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ABSTRACT 

Multilocus Sequence-Typing (MLST) is a phylogenetic technique based on the 

detection of differences in multiple conserved housekeeping genes. Together with 

powerful evaluation software, MLST provides an extensive classification scheme for 

highly diverse species. However, despite the increasing use of MLST as a trusted 

epidemiological tool, the population structure of UPEC has been poorly studied using 

this technique, as most of the previous studies conducted have been limited either by 

bias towards certain characteristics, such as antimicrobial resistance and serogroup, or 

included a limited number of strains. Such studies can give a false impression of the 

population structure due to overrepresentation of certain Sequence types (STs). 

 

In this thesis, MLST was applied to 300 E. coli isolates collected from in the North 

West of England between June 2007 and June 2009. Firstly, the prevalence, diversity, 

epidemiological relationships and phylogenetic origins of the identified STs were 

determined. Secondly, possible associations of key UPEC STs with other genotypic and 

phenotypic profiles were assessed. Thirdly, as ST131 was recently reported as one of 

the most successful UPEC clones, an extensive examination of isolates of this clone 

was carried out involving identification of multiple drug resistant subclones and 

attempts were made to recognise putative predictor markers for identification of the 

ST131 clone. 

 

MLST analysis of the studied population revealed a consistent profile of STs that 

occurred repeatedly in the collection. It consisted primarily of ST73 (16%) followed by 

ST131 (13.3%), ST69 (9%), ST95 (6.3%), ST10 (4.3%), ST127 (3.6%), ST14 (2.6%) 

and ST405 (1.6%) some of the STs (ST127 and ST80) in the panel have never been 

reported as remarkable uropathogens. 

 

The broad range of virulence factor (VF) genes screened here allowed the recognition 

of VF patterns significantly associated with different STs. Most notably, ST127, which, 

based on phylogenetic analysis, appears to be a newly evolved clone, gave the highest 

virulence score. This virulent genotype may permit survival of ST127 isolates in the 

population long enough for them to gain antibiotic resistance. In contrast, multidrug 

resistant isolates of the ST131 clone were defined by a low virulence score and 

distinctive VF profiles. 

 

Metabolic reactions have been conventionally used for the classification of bacteria into 

families and species. Interestingly, in the assessment of the metabolic activity of 

different STs, members of the ST131 clone showed a high metabolic capacity 

compared to those of other STs, which may compensate for the low virulence capacity 

and explain the virulence reported for members of this ST. In contrast, ST127 showed 

the lowest metabolic capacity, even though it held the highest VF-score among the 

commonly detected STs.  

 

Multivariate logistic regression analysis demonstrated that ST131 is best described by 

its fluoroquinolone resistance and possession of PAI, the ibeA gene and expression of 

DR antigen-specific adhesins, whereas the O25b-CTX-M-15 ST131 sub-clone was 

only differentiated from the rest of the ST131 clone members by the production of 

Extended spectrum Beta-lactamase (ESBL) enzymes. 
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1. Introduction 

Since it was discovered in 1885, Escherichia coli has been subjected to comprehensive 

studies and become one of the best understood and characterized organisms (Kuhnert, 

Boerlin & Frey 2000; Weintraub 2007). 

Despite the vast knowledge accumulated throughout the last decades, E. coli is still one 

of the major causes of infection in humans. In addition to urinary tract infection (UTI), 

where it is responsible for most of the reported cases and gastrointestinal disease, E. 

coli has been associated with a number of other diseases including pneumonia and 

meningitis (Kaper, Nataro & Mobley 2004; Kuhnert et al. 2000). 

Emergence of pathogenic E. coli strains has frequently been reported worldwide. 

Sporadic outbreaks caused by E. coli O157:H7 are increasingly being reported 

worldwide (Duffell et al. 2003) and in the United States it causes 73,000 enteric related 

illnesses with 2,168 hospitalizations and 61 deaths annually (Rangel et al. 2005).  

Recently, a new class of Extended Spectrum Beta-Lactamase producing strain (called 

CTX-M producing E. coli) has emerged and spread globally and is most often seen in 

urinary tract infections (Lavigne et al. 2007; Mugnaioli et al. 2006; Woodford et al. 

2007).  

Certain multidrug-resistant, uropathogenic lineages of E. coli have been associated with 

outbreaks such as the one reported between 1987-1988 in south London where E. coli 

O15:K52:H1 caused community acquired cystitis, pyelonephritis and septicaemia 

(Manges et al. 2001).  
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1.1. Escherichia coli  

Escherichia coli is  a very diverse species of bacteria that forms a major part of the 

normal intestinal flora of humans and other mammals. Because of its wide distribution 

in the environment E. coli is able to colonise the intestines shortly after birth following 

the ingestion of contaminated food or water and is known to have a principle role in 

maintaining healthy guts (Kaper et al. 2004; Weintraub 2007).  

1.2. Growth characteristics 

E. coli is gram negative facultative anaerobic, motile bacteria, a taxonomically well 

defined member of the family Enterobacteriaceae.  Its capability to grow in 

temperatures ranging from 7°C to 50°C and tolerate acidic condition down to pH 4.4 is 

reflected in its ability to survive various environmental conditions and it can be 

detected contaminating different surfaces from hands and clothes to soil and 

underground water (Kaper et al. 2004; Kramer, Schwebke & Kampf 2006; Kuhnert et 

al. 2000). It can be recovered easily from clinical specimens using simple culture media 

incubated at 37
o
C either in the presence or absence of oxygen (Garrity 2005; Weintraub 

2007).  

1.3. Pathotypes of Escherichia coli 

Strains constituting the species E. coli are of a broad variety ranging between non-

pathogenic commensals that commonly inhabit the gastrointestinal tract of humans and 

other mammals and major pathogenic strains that may cause serious diseases. 

According to its capability of causing disease, pathogenic E. coli are broadly classified 

into two major categories, enteric E. coli (EC) that mainly cause infections limited to 
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the mucous lining of the intestines and extra intestinal pathogens (ExPEC), which have 

the capability to spread from the intestine and to cause infections in other parts of the 

body (Kuhnert et al. 2000; Marrs, Zhang & Foxman 2005; Xie et al. 2006).  

On the basis of their pathogenic features the enteric pathogenic E. coli are further 

differentiated into  six pathotypes: enteropathogenic E. coli (EPEC); enterohemorrhagic 

E. coli (EHEC); enterotoxigenic E. coli (ETEC); enteroinvassive E. coli (EIEC); 

enteroaggregative E. coli (EAEC); and diffusely adherent E. coli (DAEC) (Kaper et al. 

2004; Weintraub 2007). 

1.3.1. Extra intestinal pathogenic Escherichia coli 

Compared to enteric E. coli, ExPEC has not yet been well categorized. According to 

the type of disease they cause, the ExPEC are differentiated into: Uropathogenic E. coli 

(UPEC); Sepsis-associated E. coli (SEPEC); and Neonatal meningitis associated E .coli 

(NMEC) (Johnson et al. 2003a; Johnson & Russo 2005; Kuhnert et al. 2000). 

 However, E. coli is known to cause infections in other anatomical sites. It has been 

recently suggested that the use of an inclusive term, such as ExPEC, rather than the 

restrictive terms such as UPEC , SEPEC and NMEC, would be useful to reflect their 

broad infectious abilities (Johnson et al. 2003a; Johnson & Russo 2002). 

1.4. Escherichia coli as an uropathogen 

E. coli is the commonest pathogen to cause UTI, accounting for as much as 90% of all 

UTIs seen among non-hospitalized patients and up to 50% of all nosocomial UTI 

(Srinivasan, Foxman & Marrs 2003; Tartof et al. 2005). Due to anatomical differences 

(i.e. the shorter female urethra), UTIs are more common among women than men with 
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almost all women experiencing at least one UTI in their lifetime (Moore, Day & Albers 

2002; Tartof et al. 2005). UPEC are responsible for 85-95% of uncomplicated cystitis 

in premenopausal women, the estimated number of cases being 130-175 million/year 

worldwide. In addition, UPEC cause 90% of uncomplicated pyelonephritis (5.4 million 

cases/year worldwide) (Russo & Johnson 2003). 

1.4.1. Clinical aspects and pathogenesis 

UPEC are associated with asymptomatic bacteriuria and uncomplicated cystitis as well 

as severe pyelonephritis.  Infection usually occurs following the movement of UPEC 

from the intestinal tract and, in some cases, the vagina where it persists as a component 

of the normal flora, to the periurethral area (Kuhnert et al. 2000; Xie et al. 2006). These 

movements occur as a result of a complex combination of host behaviours, host 

susceptibility and certain abilities possessed by UPEC that have yet to be fully 

understood (Xie et al. 2006).  From the periurethral area the bacteria ascend the urethra 

and colonize the bladder resulting in cystitis. Some strains may be able to invade the 

lining epithelial cells and multiply intracellularly, forming bacterial inclusions that may 

play an important role in recurrent UTIs (Schilling & Hultgren 2002). However from 

the bladder UPEC may spread to the kidneys and cause pyelonephritis and other serious 

complications may occur when the bacteria invade the blood stream resulting in 

systemic infection (Kaper et al. 2004).  

Clinically, a total count of >10
5
 CFU/ml of UPEC in midstream urine is considered as 

indicative of bacteriuria, however, in women a count of less than 10
5
 CFU/ml appear to 

be associated with UTIs (Lloyd, Rasko & Mobley 2007). The clinical features vary 

considerably and depend in part on the age and the gender of the patient and other 

underlying clinical conditions. Disease ranges from painful urination in uncomplicated 
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urethritis or cystitis to severe systemic illness associated with abdominal or back pain, 

fever, sepsis and decreased kidney function in some cases of pyelonephritis (Naber et 

al. 2001).  

Generally the ability of UPEC to move from the intestinal tract, colonize and cause 

infection in the urinary tract has resulted from a cumulative action of several specific 

virulence factors. The virulence factors include determinants that aid resistance to host 

defences, mediate adhesion, increase iron acquisition or paralyse ureteric peristalsis 

(Johnson 1991). Table 1.1 shows different types of virulence factors associated with 

different types of UTIs.  

Simultaneous expression of multiple virulence factors appears to be more common 

among UPEC than faecal isolates and it is more common among UPEC isolated from 

upper UTI than isolates from lower UTI, suggesting synergistic activity of the virulence 

factors to overcome host defence and establish an infection (Johnson 1991; Yamamoto 

2007).  

Moreover, in a comparative genomic hybridization analysis of a set of UPEC and 

faecal / commensal E. coli isolates against a pyelonephritogenic E. coli strain (CFT073) 

using microarray, Lloyd and his colleagues were able to delineate 13 genomic islands 

of which 10 were previously unrecognized islands. The authors also identified 131 

genes exclusively found in UPEC isolates, many of which are of hypothetical function 

and may play important role in pathogenesis of UTI (Lloyd et al. 2007).  
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Table 1.1 Summary of extra intestinal virulence factors and their association with UPEC 

Factor activity Epidemiology Remarks 

 

          P fimbriae  

 

 

 

 

 

         X adhesins 

                 Dr. family 

 

 

              

                

                 S fimbriae 

 

 

 

 

 

                  F1C 

 

 

 

        Type 1 fimbriae 

 

Adhesion 

 

 

 

 

 

 

Adhesion 

 

 

 

 

Adhesion 

 

 

 

 

 

Adhesion 

 

 

 

Adhesion 

 

70%, 36%, 24% and 19% of isolates from 

pyelonephritis, cystitis, asymptomatic bacteriuria 

and faeces of healthy individuals, respectively. 

 

 

 

 

Up to 50%, 26%, 6% and 18% associated with 

isolates isolated from cystitis, pyelonephritis, 

asymptomatic bacteriuria and faecal isolates 

respectively. 

 

Mainly associated with meningitis and 

bacteraemia  

 

 

 

 

- 

 

 

 

Present in almost all E. coli isolates. 

 

Prevalence of P fimbriae among 

isolates from bacteraemia arising 

from UTI is as high as 71%, 

suggesting strong correlation of P 

fimbriae with the ability of UPEC 

to cause severe infections. 

 

 

 

 

 

 

Binding sites for S fimbriae are 

found on the epithelial cells of the 

proximal and distal tubules, 

collecting ducts and glomerulae 

and in the renal interstitium. 

 

Binding site found on some renal 

tissue. Its role in facilitating UTI 

still unknown. 

 

Binding sites are found on several 

cells including buccal, intestinal, 

vaginal epithelial cells suggesting 

a role in the colonization of 

mouth, gut and vagina. 
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Summarized from: (Guyer et al. 2002; Johnson 1991; Kaper et al. 2004; Mills, Meysick & O'Brien 2000)

Continued.  

Factor activity Epidemiology remarks 

 Siderophores 
       Aerobactin  

 
Iron acquisition 

 
73%, 49%, 58%, 41% and 38% of isolates from 

pyelonephritis, cystitis, bacteraemia, asymptomatic 

bacteriuria and faecal isolates, respectively. 

 
Proposed association with E. coli 

causing serious and complicated 

UTI, as it promotes bacterial growth 
in conditions limited in iron 

concentration. 

Toxins  

     Haemolysin (HlyA) 
 

 

 
  
   Cytotoxic necrotizing factor 1    
   (CNF1) 

    

 
   Secreted autotransporter toxin (Sat) 

 

Lysis of 
erythrocytes and 

leukocytes 

 
 

Inhibit phagocytic 
activity 

 

 
Vacuolating 

cytotoxin 

 

Present in 49%, 40%, 20% and 12% of isolates from 
pyelonephritis, cystitis, asymptomatic bacteriuria and 

faecal isolates. 

 
 

Frequently associated with UTI isolates and 
significantly related to prostatitis. 

 

 
More frequently associated with pyelonephritis 

causing isolates. 

 

Mainly associated with invasive UTI. 
It plays a complex role from aid in 

iron acquisition to disruption of 

phagocyte function and direct 
toxicity to host cells. 

Capsular polysaccharide  

        K antigen 
      

 

       
        

        O antigen 

 

Antiphagocytic 
 

 

 
 

Serum resistance 

 

Certain types of K antigen commonly detected 
among isolates from pts UTI in comparison to faecal 

isolates. K1 & K5 were detected in 63% of isolates 

from women with pyelonephritis. 
 

Certain types of O antigen exhibit 

anticomplementary activity are associated with E. 
coli isolated from UTIs, (such as O1, O2, O4, O6, 

O16, O18, O22, O25 and O75). 

  

 
 

Together K & O antigens serve as an 

important tool to differentiate UPEC 
from other E. coli strains. 
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1.5. Antimicrobial resistance in UPEC 

As one of the most frequently isolated pathogens in clinical practice, UPEC are 

considered to be a major reservoir for genes encoding antimicrobial resistance. Several 

factors may contribute to the development and spread of antibiotic resistance including 

volume of antibiotic use, poor hygienic conditions, use of antibiotics in animal feeds 

and overcrowded living conditions together with bacterial virulent characteristics (Erb 

et al. 2007; Lau et al. 2008b; Moreno et al. 2009). In addition to pathogenic E. coli, 

antibiotic resistance may involve commensal E. coli in the bowel, which may become a 

major reservoir of resistant strains (Erb et al. 2007). 

Results from the Sentry antimicrobial surveillance programme, which is a longitudinal 

surveillance program designed to track global antimicrobial resistance trends, show  

remarkable variations in antibiotic resistance involving most of the known antibiotic 

groups with high resistance rates reported from South America and Asia and the lowest 

in Europe and North America (Fluit et al. 2000; Gordon & Jones 2003). 

1.5.1. Beta-lactam antibiotics 

These are the most widely used antibiotics in clinical medicine (Bush & Macielag 

2010). In the treatment of UTI, amoxicillin with or without clavulanic acid and the first 

generation cephalosporins have been used in the treatment of uncomplicated UTIs, 

whereas third generation cephalosporins are recommended for treatment of complicated 

upper UTI (Anonymous 2006). 

Resistance to beta-lactam antibiotics is mostly associated with bacterial production of 

different beta-lactamase enzymes that break the beta-lactam ring and inactivate the 

antibiotics (Bush & Macielag 2010). 
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1.5.1.1. Beta-lactamases 

TEM1 and TEM2 are the most common plasmid-mediated beta-lactamases in Gram-

negative bacteria, including E. coli. In addition to a less common enzyme termed SHV, 

all are able to hydrolyze penicillins and narrow spectrum cephalosporins, such as 

cephalothin but they are not effective against higher generation cephalosporins such as 

cefotaxime, ceftazidime, ceftriaxone, or cefepime. However, their action can be 

overcome with beta-lactamase inhibitors like clavulanic acid (Canton & Coque 2006). 

1.5.1.2. Extended Spectrum Beta-lactamases 

Shortly after the introduction of cefotaxime early in 1980s, new derivatives of the 

common TEM-1, -2 and SHV-1 enzymes, named SHV2 and TEM3, were detected with 

transferable resistance to the oxyimino-cephalosporins (eg, cefotaxime, ceftazidime, 

and ceftriaxone). They were named extended spectrum beta-lactamases (ESBLs) in 

1989 by Philippon and colleagues (Philippon, Labia & Jacoby 1989). At the same time, 

a new family of ESBLs was detected and named CTX-M. These were characterized by 

higher levels of resistance to cefotaxime than to ceftazidime and the first description 

was in an isolate from Munich (Canton & Coque 2006). 

Although TEM and SHV ESBLs were dominant among ESBLs during the 1990s, 

occasional nosocomial outbreaks, mostly of CTX-M-2-producing Enterobacteriaceae, 

were reported (Pitout 2009). This situation changed during the 2000s with the 

worldwide emergence of CTX-M-15 producing E. coli as an important cause of 

community-onset UTIs (Canton & Coque 2006; Coque et al. 2008; Ellington et al. 

2006; Lavigne et al. 2007; Pitout 2009; Woodford et al. 2007). According to the 

www.lahey.org database accessed  on  January 2011,  137 different CTX-M enzymes 
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have been identified (www.lahey.org/studies/other.asp#table1) and can be clustered 

into five different groups (CTX-M-1, -2, -8, -9 and -25) (Canton & Coque 2006).  

 

 

CTX-M-15 beta-lactamase belongs to the CTX-M-1 group and is characterized by an 

increased catalytic activity against ceftazidime, and bacteria producing these enzymes 

often test resistant to this agent. It has often been associated with carriage of other beta-

lactamases such as TEM-1 and OXA-1 as well as the aminoglycoside-modifying 

enzyme AAC(6‟)-Ib-cr  that has an additional ability to acetylate fluoroquinolones 

offering resistance to norfloxacin and ciprofloxacin (Peirano & Pitout 2010). 

1.5.2. Fluoroquinolone 

Quinolones are family of synthetic antibacterial agents with broad spectrum activity. 

They bind DNA gyrase and topoisomerase IV when they are in a complex with DNA 

and inhibit chromosome re-ligation after enzyme-mediated cleavage (Walker 1999). 

Quinolones have long been used in the treatment of UTIs with the first developed 

quinolone (nalidixic acid) in 1962, which had marked antibacterial activity against 

gram-negative bacteria making it suitable for the treatment of UTI. This was followed 

by introduction of the fluoroquinolones with broad spectrum activity and better 

systemic distribution allowing use in upper and complicated UTIs (Ball 2000). 

Ciprofloxacin is the fluoroquinolone currently recommended for the treatment of upper 

and complicated UTI (Anonymous 2006). Due to the increased resistance against most 

commonly used antibiotics, fluoroquinolones have been used with increasing frequency 

in both complicated and uncomplicated UTI leading to a rapid increase in 

fluoroquinolone resistance (Jacoby 2005). 

http://www.lahey.org/studies/other.asp#table1
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Resistance to fluoroquinolones typically arises as a result of a series of mutations in the 

target enzymes (DNA gyrase and topoisomerase IV) and of changes in drug entry and 

efflux. Mutations are selected first in the more susceptible target genes coding DNA 

gyrase and topoisomerase IV, gyrA resulting in resistance to nalidixic acid, whereas 

additional mutations in the next most susceptible target parC augment resistance 

further, to involve fluoroquinolones. Resistance to quinolones can also be mediated by 

plasmids that produce the Qnr protein, which protects the quinolone targets from 

inhibition (Hooper 2001).The resistance to fluoroquinolones in E. coli has increased 

significantly over the last decade. In the annual reports of the European Antimicrobial 

Resistance Surveillance Network (EARS-Net), 28 of 29 countries in Europe reported a 

significant increase in fluoroquinolone resistance between 2001–2007 and 8 of 28 for 

the period 2006- 2009 with the majority reporting resistance around 20% (with a range 

between 7% and 43%). In the UK, resistant isolates of E. coli increased from 7–18% 

between 2001 and 2009(Anonymous 2007; Anonymous 2009). 

1.5.3. Trimethoprim 

Trimethoprim is a bacteriostatic antibiotic that has been widely used alone or in 

combination with sulphonamides (SXT) in the treatment and prophylaxis of UTI 

(Huovinen et al. 1986). Trimethoprim acts by interfering with the action of bacterial 

dihydrofolate reductase, inhibiting synthesis of tetrahydrofolic acid leading to the 

inhibition of DNA replication and resistance in E. coli is mainly mediated by plasmid 

mediated gene (dfr) encoded modified dihydrofolate reductases whose configuration is 

not susceptible to trimethoprim (Skold 2001).  

Although resistance to trimethoprim alone or as a combination with sulphonamides has 

increased during recent decades (Steinke et al. 2001), it is still recommended for 

http://en.wikipedia.org/wiki/Antibiotic
http://en.wikipedia.org/wiki/Dihydrofolate_reductase
http://en.wikipedia.org/wiki/Tetrahydrofolic_acid


Chapter 1                                                                             Introduction 

28 

 

treatment of uncomplicated UTI(Anonymous 2006). However, in 2001, Manges et al. 

described a clonal group of SXT resistant E. coli, named clonal group A (CGA), which 

was found among women with acute uncomplicated UTI in one university community 

(Manges et al. 2001). Since then CGA isolates have been recovered from several 

populations across the United States (Johnson et al. 2002; Manges, Dietrich & Riley 

2004; Manges et al. 2001) and has also been described in other parts of the world 

(Johnson et al. 2009; Johnson et al. 2005c; Manges et al. 2008) suggesting clonal 

dispersion leading to a remarkable increase in SXT resistance (Johnson et al. 2002).  

1.5.4. Aminoglycosides 

Aminoglycosides are a group of broad spectrum bactericidal drugs, which includes 

many drugs such as gentamicin, amikacin, streptomycin, tobramycin, kanamicin and 

neomycin. They share chemical, antimicrobial, pharmacologic and toxicity 

characteristics and because of their poor pharmacokinetics and considerable toxicity 

their use been limited to serious infections (Mingeot-Leclercq, Glupczynski & Tulkens 

1999). 

Aminoglycosides act by inhibiting protein synthesis in bacteria through binding to the 

ribosomes. In gram negative enteric bacteria, resistance to aminoglycosides is mainly 

mediated by plasmid encoded aminoglycoside modifying enzymes (Mingeot-Leclercq 

et al. 1999). To date, over 85 aminoglycoside modifying enzymes have been identified, 

however only few such as AAC(3)-I, AAC(3)-II, AAC(3)-III, AAC(3)-IV, AAC(6‟)-I 

and ANT(2‟‟) appear to cause the majority of aminoglycoside resistance among E. coli 

isolates (Ho et al. 2010) 
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Although aminoglycosides are not recommended for the treatment of UTI in 

UK(Anonymous 2006), aminoglycoside resistant E. coli have previously been reported 

(Johnson et al. 1995; Woodford et al. 2007), Recent studies have suggested food 

producing animals are an important reservoir for the aminoglycoside-resistance gene 

found in human isolates (Chaslus-Dancla et al. 1991; Johnson et al. 1994). 

1.5.5. Overview of antimicrobial drug resistance in UPEC 

During recent decades, antimicrobial resistance has significantly increased among 

UPEC (Erb et al. 2007; Moreno et al. 2006; Yu et al. 2007) and unexpected trends of 

antimicrobial resistance among E. coli have been reported globally. In the UK, concern 

was raised over the emergence of community acquired gentamicin resistant UPEC 

(Woodford et al. 2007), as well as the increase in ciprofloxacin resistance in E. coli 

isolated from blood (Livermore et al. 2003) and the global spread of CTX-M ESBL 

producing strains (Canton & Coque 2006; Ellington et al. 2006; Lavigne et al. 2007; 

Woodford et al. 2007). In 2001, Manges and colleagues, reported community spread of 

one clonal group of UPEC responsible for up to 50% of E. coli isolates resistant to co-

trimoxazole derived from women with acute cystitis in California, Michigan and 

Minnesota, USA (Manges et al. 2001). 

Several biological mechanisms may contribute to development and spread of these 

distinctive resistance patterns in UPEC. Although mutations responsible for antibiotic 

resistance are in some cases a result of positive selection pressure (Martinez & Baquero 

2000), the main mechanism for the development of antibiotic resistance is horizontal 

gene transfer, which has been considered an important route for transmission of 

virulence factors and antimicrobial resistance in E. coli (Blahna et al. 2006).  
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The conjugative plasmids responsible for the spread of antibiotic resistance usually 

contain an integron structure consisting of an int-1-gene encoding the integrase that 

catalyzes the integration and excision of the gene cassettes encoding antibiotic 

resistance (Hall & Collis 1998). For trimethoprim resistance, where horizontal 

dissemination is so far considered to be the main route of spread, at least 30 different 

dfr genes are known to be responsible for trimethoprim resistance. These genes are 

mostly located on plasmids and reside within integrons (Blahna et al. 2006). 

The role of plasmids in dissemination of antibiotic resistance has long been established 

and involves almost every class of clinically important antibiotics. The recent spread of 

ESBL producing strains in the community has been strongly associated with plasmid 

mediated CTX-M enzymes particularly CTX-M 15 (Nicolas-Chanoine et al. 2008). 

Similarly, the rise in fluoroquinolone resistance has increasingly been associated with 

plasmid mediated aac (6)-lb-cr and qnr genes (Coque et al. 2008; Sabtcheva et al. 

2009), which suggests horizontal transfer of these resistance encoding plasmids 

(Nicolas-Chanoine et al. 2008) and the fact that these different resistance genes co-exist 

on same plasmid, together with other antibiotic resistance genes, facilitates their 

dissemination through co-selection processes. However, the fact that many of these 

geographically dispersed strains share considerable genomic and phenotypic 

characteristics, supports an alternative explanation, that is of clonal expansion (Nicolas-

Chanoine et al. 2008). 

However, the extent that each mechanism contributes to the observed rise in antibiotic 

resistance is not always clear. Under conditions where horizontal gene transfer was 

sufficient to drive the dissemination of antibiotic resistance with clonal expansion 

amplifying the genes within individual hosts, regionally independent gene distributions 

were expected. Conversely, in cases where horizontal gene transfer is rare, clonal 
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expansion accounts for most of the increase in the resistance level and region-

dependent gene distributions are to be expected (Blahna et al. 2006). 

 The role of mutators (section 1.6.2.1.2) in causing the high prevalence of antimicrobial 

resistance among UPEC is still under debate. However, a strong correlation between 

antimicrobial resistance and high frequency mutators is often reported, suggesting that 

it could be a result of the selection pressure exerted by commonly used antibiotics 

(Baquero et al. 2005; Denamur et al. 2002; Ellington et al. 2006; Miller, O'Neill & 

Chopra 2004). In addition, the increasing use of fluoroquinolones, which are known to 

be a mutagenic drugs, as an alternative therapy for UTIs could explain the high 

prevalence of hyper mutable ESBL producing strains (Baquero et al. 2005).  

Furthermore, the ability to form biofilms and to develop intracellular bacterial 

communities within murine bladder urothelium allows UPEC to establish reservoirs 

protected from the immune system and antibiotic treatment and serve as a persistent 

source of bacteria. This may contribute to the emergence of antibiotic resistant UPEC 

strains (Parsek & Singh 2003; Rosen et al. 2007)         

Recently, management of UTIs has become increasingly challenging as a result of 

emerging resistance to most first-line antimicrobial agents, necessitating revised 

empirical treatment approaches (Cagnacci et al. 2008). 

Understanding the rules governing the interplay among all these discrete factors 

involved in the development, transfer and spread of antibiotic resistance could help 

explain the emergence and dissemination of successful strains and increase an 

understanding the evolution and population structure of UPEC may eventually facilitate 

development of better management strategies.  
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1.6. Epidemiology of UPEC 

The epidemiology of UTIs caused by UPEC has always been difficult to assess as UTI 

in general is not a reportable disease in many countries (Foxman et al. 2002; Stamm 

2001). However, recent community spread of certain lineages of UPEC with abnormal 

characteristics, such as resistance to antibiotics or high level of virulence, provide 

evidence of sporadic epidemics or outbreaks, which otherwise would have remained 

unrecognised (Johnson et al. 2009; Leflon-Guibout et al. 2004; Manges et al. 2001; 

Woodford et al. 2007). In addition, with a lack of ongoing surveillance, conventional 

epidemiology fails to appreciate fully the specificity of UPEC and the fact that its 

pathogenicity is distinct from other E. coli. In contrast, molecular epidemiological tools 

provide a closer look at microbial traits explaining virulence behaviour and host 

predilections of the pathogen and offer insights into the origins and spread of bacterial 

diseases (Johnson & Russo 2005). 

