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ABSTRACT 

 “Errors using inadequate data are much less than 
those using no data at all” 

 
Charles Babbage 

 

Identifying the parameters with the largest influence on the predicted outputs of a model reveals 

which parameters need to be known more precisely to reduce the overall uncertainty on the 

model output. A large improvement of such models would result when uncertainties in the key 

model parameters are reduced. To achieve this, new experiments could be very helpful, 

especially if the measurements are taken at the spatio-temporal locations that allow estimate the 

parameters in an optimal way.  After evaluating the methodologies available for optimal sensor 

location, a few observations were drawn. The method based on the Gram determinant evolution 

can report results not according to what should be expected. This method is strongly dependent 

of the sensitivity coefficients behaviour. The approach based on the maximum angle between 

subspaces, in some cases, produced more that one optimal solution. It was observed that this 

method depends on the magnitude of outputs values and report the measurement positions 

where the outputs reached their extrema values. The D-optimal design method produces number 

and locations of the optimal measurements and it depends strongly of the sensitivity 

coefficients, but mostly of their behaviours. In general it was observed that the measurements 

should be taken at the locations where the extrema values (sensitivity coefficients, POD modes 

and/or outputs values) are reached. Further improvements can be obtained when a reduced 

model of the system is employed. This is computationally less expensive and the best estimation 

of the parameter is obtained, even with experimental data contaminated with noise. A new 

approach to calculate the time coefficients belonging to an empirical approximator based on the 

POD-modes derived from experimental data is introduced. Additionally, an artificial neural 

network can be used to calculate the derivatives but only for systems without complex non-

linear behaviour. The latter two approximations are very valuable and useful especially if the 

model of the system is unknown. 

 
Key words: Optimal measurement locations, parameter estimation, optimal experiment 
design, distributed parameter system, proper orthogonal decomposition, sensitivity 
coefficients. 
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SUMMARY OF THE SUBMITTED PUBLICATIONS 
 

1. INTRODUCTION 
“So far as the theories of mathematics are about 

reality, they are not certain; so far as they are 
certain they are not about reality” 

 
Albert Einstein

 

1.1  INTRODUCTORY BACKGROUND 

 

Modelling, as a technique of analysing diverse phenomena, emerges in several different 

areas of scientific research. A model, which comprises a mathematical depiction of a 

process under study, plays the main role in such an analysis. An ample spectrum of 

techniques can be used in building models. These mappings are employing to 

corroborate physical observations and to predict future behaviours of real systems and 

provide guides to a deeper understanding of practical problems.  

 

In formulating mathematical models of dynamical systems, obtaining a high degree of 

predictive capability may not be the only objective pursuit in several areas of science 

and engineering. The model must be useful for its intended applications, and models of 

reduced complexity are attractive in most cases. 
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One of the most general and significant group of systems is that of dynamic distributed 

parameter system also termed spatial-temporal dynamic systems. They can be found in 

diverse practical engineering areas such material science, nanotechnology, medical 

bioengineering and micro-reactor technology. These kind of systems also emerge in 

several common and conventional biological and industrial processes that vary from the 

structure and dynamics of living cells (Slepchenko et al., 2002) to the design and 

analysis of chemical reacting flows (Belfiore, 2003).  

 

The real difficulty in the design and operation of most processes rests on the appropriate 

dynamic modelling of the system. Even if steady state behaviour is assumed the 

governing equations for the phenomena are usually described by nonlinear distributed 

parameter systems defined on complicated domains, and it is not easy to get practical 

dynamic models of these kinds of processes which can be implemented without undue 

complications, even for linear systems. 

 

The spatial domain of these distributed parameter systems can be either continuous or 

discrete. If the system is on a continuous domain, it is well modelled by partial 

differential equations and some representative examples include: the Navier-Stokes and 

transport-reaction equations for a non-reactive and reactive flow processes (Byrd et al., 

2002; Kee et al., 2003), and the Fitzhugh-Nagumo model (Fitzhugh, 1961; Nagumo et 

al., 1962) for the study of pattern formation and chemical oscillations in reactive-

diffusive systems. By contrast, discrete distributed parameter systems are generally 

described by stochastic differential equations where the dynamic transition is defined by 

-11- 



evolution rules (for example transition probabilities) and governing system equations 

without a closed form. Examples of such systems vary from the macroscopic scale 

including models for vehicle road traffic (Maeriovoet and De Moor, 2005), the epidemic 

of a disease in a human population (Filipe and Maule, 2004; Lara-Sagahón et al., 2006), 

etc., to the microscopic level including the hydrodynamics of bubble flow 

(Sankaranarayan et al., 1999), the kinetics of non-well mixed biochemical reacting 

mechanisms (Battaile and Srolovitz, 2002; Gilmer et al., 2000, Zhdanov, 2002), and the 

molecular modelling of protein structures (Neumaier, 1997). 

 

From a global perspective, a logical effect of the increases of the complexity on modern 

systems is the fact that lumped parameter descriptions frequently become inadequate as 

they may not provide an adequate approximation of the process. Consequently, there 

exists a strongly motivated requirement for applying supplementary, sophisticated and 

efficient mathematical methods to development new modelling techniques. 

Nevertheless, depending on the circumstances, corresponding integral or mixed integro-

differential systems of equations can be considered. Despite the refined formulation in 

the spirit of the parameter distributed systems, such models present a high quality and 

efficiency for simulations and control procedures. 

 

Optimisation and control of distributed parameter systems are active and expanding 

research areas (Kowalewski, 2001a; Kowalewski, 2001b; Lasiecka and Triggiani, 2000; 

Li et al., 1995; Robinson, 2001; Uciński, 1999a). Simultaneously, progress in 

computational and applied mathematics, combined with the accessibility of rapidly 

escalating computer power, progressively expands the range of applications that can be 
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simulated numerically. These sophisticated techniques direct to new challenges in the 

field of modelling. Furthermore, the set of naturally distributed engineering systems for 

which estimation and control is needed has recently been expanded. As an after-effect, 

the distributed parameter systems have an extremely important position in system 

analysis and control theory, establishing a separate field of research with a plenty of 

publications addressed to this subject (Curtain and Zwart, 1995; Gil, 1998; Grabowski, 

1999; Korbicz and Zgurowski, 1991; Kowalewski, 1991; Luo et al., 1999; Malanowski 

et al., 1996; Mitkowski, 1991; Omatu and Seinfeld, 1989; Sasane, 2002; Sokolowski 

and Zolesio, 1992; Zwart and Bontsema, 1997). 

 

In typical applications for mathematical modelling of physical systems, two main 

problems can be mentioned; 

 

• Forward problem, which consist in determining the system state when the 

system parameters, spatial region, time observation interval, subsidiary conditions and 

control variables are already identified. 

• Inverse problem, also called parameter estimation, consists in determining some 

of the model parameters using a collected experimental data. 

 

The inverse problem in the framework of distributed parameter systems comprises the 

estimation of the parameters, forcing inputs or initial and boundary conditions. The 

major difficulty is that frequently the estimation problem is ill-conditioned even if the 

forward problem is well-posed (Isakov, 1998; Sikora, 2000; Sun, 1994). The 

exceptional significance from solving inverse problems is evident because a simulation 
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model obtained from solving the forward problem could be unreliable. Consequently, 

more attention should be paid to this topic, which requires more effective and robust 

analysis techniques. 

 

The literature associated to the subject of parameter estimation in distributed parameter 

systems is abundant (Banks and Kunisch, 1989; Kubrusly, 1977; Polis, 1982). The 

interested reader can be also referred to works (Banks, 1992; Chavent, 1991; Gibson et 

al., 2000; Kunisch, 1988; Uciński and Korbicz, 1990, Alaña et al., 2006, Alaña et al., 

2007). However, most of contributions are focused on off-line approaches, and merely a 

few results concern on-line methods (Aihara, 1997; Demetriou, 2000). 

 

An important aspect in parameter estimation and control of chemical processes is the 

monitoring system of concentrations and temperature profiles which warrant defining 

completely the mass and energy balances in a reliable and cost effective manner. 

However, in many practical applications the measurements of the state variables, critical 

for quality control and identification, are spatially constrained. This may be possibly 

caused directly by physical limitations of the system under consideration, but more 

frequently this result due the sensing instrumentation available. Even though distributed 

measurements over the whole spatial domain are in general not available, there usually 

subsists a possibility of making measurement continuously in time.  

 

A fundamental problem towards parameter estimation of distributed parameter systems 

is to appropriately design the process of data acquisition from the system. This task 

comprises of obtaining an optimal arrangement of a limited number of measurements 
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along the spatial domain in such a way as to maximise the estimation efficiency of the 

process parameters. Generally, the dependence between the sensor placement and the 

system performance is not intuitive and has confusing characters. Due to the cost of 

obtaining experimental information, constraints related with measurements and needs of 

increased efficiencies of identifiers, there is a crucial requirement for developing some 

systematic approaches of selecting suitable sensor configurations and measurement 

schemes. 

 

The motivations to study sensor placement problem stem from real-world engineering 

applications. One of the most fascinating ones is computer-assisted tomography which 

comprises of reconstructing material parameters which characterise the unreachable 

interior of an object under examination based on measurements made at the boundary 

avoiding any harm of the subject. Given that the observations must be non-invasive, the 

problem of proper data acquisition happens to be very difficult and the positions of the 

measurements electrodes are of great significance as they should offer the most 

informative measurements (Williams and Beck, 1995). 

 

A different inspirational application regards optimisation of air quality monitoring 

networks, due the fast expansion of industry around the world, air pollution turn into a 

large societal problem. Safeguard and restitution of the natural environment needs a 

high precision of prediction and detection. To grant them, a correct calibration of 

models which describe the pollutant emission processes is required (Berliner et al., 

2000; Sydow et al., 1997; 1998; van Loon, 1994).  Generally, the variations in pollutant 

concentrations over a given area are described by partial differential equations of the 
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advection-diffusion category. Given that a number of coefficients of the equations are 

not assessable, accurate modelling becomes enormously complicated. Additionally to 

this, the monitoring stations are relatively costly and the problem of selecting a suitable 

observation scheme is of great practical significance mentioned in many publications 

(Andó et al., 1999; Müller, 1998; Nychka and Saltzman, 1998; Sturm et al., 1994; van 

Loon, 1995, Alaña et al., 2010, Alaña et al., 2007). 

 

Analogous problems can be found in several other engineering areas, for example in 

ground-water sources management (Kovarik, 2000; Sun, 1996), in assembly 

measurement records for calibration on models employed in meteorology and 

oceanography (Bennett, 1992; Daley, 1991; Hogg, 1996; Malanotte-Rizzoli, 1996), in 

automated examination of hazardous environments (Korbicz  et al., 1993), in prediction 

of radioactive pollution and emerging smart material systems (Banks et al., 1996; 

Lasiecka, 1998). 

 

For numerous chemical processes, identifying the model parameters with the largest 

influence on the predicted outputs reveals which ones need to be known more 

accurately to reduce the overall uncertainty on the outputs. If the predictions are highly 

uncertain, a large improvement is expected when uncertainties in the key model 

parameters are reduced. In this case making new experiments could be very helpful; 

especially if measurements are made at locations where these parameters can be 

estimated efficiently. 

 

Many industrial important diffusion–convection–reaction processes are naturally 
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described by non–linear parabolic partial differential equation systems. Examples 

include diffusion of heat and/or mass, rapid thermal processing, plasma reactors, crystal 

growth processes to name a few. The main feature of these equations is that their 

dominant dynamic behaviour is usually characterised by a finite (typically small) 

number of degrees of freedom. In the case of systems with linear spatial differential 

operators their eigenspectrum can be partitioned into a finite–dimensional slow one and 

an infinite–dimensional stable fast complement. This implies that the dynamic 

behaviour of such systems can be approximately described by a set of ordinary 

differential equation. Therefore, the standard approach to depict such systems involves 

the application of Galerkin’s method. Here the basis used to expand the solution of the 

system is typically the eigenfunctions of the spatial differential operator. A set of 

ordinary differential equations that accurately describe the dynamics of the dominant 

(slow) modes of these systems is obtained (Chen and Chang, 1992; Ray, 1981; Teman, 

1988). 

 

The degree of freedom of a distributed parameter system is essentially infinite and the 

relevant mathematical theory is too complicated to be implemented in an industrial 

application. Moreover, a satisfactory mathematical theory of nonlinear distributed 

parameter system is still lacking. Most of the techniques reduce a distributed parameter 

system to a lumped parameter system with a finite number of degrees of freedom by 

using eigenfunctions of the system. The resulting description may be used in control or 

parameter estimation of the original systems with the aids of advanced mathematical 

techniques. 
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The model reduction technique discussed in this work is based on these lumping 

techniques, and it is known as the Proper Orthogonal Decomposition combined with the 

Galerkin procedure. Proper orthogonal decomposition, also known as the Karhunen–

Loeve decomposition, is a model reduction method used to obtain low dimensional 

dynamic model of systems described by partial differential equations. Roughly 

speaking, this method is an optimal technique of finding a basis which spans an 

ensemble of data, collected from an experiment or a numerical simulation of a 

dynamical system. When these basis functions are used in a collocation formulation of 

Galerkin’s projection will yield a finite dimensional system with the smallest possible 

degrees of freedom. Thus this technique is well suited to treat optimal control and 

parameter estimation of systems described by partial differential equations (Benerjee et 

al., 1998; Bangia et al., 1997; Park and Cho, 1996b). 

 

In the present work, this method is applied to analyse several different examples, 

starting from the less complex and increasing the degree of complexity of the system. 

This was done in order to determine the versatility of this low dimensional technique. 

The reduced model obtained was used for parameter estimation and field reconstruction 

purposes. 

 

1.2 CONTRIBUTIONS OF THIS DISSERTATION TO THE STATE-OF-THE-ART 

 

The main objective of this work is to expand significantly the existing results and to 

develop new approaches to determine optimal observations strategies for distributed 

parameter systems, particularly in the case of sensor location. Predominantly, the 
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problem is to develop new or implement existing algorithms for different schemes and 

measurement error correlations. A secondary objective is to present some efficient 

techniques when a parametric uncertainty has to be taken into account. 

 

The main thesis of this work can be proposed as; 

 

For a wide group of distributed parameter systems a considerable 

enhancement in the parameter estimation quality is possible through the 

development of effective and robust approaches in the sense of statistical 

uncertainty, using an optimal sensor location strategy. 

 

In the process of testing this thesis, it was essential to develop a theoretical basis for 

new approaches and to build some new algorithms for different types of calculations. 

The subsequence is a concise summary of the contributions provided by this work to the 

state-of-the-art in sensor location methods. 

 

THEORETICAL FEATURES 

 

• Generalisation of the established results of optimal experiment design to 

multiple input multiple output systems with potential output correlation. 

 

• Variation and generalisation of a number of algorithms of nonlinear 

programming and optimal experiment design to resolve sensor location problems. 
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• Development of an approach to solve the sensor placement problem in the case 

of correlated observations. 

 

• Adaptation of established techniques to optimal sensor allocation in the 

existence of model parametric uncertainties. 

 

• Improvement of the parameter estimation procedure using a reduced model. 

 

APPLICATION FEATURES 

 

• Application of optimal measurement strategies to heat and mass transfer systems 

considering linear and nonlinear forms of transfer mechanisms. 

 

• Application of optimal measurement strategies to chemical reactions in a non-

isothermal tubular reactor, considering stable and unstable operation conditions. 
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This submission consists of a group of papers published and/or under publication. They 

are interrelated according to the findings derived of my research work. 

 

PAPERS PUBLISHED. 

