI) observation of AD patients has found atrophy, 

increasing in severity with disease progression (Frisoni et al., 2010), however 

brain atrophy is not specific to AD. A proton magnetic resonance spectroscopy 

(1H MRS) scan could be performed during the same session as an MRI scan, 

only adding approximately 10 mins to scan time. If a 1H MRS biomarker could 

be found, a more robust diagnosis could potentially be made. Disease 

progression could also be monitored more closely. A metabolic biomarker for 

AD could also be invaluable in treatment monitoring. If the 1H MRS spectrum 

from an AD patient could be normalized by application of a therapeutic agent, 

this could give an early, non-invasive indication of drug efficacy. Our 1H MRS 

work with the transgenic mouse strain TASTPM will be carried out with this in 

mind, specifically to look for a robust biomarker of disease progression in the 

mice that could be exploited during the drug discovery process and possibly 

give us a better understanding of human AD. 

 

Significant age dependent thalamic pathology has been observed in TASTPM 

mice (Evans et al., 2007), any insights gained into this phenomenon may be 

invaluable. The work will complement longitudinal MRI investigations carried 

out by GlaxoSmithKline in collaboration with University of London, as well as 

other pathophysiological studies of TASTPM mice. Hopefully this will give 

further insight into the relevance of amyloid deposition in the pathology of AD. 

The TASTPM mouse has potential as a transgenic model of AD to be used in 
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drug discovery. Again, we aim to identify a specific, robust disease-related 

neurometabolic difference between the TASTPM mouse and its wild type base 

strain, which may allow the model to be validated for testing disease modifying 

therapies. It could then become a valuable tool for evaluating new therapies. 

This could potentially speed up drug discovery in AD research, allowing new 

drugs on to the market faster and improving the standard of care and quality of 

life for AD patients (and their carers) everywhere. 

 

The thalamic pathology observed in the TASTPM (and other) mice is worthy of 

further investigation, due to the presence of observable neurodegeneration, 

and thus a similarity with human AD. Therefore matrix assisted laser desorption 

ionisation (MALDI) Imaging experiments will be initiated on TASTPM brains, to 

look for protein and/or peptide moieties specific to the thalamic lesions and 

attempt to identify any differences observed. Any proteomic information 

gleaned from this process may provide valuable insight into the underlying 

pathology behind the lesion. 

This chapter contains an introduction to Alzheimer’s disease with a description 

of the biochemical and pathological which accompany the disease, followed by 

a review of current and potential therapies. The magnetic resonance methods 

used in the thesis are introduced with a description of the underlying physical 

principles followed by a review of applications in Alzheimer’s disease. The use 

of mouse models to study the disease is reviewed and the strain used in this 

work –the TASTPM mouse – is described. Finally there is a description of an in 

vitro imaging technique (MALDI) which is used to investigate neuropathology in 

the TASTPM model in this thesis. 

 

1.2.1. Alzheimer’s Disease 
AD is the leading cause of dementia among the elderly. It is characterised by 

progressive cognitive decline and memory loss, eventually leading to death. 

Death normally occurs within 7-10 years of the clinical diagnosis of symptoms. 
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As medical science advances, the population in general are living to a more 

advanced age. Consequently, the problem of AD (and other forms of dementia) 

is likely to become much more significant as time goes on, and will ultimately 

lead to huge cost implications for society. Currently, there is no definitive 

biomarker for AD and therefore, examination of biopsy or autopsy tissue is 

currently the only way to ensure a correct diagnosis of AD.    

 

The aim of this introduction is to give an overview of the current understanding 

of AD, current therapies and potential novel drug targets, followed by an 

overview of the use of cerebral 1H MRS, its potential uses in the study of AD 

and the reasons for carrying out the proposed project. 

 

1.2.2. Amyloid β Peptide and the Amyloid Cascade Hypothesis 

There are many hypotheses about the causes underlying the pathogenesis of 

AD. The amyloid cascade hypothesis is currently the most widely accepted of 

these hypotheses. Central to this hypothesis is amyloid precursor protein 

(APP). which is a membrane bound protein residing on chromosome 21 (Kang 

et al., 1987). APP is widely expressed in tissues throughout the body. 

Metabolism of APP is carried out by the secretase enzymes, α, β and γ. The 

amyloidogenic pathway is mediated by β and γ-secretases, whereas the non-

amyloidogenic pathway involves α and γ-secretases (Blennow et al., 2006). α-

Secretase activity is mediated by a disintegrin and metalloprotese (ADAM), the 

main form is ADAM-10 (Lammich et al., 1999).  The enzyme responsible for β-

secretase activity is β-site APP cleaving enzyme (BACE) (Vassar et al., 1999). 

γ-Secretase activity is mediated by a membrane bound protein complex 

comprised of presenilin, nicastrin, Aph-1 and Pen-2, in which presenilin is 

thought to form the active site (Kimberly et al., 2003; Chyung et al., 2005). 

Firstly cleavage by α or β-secretase occurs, releasing the majority of the 

extracellular domain of APP in soluble form as α-APP or β-APP  (Newman et 

al., 2006). The remainder of the protein is then cleaved by γ-secretase. In the 

non-amyloidogenic pathway p3 peptide is released. In the amyloidogenic 
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pathway amyloid β (Aβ) protein is released (Fig.1). The most common forms of 

the protein are 40 and 42 amino acid residues in length (Aβ40 and Aβ42), of the 

two Aβ42 appears to accumulate more rapidly into amyloid plaques (Jarrett et 

al., 1993). The Aβ42 protein is widely thought to be central to the pathology of 

AD, mainly as familial mutations leading to early onset AD almost invariably 

increase prevalence of Aβ42 in the CNS (see below for more detail and 

references). 

 

Fig.1  Diagram representing the cleavage of APP, first by either α- or β-

secretase, release of the resulting extracellular domain, then further cleavage 

by γ-secretase, releasing either P3 or Aβ, depending upon whether initial 

cleavage was by α- or β-secretase (diagram sourced from http://www1.tu-

darmstadt.de/fb/ch/Fachgebiete/OC/AKSchmidt/Research.htm) 

 

The amyloid cascade hypothesis states that an imbalance in the production and 

degredation/clearance of Aβ in the brain is the initiating event in a cascade 

ultimately leading to neuronal degeneration, dementia and death (Hardy and 

Selkoe, 2002). This hypothesis is supported by the fact that causal mutations in 

familial AD are located on the genes for APP (Goate et al., 1991) and the 
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presenilin genes (part of the γ-secretase complex)(Esler et al., 2000). When Aβ 

builds up it is thought to undergo a conformational change to high β-sheet 

content, leading to aggregation initially as soluble oligomers, then larger, 

insoluble fibrils and plaques (Blennow et al., 2006). The Aβ plaques were 

initially thought to be the cause of the neurotoxicity, but a study (Dahlgren et al., 

2002) suggested that soluble Aβ oligomers might be to blame, since oligomeric 

species were shown to inhibit neuronal viability to a much greater degree than 

fibrillar species. Other studies have suggested that oligomers interfere with 

hippocampal long term potentiation (memory) and synaptic plasticity (Walsh 

and Selkoe, 2004). 

 

Aβ clearance is mediated by both enzymatic degradation and a balance 

between efflux and influx to and from the CNS (Blennow et al., 2006). Some of 

the enzymes responsible for Aβ degradation are neprilysin (NEP), insulin-

degrading enzyme (IDE), endothelin-converting enzyme (ECE 1 and 2) and 

plasmin (Ledesma et al., 2000; Eckman and Eckman, 2005). Plasmin levels 

have been found to be reduced in the brains of AD patients, especially in the 

hippocampus (Ledesma et al., 2000). NEP levels have been found to decrease 

with age in both normal subjects and AD patients (Hellstrom-Lindahl et al., 

2006). Membrane bound (but not cytosolic) IDE concentration and activity were 

found to be significantly reduced in the hippocampus of mild (or moderate) 

cognitive impairment (MCI) patients at high risk of developing AD (Zhao et al., 

2007). The IDE levels continued to decrease during conversion from MCI to 

AD, the occipital cortex was also examined but no such effect was seen (Zhao 

et al., 2007). ECE 2 gene expression was found to be significantly 

downregulated in AD patients (Weeraratna et al., 2007). Clearance of Aβ from 

the brain by efflux at the blood-brain barrier (BBB) appears to be mediated 

largely by low density lipoprotein (LDL) receptor-related protein-1 (LRP-1) 

(Shibata et al., 2000). 
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1.2.3 The Role of Tau 

Tau is a protein found in neurons which binds to microtubules and assists in 

microtubule assembly and stability (Iqbal et al., 2005). In AD tau becomes 

hyperphosphorylated (Grundke-Iqbal et al., 1986; Kopke et al., 1993), leading 

to sequestration of normal tau and other microtubule-associated proteins by the 

hyperphosphorylated tau (Alonso et al., 1994; Alonso et al., 1997). As a 

consequence microtubules disassemble (Iqbal et al., 1986; Alonso et al., 1997) 

and axonal transport is disrupted, normal neuronal and synaptic function are 

thus compromised, leading to loss of synapses and death of neurons (Iqbal et 

al., 2005). Loss of functional tau may also increase expression of tau protein by 

way of a compensatory mechanism. Hyperphosphorylated tau also polymerises 

by association with normal tau, resulting in the formation of paired helical 

fragments and neurofibrillary tangles (NFT) (Fig.2) (Alonso et al., 1996). These 

formations are not directly toxic to the neuron but as the disease progresses 

they may grow to a size whereupon the affected cell is physically choked to 

death (Iqbal et al., 2005). The end product of both these processes is dementia.  
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Fig.2  Diagram illustrating the hyperphosphorylation of tau protein, microtubule 

depolymerisation and aggregation of phosphorylated tau into paired helical 

fragments, the precursor to neurofibrillary tangles (Diagram sourced from 

http://www.mpasmb-hamburg.mpg.de/mandelkow2/taubilder.htm) 

 

In AD tau levels in the brain are around eightfold higher than in age-matched 

controls, with the increase being in the form of the abnormally phosphorylated 

protein (Khatoon et al., 1992). Whether the hyperphosphorylation of tau and 

subsequent tangle formation are one of the causes of AD or a consequence of 

the disease is not currently known. 

 

An in vitro study using cultured neuronal cells transfected with a mutant tau 

fragment showed that abnormal tau aggregation was cytotoxic, a toxicity that 

could be prevented by inhibition of aggregation or by proteolysis (Wang et al., 

2007).  
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A possible link between tau hyperphosphorylation and reduced glucose 

metabolism has been postulated. O-glycosylation, a process regulated by 

glucose metabolism, has been shown to correlate negatively with tau 

hyperphosphorylation. A four-fold decrease in O-glycosylation was observed 

when compared to non-hyperphosphorylated tau (Liu et al., 2009).  

 

 

1.2.4. Symptoms and Disease Progression 

AD is a slowly progressive disease characterised by increasing impairment of 

episodic memory with instrumental signs including aphasia, apraxia and 

agnosia (Blennow et al., 2006). Other general cognitive symptoms also 

manifest themselves, such as impaired judgement, orientation and decision 

making (Blennow et al., 2006). The initial neurodegenerative changes occur in 

the medial temporal lobe, with the entorhinal cortex and hippocampus among 

the first areas affected (Braak et al., 1999). 

 

The underlying pathology and neurodegeneration behind AD has been 

estimated to begin between 20 and 30 years before symptoms allow clinical 

diagnosis (Blennow et al., 2006). In this phase, it is thought that plaque and 

tangle load increase to a certain threshold level where symptoms start to 

appear. The initial observable phase of AD is often described as mild cognitive 

impairment (MCI). 

 

MCI is a term used to describe subclinical complaints of memory impairment in 

the elderly. There is thought to be a high risk of patients with MCI progressing 

to AD (Ritchie and Touchon, 2000). MCI can be seen as a precursor for 

dementia, however some people with MCI may remain stable for many years or 

even return to normal over time (Gauthier et al., 2006). Amnestic (memory 

impaired) MCI is thought to be a potential intermediate stage between normal 

aging and AD (Gauthier et al., 2006). Pathologically speaking it may in many 

cases just be the early stages of AD where symptoms start to become 



 26

detectable. A study found that approximately 12% of patients with MCI 

progressed to clinical dementia each year (Petersen, 2004).  

 

There is considerable research currently ongoing into potential neural 

compensatory mechanisms which allow pre-clinical AD patients to remain 

cognitively normal while much of the neurodegeneration leading to AD takes 

place (Smith et al., 2007). Potential compensatory mechanisms include 

upregulation of neurotransmitters such as Ach, use of redundant memory 

systems and recruitment of other neural networks as ones in current use are 

damaged (Smith et al., 2007). In a recent study using positron emission 

tomography (PET) 5-HT1A receptor binding was found to be significantly higher 

in patients with MCI compared with controls, whereas AD patients had 

significantly lower receptor binding (Truchot et al., 2007). This provides further 

evidence of potential compensatory mechanisms prior to the onset of clinically 

detectable AD. 

 

 

1.2.5. Familial Predisposition 

Familial AD (FAD) is caused by mutations in the genes coding for APP and 

presenilin 1 and 2 (PS1 and PS2). The known APP mutations (chromosome 

21) are all located either immediately before the β-secretase cleavage site, 

after the α-secretase cleavage site or on the C-terminal side of the γ-secretase 

site (Selkoe, 2001). In APP mutations have increased overall Aβ production or 

increased Aβ42:Aβ40 ratio as a consequence (Selkoe, 1994). Onset of 

symptoms with the APP mutation can be as early as age 50 (Selkoe, 2001). 

The PS mutations – PS1 (chromosome 14q) and PS2 (chromosome 1) seem to 

selectively increase the ratio of Aβ42:Aβ40 (Scheuner et al., 1996), while some 

seem to reduce Aβ40 production along with other PS-dependent actions (Shen 

and Kelleher, 2007). New evidence is emerging that most PS mutations result 

in an overall loss of function and a reduction in overall Aβ production (loss of 

function), but somehow favour release of Aβ42 over Aβ40 (gain of function) 
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(Wolfe, 2007). In PS mutation FAD symptoms may manifest as early as in the 

patients 30’s (Selkoe, 2001).  

 

The apolipoprotein E4 (ApoE4) ε4 allele is a genetic risk factor for late onset 

AD (LOAD) (Strittmatter et al., 1993). The frequency of the ε4 allele has been 

found to be significantly greater in LOAD patients compared with age matched 

controls (Strittmatter et al., 1993). ApoE4 has been shown to be a ligand for 

LRP-1 and may affect Aβ clearance across the BBB, according to a study done 

in transgenic mice (Shibata et al., 2000). 

 

Another genetic candidate linked with increased risk of LOAD is sortilin-related 

receptor, also known as LR11 or SORLA (SORL1). Six single nucleotide 

polymorphisms in SORL1 have been linked with LOAD in well-defined samples 

from different populations (Katzov, 2007). In younger patients with AD, plaque 

and tangle load are strongly correlated with dementia severity, whereas with 

increasing age this correlation disappears (Prohovnik et al., 2006), which could 

be of clinical significance.  

 

1.2.6. Brain Hypometabolism 

Cognitive decline and AD have been linked with metabolic deficiencies in the 

brain. PET studies have found reduced cerebral glucose metabolism in AD 

patients, in areas central to AD, such as the posterior cingulate (Herholz et al., 

2007). A multicentre PET study found that monitoring regional cerebral glucose 

metabolism allowed differentiation between AD and other dementias, as well as 

MCI (Mosconi et al., 2008). A PET study showed that ApoE4 ε4 allele carriers 

had reduced glucose metabolism in the lateral temporal lobe (LTL) and the 

superior temporal gyrus compared with non-carriers (de Leon et al., 2001). 

Glucose metabolism in the LTL was also found to decline faster over time in ε4 

carriers than in non-carriers (de Leon et al., 2001). Anomalies in glucose 

metabolism have been observed in patients with MCI, with reductions in areas 

such as the hippocampus and middle temporal cortex (Drzezga et al., 2003). 
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The severity of these reductions has been found to correlate with progression 

from MCI to AD over the course of a year (Drzezga et al., 2003).  

 

The posterior cingulate cortex in AD patients has been shown to have reduced 

cytochrome oxidase (CO) activity (Valla et al., 2001), CO is a mitochondrial 

enzyme essential for aerobic energy metabolism. This reduction appears to be 

progressive, greater in women and linked to disease duration (Valla et al., 

2001).  

 

Two mitochondrial markers, CO-1 and lipoic acid were increased in the 

neuronal cytoplasm of AD patients compared with controls, lipoic acid was also 

found in autophagic vacuoles and lipofuscin of neurons in AD patients (Moreira 

et al., 2007). These data suggest that mitochondria undergo increased 

autophagic degredation in AD sufferers. This may be due to either increased 

turnover or mitochondrial numbers within neurons may be reduced, leading to 

reduced respiration and cellular dysfunction.  

 

A recent study has shown expression of subunits of the mitochondrial electron 

transport chain to be significantly lower in the posterior cingulate cortex, 

hippocampus and entorhinal cortex in AD patients, compared with controls 

(Liang et al., 2008). These regions are some of the first affected by AD, these 

differences may be a causal factor in the reduced glucose metabolism seen in 

AD. 

 

Reproducible defects have been observed in mitochondria from the brains of 

AD sufferers, with deficiencies in two enzymes of the tricarboxylic acid cycle – 

pyruvate dehydrogenase and α-ketoglutarate dehydrogenase (Gibson et al., 

1998) and in CO (Cottrell et al., 2001). Mitochondrial function is reliant upon 

structural integrity and there is considerable evidence of mitochondrial damage 

in AD (Zhu et al., 2004; Moreira et al., 2007). Damaged mitochondria are less 

able to utilise oxygen in the respiratory process and thus produce more reactive 
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oxygen species (ROS), leading to oxidative damage (see next section) (Zhu et 

al., 2007).  

 

There is thus strong evidence linking defects in energy metabolism with 

symptoms of AD. 

 

Glucose hypometabolism has also been observed in a transgenic mouse model 

of AD, which has been shown to be independent of amyloid deposition and to 

correlate with memory impairment (Dodart et al., 1999).  

 

Reduced cerebral energy usage may well be a factor in causing the symptoms 

of AD, it may also contribute to, or be a symptom of both neuronal dysfunction 

and eventual neuronal death. This is discussed later in the context of the 

findings presented in this thesis. 

 

1.2.7. Oxidative Stress and Inflammation 

Oxidative stress has long been thought to play a role in AD neurodegeneration. 

This is borne out by evidence of elevated protein and lipid oxidation in AD 

brains (Hensley et al., 1995; Lovell et al., 1995), along with evidence of 

decreased antioxidant activity in AD patients (Gsell et al., 1995). There are a 

number of postulated sources of the observed oxidative stress, some of these 

are iron (and other redox-active metals) redox cycling, mitochondrial 

dysfunction and inflammation. Iron has been found to accumulate in both 

amyloid plaques and NFTs, this iron was found to be redox-active (Smith et al., 

1997). Aβ42 has been demonstrated to increase the solubility of iron, allowing it 

to remain in its redox-active form longer and potentially generate more reactive 

oxygen species (ROS) via the Fenton reaction (Khan et al., 2006). Aβ produces 

hydrogen peroxide in vitro via a mechanism which reduces iron or copper 

(Huang et al., 1999). In vitro testing has also shown that the neuronal toxicity of 

Aβ can be attenuated by pre-treatment with an iron chelator and restored by 

incubation with excess free iron (Rottkamp et al., 2001). NFTs have also been 
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shown to produce hydrogen peroxide when in the presence of redox metals 

(iron or copper) (Sayre et al., 2000).  

 

It is postulated that Aβ deposition actually occurs due to oxidative stress and 

this has a protective effect against neuronal damage. In both in vitro and in vivo 

testing oxidative stress has been shown to increase production of APP and Aβ 

by neuronal cells (Yan et al., 1995). Oxidative damage has been demonstrated 

to be greatest in the early stages of AD, increases in Aβ deposition correlating 

with decreases in oxidative damage (Nunomura et al., 2001). Histologically a 

negative correlation has been seen between amyloid burden and oxidation 

levels, it has been postulated that the high levels of zinc within amyloid plaques 

interact with Aβ to give robust antioxidant properties (Cuajungco et al., 2000). 

 

Inflammation in AD is mediated by both microglia (cerebral macrophages) and 

astrocytes (Akiyama et al., 2000a). The activated forms of both cell types have 

been found to be associated with Aβ (Eikelenboom and Veerhuis, 1996; Mrak 

et al., 1996). In vitro Aβ enhances ROS production and release from microglia 

(Klegeris and McGeer, 1997). Microglia are involved in the removal and 

breakdown of Aβ in the brain, however it appears that soluble Aβ is taken up 

and does not cause activation of the microglia, whereas the aggregated form is 

phagocytosed and does result in activation (Akiyama et al., 2000a).  

 

 

 

1.2.8. The Presenilin Hypothesis 

An alternative to the amyloid cascade hypothesis has recently been put 

forward. It proposes that a loss of PS function in AD may be the primary event 

triggering neurodegeneration, for detail on supporting evidence see (Shen and 

Kelleher, 2007). This hypothesis is potentially important as if it is true then 

some of the new potentially disease modifying therapies in development may 

actually worsen the disease rather than having a beneficial effect. 
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1.2.9. Intraneuronal A β as a possible risk factor 

Recent studies have suggested an important role of intracellular Aβ in the 

pathogenesis of AD. In an APP/PS1 model (APP/PS1KI), correlation between 

intraneuronal Aβ accumulation and loss of hippocampal CA1 neurons has been 

demonstrated (Casas et al., 2004). No such correlation was seen with 

extracellular Aβ deposits. Reduced short- and long-term synaptic plasticity and 

poor performance in working memory tests were also observed in these mice 

(Bayer et al., 2008). Co-incidence of intracellular Aβ build up and behavioural 

changes has also been shown elsewhere (Knobloch et al., 2007). In various AD 

mouse models, behavioural changes have been seen to occur prior to 

significant Aβ plaque deposition (Bayer and Wirths, 2008). These findings 

indicate the potential for an important role of intracellular Aβ in the 

pathogenesis of AD, possibly as the disease-triggering event. 

 

1.2.10. Other Potential Risk Factors  

Old age and genetic predisposition are the only well researched risk factors for 

AD, however a number of physiological and psychosocial factors may also play 

a role. Vascular and dietary factors such as hypertension, obesity, diabetes 

mellitus, heart disease, cerebrovascular disease, hyperlipidaemia, heavy 

alcohol consumption, cigarette smoking and high saturated fat intake are all 

thought to increase risk of AD (Qiu et al., 2007). In contrast, light to moderate 

alcohol consumption has been associated with a reduction in the risk of 

dementia (Stampfer et al., 2005). High fish intake has also been linked to 

reduced risk of dementia, which is thought to be related to increased plasma 

levels of docosahexaenoic acid (Schaefer et al., 2006). 

 

There is evidence to suggest a poor education increases the risk of developing 

AD (Karp et al., 2004). Longitudinal lifestyle studies have linked social 

disengagement with increased AD risk, whereas subjects with greater 

engagement in mentally and/or physically stimulating activities seemed to be at 

reduced risk of the disease (Fratiglioni et al., 2004).  
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Elevated occupational magnetic field exposure has been associated with an 

increased risk of AD (Davanipour et al., 2007). In this study AD (and suspected 

AD) patients and controls were classified by occupation as having low, medium 

or high magnetic field exposure. High exposure was classified as average 

exposure over 10 milligauss (or regular intermittent exposure over 100 

milligauss). Medium exposure was classified as average exposure between 2 

and 10 milligauss (or regular intermittent exposure over 10 milligauss). The 

study found that subjects with medium or high exposure were 2.1 times as 

likely to have AD, in the high exposure group alone, subjects were found to be 

2.9 times as likely to have AD (Davanipour et al., 2007). 

 

1.3. Current Therapies 

 

1.3.1. Acetylcholinesterase inhibitors 

Due to consistent findings of damage to cholinergic neurons in the basal 

forebrains (associated with memory and attention) of AD sufferers, enhancing 

cholinergic transmission is thought to have potential in alleviating symptoms 

(Terry and Buccafusco, 2003). The acetylcholinesterase inhibitors 

(rivastigmine, donepezil and galantamine) are the drugs of choice for this 

purpose, increasing acetylcholine (Ach) levels by preventing its metabolism in 

the synaptic cleft (Blennow et al., 2006). Modest improvements in cognitive 

symptoms have been observed with these drugs. A mean treatment effect of 

2.7 points on the Alzheimer’s Disease Assessment Scale – Cognitive Subscale 

(ADAS-Cog) and 1.4 points on the mini-mental state exam (MMSE) (Birks, 

2006). Due to their mechanism of action these treatments only temporarily 

alleviate some of the symptoms of AD however, and are not thought to be 

disease modifying. 
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1.3.2 Memantine 

The major excitatory neurotransmitter in the brain is glutamate. Glutamate and 

the N-methyl-D-aspartate (NMDA) receptor are important in the processes of 

learning and memory. In AD increased glutamatergic activity can result in 

sustained low-level NMDA receptor activation, potentially impairing neuronal 

function and leading to excitotoxic effects (Areosa et al., 2005). Memantine is a 

non-competitive antagonist at the NMDA receptor which is thought to reduce 

overstimulation of the receptor caused by abnormally high glutamate levels. 

The intent is to restore normal physiological function and reduce potential for 

excitotoxicity (Wilcock, 2003). Memantine has been shown to have beneficial 

effects in patients with moderate to severe AD (MMSE score <15), however 

there are currently no data to suggest that it will have beneficial effects in mild 

AD (Areosa et al., 2005). Although memantine may be neuroprotective, it is not 

specific for AD and the current trials are too short to assess potential disease 

modifying effects (Areosa et al., 2005). 

 

1.4.1. Potential Novel Therapies 

Due to a better understanding of AD pathology and of the underlying 

processes, a number of potential new therapeutic targets have been developed 

many of which could potentially have disease-modifying activity. In addition, 

based on epidemiological studies, several drugs/chemicals already in use are 

being investigated for any possible clinical benefit. Some of the novel therapies 

being investigated are described below. 

 

1.4.2. Potential A β Therapies 

 

1.4.3. Targeting A β Production 

All three secretases are potential targets for pharmacological intervention. β-

Secretase knockout mice have been proved to be viable and have reduced Aβ 

production (Cai et al., 2001; Luo et al., 2001). Thus if an inhibitor for β-site 

APP-cleaving enzyme (BACE), the enzyme responsible for β-secretase 



 34

cleavage of APP (Hussain et al., 1999; Vassar et al., 1999; Yan et al., 1999) 

can be synthesised it could be of great benefit in lowering Aβ and slowing 

amyloid pathology in AD. So far it has proven to be a difficult pharmacological 

target, but it is likely that effective β-secretase inhibitors will be developed 

within a few years (Golde, 2006). Another problem is that β-secretase knockout 

mice while overtly normal, may have a harmful phenotype (Dominguez et al., 

2005). Disruptions in hippocampal synaptic plasticity and in cognitive and 

emotional tests have been reported (Laird et al., 2005). Thus there could be 

problems with long term β-secretase inhibition and it remains to be seen 

whether any inhibitors which are produced are well tolerated. 

 

Inhibitors targeting PS have been developed and have entered into phase I 

clinical trials (Siemers et al., 2005). There are potential problems with these 

compounds too, as γ-secretase doesn’t just cleave APP, it is important in other 

areas such as the notch signalling pathway. Blocking γ-secretase could thus 

have toxic effects due to disruption of notch signalling (De Strooper et al., 

1999). Non-steroidal anti inflammatory drugs (NSAIDs) have potential use in 

selectively modulating γ-secretase action, shifting cleavage away from the Aβ42 

form to shorter peptides (Weggen et al., 2001). A selective Aβ42 lowering agent 

R-flurbiprofen is currently undergoing clinical trials (Black et al., 2006). 

 

Whereas inhibitors of β and γ-secretases are sought, an inducer of α-secretase 

activity could also be of therapeutic benefit. Metalloprotease disintegrins have 

been shown to be responsible for α-secretase cleavage of APP, namely ADAM-

10 and ADAM-17 (Buxbaum et al., 1998; Fahrenholz et al., 2000; Kojro and 

Fahrenholz, 2005). In an APP transgenic mouse model upregulation of α-

secretase activity was found to decrease production of Aβ peptides and 

formation of plaques, as well as alleviating cognitive symptoms (Postina et al., 

2004). ADAM-10 and ADAM-17 are involved in a number of signalling 

pathways and long term upregulation may not be without its side effects.  
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1.4.4. Targeting A β Aggregation 

In its soluble, non-aggregated form Aβ is not thought to be toxic (Golde, 2006). 

Which particular species of Aβ is the main contributor to neurotoxicity is 

unknown, but it is quite possible that many different Aβ aggregates interact and 

contribute to overall neurotoxicity (Walsh and Selkoe, 2004). Nevertheless 

preventing Aβ aggregation (and lysing already aggregated formations) is likely 

to have disease modifying effects. A compound which seems to have a 

promising future is curcumin, a component of the curry spice turmeric. 

Curcumin has been shown to inhibit formation of Aβ oligomers and fibrils in 

vitro (Yang et al., 2005). In vivo, curcumin crosses the blood brain barrier, binds 

plaques and reduces amyloid load in a mouse model (Yang et al., 2005). On 

top of this curcumin has anti-inflammatory, cholesterol lowering, antioxidant and 

metal chelating properties, all of which have the potential to be protective 

against AD neuropathology (Ringman et al., 2005).  

 

1.4.5. Enhancing A β Clearance 

A number of enzymes are known to be involved in degradation of monomeric 

Aβ, including insulin degrading enzyme (IDE), neprilysin (NEP) and endothelin 

converting enzyme (ECE) (Eckman and Eckman, 2005). Transgenic 

overexpression of IDE and NEP has been shown to lower brain Aβ levels and 

reduce or prevent plaque formation in APP transgenic mice (Leissring et al., 

2003). Due to their mechanism of action, upregulation of these proteases would 

likely be more useful in prevention of AD rather than treatment of the disease 

once it is established.  

 

Increasing efflux of Aβ from the brain through the BBB to the circulation is 

another potential way of lowering brain amyloid burden. One transporter which 

has been studied and is involved in the transport of Aβ across the BBB  is p-

glycoprotein (Lam et al., 2001). There are known pharmacologic activators of 

this protein and these may have therapeutic benefit in prevention or treatment 
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of AD, but more research and proof of concept studies are needed (Golde, 

2006). 

 

1.4.6. Immunotherapy 

A study using APP transgenic mice has revealed that immunisation against 

Aβ42 attenuates Aβ plaque formation in young animals and reduced the extent 

and progression of AD like neuropathologies in older animals where plaque 

build up was already significant (Schenk et al., 1999). The first active 

immunisation trial in humans was stopped due to 6% presentation of patients 

with meningioencephalitis (Nicoll et al., 2003; Orgogozo et al., 2003). This was 

unexpected and whilst the precise mechanism is unknown, one hypothesis is 

that it was caused by an autoreactive T-cell response against Aβ (Nicoll et al., 

2003). However a cohort of 30 patients who participated in the study were 

followed up for 1 year and it was found that those patients who produced 

antibodies against Aβ showed slower rates of decline in cognitive function and 

daily living activities compared to patients who produced no such antibodies 

(Hock et al., 2003). Tests used included MMSE, Disability Assessment for 

Dementia and the Visual Paired Associates Test of delayed recall. These 

results indicate that the presence of antibodies against Aβ can slow the 

progress of AD. An MRI study of cerebral volumes in the patients who 

produced antibodies and showed slower rates of decline in cognitive function 

compared to the placebo group gave unexpected results (Fox et al., 2005). The 

antibody responders had significantly greater overall brain volume decrease, 

along with greater ventricular enlargement and a nonsignificant greater 

hippocampal volume decrease (Fox et al., 2005). This indicates a dissociation 

between brain volume loss and cognitive function in the antibody responders in 

this study (Fox et al., 2005). Potential reasons for this include removal of 

deposited Aβ and associated cerebral fluid shifts however, further work is 

required to fully elucidate the reason. Due to these (and other) results work 

continues into both active and passive immunisation methods targeting Aβ. The 
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details of these are beyond the scope of this report, for a review see (Weiner 

and Frenkel, 2006). 

 

A study in vitro found that opsonisation of Aβ with anti-Aβ antibodies enhances 

Aβ clearance but also increases release of toxic inflammatory mediators 

(Strohmeyer et al., 2005). This means care should be taken with 

immunotherapy as there may be a balance to be struck between Aβ clearance 

and release of toxic mediators causing side effects, as seen above. 

 

1.4.7. Potential Tau Modifying Therapies 

 

1.4.8. Tau Production 

Mice expressing a repressible human tau variant were shown to develop 

progressive NFTs, neuronal loss and memory impairments. The neuronal loss 

and memory decline were stabilised by suppression of the transgenic tau, but 

NFTs continued to accumulate (Santacruz et al., 2005). These results suggest 

potential therapeutic benefit could be achieved by decreasing tau expression 

while also questioning the role of NFTs in related toxicity. Tau knockout mice 

survive and seem to have a relatively mild phenotype for a complete deficiency 

in what is thought to be an essential protein (Harada et al., 1994), thus tau 

could potentially be downregulated without serious side effects. New agents 

targeting tau production are predominantly in the conceptual stage (Golde, 

2006). 

 

1.4.9. Tau Phosphorylation 

As tau phosphorylation is under the control of multiple kinases (Golde, 2006), 

inhibition of any one is unlikely to have a significant therapeutic impact. An 

agent which could inhibit multiple kinases may be of some benefit. In a study 

using a mixed kinase inhibitor treatment was found to reduce soluble 

aggregated hyperphosphorylated (64kDa) tau and delay or prevent typical 

motor impairments in JNPL3 tau transgenic mice (Le Corre et al., 2006). 



 38

Partially inhibiting multiple kinases may be advantageous in the inhibition of tau 

induced neurodegeneration. Preclinical study has been carried out with lithium 

and another inhibitor of glycogen synthase kinase 3 (GSK3) in tau transgenic 

mice. The study showed reduced levels of both phosphorylated tau and 

aggregated, insoluble tau. This reduction correlated with a reduction in the level 

of axonal degeneration (Noble et al., 2005). Although further studies are 

needed, it can be seen that there is potential in modulating tau phosphorylation 

for the treatment of AD. 

 

 

 

1.4.10. Other Tau Targets 

Other potential strategies to reduce tau related toxicity in AD include the 

inhibition of tau aggregation and tau chaperone upregulation. Both of these 

targets need further research before suitable inhibitors can be identified (Golde, 

2006). One interesting compound is the microtubule binding agent paclitaxel, 

usually used as an anticancer agent. This compound was found to restore fast 

axonal transport and increase microtubule numbers in the spines of tau 

deficient mice while also having a beneficial effect on observed motor 

impairments (Zhang et al., 2005).  

 

1.4.11. Alternative Strategies 

The exact mechanism of neuronal death in AD is still unknown, both chronic 

inflammation and oxidative stress are thought to be contributing factors 

(Akiyama et al., 2000b). Thus a wide range of compounds which may influence 

these processes are under investigation for their potential efficacy in treating 

AD (Golde, 2006). Due to the potential role of redox active metals in AD 

pathology, the use of metal chelating therapy could be disease modifying and 

some promising results have already been reported (Crouch et al., 2007). 
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Summary 

While our knowledge of the pathology of AD is expanding all the time, we still 

do not know the root cause of the neurodegeneration. In spite of this, there are 

now several inviting drug targets such as tau and Aβ. Up until now we have 

been relying on purely symptomatic treatments, the new targets present a 

strong possibility of disease-modifying therapies being on the market in the 

near future.  

