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Abstract 
The aim of this thesis is to present robust solutions to technical problems of 

airborne three-dimensional (3D) Visual Simultaneous Localisation And Mapping 

(VSLAM). These solutions are developed based on a stereovision system available 

onboard Unmanned Aerial Vehicles (UAVs). The proposed airborne VSLAM enables 

unmanned aerial vehicles to construct a reliable map of an unknown environment and 

localise themselves within this map without any user intervention.  

Current research challenges related to Airborne VSLAM include the visual 

processing through invariant feature detectors/descriptors, efficient mapping of large 

environments and cooperative navigation and mapping of complex environments. Most 

of these challenges require scalable representations, robust data association algorithms, 

consistent estimation techniques, and fusion of different sensor modalities. To deal with 

these challenges, seven Chapters are presented in this thesis as follows: Chapter 1 

introduces UAVs, definitions, current challenges and different applications. Next, in 

Chapter 2 we present the main sensors used by UAVs during navigation. Chapter 3 

presents an important task for autonomous navigation which is UAV localisation. In this 

chapter, some robust and optimal approaches for data fusion are proposed with 

performance analysis. After that, UAV map building is presented in Chapter 4. This 

latter is divided into three parts. In the first part, a new imaging alternative technique is 

proposed to extract and match a suitable number of invariant features. The second part 

presents an image mosaicing algorithm followed by a super-resolution approach. In the 

third part, we propose a new feature detector and descriptor that is fast, robust and 

detect suitable number of features to solve the VSLAM problem. A complete Airborne 

Visual Simultaneous Localisation and Mapping (VSLAM) solution based on a 

stereovision system is presented in Chapter (5). Robust data association filters with 

consistency and observability analysis are presented in this chapter as well. The 

proposed algorithm is validated with loop closing detection and map management using 

experimental data. The airborne VSLAM is extended then to the multiple UAVs case in 

Chapter (6). This chapter presents two architectures of cooperation: a Centralised and a 

Decentralised. The former provides optimal precision in terms of UAV positions and 



 
 
 
 
 

  

constructed map while the latter is more suitable for real time and embedded system 

applications. Finally, conclusions and future works are presented in Chapter (7). 
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MMSE   Minimum Mean Square Error  
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CHAPTER 1 

 

Introduction 

Unmanned Aerial Vehicles (UAVs) are rapidly becoming a strategic asset of today’s 

military forces and civilian airspace community. They are encountered in an increasing 

number of different applications like: surveillance, reconnaissance, communication 

relay, target designation and payload delivery. The term ‘Unmanned Aerial Vehicle’ 

(UAV) encompasses a wide variety of robotic aircraft that vary in size, shape, flight 

characteristics and level of operational autonomy. In recent years, the development and 

production of UAVs has undergone an explosion in the military arenas.  

UAVs in Figure (1.1) have been referred under different names: RPVs (remotely 

piloted vehicles), drones, robot planes and pilotless aircraft are a few such names. 

UAVs are defined by the American Department of Defence (DOD) as powered aerial 

vehicles that do not carry a human operator, use aerodynamic forces to provide vehicle 

lift, can fly autonomously or be piloted remotely, can be expendable or recoverable, and 

can carry a lethal or non lethal payload. Ballistic or semi ballistic vehicles, cruise 

missiles and artillery projectiles are not considered UAVs by the DOD definition. 

UAVs are either described as a single air vehicle (with associated surveillance sensors), 

or a UAV system, which usually consists of three to six air vehicles, a ground control 

station, and support equipments. 

 
 
 
 
 
 
 
 

 
 

Figure.1. 1 Examples of UAVs 
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Today challenge for aerial vehicles is in how to achieving their full decision 

autonomy. Accuracy of these vehicles is then introduced as the necessary performance 

for safely completion mission. Increased accuracy can be achieved by accurate 

localisation within an accurate map. This leads to the problem of Simultaneous 

Localisation And Mapping (SLAM).  

The problem of Simultaneous Localisation And Mapping for an autonomous vehicle 

is stated as follows: starting from an initial position, a UAV travels through a sequence 

of positions and obtains a set of sensor measurements at each position. The goal for the 

vehicle is to process the sensor data to produce an estimate of its position while 

concurrently building a map of its environment. 

During the last decade, SLAM has been investigated as a significant research 

problem that was looked at often for simple 2D scenarios. Open SLAM challenges 

include efficient mapping of large environments, modelling complex and dynamic 

environments, multi-Airborne vehicle SLAM, full 3D SLAM and Cooperative SLAM. 

Most of these challenges will require scalable representations, robust data association 

algorithms, consistent estimation techniques, and different sensor modalities. In 

particular, solving SLAM with vision sensors is of crucial importance in order to 

address many real life applications. 

The objective of this work is to assess current state-of the-art in SLAM, to discuss 

and to compare different approaches presenting recent advances, then proposing 

alternatives solutions to the SLAM problem, where the proposed algorithms are more 

robust, stable and adapted to real time applications. The work will cover a wide variety 

of classical and emerging imaging algorithms to detect distinctive, invariant and stable 

landmarks to construct a reliable map of the UAV environment. One important aspect 

of the SLAM problem which is investigated in this work is the data fusion techniques. 

Different approaches are implemented and compared, beginning by the popular 

Extended Kalman Filter, then the optimal Nonlinear State Dependant Riccati Equation 

(SDRE) and finally the robust nonlinear H∞ filter. The latter doesn’t make any 

assumption on noise characteristics; furthermore it is robust face error modelling which 

is crucial for real applications. 
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1.1 PhD Challenges  

Autonomous vehicles must operate in their environment without any (or 

minimum) human intervention and meet rigorous requirements associated with any 

airborne platforms. Autonomy of these vehicles requires the development of navigation 

and guidance algorithms for self localisation and based on map environment building.  

The increase of UAV autonomy can be achieved by developing tools able to 

provide an accurate automatic localisation in an accurate environment map. SLAM 

problem looks at the ability of an autonomous vehicle, starting in a partially known or 

unknown environment, to incrementally build an environment map and simultaneously 

localise itself within this map. New challenges in SLAM are delivering methods 

enabling large-scale implementations in increasingly unstructured environments and 

especially in situations where GPS-like solutions are unavailable or unreliable such as 

urban canyons and urban environments.  

My PhD research study deals with integrated sensory data fusion and visual 

guidance for airborne systems. The main research areas focus on the following: 

- Airborne localisation (data fusion filters and data association techniques). 

- Map building (feature extraction and matching algorithms).  

- Images registration and mosaicing. 

- SLAM observability and consistency analysis. 

- Robust airborne Visual SLAM. 

- Cooperative VSLAM. 

In principle, implementing SLAM in three dimensions (3D) is an extension of the 

two-dimensional (2-D) case. However 3D SLAM involves significant added complexity 

due to the more general vehicle motion model and most importantly increased sensing 

and feature modelling complexity. The challenge now is to demonstrate VSLAM 

solutions for a UAV navigating in large scale natural environment without recourse to 

global positioning system (GPS).  
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1.2 SLAM Problem State of Art 

The objective of this work is to both develop and demonstrate autonomous 

localisation and mapping algorithms for airborne platforms. Autonomous localisation 

and mapping is the process of determining a platform’s position, velocity and attitude 

information, and the map where the platform is navigating. These tasks should be 

completed without the use of any priori information external to the platform. Only for 

what the platform senses about the environment is used. This objective can be achieved 

by the implementation of a Simultaneous Localisation and Mapping (SLAM) algorithm. 

The genesis of the probabilistic SLAM problem occurred in the IEEE Robotics 

and Automation Conference held in San Francisco, California in 1986. At that time, 

probabilistic methods were only just beginning to be introduced into both robotics and 

artificial intelligence (AI) problems. A number of researchers had been looking at 

applying estimation-theoretic methods to mapping and localisation problems. These 

included Peter Cheeseman, Jim Crowley and Hugh Durrant-Whyte. Over the course of 

the conference, many paper table cloths and napkins were filled with long discussions 

about consistent mapping. Along the way, Raja Chatila, Oliver Faugeras, Randal Smith 

and others also made useful contributions to the conversation. The result of these 

conversations was to recognise that consistent probabilistic mapping was a fundamental 

problem in robotics with major conceptual and computational issues that needed to be 

addressed. Over the next few years, a number of key papers were produced. Works by 

Smith and Cheesman [1] and Durrant-Whyte [2] established a statistical basis for 

describing relationships between landmarks and geometric uncertainty. A key element 

of these works was to show that there must be a high degree of correlation between 

estimates of the location of different landmarks in a map and that, indeed, these 

correlations would grow with successive observations. 

At the same time Ayache and Faugeras [3] were undertaking early work in visual 

navigation, Crowley [4], Chatila and Laumond [5] were working on sonar-based 

navigation for mobile robots using Kalman filter type algorithms. These two strands of 

research had much in common and resulted soon after in the paper of Smith and al [6]. 

This paper showed that as a mobile robot moves through an unknown environment 
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based on relative observations of landmarks. The estimates of these landmarks are all 

necessarily correlated with each other because of the common error in estimated vehicle 

location [7]. The implication of this was profound: A consistent full solution to the 

combined localisation and mapping problem would require a joint state composed of the 

vehicle pose and every landmark position to be updated following each landmark 

observation. This would require the estimator to employ a huge state vector (on the 

order of the number of landmarks maintained in the map) with computation scaling as 

the square of the number of landmarks. Crucially, this work did not look at the 

convergence properties of the map or its steady-state behaviour. Indeed, it was widely 

assumed that the estimated map errors would not converge and would instead exhibit 

random-walk behaviour with unbounded error growth. Thus, given the computational 

complexity of the mapping problem and without knowledge of the convergence 

behaviour of the map, researchers focused instead on a series of approximations to the 

consistent mapping problem. They assumed or even forced the correlations between 

landmarks to be minimised or eliminated. Thus, reducing the full filter to a series of 

decoupled landmark to vehicle filters ([8-9] for example). This lead to the theoretical 

work on the combined localisation and mapping problem came to be temporarily halted, 

with work often focused on either mapping or localisation as separate problems. 

The conceptual breakthrough came with the realisation that the combined mapping 

and localisation problem once formulated as a single estimation problem was actually 

converging. 

Most importantly, it was recognised that the correlations between landmarks, 

which most researchers had tried to minimise, were actually the critical part of the 

problem and that, on the contrary, when the correlations grow, the solution be better. 

The structure of the SLAM problem, the convergence result and the coining of the 

acronym SLAM was first presented in a mobile robotics survey paper at the 

International Symposium on Robotics Research in 1995 [10]. The essential theory on 

convergence and many of the initial results were developed by Csorba [11-12]. Several 

groups already working on mapping and localisation, notably at the Massachusetts 

Institute of Technology [13], Zaragoza [14-15], the ACFR at Sydney [16-17] and others 
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[18-19], began working deeply on SLAM—also called concurrent mapping and 

localisation (CML) at that time—for indoor, outdoor, and subsea environments. 

 The International Symposium on Robotics Research in 1999 [20], was an 

important meeting for the field. In this symposium the first SLAM session was held and 

a degree of convergence between the Kalman-filter-based SLAM methods and the 

probabilistic localisation and mapping methods introduced by Thrun [21] was achieved. 

In 2000, at the IEEE International Conference on Robotics and Automation (ICRA), a 

Workshop on SLAM attracted 15 researchers and focused on issues such as algorithmic 

complexity, data association, and implementation challenges. 

 The following SLAM workshop at ICRA 2002 attracted 150 researchers with a 

broad range of interests and applications. In 2002, the SLAM summer school hosted by 

Henrik Christiansen at KTH in Stockholm attracted all the key researchers together with 

50 PhD students from around the world and was a tremendous success in building the 

field. Interest in SLAM has grown exponentially in recent years, and workshops 

continue to be held at both ICRA and IROS. The SLAM summer school ran in 2004 in 

Toulouse then in Oxford in 2006, where many papers were published on the inertial 

SLAM [22-24]. 

 Solving SLAM with monocular or stereo vision systems is a crucial open area of 

research which addresses many autonomous navigation problems in real life 

applications. Davison, in [71], proposed a vision-based SLAM approach, which used 

active stereo head and odometry sensing to estimate the location of a robot in planar 

regions. In [94], Davison has looked at the localisation and mapping problem using data 

from a single passive camera and combined with an EKF filter. Nir and Bruckstein [95], 

proposed a particle filter based SLAM approach to estimate camera (vehicle) poses. 

Currently, the Visual SLAM becomes a very challenging axe of research and 

many papers were published in [25-28]. Moreover, with the development of Aerial 

Vehicles, the Airborne SLAM is seen as an essential area of research and many research 

works on Real time, Airborne and Visual SLAM are investigated in [22, 24, 28-31] .  

This brief summary of the SLAM state of art shows that the Visual Airborne 

SLAM is still an open and challenging area of research to be yet fully explored. 
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1.3 Research Motivation 

The main motivation behind this research, as the introduction has suggested, is the 

autonomous navigation of aerial vehicles. Today, the navigation of aerial vehicles 

becomes a challenging axe of research, firstly, because the airborne have 6 degrees of 

freedom, which make it more complicated than the mobile robot; secondly, the massive 

number of applications of aerial vehicle in military (surveillance, reconnaissance, battle 

damage assessment…) and civilian (farming, fire extinction…) applications. 

Moreover, solving the airborne navigation problem using visual data is a new 

subject of research, which still under development. Thus, to investigate such a subject is 

a real challenging task because the camera is able to give the most complete information 

about the surroundings, which will be used not only to improve the airborne localisation 

but also to build a map of the environment. Furthermore, using invariant feature 

extractors to detect and match features is very important to construct a reliable map in 

natural environment. 

One important aspect of the autonomous navigation which should be investigated 

as well is the fusion of data from different sensor. The data fusion algorithms are very 

important and their performances are closely dependant of both performances of the 

constructed map and the accuracy of the UAV position within this map. Optimal and 

robust filter is implemented and validated using real data. 

The single airborne VSLAM using robust filter is a challenging task especially 

when it is validated using experimental data. To the best of my knowledge only few 

researchers are investigating this area. More than that, using multiple airborne VSLAM 

to explore and map a large area of navigation all we maintain an acceptable localisation 

accuracy still a real challenge to be attended particularly when it will be validated using 

experimental data.  

1.4 Thesis Contributions and Organisation 

 This thesis focuses on developing a robust solution for the VSLAM problem to 

increase autonomy of Unmanned Aerial Vehicles. The investigated topics are related to 

data fusion, localisation, features extraction and matching, Map building, 3D pose 
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estimation and VSLAM. In addition, a cooperative VSLAM (C-VSLAM) solution is 

developed for a swarm of cooperating UAVs. 

 Most parts of this work have been either published or are under preparation for 

publication at highly ranked conferences and journals. The following summarises the 

contributions of the thesis highlighting the parts that have been written in a form of 

separate manuscript – all of which are listed below. 

A brief summary of the contribution presented in this thesis are as follows:  

• Robust INS/GPS data fusion (paper1) 

 In chapter (3), a robust approach for data fusion is proposed based on the 

nonlinear H∞ (NH∞) filter. The original contribution of this work is the proposition and 

the adaptation of the “Nonlinear H∞ filter” to solve the INS/GPS UAV navigation 

problem. The proposed method solves issues related to linearisation, which is mostly 

linked to classical filtering techniques. Simulation results for 3D flight scenario are 

presented to demonstrate the advantages of the NH∞ compared with results of classical 

EKF based technique. Good results were obtained with the NH∞ filter without any 

assumption on the process and/or measurement noise characteristics, particularly in the 

case of strong nonlinearities or non centred noises. 

• SDRE filter stability (paper3)  

 In chapter (3) a new INS/GPS sensor fusion scheme, based on State-Dependent 

Riccati Equation (SDRE) nonlinear filtering, for Unmanned Aerial Vehicle (UAV) 

localisation problem is presented. SDRE navigation filter is proposed as another 

alternative to Extended Kalman Filter (EKF), which has been extensively used in the 

literature. Based on optimal control theory, the SDRE filter solves issues linked with 

EKF filter such as linearisation errors that severely decrease UAV localisation 

performances. Proofs of stability of the SDRE nonlinear filter that are missing in the 

literature are also presented and validated on a 3D UAV flight scenario. Results 

obtained by SDRE navigation filter were compared to EKF navigation filter results. 

This comparison shows a better UAV localisation performance using SDRE filter.  
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• Feature extraction (ASIFT) (paper4) 

 In chapter (4) a novel technique to design a robust feature extractor and descriptor 

for visual map building is proposed. The extracted features are required to be 

computationally attractive and invariant to image rotation, scale change and 

illumination. We adapted the Scale Invariant Features Transform (SIFT) algorithm for 

map building applications. Our main contributions are: firstly, we introduce an adaptive 

version of the SIFT algorithm suitable for different visual perceptual environments. 

Secondly, we use the L-infinity norm as a criterion for feature matching, which ensures 

more robustness against noises and uncertainties. Finally, we propose a new criterion to 

select the most stable features in order to improve the visual map building 

performances. Results based on real images shows the good performance obtained with 

the proposed approach. 

• Robust Map building and Super-resolution (paper5) 

 In the second part of chapter (4) an efficient, robust and automated frame 

registration and mosaicing algorithms which may be applied to real image sequences is 

developed. Image registration is the key step in combining multiple independent low-

resolution images to give a one large mosaic image with high resolution. 

Fundamentally, this problem requires knowing which parts of the image to join up. In 

this work, we propose automatic techniques based on Adaptive Scale Invariant Features 

Transform (ASIFT detector/descriptor) for geometric and photometric image 

registration, mosaicing and super-resolution. Thus our approach is insensitive to the 

ordering, orientation, scale and illumination of the images. 

• A novel Feature Extractor (paper6) 

 In the third part of chapter (4) a novel robust and fast feature detector and 

descriptor called Scale Wavelet Feature Invariant Transform (SWIF) is proposed. The 

SWIF algorithm is based on the Multi wavelet decomposition and look for features in 

scale and space following three directions. Scale Wavelet Invariant Feature (SWIF) 

detector/descriptor seems to be a promising solution for the VSLAM problem. Its 
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robustness using a short descriptor makes the difference in comparison to the proposed 

feature extractors available in the literature.  

• Robust 3D VSLAM (paper2, paper7) 

 In chapter (5) a robust airborne 3D VSLAM solution based on a stereovision 

system is presented. Three innovative contributions to the Airborne VSLAM are 

proposed. The first one is the development of an alternative data fusion nonlinear H∞ 

filtering scheme. This scheme is based on 3D vision observation model and avoids 

issues linked with the classical EKF techniques such as the linearisation errors, the 

initialisation problem and noise statistics assumptions. The second contribution consists 

of the consistency and the observability analysis for the Airborne VSLAM. The third 

contribution is a new approach to map management, based on the k-nearest landmark 

concept, and allowing efficient loop closure detection and map building. This approach 

reduces considerably the complexity of our Airborne VSLAM algorithm, which 

becomes independent of the map landmark number. Simulation results show the 

efficiency of the proposed Airborne VSLAM solution comparing with other techniques.  

• Experimental 3D VSLAM in unknown environments (paper8) 

 The second part of chapter (5) presents a robust approach to solve the airborne 

VSLAM problem based on the development of a full stereo camera observation model. 

An adaptive SIFT feature extractor and an L∞ norm distance criterion for robust feature 

detection and matching, respectively, were introduced. Robust 3D VSLAM is 

implemented based on the NH∞ filter and compared with the EKF VSLAM while a new 

map management approach using the nearest k-landmarks criterion to reduce the 

algorithm complexity is validated. The proposed airborne VSLAM solution was 

validated using real data. Good and very promising results were obtained 

 • Robust Cooperative VSLAM (paper9) 

 Chapter (6) presents a framework for Cooperative Aerial VSLAM (C-VSLAM). 

The use of cooperative vehicles shows many advantages over single-vehicle 

architecture. We present the nonlinear H∞ CVSLAM based on extending our robust 

single vehicle VSLAM introduced in chapter (4). Loop closure concept, based on 
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revisited features is described with feature uncertainty analysis. Comparisons between 

single and multiple UAV VSLAM are made using realistic simulation scenarios.  

• Experimental Cooperative VSLAM (paper10) 

 In the second part of Chapter (6), an experimental validation of C-VSLAM is 

presented. Full stereo camera observation model, Adaptive SIFT feature extractor and 

stereo vision constraints fast matching were introduced to construct a reliable large map. 

The Robust C-VSLAM with map management and loop closing is validated with 

simulation and using experimental data. Good and very promising results were 

obtained. 
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CHAPTER 2 

UAV sensors 

2.1 Overview 

 In this chapter, we present the most popular sensors used by unmanned aerial 

vehicles. The chapter is divided on three sections. In the first section the Inertial 

Navigation System (INS) model and the errors that may affect it are presented. Then the 

Global Positioning System (GPS) is proposed as a complimentary sensor for the INS in 

long term navigation. Finally, visual cameras are presented as new alternative sensors 

for UAV navigation. 

2.2 Introduction 

In airborne applications, navigation systems can generally be divided into two 

categories: inertial (or dead-reckoning) navigation, and reference (or absolute) based 

navigation. An inertial navigation system (INS) makes use of an Inertial Measurement 

Unit (IMU) to sense the vehicle’s rotation rates and accelerations. This data is then used 

to obtain vehicle states such as position, velocity and attitude at high sampling rates 

which are crucial for airborne guidance and control. However, INS diverging errors due 

to the integration process, requires absolute sensors in order to constrain these drifts. 

Absolute sensors can be further categorised into two groups: beacon based or 

terrain based. The most common beacon based navigation system is the Global 

Navigation Satellite System (GNSS). There have been extensive research activities in 

the fusion of INS and GNSS systems [32-35]. The GNSS aided inertial navigation 

system provides long-term stability with high accuracy and has worldwide coverage for 

any weather condition. The main drawback is its dependency on external satellite 

signals, which can be blocked or jammed by intentional interferences. 

Another sensor, which has been emerging very quickly in the last decade for 

autonomous vehicles and more specifically airborne vehicle, is the camera. This latter is 

available with different characteristics and low prices. Furthermore, cameras provide 

images, which are very useful to construct a map of the environment. These advantages 
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of cameras make computer vision as an essential research area for autonomous system 

applications. 

2.3 Inertial Navigation Systems  

INS consists of 3-axis gyroscopes, which provide to the system computer roll, 

pitch and yaw rates about the body. It also has 3-axis accelerometers, which provide 

accelerations along the three body axes. There are two basic inertial mechanisms, which 

are used to derive the Euler angles from the rate gyros: stable platform and strap-down 

INS. We would focus on strap-down INS, where gyros and accelerometers are 

`strapped-down' to the aircraft body frame. The acceleration values from the 

accelerometers are then corrected for rotation of the earth and gravity to give the 

velocity and position of the aircraft. 

The localisation problem of an airborne system has been formulated based on the 

core-sensing device, an IMU, Figure (2.1). This unit measures the accelerations ( ax, ay, 

az) and the rotation rates ( p, q, r) of the airborne platform with high update rates, which 

can then be transformed and processed to provide its position ( ZYX ,, ), velocity 

( WVU ,, ) and attitude ( ψθφ ,, ) resulting in an Inertial Navigation System (INS), as 

illustrated in Figure (2.1). 

           

Figure.2. 1 INS architecture 
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2.3.1 INS Model 

Let us present the INS with the following nonlinear model  
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Where x  is the state vector, which contains the position, velocity and Euler angles, and 

u represents the IMU outputs (angular rates and accelerations). 
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The navigation equations require defining at least two frames. One for the body/inertial 

representation (vehicle), and one for the navigation frame representation. Then, the 

equations of motion can be given by a simple integrations and frame transformations. 

2.3.2 Equations of Motion 

The Euler angle rates ψθφ &&& ,,  can be calculated using: 
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Assuming that the IMU is at the vehicle centre of gravity, the true vehicle acceleration 

in the body frame is given by WVU &&& ,,  : 
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The resulting acceleration vector is integrated with respect to time to obtain the velocity 

of the vehicle in the body frame: 
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The velocity vector is then integrated to read the position of the vehicle in the body 

frame. If the velocity is transformed down to navigation frame and integrated, we get 

the position TZYX ],,[ vector in the navigation frame.  
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Where bnC is the Direct Cosine Transform matrix that rotates a vector from body frame 

to the navigation frame. 
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Then, the Nonlinear INS process state model is given by Equation (2.9). 

 

( )




































































−

















−−+
−+−

+−+

































−+
+−

−

=

r

q

p

gVpUqaz

gWpUray

gWqVrax

W

V

U

uxf

T

)sec()cos()sec()sin(0

sin)cos(0

)tan()cos()tan()sin(1

)cos()cos(

)sin()cos(

)sin(

)cos()cos()sin()cos()cos()sin()sin()sin()sin()cos()cos()sin(

)cos()sin()cos()cos()sin()sin()sin()cos()sin()cos()sin()sin(

)sin()sin()cos()cos()cos(

),(

θφθφ
φφ

θφθφ
φθ
φθ

θ
θφθψφθφφψψφθ
θφφψφθψφψψφθ

θψθψθ

      (2.9)    

 

The observation model can be given by (2.10) when the aircraft position is measured by 

an absolute sensor (GNSS). 



 
 
 

Chapter 2 UAV sensors 

18 

















=
000000100

000000010

000000001

),( uxh                                                     (2.10) 

The navigational solution provided by INS drifts with time, as in most other dead 

reckoning systems. The drift rate of the inertial position is typically a cubic function of 

time, which makes the development of any inertial based localisation a big challenge. 

Even small errors in gyros will be accumulated in angle estimates (roll and pitch), 

which in turn misrepresent gravitational acceleration as the vehicle acceleration, 

resulting in quadratic velocity (and cubic position) errors. The following section 

presents the most dominant errors affecting the INS sensor.  

2.3.3 Errors in the INS 

Most INS errors attributed to the inertial are the residual errors exhibited by the 

installed gyros and accelerometers following calibration of the INS. The most dominant 

error sources are shown in Table (2.1). 

Alignment errors Roll, pitch and heading errors 

Accelerometer bias or offset A constant offset in the accelerometer output 

that changes randomly after each turn-on 

Nonorthogonality of gyros and 

accelerometers 

The axes of accelerometer and gyro uncertainty 

and misalignment 

Gyro drift or bias (due to temperature 

changes) 

A constant gyro output without angular rate 

presence  

Gyro scale factor error Result in an angular rate error proportional to 

the sensed angular rate 

Random noise Random noise in measurement 

Table.2.1 Sensor generated errors in the INS 
 
Errors in the accelerations and angular rates lead to steadily growing errors in position 

and velocity components of the aircraft due to integration. These are called navigation 

errors and there are nine of them - three position errors, three velocity errors, two 

attitude errors and one heading error. If an unaided INS is used, these errors grow with 
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time. For this reason, the INS is usually aided with either Global Positioning System 

(GPS), Doppler heading sensor or air-data dead reckoning systems.  