 

The first paper (see Section 2.1) introduces the analysis of the sensitivity coefficients in 

the spatial domain in order to define the optimal sensor locations that further will be 

used to estimates the parameters of the system in the best possible way. In this paper the 

optimal positions are defined by the allocations of the largest absolute value of the 

sensitivity coefficients (Alaña, 2010b). In the second paper (see Section 2.2) a 

comparative analysis of the different techniques available is introduced. These 

techniques are compared with our approach consisting of the extrema analysis of the 

sensitivity coefficients and/or POD-modes. An analytical and numerical demonstration 

is presented to show how the extrema values of the sensitivity coefficients and the POD 

modes coincide at the same spatial locations (Alaña, and Theodoropoulos, 2010). The 

third paper (see Section 2.3) shows the results obtained when a fast and reliable 

calculation of the temporal coefficients belonging to an empirical approximator was 

needed. This was carried out because these coefficients were required to define the 

optimal sampling time complementing the whole spatio-temporal optimal experiment 

design proposed in this work. The optimal time measurement allocations can be defined 

by means of the evaluation of the extrema values of these temporal coefficients in the 

time domain (Alaña, 2010a). 
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PAPERS UNDER REVIEW. 

 

Additionally to the papers mentioned above, two more manuscripts are considered in 

this work. These works are under review and some comments have been received from 

the reviewers. 

 

The first paper (4th in this submission, see Section 3.1) entitled; “Optimal 

measurement locations for Parameter Estimation of Distributed Parameter 

Systems based on the use of Artificial Neural Networks” has been submitted to the 

Applied Soft Computing. This work presents the use of the Artificial Neural Networks 

(ANNs) to estimate the sensitivity coefficients of a system without knowledge of the 

governing equations. The results were obtained during the execution of my research, 

and our intentions were based on calculating these sensitivity coefficients of the process 

to further determination the optimal sensor positions for parameter estimation purposes. 

This approach is limited to the complexity of the system under study. The second 

manuscript (5th in this submission, see Section 3.2) and entitled; “Optimal Spatial 

Sampling Scheme for Parameter Estimation of Non Linear Distributed Parameter 

Systems” is a complement of the papers presented in Section 2.1 and 2.2. In this work 

the concepts and new approaches introduced in previous papers are extended to systems 

containing high non-linear components. New analytical and numerical findings are 

introduced and explained to support our hypothesis which delineates the optimal 

measurement locations for parameter estimation by the direct analysis of the extrema 

values of the sensitivity coefficients and/or POD-modes. 
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2. DISCUSSION OF THE SUBMITTED PUBLICATIONS  

 

2.1 PUBLICATION 1. Optimal measurement locations for parameter estimation of 

nonlinear distributed parameter systems. Alaña, J., Brazilian Journal of Chemical 

Engineering, 27(4), 627(2010). 

 

This paper was accepted for publication in May 2010. It is believed to be the first where 

the spatial locations of the largest absolute value of the sensitivity coefficients of a 

system described by a highly non-linear distributed parameter system are considered for 

parameter estimation purposes. 

 

A sensor placement strategy to estimate parameters is presented. The spatial locations 

selection is essential in the parameter estimation procedure. To optimally estimate the 

parameters of the system, the measurements can be taken where the extrema values of 

the sensitivity coefficients are reached in the spatial domain. The parameters obtained 

with the highest deviation from the nominal values are usually the ones showing the 

lowest absolute sensitivity coefficients. To improve this estimation it is advisable to 

measure at the locations where the sensitivity functions reach their extrema values. The 

results are strongly affected by the presence of noise, but this can be partly solved using 

common filtering techniques. Not only the uncertainty in parameter estimation can be 
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reduced by using these sensor locations, but cost is decreased also, which is significant, 

especially in situations where experimental observations are expensive. 

 

2.2 PUBLICATION 2. Optimal location of measurements for parameter estimation of 

distributed parameter systems. Alaña, J., Theodoropoulos, C., Computer and 

Chemical Engineering, 35(1), 106(2011). 

 

This paper was accepted for publication in April 2010. Here, it is demonstrated, for first 

time, that the spatial locations of the extrema values corresponding to the predominant 

sensitivity coefficients coincide with the positions where the POD-modes reach their 

extrema values. This was done numerically and analytically.  

 

In this work, a comparison between different methods reported in the literature on 

estimating optimal sensor locations to compute system parameters was presented. Three 

relevant methods from the most recent references were presented, and a number of 

observations based on case studies were made. Furthermore, a method where sensors 

placed at the positions where POD functions capturing most of the system’s energy (and 

sensitivity coefficients) reach their extrema values was discussed. The method based on 

the Gram determinant evolution, in some cases, might not produce accurate results. This 

method is strongly dependent on the sensitivity coefficients behaviour, and requires 

extensive calculations. The max-min optimisation method can produce more than one 

optimal solution, and requires more calculations as the number of spatial intervals is 

increased for a fixed number of sensors. It was observed that this method depends on 

the magnitude of output values, assigning the measurements points to the positions 
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where the outputs reached their extrema values. The D-optimal design method produces 

as results the number and positions where the measurements should be made in the 

spatial domain. This method depends strongly on the sensitivity coefficients, but mostly 

on their spatial evolution rather than their exact magnitudes. The results are strongly 

affected by the presence of noise in the system, but this can be partly solved using 

common filtering techniques. The methods that are based on the calculation of 

sensitivity coefficients are the ones most affected by the presence of noise. While the D-

optimal design requires post-processing of the sensitivity coefficients to determine 

positions and the optimal number of measurements, a mere observation of the extrema 

values of the sensitivity coefficients can produce the same results. Furthermore, it was 

observed in all cases studied that the measurements taken at the spatial positions where 

sensitivity coefficients, POD modes, and/or output values reach their extrema values 

produce best estimates of the system parameters.  Not only the uncertainty in parameter 

estimation was reduced by using these sensor locations, but cost is reduced also, which 

is significant, especially in situations where experimental observations are expensive. 

 

2.3 PUBLICATION 3. Estimation of the temporal coefficients for and empirical 

approximator. New approach based on the Proper Orthogonal Decomposition 

modes. Alaña, J., Computer and Chemical Engineering, 34(8), 1220(2010). 

 

This paper was accepted for publication in February 2010. In this work a new approach 

to identify processes without any knowledge of the mathematical model of the system 

has introduced and presented. An empirical approximator is used by means of the 

empirical eigenfunctions obtained from the application of the POD method. Only a few 
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experimental data are required to determine these empirical eigenfunctions and the 

subsequent temporal coefficients. For the latter very good results are guaranteed for any 

case study and/or system under study. This can be explained because it involves the 

minimisation of a linear objective function subject to a linear constraint defined by the 

linear combination of the empirical eigenfunctions and the temporal coefficients. A 

nonlinear chemical process described by a distributed parameter system is considered. 

This method, which is easy and fast to implement, produces the lowest deviation from 

the original experimental data and is very useful when the theoretical model of the 

system is unknown or difficult to determine. The optimal solution is obtained 

independently of the values used as initial guess. It is worth mentioning that the same 

advantages of this approach are observed for any other empirical approximator or ansatz 

used. 

 

This approach was developed to determine in a fast and efficiently way the temporal 

coefficients of an empirical approximator using experimental data and without deriving 

a reduced model based on the Galerkin projection method. These temporal coefficients 

will be used, later on, to define an optimal measurement location in the time domain for 

parameter estimation purposes. A future manuscript exploiting this approach is under 

revision. 
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3. DISCUSSION OF THE PUBLICATIONS UNDER 

REVIEW 

 

3.1 PUBLICATION 1. Optimal measurement locations for Parameter Estimation of 

Distributed Parameter Systems based on the use of Artificial Neural Networks. 

Alaña, J., Applied Soft Computing, (2010). 

 

The Applied Soft Computing accepted this manuscript for review in May 2010. Here, a 

new approach using artificial neural network is presented. These artificial neural 

networks were trained using data generated from simulations. These data were obtained 

introducing changes in the parameters of the system (defined as inputs to the neural 

network). The chain rule was applied and an analytical expression relating the predicted 

output and the inputs of the neural networks was found. These relationships can be used 

as an approximation of the sensitivity coefficients. Therefore, it is possible to calculate 

the Fisher Information Matrix and/or the covariance matrix of parameter estimates, 

which is very helpful for optimal experiment design purposes. Additionally, it can be 

used to predict the outputs of the system during the parameter estimation process. It is 

established that the optimal experimental samplings should be made at the positions 

where the sensitivity coefficients reached their largest absolute values in the spatial 

domain. A very well trained neural network can be used as a model predictor and 
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sensitivity coefficients estimator at the same time. 

 

3.2 PUBLICATION 2. Optimal Spatial Sampling Scheme for Parameter Estimation of  

Non Linear Distributed Parameter Systems. Alaña, J., Theodoropoulos, C., 

Computer and Chemical Engineering, (2010). 

 

The Computer and Chemical Engineering accepted this manuscript for review in 

November 2010. In this paper we introduced a novel technique to define an optimal 

sampling scheme for a process described by a nonlinear distributed parameter system. 

This is carried out for parameter estimation purposes. This scheme is based on the 

Proper Orthogonal Decomposition (POD) and it is verified by a numerical example 

regarding the chemical reaction occurring in a tubular reactor for two possible 

scenarios; stable and unstable operation conditions. An extrema evaluation of POD 

modes can be used directly to define optimal sensor locations for parameter estimation 

of nonlinear distributed parameter system. This is a computational efficient approach 

that allows defining the optimal measurement placements without the laborious 

calculation of the sensitivity coefficient Jacobian matrices generally required by the D-

optimal experiment design. Moreover, only merely system responses and/or 

experimental observations are required and used straightforwardly. The underlying 

combination of model reduction techniques and sensor location problem in this 

approach becomes even more relevant as the complexity of the system under 

consideration increases. By this method, not only the uncertainty in parameter estimates 

can be reduced, but cost is decreased also, which is significant, particularly in 

circumstances where experimental observations are expensive. 
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5. CONCLUSIONS 
 “God does not care about our mathematical 

difficulties. He integrates empirically” 
 

Albert Einstein 

 

A comparison between different methods, reported in the literature, for optimal sensor 

location to estimate parameters of distributed parameter systems was presented, 

observations and conclusions were derived. New approaches were developed, 

implemented and proved using an ample range of examples extracted from the 

literature. In the next paragraphs a series of conclusions derived from the results are 

presented. 

 

The approach based on the Gram determinant evolution, in some cases, might not 

produce accurate results since it is strongly dependent on the behaviour of the 

sensitivity coefficients in the spatial domain.  

 

The max-min optimisation method can produce more than one optimal solution 

depending on the number of sensors prescribed. Its computational cost increases 

significantly as the size of the DPS increases.  

 

The D-optimal experiment design produces as results the optimal number and 
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measurements positions where theses samplings should be made in the spatial domain. 

This method depends strongly on the sensitivity coefficients, but mostly on their spatial 

evolution rather than their exact magnitudes.  

 

The results, reported by the methods mentioned above, are strongly affected by the 

presence of noise, an aspect that can be partly solved using common filtering 

techniques. The approaches based on the sensitivity coefficients information are the 

most affected by this presence of noise. 

 

It was verified, analytically and numerically, that the extrema values, in the spatio-

temporal domain, of the sensitivity coefficients and the POD-modes coincide. 

Additionally, it was demonstrated, that in the time domain, the extrema values of these 

sensitivity coefficients concur at the same time positions of the temporal coefficients 

belonging to an empirical approximator. 

 

As a general rule the optimal measurements positions can be allocated in the spatial 

locations where the sensitivity coefficients and/or POD-modes reached their extrema 

values.  

 

The uses of the POD-Galerkin procedure can limit the function space to describe the 

observed solutions. Consequently this reduces the original nonlinear partial differential 

equations to a macro-model with small number of degrees of freedom. The resulting 

low-dimensional dynamic model simulates the system accurately using either data 

noise-free and/or contaminated with certain degree of noise. 
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Comparative numerical experiments show that the proposed reduced models, using the 

empirical eigenfunctions obtained from the POD-snapshot method, have numerical 

advantages over the uses of the original governing equations as a model. This includes; 

stability, robustness and a fast convergence of iterations during the parameter estimation 

process. The simulations show that this model reduction technique provides another 

feasible way for system designers to formulate, optimise and determine parameters of 

the process, efficiently and effectively. 

 

One of the most important stages in the POD-Galerkin procedure is how to obtain 

appropriate snapshots. These snapshots must include information about the dynamic 

characteristics of the system to produce empirical eigenfunctions that will represent the 

dynamics of the system. The accuracy of the dynamic reduced model improves as the 

number of empirical eigenfunctions employed in the POD-Galerkin procedure 

increases. Even though that most authors suggest to extract the average from the 

snapshots, previous to the calculation of the empirical eigenfunctions, it was observed 

that a reduced model reconstructs the system satisfactorily with or without extracting 

this average.  

 

The procedure of solving inverse problems, for parameter estimation purposes, 

employing low-dimensional model is faster than employing the original nonlinear 

partial differential equations. The parameters estimated using these reduced models are 

more accurate when the experimental data is taken at the locations where the sensitivity 

coefficients and/or POD-modes reached their extrema values, even for scenarios of 

measurements contaminated with a certain degree of noise. This procedure can be 
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improved even more when the samples are taken at the time intervals defined either by 

the positions of the extrema values of the sensitivity coefficients and/or the temporal 

coefficients belonging to the empirical approximator. 

 

Using the reduced model for parameter estimation purposes the computation time is 

lowered in almost 60% of the time required when the original partial differential 

equations are used. A very good estimation of the parameters is obtained using the 

reduced model, and for simplex and stable case study, do not depends that much of the 

positions of the measurements, but mostly of the number of eigenfunctions used and the 

number of measurements taken in the time domain. 

 

The temporal coefficients calculated from the new approach based in the minimisation 

of the objective function agreed the coefficients determined from the reduced model. 

The residuals obtained employing these temporal coefficients in the empirical 

approximator, are smaller than the ones produced by the uses of the conventional 

reduced model derived from the Galerkin-POD combination. 

 

In the specific case of snapshots contaminated with a certain degree of noise it was 

observed that the reduced model acts as a filter and could reconstructs a field with a 

high accuracy. Then, using the reduced model for parameter estimation purposes 

produce better results than when the original model is used. 

 

The performance of the Nelder-Mead algorithm varies from problem to problem that a 

careful collection of the experimental data will probably save time and produce better 
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results. Choosing and calibrating optimisation algorithms for effective and efficient 

solutions to parameter identification problems is important. However, there are many 

other important issues in parameter estimation problems that merit investigation. Model 

parameters can be correlated with one another. The issue of correlations among 

parameters causes several interesting problems. If parameters are correlated, then small 

or even large changes in two or more parameter values could result in the same 

objective function value. This phenomena creates the possibility of multiple, or even 

infinite global minima. 

 

Noise in the experimental data affects the parameter estimation problem by increasing 

the minimum objective function value. In most cases, noisy versions of smooth 

optimisation problems require fewer simulations than the smooth problem itself. Poor 

choices of algorithmic parameters can result in fitting values many orders of magnitude 

higher than if a good set of parameter values are used. There are combinations of 

parameter samples where one parameter sample requires fewer simulations than another 

parameter sample and yet results in a lower fit value. Thus, a parameter sample that 

requires a large number of simulations does not necessarily result in a low fit value. 
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4. FUTURE WORK 

 

In future, improvements to the experimental data collection scheme can be achieved by 

incorporating the optimal sampling time to the spatial measurement array defined by the 

extrema analysis of the POD-modes/temporal coefficients.  In this matter a paper is 

under preparation, which will show analytically and numerically how the determinant of 

the covariance matrix can be minimised considering the experimental observations at 

the spatial locations where the empirical eigenfunctions show extrema values, and the 

sampling times where the temporal coefficients derived from the combined Galerkin-

POD method reach their extrema values. Additionally, another manuscript introducing 

the uses of the spatio-temporal locations of the largest absolute value of the sensitivity 

coefficients to define the spatio-temporal experimental measurements scheme, and the 

equivalence of these sensor locations with the POD modes/temporal coefficients 

derived from the POD method is under preparation. 