 

Disease-modifying treatments will be most effective if AD can be diagnosed as 

early as possible. The effects of the disease-modifying therapies will need to be 

monitored during treatment to assess efficacy. For these reasons we need a 

reliable biomarker of AD, preferably one that is non-invasive, 1H MRS has the 

potential to provide this biomarker by monitoring differences in cerebral 

metabolite levels, for this reason 1H MRS forms the basis of much of this thesis. 

 

1.5. Nuclear Magnetic Resonance and MRS Theory 

The following references were consulted in writing this piece (Gadian, 1995; de 

Graaf, 1998) 

 

1.5.1. The Basis of NMR 

Nuclear magnetic resonance takes advantage of a property of certain atomic 

nuclei known as spin. Examples of nuclei which possess spin are hydrogen 

(1H), carbon-13 (13C), and phosphorus (31P). Hydrogen is the nuclei this thesis 

is concerned with so this will be the focus of this section. Hydrogen has a spin 

quantum number ½. In the absence of an applied magnetic field, the spinning 

hydrogen nuclei take up random orientations (Fig.3). When hydrogen nuclei are 

placed in a static magnetic field B0, they take up one of two orientations with 

respect to the applied magnetic field, parallel or antiparallel (Fig.3).  
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Fig.3  The left hand side of the diagram shows protons in the absence of 

magnetic field, with spins in random directions. The right hand side of the 

diagram illustrates the behaviour of the spins in the presence of an applied 

magnetic field, oriented parallel or antiparallel to the field (Diagram sourced from 

http://physiology-physics.blogspot.com/2010/06/understanding-basic-principles-of.html) 

 

The two spin states are at different energy levels, the difference is proportional 

to the strength of B0 and is given by the equation: 

∆E = hv0 

Where h is the Planck constant and v0 is the resonant frequency, given by: 

v0 = (γ/2π)B0 

 where B0 is the magnitude of the applied magnetic field and γ is the 

gyromagnetic ratio of the nucleus (42.58MHz/T in the case of hydrogen) 

The distribution of nuclei in the two spin states is given by the Boltzmann 

distribution: 

n2/n1 = e(-∆E/kT) 

where n1 is the number of nuclei at the lower energy level, n2 is the number of 

nuclei at the higher energy level, k is the Boltzmann constant and T is 

temperature in Kelvin. In practical situations, the difference between the two 

spin populations is very small, for example, around 1 part in 42000 for a 7T 

magnet. 
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The spinning protons precess around the axis of the applied field B0, the 

frequency of precession is proportional to the field strength and is given by the 

equation: 

ω0 = γB0 

ω0 is known as the Larmor frequency. The application of a radiofrequency (RF) 

pulse, B1 at the Larmor frequency will cause the protons to absorb energy, 

inducing transitions between energy states. This causes the net magnetization 

to tilt away from the B0 direction (z axis). The angle of the tilt θ is given by the 

equation: 

θ = γB1tp 

Where tp is is the time that the RF pulse is applied for. Prior to the RF pulse, the 

net magnetisation in the xy plane is zero, thus no signal is observed. After B1 is 

turned off the net magnetisation has been tilted away from the z axis, toward 

the xy plane. This magnetisation then rotates around B0 at frequency ω0, 

inducing an electromotive force in the receiver coil. Following the RF pulse, 

signal decreases as magnetisation in the xy plane returns to zero with a time 

constant T2*.  The signal generated by this process is known as a free 

induction decay or FID (Fig.4) 

 

The FID is a time dependent signal, it can be converted by a mathematical 

manipulation known as Fourier transformation to a spectrum of frequency and 

amplitude (Fig.4). 
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Fig.4 An FID on the left, in the time domain, converted by Fourier transform to 

an amplitude signal in the frequency domain (image sourced from 

http://chemistry.umeche.maine.edu/CHY431/NMR/NMR-4.html) 

 

1.5.2. Magnetic Resonance Spectroscopy (MRS) 

NMR signal is dependent on a number of physical and chemical effects, 

including chemical shift, spin-spin coupling and relaxation.  

 

1.5.3. Chemical shift 

The applied magnetic field B0, causes the electrons around nuclei to generate 

their own magnetic field, opposing B0. This effect is known as shielding. The 

magnetic field produced is proportional to B0 and is also sensitive to the 

chemical environment surrounding the nuclei. Due to this, nuclei in different 

chemical environments produce signals with differing frequencies. The net 

magnetic field the protons experience is given by the equation: 

Beff = B0(1-σ) 

 

Where σ is the shielding constant and is dependent on the chemical 

environment of the nuclei. Shielding can arise from electrons surrounding the 

nucleus in question, but may also arise from electrons on different atoms in the 

same molecule.  The separation of resonance frequencies from a reference 

frequency is called the chemical shift (δ). Chemical shift is usually measured 

relative to a reference compound and is expressed in the dimensionless units 

of parts per million (ppm). If the reference compound is either added to, or 

intrinsic to the sample it is called an internal reference, when it is unfeasible to 
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add a reference compound, an external reference may be used. Internal 

references are preferable as the reference compound will be contained in the 

same material as the sample. This is more desirable as the local magnetic field 

experienced by a nucleus is altered by shielding produced by the surrounding 

medium, this is known as bulk shielding. In the case of an internal reference, 

bulk shielding effects should be equal, and so not responsible for any 

differences observed. In the case of an external reference, differences in bulk 

shielding must be taken into account.  

 

1.5.4. Spin-spin Coupling 

Neighbouring nuclear spins often interact with each other, causing resonances 

produced by the nuclei to split into two or more components. This phenomenon 

is known as spin-spin coupling, the separation of the components is given by 

the coupling constant, J in Hz. Spin-spin coupling can be an interaction 

between nuclei which share a direct bond, or nuclei which are separated by 

more than one bond. J tends to decrease as the number of separating bonds 

increases. 

 

Spin-spin coupling can produce first- and second-order spectra. In first order 

spectra the frequency difference between the nuclear resonances involved is 

much greater than the magnitude of J. In nuclei on an equivalent group (i.e. the 

protons of a CH3 group) the spin-spin coupling produces no observable 

splitting. In basic terms for first-order spectra, if a nucleus is coupled to one 

nucleus of spin ½ the resulting resonance will be a doublet with relative 

intensities 1:1. If the nucleus is adjacent to 2 spin ½ nuclei, the resonance will 

split into a triplet, with relative intensities 1:2:1 and if the nucleus is adjacent to 

3 spin ½ nuclei the resonance will split into a quartet with relative intensities of 

1:3:3:1. In second order spectra the frequency difference and J are not far 

apart, in this case splitting can be more complicated and difficult to interpret. 

More information on spin-spin coupling can be found in (Gadian, 1995).  
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1.5.5. Relaxation 

At equilibrium, net magnetisation along the z (B0) axis is equal to M0, at the 

same time the net magnetisation in the xy plane Mxy is zero. After an excitatory 

RF pulse, some of the net magnetisation is shifted into the xy plane (Fig.5). 

Relaxation describes the processes by which magnetisation returns to its 

equilibrium state. 

The return of magnetisation along the z axis (Mz) to its equilibrium value is 

known as spin-lattice relaxation. This process is characterised by the time 

constant T1, or the longitudinal relaxation time. 

 

Fig.5  Initial transfer of magnetisation from the Mz  to the Mxy plane, 

magnetisation returns to the Mz direction, the time taken is dependent on the 

time constant T1 (diagram sourced from Gadian, 1995) 

 

The loss of magnetisation in the xy plane (Mxy) (in addition to the loss through 

T1 relaxation) is called spin-spin relaxation (Fig.6). This comes about by the 

gradual dephasing of Mxy caused by interactions between neighbouring nuclear 

spins and inhomogeneities in B0. Spin-spin relaxation is characterised by the 

time constant T2, or transverse relaxation time. 
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Fig.6  a – As magnetisation is initially switched from Mz to Mxy, all the spins are 

in phase and the signal is strong. b and c – gradually the spins lose phase with 

each other as they precess at slightly different frequencies until net Mxy = 0 

(diagram sourced from (Gadian, 1995) 

 

1.5.6. MRS Pulse Sequences 

Spectroscopy pulse sequences consist of a combination of timed 

radiofrequency pulses and pulsed magnetic field gradients designed to produce 

a signal from a specific region of interest (or voxel), while editing out signal from 

the surrounding regions. Separate pulse sequences have been developed with 

the sole purpose of suppressing the signal from water, as water signal is ~105 

times more abundant than the signal from metabolites. MRS experiments 

generally combine a spectroscopy sequence with a water suppression 

sequence to obtain the best possible spectrum.  

 

1.5.7. PRESS 

PRESS, or point-resolved spectroscopy (Bottomley, 1987) uses the following 

pulse sequence: 

 

900 – TE1/2 – 1800 – (TE1 + TE2)/2 – 1800 – TE2/2 – Acquire 

 

As can be seen in Fig 7, the three RF pulses are slice selective, along the x, y 

and z-axes respectively.  
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The 900 – 1800 pulses generate an echo at TE1/2 from the 1800 pulse from the 

spins inhabiting the column selected by the two slices, this echo is not 

collected. The collected echo is formed TE2/2 following the second 1800 pulse, 

this echo corresponds to the voxel defined by the intersection of the three 

selected slices, in which spins have been excited by all three RF pulses. 

 

Fig.7  PRESS pulse sequence (Bottomley, 1987) showing RF pulses, gradients 

in the three planes, Gx, Gy and Gz and echo generation. TE is the time between 

the original 900 pulse and the echo generated following the second 1800 pulse. 

(diagram sourced from (Gadian, 1995) 

 

Slice selection is achieved by use of gradients and RF pulses of specific 

frequencies. A gradient is applied, along the x-, y- or z-axis which alters B0 

depending upon the position along the axis. An RF pulse of a certain frequency 

or band of frequencies will then only excite protons which have resonance 

frequencies which coincide with the RF pulse. Protons in other slices will not be 

excited, as their resonance frequencies are different due to the presence of the 

gradient. Signal from spins in regions which only experience one or two RF 

pulses can be removed by spoiler gradients. 
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The PRESS sequence gives a relatively high signal detection and good SNR. 

One potential problem with the sequence is that TE is required to be quite long 

in order to accommodate the RF pulses and spoiler gradients, thus it is not 

optimal for detection of metabolites with short T2 values or complex coupling 

patterns as there is significant signal loss at longer TE. Modern magnet and 

gradient systems overcome these problems so that PRESS can be used at 

short echo times for detection of coupled spin systems. 

 

1.5.8. Water Suppression 

Metabolite concentrations in the brain are several orders of magnitude smaller 

than the concentration of water in the brain. Due to this, water signal will 

overwhelm the signal from metabolites of interest if nothing is done about it.  

Water suppression is carried out in order to decrease the amplitude of the 

water peak in the spectrum, allowing easier visualisation of metabolite signals.  

One method of water suppression is chemical shift selective excitation 

(CHESS), this involves excitation at the frequency of water, followed by a 

crusher gradient to dephase the resulting magnetization (Haase et al., 1985). 

This results in a system where there is a large reduction (>1000-fold) in water 

magnetisation, but the components which resonate at different frequencies are 

unaffected.  

 

The CHESS sequence only gives good water suppression over a relatively 

narrow range of water T1 values and RF (B1) values. Thus alternative 

sequences were developed using multiple suppression pulses with optimised 

flip angles and delays. The result is effective water suppression over a range of 

T1 and B1 values. One of these methods is called volume localized, solvent 

attenuated, proton NMR VAPOR (Griffey and Flamig, 1990; Tkac et al., 1999), 

and it is our method of choice for water suppression. 
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1.5.9. Data processing method 

Interpretation of an in vivo 1H MRS spectrum must be done with care. Many 

factors must be taken into account in order to obtain accurate metabolic 

information.  

 

Strong overlapping of metabolite peaks occurs, low SNR, broad background 

resonances originating from macromolecules and lipids with short T2 values, 

line broadening and peak overlap caused by magnetic field inhomogeneities 

and the residual water signal must all be taken into account during 

quantification. This precludes manual peak integration. Various semi- and fully 

automated methods have been developed, for a review see (Poullet et al., 

2008).  

 

There are two types of method involved in MRS quantification – interactive and 

noninteractive (Vanhamme et al., 1997). Noninteractive methods are 

computationally efficient and potentially fully automatic, however very little prior 

knowledge can be imposed on these models (Vanhamme et al., 1997). 

Interactive methods incorporate more user-involvement and allow inclusion of 

prior knowledge, but can be less computationally efficient (Vanhamme et al., 

1997). Prior knowledge is the only way of increasing the accuracy of fitted 

model parameters for a given dataset (de Graaf, 1998). Prior knowledge can 

also reduce unknown model parameters, reducing calculation time (de Graaf, 

1998). 

 

For the in vivo part of this thesis we have chosen to use a time-domain method 

of quantification. This offers several advantages, the time-domain is the 

measurement domain in MR, consequentially missing initial and/or final data 

points do not greatly hamper quantification so such points may be omitted 

(Higinbotham and Marshall, 2001). Time-domain methods also allow automatic 

processing of water (de Beer et al., 1992) and background signals (Ratiney et 

al., 2005). 
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The method we used is known as QUEST (quantitation based on quantum 

estimation) (Ratiney et al., 2005). This is part of a software package known as 

jMRUI. This method is based upon extensive prior knowledge, in our case 

obtained by quantum mechanical simulation. The metabolite basis set will be 

created using a program called NMR SCOPE (Graveron-Demilly et al., 1993). 

 

The quantification process involves initial zero-order phasing to correctly phase 

the water peak, followed by use of Hankel-Lanczos singular value 

decomposition (HLSVD) to remove the residual water peak, then (if necessary) 

first-order correction to phase the peaks of interest. Quantification can then be 

carried out using the pre-generated metabolite basis set to obtain metabolite 

levels based on peak amplitudes. 

 

1.6.1. 1H MRS in Alzheimer’s Disease  

There is increasing evidence suggesting that the symptoms of AD only manifest 

themselves in a clinically detectable way once the underlying pathology of the 

disease has progressed significantly (Golde, 2003). There is evidence from 

imaging studies that brain atrophy and neuronal dysfunction may precede the 

onset of symptoms by years or even decades (Fox et al., 2001). One study 

using an amyloid imaging agent recently showed significant amyloid deposition 

in cognitively normal subjects (Fagan et al., 2006). 

 

The lack of a definitive biomarker is a problem for both clinical diagnosis of AD 

and also drug discovery in animal models. 1H MRS is a non-invasive method 

and is sensitive to changes in metabolite concentrations in vivo of around 1mM 

(Brooks et al., 1999). Using 1H MRS, differences in metabolite levels in both 

pathologic and healthy brain tissue can thus be assessed and potentially 

quantified in vivo. The non-invasive nature of 1H MRS is a considerable 

advantage, along with the fact that it does not involve any ionising radiation, as 

with some other scanning techniques.  
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MRS metabolic studies were initially carried out using 31P MRS as it is less 

complex than 1H MRS. 1H MRS has been used in cerebral studies as it allows 

non-invasive monitoring of several potentially important CNS metabolites. 1H 

MRS is more technically complex than 31P MRS as large signals from both 

water and fats need to be suppressed. In addition the chemical shift range of 

the various metabolites of interest is relatively narrow, leading to interpretive 

difficulties (Gadian, 1995). Advancements in solvent suppression techniques 

and spectral editing, as well as improvements in field homogeneity have 

allowed spectroscopy to be carried out even at clinical field strengths (1.5T). 

The fact that the brain generates very little signal from fats is also a great 

advantage of using 1H MRS in the brain, as opposed to other tissues where the 

fat signal presents a problem (Gadian, 1995).  

 

The high sensitivity of the 1H nucleus when compared with other nuclei is 

another advantage of 1H MRS as it potentially allows detection of low 

concentrations of metabolites. The signal from metabolites at low 

concentrations can however, be masked by signals from metabolites at higher 

concentrations. Due to this, the higher sensitivity of the 1H nucleus is exploited 

by trading signal-to-noise ratio for spatial resolution. Smaller volume elements 

can therefore be used and adequate signal-to-noise ratios obtained (Gadian, 

1995).  

 

A parameter known as echo time (TE) is the delay between radiofrequency 

excitation and detection of the signal (echo). As different metabolites have 

different T2 relaxation times, altering the TE alters the appearance of the 

spectrum. Short echo times (20-40ms) give spectra containing contributions 

from a large set of different metabolites, thus they contain more information. 

This information can be difficult to obtain however, as the spectra are often 

difficult to interpret. Longer echo times (120-300ms) give spectra with a flatter 

baseline and only containing contributions from creatine, choline, N-
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acetylaspartate, myo-inositol, lactate and lipids. Information is generally easier 

to obtain from these spectra. 

 

1.6.2. Major Detectable Metabolites 

Several major metabolites can be detected by in vivo 1H MRS, the main 

metabolites seen are: N-acetylaspartate (NAA), choline (Cho) compounds, 

myo-inositol (MI), creatine and phosphocreatine (Cr) and glutamate/glutamine 

(Glx) (Gadian, 1995). A brief overview of each of these metabolites is given 

below. Following that their potential significance with respect to AD will be 

discussed. 

 

NAA (chemical shift [δ] = 2.02 and 2.6 ppm) is present in the brain at 

concentrations of about 10mM, thus it is the second most prevalent free amino 

acid derivative in the central nervous system after glutamate (Demougeot et al., 

2004). NAA concentrations in all other body tissues are minute. Studies using 

lesioning (Koller et al., 1984), immunohistochemical analysis (Moffett et al., 

1991) and NMR/HPLC (Urenjak et al., 1992) have shown that NAA is mainly 

confined to neurones in the adult brain. Loss of NAA has been attributed to 

either loss of neurones or neuronal damage. Various studies have found that 

NAA concentration in the brain correlates with either overall neuronal loss or 

temporary neuronal dysfunction (Demougeot et al., 2004). A strong correlation 

has been shown between estimates of NAA concentration in vitro and data 

derived from MRS estimates in rats (Burri et al., 1990). The exact function of 

NAA in the brain is still being investigated. One report has linked NAA with 

myelination processes in adult humans (Bhakoo and Pearce, 2000). 

 

Significant correlation between left occipitoparietal white matter NAA/Cr and 

intellectual performance has been seen in young healthy volunteers (Jung et 

al., 1999a). A stronger association has also been made between NAA 

concentration and performance in neuropsychological timed tests (Jung et al., 

1999b). 
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Choline compounds (δ = 3.2ppm). Choline itself is a precursor in the synthesis 

of both cell membrane phosphatidylcholine and the neurotransmitter 

acetylcholine (Ach), in the case of Ach it is rate-limiting. The MRS peak for 

choline measures mobile forms of choline, including choline, Ach, 

glycerophosphorylcholine (GPC) and phosphocholine. Due to its immobility, 

phosphatidylcholine is invisible to MRS (Valenzuela and Sachdev, 2001). 

Choline concentration has been shown to increase with age (Moats et al., 

1994). Elevated choline levels may mark cellular proliferation (neoplasia) or 

myelin breakdown (Lazeyras et al., 1998). 

 

Myo-inositol (δ = 3.6 and 4.0 ppm) is a sugar alcohol with a structure similar to 

that of glucose, its function is uncertain (Valenzuela and Sachdev, 2001). Of 

the visible peak for MI, approximately 70% comes from free MI and 15% from 

MI phosphate (Ross, 1991). Potential functions of MI include osmoregulation, 

acting as an intracellular messenger and acting as a detoxification agent in the 

brain/liver (Ross, 1991). Elevated MI could represent gliosis, cytoskeletal 

abnormalities or membrane dysfunction (Lazeyras et al., 1998).  

 

Creatine and phosphocreatine (δ = 3.0 and 3.9 ppm). Cellular ATP/ADP ratios 

are buffered by the phosphocreatine-creatine equilibrium reaction, which acts 

as a reserve for high energy phosphates (Miller, 1991). As a consequence the 

combined Cr signal reflects the state of energy use and storage within a 

system. The Cr signal can be used as a reference metabolite in quantification 

of other neurochemicals (Valenzuela and Sachdev, 2001). Cr has been shown 

not to vary significantly between different people or between normal subjects 

and AD patients (Moats et al., 1994). White matter disease causes decreased 

Cr levels (Oppenheimer et al., 1995), whereas Cr levels increase in the grey 

matter with age (Chang et al., 1996). 
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Glutamate/glutamine (δ = 2.1-2.4 ppm). Glutamate is the most abundant neural 

amino acid, with approximate concentrations in the brain of 12mM. The function 

of glutamate is as an excitatory neurotransmitter. Glutamine is thought to be 

important to normal cerebral function, acting as a detoxifying agent and 

regulating the excitatory activity of its precursor (glutamate) (Ross, 1991). The 

chemical structures of glutamate and glutamine give a highly coupled and 

complex MRS spectrum with low individual peak intensities (Ross, 1991).  

 

1.6.3. Metabolic Differences in AD Detected by 1H MRS 

The use of 1H MRS in studying AD has produced some interesting results. 1H 

MRS of perchloric acid exctracts from post-mortem AD brains showed 

increases in MI and aspartate, among others. It also showed decreases in NAA 

and phosphoethanolamine (Klunk et al., 1996). While in vivo techniques cannot 

detect the same number of metabolites as spectra from extracts, potentially 

useful information has been gathered. 

 

The most striking feature of the various in vivo 1H MRS studies in AD subjects 

has been a decrease in NAA in AD sufferers. Reduction in NAA has been seen 

in a number of different neurological disorders (Jessen et al., 2000). Due to this 

efforts must be made to focus on areas of the brain known to be the site of 

neuronal injury in AD, for instance the medial temporal lobe, which is the 

earliest site of neuronal loss (Braak and Braak, 1991). Exact brain locations 

studied have varied, but reduced NAA has been found in parieto-occipital 

regions (Huang et al., 2001; Waldman and Rai, 2003), hippocampus (Dixon et 

al., 2002; Ackl et al., 2005), medial temporal lobes (Chantal et al., 2004), 

posterior cingulate (Kantarci et al., 2000), occipital cortex (Shonk et al., 1995), 

anterior temporal lobes (Frederick et al., 2004) and parietal lobes (Schuff et al., 

2002) among others. NAA decrease has been shown in over 20 papers as 

correlating with AD pathology. This reproducibility is encouraging, as is the 

magnitude of the observed decrease of around 10-15% in various studies 

observing different brain regions and using different protocols.  NAA depletion 
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seems to be greater in grey matter than white matter. Furthermore, in AD 

atrophy of various regions of the brain is known to occur. In a study which 

corrected for hippocampal atrophy, reduced NAA levels were still observed in 

AD subjects compared with controls (Schuff et al., 1997).  

 

The other major finding of the continued research has been elevation of MI 

levels in AD subjects. Increases have been seen in various brain regions, 

including the parietal lobe grey matter (Ackl et al., 2005; Zhu et al., 2006), 

occipital lobes (Dixon et al., 2002), medial temporal lobes (Kantarci et al., 

2000), occipital cortex (Shonk et al., 1995) and parieto-occipital region 

(Waldman and Rai, 2003). However, a study using spectral acquisition and 

data evaluation techniques similar to Shonk et al. 1995 found reduced NAA but 

no change in MI (Heun et al., 1997). Elevated MI in AD could represent reactive 

gliosis following neurodegeneration (Lazeyras et al., 1998). Also, severe 

deficits in phosphoinositide signalling are thought to occur in AD (Pacheco and 

Jope, 1996). Abnormal activation of phospholipase C and associated metabolic 

dysfunctions could also play a role in the increased MI signal seen in AD 

(Kanfer et al., 1998). 

Study of changes in MI may be confounded by the presence of other diseases 

which also affect the brain, such as hepatic encephalopathy (Kreis et al., 1992), 

diabetes mellitus (Kreis and Ross, 1992) and metachromatic leucodystrophy 

(Kruse et al., 1993). 

 

Choline levels do not appear to be affected by AD. Creatine signal (which also 

seems fairly constant in AD subjects compared with controls), along with water 

is often used to quantify levels of MI and NAA seen in spectra.  

 

One study in the cingulate region points to reduced ratios of glutamate and 

glutamine (Glx) to creatine in AD subjects (Antuono et al., 2001). Decreased 

glutamate could lead to less efficient neuronal signalling, which could be a 

factor contributing to the symptoms seen in AD. Glx ratios in AD sufferers were 
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also seen to be correlated with MMSE scores (Antuono et al., 2001), this could 

aid in the diagnosis of the disease, this will be discussed in more detail later. A 

potential flaw with this study however; is that the data were obtained from 

clinically diagnosed probable AD sufferers, and not histologically verified cases. 

Also the number of patients included in the analysis was small; therefore further 

work is needed before any final conclusions can be drawn. 

 

1.6.4. Potential Uses of 1H MRS in AD 

The data obtained so far by 1H MRS have a number of potential uses. Use of 

metabolite ratios in diagnosis of AD, preferably at an earlier stage than with 

current clinical practice is a possibility. Some correlation has been seen 

between metabolite ratios and cognitive test scores, this could be a useful 

marker of disease progression. Prediction of progression from MCI to AD may 

also be possible, as well as differentiating between different forms of dementia. 

If definitive biomarkers of the disease and their role in the disease are verified, 

they may be of use in treatment monitoring. Transgenic animal models of AD 

with similar metabolic profiles to human AD sufferers could be of great benefit 

in drug discovery if they can be validated.  

 

1.6.5. Diagnosis 

A number of studies have demonstrated differences in metabolite ratios 

between AD subjects and age matched controls. Decreased NAA and 

increased MI are the most common findings (Miller et al., 1993; Moats et al., 

1994; Rose et al., 1999; Catani et al., 2001; Jessen et al., 2009). Absolute 

concentrations and creatine ratios have both been used in these studies. These 

findings have been largely reproducible between laboratories, with some 

exceptions (Stoppe et al., 2000). The potential diagnostic applications of these 

differences could be very useful. If they can be used to reliably diagnose AD it 

could allow earlier diagnosis and better treatment. The location of the volume(s) 

of interest varies between studies. If different laboratories could obtain spectra 

from the exact same regions and demonstrate genuinely reproducible results it 
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could go a long way toward providing proof that 1H MRS can be used as a 

diagnostic tool in AD. 

 

1.6.6. Disease Progression 

Disease progression measured by cognitive test performance could also 

potentially be monitored by 1H MRS. Significant correlation between MMSE 

score and NAA/MI, MI/Cr and absolute NAA has been reported (Rose et al., 

1999). This study also showed a correlation between metabolite levels and 

brain atrophy (measured by comparing cerebrospinal fluid and grey matter 

compositions of the spectroscopy voxel). Similar results for NAA (but not 

always MI) have been reported to correlate with MMSE score elsewhere 

(Huang et al., 2001; Waldman and Rai, 2003). Another study, measuring NAA 

content of the whole brain (WBNAA) found it to be a good predictor of MMSE 

score (Falini et al., 2005). The same study found that normalised brain volume 

(NBV) was a good marker of overall brain damage, but found only moderate 

correlation between NBV and WBNAA. Verbal fluency in AD subjects was 

reported to positively correlate with parietal MI/NAA (Ackl et al., 2005). 

Correlation was found between both NAA/Cr and MI/NAA with MMSE in a 

single voxel study, the study also indicated that a single voxel MRS 

examination only added about 10 mins to a routine MRI scan (Doraiswamy et 

al., 1998).  

 

If 1H MRS can be reliably used to chart disease progression it could prove very 

valuable, especially in treatment monitoring of any new potentially disease 

modifying therapy. 

 

 

1.6.7. Differentiation –AD/MCI 

MCI is a term used to describe subclinical complaints of memory impairment in 

the elderly. There is thought to be a high risk of patients with MCI progressing 

to AD (Ritchie and Touchon, 2000). 1H MRS measurements have potential use 
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in differentiating between the two and predicting likelihood of progression from 

MCI to AD. In the case of differentiation there is some disagreement between 

studies. One study showed significantly lower NAA/Cr ratios in AD subjects 

compared with MCI subjects (Kantarci et al., 2000), whereas another showed 

increased MI/H2O ratios in AD subjects compared with MCI subjects (Chantal 

et al., 2004). A third paper found no significant difference in metabolite ratios 

between the two (Catani et al., 2001). Clearly more work is required to evaluate 

whether or not exploitable differences exist in 1H MRS detectable 

neurometabolite profiles between AD and MCI.  

 

Prediction of progression from MCI to AD has potential clinical benefit, 

especially when disease modifying drugs become available as patients at high 

risk could be started on appropriate therapy before full onset of symptoms. One 

study gathered data on subjects with MCI then followed them up on average 3 

years later. It found that NAA/Cr ratio in the occipital cortex predicted dementia 

at 100% sensitivity and 75% specificity. Positive predictive value was 83% and 

negative predictive value was 100%, with an overall, cross validated accuracy 

of 88.7% (Modrego et al., 2005). Another study found that Cho/Cr ratios 

declined in stable MCI patients compared with patients who progressed to 

clinical AD (Kantarci et al., 2006). These results show some promise, however 

due to the lack of correlation between results, and the different protocols used 

in the studies no conclusions can be drawn. Add this to the difficulties 

experienced in using 1H MRS to differentiate between MCI and AD and it is 

clear further work is required to determine whether there is a practical use for 

the technique in this particular area. 

 

 

1.6.8. Differentiation – AD/Other Dementias 
1H MRS has potential uses in differentiating between different forms of 

dementia, which may be of use in choosing the correct therapy. Differentiation 

between vascular dementia (VD) and AD seems possible and appears to be a 
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matter of location in the brain. One study found fairly similar changes in 

metabolite ratios between AD and VD, but the distribution of metabolic 

differences was different. AD followed a temporo-parietal pattern, whereas VD 

followed a global, subcortically pronounced pattern (Herminghaus et al., 2003). 

The same study also found a difference in Cho/Cr ratios (Cho was referred to 

as trimethylamines in the paper), with increases in VD not seen in AD. Another 

study differentiated the two diseases by claiming that similar changes in 

metabolites are seen between the two diseases, but in VD it is predominantly 

the white matter affected, whereas in AD it is the grey matter (Jones and 

Waldman, 2004). This study also showed a higher MI/NAA ratio in AD from 

mesial parieto-occipital spectra, using a short echo time. Another study also 

showed significant differences in the mesial parieto-occipital lobes between VD 

and AD, showing correlation with MMSE for AD but not VD (Waldman and Rai, 

2003). A further study found differences in the posterior cingulate gyrus in 

NAA/MI, MI/Cr and Cho/Cr between AD and VD (Martinez-Bisbal et al., 2004). 

 

Differentiation between AD and frontotemporal dementia (FTD) was achieved 

using 1H MRS. The differences were seen in the frontal lobe, with an altered 

metabolic profile seen in FTD but not in AD. Using these data a linear 

discriminant analysis correctly differentiated 92% of FTD patients from AD 

patients (Ernst et al., 1997).  

 

The results of another study indicate that 1H MRS metabolic profiles could be 

used to differentiate between AD, VD, FTD and dementia with lewy bodies. 

This paper indicates that further testing with longitudinal studies and 

therapeutic trials is necessary in order to be confident of accurate differentiation 

(Kantarci et al., 2004).  

 

1.6.9. Treatment Monitoring 

In a treatment monitoring study using the anticholinesterase donepezil on AD 

patients, changes were observed by 1H MRS in vivo. Treatment caused an 
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increase in NAA and NAA/Cr ratio in the parietal lobe. ADAS-Cog scores were 

found to correlate with changes in both NAA and NAA/Cr in the left parietal lobe 

after 3 months of treatment. Parietal NAA/Cr ratio was also found to be 

predictive of treatment response, patients with lower initial NAA/Cr benefited 

more from the treatment (Jessen et al., 2006). One potential weakness of this 

study is that no placebo group was included for ethical reasons. This means 

changes seen might be unrelated to cholinergic treatment.  

 

Another study used a different anticholinesterase, rivastigmine, and showed an 

increase in NAA/Cr ratio in the frontal cortex only. Some improvements in 

cognitive test scores were seen but these were not statistically significant. No 

effect on MI/Cr levels was seen (Modrego et al., 2006). As anticholinesterase 

treatment only produces modest and transient benefit in AD patients these 

results are not surprising.  

 

A third study using the selective muscarinic (M1) cholinergic agonist 

xanomeline showed a decreased in the Cho/Cr ratio caused by xanomeline 

treatment (Satlin et al., 1997). This study was limited in that only a small 

number of subjects were included (10 xanomeline, 2 placebo) and no age-

matched control subjects without AD were included. 

 

Despite some weaknesses, these three studies are relatively encouraging for 

the potential use of 1H MRS in treatment monitoring. However, the levels of the 

metabolites of interest can potentially be modified at many points in their 

metabolic pathways. Thus any changes seen may not be caused by a disease 

modifying effect of treatment, but by an interaction of the drug with the 

metabolite at an unrelated point in its metabolism, this would be a global effect, 

not restricted to a specific region. The reproducibility of the spectroscopic 

measurements used must also be extensively tested to ensure that changes 

seen are caused by the drug administered. As MRS systems and techniques 

improve effects of treatments on other metabolites which may play a role in 
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neurodegeneration may also be possible. These include glutamate and the 

endogenous antioxidant glutathione. 

 

In monitoring both treatment and disease progression MRI scans can be used 

to observe volumetric changes in the brain as a measure of disease 

progression, with atrophy occurring as the disease progresses (Fearing et al., 

2007), most notably in the medial temporal lobe, including the hippocampus, 

entorhinal cortex and the amygdala (Petrella et al., 2003). The addition of 1H 

MRS to this protocol adds only about 10 mins to scan time and allows 

assessment of both brain structure and chemistry. Using the two in tandem 

could make interpretation of results easier and/or more accurate. As neuronal 

dysfunction is likely to occur before neuronal death, metabolic changes 

detectable by 1H MRS may occur before observable brain volume loss in 

disorders such as AD. An observable increase in NAA (or slowing of decline) 

along with clinical markers of delayed disease progression may support a claim 

for neuroprotective properties of a drug. Interpretation of volume measures may 

also be difficult if neuronal loss is counterbalanced with gliosis or subtle 

oedema (Doraiswamy et al., 2000). 

 

1.7. Magnetic Resonance Imaging in AD 

MRI has been used extensively to study AD patients. Common findings include 

atrophy of cortical grey matter, temporal lobes and hippocampi, along with 

ventricular enlargement (Wahlund, 1996; Xanthakos et al., 1996). Some 

correlation between MMSE and hippocampal/temporal lobe atrophy has also 

been found (Wahlund, 1996; Xanthakos et al., 1996).  

 

Medial temporal lobe structures, including the hippocampus, parahippocampal 

gyrus and amygdala have been investigated using volumetric MRI (Jack et al., 

1997). Volumes were found to decrease with age in AD patients and age-

matched controls, however the volumes of the structures were significantly 
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smaller in AD patients than controls. Loss of hippocampal volume was also 

shown to correlate with disease progression (Jack et al., 1997).  