1.6.1. Molecular epidemiology of UPEC 

The completion of the genome sequence of E. coli K-12 created a great opportunity to 

determine the precise functions of all encoded genes. This provided data for complete 

genome comparisons, to identify genes coding for unique properties in related 

pathogens, as well as giving an insight into the evolutionary relations of different 

pathogens (Blattner et al. 1997). However, the available genetic data on pathogenic E. 

coli indicates that up to 10-20% of the genomic information found in highly pathogenic 

E. coli is not present in E. coli K-12. Most of the pathogen specific DNA appears to 

encode various virulence factors responsible for the pathogenicity of E. coli  (Kuhnert 

et al. 2000). 
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1.6.2. Evolution of UPEC 

Based on phenotypic studies carried out on a defined standard reference set of natural 

isolates from a variety of hosts and geographical locations (the ECOR collection), the 

natural populations of E. coli appear to exist as a collection of lineages with limited 

exchange of chromosomal genes (Ochman & Selander 1984; Selander & Levin 1980).  

On the other hand, the rapid development of molecular techniques such as polymerase 

chain reaction (PCR), DNA sequencing and molecular typing has had a great impact on 

the study of bacterial evolution and, thus, genetic studies of UPEC show evidence of a 

much more diverse population structure (Foxman 2007). 

1.6.2.1. Sources of genetic variation 

Generally, three basic mechanisms can generate genetic variation leading to bacterial 

diversity: mutation; hypermutation; genetic recombination. The impact of each 

mechanism on the evolution and the diversity of UPEC will be considered below. 

1.6.2.1.1. Mutation 

Referring to any inheritable change in genetic material, mutations are basically caused 

by DNA replication errors and include substitutions and insertion or deletion of 

nucleotides. In some cases this is promoted by the activity of different transposable 

elements.  

1.6.2.1.1.1. Substitutions 
 

Substitutions or point mutations can be synonymous (changes in DNA sequence do not 

affect the translated amino acid) or non-synonymous (changes in DNA sequence result 

in altered amino acid sequence). Such mutations occur randomly but continuously in 

most bacteria during DNA replication.  Most synonymous substitutions are free from 
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natural selection and therefore provide a good measuring index for time of divergence 

between two species. On the other hand, non-synonymous substitutions are mostly 

deleterious in nature due to positive selection. Detection of both types may therefore 

provide information about the degree of selection exerted on a defined gene (Kimura 

1983). 

1.6.2.1.1.2. Insertions and deletions 
 

Insertions and deletions is another type of mutation, which could be the result of errors 

in DNA replication in which a few bases are inserted or deleted, such as seen with 

slipped-strand mispairing (Levinson & Gutman 1987). Insertion or deletion of large 

blocks of DNA is usually caused by DNA crossover or DNA transposition. Generally if 

it occurs in a coding region, it causes frame shift mutations, which almost always result 

in altered amino acid sequence (Snyder & Champness 2007a). 

1.6.2.1.1.3. Inversions 
 

Inversion mutations are usually caused by homologous recombination between inverted 

repeats in the same DNA fragment in which a DNA sequence is flipped over and lies in 

the reverse orientation. Inversion mutations often cause no phenotypic alteration and 

rarely occur in the evolution of E. coli (Mahan & Roth 1991). 

1.6.2.1.2. Hypermutation  

Hypermutators, which are strains that show a higher mutation rate than wild type 

organism due to deficient mismatch repair systems, are able to exchange genetic 

material at a higher rate than the wild type organism, which eventually increases the 

rate of genetic variation (LeClerc et al. 1996; van Belkum et al. 2001). Hypermutators 

have been detected among different bacterial populations including Neisseria 

meningitidis, Salmonella enterica and E. coli. Although their evolutionary value is 
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limited, UPEC generally express a high frequency of mutators (Denamur et al. 2002; 

Hall & Henderson-Begg 2006; van Belkum et al. 2001). Furthermore, they could be 

associated with the development of chronic UTI through the development of persistent 

intracellular reservoirs (Labat et al. 2005). 

1.6.2.1.3. Homologous recombination 

This occurs more often and refers to the genetic exchange between homologous 

sequences of closely related organisms and affects the variation in existing genes rather 

than introducing new genetic information into the genome. The fact that almost all 

organisms have some kind of homologous recombination mechanism indicates its 

important role in bacterial survival allowing rapid adaptation to the environment 

(Snyder & Champness 2007b). 

1.6.2.1.4. Lateral gene transfer 

Similar to homologous recombination, lateral gene transfer involves acquisition of new 

genetic material, but unlike homologous recombination it involves different 

strains/species and results in introduction of new genetic information into the lineage 

and, hence, is often referred to as non-homologous recombination (Doolittle 1999). 

Recent studies on genetic evolution of enteric bacteria reveals an integral role of lateral 

gene transfer in the diversification and speciation of enteric organisms (Lawrence & 

Ochman 1998; Ochman, Lawrence & Groisman 2000). Although the level of 

recombination and its effect on population structure in E. coli are still a matter of 

debate, several reports strongly suggest that horizontal transfer has a great impact on 

the evolution and the diversity of UPEC through acquisition of new genetic material 

either by conjugation or transduction (Guttman & Dykhuizen 1994; Oelschlaeger, 

Dobrindt & Hacker 2002; van Belkum et al. 2001). 
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Comparative studies on genetic structure of E. coli and other enteric pathogens were 

able to identify reliable indicators of lateral gene transfer, which include atypical GC 

content, mosaic alleles and inconsistency between gene trees (Lawrence & Ochman 

1998). 

1.6.2.1.5. Pathogenicity islands (PAIs)  

These were first described in E. coli, but have recently been found in the genomes of 

various pathogens of humans, animals and plants (Schmidt & Hensel 2004). 

Pathogenicity islands, which are unstable regions of chromosomal DNA 10-200 

kilobases (kb) in size that encode determinants responsible for extra intestinal 

pathogenicity, were frequently detected in UPEC isolates but are absent from the 

genomes of non-pathogenic E. coli. The instability of these pathogenic sequences is 

related to its acquisition of mobility genes (e.g. integrases and insertion sequences) and 

the association with tRNA genes, which have been suggested to act as integration sites 

for foreign DNA. 

The G+C content of pathogenicity islands frequently differs from the rest of the 

genome, suggesting that they have been acquired from other related bacterial species by 

horizontal gene transfer (Lloyd et al. 2007). In their study of the genetic variation of the 

P-associated pilus gene (pap) in different UPEC, Plos et al (1989) provided evidence 

supporting the horizontal gene transfer hypothesis for pap genes among UPEC (Plos et 

al. 1989) and similar findings were reported by others (Bingen et al. 1998; Hacker & 

Kaper 2000).  
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1.6.3. Population genetics  

Population genetics of bacteria is the study of genetic variation of bacterial populations 

and is used to explain the evolutionary basis of genetic variation between and within 

bacterial species (Trevors 1998). 

Earlier studies suggested that E. coli form a clonal population structure (Achtman et al. 

1983; Achtman & Pluschke 1986; Ochman & Selander 1984).  

In typical clonal populations, clonality arises solely from vertical transmission of 

genetic information through binary fission whereby new lineages emerge by the 

accumulation of mutations over successive generations. Consequently, the distribution 

of chromosomal polymorphisms will be non-random, or in linkage disequilibrium 

(Spratt & Maiden 1999). 

However, bacterial make attempts to conserve genomic integrity and possess a number 

of mechanisms that, in addition to DNA-damage repair, promote genetic diversity 

through homologous exchange of sequences between members of the same clone or 

otherwise different clones (Aguilera et al. 2007). The frequency of such 

recombinational events in bacterial populations, which can vary from very low (clonal 

populations) as seen with Enterococcus faecium, to very high (non-clonal populations) 

such as Helicobacter pylori, determine the population structure. Differences in the ratio 

of genetic change caused by recombination in relation to that caused by mutation leads 

to a spectrum of bacterial population structures, with most diversification in the 

bacterial population involving recombination. However, recombination often will not 

prevent the emergence of clonal lineages within the population (Spratt & Maiden 1999; 

Turner et al. 2007). 
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1.6.4. Population structure of UPEC 

The strong association of certain serotypes with UTIs (Johnson et al. 1997; Kuhnert et 

al. 2000) and with certain subgroups of E. coli such as UPEC clonal group A strains, 

which share similar O antigen groups (O11, O17, O73 & O77) (Kuhnert et al. 2000; 

Lloyd et al. 2007; Prats et al. 2000; Tartof et al. 2005) initially lead to the suggestion 

that E. coli populations are in general clonal in nature. The successful application of 

techniques such as multilocus enzyme electrophoresis (MLEE), which indexes the 

allelic variation in multiple chromosomal genes, generated large databases that allowed 

statistical analysis of bacterial populations with enough data to strongly support the 

suggestion that populations exhibit strong linkage disequilibrium (non-random 

association of alleles) and revealed the rarity of recombinational exchanges between 

bacterial lineages (Feil et al. 2001; Smith et al. 1993). 

Conversely, analysis of closely related E. coli clones reveals frequent involvement of 

recombination in the diversification of E. coli (Guttman 1997; Guttman & Dykhuizen 

1994). 

Phylogenetic analysis of MLEE profiles of the E.coli Reference collection (ECOR) 

strains define four major phylogenetic groups (A, B1, B2, D) and ungrouped strains 

(UG) (LeCointre et al. 1998). Most ExPEC are derived from group B2 and to a lesser 

extent from group D, while the other pathogenic E. coli are consistently distributed in 

all classes with the commensal strains belong to group A (Clermont, Bonacorsi & 

Bingen 2000). Results from molecular studies of the recognised extra-intestinal 

virulence factors are compatible with this classification, where B2 group strains are 

highly pathogenic with numerous virulence determinants responsible for extra intestinal 

infections and strains of phylogenetic group D seem to have fewer virulence 

determinants than B2 group strains, whereas strains of the group A and B1, are most 
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often devoid of extra intestinal virulence determinants (Figure 1.1) (Johnson & Russo 

2005). Recent efforts have been applied to further sub-typing of UPEC based on 

acquisition of specific pathogenicity islands, which could provide an ideal diagnostic 

tool for UTI caused by UPEC (Kanamaru et al. 2006a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.7. Methods used for typing pathogenic E. coli  

The ability to carry out epidemiological investigations to determine the population 

structure and the epidemiological distribution of pathogens is important to increase our 

understanding of the evolutionary processes of such pathogens, and subsequently 

improve public health.   

Usually, the closeness of strains is a reflection of the phenotypic and genotypic 

variation seen either in bacterial behaviour toward the environment or the chromosomal 

Figure 1.1 Phylogenetic distribution of Extra intestinal virulence associated 

genes in E. coli adapted  from  (Johnson & Russo 2005) (papA, P fimbriae; kpsMT, 

group II capsule synthesis; sfa/foc, S and F1C fimbriae; iutA, aerobactin; traT, serum 

resistance; fimH, type I fimbriae) 
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DNA of the examined strains. Therefore, the ability of a typing technique to identify 

related strains depends greatly on the rate at which these variations occur in the tested 

parameter (Tenover, Arbeit & Goering 1997).  

Several successful approaches have been introduced for typing and classification of E. 

coli. These range from novel methods to modification of existing ones to enable more 

precise, sensitive, cheap and most of all rapid methods for the identification and 

differentiation of UPEC strains. 

 

Based on the target parameter, typing methods can be divided into two categories            

                    1. Phenotyping methods          2. Genotyping methods 

 

Phenotyping methods are those that characterize the products of gene expression in 

order to identify and further classify strains into different subgroups such as biotyping, 

phage typing, antibiotyping, serotyping, polyacrylamide gel electrophoresis and 

multilocus enzyme electrophoresis. All of which differ in their characteristics such as 

sensitivity, precision and availability, but most of them have limited discriminatory 

power (van Belkum et al. 2001). 

Genotypic methods are those that are based on direct analysis of the genetic structure of 

examined strains. The nature of the genetic screen will vary depending on whether it is 

for the detection of certain genes or plasmids or screening for pathogenicity islands or a 

certain clonal/phylogenetic group. Several typing methods are commonly used for E. 

coli  including , pulsed field gel electrophoresis (PFGE), restriction fragment length 

polymorphism analysis (RFLP), ribotyping, random amplification of polymorphic 

DNA (RAPD), enterobacterial repetitive intergenic consensus sequence PCR (ERIC) 
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and multilocus sequence typing (MLST) (Johnson & Russo 2005; Olive & Bean 1999; 

Power 1996). 

Most of these methods differ in their characteristics such as typeability, discriminatory 

power, reproducibility, cost and time consumption (Johnson & Russo 2005; van 

Belkum et al. 2001) (Soll, Pujol & Lockhart 2007)  

 

Moreover, using these techniques to examine the relation between strains depends 

greatly on the rate at which changes occurs in the examined parameter. Phenotyping 

methods such as biotyping and antibiotyping tend to change at a rapid pace according 

to the changes in the growth environment, which makes them mostly suitable to detect 

recent changes among closely related strains, providing sufficient information for 

primary epidemiological investigation (Hopkins & Hilton 2000). 

 

1.7.1. Phenotyping methods 

1.7.1.1. Biotyping 

Generally biotyping, like most phenotypic methods, is considered to be an unreliable 

epidemiological tool because of its modest reproducibility and poor discriminatory 

power. However, advancement in automated biotyping methods provide more reliable 

tools that rely on a variety of novel substrates and precise interpretation techniques that 

increase the reproducibility and discriminatory power (Tenover et al. 1997).  

The reliability of biotyping as an epidemiological tool depends greatly on the pathogen 

in question, as bacteria vary in their biochemical reactions, some bacterial species 

lacking biochemical diversity, whereas others, such as E. coli, have considerable 

biochemical variability (Godbout-DeLasalle & Higgins 1986). Despite this, biotyping 

methods designed for identification of strains of the family Enterobacteriaceae have 
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been shown to be dependable and a useful method in characterization of E. coli 

(Brauner et al. 1987; Leclercq et al. 2001). 

Moreover, automation of biochemical fingerprinting methods, based on numerical 

analysis of biochemical reaction kinetics to differentiate bacterial strains, has been 

proven to be highly discriminatory and reproducible when fermenting bacteria are 

tested and the resulting classifications were comparable to that of PFGE (Kuhn 1985; 

Kuhn et al. 1995). 

1.7.1.2. Antibiogram typing  

Similar to biotyping, antimicrobial susceptibility patterns are of poor discriminatory 

power and of low reproducibility because of the selective pressure exerted by frequent 

exposure to antibiotics, especially in healthcare facilities. In addition, the fact that many 

antimicrobial resistance genes are associated with mobile genetic elements significantly 

decreases the reliability of antibiotyping methods as an epidemiological tool (Tenover 

et al. 1997). 

However, detection of unusual antimicrobial susceptibility patterns often indicates 

spread of certain strains and, thus, can be used in combination with other typing 

methods to provide an initial screening tool (Manges et al. 2001; Phillips et al. 1988).  

1.7.1.3. Serotyping  

Serotyping remains an important epidemiological tool to describe lineages and 

population composition. It is based on antibodies directed against 173 O antigens, 80 K 

antigens and 56 H antigens creating up to 100,000 or more possible combinations 

(Orskov & Orskov 1992). Several studies showed a strong association of different 

serotypes with different pathotypes. Certain serotypes are commonly associated with 

UTIs (Johnson et al. 1997; Kuhnert et al. 2000) and with certain subgroups of E. coli 
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such as UPEC clonal group A strains, which share similar O antigen groups (O11, O17, 

O73 & O77) (Kuhnert et al. 2000; Lloyd et al. 2007; Prats et al. 2000; Tartof et al. 

2005).  

However, the high diversity of E. coli requires strains to be tested against a large 

number of antisera, which reduces the practicality of using this method and increases 

the cost further limiting its use. 

1.7.1.4. Multilocus enzyme electrophoresis (MLEE) 

Until the application of DNA sequencing became more routinely available, multilocus 

enzyme electrophoresis had a great role in describing the phylogenetic structure of E. 

coli and other organisms. It uses the electrophoretic mobility of enzyme variants to 

detect polymorphism in housekeeping genes. Variations in electrophoretic mobility are 

the result of DNA variations at sites leading to amino acid changes (Selander et al. 

1986). Regardless of its contribution to global epidemiological studies, multilocus 

enzyme electrophoresis has limitations regarding standardization and comparability 

with data from other laboratories (Selander et al. 1986; Urwin & Maiden 2003). 

1.7.2. Genotyping 

1.7.2.1. Restriction based methods 

1.7.2.1.1. Plasmid analysis 

Plasmids are self replicating, extrachromosomal circles of DNA that encode a wide 

variety of genes, including those mediating antimicrobial resistance, virulence and 

metabolism of hydrocarbons (Snyder & Champness 2007c). 
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Upon cell division, copies of plasmid are transferred to daughter cells and subsequently 

cells of the same clone carry the same plasmids. The number and the size of plasmid in 

each cell provide a comparable profile that can be used to differentiate strains. Despite 

the natural ability of plasmids to transfer horizontally, which can interfere resolution of 

a strain‟s true relationship, and its low discrimination power, plasmid profiling still 

provides a reliable initial epidemiological screening tool (Foley, Lynne & Nayak 2009). 

In addition to antibiotic resistance, other features may be plasmid coded such as 

serotype or phage susceptibility and, thus, different typing systems may not be totally 

independent of one another. Plasmid profiles are most useful when combined with 

other methods of screening or typing (Mayer 1988). 

Following the first report of using agarose gel electrophoresis for plasmid profile 

characterization using E. coli K-12 to standardize the method (Meyers et al, 1976), a 

number of widely used procedures for plasmid isolation and profiling have been 

described, including those by (Birnboim & Doly 1979; Kado & Liu 1981; Samrook & 

Russell 2001). 

Most of these methods rely on alkaline denaturation of chromosomal DNA while 

supercoiled plasmid DNA remains intact and separation of the nucleic acid is carried 

out on the basis of physical differences between circular plasmid and linear 

chromosomal fragments in the purification process (Cloninger et al. 2008). 

One of the problems with these methods is in the coexistence of three conformations 

(linear and supercoiled) of the same plasmid, which may affect the migration properties 

of plasmids during gel electrophoresis (Olsen et al. 1993). 

To overcome this drawback and improve discrimination between strains, restriction 

endonucleases, such as HindIII, can be used to generate more distinctive profiles (Foley 

et al. 2009). 
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From the literature, it can be seen that plasmid profiling has been used for a wide range 

of pathogens such as E. coli (Domingue et al. 2003);(Bebora et al. 1994; Jan, Meshram 

& Kulkarni 2009), Shigella (Dutta et al. 2002) and Salmonella (Mohan et al. 1995; 

Threlfall et al. 1990). 

1.7.2.1.2. Pulsed field gel electrophoresis (PFGE) 

PFGE is often referred to as the gold standard of molecular typing methods, as it is 

characterized by a high discriminatory power that is superior to other typing methods 

(Olive & Bean 1999).  

PFGE directly detects variation in the genetic sequence of chromosome by scanning the 

entire genome. The bacterial genome is digested by specific restriction enzymes 

followed by electrophoretic separation using a current with variable polarity. The 

resulting electrophoretic patterns are strain specific (Olive & Bean 1999; Tenover et al. 

1995). 

A few limitations have been associated with PFGE including standardization and time 

consumption (Olive & Bean 1999; van Belkum et al. 2001). In an attempt to improve 

its reproducibility Tenover et al. (1995) suggested interpretation criteria for the analysis 

of restriction patterns.  

From the literature, PFGE appears to have been used in epidemiological studies of a 

broad range of microorganism (Fukigai et al. 2007; Germon et al. 2005) including E. 

coli, especially O157:H7, where an association between PFGE profile and isolate 

source were proposed (Bender et al. 1997; Parveen et al. 2001). 

1.7.2.2. Polymerase chain reaction based methods 

Since its development in the mid 80s by Mullis and his colleagues (Saiki et al. 1985), 

numerous PCR based methods have been introduced for epidemiological purposes, 
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including restriction fragment length polymorphism PCR (RFLP-PCR), ribotyping 

PCR, arbitrary primed PCR (AP-PCR/RAPD) and enterobacterial repetitive intergenic 

consensus sequence PCR (ERIC-PCR) (Power 1996). 

However, development of quantitative real time PCR provided a great tool for 

epidemiological research and routine diagnosis. Recently, Birkett et al. (2007) 

developed a new multiplex real time taqMan PCR assay for rapid detection and 

genotyping of CTX-M ESBL producing enteric bacteria, which could be useful for 

local epidemiological investigations (Birkett et al. 2007). 

1.7.2.2.1. Random amplification of polymorphic DNA (RAPD) 

Different terms have been used to describe these methods including arbitrary primer – 

PCR or random amplification of polymorphic DNA or multiple arbitrary amplification 

profiling (MAAP). In these techniques, short primers of non specific sequence (around 

10 bases) are used to initiate random amplification of the targeted DNA. The number 

and the location of these priming sites vary for different strains based on the bacterial 

genome sequence and the resulting electrophoresed DNA profile is strain specific 

(Olive & Bean 1999; Power 1996). 

A number of studies have successfully use RAPD assays in typing E. coli (Ensor et al. 

2006; Vidovic, Germida & Korber 2007). Furthermore, in a study by Garcia-Martinez 

et al. (1996), characterizing a collection of 74 UPEC isolates obtained from three 

hospitals located in geographically distant towns in Spain and some reference 

strains.RAPD method showed a high discriminatory power and was able to cluster most 

of the tested isolates in to two major groups.  

The principle advantage of RAPD is the lack of a requirement for prior knowledge of 

the target DNA sequence, but several limitation have been associated with it including 
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limited reproducibility and difficulty comparing profiles with others from different 

laboratories (Power 1996). 

1.7.2.2.2. Enterobacterial repetitive intergenic consensus (ERIC-PCR) 

Several highly conserved repeated sequence sets were identified in E. coli, including 

repetitive extragenic palindromic (REP) and enterobacterial repetitive intergenic 

consensus (ERIC) sequences (Hulton, Higgins & Sharp 1991). 

The ERIC-PCR method uses these specific intergenic repeated sequences found in the 

family Enterobacteriaceae as primer sites to amplify the regions between them. The 

number and location of these sequences varies from strain to strain and the 

electrophoretically resolved amplified fragment will form a distinct DNA fingerprint 

(Power 1996). 

In a comparison study of prevalence of colonization with UPEC, carried out by 

Johnson et al. (1998), ERIC-PCR appeared as discriminative as commonly used typing 

methods but was less time consuming. In another study, Manges et al. (2001) 

successfully used ERIC-PCR to screen a collection of UPEC for clonal group A strains. 

Using a similar technique with another set of specific repeated sequences (BOX A1R), 

Johnson et al. (1997) were able to distinguish strains of the J96-like clonal group 

among O4:H5 UPEC, allowing rapid identification of members of this clone, which is 

responsible for significant infections in human.  

Lack of reproducibility was commonly reported, which could be explained by the low 

stringency annealing conditions used (Chulain, Morris & Cormican 2006; Hopkins & 

Hilton 2000). However, an automated format was developed using separation of 

fluorescently labelled fragments with a DNA sequencer to enhance consistency and 

allow creation of a portable database to enable intra-laboratories comparison (Olive & 
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Bean 1999). More recently, the DiversiLab System, which is a rapid reproducible 

automated fingerprinting system using repetitive based sequence PCR (rep-PCR) was 

successfully used as an epidemiological tool to investigate different microorganisms 

including UPEC (Kilic et al. 2010; Lau et al. 2010; Ratkai et al. 2010)  

1.7.2.2.3. Restriction fragment length polymorphisms RFLP and PCR-RFLP 

In these approaches, the DNA sequence is subjected to restriction by specific 

endonuclease enzyme resulting in strain specific patterns of DNA fragments of 

different size and number (Foley et al. 2009). RFLP has widely been used in typing 

food borne pathogens such as Salmonella (Jordan et al. 2009; Paiva et al.), 

Campylobacter species, (Ayling et al. 1996) and E. coli (Arthur et al. 1990). 

As a variation of the original RFLP, PCR-RFLP involves amplification of specific 

sequences in the bacteria and digestion of the PCR amplicons with specific 

endonucleases to generate strain specific banding patterns (Foley et al. 2009). Studies 

using PCR-RFLP cover a wide range of application from population structure 

determination (Shima et al. 2006) to detection of various characteristics such as 

antibiotic resistance (Jones et al. 2008). 

1.7.2.2.4. Ribotyping 

Ribotyping relies on differences in the location and number of ribosomal RNA (rRNA) 

gene sequences present in the bacterial genome. In a similar way to RFLP, ribotyping 

involves restriction of bacterial DNA with specific endonucleases and the separation of 

the DNA fragments by gel electrophoresis followed by Southern blotting and probing 

with rRNA specific probes (Bouchet, Huot & Goldstein 2008). 

Despite the low discriminatory power of ribotyping compared to other typing methods 

such as PFGE (Clermont et al. 2001; Hahm et al. 2003), examination of the literature 
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shows that ribotyping has been successfully used to evaluate the relatedness and 

clinical importance pathogens such as E. coli (Parveen et al. 1999; Tarkka, Ahman & 

Siitonen 1994), Salmonella enterica (Olsen et al. 1992) and Vibrio cholerae O1 

(Popovic et al. 1993). 

1.7.2.3. DNA Sequence based methods 

1.7.2.3.1. Single nucleotide polymorphism (SNP) analysis 

The increased number of fully sequenced bacterial genomes has facilitated 

identification of single nucleotide polymorphisms (SNPs), which provides a reliable 

epidemiological tool with high discriminatory power. As bacterial species evolve, 

changes take place as a result of point mutations or horizontal transfer of genetic 

information, resulting in strains divergence. SNP analysis takes advantage of these 

changes at multiple loci to differentiate isolates.  

Several methods have been used to detect polymorphisms at defined SNP locations 

including sequencing of the region, mass spectrometry, which detects mass differences 

in the target sequence due to difference in the mass of various nucleotides, real-time 

PCR using hybridization probes where the variation in nucleotides affect the efficiency 

of probe binding and other methods including microarray, RFLP and flow cytometery 

(Foley et al. 2009).  

SNP analysis has been used successfully in characterization and differentiation of 

several pathogens including Bacillus anthracis (Pearson et al. 2004), Mycobacterium 

tuberculosis (Filliol et al. 2006), Yersinia pestis (Achtman et al. 2004), Campylobacter 

jejuni (Best et al. 2004) and Salmonella species including Salmonella Typhi (Ben-Darif 

et al.; Octavia & Lan 2007). 
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Identification of informative SNPs, specific for six major clonal complexes within 

discriminatory alleles of an MLST database, was used for rapid identification of C. 

jejuni (Best et al. 2004) and SNP analysis was used for development of an automated 

phylogenetic grouping technique for reconstruction of the relationships between 30 E. 

coli reference strains (Hommais et al. 2005). 

Zhang and colleagues recognized 906 SNPs in 523 chromosomal genes for use in 

genotyping E. coli O157:H7 using comparative genome sequencing microarray 

techniques (Zhang et al. 2006).  

1.7.2.3.2. Multilocus sequence typing 

Most of the currently used genotyping methods rely on detection of genetic differences 

between tested populations with no consideration given to the frequency of genetic 

variation, which may accumulate rapidly. These methods are useful in the investigation 

of local or sporadic outbreaks.  

However for long term or global epidemiological studies, methods that differentiate 

isolates based on genes that exhibit slowly accumulated genetic variation are required 

(Enright & Spratt 1999; Urwin & Maiden 2003). As mentioned above, MLEE, which 

has long been used in population genetic studies, differentiates isolates by the relative 

electrophoretic mobility of gene products. However, even though the profiles generated 

group strains in a similar manner to other techniques, the profiles are difficult to 

compare between laboratories (Maiden et al. 1998; Selander et al. 1986). Based on 

MLEE principles and overcoming this limitation, MLST benefited from the advances 

made in DNA sequencing and has become an important method for typing of 

epidemiologically important pathogenic strains (Enright & Spratt 1999; Lau et al. 

2008a; Spratt 1999; Tartof et al. 2005). 



Chapter 1                                                                             Introduction 

51 

 

1.7.2.3.3. Methodology 

MLST directly detects the genetic variation of specific genes (housekeeping genes) that 

are present at different loci by sequencing of the genes. The housekeeping genes are 

characterized by not being subjected to any unusual selective forces, such as exposure 

to antimicrobial agents and exhibit neutral genomic variation that accumulates slowly. 

Genetic variation of selected housekeeping genes is identified by nucleotide sequencing 

of 450-500 bp fragments of (usually) seven housekeeping genes. The length of the 

DNA fragment is selected to enable accurate sequencing of the genome fragment with 

single pair of primers and to provide a sufficient discriminatory power to allow 

differentiation of alleles within the population. In addition, the number of house 

keeping genes used affects the resolution power of the selected scheme (Figure 1.2). 

For each gene, different sequences are given different allele numbers and the allele 

numbers of the seven housekeeping genes provides an allelic profile, which is assigned 

a sequence type (ST) that defines the genotype of each isolate (Figure 1.3). 

The inter-isolate relationship can be defined by the closeness of the assigned ST, where 

closely related isolates have similar STs or slightly different ST and unrelated isolates 

have markedly different STs.  

The resulting allelic profile is transferable and can be analysed and compared via an 

international epidemiological database using the internet (Enright & Spratt 1999; Spratt 

1999; Urwin & Maiden 2003).  
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Figure 1. 2 Escherichia coli CFT073 complete genome showing the position of the 

seven house keeping genes used in the Achtman MLST protocol. Adapted from 

(http://www.ncbi.nlm.nih.gov) 
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Figure1.3 Snapshots of the Achtman MLST database website illustrating the data 

submission page and ST assigning page 
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1.7.2.3.4. The E. coli MLST schemes 

The success of an MLST protocol as a typing method greatly depends on the selection 

of the examined genes. In addition to being characterized by slow genomic variation 

the examined genes should reflect the epidemiological purpose of the assay and the 

selected genes should show no genetic relatedness (Adiri, Gophna & Ron 2003; Nemoy 

et al. 2005; Tartof et al. 2005). Therefore different MLST schemes were developed to 

suit different groups of E. coli using different housekeeping genes.(Adiri et al. 2003; 

Beutin et al. 2005; Noller et al. 2003). 