 

New studies regarding the analytical and numerical evaluation of the objective function 

dynamic behaviour respect to the parameters of interest need to be conducted. This 

aspect is especially interesting when a reduced model is used instead of the original 

governing equations. 
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New approach to calculate the spatio-temporal locations of the experimental 

measurements need to be developed, considering artificial neural networks and/or 

calculating the POD modes based on the sensitivity coefficients. Here, the POD modes 

can be determined using the spatio-temporal dynamic behaviour of the sensitivity 

coefficients instead of the experimental observations. 
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Abstract - A sensor placement approach for the purpose of accurately estimating unknown parameters of a 
distributed parameter system is discussed. The idea is to convert the sensor location problem to a classical 
experimental design. The technique consists of analysing the extrema values of the sensitivity coefficients 
derived from the system and their corresponding spatial positions. This information is used to formulate an 
efficient computational optimum experiment design on discrete domains. The scheme studied is verified by a 
numerical example regarding the chemical reaction in a tubular reactor for two possible scenarios; stable and 
unstable operation conditions. The resulting approach is easy to implement and good estimates for the 
parameters of the system are obtained. This study shows that the measurement location plays an essential role 
in the parameter estimation procedure. 
Keywords: Sensor placement; Distributed parameter system; Parameter estimation; Sensitivity coefficients. 

 
 
 

INTRODUCTION 
 

An essential problem in parameter estimation is 
the selection of the experimental measurement 
locations. This problem consists of an arrangement 
of a limited number of measurements over the spatial 
domain that guarantees the best estimates of the 
system parameters. 

The allocation of sensors is a task not necessarily 
dictated by physical considerations or by intuition and, 
therefore, some systematic approaches should still be 
developed to reduce the cost of instrumentation and to 
increase the efficiency of the parameter estimation 
procedures. Although the parameter estimation 
accuracy in a distributed parameter system depends 
significantly on the selection of sensor positions, only 
a few contributions to the experimental designs for 
such systems have been reported. The effects of either 

number or spatial allocation of measurements for the 
parameter estimation problem were considered by 
Kubrusly (1980), Carotenuto and Raiconi (1980), 
Kitamura and Taniguchi (1981), Courdesses et al. 
(1981), Courdesses and Amouroux (1982), and 
Nakagiri (1983). 

Le Pourhiet and Le Letty (1976) offered two 
algorithms, as an optimal sensor location for 
parameter estimation applied to a deterministic 
distributed parameter system. The main idea is to 
maximise the identification error sensitivity with 
respect to the location of a new sensor. The first 
algorithm concerns the enhancement in the 
sensitivity criterion by adding a new sensor to the set 
of all sensors allocated in preceding iterations. The 
second takes into account the position of the new 
sensor at the previous iteration. Both algorithms stop 
when the assignment of a new sensor adds no 
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substantial improvement as far as the identification 
error sensitivity is concerned.  

Sokollik (1976) considered the number and 
position of sensors, as well as the measurement times, 
to solve the parameter estimation problem of a 
distributed parameter system. The model was 
approximated by a lumped system using finite-
differences. In this method both time and space 
domains were discretized with invariable sampling 
intervals. The optimal set of space-time was given by 
minimising the parameter estimate covariance. 

Qureshi et al. (1980) presented a technique for 
scheming optimal experiments for distributed 
parameter system identification with observations 
contaminated with noise. The boundary perturbations 
were considered. The optimisation criterion to be 
maximised was the determinant of the Fisher Index 
Matrix (FIM) associated to the parameters to be 
identified, which depends on both boundary 
perturbations and spatial positions of the 
measurements. This method was developed for 
hyperbolic and parabolic partial differential equations. 

Carotenuto and Raiconi (1981) considered the 
parameter identification of the one-dimensional 
static diffusion equation. The effects of an additional 
measurement point in terms of a potential 
improvement in the parameter estimate were 
analysed, and a criterion for selecting the location 
was presented. Rafajlowicz (1981) presented a 
method for optimal experiment of a distributed 
parameter system identification problem, which 
comprises sensor location and determination of 
classes of random inputs. A searching of an optimal 
probability measure corresponding to the position of 
the sensors was studied. This approach is equivalent 
to that considered in Qureshi et al. (1980), where the 
determinant of the information matrix is maximised. 
However, the information matrix was correlated to 
the system eigenvalues rather than to the system 
parameters. The conditions for optimality of the 
experimental design were derived, including an 
upper bound for the number of sensors (Rafajlowicz, 
1983, Singh and Hahn, 2005, 2006, Zamprohna et al., 
2005, Papadimitriou, 2004). 

More recently, a number of computational 
approaches were introduced. (Kubrously and 
Malebranche 1985, Uciński 1992, 2000a, 2000b, 
2003, 2005, Uciński and Bogacka, 2002, Uciński and 
Demetriou, 2004). The central idea is to define a 
design criterion to be minimised as a scalar measure of 
the FIM associated to the estimated parameters. This is 
followed by methods of optimum experimental design 
for nonlinear models to solve the sensor location 
problem at hand or, alternatively, by employing 

standard nonlinear programming procedures. 
Olanrewaju and Al-Arfaj (2006) presented a state 
estimation scheme based on Kalman filters for reactive 
distillation systems without extensively addressing the 
sensor selection problem. Nahor et al. (2003) 
minimised the ratio of the largest to the smaller 
eigenvalue of the FIM to compute optimal temperature 
sensor positions for food processes. To the best of our 
knowledge, these techniques have not been applied yet 
to systems described by partial differential equations, 
in spite of their resolute advantages (Uciński, 1999, 
Löhner and Camelli, 2005, Waterhouse et al., 2009, 
Vande, 2000, Venkateswarlu and Kumar, 2006, 
Punithakumar et al., 2006, Peng, 2005, Cotae et al., 
2008, Balsa-Canto et al., 2008). 

Christofides and Antoniades (2000, 2001, 2002) 
presented new approaches to calculate the optimal 
actuator/sensor locations of uncertain transport-
reaction systems under control. They established that 
the solution to this problem is near-optimal for the 
closed-loop infinite-dimensional processes analysed. 
Similar and other kinds of techniques have been 
reported by Van den Berg et al. (2000) and Harries et 
al. (2004). These aspects will be analysed in future 
works regarding the optimal measurement positions 
for parameter estimation of distributed parameter 
systems. 

This paper proposes an experimental design for 
measurement placement of distributed parameter 
systems. This is done by taking into consideration 
the spatial locations where the sensitivity coefficients 
of the system reached theirs extrema values. 
 
 

THE SYSTEM GOVERNING AND 
SENSITIVITY EQUATIONS 

 
The system considered is a homogeneous tubular 

reactor without catalyst packing. An irreversible 
first–order chemical reaction A→B takes place and 
is described by the concentration rate CA(t,z) and the 
temperature T(t,z). This reaction is exothermic and a 
cooling jacket is used to remove heat from the 
reactor. A fraction of the products can be recycled, r, 
and mixed with the reactants at the inlet of the 
reactor (z=0) (Bendersky and Christofides 2000, Li 
and Chistofides 2007, Alaña, 2010).  

Derived from mass and energy balances, and 
under the standard assumptions of constant density 
(ρ), heat capacity  of the reacting fluid (cp), and 
constant axial fluid velocity (v), the dynamic 
behaviour of the reactor is described by a set of 
partial differential equations defined on a spatial 
domain z∈(0,1), in dimensionless form, 
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2
1 1 1

i32
C

y (t,z) y (t,z) 1 y (t,z) R
t z Pe z

∂ ∂ ∂
= − + +

∂ ∂ ∂
           (1) 

 
2

2 2 2
i1 i22

T

y (t,z) y (t,z) 1 y (t,z) R R
t z Pe z

∂ ∂ ∂
= − + + +

∂ ∂ ∂
 (2) 

 
In these equations; 1y (t,z) , 2y (t,z)  are the state 

variables that represent concentration and temperature, 
respectively. The control variable Cu  represents the 
cooling water temperature. The terms PeC, PeT are 
the Peclet numbers of mass and energy flows, 
respectively, BC is the Damkohler number, γ is the 
activation energy, BT and βT are the parameters 
related to heat of reaction and heat transfer, 
respectively, and t (t0,tf), where t0 and tf are initial 
and final times, respectively. The terms Rij 
correspond to the examples; i=1 stable case with a 
recycle r=0.00, and i=2 unstable case with a recycle 
r=0.50, j stands for the following expression, 
 

2
11 T C 1

2

2
21 T C 1

2

y (t,z)R B B (1 y (t,z))exp ,y (t,z)1

y (t,z)R B B (1 y (t,z))exp
1 y (t,z)

⎛ ⎞
⎜ ⎟

= − ⎜ ⎟
⎜ ⎟+⎜ ⎟γ⎝ ⎠

⎛ ⎞γ
= + ⎜ ⎟+⎝ ⎠

    (3a) 

 

12 22 T C 2R R (u y (t,z))= = −β −         (3b) 
 

2
13 C 1

2

2
23 C 1

2

y (t,z)R B (1 y (t,z))exp ,y (t,z)1

y (t,z)R B (1 y (t,z))exp
1 y (t,z)

⎛ ⎞
⎜ ⎟

= − − ⎜ ⎟
⎜ ⎟+⎜ ⎟γ⎝ ⎠

⎛ ⎞γ
= + ⎜ ⎟+⎝ ⎠

    (3c) 

 
The boundary and initial conditions are, 
 
a. Stable case; ( )t 0,5∈  
 

z = 0 

1
C 1

2
T 2

y (t,0) Pe y (t,0)
z

y (t,0) Pe y (t,0)
z

∂
= →

∂

∂
=

∂

        (4a) 

 

z = 1 1y (t,1) 0
z

∂
=

∂
 2y (t,1) 0

z
∂

=
∂

       (4b) 

 

t = 0  10 20 Cy y u 0= = =          (4c) 
 
b. Unstable case; assuming negligible reaction in the 
recycle loop and instantaneous mixing of fresh feed 
and recycle feed at the reactor inlet, the boundary 
and initial conditions in the interval ( )t 0,25∈  take 
the form, 
 

[ ]

[ ]

1
C 1 10 1

2
T 2 20 2

y (t,0)z 0 Pe y (t,0) (1 r)y ry (t,1)
z

y (t,0) Pe y (t,0) (1 r)y ry (t,1)
z

∂
= = − − −

∂

∂
= − − −

∂

 (5a) 

 

z = 1 1y (t,1) 0
z

∂
=

∂
  

(5b) 

    2y (t,1) 0
z

∂
=

∂
 

 
t 0= 10 20 Cy y u 0= = =                (5c) 
 

The sensitivity coefficients can be calculated 
based on the local sensitivity analysis (Morbidelli 
and Varma, 1988, Vajda and Rabitz, 1992, Tildem et 
al., 1981, Juncu and Floarea, 1995). Indicating any 
of the reactor parameters [PeC, PeT, BC, γ, BT and βT] 
as φ, the first-order sensitivity coefficient of Y, with 
Y being y1 and y2, is defined as, 
 

( ) Y,
Ys Y, s ϕ
∂

ϕ = =
∂ϕ

             (6) 

 
In this work, to take into account the 

pseudoadiabatic behaviour of the system, the 
sensitivity coefficients are computed using the direct 
method (Bauman et al., 1990, Coste and Aris, 2004). 
According to this method, the sensitivity coefficients 
can be expressed by the following equations, 
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2 1
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The boundary and initial conditions for each case 
study are, 
 
a. Stable case, 
 

z = 0 

( )

( )

1

2

y ,
C 1

y ,
T 2

s
z 0 Pe y (t,0)

z

s
Pe y (t,0)

z

ϕ

ϕ

∂ ∂
= =

∂ ∂ϕ

∂ ∂
=
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      (9a) 

 

z = 1 1y ,s
0

z
ϕ∂
=

∂
 2y ,s

0
z
ϕ∂
=

∂
        (9b) 

 
t = 0  

1 2y , y ,s s 0ϕ ϕ= =  (9c) 
 
b. Unstable case, 
 

[ ]( )

[ ]( )
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s
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z = 1 1y ,s
0

z
ϕ∂
=

∂
 2y ,s

0
z
ϕ∂
=

∂
      (10b) 

 
t = 0  

1 2y , y ,s s 0ϕ ϕ= =        (10c) 
 

Equations (7) – (10) are obtained by differentiating 
the model equations (1) – (2), and (4) or (5) 
(depending of the case study), with respect to φ. The 
direct approach to obtain the sensitivity coefficients 
consists of solving (1) – (2) and (4), together with (7) 
– (9) for the stable case, and solving (1) – (2) and (5), 
together with (7) – (8) and (10) for the unstable 
example. For each case study, a system of fourteen 
coupled nonlinear partial differential equations is 
formed, with their respective initial and boundary 
conditions. This system can be solved using the 
Matlab® partial differential equation solver “pdepe”, 
which solves initial-boundary value problems for 
systems of parabolic and elliptical partial differential 
equations in one space variable and time. The solver 
converts the partial differential equations to ordinary 
differential equations using a second-order accurate 
spatial discretization based on a set of nodes 
specified by the user. Time integration is then 
performed with a multistep variable-order method 
based on the numerical differentiation formulae. The 
spatial domain was divided into 21 equidistant 
intervals, and n time reporting intervals were 

considered. The nominal values of the parameter for 
the systems studied in this work are shown in Table 1. 
 
Table 1: Nominal values of the parameters 

 
Stable case Unstable case  

C C

T T T

Pe 1.0 B 1.0 20.0
Pe 1.0 B 2.0 1.0

= = γ =
= = β =

C C

T T T

Pe 7.0 B 0.1 10.0
Pe 7.0 B 2.5 2.0

= = γ =
= = β =

 
In many cases, it can be assumed that some, albeit 

rough, a priori value of the parameters vector φ is on 
hand, e.g., determined from preliminary experiments. 
The aim in this work is to select a state sampling 
schedule to maximise the expected accuracy of the 
parameter estimates to be obtained from data 
generated in new experiments. This parameter 
should be determined with the lower uncertainties. 
 
 

SENSITIVITY OF THE OPTIMUM 
PARAMETER ϕ̂  WITH RESPECT  
TO THE EXPERIMENTAL DATA 

 
A knowledge of how the solution of a system can 

vary with respect to small changes in the data or the 
parameters can yield insights into the model 
behaviour and can assists the modelling process. 

Christopher and Fathalla (1999) proposed a new 
method to estimate the sensitivity of the state 
variables to the parameter estimates and the 
sensitivity of the parameter estimates to the 
observation. Using a set of analytical and numerical 
approaches, they concluded that the sensitivity of the 
parameter estimates to the observations is low if the 
sensitivity of the state variable to the parameter 
estimates is high. Similar results have been reported 
by Binder (2007). Next, the demonstration of the 
observation mentioned before can be found. 