 

Overall brain atrophy has been shown to be greater in AD patients than age-

matched controls (Fox et al., 1996a) with no overlap between groups. 

Accelerated hippocampal volume loss has also been shown to correlate with 

onset of AD symptoms (Fox et al., 1996b). Although atrophy has been 

observed, rates and sites of atrophy corresponding to a diagnosis of AD have 

not been sufficiently validated for MRI to be used as a diagnostic tool (Frisoni et 

al., 2010).  

 

Amyloid plaques often contain iron (Smith et al., 1997), this means the plaques 

can have paramagnetic properties. This is a potential reason that some plaques 

are visible to MRI without the use of contrast agents (Benveniste et al., 1999). 

 

1.8. Investigation of Animal Models 

The development of transgenic mouse models of AD is a way of studying 

disease mechanisms and testing potential new therapeutics. Many different 

transgenic mice have been developed in order to study AD pathogenesis. 

These have human mutant variants of the genes coding for APP, the 

presenilins and tau expressed singly and in various combinations. Most of 

these mice develop amyloid plaques in their lifetimes (Higgins and Jacobsen, 

2003). Pathological changes seen in these mice include deficits in synaptic 

transmission (Hsia et al., 1999), learning deficits (Holcomb et al., 1998), 

impaired long-term potentiation (Moechars et al., 1999) and reduced brain 

volume (Van Broeck et al., 2008). 

 

To date, three different types of AD mouse model have been studied using 1H 

MRS. These are the APP, APP-PS1 and PS2APP. In APP mice, mutated 

human amyloid-β precursor protein (APP) is expressed. The APP-PS1 mouse 

coexpresses mutated human presenilin 1 (PS1) and APP. The PS2APP mouse 
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overexpresses mutated human presenilin 2 (PS2) and APP. Presenilin 1 and 2 

are thought to be part of the catalytic site of γ-secretase, an enzyme involved in 

the pathogenesis of AD (Esler et al., 2000). APP is a membrane bound protein 

which is cleaved by β- and γ-secretases to give amyloid-β protein, this protein 

aggregates in the CNS and is thought to be the main causal factor behind the 

neuronal damage seen in AD.  

 

The three mice strains all develop amyloid plaques, the APP at 10 months, the 

PS1-APP at 3 months and the PS2APP at 8 months. All three strains have also 

shown memory deficits which correlate with AD symptoms. 1H MRS studies 

have been performed on all 3 strains of mice.  The APP mice were found to 

have decreases in NAA/Cr, glutamate/Cr and glutathione/Cr in the cerebral 

cortex compared with wild type.  An increase in the amino acid taurine/Cr was 

also seen. Taurine is known to be predominantly present in the glia (Dedeoglu 

et al., 2004). This scenario seems similar to the human situation, with taurine 

replacing MI as a marker of glial proliferation. No attempt was made during the 

study to test for correlation between plaque load and neurochemical changes.  

 

For PS2APP mice, age dependent reductions in NAA/Cr and glutamate/Cr, 

were observed. There was no concurrent increase in either taurine or MI.  The 

NAA and glutamate levels were found to correlate well with plaque load in the 

frontal cortex. At 20 months a diagnostic test obtained results with 92% 

sensitivity and 82% specificity in differentiating PS2APP mice from wild type 

(von Kienlin et al., 2005). 

 

The APP-PS1 mice have been the most extensively studied with 1H MRS. In a 

study looking at APP-PS1 mice of varying ages, a reduction in NAA/Cr and 

glutamate/Cr was observed with advancing age (Marjanska et al., 2005). This 

effect has also been seen in wild type mice, but to a much lesser extent and 

with a later age of onset (von Kienlin et al., 2005). There is some concordance 

between the 3 mouse AD models and the human condition in the reduction of 
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NAA levels. The APP-PS1 mice also showed a dramatic, age dependent 

increase in MI/Cr levels (Marjanska et al., 2005). This differs from the other two 

mouse models. This increase was attributed to microglial activation in these 

mice. Thus, according to current evidence, the APP-PS1 mouse most closely 

resembles the human condition in that it mimics the decrease in NAA as well as 

the increase in MI. Activated microglia accumulate around amyloid plaques in 

both humans and APP-PS1 mice. Concern is expressed by the authors of the 

study that the increase in MI may be a consequence of plaque load rather than 

genotype, which could limit the use of this model (Marjanska et al., 2005).  

 

In a study using multivariate data analysis, MI/Cr was found to be important for 

group separation (transgenic/wild type) in younger mice, while NAA/Cr, 

glutamate/Cr and macrolipids were more important in older animals (Oberg et 

al., 2007). This study only used animals up to 9 months old. In a study 

comparing memory differences (measured by the object recognition test) with 

metabolite levels from brain extracts, measurable memory deficits were first 

observed at 35 weeks. At this point the mice were sacrificed and NMR spectra 

acquired from extracts from various brain regions. Increased MI was found in all 

tested brain regions, a small decrease in NAA was found in the temporal cortex 

(Woo et al., 2010). It would appear that increased MI precedes NAA decrease 

in this model, except in the temporal cortex, one of the areas in which 

pathology surfaces in early human AD. 

 

Of the 3 strains APP-PS1 appears to be the most attractive model to be used in 

drug discovery. Due to the similarities in the 1H MRS profile of the APP-PS1 

mice and human AD subjects, disease-modifying therapies could potentially be 

investigated using these mice, and thus accelerate the process of developing 

new therapies. This in turn would result in new therapies being available to AD 

patients much sooner. 
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In summary, 1H MRS has many potential applications in the study and 

treatment of AD. The changes in NAA and MI seen are now fairly widely 

accepted and as techniques/instrumentation improve other metabolites may be 

studied in more detail. The potential use of 1H MRS as a diagnostic tool and in 

monitoring disease progression/therapy is demonstrated, however further 

development and optimisation is required. The use of animal models for drug 

discovery is an increasingly important area of research, particularly for the 

novel therapeutic targets currently under investigation. Use of these animal 

models allows disease-modifying actions to be studied in detail before clinical 

trials begin in humans.  

 

1.9. TASTPM Mouse 

The TASTPM mouse was developed from two transgenic mouse strains. The 

first was TAS-10, overexpressing hAPP695swe (Swedish familial mutant APP) 

under the control of the neuronal promoter Thy-1. The second is TPM, 

overexpressing the PS1 M146V mutation, also under the control of Thy-1. Both 

mice have C57BL/6 mice as the background strain (Howlett et al., 2004). TAS-

10 mice were backcrossed onto C57BL/6 and the resulting offspring were 

crossed with TPM mice to produce heterozygote double mutant mice 

(TASTPM) (Howlett et al., 2004). Thus the TASTPM expresses both human 

mutant APP and PS1 genes, both under the control of the neuronal promoter 

Thy-1 (Howlett et al., 2004). These mice begin to develop cerebral Aβ42 

deposits as early as 3 months of age, female TASTPM mice exhibit more 

immunolabelled Aβ deposits than their male counterparts. They also exhibit an 

age-dependent cognitive impairment as measured by the object recognition 

test, indicating that these mice could not distinguish between familiar and novel 

objects. The observed impairment can be detected from 6 months of age 

(Howlett et al., 2004). Dystrophic neurites were observed by electron 

microscopy in the cortex of TASTPM from 6 months of age. This suggests an 

age-related degenerative change (Howlett et al., 2004). The dystrophic neurites 

were invariably associated with extracellular Aβ deposits, suggesting that the 
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observed neuronal toxicity involves Aβ or something associated with it (Howlett 

et al., 2004).  

 

In a study examining Aβ deposition in TASTPM mice (Howlett et al., 2008), Aβ 

deposition was observed from 2-4 months of age. The amyloid plaques were 

found to contain both human Aβ and endogenous rodent amyloid. Aβ42 was 

found to be more prevalent than Aβ40 in these plaques. Inflammatory cells were 

found in close proximity to amyloid deposits, from 2-4 months of age glial 

fibrillary acidic protein (GFAP) positive astrocytes were found associated with 

plaques and microglia and astrocytes were found surrounding plaques (Howlett 

et al., 2008).  

 

Histopathologically, neuronal loss in the brains of TASTPM mice, particularly in 

the cell layers of the hippocampus, appears very similar to that occurring in the 

human AD brain (Howlett et al., 2008). Hyperphosphorylated tau was also 

observed from 4 months of age and increased with age, this tau appeared to be 

associated with dystrophic neuritis (Howlett et al., 2008). In a study on brain 

volume changes in TASTPM and C57BL/6 (WT) mice numerous differences 

were observed (James et al., 2007). An overall increase in brain volume was 

observed in both strains, but the increase was greater in the TASTPM mice and 

appeared to be continuous. The volume increase levelled off after 11 months in 

the WT. In absolute terms the majority of TASTPM brain regions increased in 

volume over time (James et al., 2007).  

 

When normalised to whole brain volume (WBV) several brain regions could be 

seen to be affected by the genetic difference over time. The hippocampal 

formation reduced in size over time in WT mice, while it increased relative to 

WBV in TASTPM mice (James et al., 2007). The normalisation process 

suggests that the transgenes elicit one of two responses. The first group 

includes the corpus callosum, corticospinal tract, hypothalamus, midbrain-

hindbrain and fornix system. In this group TASTPM brain regions are smaller 
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than WT, which suggests a negative early effect of the transgenes. These 

regions still increase in volume with age along similar lines to the WT. The 

second group includes the thalamus, cerebellum, cerebral cortex and 

caudoputamen. In this group regions are initially larger in TASTPM than WT, 

but reduce in size more rapidly with age (except for the cerebellum and 

cerebral cortex). The early increase in size in this second group is indicative of 

the effect of early Aβ deposition and inflammatory processes, leading to grey 

matter loss with age and thus a decrease in size (James et al., 2007). Early 

volume increases could also be a result of large amounts of intracellular APP 

being present, increasing cell size. Later volume loss could be offset by 

increased gliosis. 

 

In most areas of the TASTPM brain Aβ deposition is accompanied by astro- 

and microgliosis (Howlett et al., 2008). Significant thalamic pathology has been 

observed in TASTPM mice by MRI, micro-CT and histology (Evans et al., 

2007). The pathology (which is visible on MRI scans as signal hypointensity in 

the thalamus) starts to become visible at around 7 months. Although Aβ 

deposits are found in all areas of the brain with histology, only in the thalamus 

are they co-localised with calcium and ferrous iron deposits (Evans et al., 

2007). The thalamic plaques are also the only plaques visible with MR and CT, 

suggesting that the observed signal loss may be caused by a process unique to 

the thalamus or connected regions (Evans et al., 2007). Similar thalamic 

pathology has been observed in other transgenic mouse models of AD 

(Dhenain et al., 2009). There are several possible reasons for this, one is 

potential haemodynamic disruption. It has been shown in rats that transient 

middle cerebral artery occlusion leads to Aβ and APP deposition in the 

ventroposterior medial and ventroposterior lateral nuclei of the thalamus (van 

Groen et al., 2005).  
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1.10. MALDI Imaging 

The thalamic hypointensity detected in the TASTPM mouse has not been 

extensively characterised by histology and, in particular, there has been no 

proteomic analysis of the lesions. In this thesis Matrix-assisted laser 

desorption/ionization mass spectrometry (MALDI MS) is used to probe peptides 

present in the hypo-intense regions to try to identify any peptide/protein 

markers of the lesions. 

 

Mass spectrometry (MS) measures the mass to charge ratio of charged 

particles. It is used to determine the mass of molecules and also to determine 

their elemental composition and chemical structure, in this case we are mainly 

interested in peptides and proteins. The specific type of mass spectrometer 

which is interfaced to the MALDI instrument we used is a time of flight (TOF) 

mass spectrometer. This instrument determines mass to charge ratio by time 

measurement, ions are accelerated by an electric field of known strength, 

resulting in the kinetic energy of ions with the same charge being equal. The 

velocity of the ion is dependent on the mass to charge ratio (with heavier 

molecules travelling at slower speeds). The time taken for the ion to reach a 

detector at a known distance is measured and allows the mass of the ion to be 

determined if the charge is known. 

 

 MALDI is a technique which works by co-crystallising the sample of interest 

(typically small molecules, peptides or proteins) with an organic compound, 

called a matrix. The matrix facilitates ionisation of molecules from the sample 

when it is bombarded with a laser (e.g. N2, Nd-YAG) (Karas et al., 1987; Karas 

and Hillenkamp, 1988). The ions generated then enter the TOF mass 

spectrometer. 

 

The most commonly used matrices are α-cyano-4-hydroxycinnamic acid 

(alpha-cyano) and 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid). 

Matrix compounds are dissolved in a mixture of water and an organic solvent 
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such as acetonitrile or ethanol, Trifluoroacetic acid is often added to provide 

protons to aid ionisation.  

 

In MALDI MS the sample to be analysed is mixed with matrix in a ratio of 

around 1:1 and deposited on a target plate. The mixture is allowed to dry, 

during which time the matrix co-crystallises with sample molecules. The sample 

is then bombarded with short laser pulses, resulting in desorption and ionisation 

of the sample molecule. Intact, protonated molecules from the sample are then 

analysed, usually in a TOF mass analyser, allowing the mass of the parent 

molecule to be deduced. 

 

MALDI imaging involves profiling and imaging the distribution of endogenous 

components e.g. proteins, directly from thin tissue sections. Thin sections of 

tissue (10 – 20 µm thick) are cut in a cryostat and mounted on indium tin oxide 

coated glass slides. Matrix is then applied to the slide in a homgenous manner 

(e.g. airspray deposition) to get an even coating. The slide is then placed in the 

MALDI TOF instrument and the laser irradiates discrete spots over the surface 

of the tissue, covering the surface of the section at intervals which define the 

resolution of the image that will be generated. In this way, distribution of 

proteins/peptides throughout the tissue can be visualised in two dimensions. 

MALDI imaging was used in this thesis to evaluate TASTPM brain sections, 

looking for different amyloid fragments and any variations in comparison to wild 

type mice. 

 

Summary 

Thus, it can be seen that further study on the TASTPM mouse, and specifically 

its neurobiology may lead to: discovery of a novel biomarker of AD; validation of 

the TASTPM mouse as an AD model for preclinical testing; or insight into the 

pathological processes behind the neurodegeneration. 
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The experimental part of the thesis is presented in four chapters, followed by a 

final conclusion. The first two experimental chapters deal with an extraction 

study carried out on the brains of the TASTPM mice, performing MRS on the 

aqueous and organic fractions respectively. The third chapter discusses a 

spectroscopic study performed in vivo on the brains of the TASTPM mice. The 

fourth chapter discusses the MALDI investigation carried out on the brains of 

TASTPM mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 70

Chapter 2. Longitudinal in vitro 1H MRS of chloroform-methanol extracts 

from the brains of TASTPM mice 

 

2.1. Introduction 

There is a need to develop a biomarker for AD to aid in drug development, 

treatment monitoring, diagnosis and patient management. An ideal biomarker 

must be easy to measure non-invasively, related to disease progression and 

specific for AD. There is currently no such definitive biomarker for AD. Magnetic 

resonance imaging (MRI) observation of AD patients has found atrophy, 

increasing in severity with disease progression (Frisoni et al., 2010), however 

brain atrophy is not specific to AD. A proton magnetic resonance spectroscopy 

(1H MRS) scan could be performed during the same session as an MRI scan, 

only adding approximately 10 mins to scan time. If a 1H MRS biomarker could 

be found, a more robust diagnosis could potentially be made. Disease 

progression could also be monitored more closely. A metabolic biomarker for 

AD could also be invaluable in treatment monitoring. If therapeutic intervention 

caused normalisation of the 1H MRS spectrum from an AD patient this could 

give an early, non-invasive indication of drug efficacy. 

 

Decreased N-acetylaspartate (NAA) and increased myo-inositol (MI) has been 

noted in the brains of AD patients (Shonk et al., 1995; Dixon et al., 2002; Ackl 

et al., 2005). NAA is thought to be a neuronal marker (Urenjak et al., 1992), MI 

is thought to be a marker of gliosis or microglial activation (Lazeyras et al., 

1998), based on observations on cultured glial tumour cells (Brand et al., 1993). 

Some of these results have suggested 1H MRS might be used for both 

diagnosis of AD and distinguishing between different dementias. AD was 

differentiated from frontotemporal dementia (FTD) by analysing spectra 

acquired from midfrontal grey matter, decreased NAA was found in FTD but not 

AD (Ernst et al., 1997). This regional differentiation may be present in the early 

stages of neurodegeneration, but may be lost as the diseases progress and 

neurodegeneration spreads throughout the brain (Kantarci et al., 2004; Garrard 
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et al., 2006). NAA/Creatine was found to be lower in white matter of patients 

with vascular dementia than AD (Kattapong et al., 1996). Several studies have 

shown positive correlation between neuropsychological cognitive test scores 

and NAA/Cr, MI/Cr and NAA/MI ratios (Rose et al., 1999; Jessen et al., 2000; 

Huang et al., 2001; Kantarci et al., 2002), suggesting 1H MRS could be used to 

monitor disease progression. Decreased NAA can be seen in many 

neurological disorders, especially those involving neurodegeneration. 

Differentiation has been achieved by examining different regions. This may only 

be useful in early stage disese, before neurodegeneration becomes 

widespread. If another metabolic marker for AD could be discovered it could 

make differentiation using 1H MRS easier and more accurate. 

 

Understanding the underlying pathology behind AD has improved greatly in 

recent years. This is due in part to the study of mouse models of the disease, 

improving our understanding of deposition of Aβ and links to 

neurodegeneration (Moechars et al., 1999; Bayer and Wirths, 2008). 

Improvements in mouse models have also occurred, leading to models which 

are a closer approximation of human AD (Howlett et al., 2004; Bayer et al., 

2008). The most widely accepted current hypothesis about AD pathology is the 

amyloid cascade hypothesis (Hardy and Selkoe, 2002). This states that an 

imbalance in the production and degradation/clearance of amyloid beta peptide 

(Aβ) in the brain is the initiating event in a cascade ultimately leading to 

neuronal degeneration, dementia and death (Hardy and Selkoe, 2002). 

Therapies influencing Aβ production/degradation/clearance are all being 

developed and there is hope that these therapies can slow or halt the progress 

of AD once diagnosed. With ongoing research into new therapies, animal 

models are required to test efficacy before clinical trials. The object of this study 

is one such mouse, the TASTPM mouse. 

 

In this study the transgenic mouse TASTPM, which overexpresses both a 

mutant form of the amyloid precursor protein (hAPP695swe) and a mutant 
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presenilin-1 variant (M146V) (Howlett et al., 2004) was investigated. TASTPM 

mice first show amyloid deposits at 3 months and cognitive impairment is seen 

from 6 months (Howlett et al., 2004). Here, the aim was to investigate metabolic 

changes occurring over time in the brains of TASTPM mice compared to their 

base strain (C57/BL6). In order to accomplish this, chloroform-methanol 

extractions of the brains were performed and in vitro 1H MRS was performed on 

the resulting extracts. In vivo studies of different AD transgenic mice have 

shown a decrease in NAA and glutamate, and increases in MI and taurine 

(Dedeoglu et al., 2004; Marjanska et al., 2005; von Kienlin et al., 2005). A 

greater number of metabolites can be investigated in vitro and other 

metabolites which are of interest included markers of energy usage and 

neurotransmission, such as succinate and glutamate. 

 

2.2. Methods 

Chloroform-methanol extractions (Le Belle et al., 2002) were performed on 

frozen whole brains of both strains of mice at 3, 6, 9, 12, 15 and 18 months of 

age, with 5 - 9 mice in each group (Table.1).  

 Strain  
Age Group Wild Type TASTPM 

3 5 7 
6 9 8 
9 5 7 

12 9 8 
15 7 8 
18 5 8 

Table.1  Group sizes for TASTPM and wild type mice 

Mice were killed by cervical dislocation, brains were removed immediately and 

flash frozen in liquid N2. Brains were kept at -800C until use. During the 

extraction procedure, the whole frozen brains were kept under liquid nitrogen, 

adding chloroform and methanol (4oC) in a ratio of 1:2 (v/v; 3 ml/g tissue) and 

grinding the frozen reagents and brain tissue to a fine powder with a pestle and 

mortar. The tissue-solvent mixture was then allowed to thaw before being 

transferred to Teflon centrifuge tubes and sonicated. After 15 mins in contact 

with the first solvent mix, a 1:1 mix of chloroform and distilled water was added 
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(1ml/g tissue) to form an emulsion. This was followed by centrifugation at 

13000rpm for 20 min. The upper (aqueous) phase was then separated from the 

lower (organic) phase and both fractions were dried under a stream of nitrogen 

gas. The aqueous fraction was then redissolved in 650µl D2O (GOSS Scientific, 

UK) and the organic fraction in deuterated chloroform. The samples were 

adjusted to pH 7.0 with DCl and/or NaOD. A known concentration of deuterated 

trimethylsilylproprionate (TSP) was then added to each aqueous sample as an 

internal standard. Except where specified, reagents were obtained from Sigma, 

Aldrich UK. 

 
 1H MRS was performed at 25oC with a 9.4T Bruker Avance vertical bore 

magnet. 80-90% relaxed, one-dimensional spectra with a spectral width of 

20.55ppm were acquired with water presaturation using a pulse-acquire 

sequence with the following parameters: repetition time = 6.4s, central 

frequency = 400MHz, number of averages = 128, sweep width = 8223.7Hz, 

number of data points = 32768, dwell time 60.8µs, flip angle 30o. Resonance 

assignments were based on published chemical shifts and coupling patterns of 

known compounds. Peak areas were integrated using NUTS NMR Utility 

Transform Software (Acorn NMR, California, USA) with baseline flattening 

around each integration region (Fig.8). Water suppressed spectra were used 

for integration due to the flatter baseline. 
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Fig.8  Example of integration of spectrum, integrated peaks, from left to right: 

NAA, GABA, alanine, lactate 

 

Absolute quantification of metabolite levels was achieved by using a known 

concentration of the internal standard (157mg TSP dissolved in 10ml D2O, 10µl 

added to each sample = 0.912 µmoles in each sample) in each sample. 

Metabolite integrals were converted to concentrations by comparison to the 

TSP integral, taking into account numbers of equivalent protons making up the 

integral in question. Prior to statistical analysis, all values were normalised to 

individual brain weights to prevent brain size being a contributory factor. 

 

2-way ANOVA (age by genotype) was performed on the metabolite integrals 

using Graphpad Prism version 3.00 for Windows (GraphPad Software, San 

Diego, California, USA). Metabolites investigated were acetate, aspartate, 

alanine, choline, creatine, γ-aminobutyric acid (GABA), glutamate, glutamine, 

glycerophosphocholine (GPC), MI, lactate, NAA, phosphocholine, succinate 

and taurine. 
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2.3. Results 

High quality spectra, with good signal-to-noise (>10000:1 for the NAA 

resonance) were acquired from all samples, examples of which are given in 

Fig. 9 and 10, together with the assignments of the analysed peaks. All 

metabolite data are summarised in Table.3. 

 
 

Fig.9  Example spectrum obtained from an extract of an 18 month old wild type 
mouse brain. 1 – TSP, 2 – lactate, 3 – alanine, 4 – GABA, 5 – NAA, 6 – GABA, 
7 – glutamate, 8 – succinate, 9 – glutamine, 10 – aspartate, 11 – creatine, 12 – 
choline containing compounds, 13 – taurine, 14 – MI 
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Fig.10  Example spectrum obtained from an extract of an 18 month old 
TASTPM mouse brain. 1 – TSP, 2 – lactate, 3 – alanine, 4 – GABA, 5 – NAA, 6 
– GABA, 7 – glutamate, 8 – succinate, 9 – glutamine, 10 – aspartate, 11 – 
creatine, 12 – choline containing compounds, 13 – taurine, 14 - MI 
 

15 metabolites were quantified and analyzed by a 2-way ANOVA (age and 

genotype). Due to the high number of variables being compared, a Bonferroni 

correction was performed on the standard significance level of p<0.05, as 15 

variables were tested a final significance level of p<0.0033 was used. 

Significant effects of age alone were identified for creatine (p<0.001), glutamine 

(p<0.0001) and total choline-containing compounds (the sum of  

glycerophosphocholine (GPC), phosphocholine and choline levels - p<0.0001).  

Creatine was fairly stable and at similar levels in both groups until 15 months, 

when there was a marked increase in the TASTPM mice (Fig.11). Despite this 

change, there was neither an overall effect nor an interaction of genotype on 

creatine concentration. A significant effect of genotype alone was only identified 

for myo-inositol (Fig.12), which was generally higher in TASTPM mice at all 

timepoints (Fig. 18). Though the difference appeared greater in the older age-
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groups there was no significant interaction with, or main effect of, age.  

Succinate, GPC and choline all showed significant effects of both age and 

genotype. Succinate concentration fell continuously from a lower starting point 

in the TASTPM mice (Fig. 17), whereas it increased in wild type mice up until a 

fall at 15 months. Succinate was lower in TASTPM mice at all time points 

(Fig.13). Choline levels fluctuated over time, but this was much more 

pronounced in the TASTPM mice, with choline much lower than in the wild type 

at 6 – 12 months (Fig.14 + 19). GPC increased over time in both strains, but 

was slightly higher in TASTPM mice (Fig.15). No significant effect of age or 

strain was seen on NAA levels (Fig.16) 
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Fig.11  Creatine levels in TASTPM and wild type mice. Values shown are mean 
± S.E.M. 
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Fig.12  MI levels in TASTPM and wild type mice. Values shown are mean ± 
S.E.M. 
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Fig.13  Succinate levels in TASTPM and wild type mice. Values shown are 
mean ± S.E.M. 
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Fig.14  Choline levels in TASTPM and wild type mice. Values shown are mean 
± S.E.M 
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Fig.15 GPC levels in TASTPM and wild type mice. Values shown are mean ± 
S.E.M 
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Fig.16  NAA levels in TASTPM and wild type mice. Values shown are mean ± 
S.E.M 
 

Metabolite Age Genotype Interaction 
Succinate <0.0001 <0.0001 ns 
Choline <0.0001 0.0007 <0.0001 

MI ns <0.0001 ns 
GPC <0.0001 0.0030 ns 

Creatine 0.0008 ns ns 
Glutamine <0.0001 ns ns 

Total Choline <0.0001 ns ns 
 
Table.2  Table showing ANOVA probabilities of significance for metabolites 
where p<0.005. All other metabolite comparisons did not reach statistical 
significance. 
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 3 months 6 months 
Metabolite Mean S.D. CoV Mean S.D CoV 
Inositol Wild Type 4.72 0.70 14.90 5.42 0.86 15.95 
Inositol TASTPM 5.21 1.09 20.99 5.82 1.34 23.08 
Cr2 Wild Type 5.04 0.50 9.82 5.82 0.94 16.21 
Cr2 TASTPM 5.49 0.94 17.10 5.53 0.79 14.26 
Taurine Wild Type 6.63 0.91 13.80 7.34 1.10 14.95 
Taurine TASTPM 7.02 1.43 20.30 7.28 1.22 16.72 
GPC Wild Type 0.71 0.09 12.92 0.82 0.14 16.77 
GPC TASTPM 0.78 0.17 21.84 0.83 0.13 16.15 
PC Wild Type 0.44 0.04 9.29 0.51 0.07 14.54 
PC TASTPM 0.46 0.09 20.42 0.44 0.07 15.44 
Choline Wild Type 0.18 0.05 26.38 0.17 0.06 35.13 
Choline TASTPM 0.17 0.03 19.71 0.11 0.02 16.29 
Cr1 Wild Type 7.05 0.80 11.34 7.74 1.01 13.04 
Cr1 TASTPM 7.47 1.28 17.13 7.53 1.09 14.44 
Aspartate Wild 
Type 2.64 0.38 14.58 2.82 0.51 18.11 
Aspartate TASTPM 2.60 0.45 17.29 2.46 0.45 18.32 
Glutamine Wild 
Type 4.01 0.74 18.51 4.86 1.40 28.85 
Glutamine 
TASTPM 4.05 0.78 19.38 4.12 0.64 15.56 
Succinate Wild 
Type 0.58 0.05 9.19 0.59 0.15 25.58 
Succinate 
TASTPM 0.53 0.10 18.90 0.48 0.07 14.53 
Glutamate Wild 
Type 7.23 0.65 9.02 7.67 1.22 15.85 
Glutamate 
TASTPM 7.07 1.41 19.87 7.09 1.13 15.99 
GABA Wild Type 2.84 0.26 9.07 3.18 0.59 18.41 
GABA TASTPM 3.06 0.56 18.18 2.86 0.45 15.56 
NAA Wild Type 4.52 0.38 8.36 5.02 0.80 15.91 
NAA TASTPM 4.88 0.99 20.33 4.92 0.70 14.20 
Acetate Wild Type 0.29 0.08 28.43 0.28 0.05 19.33 
Acetate TASTPM 0.83 1.52 182.77 0.25 0.06 23.95 
Alanine Wild Type 0.86 0.09 10.22 1.06 0.18 17.16 
Alanine TASTPM 0.95 0.39 41.56 0.92 0.10 10.88 
Lactate Wild Type 10.77 1.13 10.48 13.59 2.03 14.93 
Lactate TASTPM 12.91 3.69 28.59 11.18 1.30 11.67 
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 9 months 12 months 
Metabolite Mean S.D CoV Mean S.D CoV 
Inositol Wild Type 5.07 0.83 16.30 5.37 0.74 13.72 
Inositol TASTPM 5.79 0.44 7.54 5.48 0.77 14.10 
Cr2 Wild Type 5.79 0.59 10.24 5.75 0.56 9.77 
Cr2 TASTPM 6.07 0.64 10.61 5.64 0.42 7.45 
Taurine Wild Type 7.25 1.11 15.31 7.57 0.73 9.70 
Taurine TASTPM 7.62 0.91 11.93 6.76 0.69 10.22 
GPC Wild Type 0.82 0.14 16.57 0.86 0.09 10.09 
GPC TASTPM 0.92 0.08 8.67 0.86 0.11 12.21 
PC Wild Type 0.55 0.06 10.13 0.50 0.06 12.35 
PC TASTPM 0.49 0.04 8.61 0.46 0.04 9.66 
Choline Wild Type 0.15 0.02 16.65 0.18 0.05 26.51 
Choline TASTPM 0.10 0.03 27.16 0.10 0.02 14.92 
Cr1 Wild Type 8.04 0.83 10.28 7.93 0.74 9.28 
Cr1 TASTPM 8.31 0.84 10.05 7.66 0.54 7.08 
Aspartate Wild 
Type 2.75 0.22 7.83 2.67 0.24 9.04 
Aspartate TASTPM 2.70 0.19 7.20 2.64 0.19 7.07 
Glutamine Wild 
Type 5.86 1.39 23.69 4.22 0.52 12.36 
Glutamine 
TASTPM 4.42 0.46 10.37 5.15 1.30 25.26 
Succinate Wild 
Type 0.61 0.09 15.17 0.64 0.12 18.28 
Succinate 
TASTPM 0.45 0.05 12.01 0.43 0.05 12.17 
Glutamate Wild 
Type 7.80 0.62 7.99 7.55 0.78 10.33 
Glutamate 
TASTPM 7.77 0.74 9.53 7.24 0.42 5.76 
GABA Wild Type 3.27 0.46 14.11 3.11 0.39 12.48 
GABA TASTPM 2.87 0.32 11.32 2.69 0.15 5.55 
NAA Wild Type 5.21 0.50 9.52 5.03 0.53 10.48 
NAA TASTPM 5.09 0.45 8.89 4.79 0.31 6.50 
Acetate Wild Type 0.28 0.05 16.58 0.28 0.04 13.22 
Acetate TASTPM 0.22 0.04 18.75 0.20 0.02 10.87 
Alanine Wild Type 1.04 0.10 9.34 1.03 0.14 13.67 
Alanine TASTPM 0.92 0.12 13.27 0.88 0.08 8.60 
Lactate Wild Type 12.95 1.10 8.47 13.57 1.73 12.75 
Lactate TASTPM 11.90 1.66 13.96 11.11 0.94 8.49 
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 15 months 18 months 
Metabolite Mean S.D CoV Mean S.D CoV 
Inositol Wild Type 5.29 0.89 16.88 4.58 0.33 7.26 
Inositol TASTPM 6.57 0.69 10.56 6.70 0.99 14.70 
Cr2 Wild Type 6.05 1.10 18.12 5.60 0.59 10.55 
Cr2 TASTPM 6.84 0.50 7.32 6.91 0.64 9.20 
Taurine Wild Type 7.70 1.48 19.25 7.05 0.48 6.84 
Taurine TASTPM 8.76 0.74 8.40 8.47 0.63 7.47 
GPC Wild Type 0.95 0.16 17.33 0.87 0.10 11.63 
GPC TASTPM 1.08 0.09 8.51 1.07 0.13 12.50 
PC Wild Type 0.51 0.08 15.22 0.47 0.07 14.23 
PC TASTPM 0.53 0.05 8.70 0.53 0.05 8.56 
Choline Wild Type 0.17 0.02 13.92 0.17 0.02 11.62 
Choline TASTPM 0.20 0.02 10.04 0.19 0.01 6.23 
Cr1 Wild Type 8.22 1.53 18.61 7.72 0.82 10.65 
Cr1 TASTPM 9.34 0.66 7.06 9.35 0.89 9.48 
Aspartate Wild 
Type 2.83 0.61 21.53 2.54 0.26 10.31 
Aspartate TASTPM 3.15 0.17 5.43 2.88 0.24 8.48 
Glutamine Wild 
Type 5.02 0.89 17.66 6.10 1.98 32.49 
Glutamine 
TASTPM 6.06 1.13 18.60 6.45 1.25 19.38 
Succinate Wild 
Type 0.48 0.10 20.12 0.47 0.10 20.53 
Succinate 
TASTPM 0.36 0.05 14.29 0.35 0.05 13.22 
Glutamate Wild 
Type 7.63 1.43 18.77 7.10 0.94 13.18 
Glutamate 
TASTPM 8.45 0.50 5.90 8.18 0.64 7.85 
GABA Wild Type 2.90 0.55 19.00 2.76 0.40 14.51 
GABA TASTPM 3.07 0.20 6.54 2.99 0.23 7.84 
NAA Wild Type 5.04 1.00 19.80 4.70 0.59 12.62 
NAA TASTPM 5.15 0.26 4.97 4.96 0.33 6.71 
Acetate Wild Type 0.68 0.12 17.98 0.65 0.11 17.04 
Acetate TASTPM 0.76 0.05 6.88 0.74 0.05 6.42 
Alanine Wild Type 0.90 0.19 21.10 0.72 0.09 12.79 
Alanine TASTPM 0.91 0.10 11.09 0.94 0.09 9.71 
Lactate Wild Type 12.26 2.85 23.21 10.59 1.10 10.40 
Lactate TASTPM 11.36 1.41 12.40 12.12 1.21 9.97 

Table.3  Table of mean, standard deviation and coefficient of variance for all 
metabolites at all time points 
 
 
 



 84

 
Fig.17  Comparison of spectra from 18 month wild type (top) and TASTPM mice 
showing differences in succinate signal (1) at 2.41ppm, also showing the 
glutamate C4 pseudo triplet (2) and a GABA triplet (3) 
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Fig.18  Comparison of spectra from 18 month wild type (top) and TASTPM mice 
showing differences in MI signal (1) at 4.06ppm, also showing the creatine peak 
at 3.93ppm (2) and lactate quartet at 4.12ppm (3)  
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Fig.19  Comparison of spectra from 12 month wild type (top) and TASTPM mice 
showing differences in choline signal (1) at 3.20ppm, also showing the 
phosphocholine peak at 3.23ppm (2), the glycerophosphocholine peak at 
3.24ppm (3) and the creatine peak at 3.03ppm (4). These spectra have been 
offset in frequency for clarity 
 
 
 

2.4. Discussion 

Metabolite concentrations are comparable to other studies using in vitro 1H 

MRS on mouse and rat brain extracts (Agrawal et al., 1968; Cerdan et al., 

1985; Arvin et al., 1994; Florian et al., 1996; Chassain et al., 2008). Good 

comparability to studies using HPLC was also achieved (Murai et al., 2001; 

Bogen et al., 2008). The coefficients of variance indicate good reproducibility in 

the results for the most part (Table.3).  