2.4 Global Positioning System 

GPS uses a one-way ranging technique from the GPS satellites that are also 

broadcasting their estimated positions. Signals from (at least) four satellites are used 

with the user generated replica signal and the relative phase is measured. Using 

triangulation the location of the receiver is fixed as illustrated in Figure (2.2.a). The 

GPS receiver coupled with the receiver computer returns elevation angle and azimuth 

angle between the user and satellite, measured clockwise positive from the true north, 

geodetic latitude and longitude of the user. The GPS ranging signal is broadcast at two 

frequencies: a primary signal at 1575.42 MHz (L1) and a secondary broadcast at 1227.6 

MHz (L2). Civilians use L1 frequency which has two modulations, viz. C/A or Clear 

Acquisition (or Coarse Acquisition) Code, and P or Precise or Protected Code. C/A is 

unencrypted signal broadcast at a higher bandwidth and is available only on L1. P code 

is more precise because it is broadcast at a higher bandwidth and is restricted for 

military use. The military operators can degrade the accuracy of the C/A code 

intentionally and this is known as Selective Availability. 

There are six major causes of ranging errors: satellite ephemeris, satellite clock, 

ionospheric group delay, tropospheric group delay, multi-path and receiver 

measurement errors, including software. Ephemeris errors occur when the GPS message 

does not transmit the correct satellite location and this affects the ranging accuracy. 

These tend to grow with time from the last update of the control station. Satellite clock 

errors affect both C/A and P code users and leads to an error of 1-2m over 12hr updates 

[36]. Measurement noise affects the position accuracy of GPS pseudo range absolute 

positioning by few meters. The propagation of these errors into the position solution can 

be characterised by a quantity called Dilution of Precision (DOP), which expresses the 

geometry between the satellite and the receiver and is typically between 1 and 100. If 

the DOP is greater than 6, then the satellite geometry is not good. Ionospheric and 

tropospheric delays are introduced due to the atmosphere and this leads to a phase lag in 

calculation of the pseudo range. These can be corrected with dual-frequency P-code 
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receivers. Multi-path errors are caused by reflected signals entering the front end of the 

receiver and masking the correlation peak. These effects tend to be more prominent due 

to the presence of reflective surfaces, where 15m or more in ranging error can be found 

in some cases.  

If we have a perfect clock in both the satellite and the receiver and if the signal is 

not affected by noise then it there would be easy to calculate the receivers position 

Figure (2.2.a). Otherwise, an additional satellite is needed for time offset of the GPS 

receiver clock Figure (2.2.b). 

           

   (a)        (b) 

Figure.2. 2 GPS receiver localisation, a) Ideal case, 3 intersection spheres, b) Non 
ideal case, additional satellite is needed for time offset of GPS receiver clock 

 

2.5 Visual system 

Vision is the sensor, which is able to give the most complete information “what” 

and “where” of the objects an autonomous robot (aerial or ground) is likely to 

encounter. Humans are most certainly in possession of an active vision system. This 

means that we are able to concentrate on particular regions of interest in a scene by 

movements of the eyes and head or just by shifting attention to different parts of the 

images we see. With a particular goal in mind for an autonomous robot system, an 

active vision is able to select from the available information only what is directly 

relevant to seek the solution.  

Point of solution. 
Ideal case, 3 
intersection spheres 

Area of solution 
2D case. Area 
created by non 
ideal case. 
Additional 
satellite is 
needed for 
solution. 
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Figure.2. 3 left PTZ camera, right Bumblebee stereo-vision camera 
 

Cheap cameras are available with different characteristics as illustrated in Figure 

(2.3). In our work we will use visible camera(s) to acquire visible images. Visible 

images are typically much sharper and clearer than infrared or thermal ones. Visible 

images present several advantages. First, visible images can be displayed in the same 

colors, shades, and intensities seen by the human eye, so their structure and character 

are more easily interpreted. Second, visible detector arrays have millions of elements, 

which is far more than those on an infrared detector. Finally, visible images are 

typically generated with reflected radiation. This can produce sharp contrasts and depict 

intensity differences: for example, a thin white line can be distinguished when it is next 

to a thin black line. 

 Although visible cameras have shown a powerful capacity of perception, which 

make them largely used in robotics navigation and mapping, they have a number of 

drawbacks. First, images brought by a camera need a large memory space that requires a 

significant computational time. Moreover, to extract regions of interest from an image 

powerful image processing algorithms should be proposed and implemented. 

Furthermore the problem of using a single camera is that it brings bearing information 

only, and not the depth (range) of the environment. As a solution the stereovision 

cameras are recently considered as the best way for 3D image reconstruction. Inspired 

from Human Visual System (HVS) stereovision cameras provide range and bearing of 

the environment which is very important for features localisation and map building.  

These advantages make stereo cameras a vital sensor to be used for airborne localisation 

and mapping. 
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2.6 Conclusion 

 In this chapter we presented the most important sensors used in aerospace 

navigation especially airborne localisation. As we explained each sensor has advantages 

and drawbacks, then a best result of airborne localisation can be obtained by fusion of 

data from two sensors or more. INS aided GPS is one common sensor fusion for long 

term airborne localisation. When the GPS signal is denied or when the map of the 

environment is as well required then the INS aided stereo cameras becomes the best 

solution for airborne navigation. 
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CHAPTER 3 

UAV Localisation 

3.1 Overview  

In this chapter we investigate the UAV localisation problem by fusing INS and GPS 

data. First, both the popular Kalman and Extended Kalman filters are presented. Then, 

the optimal State Dependant Riccati Equation (SDRE) is proposed as an alternative, 

which doesn’t require linearisation. After that the Nonlinear H∞ filter (NH∞) is 

implemented as a robust filter to face modeling error, process and observation noises. 

Finally, a comparison is made between the implemented filter using realistic UAV 

trajectories. 

3.2 Introduction  

Self-localisation is a crucial task for autonomous navigation, especially for airborne 

vehicles. The localisation of these latter becomes very difficult when the associated 

sensors are inaccurate. Although the localisation problem has been effectively solved in 

some standard settings, several issues are still open. In particular, localisation in 

3D/dynamic environments, with incomplete or unknown maps.  

      INS errors presented in (Section 2.3.2 of chapter 2) make the development of any 

inertial only based localisation solution very unsuitable. Therefore, INS requires reliable 

and effective additional information to reduce these errors. The additional source, 

providing aerial vehicle position, adapted in this chapter is GPS. GPS signals are 

suitable to use in the sensor fusion process with the INS system by means of a 

navigation filtering scheme, as illustrated in Figure (3.1).  
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Figure.3. 1 INS aided GPS sensor fusion 
 

In this chapter, few innovative filtering techniques are discussed; these techniques 

have been proposed to fuse INS/GPS data in order to solve the problem of UAV 

localisation. 

3.3 Kalman Filter 

The most popular filter in the literature is the famous Kalman filter proposed by 

Kalman in 1960 [37]. Kalman filter can be applied when the system is linear with 

Gaussian statistical distribution of the process and the observation noises. In this case, 

the system is completely described by Gaussian parameters as the mean and the 

covariance. Thus, the Bayesian prediction and update equation can be solved 

analytically [37]. As a discrete statistical recursive algorithm, Kalman filter provides an 

estimate of the state at time k given all observations up to time k and provides an 

optimal minimal mean squared error estimate of these states. 

Kalman Filter (KF) is a very effective stochastic estimator for a large number of 

estimation, localisation and navigation problems. It is an optimal combination, in terms 

of variance minimisation, between the prediction of parameters from a previous time 

instant and external observations at a present time instant. In the following section, the 

Kalman filter formulation is presented details. 
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3.3.1 Process Model 

A linear discrete time dynamic system can be described as: 

 

)()()1()( kGwkuBkxFkx kk ++−=                                               (3. 1) 

 

where x(k) is the state vector of interest at time k. kF  is a linear state transition matrix 

which relates the state vector from step k − 1 to k. u(k) is the input control vector while 

kB  relates the control vector to the states. w(k) is the process noise injected into the 

system due to uncertainties in the transition matrix and the control input while G relates 

the noise to the states. 

The process noise w is assumed to be a zero mean, uncorrelated random sequence with 

covariance: 
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                                                  (3. 2) 

Q is the covariance of the process noise. 

3.3.2 Observation Model 

When observations of the states are taken, the observation vector z(k) at time k is given 

by: 

 

)()()( kvkxHkz k +=                                                   (3. 3) 

 

where kH  is the linear observation model relating the state vector at time k to the 

observation vector, and v(k) is the observation noise vector which accounts for the 

uncertainty in the observation. The observation noise is also assumed to be a zero mean, 

uncorrelated random sequence with covariance: 
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R is the covariance of the process noise. 

It is assumed that the process and observation noise are uncorrelated, 

 

jkjvkwE T ,0])()([ ∀=                                                   (3. 5) 

  

Given the process and observation models, Kalman filter provides a recursive estimate 

of the states at time k, x(k | k), given all observations up to time k. 

3.3.3 Prediction 

The predicted state is evaluated by taking expectations of Equation (3.1) upon the 

previous k −1 observations, without noise: 

                                

)1(ˆ 1/11/ −+= −−− kuBxFx kkkkkk                                                 (3. 6) 

 

The uncertainty in the predicted states at time k, Pk /k−1, is described as the expected 

value of the variance of the error in the states at time k given all information up to time 

1−k , 

 

T
k

T
kkkkkk GQGFPFP ..1/11/ += −−−                                                (3. 7) 

 

3.3.4 Estimation 

When an observation from an external aiding sensor is obtained as in Equation (3.3), an 

estimate of the state is obtained by, 

 

)( 1/1// −− −+= kkkkkkkk xHzKxx                                                 (3. 8) 
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where K , a gain matrix (Kalman gain) is produced by the Kalman filter and 

)( 1/ −− kkkk xHz is the innovation vector. The innovation vector is the difference between 

the actual observation and the predicted observation. The predicted observation is 

determined by taking the expected value of Equation (3.3) conditioned on previous 

observations. Equation (3.8) defines the update as simply as the latest prediction plus a 

weighting on the innovation. The Kalman gain K or weighting is chosen so as to 

minimise the mean squared error of the estimate, 

1
1/

−
−= k

T
kkk SHPK                                                                       (3. 9) 

where kS   is known as the innovation covariance and is obtained by, 

k
T

kkkk RHPHS += −1/                                                                   (3. 10) 

The covariance matrix, or the uncertainty in the updated states, is obtained by taking the 

expectation of the variance of the error at time k given all observations up to time k,                  

1// ][ −−= kkkkk PKHIP                                                                    (3. 11) 

We can also write 

T
k

T
kkkkkk KKRKHIPKHIP +−−= − ][][ 1//                                 (3. 12) 

Equation (3.12) is called the Joseph form of the covariance update that assures the 

symmetry and positive definiteness of kkP /  [37].  

3.4 Extended Kalman Filter 

In most real applications the process and/or observation models are nonlinear and 

hence the linear Kalman filter algorithm described above cannot be directly applied. To 

overcome this limitation, a linearized Kalman filter or Extended Kalman Filter (EKF) 

can be applied, where system models are continuously linearized around the estimation 

states before applying the estimation techniques [37, 38]. In some applications, a 

predetermined nominal trajectory to navigate on exists. In this case, the nonlinear state 

model can be linearized around the nominal trajectory and linear Kalman filter theory 

can be used. The filter gain, which is computationally expensive can also be computed 

off-line and can be used as a look-up table in real-time operation. 

However, in most practical navigation applications, a nominal trajectory does not 

exist beforehand. The solution is then to use the current estimated state from the filter at 
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each time step k as the linearisation reference from which the estimation procedure can 

proceed. Such an algorithm is known as the Extended Kalman Filter. If the filter 

operates properly, the linearisation error around the estimated solution can be 

maintained at a reasonably small value. However, if the filter is ill-conditioned due to 

modelling errors, incorrect tuning of the covariance matrices, or initialisation error, then 

the estimation error will affect the linearisation error. This latter, in turn, will affect the 

estimation process and is known as filter divergence. For this reason the EKF requires 

greater care in modelling and tuning than the linear Kalman filter. 

 The system as defined in Equation (2.1), is written as a non-linear discrete time 

state transition equation: 

),(

),,( 1

kkk

kkkk

vxhy

wuxfx

=
= −

                                          (3. 13) 

kx is the state at time step k , uk control vector at time stepk , kw is some additive 

noises, ky is the observation made at time k , kv  is some additive observation noises. 

We assume that kw and kv  are uncorrelated zero mean Gaussian with known covariance 

kQ  and kR . The objective of the filtering technique is, then, to estimate kx  using 

available observationky . 

The non-linear vehicle model and observation model maybe expanded about the filtered 

and predicted estimates of  kx̂  and 1ˆ −kx . 

 

kkkkwkkkkkkkkkkk wxxxfxxxxxfuxfx )]ˆ()([)ˆ(]ˆ)[(),ˆ( /2/1/1/1 −∆+∇+−∆+−∇+= −−    

(3. 14)  

kkkkkkkkkkkk vxxxxxhuxhy +−∆+−∇+= −−− )ˆ(]ˆ)[(),ˆ( 1/31/1/                             (3. 15) 

 

Where  )(xfk∇  is the Jacobian of f evaluated at 1−kx , )(xfw∇  the Jacobian of kwf /  

evaluated at 1−kx  and )(xhk∇  is the Jacobian of hevaluated at 1−kx  and i∆  represent 

higher order of the Taylor series expansions. These higher order terms are norm 

bounded as ii δ≤∆ . 
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The filter state error is defined   

  kkkkk xxx // ˆ~ −=                                                                  (3. 16) 

The prediction error can be determined from subtracting the true state kx  from the 

prediction estimate. 

1/1/ ˆ~
−− −= kkkkk xxx                                                      (3. 17) 

The state and observation model may be rewritten as: 
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with          kF = )ˆ( / kkk xf∇ , )ˆ( /kkwk xf∇=Γ , )ˆ( 1/ −∇= kkkk xhH , kkkkkk xFxf // ˆ)ˆ( −=Ω  and 

1/1/ ˆ)ˆ( −− −=Ψ kkkkkk xHxh  

Then, the final EKF formulation is written in Predictor-Corrector scheme with the 

higher order terms of the Taylor series equal to zero.  

Predictor: 

)0,,ˆ(ˆ //1 kkkkk uxfx =+                                           (3. 19) 

k
T

kk
T

kkkkkk QFPFP ΓΓ+=+ //1                               (3. 20) 

 

Corrector: 

     )(ˆˆ 1/1// −− −+= kkkkkkkkk xHyKxx                               (3. 21) 

1
1/1/ )( −

−− += kk
T

kkkkkkk RHPHHPK                                     (3. 22) 

1/1// −− −= kkkkkkkk PHKPP                                                        (3. 23) 

Or using the Joseph form  

)()()()( 1// khRkhKHKIPHKIP T
vkvk

T
kkkkkkkk ∇∇+−−= −            (3.23’) 

)(khv∇  is the Jacobian with respect to the observation noise v(k). 

Below a flowchart showing the main steps of the EKF algorithm:
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Extended Kalman Filter algorithm 

When there are large deviations of the estimated state trajectory from the nominal 

trajectory, the nonlinear model is weakly approximated by the Taylor series expansion 

about the conditional mean. In this case, the higher order terms of the Taylor expansion 

become necessary. In EKF, the higher order terms are neglected. In the following 

section, we propose other alternatives to avoid the linearisation problem. 

3.5 Optimal Filters 

To avoid the linearisation problem, many data fusion techniques based on 

probabilistic approaches were presented and used in the literature. One of these techniques 

is Particle Filter (PF) [134-135]. The main drawback of this filter is its computational 

requirement, which makes it not very suitable for real time applications such as aerial 

navigation problem. Approaches based on Unscented Transform (UT) resulted in a 

technique called Unscented Kalman Filter (UKF) [136]. This technique preserves the 

linear update structure of Kalman filter. It uses only second order system moments, which 

may not be sufficient for some nonlinear systems. In addition, the number of sigma points, 

used in UKF, is small and may not represent adequately complicated distributions. 

Moreover, unscented transformation of the sigma-points is computationally heavy, which 

is not suitable and practical for real time aerial navigation applications.  

In the following section we investigate an alternative to EKF based data fusion 

technique for UAV localisation problem. This alternative is based on INS and GPS data 

and uses a State-Dependent Riccati Equations (SDRE) non-linear filtering formulation. 

Prediction 
(1)Project the state ahead 

)0,,ˆ(ˆ 11/11/ −−−− = kkkkk uxfx  

(2)Project the error covariance ahead 

k
T

kk
T

kkkkkk QFPFP ΓΓ+= −−−− 11/11/

 

Observation and Update 
(1)Compute the Kalman gain 

)(ˆˆ 1/1// −− −+= kkkkkkkkk xHyKxx  

(2)Update estimate with measurement z(k) 
1

1/1/ )( −
−− += kk

T
kkkkkkk RHPHHPK  

(3)Update error covariance 

1/1// −− −= kkkkkkkk PHKPP  

Initial estimates for  

1/1 −− kkx  and 
1/1 −− kkP  
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3.5.1 SDRE Nonlinear filter 

State-dependent Riccati equation (SDRE) techniques are rapidly emerging as 

general design methods, which provide a systematic and effective means of designing 

nonlinear controllers, observers, and filters. Numerous design methodologies exist for 

the control design of highly nonlinear systems. These include any of the huge number of 

linear design techniques [39-42] used in conjunction with gain scheduling [43-45], 

nonlinear design methodologies such as dynamic inversion [46], sliding mode control 

[46], recursive back-stepping [47]; and adaptive techniques which encompass both 

linear adaptive [48] and nonlinear adaptive [47] control. Less known nonlinear design 

procedures are those that involve state-dependent Riccati equations (SDRE) [49, 50]. 

Over the past several years various SDRE design methodologies have been successfully 

applied to aerospace problems. SDRE-based design procedures have been used in 

advanced guidance law development [51, 52], in an output feedback (nonlinear H2) 

autopilot design [53], and in a full information nonlinear ∞H  autopilot design [54]. In 

an earlier related work, a parameter-dependent Riccati equation was used in a pitch-yaw 

autopilot design where the parameter, roll rate, was exogenously supplied by the roll 

autopilot [55]. Additionally, SDRE design methods have been used in nonlinear filter 

development [50] and in control designs for other nonlinear benchmark problems [56, 

57]. In [58], Ehrler and Vadali investigated the nonlinear regulator problem and showed 

that solving an algebraic Riccati equation, as it evolved over time, provided one means 

of obtaining a suboptimal solution of the infinite horizon problem. In essence, the state-

dependent Riccati equation was treated as being time-dependent and its state 

dependency was not explicitly acknowledged, addressed, or analysed. In [49], SDRE 

nonlinear regulation, SDRE nonlinear H ∞ , and SDRE nonlinear H2 design 

methodologies were defined and the optimality, sub-optimality, and stability properties 

of SDRE nonlinear regulation were investigated. In [50], the SDRE nonlinear filter was 

defined and used to track a pendulum. In the following, this filtering design 

methodology will be presented and the supporting theory developed to date will be 

reviewed. 
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The SDRE nonlinear filter is based on the State Dependent Coefficient (SDC) 

factorisation [59]. From [60] and [61], it can be seen that the autonomous infinite-

horizon nonlinear regulator problem, being considered, is a generalisation of the time-

invariant infinite-horizon linear-quadratic regulator problem. In this problem, all the 

coefficient matrices are state-dependent. When these coefficient matrices are constant, 

the nonlinear regulator problem collapses to the linear regulator problem and the SDRE 

control method collapses to the steady-state linear regulator. We can obtain the filtering 

counterpart of the SDRE control algorithm by taking the dual of the steady-state linear 

regulator and then allowing the coefficient matrices of the dual to be state-dependent 

[61]. The dual of the steady-state linear regulator is the steady-state continuous Kalman 

observer. This latter reduces to the steady-state continuous Kalman filter [61], when the 

control is absent. This leads to the following:  

3.5.2 State Dependent Coefficient (SDC) Form 

Consider the continuous stochastic nonlinear system: 

vxhy

wxfx
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Γ+=
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                                                   (3. 24) 

w  and v  are Gaussian zero mean white noises with covariance matrices Q  and R , 

respectively. Γ is a weighting matrix of the process noise. There are an infinite number 

of ways to transform this system into an SDC form: 
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Γ+=
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                                                                      (3. 25) 

where  xxFxf )()( =              xxHxh )()( =  

Note that the INS estimation model presented in Equation (2.9, 2.10) falls naturally, 

with equation manipulations, into an SDC form which make the SDRE filtering very 

appealing to use for this localisation based fusion problem.   

3.5.3. SDRE Non-Linear Filter 

The SDRE filter uses this SDC form and is given in [49] by Cloutier and al: 

]ˆ)ˆ()()[ˆ(ˆ)ˆ(ˆ xxHxyxKxxFx f −+=&                                           (3. 26) 

where 
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1)ˆ()ˆ( −= RxPHxK T
f                                                         (3. 27) 

and where P is the positive definite solution to the algebraic Riccati equation: 

0)ˆ()ˆ()ˆ()ˆ( 1 =ΓΓ+−+ − TTT QPxHRxPHxPFPxF                   (3. 28) 

Some of the properties of the SDRE methods are stated in [60] and the proofs of 

these properties are given in [59]. In addition, )(xf  and )(xh  are k-continually 

derivable (i.e. belonging to )1, ≥kCk . It is also assumed that the SDC parameterisation 

)(xF and )(xH are smooth )1,.( ≥∈ kCei k . 

 The SDRE nonlinear filter makes it possible to avoid the linearisation problem of 

the EKF. However, it is still based, not only on the restricted assumption of Gaussian 

noise statistics, but also on certain accuracy of the process and the observation model. 

Without these assumptions, the performance of this filter may be poor and lead to 

inaccuracy position. A solution to this problem is proposed in the next section (3.6). 

 

3.6 The H∞  filter 

Kalman and SDRE filter assume that the process has a known dynamics and that 

the exogenous inputs have known statistical properties. Unfortunately, these 

assumptions limit the utility of minimum variance estimators in situations where models 

and/or noises descriptions are unknown [62]. 

 As we have seen, Kalman filter is an effective tool for estimating the states of 

nonlinear systems. The early success in the 1960s of the Kalman filter in aerospace 

applications led to attempt to apply it to more common other industrial applications in 

the 1970s. However, these attempts quickly showed that a serious mismatch existed 

between the underlying assumptions of Kalman filters and some industrial state 

estimation problems. In fact engineers rarely understand the statistical nature of the 

noise process that impinges on industrial processes. After long years of reappraising the 

nature and role of Kalman filters, engineers realised they needed new filters that could 

handle modeling errors and noise uncertainties. State estimators that can tolerate such 

uncertainty are called robust. Although robust estimators based on Kalman filter theory 

can be designed, these approaches are somewhat ad-hoc since they attempt to modify an 

already existing approach. H ∞  filters were specifically designed for robustness. 
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We will first derive an alternative form for the Kalman filter. This is done to 

facilitate comparisons that will made later in this paragraph between the Kalman and the 

H ∞  filters. Then, the limitation of the Kalman filter will briefly be discussed. 

3.6.1 An Alternate Form for the Kalman Filter 

Recall that Kalman filter estimates the states of a linear dynamic system defined by the 

equations: 
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                                                     (3. 29) 

Where Fk the transition matrix, Hk the observation matrix, {kw } and { kv } are stochastic 

processes with covariance kQ  and kR , respectively. As shown before, the Kalman filter 

equations are given as follows: 
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 After developing and substituting, the Kalman filter can be rewritten in the following 

form [82]: 

k
T

kkkkk
T

kkkkkk

kk
T

kkkkk
T

kkk

kkkkkkkkkkk

QFPHRHIPFP

RHPHRHIPK

xHyKFxFx
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−+=

−−
−+

−−
−

−
−

−−+

1
/

1
1//1

11
1/

1
1/

1/1//1

)(

)(

)ˆ(ˆ

                        (3. 31) 

3.6.2 Kalman Filter Limitations 

Kalman filter works well but only under certain conditions: 

- First, the mean and the correlation of the noise kw  and kv  should be known at 

each time instant. 

- Second, the covariance kQ  and kR of the noise processes should be known. 

Kalman filter uses kQ  and kR  as design parameters. Thus if kQ  and kR are not 

known, then it may be difficult to successfully use Kalman filter. 
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- Third, the attractiveness of the Kalman filter lays in the fact that it gives: the 

best minimum variance estimator if the noise is white and Gaussian and it gives 

the best linear minimum variance estimator if the noise is white and not 

Gaussian. However if one of these assumption does not hold then Kalman filter 

can be applied but no optimal performance is guaranteed.  

- Finally, the system model matrices kF  and kH should be known with high 

accuracy. 

What does happen if one of these Kalman filter assumptions is not satisfied? What 

should we do if we do not have any information about noise statistics? What should we 

do if we want to minimize the worst-case estimation error rather than the covariance of 

the estimation error? 

May be the Kalman filter can be just used, even-though its assumptions are not 

satisfied, and hope for best. That is a common solution to the Kalman filter quandary 

and it works reasonably well in many cases. However, there is yet another alternative 

option that will be explored: the H∞  filter, also called the minmax filter [82]. The H∞  

filter does not make any assumption about the noise, and it minimises the worst-case 

estimation error (hence the term minmax). 

3.6.3 Discrete-time H∞  Filter 

1. Assume that system of equations is given by: 

                                            
kkkk

kkkk

vxHy

wxFx

+=
+=+1

                                              (3. 32) 

where kw  and kv  are noise terms. These noises may be random with possibly 

unknown statistics, or they may be deterministic. They may have a nonzero mean as 

well. Our goal is to estimate a linear combination of the states. That is, we want to 

estimate kz  which is given by: 

kkk xLz =  

where kL is a used defined matrix (assumed to be full rank), If we want to directly 

estimate kx (as in the Kalman filter) then we set ILk = . 

2. The cost function is given as [82]: 
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where kk RQP ,,0  and kS are symmetric, positive definite matrices chosen by the 

engineer based on the specific problem. Our goal is to find an estimate kẑ that 

minimises 1J . However the direct minimisation of 1J  is not attractable, so instead 

we choose a performance bound and seek an estimation strategy that satisfies the 

threshold. That is, we will try to find an estimate kẑ that result in: 

θ
1

1 <J  

Where, θ  is the user-specified performance bound [82]. Rearranging this equation 

results in: 

0)(
1

ˆˆ
1 1

0

2222

00
111

0 <




 +−−+−−= ∑
−

=
−−−

N

k
RkQkSkkP kkk

vwzzxxJ
θθ

      (3. 34) 

The minmax problem is then defined as: 

JJ
xvwz kkk 0,,ˆ

* maxmin=  

The worst-case is obtained when kk vw , and 0x  are chosen to maximiseJ . The 

solution then is to find an estimate kẑ which minimises this maximum. 