In order to compute 
ij

ˆ
u
∂ϕ
∂

, the sensitivity of the 

parameter ϕ̂  to the experimental data iju , the 
objective function in the parameter estimation 
process has the form, 
 

( ) ( ) ( )( )2j i ij
i j

, u y t ,z , uℑ ϕ ≡ ℑ ϕ = ϕ −∑∑     (11) 

 
This function can be considered to be a smooth 

function of ϕ  in the vicinity of the optimal 
parameter ϕ̂ . Then the first and second derivatives 
are, 
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( ) ( )( ) ( )j i
j i ij

k ki j
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2 y t ,z , u

∂ ϕ∂ℑ ϕ
= ϕ −

∂ϕ ∂ϕ∑∑                    (12) 

 

( ) ( ) ( ) ( )( ) ( )22
j i j i j i

j i ij
l k l k l ki j i j

y t ,z , y t ,z , y t ,z ,,u
2 2 y t ,z , u

∂ ϕ ∂ ϕ ∂ ϕ∂ ℑ ϕ
= + ϕ −

∂ϕ ∂ϕ ∂ϕ ∂ϕ ∂ϕ ∂ϕ∑∑ ∑∑           (13) 

 
In order to minimise the objective function (11), the right hand side of Equation (12) vanishes at ˆϕ = ϕ  

(where ( )ˆ ˆ uϕ = ϕ ),  
 

( )( )( ) ( )( )j i ij k j i
i j

ˆ ˆy t ,z , u u s t ,z , u 0ϕ − ϕ =∑∑                     (14) 

 

with, ( )( ) ( )j i
k j i

k

y t ,z ,
ˆs t ,z , u

∂ ϕ
ϕ =

∂ϕ
 

 

At this moment, the left hand side of Equation (14) is a function of ( )ˆ uϕ  and iju ; differentiating both sides 

with respect to iju  yields, for pk 1,...,L= ,  
 

( ) ( ) ( )( ) ( ) ( )
pL 2N M

j i
k j i l j i j i ij k j i

l k iji 1 j 1 l 1

ˆy t ,z , ˆˆ ˆ ˆ ˆs t ,z , s t ,z , y t ,z , u s t ,z ,
u

= = =

⎛ ⎞∂ ϕ ∂ϕ⎜ ⎟ϕ ϕ + ϕ − = ϕ
⎜ ⎟∂ϕ ∂ϕ ∂⎝ ⎠

∑∑∑         (15) 

 
 
If we assume that ( )j i ˆy t ,z ,ϕ  is close to the 

observed measured values iju , then the term 

( )( )( )j i ijˆy t ,z , u uϕ −  on the left hand side of 

Equation (15) can be neglected. Finally, the 
sensitivity of the best fit parameter estimate ϕ̂  to the 
experimental measurements iju  can be approximated 
using the following compact form, 
 

( ) ( )1
j i

ij

ˆ ˆ ˆs t ,z ,
u

−∂ϕ
≈ Θ ϕ ϕ⎡ ⎤⎣ ⎦∂

         (16) 

 

Here ( )ˆs t,z,ϕ  is a Lpx1 vector, given by the 
derivatives of the governing equations of the 
system with respect to the parameters, and 

( ) ( ) ( )
N M

T
j i j i

i 1 j 1

ˆ ˆ ˆs t ,z , s t ,z ,
= =

Θ ϕ = ϕ ϕ∑∑  is a LpxLp non-

singular matrix.  
A desirable property of the model is that the 

sensitivity of the parameter estimate to the 
experimental measurement, 

ij

ˆ
u
∂ϕ
∂

, should be small in 

order to minimise the effect of the noise present in 

the experimental observation on the parameter 
estimation process. Equation (16) suggests that 
increasing ( )j i ˆs t ,z ,ϕ  (the sensitivity of the state 

variable with respect to the unknown parameter) 
decreases the sensitivity of the parameter estimate to 
the experimental measurement. Then it is reasonable 
to expect that the best estimation of the parameters 
should be obtained when the experimental data are 
taken at the locations where the sensitivity 
coefficients reach their extrema values (the largest 
absolute values). It is our intention to verify here 
how useful these observations are to define a set of 
measurement locations for parameter estimation 
purposes using numerical experimentation. 
 
 

PARAMETER ESTIMATION 
 

Model calibration consists of finding a set of 
parameter values that produces the best model output 
which fit the observed data. This calibration is 
usually done by the minimisation of the objective 
function (17).  

Once the sensor locations have been determined, 
the parameter estimation problem can be viewed as 
matching the model to the real system through the 
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minimisation of an error criterion over a set of 
admissible parameters. This can be defined as, 
 

( ) ( ) ( )( )f
mt 2

e i p i
0f i 1

1 1J y z , t y z , t dt
m t

=

⎡ ⎤
ϕ = −⎢ ⎥

⎢ ⎥⎣ ⎦
∑∫    (17) 

 
where, yp(zi,t) is defined as the predicted response of 
the model at location zi, and ye(zi,t) as the 
experimental response at the same location, m is the 
number of optimal measurement locations 
determined by the different methods studied in this 
work. Unfortunately, elements in the vector yp(zi,t) 
are not linear functions of the parameters φ, and 
multiple solutions of (17) are possible. 

It is well known that problem (17) is challenging 
for numerous reasons. The existence of a solution is 
not certain, particularly if the observed data contain 
errors or if the model is grossly incorrect. It is 
unusual that any parameter set can accurately match 
the experimental data used, especially when these 
data are contaminated with noise. The presence of 
noise can promote difficulties during the 
optimisation process, causing spurious local minima 
and discontinuities. The gradient-based methods are 
the most affected of all. In this work, several 
different optimisation techniques (already existing in 
the Matlab® library) were used. The method of 
Nelder–Mead produced the best results for the 
scenarios studied. This can be explained by the fact 
that, using this technique, poor gradient 
approximations are not a problem, and continuity 
and differentiability of the objective function are not 
required.  
 
Covariance Matrix of Parameter Estimates 
 

When assessing the quality of an identified 
dynamic model, the covariance matrix of the 
estimated parameters gives an important measure 
(Ljung, 1999, Söderström and Stoica, 1989). In a 
maximum likelihood context, the inverse of the 
expected value of the negative of the Hessian 
provides the Cramer-Rao lower bound on the 
variance-covariance matrix of the parameter 
estimates. Large variances imply imprecise 
parameter estimates. The arrival of new data, or data 
measurement, can lead to substantial change in 
parameter estimates if the variance-covariance 
matrix is ill-conditioned. So, the goal of the 
estimation procedure is to determine unknown 
parameters in such a way that the difference between 
the sample covariance matrix and the implied 
covariance matrix is minimised in a certain sense 

(Davidson and MacKinnon, 1980, Sorenson, 1980, 
Zhun and Stein, 2005). 

Based on the system studied here, the 
approximation of the parameter covariance matrix 
(Yen and Yoon, 1981) can be approximated by, 
 

( ) 1 1 2 2
1 2

1
T T

nv y y y y2 2
y y

1 1ˆCov J J J J
−

⎛ ⎞
⎜ ⎟ϕ ≈ +
⎜ ⎟σ σ⎝ ⎠

     (18) 

 

where 
1yJ  and 

2yJ  represent the Jacobian matrix of 
estimated variables; y1 and y2, respectively, with 
respect to changes in the parameters. nv is the 
parameter dimension, and 2

kσ  is the variance of the 
variable k. In this equation it is easy to view the 
influence of field data quality and quantity in 
parameter uncertainty. Since these Jacobian matrices 
are evaluated at those locations for which 
observations are available, any experimental design 
should aim at sampling at those locations where the 
variables are most sensitive to the estimated 
parameters. Such a design is said to provide the 
maximum amount of information about the unknown 
parameters (Knopman and Voss, 1987). 

It is intuitively obvious that the experimental 
design objective should be intended to minimise the 
norm of the covariance matrix (18), i.e., to make 

matrices ( )1 1

1T
y yJ J

−  and ( )2 2

1T
y yJ J

−
 as small as possible. 

The variance terms 
1

2
yσ  and 

2
2
yσ  are constants, and 

can be dropped from the formulation. To measure 
the accuracy of the estimates, we prefer to 
summarise the information about the variability in 
the covariance matrix into a single number. Here we 
used the determinant of (18) as the function that 
transforms a matrix into a scalar. This is quite 
informative since in fact it is related to the volume of 
the multidimensional simplex defined by the 
column/row vectors of the matrix (Kumar and 
Seinfeld, 1978, Rutzler, 1987).  

Experimental design for parameter estimation deals 
with the problem of defining experimental conditions 
that increase the reliability of a simulation model. This 
can be formulated by using a measure of the 
covariance matrix of the parameter estimates. Among 
these, the most widely used design criteria are, 
 A-optimality: A design is said to be A-optimal if 

it minimises the trace of matrix (18). 
 D-optimality: A design is said to be D-optimal if 

it minimises the determinant of (18). 
 E-optimality: A design is said to be E-optimal if it 

minimises the maximal eigenvalue of (18). 
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Using different norms leads to slightly different 
conclusions regarding the optimal design. The D-
optimality criterion minimises the volume of the 
hyper-ellipsoid in the parameter space, which makes 
no consideration of the relationship between the 
ellipsoid’s axes lengths, which are in turn 
proportional to the square root of the covariance 
matrix eigenvalues. 

In general, it can be shown that, under some 
assumptions of regularity and for a sufficiently large 

sample size N, the vector 
*

(N)ˆ⎛ ⎞
ϕ −ϕ⎜ ⎟
⎝ ⎠

(with 
*
ϕ  denoting 

the ‘true’ but unknown value of the parameters and 
(N)ϕ̂  the least square parameter estimates) has 

approximately a normal distribution with zero mean 
and covariance matrix, 
 

2 *
1M ,

N
− ⎛ ⎞σ

ξ ϕ⎜ ⎟
⎝ ⎠

             (19) 

 

where 2σ  denotes the standard deviation of the 
errors in the model, ξ represent a design experiment 

(including the measurement locations) and 
*

M ,⎛ ⎞
ξ ϕ⎜ ⎟
⎝ ⎠

 

is the FIM, defined by, 
 

( ) ( )
Nn*

k k

i jk 1 i, j 0

y z , t, y z , t,
M ,

= =

⎛ ⎞∂ ϕ ∂ ϕ⎛ ⎞
ξ ϕ = ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ϕ ∂ϕ⎝ ⎠ ⎝ ⎠

∑        (20) 

 
In principle, the covariance matrix is a measure 

for the precision of the least square estimator for the 

unknown parameter 
*
ϕ  and a ‘smaller’ matrix yields 

more precise estimates. For example, the ith diagonal 

element of (19) will be denoted by 
2 *

1

ii
M ,

N
− ⎛ ⎞σ

ξ ϕ⎜ ⎟
⎝ ⎠

 

and is an approximation of the variance or mean 
squared error for the ith component i,(N)ϕ̂  of the least 
squared estimator (N)ϕ̂ . An approximate confidence 

interval for the ith component iϕ  of the vector ϕ  is 
given by, 
 

*1 2 1
i,(N) i,(N)

ii

*1 2 1

ii

ˆ u
ˆ ˆM , ,

N

ˆu
M ,

N

−α −

−α −

⎡ ⎤σ ⎛ ⎞
ϕ − ξ ϕ ϕ +⎢ ⎥⎜ ⎟
⎢ ⎝ ⎠ ⎥
⎢ ⎥
⎢ ⎥σ ⎛ ⎞⎢ ⎥ξ ϕ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

     (21) 

where 1 2u −α  denotes the 1-α/2 quantile of the 

standard normal distribution and 2σ̂  is an estimate 
of the unknown variance of the error. For most cases, 
it was shown that, for moderate sample sizes N, the 
sampling variances of the parameter estimates are 
well approximated. 

The precision of the estimates can always be 
decreased by increasing the sample size N, which 
yields a ‘smaller’ covariance matrix and smaller 
variances of the least square estimates. However, in 
practice the sample size is usually fixed, due to cost 
considerations of each additional experiment. To 
improve the quality of the estimates or, from a 
different point of view, to reduce the number of 
experimental measurements needed to obtain the 
estimates with a given accuracy, we note that the 
variances of the estimates i,(N)ϕ̂  and the covariance 
matrix of the vector (N)ϕ̂  also depend on the given 

design, ξ, which determines the relative proportion 
of total observations to be taken at the experimental 
locations. 

It is advisable to check that the confidence 
interval magnitude agrees with the sensitivity 
analysis, where the parameter that has the largest 
sensitivity coefficient should have the smallest 
confidence interval. Because of the consideration of 
the measurement error only, if the FIM is well-
defined, the confidence intervals may result in very 
small values. Grimstadt and Mannseth (1998) 
indicate that the use of such an approximation of the 
confidence intervals was almost always justified, 
even for the highly nonlinear model they analysed. 
 
 

NUMERICAL RESULTS 
 

The spatial variability of sensitivities has a 
significant impact on parameter estimation and 
sampling design for studies of distributed parameter 
systems. Information about a physical parameter will 
be most accurately gained at points in space with a 
high sensitivity to the parameter.  

The set of partial differential equations described 
above was solved using nominal values for the 
parameters and random noise with zero mean, 
N(0,σ2), was added to the outputs, the variance, σ2, 
was manipulated in order to produce up to ±15% of 
stochastic deviation from the outputs. For each case 
10 replications of the digital experiment were 
collected.  

Data set averaging is used to reduce the effect of 
random noise in the measurements, which typically 
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arises from the data acquisition system. In practice, 
this implies that several data sets of the same signal, 
in response to identical perturbations, have been 
taken. Data set averaging may be obtained as, 
 

( ) ( )
nt

i j i S
j 1

1ŷ t y t i 1,..., N
nt

=

= =∑    (22) 

 

where nt is the number of data sets and NS is the 
number of observations per set. The effects of the 
random noise tend to cancel when several sets of 
data are averaged. However, the noise can only be 
reduced to a certain degree and not totally eliminated. 
In this work, only minimal improvements were 
achieved by averaging together more than ten sets of 
data. In addition to averaging, the output can be low 
pass filtered to remove the residual random noise and 
the systematic noise. 

The average of the resulting ten responses was 
then treated as experimental data and was used in the 
minimisation of the objective function (17). The 
calculated parameters were compared with their 
corresponding nominal values. 

The analysis of the sensitivity coefficients and of 
the determinant of the FIM reveals the most 
appropriate sensor locations for the estimation of the 
unknown parameters (Storch et al, 2007). It is well 

known that sensitivity analysis quantifies the 
dependence of the system behaviour on the 
parameters that affect the process dynamics. Prasad 
and Vlachos (2010) presented results that show that 
high values of the FIM are correlated with large 
normalised sensitivity coefficients. These results can 
be very helpful to reinforce the analysis carried out 
here. 

Figures 1 and 2 show the results of the sensitivity 
coefficients obtained for the stable tubular reactor 
case, i=1. From these figures the positions where the 
extrema values are reached can be extracted easily. 

The extrema values of the sensitivity coefficients 
for temperature are located at 0.00, 0.45, and 1.00 
and at 0.00, 0.30, and 1.00 for concentration. The 
parameter showing the lowest absolute sensitivity 
coefficient is γ, which implies that more sampling 
effort would be required to estimate this parameter. 
These measurement locations were considered and 
their effects on the parameter estimation procedure 
were verified. The minimum of the determinant of 
the covariance matrix, Equation (18) was used to 
measure the quality of the parameter estimates 
considering the spatial positions established by the 
extrema analysis of the sensitivity coefficients. Table 
2 shows the scenarios considered for the parameter 
estimation of the stable example. 
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Figure 1: Sensitivity coefficients behaviour in the spatial domain, stable case.   
 

  

  

  
 

Figure 2: Sensitivity coefficients behaviour in the spatial domain, stable case. 