 

The higher levels of MI observed in TASTPM mice are a genotype effect. The 

presence of higher MI in younger TASTPM mice suggests that MI levels are 

independent of amyloid plaque formation. The greater difference at 15 and 18 

months age groups could however, be linked to amyloid deposition. The 
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elevated levels of MI observed in TASTPM mice are in agreement with a 

previous in vivo study showing increased MI in transgenic (APP-PS1) AD mice 

(Marjanska et al., 2005). However, in two other studies of transgenic AD mice 

by 1H MRS, no increase in MI was reported (Dedeoglu et al., 2004; von Kienlin 

et al., 2005). One study found an increase in taurine levels and postulated that 

this may be the equivalent of the MI increase seen in human AD (Dedeoglu et 

al., 2004). The increase in MI could be indicative of glial cell proliferation or 

microglial activation in these mice. Activated microglia have been found to be 

associated with the amyloid plaques in TASTPM mice (Howlett et al., 2004). 

The TASTPM mice and APP-PS1 mice contain the same double mutant 

APPswe (K671N; M671L) mutation (Richardson et al., 2003; Marjanska et al., 

2005). The PS1 mutations incorporated are slightly different, the TASTPM 

contains the M146V variant (Howlett et al., 2004), the APP-PS1 contains the 

M146L variant (Marjanska et al., 2005). The functions of MI in osmoregulation 

and membrane metabolism mean that higher MI levels may cause disruption of 

normal function (Beacher et al., 2005).  MI is also a precursor in the formation 

inositol trisphosphate and therefore can affect neuronal calcium signalling 

(Berridge, 1993). Calcium signalling modulates aspects of brain development 

and function, including neurotransmission, learning and memory (Berridge et 

al., 2000). The presence of elevated MI may be causing some of the problems, 

as opposed to being merely a marker. However, the fact that there was no age-

dependence of the difference in MI suggests that it may be a disease marker 

but would not act as a biomarker of disease progression in this model. 

 

Consistently lower levels of succinate in TASTPM mice could be indicative of 

impaired neuronal energy production or of mitochondrial dysfunction in these 

mice. The effect appears to be a genotype effect, as succinate is lower in 

TASTPM mice at all time points. As amyloid plaques are not detectable at 3 

months, it would appear that lower succinate is independent of amyloid plaque 

formation. There is evidence that intraneuronal Aβ accumulation could be 

responsible for early pathological changes, prior to amyloid plaque formation 
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(Bayer et al., 2008). Mitochondrial dysfunction and impaired neuronal energy 

production have also been observed in human AD (Valla et al., 2001; Zhu et al., 

2004; Moreira et al., 2007). Data from frozen tissue samples has shown that 

the posterior cingulate cortex in AD patients has reduced cytochrome oxidase 

(CO) activity (Valla et al., 2001). CO is a mitochondrial enzyme essential for 

aerobic energy metabolism. This reduction appears to be linked to disease 

duration (Valla et al., 2001). Another study found increased CO and lipoic acid 

in the cytoplasm of neurons of AD sufferers, lipoic acid was also found in 

autophagic vacuoles. This suggests that mitochondria undergo increased 

autophagic degradation in AD sufferers (Moreira et al., 2007). Positron 

emission tomography (PET) has shown reduced cerebral glucose metabolism 

in AD patients as well as patients thought to be at risk of developing AD 

(Drzezga et al., 2003). 

 

Glutamate and glutamine levels were not significantly different between the two 

strains, this does not agree with the in vivo studies, all of which found reduced 

glutamate levels (compared with total creatine) in older mice (Dedeoglu et al., 

2004; Marjanska et al., 2005; von Kienlin et al., 2005). The signal from 

succinate combines with the glutamate signal in vivo due to the broad 

linewidths of in vivo MRS. It is possible that these studies were detecting 

reduced succinate and interpreting this as reduced glutamate levels. It is also 

possible that the specific brain regions observed had reduced glutamate, which 

was masked in this study by whole brain usage. 

 

The slightly higher levels of GPC in the TASTPM mice may indicate differences 

in cell membrane composition. Decreased choline levels in the 6-12 month 

TASTPM mice could indicate problems with acetylcholine neurotransmission, or 

perturbation of phospholipid metabolism or cell membrane changes. Altered 

phospholipid metabolism has been observed in human AD (Kuo et al., 1998; 

Notkola et al., 1998; Roher et al., 1999; Sparks et al., 2000). 
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We did not observe decreased NAA levels in older TASTPM mice, though this 

might be expected on the basis of human data. Although it is possible a 

difference may be masked by the fact that we used whole brains in this study, 

amyloid deposition is extensive throughout the brains of TASTPM mice 

(Howlett et al., 2008). Pathology directly related to amyloid deposition would, 

therefore be expected to occur throughout the brain. Specific brain areas were 

targeted in the in vivo studies which showed a decrease (Dedeoglu et al., 2004; 

Marjanska et al., 2005; von Kienlin et al., 2005). All these studies used creatine 

as the reference metabolite. If creatine is used as the reference metabolite in 

this study, a decrease in NAA is detected in older TASTPM mice and a 

significant effect of strain, age and a strain x age interaction (p<0.0001) are 

detected by ANOVA. As the in vivo studies used creatine as a reference 

metabolite, believing it to be stable across age and strain, there is potential this 

could lead to detection of changes in NAA which may have been influenced by 

increased creatine signal. The sensitivity of the study to detect changes in NAA 

would have produced a significant result given ~20% decrease in TASTPM 

NAA in the 15 and 18 month groups. As the mean NAA actually increased, it is 

safe to say no decrease in NAA occurs in the TASTPM mice with age. 

 

Increased creatine levels in older TASTPM mice were not expected. Although if 

there is extensive glial cell proliferation the relatively higher levels of creatine in 

astrocytes (Urenjak et al., 1993) could be a factor. Increasing creatine levels 

have also been linked with cognitive decline in elderly humans (Ferguson et al., 

2002). A possible reason for the apparent increase could be osmotic stress in 

these mice (Lien et al., 1990). It is possible that, as plaque load increases in 

older TASTPM mice, the huge amount of Aβ interferes with normal 

osmoregulation in the brain. The observed increase indicates that care should 

be taken when using creatine as a reference metabolite. If creatine ratios were 

used in this case the results would have indicated a decrease in NAA in the 

TASTPM mice in the older age group, which could lead to misinterpretation. 
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The potential for this whole brain study to have masked localised changes in 

metabolic levels is highlighted by another in vitro study carried out on dissected 

brains of AD transgenic mice (Salek et al., 2010). In this study, decreases in 

NAA, glutamate, glutamine, taurine, GABA, creatine, choline and succinate 

were observed in the hippocampus, cortex, frontal cortex and midbrain of 

TgCRND8 AD transgenic mice. These results indicate the possibility of 

neurodegeneration as well as disrupted neuronal metabolism in the affected 

areas. 

 

The brains of mice increase in size with age, in contrast to humans 

(Maheswaran et al., 2009). Brain growth over time has been shown to be 

greater in TASTPM mice than their wild type counterparts (Maheswaran et al., 

2009). This is especially evident in grey matter rich areas such as the 

hippocampus and thalamus, in wild type mice there is little or no growth in 

these areas, with white matter and ventricular enlargement being responsible 

for the overall increase in size. As different brain regions contain varying 

concentrations of metabolites, the differential growth of these regions may 

cause some inaccuracy in this study. However, the brain regions displaying 

altered growth show marked amyloidosis and astrogliosis (Maheswaran et al., 

2009). The increased size does not necessarily indicate altered functionality, 

but appears to be an inflammatory response to increasing amyloidosis. 

Additionally, though we observed increasing brain weights right up to the 18 

month time point, there was no significant difference between the brain weight 

of wild type and TASTPM mice. Finally, normalising results to brain weight 

before analysis removes this as a confounding factor. Therefore I do not 

believe the differential brain growth between the two strains has a significant 

effect on the results of this study. 

 

In this study, evidence for a specific disease responsive biomarker was sought. 

Although some findings were encouraging, with succinate levels being the most 

promising, the search for conclusive proof of such a biomarker goes on. 
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Chapter 3. A Comparison of the lipid content of TAS TPM and normal 

mouse brain by 1H MRS of chloroform-methanol extracts 

 

3.1. Introduction 

 

There is strong evidence linking phospholipid, and particularly cholesterol 

metabolism and handling to AD which prompted the following study of 

phospholipid profiles in normal and TASTPM mice. This evidence is 

summarised below.  

 

The apolipoprotein E (ApoE) ε4 allele is a genetic risk factor for late onset AD 

(LOAD) (Strittmatter et al., 1993). The major function of ApoE is to redistribute 

lipids and to maintain lipid and cholesterol homeostasis. ApoE mRNA has been 

found at significantly higher levels in the brains of AD patients (Yamagata et al., 

2001). ApoE has been localised by immunohistochemistry to amyloid plaques 

(Harr et al., 1996). Carriers of the ε4 allele have been found to have 

consistently higher serum levels of triglycerides and cholesterol compared to 

peers who carry a different allele (Davignon et al., 1988a). Cholesterol uptake, 

when bound to ApoE4 was found to be less efficient than with other isoforms 

(E2 and E3) in cultured neurons in vitro (Rapp et al., 2006). ApoE4 also 

appears to be the least efficient of the three isoforms in promoting cholesterol 

efflux from neurons in culture (Michikawa et al., 2000).ε4 allele carriers are also 

thought to be at higher risk of coronary artery disease and atherosclerosis 

(Davignon et al., 1988b).  

 

High serum total cholesterol and LDL cholesterol have been found to correlate 

positively with prevalence of AD and amount of Aβ42 in the brain (Kuo et al., 

1998; Notkola et al., 1998).AD patients have been found to have higher total 

and LDL cholesterol, as well as lower HDL levels compared to age-matched 

controls (Roher et al., 1999; Sparks et al., 2000). In cholesterol-fed 

experimental animals, increased production and build up of Aβ has been shown 
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in the brain (Sparks et al., 2000). In humans, use of 3-hydroxy-3-methylglutaryl 

coenzyme A reductase inhibitors, which lower serum cholesterol have been 

associated with decreased prevalence of AD (Wolozin et al., 2000).  

 

Alterations in cholesterol homeostasis have been implicated as having a direct 

role in the pathogenesis of AD, interference with cholesterol transfer between 

astrocytes and synapses is thought to cause synaptic loss and, eventually 

neurodegeneration (Pfrieger, 2003). In AD brains a reduction in membrane 

cholesterol:phospholipid ratios has been discovered (Shobab et al., 2005; 

Stefani and Liguri, 2009). It is possible that alterations to the structure of the 

lipid membrane bilayer are involved in the pathogenesis of AD. Changes to the 

membrane could have a knock on effect on the activity and catabolism of any 

membrane-bound proteins, including APP. 

 

It is possible that the increased risk of AD associated with ApoE4 is due, in part 

or in full, to inefficient lipid homeostasis. Perturbations of lipid homeostasis 

have the potential to damage synapses and neurons and, if serious enough, 

lead to neurodegeneration. For more detail see (Martins et al., 2009). 

 

Choline, PC and GPC are better reporters of phospholipid metabolism than 

stationary phospholipids. Choline and its related compounds are essential in 

formation of the membrane lipid phosphatidylcholine. They are also released 

when phosphatidylcholine is metabolised. Differences were seen in choline and 

GPC levels between TASTPM and wild type mice in the aqueous fraction of the 

brain extracts. Thus there is potential for differences in lipid metabolism 

between the two strains. 

 

For these reasons, examination of the lipid content of the brains of TASTPM 

AD mice was instigated. Any changes in lipid content could be markers of 

altered membrane composition or lipid homeostasis. If either or both of these 
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effects are present then it would mean the TASTPM model is expressing further 

hallmarks of human AD, further validating it as an AD model. 

 

3.2. Methods 

 

Chloroform-methanol extractions (Le Belle et al., 2002) were performed on 

frozen whole brains of TASTPM and wild type mice at 3, 6, 9, and 12 months of 

age, with 5 - 9 mice in each group. The whole frozen brains were kept under 

liquid nitrogen, adding chloroform and methanol (4oC) in a ratio of 1:2 (v/v; 3 

ml/g tissue) and grinding the frozen reagents and brain tissue to a fine powder 

with a pestle and mortar. The tissue-solvent mixture was then allowed to thaw 

before being transferred to Teflon centrifuge tubes and sonicated. After 15 mins 

in contact with the first solvent mix, a 1:1 mix of chloroform and distilled water 

was added (1ml/g tissue) to form an emulsion. This was followed by 

centrifugation at 13000rpm for 20 min. The upper (aqueous) phase was then 

separated from the lower (organic) phase and both fractions were dried under a 

stream of nitrogen gas. The aqueous fraction was then redissolved in 650µl 

D2O (GOSS Scientific, UK) and the organic fraction in deuterated chloroform. 

The samples were pH adjusted to pH 7.0 with DCl and/or NaOD. Except where 

specified, reagents were obtained from Sigma, Aldrich UK. 

 
 1H MRS was performed at 25oC with a 9.4T Bruker Avance vertical bore 

magnet. Fully relaxed, one-dimensional spectra with a spectral width of 

20.55ppm were acquired using a pulse-acquire sequence with the following 

parameters: repetition time = 6.4s, central frequency = 400MHz, sweep width = 

8223.7Hz, number of data points = 32768, dwell time 121.6µs, flip angle 30o. 

Resonance assignments were based on published chemical shifts and coupling 

patterns of known compounds. Peak areas were integrated using NUTS NMR 

Utility Transform Software (Acorn NMR) with baseline flattening around each 

integration region (Fig.20). Peak assignments were performed based on results 

published in literature (Gunstone, 1995; Kostara et al., 2010). 
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Fig.20  Example of integration of spectrum, integrated peaks, functional groups 

represented from left to right: C=CCH2C=C, CH2CO and CH2C=C 

 

2 way ANOVA was performed on the lipid integrals using Graphpad Prism 

version 3.00 for Windows (GraphPad Software, San Diego California USA). 

Functional groups investigated were CH=CH, CH2OCOR, CH2OPO2
-, (CH3)3, 

CH2OR, N+(CH3)3, CH2NH3
+, CH2CH2CO, CH=CH-CH2-CH=C, CH2CO, 

CH2C=C, (CH2)n, CH3, Triglyceride terminal methyls and C18/19 cholesterol 

methyls. The (CH2)n peak at 1.3ppm was used as a reference peak as it 

remained fairly constant in all spectra. 
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3.3. Results 
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Fig.21  Peak assignments for lipid integrals. 1 – C18/19 cholesterol methyls, 2 – 

triglyceride terminal methyls, 3 – CH3, 4 – (CH2)n(used as reference peak), 5 - 

CH2CH2CO, 6 - CH2C=C, 7 - CH2CO, 8 – CH=CH-CH2-CH=CH, 9 - CH2NH3
+, 

10 - N+(CH3)3, 11 - CH2OR, 12 - (CH3)3, 13 - CH2OPO2
-, 14 - CH2OCOR, 15 - 

CH2OCOR, 16 - CH=CH, 17 – chloroform (undeuterated)  

 

 

The biggest resonance detected was from the methylene backbones of the 

lipids. We also detected cholesterol and triglyceride methyl groups, as well as 

phosphorylated, alkylglycerol, ketone and N-methyl head groups. Unsaturated 

groups were also in evidence. 

 

14 functional groups in all were quantified and analyzed by a 2-way ANOVA 

(age and genotype). To reduce the likelihood of false positive results, a 

bonferroni correction was used, giving a significance level of p<0.0035. Of all 
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functional groups investigated, only two approached significance. In the case of 

CH=CH-CH2-CH=C there was an almost significant (p=0.0069) effect of 

genotype, levels were consistently higher in TASTPM mice than wild type 

(Fig.22). Also for CH2OR there was an almost significant (p=0.0044) effect of 

genotype, levels were again consistently higher in TASTPM mice than wild 

type, though the variance was quite high in the TASTPM groups (Fig.23). Two 

other lipid groups showed potential mild genotype effects, (CH3)3 and CH2CO 

both appeared to be higher in 12 month old TASTPM mice compared with wild 

type, the significance level in both cases was p =0.01. 
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Fig.22  CH=CH-CH2-CH=C levels in TASTPM and wild type mice, error bars 

represent S.E.M.  
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Fig.23  CH2OR levels in TASTPM and wild type mice, error bars represent 

S.E.M.  
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  3 month 6 month 

Lipid 
Chemical 
Shift Mean S.D CoV Mean S.D CoV 

Chloroform WT 7.34-7.20 4671 3174 67.9 1829 1530 83.6 
Chloroform T 7.34-7.20 1643 1013 61.6 1626 874 53.7 
CH=CH WT 5.49-5.28 8331 2088 25 7958 1483 18.6 
CH=CH T 5.49-5.28 7916 1444 18.2 8024 865 10.8 
CH2OCOR WT 5.25-5.11 1170 301 25.6 1127 221 19.6 
CH2OCOR T 5.25-5.11 1197 191 15.9 1240 195 15.6 
CH2OCOR WT 4.45-4.01 4818 1203 24.9 5471 978 17.9 
CH2OCOR T 4.45-4.01 5046 1083 21.4 5298 573 10.8 
CH2OPO2- WT 3.99-3.89 2465 589 23.9 2519 445 17.7 
CH2OPO2- T 3.99-3.89 2594 495 19.1 2745 504 18.3 
(CH3)3 WT 3.8-3.7 1432 332 23.1 1569 279 17.7 
(CH3)3 T 3.8-3.7 1667 399 23.9 1750 452 25.8 
CH2OR WT 3.59-3.46 1307 292 22.4 1776 563 31.7 
CH2OR T 3.59-3.46 3991 4222 105.7 3019 2794 92.5 
N+(CH3)3 WT 3.34-3.26 4290 935 21.8 4173 746 17.9 
N+(CH3)3 T 3.34-3.26 4439 915 20.6 4303 628 14.6 
CH2NH3+ WT 3.2-3.11 1482 394 26.6 1344 213 15.9 
CH2NH3+ T 3.2-3.11 1337 243 18.1 1408 273 19.3 
C=CCH2C=C WT 2.92-2.75 4976 1455 29.2 4939 1276 25.8 
C=CCH2C=C T 2.92-2.75 5014 724 14.4 5497 1295 23.5 
CH2CO WT 2.42-2.18 6210 1521 24.5 5942 1125 18.9 
CH2CO T 2.42-2.18 6126 1041 17 6173 856 13.9 
CH2C=C WT 2.13-1.93 7390 1836 24.8 7295 1453 19.9 
CH2C=C T 2.13-1.93 7245 1198 16.5 7515 1100 14.6 
CH2*CH2CO WT 1.64-1.43 8674 1917 22.1 8717 1824 20.9 
CH2*CH2CO T 1.64-1.43 8803 1379 15.7 8895 1421 16 
CH3 WT 1.04-0.97 4180 831 19.9 4198 964 22.1 
CH3 T 1.04-0.97 4122 755 18.3 4107 553 13.4 
Triglyceride 
terminal methyls 
WT 0.95-0.83 15175 3118 20.5 14686 3064 20.9 
Triglyceride 
terminal methyls T 0.95-0.83 14450 2453 17 14665 1853 12.6 
C18/19 cholesterol 
methyls WT 0.71-0.65 1986 446 22.5 2120 551 26 

C18/19 cholesterol 
methyls T 0.71-0.65 1983 454 22.8 1939 346 17.8 
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  9 month 12 month 

Lipid 
Chemical 
Shift Mean S.D CoV Mean S.D CoV 

Chloroform WT 7.34-7.20 1088 384 35.3 2563 2122 82.8 
Chloroform T 7.34-7.20 1639 459 28 2175 786 36.1 
CH=CH WT 5.49-5.28 7361 2301 31.3 7423 1714 23.1 
CH=CH T 5.49-5.28 7551 1304 17.3 6677 1822 27.3 
CH2OCOR WT 5.25-5.11 1114 310 27.8 1077 219 20.4 
CH2OCOR T 5.25-5.11 1171 173 14.8 1015 257 25.2 
CH2OCOR WT 4.45-4.01 5043 2006 39.8 4814 1134 23.6 
CH2OCOR T 4.45-4.01 4829 1091 22.6 4563 1103 24.1 
CH2OPO2- WT 3.99-3.89 2453 808 32.9 2345 490 20.9 
CH2OPO2- T 3.99-3.89 2521 424 16.8 2277 408 17.9 
(CH3)3 WT 3.8-3.7 1558 550 35.2 1446 304 21 
(CH3)3 T 3.8-3.7 1613 352 21.7 1450 256 17.7 
CH2OR WT 3.59-3.46 2254 1143 50.7 1479 418 28.2 
CH2OR T 3.59-3.46 4674 4536 97.1 3041 2780 91.4 
N+(CH3)3 WT 3.34-3.26 4086 1272 31.1 3995 922 23.1 
N+(CH3)3 T 3.34-3.26 4155 786 18.9 3317 1113 33.6 
CH2NH3+ WT 3.2-3.11 1417 304 21.5 1289 359 27.9 
CH2NH3+ T 3.2-3.11 1448 389 26.8 1093 269 24.5 
C=CCH2C=C 
WT 2.92-2.75 4424 1121 25.3 4315 783 18.1 
C=CCH2C=C T 2.92-2.75 5397 1197 22.2 4327 897 20.7 
CH2CO WT 2.42-2.18 5562 1431 25.7 5622 1213 21.6 
CH2CO T 2.42-2.18 6129 1043 17 5589 1374 24.6 
CH2C=C WT 2.13-1.93 6934 1788 25.8 7033 1506 21.4 
CH2C=C T 2.13-1.93 7575 1230 16.2 6511 1585 24.3 
CH2*CH2CO 
WT 1.64-1.43 8168 1787 21.9 8359 1819 21.7 
CH2*CH2CO T 1.64-1.43 9359 1639 17.5 7635 2140 28 
CH3 WT 1.04-0.97 3748 943 25.1 3955 1064 26.9 
CH3 T 1.04-0.97 4135 765 18.5 3763 1101 29.3 
Triglyceride 
terminal 
methyls WT 0.95-0.83 13369 3514 26.3 14160 3460 24.4 
Triglyceride 
terminal 
methyls T 0.95-0.83 14498 2279 15.7 13030 3461 26.6 
C18/19 
cholesterol 
methyls WT 0.71-0.65 1773 540 30.5 1918 609 31.7 
C18/19 
cholesterol 
methyls T 0.71-0.65 1900 450 23.6 1904 580 30.5 

Table 4 . Mean Integral values, along with standard deviation and coefficient of 
variance for all measured lipid functional groups at all time points. T – TASTPM 
mice, WT – Wild type mice 
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3.4. Discussion 

The use of the methylene peak as a reference appears to compensate well for 

spectrometer variability between spectra. The coefficients of variance for the 

functional groups are, for the most part very good (Table.4), with one notable 

exception, the CH2OR group, this may be an artefact. The detection accuracy 

for most of the functional groups appears to be excellent. 

 

Although no significant differences were found in brain lipid content between 

the two strains of mice, all the groups which approached significance had one 

thing in common. In all cases the lipid signal was higher in the TASTPM mouse 

brains than their wild type counterparts.  

 

The apparent increased lipid signal for unsaturated lipid, alkylglycerol, 

triglyceride methyl groups and ketone groups indicates the possibility of 

alterations either lipid homeostasis or membrane composition, especially in 

older TASTPM mice. If this is the case then the TASTPM mice are displaying 

another of the factors in AD pathology. 

 

A problem arises in that, while appearing to display a trend, the data are not 

significant. There may be several reasons for this. 

 

One reason is that the entire lipid content of the brain was extracted and 

analysed. It is quite possible that any perturbations in membrane composition 

or lipid metabolism would be localised to specific areas such as the 

hippocampus or thalamus. If this is the case then larger, compartmentalized 

changes might not be detected due having been combined with less affected 

areas. 

 

As we can only detect lipid functional groups, rather than whole lipid molecules 

using this technique, it is possible that there are differences which are 

disguised by this shortcoming. HPLC analysis of the samples may yield more 
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useful information. The fact remains that there were differences in choline and 

its related compounds between the two strains. Thus there remains the 

potential for differences to be found in lipid metabolism, along with the potential 

for lipid metabolism being responsible for the pathogenic changes observed in 

the TASTPM mice. 

 

Potential future work could include HPLC analysis of organic samples from 

extracts to determine precise lipid content, as well as isolating more specific 

brain regions to look for regional differences. 
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Chapter 4. Longitudinal 1H MRS of TASTPM and wild type mice in vivo 

with concurrent T1 measurement and behavioural anal ysis 

 

4.1. Introduction 

There is a need to develop a biomarker for AD, to aid in drug development, 

treatment monitoring, diagnosis and patient management. An ideal biomarker 

must be easy to measure non-invasively, related to disease progression and 

specific for AD. There is currently no such definitive biomarker for AD. Magnetic 

resonance imaging (MRI) observation of AD patients has found atrophy, 

increasing in severity with disease progression (Frisoni et al., 2010), however 

brain atrophy is not specific to AD. A proton magnetic resonance spectroscopy 

(1H MRS) scan could be performed during the same session as an MRI scan, 

only adding approximately 10 mins to scan time. If a 1H MRS biomarker could 

be found, a more robust diagnosis could potentially be made. Disease 

progression could also be monitored more closely. A metabolic biomarker for 

AD could also be invaluable in treatment monitoring. If therapeutic intervention 

caused normalisation of the 1H MRS spectrum from an AD patient this could 

give an early, non-invasive indication of drug efficacy. 

 

Decreased N-acetylaspartate (NAA) and increased myo-inositol (MI) has been 

noted in the brains of AD patients (Shonk et al., 1995; Dixon et al., 2002; Ackl 

et al., 2005). NAA is thought to be a neuronal marker (Urenjak et al., 1992), MI 

is thought to be a marker of gliosis or microglial activation (Lazeyras et al., 

1998), based on observations on cultured glial tumour cells (Brand et al., 1993). 

Some of these results have suggested 1H MRS might be used for both 

diagnosis of AD and distinguishing between different dementias. AD was 

differentiated from frontotemporal dementia (FTD) by analysing spectra 

acquired from midfrontal grey matter, decreased NAA was found in FTD but not 

AD (Ernst et al., 1997). This regional differentiation may be present in the early 

stages of neurodegeneration, but may be lost as the disease progresses and 

neurodegeneration spreads throughout the brain (Kantarci et al., 2004; Garrard 
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et al., 2006). NAA/Creatine was found to be lower in white matter of patients 

with vascular dementia than AD (Kattapong et al., 1996). Several studies have 

shown positive correlation between neuropsychological cognitive test scores 

and NAA/Cr, MI/Cr and NAA/MI ratios (Rose et al., 1999; Jessen et al., 2000; 

Huang et al., 2001; Kantarci et al., 2002), suggesting 1H MRS could be used to 

monitor disease progression. Decreased NAA can be seen in many 

neurological disorders, especially those involving neurodegeneration. 

Differentiation has been achieved by examining different regions. This may only 

be useful in early stage disese, before neurodegeneration becomes 

widespread. If another metabolic marker for AD could be discovered it could 

make differentiation using 1H MRS easier and more accurate. 

 

While the in vitro extract chapter of this thesis dealt with changes in cerebral 

metabolites over time in both TASTPM and wild type mice, it had two 

drawbacks compared with MRS in vivo. The first drawback is the necessary 

death of the animal in order to perform the extract, obviously this has limited 

use in human medicine other than at the post mortem stage. The second is 

related to this, as the animal is killed, cerebral metabolite levels over time in the 

same animal may not be measured. In this study, as the mice recover following 

anaesthesia and scanning, cerebral metabolite shifts in each mouse over time 

may be monitored. Previous studies in vivo of different AD transgenic mice 

have shown a decrease in NAA and glutamate, and increases in MI and taurine 

(Dedeoglu et al., 2004; Marjanska et al., 2005; von Kienlin et al., 2005). 

 

We chose a 3x3x3mm voxel centred on the hippocampus and thalamus for the 

spectroscopy, as the hippocampus is one of the first areas affected in human 

AD, and because of the thalamic lesions present in older TASTPM mice (Evans 

et al., 2007). 

 

Behavioural differences have been reported in both TASTPM mice (Howlett et 

al., 2004) and other transgenic AD mice (Holcomb et al., 1998). These 
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behavioural differences have never been studied along with MRS at the same 

time. We postulate that any behavioural changes may be mirrored by cerebral 

metabolite changes measured by MRS. If this were the case it would lend more 

credence to the link between altered behaviour and metabolic changes in AD.  

 

In our study on brain extracts in vitro from TASTPM mice we found apparently 

increased levels of creatine, along with other metabolites in older TASTPM 

mice. As creatine levels are thought to be stable over time and are often used 

as a reference metabolite for MRS in vivo, this was of some concern as this 

increase might not be detected in vivo. We postulated that a reason for this 

apparent increase might be osmotic stress in the brains of the older mice. It is 

possible that in the brains of the oldest TASTPM mice, the accumulation of 

amyloid may interfere with normal brain osmoregulation. Metabolite levels 

detected by MRS have been found to increase under osmotic stress (Lien et 

al., 1990). As T1 is related to the water content of tissue (Fatouros and 

Marmarou, 1999), T1 measurements of all the brains of the mice at all age 

groups were also undertaken in order to determine if osmotic stress is indeed a 

factor.  

 

During the course of the experiments, it was noted that the amino acid alpha 

proton peak at 3.74 ppm, which usually mostly represents glutamate 

(Govindaraju et al., 2000) was larger than would be expected if just caused by 

glutamate (Fig. 25 and 26). This effect has also been observed in previous 

MRS studies of transgenic AD mice (Marjanska et al., 2005; Oberg et al., 

2007). In order to investigate this, scans using variable repetition times were 

performed to check saturation factors of metabolite peaks. 

 

4.2. Methods 

4.2.1. MR Spectroscopy and T1/T2 Mapping Scans 

TASTPM and wild type mice in 3 age groups were used. Initial ages were 3 

months, 9 months and 15 months. MRS was performed on all groups at 0, 2 
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and 4 month time points, meaning mice in 3 – 19 month age groups were 

scanned at 2 month intervals. Initial group sizes were 8 mice per group, but 

some of the TASTPM mice died over the time so group sizes for the 17 and 19 

month TASTPM were down to 5.  

 

Mice were anaesthetised using a mixture of oxygen and isoflurane. For 

induction the mixture was 5% isoflurane, for maintenance the mixture was 1.5-

2.5% isoflurane. Induction of anaesthesia was carried out in a sealed box with 

tubing delivering and removing the anaesthetic mixture at 1l/min. Once 

anaesthetised the mice were placed on the scanner animal bed in supine 

position with the heads within a nosecone for delivery of anaesthetic within the 

scanner. Respiration rate was monitored constantly using a Graseby Medical 

MR10 respiration monitor (Graseby Medical Ltd, UK). Body temperature was 

monitored constantly throughout scan time using an RS 206-3722 RS 

Components Ltd. UK) temperature monitor, with an RS K coupling and a filter 

built in-house connected to an anally-inserted temperature probe. 

 

MRS was performed on a 7T Magnex 7T/160/AS magnet with a horizontal bore 

(Magnex Scientific Ltd, Oxfordshire, UK) equipped with a 90mm (BGA9-S) 

internal diameter gradient set (maximum gradient strength 740mT/m). A volume 

coil was used for excitation and a rat brain surface coil for signal detection. The 

whole system was run from a Bruker Avance III console (Bruker, Karlsruhe, 

Germany).  

 

Initially a scout was performed to confirm the position of the animal in the 

magnet. This was followed by a FLASH (Fast Low Angle Shot) gradient-echo 

sequence oriented for a series of coronal slices in order to obtain images for 

accurate voxel positioning. The parameters of this sequence were: slice 

thickness 1mm, interslice distance 1mm, No. of slices 9, flip angle 400, TR 

350ms, TE 5.4ms, FOV 3cmx3cm, bandwidth 44642.9Hz. A 3x3x3mm voxel 

was placed so as to be over the hippocampus and thalamus (Fig.24), this voxel 
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was then shimmed using Bruker FASTMAP (Gruetter, 2005), which performs a 

linear shim, followed by a 2nd order shim, then a second linear shim. Shim 

quality was tested by water peak linewidth estimation in a non-water 

suppressed spectrum, any value over 14Hz was re-shimmed. 

 

Fig.24  Example images showing voxel placement. Left image shows coronal 

slice, right image shows axial slice 

 

Following this PRESS was performed with the following parameters: TR 

2500ms, TE 20ms, No. of averages 512, flip angle 900, No. of data points 2048, 

spectral width 13.35ppm, dwell time 124.8µs, bandwidth 4006.41Hz. Water 

presaturation was achieved using VAPOR. The total acquisition time for one 

spectrum was 21’20”.   

 

For T1/T2 mapping a single coronal slice T1/T2 map was obtained centred on 

the hippocampus and thalamus. To obtain this map a RARE sequence was 

used with the following parameters: effective TE values 11, 33, 55, 77 and 

99ms, TR 5000, 3000, 1500, 800, 400 and 200ms, RARE factor 2, No. of 

repetitions 1, No. of echo images 5, refocusing flip angle 1800, effective 

bandwidth 44642.9Hz, FOV 20mmx20mm, spatial resolution 0.156mm/pixel, 

matrix size 128x128, slice thickness 1mm.  
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The saturation factor experiments used 4 mice and performed PRESS in the 

same way as described above, but used TR values of 2500, 5000, 10000 and 

20000 ms to check saturation factors. 

 

4.2.2. MRS Quantitation 

Analyisis of the spectroscopic data was performed using QUEST (Ratiney et 

al., 2005), part of the jMRUI software package (Stefan et al., 2009). An initial 

metabolite basis set was obtained using the routine NMRSCOPE which uses 

quantum mechanics to simulate time domain signals from metabolites under 

the pulse sequence conditions in vivo. The following metabolite signals were 

simulated - NAA, MI, phosphocholine (to represent choline-containing 

compounds), glutamate, glutamine, taurine and creatine. Additional peaks at 

1.3 and 0.9 ppm were added to the basis set, these were simulated using 

simple lorentzian lineshapes to represent the macromolecule resonances at 1.3 

and 0.9 ppm to aid with spectral fitting. Spectra were phased prior to analysis 

and any residual water peak was manually removed using the HLSVD routine 

in jMRUI. Background estimation was carried out as part of the analysis. Three 

different references were used for quantification - creatine, water and the sum 

of a selection of metabolites (creatine, MI, NAA, glutamate, phosphocholine 

and taurine). 