Since kkkk vxHy +=  then kkkk xHyv −=  and 11
22

−− −= kk RkkkRk xHyv  

Since kkk xLz =  and kkk xLz ˆˆ = it is clear that: 

k

k

Skk

kkkk
T

k
T

kk

kkk
T

kkSkk

xx

xxLSLxx

zzSzzzz

2

2

ˆ

)ˆ()ˆ(

)ˆ()ˆ(ˆ

−=

−−=

−−=−

                             (3. 35) 

where 

kk
T

kk LSLS =                                                          (3. 36) 

Then we substitute these variables in Equation (3.34) to obtain: 
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xHywxxxxJ
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            (3. 37) 

3. The cost function 1J  can be made less than  θ/1  (a user-specified bound), based 

on the solution of the optimisation problem: 

JJ
xvwz kkk 0,,ˆ

* maxmin=                                           (3. 38) 

and leading to: 

k
T

kkkk
T

kkkkkk

kkkkkkkk

k
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kkkkk
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QFPHRHPSIPFP

xHyKFxFx
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++−=

−+=
+−=

=

−−
+

+

−−−

11
1

1

111

][

)ˆ(ˆˆ

][

θ

θ
    (3. 39)                

4. The following condition must hold at each time step k in order for the above 

estimator to be a solution to the optimisation problem : 

011 >+− −−
kk

T
kkk HRHSP θ                                (3. 40) 

3.6.4 H ∞  Filter Analysis 

Before examining the full nonlinear H∞ Filter (NH∞) with respect to the 

minimum entropy H∞, we start by analysing the linear H ∞  filter. There exist two 

fundamental differences between the Kalman filter and H∞ filter. First, H∞ filter is 

optimal in terms of minimising the ∞-norm of the gain between a set of disturbance 

inputs, and the estimation error. Thus, the filter may be characterised by the fact that the 

worst-case gain is minimised. In contrast, Kalman filter minimises the mean square gain 

between the disturbances and the estimation error. 

The second difference is that the minimum mean square estimate of Kalman filter 

commutes with linear operations. However, the minimal ∞-norm estimate does not 

possess this property and the H∞ optimal estimator depends on the plant output being 

estimated.  

Using the ideas in Green and Limebeer [63] and Limebeer and al [64], we seek to 

find a linear filter that estimates the quantity: 

kkk xCz =                                                                  (3. 41) 

From the observed data ky  such that the error 
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kkkkkk yxHz // ˆ~ −=                                                        (3. 42) 

Satisfies the worst-case performance criteria. The linear filtering problem is written 

kkkkkk GwuxFx +Γ+= −1                                           (3. 43) 

kkkk vxHy +=                                                 (3. 44) 

Where kF is the transition matrix, kΓ is a weighting matrix for the input ku  and G is a 

weighting matrix for the process noise.  

The linear H∞ filter Equation (3.39) may be placed in a predictor-corrector formulation 

as done in Kalman filter: 

Predictor 

T
kkk

T
kkkkkk QFPFP ΓΓ+=+ //1                                                              (3. 45) 

 

    kkkkkkk uxFx Γ+=+ //1 ˆˆ                                                                          (3. 46) 

Corrector 

1/1//
~ˆˆ −− += kkkkkkkkk zLFxFx                                                               (3. 47) 

 

                                 1
1/1/ )( −

−− += k
T

kkkk
T

kkkk RHPHHPL                                               (3. 48) 
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1/1// ][ −
−

−− 
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T
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HCPPP                   (3. 49) 
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kkkk

kk
RHPHCPH

HPCICPC

1/1/

1/
2

1/
/

γ
                   (3. 50) 

With 
θ

γ 12 =  

A minimum value for 2γ  must be found through searching over 0≠γ such that 0/ >kkP . 

When ∞=γ , H ∞ filter reverts to Kalman Filter. The γ can be used for tuning the trade 

off between H ∞  performance and the minimum variance performance. The Extended 

H ∞ filter (EH∞ ) for the nonlinear system follows the same principle as the EKF based 

on the Taylor expansion of the nonlinear model of the filtered and predicted estimates. 
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3.6.5 Nonlinear H∞  Filter 

Many researchers have studied nonlinear H ∞  optimal estimator such as, Shaked 

and Berman [65], Petersen and Savkin [66], Basar and Bernhard [67] and Einicke and 

White [68]. Our H∞  filtering procedure uses a similar procedure as in Einicke and 

White [68]. The non-linear H ∞ attempts to estimate the states given in Equation (3.13) 

while satisfying the H ∞  filter performance criteria with respect to i∆ and their norm 

bounds. The system given in Equation (3.18) can be rewritten into the following form: 

kkkkkkk wBxFx Π+Ω++=+ ˆˆ 1                                    (3. 51) 

kkkkkk vxHy ∑+Ψ++=                                        (3. 52) 

where  

kkkkkk vxx )~()~( /2/1 ∆+∆=Π                                        (3. 53) 

and 

     )~( 1/3 −∆=∑ kkk x                                                           (3. 54) 

These inputs must satisfy the following norm bounds: 

2

2

2
2

2

2/
2

1

2

2
~

kkkk wx δδ +≤∏                                     (3. 55) 

and 

2

2/
2
3

2

2
~

kkk xδ≤Σ                                                         (3. 56) 

Instead of solving for the non-linear vehicle model and observation model containing 

the extra terms kΠ and kΣ  which are not used in the EKF, the following scaled 

H ∞ problem is considered [68]: 

kkwkkkk wcBxFx Ω++=+ ˆˆ 1                                                  (3. 57) 

 

kkvkkk vcxHy Ψ++=                                                     (3. 58) 

 

Where 2
3

22
1

22 1 δγδγ −−=vc  and 12
2

22 )1( −+= δvw cc . This final form results in the same 

structure as the Extended H ∞  filter, except that the error covariance correction of the 

linear H ∞  filter Equation (3.48) is used with 1=kC , and the noise process kw  and 

kv scaled by wc and vc . 
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Notes: 

- When 0321 === δδδ  the Nonlinear H ∞  reverts back to the Extended H ∞ . 

- As γ  goes to∞ , the Extended H ∞ reverts back to the EKF. 

Filters Advantages Disadvantages 

KF - Simple implementation 

- Optimal filter 

- Minimum variance estimator 

- Linear filter 

- Noises should be centred, white 

and (Gaussian). 

EKF - Nonlinear filter 

- Simple to implement 

- Minimum variance estimator 

- Linearisation errors 

- Noises should be centred, white 

and Gaussian. 

SDRE - Nonlinear filter 

- Do not require linearization. 

- Quasi optimal filter 

- Noises should be centred, white 

and Gaussian. 

- Not suitable for complex system 

NH ∞  - Nonlinear filter 

- Robust filter 

- Does not make any assumption 

on noise characteristics. 

- Model linearization is required 

- Minimising the ∞ norm (worst 

case) 

Table 3. 1 Comparison between techniques 
 

3.7 Results and Discussion 

UAV localisation results are divided on two sections: First, we present and discuss 

a proof of stability of the SDRE nonlinear filter for localisation. In the second section, 

we present the simulation results of the implemented filters for the localisation problem. 

We begin by linear Kalman Filter (KF) and Extended Kalman Filter (EKF). Then we 

present the simulation work validating our proposed nonlinear SDRE filter for the 

autonomous airborne navigation problem. Results of the SDRE filter will be compared 

with other classical navigation filtering techniques. Finally, we present simulation 

results obtained by nonlinear H∞  filter. 
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3.7.1. SDRE Stability 

Global stability of the SDRE nonlinear filter, as opposed to local stability of linear 

systems, is more difficult to prove since having stable eigenvalues for the discrete 

SDRE at sampling time does not guarantee global asymptotic stability. This makes 

stability analysis quite difficult and to the best of our knowledge no global stability 

formal proofs of the SDRE nonlinear filter were proposed in the literature. Only partial 

solutions are given, for the partial stability proof under many assumptions.  In this 

study, a method based on Lyapunov approach, providing the stability region with all the 

necessary and sufficient conditions of the SDRE non-linear filter stability, is developed.  

- Proof of Stability 

From Equations (3.26) and (3.27), we can write: 

 

]ˆ)ˆ()([)ˆ(ˆ)ˆ(ˆ 1 xxHxyRxPHxxFx T −+= −&                                                  (3. 59)    

)()ˆ(ˆ))ˆ()ˆ()ˆ((ˆ 11 xyRxPHxxHRxPHxFx TT −− +−=&            (3. 60) 

 

By proposing a definite positive Lyapunov function xPxxV T ˆˆ)ˆ( 1−=  >0, the SDRE filter 

stability is guaranteed iff ˆ( ) 0V x <& .  

Using the proposed Lyapunov function xPxxPxxV TT &&& ˆˆˆˆ)ˆ( 11 −− += . As 01 =−P&  (steady-state 

problem), then: 

xPxxV T ˆˆ2)ˆ( 1−= &&                                                  (3. 61) 

Replacing (3.60) in (3.61), we obtain: 

]ˆ)ˆ()(()ˆ(ˆˆ)ˆ(ˆ[2)ˆ( 11 xxHxyRxHxxPxFxxV TTTT −+= −−&         (3. 62) 

Thus, if 0ˆ)ˆ(ˆ 1 <− xPxFx TT  and 0]ˆ)ˆ()([)ˆ(ˆ 1 <−− xxHxyRxHx TT   Then 0)ˆ( <xV&   

Let us start proving the first term is defined negative 

1) 0ˆ)ˆ(ˆ 1 <− xPxFx TT                                                                                                           (3. 63) 

This inequality is equivalent to have 1)ˆ( −PxF  is definite negative. However 

01 >−P and  )ˆ(xF  is the state dependent coefficient form of )(xf .  

Proof 
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As mentioned earlier in the paper, the SDC forms of a nonlinear function f are not 

unique. In the following we propose to derive )ˆ(1 xF and )ˆ(2 xF as two SDC forms off . 

Then ℜ∈−+= αααα ),ˆ()1()ˆ(),ˆ( 21 xFxFxF  is also an SDC form off  as  

 

)ˆ()ˆ()1()ˆ(ˆ)ˆ()1(ˆ)ˆ(ˆ])ˆ()1()ˆ([ 2121 xfxfxfxxFxxFxxFxF =−+=−+=−+ αααααα  

 

),ˆ( αxF  represents an infinite family of SDC parameterisations. We will adopt this 

combined SDC form of f for the development of our proof. α  is an extra degree of 

freedom that can be used to build a suitable SDC form. From an infinite SDC form 

candidates, obeying to the three first following statements. 

0)ˆ(100)ˆ(0)ˆ( 21 <⇒<<<< xFifthenxFandxFif α
0)ˆ(10)ˆ(0)ˆ(

21
<⇒>>< xFifthenxFandxFif α  

0)ˆ(00)ˆ(0)ˆ( 22 <⇒<<> xFifthenxFandxFif α  

0)ˆ(100)ˆ(0)ˆ(1 >⇒<<>> xFifthenxFandxFif 2 α  

Thus, a good choice of α  with possible SDC forms )ˆ(1 xF and )ˆ(2 xF assures (3.63) to 

be definite negative. Worth to mention that for a more general case of 1+k  distinct SDC 

parameterisations, the dimension of α  will be of order k and ),ˆ( αxF  will have the 

following form: 

∑ ∏
=

−
=

+ −+−=
k

i
ii

k

j
jkk xFxFxF

1
1

1
1 )()1)(()()1(),( αααα                      (3. 64) 

Let us examine, now, the second term, in (3.62), to prove its definite negative property: 

2) 0]ˆ)ˆ()([)ˆ(ˆ 1 <−− xxHxyRxHx TT                                                                                      (3. 65) 

Assuming that the covariance matrix R  is diagonal 2 2 2( , , )R diag x y zσ σ σ=  and the 

observation is the GPS signal T
gpsgpsgps zyxxy ][)( = , which is used by the observation 

matrix given by Equation (2.10), the Inequality (3.65) becomes: 

 

0)ˆ(ˆ
1

)ˆ(ˆ
1

)ˆ(ˆ
1

222
<−+−+− zzz

z
yyy

y
xxx

x
gpsgpsgps σσσ

                           (3. 66) 
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With 222 )
2

()
2

()
2

(
z

z

y

y

x

x
D gpsgpsgps

σσσ
++=  

This inequality defines a region outside an ellipsoid, which centre is 

Tgpsgpsgps zyx
C ]

222
[=  and semi-majors are: Dxrx .σ= , Dyry .σ= , Dzrz .σ= .  

 

As long as a right choice of the parameter α  assures the definite negative property of 

the first term ofV& , this region defines the stability region, as shown in Figure (3.2); of 

our SDRE non-linear filter.   
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Figure.3. 2 Ellipsoid region of stability 
 

Let us now discuss the stability of the SDRE nonlinear filter if the states of the systems 

go inside the ellipse, which implies that we fall in the case of 0≥V& . In this case and 

from Equation (3.61), we get: 

 

 0ˆˆˆˆ 11 ≥= −− xPxxPx TT &&                                             (3. 68) 

Then, for small values of t∆ , we can use numerical derivative to obtain: 

       0)
ˆˆ

(ˆ 11 ≥
∆
−+−

t

xx
Px kkT

k
                                            (3. 69) 

        0)ˆˆ(ˆ 1
1 ≥−+

−
kk

T
k xxPx                                               (3. 70) 

y 
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k
T

kk
T

k xPxxPx ˆˆˆˆ 1
1

1 −
+

− ≥                                             (3. 71) 

To well understand the meaning of these equations let us represent the Inequality (3.71) 

by vectors: i
r

of coordinates 1ˆ −Px T
k , ke

r
of coordinates kx̂  and 1+ke

r
 of coordinates 1ˆ +kx . 

Then Inequality (3.71) becomes: 

kk eiei
rrrr

⋅≥⋅ +1                                                     (3. 72) 

On the other hand and because 01 >−P , 0ˆˆ 1 >−
k

T
k xPx , which means: 

0>⋅ kei
rr

                                                            (3. 73) 

This inequality signifies that 0),cos( >kei
rr

, which means that the angle between 

i
r

and ke
r

, is stuck between [2/,2/] ππ−  as shown in Figure (3.3). Thus, we can state that 

the vector i
r

 diverges from the origin and tries to go out of the ellipse. Combining this 

result with the Inequality (3.72), we can conclude that the projection of  1+ke
r

 on i
r

 is 

larger than the projection of  ke
r

 oni
r

, which implies that the vector 1+ke
r

 diverges from 

the origin more thanke
r

. We obtain, then, the following final result: 

)ˆ( kk xe
r∀ , such that Dek <||||

r
, then )ˆ( 11 ++ kk xe

r
 attempts to diverge from the origin, i.e. 

tries to return back (attraction) to the stability region. 

 

Figure.3. 3 Stability inside the ellipse 
  

This result shows that, whenever the SDRE filter provides state estimates bringing the 

system at the frontiers of the inside ellipsoid region, which implies 0≥V&  and thus no 
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guarantees of the global filter stability, we showed that the SDRE nonlinear filter will 

bring back the system to the region of stability shown on Figure (3.2). 

  The theoretical results of the stability study undertaken above give us safe flight 

regions for the UAV in terms of robust navigation. We did proof that the exterior of the 

ellipsoid Figure (3.2) is a stability region and every time our UAV is in this region it 

will be attracted to the GPS ellipsoid as shown in Figure (3.4). In Figures (3.4.a, b, c, d, 

e and f) the UAV is attracted to the GPS ellipsoid, then in Figure (3.4.g) the UAV 

position becomes inside the ellipsoid, before going out again in Figures (3.4.h and e) . 

The convergence of the GPS (red) and SDRE (blue) radiuses is given by Figure (3.5). 

 

 
Figure.3. 4 UAV position and Stability sphere in the navigation frame 

a b c 

d e f 

g h e 
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Figure.3. 5 GPS and SDRE Sphere radius during the time of simulation 

3.7.2. Simulation results 

In fact, simulation results of Kalman Filter applied on INS error model (small 

Euler angles), Extended Kalman Filter based on the model linearisation, Unscented 

Kalman Filter (UKF), the proposed SDRE non-linear filter and the nonlinear∞H  filter 

will be presented as alternative techniques to estimate the state of the nonlinear system. 

The sampling rates used for each sensor and filter adopted in this study are as 

follows, Hzf INS 100= , HzfGPS 1= , Hzf EKF 10= , Hzf SDRE 10= , HzfNH 10=∞ . Every 

alternate 0.1s instant, when the GPS update is not available, Equations (3.8, 3.21 and 

3.26) are used (respectively With KF, EKF and SDRE) to update the current state 

kx̂ using the most recent GPS update as the measurement instead of the predicted state; 

this choice will not affect the performance of our filter because of the slight position 

variation. 

3.7.2.1 SDRE vs KF, EKF and UKF 

Simulation results shown in Figures (3.6, 3.7 and 3.8) represent the estimated 

airborne position given by the KF, EKF and SDRE filter respectively, for the same 3D 

trajectory given by Figure (3.11).  

The KF estimation is adequate only for small airborne angular rate, however if this 

condition doesn’t hold then the estimation performances may be poor and the 

localisation error is significant as presented in Figure (3.6.a, b, c).  
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Figure (3.7.a, b and c) shows that the EKF provides good estimation for smooth 

trajectory Figure (3.7.a, b). Unfortunately, EKF performance is poor against heavy non-

linearity cases where the Jacobian matrix is ill conditioned causing undesirable peaks in 

the estimated coordinate as shown in Figure (3.7.c). Figure (3.8) shows the results 

obtained by the proposed SDRE non-linear filter based on two SDC forms 1F  and 2F  

with a suitable value of the parameter 5.0=α . It is clear that the estimation results are 

improved with the SDRE filter. In addition, we can observe that for strong non-

linearity, the estimation error increase slightly but it still tolerable for the localisation 

problem comparing with the others methods.  

Figure (3.9) presents a comparison between Unscented Kalman Filter (UKF) and 

the non-linear SDRE filter. As can be seen from, both UKF and SDRE provide good 

and similar estimations of the UAV z position. This similarity in performance between 

SDRE and UKF generally holds. However, UKF filter as expected and as mentioned in 

the introduction of this chapter is computationally heavier (Table (3.2)), because of the 

unscented transformation applied on each sigma-point. Table (3.1) shows comparison 

(after many tests) of the standard deviation between the true output (state) and the filter 

output for the implemented filters KF, EKF, UKF and SDRE non-linear filter, to show 

overhaul filters performances. This table confirm the previous results.  

Finally, GPS, INS, true and estimated (EKF, UKF and SDRE) 3D UAV trajectories 

are shown in Figure (3.10). From this latter we can definitively notice that SDRE 

estimated trajectory is smoother than the UKF estimated trajectory. This is expected as we 

are dealing with a highly nonlinear navigation system and a sharp UAV trajectory. 

 

 )(mxσ  )(myσ
 

)(mzσ  

KF 59.0247 23.8104 49.2331 

EKF 3.4187 2.9710 7.8191 

UKF 3.1234 3.1995 3.5681 

SDRE 4.0513 1.2580 3.0705 

 
Table 3. 2 Comparison of the standard deviation between KF (linear error model), 
EKF (linearized model) and   SDRE (Non-linear system) 
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 EKF UKF SDRE 

Required time for 100 

iterations (s)  
0.5670 8.4500 1.5000 

 
Table 3. 3 Comparison of the computation time between 

 
A. Kalman Filter Applied to a Linear INS model 
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Figure.3. 6 Position of the Airborne, with Kalman Filter (Linear error model) 

 
B. Extended Kalman Filter Applied to a Linearised INS model 
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Figure.3. 7 Airborne position, by the Extended Kalman Filter 
 
 
C. SDRE Nonlinear Filter Applied on the Nonlinear INS model 
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Figure.3. 8 Position of the Airborne, with SDRE Nonlinear filter (Non-linear 
model) 

 
 

 

0 500 1000 1500 2000 2500 3000
-10

0

10

20

30

40

50

z(
m

)

Variable z(m)

 

 

Time(s)

True state
INS state
UKF state
SDRE state

 
Figure.3. 9 Estimated of the airborne z position, comparison between UKF and 

SDRE 
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Figure.3. 10 UAV trajectory and estimated positions 

 
3.7.2.2 NH∞ vs EKF  

A. Position (x, y, z) 

Figure (3.11.a, b, and c) shows the position estimation of the UAV following the 

axis (x, y and z) respectively, obtained by the Nonlinear H∞  filter, as can be seen from 

these figures a good performances are obtained by this filter comparing to the previous 

filters (KF, EKF,…). Moreover, the H∞  nonlinear filter does not need any assumption 

on the system or the noises affecting this system, which makes our filter robust against 

any type of disturbances. However, in this example, between two GPS observations, 

and when the GPS update is not available, Equation (3.46) is used to predict the statekx̂ , 

which improves significantly the localisation accuracy. 
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Figure.3. 11 Estimation of the UAV position 
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B. Velocity (u, v, w) 

The Figure (3.12. a, b and c) show the evolution of the UAV velocities (u, v and 

w) following the three axes (North, East, Down) respectively. As can be seen from these 

figures the nonlinear H ∞  filter performs better than the EKF and both filters perform 

much better than the INS velocities.  
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Figure.3. 12 Estimation of the UAV velocity 
 

C. Euler Angle (θ ,φ ,ψ ) 

            The same observations leading to the conclusions about the velocity estimation 

can be observed for the Euler angles in Figure (3.13.a, b and c). 
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Figure.3. 13 Estimation of the UAV Euler angle 
 

Figure (3.14) shows the UAV 3D trajectories given by the INS (red), EKF 

(green), NH∞ filter (cyan), GPS (circle). These trajectories are compared with the 

theoretical one. As shown, on the figure, the chosen scenario presents a heavy 

nonlinearity allowing us to show the drawback of a bad linearisation. It is clear that the 

trajectory given by the NH∞ filter is more accurate than that given by the EKF. 
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Figure.3. 14 UAV localisation 

 

3.8 Conclusion   

In this chapter, INS/GPS UAV localisation problem is investigated. Conventional 

and innovative filtering approaches are implemented and validated. The proposed SDRE 

nonlinear filter allows us to solve issues related to linearisation, which poses problem for 

the classical filtering techniques like EKF. Good results were obtained with the SDRE 

nonlinear filter comparing to the KF, EKF and UKF particularly in the case of strong 

nonlinearities. Formal proofs of the SDRE nonlinear navigation filter stability were 

proposed and a stability attractive region was determined.  

Robust filters are also explored in this chapter. H∞ and Nonlinear H∞ are very 

promising filters first because their robustness and second because they doesn’t make any 

assumption about noises characteristics.  
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CHAPTER 4 

UAV map building 

4.1 Overview 

 The following chapter is divided in three parts. In the first part, some feature 

detectors and descriptors are presented. An adaptive version of the Scale Invariant 

Feature Transform (SIFT) is proposed and then is followed by a feature stability 

analysis. In the second part, an improved image mosaicing algorithm using 

superresolution is proposed using Adaptive SIFT features. Finally, in the third part of 

the chapter a new robust and fast feature detector and descriptor called Scale Wavelet 

Feature Transform (SWIF) is proposed. The SWIF algorithm is based on the Multi 

wavelet decomposition and very suitable for VSLAM problem. 

4.2 Part I: Feature Extraction & Matching for VSLAM  

 

4.2.1 Introduction  

A critical issue in a SLAM algorithm is to decide how to represent the joint 

distribution over vehicle poses and maps. In particular, the map representation is crucial 

due to the fact that maps are usually represented by a high number of parameters. The 

two mostly used map representations are the landmark based maps and the dense maps 

(also called grid maps) [69]. In this work, we are interested only in the landmark based 

maps. 

4.2.2 Landmark Detection 

The landmark maps represent the world as a set of spatially located features. 

When using this kind of representation, the main advantage is that the representation is 

compact, and therefore suitable for operating in large environments. Moreover, given 

that the map can be represented as a point in nl.ℜ  where l is the dimension of one 
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landmark and n is the number of landmarks, it becomes possible to represent the 

posterior over the whole map.  

Incremental building and maintaining of maps for immediate use by a navigating 

airborne has been shown to rely on detailed knowledge of the cross-coupling between 

running estimates of the vehicle locations and mapped features [70]. Without this 

information, features which are redetected after a period of neglect are treated as new. 

The entire structure suffers from progressive error accumulation which depends on the 

distance travelled and not on distance from the starting position in the fiducial 

coordinate frame [71]. It becomes impossible to build persistent maps for long-term use 

as earlier navigation research shows [72-77].  

In this section, we study the most important proposed approaches to detect 

invariant and distinctive features from an image. Also we propose some alternatives to 

improve the robustness of the detectors and to make them suitable to solve the Visual 

Airborne SLAM. 

4.2.3 Image Feature Detectors 

Many feature detectors are proposed in the literature. In the following paragraphs 

the most used detectors are reviewed. 

4.2.3.1 Harris Corner Detector 

The Harris corner detector is a popular interest point detector due to its strong 

invariance to rotation, illumination variation and image noise [78]. The Harris corner 

detector is based on the local auto-correlation function of a signal. This function 

measures the local changes of the signal with patches shifted by a small amount in 

different directions. A discrete predecessor of the Harris detector was presented by 

Moravec [79]; where the discreteness refers to the shifting of the patches. Given a shift 

),( yx ∆∆ and a point (x, y), the auto-correlation function is defined as: 

2
)],(),([),( ∑ ∆+∆+−=

w
iiii yyxxIyxIyxc                                  (4. 1) 

where I(·, ·) denotes the image function and (xi, yi) are the points in the window W 

(Gaussian) centred on (x, y). The shifted image is approximated by a Taylor expansion 

truncated to the first order terms, 
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Where Ix(·, ·) and Iy(·, ·) denote the partial derivatives in x  and y , respectively. 

Substituting approximation Equation (4.2) into Equation (4.1) yields, 
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where, the ),( yxC  is the second moment matrix. It captures the intensity structure of 

the local neighbourhood. Let1λ , 2λ  be the eigenvalues of matrix ),( yxC . The 

eigenvalues form a rotationally invariant description. There are three cases to be 

considered: 

 

1. If both 1λ , 2λ  are small, so that the local auto-correlation function is flat (i.e. little 

change in ),( yxc  in any direction), the windowed image region is of approximately 

constant intensity. 

2. If one Eigen-value is high and the other low, the local auto-correlation function is 

ridge shaped. Then only local shifts in one direction (along the ridge) cause little change 

in ),( yxc and significant change in the orthogonal direction. This indicates an edge. 

3. If both Eigen-values are high, so the local auto-correlation function is sharply peaked. 

Then shifts in any direction will result in a significant increase. This indicates a corner. 

4.2.3.2 Harris-Laplace Detector 

In [80], Mikolajczyk and Schmid propose an invariant scale method for detecting 

interest points. The first step of this method is to compute interest points (Harris points) 

at different scales. Then, points with a local maximal measure (the Laplacian) will be 
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selected as Harris-Laplace interest points. These interest points can be detected at 

different scales.  

According to [80], local extrema over a scale of normalised derivatives indicates 

the presence of local structure characteristics. The scale characteristic can be found by 

searching for a local maximum over all scales. There are several derivative based 

functions (Laplacian, Difference-of-Gaussian and Harris function) that can compute a 

scale representation of a feature. Laplacian Equation (4.4) is used in Harris-Laplace 

interest point detection due to its high detection rate [80]. 

 

)),,(),,((2 σσσ yxLyxL yyxx +                                             (4. 4) 

 
where Lxx and  Lyy are the second image derivative following x and y respectively, and σ 

is the image scale. 

Harris-Laplace interest points can be detected by comparing Laplacian at different 

scales. The scale of the point with a maximum Laplacian is taken as the characteristic 

scale of this interest point. The accuracy of the interest point detected is at a pixel level, 

which is not good enough for pose recovery. Parabola interpolation is used in this work 

to get the precise location of interest point to sub-pixel level. The output of Harris-

Laplace detector are scale invariant points of different size. These points need to be 

described for indexing.  