In their comparison study Tartof and his colleagues (2005) evaluated a standardized 

MLST protocol (accessible through the MAX-PLANCK institute) for the typing of 

UPEC isolates and compare it with PFGE and ERIC2 assays. The study reveals that the 

MLST used scheme provides high discriminatory power as ERIC2, furthermore it was 

able to distinguish human clonal group A strains from other (species/nonhuman) 

sourced clonal group A strains but it failed to supersede PFGE assay in the 

differentiation of UPEC clonal group A. However, a study by Nemoy et al.  (2005) 

revealed that the MLST could offer a better discriminatory power than PFGE if the 

scheme used is supported by additional genes such as antimicrobial resistance genes 

(Nemoy et al. 2005)  

Three distinct MLST schemes associated with discriminative databases are available 

through three centres. Institut Pasteur‟s MLST scheme (www.pasteur.fr/mlst); M. 

Achtman‟s MLST scheme (www.mlst.ucc.ie) supported by University Collage Cork, 

Ireland and T. Whittam‟s MLST scheme (www.shigatox.net) supported by the 

Shigatoxin E. coli Centre based at National food safety and Toxicology Centre, 

Michigan State University, USA., as shown in Table 1.2. Between these sites, a total of 

http://www.pasteur.fr/mlst
http://www.shigatox.net/
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18 housekeeping genes are targeted for strain discrimination. Based on citations, 

Achtman‟s scheme is the most widely used MLST scheme for typing E. coli isolates. 

 

 

 

Table 1.2 Housekeeping genes supported by internet assessable discriminatory 

databases 

Genes Gene product Pasteur’s Achtman’s Whittam’s 

adk Adenylate kinase  ✓  

fumC Fumarate hydratase  ✓  

gyrB DNA gyrase  ✓  

icd 
Isocitrate/isopropylmalate 

dehydrogenase 
icdA  ✓ icdA  

mdh Malate dehydrogenase ✓ ✓ ✓ 

purA 
Adenylosuccinate 

dehydrogenase 
 ✓  

recA ATP/GTP binding motif  ✓  

aspC Aspartate aminotransferase   ✓ 

clpX 
ATP-dependent Clp 

protease 
  ✓ 

fadD Cyl-CoA synthetase   ✓ 

lysP Lysine-specific permease   ✓ 

uidA Beta-D-glucuronidase ✓ ✓ ✓ 

dinB DNA polymerase IV ✓   

papB 
Pap operon regulatory 

protein 
✓   

polB DNA polymerase II ✓   

putP proline:sodium symporter  ✓   

trpA 
tryptophan synthase, alpha 
subunit  

✓   

trpB 
tryptophan synthase, beta 
subunit  

✓   

 Collected from: http://www.Shigatoxin.net, http://mlst.ucc.ie and http://www.psteur.fr 

 

 

 

http://mlst.ucc.ie/
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1.7.2.3.5. Applications of MLST 

Due to its high discriminatory power and the portability of the results, in addition to its 

contribution in the studies of evolution and population biology of organisms, MLST 

has been widely applied to study a variety of problems including the emergence of 

antibiotic resistant clones of pathogenic organisms (Nemoy et al. 2005; Reinert et al. 

2005). MLST even shows potential to be used directly on clinical material, which may 

make MLST as essential a tool for routine clinical diagnosis as it is in epidemiological 

research (Diggle, Bell & Clarke 2003; Spratt 1999). 

1.7.3. Phylogenetic analysis 

With the rapid accumulation of genomic sequence data, phylogenetic analyses have 

evolved from being descriptive and speculative analysis of evolutionary relationships to 

a more mathematics based science, as a result of advances in mathematical models of 

sequence evolution and statistical evolutionary tools (Whelan, Lio & Goldman 2001).  

For phylogenetic analysis of aligned sequences, all evolution analysis methods describe 

sequence evolution using phylogenetic trees. Methods used to construct phylogenetic 

trees fall into two categories: distance methods; and discrete methods.  

1.7.3.1. Distance methods 

These involve the calculation of matrices of evolutionary distances between taxa on a 

pairwise basis. The evolutionary distance used for this purpose is usually an estimation 

of the number of nucleotide substitutions per site (Nei 1996).  

There are several distance methods for construction of phylogenetic trees, the most 

commonly used ones being the unweighted pair group method with arithmetic means 

(UPGMA) and neighbour joining (NJ) methods. 
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UPGMA is the simplest method of tree construction and was originally developed to 

construct taxonomic phenograms, which are trees that reflect the phenotypic 

similarities between taxa. It uses a sequential clustering algorithm that starts by 

grouping two taxa with the most similarity and then progressively adding less similar 

taxa to the groups.  It is generally not considered a good algorithm for construction of 

phylogenetic trees, as it assumes that the evolution rates of different lineages are 

approximately equal. Although this is not the case in bacterial population biology, 

UPGMA may prove useful as a quick guide to identifying similar isolates (Morrison 

1996). 

NJ is based on the minimum-evolution criterion to re-construct a phylogenetic tree 

from evolutionary distance data i.e. the topology that gives the least total branch length 

is preferred at each step of the algorithm. Unlike UPGMA constructed trees, NJ does 

not assume that all lineages evolve at the same rate and it is largely recommended to 

analyze populations where lineage evolution rate varies. However, as the NJ algorithm 

seeks to represent the data in the form of an additive tree, NJ may not find the true tree 

topology with least total branch length. Even though it is sub-optimal in this sense, the 

reliability of the NJ tree obtained can be extensively tested using bootstrap analysis, 

which usually finds a tree that is quite close to the optimal tree (Saitou & Nei 1987).  

1.7.3.2. Discrete (character-based) methods 

Discrete methods consider each nucleotide site directly, rather than on pairwise 

distances, using optimality criteria to choose among the set of all possible trees. The 

optimality criteria give each tree a score that is based on the comparison of the tree to 

other possible trees according to used criteria (Nei 1996). 
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The commonly used distance methods are the maximum parsimony (MP) and the 

maximum likelihood (ML) methods (Whelan et al. 2001). 

ML is one of the standard tools of statistics. In phylogenetic analysis, it evaluates the 

probability that the chosen evolutionary model will have generated the observed 

sequences. The preferred trees are those that yield the highest likelihood over the whole 

tree. It involves two steps: building mathematical models taking in account all possible 

nucleotide substitution configurations; and then finding the tree that is most likely to 

have produced the observed data. Because it analyzes each nucleotide position of the 

multiple alignment, maximum likelihood is CPU consuming and, thus, extremely slow 

(Felsenstein 1981). 

The MP method attempts to determine a phylogenetic tree that requires the smallest 

number of evolutionary changes to explain the variation in a given set of data. In 

construction of MP trees, only informative or substitution sites are considered and the 

sum of the minimum possible substitutions over all sites is called the tree length. The 

tree with the minimum length is selected as the tree of maximum parsimony (Whelan et 

al. 2001). 

1.8. Aims of the project 

The spread of highly virulent strains of UPEC such as E. coli CGA and the emergence 

of unique antimicrobial resistance profiles among the UPEC population, provide 

evidence of epidemic clonal dissemination. To determine the epidemiological 

significance of these pathogens, a full understanding of the population biology is 

required.  
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The overall aims of this thesis were to study the population biology of UPEC in the 

North West of England with a view to understanding the most significant lineages 

causing UTI and to inform development of rapid assays to allow identification of 

members of these lineages. To achieve these overall aims, the following objectives 

were set: 

 

 Generate a collection (n≥300) of UPEC isolates that meet a selection criterion 

of identifying E. coli  causing UTI used by the UK Health Protection Agency 

(Anonymous 2004).  

 Identify successful clones and clonal complexes within the strain collection 

using multilocus sequence typing (MLST). 

 Assess the phylogeny and the microevolution of clones and clonal complexes 

that constitute the UPEC population and examine their phylogenetic 

relationships with other E. coli pathotypes using different molecular 

phylogenetic analysis methods and online MLST database resources. 

 To further examine isolates of identified clones and clonal complexes using 

phenotypic and genotypic methods and measure the possible association of key 

UPEC clones with different pheno- and genotypic profiles. 
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2. Materials and Methods  

2.1. Uropathogenic E. coli strain selection  

A total of 300 isolates of UPEC were collected and, in order to minimize the possibility 

of collecting non-UPEC, the selection was limited to urine isolates that showed pure 

culture with a significant total count, accompanied with significant pyuria according to 

the national standard method (BSOP 41) Health Protection Agency (Anonymous 2004). 

Urine samples were plated onto CLED agar plates (Oxoid, Ltd, UK), which were 

incubated at 37
ο
C for 18 hrs in a normal atmosphere. 

Of the 300 non-replicated isolates collected, 150 were recovered in June 2007 in the 

Manchester area (100 isolates) and Preston area (50 isolates), another 150 isolates being 

collected within the same period of 2009 and with the same geographic representation. 

2.2. Isolate collection 

The collection was carried in two settings, one in the microbiology laboratory at the 

Central Manchester and Manchester Children‟s University Hospital (MRI), which 

served both the MRI and the surrounding general practitioners in Manchester, and the 

other in the microbiology laboratory at the Preston Royal Hospital.  

To maximize the chances of collecting E. coli, all lactose fermenting strains were 

further examined using chromogenic media CPS3 (Biomérieux), as per manufacturer‟s 

directions, on which E. coli are identified based on the ability to produce β –

glucuronidase.  
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2.3. Identification and antibiotic susceptibility  

The Vitek 2 compact automated system (Biomérieux) was used for the identification 

and the antibiotic susceptibility testing of the collected isolates.  By using the Vitek 2 

ID-GNB card (Biomérieux), identification of Gram negative bacilli occurs through 

testing the organism‟s metabolic activity in 41 fluorescent biochemical tests including 

18 enzymatic tests, 18 fermentation tests, two decarboxylase tests and three other 

miscellaneous tests. 

Antibiotic susceptibility testing is based on kinetic analysis of the bacterial growth in 

the presence of selected antibiotics (20 antibiotics representing all antibiotic families) 

and the antibiotic susceptibility profile is then analysed in order to predict the 

underlying resistance mechanisms present in each isolate. 

The antibiotic panel (Vitek 2 AST-054) was selected, as it covers the commonly used 

antibiotics for UTI and it is one of the standard antibiotic panels used in the UK. It 

consists of the following antibiotics: Ampicillin, Amoxicillin/Clavulanic acid, 

Piperacillin, Piperacillin/Tazobactam, Cefalotin, Cefuroxime, Cefuroxime axeil, 

Cefoxitin, Cefotaxime, Ceftazidime, Cefepime, Aztreonam, Meropenem, Ertapenem, 

Trimethoprim, Tobramycin, Amikacin, Gentamicin, Nalidixic acid, Ciprofloxacin and 

Nitrofurantoin.   

Isolates that were previously identified as E. coli using CPS3 chromogenic media were 

cultured on Nutrient agar (Oxoid) and incubated for 18-24 hrs at 37ºC. The 

identification and antimicrobial susceptibility testing was performed following the 

manufacturer‟s instructions, and the resulting biochemical activity and antibiotic 

susceptibility data were recorded in spreadsheets for subsequent analysis. 
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The fully identified UPEC strains were stored using the microbank system (ProLab 

Diagnostics, UK) in duplicate (-20ºC and -70ºC). 

2.4. DNA extraction  

Prior to DNA extraction, strains were cultured on Columbia agar and MacConkey agar 

plates (Oxoid) at 37
o
C for 18 hrs and pure single colonies from Columbia agar plates 

were used for extraction. Genomic DNA extraction was carried out using PrepMan 

Ultra sample preparation reagent (Applied Biosystems, USA) following the 

manufacturer‟s instructions. Extracted DNA was stored in a freezer at -20ºC, ready to 

be used for PCR. 

2.5. Multilocus sequence typing of UPEC  

The previously collected DNA extracts from the 300 UPEC isolates were genotyped 

using the MLST scheme developed by Achtman and colleagues (Wirth et al. 2006).  

2.5.1. Selection of the targeted loci  

The success of MLST protocol as a typing method greatly depends on the selection of 

the examined genes. From the few schemes available that are supported by an 

international database, Achtman‟s scheme (http://mlst.ucc.ie/mlst/dbs/Ecoli/) provides a 

high discriminatory power, capable of clustering populations in to different clonal 

groups and is one of the more widely used schemes. 

Seven genes were selected according to the Achtman scheme, adk: adenylate kinase; 

fumC: Fumarate hydratase; gyrB: DNA gyrase; icd: Isocitrate/isopropylmalate 
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dehydrogenase; mdh: Malate dehyrogenase; purA: adenylosuccinate; recA: ATP/GTP 

binding motif. 

2.5.2. PCR amplification of the targeted genes  

Internal fragments of the seven house-keeping genes, which ranged between 583bp to 

932bp, were amplified using pairs of primers listed in Table 2.1. 

The amplification reactions were carried out in 50 μl volumes containing 5 μl of each 

primer (10pmol/μl), 5μl of PCR buffer (x10) (Qiagen, Sussex, UK), 10 μl of 1mM 

deoxynucleoside triphosphates (dNTPs) (Roche, GmbH, Germany) and 0.25 units of 

Taq DNA polymerase (Qiagen) and 1 μl of chromosomal DNA. 

Amplification conditions were: 2 min at 94 ºC, followed by 35 cycles of 1 min at 94 ºC, 

1 min at annealing temperature (as listed in Table 2.1), 1 min at 72 ºC followed by 5 

min at 72 ºC and finally the reactions were held at 4 ºC. Amplification was carried out 

using an Eppendorf thermal cycler (Mastercycler; Helena Biosciences, Gateshead, UK). 

 

Table ‎2.1 PCR primers for the seven selected house keeping genes used in MLST 

Gene Primer‎Sequence‎(5’‎– 3’) 
Annealing 

temp. (℃) 

Size of  

product  (bp) 

adk 
F'-ATTCTGCTTGGCGCTCCGGG 
R –CCGTCAACTTTCGCGTATTT 

60 583 

fumC 
F -TCACAGGTCGCCAGCGCTTC 
R –GTACGCAGCGAAAAAGATTC 

63 806 

gyrB 
F –TCGGCGACACGGATGACGGC                                            
R-ATCAGGCCTTCACGCGCATC 

60 911 

icd 
F -ATGGAAAGTAAAGTAGTTGTTCCGGCACA 
R –GGACGCAGCAGGATCTGTT 

53 878 

mdh 
F –ATGAAAGTCGCAGTCCTCGGCGCTGCTGGCGG            
R -TTAACGAACTCCTGCCCCAGAGCGATATCTTTCTT 

53 932 

purA 
F -CGCGCTGATGAAAGAGATGA 

R –CATACGGTAAGCCACGCAGA 
67 816 

recA 
F -CGCATTCGCTTTACCCTGACC 

R –TCGTCGAAATCTACGGACCGGA 
60 780 
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2.5.3. Detection of the PCR product  

The presence and the purity of the PCR product was confirmed electrophoretically by 

mixing 5μl of each PCR product with 5μl of loading buffer [70% (w/v) sterile injectable 

water (Phoenix Pharmaceuticals, Gloucester, UK), 29.5% (w/v) Glycerol (Sigma) and 

0.5% (w/v) Bromophenol Blue (Bio-Rad, Hertfordshire, UK)] and passing the PCR 

product mixture through 2% (w/v) of agarose (Promega Corporation, Madison, USA) in 

Tris-borate-EDTA (TBE) (Sigma Dorset, UK) incorporating 15μl of SYBR safe gel 

stain (Invitrogen, Paisley, UK) at 132 V for 20 min followed by visualization of the 

bands under UV transillumination (Gel Doc 1000, Bio-Rad Laboratories). 

2.5.4. Post PCR purification  

The Whatman vacuum filtration system (Whatman, UK) was used to clean the PCR 

product of unwanted components in the reaction mixture. As recommended by the 

manufacturer, each sample was treated with 80 μl of binding buffer (4M Guanidine-

HCL, 0.75 M Potassium Acetate, pH 406) before being passed through the DNA 

binding plate under vacuum (-15 and -20 inches Hg), followed by washing the captured 

DNA with 400 μl of washing buffer (mixture of 40% (v/v) 100mM Tris, 20 mM EDTA, 

0.4M NaCl. pH 7.5 and 60% (v/v) ethanol). DNA was then recovered by adding 50μl of 

elution buffer (10mM Tris, 0.1 mM EDTA, pH 7.5). The purified DNA product was 

stored at -20 ºC. 

2.5.4.1. Sequencing of amplified DNA fragments  

SEQ Dye terminator cycle sequencing (DTCS) Quick start kits (Beckman Coulter Inc.) 

were used for sequencing of the target DNA fragments. As recommended by the 

manufacturer, the sequencing reactions were carried out in 10 μl volumes, each reaction 
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containing 2μl of DTCS Quick start master mix (Genome Lab
TM 

DTCS- Quick Start 

Kit, Beckman Coulter), 1μl of genetix buffer (half CEQ
TM

 Genetix, UK), 0.5μl of 

primer (10 pmol/μl), as shown in Table 2.2, 0.5μl of purified DNA template and DNA 

free water to adjust the volume to 10μl. 

The sequencing reaction conditions were 40 consecutive cycles of 96 ºC for 20 seconds, 

50 ºC for 20 seconds and 60 ºC for 4 minutes, finally held at 4 ºC and were carried out 

using an Eppendorf thermal cycler (Mastercycler; Helena Biosciences). 

 

Table ‎2.2 Sequencing primers for analysis of the target gene fragments in MLST 

Gene Primer Sequence  

adk 
F 5‟- GCAATGCGTATCATTCTGCT-3‟                                                                             

R 5‟- CAGATCAGCGCGAACTTCAG-3‟ 

fumC 
F 5‟- CCACCTCACTGATTCATGCG-3‟                                                                            
R 5‟- CGGTGCACAGGTAATGACTG-3‟ 

gyrB 
F 5‟- CGGGTCACTGTAAAGAAATTATCG-3‟                                                                              
R 5‟- GTCCATGTAGGCGTTCAGGG-3‟ 

icd 
F 5‟- TACATTGAAGGTGATGGAATCG-3‟                                                                         
R 5‟- GTCTTTAAACGCTCCTTCGG-3‟ 

mdh 
F 5‟- TCTGAGCCATATCCCTACTG-3‟                                                                              
R 5‟- CGATAGATTTACGCTCTTCCA-3‟ 

purA 
F 5‟- CTGCTGTCTGAAGCATGTCC-3‟                                                                             
R 5‟- CAGTTTAGTCAGGCAGAAGC-3‟ 

recA 
F 5‟- AGCGTGAAGGTAAAACCTGTG-3‟                                                                             
R 5‟- ACCTTTGTAGCTGTACCACG-3‟ 

2.5.5. Post sequencing purification  

To remove unincorporated primers and master mix residues, the ethanol plate 

precipitation method was used, as recommended by the manufacturer of the sequencing 

kit (Beckman Coulter). Freshly prepared stop solution/glycogen mixture was prepared 

as follows. For each sequencing reaction: 1μl of 3M sodium Acetate (pH 5.2) (Sigma), 

1μl of 100mM Na2-EDTA (pH 8.0) (Sigma) and 0.5 μl of 20 mg/ml of glycogen 

(Genetix). 2.5 µl of stop solution and 30 µl of ice cold 95% (v/v) Ethanol/H2O (kept at -
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20ºC) were added to each sequencing reaction and plates were sealed with an 

aluminium foil lid (Beckman Coulter). The mixture was mixed by inverting the plate 

15-20 times vigorously and immediately centrifuged at 14,000 rpm at 4 ºC for 30 

minutes using a Beckman Coulter Allegro
TM

 21R centrifuge (Beckman Coulter Inc.). 

After centrifugation, the alcohol was removed by spinning the plate, after inverting it on 

folded paper towels, at 300 rpm for 2 seconds. The pellets, which formed at the bottom 

of the wells, were then rinsed twice with 100 μl of ice cold 75% (v/v) Ethanol/H2O. 

After each rinse, the plate was immediately centrifuged at 14,000 rpm for 5 minutes at 4 

ºC. After centrifugation the supernatant was carefully removed by gently inverting the 

plate and as mentioned above the excess alcohol was removed by spinning the inverted 

plate at 300 rpm for 2 seconds.  

Finally, the plate was vacuum dried for 20 minutes, and the pellets were suspended in 

50 μl of the Sample Loading Solution (supplied with the kit) and each sample was 

overlaid with one drop of mineral oil (supplied with the kit). The plate was then kept at 

-20 ºC ready for sequence analysis. 

2.5.6. Sequence determination and analysis  

The sequences of the reaction products were then determined using a capillary 

electrophoresis sequencer (CEQ 8000 BECKMAN COULTER). Assembly and analysis 

of each target gene fragment was performed using Sequencher
TM 

v.4.0 software (Gene 

Codes Corporation). The sequence fragments were trimmed to a uniform length that 

corresponded with the region used to identify the target, by reference to allele sequences 

recovered from the Achtman MLST protocol published on the 

http://mlst.ucc.ie/mlst/dbs/Ecoli website.  
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2.5.7. Allele and sequence type assignment  

The sequences of target genes fragments were then assigned distinct allele numbers by 

submitting them to the MLST E. coli data base website 

(http://mlst.ucc.ie/mlst/dbs/Ecoli).  

Finally, a Sequence Type (ST) and its associated Sequence Type Complex were 

assigned for each isolate by comparing its allelic profile with that available in the 

MLST database. In the case of new alleles being identified, a unique allele number and, 

subsequently, a new ST was issued by the curator of the database, following 

examination of the DNA sequence trace files for the respective isolate. 

2.6. Phylogenetic analysis  

2.6.1. Characteristics of housekeeping genes 

The statistical tools implemented in the START v2 program (Jolley et al. 2001) were 

used to describe the molecular characteristics of housekeeping genes. The total number 

of polymorphic sites and the ratio (dS/dN) of synonymous substitutions to non-

synonymous substitutions per nucleotide for all target gene fragments were estimated. 

The dN/dS ratio is used to assess the degree of selective pressure operating on target 

genes. An excess of non-synonymous (dN) over synonymous (dS) substitutions is 

indication of positive selection indicating that non-synonymous changes are being fixed 

faster than they occur by mutation. A dN/dS <1 indicates negative selection in which 

non-synonymous changes are usually deleterious and therefore selected out of the 

population.  
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2.6.1.1. Index of association 

The extent of linkage equilibrium or clonality among the defined population was 

estimated by calculating the standardized index of association (IS
A) values (Haubold & 

Hudson 2000) as implemented in the START v2 program. Within a monophyletic 

population an IA significantly different than Zero in 1000 randomized trials would 

suggest linkage disequilibrium indicating that the population has a clonal structure, 

while IA values not significantly different than Zero indicate linkage equilibrium and the 

population is considered to be freely recombining. 

2.6.1.2. Simpson’s index of diversity 

The Simpson‟s Index of Diversity (Simpson 1949) was used to determine the level of 

diversity within each house keeping gene in the studied population compared to ExPEC 

and other E. coli populations reported in the database. The following equation was used 

to measure the level of diversity 

 

 

      
       

      
 

 

 

Where N represents the total number of different STs in the population and n is the total 

number of STs that have the same allele type. 
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2.6.2. eBURST 

The Based Upon Related Sequence Types (BURST) clustering algorithm was originally 

designed by Dr. Ed Feil and his colleagues in Imperial College London and upgraded in 

2004 when it was entitled eBURST. eBURST is available freely online 

(http://eburst.mlst.net/). The algorithm attempts to cluster STs into clonal complexes 

(CC) based on the number of shared gene loci and further predict a founder for each CC 

based on the abundance of STs that are linked to a particular ST by a single allelic 

difference. The algorithm draws conclusions about the relatedness of individual STs, 

describing the ST as single locus variant (SLV), double locus variant (DLV) or triple 

locus variant (TLV) in relation to the founder ST and to each other. Additionally, 

eBURST was able to estimate the relative age of a CC by how many SLVs it has and 

the presence of related subgroups (Feil et al. 2004). 

2.6.3. UPGMA (unweighted pair group method with arithmetic mean) 

cluster analysis 

As it uses the assumption of an equal evolutionary rate of change in all lineages, this 

method is not considered a good algorithm for construction of Phylogenetic trees. 

However, for MLST, in which the target genes were carefully selected to exhibit slow 

and steady mutation rates, UPGMA can provide a quick guide to identify similarity 

between STs. Using the START package, UPGMA was performed on allelic profiles of 

the dataset rather than the nucleotide sequences, which provides additional credibility to 

the phylogenetic inference obtained. 
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2.6.4. Neighbour-Joining (NJ) cluster method 

The NJ construction tool available in MEGA 4.11.1 software (www.megasoftware.net) 

was used to draw phylogenetic trees for concatenated sequences of the seven loci and 

for sequences of each locus alone using the Jukes-Cantor based algorithm and 

bootstrapping using 1000 data sets for each analysis. 

2.6.5. Clonalframe 

Clonalframe is a computer package used for the inference of bacterial microevolution 

using multilocus sequence data and was developed in 2007 by Didelot and Falush and is 

available freely from http://bacteria.stats.ox.ac.uk/ (Didelot & Falush 2007). It is based 

on a coalescent approach assuming that all isolates in a dataset had equal chances of 

reproduction in a constant sized population. As it takes into account both point mutation 

and homologous recombination, the method provides information on potential 

recombination sites and, therefore, calculates genealogies after ignoring these 

recombination events. A consensus tree based on the posterior probabilities of 

genealogies is generated, showing clonal relationships among the strains and attempting 

to suggest ancestral STs not found amongst the study population. 

Ten Clonalframe runs were computed on unique STs from the dataset, each with 

100,000 iterations after 10,000 burn-in iterations. 50% consensus trees and network 

representations of the analysis were generated using the graphical user interface of the 

program. 

http://www.megasoftware.net/
http://bacteria.stats.ox.ac.uk/
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2.6.6. Neighbour-net 

Neighbour-net is a distance-based method that constructs phylogenetic networks using 

nucleotide sequence data. The neighbour-net algorithm is an extension of the neighbor-

joining algorithm in which an agglomerative process of pairing nodes is followed by 

collection of weighted splits that are converted into a split network rather than 

phylogenetic tree. This has the advantage of resolving conflicting signals generated by 

evolutionary processes, such as lateral transfer of genes and recombination within a 

population (Bryant & Moulton 2004).  

Concatenated sequences of the seven loci for all STs in the dataset were analyzed to 

generate a phylogenetic network using the Neighbour-net algorithm implemented in 

SplitsTree 4.11 (www.splitstree.org) (Huson & Bryant 2006). 

2.6.7. Tests for recombination 

In addition to index of association, which measures the clonality of a population by 

determining the contribution of recombination in shaping the population structure, 

nucleotide sequences of STs in dataset were analysed for evidence of recombination by 

several methods, each with its own specifications. 

2.6.7.1. Maximum Chi-squared test 

This is a method in which the sequences are examined in pairs for clusters of 

substitutions indicating a putative recombination event and to test whether the putative 

recombination sites are significant. Random trials are run where equal length sequences 

with the same number of polymorphic sites were created. The significance level was 

determined as the proportion of trial pairs with greater max X
2
 values than were 

observed for strain data (Smith 1992). 

http://www.splitstree.org/
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All seven loci of the 100 unique STs in the dataset were tested for recombination using 

the max X
2
 test included in the START v2 package. 1000 random pair comparison trials 

between allele sequences of each locus were run and putative recombination sites with p 

values <0.05 were considered significant. 

2.6.7.2. Split decomposition 

An initial search for recombination was conducted using the split decomposition 

algorithm, which is a parsimony method that represents conflicting phylogenetic signals 

in the data as parallel networks. Using the SplitsTree program v. 4.11, evidence for 

recombination in the concatenated dataset for each ST and for each house keeping gene 

was examined by split decomposition analysis with default settings (uncorrected P 

method) and 1000 bootstrap replicates. 

2.6.7.3. Pairwise homoplasy index test  

Based on the compatibilities between informative sites in a nucleotide sequence 

alignment, the pairwise homoplasy index test for recombination is able to distinguish 

recombination from frequent mutations. Using the pairwise homoplasy index test 

implemented by the SplitsTree program v.4.11, alleles of each house keeping gene were 

tested for recombination in addition to possible recombination within clonal complexes. 

2.7. Triplex PCR for Phylogenetic grouping 

This was performed based on methods described by Clermont and colleagues. A triplex 

PCR reaction was conducted to determine the phylogenetic group of each isolate in the 

data set (Clermont et al. 2000). Fragments of a combination of three DNA markers 

(chuA, yjaA and DNA fragment tspE4C2) were amplified using pairs of primers as 
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listed in Table 2.3. The amplification reactions were carried out in 50 μl volumes 

containing 25 μl of BioMix™ Red (Bioline USA Inc.), 1 μl of each primer (10pmol/μl) 

and 2 μl of 100 ng/μl chromosomal DNA. 

 

 

Table ‎2.3 Primers used in Triplex PCR to detect phylogenetic groups 

Gene Primer‎Sequence‎(5’‎– 3’) 
Size of  product      

(bp) 

chuA 
F-GACGAACCAACGGTCAGGAT                                       
R-TGCCGCCAGTACCAAAGACA 

279 

yjaA 
F-TGAAGTGTCAGGAGACGCTG                                       
R-ATGGAGAATGCGTTCCTCAAC 

211 

tspE4C2 
F-GAGTAATGTCGGGGCATTCA                                       

R-CGCGCCAACAAAGTATTACG 
152 

 

 

 

Amplification was carried out using the following conditions: 4min at 94 ºC; followed 

by 30 cycles of 5 sec at 94 ºC, 10 sec at 59 ºC, 10 sec at 72 ºC; followed by 5 min at 72 

ºC and finally the reactions were held at 4 ºC.  