 

4.2.3. T1/T2 mapping Analysis 

Using ParaVision 5 (Bruker, Karlsruhe, Germany), the images acquired from 

the RARE T1/T2 sequence were used to generate T1 and T2 parametric maps. 

Areas in the hippocampus, thalamus and cortex were selected and T1 and T2 

values were obtained from each region (Fig.25) 
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Fig.25 Image from RARE T1/T2 sequence showing areas from which T1 and 

T2 values were obtained. 1 – thalamus, 2 – hippocampus, 3 - cortex 

 

4.2.4. Y Maze 

TASTPM and wild type mice in 3 age groups were used. Initial ages were 3 

months, 9 months and 15 months. Y maze testing was performed on all groups 

at 0, 2 and 4 month time points, meaning mice in 3 – 19 month age groups 

were tested at 2 month intervals. There were 4 mice per group and these 

animals were not used for MRI, as repeated anaesthesia could potentially have 

affected behaviour in the maze. 

 

Mice were placed in the centre of the Y maze and their movements were 

tracked for 8 minutes. Each arm of the maze was marked internally for 

recognition purposes. Entry into each arm of the Y maze was noted and 

counted, only full entry into an arm was counted. Exploratory behaviour was 

investigated by observing how well the mice appeared to remember where they 

had already been. In other words if a mouse had just been in arm B, then arm 
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C then logically next it should explore arm A, if the mouse does this, it is known 

as a repeating triplet. 

 

4.2.5. Statistical analysis 

2-way ANOVA (age x genotype) was carried out on all metabolite amplitudes, 

T1 and T2 values from the hippocampus, thalamus and cortex, and number of 

moves and repeating triplets from the Y maze. Analysis was performed using 

Graphpad Prism version 3.00 for Windows (GraphPad Software, San Diego, 

California, USA). 

 

ANOVA was performed on all age groups combined, but the groups were split 

to contain groups of mice of the same age tested repeatedly (3 – 7, 9 – 13 and 

15 – 19 months). 
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4.3. Results 

 

 

Fig.26 Example spectrum from a 13 month old TASTPM mouse with peak 

assignments. 1 – NAA, 2 – Glx, 3 – Creatine, 4 – Choline containing compouns, 

5 – Taurine, 6 - NAA aspartyl protons, 7 – MI, 8 – amino acid alpha protons, 9 – 

glycine coresonates with MI at 3.55ppm. Example has 3Hz line broadening 
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Fig.27 Example spectrum from a 13 month old wild type mouse with peak 

assignments. 1 – NAA, 2 – Glx, 3 – Creatine, 4 – Choline containing compouns, 

5 – Taurine, 6 - NAA aspartyl protons, 7 – MI, 8 – amino acid alpha protons, 9 – 

glycine coresonates with MI at 3.55ppm. Example has 3Hz line broadening 
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Fig.28 Example of the fit obtained using QUEST to quantify a spectrum from a 

17 month TASTPM mouse 
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Fig.29  Example of the fit obtained using QUEST to quantify a spectrum from a 

19 month wild type mouse 

 

Good quality spectra, suitable for quantitative analysis were acquired in all 

cases except one spectrum which showed low signal-to-noise for unexplained 

reasons. Examples of spectra from mice of different strains are shown in Fig.26 

and 27 A good indication of spectral quality and consistency is the metabolite 

linewidth which has been estimated for the creatine resonance in a 

representative set of 6 spectra. The linewidth at half height was 17.1 +/- 5.2 Hz, 

equivelent to 0.056 ppm. Linewidths of less than 0.1 ppm are considered 

essential for in vivo 1H MRS. The resolution to baseline between choline and 

creatine is also indicative of good spectral quality (Kreis, 2004). Though it is 

unwise to place too much emphasis on the amount of signal left in the residual 

as an indicator of quality of fit, it can be seen that the residual is featureless 

with very little structure (Fig. 28 and 29). It is easy to generate a flat residual by 
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incorporating more features into the model, but in this case we have used 

known metabolites plus two macromolecule peaks. 

 

 

4.3.1. Reference Selection for Spectroscopy 

The three different references that were used for quantification - creatine, water 

and a selection of metabolites (creatine, MI, NAA, glutamate, phosphocholine 

and taurine) were compared and contrasted, with their comparative coefficients 

of variation (Table.5)(Fig.29 and 30) 

Creatine Ratio 
 3 - 7 months 9 - 13 months 15 - 19 months 
 Mean SD Mean SD Mean SD 

Wild Type 16.07 5.53 18.16 5.52 22.40 8.13 
TASTPM 12.89 4.50 17.21 5.62 18.54 8.56 

       
Water Ref 

 3 - 7 months 9 - 13 months 15 - 19 months 
 Mean SD Mean SD Mean SD 

Wild Type 16.97 7.01 19.67 5.75 20.86 8.87 
TASTPM 13.13 5.20 20.68 9.12 18.16 9.47 

       
Selected Metabolites 

 3 - 7 months 9 - 13 months 15 - 19 months 
 Mean SD Mean SD Mean SD 

Wild Type 12.75 5.44 15.26 5.97 18.47 7.68 
TASTPM 11.43 6.01 14.51 6.23 15.37 8.50 

Table.5 Mean and standard deviation of coefficients of variation for different 

quantitation references. The table shows the mean CoV across all metabolites 
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Fig.30  Average coefficients of variation for the different age groups in TASTPM 

mice 
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Fig.31  Average coefficients of variation for the different age groups in wild type 

mice 

 

All the results give similar reproducibility, the preferred reference in this case is 

the selected metabolites because it avoids problems associated with using a 

separate scan for quantification referencing (as would be the case for the water 

reference), and allows estimation of all metabolites, including creatine. In 

addition the selected metabolites reference gives the lowest CoV in nearly all 

cases, although this is not statistically significant in any individual case (Fig. 30 

and 31). 
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4.3.2. Spectroscopy Results 

Creatine levels were higher in older TASTPM mice in our extract study (see in 

vitro chapter). So the results we obtained from this study are of particular 

importance. A significant effect of genotype was observed overall for creatine 

(P<0.005), as well as in the 3 – 7 (P<0.01) and 9 – 13 (P<0.05) month groups 

(Fig.32). Creatine is at a higher level in TASTPM mice, but this difference is 

most pronounced in the younger age groups, with levels being similar in middle 

age groups (13 and 15 months) and levels in TASTPM mice higher again in the 

oldest mice. 
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Fig.32  Creatine ratios to selected metabolites for all age groups, values are 

given ± S.E.M. 
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There was no difference in glutamate signal between wild type and TASTPM 

mice in our extract study. In this study, overall there was a significant effect of 

genotype (P<0.0001), age (P<0.001) and an age x genotype interaction 

(P<0.05). Glutamate levels were higher in wild type mice at all but the 13 month 

time point (Fig.33). In the 3 – 7 month group, there were significant effects of 

age (P<0.05) and genotype (P<0.0001), glutamate levels being higher in wild 

type mice. In the 9 – 13 month group there were significant effects of age 

(P<0.01), genotype (P<0.01) and an age x genotype interaction (P<0.005), 

glutamate levels appeared to be falling over time in wild type mice. In the 15 – 

19 month group there was a significant effect of genotype (P<0.001), glutamate 

levels were again higher in TASTPM mice. 
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Fig.33  Glutamate ratios to selected metabolites for all age groups, values are 

given ± S.E.M. 
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The quantification of glutamine as a separate resonance to glutamate produce 

results with poor reproducibility, coefficients of variation were very high and 

there were no statistically significant differences found (Fig.34). In some cases, 

a high glutamine signal corresponded to a low glutamate signal, whereas non-

detection of glutamine returned a high glutamate signal. For this reason it was 

decided to combine the glutamate and glutamine signals, for a combined Glx 

signal. 
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Fig.34  Glutamine ratios to selected metabolites for all age groups, values are 

given ± S.E.M. 
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Overall, there were significant effects of age (P<0.001) and genotype 

(P<0.0001) on Glx levels, with combined Glx signal higher in wild type mice at 

all but the 13 month time point (Fig.35). In the 3 – 7 month group, there were 

significant effects of age (P<0.005) and genotype (P<0.0001), Glx levels were 

higher in wild type mice at all time points. In the 9 – 13 month group there were 

significant effects of age (P<0.05), genotype (P<0.005) and an age x genotype 

interaction (P<0.05), Glx levels fell over time in the wild type mice. In the 15 – 

19 month group there was a significant effect of genotype (P<0.0005), with Glx 

levels higher in wild type mice. 
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Fig.35  Glx ratios to selected metabolites for all age groups, values are given ± 

S.E.M. 
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Overall there was a significant effect of genotype on MI levels (P<0.0001), with 

MI higher in TASTPM mice at all but the 13 month time point (Fig.36). There 

were also significant effects of genotype in the 3 – 7 and 15 – 19 month groups 

(P<0.001), MI levels in both groups were higher in TASTPM mice. There were 

no significant differences in the 9 – 13 month group, with MI levels in TASTPM 

and wild type mice getting closer with age. 
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Fig.36  MI ratios to selected metabolites for all age groups, values are given ± 

S.E.M. 
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In our extract study, we found no significant differences in the NAA levels 

between TASTPM and wild type mice, this was not in agreement with other 

MRS studies of transgenic AD mice. Overall in this study there was a significant 

effect of genotype on NAA levels (P<0.0001), with higher levels of NAA in wild 

type mice (Fig.37). In the 3 – 7 month group, there were significant effects of 

age (P<0.005) and genotype (P<0.05), with NAA levels increasing with age 

steadily in wild type mice, but climbing and then falling in TASTPM mice. In the 

9 – 13 month group there were significant effects of genotype (P<0.05) and an 

age x genotype interaction (P<0.05), with NAA levels increasing with age in 

TASTPM mice, and decreasing with age in wild type mice. In the 15 – 19 month 

group there was a significant effect of genotype (P<0.05), with NAA levels 

consistently higher in wild type mice. 
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Fig.37  NAA ratios to selected metabolites for all age groups, values are given ± 

S.E.M. 
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Overall there were significant effects of both age and genotype (P<0.0001) on 

Cho levels (Fig.38), with generally higher and more stable levels of PC in 

TASTPM mice and lower, fluctuating levels in wild type mice. In the 3 – 7 month 

group there were significant effects of age (P<0.0001), genotype (P<0.01) and 

an age x genotype interaction (P<0.05), Cho levels increased and then leveled 

off in TASTPM mice, whereas there was a steady increase but at a lower level 

in wild type mice. In the 9 – 13 month group there were significant effects of 

age (P<0.05) and genotype (P<0.001), Cho levels were stable at a higher level 

in TASTPM mice, whereas levels increased but at lower levels in wild type 

mice. In the 15 – 19 month group there was a significant effect of genotype 

(P<0.005), with consistently higher levels in TASTPM mice. 
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Fig.38  Cho ratios to selected metabolites for all age groups, values are given ± 

S.E.M. 
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Overall there was a significant effect of age (P<0.05) on taurine levels, with a 

decline over time in both strains (Fig.39). The only other significant difference 

observed was an effect of age in the 3 – 7 month group (P<0.001), with an 

apparent decline over time. 
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Fig.39  Taurine ratios to selected metabolites for all age groups, values are 

given ± S.E.M. 
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 3 months 5 months 
 Mean S.D. CoV Mean S.D. CoV 

Selected Metabolites       
Creatine Wild Type 0.0507 0.0020 3.9 0.0507 0.0031 6.1 
Creatine TASTPM 0.0534 0.0023 4.3 0.0522 0.0022 4.3 

Glutamate Wild Type 0.0398 0.0045 11.2 0.0372 0.0056 15.1 
Glutamate TASTPM 0.0350 0.0028 7.9 0.0308 0.0034 11.0 
Glutamine Wild Type 0.0044 0.0031 70.1 0.0032 0.0045 143.2 
Glutamine TASTPM 0.0043 0.0029 67.5 0.0025 0.0033 134.4 

Glx Wild Type 0.0443 0.0041 9.3 0.0404 0.0080 19.8 
Glx TASTPM 0.0393 0.0027 6.9 0.0333 0.0051 15.5 
MI Wild Type 0.0218 0.0028 12.8 0.0217 0.0058 26.5 
MI TASTPM 0.0231 0.0026 11.2 0.0251 0.0023 9.3 

NAA Wild Type 0.0262 0.0026 10.0 0.0301 0.0033 10.9 
NAA TASTPM 0.0237 0.0073 30.7 0.0295 0.0031 10.6 
Cho Wild Type 0.0089 0.0008 8.7 0.0097 0.0009 9.0 
Cho TASTPM 0.0087 0.0008 8.7 0.0115 0.0014 11.9 

Taurine Wild Type 0.0304 0.0029 9.6 0.0269 0.0050 18.4 
Taurine TASTPM 0.0317 0.0047 14.8 0.0242 0.0042 17.3 

 7 months 9 months 
 Mean S.D. CoV Mean S.D. CoV 

Selected Metabolites       
Creatine Wild Type 0.0512 0.0047 9.2 0.0464 0.0023 5.0 
Creatine TASTPM 0.0557 0.0041 7.4 0.0526 0.0018 3.5 

Glutamate Wild Type 0.0367 0.0058 15.8 0.0444 0.0065 14.6 
Glutamate TASTPM 0.0277 0.0058 20.9 0.0310 0.0060 19.3 
Glutamine Wild Type 0.0028 0.0048 170.9 0.0057 0.0040 71.0 
Glutamine TASTPM 0.0022 0.0023 104.2 0.0051 0.0043 85.3 

Glx Wild Type 0.0395 0.0055 13.8 0.0501 0.0088 17.5 
Glx TASTPM 0.0298 0.0049 16.4 0.0361 0.0055 15.3 
MI Wild Type 0.0193 0.0037 19.3 0.0192 0.0017 8.8 
MI TASTPM 0.0258 0.0027 10.7 0.0246 0.0060 24.4 

NAA Wild Type 0.0315 0.0033 10.5 0.0323 0.0040 12.2 
NAA TASTPM 0.0272 0.0021 7.6 0.0261 0.0036 13.9 
Cho Wild Type 0.0103 0.0012 11.5 0.0079 0.0019 23.5 
Cho TASTPM 0.0112 0.0006 5.6 0.0110 0.0024 22.3 

Taurine Wild Type 0.0270 0.0019 7.0 0.0275 0.0050 18.1 
Taurine TASTPM 0.0274 0.0023 8.5 0.0274 0.0071 26.0 
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 11 months 13 months 
 Mean S.D. CoV Mean S.D. CoV 

Selected Metabolites       
Creatine Wild Type 0.0521 0.0050 9.6 0.0528 0.0028 5.3 
Creatine TASTPM 0.0529 0.0022 4.2 0.0516 0.0034 6.6 

Glutamate Wild Type 0.0359 0.0065 18.2 0.0298 0.0052 17.4 
Glutamate TASTPM 0.0328 0.0043 13.0 0.0321 0.0056 17.4 
Glutamine Wild Type 0.0052 0.0063 120.9 0.0055 0.0059 107.0 
Glutamine TASTPM 0.0038 0.0047 126.4 0.0030 0.0049 165.8 

Glx Wild Type 0.0411 0.0063 15.4 0.0353 0.0067 18.9 
Glx TASTPM 0.0365 0.0078 21.3 0.0351 0.0046 13.0 
MI Wild Type 0.0207 0.0060 29.0 0.0243 0.0037 15.1 
MI TASTPM 0.0233 0.0051 22.1 0.0241 0.0041 17.0 

NAA Wild Type 0.0304 0.0040 13.2 0.0272 0.0034 12.6 
NAA TASTPM 0.0277 0.0020 7.3 0.0286 0.0029 10.2 
Cho Wild Type 0.0093 0.0016 17.2 0.0109 0.0014 13.2 
Cho TASTPM 0.0116 0.0010 8.2 0.0116 0.0010 8.4 

Taurine Wild Type 0.0268 0.0036 13.4 0.0273 0.0048 17.6 
Taurine TASTPM 0.0240 0.0036 15.1 0.0250 0.0037 14.8 

 15 months 17 months 
 Mean S.D. CoV Mean S.D. CoV 

Selected Metabolites       
Creatine Wild Type 0.0518 0.0067 12.9 0.0512 0.0037 7.3 
Creatine TASTPM 0.0536 0.0053 9.9 0.0530 0.0048 9.0 

Glutamate Wild Type 0.0370 0.0088 23.8 0.0325 0.0055 16.9 
Glutamate TASTPM 0.0291 0.0057 19.7 0.0272 0.0082 30.2 
Glutamine Wild Type 0.0067 0.0055 82.8 0.0066 0.0061 93.2 
Glutamine TASTPM 0.0069 0.0067 96.5 0.0044 0.0047 107.1 

Glx Wild Type 0.0437 0.0104 23.8 0.0390 0.0063 16.1 
Glx TASTPM 0.0360 0.0029 8.2 0.0316 0.0062 19.7 
MI Wild Type 0.0193 0.0069 35.7 0.0225 0.0073 32.4 
MI TASTPM 0.0269 0.0042 15.7 0.0292 0.0019 6.6 

NAA Wild Type 0.0306 0.0067 21.9 0.0281 0.0022 7.8 
NAA TASTPM 0.0233 0.0079 33.8 0.0265 0.0017 6.6 
Cho Wild Type 0.0091 0.0022 24.1 0.0105 0.0012 11.9 
Cho TASTPM 0.0109 0.0018 16.3 0.0116 0.0017 14.4 

Taurine Wild Type 0.0263 0.0066 25.1 0.0273 0.0045 16.5 
Taurine TASTPM 0.0272 0.0031 11.4 0.0249 0.0040 16.1 
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 19 months 
 Mean S.D. CoV 

Selected Metabolites    
Creatine Wild Type 0.0516 0.0038 7.5 
Creatine TASTPM 0.0531 0.0034 6.4 

Glutamate Wild Type 0.0336 0.0046 13.7 
Glutamate TASTPM 0.0250 0.0029 11.6 
Glutamine Wild Type 0.0072 0.0118 163.5 
Glutamine TASTPM 0.0035 0.0078 223.6 

Glx Wild Type 0.0408 0.0081 19.9 
Glx TASTPM 0.0285 0.0058 20.2 
MI Wild Type 0.0217 0.0062 28.8 
MI TASTPM 0.0283 0.0050 17.8 

NAA Wild Type 0.0298 0.0072 24.1 
NAA TASTPM 0.0264 0.0028 10.7 
Cho Wild Type 0.0100 0.0012 12.0 
Cho TASTPM 0.0118 0.0006 4.8 

Taurine Wild Type 0.0247 0.0037 14.9 
Taurine TASTPM 0.0271 0.0033 12.1 

Table.6 Mean, standard deviation and coefficients of variance for all 

metabolites at all time points 
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4.3.3. T1 mapping 

Overall, there was a significant effect of genotype on T1 in the cortex 

(P<0.0001), hippocampus (P<0.0001) (Fig.40) and thalamus (Fig.41) (P<0.05). 

In all cases, the T1 times from the brains of the TASTPM mice were shorter 

than the wild type mice. There was also a significant effect of age in the 

hippocampus (P<0.05). In the 3 – 7 month group there was a significant effect 

of genotype in the cortex and the hippocampus (P<0.05) but not in the 

thalamus, again, where significant effects were seen, TASTPM T1 times were 

shorter. 
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Fig.40  T1 values in the hippocampus and cortex for mice of both strains and all 

age groups, values are mean ± S.E.M. 
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Fig.41  T1 values in the thalamus for mice of both strains and all age groups, 

values are mean ± S.E.M. 

 

In the 9 – 13 month group there was a significant effect of genotype in the 

hippocampus (P<0.0001) with TASTPM T1 times again shorter. No other 

significant effects were observed. In the 15 – 19 month group there was a 

significant effect of genotype in the cortex (P<0.01), hippocampus (P<0.0005) 

and thalamus (P<0.05), TASTPM T1 times were once again shorter. 

 

T1 has an almost linear dependence on the water content of tissue (Fatouros 

and Marmarou, 1999), so these data could be interpreted as showing a slight 

reduction in brain water in TASTPM mice.  

 

4.3.4. T2 mapping 

Overall there was a significant effect of genotype on T2 in the hippocampus 

(P<0.01) and cortex (P<0.001), with TASTPM values slightly lower (Fig.42). 

There was also a significant effect of age in the thalamus (Fig.43) (P<0.001), 

with T2 decreasing over time, and a significant age x genotype interaction in 

the hippocampus (P<0.05). 
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Fig.42  T2 values in the hippocampus and cortex for mice of both strains and all 

age groups, values are mean ± S.E.M. 

42

44

46

48

50

52

54

3 month 5 month 7 month 9 month 11 month 13 month 15 month 17 month 19 month

T
2 

(m
s)

 

Fig.43  T2 values in the thalamus for mice of both strains and all age groups, 

values are mean ± S.E.M. 

 

In the 3 – 7 month group there was a significant effect of age (P<0.001), 

genotype (P<0.001) and an age x genotype (P<0.05) interaction in the cortex, 

where T2 times fell with age, but to a greater degree in the TASTPM mice. 

There was a significant effect of genotype in the hippocampus (P<0.05), with 
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T2 times shorter in TASTPM. In the thalamus, age was a significant factor 

(P<0.05), again showing a decline with age. 

 

In the 9 – 13 month group there were significant effects of age and genotype, 

as well as a age x genotype interaction on T2 times in the hippocampus 

(P<0.05), T2 times appeared stable in the wild type mice, whereas T2 values 

decreased with age in the TASTPM mice. No significant effects were seen in 

the cortex or thalamus. 

 

In the 15 – 19 month group there was a significant age x genotype interaction in 

the hippocampus (P<0.05), with T2 times decreasing slightly with age in the 

wild type mice, and increasing in the TASTPM mice. No significant effects were 

seen in the cortex or thalamus. 

 

4.3.5. Y maze 

Overall, Y maze testing showed a significant effect of genotype (P<0.0001), 

with older TASTPM making fewer repeating triplets than wild type (Fig.44), as 

well as a significant effect of age (P<0.01). In the case of total number of 

moves in the maze, a significant effect of age was seen overall (P<0.01) 
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Fig.44  Graph showing repeating triplet percentages for both strains of mice of 

all age groups, values shown are ± S.E.M 

 

In the 3 – 7 month age group there was a significant effect of genotype on 

repeating triplets (P<0.05), with TASTPM again having fewer. There was a 

significant effect of age on total moves (P<0.05) 

 

In the 9 – 13 month age group there was a significant effect of age (P<0.05). 

There was no significant difference detected in total moves. 

 

In the 15 – 19 month age group there was a significant effect of genotype 

(P<0.001), with TASTPM again having fewer repeating triplets. There was no 

significant difference detected in total moves. 

 

4.3.6 Saturation Factors 

With the exception of NAA, at TR 2500 ms all metabolites are over 85% relaxed 

(Table.7). The difference between spectra at TR 2500 and 20000 ms is not 

great for any metabolite resonance (Fig.45) 
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Metabolite Mean S.E.M. 
NAA 0.74 0.082 
Glx 0.98 0.228 
Cr1 0.87 0.029 
Cho 0.86 0.029 

Taurine 0.93 0.132 
Alpha 0.90 0.128 
Cr2 1.07 0.057 

Table.7  Mean and S.E.M. of saturation factors between 2500 and 20000 ms 

TR for major metabolites 

 

Fig.45 Comparison of spectra of TR 2500 ms (top), 20000 ms (middle) and the 

difference between the two 
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4.4. Discussion 

Firstly, we saw a significant difference in NAA levels between TASTPM and 

wild type mice. NAA concentration was lower in TASTPM mice at all but the 13 

month time point. This is in agreement with other in vivo studies on transgenic 

AD mice (Dedeoglu et al., 2004; Marjanska et al., 2005; von Kienlin et al., 

2005), all of which observed decreased NAA/Cr ratios in AD mice compared to 

their wild type base strain. The lower level of NAA observed indicates that there 

is disruption, dysfunction or loss of neurons occurring (Demougeot et al., 2004). 

There is known to be some neurodegeneration in TASTPM mice in the form of 

the thalamic lesions, but this only occurs after 7 months. It is at 7 months that 

the difference in NAA concentration between the two strains starts to become 

most apparent. This may be a consequence of the formation of the thalamic 

lesions. It is also possible that the difference is caused by neuronal disruption, 

as opposed to frank neurodegeneration. Normal neuronal function may be 

affected by Aβ accumulation, without detectable neuronal death, reduced NAA 

has been observed in similar situations (Demougeot et al., 2004). As there is a 

difference in NAA in mice of different age groups which appears independent of 

amyloid deposition, the difference observed may be a marker of disease, 

without being a marker for disease progression in this model. 

 

The NAA differences observed are not in agreement with the data from our 

extract study. We saw no difference in NAA between TASTPM and wild type in 

the extract study. A possible reason for this difference is that we used whole 

brains in our extract study, whereas a specific voxel was centred over specific 

regions of interest in this study. The use of the whole brain may have masked 

regional metabolic differences which this study has picked up due to the more 

focused area of interest. 

 

Creatine levels were significantly different between the two strains of mice, 

being slightly higher in TASTPM mice. In our extract study the creatine 

concentration was higher only in older TASTPM mice, however in this study 
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creatine concentrations are higher in younger TASTPM mice as well. The 

difference does not appear as pronounced as in the extract study. The reason 

for this discrepancy may be the same as for NAA, in this case a whole brain 

creatine increase may occur which is less pronounced in the regions scanned 

in this study. The significant difference would still indicate that care must be 

taken when using creatine as a reference metabolite in these (and possibly 

other transgenic AD) mice. 

 

Reduced glutamate and Glx concentrations were observed in TASTPM mice at 

all except the 13 month time point. This is in agreement with other in vivo 

studies of transgenic AD mice (Dedeoglu et al., 2004; Marjanska et al., 2005; 

von Kienlin et al., 2005). All these studies observed reduced glutamate/Cr 

ratios. As glutamate is a metabolic indicator, the reduced levels in TASTPM 

mice are likely a marker of neuronal hypometabolism in these mice, a symptom 

that has also been observed in human AD (Valla et al., 2001; Zhu et al., 2004; 

Moreira et al., 2007). As reduced glutamate levels can be observed at 3 

months, when amyloid plaques are barely detectable, this effect is likely 

independent of amyloid deposition. There is a weak age x genotype interaction 

for glutamate (not Glx) signal, this may be more due to the levels intersecting at 

13 months, as the difference appears fairly uniform other than at this time point. 

It is likely that glutamate and Glx are markers of the presence of amyloid in 

TASTPM mice, without being sensitive to increasing amyloid deposition. 

 

In our extract study we found no difference in glutamate signal between 

TASTPM and wild type mice. We did find a decrease in succinate concentration 

in the brains of TASTPM mice, as succinate coresonates with glutamate in vivo, 

it is possible that this partially explains the difference observed in vivo. Again, 

the more focused nature of this study may be detecting locally decreased 

glutamate signal which is not detectable by whole brain measurement. It is also 

possible that there is a difference in glutamate storage between the two strains, 

since not all of the cerebral glutamate pool is detectable in vivo (Kauppinen and 
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Williams, 1991; Kauppinen et al., 1994), thus it is possible that more glutamate 

is being stored intracellularly in the TASTPM mice, making it undetectable by in 

vivo spectroscopy, but detectable by in vitro spectroscopy on extracts. 

 

Higher MI concentration was observed in TASTPM mice at all except the 13 

month time point. This study found increased MI/Cr ratio in APP-PS1 mice. The 

presence of higher MI in younger TASTPM mice (before extensive amyloid 

deposition) suggests that MI levels are independent of amyloid plaque 

formation. The elevated levels of MI observed in TASTPM mice are in 

agreement with a previous in vivo study showing increased MI in transgenic 

(APP-PS1) AD mice (Marjanska et al., 2005). However, in two other studies of 

transgenic AD mice by 1H MRS, no increase in MI was reported (Dedeoglu et 

al., 2004; von Kienlin et al., 2005). One study found an increase in taurine 

levels and postulated that this may be the equivalent of the MI increase seen in 

human AD (Dedeoglu et al., 2004). The increase in MI could be indicative of 

glial cell proliferation or microglial activation in these mice. Activated microglia 

have been found to be associated with the amyloid plaques in TASTPM mice 

(Howlett et al., 2004). The TASTPM mice and APP-PS1 mice contain the same 

double mutant APPswe (K671N; M671L) mutation (Richardson et al., 2003; 

Marjanska et al., 2005). The PS1 mutations incorporated are slightly different, 

the TASTPM contains the M146V variant (Howlett et al., 2004), the APP-PS1 

contains the M146L variant (Marjanska et al., 2005). The functions of MI in 

osmoregulation and membrane metabolism mean that higher MI levels may 

cause disruption of normal function (Beacher et al., 2005).  MI is also a 

precursor in the formation inositol trisphosphate and therefore can affect 

neuronal calcium signalling (Berridge, 1993). Calcium signalling modulates 

aspects of brain development and function, including neurotransmission, 

learning and memory (Berridge et al., 2000). The presence of elevated MI may 

be causing some of the problems, as opposed to being merely a marker. 

However, the fact that there was no age-dependence of the difference in MI 
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suggests that it may be a disease marker but would not act as a biomarker of 

disease progression in this model. 

 

 

In the case of MI, the results of the in vivo and in vitro studies are very similar, 

thus the increased MI may be present throughout the whole brain, as opposed 

to areas specifically affected by AD. 

 

Higher levels of Cho were observed in TASTPM mice compared to wild type. 

Cho levels were also more stable over time in TASTPM mice. This could be 

indicative of differences in phospholipid metabolism or cell membrane 

composition between the two strains. Perturbations in phospholipid metabolism 

have also been observed in human AD (Kuo et al., 1998; Notkola et al., 1998; 

Roher et al., 1999; Sparks et al., 2000). Differences in lipid functional groups 

were observed in the organic extract section of this thesis.  

 

The differences in taurine levels between the two strains are minimal and not 

significant, the only significant factor is age, with taurine levels at 3 months 

being high in both strains and then declining slightly. 

 

The saturation factors that we obtained showed that most metabolites were 

over 85% fully relaxed at TR 2500 ms, thus any change in T1 with disease or 

age will not have a great effect on metabolite signal intensity and T1 can be 

ruled out as underlying any apparent metabolite changes. 

 

The T1 data indicate slightly shorter T1 times in TASTPM mice, the difference 

is only about 100ms, but it is significant. It is therefore possible that the 

presence of amyloid in the brains of TASTPM mice is disrupting normal osmotic 

function. The effect is present in younger mice but becomes more pronounced 

in older mice so may be linked to increasing amyloid deposition. Our hypothesis 

that osmotic changes in the older TASTPM mice may lead to overestimation of 
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some metabolites does not appear to be true, as the T1 values are reduced at 

a much earlier time point than the point at which we saw increased metabolite 

levels in vitro. T1 has an almost linear dependence on the water content of 

tissue (Fatouros and Marmarou, 1999), so these data could be interpreted as 

showing a slight reduction in brain water in TASTPM mice. T2 shows 

proportionally similar effects to T1, which is likely also to reflect a similar 

dependency on total water content. 

 

The Y maze data show the most significant difference in exploratory behaviour 

to be in the oldest age group (15 – 19 months) when amyloid deposition is 

extensive. The metabolites showing significant differences do not become more 

significant over time, so cannot be said to be dependent upon amyloid 

deposition. The behavioural differences may be dependent upon amyloid 

deposition and thus may be a marker of disease progression.  

 

In this study several metabolitic differences have been observed between 

TASTPM and wild type mice (NAA, glutamate, MI, Cho and creatine), these 

may be markers of pathology but do not appear sensitive to disease 

progression or amyloid deposition. The behavioural differences may be 

sensitive to disease progression, more extensive study is needed, using 

different behavioural tests to confirm this. If there is sensitivity to disease 

progression behavioral differences may be useful in testing amyloid-lowering 

therapies in this mouse model. 
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Chapter 5. Pilot Study for Evaluation of TASTPM and  Wild Type Brain 
Sections using MALDI MS Imaging and Laser Capture M icroscopy 
 
5.1. Introduction 

 

TASTPM mice are known to have increasing deposits of Aβ in the brain from 6 

months onward (Howlett et al., 2004). MALDI MS Imaging is a useful tool for 

profiling protein expression in tissues, and is also used widely for analysis of 

small molecules and peptides. The ability to observe protein profiles in the 

brains of TASTPM mice and their wild type base strain could be used to identify 

potential protein biomarkers in the TASTPM mice, as well as Aβ. Such 

biomarkers could be invaluable in furthering our understanding of the 

pathogenesis of AD, as well as having uses in preclinical efficacy trials. 

 

This chapter will focus on several aspects of MALDI MS Imaging. The first 

aspect will be development of a protocol for the analysis of formalin-fixed tissue 

sections by MALDI MS Imaging, using TASTPM brain sections. 

 

The second aspect will describe the optimisation of the matrix application 

procedure, comparing manual spraying with automated matrix application using 

an ImagePrep device. 

 

The final section will focus on the use of MALDI MS Imaging to look for 

differences in regional protein expression between TASTPM and wild type 

mouse brains, followed by isolation of any differences and attempted 

identification. 

 

Efforts are being made to enable the use of MALDI MS imaging on formalin-

fixed tissue sections (Lemaire et al., 2007; Stauber et al., 2008). Alternatives to 

formalin-fixation for long term storage are also being investigated (Chaurand et 

al., 2008). If a method could be found to obtain useful information on protein 

profiles from formalin-fixed paraffin-embedded tissue sections, this could be 



 139

useful to histologists as the extensive libraries of fixed tissues could be 

analysed in a completely different way than is currently available. 

 

The initial work carried out was to attempt to develop a protocol for analysing 

fixed sections using MALDI MS Imaging. 

 

Before embarking on method development with fixed tissue, experiments were 

performed on frozen tissue sections. Firstly, MALDI imaging of amyloid peptide 

solutions that had been spotted onto tissue sections and allowed to dry was 

undertaken to confirm their detection and provide estimates of the limits of 

detection. This was followed by tryptic digests of these spots to confirm the 

detection of amyloid fragments. MALDI MS imaging of endogenous TASTPM 

amyloid deposits was then undertaken, followed by trypsin digests of TASTPM 

brain sections and subsequent MALDI MS imaging. These proof of concept 

experiments on frozen tissue sections were successful following four repeats 

and so the attention was then transferred to fixed tissue sections.  

 

Formalin fixed TASTPM brain sections were dewaxed and trypsin digests 

performed in order to break the protein crosslinks formed during the fixing 

process. MALDI MS imaging was then performed to look for amyloid fragments 

in the dewaxed brain sections. The successful detection of any amyloid 

fragments by this approach would indicate that further study of other formalin-

fixed tissues might be carried out in ways not previously thought possible, 

looking for individual peptide signals previously invisible to MS due to protein 

crosslinks. 

 

Matrix can be manually applied using a spray device, or in an automated 

system, one example an automated device is the ImagePrep (Bruker 

Daltonics). Matrix thickness and tissue wetness are both crucial factors in the 

preparation of samples for MALDI MS analysis. A comparison of the two 
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methods of matrix application was carried out to determine the optimum 

conditions for sample preparation.  