4.2.3.3 SIFT Features 

Inspired by the response properties of complex neurons in visual cortex, Lowe 

proposed the Scale Invariant Feature Transformation algorithm (SIFT) [81]. SIFT 

features are distinctive and invariant from images that can be used to perform reliable 

matching between different images of the same object or scene. Firstly, it uses a scale-

space extrema to efficiently detect the location of those stable keypoints in the scale and 

space. Then, an orientation histogram based on the gradient in different directions is 

formed around the keypoint and the dominant orientation is used to represent the 

keypoint orientations. Finally, a gradient histogram is created as a very distinctive 

descriptor of that keypoint. Thus, each keypoint is represented by the scale, orientation, 
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location and the gradient descriptor in a way that it can achieve scale and orientation 

invariance. Also, the descriptor is so distinctive that it can have high probability to find 

the exact match under certain extent of illumination changes and 6D affine transform. 

All these characteristics (especially the scale and orientation invariance) perfectly fulfill 

the basic requirements of the detection task. Following are the major stages of 

computation used to generate the set of SIFT features [81]: 

1. Scale-space extrema detection  

The first stage of computation searches over all scales and image locations. It is 

implemented efficiently by using a difference-of-Gaussian function to identify potential 

interest points that are invariant to scale and orientation, Figure (4.1.b). 

2. Keypoint localisation  

At each candidate location, a detailed model is fit to determine location and scale. 

Interest points are selected based on measures of their stability, for example features 

situated on edges are not stable and should be removed, Figure (4.1.c and d). 

3. Orientation assignment  

One or more orientations are assigned to each interest point location based on 

local image gradient directions. All future operations are performed on image data that 

have been transformed relative to the assigned orientation, scale, and location for each 

feature. Thereby, providing invariance to these transformations. 

4. Feature descriptor  

Local image gradients are measured at the selected scale in the region around 

each interest point. These are transformed into a representation that allows for 

significant levels of local shape distortion and change in illumination.  
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Figure.4. 1 Example of features localisation by the SIFT algorithm [81] (a) 233x189 
image, (b) 832 DOG extrema, (c) 729 left after peak, value threshold (d) 536 left 
after testing ratio of principle curvatures 

 
An important aspect of SIFT detector approach is that it generates large number of 

features that densely cover the image over the full range of scales and locations. A 

typical image of size 500x500 pixels will give rise to about 2000 features (although this 

number depends on both image content and choices for various parameters). The 

quantity of features is particularly important for object recognition, where few robust 

features are enough for robot localisation. 

4.2.3.4 Limits of the SIFT 

Despite the SIFT algorithm having many advantages, the detected keypoints are 

still not efficient, especially for Visual SLAM problem. SIFT algorithm uses a constant 

factor k between the scales. However, a big value of k  implies few keypoints, which is 

a disadvantage for the VSLAM problem especially if some of these keypoints are 

unstable. Also, small values of k  implies detection of lot of keypoints, which is a 
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problem for VSALM too. Clearly it is not evident to find the suitable value of k  for all 

kind of images.  

David Lowe proposes an adequate value of 6.1=k , which is efficient only for 

images with appropriate amount of texture. For example, for low frequency images 

(seas, deserts…) only few features are detected, Figure (4.2.d). On the other hand, for 

high frequency images (spatial, building…) SIFT algorithm leads to lots of features, 

which are not suitable for VSLAM algorithm, Figure (4.2.c). As a solution to this 

problem, an adaptive scale representation with an adaptive factor k  is proposed.   

4.2.4 Feature Detection with Adaptive Scale Factors k 

Figure (4.2.a, b), below, gives an example of two images, where Image 1 

contains a lot of textures (high frequency image), and the second image, Image 2, 

contains only few textures (low frequency image). Figure (4.2.c, d) shows detected 

SIFT keypoints in the two images (Image 1 and Image 2). 

 

a) Image1 (High frequency)            b) Image2 (Low frequency) 

 
c) 1563 Keypoints                            d) 12 Keypoints 
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e) 75 Keypoints                      f) 53 Keypoints 
Figure.4. 2 Features detected by the SIFT algorithm with k=1.6 

 
 As can be seen from Figure (4.2.c), a large number (1563) of keypoints is detected. 

It is impossible to use such amount of keypoints by a VSLAM algorithm [8-11]. On the 

other hand, in Figure (4.2.d), only 12 keypoints are detected, which might be not 

enough for mapping especially if many of these keypoints are unstable. Thus, a way of 

determining an adaptive scale factor "" k  is required. To find the suitable values of k, we 

propose to use the energy of the Difference of Gauss (DoG) image, which gives us an 

idea about the information contained in the image. The energy of an image is calculated 

as the sum of DoG squares: 

∑∑
= =

=
n

i

m

j

jiDE
1 1

2 ),(                                             (4. 5) 

 
where ],[ mn  is the size of the image, D is the DoG of the image. For a fixed value of 

k , Figure (4.3) presents  calculated energies based on DoG for the image illustrated in 

Figure (4.6. a) at different scales. As can be seen from this figure the energy of the DoG 

image decreases exponentially when the scale increases. Figure (4.4) shows scale levels 

used with a fixed value of k for different smooth versions of the image. As shown in this 

figure, a large range of scales, up to 20>σ  is used. Also, From Figure (4.3) and Figure 

(4.4), we can observe that when the scaleσ increases, the difference between image 

versions obtained by smoothing with two nearby scales ( 1σ and 2σ ), decreases. Thus, no 

significant information is obtained by the smoothed image versions at high scales. As an 
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example, the figures below show that for a scale 20=σ , the energy of DoG of the 

image tends to zero. This means that the two image versions obtained by smoothing 

with σ and σk are almost similar (information redundancy). 
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Figure.4. 3 Energies of the DoG images at different scales with k=1.6 
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Figure.4. 4 Scales used, with a fixed k 

 

4.2.5 Adaptive Scale Invariant Feature Transformation (ASIFT) 

The proposed algorithm (Adaptive Scale Invariant Feature Transformation) is 

illustrated in Figure (4.5). The adaptive scale factor is adjusted following the energy of 

the DoG image. 1S  and 2S are thresholds determined by experiments. The modification 

of k is calculated by the following equations: 
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        The proposed approach allows us to detect a suitable number of features while 

reducing the computation time. Figure (4.2. e and f) show features detected by the 

adaptive SIFT. As can be seen, a reasonable number of features are detected in both 

Images (high and low frequency). 

 

 

 

 

  

 
 

 
Figure.4. 5 Adaptive SIFT detector 
 
The way we modify k helps to avoid the ineffective calculation of the DoG image. The 

proposed approach allows the detection of a suitable number of features. Also, it 

reduces the computation time. The following figures show feature localisation results by 

the proposed adaptive scale factork . Figure (4.7.a), shows the detected features after 

removing false extrema. Then, unstable features, situated along the edges are removed 

as can be shown on Figure (4.7.b).  

 

-a-                                                                    -b- 
Figure.4. 6 a) Original image,              b) Extrema detection 
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-a-                                                              -b- 
Figure.4. 7 Feature localisation a) keypoints localisation by an adaptive k 

b) Stable keypoints 
 

 Figure (4.8) and Figure (4.9) show the evolution of energy based on DoG and the 

scale evolution respectively for the image given in Figure (4.6.a), and with an energy 

threshold 50=sE . As shown in Figure (4.8), when the image energy based on DoG 

decreases under the threshold sE (dashed ellipse), a significant increase of scale appears 

in Figure (4.9) as a consequence. This scale change implies a rise of the image energy 

based on DoG as in Figure (4.8) (dashed ellipse). This process is repeated until the 

image energy based on DoG exceeds the threshold sE  or the scale exceeds a chosen 

value 20max =σ . Figure (4.10) shows the Difference of Gauss pyramid obtained by the 

adaptive SIFT algorithm. We observe that an obvious change appears from one level to 

another of the pyramid, which justifies the appropriate choices of k  values. 

 

Figure.4. 7 Energies of the DoG images at different scales with an adaptive k 
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Figure.4. 8 Scales used, with an adaptive fixed k 
 

 

Figure.4. 9 Difference of Gauss (DoG) Pyramid 
 

4.2.6 Feature Point Matching 

 A comparative study, in [80], of several local descriptors showed that the best 

matching results were obtained using SIFT algorithm [81]. However, as shown earlier, 

the original SIFT algorithm is not practical for Visual SLAM, especially, in 

environments of rich texture. Usually, from hundreds SIFT features extracted in one 

image, only 10% of these features can find their matches in another image from the 
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same sequence (successive images or stereo images) even when the change between the 

two viewpoints is small. In addition, many of the matches will be incorrect. Since map 

building algorithms should run in real time, extracting a large number of features, which 

can hardly find their matches, does not fulfil aerial vehicle speed requirements. 

Consequently, how to match SIFT features correctly is critical for vision-based SLAM. 

Even if the adaptive SIFT, proposed in this chapter, allows the extraction of 

distinctive and invariant features, the proposed solution remains incomplete if no robust 

technique of matching is introduced.  

 Many criteria can be used to measure the distance between feature point 

descriptors such as orientation criteria and Euclidean distance (2-Norm). In addition to 

these distances, we propose in this paper to use Infinity norm distance ( norm∞ − ) for 

the feature matching problem based on SIFT descriptors. All the above-mentioned 

criteria are defined as follows:  

Suppose ip  and  jp  are two keypoints in image 1 and image 2, with descriptor iD  

and jD , respectively. Then, the distance between the two descriptors is given by: 

- Orientation criteria: 

       ( , ) ( ) ( )
D Di j

Distance i j acos acos D Di j
D Di j

⋅
= = ⋅

⋅
 

- Euclidian distance: 

            ( , ) ( ) .( )
2

TDistance i j D D D D D Di j i j i j= − = − −  

- Infinity norm:   
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Where M  represents the keypoints number in the second image and DistRatio is a factor 

used to avoid the problem of similar descriptors. 

 The infinity norm criterion ensures more robustness; it takes into consideration the 

worst case (minimise the maximum of distances between the descriptor pairs). It is 

obvious then, that the matched features are as stable as possible. In the following, we 

present a comparative study for the matching problem using real images. These images 

were obtained by a stereo vision camera setup onboard an unmanned helicopter. 

 

Figure.4. 10 Keypoints detected in Image 1 at time t1 

 

Figure.4. 11 Keypoints detected in Image 2 at time t2 
 

A. Matching result 

0.6DistRatio=  
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Figure.4. 12 with orientation distance, 52 good matching 

 

Figure.4. 13 with Euclidean distance, 51 good matching 

 

Figure.4. 14 with Infinity norm, 14 distinctive & good matching 

 
  As can be seen from Figure (4.15) thenorm∞ − , allows the true association of a 

few but robust and distinctive features. This is very suitable for map building and Visual 

SLAM algorithm (intended application). Using the Euclidean and orientation distance 

Figures (4.13 and 4.14) many similar features are matched which increases the 

probability of false matching.  
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4.2.7 Feature Stability 

 Correct feature correspondence is not only linked with the matching criteria 

(previous section) but it is also linked with feature repeatability (unstable feature 

implies false match). To illustrate the problem of feature instability, an example 

showing the keypoints detected in the image of the same scene at different times is 

presented in Figure (4.16). At t1 and at t2 the red keypoints and the cyan keypoints were 

extracted respectively. Despite that SIFT feature extractor was applied on the same 

image, only few keypoints are redetected. This problem is even worst when acquired 

images are of different scenes.  

 

Figure.4. 15 Same image: red key points at time t1, cyan key points at time t2 
 

SIFT algorithm is computationally heavy, especially during the calculation of DoG 

pyramids and more than that during the determination of the local extrema over all the 

scales and space.  Many analyses showed that the most stable SIFT features are 

localised around one appropriate and true scale of the image. Mycalojski proposed, in 

[80], an algorithm for automatic scale selection based on the calculation of the 

Laplacian of Gaussians (LoG). However, it is time consuming. The following figures 

explain some analysis results that were achieved that were contribute to solve the 

feature stability problem. 

 Figure (4.17) presents an image of London seen from two different scales S1 (left 

image) and S2 (right image). The rate scale between the two images equals to 

( 1 2/ 3S S = ). Then, we use the SIFT algorithm to detect the keypoints in each image. We 

used the Euclidian distance (we could use the proposed Infinity norm as well) to match 

these keypoints based on their descriptor vectors. The histogram of the matched features 
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with respect to the scales of the two images, UK150%, UK50%, is given by Figure 

(4.18) and Figure (4.19) respectively. 

 

Figure.4. 16 Image of UK given at two scales 150 %( left), 50 %( right) 
 
 From Figure (4.18), we observe that the most stable keypoints are detected at 

scale 3≈σ , whereas from Figure (4.19), the most stable keypoints are detected at a 

scale 1≈σ . 
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Figure.4. 17 Histogram of the keypoints scales (image left) 
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Figure.4. 18 Histogram of the keypoints scales (image right) 
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Furthermore, more than 90% of the matched keypoints (correct correspondence), as 

shown in Figure (4.20), are detected when the rate between the scales of the two 

matched keypoints is closely equal to 3/1 , which is the real rate scale between the two 

images. This result is illustrated and confirmed by Figure (4.21), which shows that the 

scale rates of the matched keypoints lie in the interval 14.03± . 
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                  Figure.4. 19 Scales of the                       Figure.4. 20 Scale rate between 
                       matched keypoints                                         the two images 
 

4.2.8 ASIFT with Stereovision Constraints 

4.2.8.1 Stereovision Correspondence 

  In the last decade, a lot of computer vision work such as face recognition, stereo-

ego motion, image mosaic…etc are proposed based on the extraction and matching of 

invariant features in an image, stereo image or successive images [27, 100]. Images 

acquired by stereo cameras have particular characteristics which can be used to speedup 

features matching step. 

 Looking for a correspondence in the entire image is computationally heavy and 

many useless distances are calculated. For example, if we assume iM  number of 

features in image iI and jM  number of feature in image jI  then the complexity of the 

matching algorithm using Euclidian distance is 128 127i jM M× × ×  summations and 

128i jM M× ×  multiplications. This huge number of operations which should run 

between two frames, makes the matching algorithm time-consuming and not very 

suitable for real time applications.  
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 In this part of our work, we propose an approach to reduce the complexity of the 

feature matching process between stereo images using stereo vision constraints. Rather 

than looking for feature correspondence in the entire image, the area of search will be 

reduced to regions of interest (ROIs) limited by the horizontal and vertical disparities 

(HD and VD).  

 For example, to find the correspondent of a feature ( , )i i ip x y  in image iI (image 

left), we will look into the region of centre( , )i ix y  at image jI (image right) limited by 

the vertical and horizontal maximum disparity VD and HD (respectively) as shown in 

Figure (4.22). Good feature matching obtained with significant reduction of the 

computation time is shown in Figure (4.23) with 0.1DistRatio= .  

 

a) Image left               b) Image right 

Figure.4. 21 Features correspondence 

 

 

Figure.4. 22 Feature matching 
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4.2.8.2 Maximum Horizontal Disparity maxHD   

 Maximum Horizontal Disparity ( maxHD ) can be estimated as follows: Assume a 

point M of coordinates ),,( zyx  in the world frame and its projection on the image left 

and right planes are ),( ll vu and ),( rr vu , respectively. f is the focal distance and b is the 

baseline (distance between the two cameras). By triangle similarity as shown in Figure 

(4.24), we get:  

 

 

 

 

 

 

 

 
 

Figure.4. 23 Triangulation principle 
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From Equation (4.8) and (4.9) we can obtain: 
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From Equation (4.10), and for calibrated stereo-cameras, the depth zof the point 

M depends only on the disparity. From the same equation, we can conclude that the 

maximum disparity is linked with the minimum depth 
min

maxmax z

bf
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minz is the depth of the nearest point observed by both cameras (left and right). 
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4.2.8.3 Maximum Vertical Disparity maxHV  

 The estimation of the vertical disparity is based on the epipolar geometry. Assume 

a feature lp with coordinate ),( ll vu in the left image and its correspondent in the right 

image rp with coordinate ),( rr vu . Then, the equation of the epipolar line is given by: 

0=⋅⋅ l
T
r pFp                                                                                        (4.11) 

where F  is the fundamental matrix, given by:  

l
T

r MEMF ⋅⋅= − )( 1                                                                                 (4.12) 

lM and rM  are the intrinsic parameter matrix for camera left and camera right 

respectively [100], E  is the essential matrix. 

If we put
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Then, we conclude that maximum vertical disparity is given by: 
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An example using 0.2DistRatio=  is illustrated in Figure (4.25, 4.26 and 4.27).  Figure 

(4.25) shows the extracted feature using adaptive SIFT with a disparity window. A 

landmark from image left got 06 candidates only rather than 245 (number of features 

extracted in left image). Figure (4.26) and (4.27) show the results of features matching.  

 

a)    Right image 241 landmarks                 b) Left image 245 landmarks 
Figure.4. 24 Features extraction 

 

 

-a-                                                                               -b- 
Figure.4. 25 Features correspondence 
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Figure.4. 26 64 good matching 
 

If the left and right images are rectified then the matching problem becomes easier 

because in this case the vertical disparity 0=VD . Thus, the area of search of the feature 

will be reduced to one dimension space limited by the horizontal disparityHD . 
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4.3 Part II: Image Mosaicing 

 

4.3.1 Introduction 

 The main objective of this section is to construct a large map for the UAV 

environment using a camera embedded in the aerial vehicle Figure (4.28). It is clear that 

in this kind of application, the acquired images present many changes (Geometric and 

photometric). Firstly the Aerial vehicle has 6 Degrees of freedom (6DOF), which leads 

to different geometrical transformations between current and next acquired image. 

Secondly the aerial vehicle navigates in natural environment; therefore the acquired 

images suffer from luminosity and contrast changes. To deal with these problems a 

mosaic algorithm based on robust features is presented in the following sections. 

 

Figure.4. 27 Camera embedded on an UAV 
 

4.3.2 Image Transformation 

 Images acquired by an Unmanned Aerial Vehicle can be affected by many 

transformations that we classify as geometric and photometric transformations: 

• Geometric transformations 

– Rotation 
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– Similarity (translation + uniform scale) 

– Affine (scale dependent on direction) 

valid for: orthographic camera, locally planar object 

• Photometric transformations 

– Luminosity  

– Contrast 

– Affine intensity change  

4.3.3 Image Mosaicing  

 The first step in the image mosaicing algorithm is to extract and match ASIFT 

features between all the images. ASIFT features are located at scale-space 

maxima/minima of a difference of Gaussian function. At each feature location, a 

characteristic scale and orientation is established. This gives a similarity-invariant frame 

in which to make measurements. Although simply sampling intensity values in this 

frame would be similarity invariant, the invariant descriptor is actually computed by 

accumulating local gradients in orientation histograms. This allows edges to shift 

slightly without altering the descriptor vector, giving some robustness to affine changes. 

The vector of gradients is normalised, and since it consists of differences intensity 

values, it is invariant to affine changes in intensity. These performances of ASIFT 

features allow robust geometric and photometric image registrations, which are very 

important for image mosaicing algorithm. 

4.3.3.1 Geometric Registration  

In the context of this section, geometric registration refers to the process of 

obtaining a dense correspondence (or registration) between multiple views of a planar 

surface, or equivalently, between multiple views taken by a camera rotating about its 

optic centre. In both cases, the geometric transformation between any two such views is 

captured completely by an 8 degree-of-freedom planar projective transformation or 

homography. 

 Image homography will be used as a basic tool for estimating the motion that a 

UAV undergoes by using monocular image sequences. Summarising, a homography 

can be defined as an invertible planar transformation that applies lines into lines.  
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- Homography Matrix Properties 

Some basic properties of the homography matrix are as follows: 

– A homography between two planes is a linear transformation between three-

dimensional homogeneous vectors y, represented by the 3×3 H matrix such as y = H x. 
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– Given the homogeneous skill of the homography H, it can be multiplied by an 

arbitrary constant k≠ 0 and represent the same transformation. This means that the 

matrix H is constrained by eight independent parameters and a scale factor. 

– The homography transformation between two images only holds exactly when the 

imaged scene is planar or almost-planar, a very common situation when the UAV flies 

at high altitude. 

– The homography that relates two given images is computed from sets of matches 

between point features given by a feature tracker [84].  

Depending on the frame-rate and the vehicle motion, the overlap between images in the 

sequence is sometimes small. This generates a non-uniform distribution of the features 

along the images. Hence, there may exist multiple solutions. However, using ASIFT 

algorithm as feature extractor improves the results, for two reasons: First, it detects 

suitable number of invariant and distinctive features. Second, extracted features face 

robustly with significant image changes (large image translation and rotation, scale 

change and photometric changes). These two advantages of ASIFT detector/descriptor 

permit to deal with the previous problems. 

- Estimating Homography Matrix 

 Various methods for computing a planar homography between image pairs have 

been proposed, but they generally fall into two broad categories: Direct correlation 

methods, which compute the homography by maximizing photometric consistency over 

H 
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the whole image. Feature based methods compute the homography from a sparsely 

distributed set of point-to-point correspondences. 

         The results presented in this chapter were generated using feature based 

registration methods. Feature based techniques have many significant advantages over 

their direct correlation counterparts in terms of computation speed, and the scope that 

they offer for the application of robust statistical methods for outlier rejection [85]. The 

planar homography has 8 degrees of freedom. Each point correspondence generates 2 

linear equations for the elements of H and hence 4 correspondences are enough to 

estimate the homography directly. If more than 4 points are available, a least-squares 

solution can be found by linear methods. From the definition of H, we have: 

     
































=
















11

'

'

333231

232221

131211

y

x

hhh

hhh

hhh

y

x

                                                    (4. 23) 

where “=” refers to the equality up to scale. Each inhomogeneous 2D point 

correspondence generates two linear equations in the elements of H. 
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Hence, N points generate 2N linear equations, which may be arranged in a “design 

matrix”. 

 AH=0 (4.25) 

The solution for H is the one-dimensional kernel of A, which may obtained from the 

Singular Value Decomposition (SVD). 

For N>4 points, this equation will not have an exact solution. In this case, a solution 

which minimizes the algebraic residuals, r = AH, in a least-squares sense may be 

obtained, by taking the singular vector corresponding to the smallest singular value. 

4.3.3.2 Mosaicing Algorithm 

 The proposed mosaicing algorithm is based on ASIFT detector/descriptor for a 

robust matching followed by estimating the homography for geometric registration. The 

following diagram describes the essential steps of the mosaicing based homography 
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approach. Figure (4.29) illustrates the stages to construct an image mosaic based on 

ASIFT detector/descriptor. 

 

Diagram.2 Homography approach 

  

a                                           b 

 

c                                       d 

Extract SIFT features from 
two consecutive images 

Find corresponding features in 
images under consideration 
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e 

 
f 

Figure.4. 28 a, b) two successive images seen by a camera embedded on an 
UAV, c, d) features detected in both images by SIFT detector, e) features matching 
using SIFT descriptor, f) Image mosaic (geometric registration). 

 

 The KLT (Kanade-Lucas-Tomasi) tracker also has largely been used to find 

correspondence between images for image mosaicing application. However, when the 

distance between the consecutive images increases, the KLT algorithm cannot track 

features successfully, Figure (4.30). Where, Figure (4.31) shows the result of matching 

obtained by the SIFT detector, 139 good matching are found, which is very suitable for 

a good mosaicing results Figure (4.32). 

Image with considerable change in point of view 

 

Figure.4. 29 Significant image change imply KLT false matching (failure) 
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Figure.4. 30 ASIFT matching (139 good matching) 

 

Figure.4. 31 Image mosaic based on ASIFT detector/descriptor 
 
As can be seen from Figure (4.33), for small sampling time between consecutive 

images, the performance of KLT and SIFT are almost similar. However, when this 

sampling time increases the performance of KLT decreases (only few good matching) 

while SIFT maintains a suitable number of good matching, Figure (4.33).   

 

 
Figure.4. 32 Number of good matching detected by KLT & SIFT with different 

sampling time 
 

Variable sampling time 
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Figure.4. 33 Image mosaic from a set of image acquired by a camera embedded on 
an UAV 
 
From Figure (4.34) we can observe the good geometric registration of images even if 

big changes in point of view were made. Nevertheless, the photometric change can 

appear clearly in the doted square region. The following section will treat this problem 

to improve the quality of the mosaic image. 

4.3.3.3 Photometric Registration 

 Photometric registration refers to the procedure by which global photometric 

transformation between images is estimated and compensated [85]. Examples of such 

transformations are:  

- Global illumination changes across the scene. 

- Intensity variations due to camera automatic gain control or automatic white 

balancing. 

To solve these problems, first we should propose a suitable model of photometric 

transformation, and then we should identify the parameters of this model. The next 

section gives more details about the proposed approach. 
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- The photometric model 

 The model treats each of the red, green and blue colour channels independently. 

Within each channel, the variation between the two images is modelled as a linear 

transformation, having 2 parameters: a multiplicative term α  and an additive termβ . 

Expressing the image pixels as 3-element vectors, the transformation can be written as: 
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and requiring 6 parameters in total. This simple model proves to be rich enough for the 

purposes described here. There is no apparent benefit in using a full affine 

transformation of the RGB colour-space.  

 The procedure for estimating the 6 photometric parameters requires the two 

images to first be accurately registered, using the method described in Section 4.3.3.1, 

and warped into alignment. The remaining differences between corresponding pixels in 

the aligned images can then hopefully be “absorbed” by the photometric model. 

Treating each channel separately, the estimation procedure for α and β  is clearly a 

simple line-fit to the intensities of corresponding pixels 1 2( , )i i , easily achieved by 

orthogonal regression Figure (4.35). 

 

 

a                                            b 
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c                                          d 

    

e                                          f 
Figure.4. 34 Results of regression a), c) and e) estimation of α and β for the three 
channels red, green and blue, b), d) and e) Intensity of the three channels before 
and after correction. 
 
Figure (4.36) shows the image mosaic of two images before photometric registration, 

the photometric change appears obviously, which affects the quality of the mosaic 

image. The photometric change is almost removed using the photometric registration as 

shown in Figure (4.37).  

 

Figure.4. 35 Image before photometric registration (significant change of intensity) 
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Figure.4. 36 Image after photometric registration (the intensity change is almost 
removed) 

 

4.3.4 Super-resolution Algorithm 

 Super-resolution is an essential task to improve the quality of the mosaic image. 

Many algorithms are proposed in the literature [85, 87, 89]. In this work, we propose to 

use the iterative Papoulis-Gerchberg [86] algorithm using SIFT features. The super-

resolution image should demonstrate an improvement in the perceived detail content 

compared to that of the low-resolution images. This will typically involve restoration of 

the high-frequency content, which in turn may require an increase in pixel density. 

Clearly, this definition is rather subjective. However, we would hope that in most cases, 

the improvement in perceived detail would be clearly visible to any observer. 

4.3.4.1 Super-resolution Algorithm 

 Given a bunch of Low resolution (LR) images, Super-resolution involves two 

steps:  

• Image Registration  

• Projecting LR image values onto high-resolution grid  

 Most of the papers on Super-resolution try to solve these two problems to create a 

high resolution (HR) image from low resolution (LR) images. Although their 

approaches are different, the end goal is same. The following Figure (4.38) describes the 

two steps graphically. On the left hand side four LR images are shown. Motion 

estimation is used to estimate the pixel positions of the three images with respect to the 

first image. Note that these pixel positions would not be at integer values, but can take 

any real value. Once this information is calculated accurately, it is possible to project 
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this information on a desired high-resolution grid. Details of how these two problems 

are solved will be discussed in the following sections.  