The PCR products were analyzed electrophoretically by passing  the PCR product 

through 1.5 % (w/v) agarose (Promega) in Tris-borate-EDTA (TBE) (Sigma) 

incorporating 15μl of SYBRsafe
TM

 gel stain (Invitrogen) at 132 V for 20 min and 

visualisation under UV transillumination (Ge Doc 1000, Bio-Rad Laboratories) 

Interpretation: 

Band patterns on agarose gels were then analyzed to determine the phylogenetic group 

according to the dichotomous decision tree proposed by Clermont (Clermont et al. 

2000), (Figures 2.1 & 2.2). 
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Figure ‎2.2 Dichotomous decision tree proposed by Clermont et al (2000) 

 

2.8. Pulse-field gel electrophoresis (PFGE) 

The genetic relatedness of 32 representative isolates of the common UPEC sequence 

types ST69 (n=10 isolates), ST73 (9) and ST131 (13), taken from different phylogenetic 

groups, was determined by XbaI PFGE analysis performed according to the PulseNet 

standardized PFGE protocol (Ribot et al. 2006). Generated profiles were compared 

digitally using BioNumerics v.3.5 (Applied Maths). A dendrogram was generated from 

Figure ‎2.1 Triplex PCR profiles for each phylogenetic group 
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the Cluster analysis of Dice similarity indices based on UPGMA. Isolates were 

considered to belong to the same PFGE group if their Dice similarity index was ≥85%. 

2.9. Virulence factor screening 

The entire culture collection was screened for the presence of twenty-nine ExPEC 

associated VF genes encompassing five categories (adhesins, toxins, siderophores, 

capsule and “miscellaneous”). The adhesin genes investigated included fimH (mannose 

specific adhesin of type I fimbriae), P fimbriae elements (papAH, papC, papEF and 

papG alleles I, II, III, sfaS (S fimbrial adhesin), focG (the putative F1C fimbrial 

adhesin), sfa/focDE (central region of sfaS and focG operons), afa/draBC (Dr antigen-

specific adhesin operons), bmaE (Blood group M-specific adhesion), nfaE (non-fimbrial 

adhesin), gaf D (glucosamine specific G fimbriae). Toxin genes screened were cnf1 

(cytotoxic necrotizing factor), cdtB (cytolethal distending toxin) and hlyA (α-

haemolysin). The siderophore genes studied were fyuA (yersiniabactin) and iutA 

(aerobactin). Capsule synthesis associated genes screened were kpsMT groups (II and 

III) in addition to specifically targeting K1 and K5 genes of group II capsules. The 

miscellaneous VF genes were cvaC (colicin V; multifunctional serum resistance-

associated plasmids), traT (serum resistance associated), ibeA (invasion of brain 

endothelium), and PAI, a coding region of unknown significant of a sequenced PAI 

from archetypal ExPEC strain CFT073 was used as a generic marker for uropathogenic 

PAIs..   

VF profiles of the 300 isolates were determined using primers listed in Table 2.4 and an 

established multiplex PCR–based assay (Johnson & Stell 2000). 
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            Table ‎2.4 Primers used in Triplex PCR to detect different VFs 

Gene Primer sequence*  (5’-3’) 
Size of product 

(pb) 

papAH 
F-ATGGCAGTGGTGTCTTTTGGTG                                                

R-CGTCCCACCATACGTGCTCTTC 
720 

papC 
F-GTGGCAGTATGAGTAATGACCGTTA                                       

R-ATATCCTTTCTGCAGGGATGCAATA 
200 

papEF 
F-GCAACAGCAACGCTGGTTGCATCAT                                   

R-AGAGAGAGCCACTCTTATACGGACA 
336 

papG I, II,III 

papG II, III   

papG I 

F-CTGTAATTACGGAAGTGATTTCTG                                       

R-ACTATCCGGCTCCGGATAAACCAT                                     

R-TCCAGAAATAGCTCATGTAACCCG 
1070                    
1190 

allele I 
F-TCGTGCTCAGGTCCGGAATTT                                              

R-TGGCATCCCCCAACATTATCG 
461 

allele II 
F-GGGATGAGCGGGCCTTTGAT                                                

R-CGGGCCCCCAAGTAACTCG 
190 

Allele III 
F-GGCCTGCAATGGATTTACCTGG                                             

R-CCACCAAATGACCATGCCAGAC 
258 

Sfa/focDE 
F-CTCCGGAGAACTGGGTGCATCTTAC                                  

R-CGGAGGAGTAATTACAAACCTGGCA 
410 

sfaS 
F-GTGGATACGACGATTACTGTG                                                 

R-CCGCCAGCATTCCCTGTATTC 
240 

focG 
F-CAGCACAGGCAGTGGATACGA                                           

R-GAATGTCGCCTGCCCATTGCT 
360 

Afa/draBC 
F-GGCAGAGGGCCGGCAACAGGC                                           

R- CCCGTAACGCGCCAGCATCTC 
559 

bmaE 
F-ATGGCGCTAACTTGCCATGCTG                                          

R-AGGGGGACATATAGCCCCCTTC 
507 

gafD 
F-TGTTGGACCGTCTCAGGGCTC                                             

R-CTCCCGGAACTCGCTGTTACT 
952 

nfaE 
F-GCTTACTGATTCTGGGATGGA                                             

R-CGGTGGCCGAGTCATATGCCA 
559 

fimH 
F-TGCAGAACGGATAAGCCGTGG                                           

R-GCAGTCACCTGCCCTCCGGTA 
508 

hlyA 
F-AACAAGGATAAGCACTGTTCTGGCT                                  

R-ACCATATAAGCGGTCATTCCCGTCA 
1177 

cnfI 
F-AAGATGGAGTTTCCTATGCAGGAG                                    

R-CATTCAGAGTCCTGCCCTCATTATT 
498 

cdtB 
F-AAATCACCAAGAATCATCCAGTTA                                    

R-AAATCTCCTGCAATCATCCAGTTTA 
430 

fyuA 
F-TGATTAACCCCGCGACGGGAA                                            

R-CGCAGTAGGCACGATGTTGTA 
880 

iutA 
F-GGCTGGACATCATGGGAACTGG                                         

R-CGTCGGGAACGGGTAGAATCG 
300 

kpsMT-II 
F-GCGCATTTGCTGATACTGTTG                                              

R-CATCCAGACGATAAGCATGAGCA 
272 

kpsMT-III 
F-TCCTCTTGCTACTATTCCCCCT                                            

R-AGGCGTATCCATCCCTCCTAAC 
392 

kpsMT K1 
F-TAGCAAACGTTCTATTGGTGC                                             

R-CATCCAGACGATAAGCATGAGCA 
153 

kpsMT K2 
F-CAGTATCAGCAATCGTTCTGTA                                           

R-CATCCAGACGATAAGCATGAGCA 
159 

rfc 
F-ATCCATCAGGAGGGGACTGGA                                                           

R-AACCATACCAACCAATGCGAG 
788 

ibeA 
F-AGGCAGGTGTGCGCCGCGTAC                                             

R-TGGTGCTCCGGCAAACCATGC 
170 

cvaC 
F-CACACACAAACGGGAGCTGTT                                             

R-CTTCCCGCAGCATAGTTCCAT 
680 

traT 
F-GGTGTGGTGCGATGAGCACAG                                              

R-CACGGTTCAGCCATCCCTGAG 
290 

PAI 
F-GGACATCCTGTTACAGCGCGCA                                          

R-TCGCCACCAATCACAGCCGAAC 
930 

             *(Johnson & Stell 2000) 
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2.10. Identification of isolates from the CTX-M-15 producing O25b 

ST131 clone 

2.10.1. Screening for extended spectrum beta-lactamase enzyme type 

ST131 isolates with ESBL phenotypes were screened for blaCTX-M alleles by PCR with 

universal primers MA1 and MA2 (Table 2.5). The amplification reactions were carried 

out in 50 μl volumes containing 5 μl of each primer (20pmol/μl), 5μl of PCR buffer 

(x10) (Qiagen), 10 μl of 1mM deoxynucleoside triphosphates (dNTPs) (Roche), 0.25 

units of Taq DNA polymerase (Qiagen) and 2 μl of 100 ng/μl chromosomal DNA.  

Amplification conditions were: Initial denaturation for 2 min at 94 ºC; followed by 35 

cycles of 30 sec. at 94 ºC, 30 sec. at 55 ºC, 45 sec. at 72 ºC; followed by final elongation 

for 5 min at 72 ºC; and finally the reactions were held at 4 ºC and the resulting 

amplicons (size 554 bp) were defined by comparison to a standard 100bp DNA ladder 

(Invitrogen). 

Determination of different blaCTX-M group was carried out using specific primers for 

each of the 5 groups (Table 2.5) following the amplification reaction conditions 

described above. 

2.10.2. Detection of CTX-M-15 O25b ST131 clone 

ST131 isolates identified as being positive for group 1 CTX-M were investigated for 

inclusion of the CTX-M-15 producing O25b clone. This was carried out by PCR using 

specific primers listed in Table 2.5. The amplification reactions were carried out in 50 

μl volumes containing 25 μl of BioMix™ Red (Bioline USA Inc.), 1 μl of each primer 

(20pmol/μl) and 2 μl of 100 ng/μl chromosomal DNA. 
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Table ‎2.5 Primers used to screen for different CTX-M alleles and for the CTX-M-15 

producing O25b clone 

Target 

Description 
Primer  Primer‎Sequence‎(5’‎– 3’) 

Size of 

product   

(bp) 

*Reference 

Universal 
CTX-M 

MA  
F-SCSATGTGCAGYACCAGTAA           
R-CCGCRATATGRTTGGTGGTG 

554 1 

CTX-M-G1 blaCTX-M-1 
F-AAAAATCACTGCGCCAGTTC            

R-AGCTTATTCATCGCCACGTT 
415 2 

CTX-M-G2 blaCTX-M-2 
F-CGACGCTACCCCTGCTATT            

R-CCAGCGTCAGATTTTTCAGG 
552 2 

CTX-M-G8 blaCTX-M-8 
F-GCACGATGACATTCGGG                

R-AACCCACGATGTGGGTAGC 
666 2 

CTX-M-G9 blaCTX-M-9 
F-CAAAGAGAGTGCAACGGATG       

R-ATTGGAAAGCGTTCATCACC 
205 2 

CTX-M-G25 blaCTX-M-25 
F-GCACGATGACATTCGGG                
R-AACCCACGATGTGGGTAGC 

327 2 

CTX-M-15 blaCTX-M-15 
F-ATAAAACCGGCAGCGGTG 

R-GAATTTTGACGATCGGGG 
500 3 

O25b 
rfb.1bis 

rfbO25b.r 

F-ATACCGACGACGCCGATCTG      

R-TGCTATTCATTATGCGCAGC 
300 3 

*1 (Saladin et al. 2002) ; 2 (Woodford, Fagan & Ellington 2006); 3 (Blanco et al. 2009); Abbreviations: 

S: G or C, Y: C or T, R: A or G  

 

 

 

Amplification conditions were: Initial denaturation for 5 min at 94 ºC; followed by 30 

cycles of 30 sec. at 94 ºC, 30 sec. at 55 ºC, 90 sec. at 72 ºC; followed by final elongation 

for 7 min at 72 ºC and finally the reactions were held at 4 ºC (Blanco et al. 2009). The 

produced amplicons (300 and 483bp) were identified using a 100bp DNA Ladder 

(Invitrogen) as a marker. 
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2.10.3. Detection of mechanisms of quinolone resistance in ST131 isolates 

All quinolone resistant ST131 isolates were screened for the presence of different 

resistance mechanisms using published methods. 

Mutations in QRDRs of gyrA and parC were detected as described by Yue and 

colleagues (Yue et al. 2008). The amplification reactions were carried out in 50 μl 

volumes containing 5 μl of each primer (10pmol/μl) (Table 2.6), 5μl of PCR buffer 

(x10) (Qiagen), 10 μl of 1mM deoxynucleoside triphosphates (dNTPs) (Roche) and 

0.25 units of Taq DNA polymerase (Qiagen) and 1 μl of chromosomal DNA. The 

resulting amplicons were purified using a Whatman vacuum filtration system 

(Whatman) and were sequenced using a Dye terminator cycle sequencing (DTCS) 

Quick start kit (Beckman Coulter), as described in Section 2.5.4. The final assembly and 

analysis of each target gene fragment was carried out using Sequencher
TM

 v.4.0 

software (Gene Codes Corporation) and comparison with relevant native sequences for 

the gyrA (X06373) and parC genes (M58408) in the genebankTM database. 

PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP) assay was used to 

identify the aac (6’)-lb-cr variants. PCR reactions were performed to amplify all aac 

(6’)-lb sequences using primers and PCR condition described previously (Jones et al. 

2008). The amplified DNA was purified as mentioned above (Section 2.5.4) and the 

cleaned amplicons were digested with NdeI and FokI restriction enzymes (Sigma) as 

described previously (Jones et al. 2008). 

Screening for the three known qnr genes was carried out using multiplex PCR (Cattoir 

et al. 2007) and three strains were used as positive controls, two of which (qnrA and 

qnrB) were kindly provided by Dr. Neil Woodford (ARMRL, HPA, UK) and the qnrS 

positive strain was obtained from the National Collection of Type Cultures (NCTC) 

(HPA, UK). The expected product sizes for qnrA, qnrB and qnrS were 580, 264 and 428 
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bp, respectively (Figure 2.3). Amplification products were sized using a 100bp DNA 

Ladder (Invitrogen). 

Table ‎2.6 Primers used in PCR reactions to detect different quinolone resistance 

mechanisms 

Gene Primer‎sequence‎‎(5’- 3’) 
Size of product 

(pb) 
*Reference 

gyrA 
F-  GGATAGCGGTTAGATGAGC                     

R- CGTTCACCAGCAGGTTAGG 
521 1 

parC 
F-  AATGAGCGATATGGCAGAGC                                                         

R- TTGGCAGACGGGCAGGTAG 
376 1 

qnrA 
F-  AGAGGATTTCTCACGCCAGG                                    

R- TGCCAGGCACAGATCTTGAC 
580 2 

qnrB 
F-  GGMATHGAAATTCGCCACTG                                     

R- TTTGCYGYYCGCCAGTCGAA 
264 2 

qnrS 
F-  GCAAGTTCATTGAACAGGGT                                       

R- TCTAAACCGTCGAGTTCGGCG 
428 2 

aac(6’)-lb 
F-  ATGACTGAGCATGACCTTGC                            

R- TTAGGCATCACTGCGTGTTC 
519 3 

*1 (Yue et al. 2008); 2 (Cattoir et al. 2007); 3 (Jones et al. 2008). Abbreviations: M: A or C, Y: C or T, 

H: A or C or T.  

 

 

Figure ‎2.3 Three Positive qnrA, qnrB and qnrS controls subjected to electrophoresis in 

1.5% agarose gels with a 100bp DNA marker (Invitrogen) 
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2.11. Statistical analysis  

Statistical analysis was performed using SPSS software version 16.0 (SPSS Inc.) and 

the add-in Excel statistical tool software XLSTAT–Pro (Addinsoft Digital River GmbH. 

Germany).  

Associations between different parameters were analysed by using Fisher‟s Exact or 

Mann-Whitney U test and the threshold for statistical significance was a P value of ≤ 

0.05 and, where appropriate, more stringent criteria for statistical significance were 

used.  

Aggregate scores for metabolic activities, resistance to different antimicrobial drugs and 

carriage of virulence factors were calculated for each isolate as the sum of all 

parameters for which the isolates tested positive divided by the total number of the 

tested parameters. Correlation analysis between biochemical scores, antimicrobial 

resistance scores and virulence scores were analysed using Pearson‟s correlation 

coefficients. Correlation analysis was also used to describe the association of different 

STs to the aggregate scores calculated for metabolic activities, resistance to different 

antimicrobial drugs and carriage of virulence factors and the significance criterion was a 

P value of ≤ 0.05. 

Correspondence analysis was used to represent the interrelationships of the UPEC 

isolates according to their STs and on the basis of their phylogenetic groups and to 

describe the distribution of urovirulence traits among different phylogenetic types. 

To assess the best combination of variables to identify ST131 and the CTX-M-15 

producing O25b clone, a stepwise logistic multivariate regression analysis was applied 

with 95% confidence intervals (CIs). 
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3. Results 

Full data relating to the genotypic and phenotypic analyses of the isolates studied here 

are given in Appendices I to VI. 

3.1. UPEC strains  

A total of 300 E. coli isolates (200 from Manchester and 100 from Preston in the 

Northwest of England) were typed using MLST. 

3.2. Allelic variation 

Allelic characterisation of isolates in the study population was carried out using START 

v2. For the seven housekeeping gene fragments amplified and sequenced in the present 

study, a total of 195 different alleles were detected. These consisted of 187 (96%), that 

had been described previously and eight (4%) novel alleles. The number of alleles for 

each targeted gene ranged from 22 (icd and mdh) to 33 (fumC and gyrB) with an 

average of 28 per locus (Table 3.1). 

  

 

Table ‎3.1 Allelic characterisation of UPEC housekeeping genes 

Gene 
Size of sequenced 

fragment (bp) 

No. of 

alleles 

No. of polymorphic sites 

(%) 
dN/dS 

adk 536 26 44 (8.2) 0.0056 

fumC 469 33 76 (16.2) 0.0143 

gyrB 460 33 33 (7.1) 0.0168 

icd 518 22 37 (7.1) 0.0087 

mdh 452 22 26 (5.7) 0.0126 

purA 478 31 34 (7.1) 0.0154 

recA 510 28 26 (5.0) 0.0000 

mean 489 28 39 (8.0) 0.0105 
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The degree of sequence diversity within the housekeeping genes was relatively high 

with the proportion of polymorphic sites ranging from 5.0% (recA) to 16.2% (fumC) 

with an average of 8.0%. The ratio of non-synonymous to synonymous dN/dS   changes 

for each gene locus were calculated using START v2, and all observed ratios were less 

than 1, indicative of negative or stabilising selection, with gyrB noted to have the 

highest dN/dS  ratio (0.0168) whilst recA had the lowest ratio (0.000; Table 3.1). 

To confirm that the population was not under focal positive selection leading to a 

flourish of allelic diversity, the allelic structure seen in the collected population was 

compared with that of STs reported in the international MLST database. Despite the 

relatively low Simpson‟s Index of Diversity (SID) detected for most enteric E. coli (EC) 

related target gene alleles, when compared to ExPEC all of the housekeeping gene 

fragments in the current dataset demonstrated diversity consistent with that of the entire 

ExPEC collection (Table 3.2). 

 

Table ‎3.2 Diversity of NW-UPEC STs compared to that of ExPEC and EC in the 

international MLST database.  

Gene 
NW-UPEC 

(100) 

International database 

ExPEC (293) EC (525) 

  No. of Alleles SID No. of Alleles SID No. of Alleles SID 

adk 26 0.89 53 0.90 102 0.84 

fumC 33 0.94 68 0.96 117 0.89 

gyrB 33 0.93 64 0.94 101 0.93 

icd 22 0.90 49 0.93 103 0.93 

mdh 22 0.89 40 0.92 78 0.92 

purA 31 0.91 49 0.91 87 0.84 

recA 28 0.94 43 0.93 70 0.86 

SID: Simpson‟s index of diversity 
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3.3. Allele specificity 

The majority of the alleles identified in the present study were found in both ExPEC and 

EC databases (Figure 3.1). The incidence of each allele of the seven housekeeping gene 

fragments differed little between our collection (195 alleles) and the ExPEC database 

(366 alleles) with only three alleles (fumC39, mdh8, mdh17) showing significant 

differences in their frequency of incidence. On the other hand when compared with the 

658 alleles in the EC database, 49 alleles were significantly associated with either the 

NW-UPEC collection or the EC database (Table 3.3). 

3.4. Sequence types and clonal complexes 

From 300 UPEC isolates tested, a total of 100 sequence types (STs) and 17 clonal 

complexes (CCs) were identified, CCs accounted for 54.7% of the tested population 

(Figure 3.2). All of the 17 CCs reported here were previously described and available in 

the international MLST database (http://mlst.ucc.ie). A total of 74 STs in the dataset 

were not able to be assigned to a CC. Forty-four STs were novel, of which 8 contained 

new alleles, the remainder were novel combinations of previously characterised alleles 

(Table 3.4). 

Figure 3.3 shows the frequency of repeatedly detected STs among collections from 

Manchester and Preston, where 9 STs were consistently detected in both collections. 

Although the number of isolates was too small to allow examination of statistical 

significance, some notable changes occurred between 2007 and 2009 with increases in 

the proportion of ST73 in Preston and ST131 in Manchester, but a decrease in ST69 in 

Manchester. 

 

http://mlst.ucc.ie/
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Figure ‎3.1 Proportional Venn-diagrams showing the number of alleles shared 

between the three screened populations (NW-UPEC, ExPEC and EC databases) 
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         Table ‎3.3 NW-UPEC allelic specificity compared to that reported for database ExPEC and EC isolates. 

           

         Significant differences were identified using Fisher‟s exact test. Highlights indicate significant (P≤0.05) differences in the incidence of alleles in the different populations. 

 

No. (%)  of Sequence type 

adk fumC gyrB icd mdh purA recA 

Allele NW UPEC ExPEC NW UPEC ExPEC NW UPEC ExPEC NW UPEC ExPEC NW UPEC ExPEC NW UPEC ExPEC NW UPEC ExPEC 
8 0 (0.0) 1 (0.3) 1 (1.0) 2 (0.7) 0 (0.0) 2 (0.7) 4 (4.0) 21 (7.2) 3 (3.0) 27 (9.2) 15 (15.2) 61 (20.8) 0 (0.0) 0 (0.0) 

17 0 (0.0) 1 (0.3) 0 (0.0) 0 (0.0) 3 (3.0) 6 (2.0) 0 (0.0) 0 (0.0) 28 (28.3) 53 (18.1 0 (0.0) 0 (0.0) 2 (2.0) 10 (3.4) 

39 0 (0.0) 1 (0.3) 4 (4.0) 2 (0.7) 1 (1.0) 1 (0.3) 0 (0.0) 1 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

 

Allele NW UPEC EC NW UPEC EC NW UPEC EC NW UPEC EC NW UPEC EC NW UPEC EC NW UPEC EC 
2 0 (0.0) 0 (0.0) 0 (0.0) 4 (0.8) 1 (1.0) 12 (2.)3 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (1.0) 22 (4.2) 9 (9.1) 114 (21.7) 

4 2 (2.0) 13 (2.5) 13 (0.0) 114 (21.7) 10 (10.1) 89 (17.0) 0 (0.0) 2 (0.4) 5 (5.1) 6 (1.1) 0 (0.0) 3 (0.6) 6 (6.1) 30 (5.7) 

5 0 (0.0) 1 (0.2) 0 (0.0) 1 (0.2) 3 (3.0) 44 (8.4) 0 (0.0) 0 (0.0) 11 (11.1) 33 (6.3) 13 (13.1) 25 (4.8) 0 (0.0) 0 (0.0) 

6 24 (24.2) 165 (31.4) 4 (4.0) 26 (5.0) 0 (0.0) 0 (0.0) 6 (6.1) 9 (1.7) 0 (0.0) 2 (0.4) 0 (0.0) 0 (0.0) 8 (8.1) 88 (16.8) 

7 0 (0.0) 3 (0.6) 1 (1.0) 28 (5.3) 0 (0.0) 17 (3.2) 0 (0.0) 2 (0.4) 3 (3.0) 40 (7.6) 6 (6.1) 51 (9.7) 11 (11.1) 109 (20.8) 

8 0 (0.0) 8 (1.5) 1 (1.0) 4 (0.8) 0 (0.0) 3 (0.6) 4 (4.0) 63 (12.0) 3 (3.0) 74 (14.1) 15 (15.2) 178 (33.9) 0 (0.0) 1 (0.2) 

9 0 (0.0) 18 (3.4) 0 (0.0) 1 (0.2) 16 (16.2) 8 (1.5) 0 (0.0) 5 (1.0) 6 (6.1) 67 (12.8) 0 (0.0) 4 (0.8) 5 (5.1) 3 (0.6) 

10 3 (3.0) 46 (8.8) 0 (0.0) 0 (0.0) 8 (8.1) 12 (2.3) 4 (4.0) 22 (4.2) 0 (0.0) 5 (1.0) 3 (3.0) 5 (1.0) 10 (10.1) 5 (1.0) 

11 0 (0.0) 0 (0.0) 4 (4.0) 70 (13.3) 0 (0.0) 1 (0.2) 0 (0.0) 2 (0.4) 6 (0.0) 51 (0.0) 20 (20.2) 19 (3.6) 0 (0.0) 5 (1.0) 

13 17 (17.2) 25 (4.8) 5 (5.1) 5 (1.0) 0 (0.0) 16 (3.0) 24 (24.2) 27 (5.1) 0 (0.0) 0 (0.0) 2 (2.0) 14 (2.7) 0 (0.0) 2 (0.4) 

14 5 (5.1) 0 (0.0) 7 (7.1) 2 (0.4) 1 (1.0) 13 (2.5) 9 (9.1) 5 (1.0) 0 (0.0) 0 (0.0) 1 (1.0) 11 (2.1) 1 (1.0) 24 (4.6) 

15 0 (0.0) 7 (1.3) 0 (0.0) 3 (0.6) 0 (0.0) 23 (4.4) 0 (0.0) 5 (1.0) 0 (0.0) 4 (0.8) 0 (0.0) 2 (0.4) 0 (0.0) 4 (0.8) 

16 0 (0.0) 11 (2.1) 0 (0.0) 1 (0.2) 0 (0.0) 2 (0.4) 4 (4.0) 56 (10.7) 6 (6.1) 4 (0.8) 1 (1.0) 17 (3.2) 1 (1.0) 6 (1.1) 

17 0 (0.0) 1 (0.2) 0 (0.0) 1 (0.2) 3 (3.0) 5 (1.0) 0 (0.0) 5 (1.0) 28 (28.3) 32 (6.1) 0 (0.0) 1 (0.2) 2 (2.0) 7 (1.3) 

18 1 (1.0) 7 (1.3) 0 (0.0) 2 (0.4) 0 (0.0) 4 (0.8) 2 (2.0) 43 (8.2) 2 (2.0) 6 (1.1) 2 (2.0) 20 (3.8) 0 (0.0) 1 (0.2) 

19 0 (0.0) 7 (1.3) 3 (3.0) 7 (1.3) 16 (0.0) 31 (0.0) 0 (0.0) 2 (0.4) 0 (0.0) 0 (0.0) 1 (1.0) 0 (0.0) 2 (2.0) 12 (2.3) 

21 4 (4.0) 5 (1.0) 0 (0.0) 6 (1.1) 0 (0.0) 1 (0.0) 0 (0.0) 4 (0.8) 0 (0.0) 4 (0.8) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 

24 0 (0.0) 1 (0.2) 14 (14.1) 16 (3.0) 1 (1.0) 0 (0.0) 0 (0.0) 6 (1.1) 1 (1.0) 35 (6.7) 0 (0.0) 0 (0.0) 1 (1.0) 1 (0.2) 

25 0 (0.0) 0 (0.0) 0 (0.0) 5 (1.0) 1 (1.0) 1 (0.2) 7 (7.1) 8 (1.5) 0 (0.0) 1 (0.2) 3 (3.0) 4 (0.8) 12 (12.1) 15 (2.9) 

27 1 (1.0) 0 (0.0) 0 (0.0) 10 (1.9) 3 (0.0) 0 (0.0) 0 (0.0) 5 (1.0) 0 (0.0) 0 (0.0) 1 (1.0) 1 (0.2) 0 (0.0) 0 (0.0) 

28 1 (1.0) 0 (0.0) 0 (0.0) 2 (0.4) 1 (0.0) 1 (0.0) 0 (0.0) 4 (0.8) 1 (1.0) 2 (0.4) 4 (4.0) 1 (0.2) 2 (2.0) 0 (0.0) 

30 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.4) 2 (0.0) 0 (0.0) 0 (0.0) 1 (0.2) 2 (0.0) 4 (0.8) 0 (0.0) 1 (0.2) 1 (0.0) 1 (0.2) 

34 2 (2.0) 5 (1.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.2) 0 (0.0) 4 (0.8) 4 (0.0) 0 (0.0) 

36 7 (7.1) 3 (0.6) 2 (2.0) 3 (0.6) 0 (0.0) 0 (0.0) 6 (6.1) 8 (1.5) 3 (0.0) 3 (0.6) 0 (0.0) 1 (0.2) 0 (0.0) 5 (1.0) 

37 8 (8.1) 8 (1.5) 4 (4.0) 1 (0.2) 0 (0.0) 0 (0.0) 8 (8.1) 12 (2.3) 0 (0.0) 3 (0.6) 1 (1.0) 4 (0.8) 0 (0.0) 2 (0.4) 

38 2 (2.0) 0 (0.0) 9 (0.0) 12 (0.0) 0 (0.0) 1 (0.2) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 4 (0.8) 

39 0 (0.0) 0 (0.0) 4 (0.0) 4 (0.0) 1 (0.0) 6 (1.1) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 

40 5 (5.1) 2 (0.4) 2 (0.0) 3 (0.0) 0 (0.0) 1 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.0) 1 (0.0) 9 (0.0) 0 (0.0) 0 (0.0) 

56 0 (0.0) 29 (5.5) 0 (0.0) 1 (0.0) 0 (0.0) 2 (0.4) 0 (0.0) 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (0.0) 0 (0.0) 9 (1.7) 