 

Coronal sections of frozen TASTPM and wild type mouse brains were used as 

test samples. The areas chosen for study contain the hippocampus and the 

thalamus. The hippocampus was selected as it is one of the first areas affected 

in human AD, the thalamus was included due to the presence of thalamic 

hypointensities (THIs) in TASTPM mice (Evans et al., 2007). THI regions have 

been observed in other transgenic AD mice, such as APP/PS1 (Dhenain et al., 

2009). The images obtained are presented and discussed below. 

 

During the course of matrix application comparison an unknown peptide ion of 

apparent molecular weight (m/z) 4811 Daltons was detected localised to the 

THI regions. Identification of this unknown peptide may provide insight into the 

underlying pathology causing the formation of the THIs. Further study was 

carried out using laser capture microscopy (LCM) to dissect out the THI regions 

and attempt to isolate and identify the unknown peptide using MALDI and liquid 

chromatography-MS 

 

5.2. Methods 

 

5.2.1. Section Preparation for MALDI Imaging 

Frozen mouse brains were mounted onto a cryostat sample disc using 

carboxymethylcellulose (2%w/v) medium. After wiping down all surfaces in the 

cryostat with ethanol to remove any contamination, 12µm sections of brain 

were cut and thaw mounted onto indium tin oxide (ITO) coated glass slides 

(Bruker Daltonics) which had been kept inside the cryostat at -20oC whilst the 

sectioning was taking place. The tissue section was touched onto the ITO 

coated surface of the slide and then from underneath the slide the finger is 

touched onto the slide to gently warm up the slide and aid the mounting 
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process. Any sections unused on the day of sectioning were stored in a slide 

container in the freezer at approx. -20oC.  

 

5.2.2. Amyloid Spots on Tissue 

In all cases 1µl of amyloid solution (dissolved in deionised water) was spotted 

onto the tissue, at varying concentrations, concentrations are indicated in the 

images for the different experiments. 

 

5.2.3. Tissue Washing 

Mouse brain sections were each pipette washed five times with 1ml 70% 

ethanol, followed by five washes with 1ml 100% ethanol to remove lipids. The 

sections were then allowed to dry in the fume cupboard. 

 

5.2.4. Tissue Dewaxing 

Formalin-fixed paraffin-embedded sections were cut onto ITO coated slides. 

Each slide was then immersed for 5 minutes in Histoclear (x2), 100% 

methylated spirit (x2), 90% methylated spirit, 70% methylated spirit and finally 

distilled water to remove the paraffin wax. 

 

5.2.5. Trypsin Digests 

Trypsin dilutions were made up in 100mM ammonium bicarbonate to 500ng/µl. 

Trypsin solution was spotted onto brain sections, sections were then placed in 

an incubator at 37oC and 100% humidity for the desired time (either 1 hour or 

24 hours). In cases of digestion of applied Aβ 1-40, a 1µl spot of trypsin 

solution was applied on top of the Aβ spot after it had been allowed to dry, in 

cases of trypsin digest without applied amyloid, trypsin solution was applied to 

the entire brain section in question. 
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5.2.6. Matrix Application 

The matrix used was 7mg/ml alpha-cyano-4hydroxycinnamic acid in 50% 

acetonitrile and 0.2% trifluoroacetic acid (TFA). This solution was prepared and 

sonicated for 30 minutes to ensure the matrix was fully dissolved 

 

The manual spray application (performed in a fume cupboard) involved 

spraying small amounts of the matrix onto the tissue multiple times. Care was 

taken during each application of matrix to not allow the tissue to get too wet. 

Otherwise this could lead to delocalisation of the components of interest. The 

sections were allowed to air dry between each application of matrix. Matrix 

application continued until an even coating on the tissue was achieved. 

 

For automated matrix application, the slide with sections mounted onto it was 

placed in the ImagePrep (Bruker Daltonics) matrix application device, ensuring 

that the light sensor was not covered. The matrix was loaded into the machine 

and the sequence was started, spray was automated and tissue wetness/matrix 

thickness was monitored by passage of light through the slide onto the light 

sensor beneath. This sensor allowed the machine to sense when matrix was to 

be reapplied and when sufficient matrix had been applied.  

 

5.2.7. MALDI Imaging 

Before matrix application, very small droplets of liquid paper were placed onto 

the glass slide containing the sections of interest to act as “teach marks” as part 

of the sample alignment procedure for the mass spectrometer. An optical image 

of the contents of the slide was obtained using a scanner. After matrix 

application, the slide was mounted in a specially designed slide holder, the 

location of the teach marks was then recorded to be referenced to a grid for 

sample alignment. The sample was then placed in a Bruker Ultraflex III MALDI 

TOF/TOF mass spectrometer, software used was Compass 1.2 which includes 

FlexControl v3.0., FlexImaging v1.1.9.0 and FlexAnalysis v3.0.5.  
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FlexImaging was used to align the slide with the optical image using the teach 

marks. This software allows us to observe the slide containing the sections to 

be analysed at magnification (x20 – x40). The software also contains a grid 

system which can be compared to the recorded locations of the teach marks. 

The teach marks are used to triangulate the exact location of the sections on 

the slide, so that the MALDI image obtained will be properly aligned with the 

optical image. 

 

The preferred method for imaging the tissue sections used the following 

parameters; mass range 3000-20000Da, laser power 51%, detector gain 6.5x, 

Ion source 1 voltage 25kV, Ion source 2 voltage 23.3kV, lens voltage 6.5kV, 

pulsed ion extraction delay 100ms. The desired areas required for analysis 

were selected using the FlexImaging software. This software allows 

observation of the optical image and selection of areas of interest to acquire 

MALDI data to construct an image. Ahead of the automated data acquisition by 

the mass spectrometer, the method was tested and adjustments to laser power 

and attenuation were made in order to get good resolution of mass peaks 

without the noise associated with too much laser power. The refined method 

was then saved in the FlexControl software prior to commencement of the 

analysis. The method was refined before each data acquisition from each new 

sample. Data was acquired in a dot matrix fashion from the sample, individual 

points were 200µm in diameter. Sample analysis and data acquisition took 

between 1 and 24 hours depending on the size and number of sections being 

imaged.  

 

Spectral analysis of the captured images was done using the FlexAnalysis 

software. This software takes the mass spectra gathered from each point and 

overlays them on the optical image, creating a MALDI image. We can then 

refine the image to pick out a particular mass or a range of masses in order to 

investigate the distribution of molecules of interest. We can also use the 

software to search for molecules, as we can highlight an area and get the 
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overall mass spectrum from that area, then look at the distribution of any major 

peaks we find. The MALDI Images shown in this thesis are created using mass 

ranges, from the mass of interest ±1 Dalton. 

 

Other studies of peptides specific to TASTPM mice performed as part of the 

investigation consisted of the isolation of areas of interest from selected brain 

sections using LCM. Captured areas were then analysed, first by MALDI, then 

using other analytical techniques (e.g. nanoLC-MS) in an attempt to identify the 

peptide(s) of interest. 

 

5.2.8. Laser Capture Microscopy – Slide Preparation  

Frozen mouse brains were mounted onto a cryostat mounting disc using 

carboxymethylcellulose (2%w/v) medium. After wiping down all surfaces in the 

cryostat with ethanol to minimise contamination, 8µm sections were cut and 

mounted onto room temperature uncoated glass slides, a maximum of 2 

sections were collected per slide. The slides were immediately placed in a slide 

box on dry ice and not allowed to air dry. Four slides at a time were removed 

from the dry ice and allowed to thaw on a kimwipe for no more than 30 

seconds. The slides were then immersed for 30 seconds in 75% ethanol, 2x 

distilled water, 75% ethanol, 95% ethanol, 100% ethanol and finally placed in 

xylene for 5 minutes. Slides were then placed in a dessicator containing fresh 

silica gel dessicant until ready for LCM. All washing solutions were changed 

after each wash.  

 

5.2.9. Manual Laser Capture Microscopy 

The slide containing the sample was placed on the laser capture microscope 

and the area containing the desired region was located. A fresh cap was placed 

on the arm and lowered onto the sample. The desired area was collected onto 

the cap by LCM, manoeuvring the table to allow collection. Once the desired 

area from one slide was collected, a fresh slide was put in place and the 

process repeated. Caps were stored in a -20oC freezer until ready to use. 
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5.2.10. Automated Laser Capture Microscopy 

Slides were loaded into a Veritas Microdissection Instrument (Arcturus 

Bioscience Inc.), 3 at a time. The areas of interest were located and highlighted 

using the Veritas software (Fig.46). The laser was focused using pulse length, 

laser power and intensity in order to maximise capture. Following laser 

focussing, capture of desired areas was initiated. Between each section, laser 

focus was adjusted to retain optimum tissue adhesion to caps. No more than 6 

sections worth of sample was collected onto each cap, again to maximise 

adhesion. Caps were stored in the -20oC freezer until ready to use. 

     

 

Fig.46  Optical image of THI regions in the LCM instrument, before capture, 

marked for capture, after capture. Magnification x100 

 

5.2.11. Preparation For Analysis 

To the surface of the LCM caps containing the sample, 1µl of a solution of 

formic acid:water:isopropanol (1:3:2) was added, agitated around the surface 

and then immediately removed into a vial prior to analysis. For MALDI analysis 
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1µl was added to 1µl of matrix (7mg/ml alpha-cyano-4hydroxycinnamic acid in 

50% acetonitrile and 0.2% trifluoroacetic acid), mixed and spotted onto a 

MALDI target. Analysis was carried out once the spot was dry. 

 

5.2.12. Nano-LC/MS 

An Orbitrap XL mass spectrometer (Thermo Fisher Scientific, San Jose, CA), 

coupled to a nanoAcquity uPLC system (Waters) was used for the analysis. 

Nano-LC was performed using a 0.1 mm X 150 mm Cadenza C18 (Imtakt) 

analytical column maintained at 40C, along with a Symmetry C18 5um 180um 

X 20mm trapping column (Waters). The sample was injected in 5µl aliquots. 

Buffer A consisted of 0.1% formic acid (Aristar grade) in Water (Optima LC/MS 

grade) (Fisher), buffer B consisted of 0.1% formic acid (Aristar grade) in 

Acetonitrile (Optima LC/MS grade) (Fisher). Vented column trapping was 

carried out using buffer A for 5 minutes at 4µl/min following sample loading. 

The flow rate was then adjusted to 0.3 ul/min. A series of nano-flow gradients 

were used, the profile of which was (i) 5 minutes at 98% A; (ii) 40 minutes at 

60% A; (iii) 2 minutes at 5% A; (iv) 3 minutes at 5% A; (v) 2 minutes at 98% A, 

and finally (vi) 18 minutes at 98% A. A blank run was performed between each 

sample using buffer A and the data were searched in the same manner as the 

sample runs, with no proteins found in any blanks. 

 

For the mass spectrometry, one scan cycle included an initial scan (m/z 300-

1800) at a resolution of 60000 followed by 5 collision-induced dissociation (CID) 

scans at resolution 15000 to perform MS/MS on the 5 most intense ion signals 

from the first scan. The activation time was 30ms, the isolation width was 

2amu, the normalised activation energy was 30% and the activation q was 

0.25.  

 

Data analysis was performed using MASCOT. RAW files were searched using 

MASCOT running in Thermo Proteome Discoverer 1.0 processing software. MS 

data was searched using MASCOT against the psr_all non-redundant 
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database, taxonomy Rodentia. Max number missed cleavages 3, 15ppm 

precursor mass tolerance, 0.8 Da fragment mass tolerance. carbamidomethyl 

ysteine as a fixed modification and N-term acetylation and oxidised methionine 

were used as dynamic modifications. Resulting protein hits were filtered to 

remove any protein containing only 1 peptide hit and any keratin related 

proteins. 

 

5.3. Results 

Detection of amyloid fragments was based on mass from fragments observed 

previously from trypsin digestion (Kheterpal et al., 2001). Fragments observed 

were 17-40, 17-28, 1-16 and 6-16. 
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5.3.1. Protocol development for analysis of formali n-fixed tissues 

5.3.1.1. Aβ 1-40 spotted on to frozen sections, followed by 1 hour trypsin 

digest (500ng/ µl) 

Following trypsin digest, Aβ peptide 1-40 and fragments 17-40 (Fig.47) along 

with 17-28, 1-16 and 6-16 were observed on tissue sections.  

 

  

Fig.47 MALDI Imaging results from frozen brain sections from TASTPM mice. 

Treatment of sections: T – trypsin (500ng/µl) only, 1 - 100µg/ml Aβ 1-40 + 

trypsin (500ng/µl) , 2 – 1mg/ml Aβ 1-40 only, 3 – 1mg/ml Aβ 1-40 + trypsin 

(500ng/µl). Scaling bars indicate intensity of signal, from low intensity (blue) to 

high intensity (white). Magnification x 5 

 

From these images Aβ 1-40 was detected when spotted onto the section at 

1mg/ml in the absence of trypsin. Aβ 17-40 can be detected following 1 hour 

trypsin digest of both 1mg/ml and 100µg/ml Aβ 1-40. Where some Aβ 1-40 can 

be seen around the edges of the trypsin digest at 1mg/ml, all Aβ 1-40 was 

digested by the trypsin at 100µg/ml. Aβ 17-40 can also be detected on the 

section where only trypsin was added, indicating that endogenous amyloid is 

being digested in this case. 
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5.3.1.2. Aβ 1-40 spotted on to frozen sections, followed by 24  hour trypsin 

digest (500ng/ µl) 

Aβ peptide fragments 1-40, 17-40, 17-28, and 1-16 were observed on tissue 

sections following digest (Fig.48). 

 

  

  

Fig.48 MALDI Imaging results from frozen brain sections from TASTPM mice. 

Treatment of sections: 1 - 1mg/ml Aβ 1-40 + trypsin (500ng/µl), 2 - 1mg/ml Aβ 

1-40 only, 3 – 100µg/ml Aβ 1-40 + trypsin (500ng/µl), T  – trypsin only 

(500ng/µl). Scaling bars indicate intensity of signal, from low intensity (blue) to 

high intensity (white). Magnification x 5 

 

From these images Aβ 1-40 was almost completely digested at 1mg/ml and 

100µg/ml in a 24 hour trypsin digest. On section 1 where Aβ 1-40 is present 
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around the edges of the spot, this is likely where the trypsin spot did not entirely 

cover the spot of applied Aβ 1-40. Aβ 17-40 is present in all the sections where 

trypsin was added, whereas Aβ 1-16 is only weakly detected on the 100µg/ml 

Aβ1-40 section, indicating that it has been further digested by the trypsin over 

24 hours. Aβ 17-28 was observed in the images, including the section to which 

no trypsin was added, overall signal in this case was weak, so this may be an 

artefact. Aβ 1-16 and 17-40 were strongly detected on the sections with just 

trypsin added, indicating digestion of endogenous amyloid.  

 

Following this work, the aim was to show that Aβ peptide and fragments can be 

observed by MALDI on dewaxed formalin-fixed tissue sections, as well as 

performing trypsin digests on the dewaxed sections without adding Aβ. 

 

5.3.1.3. Aβ 1-40 spotted on to dewaxed sections, followed by 1  hour 

trypsin digest (500ng/ µl) 

Aβ peptide fragments 1-40, 17-40, 1-16 and 6-16 were observed on tissue 

sections following digest (Fig.49). 
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Fig.49 MALDI Imaging results from dewaxed formalin-fixed TASTPM brain 

sections. Treatment of sections: 1 - 1mg/ml Aβ 1-40 + trypsin (500ng/µl), 2  -

1mg/ml Aβ 1-40 only, 3 - 100µg/ml Aβ 1-40 + trypsin (500ng/µl), T - trypsin 

(500ng/µl) only. Scaling bars indicate intensity of signal, from low intensity 

(blue) to high intensity (white). Magnification x 5 

 

From these sections it can be seen that Aβ 1-40 is only detectable on the 

section where no trypsin was added, indicating that all Aβ 1-40 was digested on 

the other sections. Aβ 17-40, 1-16 and 6-16 were all detected on the section 

with the 1mg/ml Aβ solution added, with just 17-40 detectable with the 

100µg/ml Aβ solution. Encouragingly, it appears that Aβ 17-40 was detected on 

the section treated with trypsin only, indicating that crosslinked Aβ has been 

digested by the trypsin, allowing it’s detection by MALDI. 

 

5.3.1.4. Aβ 1-40 spotted on to dewaxed sections, followed by 2 4 hour 

trypsin digest (500ng/ µl) 

Aβ peptide fragments 1-40, 17-40 and 1-16 were observed on tissue sections 

following digest (Fig.50). 
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Fig.50 MALDI Imaging results from dewaxed formalin-fixed TASTPM brain 

sections. Treatment of sections: 1 - 1mg/ml Aβ 1-40 + trypsin, 2 - 1mg/ml Aβ 1-

40 only, 3 - 100µg/ml Aβ 1-40 + trypsin, T - trypsin, trypsin only. Scaling bars 

indicate intensity of signal, from low intensity (blue) to high intensity (white). 

Magnification x 5 

 

From these sections it can be seen that Aβ 1-40, as well as 17-40 and 1-16 

were detected on the section treated with 1mg/ml Aβ solution plus trypsin, the 

Aβ 1-40 detected is likely as a result of the trypsin solution spot not entirely 

covering the spot of applied Aβ 1-40. Aβ 17-40 is the only fragment detected on 

the section treated with 100µg/ml Aβ solution plus trypsin, indicating Aβ 1-16 

may have been further digested. Aβ 17-40 has been detected in large amounts 
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on the section only treated with trypsin, suggesting digestion of endogenous Aβ 

within the tissue.  

 

The detection of Aβ fragments on dewaxed sections treated with trypsin in 

these experiments indicates that there is potential in this method for digesting 

protein crosslinks in formalin-fixed tissues, allowing proteomic analysis by 

MALDI MS Imaging. The following sections describe our attempts to refine 

these methods. 

 

5.3.2. Refinement of protocol, optimisation of tryp sin concentrations and 

limits of amyloid detection 

5.3.2.1. Aβ 1-40 (1mg/ml) spotted on to frozen TASTPM brain se ctions 

sections, followed by 1 hour trypsin digest 

1 mg/ml Aβ was spotted on to frozen TASTPM brain sections, followed by 

digestion with varying concentrations of trypsin. Aβ peptide fragments 1-40, 17-

40 and 1-16 were observed on tissue sections following digest (Fig.51). 
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Fig.51 MALDI Imaging results from frozen brain sections from TASTPM mice. 

Trypsin concentrations on sections 1 - 500ng/µl, 2 -  50ng/µl, 3 - 500pg/µl, 4 -  

5ng/µl. Scaling bars indicate intensity of signal, from low intensity (blue) to high 

intensity (white). Magnification x 5 

 

From these images, the only trypsin concentration where both Aβ 17-40 and 1-

16 can be detected is 50ng/ml, in which the original peptide is also detected, 

but it appears that this is due to the trypsin spot not fully covering the applied 

Aβ 1-40 spot. The 500ng/ml trypsin appears to have fully digested the applied 

Aβ 1-40 and digested the endogenous amyloid around the spot, causing 
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detection of Aβ 1-16 from endogenous amyloid. Due to detection of Aβ 17-40 1-

16 it appears that for 1 hour trypsin digests 50ng/ml trypsin solution is the 

optimum concentration of the four tested. 

 

 

 

5.3.2.2. Different A β 1-40 concentrations spotted onto frozen TASTPM 

brain sections along with trypsin digests 

Aβ concentrations of 1mg/ml, 200µg/ml, 40µg/ml and 8µg/ml were spotted onto 

frozen TASTPM brain sections, on the same slide, 24 hour trypsin digests were 

carried out using trypsin at 20ng/µl. Aβ 1-40 was detectable at 200µg/ml, but 

not at 40µg/ml. On trypsin digests of the 1mg/ml spot, fragments 1-40, 6-16, 

17-28 were visible. Thus the limit of detection in a spot approximately 1mm in 

diameter is 200ng (1µl of 200µg/ml in the spot). For trypsin digests it seems 

more than this amount is needed for subsequent fragment detection. 

 

5.3.2.3. Aβ 1-40 spotted on to dewaxed sections, followed by b oth 1 hour 

and 24 hour trypsin digests 

In the 1 hour digest, Aβ 1-40, as well as fragments 17-40, 17-28, 1-16 and 6-16 

were observed on tissue sections (Fig.52) 

In the 24 hour digest, Aβ 1-40, as well as fragments 17-40, 17-28, 1-16 and 6-

16 were observed on tissue sections (Fig.53) 
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Fig.52 MALDI Imaging results from dewaxed formalin-fixed TASTPM brain 

sections, 1 hour trypsin digest. Treatment of sections 1 - 1mg/ml Aβ 1-40 + 

trypsin (40ng/µl), 2 (top spot, second section from the left) - 200µg/ml Aβ 1-

40 + trypsin (40ng/µl), 3 (bottom spot, second section from the left) – 

40µg/ml Aβ 1-40 + trypsin (40ng/µl), 4 (Both right hand sections) – trypsin 

(40ng/µl) only. Scaling bars indicate intensity of signal, from low intensity (blue) 

to high intensity (white). Magnification x 5 

 

From these images, after 1 hour trypsin digests, all the Aβ fragments 

mentioned above are detectable on the 1 mg/ml Aβ spot. Aβ 1-40, 17-40 and 1-

16 can just be detected on the 200µg/ml Aβ spot. Nothing can be detected on 

the 40µg/ml Aβ spot, unfortunately the same is the case for the two sections 

which just had trypsin added to them, indicating digestion of endogenous, 

crosslinked Aβ has not occurred.  
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Fig.53 MALDI Imaging results from dewaxed formalin-fixed TASTPM brain 

sections, 24 hour trypsin digest. Treatment of sections 1 - 1mg/ml Aβ 1-40 + 
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trypsin (40ng/µl), 2 (top spot, second section from the left) - 200µg/ml Aβ 1-

40 + trypsin (40ng/µl), 3 (bottom spot, second section from the left) – 

40µg/ml Aβ 1-40 + trypsin (40ng/µl), 4 (Both right hand sections) – trypsin 

(40ng/µl) only. Scaling bars indicate intensity of signal, from low intensity (blue) 

to high intensity (white). Magnification x 5 

 

From these sections it can be seen that after 24 hour trypsin digests, all the 

amyloid fragments mentioned are detectable on the 1mg/ml Aβ 1-40 spot. Aβ 

1-40 and17-40 can just be detected on the 200µg/ml Aβ 1-40 spot. Nothing can 

be detected on the 40µg/ml Aβ 1-40 spot, unfortunately the same is the case 

for the two sections which just had trypsin added to them, again indicating 

digestion of endogenous, crosslinked Aβ has not occurred. 

 

5.3.3. Matrix application comparison 

Manual spray was compared to automated (ImagePrep) matrix application. 

During this experiment the initial detection of the unknown ion m/z 4811 in THI 

regions of TASTPM brains was made. In the case of the unknown peptide, the 

ImagePrep was found to give better signal localisation (Fig.54) but less overall 

signal (Fig.52).  Maximum intensity of the unknown peptide was found to be 

4800 for ImagePrep matrix application, whereas the maximum intensity for 

manual matrix application was 15000 (Fig.55). 
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Fig.54 Images showing distribution of unknown ion m/z 4811 in TASTPM brain 

sections containing thalamic hypointensity regions. ImagePrep (top), manual 

spray (bottom). Scaling bars indicate intensity of signal, from low intensity 

(blue) to high intensity (white). Magnification x 5 
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Fig.55 Mass spectra from THI regions showing intensity of signal for unknown 

peptide 4811. ImagePrep (top), manual spray (bottom). 

 

From these images and spectra, it appears that manual spraying has allowed 

for stronger detection of the peptide in question, whereas the ImagePrep 
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seems to suffer from less delocalisation, with the peptide signal confined to 

smaller areas.  

 

When the overall spectra from the experiments are examined (Fig.56), the 

situation is very different, while no information is available about localisation of 

molecules, it can be clearly seen that, in this instance, not only can many more 

different molecules be detected by the manual spray technique, but overall 

signal strength is also better. 

 

 

 

 

 

 

 

 

 

 

 

 



 164

 

 

Fig.56  Overall spectra from ImagePrep (top) and manual spray (bottom) 

comparison 

 

Following this experiment, focus shifted to analysis of the distribution and signal 

intensity of the unknown peptide m/z 4811 in TASTPM and wild type mouse 

brains. 
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5.3.4. Analysis of TASTPM and Wild Type brain secti ons in order to image 

the distribution of the unknown peptide identified above 

5.3.4.1. 12 month TASTPM brain sections imaged to l ook for distribution 

of unknown ion 

The unknown ion 4811 was found to be localised to the THIs, another ion m/z 

7635 was also found localised to the THIs (Fig 57). The highest intensity peak 

of the 4811 ion was 14000 (Fig.58), the highest intensity of the 7636 peak was 

400. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 166

 

 

Fig.57 MALDI Images of 12 month old TASTPM brain sections showing an 

optical image with the THIs depicted as white spots, and the distribution of the 

4811 ion (coloured spots) and its localisation to the THI regions. Another ion 

found localised to the THI regions, though apparently in much lesser 

concentration, m/z 7635 is also shown. Scaling bars indicate intensity of signal, 

from low intensity (blue) to high intensity (white). Magnification x 5 
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Fig.58 Zoom of relevant section of mass spectrum showing highest intensity of 

unknown ion 4811 

 

5.3.4.2. 18 month TASTPM brain sections Imaged to l ook for distribution 

of unknown ion 

The unknown ion 4811 was found to be localised to the THIs, another ion m/z 

7635 was also found localised to the THIs (Fig 59). The highest intensity peak 

of the 4811 ion was 20000 (Fig.60), the highest intensity of the 7636 peak was 

750 
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Fig.59 MALDI Images of 18 month old TASTPM brain sections showing an 

optical image with the THIs depicted as white spots, also the distribution of the 

4811 and 7635 ions and their localisation to the THI regions. Scaling bars 

indicate intensity of signal, from low intensity (blue) to high intensity (white). 

Magnification x 5 
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Fig.60 Zoom of relevant section of mass spectrum showing highest intensity of 

unknown ion 4811 
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Fig.61 Graph showing maximum peak intensities for detection of 4811 peptide 

in TASTPM and wild type mice 
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5.3.4.3. 12 month Wild Type brain sections Imaged t o look for distribution 

of unknown ion 

Small THIs were found in the thalamus, 4811 peptide was found to be present 

(Fig. 62), the highest intensity peak was 300 (Fig. 63). 

 

 

Fig.62  MALDI Images of 12 month old wild type brain sections showing an 

optical image with the small THIs depicted as white spots, also the distribution 

of the 4811 ion and its localisation to the THI regions. Scaling bars indicate 

intensity of signal, from low intensity (blue) to high intensity (white). 

Magnification x 5 

Distribution of THIs  Distribution of 4811 ion  
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Fig.63 Zoom of relevant section of mass spectrum showing highest intensity of 

unknown ion 4811 

 

5.3.4.4. 18 month Wild Type brain sections Imaged t o look for distribution 

of unknown ion 

Small THIs were found in the thalamus, 4811 peptide was found to be present 

(Fig.64), the highest intensity peak was 600 (Fig.65). 
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Fig.64 MALDI Images of 18 month old wild type brain sections showing an 

optical image with the small THIs depicted as white spots, also the distribution 

of the 4811 ion and its localisation to the THI regions. Scaling bars indicate 

intensity of signal, from low intensity (blue) to high intensity (white). 

Magnification x 5 

 

Distribution of THIs  Distribution of 4811 ion  
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Fig.65 Zoom of relevant section of mass spectrum showing highest intensity of 

unknown ion 4811 

 

5.3.5. Direct comparison of TASTPM and wild type br ain sections on the 

same slide 

5.3.5.1. 12 month TASTPM and Wild Type sections on same slide for 

comparison 

Coronal sections of brains from both TASTPM and wild type mice were MALDI 

imaged on the same slide for direct comparison. Both the 4811 and 7635 

peptides were seen in TASTPM sections, neither was detected in wild type 

sections (Fig.66) 

 

 

 

Fig.66  MALDI Images of 12 month old TASTPM (bottom 3) and wild type (top 

3) brain sections showing an optical image with the THIs (where present) 

Distribution of THIs  Distribution of 4811 ion  
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depicted as white spots, also the distribution of the 4811 and 7635 ions and 

their localisation to the THI regions. Scaling bars indicate intensity of signal, 

from low intensity (blue) to high intensity (white). Magnification x 5 

 

5.3.5.2. 18 month TASTPM and Wild Type sections on same slide for 

comparison 

Coronal sections of brains from both TASTPM and wild type mice were MALDI 

imaged on the same slide for direct comparison. Both the 4811 and 7635 

peptides were seen in TASTPM sections, neither were detected in wild type 

sections (Fig.67) 

 

 

 

Fig.67 MALDI Images of 18 month old TASTPM (bottom 3) and wild type (top 

3) brain sections showing an optical image with the THIs (where present) 
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Distribu tion of A β 1-40 
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depicted as white spots, also the distribution of the 4811 ion and its localisation 

to the THI regions. Also shown is a visualisation of amyloid plaques detected by 

the presence of Aβ 1-40 in the TASTPM sections. Scaling bars indicate 

intensity of signal, from low intensity (blue) to high intensity (white). 

Magnification x 5 

 

From the findings above, the 4811 peptide (and the 7635) are well localised to 

the THI regions, as well as giving a stronger signal the more developed the THI 

regions are. It is possible that one or both are linked to the underlying 

processes which cause the development of these lesions. Identification of the 

unknown peptides could provide valuable information about not only the THI 

regions, but of amyloid pathology in general.  

 

In an effort to identify the 4811 and 7635 peptides, LCM was used to isolate 

and dissect out the THI regions, extraction procedures were then used to 

dissolve the contents and LC-MS was performed to attempt to identify the 

components. LC-MS was used as it is much more sensitive than MALDI so the 

chances of identifying a very small amount of a molecule are much greater. 

 

5.3.6. Further analysis of components of THI region s isolated by LCM 

5.3.6.1. MALDI Analysis of LCM samples 

MALDI analysis of the THI regions isolated by LCM was able to identify Aβ 1-

38, 1-40 and 1-42 along with the unknown peptide 4811. MS/MS was 

attempted on the 4811 fragment but no signal was detected. A tryptic digest of 

the sample was performed and whilst fragments of the amyloid peptides were 

observed and identified, nothing was observed or identified as a fragment of the 

4811 peptide. 
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5.3.6.2. LC/MS Analysis of LCM samples 

LC/MS analysis of THI regions isolated from TASTPM brain sections by LCM 

allowed identification of a number of proteins localised within the THI regions. 

These were APP, Glial fibrillary acidic protein, myelin basic protein 

apolipoprotein E precursor and secretogranin. The unknown peptide 4811 was 

found to be doubly charged and thus have an actual mass of 9622Da, however 

it could not be identified. The unknown peptide with mass 7635Da could not be 

identified either. 

 

 

5.4. Discussion 

The visualisation of amyloid plaques in brain sections from transgenic AD mice 

by MALDI MS Imaging has been reported before (Rohner et al., 2005; Stoeckli 

et al., 2006), but this is the first report in TASTPM mice. One of the aims of this 

research was to visualise the distribution of Aβ 1-40 and Aβ 1-42 in plaques in 

transgenic mouse brains. One finding of previous studies was that Aβ 1-40 was 

diffusely spread in different areas of the brain, whereas Aβ 1-42 was more 

confined to the centre of the denser plaques.  

 

Tryptic digests of applied and endogenous amyloid peptides followed by MALDI 

MS Imaging has not been reported before. It was also observed that, in the 

case of frozen sections with applied amyloid peptide the endogenous amyloid 

peptide is detectable but because it is present at lower concentrations than the 

applied amyloid peptide, it is difficult to visualise in an image. However, 

following trypsin digestion, (especially for 24 hours), endogenous amyloid 

fragments were easily observable on tissue sections treated with trypsin only, in 

some cases overall signal was stronger than on sections where amyloid had 

been applied. The trypsin digestion thus appears to make more amyloid 

fragments available for detection by MALDI than undigested amyloid on 

untreated sections. It is possible that, due to the aggregated nature of amyloid 

plaques, not all amyloid peptides are available for ionisation by the MALDI 
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laser. Thus, when the aggregated structure is broken down by the trypsin 

digest, the resulting fragments are much more easily ionised, resulting in a 

much stronger MALDI signal. 

 

In the case of the dewaxed formalin-fixed sections, it was observed that 

following dewaxing, ions were generated and detected from the tissues. 

Applied amyloid peptide was detected, along with amyloid fragments following 

tryptic digests. The tryptic digests of the dewaxed sections without any amyloid 

applied showed some encouraging results. In the initial 1 and 24 hour trypsin 

digests (Figs.46 and 47), Aβ 17-40 fragment could be detected on the dewaxed 

sections. However this was not found when the experiment was repeated. The 

initial detection of Aβ 17-40 from the tryptic digests of the dewaxed sections 

suggests that the method could be used to generate information from fixed 

sections. Further refinement of the techniques is required to ensure 

reproducibility. Varying the trypsin concentration, the solutes used, the method 

of application and incubation are all parameters that need refining. Several pilot 

studies have been carried out (Lemaire et al., 2007; Ronci et al., 2008). 

Attaining a suitable, reliable and robust method would allow the analysis of 

extensive libraries of tissue samples, which are a source of vast quantities of 

clinical and biological information for proteomic investigation. 

 

In the comparison between manual spray matrix application and the ImagePrep 

automated system, results from the 4811 peptide indicated that overall signal 

intensity was better with the manual spray method. A potential problem with 

manual spray can be delocalisation of peptides/proteins of interest, caused by 

over-wetting of the tissue during matrix application. This gives rise to apparent 

signal from areas where none of the detected molecule is present. In the same 

example, the ImagePrep gave much less compound delocalisation than manual 

spraying. Looking at the overall picture showed that as well as better overall 

signal strength, many different compounds were detected with the manual 

spray method than with the ImagePrep. Thus, according to our data, if signal 
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detection is more important than exact location, manual spray matrix 

application is preferable. Whereas, if exact localisation of signal is paramount, 

ImagePrep application is the preferred. 

 

It was during this comparison, that the initial discovery took place of the 

unknown peptide which was highly localised in the THI regions. 

Further study of THI regions from TASTPM and wild type animals of different 

ages confirmed the co-localisation of the THIs and the unknown peptide. 

Furthermore, as THI size and number increased, so did the intensity of the MS 

peak for the unknown peptide. In older wild type mice, where THIs (if present) 

were small, the intensity of the peak for the unknown peptide was between 300 

and 600. In the TASTPM mice at 12 months, where THIs were larger and more 

numerous, peak intensity reached 14000. In the 18 month TASTPM mice, 

where THIs were even more developed and numerous, maximum peak 

intensity reached 20000 (Fig.58).  

 

The importance and role of this unknown peptide is of significant interest, as 

the THIs represent a neurodegenerative process which involves amyloid 

plaques, neuroinflammatory mediators (astrocytes and macrophages) and iron 

accumulation (Evans et al., 2007; Howlett et al., 2008), all of which occur in 

human AD. Many mouse models of AD do not show any neurodegeneration, 

thus any data from this model on the underlying pathology could be valuable in 

furthering our understanding of human AD. It should be noted that, although the 

pathology has similarities with human AD, it is by no means identical. Human 

AD is much more complex than simply amyloid plaques, as outlined in the 

introduction to this thesis, there are many other factors which have an effect. 