 

Figure.4. 37 Principal of the super-resolution algorithm 
 

4.3.4.2 Papoulis-Gerchberg Algorithm  

Papoulis-Gerchberg algorithm [87- 89] illustrated in Figure (4.39) can be described as 

follows: 

 

Figure.4. 38 Essential steps of Papoulis-Gerchberg Algorithm 
 

where all the calculation of images Ii are performed to one reference image I1. This 

algorithm works by projecting HR grid data on the two sets (sub-pixel and HR grids) 

described above. The algorithm steps are:  

• Form a HR grid. Set the known pixel values from the LR images (after converting 

their pixel position to the reference frame of first low-resolution image). The position 

on the HR grid is calculated by rounding the magnified pixel positions to nearest integer 

locations.  

• Set the high frequency components to zero in the frequency domain. 

• Force the known pixel values in spatial domain. 
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• Iterate. 

Figure (4.40) shows an example of the Papoulis-Gerchberg algorithm using ASIFT 

features applied on four low resolution images to construct one high resolution image. 

As can be seen the quality of the high-res image is much better than the low-res images.  

 

Figure.4. 39 Low and High resolution images using Papoulis-Gerchberg Algorithm 
based 

 

4.3.5 Experimental Results (Mosaicing improved by Super-resolution) 

 Figure (4.41.a) presents a set of images acquired by a camera embedded on an 

Unmanned Aerial Vehicle (UAV). Figure (4.41.b) shows an image mosaic constructed 

from the acquired images using simultaneously the Papoulis-Gerchberg algorithm for 

super-resolution and the proposed mosaicing algorithm. The result is one large mosaic 

image with high quality Figure (4.41.b). 
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Figure.4. 40.a Images acquired by a camera embedded on an UAV 
 

 

Figure.4. 41.b Image mosaic 
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4.4 Part III: New Feature Detector and Descriptor 

4.4.1 Introduction 

As mentioned in the first part of this chapter, Harris Corner detector, Harris 

Laplace detector and Scale invariant feature transform (SIFT) are some popular feature 

extractors proposed in the literature. A good feature extractor should provide a high rate 

of repeatability and suitable accuracy while requiring reasonable computational time. 

Repeatability of a feature extractor should be evaluated against geometric (Rotation, 

Scale change, Affine…) and photometric (Luminosity, Contrast, Blur…) changes in the 

image.  

In this section, we propose to develop a new feature extractor suitable for 

unmanned vehicle visual navigation applications. This passes by looking at the 

following three main steps: 

1- Highlight the proposed feature extractors in the literature and focus on the limits 

of each one. 

2- Build a new feature extractor robust against geometric and photometric image 

transformation and overcome the limits of previous feature extractors. 

3- Comparison of the new extractor with those proposed in literature using dataset 

containing most common image transformations. 

4.4.2 Scale Wavelet Invariant Feature Detection 

By studying the existing detectors and from published comparisons [80, 96], we can 

conclude that 1) Hessian-based detectors are more stable and repeatable than their 

Harris-based counterparts. Using the determinant of the Hessian matrix rather than its 

trace (the Laplacian) seems advantageous, as it fires less on elongated, ill-localised 

structures. 2) DoG approximation can accelerate feature detection but it decrease the 

accuracy of the algorithm. 3) The interpolation of extrema in image scale/space and the 

non maximum suppression is time consuming. 

The proposed approach follows another alternative since we believe that a good 

significant feature can be detected if and only if the image is well analysed and 

presented. Therefore, by inspiring from the Human Visual System the best way to 
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represent an image in scale and space is the multi resolution analysis. This latter can be 

obtained by the 2D Discrete Wavelet Transform (DWT) [150]. Many authors tried to 

use DWT for corner detection. However, they use the DWT as a derivative tool in 

different direction without taking the advantage of the multi resolution aspects [83]. 

Therefore, we propose a novel detector scheme named SWIF (Scale Wavelet Invariant 

Feature). The proposed detector contains two main steps: First, the multi wavelet 

transformation of the image is calculated. Then, the extrema detection is achieved in 

scale, space and directions.  

4.4.3 SWIF Detector Diagram 

Based on the theory and implementation of 2D discrete wavelet transform [150], 

the wavelet pyramid construction and local extrema detection are presented. 

4.4.3.1 Characteristics of 2D Discrete Wavelet Transform 

Human visual characteristics are widely used in image processing. One example is 

the use of Laplacian pyramid for image coding. SIFT falls into the category that uses 

Laplacian pyramid for scale-invariant feature extraction [151]. On the other hand 

wavelet transform is a multi-resolution transform that repeatedly decompose the input 

signal into low-pass and high-pass components like sub-band coding [151, 152]. 

Wavelet-based scale-invariant feature extraction method does not increase the number 

of samples in the original image, which is the case of the Gaussian pyramid-based SIFT 

method. Wavelet transform can easily reflect human visual system by multi-resolution 

analysis using orthonormal bases [152]. Because the wavelet-based method does not 

increase the number of samples, computational redundancy is greatly reduced, and its 

implementation is suitable for parallel processing. 

The discrete wavelets transform (DWT) decomposes an input signal into Low (L) 

and High (H) frequency component using a filter bank followed by decimation by a 

factor of 2 as illustrated in Figure (4.42). Daubechies wavelet, which characterises the 

filter bank, has important properties of orthonormality, linearity, and completeness. 

DWT will be repeated multiple times to multiple-level resolution of different octaves. 

In order to construct the wavelet pyramid, we decide the number of Daubechies 

coefficients and approximation levels. The purpose is to extract salient points from any 
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part of the image in order to detect any change in the image at any resolution. A high 

wavelet coefficient (in absolute value) at a coarse resolution corresponds to a region 

with high global variations. The properly chosen length of the Daubechies wavelet and 

the number of the approximation levels provides the optimum local key points or 

features.  

 

 

 

 

 

 

 
 
 
 

Figure 4. 42 DWT decomposition 
 

4.4.3.2 Scale Space Feature Extraction 

The two main steps of Scale Space Feature Detector are: 

i) Multi Wavelet Image Transformation 

The original image I  will be represented using multiple Daubechies (db) 

wavelet [150] as follows: 

)"",(][ kkkkk dbIDWTDVHA =                          (4.27) 

k  is the Daubechies wavelet order. kkk VHA ,,  and kD  are approximation image, 

horizontal, vertical and diagonal details respectively.  

Equation (4.27) will be repeated with different values of k  at different levels to 

construct the multi resolution pyramid of the image. 

ii) Extrema Detection in Scale, Space and Directions  

In this step local extrema (minimum and maximum) will be detected in scale and 

space following the three directions (horizontal, vertical and diagonal). Local maxima 
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and minima of the multi-resolution wavelet pyramid are detected as follows:  each 

sample point is compared to its eight neighbours in the current image and its nine 

neighbours in the scale above and below. It is selected only if it is larger than all its 

neighbours or smaller than all of them. The cost of this check is reasonably low due to 

the fact that most sample points will be eliminated following the first few checks. This 

step is similar to that used by Lowe in SIFT algorithm [81].  

Figure (4.43) shows the architecture of the proposed algorithm. The wavelet pyramid 

contains many octaves (wavelet levels). At each octave: 1) the original image is 

decomposed using multiple Daubechies (db) wavelet. 2) Extremas of wavelet details 

are determined following the three directions (horizontal, vertical and diagonal). 
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Figure.4. 43 Features extraction using SWIF detector 
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Figure (4.44) and (4.45) respectively show the results of the DWT decomposition and 

the difference of wavelet pyramid obtained by two Daubechies wavelets ‘db2’ and 

‘db10’; 

 

 

 

Figure.4. 44 Four levels wavelet decomposition from left to right, approximation 
image, horizontal, vertical and diagonal details,  
 

 
Figure.4. 45 Difference of wavelet images 

 

4.4.4 Advantages of SWIF Detector 

Our proposed approach (SWIF) has the followings advantages: 

1- Features extracted from wavelet coefficients are invariant to image rotation 

because a feature is considered if and only if it is detected following the three 

directions. This means that a detected feature by SWIF is in the same time 
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horizontal, vertical and diagonal detail. As consequence it will be redetected at 

any image rotation. 

2- Wavelet coefficients (detail coefficients) are the results of filtering using high 

pass filter. Thus they are not affected by luminosity change. 

3- Using the multi-resolution analysis to construct the pyramids of wavelet make 

our detector robust to scale changes. 

4- Detected features are only those which present significant horizontal, vertical 

and diagonal details in multiple wavelet levels. This means that there is no 

chance for features situated on edges to be selected. Also, we do not need 

another step for nonmaxima suppression as done in SIFT [81].  

5- The use of orthogonal wavelets reduces the information redundancy in the same 

level and also between levels. 

6- The 2D DWT ensures a parallel calculation of horizontal, vertical and diagonal 

details which is promising for real time implementation. 

4.4.5 Comparison with other feature detectors: 

An important characteristic of a feature extractor is its repeatability. The 

repeatability is defined as the capability of a detector to find the same features (up to a 

threshold) in two different images of the same scene. The following figures show a 

comparison between SIFT, Harris, Harris—DWT and the proposed SWIF. Harris—

DWT is a corner detector using DWT coefficient rather than second moment matrix 

[75]. The repeatability of detectors is validated using image dataset available at [153]. It 

contains different kind of image transformations (Geometric and Photometric). Dataset 

of viewpoint change, photometric change, image blur, rotation and scale change are 

respectively presented in Figures (4.46, 4.48, 4.50 and 4.52). Repeatability against these 

changes are shown in Figures (4.47, 4.49, 4.51 and 4.53) respectively. 

 

Figure.4. 46 Dataset viewpoint change 



 
 
 

Chapter 4 UAV map building 
 
 

104 

From Figure (4.47), SIFT and Harris show high rate of repeatability (~80%) with 

small change of viewpoint. However, this repeatability decreases when the viewpoint 

angle increases. The SWIF detector gives acceptable repeatability rate (~60%) with 

small viewpoint angle. More importantly this repeatability is almost maintained when 

the viewpoint angle increases. As can be seen with viewpoint angle of 60 deg the SWIF 

repeatability is much better than SIFT and Harris (SWIF is evaluated using different 

thresholds Th1<Th2< Th3). This propriety is very important for feature matching. 

 

Figure.4. 47 Repeatability of detectors to viewpoint change 
 

 

Figure.4. 48 Dataset Photometric change 

 
 From Figure (4.49), SWIF shows high rate of repeatability (~90%) with a small 

photometric change than SIFT and Harris. However, the repeatability of all detectors 

decreases when this photometric change increase. We should mention that this 

photometric change is not the sample luminosity or contrast change (addition or 

multiplication by a parameter) but it is a kind of nonlinear light changes introduced by 

varying the camera aperture. 
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Figure.4. 49 Repeatability of detectors to photometric change 
 

 

Figure.4. 50 Dataset image blur 
 

 

Figure.4. 51 Repeatability of detectors to image blur 
 
Figure (4.51) shows that SWIF presents high rate of repeatability (~90%) in comparison 
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changes. This high repeatability rate of SWIF can be explained by the robustness of the 

wavelet multi-resolution analysis. 

 

Figure.4. 52 Dataset rotation and scale change 

 

 

Figure.4. 53 Repeatability of detectors to rotation and scale change 
 

From Figure (4.53) SIFT and Harris show high rate of repeatability (~70%) with 

small image rotations and scale changes. However, this repeatability rate decreases with 

significant image rotation and scale change to a repeatability of (~40%). Conversely, the 

SWIF detector gives acceptable repeatability rate just under (60%) with small image 

rotation and scale change. This repeatability is roughly maintained when image 

rotations and scale changes increase. We can also observe that the proposed SWIF 

performs much better than SIFT and Harris when the image is affected by significant 

rotation and large scale change. As we said before this is very important to avoid the 

detection of unstable features which is time consuming. 
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Figure.4. 54 Dataset luminosity change 
 

Figure (4.55) shows the repeatability rates of the different detectors facing 50% of 

luminosity change presented in Figure (4.54). As can be seen SIFT and SWIF show 

high repeatability rate comparing to Harris detector which is partially robust to 

luminosity change.  

 

Figure.4. 55 Repeatability of detectors to luminosity change 

4.4.6 SWIF Features Stability 

This section presents performance details of the SWIF detector in terms of 

features stability at each pyramid wavelet level using different thresholds. 

As can be seen from Figure (4.56, 4.57 and 4.58), the most stable features are 

detected in the (high) third level of the wavelet pyramid. Figure (4.59) shows how the 

threshold value can affect the number of extracted features. A suitable value of the 

threshold Th between (15 and 25) is determined by experiment. Figure (4.60) shows the 

results obtained by applying the SWIF detector on a sequence of indoor images. More 
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than 80% of features are re-detected which is very important for our future tasks 

(VSLAM, image mosaic,…). 

 Finally, Figure (4.61) shows the robustness of the SWIF detector against 

significant scale changes. Yellow points are detected at level 2 of the wavelet pyramid 

while green points are detected at level 3. As observed from this figure, our objective is 

achieved as enough number of features is re-detected. 
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Figure.4. 56 Repeatability of detectors (at each wavelet level) to luminosity change 
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Figure.4. 57 Repeatability of detectors (at each wavelet level) to image rotation 
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Figure.4. 58 Repeatability of detectors (at each wavelet level) using outdoor images 
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Figure.4. 59 Number of the extracted feature when we change the threshold “Th” 
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Figure.4. 60 Application of the new feature extractor on successive image More 
than 80% of features are re-detected 

 

   

Figure.4. 61 Robustness face scale change, enough number of same features is 
detected 
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4.4.7 SWIF Descriptor 

Features extracted by the new Scale Wavelet Invariant Feature (SWIF) detector 

have the following form: ],,[ iiii kvuf = , where ),( ii vu  are the image coordinates of the 

feature if  and ik is the wavelet level where the feature if  is detected. 

Based on the result given by the SWIF detector a fast and invariant features descriptor is 

designed. 

The SWIF descriptor is designed to be invariant facing geometric 

transformations (Rotation, Scale change, affine…) and photometric changes 

(Luminosity, contrast, image blur…). The size of the SWIF should be proposed to avoid 

significant increase of the computation time of the matching step. Lowe [81] proposes a 

descriptor of size 128 based on the difference of gauss image gradient. Lowe descriptor 

is not only so long but also its conception requires a significant computation time. In the 

following section we present two main steps of orientation assignment and descriptor 

construction for SWIF algorithm: 

4.4.7.1 Orientation Assignment   

For each feature ],,[ iiii kvuf =  we should find a local orientation based on the wavelet 

transform of the original image I as follows: 

a- A square region fiR  of size k
S

2
 is selected around the specific feature. S is the 

size of the region, k  is the wavelet level. When 0=k , a suitable value of 

42
))(( IsizeminS =  is used. For example, if the size of the image I  is 256256×  

then the suitable value of S  is 16x16. 

b- Use the horizontal and vertical wavelet coefficient to calculate the orientation of 

each pixel of the selected regionfiR , as follows:  

Assume that kH and kV  are the horizontal and vertical details of the image I at a 

levelk . Then, the orientations f
ji ,θ  and the norm f

jiN ,  of each pixel from the 

region fiR are given by: 
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c- Use histogram orientation to calculate the dominant orientation as done in [81]. 

If we use an orientation step o18=∆θ  ( o9=∆θ ), pixel orientations are 

distributed on 21 (41) bins. Each sample added to the histogram is weighted by its 

gradient magnitude and by a Gaussian-weighted circular window with a σ that is 1.5 

times that of the scale of the feature. Peaks in the orientation histogram correspond 

to dominant directions of local regions. The dominant orientation fΘ  is the 

maximum of these peaks, and fΝ  is the norm of that orientation [81]. 

d- Orientation update: after that the dominant orientation fΘ  is determined then all 

the orientations will be recalculated in reference to fΘ  as follows: 

f
f
ji

f
ji Θ−= ,, θθ . This step makes our descriptor invariant to image rotation. 

4.4.7.2 Descriptor Construction and Evaluation 

SWIF descriptor vector is proposed to contain the norms f
jiN , reoriented following 

the dominant orientation fΘ and weighted with a Gaussian window centred on ),( ii vu , 

as done in [81]. This Gaussian window allows the descriptor to give more importance to 

the pixels near to the feature location. The descriptor vector is then normalized in order 

to provide robustness against image contrast change.   

Our descriptor is built on simple concepts since we are limited by the real time 

constraints. Because the attended application is Visual SLAM, hence, extracting and 

matching only few but robust features is enough and very suitable. To evaluate our 

descriptor, we propose to use two performance criterions first, the matching score which 

is the rate between the number of good matching and the number of extracted feature. 

Second, the variation of the number of good correspondences. Below we explain the 

advantage of each criterion.  

i)  Matching score (MS) 
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)(

)(
)(

NEFFeaturesExtractedofNumber

NGMMatchingGoodofNumber
MSScoreMatching =  

)()( NNMFFeaturesMatchedNonofNumberFMMatchingFalseofNumberNGMNEF ++=
 

The maximum value of the matching score )(MS  is 1 (100%), which means all the 

extracted features are well matched. This is a rarely case. Following the equation above, 

when the number of good matching increases the matching score increases too. We can 

then conclude that the matching score does not depend on the number of good matching 

only but it takes in consideration the number of extracted features. 

ii) Variation of Number of Correspondences (VNC) 

)ences (TCorrespondof- NumberT)Tdences ( Corresponof NumberVNC ∆+= , which 

means the variation of number of extracted features between two image views of the 

same scene. This variation will give us an idea about the stability of good matching 

which is very important for many computer vision applications, as the VSLAM we are 

dealing with in this thesis. The most stable feature descriptor corresponds to a steady 

stateVNC .   

4.4.7.3 Results and Discussion 

The new SWIF descriptor is validated using the dataset used previously in 

Section 4.4.5. The used images are affected by many geometric transformations (Image 

rotation, scale change and view point change) and photometric transformations 

(Luminosity and contrast change). Two techniques of feature extraction and matching 

are compared with SWIF. First, Harris based Correlation approach, where features are 

extracted using Harris Corner Detector then the matching is done using spatial 

correlation, Second, the Scale Invariant Feature Transform (SIFT) detector and 

descriptor.  

i) Image rotation  

Figures below show the performance of matching when facing image rotation. 

As can be seen from Figure (4.62.a), quite similar performances of SIFT and SWIF are 

obtained, while Harris based correlation approach perform less well. Big number of 

extracted features by SIFT is not suitable for real time application but also the important 
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decrease of the number of correspondences is unwelcome for robust VSLAM 

application. From Figure (4.62.b), we observe that the Variation  of  Number of  

ences Correspond  )(VNC  is steady for the SWIF comparing to the SIFT which 

confirm the good performances of the proposed technique. 

 

a- Matching score 

 

b- Variation of Number of Correspondences (VNC) 

Figure.4. 62 SWIF descriptor performances face image rotation 
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ii) Image viewpoint change 

Figures below show the performances of matching when facing image viewpoint 

angle change. As can be seen from Figure (4.63.a) SWIF score matching is much better 

than that obtained by the SIFT descriptor and Harris based correlation matching. Even if 

the number of good matching given by SIFT is bigger than the number obtained by the 

SWIF, but we should mention that the latter is more efficient than the former for the 

simple reason that in SWIF more than 50% of features are well matched. In the other 

hand in SIFT about 30% of features only are well matched.  From this short analysis we 

can conclude that the proposed SWIF descriptor shows more efficiency in less 

computation time. Figure (4.63.b) confirms the results, as can be seen the VNC  in 

SWIF is steadier than that obtained by SIFT. 

 

a- Matching score  
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b- Variation of Number of Correspondences (VNC) 

Figure.4. 63 SWIF descriptor performances face image viewpoint angle change 

iii) Image scale change 

From Figure (4.64.a), a quite similar performances are obtained with SWIF, 

SIFT and Harris based correlation. However with significant scale change, SWIF and 

Harris based correlation matching score decreases when SIFT maintain good 

performance. This can be explained by the large scale exploration done by the SIFT 

algorithm (five scale octave, each octave contains a large scale range), while SWIF uses 

three octaves with three wavelet levels in each octave. It is clear that SIFT provides 

significant robustness to scale changes at the cost of a heavy computation time. From 

Figure (4.64.b), we can observe that the VNC is steady for the SWIF comparing to SIFT 

which confirm the previous results. 
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a- Matching score 

 

b- Variation of number of correspondences 

Figure.4. 64 SWIF descriptor performances face image scale change 
 
iv)  Image luminosity change 

Figures below show the performances of matching when facing image luminosity 

changes. As can be seen from Figure (4.65.a), quite similar good performances of SWIF 

0 1.05 1.1 1.15 1.2 1.25 1.3 1.4 1.5 1.6 0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

110 

Scale change 

M
at

ch
in

g 
sc

or
e 

(%
) 

  

 

SWIF Detector/Descriptor 
SIFT Detector/Descriptor 
Harris - Correlation

1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 -200 

-150 

-100 

-50 

0 

50 

Scale change 

V
ar

ia
tio

n 
of

 n
um

be
r 

of
 c

or
re

sp
on

de
nc

es
 

 

 

SWIF Detector & Descriptor
SIFT Detector & Descriptor
Harris - Correlation



 
 
 

Chapter 4 UAV map building 
 
 

118 

and correlation approach are obtained. From Figure (4.65.b), the VNC  is steady for the 

SWIF comparing to the SIFT. This result shows the stability of the number of good 

matching using SWIF which is very important for VSLAM application.  

 

a- Matching score 

 

b- Variation of Number of Correspondences (VNC) 

Figure.4. 65 SWIF descriptor performances face image luminosity change 
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v) Image contrast change 

         The figures below show the performances of matching against image contrast 

changes. Figure (4.66.a) shows quite similar good performances of SWIF, SIFT and 

Harris based correlation approach. Figure (4.66.b) shows that the Variation of Number 

of Correspondences (VNC) is steady for the SWIF and Harris based correlation 

comparing to the SIFT.  Feature detected and matched by SWIF are almost stable which 

is very important for VSLAM application, in the other hand, significant variation of the 

number of SIFT good matching is observed in Figure (4.66.b). The unstable features not 

only they are time consuming but they are not useful for features based VSLAM. 
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b- Variation of Number of Correspondences (VNC) 

Figure.4. 66 SWIF descriptor performances face image contrast change 
 

4.4.8 Computation Time Comparison 

The three codes SWIF, SIFT and Harris based correlation are run under 

MATLAB (version 7.1.0.246, R14, Service pack 3) in a computer core duo processor 

CPU 1.85 with 2GB RAM and applied on gray scale images of size (256x256).  

 The computation time for SWIF detector and descriptor depends mainly on two 

parameters: the size of the description window ( msms× ) and the orientation sampling 

( [ ]360,0∈bin ). This latter is used for orientation assignment which mean that the 

number of selected orientation is 
bin

360
1+ . Below is an evaluation of the SWIF 

computation time using different values of ms andbin . 

For 8=ms pixel 

bin  (deg) 3 9 18 30 36 90 

Time  5.76 s 5.29 s 5.50 s 6.46 6.58 s 1.37 s 

False matching rate 30 % 00 % 00 % 00% 00% 16.6 % 

Table 4. 1 computation time vs bin  
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From this table, we can see that the number of bins does not have a big effect on the 

computation time. However, it affects highly the performance of the descriptor. A small 

value of bin  makes the algorithm very sensitive to noise. As a result, significant false 

matchings will be obtained. On the other hand, a big value of bin  makes a bad 

description of the feature and many features will have similar descriptors which lead to 

too many false matchings. Thus suitable values of bin  should not be very small and 

should not be too big. As can be seen 9, 18 until 36 degrees are suitable values ofbin . 

These latter will be tested using different sizes of description window ( msms× ). 

For o9=bin  

ms 4 6 8 12 16 

Time  5.47 s 5.02 s 5.21 s 5.44 s 6.61 s 

False matching rate 12.5 % 00% 00% 00% 00 % 

-a- 

For o18=bin  

ms 4 6 8 12 16 

Time  5.37 s 5.11 s 5.59 s 5.98 s 7.65 s 

False matching rate  16.6 % 5.9 % 00 % 00 % 00 % 

-b- 

For o36=bin  

ms 4 6 8 12 16 

Time  6.29 s 6.30 s 6.64 s 6.73 s 8.25 s 

-c- 

Table 4. 2 computation time vsms 
 

Table (4.2.a, b and c) show the computation time and the performances of the 

SWIF algorithm using suitable values of bin  with different values of ms. From these 

tables, we can see that the suitable values of bin  and  ms that give the best 

performances in short time are: 9=bin and 8=ms  leading to a computation time of 

sTime 21.5= without false matching. 
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The comparison between SWIF and SIFT is made when a quite similar number of 

features are detected. 

 Detector & Descriptor Observation 

SWIF 5.21 s Descriptor size = 41 

SIFT 7.49 s Descriptor size = 128 

Table 4. 3 Computation time SWIF vs SIFT 
 

The suitable parameters of SWIF algorithm are then 9=bin , 8=ms  and 

descriptor size = 41. As can be seen the new feature detector/descriptor performs much 

better in time than the classical SIFT proposed by Lowe, Table (4.3). This decrease of 

computation time is the results of two main contributions: first, using the wavelet 

pyramid which ensures a parallel computation in less time than the DoG pyramid. 

Second, the use of short descriptor based on wavelet parameters.  

4.5 Conclusion 

 Build a reliable map is an essential task of UAVs. In this chapter, we provided 

robust tools to construct a high resolution map of the environment. In the first part of 

this chapter we looked at providing solutions for the main problem of map building by 

proposing feature detection and matching. First we contributed into improving the 

classic SIFT by introducing an adaptive scale factor parameter, which ensures a steady 

performance for different kind of images (low and high frequency images). By 

proposing norm∞ − distance criterion, a robust feature matching operation is achieved. 

We also developed, using some experimental analysis results, a criteria based on the 

scale rate to avoid the Adaptive SIFT features instability, which affects highly the 

matching performance.  

In the second part of this chapter we presented an image mosaicing algorithm 

based on geometric registration, followed by photometric registration to deal with 

contrast and luminosity changes. We also proposed Papoulis-Gerchberg super-

resolution algorithm using SIFT features leading with the mosaicing algorithm to 

construct a large mosaic image with high quality. Experiments were successfully carried 

out with real image data obtained by a camera setup onboard an unmanned helicopter. 
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        In the third part of this chapter a new Scale Wavelet Invariant Feature (SWIF) 

detector/descriptor is proposed. SWIF seems to be a promising solution for VSLAM 

problem. Its robustness using a short descriptor makes the difference comparing to the 

proposed feature extractors available in the literature. 
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 CHAPTER 5 

 

Robust 3D Visual SLAM  

5.1 Overview 

In this chapter the 3D Visual SLAM is presented, beginning by a literature review 

of the VSLAM problems, the Airborne VSLAM then is developed with loop closing 

detection. After that the robust NH∞VSLAM algorithm is proposed with observability 

and consistency analysis. A new map management approach is also proposed in this 

chapter in order reduce the algorithm complexity. Finally, simulation and experimental 

results with comparison between EKF and NH∞ VSLAM are presented. 

5.2 Introduction 

One of the current SLAM challenges is related Airborne SLAM and more 

specifically Airborne 3D VSLAM. This challenge requires a scalable representation, 

robust data association algorithms, consistent estimation techniques and fusion of 

different sensor modalities.  

 Traditionally in robotics, most research uses use data from odometer, laser-range-

finder and sonar sensor. Currently, cameras are becoming competitive alternatives due 

to their low cost and the rich information content they provide. 