 
 
 
 

636                J. E. Alaña 
 

 
Brazilian Journal of Chemical Engineering 

 
 
 
 

It is our intention to consider the spatial locations 
where the sensitivity coefficients show extrema 
values to verify the accuracy of the parameter 
estimates using experimental data contaminated with 
noise. At these positions it would be logical to expect 
that the confidence intervals for each parameter 
should be small, according to Equation (21). 

Matrix ( )ˆΘ ϕ  in Equation (16) resembles the FIM, 
and Equation (20), the inverse of (16) can be 
considered as an approximation of the inverse of the 
FIM, which is a lower bound on the parameter 
covariance matrix. Even though Christopher and 
Fathalla (1999) derived their conclusions for 
purposes other than sensor location for parameter 
estimation, it is our intent to use their results to 
reinforce our hypothesis that a tentative set of 
optimal measurement positions could be defined 
considering the spatial locations of the extrema 
values of the sensitivity coefficients, which should 
result in small confidence intervals for the parameter 
estimates. 

The procedure followed in this work resembles 
the conventional D-optimal experimental design. In 
the D-optimal design, the sensors are allocated by 
the minimisation of the determinant of the parameter 
covariance matrix. In our approach, the measurement 
positions are defined by a mere extrema analysis of 
the sensitivity coefficients, which can be defined as a 
locally optimal design, with a further evaluation of 
the determinant of the parameter covariance matrix 
to verify the quality of the parameter estimates. Both 

approaches need a previous estimate of the 
parameters. 

Table 3 shows the values of the parameters 
estimated taking the experimental data at the 
locations mentioned in Table 2. The data estimated 
from the model at these same positions are used to 
minimise the objective function (17). The initial 
guess used corresponds to 50% of the nominal values. 
During each iteration the sensitivity coefficients 
were calculated using (7) and (8) together with (9) 
and/or (10). The values obtained for each case 
studied are shown in Tables 3 and 5. Finally, the 
parameters calculated were compared with their 
nominal values.  

It can be seen in Table 3 that the parameter with 
the highest deviation was γ in most cases. The best 
estimation is obtained when the experimental 
measurements are taken at the locations where the 
sensitivity coefficients reached the extrema values 
for each variable of the system. The sampling 
scheme experienced a significant reduction from the 
original process, consisting of 21xn measurement 
locations for each state variable, to 3xn (based on the 
positions where the sensitivity coefficients reached 
extrema values). This reduction represents 86% of 
the original spatial domain.  

For the tubular reactor with recycle operating 
under unstable conditions, Figures 3 and 4 show the 
behaviour of the sensitivity coefficients in the spatial 
domain for temperature and concentration, 
respectively. 

 
 

Table 2: Locations considered for each variable, stable case 
 

Case  Concentration locations  Temperature locations 
A    Whole domain    Whole domain 
B 0.00, 0.15, 1.00 0.00, 0.15, 1.00 
C 0.00, 0.15, 0.95, 1.00 0.00, 0.15, 0.95, 1.00 
Da 0.00, 0.30, 1.00 0.00, 0.45, 1.00 

aBased on the extrema values of the sensitivity coefficients and considering the largest absolute value 
 

Table 3: Parameters estimated, stable case 
 

Case PeC PeT BC BT γ βT SSE det[Cov] 

A 1.0030 
0.30% 

1.0035 
0.35% 

0.9954 
0.46% 

2.0039 
0.20% 

20.0085 
0.04% 

0.9992 
0.08% 1.33e-8 6.32x10-8 

B 0.9841 
1.59% 

0.9964 
0.36% 

1.0301 
3.01% 

1.9905 
0.48% 

6.8791 
65.61% 

0.9780 
2.20% 0.0034 81.27x10-2 

C 0.9910 
0.90% 

1.0073 
0.73% 

1.0317 
3.17% 

1.9849 
0.76% 

7.2747 
63.63% 

0.9740 
2.60% 0.0042 73.33x10-2 

D 1.0099 
0.99% 

0.9984 
0.16% 

1.0107 
1.07% 

1.9688 
1.56% 

19.0229 
4.89% 

0.9982 
0.18% 2.15e-4 4.06x10-5 

Numbers in bold represent the deviation of the parameter from the nominal value. 
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Figure 3: Sensitivity coefficients behaviour in the spatial domain, unstable case. 
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Figure 4: Sensitivity coefficients behaviour in the spatial domain, unstable case.  
 

Examining these figures, the variety of extrema 
for different values of time can be seen. The largest 
absolute values for temperature are located at 0.15, 
0.20, and 0.30 and at 0.15, 030, and 0.35 for 
concentration. The parameter showing the lowest 
absolute sensitivity coefficient is PeT. This system is 
very unstable, showing numerous extrema values in 
the whole spectrum of constant time lines, as can be 
seen in Figures 3 and 4. Even though that is not 

shown here, a quantification of the most recurrent 
extrema was carried out, which are resumed as Case 
D in Table 4. This table shows the cases considered 
to analyse the parameter estimation procedure for the 
unstable case. 

The parameters estimated, taking the experimental 
measurements at the locations mentioned in Table 4 
and following the procedure explained above, are 
shown in Table 5.  

 
Table 4: Locations considered for each variable, unstable case 

 
Case Concentration locations Temperature locations 

A Whole domain Whole domain 
B 0.05 0.10 … 0.65 0.70 0.05 0.10 … 0.65 0.70 
C 0.15 0.30 0.35 0.45 0.15 0.20 030 0.40 
Da 0.15 0.30 0.35 0.15 0.20 0.30 

a Based on the extrema values of the sensitivity coefficients and considering the largest absolute value 
 

Table 5: Parameter estimated, unstable case 
 

Case PeC PeT BC BT γ βT 10-3*SSE det[Cov] 

A 7.2560 
3.66% 

6.3010 
9.997% 

0.1005 
0.50% 

2.4799 
0.80% 

9.9243 
0.76% 

2.0068 
0.34% 3.049 2.10x10-7 

B 7.5560 
7.93% 

6.0010 
14.27% 

0.0974 
2.60% 

2.4480 
2.08% 

10.2121 
2.12% 

2.0799 
3.40% 15.008 7.95x10-4 

C 7.7381 
10.54% 

4.6780 
33.17% 

0.1026 
2.60% 

2.3040 
7.84% 

10.2191 
2.19% 

1.9354 
3.23% 19.482 45.38x10-1 

D 7.2279 
3.26% 

6.1370 
12.33% 

0.0998 
0.20% 

2.5233 
0.93% 

10.0330 
0.33% 

2.0231 
1.16% 3.098 3.89x10-7 

Bold numbers represent the deviation of the parameter from the nominal value. 
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Due to the complex nature of this example, not 
even considering the whole experimental data in the 
spatial domain, the nominal values of the parameters 
are reproduced. PeT is the parameter showing the 
highest deviation from its nominal value. This gives 
another motivation for using sensor placement 
strategies based on the extrema evaluation of the 
predominant sensitivity functions showing the 
largest absolute value. Thus, not only the uncertainty 
in parameter estimation was reduced (see the 
deviation from the nominal values, number in 
parentheses, shown in Tables 3 and 5), but also the 
cost associated with such measures was reduced as 
well, which can be significant, especially in 
situations where experimental measurements are 
very expensive. Information about a physical 
parameter may be most accurately gained at points in 
space with a high sensitivity to the parameter. 
Taking observations at locations showing high 
sensitivity to the parameter tends to yield relatively 
low variance, as can be seen in Tables 3 and 5. Level 
of noise, above the ones considered here, affect 
considerably the parameter estimates. 

The parameters with the lowest absolute sensitivity 
coefficients are the most difficult to estimate, 
especially if the experimental measurements are taken 
far from the optimal locations. When at least one 
parameter shows a very low absolute sensitivity, an 
optimisation algorithm based on the gradient and/or 
Hessian matrix generally gets stuck in a local 
minimum, distant from the optimal solution. 
Considering the measurement locations where the 
sensitivity coefficients show extrema values provided 
very good parameter estimates. 

Taking into account the largest absolute 
sensitivity coefficients of the parameter of interest 
through a careful choice of observation points in a 
sampling design will lower the variance of the 
parameter estimate. This is the motivation for 
examining the behaviour of sensitivities in the 
system when refinement of parameter estimates is an 
objective of field sampling. 
 
 

CONCLUSIONS 
 

A sensor placement strategy to estimate parameters 
is presented. The spatial location selection is essential 
in the parameter estimation procedure. To optimally 
estimate the parameters of the system, the 
measurements can be taken where the extrema values 
of the sensitivity coefficients are reached in the spatial 
domain. The parameters determined with the highest 
deviation from the nominal values are usually the ones 

showing the lowest absolute sensitivity coefficients. 
To improve this estimation, it is advisable to measure 
at the locations where the sensitivity functions reach 
their extrema. The results are strongly affected by the 
presence of noise in the system, but this can be partly 
solved by using common filtering techniques. Not only 
the uncertainty in parameter estimation can be reduced 
by using these sensor locations, but cost is decreased 
also, which is significant, especially in situations 
where experimental observations are expensive. 
 
 

NOMENCLATURE 
 

CA(t,z) Concentration 
T(t,z) Temperature 

1y (t,z)  Dimensionless concentration 

2y (t,z)  Dimensionless temperature 
r Recycle to reactor 
z Spatial variable 

TPe  Temperature Peclet number 
PeC Concentration Peclet number 
BC Damkohler number 
γ Activation energy 
BT Heat of reaction 
βT Heat transfer 
t Time variable 
t0 Initial time 
tf Final time 
φ A vector parameter of the system 
Y Output of the system 
( )s Y,ϕ   

or Y,s ϕ  

Local sensitivity of Y with respect 
parameter φ 

ij

ˆ
u
∂ϕ
∂

 Sensitivity of the parameter ϕ̂  to the 
experimental data iju  

iju  Experimental data 

( )ℑ ϕ  or 

( ),uℑ ϕ  

Objective function 

( )ˆs t,z,ϕ  Vector of local sensitivities 

( )ˆΘ ϕ  Non-singular matrix  
*
ϕ   

the ‘true’ but unknown value of the 
parameters 

(N)ϕ̂   the least square parameter estimates 

ξ  the design experiment (including the 
measurement locations) 

*
M ,⎛ ⎞

ξ ϕ⎜ ⎟
⎝ ⎠

 
Fisher Index Matrix 

( )nvˆCov ϕ Parameter covariance matrix 
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N(0,σ2) random noise with zero mean and 
variance σ2 

1 2u −α    the 1-α/2 quantile of the standard normal 
distribution 

yJ  Jacobian of the variable y 

kyJ  Variance of the variable k 

SSE Sum of square errors 
yp(zi,t) Predicted response at location zi 
ye(zi,t) Experimental response at location zi 
( )iŷ t  Averaged data 

m Optimal number of spatial locations 
nt Number of data sets 
NS Number of observations per data set 
 
Acronyms 
 
FIM Fisher Index Matrix 
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a b s t r a c t

Systematic methodologies for the optimal location of spatial measurements, for efficient estimation of
parameters of distributed systems, are investigated. A review of relevant methods in the literature is pre-
sented, and a comparison between the results obtained with three distinctive existing techniques is given.
In addition, a new approach based on the Proper Orthogonal Decomposition (POD), to address this impor-
tant problem is introduced and discussed with the aid of illustrative benchmark case studies from the
literature. Based on the results obtained here, it was observed that the method based on the Gram deter-
minant evolution (Vande Wouwer et al., 2000), does not always produce accurate results. It is strongly
dependent on the behaviour of sensitivity coefficients and requires extensive calculations. The method
based on max–min optimisation (Alonso, Kevrekidis, Banga, & Frouzakis, 2004) assigns optimal sensor
locations to the positions where system outputs reach their extrema values; however, in some cases it
produces more than one optimal solution. The D-optimal design method, Uciński (2003, June 18–20),
produces as results the optimal number and spatial positions of measurements based on the behaviour
(rather than the magnitude) of the sensitivity functions. Here we show that the extrema values of POD
modes can be used directly to compute optimal sensor locations (as opposed e.g. to Alonso, Kevrekidis,
et al., 2004, where PODs are merely used to reduce the system and further calculations are needed to

compute sensor locations). Furthermore, we demonstrate the equivalence between the extrema of POD
modes and of sensitivity functions. The added value of directly using PODs for the computation of optimal
sensor locations is the computational efficiency of the method, side-stepping the tedious computation
of sensitivity coefficient Jacobian matrices and using only system responses and/or experimental results
directly. Furthermore, the inherent combination of model reduction and sensor location estimation in

re im
this method becomes mo
increases.

. Introduction

Many contributions on optimal sensor location for state estima-
ion have been published in the last three decades. In this section,
e first present an overview of these methods and then we focus

n works dealing with the closely related problem of sensor place-
ent for parameter estimation. In the works addressing the former

roblem, numerous metrics have been developed for the spatial
lacement of sensors in a distributed parameter system (DPS). Most

f the techniques rely on exhaustive searches over a pre-defined set
f candidates (e.g. Keller & Bovin, 1992). These approaches, while
alid for a small number of locations, become impractical when
he number of possible position candidates increases. Even with
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portant as the complexity of the original distributed parameter system
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the current increase in computational power there is an essential
need for fast computations in terms of sensor placement to address
operational changes, variations in production, etc.

Omatu, Seinfeld, and Soeda (1978) presented an optimality cri-
terion based on the error covariance matrix of Kalman filters. More
recently Olanrewaju and Al-Arfaj (2006) presented a state esti-
mation scheme based on Kalman filters for reactive distillation
systems without extensively addressing the sensor selection prob-
lem. Harris, Macgregor, and Wright (1980), Kumar and Seinfeld
(1978), and Colantuoni and Padmanabhan (1977), have used
analogous metrics based on the trace and the determinant of
error covariance. Some techniques are based on the qualitative
knowledge of the system variables in addition to the variance of

the state prediction errors (Jørgensen, Goldschmindt, & Clement,
1984). Morari and Stephanopoulos (1980), and Morari and O’Dowd
(1980) employed non-stationary noise models and used criteria
based on minimising the estimation error by the unobservable
sub-space.
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Another type of metric used for sensor location is based on the
bservability matrix and/or the observability gramian. Muller and
eber (1972) used the smallest eigenvalue, the determinant, and

he trace of the inverse of the gramian. Dochain, Tali-Mammar, and
abary (1997) and Damak, Babary, and Nihtila (1992) presented
he condition number of the observability matrix, and Van den
erg, Hoefsloot, Boelens, and Smilde (2000) made use of the trace
nd the spectral norm of the observability gramian as a criterion
or sensor location in their work. Waldraff, Dochain, Bourrel, and

agnus (1998) have presented results considering the smallest sin-
ular value and the condition number of the observability matrix.
lvares, Romangnoli, and Stepanopoulos (1981) and Romagnoli,
lvares, and Stepanopoulos (1981) presented a technique that con-
iders variable measurement structures to solve the problem of
ensor location. More recently Hernandez, Kirubarajan, and Bar-
halom (2004) and Punithakumar, Kirubarajan, and Hernandez
2006) have developed metrics based on the posterior Cramer–Rao
ower bound to quantify and ultimately to control the accuracy of
tate estimation in conjunction with optimization techniques to
ontrol the measurement process.