The human mutant genes which are expressed in the TASTPM mouse cause 

early onset AD, which can be very different to sporadic AD and only causes 

less than 1% of cases. Due to this any information gleaned from studying the 

THIs should be interpreted with caution. 
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Following THI isolation using LCM, LC/MS revealed the identities of several 

different proteins present in the THI regions. These included APP and the 

different Aβ peptides as expected, as the THIs are associated with amyloid 

plaques. Glial fibrillary acidic protein is a glial cell marker and may be increased 

as a consequence of glial cell proliferation due to neurodegeneration. Myelin 

basic protein is also to be expected, as some neurons will be contained in the 

THI regions, despite the overall neurodegeneration. The presence of 

apolipoprotein E precursor is interesting, as the ε4 allele is known to be a risk 

factor for late onset AD in humans (Strittmatter et al., 1993). The fact that we 

see this protein may mean that some perturbation of lipid metabolism is 

involved in the formation of the THIs, as apolipoprotein E is known to be 

involved in triglyceride and cholesterol homeostasis (Davignon et al., 1988a). 

The detection of secretogranin is likely not significant as it performs multiple 

roles throughout the CNS. 

 

In summary, this study has shown several potential applications of MALDI MS 

Imaging in proteomics research which may become increasingly prevalent as 

the technology becomes more widely available. Whether the study is to 

determine the distribution of endogenous components, investigating old tissue 

libraries in novel ways or for the discovery of novel biomarkers of pathology, 

MALDI Imaging has the potential to be a very useful tool in years to come. 
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Chapter 6. Final Discussion 

 

 

During the course of this thesis, the brain of the TASTPM mouse has been 

investigated using 1H MRS and MALDI Imaging. The experiments undertaken 

were carried out with several aims in mind.  

 

The first was to continue the search for a reliable biomarker of disease 

progression in AD (or at least the TASTPM mouse), which, if found could be 

useful in the diagnosis and monitoring of the disease. 

 

The second was to evaluate the TASTPM mouse as a model for AD, and to 

compare MRS results with results from other models of AD. Any reproducible 

differences observed could potentially be exploited in preclinical testing, aiding 

the drug discovery process. 

 

 

The third was to investigate any regional proteomic differences in TASTPM 

mice using MALDI Imaging. Any differences would have the potential to further 

our understanding of the underlying pathology behind AD. 

 

In the search for a biomarker, a marker of disease progression was elusive. We 

found age x genotype interactions in vitro with choline and in vivo with 

glutamate, but neither of these interactions was present in both studies. It is 

possible they might be used to plot disease progression in association with 

other measurable factors, but levels fluctuated over time in both cases, 

meaning using them separately to accurately map what stage of pathology a 

TASTPM mouse is in would be impossible. Thus, though we found parallels 

both with human AD and previous animal studies, the search for an AD specific 

biomarker goes on. 
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In our evaluation of the suitability of TASTPM mice as a model of AD we found 

a number of cerebral metabolic differences between TASTPM mice and the 

wild type base strain. These might be used as biomarkers of pathology in 

further study of the TASTPM mice. 

 

 

In vitro we found whole brain differences in levels of MI, succinate, choline, 

creatine and several lipid functional groups. In all cases except choline there 

was no statistically significant change with age in the disease group during the 

time when amyloid plaques are being formed. Therefore MI, succinate, creatine 

and the observed lipid functional groups may be markers of AD in this model, 

without being linked to disease progression. It is possible choline levels are 

related to disease progression, but the fluctuating levels observed would make 

it difficult to accurately estimate disease progression from choline levels alone. 

There were possible similarities with human AD, where increased MI has also 

been observed (Kantarci et al., 2000; Dixon et al., 2002; Ackl et al., 2005; Zhu 

et al., 2006) and linked with gliosis and membrane dysfunction (Lazeyras et al., 

1998). Decreased succinate may be indicative of impaired neuronal energy 

metabolism, another effect seen in human AD (Valla et al., 2001; Zhu et al., 

2004; Moreira et al., 2007). The increased creatine levels observed, while not 

linked with human AD, have been shown to correlate with cognitive decline in 

older humans (Ferguson et al., 2002). The cholinergic differences, along with 

differences in lipid functional groups could indicate perturbation of phospholipid 

metabolism or membrane changes, altered phospholipid metabolism has also 

been observed in human AD (Kuo et al., 1998; Roher et al., 1999; Sparks et al., 

2000). 

 

In vivo we observed differences in NAA, glutamate, Glx, MI, PC, T1 values and 

exploratory behaviour. Differences were compared with previous in vivo work in 

other transgenic AD mice, along with our own in vitro work. Lower NAA levels in 

TASTPM mice are indicative of neuronal damage/death (Demougeot et al., 
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2004), possibly a consequence of the formation of THIs. Lower NAA levels 

have been linked to neurodegeneration and have been observed in many 

cases in human AD (Kantarci et al., 2000; Dixon et al., 2002; Chantal et al., 

2004; Ackl et al., 2005). Decreased glutamate and Glx may indicate neuronal 

metabolic deficiency, a symptom of AD (Valla et al., 2001; Zhu et al., 2004; 

Moreira et al., 2007). Changes in MI levels and choline containing compounds 

were discussed above.  

 

The observed changes in NAA, glutamate and MI are in agreement with other 

in vivo studies on different transgenic AD mice (Dedeoglu et al., 2004; 

Marjanska et al., 2005; von Kienlin et al., 2005), with all in agreement regarding 

reduced NAA and glutamate, but only one of these other mouse models 

showed increasing MI (the APP-PS1 mouse),- (Marjanska et al., 2005). The 

differences observed with choline levels were not seen in other studies, the 

possible link to altered lipid homeostasis (along with evidence from in vitro 

changes in lipid functional groups) shows TASTPM mice may exhibit another 

hallmark of human AD not exhibited by the other mouse models. 

 

The metabolic differences observed in vitro and in vivo showed similarities, 

such as MI and choline differences, but also several differences, such as no 

changes in glutamate or NAA in vitro. A possible explanation for this lies in the 

use of whole brain extracts for the in vitro study, as opposed to a voxel focused 

on areas known to suffer pathological changes. Localised metabolic differences 

may have been masked by the use of whole brains in the extract study.  

 

Shorter T1 values in TASTPM mice may be due to alterations in brain water 

content (Bell et al., 1987; Besson et al., 1989). The alterations may be due to 

large amounts of amyloid disrupting normal brain osmoregulation, the effect 

becomes more pronounced with age, so may be linked to increasing amyloid 

deposition. 
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The changes in exploratory behaviour observed became most pronounced in 

older mice, meaning this effect may be in some way dependent on amyloid 

deposition. It may also be due to the increasing size of the THI regions, 

meaning administration of an amyloid lowering agent would have no effect on 

behaviour. 

 

The most striking findings of the MALDI investigation are the presence of the 

two unknown peptides localised to the THI regions in the TASTPM (and older 

wild type) mice. Efforts to identify these peptides are ongoing and, if 

identification can be achieved it may provide valuable information concerning 

the underlying pathology behind these lesions, 

 

Thus, we have advanced our knowledge of the TASTPM mouse and shown 

parallels between the TASTPM mouse other transgenic mouse models and 

human AD. The differences observed in vivo are most promising, as they would 

allow repeat investigation of the same mouse over a course of therapeutic 

intervention. Further study using amyloid lowering agents would allow 

observation of whether normalisation back to wild type values occurs in any of 

the metabolites, T1 or behavioural differences. If this was to occur then the 

TASTPM may be a useful tool in preclinical screening of amyloid-lowering 

agents. 

 

The comparison of in vivo MRS data between TASTPM and other strains of 

transgenic AD model must be done carefully, as in all the mice tested the 

protocols used varied, as did the MR scanners and peripheral equipment, as 

well as the ages of the mice. MRS voxel placement and size was different in all 

mice, for example. Thus the only way to be fully confident of comparisons 

would be to use the same equipment and the same protocols to obtain data 

from mice from the different strains, all of the same age, something which was 

beyond the scope of this thesis. 
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Another limitation of the study is that we found quite large discrepancies 

between the MRS data from in vitro and in vivo scans from brains of the same 

strains of mice. While this may be due to the more focused nature of the in vivo 

scans, it may also be that these mice do not have fully stable or predictable 

levels of the various metabolites investigated over their lifespans. If this were 

the case then attempting to observe brain metabolites by MRS as a way of 

measuring the action of amyloid-lowering agents would be problematic at best. 

One way to test this would be to carry out further extract studies on dissected 

brains of TASTPM mice to see if we detect regional differences, as have been 

performed on other transgenic AD mice (Salek et al., 2010). If we see similar 

changes to the in vivo work in areas such as the hippocampus and thalamus 

then we can be more confident of the robustness of the TASTPM mouse as a 

model for preclinical testing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 185

7. Reference List 

Ackl N, Ising M, Schreiber YA, Atiya M, Sonntag A, Auer DP (2005) Hippocampal 
metabolic abnormalities in mild cognitive impairment and Alzheimer's disease. 
Neurosci Lett 384:23-28. 

Agrawal HC, Glisson SN, Himwich WA (1968) Developmental changes in 
monoamines of mouse brain. Int J Neuropharmacol 7:97-101. 

Akiyama H, Arai T, Kondo H, Tanno E, Haga C, Ikeda K (2000a) Cell mediators of 
inflammation in the Alzheimer disease brain. Alzheimer Dis Assoc Disord 14 
Suppl 1:S47-53. 

Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, 
Eikelenboom P, Emmerling M, Fiebich BL, Finch CE, Frautschy S, Griffin WS, 
Hampel H, Hull M, Landreth G, Lue L, Mrak R, Mackenzie IR, McGeer PL, 
O'Banion MK, Pachter J, Pasinetti G, Plata-Salaman C, Rogers J, Rydel R, Shen 
Y, Streit W, Strohmeyer R, Tooyoma I, Van Muiswinkel FL, Veerhuis R, 
Walker D, Webster S, Wegrzyniak B, Wenk G, Wyss-Coray T (2000b) 
Inflammation and Alzheimer's disease. Neurobiol Aging 21:383-421. 

Alonso AC, Grundke-Iqbal I, Iqbal K (1996) Alzheimer's disease hyperphosphorylated 
tau sequesters normal tau into tangles of filaments and disassembles 
microtubules. Nat Med 2:783-787. 

Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K (1994) Role of abnormally 
phosphorylated tau in the breakdown of microtubules in Alzheimer disease. 
Proc Natl Acad Sci U S A 91:5562-5566. 

Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K (1997) Abnormal phosphorylation of 
tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration 
of microtubule-associated proteins 1 and 2 and the disassembly of microtubules 
by the abnormal tau. Proc Natl Acad Sci U S A 94:298-303. 

Antuono PG, Jones JL, Wang Y, Li SJ (2001) Decreased glutamate + glutamine in 
Alzheimer's disease detected in vivo with (1)H-MRS at 0.5 T. Neurology 
56:737-742. 

Areosa SA, Sherriff F, McShane R (2005) Memantine for dementia. Cochrane 
Database Syst Rev:CD003154. 

Arvin B, Lekieffre D, Graham JL, Moncada C, Chapman AG, Meldrum BS (1994) 
Effect of the non-NMDA receptor antagonist GYKI 52466 on the 
microdialysate and tissue concentrations of amino acids following transient 
forebrain ischaemia. J Neurochem 62:1458-1467. 

Bayer TA, Wirths O (2008) Review on the APP/PS1KI mouse model: intraneuronal 
Abeta accumulation triggers axonopathy, neuron loss and working memory 
impairment. Genes Brain Behav 7 Suppl 1:6-11. 

Bayer TA, Breyhan H, Duan K, Rettig J, Wirths O (2008) Intraneuronal beta-amyloid is 
a major risk factor--novel evidence from the APP/PS1KI mouse model. 
Neurodegener Dis 5:140-142. 

Beacher F, Simmons A, Daly E, Prasher V, Adams C, Margallo-Lana ML, Morris R, 
Lovestone S, Murphy K, Murphy DG (2005) Hippocampal myo-inositol and 
cognitive ability in adults with Down syndrome: an in vivo proton magnetic 
resonance spectroscopy study. Arch Gen Psychiatry 62:1360-1365. 



 186

Bell BA, Smith MA, Kean DM, McGhee CN, MacDonald HL, Miller JD, Barnett GH, 
Tocher JL, Douglas RH, Best JJ (1987) Brain water measured by magnetic 
resonance imaging. Correlation with direct estimation and changes after 
mannitol and dexamethasone. Lancet 1:66-69. 

Benveniste H, Einstein G, Kim KR, Hulette C, Johnson GA (1999) Detection of 
neuritic plaques in Alzheimer's disease by magnetic resonance microscopy. Proc 
Natl Acad Sci U S A 96:14079-14084. 

Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315-325. 
Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium 

signalling. Nat Rev Mol Cell Biol 1:11-21. 
Besson JA, Greentree SG, Foster MA, Rimmington JE (1989) Regional variation in rat 

brain proton relaxation times and water content. Magn Reson Imaging 7:141-
143. 

Bhakoo KK, Pearce D (2000) In vitro expression of N-acetyl aspartate by 
oligodendrocytes: implications for proton magnetic resonance spectroscopy 
signal in vivo. J Neurochem 74:254-262. 

Birks J (2006) Cholinesterase inhibitors for Alzheimer's disease. Cochrane Database 
Syst Rev:CD005593. 

Black S, Wilcock GK, Haworth J, Hendrix S, Zavitz K, Christensen D, Binger MH, 
Bass S, Laughlin M, Swabb E (2006) Efficacy and safety of MPC-7869 (R-
flurbiprofen), a selective ab42-lowering agent, in mild Alzheimer's disease 
(AD): Results of a 12-month Phase 2 trial and 1-year follow-on study. 
Neurology 66:A347-A347. 

Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer's disease. Lancet 368:387-
403. 

Bogen IL, Risa O, Haug KH, Sonnewald U, Fonnum F, Walaas SI (2008) Distinct 
changes in neuronal and astrocytic amino acid neurotransmitter metabolism in 
mice with reduced numbers of synaptic vesicles. J Neurochem. 

Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad 
Sci 508:333-348. 

Braak E, Griffing K, Arai K, Bohl J, Bratzke H, Braak H (1999) Neuropathology of 
Alzheimer's disease: what is new since A. Alzheimer? Eur Arch Psychiatry Clin 
Neurosci 249 Suppl 3:14-22. 

Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. 
Acta Neuropathol (Berl) 82:239-259. 

Brand A, Richter-Landsberg C, Leibfritz D (1993) Multinuclear NMR studies on the 
energy metabolism of glial and neuronal cells. Dev Neurosci 15:289-298. 

Brooks WM, Friedman SD, Stidley CA (1999) Reproducibility of 1H-MRS in vivo. 
Magn Reson Med 41:193-197. 

Burri R, Bigler P, Straehl P, Posse S, Colombo JP, Herschkowitz N (1990) Brain 
development: 1H magnetic resonance spectroscopy of rat brain extracts 
compared with chromatographic methods. Neurochem Res 15:1009-1016. 

Buxbaum JD, Liu KN, Luo Y, Slack JL, Stocking KL, Peschon JJ, Johnson RS, Castner 
BJ, Cerretti DP, Black RA (1998) Evidence that tumor necrosis factor alpha 
converting enzyme is involved in regulated alpha-secretase cleavage of the 
Alzheimer amyloid protein precursor. J Biol Chem 273:27765-27767. 



 187

Cai H, Wang Y, McCarthy D, Wen H, Borchelt DR, Price DL, Wong PC (2001) 
BACE1 is the major beta-secretase for generation of Abeta peptides by neurons. 
Nat Neurosci 4:233-234. 

Casas C, Sergeant N, Itier JM, Blanchard V, Wirths O, van der Kolk N, Vingtdeux V, 
van de Steeg E, Ret G, Canton T, Drobecq H, Clark A, Bonici B, Delacourte A, 
Benavides J, Schmitz C, Tremp G, Bayer TA, Benoit P, Pradier L (2004) 
Massive CA1/2 neuronal loss with intraneuronal and N-terminal truncated 
Abeta42 accumulation in a novel Alzheimer transgenic model. Am J Pathol 
165:1289-1300. 

Catani M, Cherubini A, Howard R, Tarducci R, Pelliccioli GP, Piccirilli M, Gobbi G, 
Senin U, Mecocci P (2001) (1)H-MR spectroscopy differentiates mild cognitive 
impairment from normal brain aging. Neuroreport 12:2315-2317. 

Cerdan S, Parrilla R, Santoro J, Rico M (1985) 1H NMR detection of cerebral myo-
inositol. FEBS Lett 187:167-172. 

Chang L, Ernst T, Poland RE, Jenden DJ (1996) In vivo proton magnetic resonance 
spectroscopy of the normal aging human brain. Life Sci 58:2049-2056. 

Chantal S, Braun CM, Bouchard RW, Labelle M, Boulanger Y (2004) Similar 1H 
magnetic resonance spectroscopic metabolic pattern in the medial temporal 
lobes of patients with mild cognitive impairment and Alzheimer disease. Brain 
Res 1003:26-35. 

Chassain C, Bielicki G, Durand E, Lolignier S, Essafi F, Traore A, Durif F (2008) 
Metabolic changes detected by proton magnetic resonance spectroscopy in vivo 
and in vitro in a murin model of Parkinson's disease, the MPTP-intoxicated 
mouse. J Neurochem 105:874-882. 

Chaurand P, Latham JC, Lane KB, Mobley JA, Polosukhin VV, Wirth PS, Nanney LB, 
Caprioli RM (2008) Imaging mass spectrometry of intact proteins from alcohol-
preserved tissue specimens: bypassing formalin fixation. J Proteome Res 
7:3543-3555. 

Chyung JH, Raper DM, Selkoe DJ (2005) Gamma-secretase exists on the plasma 
membrane as an intact complex that accepts substrates and effects 
intramembrane cleavage. J Biol Chem 280:4383-4392. 

Cottrell DA, Blakely EL, Johnson MA, Ince PG, Turnbull DM (2001) Mitochondrial 
enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 
57:260-264. 

Crouch PJ, White AR, Bush AI (2007) The modulation of metal bio-availability as a 
therapeutic strategy for the treatment of Alzheimer's disease. Febs J 274:3775-
3783. 

Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang 
X, Farrag YW, Perry G, Bush AI (2000) Evidence that the beta-amyloid plaques 
of Alzheimer's disease represent the redox-silencing and entombment of abeta 
by zinc. J Biol Chem 275:19439-19442. 

Dahlgren KN, Manelli AM, Stine WB, Jr., Baker LK, Krafft GA, LaDu MJ (2002) 
Oligomeric and fibrillar species of amyloid-beta peptides differentially affect 
neuronal viability. J Biol Chem 277:32046-32053. 



 188

Davanipour Z, Tseng CC, Lee PJ, Sobel E (2007) A case-control study of occupational 
magnetic field exposure and Alzheimer's disease: results from the California 
Alzheimer's Disease Diagnosis and Treatment Centers. BMC Neurol 7:13. 

Davignon J, Gregg RE, Sing CF (1988a) Apolipoprotein E polymorphism and 
atherosclerosis. Arteriosclerosis 8:1-21. 

Davignon J, Bouthillier D, Nestruck AC, Sing CF (1988b) Apolipoprotein E 
polymorphism and atherosclerosis: insight from a study in octogenarians. Trans 
Am Clin Climatol Assoc 99:100-110. 

de Beer R, van den Boogaart A, van Ormondt D, Pijnappel WW, den Hollander JA, 
Marien AJ, Luyten PR (1992) Application of time-domain fitting in the 
quantification of in vivo 1H spectroscopic imaging data sets. NMR Biomed 
5:171-178. 

de Graaf RA (1998) In Vivo NMR Spectroscopy Principles And Techniques, 1st 
Edition. Chichester: John Wiley & Sons Ltd. 

de Leon MJ, Convit A, Wolf OT, Tarshish CY, DeSanti S, Rusinek H, Tsui W, Kandil 
E, Scherer AJ, Roche A, Imossi A, Thorn E, Bobinski M, Caraos C, Lesbre P, 
Schlyer D, Poirier J, Reisberg B, Fowler J (2001) Prediction of cognitive 
decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-
glucose/poitron-emission tomography (FDG/PET). Proc Natl Acad Sci U S A 
98:10966-10971. 

De Strooper B, Annaert W, Cupers P, Saftig P, Craessaerts K, Mumm JS, Schroeter 
EH, Schrijvers V, Wolfe MS, Ray WJ, Goate A, Kopan R (1999) A presenilin-
1-dependent gamma-secretase-like protease mediates release of Notch 
intracellular domain. Nature 398:518-522. 

Dedeoglu A, Choi JK, Cormier K, Kowall NW, Jenkins BG (2004) Magnetic resonance 
spectroscopic analysis of Alzheimer's disease mouse brain that express mutant 
human APP shows altered neurochemical profile. Brain Res 1012:60-65. 

Demougeot C, Marie C, Giroud M, Beley A (2004) N-acetylaspartate: a literature 
review of animal research on brain ischaemia. J Neurochem 90:776-783. 

Dhenain M, El Tannir El Tayara N, Wu TD, Guegan M, Volk A, Quintana C, Delatour 
B (2009) Characterization of in vivo MRI detectable thalamic amyloid plaques 
from APP/PS1 mice. Neurobiol Aging 30:41-53. 

Dixon RM, Bradley KM, Budge MM, Styles P, Smith AD (2002) Longitudinal 
quantitative proton magnetic resonance spectroscopy of the hippocampus in 
Alzheimer's disease. Brain 125:2332-2341. 

Dodart JC, Mathis C, Bales KR, Paul SM, Ungerer A (1999) Early regional cerebral 
glucose hypometabolism in transgenic mice overexpressing the V717F beta-
amyloid precursor protein. Neurosci Lett 277:49-52. 

Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, Serneels L, 
Camacho IE, Marjaux E, Craessaerts K, Roebroek AJ, Schwake M, D'Hooge R, 
Bach P, Kalinke U, Moechars D, Alzheimer C, Reiss K, Saftig P, De Strooper B 
(2005) Phenotypic and biochemical analyses of BACE1- and BACE2-deficient 
mice. J Biol Chem 280:30797-30806. 

Doraiswamy PM, Charles HC, Krishnan KR (1998) Prediction of cognitive decline in 
early Alzheimer's disease. Lancet 352:1678. 



 189

Doraiswamy PM, Chen JG, Charles HC (2000) Brain magnetic resonance spectroscopy 
- Role in assessing outcomes in Alzheimer's disease CNS Drugs 14:457-472. 

Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima 
S, Schwaiger M, Kurz A (2003) Cerebral metabolic changes accompanying 
conversion of mild cognitive impairment into Alzheimer's disease: a PET 
follow-up study. Eur J Nucl Med Mol Imaging 30:1104-1113. 

Eckman EA, Eckman CB (2005) Abeta-degrading enzymes: modulators of Alzheimer's 
disease pathogenesis and targets for therapeutic intervention. Biochem Soc 
Trans 33:1101-1105. 

Eikelenboom P, Veerhuis R (1996) The role of complement and activated microglia in 
the pathogenesis of Alzheimer's disease. Neurobiol Aging 17:673-680. 

Ernst T, Chang L, Melchor R, Mehringer CM (1997) Frontotemporal dementia and 
early Alzheimer disease: differentiation with frontal lobe H-1 MR spectroscopy. 
Radiology 203:829-836. 

Esler WP, Kimberly WT, Ostaszewski BL, Diehl TS, Moore CL, Tsai JY, Rahmati T, 
Xia W, Selkoe DJ, Wolfe MS (2000) Transition-state analogue inhibitors of 
gamma-secretase bind directly to presenilin-1. Nat Cell Biol 2:428-434. 

Evans SC, Barjat H, Pohlmann A, Tilling L, Vidgeon-Hart M, Hayes BP, Upton N, 
James MF (2007) Pathologies in the thalamus of TASTPM transgenic mouse 
model of Alzheimer's disease - characterisation by MRI, micro-CT and 
histology. British Neurosci Assoc Abstr 19:145. 

Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, 
Spinner ML, Klunk WE, Mathis CA, DeKosky ST, Morris JC, Holtzman DM 
(2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal 
fluid Abeta42 in humans. Ann Neurol 59:512-519. 

Fahrenholz F, Gilbert S, Kojro E, Lammich S, Postina R (2000) Alpha-secretase 
activity of the disintegrin metalloprotease ADAM 10. Influences of domain 
structure. Ann N Y Acad Sci 920:215-222. 

Falini A, Bozzali M, Magnani G, Pero G, Gambini A, Benedetti B, Mossini R, 
Franceschi M, Comi G, Scotti G, Filippi M (2005) A whole brain MR 
spectroscopy study from patients with Alzheimer's disease and mild cognitive 
impairment. Neuroimage 26:1159-1163. 

Fatouros PP, Marmarou A (1999) Use of magnetic resonance imaging for in vivo 
measurements of water content in human brain: method and normal values. J 
Neurosurg 90:109-115. 

Fearing MA, Bigler ED, Norton M, Tschanz JA, Hulette C, Leslie C, Welsh-Bohmer K 
(2007) Autopsy-confirmed Alzheimer's disease versus clinically diagnosed 
Alzheimer's disease in the Cache County Study on Memory and Aging: a 
comparison of quantitative MRI and neuropsychological findings. J Clin Exp 
Neuropsychol 29:553-560. 

Ferguson KJ, MacLullich AM, Marshall I, Deary IJ, Starr JM, Seckl JR, Wardlaw JM 
(2002) Magnetic resonance spectroscopy and cognitive function in healthy 
elderly men. Brain 125:2743-2749. 

Florian CL, Williams SR, Bhakoo KK, Noble MD (1996) Regional and developmental 
variations in metabolite concentration in the rat brain and eye: a study using 1H 



 190

NMR spectroscopy and high performance liquid chromatography. Neurochem 
Res 21:1065-1074. 

Fox NC, Freeborough PA, Rossor MN (1996a) Visualisation and quantification of rates 
of atrophy in Alzheimer's disease. Lancet 348:94-97. 

Fox NC, Crum WR, Scahill RI, Stevens JM, Janssen JC, Rossor MN (2001) Imaging of 
onset and progression of Alzheimer's disease with voxel-compression mapping 
of serial magnetic resonance images. Lancet 358:201-205. 

Fox NC, Warrington EK, Freeborough PA, Hartikainen P, Kennedy AM, Stevens JM, 
Rossor MN (1996b) Presymptomatic hippocampal atrophy in Alzheimer's 
disease. A longitudinal MRI study. Brain 119 ( Pt 6):2001-2007. 

Fox NC, Black RS, Gilman S, Rossor MN, Griffith SG, Jenkins L, Koller M (2005) 
Effects of Abeta immunization (AN1792) on MRI measures of cerebral volume 
in Alzheimer disease. Neurology 64:1563-1572. 

Fratiglioni L, Paillard-Borg S, Winblad B (2004) An active and socially integrated 
lifestyle in late life might protect against dementia. Lancet Neurol 3:343-353. 

Frederick BD, Lyoo IK, Satlin A, Ahn KH, Kim MJ, Yurgelun-Todd DA, Cohen BM, 
Renshaw PF (2004) In vivo proton magnetic resonance spectroscopy of the 
temporal lobe in Alzheimer's disease. Prog Neuropsychopharmacol Biol 
Psychiatry 28:1313-1322. 

Frisoni GB, Fox NC, Jack CR, Jr., Scheltens P, Thompson PM (2010) The clinical use 
of structural MRI in Alzheimer disease. Nat Rev Neurol 6:67-77. 

Gadian DG (1995) NMR and its applications to living systems, 2nd Edition. Oxford: 
Oxford University Press. 

Garrard P, Schott JM, MacManus DG, Hodges JR, Fox NC, Waldman AD (2006) 
Posterior cingulate neurometabolite profiles and clinical phenotype in 
frontotemporal dementia. Cogn Behav Neurol 19:185-189. 

Gauthier S, Reisberg B, Zaudig M, Petersen RC, Ritchie K, Broich K, Belleville S, 
Brodaty H, Bennett D, Chertkow H, Cummings JL, de Leon M, Feldman H, 
Ganguli M, Hampel H, Scheltens P, Tierney MC, Whitehouse P, Winblad B 
(2006) Mild cognitive impairment. Lancet 367:1262-1270. 

Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in 
Alzheimer disease. J Neural Transm 105:855-870. 

Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, 
Haynes A, Irving N, James L, et al. (1991) Segregation of a missense mutation 
in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 
349:704-706. 

Golde TE (2003) Alzheimer disease therapy: can the amyloid cascade be halted? J Clin 
Invest 111:11-18. 

Golde TE (2006) Disease modifying therapy for AD? J Neurochem 99:689-707. 
Govindaraju V, Young K, Maudsley AA (2000) Proton NMR chemical shifts and 

coupling constants for brain metabolites. NMR Biomed 13:129-153. 
Graveron-Demilly D, Diop A, Briguet A, Fenet B (1993) Product-operator algebra for 

strongly coupled spin systems. J Magn Reson A101:233-239. 
Griffey RH, Flamig DP (1990) VAPOR for Solvent-Suppressed, Short-Echo, Volume-

Localized Proton Spectroscopy. Journal of Magnetic Resonance 88:161-166. 



 191

Gruetter R (2005) Automatic, localized in Vivo adjustment of all first-and second-order 
shim coils. Magn Reson Med 29:804-811. 

Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) 
Abnormal phosphorylation of the microtubule-associated protein tau (tau) in 
Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83:4913-4917. 

Gsell W, Conrad R, Hickethier M, Sofic E, Frolich L, Wichart I, Jellinger K, Moll G, 
Ransmayr G, Beckmann H, et al. (1995) Decreased catalase activity but 
unchanged superoxide dismutase activity in brains of patients with dementia of 
Alzheimer type. J Neurochem 64:1216-1223. 

Gunstone FD (1995) The Lipid Handbook, 2nd Edition. London: Chapman & Hall. 
Haase A, Frahm J, Hanicke W, Matthaei D (1985) 1H NMR chemical shift selective 

(CHESS) imaging. Phys Med Biol 30:341-344. 
Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, Sato-Yoshitake R, Takei 

Y, Noda T, Hirokawa N (1994) Altered microtubule organization in small-
calibre axons of mice lacking tau protein. Nature 369:488-491. 

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress 
and problems on the road to therapeutics. Science 297:353-356. 

Harr SD, Uint L, Hollister R, Hyman BT, Mendez AJ (1996) Brain expression of 
apolipoproteins E, J, and A-I in Alzheimer's disease. J Neurochem 66:2429-
2435. 

Hellstrom-Lindahl E, Ravid R, Nordberg A (2006) Age-dependent decline of neprilysin 
in Alzheimer's disease and normal brain: Inverse correlation with Abeta levels. 
Neurobiol Aging. 

Hensley K, Hall N, Subramaniam R, Cole P, Harris M, Aksenov M, Aksenova M, 
Gabbita SP, Wu JF, Carney JM, et al. (1995) Brain regional correspondence 
between Alzheimer's disease histopathology and biomarkers of protein 
oxidation. J Neurochem 65:2146-2156. 

Herholz K, Carter SF, Jones M (2007) Positron emission tomography imaging in 
dementia. Br J Radiol 80 Spec No 2:S160-167. 

Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T, Wittsack HJ, Lanfermann H, 
Maurer K, Zanella FE (2003) Brain metabolism in Alzheimer disease and 
vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. 
Psychiatry Res 123:183-190. 

Heun R, Schlegel S, Graf-Morgenstern M, Tintera J, Gawehn J, Stoeter P (1997) Proton 
magnetic resonance spectroscopy in dementia of Alzheimer type. Int J Geriatr 
Psychiatry 12:349-358. 

Higgins GA, Jacobsen H (2003) Transgenic mouse models of Alzheimer's disease: 
phenotype and application. Behav Pharmacol 14:419-438. 

Higinbotham J, Marshall I (2001) NMR lineshapes and lineshape fitting. A Rep NMR 
Spectrosc 43:59-120. 

Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, Lemke U, 
Henke K, Moritz E, Garcia E, Wollmer MA, Umbricht D, de Quervain DJ, 
Hofmann M, Maddalena A, Papassotiropoulos A, Nitsch RM (2003) Antibodies 
against beta-amyloid slow cognitive decline in Alzheimer's disease. Neuron 
38:547-554. 



 192

Holcomb L, Gordon MN, McGowan E, Yu X, Benkovic S, Jantzen P, Wright K, Saad 
I, Mueller R, Morgan D, Sanders S, Zehr C, O'Campo K, Hardy J, Prada CM, 
Eckman C, Younkin S, Hsiao K, Duff K (1998) Accelerated Alzheimer-type 
phenotype in transgenic mice carrying both mutant amyloid precursor protein 
and presenilin 1 transgenes. Nat Med 4:97-100. 

Howlett DR, Richardson JC, Austin A, Parsons AA, Bate ST, Davies DC, Gonzalez MI 
(2004) Cognitive correlates of Abeta deposition in male and female mice 
bearing amyloid precursor protein and presenilin-1 mutant transgenes. Brain 
Res 1017:130-136. 

Howlett DR, Bowler K, Soden PE, Riddell D, Davis JB, Richardson JC, Burbidge SA, 
Gonzalez MI, Irving EA, Lawman A, Miglio G, Dawson EL, Howlett ER, 
Hussain I (2008) Abeta deposition and related pathology in an APP x PS1 
transgenic mouse model of Alzheimer's disease. Histol Histopathol 23:67-76. 

Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, 
Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of 
neural circuits in Alzheimer's disease mouse models. Proc Natl Acad Sci U S A 
96:3228-3233. 

Huang W, Alexander GE, Chang L, Shetty HU, Krasuski JS, Rapoport SI, Schapiro 
MB (2001) Brain metabolite concentration and dementia severity in Alzheimer's 
disease: a (1)H MRS study. Neurology 57:626-632. 

Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, 
Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The A 
beta peptide of Alzheimer's disease directly produces hydrogen peroxide 
through metal ion reduction. Biochemistry 38:7609-7616. 

Hussain I, Powell D, Howlett DR, Tew DG, Meek TD, Chapman C, Gloger IS, Murphy 
KE, Southan CD, Ryan DM, Smith TS, Simmons DL, Walsh FS, Dingwall C, 
Christie G (1999) Identification of a novel aspartic protease (Asp 2) as beta-
secretase. Mol Cell Neurosci 14:419-427. 

Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, 
Alafuzoff I, Winblad B (1986) Defective brain microtubule assembly in 
Alzheimer's disease. Lancet 2:421-426. 

Iqbal K, Alonso Adel C, Chen S, Chohan MO, El-Akkad E, Gong CX, Khatoon S, Li 
B, Liu F, Rahman A, Tanimukai H, Grundke-Iqbal I (2005) Tau pathology in 
Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739:198-210. 

Jack CR, Jr., Petersen RC, Xu YC, Waring SC, O'Brien PC, Tangalos EG, Smith GE, 
Ivnik RJ, Kokmen E (1997) Medial temporal atrophy on MRI in normal aging 
and very mild Alzheimer's disease. Neurology 49:786-794. 