68 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 3 (0.6) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 5 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 

69 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 5 (1.0) 0 (0.0) 0 (0.0) 2 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.2) 

73 0 (0.0) 1 (0.2) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (0.4) 4 (4.0) 2 (0.4) 

74 0 (0.0) 1 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 2 (2.0) 0 (0.0) 

99 0 (0.0) 1 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.2) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 2 (2.0) 0 (0.0) 
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Figure ‎3.2 The frequency of clonal complexes among the 300 UPEC isolates 

 

 

       

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure ‎3.3 Frequency of different STs detected in both Manchester and Preston   
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      Table ‎3.4 Frequency of detected sequence types and their allelic profiles 

ST CC 
Profile 

Frequency 
% of 

Database adk fumC gyrB icd mdh purA recA 

73 ST-73 36 24 9 13 17 11 25 50 16.67 

131 - 53 40 47 13 36 28 29 37 12.33 

69 ST-69 21 35 27 6 5 5 4 27 9 

95 ST-95 37 38 19 37 17 11 26 19 6.33 

10 ST-10 10 11 4 8 8 8 2 13 4.33 

127 - 13 14 19 36 23 11 10 11 3.67 

14 ST-14 14 14 10 14 17 7 10 8 2.67 

88 ST-23 6 4 12 1 20 12 7 6 2 

372 - 88 103 19 36 23 44 26 5 1.67 

405 ST-405 35 37 29 25 4 5 73 5 1.67 

141 - 13 52 10 14 17 25 17 4 1.33 

420 - 13 38 84 13 17 68 34 4 1.33 

58 ST-155 6 4 4 16 24 8 14 3 1 

62 - 28 33 25 29 7 11 24 3 1 

393 ST-31 18 106 17 6 5 5 4 3 1 

404 ST-14 14 14 10 14 17 7 74 3 1 

843 - 40 24 19 14 23 1 10 3 1 

12 ST-12 13 13 9 13 16 10 9 2 0.67 

38 ST-38 4 26 2 25 5 5 19 2 0.67 

59 ST-59 27 32 24 29 26 19 22 2 0.67 

80 ST-568 13 24 19 14 23 1 10 2 0.67 

93 ST-168 6 11 4 10 7 8 6 2 0.67 

104 ST-73 13 24 9 13 17 11 25 2 0.67 

106 ST-69 21 35 27 6 5 8 4 2 0.67 

117 - 20 45 41 43 5 32 2 2 0.67 

362 - 62 100 17 31 5 5 4 2 0.67 

410 ST-23 6 4 12 1 20 18 7 2 0.67 

550 ST-14 14 14 10 14 17 92 10 2 0.67 

638 ST-73 76 24 9 13 17 11 25 2 0.67 

808 - 36 38 19 37 17 11 26 2 0.67 

48 ST-10 6 11 4 8 8 8 2 1 0.33 

92 - 40 14 19 36 23 11 10 1 0.33 

136 - 38 39 30 13 17 11 28 1 0.33 

167 ST-10 10 11 4 8 8 13 2 1 0.33 

210 - 6 8 4 1 9 48 7 1 0.33 

224 - 6 4 33 16 11 8 6 1 0.33 

295 - 6 4 12 1 9 2 7 1 0.33 

297 - 6 65 32 26 9 8 2 1 0.33 

345 - 6 4 14 1 20 62 7 1 0.33 

399 ST-399 6 4 1 95 69 8 20 1 0.33 

448 ST-448 6 6 5 16 11 8 7 1 0.33 

491 - 13 39 19 36 30 14 82 1 0.33 

493 ST-12 40 13 9 13 16 10 9 1 0.33 

538 ST-538 13 40 19 13 36 28 30 1 0.33 

568 - 13 24 19 14 17 1 10 1 0.33 

636 - 13 108 10 97 18 68 93 1 0.33 

648 - 92 4 87 96 70 58 2 1 0.33 

681 - 38 39 30 13 17 25 28 1 0.33 

706 - 88 24 49 36 17 11 91 1 0.33 

779 - 37 38 19 37 17 11 2 1 0.33 

780 - 37 38 19 37 17 11 25 1 0.33 
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    Table 3.4. Continued… 

ST CC 
Profile 

Frequency 
% of 

Database adk fumC gyrB icd mdh purA recA 

781 - 76 39 50 16 16 37 25 1 0.33 

782 - 21 35 27 6 5 5 99 1 0.33 

783 - 6 4 33 10 20 12 7 1 0.33 

784 - 13 167 19 13 36 28 10 1 0.33 

786 - 36 24 9 13 17 27 25 1 0.33 

787 - 141 37 29 25 4 5 73 1 0.33 

804 - 6 24 9 13 17 11 25 1 0.33 

805 - 6 19 52 18 9 13 6 1 0.33 

806 - 14 4 12 1 20 12 7 1 0.33 

807 - 37 14 10 14 17 7 74 1 0.33 

809 - 36 96 121 13 17 11 10 1 0.33 

842 - 76 24 9 13 16 11 25 1 0.33 

844 - 20 45 41 43 5 8 2 1 0.33 

845 - 13 38 9 37 18 76 16 1 0.33 

999 - 13 166 47 13 23 28 122 1 0.33 

1000 - 37 24 9 172 17 11 25 1 0.33 

1001 - 6 23 4 18 7 7 6 1 0.33 

1002 - 35 37 4 25 4 5 73 1 0.33 

1003 - 34 36 39 87 67 131 4 1 0.33 

1004 - 6 19 3 171 11 8 6 1 0.33 

1005 - 36 24 9 13 17 113 25 1 0.33 

1058 - 37 38 19 37 17 11 34 1 0.33 

1059 - 6 6 5 136 11 130 6 1 0.33 

1303 - 10 7 4 8 12 35 2 1 0.33 

1524 - 6 19 64 26 11 8 6 1 0.33 

1525 - 6 4 1 13 69 8 20 1 0.33 

1526 - 13 52 41 14 17 25 17 1 0.33 

1527 - 40 13 9 13 16 126 9 1 0.33 

1528 - 6 6 4 1 9 8 6 1 0.33 

1529 - 40 1 84 13 17 68 34 1 0.33 

1530 - 13 24 19 36 23 11 34 1 0.33 

1531 - 37 38 19 37 17 5 26 1 0.33 

1532 - 6 6 5 10 11 8 7 1 0.33 

1533 - 13 13 9 13 16 76 9 1 0.33 

1534 - 36 24 9 13 30 11 25 1 0.33 

1535 - 52 116 55 10 35 40 38 1 0.33 

1536 - 126 160 131 6 9 5 99 1 0.33 

1537 - 1 4 12 1 20 12 7 1 0.33 

1538 - 6 220 3 26 28 7 10 1 0.33 

1539 - 34 36 28 25 5 16 4 1 0.33 

1540 - 14 14 10 14 20 7 10 1 0.33 

1541 - 37 38 19 37 17 68 26 1 0.33 

1542 - 6 4 60 1 31 18 7 1 0.33 

1543 - 4 26 17 25 5 5 19 1 0.33 

1544 - 100 37 29 25 4 5 73 1 0.33 

1545 - 21 35 67 6 5 5 44 1 0.33 

1546 - 13 108 10 97 17 68 93 1 0.33 

1547 - 36 24 9 13 4 11 25 1 0.33 

1548 - 13 13 9 13 20 10 9 1 0.33 
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3.5. Phylogenetic analysis 

3.5.1. eBURST analysis of STs 

Using the eBURST v3 (http://eburst.mlst.net) clustering algorithm, 17 CCs 

encompassing 59 STs represented 259 UPEC isolates. The remaining 41 isolates 

appeared as singletons, which do not fall into any eBURST CC (Table 3.5). For clarity 

it should be mentioned that eBURST CC have a nomenclature that is not related to the 

conventional MLST naming schemes. Clonal Complexes were identified according to 

the number of single locus variants (SLVs) and double locus variants (DLVs) shared 

between isolates, where only STs that share six or more loci are designated to a defined 

CC. The largest CC (CC1) accounted for 20% (60) of the tested population and was 

dominated by a single ST (ST 73). ST73 was identified by eBURST as the founder of 

the CC1 group with the greatest number of SLVs and DLVs and with a bootstrap value 

of 96%. Additionally, there were eight other major groups comprising of more than 2 

STs for which eBURST was able to identify founders with a reasonable level of 

confidence indicated by bootstrap values ranging between 98% and 29%. 

Figure 3.4 illustrates eBURST clonal lineages showing in addition to SLVs, numerous 

inter-clonal and intra-clonal DLVs suggesting that frequent recombinational events 

occur within the defined population. CC1 shows the highest DLVs, some of which, for 

example ST1000, exist outside of the CC. Similarly CC5 reveals numerous DLVs with 

many outsider STs (ST295, ST345, ST783 and ST1542). 

According to eBURST default definitions, each ST that has at least two descendent 

SLVs beside the SLV that is its progenitor, will be assigned as a subgroup founder 

(represented by a yellow dot in Figures 3.3, 3.4 and 3.5). In the dataset presented there 

http://eburst.mlst.net/
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are three CCs with a subgroup founder (ST638 for CC1, ST404 for CC4 and ST493 for 

CC3). 

As many of the successful STs, such as ST131 and ST 127, failed to be assigned to a 

well defined clonal lineage, even when less stringent conditions were applied (i.e. 

sharing identical alleles at four of seven loci), the clonality of NW-UPEC dataset was 

examined in an eBURST comparison analysis with the international MLST database to 

explore the possibility of a common ancestor not present in current dataset. Firstly, with 

ExPEC associated STs, both ST131 and ST127 were assigned as founders of distinct 

CCs with six and five STs, respectively associated with numerous SLVs and DLVs with 

bootstrap values of 97% and 94% but none of which stretched to involve other CCs 

(Figure 3.5). Secondly when expanding the comparison to involve the whole E. coli 

database, in addition to the re-enforcement of the existing clonal lineage the layout of 

clonal lineages dramatically changed as CC7, with its founder ST10 became the 

predominant CC in the whole E. coli snapshot with the most SLVs and DLVs and 

subgroup founders. CC131 and CC127 remained with inclusive SLVs and DLVs 

(Figure 3.6). 

3.5.2. Phylogenetic Trees 

The phylogenetic relationship between STs was presented by generating a UPGMA 

dendrogram using graphical tools integrated within the START v2.0 software. Figure 

3.7 shows an unrooted UPGMA dendrogram resolving the 100 allelic profiles of the 

seven genes into 2 large clusters (GI & GII) at 0.9 linkage distance. This distance 

represented the number of loci that were identical between two allelic profiles, which 

ranged from zero (100% similarity) to 1 (dissimilar). These results correlated well with 

those obtained using eBURST. 
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Table ‎3.5 The 17 clonal complexes obtained from eBURST analysis of the UPEC 

population, showing the frequency of each sequence type and their corresponding SLVs 

and DLVs, the predicted founder of each group is highlighted and the level of 

confidence in assignation of the founding genotype is indicated by the bootstrap value. 
 

 

  

CC 1:  No. Isolates = 60  |  No. STs = 9  |  Predicted Founder = 73 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

73 50 7 1 0 96% 97% 

638 2 4 4 0 25% 14% 

104 2 3 5 0 1% 0% 

804 1 3 5 0 3% 0% 

1534 1 2 6 0 0% 0% 

1547 1 2 6 0 0% 0% 

1005 1 2 5 1 0% 0% 

786 1 2 5 1 0% 0% 

842 1 1 5 2 0% 0% 

       

CC 2:  No. Isolates = 26  |  No. STs = 7  |  Predicted Founder = 95 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

95 19 6 0 0 98% 95% 

779 1 3 3 0 4% 1% 

1058 1 3 3 0 5% 1% 

780 1 3 3 0 10% 1% 

1531 1 2 4 0 0% 0% 

1541 1 2 4 0 0% 0% 

808 2 1 5 0 0% 0% 

       

CC 3:  No. Isolates = 6  |  No. STs = 5  |  Predicted Founder = 12 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

12 2 3 1 0 63% 17% 

493 1 2 2 0 17% 0% 

1533 1 1 3 0 0% 0% 

1527 1 1 2 1 0% 0% 

1548 1 1 2 1 0% 0% 
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CC 4:  No. Isolates = 15  |  No. STs = 5  |  Predicted Founder = 14 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

14 8 3 1 0 61% 16% 

404 3 2 2 0 17% 0% 

550 2 1 2 1 0% 0% 

1540 1 1 2 1 0% 0% 

807 1 1 1 2 0% 0% 

       

CC 5:  No. Isolates = 10  |  No. STs = 4  |  Predicted Founder = 88 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

88 6 3 0 0 61% 16% 

1537 1 2 1 0 5% 0% 

806 1 2 1 0 8% 0% 

410 2 1 2 0 0% 0% 

       

CC 6:  No. Isolates = 8  |  No. STs = 4  |  Predicted Founder = 405 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

405 5 3 0 0 63% 13% 

787 1 2 1 0 4% 0% 

1544 1 2 1 0 10% 0% 

1002 1 1 2 0 0% 0% 

       

CC 7:  No. Isolates = 15  |  No. STs = 3  |  Predicted Founder = 10 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

10 13 2 0 0 29% 0% 

48 1 1 1 0 0% 0% 

167 1 1 1 0 0% 0% 

       

CC 8:  No. Isolates = 6  |  No. STs = 3  |  Predicted Founder = 80 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

80 2 2 0 0 30% 0% 

843 3 1 1 0 0% 0% 

568 1 1 1 0 0% 0% 
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CC 9:  No. Isolates = 30  |  No. STs = 3  |  Predicted Founder = 69 

ST FREQ SLV DLV TLV 
ST Bootstrap 

Group Subgrp 

69 27 2 0 0 31% 0% 

106 2 1 1 0 0% 0% 

782 1 1 1 0 0% 0% 

       

CC 10:  No. Isolates = 12  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

127 11 1 0 0 - 

92 1 1 0 0 - 

       

CC 11:  No. Isolates = 2  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

1532 1 1 0 0 - 

448 1 1 0 0 - 

       

CC 12:  No. Isolates = 5  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

141 4 1 0 0 - 

1526 1 1 0 0 - 

       

CC 13:  No. Isolates = 3  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

117 2 1 0 0 - 

844 1 1 0 0 - 

       

CC 14:  No. Isolates = 2  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

1525 1 1 0 0 - 

399 1 1 0 0 - 

       

CC 15:  No. Isolates = 3  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

38 2 1 0 0 - 

1543 1 1 0 0 - 

       

CC 16:  No. Isolates = 2  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

636 1 1 0 0 - 

1546 1 1 0 0 - 

       

CC 17:  No. Isolates = 2  |  No. STs = 2  |  Predicted Founder = None 

ST FREQ SLV DLV TLV ST Bootstrap 

136 1 1 0 0 - 

681 1 1 0 0 - 
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Figure ‎3.4 eBURST diagram of NW-UPEC showing clusters of related STs (CC) and individual singleton STs of the 300 UPEC. Seventeen 

CCs are identified, each ST is represented by a circle, the size of the circle indicates the frequency of each ST. Predicted founders are 

positioned centrally in each cluster and shown in blue and SLVs and DLVs shown in pink and blue, respectively 
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Figure ‎3.5 eBURST snapshot of NW-UPEC projected over ExPEC related STs, showing clusters of related STs (CC) and individual singleton 

STs of the NW-UPEC in pink, ExPEC from the database in black and shared STs in green. Predicted founders are positioned centrally in each 

cluster and shown in blue, subgroup founders are shown in yellow. 



 

97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.6 eBURST snapshot E. coli population illustrating the structure of common uropathogenic CCs and their related STs and showing 

clusters of related STs (CCs) and individual singleton STs of the NW-UPEC in pink and other E. coli from the database in black. Predicted 

founders are positioned centrally in each cluster and shown in blue, subgroup founders are shown in yellow 
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The nucleotide sequences of the seven gene fragments of unique STs were concatenated 

in the order adk, fumC, gyrB, icd, mdh, purA and recA using START v2.0 software and 

the resulting 3405bp sequence alignments were phylogenetically analysed using the 

Neighbour-joining alignment method integrated in MEGA 4.0 software with the Jukes-

Cantor based algorithm and 1000 bootstrapping replications. Figure 3.8 shows the 

unrooted phylogenetic dendrogram of the 100 identified STs. In general the dataset was 

divided in to 3 large clusters with 60% of STs previously assigned to GI  in the 

UPGMA tree split to form a distinct cluster (GIb) associated to (GII). Despite this shift 

in the relation of some CCs, the overall layout of the STs within CCs is consistent with 

that provided by eBURST analysis. 

 An alignment of unique concatenated sequences was tested by ClonalFrame to infer 

their phylogenetic relatedness. The majority-role consensus tree constructed, (Figure 

3.9) again shows the two groups observed with UPGMA and NJ and almost agrees with 

the eBURST lineage display. In the eBURST analysis, CC95 is a consistent clone with 

seven STs (ST95, ST88, ST1531, ST1541, ST779, ST780 and ST1058). In 

ClonalFrame, this clone was reduced to only 4 ST (ST95, ST88, ST1531, ST1541) and 

the remaining STs joined other singletons arising from unknown ancestors. In contrast, 

CC73 extended its membership to include ST1000, which in eBURST analysis showed 

various DLVs with many CC73 members.  

The network representation of the ClonalFrame analysis output illustrated in Figure 

3.10 suggests that the common ancestor has not yet been identified and that numerous 

genotypes descended from this common ancestor have also not been identified among 

Figure ‎3.7 (previous page) Unrooted UPGMA dendrogram, based on allelic profiles of 

100 STs among the collected UPEC. 
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the studied population. However, almost all STs appear to descend from two unknown 

ancestors, which in turn directly arise from the common ancestor. 

Based on eBURST analysis, ST14 and ST405 were the founding genotypes for their 

respective clonal complexes. ClonalFrame analysis, however, does not put particular 

weight on ST14 and ST405 as clone founders and only regards ST14 as a descendant 

strain of an as yet unknown ancestor and ST 405 as descended from ST1544. 

Interestingly, ST127 which, based on eBURST analysis, fails to form its own clonal 

lineage in the dataset presented here, appears as a clonal founder in the ClonalFrame 

analysis. 

Using the Neighbour-net method integrated in splitstree 4.11, a phylogenetic network 

was constructed using the concatenated nucleotide sequences representing the dataset. 

In general, Neighbour-net identified groups in a similar way to that presented in the 

ClonalFrame output. Neighbor-net was able to resolve the conflicting signals introduced 

to nucleotide sequences by recombination, as these events are displayed by parallel 

paths in the phylogenetic network, as shown in Figure 3.11. ST806 was separated from 

CC88, which might indicate that multiple alleles were acquired by homologous 

recombination. CC73 was mostly arranged with a radial symmetry indicating that most 

diversity was generated by mutation. Parallel paths play an important role in the 

formation of most other CCs indicating the possibility of substantial recombination. 
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Figure ‎3.8 Unrooted phylogenetic 

dendogram of the identified 100 STs 

among the collected UPEC, analysed 

by Neighbour-joining method based on 

concatenated sequences (with Jukes-

Cantor based algorithm and 1000 

bootstrap replications). * denotes an ST 

does not belong to the assigned CC but 

was associated with it by DLVs. 
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Figure ‎3.9 A 50% consensus of 10 evolutionary trees generated for NW-UPEC dataset 

using ClonalFrame1.1 
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Figure ‎3.10 A network representation of the ClonalFrame output. The network shows 

inferred ancestral nodes in black and the STs in red with each line indicating a single 

ST. Nodes whose ancestral ST is not found amongst the study population are shown as 

an empty circle. The ancestral node of the network is indicated by a darker circle.

ST14 

ST405 
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Figure ‎3.11 Neighbour-net based on concatenated sequence alignment of STs representing the NW-UPEC population. 

Shadowed areas indicate CCs 
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3.5.3. Analysis of recombination 

From eBURST and ClonalFrame analysis it is clear that the dataset population evolved 

primarily by accumulation of single mutations with some recombinational events. So it 

is important to estimate the contribution of recombination in the evolution of the dataset 

population and the clonal groups. 

3.5.3.1. Maximum X2 test 

Nucleotide sequences of target genes were analysed to identify potential recombination 

events between alleles of each locus. A large number of putative recombination sites 

were identified ranging from 231 sites in icd to 528 sites in fumC and gyrB from which 

few were considered significant after 1000 random comparison trials. Table 3.6 shows 

significant putative recombination sites in each locus. Most target genes show multiple 

possible recombination sites except gyrB where, from 528 identified sites, none were 

considered significant and only one site was assigned as a significant recombination site 

in purA. 

 

 

Table ‎3.6 Frequency of significant putative recombination sites in each target gene 

 Max X
2
 

Alleles Putative significant recombination sites P value 

adk 24 

<0.05 

fumC 12 

gyrB 0 

icd 10 

mdh 12 

purA 1 

recA 113 
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3.5.3.2. Split decomposition analysis 

Concatenated allele sequences of the target genes from the 100 STs were analysed for 

evidence of recombination using a split decomposition algorithm in which the extent of 

recombination within the population is reflected by the degree of networks computed by 

the program. The star phylogeny displayed in Figure 3.11a is consistent with a clonal 

population structure.  

To further analyse the population structure, the target genes were analysed separately. 

The results are shown in Figures 3.12b-h. The structure of the split graphs varied 

substantially between the different loci. The split tree graph obtained with mdh 

presented an interconnected network indicating evidence of recombination whereas the 

remaining loci gave a tree-like structure consisting of a single central origin from which 

single branches radiate showing no evidence of recombination. 
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c) fumC 

 

 
 

 

 

 

 

 

 

 

 

d) gyrB 



Chapter 3                                                                                   Results 

108 

 

 
 

 

 

 

 

 

e) icd 

 

 
 

 

 

 

 

 

 

 

 

 

f) mdh 



Chapter 3                                                                                   Results 

109 

 

 
 

 

 

 

 

 

 
g) purA 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
h) recA 



Chapter 3                                                                                   Results 

110 

 

 
Figure ‎3.12 Split decomposition analysis(a) for concatenated allele sequences of the 

target genes from the 100 STs and (b - h) for individual allele sequences of each target 

gene 

 

3.5.3.3. Pairwise homoplasy index (Φw ) test 

Since conflicting signals of recombination were observed for target genes either 

calculated in the max X
2
 test or displayed in split tree diagrams, another statistical test 

was  applied. The Φw test is considered a powerful tool to identify recombination and is 

able to distinguish recurrent mutation from recombination. However, with considerable 

parsimony informative sites, the Φw test was able to detect evidence of significant 

recombination in all loci except adk and recA (Table 3.7). 

 

 

Table ‎3.7 Pairwise homoplasy index, (Φw) test of significant recombination events in 

each target gene 

Allele No. of alleles 

Φw test 

Informative 

sites 
P value Interpretation 

adk 26 19 0.25 N.R 

fumC 33 41 0.0 S.R 

gyrB 33 17 0.0 S.R 

icd 22 14 0.0 S.R 

mdh 22 26 0.0 S.R 

purA 31 17 0.012 S.R 

recA 28 17 0.249 N.R 
S.R:significant recombination; N.R: non significant recombination. 
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3.5.3.4.  Index of association 

The level of linkage between alleles at different loci was estimated by calculating the 

index of association (I
S

A) values using the standardised method introduced by Haubold 

and Hudson in 2000 and integrated within the START2 program. The I
S

A value found 

for all isolates was 0.535 (P <0.0001) but reduced to 0.224 (P<0.0001) when only one 

representative of each ST was considered. This indicates that the population is in 

linkage disequilibrium and thus the population structure of the present dataset is clonal 

(Table 3.8). The contribution of recombination was also estimated within previously 

identified clonal complexes using both the Φw test and linkage disequilibrium analysis 

(Table 3.9). 

 

Table ‎3.8 Multilocus linkage disequilibrium analysis of the 300 UPEC isolates 

Ve, expected variance; Vo, observed variance; IS
A , standardized index of association.Pa Probability of 

observing an Vo/Ve ratio as or more extreme than that found in the original data based on1000 trials. 

 

Table ‎3.9 Contribution of recombination in different phylogenetic structures within the 

NW-UPEC population 

 

 

 No. Ve Vo I
S
A Pa 

Total isolates 300 0.8341 3.512 0.535 <0.0001 

Total STs 100 0.5318 1.247 0.224 <0.0001 

CC 
No of 

STs 

Informative 

site 
Φw 

 

I
S

A value P value 
Linkage 

disequilibrium 

dataset 100 184 0.0 0.2268 0.000 LD 

GI 27 133 0.0 0.2226 0.000 LD 

CC73 8 2 1.0 -0.0873 0.996 - 

CC95 7 4 1.0 -0.1003 1.0 - 

CC14 5 0 0.95 -0.0586 0.946 - 

CC12 5 0 1.0 -0.0566 1.0 - 

GII 14 85 0.0 0.1582 0.000 LD 

CC69 3 0 1.0 -0.0188 0.878 - 

CC405 4 0 1.0 -0.0524 1.0 - 

CC10 3 0 1.0 -0.0417 1.0 - 

CC88 4 0 1.0 -0.0524 1.0 - 
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3.6. Phylogenetic typing   

E. coli may be grouped into four major phylogenetic groups A, B1, B2 and D. Of the 

300 UPEC isolates tested 175 (58%) belonged to group D followed by B2 with 77 

(26%) isolates with 36 (12%) and 11 (4% ) belonging to groups A and B1 respectively. 

To assess the phylogenetic distribution among defined STs, correspondence analysis 

was performed on frequently occurring STs and STs belonging to the nine eBURST 

CCs, whereas the remaining STs were represented collectively as singletons. Significant 

associations were detected between phylogenetic groups and different STs (P <0.0001) 

and the results expressed by the projection of each ST on a plane defined by two axes 

(F1 and F2), which account for most of the total variance (81%) allowing sorting of the 

300 UPEC in the data set among the phylogenetic groups (Figure 3.13). Ten STs 

accounted for 139 (46%) isolates clustered between B2 and D indicating shared 

phylogenetic groups, whereas group D was represented by 30 STs accounting for 69 

(23%) isolates, group A by seven STs with 27 (9%) isolates and six STs accounted for 

seven (2%) isolates associated with B1. Singletons were collectively distributed 

between groups D (the majority of singletons), A and B.  

Correspondence analysis was also carried out to describe the distribution of the 

phylogenetic groups among the eBURST CCs. Despite the presence of mixed 

phylogenetic groups within some of the CCs, a significant linkage between the 

phylogenetic groups and CCs (P <0.0001) was observed. CC10 and CC88 were 

classified as group A, CC80 as B2 and CC69, CC95, CC12 and CC405 as group D. In 

CC73, while most of the STs were classified as group D, ST73, which is the founder of 

the CC, included a mixture of D and B2 isolates. Furthermore ST786 and ST1547 of 

CC73 were classified as group B2. This mosaic, which clearly occurs in mature CCs 

could indicate genetic exchange between isolates of different CCs.   
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Figure ‎3.13 Graphical representation of the correspondence analysis of UPEC based on 

the MLST data. The F1/F2 plane accounted for 81% of total variance, with factors F1 

and F2 accounting for 57% and 24%, respectively. Arrows show the position of 

individual STs when they arise away from their respective CCs. 
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3.7. Pulsed field gel electrophoresis 

XbaI PFGE analysis was performed with modifications according to the CDC 

standardised PFGE protocol and the generated profiles were compared digitally using 

BioNumerics software. Cluster analysis of Dice similarity indices based on the UPGMA 

was used to generate a dendrogram describing the relationships among PFGE profiles of 

32 representative isolates of the common UPEC STs with different phylogenetic groups, 

10 ST69 (n=10 isolates), ST73 (n=9) and ST131 (n=13; Figure 3.14). 

As expected, finer resolution was obtained by PFGE analysis and each ST constituted a 

separate cluster. The ST131 cluster (defined at the 65% similarity level) was tied to the 

two other cluster groups (ST69 and ST73) at less than 60% similarity.  

Isolates were considered to belong to the same PFGE group if their Dice similarity 

index was ≥85% and using this criterion ST73 and ST69 clusters comprised of eight 

PFGE profiles each.  

The ST 131 cluster in turn, comprised of nine different profiles with most of the isolates 

collected from Preston forming a sub-cluster at >80% similarity. There was no evidence 

for a geographical effect in the sub-clusters of both ST73 and ST69. 

Interestingly isolates 24 and 29 of the ST73 cluster showed different phylogenetic 

groups (B2 and D) despite the fact that they both share the same PFGE profiles. 

Similarly, within the Preston ST131 sub-cluster isolates 15, 19 and 25 shared the same 

PFGE profile when they differed in their phylogenetic groups. 
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Figure ‎3.14 XbaI PFGE dendrogram for 32 UPEC isolates as produced by the UPGMA 

algorithm based on Dice similarity coefficients. Highlighted area indicates ST131 

isolates collected in Preston. The red line shows 85% cutoff. 
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3.8. Demographic distribution of STs 

Demographic parameters such as age, gender, specimen type and geographic origin of 

specimen were retrieved from laboratory records. Of the 300 MLST typed isolates, 82% 

were from females with patient‟s age ranging from <1 month to 95 years. Table 3.10 

shows the distribution of patients by age and sex. 

 

 

Table ‎3.10 Distribution of patients according to age and gender 

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80-89 ≥‎90

Female 6 16 43 26 28 30 34 30 25 8 246

Male 3 2 2 3 6 5 17 9 3 4 54

Total 9 18 45 29 34 35 51 39 28 12 300

Age groups(yr)
Gender Total

 

 

 

 

One hundred of the specimens were collected from patients attending inpatient wards 

while the remaining 200 were from different general practitioner‟s clinics. In Table 

3.11, the distribution of patients by gender, specimen collection type and location of 

collection showed no significant different in male/female ratio or between isolates 

collected from Manchester and those from Preston. However, distribution of specimens 

according to collection site showed a significant difference (p<0.0001) with specimens 

collected from Preston appearing to be more commonly associated with patients 

attending general practitioner‟s clinics than was seen in the Manchester collection. 