In addition to the metrics mentioned above, there are contri-
utions that take into account measurement cost, sensor failure
nd uncertain sensor movement in addition to system informa-
ion (Fahroo & Demetriou, 2000; Peng, 2005; Punithakumar et al.,
006). Among the works dealing with nonlinear observability anal-
sis for sensor location, which is computationally expensive, those
y Hermann and Kerner (1977), Lopez and Alvares (2004), Damak
t al. (1992), Singh and Hahn (2006) and Van den Berg et al. (2000)
hould be noted. The relevant measures introduced reduce to a
riterion based on the linear observability matrix, if the system
s linear and time invariant. For nonlinear systems, the nonlinear
bservability presented by Scherpen (1993) is another alternative.
eorges (1995) and Sumana and Venkateswarlu (2009) have used
onlinear observability gramians for sensor selection and position-

ng. However, the applicability of this method is limited to relatively
ow-order systems due to numerical difficulties.

Vande Wouwer, Point, Poterman, and Remy, (2000), Alonso,
rouzakis, and Kevrekidis (2004) and Alonso, Kevrekidis, Banga,
nd Frouzakis (2004) presented other significant contributions
n sensor placement for nonlinear systems, based on the Gram
eterminant evolution in the spatial domain and on a max–min
ptimisation process, respectively. The first contribution discusses
he maximisation of the Gram determinant (which is a measure of
he linear independence of the sensitivity coefficients evaluated at
ensor locations) as a procedure that guarantees that the param-
ters are identifiable and that the correlation between the sensor
utputs is minimised. The form of the criterion itself resembles
he D-optimality criterion proposed by Qureshi, Ng, and Goodwin
1980) and Rafajlowicz (1978), but the counterpart of the Fisher
nformation Matrix (FIM) (see e.g. Walter & Prozanto, 1997) is much
arger, which suggests that the approach involves calculations that
re more cumbersome. Alonso, Kevrekidis, et al. (2004) state that
he most appropriate type (and number) of measurements is found
y the solution of a max–min optimisation problem, where the
umber of measurement locations has been defined by the user.
ll three methods are discussed in detail in the following sections.

While there are ample contributions on optimal sensor location,
ost works deal with state estimation. There are, however, very

ew contributions that address optimal sensor location for param-
ter estimation, some reported by Vande Wouwer et al. (2000)
nd Basseville, Benveniste, Moustakides, and Rougee (1987). This

s mainly because a direct extension of the methodologies for sen-
or location for parameter estimation from the results obtained
rom state estimation is not straightforward and has not been
ursued. The problem of sensor location for parameter identi-
cation is essentially different from the optimal measurements
hemical Engineering 35 (2011) 106–120 107

problem, because in the first case the current state usually depends
strongly nonlinearly on unknown parameters (Chmielewski, Tasha,
& Manousiouthakis, 2002).

Most of the existing optimality criteria for sensor location
for parameter estimation are based on scalar measures of the
FIM (Mehra, 1974). For example, the modified E-criterion (Mehra,
1974; Walter & Prozanto, 1990), which minimises the ratio of the
largest to the smallest eigenvalue of the FIM, was used by Nahor,
Scheerlinck, Van Impe, and Nicolaï (2003) to compute optimal
temperature sensor positions for food processes. Heredia-Zavoni,
Montes-Iturizzaga, and Esteva (1998) have used the trace of the
inverse of the FIM to calculate the minimum of the Bayesian loss
function. Also, the determinant of the FIM has been used by Qureshi
et al. (1980), Vande Wouwer et al. (2000) and Papadimitriou (2004)
who have given an asymptotic approximation for the information
entropy and have used a sequential approach to optimally place
sensors one at a time.

Using a related approach relying on principal component analy-
sis of the output sensitivity matrix, Li, Henson, and Kurtz (2004)
computed the best set of parameters to be estimated if a set
of measurements positions is already given. All the techniques
require computation of the parametric output sensitivity coeffi-
cients based on local sensitivity analysis. Therefore, the results
obtained by these methods might not capture the nonlinearity
and may only be suitable for small changes in the parameters.
Singh and Hahn (2005) have computed sensor location with infor-
mation derived from observability covariance matrices combined
with already existing measures they proposed, either for state or
parameter estimation, and computed the degree of observability
of a nonlinear system over a certain operating region (Zamprohna,
Barolo, & Seborg, 2005). Furthermore, Waterhouse, Eccleston, and
Duffull (2009) have developed a combination of T-optimal designs
(Uciński & Bogacka, 2002), which are computationally tedious even
for relatively simple systems with D-optimality criteria to com-
bine parameter estimation and model discrimination for dynamic
pharmacokinetic models.

In summary, the state of the art in the sensor placement indi-
cates that more attention should be paid to the case of sensor
position for parameter estimation, especially for DPS. From an
engineering point of view, the use of the existing scarce meth-
ods is restricted due to computational and/or realising difficulties
(Korbicz, Zgurovsky, & Novikov, 1988; Löhner & Camelli, 2005;
Malebranche, 1988; Waterhouse et al., 2009).

Methods to determine the optimal sensor positions of dis-
tributed parameter systems are especially helpful in research and
engineering practice. This is an essential problem especially for
parameter estimation purposes. Unfortunately, there still exists
some distance between theoretical/computational researchers,
who explore models of systems, and experimental researchers. This
incentivises the improvement of methods which allow the identifi-
cation of optimal measurement location techniques accounting for
the spatially changing nature of the system. Additionally, practice
dictates that these methods should use information collected from
the process by simple experimental procedures. This is the cor-
nerstone of the approach presented here, which uses direct system
responses to determine sensor locations. In this paper we introduce
the use of the extrema values of the system’s sensitivity coeffi-
cients and/or POD modes to compute the optimal spatial positions
(and number) of experimental measurements for parameter esti-
mation. The rest of the paper is organised as follows: In Section
2, three existing distinct techniques for optimal sensor placement

are reviewed and discussed. In Section 3 our POD-based method for
sensor placement is discussed, and a necessary and sufficient condi-
tion for the equivalence between the extrema of POD modes and of
sensitivity coefficients is given. Section 4 presents three illustrative
case studies from the literature used for benchmarking purposes,
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nd Section 5 presents numerical results and comparisons between
he three methodologies reviewed and our proposed technique.

. Sensor location methods

In this section, three relevant techniques from the literature
sed to determine optimal sensor positions are reviewed and their
heoretical backgrounds are given.

.1. Optimal experiment design

Optimal experiment design can be defined as the set of condi-
ions under which an experiment should be conducted in order
o maximise the accuracy of the obtained results, i.e. the sys-
em’s response can be measured in such a way that its parameters
an be best estimated (Emery & Nenarokomov, 1998; Rafajlowicz,
983).

In order to understand this concept, let us consider a general
PS. Let ˝ ⊂ R2 be a bounded simply connected open domain with
sufficiently smooth boundary, ∂˝. A given DPS can be represented
y a system of n (possibly nonlinear) partial differential equations
PDEs) as follows (Uciński, 1992, 2005):(

x, u, t, �,
∂u

∂x1
,

∂u

∂x2
,

∂2u

∂x1
2

,
∂2u

∂x2
2

)
= 0, x ∈ ˝ (1)

here x = (x1, x2) ∈ ¯̋ is the vector of spatial coordinates, u = u(x, t)
he vector of state variables ∈ Rn and G some function mapping its
rguments to Rn, possibly including terms accounting for a priori
nown forcing inputs. The boundary conditions are:(

x, u, t, �,
∂u

∂x1
,

∂u

∂x2

)
= 0, x ∈ ˝ (2)

ere ω is some known function that maps its arguments to Rn. The
odel above contains a vector of unknown parameters � ∈ Rm to be

stimated based on the observations:

ij = u(xi, �) + εij, i = 1, . . . , p, j = 1, . . . , ri (3)

ade at point xi, where εij denotes the noise in measurements
atisfying a Gaussian distribution:

{εij} = 0, E{εijε
T
qs} = ıiqıjsC(xi) (4)

ij being the Kronecker delta and C(xi) ∈ Rn×n a known positive-
efinite matrix. Replicated measurements can be admitted, i.e.,
ome values xi may appear several times in the optimal solution (an
navoidable consequence of independent measurements). Then it

s sensible to distinguish only the components of the sequence
1, . . ., xN, which are different and, if there are p such components,
o re-label them as x1, . . ., xp while introducing r1, . . ., rp as the cor-
esponding numbers of replications.

It is assumed that some, albeit rough, a priori estimate of the
arameter vector �0 is available e.g. from preliminary experiments.
he goal here is to select the state sampling policy, which will max-
mise the accuracy of the parameter estimates from data generated
n the corresponding new experiments. It has been shown that this
ask corresponds to the maximisation of a scalar concave function
f the FIM whose inverse gives a lower bound on the covariance
atrix of the estimates (Atkinson & Donev, 1992; Chmielewski et

l., 2002; Emery & Nenarokomov, 1998; Rafajlowicz, 1981, 1983).
he average per observation (or normalised) FIM takes the follow-

ng form:

(�N) =
p∑

i=1

wiF
T (xi)C−1(xi)F(xi) (5)
hemical Engineering 35 (2011) 106–120

where wi = ri/N, N =
∑p

i=1ri and F(xi) = ∂y(xi, �0)/∂� is the Jaco-
bian matrix consisting of the sensitivity coefficients. The collection
of variables, �N that define the exact design of the experiment is
given below:

�N =
{

x1, x2, . . . , xp

w1, w2, . . . , wp

}
(6)

The proportion wi of observations made at xi can be considered
as the percentage of experimental effort spent at that location. It
can be assumed that wi’s can be any real numbers in the interval
[0, 1] such that

∑p
i=1wi = 1 and in terms of the design they can

be considered as probability distributions on {x1, x2, . . . , xp}. The
purpose of the optimal experimental design can be then defined
as the search for a design �∗ ∈ �(X) which satisfies (Uciński, 2005;
Walter & Prozanto, 1990):

	 [M(�∗)] = max
� ∈ �(X)

	 [M(�)] (7)

Here �(X) is the set of all admissible designs (i.e. all probabil-
ity distributions on the spatial domain X, where measurements
are allowed). In the literature various choices for 	 are presented
(Atkinson & Donev, 1992; Uciński & Demetriou, 2004; Uciński,
2005; Walter & Prozanto, 1990). The most popular ones are:

- The D-optimality criterion:

	 [M(�)] = det[M(�)] (8)

- The A-optimality criterion:

	 [M(�)] = −trace
[

(M(�))−1
]

(9)

A very important step in the design of optimal sensor locations is
to use an effective procedure for the computation of the sensitiv-
ity coefficients, which are necessary when determining the FIM
elements, defined by Eq. (5). Obviously the construction of such
Jacobian matrices is a “computationally expensive” step, which
makes the computational cost of the corresponding methods rela-
tively “high” (see also Table 7 in the results section). Furthermore,
the model equations are explicitly needed for the computation of
sensitivities (note that numerical differentiation in the absence
of explicit models when possible will significantly increase com-
putational costs).

2.2. Gram determinant-based method

Point, Vande Wouwer, and Remy (1996) proposed a method,
which is a direct application of the idea of a measure of the linear
independence between the sensitivity functions. In many cases, the
solution of a least-squares problem is not unique and the param-
eters cannot be estimated from the experimental data considered.
It is therefore necessary to determine experimental data so that
all the sensitivity functions are linearly independent. A measure
of the linear independence of the P sensitivity functions Su(x,t),�j
for j = 1, . . ., P (evaluated at point x) can be defined as the mini-
mum value of the quadratic form (10) where ˛j are real parameters

subject to the condition
∑P

i=1a2
i

= 1:

m(x) = min
ai

(∫ 


0

(a1Su(x,t),�1
+ a2Su(x,t),�2

+ · · · + apSu(x,t),�P
)2 dt

)
(10)
Here [0, 
 ] is the time span of interest. This optimality criterion
is based on a measure of independence between the quantities
of interest at the several measurement points, i.e. the sensor
responses in the context of state estimation or the sensitivity
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unctions in the context of parameter estimation. The sensitivity
unctions are linearly dependent if and only if m(x) is equal to zero
r, equivalently, if and only if the Gram determinant g(x) vanishes,
.e.:

(x) =
∫ 


0

⎡
⎢⎢⎣

(Su(x,t),�1
)2 . . . Su(x,t),�1

Su(x,t),�P

...
...

...

Su(x,t),�P
Su(x,t),�1

. . . (Su(x,t),�P
)2

⎤
⎥⎥⎦ dt = 0

(11)

alculating the evolution of the Gram determinant (11) in the spa-
ial domain allows for the determination of the regions where the
ensitivity functions are linearly independent and where the mea-
urement points should be located. Alternatively, input signals can
e computed by maximising the Gram determinant in the interval
here the sensor is located. The determinant of a positive semi-
efinite matrix increases with its diagonal elements and decreases
ith its off-diagonal elements. The maximisation of det[g(x)], with

espect to the sensor locations x1, . . ., xM, provides the spatial posi-
ions where the elements of the matrix in (11) take their largest
alues and are independent of one another (Vande Wouwer et
l., 2000). This criterion is closely related to the one proposed by
ureshi et al. (1980), based on information theory, that makes use
f the determinant of the FIM which, has a form similar to that
f the Gram determinant. Obviously here, too, the computation of
ensitivity matrices makes the cost of this method also “high”.

.3. Max–min optimisation procedure

Alonso, Kevrekidis, et al. (2004) reported a very interesting
pproach for sensor location. In this work the performance of the
bservers can be improved by placing measurements at locations
hat maximise the eigenvalues of the QQT matrix, where QT = Pm˚,
nd Pm is an operator that projects any vector �i ∈ Rn on m of its
coordinates (m being the size of the sub-space of the measure-
ents). The minimum eigenvalue of QQT is then used to select

he appropriate spatial sensor arrangement, for a given number
f sensors m. Formally, this can be stated as follows:

ax
Pm

min
i=1,...,k

�i(QQ T) (12)

ere the operator Pm indicates the spatial sensor location. This
roblem can be solved by exhaustive search among all possible

combinations of the n coordinates. However, this approach,
lthough feasible for small problems, becomes unsuitable for most
ases of practical interest due to the high dimensionality of the
earch space. Alternatively, by taking advantage of the underlying
tructure of Q, a systematic approach was used to approximate the
olution. The approach is based on the following facts:

. The effect of PT
m on ˚T is that of deleting elements of the basis

vectors �i at the positions where the columns of Pm are zeros.
. The scalar products of the resulting sub-vectors Pm�i are the

diagonal elements of QQT.
. The eigenvalues of matrix QQT are located inside circles cen-

tred at the positions given by the diagonal elements with radii
satisfying:

ri =
n∑∣∣(QQ T )ij

∣∣ (13)
j /= i

Thus, when the radii are much smaller than the diagonal ele-
ments (denoted as si), the solution of (12) approximates that of
maximising the minimum diagonal element. Formally, this can
hemical Engineering 35 (2011) 106–120 109

be written as:

max
Pm

min(s1, . . . , sk) (14)

sk being of the form:

sk =
m∑

j=1

(�kj)
2 (15)

The optimal sensor location computed with this method pro-
vides a reliable field reconstruction from a limited number of
measurements. For large systems a low-dimensional represen-
tation of the original system (based on the POD method) is
used, combined with a guided search algorithm that minimises
orthonormality distortions. This method uses directly system
outputs and avoids the computation of large sensitivity matri-
ces. However, for large-scale problems first a model reduction
(POD-based) step is performed and additional calculations on
the reduced system are required, hence the computational cost
for this method is characterised as “moderate” (see Table 7).
Furthermore, the number of sensors needs to be pre-specified.

3. Methodology

In this section the Proper Orthogonal Decomposition method is
first described. Since our objective is to demonstrate that the opti-
mal locations to place sensors are at the points where POD basis
functions reach their extrema values, we then show the equiva-
lence between the extrema of the POD modes and those of the
sensitivity coefficients of the system.