James MF, Maheswaran S, Barjat H, Rueckert D, Bate ST, Howlett DR, Tilling L, 
Smart SC, Pohlmann A, Hill DL, Hajnal JV, Upton N (2007) Effects of Abeta42 
deposition in Alzheimer's APPxPS1 mice: Inflammatory response and regional 
MRI voulmetry. British Neurosci Assoc Abstr 19:145. 

Jarrett JT, Berger EP, Lansbury PT, Jr. (1993) The carboxy terminus of the beta 
amyloid protein is critical for the seeding of amyloid formation: implications for 
the pathogenesis of Alzheimer's disease. Biochemistry 32:4693-4697. 



 193

Jessen F, Traeber F, Freymann K, Maier W, Schild HH, Block W (2006) Treatment 
monitoring and response prediction with proton MR spectroscopy in AD. 
Neurology 67:528-530. 

Jessen F, Block W, Traber F, Keller E, Flacke S, Papassotiropoulos A, Lamerichs R, 
Heun R, Schild HH (2000) Proton MR spectroscopy detects a relative decrease 
of N-acetylaspartate in the medial temporal lobe of patients with AD. 
Neurology 55:684-688. 

Jessen F, Gur O, Block W, Ende G, Frolich L, Hammen T, Wiltfang J, Kucinski T, 
Jahn H, Heun R, Maier W, Kolsch H, Kornhuber J, Traber F (2009) A 
multicenter (1)H-MRS study of the medial temporal lobe in AD and MCI. 
Neurology 72:1735-1740. 

Jones RS, Waldman AD (2004) 1H-MRS evaluation of metabolism in Alzheimer's 
disease and vascular dementia. Neurol Res 26:488-495. 

Jung RE, Brooks WM, Yeo RA, Chiulli SJ, Weers DC, Sibbitt WL, Jr. (1999a) 
Biochemical markers of intelligence: a proton MR spectroscopy study of normal 
human brain. Proc Biol Sci 266:1375-1379. 

Jung RE, Yeo RA, Chiulli SJ, Sibbitt WL, Jr., Weers DC, Hart BL, Brooks WM 
(1999b) Biochemical markers of cognition: a proton MR spectroscopy study of 
normal human brain. Neuroreport 10:3327-3331. 

Kanfer JN, Sorrentino G, Sitar DS (1998) Phospholipases as mediators of amyloid beta 
peptide neurotoxicity: an early event contributing to neurodegeneration 
characteristic of Alzheimer's disease. Neurosci Lett 257:93-96. 

Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, 
Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer's 
disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733-
736. 

Kantarci K, Smith GE, Ivnik RJ, Petersen RC, Boeve BF, Knopman DS, Tangalos EG, 
Jack CR, Jr. (2002) 1H magnetic resonance spectroscopy, cognitive function, 
and apolipoprotein E genotype in normal aging, mild cognitive impairment and 
Alzheimer's disease. J Int Neuropsychol Soc 8:934-942. 

Kantarci K, Jack CR, Jr., Xu YC, Campeau NG, O'Brien PC, Smith GE, Ivnik RJ, 
Boeve BF, Kokmen E, Tangalos EG, Petersen RC (2000) Regional metabolic 
patterns in mild cognitive impairment and Alzheimer's disease: A 1H MRS 
study. Neurology 55:210-217. 

Kantarci K, Petersen RC, Boeve BF, Knopman DS, Tang-Wai DF, O'Brien PC, 
Weigand SD, Edland SD, Smith GE, Ivnik RJ, Ferman TJ, Tangalos EG, Jack 
CR, Jr. (2004) 1H MR spectroscopy in common dementias. Neurology 63:1393-
1398. 

Kantarci K, Weigand SD, Petersen RC, Boeve BF, Knopman DS, Gunter J, Reyes D, 
Shiung M, O'Brien P C, Smith GE, Ivnik RJ, Tangalos EG, Jack CR, Jr. (2006) 
Longitudinal (1)H MRS changes in mild cognitive impairment and Alzheimer's 
disease. Neurobiol Aging. 

Karas M, Hillenkamp F (1988) Laser desorption ionization of proteins with molecular 
masses exceeding 10,000 daltons. Anal Chem 60:2299-2301. 



 194

Karas M, Bachmann D, Bahr U, Hillenkamp F (1987) Matrix-Assisted Ultraviolet-
Laser Desorption of Nonvolatile Compounds. Int J Mass Spectrom Ion 
Processes 78:53-68. 

Karp A, Kareholt I, Qiu C, Bellander T, Winblad B, Fratiglioni L (2004) Relation of 
education and occupation-based socioeconomic status to incident Alzheimer's 
disease. Am J Epidemiol 159:175-183. 

Kattapong VJ, Brooks WM, Wesley MH, Kodituwakku PW, Rosenberg GA (1996) 
Proton magnetic resonance spectroscopy of vascular- and Alzheimer-type 
dementia. Arch Neurol 53:678-680. 

Katzov H (2007) SORL1 adds another piece to the complex puzzle of Alzheimer 
disease genetics. Clin Genet 72:183-184. 

Kauppinen RA, Williams SR (1991) Nondestructive detection of glutamate by 1H 
nuclear magnetic resonance spectroscopy in cortical brain slices from the guinea 
pig: evidence for changes in detectability during severe anoxic insults. J 
Neurochem 57:1136-1144. 

Kauppinen RA, Pirttila TR, Auriola SO, Williams SR (1994) Compartmentation of 
cerebral glutamate in situ as detected by 1H/13C n.m.r. Biochem J 298 ( Pt 
1):121-127. 

Khan A, Dobson JP, Exley C (2006) Redox cycling of iron by Abeta42. Free Radic 
Biol Med 40:557-569. 

Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule-associated 
protein tau are elevated in Alzheimer's disease: a radioimmuno-slot-blot assay 
for nanograms of the protein. J Neurochem 59:750-753. 

Kheterpal I, Williams A, Murphy C, Bledsoe B, Wetzel R (2001) Structural features of 
the Abeta amyloid fibril elucidated by limited proteolysis. Biochemistry 
40:11757-11767. 

Kimberly WT, LaVoie MJ, Ostaszewski BL, Ye W, Wolfe MS, Selkoe DJ (2003) 
Gamma-secretase is a membrane protein complex comprised of presenilin, 
nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100:6382-6387. 

Klegeris A, McGeer PL (1997) beta-amyloid protein enhances macrophage production 
of oxygen free radicals and glutamate. J Neurosci Res 49:229-235. 

Klunk WE, Xu C, Panchalingam K, McClure RJ, Pettegrew JW (1996) Quantitative 1H 
and 31P MRS of PCA extracts of postmortem Alzheimer's disease brain. 
Neurobiol Aging 17:349-357. 

Knobloch M, Konietzko U, Krebs DC, Nitsch RM (2007) Intracellular Abeta and 
cognitive deficits precede beta-amyloid deposition in transgenic arcAbeta mice. 
Neurobiol Aging 28:1297-1306. 

Kojro E, Fahrenholz F (2005) The non-amyloidogenic pathway: structure and function 
of alpha-secretases. Subcell Biochem 38:105-127. 

Koller KJ, Zaczek R, Coyle JT (1984) N-acetyl-aspartyl-glutamate: regional levels in 
rat brain and the effects of brain lesions as determined by a new HPLC method. 
J Neurochem 43:1136-1142. 

Kopke E, Tung YC, Shaikh S, Alonso AC, Iqbal K, Grundke-Iqbal I (1993) 
Microtubule-associated protein tau. Abnormal phosphorylation of a non-paired 
helical filament pool in Alzheimer disease. J Biol Chem 268:24374-24384. 



 195

Kostara CE, Papathanasiou A, Cung MT, Elisaf MS, Goudevenos J, Bairaktari ET 
(2010) Evaluation of established coronary heart disease on the basis of HDL 
and non-HDL NMR lipid profiling. J Proteome Res 9:897-911. 

Kreis R (2004) Issues of spectral quality in clinical 1H-magnetic resonance 
spectroscopy and a gallery of artifacts. NMR Biomed 17:361-381. 

Kreis R, Ross BD (1992) Cerebral metabolic disturbances in patients with subacute and 
chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 
184:123-130. 

Kreis R, Ross BD, Farrow NA, Ackerman Z (1992) Metabolic disorders of the brain in 
chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 
182:19-27. 

Kruse B, Hanefeld F, Christen HJ, Bruhn H, Michaelis T, Hanicke W, Frahm J (1993) 
Alterations of brain metabolites in metachromatic leukodystrophy as detected 
by localized proton magnetic resonance spectroscopy in vivo. J Neurol 241:68-
74. 

Kuo YM, Emmerling MR, Bisgaier CL, Essenburg AD, Lampert HC, Drumm D, Roher 
AE (1998) Elevated low-density lipoprotein in Alzheimer's disease correlates 
with brain abeta 1-42 levels. Biochem Biophys Res Commun 252:711-715. 

Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, 
Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC (2005) 
BACE1, a major determinant of selective vulnerability of the brain to amyloid-
beta amyloidogenesis, is essential for cognitive, emotional, and synaptic 
functions. J Neurosci 25:11693-11709. 

Lam FC, Liu R, Lu P, Shapiro AB, Renoir JM, Sharom FJ, Reiner PB (2001) beta-
Amyloid efflux mediated by p-glycoprotein. J Neurochem 76:1121-1128. 

Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, 
Fahrenholz F (1999) Constitutive and regulated alpha-secretase cleavage of 
Alzheimer's amyloid precursor protein by a disintegrin metalloprotease. Proc 
Natl Acad Sci U S A 96:3922-3927. 

Lazeyras F, Charles HC, Tupler LA, Erickson R, Boyko OB, Krishnan KR (1998) 
Metabolic brain mapping in Alzheimer's disease using proton magnetic 
resonance spectroscopy. Psychiatry Res 82:95-106. 

Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and 
tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR 
Biomed 15:37-44. 

Le Corre S, Klafki HW, Plesnila N, Hubinger G, Obermeier A, Sahagun H, Monse B, 
Seneci P, Lewis J, Eriksen J, Zehr C, Yue M, McGowan E, Dickson DW, 
Hutton M, Roder HM (2006) An inhibitor of tau hyperphosphorylation prevents 
severe motor impairments in tau transgenic mice. Proc Natl Acad Sci U S A 
103:9673-9678. 

Ledesma MD, Da Silva JS, Crassaerts K, Delacourte A, De Strooper B, Dotti CG 
(2000) Brain plasmin enhances APP alpha-cleavage and Abeta degradation and 
is reduced in Alzheimer's disease brains. EMBO Rep 1:530-535. 

Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ 
(2003) Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents 



 196

plaque formation, secondary pathology, and premature death. Neuron 40:1087-
1093. 

Lemaire R, Desmons A, Tabet JC, Day R, Salzet M, Fournier I (2007) Direct analysis 
and MALDI imaging of formalin-fixed, paraffin-embedded tissue sections. J 
Proteome Res 6:1295-1305. 

Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, 
Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, 
Schmechel D, Rogers J, Stephan DA (2008) Alzheimer's disease is associated 
with reduced expression of energy metabolism genes in posterior cingulate 
neurons. Proc Natl Acad Sci U S A 105:4441-4446. 

Lien YH, Shapiro JI, Chan L (1990) Effects of hypernatremia on organic brain 
osmoles. J Clin Invest 85:1427-1435. 

Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, Iqbal K, Gong CX (2009) 
Reduced O-GlcNAcylation links lower brain glucose metabolism and tau 
pathology in Alzheimer's disease. Brain 132:1820-1832. 

Lovell MA, Ehmann WD, Butler SM, Markesbery WR (1995) Elevated thiobarbituric 
acid-reactive substances and antioxidant enzyme activity in the brain in 
Alzheimer's disease. Neurology 45:1594-1601. 

Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, Fan W, Kha H, Zhang J, 
Gong Y, Martin L, Louis JC, Yan Q, Richards WG, Citron M, Vassar R (2001) 
Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal 
phenotype and abolished beta-amyloid generation. Nat Neurosci 4:231-232. 

Maheswaran S, Barjat H, Rueckert D, Bate ST, Howlett DR, Tilling L, Smart SC, 
Pohlmann A, Richardson JC, Hartkens T, Hill DL, Upton N, Hajnal JV, James 
MF (2009) Longitudinal regional brain volume changes quantified in normal 
aging and Alzheimer's APP x PS1 mice using MRI. Brain Res 1270:19-32. 

Marjanska M, Curran GL, Wengenack TM, Henry PG, Bliss RL, Poduslo JF, Jack CR, 
Jr., Ugurbil K, Garwood M (2005) Monitoring disease progression in transgenic 
mouse models of Alzheimer's disease with proton magnetic resonance 
spectroscopy. Proc Natl Acad Sci U S A 102:11906-11910. 

Martinez-Bisbal MC, Arana E, Marti-Bonmati L, Molla E, Celda B (2004) Cognitive 
impairment: classification by 1H magnetic resonance spectroscopy. Eur J 
Neurol 11:187-193. 

Martins IJ, Berger T, Sharman MJ, Verdile G, Fuller SJ, Martins RN (2009) 
Cholesterol metabolism and transport in the pathogenesis of Alzheimer's 
disease. J Neurochem 111:1275-1308. 

Michikawa M, Fan QW, Isobe I, Yanagisawa K (2000) Apolipoprotein E exhibits 
isoform-specific promotion of lipid efflux from astrocytes and neurons in 
culture. J Neurochem 74:1008-1016. 

Miller BL (1991) A review of chemical issues in 1H NMR spectroscopy: N-acetyl-L-
aspartate, creatine and choline. NMR Biomed 4:47-52. 

Miller BL, Moats RA, Shonk T, Ernst T, Woolley S, Ross BD (1993) Alzheimer 
disease: depiction of increased cerebral myo-inositol with proton MR 
spectroscopy. Radiology 187:433-437. 



 197

Moats RA, Ernst T, Shonk TK, Ross BD (1994) Abnormal cerebral metabolite 
concentrations in patients with probable Alzheimer disease. Magn Reson Med 
32:110-115. 

Modrego PJ, Fayed N, Pina MA (2005) Conversion from mild cognitive impairment to 
probable Alzheimer's disease predicted by brain magnetic resonance 
spectroscopy. Am J Psychiatry 162:667-675. 

Modrego PJ, Pina MA, Fayed N, Diaz M (2006) Changes in metabolite ratios after 
treatment with rivastigmine in Alzheimer's disease: A nonrandomised controlled 
trial with magnetic resonance spectroscopy. CNS Drugs 20:867-877. 

Moechars D, Dewachter I, Lorent K, Reverse D, Baekelandt V, Naidu A, Tesseur I, 
Spittaels K, Haute CV, Checler F, Godaux E, Cordell B, Van Leuven F (1999) 
Early phenotypic changes in transgenic mice that overexpress different mutants 
of amyloid precursor protein in brain. J Biol Chem 274:6483-6492. 

Moffett JR, Namboodiri MA, Cangro CB, Neale JH (1991) Immunohistochemical 
localization of N-acetylaspartate in rat brain. Neuroreport 2:131-134. 

Moreira PI, Siedlak SL, Wang X, Santos MS, Oliveira CR, Tabaton M, Nunomura A, 
Szweda LI, Aliev G, Smith MA, Zhu X, Perry G (2007) Autophagocytosis of 
mitochondria is prominent in Alzheimer disease. J Neuropathol Exp Neurol 
66:525-532. 

Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, 
Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J, Perneczky R, Clerici F, Caselli 
R, Beuthien-Baumann B, Kurz A, Minoshima S, de Leon MJ (2008) 
Multicenter standardized 18F-FDG PET diagnosis of mild cognitive 
impairment, Alzheimer's disease, and other dementias. J Nucl Med 49:390-398. 

Mrak RE, Sheng JG, Griffin WS (1996) Correlation of astrocytic S100 beta expression 
with dystrophic neurites in amyloid plaques of Alzheimer's disease. J 
Neuropathol Exp Neurol 55:273-279. 

Murai S, Saito H, Shirato R, Kawaguchi T (2001) An improved method for assaying 
phosphocholine and glycerophosphocholine in mouse tissue. J Pharmacol 
Toxicol Methods 46:103-109. 

Newman M, Musgrave FI, Lardelli M (2006) Alzheimer disease: Amyloidogenesis, the 
presenilins and animal models. Biochim Biophys Acta. 

Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) 
Neuropathology of human Alzheimer disease after immunization with amyloid-
beta peptide: a case report. Nat Med 9:448-452. 

Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, 
LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, 
Dickson D, Duff K (2005) Inhibition of glycogen synthase kinase-3 by lithium 
correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci 
U S A 102:6990-6995. 

Notkola IL, Sulkava R, Pekkanen J, Erkinjuntti T, Ehnholm C, Kivinen P, Tuomilehto 
J, Nissinen A (1998) Serum total cholesterol, apolipoprotein E epsilon 4 allele, 
and Alzheimer's disease. Neuroepidemiology 17:14-20. 

Nunomura A, Perry G, Aliev G, Hirai K, Takeda A, Balraj EK, Jones PK, Ghanbari H, 
Wataya T, Shimohama S, Chiba S, Atwood CS, Petersen RB, Smith MA (2001) 



 198

Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp 
Neurol 60:759-767. 

Oberg J, Spenger C, Wang FH, Andersson A, Westman E, Skoglund P, Sunnemark D, 
Norinder U, Klason T, Wahlund LO, Lindberg M (2007) Age related changes in 
brain metabolites observed by (1)H MRS in APP/PS1 mice. Neurobiol Aging. 

Oppenheimer SM, Bryan RN, Conturo TE, Soher BJ, Preziosi TJ, Barker PB (1995) 
Proton magnetic resonance spectroscopy and gadolinium-DTPA perfusion 
imaging of asymptomatic MRI white matter lesions. Magn Reson Med 33:61-
68. 

Orgogozo JM, Gilman S, Dartigues JF, Laurent B, Puel M, Kirby LC, Jouanny P, 
Dubois B, Eisner L, Flitman S, Michel BF, Boada M, Frank A, Hock C (2003) 
Subacute meningoencephalitis in a subset of patients with AD after Abeta42 
immunization. Neurology 61:46-54. 

Pacheco MA, Jope RS (1996) Phosphoinositide signaling in human brain. Prog 
Neurobiol 50:255-273. 

Petersen RC (2004) Mild cognitive impairment as a diagnostic entity. J Intern Med 
256:183-194. 

Petrella JR, Coleman RE, Doraiswamy PM (2003) Neuroimaging and early diagnosis 
of Alzheimer disease: a look to the future. Radiology 226:315-336. 

Pfrieger FW (2003) Cholesterol homeostasis and function in neurons of the central 
nervous system. Cell Mol Life Sci 60:1158-1171. 

Postina R, Schroeder A, Dewachter I, Bohl J, Schmitt U, Kojro E, Prinzen C, Endres K, 
Hiemke C, Blessing M, Flamez P, Dequenne A, Godaux E, van Leuven F, 
Fahrenholz F (2004) A disintegrin-metalloproteinase prevents amyloid plaque 
formation and hippocampal defects in an Alzheimer disease mouse model. J 
Clin Invest 113:1456-1464. 

Poullet JB, Sima DM, Van Huffel S (2008) MRS signal quantitation: a review of time- 
and frequency-domain methods. J Magn Reson 195:134-144. 

Prohovnik I, Perl DP, Davis KL, Libow L, Lesser G, Haroutunian V (2006) 
Dissociation of neuropathology from severity of dementia in late-onset 
Alzheimer disease. Neurology 66:49-55. 

Qiu C, De Ronchi D, Fratiglioni L (2007) The epidemiology of the dementias: an 
update. Curr Opin Psychiatry 20:380-385. 

Rapp A, Gmeiner B, Huttinger M (2006) Implication of apoE isoforms in cholesterol 
metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 
88:473-483. 

Ratiney H, Sdika M, Coenradie Y, Cavassila S, van Ormondt D, Graveron-Demilly D 
(2005) Time-domain semi-parametric estimation based on a metabolite basis 
set. NMR Biomed 18:1-13. 

Richardson JC, Kendal CE, Anderson R, Priest F, Gower E, Soden P, Gray R, Topps S, 
Howlett DR, Lavender D, Clarke NJ, Barnes JC, Haworth R, Stewart MG, 
Rupniak HT (2003) Ultrastructural and behavioural changes precede amyloid 
deposition in a transgenic model of Alzheimer's disease. Neuroscience 122:213-
228. 



 199

Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL (2005) A 
potential role of the curry spice curcumin in Alzheimer's disease. Curr 
Alzheimer Res 2:131-136. 

Ritchie K, Touchon J (2000) Mild cognitive impairment: conceptual basis and current 
nosological status. Lancet 355:225-228. 

Roher AE, Kuo YM, Kokjohn KM, Emmerling MR, Gracon S (1999) Amyloid and 
lipids in the pathology of Alzheimer disease. Amyloid 6:136-145. 

Rohner TC, Staab D, Stoeckli M (2005) MALDI mass spectrometric imaging of 
biological tissue sections. Mech Ageing Dev 126:177-185. 

Ronci M, Bonanno E, Colantoni A, Pieroni L, Di Ilio C, Spagnoli LG, Federici G, 
Urbani A (2008) Protein unlocking procedures of formalin-fixed paraffin-
embedded tissues: application to MALDI-TOF imaging MS investigations. 
Proteomics 8:3702-3714. 

Rose SE, de Zubicaray GI, Wang D, Galloway GJ, Chalk JB, Eagle SC, Semple J, 
Doddrell DM (1999) A 1H MRS study of probable Alzheimer's disease and 
normal aging: implications for longitudinal monitoring of dementia progression. 
Magn Reson Imaging 17:291-299. 

Ross BD (1991) Biochemical considerations in 1H spectroscopy. Glutamate and 
glutamine; myo-inositol and related metabolites. NMR Biomed 4:59-63. 

Rottkamp CA, Raina AK, Zhu X, Gaier E, Bush AI, Atwood CS, Chevion M, Perry G, 
Smith MA (2001) Redox-active iron mediates amyloid-beta toxicity. Free Radic 
Biol Med 30:447-450. 

Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson 
PC, Griffin JL (2010) A metabolomic study of the CRND8 transgenic mouse 
model of Alzheimer's disease. Neurochem Int 56:937-947. 

Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, 
DeTure M, Ramsden M, McGowan E, Forster C, Yue M, Orne J, Janus C, 
Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau 
suppression in a neurodegenerative mouse model improves memory function. 
Science 309:476-481. 

Satlin A, Bodick N, Offen WW, Renshaw PF (1997) Brain proton magnetic resonance 
spectroscopy (1H-MRS) in Alzheimer's disease: changes after treatment with 
xanomeline, an M1 selective cholinergic agonist. Am J Psychiatry 154:1459-
1461. 

Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative 
catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease: a 
central role for bound transition metals. J Neurochem 74:270-279. 

Schaefer EJ, Bongard V, Beiser AS, Lamon-Fava S, Robins SJ, Au R, Tucker KL, Kyle 
DJ, Wilson PW, Wolf PA (2006) Plasma phosphatidylcholine docosahexaenoic 
acid content and risk of dementia and Alzheimer disease: the Framingham Heart 
Study. Arch Neurol 63:1545-1550. 

Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, Hu K, Huang J, 
Johnson-Wood K, Khan K, Kholodenko D, Lee M, Liao Z, Lieberburg I, Motter 
R, Mutter L, Soriano F, Shopp G, Vasquez N, Vandevert C, Walker S, Wogulis 
M, Yednock T, Games D, Seubert P (1999) Immunization with amyloid-beta 



 200

attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 
400:173-177. 

Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, 
Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj 
P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) 
Secreted amyloid beta-protein similar to that in the senile plaques of 
Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP 
mutations linked to familial Alzheimer's disease. Nat Med 2:864-870. 

Schuff N, Amend D, Ezekiel F, Steinman SK, Tanabe J, Norman D, Jagust W, Kramer 
JH, Mastrianni JA, Fein G, Weiner MW (1997) Changes of hippocampal N-
acetyl aspartate and volume in Alzheimer's disease. A proton MR spectroscopic 
imaging and MRI study. Neurology 49:1513-1521. 

Schuff N, Capizzano AA, Du AT, Amend DL, O'Neill J, Norman D, Kramer J, Jagust 
W, Miller B, Wolkowitz OM, Yaffe K, Weiner MW (2002) Selective reduction 
of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 
58:928-935. 

Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor and the 
mechanism of Alzheimer's disease. Annu Rev Cell Biol 10:373-403. 

Selkoe DJ (2001) Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 
81:741-766. 

Shen J, Kelleher RJ, 3rd (2007) The presenilin hypothesis of Alzheimer's disease: 
evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S 
A 104:403-409. 

Shibata M, Yamada S, Kumar SR, Calero M, Bading J, Frangione B, Holtzman DM, 
Miller CA, Strickland DK, Ghiso J, Zlokovic BV (2000) Clearance of 
Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related 
protein-1 at the blood-brain barrier. J Clin Invest 106:1489-1499. 

Shobab LA, Hsiung GY, Feldman HH (2005) Cholesterol in Alzheimer's disease. 
Lancet Neurol 4:841-852. 

Shonk TK, Moats RA, Gifford P, Michaelis T, Mandigo JC, Izumi J, Ross BD (1995) 
Probable Alzheimer disease: diagnosis with proton MR spectroscopy. 
Radiology 195:65-72. 

Siemers E, Skinner M, Dean RA, Gonzales C, Satterwhite J, Farlow M, Ness D, May 
PC (2005) Safety, tolerability, and changes in amyloid beta concentrations after 
administration of a gamma-secretase inhibitor in volunteers. Clin 
Neuropharmacol 28:126-132. 

Smith GE, Pankratz VS, Negash S, Machulda MM, Petersen RC, Boeve BF, Knopman 
DS, Lucas JA, Ferman TJ, Graff-Radford N, Ivnik RJ (2007) A plateau in pre-
Alzheimer memory decline: evidence for compensatory mechanisms? 
Neurology 69:133-139. 

Smith MA, Harris PL, Sayre LM, Perry G (1997) Iron accumulation in Alzheimer 
disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 
94:9866-9868. 

Sparks DL, Martin TA, Gross DR, Hunsaker JC, 3rd (2000) Link between heart 
disease, cholesterol, and Alzheimer's disease: a review. Microsc Res Tech 
50:287-290. 



 201

Stampfer MJ, Kang JH, Chen J, Cherry R, Grodstein F (2005) Effects of moderate 
alcohol consumption on cognitive function in women. N Engl J Med 352:245-
253. 

Stauber J, Lemaire R, Franck J, Bonnel D, Croix D, Day R, Wisztorski M, Fournier I, 
Salzet M (2008) MALDI imaging of formalin-fixed paraffin-embedded tissues: 
application to model animals of Parkinson disease for biomarker hunting. J 
Proteome Res 7:969-978. 

Stefan D, Di Cesare F, Andrasescu A, Popa E, Lazariev A, Vescovo E, Strbak O, 
Williams S, Starcuk Z, Cabanas M, van Ormondt D, Graveron-Demilly D 
(2009) Quantitation of magnetic resonance spectroscopy signals: the jMRUI 
software package Meas Sci Technol 20:104035. 

Stefani M, Liguri G (2009) Cholesterol in Alzheimer's disease: unresolved questions. 
Curr Alzheimer Res 6:15-29. 

Stoeckli M, Knochenmuss R, McCombie G, Mueller D, Rohner T, Staab D, 
Wiederhold KH (2006) MALDI MS imaging of amyloid. Methods Enzymol 
412:94-106. 

Stoppe G, Bruhn H, Pouwels PJ, Hanicke W, Frahm J (2000) Alzheimer disease: 
absolute quantification of cerebral metabolites in vivo using localized proton 
magnetic resonance spectroscopy. Alzheimer Dis Assoc Disord 14:112-119. 

Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen 
GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid 
and increased frequency of type 4 allele in late-onset familial Alzheimer 
disease. Proc Natl Acad Sci U S A 90:1977-1981. 

Strohmeyer R, Kovelowski CJ, Mastroeni D, Leonard B, Grover A, Rogers J (2005) 
Microglial responses to amyloid beta peptide opsonization and indomethacin 
treatment. J Neuroinflammation 2:18. 

Terry AV, Jr., Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's 
disease-related cognitive deficits: recent challenges and their implications for 
novel drug development. J Pharmacol Exp Ther 306:821-827. 

Tkac I, Starcuk Z, Choi IY, Gruetter R (1999) In vivo 1H NMR spectroscopy of rat 
brain at 1 ms echo time. Magn Reson Med 41:649-656. 

Truchot L, Costes SN, Zimmer L, Laurent B, Le Bars D, Thomas-Anterion C, Croisile 
B, Mercier B, Hermier M, Vighetto A, Krolak-Salmon P (2007) Up-regulation 
of hippocampal serotonin metabolism in mild cognitive impairment. Neurology 
69:1012-1017. 

Urenjak J, Williams SR, Gadian DG, Noble M (1992) Specific expression of N-
acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and 
immature oligodendrocytes in vitro. J Neurochem 59:55-61. 

Urenjak J, Williams SR, Gadian DG, Noble M (1993) Proton nuclear magnetic 
resonance spectroscopy unambiguously identifies different neural cell types. J 
Neurosci 13:981-989. 

Valenzuela MJ, Sachdev P (2001) Magnetic resonance spectroscopy in AD. Neurology 
56:592-598. 

Valla J, Berndt JD, Gonzalez-Lima F (2001) Energy hypometabolism in posterior 
cingulate cortex of Alzheimer's patients: superficial laminar cytochrome oxidase 
associated with disease duration. J Neurosci 21:4923-4930. 



 202

Van Broeck B, Vanhoutte G, Pirici D, Van Dam D, Wils H, Cuijt I, Vennekens K, 
Zabielski M, Michalik A, Theuns J, De Deyn PP, Van der Linden A, Van 
Broeckhoven C, Kumar-Singh S (2008) Intraneuronal amyloid beta and reduced 
brain volume in a novel APP T714I mouse model for Alzheimer's disease. 
Neurobiol Aging 29:241-252. 

van Groen T, Puurunen K, Maki HM, Sivenius J, Jolkkonen J (2005) Transformation of 
diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in 
the thalamus after transient occlusion of the middle cerebral artery in rats. 
Stroke 36:1551-1556. 

Vanhamme L, van den Boogaart A, Van Huffel S (1997) Improved method for accurate 
and efficient quantification of MRS data with use of prior knowledge. J Magn 
Reson 129:35-43. 

Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross 
S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, 
Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, 
Rogers G, Citron M (1999) Beta-secretase cleavage of Alzheimer's amyloid 
precursor protein by the transmembrane aspartic protease BACE. Science 
286:735-741. 

von Kienlin M, Kunnecke B, Metzger F, Steiner G, Richards JG, Ozmen L, Jacobsen 
H, Loetscher H (2005) Altered metabolic profile in the frontal cortex of 
PS2APP transgenic mice, monitored throughout their life span. Neurobiol Dis 
18:32-39. 

Wahlund LO (1996) Magnetic resonance imaging and computed tomography in 
Alzheimer's disease. Acta Neurol Scand Suppl 168:50-53. 

Waldman AD, Rai GS (2003) The relationship between cognitive impairment and in 
vivo metabolite ratios in patients with clinical Alzheimer's disease and vascular 
dementia: a proton magnetic resonance spectroscopy study. Neuroradiology 
45:507-512. 

Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in 
Alzheimer's disease. Neuron 44:181-193. 

Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007) Stepwise 
proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation 
of full-length tau in a neuronal cell model. Proc Natl Acad Sci U S A 
104:10252-10257. 

Weeraratna AT, Kalehua A, Deleon I, Bertak D, Maher G, Wade MS, Lustig A, Becker 
KG, Wood W, 3rd, Walker DG, Beach TG, Taub DD (2007) Alterations in 
immunological and neurological gene expression patterns in Alzheimer's 
disease tissues. Exp Cell Res 313:450-461. 

Weggen S, Eriksen JL, Das P, Sagi SA, Wang R, Pietrzik CU, Findlay KA, Smith TE, 
Murphy MP, Bulter T, Kang DE, Marquez-Sterling N, Golde TE, Koo EH 
(2001) A subset of NSAIDs lower amyloidogenic Abeta42 independently of 
cyclooxygenase activity. Nature 414:212-216. 

Weiner HL, Frenkel D (2006) Immunology and immunotherapy of Alzheimer's disease. 
Nat Rev Immunol 6:404-416. 

Wilcock GK (2003) Memantine for the treatment of dementia. Lancet Neurol 2:503-
505. 



 203

Wolfe MS (2007) When loss is gain: reduced presenilin proteolytic function leads to 
increased Abeta42/Abeta40. Talking Point on the role of presenilin mutations in 
Alzheimer disease. EMBO Rep 8:136-140. 

Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased 
prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl 
coenzyme A reductase inhibitors. Arch Neurol 57:1439-1443. 

Woo DC, Lee SH, Lee DW, Kim SY, Kim GY, Rhim HS, Choi CB, Kim HY, Lee CU, 
Choe BY (2010) Regional metabolic alteration of Alzheimer's disease in mouse 
brain expressing mutant human APP-PS1 by 1H HR-MAS. Behav Brain Res 
211:125-131. 

Xanthakos S, Krishnan KR, Kim DM, Charles HC (1996) Magnetic resonance imaging 
of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 20:597-
626. 

Yamagata K, Urakami K, Ikeda K, Ji Y, Adachi Y, Arai H, Sasaki H, Sato K, 
Nakashima K (2001) High expression of apolipoprotein E mRNA in the brains 
with sporadic Alzheimer's disease. Dement Geriatr Cogn Disord 12:57-62. 

Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, 
Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, 
Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with 
Alzheimer's disease beta-secretase activity. Nature 402:533-537. 

Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman 
GC, Nawroth P, et al. (1995) Non-enzymatically glycated tau in Alzheimer's 
disease induces neuronal oxidant stress resulting in cytokine gene expression 
and release of amyloid beta-peptide. Nat Med 1:693-699. 

Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen PP, 
Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) Curcumin inhibits 
formation of amyloid beta oligomers and fibrils, binds plaques, and reduces 
amyloid in vivo. J Biol Chem 280:5892-5901. 

Zhang B, Maiti A, Shively S, Lakhani F, McDonald-Jones G, Bruce J, Lee EB, Xie SX, 
Joyce S, Li C, Toleikis PM, Lee VM, Trojanowski JQ (2005) Microtubule-
binding drugs offset tau sequestration by stabilizing microtubules and reversing 
fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A 
102:227-231. 

Zhao Z, Xiang Z, Haroutunian V, Buxbaum JD, Stetka B, Pasinetti GM (2007) Insulin 
degrading enzyme activity selectively decreases in the hippocampal formation 
of cases at high risk to develop Alzheimer's disease. Neurobiol Aging 28:824-
830. 

Zhu X, Smith MA, Perry G, Aliev G (2004) Mitochondrial failures in Alzheimer's 
disease. Am J Alzheimers Dis Other Demen 19:345-352. 

Zhu X, Su B, Wang X, Smith MA, Perry G (2007) Causes of oxidative stress in 
Alzheimer disease. Cell Mol Life Sci 64:2202-2210. 

Zhu X, Schuff N, Kornak J, Soher B, Yaffe K, Kramer JH, Ezekiel F, Miller BL, Jagust 
WJ, Weiner MW (2006) Effects of Alzheimer disease on fronto-parietal brain 
N-acetyl aspartate and myo-inositol using magnetic resonance spectroscopic 
imaging. Alzheimer Dis Assoc Disord 20:77-85. 

 



 204

 