 Various specimens were collected including catheter urine, mid-stream urine and 

directly collected urine. Mid-stream urines accounted for 66% of the specimens and 

catheter urine specimens accounted for approximately 6% of the collected specimens. 
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Although no significant association between different STs and patient‟s age groups was 

observed, the distribution of STs among other demographic parameters revealed some 

statistically significance associations. ST131 showed a stronger link to hospital acquired 

than community acquired infections with a significant statistical difference (18% vs. 

10%, P <0.05; Figure 3.17). Additionally, distribution of STs according to gender 

showed a significant association of ST69 with females (11% vs. 0%, P < 0.05; Figure 

3.18). 

 

 

 

   Table ‎3.11 Distribution of patients according to gender, time and collection site 

  2007 2009 

  M F M F 

  No.(%) No.(%) No.(%) No.(%) 

Manchester 11(11) 89(89) 22(22) 78(78) 

Preston 10(20) 40(80) 11(22) 39(78) 

          

          

  2007 2009 

  Hospital aq. Community aq. Hospital aq. Community aq. 

  No.(%) No.(%) No.(%) No.(%) 

Manchester 40(40) 60(60) 43(43) 57(57) 

Preston 11(22) 39(78) 6(12) 44(88) 
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Figure ‎3.15 Distribution of common STs according to specimen collection site 
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Figure ‎3.16 Distribution of common STs according to gender 
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3.9. Biochemical activity 

Metabolic profiles were determined using the Vitek 2 ID-GNB card (Biomérieux), to 

test the organism‟s metabolic activity in 41 fluorescence based biochemical tests 

including 18 enzymatic tests, 18 fermentation tests, 2 decarboxylase tests and 3 other 

miscellaneous tests. 

On average, the biochemical activities of the tested UPEC isolates were similar to those 

of E. coli reported by others (Ewing 1986; Farmer et al. 1985). A notable difference 

was observed concerning α-Galactosidase activity, where 69% of the tested isolates 

appeared to produce an α-Galactosidase enzyme compared to almost 100% reported by 

others  (P<0.0001; Table 3.12). 

3.9.1. Association between metabolic activities 

Statistical analysis of association between results of different biochemical tests reveals 

complex associations with 52 positive associations and 26 negative associations 

involving wide range of tests. When the margin of confidence was increased and a P 

value of <0.001 considered as statistically significant, the associations were limited to 

14 biochemical tests with 22 positive associations and 12 negative association, of which 

70% occurred as overlapping associations between tests related to three types of 

metabolic reactions namely production of peptidases (tyrosine arylamidase and proline 

arylamidase), decarboxylases (ornithine decarboxylase and lysine decarboxylase) and 

alkalinisation of L- lactate and succinate. Additionally resistance to O129 was 

significantly associated with assimilation of sucrose and production of ornithine 

decarboxylase (Table 3.13). 
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Table ‎3.12 Biochemical activity profiles of UPEC studied here, compared to those 

previously reported by other groups (bold face type indicates major difference) 

Test % Activity by of 

UPEC 

% Activity for E. coli as reported by  

(Ewing, 1986) 

(n=1.231) 

(Farmer et al. 1985) 

(n=ND)  Ala-Phe-Pro-Arylamidase 0 ND ND 

Adonitol  0.7 5.6 5 

L-Pyrrolydonyl-Arylamidase 0 ND ND 

L-Arabitol 0 ND 5 

D-Cellobiose 0 2.4 2 

Beta-Galactosidase 98.7 ND 95 

H2O production 0 ND 1 

Beta-N-Acetyl-Glycosaminidase 0 ND ND 

Glutamyl Arylamidse pNA 0 ND ND 

D-Glucose 100 100 100 

Gamma-Glutamyl-Transferase 0.7 ND ND 

Fermentation/Glucose 96.7 ND 100 

Beta-Glucosidase 0 ND ND 

D-Maltose 97.4 89.9 95 

D-Mannitol 100 96.8 98 

D-Mannose 100 ND 98 

Beta-Xylosidase 0 ND ND 

Beta-Alanine Arylamidase pNA 0 ND ND 

L-Proline Arylamidase 9.3 ND ND 

Lipase 0 0 0 

Palatinose 0 ND ND 

Tyrosine Arylamidase 36.4 ND ND 

Urease 0.7 0 1 

D-sorbitol 92.1 93.4 94 

Saccharose/Sucrose 49.7 48.9 50 

D-Tagatose 7.3 ND ND 

D-Trehalose 99.3 98.8 98 

Citrate 0 ND 1 

Malonate 0.7 0 0 

5-Keto-D-Gluconate 49 ND ND 

L-Lactate alkalinisation 23.8 ND ND 

Alpha-Glucosidase 0 0 0 

Succinate alkalinisation 33.8 ND ND 

Beta-N-Acetyl-Galactosaminidase 0 ND ND 

Alpha-Galactosidase 69 ND 99 

Phosphatase 6 ND ND 

Glycine Arylamidase 0 ND ND 

Ornithine Decarboxylse 78.8 64.2 65 

Lysine Decarboxylase 95.4 88.7 90 

L-Histidine assimilation 0 ND ND 

Courmarate 100 ND ND 

Beta-Glucoronidase 94 ND ND 

O/129 Resistance 60.9 ND ND 

Glu-Gly-Arg-Arylamidase 0 ND ND 

L-Malate assimilation 2 ND ND 

Ellman 96.7 ND ND 

L-Lactate assimilation 0 ND ND 
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Table ‎3.13 Associations between metabolic activities of 300 isolates representing NW-UPEC population 

 
Statistical analysis of association between biochemical tests using Fisher‟s exact test showing only P ≤ 0.001 which reflects statistical significance; not shown are 
biochemical tests that yielded P values > 0.001. 

Biochemical test ProA TyrA URE dSOR SAC dTAG dTRE MNT 5KG ILATk SUCT AGAL PHOS GlyA ODC LDC CMT BGUR O129R IMLTa ELLM

NO. 28 162 10 284 167 19 297 1 123 120 128 208 36 7 227 280 297 275 175 7 292

TyrA 162 28

0.0001

URE 10 2 10

– –

dSOR 284 25 152 10

– – –

SAC 167 20 68 6 162

– 0.0001 – –

dTAG 19 5 13 0 18 13

– – – – –

dTRE 297 28 162 10 283 166 19

– – – – – –

MNT 1 1 1 0 1 0 0 1

– – – – – – –

5KG 123 7 77 6 115 41 6 123 0

– – – – 0.0001 – – –

ILATk 120 28 118 9 112 55 12 120 1 48

0.0001 0.0001 – – – – – – –

SUCT 128 27 118 10 120 55 13 128 1 58 100

0.0001 0.0001 0.0002 – 0.0002 – – – – 0.0001

AGAL 208 28 142 10 201 106 15 208 1 96 106 118

0.0001 0.0001 – – – – – – – 0.0001 0.0001

PHOS 36 14 32 3 35 24 7 36 0 11 27 28 35

0.0001 0.0001 – – – – – – – 0.0001 0.0001 0.0001

GlyA 7 5 7 0 7 4 1 7 0 1 7 6 5 4

0.0001 – – – – – – – – – – – –

ODC 227 17 108 9 216 123 13 226 0 91 73 86 165 22 3

– 0.0001 – – – – – – – 0.0001 – – – –

LDC 280 20 145 10 266 153 14 278 1 115 107 115 193 28 6 217

0.0001 – – – – – – – – – – – 0.0009 – –

CMT 297 28 162 10 282 165 17 295 1 123 120 128 208 36 7 225 278

– – – – – – – – – – – – – – – –

BGUR 275 18 139 10 263 151 12 274 1 116 98 111 187 28 3 211 258 273

0.0001 0.0001 – – – 0.0003 – – – 0.0001 – – – – – – –

O129R 175 22 91 3 163 117 13 174 1 59 73 78 116 26 4 120 162 173 158

– – – – 0.0001 – – – – – – – – – 0.0006 – – –

IMLTa 7 6 7 0 5 7 1 7 0 1 7 6 6 3 3 4 5 7 2 7

0.0001 – – – – – – – – – – – – 0.0003 – – – 0.0001 –

ELLM 292 25 157 10 280 165 19 291 1 121 116 125 205 33 7 225 274 290 269 169 6

– – – 0.0003 – – – – – – – – – – – – – – – –

ILATa 3 3 3 0 3 3 0 3 0 0 3 3 3 2 2 3 3 3 0 3 3 3

0.0007 – – – – – – – – – – – – – – – – 0.0005 – 0.0001 –

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)

(P value)
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3.9.2. Metabolic characteristics of common STs  

To assess whether isolates of certain ST share specific metabolic characteristics, two 

analytical approaches were used. First, a non-parametric comparison analysis using 

Mann-Whitney U test was used to compare the aggregate bio-scores generated for each 

ST against all others. A significant association was observed for ST131 with high bio-

scores when compared to all other STs (P ≤ 0.0001), on the other hand ST127 showed 

an significant association with low bio-scores with a significant difference from the 

other STs combined (P≤ 0.003) (Table 3.14). 

                  

                Table ‎3.14 Aggregate Bio-score in relation to STs 

ST (No) 
Aggregate Bio-score 

Median (range) 
P value 

ST10 (13) 0.55 (0.48-0.65) 0.670 

ST14 (8) 0.59 (0.55-0.72) 0.145 

ST69 (27) 0.55 (0.48-0.72) 0.967 

ST73 (50) 0.59 (0.45-0.65) 0.770 

ST88 (6) 0.52 (0.51-0.58) 0.216 

ST95 (19) 0.55 (0.45-0.62) 0.973 

ST127 (11) 0.52 (0.45-0.55) 0.003 

ST131 (37) 0.62 (0.48-0.76) 0.0001 

ST405 (5) 0.55 (0.41-0.69) 0.771 

                P values (Mann-Whitney U test) shows the significance of the different Bio-score 

                 of each ST compared to the other STs. 

Secondly, the statistical association of individual metabolic activity with common STs 

was assessed using Fisher‟s exact test. Of the 41 metabolic activities tested, common 

STs were significantly associated with 11 tests. Remarkably, ST131 exhibited 

significant associations with seven tests, which indicates distinctive biochemical 

characteristics (Table 3.15) and ST73 had a significant association to four tests. In 

contrast, isolates of ST14 and ST405 showed no difference in their metabolic activity 

compared to the rest of the tested isolates. However, production of ornithine 

decarboxylase and assimilation of sucrose appear to be key characteristics in many 
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successful STs, as they are significantly associated with the most frequently isolated 

STs.  

 

 

Table ‎3.15 Statistical analysis of association between STs and metabolic activity 

ADO ProA SAC 5KG ILATk AGAL PHOS ODC BGUR O129R ILATa

ST (No.) (6) (28) (167) (123) (120) (208) (36) (227) (275) (175) (3)

ST10 (13) 0.0012 – – – – – – 0.0001 – – –

ST14 (8) – – – – – – – – – – –

ST69 (27) – – 0.0001 0.0017 – – – 0.0001 – – –

ST73 (49) – – 0.0001 0.0001 – – 0.0014 0.0001 – – –

ST88 (6) – – – – – – – – – – –

ST95 (19) – – 0.0001 – – – – – – 0.0001 –

ST127 (9) – – – – – – – – – –

ST131 (37) – 0.0001 0.0001 0.0001 0.0041 0.0041 – 0.0034 0.0002 – 0.0017

ST405 (5) – – – – – – – – – – –

Biochemical test

 
P values (by Fisher‟s exact test) were calculated for each ST compared to the rest of the population 

shown only where P≤0.005. Bold P values are for negative associations. 

3.10. Antibiotic susceptibility 

In the present study, nearly 30% of the isolates were susceptible to all tested antibiotics, 

while the rest of the isolates demonstrated a wide range of resistance from resistance to 

just one antibiotic (11%) to resistance to 19 out of 21 tested antibiotics (< 1%).  A 

reasonably high level of resistance was demonstrated to a number of commonly used 

antibiotics: ampicillin (55%); first generation cephalosporins (38%); trimethoprim 

(37%); and nalidixic acid (21%), as shown in Figure 3.19. Interestingly, isolates 

collected from Manchester appeared to be more resistant to most antibiotics tested than 

those from Preston, with significant different (P < 0.05) in resistance to many 

commonly used antibiotics such as trimethoprim, nalidixic acid and ciprofloxacin. 

According to the generated antibiotic susceptibility profiles, different mechanisms of 

resistance were predicted against the major antibiotic families. Among the detected 

mechanisms of resistance against β-lactam antibiotics, acquired penicillinase (A.P) 

appeared to be the predominant mechanism (47%), while ESBL activity was seen in 

only 4% of the isolates. On the other hand, three patterns of enzymatic modification 
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resistance were detected against aminoglycosides mainly through two enzymes, N-

Acetytransferase (AAC) and O-Adenyltransferase (ANT) and were collectively 

acquired by 11% of the isolates. 

 

 

 

 

 
 

Figure ‎3.17A Distribution of antibiotic susceptibilities according to geographic site of 

isolation. AMP:ampicillin; AMC: amoxicillin/clavulanic acid; PIP: piperacillin; PIP/TAZ: 

piperacillin/tazobactam; CF: cefalotin; CXM: cefuroxime; FOX:  cefoxitin; CTX:  cefotaxime; CAZ: 
ceftazidime;  FEP: cefepime; ATM:  aztreonam; MEM:  meropenem; ETP:  ertapenem; S: susceptible; R: 

resistant; I : intermediate susceptibility. 
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Figure  3.19 B Distribution of antibiotic susceptibilities according to geographic site of 

isolation. AMK:  amikacin; GM:  gentamicin; TOB:  tobramycin; NA: nalidixic acid;  CIP: 

ciprofloxacin;  NIT: nitrofurantoin; TRI: trimethoprim; S: susceptible; R: resistant; I : intermediate 

susceptibility. 
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3.10.1. Association of STs with antibiotic resistance 

Sequence Types and their susceptibility to commonly used antibiotics were assessed 

using Fisher‟s exact test. Overall, STs vary considerably in their antibiotic 

susceptibilities from the most susceptible, ST95, with the lowest resistance-scores 

(median 0.0 and range 0.0-0.29) to the most resistant, ST131, with the highest score 

(median 0.38 and range 0.0-0.9). Table 3.16 shows the distribution of antibiotic resistant 

isolates according to their ST and mechanism of resistance predicted by VITEK2 AES.  

ST131 showed a distinctive antibiogram that was significantly associated with 

resistance to most of the tested antibiotic families. This antibiogram is characterised by 

production of ESBLs and AAC(6) in addition to resistance to ciprofloxacin, 

nitrofurantoin and trimethoprim. These associations, when compared to all other STs, 

were all significant (P≤0.008). Isolates of ST69 were characterised by resistance to 

trimethoprim (P ≤ 0.0001). 

 

Table ‎3.16 Association of STs and resistance to different antibiotic families 

Furanes Trimethoprim Resistance-score

A.P ESBL AAC(3) AAC(3),ANT(2) AAC(6) PR R R R

ST (No.) (141) (24) (2) (5) (23) (31) (34) (9) (112)

ST10 (13) 4 2 0 0 0 0 1 0 6 0.1(0.0-0.48)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST14 (8) 4 0 0 0 0 3 0 0 3 0.07(0.0-0.19)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST69 (27) 19 0 0 2 0 3 1 0 20 0.14(0.0-0.33)

P value ─ ─ ─ ─ ─ ─ ─ ─ 0.0001

ST73 (49) 25 0 0 0 2 3 1 0 11 0.1(0.0-0.38)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST88 (6) 4 0 0 0 0 2 0 1 2 0.14(0.05-0.43)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST95 (19) 7 0 0 0 0 2 0 0 2 0.0(0.0-0.29)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST127 (9) 5 1 1 0 1 0 0 0 1 0.1(0.0-0.67)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

ST131 (37) 16 13 1 0 13 3 19 3 24 0.38(0.0-0.9)

P value ─ 0.0001 ─ ─ 0.0001 ─ 0.0001 0.008 0.0004

ST405 (5) 1 2 0 0 1 1 1 0 3 0.1(0.0-0.9)

P value ─ ─ ─ ─ ─ ─ ─ ─ ─

median(range)

β-Lactams Aminoglycosides Quinolones

  
P values (by Fisher‟s exact test) shown only where P≤0.005.  
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3.11. Cluster analysis of STs based on biochemical profiles in relation 

to antibiotic susceptibility 

Unweighted pair grouping  method with arithmetic mean cluster analysis based on the 

biochemical profiles of isolates from the major STs revealed a large cluster comprised 

almost entirely of ST131 (19/21) and included 51% of the total ST131 isolates. The 

cluster was defined at the 70% similarity level and characterised by resistance to 

multiple antibiotics. The remaining ST131 isolates were found scattered through the 

dendrogram. Although there is a tendency for isolates with the same ST to cluster, only 

ST73 and ST69 gathered in clusters primarily consisting of their respective ST. Other 

than ST131, no correlation was found between the defined clusters and antibiotic 

resistance profiles (Figure 3.20). 
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Figure ‎3.18 UPGMA Cluster analysis based on the biochemical profiles of major 

sequence types 

Multiple drug resistant ST131 

ST69 

ST73 

ST69 

ST73 
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3.12. Prevalence of virulence factors   

Of the 29 virulence genes tested for, 26 were detected with a prevalence ranging from 

0.3% (nfaE) to 97% (fimH). Among the adhesin genes various Pap elements occurred in 

more than 40% of the isolates. Although the toxin associated gene, hlyA was equally 

prevalent to cnf1, both were significantly more prevalent than the colicin V production 

gene cvaC (P< 0.001). Of the siderophores, fyuA (yersiniabactin) was significantly 

more frequent than iut (aerobactin; P<0.0001). Nearly 60% of the isolates were positive 

for the group II capsule synthesis gene with K5 accounting for 61% of kpsM II positive 

isolates. The serum resistance related gene (traT) occurred in 72% of the isolates while 

the pathogenicity island (PAI) marker gene was present in 60% of the isolates (Figure 

3.21). 

 

Figure ‎3.19 Prevalence of VFs genes among 300 NW-UPEC isolates 
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3.12.1. Distribution of VFs by STs   

Genotyping of virulence traits revealed a strong correlation between VF profiles and 

STs. For frequently detected STs, each ST consisted of closely related VF profiles with 

similarity ranging from (65% to100%) which suggests vertical transmission of VFs. 

Overall, the STs varied considerably in VF contents, from ST10 with the lowest VF 

score (mean 3.7, range from 1 to 8), to ST127 with the highest VF score (mean 13.4 and 

range 9 to 17). Table 3.17 shows distinctive virulence traits that were significantly 

associated with the commonly detected STs. Although different Pap elements were 

important virulence determinants in many STs, lack of Pap elements appeared to 

significantly characterise some successful STs including ST131 and ST10. In addition 

to its deficit of Pap elements, ST131 isolates showed a significant lack of the Sialosyl-

binding adhesion gene (p<0.0001), ST127 was significantly associated with papG III 

(p<0.0001) and, ST69 isolates were negatively associated with PAI marker (P<0.0001). 

3.12.2. Phylogenetic distribution of VFs  

Projection of the VF traits onto the phylogenetic background of the isolates revealed, as 

expected, an association of most VFs with B2 and D phylogenetic groups and to a lesser 

extent to group  A, whereas none of the VF traits were found to be associated with 

group B1 (Figure 3.22). Although acquisition of VFs was more frequently associated 

with groups D and B2 and to a lesser extent group A, group A is the group with the 

greatest number of significant associations with VF‟s, with significant associations with 

17 VFs, most of which are negative associations. Group D was significantly associated 

with Pap elements with frequency of occurrence ranging between 35% - 54% compared 

to 16% - 27% in other groups (P ≤ 0.0001). 
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                       Bold values indicate significant associations ( P ≤0.05); whereas underline values indicates negative association

Category specific VF Total no. ST10 ST69 ST73 ST95 ST127 ST131

300 (no=13) (no=27) (no=49) (no=19) (no=9) (no=37)

papA 120 8 (1) 52 (14) 55 (27) 89 (17) 100 (9) 8 (3)

papC 127 0 (0) 52 (14) 57 (28) 100 (19) 100 (9) 5 (2)

papEF 129 8 (1) 70 (19) 55 (27) 84 (16) 100 (9) 8 (3)

papGII 84 0 (0) 44 (12) 41 (20) 84 (16) 11 (1) 5 (2)

papGIII 43 0 (0) 4 (1) 22 (11) 10 (2) 100 (9) 3 (1)

sfa/foc DE 95 0 (0) 4 (1) 84 (41) 10 (2) 77 (7) 0 (0)

afa/draBC 33 23 (3) 4 (1) 0 (0) 0 (0) 0 (0) 43 (16)

sfaS 23 0 (0) 0 (0) 8 (4) 10 (2) 55 (5) 0 (0)

focG 55 0 (0) 7 (2) 61 (30) 16 (3) 11 (1) 0 (0)

hlyA 78 8 (1) 0 (0) 69 (34) 5 (1) 67 (6) 8 (3)

cnf1 82 0 (0) 0 (0) 69 (34) 10 (2) 77 (7) 8 (3)

cvaC 28 8 (1) 4 (1) 0 (0) 42 (8) 0 (0) 0 (0)

fyuA 262 38 (5) 85 (23) 96 (47) 95 (18) 100 (9) 97 (36)

iutA 177 54 (7) 70 (19) 65 (32) 47 (9) 22 (2) 86 (32)

kpsM II 177 8 (1) 55 (15) 61 (30) 100 (19) 100 (9) 57 (21)

K1 53 0 (0) 7 (2) 4 (2) 100 (19) 0 (0) 3 (1)

K5 109 8 (1) 51 (14) 43 (21) 0 (0) 89 (8) 54 (20)

ibeA 32 0 (0) 0 (0) 0 (0) 10 (2) 0 (0) 24 (9)

traT 216 54 (7) 89 (24) 57 (28) 89 (17) 67 (6) 86 (32)

PAI 181 23 (3) 11 (3) 92 (45) 84 (16) 78 (7) 92 (34)

VF score 3.7,3(1-8) 7.8,9,(5-7) 11,11,(6-16) 11.8,12,(6-14) 13.4,13,(9-17) 6.9,6,4-14)

prevalence (no.) of VF by clonal group

adhesion

mean,median,(range)

capsule

siderophore

Toxins

Miscellaneous

Table ‎3.17 Distinctive virulence characteristics of common clonal groups among UPEC 



 

132 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure ‎3.20 Graphical representation of the correspondence analysis of UPEC associated virulence traits based on 

phylogenetic types. The F1/F2 plane accounted for 95% of total variance, with factors F1 and F2 accounting for 86% and 

9%, respectively. 
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Only three VFs (fyuA, ibeA and PAI) appeared to be significantly associated with group 

B2. Siderophore fyuA occurred in 100% of B2 isolates compared to 88% in group D, 12 

% in group A and 1.7% in group B1. Finally, although the marker gene for 

pathogenicity island (PAI) was detected in 60% of group D isolates, it was positively 

associated with group B2 with a frequency of 84% compared to 50% in other groups (P 

≤ 0.0001) (Table 3.18). However, no significant differences were observed in the 

incidence of any virulence factors between phylogenetic groups within STs clones 

(Table 3.19). 
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     Table ‎3.18 Distribution of VF genes in relation to phylogenetic group among UPEC isolates 

papAH papC papEF allele-II allele-III sfa/focDE focG bmaE hlyA cnfI fyuA kpsMT II kpsMT k1 kpsMT K5 ibeA cvaC PAI

(No.) (117) (124) (126) (81) (43) (92) (53) (11) (74) (78) (259) (173) (53) (108) (31) (28) (177)

A (36) 3 3 2 2 0 0 0 6 1 1 22 2 0 3 0 10 5

0.0001 0.0001 0.0001 0.0011 0.0042 0.0001 0.0008 0.0006 0.0004 0.0002 0.0001 0.0001 0.0008 0.0001 0.0351 0.0005 0.0001

B1 (11) 0 0 0 0 0 1 0 1 0 0 3 0 0 0 0 2 1

0.0082 0.0033 0.0031 0.0001 0.0008

B2 (78) 30 31 31 18 16 29 16 0 25 25 78 55 18 34 15 4 66

0.0001 0.0046 0.0001

D (175) 85 91 94 62 27 62 38 4 48 52 155 116 35 71 16 12 105

0.0001 0.0001 0.0001 0.0001 0.0042 0.0321P value

P value

P value

P value

VF

Phy. gp

 
      P values (by Fisher‟s exact test) shown only where P ≤ 0.05.  
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                Fisher‟s exact test indicated no significant association between virulence factors and different phylogenetic groups.

B2 (3) D (5) B2 (16) D (34) B2 (9) D (10) B2 (4) D (5) B2 (24) D (13)

papAH 2 4 6 21 8 9 4 5 3 0

papC 1 4 8 20 9 10 4 5 2 0

papEF 2 4 6 21 8 8 4 5 3 0

papG II,III 1 4 9 20 9 9 4 3 2 0

allele-II 1 3 6 14 7 9 1 0 2 0

allele-III 0 0 4 7 1 1 4 5 1 0

sfa/focDE 0 1 10 31 1 1 4 3 0 0

afa/draBC 0 0 0 0 0 0 0 0 10 6

nfaE 0 0 0 0 0 0 0 0 0 1

fimH 3 4 16 33 9 10 4 5 24 12

hlyA 1 3 11 23 1 0 2 4 3 0

cnfI 0 0 9 25 1 1 4 3 3 0

fyuA 3 4 16 31 9 9 4 5 24 12

iutA 1 4 12 20 5 4 1 1 22 10

kpsMT II 3 4 10 20 9 10 4 5 14 7

kpsMT k1 0 0 2 0 9 10 0 0 0 1

kpsMT K5 3 2 6 15 0 0 4 4 13 7

ibeA 1 0 0 0 1 1 0 0 6 3

cvaC 0 0 0 0 4 4 0 0 0 0

traT 2 3 9 19 8 9 3 3 19 13

PAI 3 4 15 30 7 9 2 5 22 12

ST127 ST131ST14 ST73 ST95

Table ‎3.19 Distribution of virulence factors associated with common STs according to phylogenetic groups B2 and D 
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3.13. Association between VFs and antibiotic susceptibility 

The relationship between antibiotic resistance and carriage of VFs was statistically 

examined and P values <0.005 used to indicate significant relationships. None of the 

adhesion related genes, such as Pap elements or S/F1C fimbriae genes, appeared to have 

a positive association with any antibiotic resistance traits. The aerobactin receptor gene 

(iutA) was positively associated with resistance to ampicillin and piperacillin as well as 

to nalidixic acid, ciprofloxacin and trimethoprim. The serum resistance gene (traT) on 

the other hand shows an association with ampicillin and piperacillin in addition to 

trimethoprim. Overall, correlation analysis reveals that resistance to advanced 

antibiotics such as third generation cephalosporins or fluoroquinolones is significantly 

associated with absence of virulence capacities starting with adhesion, as isolates 

resistant to those antibiotics are negatively associated with the presence of different 

adhesion related genes though iutA and traT remain appreciably prevalent (Table 3.20). 

3.14. Interrelation of metabolic, virulence and antibiogram profiles 

among UPEC 

To explore the interrelation between the three characteristics, Pearson‟s correlation 

coefficients were calculated for the three possible relationships that can be drawn from 

these characteristics using the aggregation score of each. The correlation coefficients 

ranged between (0.0459 – 0.1476) which indicate weak correlations despite the 

significant statistical differences (<0.0001, 0.001 and 0.005) observed for Bio-score vs. 

AST, VF vs. AST and VF vs. Bio-scores, respectively (Figure 3.23). 
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Table ‎3.20 Association of resistant to antibiotics and various VFs traits in UPEC 

isolates 

papAH papC papEF papG -III sfa/focDE sfaS afa/draBC hlyA cnfI iutA traT

(No.) (117) (124) (126) (43) (92) (23) (32) (74) (78) (173) (211)

AMP (166) 59 59 67 15 43 9 23 35 38 109 129

0.0046 0.0022 0.0022

AMC (68) 19 19 23 6 21 3 15 18 18 46 51

0.0013

PIP (162) 56 56 64 13 41 8 23 34 36 108 126

0.0009 0.0007 0.0024

CF (127) 35 38 38 10 31 7 18 27 28 79 93

0.0005 0.0006 0.0004

CXM (35) 6 6 7 3 4 2 7 3 5 23 25

0.0017

CTX (22) 2 2 3 1 1 1 6 1 2 16 17

0.0025 0.0012 0.0035

CAZ (22) 2 2 3 1 1 1 6 1 2 16 17

0.0025 0.0012 0.0035

FEP (22) 2 2 3 1 1 1 6 1 2 16 17

0.0025 0.0012 0.0035

ATM (22) 2 2 3 1 1 1 6 1 2 16 17

0.0025 0.0012 0.0035

NA (64) 15 17 21 1 5 0 14 6 5 52 51

0.0039 0.0004 0.0001 0.0024 0.0001 0.0001

CIP (33) 5 5 8 1 2 0 8 3 3 27 25

0.0024 0.0012 0.0005 0.0027

TRI (111) 32 35 38 5 18 2 22 13 15 83 91

0.0001 0.0001 0.0028 0.0002 0.0001 0.0001 0.0001 0.0007

P value

P value

P value

P value

P value

P value

P value

P value

Antibiotic

P value

P value

VFs

P value

P value

 
P values (by Fisher‟s exact test) shown only where P≤0.005. AMP:ampicillin; AMC: 
amoxicillin/clavuanic acid; PIP: piperacillin; CF: cefalotin; CXM: cefuroxime; CTX:  cefotaxime; CAZ: 

ceftazidime;  FEP: cefepime; ATM: aztreonam; NA: nalidixic acid;  CIP: ciprofloxacin; TRI: 

trimethoprim. 