Solving SLAM with monocular / stereo vision systems is still an open research 

problem to address efficiently and naturally many autonomous systems in real life 

applications. Davison, in [93], proposed a vision-based SLAM approach, which uses 

active stereo head and odometer sensing to estimate the location of a robot in planar 

regions. In [94], Davison has looked at the localisation and mapping problem using data 

from a single passive camera and using an EKF filter. However, SLAM architectures 

based on Extended Kalman Filter are very sensitive to outliers and increase 

computational complexity in a square form according to the number of features. To 

solve these problems, Nir and Bruckstein, [95], proposed a particle filter based SLAM 

approach to estimate camera (vehicle) poses. To be used for dynamic real time 
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applications. Particle filters based SLAM approaches are still under improvement, [98-

99], in order to achieve efficient algorithms suitable for real time application. 

 Another important issue, which has been neglected in a number of SLAM 

implementations, is the convergence analysis of the SLAM algorithm. Only very few 

analytical results on the convergence and essential properties of SLAM algorithms are 

available in the literature. Dissanayake in [90], provided some convergence properties 

of the Kalman Filter SLAM. Lower bounds on the absolute accuracy of the map and the 

vehicle location were also obtained by an EKF based SLAM algorithm [90]. Kim in 

[101], provided some further analyses on the asymptotic behaviour of one dimensional 

Kalman Filter SLAM problem. Having said that, all the proofs presented in [100-101], 

deal only with simple linear formulations of the SLAM problem in contrast to most 

SLAM implementation requirements in terms of process and observation model 

nonlinearities. In the past few years, a number of researchers have demonstrated, [102-

103], that the lower bound for the map accuracy presented in [90] is violated and the 

EKF SLAM produces inconsistent estimates due to errors introduced during the 

linearisation process. While some explanations of these inconsistency phenomena have 

been reported, mainly through Monte Carlo simulations a thorough theoretical analysis 

of the nonlinear SLAM problem became available only very recently [104]. 

 To date and to the best of our knowledge, very few robust and efficient solution 

has been proposed to solve the Airborne 3D VSLAM problem taking into account the 

high nonlinearity of the inertial navigation and the 3D vision observation models [106, 

122]. We propose a new formulation of the airborne 3D VSLAM based on a 

stereoscopic vision system and a nonlinear H∞ (NH∞) filtering scheme. In addition, this 

chapter provides robustness properties and consistency analysis of the Airborne 

VSLAM using EKF and robust NH∞ filters. Simulation and experimental results 

validate the suitability of our approach.  

5.3 Process Model 

The localisation problem of an airborne system is formulated based on the core-

sensing device, which is the Inertial Measurements Unit (IMU). This unit measures the 

acceleration (ax, ay, az) and the rotation rates (p, q, r) of the airborne platform with high 
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update rates. These quantities are then transformed and processed to provide the aerial 

vehicle position ( ZYX ,, ), velocity (U, V, W), and attitude ( ψθφ ,, ) resulting in an 

Inertial Navigation System (INS). 

Let us represent the INS with the following continues nonlinear model  

 

            
( , , )

( , , )

x f x u w

y h x u v

=
 =

&
                                                                                     (5. 1) 

 

where  (·,  ·,  ·) f is a non-linear state transition function which links the current state 

with the previous state and current control input. (·,  ·,  ·)h  is a non-linear observation 

function, which links the observation to the current state. 

 
x  is the state vector, which contains the position in navigation frame, velocity in body 

frame and Euler angles, y  is the observation vector and u  represents the IMU outputs 

(angular rates, and accelerations) as follows: 

 

[ , , , , , , , , ]Tx X Y Z U V W φ θ ψ=                                             (5. 2) 

 [ , , , , , ]Tu p q r ax ay az=                                                                      (5. 3) 

w  and vare respectively the process and observation noises. 

The navigation equations require the definition of at least two reference frames, 

one frame for the body/inertial representation (vehicle) and another frame for the 

navigation representation. Then, the vehicle equations of motion are given by simple 

integration and frame transformations. Equations of motion of the vehicle are presented 

in detail in Section 2.3.2 of Chapter 2. 

5.4 Observation Model 

 Cameras became an important sensor for aerial robotics because of their low cost 

and high quality of the acquired images, which are necessary for aerial mapping. 

Processing images using computer vision becomes vital for automatic perception and 

recognition of the environment. Stereoscopic vision is broadly defined as the recovery 

of three-dimensional characteristics of a scene from multiple images taken from two 
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different viewpoints. Stereo is an attractive source of information for machine 

perception because it leads to direct range measurements, and unlike monocular 

approaches, does not merely infer depth or orientation through the use of photometric 

and statistical assumptions. Once stereo images are brought into point-to-point 

correspondence, recovering range values is relatively straightforward. Another 

advantage is that stereo is a passive method. Although active ranging methods that use 

structured light, laser range finders, or other active sensing techniques are useful in 

tightly controlled domains such as industrial automation applications. However, they 

are clearly limited in use for some outdoor aerial vision problems.  

5.4.1 Camera model 

 Perspective camera model includes intrinsic and extrinsic parameters. This model 

ensures the geometric transformation between camera/image and world/camera 

reference frames respectively Figure (5.1.a). 

 

Figure.5.1. a Camera model 

A.1 Intrinsic Parameters (transformation camera/image) 

 Intrinsic parameters of a camera are defined by the horizontal and vertical scale 

factor ( vk  and uk ), the image centre coordinates (0u , 0v ) given in the image frame and 

the focal distancef as: 
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A.2 Extrinsic Parameters (transformation world/camera) 

 These parameters define the transformation from the world to camera frame given 

by the homogeneity matrixA . 

11 12 13

21 22 23

31 32 33 0 1

0 0 0 1

x

y

z

r r r t

r r r t R t
A

r r r t

 
 

  = =     
 
 

                     (5.4) 

The matrix A is a combination of a rotation matrix R and a translation t  from the 

world frame to the camera frame and obviously, the matrix A changes with the camera 

(UAV) displacement. 

5.4.2 Airborne Stereo Vision  

 One of the important challenges for UAVs is to use low cost exteroceptive sensors 

to ensure a full autonomy. Stereovision cameras and computer vision algorithms 

become, nowadays, the most appropriate solution to reach this objective. Airborne 

stereo vision is more difficult than vision (Stereo or mono) for mobile ground robotics 

because of the 6 DoF requirements of the UAVs. In the following, we develop an 

observation model using stereoscopic cameras embedded on a UAV, Figure (5.1.b). 

Similar developments of camera observation models, mainly for mobile robotics 

applications, are presented in [92, 105], and [106].  
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Figure.5.1. b UAV with IMU & stereo cameras 
 
( , , , )O N E D  is the navigation frame 

( , , , )b b b bO x y z  is the body frame 

( , , , )s s s sO x y z  is the IMU frame 

1 1 1 1( , , , )c c c cO x y z is the camera right frame 

2 2 2 2( , , , )c c c cO x y z is the camera left frame 

The landmarks im  represent specific feature points in the operation environment. These 

landmarks stand for features like corners or local extrema, which can be detected by 

feature extractors such as Harris, ASIFT and SIFT [81]. 

The landmark im  coordinates in the navigation frame are given by: 

1 1

2 2

i b b s s c c in

i b b s s c c i
n

Om OO O O O O O m

Om OO O O O O O m

= + + +

= + + +

uuuuur uuuur uuuuur uuuuur uuuuur

uuuur uuuur uuuuur uuuuuur uuuuur         (5.5) 

B.1 Transformation Body (UAV)/navigation frame: 

[ ]T

b uav uav uavOO X Y Z=
uuuur

 is the position of the UAV in the navigation frame. This 

position is given by the INS. 
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B.2 Transformation IMU/ Body (UAV) frame: 

[ ]. .
Tn n

b s b b s b s s s
n b

O O C O O C x y z= =
uuuuur uuuuur

         (5.6) 

where n
bC  is a rotation matrix that transforms vectors from body to navigation frame. 

[ ]T

s s sx y z is the position of the IMU presented in body frame. If the IMU is at the 

centre of gravity then [ ]T

s s sx y z =[ ]0 0 0
T

. 

B.3 Transformation IMU/cameras frames: 

[ ]1 1 1 1

Tn b
s c b s c c c

n
O O C C x y z= ⋅ ⋅
uuuuur

         (5.7) 

[ ]2 2 2 2

Tn b
s c b s c c c

n
O O C C x y z= ⋅ ⋅
uuuuuur

         (5.8) 

where b
sC  is a rotation matrix that transforms vectors from IMU to body frame. 

[ ]1 1 1

T

c c cx y z ( [ ]222 ccc zyx T ) is the position of the camera right (left) in the IMU 

frame presented in IMU frame. 

B.4 Landmark coordinates in cameras frames 

1 1 1 1 1[ ] [ ]n b s T n T
c i b s c mi mi mi c c mi mi mi c

n
O m C C C x y z M x y z= ⋅ ⋅ ⋅ = ⋅
uuuuur

     (5.9) 

2 2 2 2 2[ ] [ ]n b s T n T
c i b s c mi mi mi c c mi mi mi c

n
O m C C C x y z M x y z= ⋅ ⋅ ⋅ = ⋅
uuuuur

    (5.10) 

where 1
s
cC  ( 2

s
cC ) is a rotation matrix that transforms vectors from the right (left) camera 

to the IMU frame. [ ]1 1 1

T

m m mx y z  ([ ]2 2 2

T

m m mx y z ) is the position of the landmark im  

in the right (left) camera presented in right (left) camera frame.  

B.5 Landmark coordinates in navigation frame 

 

[ ] [ ] [ ]
[ ] [ ] [ ]

1 1 1 1 1

2 2 2 2 2

. [ ]

. [ ]

T T Tn n b n T
i uav uav uav b s s s b s c c c c mi mi mi cn n b s

T T Tn n b n T
i uav uav uav b s s s b s c c c c mi mi mi cn b sn

Om X Y Z C x y z C C x y z M x y z

Om X Y Z C x y z C C x y z M x y z

= + + ⋅ ⋅ + ⋅

= + + ⋅ ⋅ + ⋅

uuuur

uuuur

(5.11) 

If we put 
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[ ] [ ] [ ]
[ ] [ ] [ ]

1 1 1 1 1

2 2 2 2 2

.

.

T T Tn n b
c c uav uav uav b s s s b s c c cn b sn

T T Tn n b
c c uav uav uav b s s s b s c c cn b sn

OO T X Y Z C x y z C C x y z

OO T X Y Z C x y z C C x y z

= = + + ⋅ ⋅

= = + + ⋅ ⋅

uuuuur

uuuuur   (5.12) 

Then  

[ ] [ ]1 1 2 2

1 2
1 1

0 1 0 1

n n
T Tc c c c

mi mi mi mi mi mic cn

M T M T
Omi x y z x y z

   
= =   
   

uuuur
              (5.13)     

[ ] [ ]1 21 2
1 1

T Tn n
c mi mi mi c mi mi mic cn

Omi Mh x y z Mh x y z= ⋅ = ⋅
uuuur

     (5.14) 

B.6 Transformation camera/image frame 

Using the cameras model (transformation camera/image), we can conclude: 

[ ]
[ ]

11 1 1 1 1 1

22 2 2 2 2 2

[ 1]

[ 1]

T T
c mi mi mi c

T T
c mi mi mi c

s u s v s I x y z

s u s v s I x y z

= ⋅

= ⋅
         (5.15) 

1cI  and 2cI are the matrix of intrinsic parameters of the right and the left camera 

respectively (Section A.1) 

Then 

[ ] 1
1 1 1 1 1 1 1( )

T n
c c i

n
s u s v s I Mh Om−= ⋅ ⋅

uuuur
         (5.16) 

[ ] 1
2 2 2 2 2 2 2( )

T n
c c i

n
s u s v s I Mh Om−= ⋅ ⋅

uuuur
         (5.17) 

After development, the scale factors, for camera right and left 1s  and 2s  respectively, 

are given by the following equation: 

1 1 1 1
1 31 32 33 34

c n c n c n c
mi mi mis m x m y m z m= + + +            (5.18) 

2 2 2 2
2 31 32 33 34

c n c n c n c
mi mi mis m x m y m z m= + + +           (5.19) 

Therefore, the observation model, linking the perceived visual landmarks to the SLAM 

state vector is given by: 
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1 1 1 1
11 12 13 14

1 1 1 1 1
31 32 33 34

1 1 1 1
21 22 23 24

1 1 1 1 1
31 32 33 34

2 2 2 2
11 12 13 14

2 2 2
31 32

c n c n c n c
mi mi mi

c n c n c n c
mi mi mi

c n c n c n c
mi mi mi

c n c n c n c
mi mi mi

c n c n c n c
mi mi mi

c n c
mi

m x m y m z m
u

m x m y m z m

m x m y m z m
v

m x m y m z m

m x m y m z m
u

m x m y

+ + +=
+ + +
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 + +


+ + + = + + +

   (5.20) 

where [ ]n n n T
mi mi mix y z  is the coordinate of the landmark im  in the navigation frame 

(NED). 1c
ijm  and 2c

ijm are the components of 1
1 1( )n

c cI Mh −⋅ and 1
2 2( )n

c cI Mh −⋅ respectively.  

5.5 EKF Airborne VSLAM 

 Kalman Filter (KF) is an effective stochastic estimator for a large number of 

problems. However, as in most real applications, the process and/or observation models 

are nonlinear therefore the linear Kalman filter algorithm cannot be directly applied. To 

overcome this, an Extended Kalman Filter (EKF) is proposed. Based on this technique, 

the navigation solution uses the current estimated states from the filter as the 

linearisation reference from which the estimation procedure can start at each time step k. 

If the filter operates properly, the linearisation error around the estimated solution can 

be maintained reasonably small. However, if the filter is ill-conditioned due to 

modelling errors, incorrect tuning of the covariance matrix, or initialisation error, then 

the estimation error will affect the linearisation error, which in turn will affect the 

estimation process. This is known as a filter divergence. For this reason, the EKF 

requires greater care in modelling and tuning than the linear Kalman filter. 

5.5.1 EKF Filter 

 The state vector of the UAV SLAM is given by: 

[ ]v mx x x=  

[ , , , , , , , , ]Tx X Y Z U V Wv φ θ ψ= , 1 2 3[ ... ]m Nx m m m m=  
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vx is the state vector of the vehicle and mx is the state vector of the landmarks observed 

during the UAV flight. Landmark initialisation algorithm is based on triangulation 

methods, which directly calculates a three-dimensional position of landmark based on 

stereovision measurements and the Inverse Model of Observation (IMO). 

 An augmented version of Equation (5.1) can be written as a non-linear discrete 

time state transition equation: 

1 1 1 1( , ) ( )

( , )
k k k k k

k k k

x f x u g x w

y h x v
− − − −= +

=
                                     (5. 21) 

where f  is the discrete version of  Equation (2.9) (in addition to elements of the 

landmarks states), g is a nonlinear function, kx is the state at time step k , kw is some 

additive process noises, ky is the observation made at time k , kv  is some additive 

observation noises. We assume that kw and kv  are uncorrelated zero mean Gaussian 

with known covariance kQ  and kR . The objective of the filtering technique is, then, to 

estimate kx  using available observationky . Predictor-Corrector formulation of the EKF 

is presented in detail in Section 3.4 of Chapter 3, Equations (3.19-3.23). Where kkP /  is 

the estimated error covariance for the system: 

 

       





















=

NN
kk

N
kk

Nv
kk

N
kkkk

vv
kk

vN
kk

v
kk

vv
kk

kk

PPP

PPP

PPP

P

/
1

//

1
/

11
//

/
1
//

/

L

MOMM

L

L

                                             (5. 22) 

  

 with the sub-matrices vv
kkP / , vi

kkP / , ii
kkP /  Ni ,...1=  are the UAV-to-UAV, UAV-to-

landmark and landmark-to-landmark covariances respectively.  

5.5.2 Loop Closing 

 As the UAV moves in the environment, it builds a map of the landmarks and 

correlates this information in order to determine precisely the UAV location. One 

solution to the correlation problem was introduced by Smith, Self and Cheeseman 

[107], and is called the Stochastic Map (SM). The SM allows for the concurrent 
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mapping of landmarks and localisation of the UAV with respect to the landmarks using 

EKF architecture. The Stochastic Map is essentially an augmented EKF, where the 

observed landmarks are stored in the filter state vector along with the vehicle states.  

        Loop closing means the capacity of recognising previously detected landmarks to 

reduce the uncertainties in both the UAV and the landmark positions. Using an 

augmented state vector where information about the landmarks is stored, the loop 

closure detection becomes an automatic task.  

 Consider the scenario of a UAV navigating and making a map loop. The curves 

shown in Figure (5.2) represent the evolution of uncertainty for the UAV (x-position), 

and one observed landmark “m” . This landmark is observed at the beginning of UAV 

navigation and is observed again after 200s of navigation. From Figure (5.2) we observe 

the reduction of the uncertainties, both, for the UAV, Figure (5.2.a) and the landmark, 

Figure (5.2.b) positions when the loop closing is detected at t=200s. At this time, the 

UAV detects and recognises some landmarks observed previously at t=0s.  The loop 

closing detection leads to a significant decrease in the true and estimated uncertainty for 

localisation and mapping. However, the main problem of the augmented map method 

(SM), which facilitates the loop closing detection, is the complexity that increases 

exponentially with the number of observed landmarks. This problem will be solved in 

Section 5.8, when a new approach of map management is proposed. 

Figure.5. 1 
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Figure.5. 2 Loop closure detection at t=200s, a) UAV uncertainty, b) Landmark 
uncertainty, 
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5.6 Airborne VSLAM Observability 

 Observability of nonlinear systems is not very easy to analyse. Many papers treat 

the SLAM problem without mentioning or examining the observability of the system. 

Observability, if it does not hold, can lead to an inconsistent SLAM solution [108-109]. 

Only very few papers have tried to treat the observability of VSLAM, mainly the local 

observability, which constitutes only a partial solution of the problem. The best way to 

prove the global observability of nonlinear systems is to use Lie derivatives [104]. 

However, as it is very hard to develop this method in our Airborne VSLAM case, where 

the size of state vector is larger than 12 (9 states for the UAV, 3 states for each 

landmark), we propose to analyse the observability problem with a reduced SLAM 

system assuming a planar displacement of the UAV (at a fixed altitude). The cameras 

are heading down vertically. This leads to a three DoF system with six model states 

(one landmark), rather than 12 states, as follows:  

cos( ) sin( )

sin( ) cos( )

( , )
0

0

0

U V

U V

x f x u

ψ ψ
ψ ψ

ψ

− 
 + 
 

= =  
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, [ ]T

uav uav mi mi mix X Y x y zψ= , 6x∈ℜ            (5. 23)  

 

where , ,[ ]T
mi mi mix y z  are the coordinates of the landmark in navigation frame. 

0 0, , ,ui vi i iu vα α , { }1,2i ∈  are the intrinsic parameters of the right and left cameras. 

1
01

1 1
01

2
02

2 1

(cos( ) sin( ) sin( ) cos( ) )

( sin( ) sin( ) cos( ) cos( ) )

( )
(cos( ) sin( ) sin( ) cos( ) )

( sin( ) sin( )

u mi mi uav uav

mi

v mi uav c mi uav

mi

u mi mi uav uav

mi

v mi uav c

x y Y X
u

z

x X y y Y
v

z
y h x

x y Y X
u

z

x X y

α ψ ψ ψ ψ

α ψ ψ ψ ψ

α ψ ψ ψ ψ

α ψ ψ

+ − − +

− + − + − +
= =

+ − − +

− + −
02

cos( ) cos( ) )mi uav

mi

y Y
v

z

ψ ψ

 
 
 
 
 
 
 
 
 
 + − + 
 

,               4y∈ℜ  

This system satisfies the observability rank condition if any of the observability 

matrices are of rank 6 (recall that 6x∈ℜ ), where the observability matrix is given by the 

Lie derivatives as:  
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We find that ( ) 4 6rank O = < , which means that the SLAM is not observable. This can be 

explained by the fact that camera observations still relative measures and cannot 

estimate an absolute position in the global frame (landmarks uncertainties and UAV 

position uncertainty are highly dependent). One solution of this limitation is to 

introduce a known landmark* [ , ]T
known known knownm x y z= to the state vector. Then, the 

observation model becomes: 
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                   (5. 26) 

 

In this case we find that ( ) 6rank O = , which means that the SLAM problem becomes 

observable and thus consistent. However a known feature is not a practical solution 

especially in outdoor environment. Thus, proposing an observable and robust airborne 

VSLAM algorithm presents another contribution we give in the following section. 
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5.7 Robust Observable VSLAM 

5.7.1 EKF VSLAM Consistency 

 Lower bound for the map accuracy based on EKF SLAM is violated and produces 

inconsistent estimates (especially UAV position) [90, 102]. Shoudong, in his paper 

[104], provides both convergence properties and a consistency analysis for some basic 

scenarios of the nonlinear two-dimensional EKF SLAM problem. A number of recent 

publications [102, 103] indicate that the key source of EKF SLAM inconsistency is the 

error introduced during the linearisation process. While it is clear that linearisation is an 

approximation that can introduce errors into the estimation process it is reasonable to 

expect that the incorrect estimate is likely to be either too optimistic (the estimated 

uncertainty smaller than the true uncertainty) or too pessimistic (the estimated 

uncertainty larger than the true uncertainty). In the literature related to SLAM, only 

estimator inconsistency, as a result of optimistic estimates, is reported [104].  

          Furthermore, the EKF SLAM requires an accurate enough process model and 

known process and observation noise characteristics (centred Gaussian noises). 

Moreover, in all the theoretical convergence properties proved in the previous works, 

[90, 104], it is assumed that the Jacobians are evaluated at the true UAV pose and the 

true landmark positions. For realistic SLAM scenarios, the true locations of the UAV 

and landmarks are not known, and the Jacobians have to be evaluated at the estimated 

values. This may result in overconfident (inconsistent) estimates [104]. 

 In this section, we propose a solution dealing with robustness and consistency 

problems for the Airborne VSLAM by introducing the nonlinear H∞  (NH∞) filter 

scheme presented in details in Section 3.6, Chapter 3.  

5.7.2 Nonlinear H∞ Filter  

Nonlinear H∞  filter could handle modelling errors and noise uncertainties while 

minimising the worst-case estimation error rather than the covariance of the estimation 

error. State estimators that can tolerate such uncertainties are called robust. Although 

robust estimators based on Kalman filter theory can be designed, these approaches are 

somewhat ad-hoc in that they attempt to modify an already existing approach. In 

contrast, the H∞  filter was specifically designed for optimality and robustness [66, 68]. 
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The NH∞ filter principle and algorithm are presented in details in Section 3.6 of 

Chapter 3. 

5.7.3 Consistent EKF (NH∞ ) Airborne VSLAM 

 Even if the use of a robust filter, such as NH∞ filter, improves the performance of 

the airborne VSLAM algorithm (Optimality and Robustness) and increases the 

consistency, the problem of estimating the UAV states in an absolute frame using 

relative and uncertain data, is still posed.  This problem is directly linked with the above 

mentioned issue of ‘full observability’ without known features (Section 5.6) [110-111].  

 The following figures show an example of the EKF VSLAM inconsistency based 

on the UAV position errors along the axes x, y and z. It is clear, from Figure (5.3), that 

the estimated uncertainty is very small compared to the true uncertainty specifically for 

the UAV y and z states. At t=200s, we observe the increase of the VSLAM consistency 

because of the loop closure detection Figure (5.3. a, b and c). 
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    -a-                                          -b-                                       -c- 

Figure.5. 3 Estimated and True uncertainty for the UAV position 
 
As a solution, we propose the following strategy to improve the consistency of the 

VSLAM filtering scheme whether it is using EKF filter or NH∞ filter: 

 Let us assume that at t=0, the UAV position is known accurately in an absolute 

frame. From this position, the UAV observes landmarks with their associated 

uncertainties, which depend on the camera’s uncertainties. If this observation is 

processed n times, through the filtering scheme (EKF), then the landmark’s position 

uncertainties decrease to a lower bound, Figure (5.4) and Figure (5.5). Once this is 

achieved, these landmarks can be considered as a relative known feature, which ensure 

the full observability of the filter, Equation (5.26). 
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Figure.5. 4 Evolution of landmark uncertainties with the number of observation 
processing  
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Figure.5. 5  Landmark uncertainties after 100 observations processed 
 

To evaluate the degree of SLAM consistency, we define the parameter co as: 

   
Estimated uncertainty

co
True uncertainty

=  and propose: 




=>≤
=>>

VSLAMntinconsisteco

VSLAMconsistentco

1

1
 

This parameter, calculated at each sampling time of simulation, tells us about the 

instantaneous VSLAM consistency. However, this is not enough to inform us about the 

true consistency of the VSLAM filtering scheme (EKF is used here). As shown in 

Figure (5.6.a), just after the loop closure is detected at t=200s, 0.18 / 0.08 2.25 1co = = >  

which signifies the EKF VSLAM is consistent. On the other hand, it is clear, from the 

same figure, that for [90 ..200 ]t s s∈ , the estimated uncertainty is smaller than the true 

uncertainty, which signifies the EKF SLAM inconsistency [104]. These results are 

confirmed by the consistency degree cogiven by Figure (5.6.b). 
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a)  Estimated and True z uncertainty     b) Evolution of the consistency degree 

Figure.5. 6 Consistency analysis 
 
 To avoid this kind of erroneous analysis, we propose to check the SLAM (based 

on EKF here) consistency in the worst-case situation, which is evaluated by the robust 

consistency parameterRco as: min Estimated uncertainty

True uncertainty
Rco

 
  
 

= . This latter is 

calculated at the last of the simulation telling us about the whole VSLAM consistency. 

Using this parameter for the simulation in Figure (5.6.b), the minimal value of 

coobtained at t=160s is 122.0 <=Rco , which shows clearly the EKF SLAM 

inconsistency.  

 In the following experiment, the UAV navigates and makes landmark 

observations. Each observed landmark is used in one (ten) observation processing 

(update). In other words, Equation (3.21) for EKF or Equation (3.47) for NH∞  update 

is processed one (ten) time(s) at each filter sampling time. The following tables show 

the values of Rco when we used one and ten updates (observation processing) of the 

landmark observations. 

 As can be seen from the tables, the estimation accuracy increases when the 

number of observation processing increases. Thus, we can conclude that by observing 

the landmarks and processing them n times, we increase the consistency of the filter 

(Table 5.1 and Table 5.2). Our approach will increase, a little, the airborne VSLAM 

algorithm complexity. However, this complexity is primarily dependent on the choice of 

landmarks and their initial observation uncertainties. 