3.1. Proper Orthogonal Decomposition

The POD method has received much attention in the last two
decades as a tool to simulate, optimise and control complex large-
scale systems. The underlying idea is to use a reliable number of
responses from the system (snapshots in time), to compute a small
set of global basis functions (the POD modes) that can accurately
capture the spatio-temporal behaviour of the system.

Several researchers including Loeve (1945), Karhunen (1946),
Pougachev (1953), and Obukhov (1954) independently proposed
the POD method. Some mathematical theories of POD can be found
in articles by Aubry, Lian, and Titi (1993) and Graham, Lane, and
Luss (1993). The POD technique has been applied to numerous
applications, such as the attraction of spatial organised motions in
fluid flows (Berkooz, 1992; Lumley, 1970). Lumley (1967), Lumley
(1970), Aubry, Holmes, Lumley, and Stone (1988), Sirovich (1991),
Berkooz, Holmes, Lumley, and Mattingly (1997) and Chambers,
Adrian, Moin, Stewart, and Sung (1988) have adapted the POD tech-
nique to study turbulent flows. Other applications of POD include
complex geometry flows (e.g. Deane, Kevrekidis, Karniadakis, &
Orszag, 1991) channel flows (Ball, Sirovich, & Keefe, 1991; Moin
& Moser, 1989), square-duct flows (Reichert, Hatay, Biringers, &
Husser, 1994) and shear flows (Kirby and Sirovich, 1990; Rajaee,
Karlson, & Sirovich, 1994). Other researchers have applied POD
to the Burgers’ equation (Chambers et al., 1988) and to the
Ginsburg–Landau equation and the Bérnard convection (Sirovich,
1989). The nonlinear control of DPS with the use of POD has been
extensively studied (e.g. Ly & Tran, 2005; Shvartsman et al., 2000)
while POD has also been used for the optimisation of nonlinear DPS
(Bendesrky & Christofides, 2000). Other interesting applications of

the POD technique include the characterisation of human faces by
Kirby, Boris, and Sirovich (1990), and image recognition by Hilai
and Rubinstein (1994).

In this work the snapshots approach was used for the determina-
tion of the POD basis functions following the procedure explained
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elow (Newman, 1996; Sirovich, 1987). Let u(x, t) be a given output
eld and {u(x, ti)}N

i=1 be the corresponding output fields at N differ-
nt times steps tk, i.e. the snapshots. Next u(x, t) is decomposed as
ollows:

(x, t) = um(x) + v(x, t) (16)

ith um being the average snapshot, um(x) = (1/N)
∑N

k=1u(x, tk).
he spatial correlation matrix C can be defined as:

ij = 1
N

∫
˝

v(i)v(j) d˝ (17)

here v(i) = v(x, ti). The eigenvalues and eigenvectors of C are then
omputed by the following eigenproblem:

A = �A (18)

he M eigenvectors corresponding to the M largest eigenvalues cap-
uring most (in practice more than 99%) of the system’s energy are
hen used to compute the POD basis vectors ϕk(x):

k(x) =
M∑

m=1

A(k)
m v(m)(x) (19)

ere A(k)
m is the mth component of the kth eigenvector A.

.2. Sensitivity coefficient and POD modes extrema equivalence

In this section it is proven that the extrema values of the sensitiv-
ty coefficients and the POD modes coincide at the same locations.
t should be noted that the same reasoning can be followed using
ny other Ansatz.

Starting from the following approximation of the system
esponse, where ˛k(t) are M the time coefficients calculated by
rojecting the original system onto the computed M POD modes:

(x, t) =
M∑

k=1

˛k(t)ϕk(x) (20)

aking derivatives with respect to parameter �i:

∂u(x, t)
∂�i

=
M∑

k=1

∂˛k(t)
∂�i

ϕk(x) +
M∑

k=1

˛k(t)
∂ϕk(x)

∂�i
(21)

∂

∂x

(
∂u(x, t)

∂�i

)
=

M∑
k=1

∂˛k(t)
∂�i

∂ϕk(x)
∂x

+
M∑

k=1

˛k(t)
∂

∂x

(
∂ϕk(x)

∂�i

)
(22)

∂

∂x

(
∂u(x, t)

∂�i

)
=

∂Su,�i

∂x
=

M∑
k=1

∂

∂�i

(
˛k(t)

∂ϕk(x)
∂x

)
(23)

et

∂

∂x

(
∂u(x, t)

∂�i

)
=

∂Su,�i

∂x
,

e the sensitivity coefficient of variable u(x, t) with respect to
arameter �i, then:

∂Su,�i =
M∑ ∂

(
˛k(t)

∂ϕk(x)
)

(24)

∂x

k=1
∂�i ∂x

hen if

∂ϕk(x)
∂x

= 0 (25a)
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∂Su,�i

∂x
= 0 (25b)

To prove that the condition is also sufficient let us assume that Eq.
(25b) holds while

∂ϕk(x)
∂x

/= 0 (26)

From Eq. (24) we have

∂Su,�i

∂x
=

M∑
k=1

∂

∂�i

(
˛k(t)

∂ϕk(x)
∂x

)
= ∂

∂�i

M∑
k=1

(
˛k(t)

∂ϕk(x)
∂x

)
= 0

(27)

Since both ˛k(t) and ∂ϕk(x)/∂x are functions of �i, for Eq. (27) to be
satisfied:

M∑
k=1

(
˛k(t)

∂ϕk(x)
∂x

)
= 0 (28)

The empirical basis functions ϕk(x) are given by Eq. (19). Hence,

∂ϕk(x)
∂x

=
M∑

m=1

(
A(k)

m
∂v(m)(x)

∂x

)
(29)

From Eqs. (28) and (29) we get:

M∑
k=1

(
˛k(t)

M∑
m=1

(
A(k)

m
∂v(m)(x)

∂x

))
= 0 (30)

Re-arranging Eq. (30) we have

M∑
m=1

(
∂v(m)(x)

∂x

M∑
k=1

(˛k(t)A(k)
m )

)
= 0 (31)

For Eq. (31) to hold if Eq. (26) is true, Eq. (32) below should also
hold:

M∑
k=1

˛k(t)A(k)
m = 0 ∀m = 1, . . . , M (32)

It is, however, obvious that if this was the case eigenvectors, Am

would be linearly dependent. Therefore Eq. (26) cannot be true. This
concludes our proof. Hence, the extrema values of the sensitivity
coefficients and those of the POD modes, capturing most of the
energy of the system, coincide at the same spatial locations.

3.3. Parameter estimation

Once the sensor locations have been determined, the parameter
estimation problem can be viewed as matching the model to the
real system through the minimisation of an error criterion over a
set of admissible parameters. This can be defined as

J(�) = 1



1
m

∫ 


0

m∑
i=1

(
ue(xi, t) − up(xi, t)

)2
dt (33)

where up(xi, t) is defined as the predicted response of the model
at location xi, ue(xi, t) as the experimental response at the same
location and m as the number of optimal measurement locations
determined by the different methods studied in this work.

It is well known that minimising (33) is challenging for numer-

ous reasons. The existence of a solution is not certain, particularly
if the observed data contains errors or if the model is grossly incor-
rect. It is unusual that any parameter set can accurately match the
experimental data used, especially when these data are contam-
inated with noise. The presence of noise can promote difficulties
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uring the optimisation process causing spurious local minima
nd discontinuities. The gradient-based methods are the most
ffected of all. In this work, several different optimisation tech-
iques (already existing in the Matlab® library) were used, and it
as observed that the method of Nelder–Mead produced the best

esults. This can be explained by the fact that using this technique,
oor gradient approximations are not a problem, and continuity
nd differentiability of the objective function are not required.

. Case studies

To compare the existing methods for sensor location described
bove and our method based on the extrema values of POD modes,
llustrative DPS examples from the literature are employed.

xample 4.1. This problem is described by the following one-
imensional PDE:

∂u

∂t
= �1

∂2u

∂x2
t > 0, x ∈ (0, 1) (34)

ith the boundary and initial conditions:

∂u

∂x
= −�2(ua − u) t > 0, x = 0 (35a)

∂u

∂x
= �3(ua − u) t > 0, x = 1, and ua = 600 (35b)

= u0(x) = 500, t = 0, x ∈ [0, 1] (35c)

ere 0 ≤ t ≤ 1. This simple example by Vande Wouwer et al. (2000),
s used to demonstrate in an intuitive way the effectiveness and
ome of the characteristics of the experiment design procedure and
ptimal sensor location analysed. Here, the problem consists of the
etermination of the best sensor location for the estimation of

. Example 4.1a: The two parameters, �2 and �3, for the particular
case of �1 known and kept constant.

. Example 4.1b: The three parameters, �1, �2 and �3.

xample 4.2. Consider a nonlinear system described by the fol-
owing PDE, solved and analysed in detail by Uciński (2005):

∂u

∂t
= �1

∂2u

∂x2
− �2u3, t ∈ (0, tf], x ∈ (0, 1) (36)

ubject to the conditions:

(x, 0) = �3	 (x), x ∈ (0, 1) (37a)

(0, t) = u(1, t) = 0, t ∈ (0, tf] (37b)

here tf = 0.8 and

(x) = sin(�x) + sin(3�x) (38)

he problem consists of the determination of the best sensor loca-
ion for the estimation of �1, �2 and �3.

xample 4.3. This system involves coupled mass and heat trans-
er mechanism, and it is described by the following couple system
f partial differential equations with nonlinear source terms. It is
epresents realistic chemical engineering reaction systems (such
s tubular reactors) and it can produce interesting nonlinear para-
etric behaviour including different types of bifurcations, such as

olds and oscillations:
∂u1(x, t)
∂t

= ∂2u1(x, t)
∂x2

− �1
∂u2(x, t)

∂x
− �2u1(x, t)u2(x, t) (39a)

∂u2(x, t)
∂t

= ∂2u2(x, t)
∂x2

− �3
∂u2(x, t)

∂x
+ �4u1(x, t) (39b)
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Subject to the conditions:

u1(x, 0) = u2(x, 0) = 1, x ∈ (0, 1) (40a)

u1(0, t) = 1
∂u2(0, t)

∂x
= 0, t ∈ (0, tf] (40b)

u1(1, t) = u2(1, t) = 1, t ∈ (0, tf] (40c)

This example was solved for time t ∈ [0, 120]. This time span was
used because the dynamic behaviour of sensitivity functions of u1
with respect to �1 and �2 is quite complex. This can be seen in Fig. 3,
where Su1,�1

and Su1,�2
change shape after t = 10.

The model equations were solved using the Matlab® partial dif-
ferential equation solver “pdepe” which solves initial-boundary
value problems for systems of parabolic and elliptic partial dif-
ferential equations in one spatial dimension. The solver converts
the partial differential equations to ordinary differential equations
using a second-order accurate spatial discretisation based on a set
of nodes specified by the user. Time integration is then performed
with a multistep variable-order method based on the numerical dif-
ferentiation formulae. This method was used to solve all the case
studies considered in this work.

The spatial domains were divided into 21 equidistant intervals,
and the partial differential equations were solved simultaneously
with the equations describing the transient behaviour of the
sensitivity coefficients. n time “reporting” intervals were consid-
ered. Hence, the spatio–temporal distributions of the systems’
responses and of the sensitivity coefficients are obtained. Three
algorithms were studied to estimate the optimal positions of the
measurements; using the Gram determinant (Point et al., 1996),
the D-optimal design theory (Uciński, 2005) and the method based
on max–min optimisation (Alonso, Kevrekidis, et al., 2004). For all
the case studies, these three methods were used, and compared
with our POD-based technique.

In addition using the method of snapshots (Sirovich, 1987), the
POD modes �i(x) for each system were calculated, implement-
ing the procedure discussed above, their extrema values satisfying
d�i(x)/dx = 0 were computed and the corresponding locations x
were evaluated for optimal sensor placement.

5. Results and discussion

5.1. Sensor locations

The spatial variability of sensitivities has a significant impact
on parameter estimation and sampling design for studies of
distributed parameter systems. Information about a physical
parameter will be most accurately gained at points in space with a
high sensitivity to the parameter.

The sensitivity coefficients, Su,�i
, calculated for each parame-

ter corresponding to the examples considered in this study are
depicted in Figs. 1–3. These sensitivities were normalised in order
to observe clearly the extrema values in the spatial domain.

For Example 4.1a the extrema values of the sensitivity coeffi-
cients Su,�2

and Su,�3
were found to reach extrema values at x = 0.00

and 1.00 (as shown in Fig. 1b and c and in Table 2). Note that here
as well as in all examples shown it is the highest maxima value and
the lowest minima of the spatio-temporal distributions of the sen-
sitivity functions that are taken into account (here for t = 0.1 and
1.0, for Su,�2

and for Su,�3
, respectively. In the case of considering

parameter �1 in the analysis (Example 4.1b) Su,�1
has the highest
extrema at x = [0.00 0.50 1.00] (see Fig. 1a and Table 2). Even
though it is not shown here (since all the sensitivity functions in
Figs. 1–3 were normalised) it was observed that this parameter
sensitivity coefficient showed the largest changes. For Example 4.2
it was observed that the predominant sensitivity coefficient is Su,�3

,
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ig. 1. Spatio-temporal distributions of sensitivity functions: (a) Su,�1
, (b) Su,�2

and
c) Su,�3

for Example 4.1a and b. Circles indicate locations of extrema values.

howing extrema values at x = [0.20 0.50 0.80] as it can be seen
n Fig. 2c. In Example 4.3 the spatial positions of the extrema val-

es of Su1,�1

and Su1,�2
change in time as shown in Fig. 3, where the

ynamic behaviour of sensitivity functions for different equidistant
ime intervals for t ∈ [0, 60] is depicted. The corresponding extrema
alues at t = 120, where the system reaches complete steady state
re shown in Table 2.
Fig. 2. Spatio-temporal distributions of sensitivity functions: (a) Su,�1
, (b) Su,�2

, (c)
Su,�3

for Example 4.2.

Example 4.3 shows extrema values at x = [0.00, 0.20, 0.45, 0.55,

0.70, 0.80, 1.00] for field u1(x, t) as shown in Fig. 3a–d and x = [0.00
1.00] for field u2(x, t) (Fig. 4a–d), for this example the predominant
sensitivity coefficients correspond to parameter �4 for u1 and u2.
These locations are collectively listed in Table 2.
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ig. 3. Spatio–temporal distribution of the sensitivity coefficients of u1 with respec
f extrema values.

The sensitivity coefficients computed in the previous step were
sed to calculate the Gram determinant distribution of each system,
sing Eq. (11). Fig. 5 shows the results obtained.

Based on the Gram determinant criterion the sensor locations
re; [0.20 0.80] for Example 4.1a, [0.15 0.85] for Example 4.1b,
0.25 0.75] for Example 4.2, and at x = 0.55 for field u1(x, t) but
o evident solution is observed for field u2(x, t) for Example 4.3.
he corresponding results on sensor placement using the D-optimal
esign and the max–min optimisation method, prescribing 1, 2 and
sensors, are listed in Table 2.

For each system studied here, the POD using the method of
napshots (Sirovich, 1987) was applied, and the relative and total
nergy of the system captured by the empirical eigenfunctions were
alculated, see Table 1.

The field reconstruction for Examples 4.1 and 4.2 can be
chieved by considering the first two empirical eigenfunctions,
hich capture 99.99% of the system’s energy. Example 4.3 requires

he first two POD modes to reproduce u1(x, t) (again capturing
9.99% of the system’s energy) and the first one to reproduce u2(x, t).
ig. 6 shows the spatial distribution of these dominant POD empir-
cal eigenfunctions for each example studied here. In this figure, it

an be seen that the extrema values of the dominant POD modes
oincide at the same positions where sensitivity functions reach
heir highest extrema values. This is particularly more evident for
he dominant sensitivity functions of each system. Note that for
eld u1(x, t) in Example 4.3 two more locations, namely x = 0.55
rameters: (a) �1, (b) �2, (c) �3 and (d) �4 for Example 4.3. Circles indicate locations

and 0.70, are obtained by the extrema of the sensitivity functions.
These two locations can be captured if more POD modes as well as
the dominant ones are considered.