 

Although no significant correlations were observed between metabolic scores and 

virulence score or resistance and antibiotic score, correlation between AST vs. Bio 

scores revealed an appreciable correlation that justified further investigation. 

Subsequent examination of the correlations among each ST revealed a weak but 

significant positive association between Bio-score and AST-score (P≤0.01) among 

ST131 isolates that could explain the correlation observed between Bio-score and AST-

score in the general population (Table 3.21).  
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Figure ‎3.21 Pearson‟s correlation coefficient for the three possible relationships 

that can be drawn from phenotype characteristics using the aggregation score of 

each. 
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                      P values (by Fisher‟s exact test) shown only where P≤0.05.  Bold indicates positive correlation

ST

Bio vs. VF Bio vs. AST AST vs. VF Bio vs. VF Bio vs. AST AST vs. VF Bio vs. VF Bio vs. AST AST vs. VF

ST10 0.0091 0.00 0.0352 ─ ─ ─ ─ ─ ─

ST14 0.1975 0.1123 0.1132 ─ ─ ─ ─ ─ ─

ST69 0.066 0.0041 0.01 ─ ─ ─ ─ ─ ─

ST73 0.0016 0.0018 0.0121 ─ ─ ─ ─ ─ ─

ST88 0.1837 0.0132 0.0366 ─ ─ ─ ─ ─ ─

ST95 0.2279 0.0325 0.0318 0.04 ─ ─ ─ ─ ─

ST127 0.267 0.1032 0.0559 ─ ─ ─ ─ ─ ─

ST131 0.025 0.3689 0.0579 ─ <0.0001 ─ ─ < 0.01 ─

ST405 0.0816 0.0608 0.1062 ─ ─ ─ ─ ─ ─

P value

statistical difference correlation significance

P valueR
2

Correlation coefficients 

Table ‎3.21 Correlation between different characteristics and different STs 
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3.15. Characterisation of the CTX-M-15 O25b ST131 clonal group and 

identification of factors predictive for this lineage.  

Phenotypic and genotypic screening of various traits and their distribution among 

different STs revealed significant associations between ST131 and many either 

metabolic or virulence factors, which raises the necessity for further examination of 

ST131 in particular. 

Of 24 isolates with an ESBL phenotype, 15 (62%) contained blaCTX-M alleles as 

demonstrated by PCR with the universal primers used (Figure 3.24). All of these 

isolates then yielded products of the expected size (approx. 415bp) with group 1-

specific primers (Figure 3.25). Thirteen of the 15 isolates typed as group 1 CTX-M 

were of ST131. 

 

 

Figure ‎3.22 PCR screening for universal CTX-M primers (M1 & M2) , 100bp ladder in 

first and last lane of each row, positive isolates generated a product at 554bp compared 

to control strains C1 & C2 (known CTX-M positive isolates). 
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Figure ‎3.23 PCR screening for the group 1 CTX-M genes, 100bp ladder in first lane, 

positive isolates yielded a product at 415bp. 

 
 
  



Chapter 3                                                                                   Results 

142 

 

3.15.1. Prevalence of the CTX-M-15 O25b clone of ST131  

All of the 13 ST131 typed as CTX-M (group 1) contained CTX-M-15 as demonstrated 

by the specific primers used. Of these, the CTX-M-15 O25b clone accounted for 10 

isolates, which represents 29% of the total ST131 isolates (Figure 3.26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.24 Multiplex PCR screening for O25b-ST131 clone producing CTX-M-15. 

100bp ladder in first and last lane of each row, positive isolates yielded products at 

500bp and 300bp 
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A nine-digit numerical code (three tests per digit) was generated using the results of 27 

biochemical tests. A total of 149 different profiles were detected, of which 19 were 

solely associated with ST131 isolates. Figure 3.27 shows the distribution of ST131 

biochemical profiles against profiles of other STs. Interestingly ST131 was divided into 

2 groups, susceptible and multidrug resistant, where multidrug resistant isolates and 

those of CTX-M-15 O25b were both significantly associated with high bio-score 

profiles. 

Cluster analysis of a simple matching coefficient based on the biochemical profiles was 

used to generate a dendrogram describing the association of ST131 and antibiogram 

profiles. This revealed a large ST131 cluster defined at 88% similarity level and 

comprised of 22 (60%) isolates that were characterised as having a multiple resistance 

antibiogram (Figure 3.28). 
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Figure ‎3.25 Distribution of metabolic profiles of ST131 isolates against other UPEC STs. ST131 displayed at the negative side of x axis (left of 

the black line crossing the x axis) were predominantly susceptible and those on the right side, resistant (as projected later by cluster analysis) 
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Figure ‎3.26 Biotype profiling of ST131 isolates, cluster analysis based on metabolic profiles. Codes above the column correspond to substrate code, 

predicted mechanism of resistance: B; β-lactam, A; aminoglycosides, Q; quinolones, F; furanes, T; trimethoprim, A.P acquired penicillinase, R; resistant, S; susceptible, 

PR; partial resistance (resistant to nalidixic acid only). 
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To investigate whether the observed distinctive characteristics of ST131 are general 

characteristics of the clone or they are only the result of O25b-CTX-M-15 ST131 

clonal spread, a comparison analysis of incidence of these characteristics in O25b-

CTX-M-15 ST131 and non-O25b-CTX-M-15 ST131 compared with non-ST131 

isolates was carried out. Although most of the characteristics are general characteristics 

of the ST131 clone, some biochemical traits were significantly associated with O25b-

CTX-M-15 ST131 such as TyrA, ILATK, PHOS, SUCT (P<0.005). Notably, other than 

resistance to fluoroquinolones, there were no significant differences in antibiotic 

resistance between non-O25b-CTX-M-15 ST131 and non-ST131 isolates (Table 3.22).  

However, statistical analysis of the distribution of different virulence factors according 

to quinolone and fluoroquinolone resistance among the ST131 clone showed that other 

than ibeA, which is significantly associated with susceptible isolates, no significant 

differences were observed in the incidence of other virulence factors (Table 3.23). 
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Table ‎3.22 Characteristics of E. coli ST131 isolates compared to non-ST131 isolates 

 
P values (by Fisher‟s exact test) are shown where P < 0.05 for virulence factors and phylogenetic groups 

and P < 0.005 for metabolic reactions and antibiotic resistant. 

O25b-CTX-M-15 Non-O25b-CTX-M-15 

(11) (26) (263)

BGAL 11 25 – 261 –

OFF 11 25 – 254 –

dMAL 10 26 – 246 –

ProA 4 9 – 15 0.0001

TyrA 11 13 0.0032 138 –

SAC 10 24 – 133 0.0001

dTAG 1 2 – 16 –

5KG 0 4 – 119 0.0001

ILATk 11 12 0.0022 97 0.0042

SUCT 10 10 0.0043 108 –

AGAL 11 22 – 175 0.0042

PHOS 7 1 0.0002 28 –

GlyA 2 1 – 4 –

ODC 10 25 – 192 0.0034

LDC 10 24 – 246 –

BGUR 7 20 – 248 0.0001

O129R 10 18 – 147 –

IMLTa 2 2 – 3 –

ILATa 2 1 – 0 0.0018

papAH 2 1 – 114 0.0001

papC 2 0 – 122 0.0001

papEF 2 1 – 123 0.0001

papG II,III 1 1 – 116 0.0001

allele-II 2 0 – 79 0.0007

allele-III 0 1 – 42 –

afa/draBC 5 11 – 16 0.0001

nfaE 0 1 – 0 –

fimH 11 25 – 257 –

hlyA 2 1 – 71 –

cnfI 2 1 – 75 0.0082

fyuA 11 25 – 223 –

iutA 11 21 – 141 0.0001

kpsMT II 4 17 – 152 –

kpsMT k1 0 1 – 52 0.0096

kpsMT K5 4 16 – 88 –

ibeA 0 9 0.0357 22 0.007

traT 9 23 – 179 –

PAI 11 23 – 143 0.0001

ESBL 10 2 0.0001 12 0.0001

aac(6) 8 5 0.0062 10 0.0001

Fluoroquinolone 10 9 0.003 15 0.0001

Furantoin 2 1 – 0 –

Trimethoprim 9 14 – 88 0.001

B2 7 17 – 53 0.0001

D 4 9 – 162 0.0039

P value
ST131 

P value Non-ST131
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Table ‎3.23 Distribution of VFs according to Quinolone and Fluoroquinolone 

susceptibility among the ST131 clone 

 
P values (by Fisher‟s exact test) are shown where P < 0.005; NS: not significant 

  

Q-R    (22) Q-S   (15) P  value FQ-R  (19) FQ-S  ( 18) P value

papAH 2 1 NS 2 1 NS

papC 2 0 NS 2 0 NS

papEF 2 1 NS 2 1 NS

papG II,III 1 1 NS 1 1 NS

allele-II 2 0 NS 2 0 NS

allele-III 0 1 NS 0 1 NS

sfa/focDE 0 0 NS 0 0 NS

afa/draBC 8 8 NS 6 10 NS

nfaE 0 1 NS 0 1 NS

fimH 22 14 NS 19 17 NS

hlyA 2 1 NS 2 1 NS

cnfI 2 1 NS 2 1 NS

fyuA 22 14 NS 19 17 NS

iutA 21 11 NS 19 13 NS

kpsMT II 9 12 NS 9 12 NS

kpsMT k1 1 0 NS 0 1 NS

kpsMT K5 9 11 NS 9 11 NS

ibeA 1 8 0.0012 0 9 0.0004

cvaC 0 0 NS 0 0 NS

traT 17 15 NS 14 18 NS

PAI 21 13 NS 18 16 NS

VF score 0.22 0.25 0.22 0.24

Quinolone and Fluoroquinolone susceptibility of ST131 isolates 
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3.15.2. Mechanisms of fluoroquinolone resistance in ST 131 UPEC 

Of the 37 tested ST131 isolates, 22 (57%) showed resistance to quinolones (nalidixic 

acid) from which 19 (90%) expressed additional resistance to fluoroquinolones 

(ciprofloxacin; Table 3.24). Among the quinolone resistant isolates, ESBL production 

was detected in 11 (58%) isolates. 

 

 

Table ‎3.24 Characterisation of quinolone resistance mechanisms found in ST 131 

UPEC isolates 

Q-S: quinolone susceptible; Q-R: resistant to quinolones alone; FQ-R: resistant to fluoroquinolones 

 

 

All ciprofloxacin resistant isolates had multiple mutations in both gyrA and parC genes, 

while the three nalidixic acid resistant isolates that failed to show resistance to 

ciprofloxacin all had single gyrA mutation at codon 83 (Ser—Leu).  

On the other hand only nine isolates carried the aac (6’)-lb-cr gene representing 47% of 

ciprofloxacin resistant isolates and 81% of the ciprofloxacin resistant ESBL producing 

isolates (Figures 3.29 and 3.30). Six of the nine aac (6)-lb-cr positive isolates that were 

resistant by mutation in both gyrA and parC belonged to the CTX-M15-O25b ST131 

clone. Of the 20 isolates tested, none carried any of the qnr genes. 

 

 

 

Quinolone 

profile 
(no) 

ESBL 
(%) 

QRDR 

aac(6')-lb-cr 
(%) 

qnr genes gyrA parC 

(S)83(L) 
(%) 

(D)87(N) 
(%) 

(S)80(N) 
(%) 

(E)84(V) 
(%) 

Q-S (15) 0 0 0 0 0 0 0 

Q-R (3) 0 3(100) 0 0 0 0 0 

FQ-R (19) 11(58) 19 (100) 19 (100) 19 (100) 19 (100) 9 (47) 0 
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Figure ‎3.27 PCR screening for the aac (6’)-lb gene100bp ladder in first lane of each 

row, positive isolates yielded a product at 520bp compared to control strains C1 & C2 

(known positives) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3.28 RFLP digestion of 4 isolates positive to aac(6’)-lb native gene. 

Digestion with Ndel producing two fragments (453bp and 66bp) indicates 

modified variant aac(6’)-lb-cr, two positive controls were run in parallel with 

each RFLP digestion 
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N P Percentage Correct

N 255 4 98.46

P 16 21 56.76

93.24

CTX-M-15 O25b N 24 2 92.31

P 1 10 90.91

91.89Overall Percentage

CTX-M-15 O25b

1
st

 model

2
nd

 model

Overall Percentage

ST131

Observed ST131

Predicted

3.16. Multivariate logistic regression analysis 

Stepwise multivariate logistic regression analysis was used to identify independent 

biochemical test or antibiotic susceptibility or virulence traits as predictors of ST131 

and, among the ST131 clonal group, to predict the CTX-M-15/O25b sub-clonal group 

with P<0.05 considered to be the significance threshold.  

In the first model, resistance to fluoroquinolones was the strongest predictor of ST131 

(P<0.0001; OR 42) followed by carriage of three virulence factors PAI, ibeA, 

afa/draBC and finally lack of sfa/focDE, as shown in Table 3.25. The overall accuracy 

of this model to predict ST131 is 93% (positive predictive value 57%, negative 

predictive value 98.5%). 

In the second model, carriage of ESBL enzymes with (p<0.0001; OR 204) appeared to 

be the only predictor of CTX-M-15 producing O25b-ST131 strains (P= 0.0002; OR, 

120) within ST131. The overall accuracy of this model is 92% (positive predictive 

value 91%; negative predictive value 92%) 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

                 

 

 

 

 

 
                OR: odds ratio; CIP: resistance to ciprofloxacin; N: negative; P: positive.  

Lower Upper

CIP 0.0000 42.9 10.7 172.0

sfafocDE 0.9900 0.0 0.0 0.0

afadraBC 0.0001 13.3 3.7 48.1

ibeA 0.0003 11.8 3.1 44.3

PAI 0.0000 23.6 5.2 106.6

2
nd

 model ESBL 0.0002 120.0 9.7 1478.4

1
st 

model

Prediction factors

variables P value OR
95.0% C.I.for OR

Table ‎3.25 Factors predictive of ST131/O25b-ST131 as 

identified using multivariate logistic regression analysis 
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4. Discussion 

4.1. Multilocus sequence typing and phylogenetic analysis 

UPEC have long been recognised as distinct clones of E. coli, which exhibit specific 

characteristics such as virulence associated traits, distinctive O antigens, genotypes and 

multidrug resistance (Zhang et al. 2000). Molecular epidemiological studies have 

revealed a clonal structure characterising E. coli and clarifying the genetic linkages 

between different lineages (Goldberg, Gillespie & Singer 2006; Tartof et al. 2005).  

However, despite the increased use of MLST as a trusted epidemiological tool, the 

population structure of UPEC has been poorly studied using this technique, as most of 

the studies conducted were limited either by a bias towards certain characteristics, such 

as antimicrobial resistance and serogroup, or included a limited number of strains, 

which gave a false impression of overrepresentation of certain STs. 

The house keeping genes selected in any MLST scheme should ideally encode proteins 

that are under stabilising selection for conservation of metabolic function (Maiden 

2006).  Within the current study, for the scheme used, the ratios of non-synonymous 

(dn) to synonymous (ds) changes of all target genes were less than 1, which is normally 

taken to signify that the population is subject to stabilizing selection, validating their 

suitability as epidemiological markers. Although, dN/dS has been used widely to 

analyse MLST data derived from bacterial populations, recent reports suggested that it 

may be impossible to infer selective pressure from dN/dS obtained from a single 

population (Kryazhimskiy & Plotkin 2008; Rocha et al. 2006). 

However, the degree of sequence diversity within the housekeeping genes used in the 

current study was relatively high with polymorphic sites ranging from 5.0%-16.2%, 
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which agrees with various previous phylogenetic analyses of E. coli that show 

extensive allelic variation (Reid et al. 2000; Wirth et al. 2006). 

The global availability of MLST databases enables the characterization of bacterial 

populations on a much wider scale. MLST has been used to characterize different E. 

coli pathotypes (Adiri et al. 2003; Noller et al. 2003; Petersen et al. 2009; Tartof et al. 

2005). Although sequence type-pathotype associations do exist, allele distribution tells 

a different story with alleles shared by different STs and furthermore by different 

pathotypes (Wirth et al. 2006). In this study, although the majority of the identified 

UPEC associated alleles were found in both the ExPEC and EC databases, a degree of 

difference in prevalence was observed. The number of alleles with a significant 

difference in prevalence within the three groups was fewer when comparing the ExPEC 

database to the UPEC one (n=3), than in the comparison between EC and UPEC 

isolates (n=48). This was not unexpected given that UPEC are part of the ExPEC 

group. when three alleles that showed a significant difference in incidence between 

UPEC and ExPEC were compared, two showed a significant association with UPEC 

compared to ExPEC (fumC39, mdh17) and tracing these alleles to their possible STs 

showed an association with successful UPEC STs; fumC39 with ST10 and mdh17 with 

ST14, ST73 and ST95. Whether this finding holds any epidemiological significance 

towards understanding their success as UPEC will require further investigation. 

MLST analysis of the studied population revealed a consistent profile of STs that 

occurred repeatedly in the current collections. It consisted primarily of ST73 (16%) 

followed by ST131 (13.3%), ST69 (9%), ST95 (6.3%), ST10 (4.3%), ST127 (3.6%), 

ST14 (2.6%) and ST405 (1.6%). ST131 and ST69 (CGA) have previously been 

extensively reported for their role as antimicrobial resistant clones that spread 

universally (Johnson et al. 2009; Nicolas-Chanoine et al. 2008; Tartof et al. 2005) and 
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recent reports have associated ST 405 with the global spread of CTX-M-15 and other 

ESBL enzymes (Jones et al. 2008; Nicolas-Chanoine et al. 2008) and ST95 with avian 

pathogenic E. coli (Mora et al. 2009). ST73 was previously reported as an important 

and diverse clone within the ECOR group B2 and was associated with UPEC 

(Zdziarski et al. 2008) and formed the main clone detected in the present collection 

(16%). Other successful STs (ST127 and ST80) in the current panel have never been 

reported as remarkable pathogens. 

However, eBURST analysis of allelic profiles reinforces the status of ST73 and with its 

related STs it forms a large clonal complex that involves nine STs and accounts for 

20% of the studied population.  Spratt and colleagues suggested that the relative age of 

a CC can be estimated by how many SLVs it has and the presence of related subgroups 

(Feil et al. 2004). Using these criteria, ST73 is considered to be the oldest clonal 

complex in the population. Using the same characterisation, CC-ST405 and CC-ST69 

can be considered as relatively newly evolved clonal complexes. The failure to cluster 

with any other ST in the population and the formation of only conservative clonal 

complexes when expanding the analysis to involve other ExPEC and EPEC isolates in 

the MLST database indicates that ST131 and ST127 have also emerged as newly 

evolved STs. 

UPGMA analysis resolved the population into two large clusters, which correlates well 

with previously reported results using other molecular methods (Garcia-Martinez et al. 

1996). However, the evolutionary divergence provided by clonalframe analysis 

emphasised the clonal distribution generated by UPGMA analysis, suggesting a well 

defined structure within the E. coli population, rather than vague structures often 

generated by recombination sensitive phylogenetic methods such as the neighbour-

joining method (Jaureguy et al. 2008). Whether this clear-cut segregation within the 
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population reflected specific phenotypic characteristics of each cluster is not clearly 

established. Although no significant association between these clusters and biochemical 

characteristics was noted, similar to the situation mentioned in an earlier study (Garcia-

Martinez et al. 1996), significant correlations were detected between some phenotypic 

characteristics and frequently detected STs. The natural over representation of these 

STs within each cluster could explain the correlation reported in the earlier study 

(Garcia-Martinez et al. 1996). 

4.2. Pulse-field gel electrophoresis  

To ensure the absence of unrecognised localised point-source outbreaks that may lead 

to overrepresentation of specific clonal groups in the current isolate collection, the 

clonal background of representative isolates of the common STs were assessed using 

PFGE. The profile similarity threshold approximately corresponds to a specific number 

of band differences, which in turn may correspond to a specific number of genetic 

events (Avery et al. 2002). Choosing the threshold value that accurately identifies the 

similarity of isolates is an area of continuing disagreement. Some investigators consider 

that isolates differing by three or less bands should be regarded as related strains (Louie 

et al. 1999), whereas others suggest that those with three or more band differences in 

their PFGE profiles should be considered unique strains (Tenover et al. 1995). Using 

the published Tenover et al. guidelines (Louie et al. 1999; Tenover et al. 1995), in the 

current study strains were defined as having a clonal relationship if they possessed 85% 

or greater similarity, corresponding to the occurrence of a single genetic event. Of the 

nine tested isolates belonging to ST73, only two isolates exhibited similar PFGE 

profiles, while the 10 isolates of ST69 exhibited eight different PFGE profiles. This 
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diversity in PFGE profiles indicates the absence of overrepresentation of any clone as a 

result of focal outbreak. 

Although its primary function is to identify outbreaks involving a single clone, PFGE 

was able to cluster clonal groups. Each group exhibited a PFGE profile with similarity 

values between 60% and 65%, which is consistent with previous findings involving 

isolates of ST131, the O15:K52:H1 clonal group and CGA where PFGE was able to 

cluster isolates of each clonal group and their PFGE profile similarity values ranged 

between 66% to 74% (Johnson et al. 2009). 

Interestingly, despite the considerable similarity of PFGE profiles observed among 

isolates of ST131 included in the current study, remarkable genetic similarity was 

detected that defined Preston isolates within the ST131 clone, suggesting ongoing sub-

clonal evolution. This could either be due to abnormally slow accumulation of PFGE 

changes among the Preston ST131 isolates or abnormally rapid (point source-like) 

dissemination of the ST131 sub-clone, or both (Blackwood et al. 1997).  

4.3. Virulence profiling  

The ability of different strains of E. coli to cause different clinical syndrome is 

attributed to the cumulative impact of one or several key properties or virulence factors 

carried by these strains. For instance, carriage of genes for the K1 capsule allows 

evasion of neonatal host humoral immunity, whereas strains carrying genes for 

pyelonephritis associated pili (PAP) adhere well to urinary tract epithelial cells 

(Johnson 1991). 

Although previous urovirulence associated genotypic studies have been conducted 

mainly on bacteraemic UTI associated strains, the prevalence of virulence factors 
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screened in this study was in general agreement with reported findings (Johnson et al. 

2005d; Johnson & Stell 2000; Ramos et al. 2010).  

The high prevalence of fyuA observed among E. coli isolates confirms previously 

reported findings involving isolates collected from patients with cystitis, pyelonephritis 

and prostatitis and 50 isolates from the stools of healthy adults, among which fyuA was 

significantly more prevalent in disease causing isolates than among faecal control 

strains (Kanamaru et al. 2006a). The traT gene was also found to be considerably 

prevalent in the UPEC isolates in the current collection. Similar findings were 

previously reported, though the prevalence of traT in UPEC compared to faecal isolates 

was not always significant. Experimental evaluation of traT as a potent urovirulence 

associated VF, is needed (Johnson et al. 2005d; Moreno et al. 2008; Ramos et al. 

2010). 

Several genes associated with the acquisition and development of UTIs are encoded on 

gene blocks known as pathogenicity islands (PAIs) that provide a mechanism for 

combined horizontal transfer of VF genes (Oelschlaeger et al. 2002).  

The PAI investigated in the current study was previously identified within the 

chromosome of highly virulent uropathogenic E. coli CFT073 and appears to be found 

significantly more often in strains associated with UTI than in faecal strains (Kao et al. 

1997). The high prevalence of the PAI marker observed in this study is consistent with 

previous reports involving other clinical isolates (Guyer, Kao & Mobley 1998; Johnson 

& Stell 2000). 

The low prevalence or complete absence of some VF genes, for example cdtB, bmaE, 

gapfD and nfaE, suggested that production of the encoded proteins is not an important 

virulence property of UPEC strains. Although cytolethal toxin production associated 

the gene cdtB is primarily associated with enteric E. coli, previous report suggest an 
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association of cdtB with particular clones of bacteraemia associated E. coli (Johnson & 

Stell 2000). 

Among the adhesin genes, the pap gene family is normally found among strains 

causing UTI and these are significantly associated with pyelonephritis (Johnson 1991). 

Previous studies have reported that the prevalence of different pap genes ranged from 

50% up to 79% (Johnson et al. 2001; Leflon-Guibout et al. 2008). Notably, in the 

current study the prevalence of different pap genes was around 40%, which is relatively 

low and could be related to the increase in the prevalence of clones characterised by 

absence of pap genes, such as the ST131 clone in the UPEC population in the North 

West region of England.  

Association of specific characteristics with particular genomic backgrounds can be 

retained over the short term predominantly by vertical transmission (Jaureguy et al. 

2008). However the broad range of VF genes screened here allowed the generation of 

VF patterns that were significantly associated with different STs.  

In the ST73 clone, a major clone within the studied population, only half of the isolates 

were able to express P fimbriae, which are required for colonisation and invasion of the 

upper urinary tract. Generally, more than 80% of UPEC strains express P fimbriae and 

the proportion of strains that express P fimbriae varies considerably from a high of 70% 

among isolates from patients with pyelonephritis to 36% among cystitis isolates and 24 

% among those from asymptomatic bacteriuria (ABU) (Johnson 1991). 

 Interestingly, over 60% of the ST73 isolates expressed F1C fimbriae that mediate 

specific adherence to the collecting ducts and the distal tubules of the human kidney, as 

well as to renal tubulues cells (Antao, Wieler & Ewers 2009). This compares to 

previously reported figures of 14 to 30 % among general UPEC strains (Zdziarski et al. 
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2008), most of which were associated with pyelonephritis (Johnson et al. 2005d). 

Moreover, among the studied STs, F1C fimbriae were significantly associated with 

ST73 isolates, which suggests that F1C fimbriae may play an important role in the 

success of the ST73 clone.  

For the screened toxins, about 69% of the ST73 clone members carried genes encoding 

haemolysin (hlyA). All of these isolates simultaneously encode cytotoxic necrotizing 

factor type1 (CNF1). For general UPEC isolates, previous reports estimated prevalence 

of haemolysin production from as low as 20% among isolates from ABU patients to 

40% among isolates from cystitis patients and up to 50% among isolates from 

pyelonephritis patients (Johnson 1991; Kerenyi et al. 2005). Indeed, epidemiological 

studies have consistently shown that UPEC strains that make CNF1 also produce Hly 

(Antao et al. 2009). Moreover, Landraud et al. provided a genetic explanation for the 

association of CNF1 and Hly production by UPEC; they demonstrated that a cnf1 gene 

and an hly operon in the prototypic UPEC strain J96 are not only co-transcribed, but are 

also co-regulated (Landraud et al. 2003). 

The contribution of haemolysin and CNF1 production to urovirulence of ST73 is 

supported by the results of epidemiological studies associating the severity of UTIs 

with toxin production by UPEC isolates (Smith et al. 2008). 

Isolates of ST95 have frequently been described as Avian pathogenic E. coli (APEC) 

responsible for avian colibacillosis in domesticated and wild birds (Mora et al. 2009) 

and have also been reported to cause neonatal meningitis in human (Bert et al. 2010). 

In the current study, all ST95 isolates harboured the K1 capsular antigen. However, the 

association of ST95 with K1 capsular antigen strongly linked it to NMEC strains and 

pathogenicity.  
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Most ST95 clone members harboured P fimbriae and, to a lesser extent, other types of 

adhesins, which agreed with previous reports on ST95 isolates collected from patients 

with bacteraemia (Bert et al. 2010). Notably, over 40% of ST95 isolates harboured the 

cvaC gene, which encodes production of and resistance to colicin V and  has been 

associated with pyelonephritis (Johnson 1991). However, among the screened STs 

harbouring the cvaC gene, it appears to be significantly associated with ST95 in 

agreement with previous findings that show the cvaC gene exclusively occurred in 

ST95 isolates from bacteraemic patients (Bert et al. 2010). The unique virulence 

profiles associated with ST95, which consist of genes encoding significant adherence 

elements, production of cvaC and syntheses of capsule might explain its association 

with invasive UTIs and could explain its status as a successful UPEC clone. 

Only a few reports mention ST127, either as a UPEC (Lau et al. 2008b) or as ExPEC 

with zoonotic potential (Johnson et al. 2008). Johnson and colleagues, in their study of 

the virulence and phylogenetic background of serogroup O6 isolates from humans and 

animals, revealed a strong association of ST127 and serogroup O6 and most ST127 

isolates show a significant association with Pap elements especially papG allele III, S 

fimbriae and cytotoxin (cnf1) production (Johnson et al. 2008). 

In the current study, ST127 clone members showed great similarity in VF profiles to 

those reported previously. Moreover, all ST127 isolates harboured capsular antigen K5 

that provides a non-immunogenic shield protecting the bacteria. As a result, it is 

associated with E. coli causing serious invasive infections (Herias et al. 1997). 

Collectively, the VF associated with ST127 proposes a clone with potent virulence 

capabilities. ST127, which is suggested by phylogenetic analysis to be a newly evolved 

clone, holds the highest virulence score of all lineages in the current collection. This 

may permit its survival in the population long enough to gain antibiotic resistance. 
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Isolates of ST10 have frequently been identified among faecal isolates from healthy 

individuals and community acquired enterotoxigenic strains (Valverde et al. 2009), 

which could explain the lack of ExPEC virulence traits among ST10 clone members in 

the current study. 