 

time(s) time(s) 
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state 

One Observation Processing (update) 

Estimated uncertainty True uncertainty 
Rco 

min max mean min max mean 

x 0 0.1251 0.0722 0 0.0619 0.0173 0.9033 

y 0 0.1463 0.0726 0 0.2812 0.1113 0.0146 

z 0 0.0995 0.0457 0 0.4908 0.1497 0.0003 

U 0.0042 0.0673 0.0464 0 0.0546 0.0248 0.0161 

V 0.0042 0.0767 0.0469 0 0.0854 0.0575 1.8452 

W 0.0022 0.0258 0.0165 0 0.1080 0.0531 8.6046 

θ  0.0004 0.0028 0.0022 0 0.0014 0.0008 7.8261 

φ  0.0004 0.0027 0.0022 0 0.0048 0.0029 191.8137 

ψ  0.0004 0.0038 0.0027 0 0.0041 0.0021 15.8661 

Table 5. 1 Degree of consistency with one observation processing 
 
 

 

state 

10 Observation Processed (updates) 

Estimated uncertainty True uncertainty 
Rco 

min max mean min max mean 

x 0 0.104 0.0578 0 0.0297 0.0105 1.5416 

y 0 0.128 0.0566 0 0.1097 0.0425 0.0422 

z 0 0.0901 0.0406 0 0.2933 0.0724 0.0369 

U 0.0042 0.0507 0.0326 0 0.0362 0.0165 0.4091 

V 0.0042 0.0659 0.0382 0 0.0783 0.0532 3.8507 

W 0.0022 0.0242 0.0157 0 0.0809 0.039 0.0455 

φ  0.0004 0.0027 0.0021 0 0.0035 0.0013 9.5392 

θ  0.0004 0.0025 0.0021 0 0.0043 0.0033 29.0489 

ψ  0.0004 0.0034 0.0025 0 0.0027 0.0011 7.5769 

Table 5. 2 Degree of consistency with ten observations processed 
 
The solution proposed in this sub-section will be used later for the EKF based Airborne 

VSLAM and the NH∞ based Airborne VSLAM as mean of increasing the consistency 

of the proposed VSLAM solution.     
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5.8 3D VSLAM Map Management 

 A critical issue in a SLAM algorithm is to decide how to represent the joint 

distribution over vehicle poses and feature map. In particular, the map management is 

very important due to the fact that maps are usually represented by a high number of 

parameters [90], [105], [106] and [111]. 

 The )( 2NO  complexity of the Kalman filter (N being the dimension of the state 

vector) does not allow large environments to be efficiently mapped since it limits the 

total number of landmarks that can be stored in the map [90]. Beyond this upper limit, 

real-time processing is no longer possible [105]. To prevent the state vector from a rapid 

dimension increase that would dramatically limit the mapping capacity of our VSLAM 

system, we introduce a map management approach based on a landmark performance 

criterion, which allows the substitution of some elements of the state vector. The 

proposed approach is very efficient and is based on the following simple to implement 

concept: 

 At each time step, the state vector is proposed to contain the new observed 

features and the best k -landmarks observed previously as illustrated in Figure (5.7). It 

is clear that the size of the state vector at each time is limited to (k + number of new 

landmarks) (in our experiment k=20). The same limitation is used for the covariance 

matrix. In order to maintain the correlation between landmarks and UAV/landmarks, we 

propose to save all the observed landmarks, during the flight, with their respective 

covariance matrices. This will help in building a large map and to make the loop closing 

detection possible.  
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• K-landmarks performance criteria  

 

 

 

 

 

 

 

 

  

Figure.5. 7 Map management using the nearest k-landmarks approach 
 

 As can be seen from Figure (5.7), our approach is based on measuring the 

Euclidean distance of observed landmarks mi  and a virtual landmark*m . The latter is 

given by the intersection of the focal axes of the two cameras making it the virtual 

centre point of the real image. The best k-landmarks are the nearest k-landmarks to that 

virtual point. Subsequently, at each time step the state vector will contain the new 

observed landmarks and the k, previously observed, nearest landmarks to the virtual 

centre point. The proposed map management approach reduces the size of the state 

vector significantly; furthermore, it makes the loop closing detection possible. 

5.9 Simulation Results and Discussions 

 In the following simulations, we present a number of UAV flight scenarios for 

which NH∞ and EKF Airborne VSLAM schemes are developed and compared. The 

proposed map management approach is also assessed against the classical stochastic 

map approach. 

 In our simulation we assume a UAV navigating in unknown environment using 

IMU and stereo cameras models. At each step time a set of features will be observed.  
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 The observed features are divided into two classes: re-observed features are used 

to update the map and UAV pose, and new features are initialised and added to the map 

using the Inverse Observation Model (IOM).   

5.9.1 EKF Airborne VSLAM 

 As can be seen from Figure (5.8. a, b, c and d), when the noise is a centred 

Gaussian, reasonably good EKF based estimation are obtained for x, y and z, presenting 

much better estimated trajectory than the INS trajectory. The inaccuracy of this 

estimator in z, Figure (5.8.c), affects the performance of the UAV trajectory estimation 

as shown in Figure (5.8.d). This last figure shows a scenario of a UAV making a loop. 

Although the corrected position is much better than the INS position, it still diverges 

from the true position up to (t=200s). When a loop-closure is detected, at this time a 

significant accuracy is observed and the corrected position is confused with the true 

position. The loop closing effect appears obviously in Figure (5.8.c) (dashed ellipse). 

When, the process and observation noises are non Gaussian, the performance of 

the EKF estimator decreases significantly as shown in Figure (5.9). In this case, the 

corrected values of x and y are still very close to their corresponding true values. This 

can be explained by the efficiency of the stereo cameras to observe the bearing 

information nevertheless the range information (z) is given with less accuracy as in 

Figure (5.9.c). As shown in this figure, the value of z diverges, as the INS information, 

before it starts slightly converging to the true value at t=150s. At t=200s, which 

corresponds to the detection of the loop closing, we observe the full convergence of the 

corrected values of z to their corresponding true values.  

 The problem of the EKF VSLAM is the poor consistency caused by the 

linearisation problem and the assumed characteristics of the process and observation 

noises, which should be centred Gaussian noises. 
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-c-                                                                     -d- 
Figure.5. 8 True, INS and corrected UAV trajectory by the EKF SLAM in the case 
of centred Gaussian noise: a) x estimation, b) y estimation, c) z estimation, d) UAV 
trajectories with loop closure detection 
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-c-                                                                     -d- 
Figure.5. 9 True, INS and corrected UAV trajectory by the EKF SLAM in the case 
of centred non Gaussian noise: a) x estimation, b) y estimation, c) z estimation, d) 
UAV trajectories with loop closure detection 
 

5.9.2 NH∞ Airborne VSLAM  

 As explained in Section 5.7, the NH∞  estimator does not require specific noise 

characteristics or a known error covariance matrix. From Figure (5.10. a, b, c, and d) 

and comparing it to Figure (5.8. a, b, c, and d), we can conclude that if both  process and 

observation noises are assumed centred Gaussian noises then the mean covariance 

estimator (EKF) could lead to similar (in many cases better) performances than the 

minmax estimator (NH∞ ). In contrast, the landmarks estimated by the robust NH∞  

filter are more accurate than those estimated by the EKF, as can be observed from Table 

(5.3). Landmark estimation error obtained by the NH∞  filter is very small compared 

with that obtained by the EKF filter. This could be explained by the linearisation of the 

highly nonlinear observation model for which the EKF neglects the high order terms. 

When the assumed characteristics of noises do not hold, which is usually the case for 

6DoF navigation and visual data, the NH∞  filter gives much better results than the 

EKF. The latter conclusion can be validated by comparing Figure (5.9. c, d) with Figure 

(5.11. c, d).  From Figure (5.11.d), it is clear that the estimated trajectory given by the 

NH ∞  is more accurate than that obtained by the EKF, Figure (5.9.d). At t=200s a loop-

closure is detected and at this time a significant improvement of the accuracy is 

observed especially in Figure (5.11. c) (dashed ellipse).  Furthermore, the landmarks 

Loop closure 
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estimated by the robust NH∞  filter, for non centred Gaussian noises, are more accurate 

than those estimated by the EKF as shown in Table (5.4). As can be seen from this 

table, the landmark position accuracy given by the NH ∞  filter decreases compared to 

Table (5.3). However, it is still much better than that obtained by the EKF filter, for 

which the landmark position error raises up above one meter. This is a large error taking 

into consideration the short navigation time (≈ 200s). 
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    -c-                                                                     -d- 
Figure.5. 10 True, INS and corrected UAV trajectory by the NH∞  SLAM in the 
case of centred Gaussian noise: a) x estimation, b) y estimation, c) z estimation, d) 
UAV trajectories with loop closure detection 
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-c-                                                                     -d- 
Figure.5. 11 True, INS and corrected UAV trajectory by the NH∞  SLAM in the 
case of centred non Gaussian noise: a) x estimation, b) y estimation, c) z estimation, 
d) UAV trajectories with loop closure detection 
 
 

Landmarks 

error 

x-error y-error z-error 

mean std mean std mean std 

NH ∞  0.0047 0.1312 0.0059 0.2221 0.1695 0.3832 

EKF 0.1861 0.2578 0.1580 0.2207 0.2929 0.3320 

Table 5. 3 comparison between NH∞  and EKF Landmarks accuracy estimation 
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Landmarks 

error 

x-error y-error z-error 

mean std mean std mean std 

NH ∞  0.4692    0.6590    0.3832    0.6850    0.2686 0.5256 

EKF 0.5584    1.1404    1.0768    1.3247    0.5998 0.7492 

Table 5. 4 comparison between NH∞  and EKF Landmarks accuracy estimation, 
with non-centred Gaussian noise 
 
 In Figure 5.12 below, are illustrated the coordinates of x, y and z representing the 

UAV position errors in Gaussian and non Gaussian noise cases and using the EKF and 

NH∞  filters. Confirming the results of the previous section, if the noise is a centred 

white Gaussian the EKF may perform better than the NH ∞  filter, Figure (5.12.a). The 

advantage of the NH∞ can be observed especially when the noise is non centred or non 

Gaussian, Figure (5.12.b). 

 

a) Gaussian noise case 

 

b) Non Gaussian noise case 

Figure.5. 12  UAV Absolute position estimation error by EKF and NH ∞  
 
Figure (5.13) presents the NH∞  and EKF Airborne VSLAM results for a highly 

nonlinear trajectory. The NH∞  filter shows more robustness and performs, as expected, 

much better than the EKF filter. This can be explained by fact that the NH∞  filter takes 

time(s) time(s) time(s) 

time(s) time(s) time(s) 
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into consideration all the high order terms of the Taylor expansion (these term should be 

bounded), while the EKF filter neglects these terms. 
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Figure.5. 13 EKF and NH∞  estimator for a highly nonlinear trajectory 
 

5.9.3 Map Management Results 

 The following figures show the results obtained by the proposed map management 

approach (k -nearest landmarks). As can be seen from Figure (5.14), the loop closure 

is correctly detected at t=200s despite the fact that the size of the state vector is limited 

to (k + number of new landmarks). This implies a significant decrease in the 

complexity of the algorithm since we choose k=20 with an average of 4 new landmarks 

observed at each time. Figure (5.15) shows the results obtained by the Stochastic Map 

(SM) approach. From this figure, we remark that the loop closure is also detected on 

time but the size of the state vector increases along with the observation of new 

landmarks. In this case 232 landmarks were observed, which means that the size of 

state vector is equal to 9uav states+232x3 landmark states =705 states after only 4 minutes of 

navigation. This is very heavy and not practical compared to our map management 

solution where the size of state vector is equal to 9uav states+24x3 landmark states =81 states 

only. Furthermore, this state vector size stays small and fixed independently of the 

navigation time. This improvement can be clearly seen in Figure (5.16) where the size 

of the state vector is shown increasing linearly with time in the SM approach while it 

keeps quasi constant in our approach. 
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Figure.5. 14 3DVSLAM Map management, approach of the k -nearest landmarks 
Loop closure detection despite the limited size of the state vector ( ≤mx 24 
landmarks) 
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Figure.5. 15 3DVSLAM Map management, augmented map Loop closure 
detection, (232 landmarks) 
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Figure.5. 16 complexity comparison between classical stochastic map and the 
proposed k -nearest landmarks map 
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5.10 Experimental Results 

The experimental setup to validate our robust Airborne VSLAM solution is 

composed of UAV system with IMU and stereo vision camera as shown in Figure 

(5.17). 

 

  

a) Lateral image                                          b) Front image 
Figure.5. 17 UAV (COLIBRI) system used for experimental test Comes from 

Polytechnic School of Madrid 
 

where the IMU characteristics are: 

Name Description Type 

p(Rad/s) Body frame roll rate in radians. Positive p is rolling right wing 

down. The actual range of the reading should be ±90deg, 

although very high readings can result from bad gyro bias 

calibrations. 

Double 

q(Rad/s) Body frame pitch rate in radians. Positive q is pitching nose up Double 

r(Rad/s) Body frame yaw rate in radians. Positive r is rotating clockwise 

when viewed from above. 

Double 

ax(m/s/s) Forward accelerometer reading in m/s/s.  Double 

ay(m/s/s) Sideways accelerometer reading in m/s/s. Double 

az(m/s/s) Downwars accelerometer reading in m/s/s. Double 

Table 5. 5 IMU characteristics 
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and the camera parameters are: 

Stereo 

camera 

Intrinsic parameters Baseline 

uα  vα  0u  0v  

20 cm Camera right 557.6348 557.0185 166.1362 116.9926 

Camera left 563.5180 563.0117 171.6088 138.1079 

Table 5. 6 Camera parameters 

5.10.1 Feature Extraction  

Figure (5.18) shows two images acquired by the UAV stereo vision system. 

Figure (5.19) shows the features extracted using the classical SIFT. As can be seen, too 

many features are detected which is not suitable for our VSLAM algorithm. Suitable 

number of features is extracted by the Adaptive SIFT algorithm as shown in Figure 

(5.20) with energy threshold 30=thE . 

  

a) Image left                               b) Image right 
Figure.5. 18 Stereo image 

 

  

a) Image left                             b) Image right 
Figure.5. 19 SIFT features 
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a) Image left                              b) Image right 
Figure.5. 20 Adaptive SIFT features with 30=thE  

5.10.2 Feature Matching 

The results of feature matching using different criteria are presented in the 

following experiments with 4.0=DistRatio . From Figure (5.21) and Figure (5.22), very 

similar matching results are obtained with orientation and 2-norm distances. The 

number of matches shown achieved is high and may increase the possibility to get false 

matching. On the other side, the use ofnorm∞ − , in Figure (5.23), allows more 

distinctiveness of matched features since only a few but robust and distinctive features 

are detected and matched. This is very suitable for Visual SLAM, which is our intended 

application. 

 

 

Figure.5. 21 Matching using orientation criteria, 98 matches found 

 

Figure.5. 22 Matching using Euclidean distance, 93 matches found 
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Figure.5. 23 Matching using L-infinity Norm criteri a, 36 matches found 
 
 The energy of the DoG images in Adaptive SIFT with an energy 

threshold 80=thE  is illustrated in Figure (5.24) for both the left and the right images 

shown in Figure (5.18). As shown in this figure, when the energy of the DoG image 

decreases under the thresholdthE , a significant increase of scale is applied which 

implies a rise of the image energy. This process is repeated until the energy of the DoG 

image exceeds the threshold thE  or the scale exceeds a predefined value 20max =σ .  
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Figure.5. 24 Evolution of the energy of the DoG image in the Adaptive SIFT 
 

 Figure (5.25) shows the extracted features in a stereo image at two successive 

times, red features at t1 green features at t2. As can be seen all the features are well 

matched which proof the robustness of the adaptive SIFT.  
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a) Image left                              b) Image right 
Figure.5. 25 Feature association 

 

5.10.3 UAV Localisation and Mapping 

Several tests have been made using the helicopter (Colibri) shown in Figure 

(5.17). In these tests, a series of trajectories around a 3D scene were performed flying in 

autonomous mode navigation based on way points and desired heading values. The 

scene is composed of many objects, including a grandstand, a van and many other 

elements, and a series of marks suitable for feature and corner detection. For each flight 

test a 30 f.p.s. image sequence of the scene was obtained and associated with the UAV 

attitude information. This includes the GPS position, IMU data (Heading, body frame 

angles and displacement velocities) and the helicopter position given by the filtered 

output on the local plane with reference to the takeoff point. 

SLAM principle 

1- At t=0, UAV position is known (0,0,0,0,0,0). 

2- At t=t1, the UAV displaces and observes some features. 

3- The UAV new pose is estimated using the INS and the new features are 

initialized in the map using Inverse Observation Model. 

4- At t=t2, the UAV displace again and the observed features are divided on two 

sets: new features will be initialised in the map, re-observed features (already 

observed) will be used to correct the UAV pose given by the INS. 

5- Step 4 is repeated, and the loop closing (if exist) will be detected 

automatically.   
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5.10.3.1 Airborne 3D EKF VSLAM 

 UAV position, velocity and orientation estimated by the EKF VSLAM algorithm 

are presented in Figure (5.26). As can be seen from Figure (5.26. a, b and c), the 

position estimated by the EKF VSLAM is more accurate than the INS position which 

drifts significantly with time. UAV velocities in the body frame are given by Figure 

(5.26. d, e and f). From these figures, we observe that for a smooth trajectory of the 

UAV, the velocity estimation using INS is quite similar to VSLAM estimator. Figure 

(5.26.g, h and i) show the UAV attitude, we can observe a significant drift in the INS 

attitude while the EKF VSLAM maintains acceptable accuracy.    
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Figure.5. 26 UAV localisation using EKF VSLAM 
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5.10.3.2 Airborne 3D NH∞ VSLAM  

UAV position, velocity and orientation estimated by the NH∞ VSLAM 

algorithm are presented in Figure (5.27). As can be seen in Figure (5.27. a, b and c) the 

position estimated by the NH∞ VSLAM is more accurate than the INS position which 

drift significantly during time. UAV velocities in the body frame are given by Figure 

(5.27. d, e and f), from these figures we observe that for smooth trajectory of the UAV, 

the velocity estimation using INS is quite similar VSLAM estimator. Figure (5.27.g, h 

and i) show the UAV (Roll, Pitch and Yaw) angles, we can observe a significant drift in 

the INS attitude while the NH∞ VSLAM maintains acceptable results. 
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Figure.5. 27 UAV localisation using NH∞ VSLAM 
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5.10.3.3 EKF VSLAM vs NH∞ VSLAM 

 Figure (5.28), shows a comparison between the EKF VSLAM and NH∞ VSLAM 

for the UAV localisation. As explained in Section 5.9, the EKF filter may perform 

better than the NH∞ when the process and observation noise are white Gaussian and 

centered. However, in real sensing systems (IMU, and Cameras) the previous condition 

can rarely hold. In this case, the use of the NH∞, which does not make any assumption 

on the noise statistics, shows much better navigation and mapping performances than 

the EKF and provides an accurate position of the UAV as illustrated in Figure (5.28). 
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Figure.5. 28 EKF vs NH∞ UAV localisation 
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Figure.5. 29 Features uncertainties 

 
 Extracted feature in the navigation frame are represented in Figure (5.29.a).  

Feature uncertainties following X (north) and Y (east) are represented in Figure (5.29.b) 

which is a zoom of the dashed square area of Figure (5.29.a). As can be seen the 

uncertainty of features decreases when the features are re-observed.  

Figure (5.29.b) 

1st observation 
2nd observation  

3rd observation 
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5.11 Conclusion 

 In this chapter, we proposed a new approach to solve the Airborne VSLAM 

problem. It is based on the development of a full observation model of an IMU/Stereo 

cameras embedded on a UAV. Contributions in this chapter range from the 

observability and consistency analyses of the EKF (NH∞) Airborne VSLAM to the 

proposition of a robust version of an Airborne VSLAM using a new map management 

approach reducing VSLAM algorithm complexity. NH∞ VSLAM is compared 

favourably with the EKF VSLAM and accurate UAV positions are estimated when no 

assumptions are made either on the process model or on the noise characteristics. 



 
 

162 

 
 

Chapter 6 
 

Cooperative Visual 
SLAM 



 
 
 

Chapter 6 Cooperative Visual SLAM 

163 

CHAPTER VI                    

Cooperative Multiple UAV Visual SLAM 

 

6.1 Overview 

In this chapter, Cooperative Airborne VSLAM problem is investigated. First, a 

centralised cooperative VSLAM algorithm with loop closing detection is proposed. 

Then, a simulation and experimental results are presented with and without map 

management options. After that, Cooperative VSLAM decentralised architecture 

suitable for embedded system is proposed and validated using simulation data. Finally 

conclusions and future works are suggested.    

6.2 Introduction 

In many applications as the ones related to defence industry, a single sensing 

platform may not be sufficient to precisely collect data or to create maps of an unknown 

or partially known environment. Currently and probably more in the future, distributed 

sensing systems are required to gather precise information about remotely monitoring 

environments. Fleets of Autonomous Underwater Vehicles (AUVs) [112] and 

Unmanned Aerial Vehicles (UAVs) [113] have been lately proposed for applications 

ranging from environmental monitoring to surveillance and defence. These systems 

require the ability to both share and then fuse information from different sources into a 

consistent scene view [114]. In fact deploying these multiple vehicles into an 

environment by providing them with a mechanism for sharing information can deliver 

higher data rates, increase in robustness, and system failure minimisation.  

Autonomous navigation of multiple vehicles has introduced the problem of 

Cooperative Simultaneous Localisation and Mapping (C-SLAM). C-SLAM is 

performed when multiple vehicles share navigation and perception sensing information 

in order to improve their own position estimates beyond what is possible with a single 

vehicle. Simple collective navigation has been demonstrated in simulation using 

multiple ‘cartographer’ vehicles that randomly explore their respective environments 
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[115]. Sty in [116] performs simple relative localisation between collaborators using 

directional beacons. Other research work presented challenges in terms of localisation 

performances with growing uncertainties for C-SLAM [117-118]. Simulation and 

experimental validations were conducted in this later work to support their analysis. In 

addition, techniques based on entropy minimisation [119], and information theory 

[120], were also developed for Cooperative SLAM problem.  

Up to date a little effort only has been done in the field of multi-vehicle visual 

SLAM, named as Cooperative Visual SLAM (C-VSLAM). The latter considers the case 

where several vehicles move within their environment and build their map 

cooperatively using visual sensors [121-122]. This challenging visual absolute 

localisation/mapping problem is different from the recent research work aiming to 

achieve relative navigation in multi-vehicle systems [123]. In this chapter, we 

concentrate on this C-VSLAM problem and propose a solution that allows us to build a 

visual map using a set of reliable and a priori unknown visual feature observations 

obtained by a team of unmanned vehicles. 

Some solutions for Cooperative SLAM [124], and more specifically Cooperative 

Visual SLAM [125-126], are based on Extended Kalman filter. However, this latter is 

very sensitive to outliers. Moreover, the lower bound for the map accuracy, as presented 

in [127], is violated due to errors introduced during EKF linearisation process producing 

inconsistent estimates [127-128]. Achieving Cooperative SLAM, [129-130], and more 

specifically Cooperative Visual SLAM, [122, 126], based on particle filter estimation 

scheme present a major drawback related to the computation time that makes it not very 

suitable for hard real time applications as in airborne navigation. Although some very 

recent progress has been made by proposing filters that try to approximate the nonlinear 

SLAM problem [131-132], and lately C-SLAM, [133], by means of what is called 

Square Root Information Smoothing technique. Issues related to efficient retrieval of 

marginal covariance and results obtained through few data sets show that there is still a 

way to go to bring in such techniques to meet real time aerospace visual navigation 

requirements.  

In this chapter, based on a robust Nonlinear H∞ (NH∞) sensor fusion algorithm, 

we propose to solve the Cooperative Visual Simultaneous Localisation and Mapping 
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problem for Unmanned Vehicles navigating in unknown natural environment, under 

realistic conditions and with experimental validations. Effective stereo observation 

model and a map management approaches are also used to ensure a reduced 

computation time as to maintain a suitable correlation between feature observations, 

which is very important in C-VSLAM loop closing detection.  

6.3 Centralised Cooperative VSLAM (CC-VSLAM) 

 Centralised C-VSLAM is an extension of the single VSLAM solution proposed in 

Chapter 5. In multi-vehicle VSLAM problem, the estimated state vector becomes the 

position, velocity and attitude of the multiple vehicles and the positions of point feature 

observations in the environment.  

 

Figure 6. 1 Centralised Architecture 
 
The non-linear discrete time state transition equation given by Equation (5.21) can be 

extended to the multiple UAVs case as follows: 
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f  is the discrete time state transition function, kX is the state vector at time step k , 

kw is some additive process noises, kY  is the observation made at time k  by all the 

UAVs, kv  is some additive observation noises. The objective of the filtering technique 

is, then, to estimate kX  using available observationkY . The CC-VSLAM state vector 

and Jacobian matrix will be given by: 
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Figure 6. 2 Cooperative VSLAM architecture 
 

Figure (6.2) shows a diagram of our cooperative VSLAM concept. The essential 

step in this architecture is the Observation Model as a good cooperation is obtained 

when the shared region between the unmanned aerial vehicles (UAVs) is large. The 

shared features will used to update the global map and then improve the global pose of 

UAVs.  

6.3.1 Airborne Cooperative Visual SLAM  

          To detail our Cooperative VSLAM concept, assume we have N UAVs navigating 

in outdoor environment, and Mi is the number of features observed by the ith UAV at 

time t=k. The C-VSLAM algorithm runs centrally at the ground station and 

communicates the position and the map to each UAV as follows: 

At t=0 the UAVs positions, velocities and orientations are assumed known as well as 

the covariance matrix. During navigation, each UAV observes a set of features that can 

be divided into three types Figure (6.3): 

Type 1: feature re-observed (has been observed by the same UAVi). 

Type 2: feature re-observed (has been observed by other UAVj and j≠i). 

Type 3: new feature observed for the first time. 

Features of Type 1 and Type 2 will be used to update the map and the UAVs states, 

where features of Type 3 will be initialised and added to the map using the inverse 

model of observation [100]. When a new feature is observed by more than one UAV 

then it will be initialised more accurately (red feature in Figure (6.3)). 
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Figure 6. 3 Features in C-VSLAM algorithm 
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6.3.2 C-VSLAM algorithm 

 Cooperative VSLAM algorithm is presented below. It is similar to the Single 

VSLAM with some differences in feature observations and state updates.  
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6.3.3 Loop Closing Concept in Multiple VSLAM Case 

One key requirement for VSLAM to work well is feature re-observation. This has 

two advantages: the improvement of the feature location estimates in the map and the 

improvement of the vehicle location estimates. The latter is due to the statistical 

correlations that are built up between the environment features and the vehicle.  

Based on re-observation of features, long term VSLAM navigation is possible as 

loop closing detection (re-visiting the same area) can be used. This is also necessary to 

improve the consistency of the NH∞ VSLAM algorithm as shown in [100]. The 

consistency of the NH∞ VSLAM is improved when a loop closing is detected. In 

multiple UAV case two loop closing concepts can be defined. Loop closing when the 

UAV observes already observed features and Loop closing effect due to UAV 

cooperation. The former is the same concept as classically presented for single VSLAM. 

The latter happens when one cooperating UAV observes features already observed by 

one or more cooperating UAVs. Furthermore, when a new feature is observed by more 

than one UAV, then the initialisation of that feature in the global map is more accurate.  

6.4 Simulation results 

 This section presents simulation results of C-VSLAM involving two UAVs. Each 

UAV has its own inertial measurement unit (IMU) and stereo vision cameras. The C-

VSLAM algorithm is simulated to run centrally at the command station while 

communicating the position and the map to each UAV. 
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-c-                                                         -f- 
Figure 6. 4 UAVs positions, left XYZ position of UAV1 in navigation frame Right 

XYZ position of UAV2 in navigation frame 
 

 In Figure (6.4), curves in the left (right) side show the position of the UAV1 

(UAV2) in the X, Y and Z axes. As can be seen, X position Figure (6.4. a, d) and Y 

position Figure (6.4. b, e) are estimated with significant accuracy. This can be explained 

by the fact that cameras or stereo vision system can provide precise bearing information. 