The emergent clonal group ST69 corresponds to E. coli CGA, which has been 

associated with outbreaks of trimethoprim-sulfamethoxazole resistant isolates in 

different communities (Johnson et al. 2009; Manges et al. 2008; Tartof et al. 2005). 

ST69 has been also associated with bacteraemia of non-urinary tract origin (Manges et 

al. 2006) and community acquired pneumonia in a renal transplant recipient (Johnson 

& Russo 2002). However, VF profiles observed among the ST69 clone members in the 

current collection only showed lower UTI potential, as only half of the isolates 

possessed P fimbriae and almost lack any other adhesins or toxins associated with 

upper UTI. Most notably, compared to other STs isolates of ST69 were negatively 

associated with the PAI gene.  Similar results were reported by Johnson and colleagues 

where none of the CGA isolates harboured the pathogenic island marker (Johnson et al. 

2009). 

ST131 is best known for its association with production of ESBL resistance, especially 

the emergence of CTX-M-15 ESBL (Clermont et al. 2008; Coque et al. 2008; Lau et 

al. 2008a; Nicolas-Chanoine et al. 2008). As resistance comes at a cost to fitness, it is 

not surprising that the multidrug resistant ST131 clone is defined by a low virulence 

score and distinctive VF profiles that lack fimbrial adhesins, but significantly 

concentrated non-fimbrial adhesins of the Dr family and the gene encoding the invasion 

of brain endothelium phenotype (ibeA) that is responsible for neonatal meningitis in 

humans (Germon et al. 2005).  
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In general, ST131 VF profiles were consistent with those of organisms causing lower 

UTI and agreed with previous reports (Bert et al. 2010; Johnson et al. 2010b; Johnson 

et al. 2009). Although biofilm formation was not investigated in the current study, 

some of ST131 VFs may indicate potential biofilm production. Previous reports show 

some associations between biofilm-formation potential and some virulence-associated 

genes (Kanamaru et al. 2006b; Martinez-Medina et al. 2009; Ong et al. 2008). For 

example, the adhesin-coding gene sfa/focDE and the ibeA gene, required for invasion in 

meningitis/sepsis-associated E. coli (MNEC), were more frequently detected amongst 

biofilm producers. However, consistent with results presented here, several studies 

have suggested that multiply resistant strains are usually less virulent than susceptible 

strains (Houdouin et al. 2006; Johnson et al. 2003a; Moreno et al. 2006).  

The phylogenetic distribution of VFs and association of phylogenetic group B2 and D 

with extraintestinal infections are well established and results from the current study 

can be linked to these previous reports, strengthening the virulence status of B2 and D 

phylogenetic groups in UTIs (Moreno et al. 2009; Ramos et al. 2010). Despite the 

significant association of some virulence factors with different phylogenetic groups in 

the current study, the relationships were in general reflecting the association of 

virulence factors with over-represented STs among phylogenetic groups in the current 

strain collection, rather than the phylogenetic group itself. For instance, the high level 

of Pap elements detected among isolates of phylogenetic group D are in fact caused by 

the strong association of different Pap elements with ST73 and ST69. Additionally, 

within clones that consisted of isolates of different phylogenetic groups, the 

phylogenetic group assignment of an isolate did not affect its virulence profile. For 

example, no significant difference was observed in harbouring different Pap elements 

among ST73 isolates that belonged to phylogenetic group B2 or D. 
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 On the other hand, the significant differences in the prevalence of some VFs, such as 

fyuA and PAI, among phylogenetic groups B2 and D compared to groups A and B1, 

may provide evidence of the probable role of phylogenetic background in determining 

the virulence of a strain. Furthermore, Moreno et al. (2008), in a study of urovirulence 

characteristics of faecal E. coli, showed that both groups B2 and D tend to dominate 

faecal E. coli populations leading to low clonal diversity, suggesting the presence of 

shared specific bacterial factors that contribute to fitness within the intestine (Moreno 

et al. 2009). 

Since the theory that resistance comes at a cost to fitness was first proposed, several 

studies examining the relationship of antibiotic resistance with urovirulence potential 

have been published. Although they clearly show a significantly reduced prevalence of 

urovirulence genes among isolates resistant to quinolones and fluoroquinolones, the 

relationship of other antibiotic families such as trimethoprim/sulfamethoxazole, Beta-

lactams and extended spectrum cephalosporins with urovirulence traits is still under 

debate (Horcajada et al. 2005; Houdouin et al. 2006; Johnson et al. 2005b; Johnson et 

al. 2003b; Moreno et al. 2006).  

However, antibiotic resistant strains in the current study exhibited generally low 

virulence capability compared to susceptible strains and, consistent with previous 

findings (Moreno et al. 2006; Rijavec et al. 2008),  resistance to quinolones and 

fluoroquinolones was associated with reduced incidence of different  virulence traits. 

Significant associations were observed between quinolone resistance and low incidence 

of papAH, papG allele III, sfa/focDE and cnf1, which agrees with previous studies 

reporting quinolone resistant UPEC isolates having a lower prevalence of papGIII and 

hlyA (Starcic Erjavec et al. 2007), hylA and cnf1 (Horcajada et al. 2005; Moreno et al. 

2005) and papA, papGIII, sfa/focDE, hlyA and cnf1 (Moreno et al. 2006) than 
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susceptible isolates. Fluoroquinolone resistant isolates were significantly associated 

with a low incidence of papA and sfa/focDE in addition to papC, which strengthens 

previous findings (Horcajada et al. 2005; Johnson et al. 2005b; Moreno et al. 2006; 

Piatti et al. 2008). 

Several mechanisms have been proposed to explain this phenomenon. One proposal is 

that exposure to antibiotics may induce the loss of VFs. Soto et al. (2006) reported that 

UPEC strains exposed to sub-inhibitory concentrations of quinolones showed partial or 

total loss of PAIs containing VF genes (Soto, Jimenez de Anta & Vila 2006). However, 

Johnson et al. (2005) disagreed with the previous proposal and provided an alternative 

explanation, that the low level carriage of virulence determinants in quinolone and 

fluoroquinolone resistant E. coli clinical isolates was more likely due to the importation 

of resistant strains from an as-yet-undefined reservoir (for example, food animals) of 

isolates with low-virulence that are subjected to a high degree of selective pressure for 

development of resistance (Johnson et al. 2005a). 

The present study provides an additional dimension to the latter explanation; although 

fluoroquinolone resistance was significantly associated with ST131, isolates of this 

clone showed no significant difference in the prevalence of most virulence 

determinants between fluoroquinolone resistant and susceptible isolates. This may 

indicate that the low prevalence of virulence determinants in resistant strains is more 

related to the characteristics of the ST/lineage than the acquisition of fluoroquinolone 

resistance.  

Resistance to trimethoprim was associated with a reduced incidence of different 

virulence factors, including papG allele III, sfa/focDE, sfa/draBC, hlyA and cnf1, in 

keeping with the report of Moreno et al (Moreno et al. 2005), but not with some other 

reports (Houdouin et al. 2006; Johnson et al. 2005b; Vila et al. 2002). The virulence 
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differences noted in the current study could be due to confounding effects of concurrent 

quinolone and fluoroquinolone resistance. 

On the other hand, it is worth noting that the quinolone, fluoroquinolone and 

trimethoprim resistant strains showed a high incidence of aerobactin (iutA) and serum 

resistance (traT) encoding genes, compared to susceptible strains. Although prevalence 

of aerobactin encoding genes were previously reported to be a s high as 91% (Rijavec 

et al. 2008) and 78% (Moreno et al. 2005), no significant differences were reported 

between resistant and susceptible strains in previous isolate collections. As iron 

acquisition systems are important VFs for bacterial passage to, and survival in, the 

bloodstream (Johnson & Stell 2000), the high level of aerobactin observed among 

resistant strains in the current study could be due to the over-representation of the 

ST131 clone, which has frequently been associated with bacteraemia. 

It was clear that the relationship between virulence properties and antibiotic resistance 

in E. coli, is a complex phenomenon that could be affected by the phylogenetic 

background and ST and reflecting their interplay. 

4.4. Metabolic profiling 

Metabolic reactions have been conventionally used for the classification of bacteria into 

families and species. Further subdivision of bacteria below species level into subgroups 

such as serotypes, phage types or biotypes is crucial for epidemiological investigations. 

However the usefulness of biochemical reactions as a typing system is greatly 

dependent on the variability of these markers within the species and the reproducibility 

and discriminative power of the biochemical tests used (Katouli, Kuhn & Mollby 

1990). Kuhn (1985) developed a biochemical typing method in which the kinetics of 

several biochemical reactions creates a distinctive fingerprint for bacterial strains under 
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investigation (Kuhn 1985). Recent advances in biochemical testing involving 

automated systems have overcome the low reproducibility of conventional biochemical 

tests. Additionally, in epidemiological investigations, biotyping systems are often 

coupled with different typing methods to improve their discriminative power (Katouli 

et al. 1990). The VITEK 2.0 compact system was used in the current study, as previous 

evaluation studies proved that the VITEK 2.0 compact system, through its newly 

developed fluorescence based technology, generates reliable and reproducible results, 

in addition to being less time and labour consuming (Funke et al. 1998; Gavin et al. 

2002).  

Uropathogenic isolates show similar biochemical profiles to those of the general E. coli 

population with one exception; α-galactosidase was observed in 69% of the UPEC 

isolates compared to 99% of the general E. coli population, as reported by other groups 

(Ewing 1986; Farmer et al. 1985; Leclercq et al. 2001). The reason for the discrepancy 

between the relatively low incidence of α-galactosidase among UPEC reported in the 

current study compared to the almost 100% incidence among general E. coli 

populations is not clear. However, the environment from which the E. coli strains were 

collected could play a role in the metabolic activity expressed by E. coli. Urine with its 

low pH and low glucose concentration could present a different environmental selective 

pressure on genes involved in metabolic activity. In this case transcription of the melA 

gene encoding α-galactosidase production is controlled by the cAMP-CRP regulatory 

circuit, where the presence or absence of glucose determines the concentration of 

cAMP-CRP that in turn activates expression of the melA gene (Liljestrom & Liljestrom 

1987). 

 

Some inferences could also be drawn regarding the correlation between biochemical 

tests with STs. Most of the significant correlations were confined to three types of 



Chapter 4                                                                                Discussion 

167 

 

metabolic reactions: peptidase (proline and tyrosine arylamidase); decarboxylase 

(ornithine and lysine decarboxylase); and alkalinisation (L-lactate and succinate). 

Proline and tyrosine arylamidase are specific peptidase enzymes that hydrolysis proline 

and tyrosine rich proteins (Fukasawa et al. 1982). Similarly ornithine and lysine 

decarboxylase are also involved in protein metabolism.  

The other metabolic reactions such as alkalinisation of lactate and succinate observed 

with an elevated incidence could be related to bacterial efforts to relieve acid stress 

exerted by amino acid metabolism. In a study of fitness of E. coli during UTI, Alter et 

al. found, by examining expression of UPEC cytoplasmic protein during growth in 

human urine, that E. coli scavenges amino acids and peptides and that disruption of 

peptide import in UPEC significantly compromised fitness during infection. This 

suggested that short peptides taken up by UPEC are degraded to amino acids that are 

catabolised and used as intermediates for the TCA cycle and a substrate for the 

gluconeogenesis pathway (Alteri, Smith & Mobley 2009). 

Although, little is known about the contribution of bacterial metabolic activity to 

pathogenesis, several reports have shown that certain metabolic enzymes may play a 

role to enhance virulence of several microorganisms (Pancholi & Chhatwal 2003).  

Recent studies showed that the ability of UPEC to catabolise the amino acid D-serine 

during UTI not only supports bacterial growth but also acts as a signalling mechanism 

to trigger virulence gene expression (Anfora et al. 2007; Roesch et al. 2003). 

Interestingly, in the assessment of the metabolic activity of different STs, the ST131 

clone members showed a high metabolic capacity compared to other STs, which may 

compensate for the low virulence capacity and explain the virulence reported for 

members of this ST. In contrast ST127, showed the lowest metabolic capacity but held 

the highest VF-score among the commonly detected STs. 
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Reconsidering the metabolic activity as an indicator of bacterial fitness and an 

important factor in the pathogenesis of UPEC led to exploration of its interplay with 

virulence score and antibiotic resistance score. Although no significant association was 

observed between the three characteristics in general UPEC, re-examining the 

correlation at ST level revealed an appreciable negative correlation between metabolic 

score and the antibiotic resistance score of members of the ST131 clone. 

The remarkable association of ST131 with several biochemical tests observed in the 

current study revealed distinctive biochemical profiles. Moreover, in cluster analysis 

based on biochemical profiles over half of the ST131 isolates shared 70% similarity, 

forming a single large cluster that was characterised by multiple antibiotic resistance 

profiles, compared to the rest of the ST131 isolates. This suggests ongoing subclonal 

spread of ST131. The association of clonal groups to specific biochemical profiles was 

previously reported for the O157:H7 clone (Leclercq et al. 2001) and the O15:K52:H1 

and O25:K4 ST131 clones (Cagnacci et al. 2008), using API 20E tests. 

Although, sequence types such ST73 and ST69 shows only few significant associations 

with individual biochemical tests, each ST tended to form a few small clusters 

indicating association with a small number of distinctive biochemical profiles, with no 

significant association to antibiotic resistance. 

4.5. Antibiogram profiling 

Analysis of antimicrobial resistance patterns revealed high-level resistance to β-lactam 

antibiotics in 55% of the tested isolates and over 38% were resistant to trimethoprim, 

followed by the quinolones, which collectively accounted for 15% of the isolates. 

These results were expected as they are commonly used first line antibiotics for the 
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treatment of UTI and they agree with those reported following Health Protection 

Agency surveillance (Johnson 2005). 

The observed low prevalence of antibiotic resistant isolates among the Preston 

collection compared isolates from Manchester was expected as the Preston collection 

largely consisted of isolates collected from patients with community acquired UTI, 

where antibiotic resistance is less common.  

Evidence of an association between E. coli clones and certain antibiotic resistance 

patterns has been previously reported.  In an intercontinental study Nicolas-Chanoine et 

al (2008) described broad dissemination of the CTX-M15 clonal group with MLST 

profile ST131 that exhibited multiple antibiotic resistances including to ciprofloxacin 

(95%) and co-trimoxazole (50%) (Nicolas-Chanoine et al. 2008). Similarly, after 

examining 43 CTX-M-15 producing E. coli from different countries, Coque and 

colleagues (2008) showed that clonal complexes ST131 and ST405 widely associated 

with the CTX-M-15 enzyme (Coque et al. 2008). Consistent with the strong correlation 

between ST131 and resistance to ciprofloxacin and trimethoprim found in the previous 

studies, the ST131 clone reported in the current study was characterised by multiple 

antibiotic resistance patterns and showed a significant association with all antibiotic 

families tested.  

The significant association of ST131 with multiple resistance profiles has been 

previously reported (Coque et al. 2008; Lau et al. 2008a). In the latter of these studies 

isolates, were collected from the same area covered in the current study and findings 

suggests that it is a result of co-selection of resistance determinants as a result of pre-

exposure to antibiotic treatment.  

The worldwide CGA isolates characteristically exhibit multidrug resistance and are 

greatly associated with resistance to co-trimoxazole. In 2005, Tartof  et al. significantly 
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associated CGA isolates with ST69, which could explain the high level of resistance to 

trimethoprim among ST69 isolates tested in the current study (Tartof et al. 2005). 

 

In the present study, the ST clones were compared against patient demographic data, 

and the main correlation was seen for isolates of ST69 showed a significant association 

with recovery from females. Although it was first reported among women (Johnson et 

al. 2002), CGA association to certain gender groups is not well established (Johnson et 

al. 2005c). 

Similarly ST131 was previously recovered from hospital patients as well as from the 

community (Peirano & Pitout 2010). The high prevalence of ST131 among community 

acquired infection group reported in the current study could be related to the previously 

reported dissemination of the ST131 community onset UPEC clone (Nicolas-Chanoine 

et al. 2008).  

This correlation between phenotypic characteristics and STs gives rise to the question 

of how much horizontal transfer contributes to the evolution of these clusters. 

Generally, the extent and the significance of recombination in bacterial populations has 

always been a matter of debate (Feil et al. 2001). In some studies, the high levels of 

linkage disequilibrium between alleles and the existence of a clonal population 

structure, suggest that recombination rarely occurs in house keeping genes (Feil et al. 

2001; Perez-Losada et al. 2006), while others propose a relative contribution of 

recombination to clonal diversification (Lacher et al. 2007). Results from the current 

study suggest an early role of recombination in the diversity of E. coli populations, 

whereas recurrent mutations are responsible for the diversity within clonal groups.  

In contrast, the mosaic structure observed when phylogenetic groups were assigned to 

different isolates indicates a much more complex population, in congruence with 
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previous study (Wirth et al. 2006) that revealed the presence of hybrid groups within 

the ABD lineage classification system. Data recorded here shows that 10 STs 

accounting for 46% of the studied population, consisted of mixed phylogenetic groups, 

which could indicate recent genetic exchange of phylogenetic group markers between 

STs.  

4.6. ST131 and CTX-M-15 producing O25b ST131 subclone 

Compared to other successful STs, the ST131 clone always displayed distinctive 

phenotypic and genotypic characteristics that set it apart from other STs. ST131 

accounts for 12% of the total UPEC, 50% of ESBL producing isolates and 79% of 

fluoroquinolone resistant isolates. Similar high prevalence values were previously 

reported (Johnson et al. 2010a) suggesting ongoing spread of ST131 as a major 

multidrug resistant extraintestinal pathogen. 

However, recent dissemination of ST131 lineage isolates associated with CTX-M-15 

and serogroup O25 has been widely reported (Coque et al. 2008; Nicolas-Chanoine et 

al. 2008; Yumuk et al. 2008). These isolates are usually fluoroquinolone resistant and 

unlike most historical antimicrobial resistant strains, this clone derives from the most 

virulent phylogenetic group B2 (Blanco et al. 2009). Analysis of ST131 isolates in the 

current collection revealed that CTX-M-15 producing O25b ST131 subclone accounted 

for 11 (30%) of the total ST131 isolates.  

Several factors may play a role in the success of the ST131 clone; Peirano and Pitout 

(2010) suggest a combination of phylogenetic group B2 and certain virulence factors 

and fluoroquinolone resistance as important factors in the success of the ST131 clone in 

causing UTI, whereas the acquisition of CTX-M-15 carrying plasmids have facilitated 

the rapid global spread of the clone (Peirano & Pitout).  
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Although, ST131 isolates in the present study were significantly more likely to be from 

group B2 than non-ST131 isolates, they did not exhibit the classical virulence traits 

associated with phylogenetic group B2, such as P and S adhesins, Hly and CNF1 toxins 

and K1 invasive antigen, which is in agreement with similar findings (Blanco et al. 

2009; Clermont et al. 2008). 

In the current study, much of the virulence potential of ST131 isolates was due to a few 

virulence traits that may not explain their success as ExPEC. Johnson et al. (2010) 

suggest that undefined group B2 associated factors provide fitness advantages to 

ST131, independent of its virulence traits (Johnson et al. 2010a). However, there was 

no significant difference in phylogenetic background between the successful O25b-

CTX-M-15 clone and the rest of the ST131 isolates.  

On the other hand, apart from resistance to fluoroquinolones, most of the significant 

associations of ST131 with antibiotic resistance were largely caused by the O25b-CTX-

M-15 subclone. CTX-M–encoding genes are usually carried by closely related IncFII 

plasmids embedded in class 1 integron containing additional resistance genes 

conferring resistance to β-lactams, fluoroquinolones, aminoglycosides, and 

trimethoprim-sulfamethoxazole (Peirano & Pitout 2010). 

The identification of IncF plasmids carrying the FII and FIA replicons and association 

with the blaCTX-M-15 gene was demonstrated in O25-ST131 in the UK and other 

countries (Coque et al. 2008; Karisik et al. 2006) and Woodford et al. (2009) 

sequenced IncFII plasmids carried by an isolate of the CTX-M ESBL producing ST131 

clone demonstrating that the IncFII plasmids harbouring blaCTX-M-15, blaOXA-1, tetA, 

aac(6‟)-lb-cr and aac(3)-II have played a key role in the rapid spread of CTX-M-15 β-

lactamases in E. coli (Woodford et al. 2009). These plasmids might carry important, 
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but still unknown, VFs that have supported the spread of the epidemic clone O25b:H4-

ST131 (Blanco et al. 2009). 

Moreover, the exclusive association of aac(6’)-lb-cr with ESBL producing 

ciprofloxacin resistant E. coli observed in the current study, strongly supports the role 

of plasmids in the resistance capacities of ST131 isolates. However, the high level of 

fluoroquinolone resistance among non-O25b-CTX-M-15-ST131 isolates suggests the 

involvement of a different mechanism. Interestingly, all fluoroquinolone resistant 

ST131 isolates showed multiple mutations in both gyrA and parC genes, a pattern of 

mutation frequently reported (Drlica & Zhao 1997; Jacoby 2005) and associated with 

high-level fluoroquinolone resistance. Thus, it appears that resistance to 

fluoroquinolones in ST131 is due to mutations of the chromosomal targets of these 

drugs, as opposed to acquisition of plasmid mediated resistance determinants. As 

recently demonstrated by (Cerquetti et al. 2010). 

The high prevalence of isolates of the ST131 clone among fluoroquinolone resistant E. 

coli (Cerquetti et al. 2010; Uchida et al. 2010) and the acquisition of β-lactamase 

enzymes other than CTX-M-15 by ST131 in different geographical regions, suggested 

that spread of ST131 E. coli as a clone precedes the acquisition of antibiotic resistance 

(Cerquetti et al. 2010), which was supported by the prevalence of antibiotic susceptible 

ST131 reported in the current study. Although previous reports suggested that the 

strong linkage between this clone and quinolone resistance could be promoted by the 

high prevalence of aac(6)-lb-cr among isolates of this clone (Jones et al. 2008), the 

fluoroquinolone resistance reported in the current study occurs in ST131 UPEC as a 

result of accumulated point mutations in both gyrA and parC genes despite their 

acquisition of any plasmid mediated resistance. 
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The multiple antibiotic resistance that characterised ST131 can not completely explain 

the success of the clone as an ExPEC, especially with its lack of ExPEC key virulence 

capabilities. The introduction of bacterial metabolism as an important factor in the 

pathogenesis process provides new perspectives in understanding the basis of bacterial 

pathogenesis (Le Bouguenec & Schouler 2010). 

The high aggregative bio-scores among ST131 isolates compared to other commonly 

detected clonal groups and the association of the O25b-CTX-M-15-ST131 clone with 

distinctive biochemical profiles that share 88% similarity, suggested that biochemical 

capabilities could play an important role in the success of ST131 as an ExPEC clone by 

facilitating the adaptation of strains to their host environment by modifying catabolic 

pathways, and taking advantage of available nutrients present in the urine such as 

amino acids and small peptides. This may subsequently promote colonisation of the 

host and increase the pathogenic potential of the bacteria(Le Bouguenec & Schouler 

2010). 

The main conclusion of these previous investigations is that the ST131 clonal group in 

general, and O25b-ST131 CTX-M-15 producing strains in particular, exhibit unique 

characteristics and that no single factor is responsible for their success as ExPEC. 

Multivariate logistic regression analysis was used to determine which factors 

collectively most likely describe the ST131 clone and the O25b-CTX-M-15 ST131 sub-

clone. In the first model, ST131 is best described by its fluoroquinolone resistance and 

possession of PAI, ibeA, and Dr antigen-specific adhesins, whereas in the second 

model, the O25b-CTX-M-15 ST131 sub-clone was only differentiated from the rest of 

ST131 clone members by the production of an ESBL enzyme. 

The report by Diard et al. (2010) that ExPEC PAIs play an important role in intestinal 

colonisation (Diard et al. 2010) and demonstration by Moreno et al. (2009) that both 
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groups B2 and D tend to dominate faecal E. coli populations prior to extraintestinal 

infections, suggest the presence of shared specific bacterial factors that contribute to 

fitness within the intestine (Moreno et al. 2009). All these observations in addition to 

the detection of E. coli belong to the ST131 clone in the faeces of healthy individuals 

(Leflon-Guibout et al. 2008) indicate that ST131 isolates colonise the intestine were 

they compete with and dominate the faecal E. coli population increasing the chance of 

transmission to the urinary tract. On the other hand, Diard et al. (2010) showed that 

PAIs diminish fitness of their carrier during growth in urine (Diard et al. 2010). 

However, maintenance of fitness requires many properties, among which metabolic 

competence is of the utmost importance as is resistance to different stresses or urine 

flow, such as through biofilm formation. Although biofilm formation was not examined 

in the current study, some observation, such as the association of ST131 with the ibeA 

gene and the high incidence among catheterised patients suggest that biofilm could 

facilitate ST131 colonisation. The fact that the O25b-CTX-M-15 ST131 sub-clone was 

only differentiate from the rest of ST131 clone by its acquisition of CTX-M-15 ESBL 

enzyme indicates it‟s recent diversion from the main clone. 
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4.7. Summary  

In conclusion, the use of MLST to characterise the UPEC population circulating in the 

North West region of England between June 2007 and June 2009, has proven to be a 

powerful epidemiological tool that has significantly contributed to our understanding of 

the various phylogenetic and phenotypic characteristics, previously associated with 

UPEC strains. 

The first part of the current study described the population structure of a defined UPEC 

population, based on MLST and phylogenetic analysis and the facilitated their 

distribution into phylogenetic groups and clonal groups in an unbiased way. The 

findings of this part of the current study can be summarised as follows:  

 

 The findings contradict the results of studies using other, lower resolution, 

methods that tend to mask the real correlations between strains in the population 

by over representation of certain clones in a group. 

 A consistent profile of STs repeatedly appeared in the population over an 

extended time period. 

 ST73 was the most commonly detected lineage, followed by ST131 and 

eBURST analysis of allelic profiles reinforced the status of ST73 in the 

population and identified it as the founder of the largest CC. 

 Phylogenetic analysis in current study provided evidence that ST131 and ST127 

have emerged as newly evolved STs. 

  PFGE profiles observed among isolates of ST131 included in the current study 

suggest that sub-clonal evolution has already taken place, as demonstrated by a 

sub-cluster of ST131 isolates collected in Preston. 
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 Although many of the detected STs were previously been reported, other 

successful STs such ST127 and ST80 presented in this study have never been 

reported as remarkable pathogens. 

 

The second part of the study determined the metabolic and the virulence capacity of the 

UPEC population, in addition to their antibiotic resistance profiles, using different 

phenotypic and genotypic methods and analysed the prevalence of these traits in 

relation to the defined ST clones. Several correlations were identified between the 

successful STs and key traits and these patterns could help to explain why isolates from 

certain STs are successful ExPEC clones. 

 

 Despite a low metabolic capacity, ST127, which was suggested by phylogenetic 

analysis to be a newly evolved clone, holds the highest virulence score of all 

lineages in the current collection. This may permit survival of ST127 isolates in 

the population long enough for them to gain antibiotic resistance markers. 

 As resistance comes at a cost to fitness, it is not surprising that the multidrug 

resistant ST131 clone was defined by a low virulence score and distinctive VF 

profiles lacking fimbrial adhesins. This, however, was balanced by significant 

concentration of non-fimbrial adhesins of the Dr family and the gene encoding 

the invasion of brain endothelium phenotype (ibeA) that is responsible for 

neonatal meningitis in humans. 

 ST131 revealed distinctive biochemical profiles and was characterised by a high 

metabolic capacity compared to other STs, which may compensate for the low 

virulence capacity and explain the fitness for causing infection reported for 

members of this ST. 
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The third part of the study concentrated on analysing characteristics of members of the 

ST131 clone and assessment of the importance of all of the phenotypic and genotypic 

characteristics that showed a significant association with ST131 isolates. This was 

carried out to determine the possible role in the success of the isolates from the ST131 

clone and the O25b-CTX-M-15 ST131 sub-clone as pathogenic ExPEC strains. 

 

 The introduction of bacterial metabolism as an important factor in the 

pathogenesis process provided a new perspective on understanding the success 

of ST131 by facilitating the adaptation of strains to their host environment using 

modified catabolic pathways, allowing isolates to take advantage of available 

nutrients present in the urine, such as amino acids and small peptides. 

 ST131 is best described by its fluoroquinolone resistance and possession of 

PAI, ibeA, and Dr antigen-specific adhesins, whereas the O25b-CTX-M-15 

ST131 sub-clone was only differentiated from the rest of the ST131 clone 

members by the production of an ESBL enzyme. 
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4.8. Additional further work  

 
In addition to the points mentioned above, further analyses may increase the impact of 

the work described in this thesis. It would be useful to study the association of different 

STs to typing using other phenotypic techniques such as serotyping, as this may lead to 

a better understanding of the phylogeny of UPEC. 

The high metabolic capacity associated with ST131 in the absence of any clear 

virulence advantage over other STs gives rise to the question of the contribution of 

bacterial metabolic activity to ST131 pathogenesis. Further studies are warranted 

involving screening for expression of genes involved in metabolic activity associated 

with increased virulence of UPEC isolates. This could be carried out using techniques 

such as microarray or „RNAseq‟. During such experiments, tested isolates should be 

grown in conditions similar to that experienced by UPEC during urinary tract infection 

so RNA would be extracted from isolates used in animal models of infection and 

following growth in urine.  

It would be useful to further study some of the other STs, such as ST73, to fully 

understand its virulence potential and factors associated with its domination of the 

UPEC population. This may contribute to a better understanding of the potential for 

emergence of other STs such as may be the case ST127, which could be a significant 

future UPEC lineage. 

Inclusion of more clinical data associated with isolates presented in this study could 

have provided a deeper insight in to the pathogenesis of each ST. 
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