This is not completely the case for the range information where the stereo vision system 

provides less accurate Z position as shown in Figure (6.4.c, f). On the above figures, we 

can also observe the effect of loop closing detection on UAV1 at t=200s, as well as the 

precision improvement obtained when UAV2 visits features already visited by the 

UAV1 at t1=80s and at t2=150s. 
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Figure 6. 5 UAV1 and UAV2 True, INS and corrected position 
 

 Figure (6.5) shows the trajectories of the two UAVs in the X and Y axes. While 

UAV1 (Red) closes its loop at t=200s, (dashed square), UAV2 (Blue) does not make 

any loop closing but it visits many features already visited by UAV1 (dashed ellipses). 
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Figure 6. 6 Features uncertainties 
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 Figure (6.6) presents the evolution of the uncertainties for six features from the 

global map. As shown, the uncertainty of each feature decreases with time. At t=200s a 

significant decrease of the uncertainty is observed and this is justified by the loop 

closing detection, which improves the consistency of the estimator at that time. 
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Figure 6. 7 UAV Z estimation single UAV SLAM vs multiple UAV SLAM 
 

 Figure (6.7) shows a comparison between single and cooperative UAV VSLAM 

in simulation. The estimation of the UAV1 Z-position with a single VSLAM, even if it 

still much better than the INS position, leads to an increasing error with time if no loop 

closure is detected. On the other hand, the estimation of the UAV1 Z-position with 

cooperative VSLAM provides more accurate position.  

6.5 Experimentations 

6.5.1 Experimental setup 

 Since multiple UAV setup was not available, experimental validation was 

arranged based on cooperative mobile robots (Pioneer3 AT), Figure (6.8.a), without 

losing generality in the validation process from ground robots (3DOF) to aerial vehicles 

(6DOF). In this experiment, stereovision data are fused with Odometer pose instead of 

the UAV full INS information.  
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                   -a-                                         -b-                                                 -c- 
Figure 6. 8 Mobile robot representation in navigation frame 

 

6.5.2 Feature Extraction and Matching 

Feature extraction and matching for robot 1 and 2 based on the development done 

in Section (4.2.8.1) are presented in Figure (6.9). One essential thing for robot 

cooperation is the availability of shared features (limited region by the red line) as in 

Figure (6.9.a, b, d and e). The shared features between robots are very important to 

maintain suitable accuracy and consistency even without closing the loop. The 

observation of features already observed by others robots (not necessary the same robot) 

provides similar rewards provided by the loop closing detection. 

   
a                    b 
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c 

     
d       e 

 
f 

Figure 6. 9 Feature extraction and matching, a, b) features extracted in left and 
right image observed by robot1, c) Features correspondence for robot1; d,e) 
features extracted in left and right image observed by robot2, f) Feature 
correspondence for robot2, shared region observed by robot 1 and 2 are limited by 
the red line. 
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6.5.3 Experimental Navigation Results without Map Management 

 In the first part of these experiments, the CVSLAM without map management is 

validated. In this case, all observed features will be added to the state vector. Thus, the 

correlation between features and UAVs will increase, which will lead to an accurate 

estimation of the map and UAVs positions. However, the size of the state vector will 

increase linearly with time as shown in Figure (5.16). This is not suitable for long term 

navigation as it will impact on computation requirements and time. 

6.5.3.1 Experimental Indoor Results 

 Figure (6.8.b, c) shows the state variables (X, Y and θ) of the two mobile robots 

considered in this experiment. Our vehicle has three degree of freedom rather than six 

as for aerial vehicles. However, the observation system is still the same as presented in 

Section 5.4, Chapter 5. 
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-c-                                                                     -f- 
Figure 6. 10  Robots positions, left XYZ position of Robot1 in navigation frame 

Right XYZ position of Robot2 in navigation frame 
 

  Figure (6.10) shows the results of pose estimation using experimental data of two 

mobiles robot navigating in indoor environment. Each robot acquires images using the 

bumblebee stereo cameras Figure (6.8.a). As can be seen good pose estimation (position 

x, y and orientationθ ) is obtained by the C-VSLAM algorithm comparing to the 

odometer pose.  

 Comparison between Single VSLAM (S-VSLAM) and Cooperative VSLAM 

using real data is given in Figure (6.11). As can be seen from Figure (6.11.a and b) in 

short term navigation positions (X and Y) estimated by S-VSLAM and C-VSLAM are 

quite similar, however, when the navigation time increases the S-VSLAM estimator 

becomes less accurate comparing to the C-VSLAM estimator which maintains a good 

precision.  
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Figure 6. 11 Mobile robot localisation Single VSLAM V vs Cooperative VSLAM 

 

  Experimental results of the images mosaic using Cooperative VSLAM algorithm 

are presented in Figure (6.12, 13 and 14). Figure (6.12) and Figure (6.13) show the 

image mosaic constructed using mobile robot 1 and 2 respectively, while Figure (6.14) 

shows the image mosaic constructed using both robots. It is clear that cooperating 

robots build a larger map than each robot alone, which is a very important aspect when 

exploring large area of environment. 
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Figure 6. 12 Image mosaic constructed by Robot 1 

 

Figure 6. 13 Image mosaic constructed by Robot 2 
 

 

Figure 6. 14 Image mosaic constructed by Robot 1 and 2 
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6.5.3.2 Experimental Outdoor Results 

 Experimental outdoor validation was also conducted in order to verify the 

robustness of our approach in a scenario when environment conditions are not 

controlled. Figure (6.15) shows the results of pose estimation using experimental data of 

two mobiles robot navigating in outdoor environment. As can be seen good pose 

estimation (position x, y and orientationθ ) is obtained by the C-VSLAM algorithm 

comparing to the odometer pose.  

 

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500
Robot1 

Time (s)

X
 p

o
si

tio
n

 

 

CVSLAM position
Odometer position
Ground truth

0 10 20 30 40 50 60
4000

5000

6000

7000

8000

9000

10000

11000
Robot2 

Time (s)

X
 p

o
si

tio
n

CVSLAM position
Odometer position
Ground truth

 

-a-                                                              -d- 
 

0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

100
Robot1 

Time (s)

Y
 p

o
si

tio
n

CVSLAM position
Odometer position
Ground truth

0 10 20 30 40 50 60
-4000

-3000

-2000

-1000

0

1000
Robot2 

Time (s)

Y
 p

o
si

tio
n

CVSLAM position
Odometer position
Ground truth

 

-b-                                                                 -e- 
 



 
 
 

Chapter 6 Cooperative Visual SLAM 

181 

0 10 20 30 40 50 60
-0.05

0

0.05

0.1

0.15
Robot1 

Time (s)

T
h

et
a

 A
ng

le

 

 

CVSLAM angle 
Odometer angle
Ground truth

0 10 20 30 40 50 60
0.45

0.5

0.55

0.6

0.65

0.7
Robot2 

Time (s)

T
h

et
a

 A
ng

le

CVSLAM angle 
Odometer angle
Ground truth

 

-c-                                                                 -f- 
Figure 6. 15  Robots positions, left XYZ position of Robot1 in navigation frame 

Right XYZ position of Robot2 in navigation frame, outdoor experience 
 
 

 Experimental results of the images mosaic using C-VSLAM algorithm in outdoor 

environment are presented in Figure (6.16, 17 and 18). Figures (6.16 and 6.17) show the 

image mosaics built using mobile robot 1 and 2 respectively. Figure (6.18) shows the 

image mosaic built in the command computer using both robot scene perceptions. From 

these figures, it is clear that cooperating robots will have access to a larger map than 

each robot alone, which is very important to explore large area in outdoor environments. 

 

 

Figure 6. 16 Image mosaic constructed by Robot 1 
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Figure 6. 17 Image mosaic constructed by Robot 2 
 

 

Figure 6. 18 Image mosaic constructed by Robot 1 and 2 
 
 As we mentioned in this section, without map management the )( 2NO  

complexity of the H∞ filter ( N being the dimension of the state vector) does not allow 

large environments to be efficiently mapped since it limits the total number of 

landmarks that can be stored in the map [90]. Beyond this upper limit, real-time 

processing is no longer possible [105]. To prevent the state vector from a rapid 

dimension increase that would dramatically limit the mapping capacity of our VSLAM 

system, we extend the map management approach presented in Chapter 5, Section (5.8) 

to the CVSLAM case.  

6.5.4 Experimental Navigation Results with Map Management 

At each time step, the state vector is proposed to contain the new observed 

features and the best k -landmarks observed previously by each UAV. As explained in 
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Section (5.8), this will help to maintain a suitable state vector size, building a large map 

and to make the loop closing detection possible with the few maintained features. 

6.5.4.1 Single VSLAM with Map Management and Loop Closing 

 Figure (6.19) shows the pose estimation (position x, y and orientationθ ) of a 

mobile robot obtained by the Single VSLAM with map management. As can be seen the 

S-VSLAM position is more accurate than the odometer position. However, S-VSLAM 

position diverges with time until t=70s when a loop closing is detected which increases 

the estimation accuracy. Map management positive is apparent here since that even with 

many features removed from the state vector (to reduce the CVSLAM complexity), the 

loop closing is well detected and the estimation of vehicle positions is fine. 
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-c- 
Figure 6. 19 Position of Robot1 using Single VSLAM with map management and 
loop closing 
 
Figure (6.20) presents the interface that is built and run centrally on our command 

computer and based on the communication data transmitted by single robot. Displays of 
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trajectory estimation, of the detected features from the scene and of the good and false 

matching for the robot are given.   

  

 

Figure 6. 20 Robot1 X-Y position using Single VSLAM with map management and 
loop closing 

 
6.5.4.2 Cooperative VSLAM with Map Management and Loop Closing 

  Figures (6.21 and 22) show the results of the experimental pose estimation of the 

two cooperative robots navigating indoor. Good pose estimation (position x, y and 

orientation Theta) is obtained by the C-VSLAM algorithm comparing to the odometer 

pose for the two robots.  

  The advantages of the map management appear clearly from these results. Not 

only the CVSLAM complexity is reduced but also the loop closing is well detected for 

Robot 1 (although many features are removed from the state vector). 
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-c- 
Figure 6. 21 Position of Robot1 using cooperative VSLAM with map management 

and loop closing 
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-c- 
Figure 6. 22 Position of Robot2 using cooperative VSLAM with map management 

and loop closing 
 
  Figure (6.23) presents the interface that is built and run centrally on our command 

computer and based on the communication data transmitted by the two cooperative 

robots. Displays of trajectory estimation, of the detected features from the scene and of 

the good and false matching for the two robots are given.  

 

 

Figure 6. 23 Robot 1 and 2 X-Y position using Cooperative VSLAM with map 
management and loop closing 
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6.5.5 Single VSLAM vs Cooperative VSLAM 

 Comparison between experimental S-VSLAM and C-VSLAM is given in Figure 

(6.24). As it is shown, navigation positions (X and Y) estimated by S-VSLAM is less 

accurate comparing to the C-VSLAM estimates that maintain a good precision. In fact a 

zoom on the first instants of robot travels shows that C-VSLAM and S-VSLAM look 

close to each others. However, after a little travelling C-VSLAM navigation results 

outperform single navigation results. This is mainly due to the fact that to the sharing of 

visual features which augment the reliability and robustness of the estimation process 

by reducing perception uncertainties. In addition to this, loop closing effects is apparent 

on both single and cooperative VSLAM by looking carefully on Figure (6. 24) at time 

70s.      
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-c- 
Figure 6. 24 Mobile robot localisation Single VSLAM V vs Cooperative VSLAM 

With map management and loop closing detection 
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6.6 Decentralised Cooperative VSLAM (DC-VSLAM) 

The main advantage of the Centralised Cooperative VSLAM is the construction 

of a reliable large map and the estimation of an accurate UAV position. However, the 

centralised architecture has two main drawbacks. First, failure of one component results 

in complete failure of the whole system. Second, UAVs are not fully autonomous but 

depend on the ground station, Figure (6.1). This makes UAVs able to navigate in a 

limited area around the ground station only because of communication and delays 

constraints. One promising solution to overcome these constraints is to propose a 

Decentralised Cooperation of UAVs. In this latter each UAV has its own S-VSLAM 

algorithm and the cooperation between UAVs will be taken in consideration only when 

shared features are observed. Many works are proposed in the literature to solve the 

Decentralised CVSLAM problem. Most of them have been devoted to the definition of 

different architectures [137-140]. Mostly behavior-based [141-142], that rule the 

interaction between the behaviors of individual robots. 

6.6.1 UAVs Cooperation in DC-VSLAM 

Communication is a central issue of multi vehicle system because it determines 

the possible modes of interaction among vehicles, as well as their ability to build 

successfully a world model. Communication may appear in three different forms of 

interaction [143]: (i) via environment, using the environment itself as the 

communication medium; (ii) via sensing, when an agent uses its sensing capabilities to 

observe and perceive the actions of its teammates; and (iii) via communication, using a 

communication channel to explicitly exchange messages among the agents to 

compensate perception limitations. 

The proposed Decentralised Cooperative VSLAM (DC-VSLAM) will be mainly 

based on the third form of interaction which is via explicit communication. The most 

restrictive constraint for explicit communication is the limited amount of data to 

communicate between UAVs. As a result, the collective data to share should be selected 

carefully in order to maximise the gain with a minimum communication.  
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Figure 6. 25 Decentralised architecture 
 
 Figure (6.25) shows the architecture of the Decentralised C-VSLAM. Each UAV 

has its own S-VSLAM and when shared features are observed their positions and 

uncertainties are updated using Distributed Estimation (DE). 

6.6.2 Which UAVs Will Cooperate? 

Assume we have N UAVs ( NUAVUAVUAV ...,,, 21 ). At itt =  each iUAV  observes 

iM feature ),,( iiii zyxf . Our strategy is then to detect possible shared region is as 

follows: 

For each iUAV  we calculate the mean (iµ ) and the standard deviation (iσ ) of the 

observed featuresif . Then, each set of observed features will be approximated by an 

ellipsoid ( iξ ) centered at ( iµ ) with axes ( iσ ). Therefore, iUAV  and jUAV  will 

cooperate ( 1),( =jiCoop ) if and only if: oji /≠∩ξξ . 

6.6.3 DC-VSLAM Strategy 

The proposed Decentralised C-VSLAM strategy is defined as follows: assume we 

have three UAVs ( kji UAVUAVUAV ,, ) observing a number of features ( kji NNN ,, ) 

respectively. Each observed feature has a descriptor or an index.  

 The proposed strategy, Figure (6.26), allows communication between UAVs of: 

number of observed features, indexes of these features and the positions and 

uncertainties of shared features referred by the communicated indexes. Then, the 
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Covariance Intersection (CI) approach is used to estimate the position and covariance of 

shared features before adding them to the global map. 

 
Figure 6. 26 DC-VSLAM strategy 

 

6.6.4 Covariance Intersection  

6.6.4.1 Introduction 

Covariance Intersection (CI) enforces consistency of system state estimates by 

means of additional weighting coefficients [149]. In order to obtain variance estimates 

that are not far too conservative, the weighting coefficients should be chosen with a 

certain care. One would be able to produce less conservative estimates by, e. g., 

selecting the weights in accordance to a tight bound for the joint covariance [144] or 

using a split covariance intersection algorithm [145], respectively. But, these and other 

approaches to incorporate additional knowledge into the fusion process as, for example, 

discussed in [146-147] are beyond the scope of this work. In some applications, the 

implementation of such more involved approaches may not even be possible due to 

limited computing resources and/or low communication bandwidths. It is assumed from 

now on that a precise quantification of cross-correlation between estimates is not 

available. 

With respect to the weighting coefficients for covariance intersection, it is usually 

suggested to minimize either the trace or the determinant of the resulting error variance 

matrix. In order to avoid the possibly high numerical effort for solving this nonlinear 

convex optimisation problem, an approximate Fast Covariance Intersection (FCI) 
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scheme has been proposed by Niehsen [148]. In due course, it will turn out that the 

coefficients obtained by FCI approach may deviate significantly from the solutions of 

the aforementioned optimisation problem [149]. 

6.6.4.2 Fast Covariance Intersection 

Starting from two features estimates 1x̂  and 2x̂  of the true feature position x  

given by 1UAV  and 2UAV  respectively and the corresponding positive definite error 

variance matrices 1P  and 2P , a combined estimate x̂  with error variance matrix P  is 

sought. For uncorrelated estimates 1x̂  and 2x̂ , the overall Minimum Mean Square Error 

(MMSE) estimate is given by basic convex combination of the two estimates. 
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It is known that in presence of correlation between the two initial estimation errors, the 
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with nonnegative coefficients 1ω  and 2ω  obeying 

121 =+ ωω  

 Herein, the coefficients 1ω  and 2ω are usually chosen as to minimize either the 

trace or the determinant ofP . In order to avoid high numerical computations and to find 

the solution of such a highly nonlinear optimisation problem, Niehsen has proposed to 

use a fast approximate solution instead. Niehsen has argued that a replacement of 1P  

by 2P  and vice versa must lead to correspondingly switching coefficients 1ω  and 2ω . 

For )()( 21 PtracePtrace <<  one would expect to get 11 ≈ω . 

with that, Niehsen [148] has suggested to use the following solution: 

     0)()( 2211 =− PtracePtrace ωω                 (6.3) 
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6.6.4.3 Adaptive Covariance Intersection 

The previous equations of Fast Covariance Intersection (FCI) are useful for static 

sensors when sensor positions are known accurately. However, in our case the cameras 

are embedded on UAVs navigating in 6DoF and the positions of those UAVs are 

estimated with uncertainties. These latter are not taken in consideration in the Fast 

Covariance Intersection scheme proposed by Niehsen [148]. For example assume 1UAV  

( 2UAV ) position is estimated with covariance 1UAVP  ( 2UAVP ) as illustrated in Figure 

(6.27). Then, if we assume )()( 21 UAVUAV PtracePtrace << , which mean 1UAV  position is 

estimated more accurately than 2UAV . In this case, feature estimation given by 1UAV  

should have more weight than that given by 2UAV . As consequence: 

when )()( 21 UAVUAV PtracePtrace <<  then 11 →ω , 02 →ω  which means 1ˆˆ xx → , 1PP → . 

From this analysis and from the Niehsen [148] analysis, we propose a new Adaptive 

Covariance Intersection scheme, where the determination of 1ω  depends not only to 

)( 1Ptrace  and )( 2Ptrace  but also by )( 1UAVPtrace  and )( 2UAVPtrace . Thus as it is 

mentioned in Figure (6.27): 

11 →ω  when )()()()( 2211 PtracePtracePtracePtrace UAVUAV +<<+ , as a result 

Equation (6.4) will be formulated as follows: 

)()()()(

)()(

2121

22
1

UAVUAV

UAV

PtracePtracePtracePtrace

PtracePtrace

+++
+

=ω     (6.5) 

This manner to calculate 1ω  is more suitable and realistic for DC-VSLAM problem 

when neither UAV positions are known nor feature positions are known.  
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Figure 6. 27 Adaptive Covariance Intersection 
 

6.6.5 DC-VSLAM algorithm 

 Our DC-VSLAM algorithm is based on taking into consideration the limited 

amount of data to exchange between UAVs. During navigation, each UAV observes a 

set of features. Each feature has a descriptor or an Index. Then, the mean and standard 

deviation of this set of features is calculated and approximated by an ellipsoid for each 

UAV. Two UAVs will cooperate if and only if there is an intersection between feature 

ellipsoids. If this condition is satisfied then, Indexes will be transmitted from the UAV 

that is observing fewer features to the second UAV in order to check which features are 

shared (have similar Index). After that, shared features are communicated. Adaptive 

Covariance Intersection (ACI) will then run in the UAV receiving features to estimate 

the position and covariance of shared features before adding them to the global map. 

The main steps of DC-VSLAM algorithm are presented below: 
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At each step timet  

      If 1),( =jiCoop  

iN  number of features observed by UAVi  

jN  number of features observed by UAVj 

If ji NN <  

           iN  Indexes [ ]),()...,( iNiIndiInd 1  will be transmitted to jUAV  

          For l=1: iN  

             If )],()...,([),( iNjIndjIndliInd 1∈  

     - ),( liInd  is a shared feature. 

     - ),( liInd  will be transmitted to iUAV  

- )),(( liIndPos and )),(( liIndCov    will be 

transmitted to jUAV  

- Adaptive Covariance Intersection (ACI) will be 

used to estimate the position and covariance of 

feature observed by iUAV and jUAV  

End 

End 

Else  

  The same algorithm will run in iUAV  

 End 

End 

End 

6.6.6 CC-VSLAM vs DC-VSLAM 

In the Centralised Cooperative VSLAM (CC-VSLAM), the state vector contains 

UAV positions and all observed features. This way, the correlation between UAV-

UAV, UAV-Feature and Feature-Feature can be estimated. This leads to an accurate 

state estimation. However, such strategy can result with time in a state vector size 

increase, which is not suitable for long term navigation.  
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 On the other hand, in Decentralised Cooperative VSLAM (DC-VSLAM) each 

UAV has its own state vector. The cooperation between UAVs is done only when 

shared features are available. Otherwise, each UAV is considered to run its Single 

VSLAM. Thus, DC-VSLAM will result in a similar performance or less than the one 

obtained by using CC-VSLAM. Positive effects of DC-VSLAM are more in its 

flexibility and suitability to deal with restricted communication, system complexity and 

timely decision making for embedded systems and real time applications. 

6.6.7 Simulation results 

 Figure (6.28) shows the results of simulation of two cooperative UAVs using the 

Decentralised VSLAM approach. The green UAV position is estimated accurately with 

DC-VSLAM even without loop closing detection. The shared regions between the two 

UAVs (dashed pink ellipses) were enough to reach a suitable accuracy.  

 
Figure 6. 28 Two UAVs cooperating using the DC-VSLAM 

 
 XYZ positions in navigation frame and UVW velocities in body frame of the 

UAV1 (red) and UAV2 (green) are given in Figure (6.29 and 6.30) respectively. From 

Loop closing 

Shared region 

O True trajectory 
O  INS trajectory 
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the figures good estimations are obtained for X, Y and Z positions for both UAVs. From 

Figure (6.29.f), significant decrease of the estimation error is observed at t=200s when 

loop closing is detected (UAV1 re-visits the same area, dashed square in Figure (6.28)).  

From Figure (6.30), good pose estimation is obtained for UAV2 even without making a 

loop. This can be explained by the efficiency of DC-VSLAM algorithm in exploiting 

the shared regions between UAVs. 
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Figure 6. 29 UAV1 positions and velocities, left XYZ position in navigation frame 
Right UVW velocity in body frame 
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Figure 6. 30 UAV2 positions and velocities, left XYZ position in navigation frame 
Right UVW velocity in body frame 
 
 If we compare these results with those obtained by the CC-VSLAM, we can 

conclude that quite similar performances are obtained. Both results achieve good pose 

estimation with loop closing detection. However, DC-VSLAM is more suitable for 

embedded systems and real time application as stated in the section above.  

 

6.7 Conclusion INS position 

 In this chapter, we proposed a robust approach to solve the cooperative Airborne 

VSLAM problem based on the development of a full stereo camera observation model. 

An adaptive SIFT feature extractor followed by stereo vision constraints fast matching 
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were introduced to construct a large map. Robust Cooperative VSLAM is implemented 

based on the Nonlinear H∞ filter and compared with the Single VSLAM. The proposed 

Centralised Cooperative VSLAM solution was validated using simulation and 

experimental data and good and very promising results were obtained. In the last section 

of this chapter we proposed another alternative to solve the Cooperative VSLAM based 

on a decentralised architecture. This latter is more suitable for embedded applications. 

The adaptive DC-VSLAM strategy is validated in simulation and promising results 

were obtained. 
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CHAPTER 7 

 

Conclusions and Future work 

 The aim of this thesis is to achieve the UAV full autonomy by developing tools 

able to provide an accurate automatic localisation in an accurate environment map. 

SLAM problem looks at the ability of an autonomous vehicle, starting in a partially 

known or unknown environment, to incrementally build an environment map and 

simultaneously localise itself within this map. New challenges in SLAM are delivering 

methods enabling large-scale implementations in increasingly unstructured 

environments and especially in situations where GPS-like solutions are unavailable or 

unreliable such as urban canyons and urban environments.  

This thesis has studied a number of technical problems that are necessary to solve 

in order to increase UAV autonomy. First, UAV localisation has been investigated. 

Then, UAV map building was presented followed by an implementation of a 

simultaneous localisation and mapping solution using visual observation. Finally, we 

extended the single UAV VSLAM solution to the cooperative VSLAM case.  The 

presented work has been virtually divided into four integrated contributions. First, in 

Chapter (3), a proof of SDRE stability has been developed and validated using 

simulation data. Next, INS/GPS UAV localisation techniques using 

EKF/UKF/SDRE/ ∞NH have been proposed, implemented and compared using 

experimental data. Second, an Adaptive Scale Feature Transform (ASIFT) was 

proposed in Chapter (4) to detect suitable number of features for any kind of airborne 

visual environment. ASIFT was validated in image mosaic construction using real 

images. In the same chapter a new feature detector/descriptor Scale Wavelet Invariant 

Feature (SWIF) was introduced more specifically for VSLAM and real time imaging 

application. Third, in Chapter (5) the 3D VSLAM problem has been solved using the 

robust nonlinear ∞H filtering scheme. This latter does not make any assumption about 

noise characteristics and is robust against process and observation modeling errors. 
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Observability and consistency analysis are investigated in this chapter. A novel map 

management approach is also proposed in order to make the algorithm suitable for real 

time implementation. Experiments using real data have illustrated the robustness 

of ∞NH filter when noise is not centred or not white. Finally, in chapter (6), Centralised 

and Decentralised Cooperative VSLAM solutions have been developed and presented. 

Experiments using real data have demonstrated the efficiency of the proposed methods 

to construct a large map of the environment and to estimate well positions of 

autonomous vehicles within this map. 
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Future work 

 As every research work, this thesis has been limited by time and funds. Thus, a 

number of research challenges have been identified and proposed for future 

investigation. In chapter (3), contributing at solving the INS/GPS localisation problem 

by taking into account system uncertainties to increase the navigation solution 

robustness is a challenging problem. Another area of research that can be explored 

following the work presented in Chapter (4) is the application and validation of the new 

SWIF Detector/Descriptor to VSLAM real time application. In Chapter (5), an intuitive 

suggestion of future work is to solve the airborne VSLAM problem using SDRE 

filtering technique which presents a major advantage since it avoids linearisation 

problems. In Chapter (6), Cooperative VSLAM as new subject of research can be 

explored and investigated further and more deeply. For Decentralised CVSLAM 

scheme, many ideas and contributions could be thought of. An optimal architecture of 

communication and data sharing between a large numbers of UAVs is of crucial 

importance to this decentralised cooperative scheme. Extending our proposition in 

Chapter (6) and Validating it using a team of UAVs with embedded VSLAM for each 

of the UAVs is a challenging future task. 

 Furthermore, one important aspect to be investigated in the future is the real time 

constraints (algorithms complexity and computation time). This latter is very important 

to select the suitable algorithm for real time implementation.   
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