The advantage of using POD modes is that their calculation
is more computationally efficient than the calculations involved
and required in all the other methods analysed in this work side-
stepping the need to construct large-scale sensitivity matrices.
Furthermore, the POD-based method can then be used to directly
reduce the system at hand, leading to efficient linking of sensor
placement with on-line optimisation and control strategies for DPS.
See Table 7 where a qualitative comparison of the computational
requirements of each technique is given. Another interesting fea-
ture is that we can, thus, directly link the POD extrema with the
corresponding system’s energy each mode captures.

Table 2 lists the optimal sensor locations obtained from the dif-
ferent methods. As it can be seen, several feasible solutions are
reported for the max–min optimisation approach. This method
would produce the same results reported by the extrema value
analysis of the POD modes (and/or sensitivity coefficients) if
the proper number of sensors is considered, however, this can-
not be explicitly provided by the technique. Furthermore, it

can be observed that D-optimal experiment design predicts the
same locations as the ones computed from the extrema of POD
modes/sensitivity coefficients for Examples 4.1 and 4.2 while for
Example 4.3 we can see some differences in the locations predicted
from the different methods.
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Fig. 4. Spatio-temporal distribution of the sensitivity coefficients of u2

In order to verify the results obtained from the different meth-
ds followed here to determine optimal measurement positions,
parameter estimation procedure was implemented. Each system
as solved using nominal values for the parameters and random
oise with zero mean, N(0, �2), was added to the outputs. The
ariance, �2, was manipulated in order to produce up to ±20% of
tochastic deviation from the outputs. For each example 10 repli-
ations of the digital experiment were collected. The resulting ten
esponses were then averaged and treated as experimental data,
hich were used in the minimisation of the objective function

33). The square deviations between the outputs estimated through

he model and the experimental data measured at the positions
eported by the different the optimal sensor location methodolo-
ies are computed and reported as the sum of square errors–SSE
ormalised with the number of measurements used. The parame-

able 1
elative and total system’s energy captured by the POD modes.

�1

Example 4.1 Field u(x, t) 1.7777 (0.9594)
Example 4.2 Field u(x, t) 35.4749 (0.9910)

Example 4.3 Field u1(x, t) 0.23677 (0.9997)
Field u2(x, t) 0.22160 (0.99994)

umber in parentheses represent the relative energy captured by the ith POD-mode, defi
a This is achieved considering just the first POD-mode.
respect to parameters: (a) �1, (b) �2, (c) �3 and (d) �4 for Example 4.3.

ters calculated were compared with the nominal values. The results
obtained from the parameter estimation procedure for each of the
examples are shown in Tables 3–6, respectively. The nominal values
of the parameters are shown in bold.

It can be seen from the reported SSE values in Table 3 that no
further improvement is introduced in the parameter estimation
process when experimental data at x = 0.50 are considered. The
D-optimal design and the extrema evaluation of the POD modes
provide the measurement locations that ensure the best parameter
estimates.

In case 4.1b as can be seen in Table 4 considering experimen-

tal measurements at x = 0.50 improved considerably the parameter
estimates. This can be observed when the additional scenario (i.e.
measuring only at x = [0.00 1.00]) is compared with measuring
at x = [0.00 0.50 1.00] as the D-optimal design and the extrema

�2 Total kinetic energy

0.0751 (0.0405) 99.99%
0.3204 (0.0090) 99.99%

0.00006 (0.0002) 99.99%
0.00001 (0.00005) 99.99%a

ned by; Ei = �i/
∑m

k=1
�k .
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Fig. 5. Spatial distributions of the Gram determinant for exa

alues of the POD modes reported as optimal sensor positions. It
s also worth mentioning that measuring only at x = 0.50 (where
he predominant POD mode reaches a minimum as sees in Fig. 6a,
rovided better results than measuring at x = [0.00 1.00], which

einforces the statement that experimental information at this
ocation enhances parameter estimation. Hence, using the dom-
nant POD mode here we were able to obtain very good results
SSE = 20.331 compared to SSE = 18.995 obtained with 3 mea-
urements) with a single measurement. Obtaining the minimum
: (a) 4.1a, (b) 4.1b, (c) 4.2 (d) 4.3, u1(x, t) and (e) 4.3, u2(x, t).

number of measurements required is obviously important in situ-
ations where experimental measurements are very expensive. It
should be mentioned here that the max–min approach reports
the same result when the number of sensors sought is set to

one.

In Table 5 it can be noticed that the best estimates (lowest SSE)
are obtained when the experimental data is measured at the posi-
tions reported by the extrema value evaluation of the POD modes
and/or sensitivity coefficients, which, here, are the same as the



116 J.E. Alaña, C. Theodoropoulos / Computers and Chemical Engineering 35 (2011) 106–120

Table 2
Optimal sensor locations.

D-optimal design Gram-determinant Max–min
optimisation

Extrema sensitivity
coefficients

Extrema POD empirical
eigenfunctions

Example 4.1a 0.00 1.00 0.15 0.85 1 sensor 0.00 1.00 0.50c

0.50
2 sensors 0.00 0.50 1.00

(1) 0.45 0.50
(2) 0.50 0.55

3 sensors
0.45 0.50 0.55

Example 4.1b 0.00 0.50 1.00 0.15 0.85 1 sensor 0.00 0.50 1.00 0.50c

0.50
2 sensors 0.50c 0.00 0.50 1.00

(1) 0.45 0.50
(2) 0.50 0.55

3 sensors
0.45 0.50 0.55

Example 4.2 0.20 0.50 0.80 0.25 0.75 1 sensor 0.50c 0.50d

0.50
2 sensors 0.20 0.50 0.80 0.20 0.50 0.80

0.50 0.55
3 sensors

0.45 0.50 0.55

Example 4.3 Field u1(x, t) Field u1(x, t) Field u1(x, t)a Field u1(x, t) Field u1(x, t)
0.20 0.55 0.80 0.50 0.55 0.00 0.05 0.90

0.95 1.00
0.00 0.20 0.45

0.55 0.70 0.80 1.00
0.00 0.20 0.45 0.80

1.00
Field u2(x, t) Field u2(x, t) Field u2(x, t)a Field u2(x, t) Field u2(x, t)

0.00 0.50 1.00 –b 0.00 0.05 0.10
0.15 0.20

0.00 1.00 0.00 1.00

a For this particular example five sensors were defined.
b No particular solution was observed from the Gram-determinant evaluation for this case.
c This location corresponds to the point where the predominant sensitivity coefficient and POD mode reaches an extrema.
d This location corresponds to the point where the predominant sensitivity coefficient and all the POD modes coincide at the same extrema.

Table 3
Parameter estimation Example 4.1a.

Method Measurement locations �1 (0.100) �2 (1.000) �3 (1.000) SSE

D-optimal design 0.00 1.00b Fixed at 0.10 1.0315 (3.15%) 1.1039 (10.24%) 20.873
Gram-determinant 0.15 0.85 Fixed at 0.10 1.1403 (14.03%) 0.9449 (5.51%) 29.645

Extrema POD modes 0.00 0.50 1.00 Fixed at 0.10 1.0334 (3.34%) 1.1058 (10.58%) 20.903
0.50a Fixed at 0.10 1.0504 (5.04%) 1.0961 (9.61%) 21.100

Max–min optimisation 0.45 0.50 Fixed at 0.10 0.8340 (16.60%) 1.3078 (30.78%) 30.801
0.50 0.55 Fixed at 0.10 1.9183 (91.83%) 0.6182 (38.18%) 37.566
0.45 0.50 0.55 Fixed at 0.10 1.5245 (52.45%) 0.6738 (32.62%) 33.262

N eter f
max–

he sen

o
n
x
f
n

T
P

N

umbers in parentheses represent the percentage deviation of the estimated param
a The same result is obtained when the number of sensors is fixed to 1 during the
b This same result is obtained when the extrema values in the spatial domain of t
nes produced by the D-optimal design. An additional calculation,
ot shown, was made considering experimental sampling only at
= 0.50. This extra case produced worse results, corroborating the

act that for this example more that one measurement location is
eeded.

able 4
arameter estimation Example 4.1b.

Method Measurement locations �1 (0.100)

D-optimal design 0.00 0.50 1.00b 0.1005 (0.05%)
Gram-determinant 0.15 0.85 0.1176 (17.60%
Extrema POD modes 0.50a 0.1071 (7.10%)

Max–min optimisation 0.45 0.50 0.0946 (0.54%)
0.50 0.55 0.0830 (1.70%)
0.45 0.50 0.55 0.0836 (1.64%)

Additional scenario c 0.00 1.00 0.1174 (1.74%)

umber in parentheses represents the percentage deviation of the parameter from the n
a The same result is obtained when the number of sensors is fixed to one during the m
b The same result is obtained when the extrema values of the predominant sensitivity
c This additional scenario was considered in order to compare the results obtained for E
rom the nominal value (shown in bold).
min optimisation method.
sitivity coefficients are evaluated.
Table 6 shows the parameter estimates obtained for Example
4.3. The best results (lowest SSE value) are produced when the sen-
sor locations are derived from the extrema values of the POD modes.
Also the corresponding parameters obtained have low deviation
from the nominal ones, including a very good estimate of �1, while

�2 (1.000) �3 (1.000) SSE

1.0295 (2.95%) 1.0295 (2.95%) 18.955
) 0.9042 (9.58%) 0.8142 (18.58%) 52.852

0.9149 (8.51%) 1.0032 (0.32%) 20.331

1.0028 (0.28%) 1.4860 (48.60%) 49.528
1.3797 (37.97%) 1.0665 (6.65%) 31.778
1.5954 (59.54%) 0.9670 (3.30%) 49.009

1.0556 (5.56%) 1.1358 (13.58%) 27.995

ominal value (shown in bold).
ax–min optimisation method.
coefficients, Su,�1

, and of the POD modes are evaluated.
xample 4.1a measuring at the same positions but estimating all three parameters.
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Fig. 6. Empirical eigenfunctions capturing most energy of the system for example: (a) 4.1, (b) 4.2, (c) u1(x, t) for Example 4.3 and (d) u2(x, t) for Example 4.3.

Table 5
Parameter estimation Example 4.2.

Method Measurement locations �1 (0.100) �2 (2.000) �3 (5.000) SSE

D-optimal design and extrema POD modes 0.20 0.50 0.80a 0.0875 (1.25%) 2.1098 (5.49%) 4.9109 (1.78%) 0.030
Gram-determinant 0.25 0.75 0.0860 (1.40%) 2.4231 (21.16%) 5.0521 (1.04%) 0.203

Max–min optimisation 0.50 0.55 0.0939 (0.61%) 1.9896 (0.52%) 5.9534 (19.07%) 0.109
0.45 0.50 0.55 0.1037 (0.37%) 1.9453 (2.74%) 5.7122 (14.24%) 0.096

Numbers in parentheses represent the percentage deviation of the parameter from the nominal value (shown in bold).
a The same result is obtained when the extrema values of the predominant sensitivity coefficients, Su,�3

, and of the dominant POD modes are evaluated.

Table 6
Parameter estimation Example 4.3.

Method Measurement locations �1 (1.000) �2 (6.000) �3 (1.000) �4 (1.000) SSE

D-optimal design u1(x, t): 0.20 0.50 0.55 0.80 1.6333 (63.33%) 6.3206 (5.34%) 0.9679 (3.21%) 1.0288 (2.88%) 0.0039
u2(x, t): 0.00 0.50 1.00

Gram-determinant u1(x, t): 0.55 – – – – –
u2(x, t): No information was obtained

Extrema POD modes u1(x, t): 0.00 0.20 0.45 0.80 1.00 1.0125 (1.25%) 6.2197 (3.66%) 0.8653 (13.47%) 1.0759 (7.59%) 0.0026
u2(x, t): 0.00 1.00

Max–min optimisation u1(x, t): 0.00 0.05 0.90 0.95 1.00 1.4316 (43.16%) 6.3435 (5.73%) 0.3064 (69.36%) 1.3148 (31.48%) 0.0094
u2(x, t): 0.00 0.05 0.10 0.15 0.20

Extrema sensitivity coefficients u1(x, t): 0.00 0.20 0.45 0.55 0.70 0.80 1.00 1.0287 (2.87%) 6.2558 (4.26%) 1.1980 (19.80%) 1.1859 (18.59%) 0.0036
u2(x, t): 0.00 1.00

All the data u1(x, t): whole domain 1.1387 (13.87%) 6.0930 (1.55%) 1.0980 (9.80%) 0.9617 (3.83%) 0.0025
u2(x, t): whole domain

Numbers in parentheses represent the percentage deviation of the parameter from the nominal value (shown in bold).



118 J.E. Alaña, C. Theodoropoulos / Computers and Chemical Engineering 35 (2011) 106–120

Table 7
Optimal sensor position methods. Requirements.

Method Numerical optimal sensor location—requirements

Experimental
data

The original governing
equations

Initial value of
parameters

Sensitivity
coefficients

Calculation
cost

D-optimal design
√ √ √ √

High
Gram-determinanta √ √ √ √

High
Min–max optimisation

√ × × × Moderate
Sensitivity coefficients extrema analysis

√ √ √ √
High

POD modes extrema analysis
√ × × × Low

a There is no information in the literature for the uses of this method in the case of systems consisting of more than one output or multi-state variables.

Table 8
Optimal sensor position methods. Features.

Method Produce optimal
locations

Produce number of
optimal locations

Effect of noise Observations

D-optimal design
√ √

Highly affected Needs a previous estimation of parameters
Min–max optimisation

√ × Moderately affected Can produce more than one solution, generally
in the neighbourhood where the outputs reach
extrema values. The number of sensors needs
to be specified

Gram-determinant
√ √

Highly affected Needs sensitivity coefficients
Sensitivity coefficient extrema analysis

√ √
Highly affected The computation of these coefficients for PDE

models is a highly demanding operation
POD modes extrema analysis

√ √
Moderately affecteda The empirical eigenfunctions capturing the
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a The POD modes capturing the lowest level of energy of the system are the mos
sing common filtering techniques applied either to the experimental data or to th

he parameter with the highest deviation form the nominal one
s �3. The worse parameter values are reported when the experi-

ental measurements are taken in positions different from these
ocations. Here also, results obtained when experimental measure-

ents at all 21 (computational) points along the spatial domain
ere considered. This case produces only a very small improve-
ent in the error estimate (SSE = 0.0025 compared with 0.0026 in

he POD case) at the extra cost of 35 more measurements.
Table 7 shows the computational requirements for each method

o solve the optimal sensor location problem. All the methods
equire experimental data. The POD extrema and the min–max
ptimisation method are straightforward determinations of the
ptimal sensor location considering a set of experimental data.
owever, in the min–max optimisation approach the number of

ensors needs to be established by the user. Furthermore, for large-
cale systems model reduction needs to be performed first and
dditional calculations are needed to determine sensor locations.
ence the computational cost for this method is characterised as

moderate”. “High” computational cost is attributed to the methods
equiring (large) sensitivity matrices to be constructed, especially
or DPS. Table 8 shows the main features of each method considered
or optimal sensor position purposes. All the methods are affected
y the presence of high levels of noise in the experimental data.

. Conclusions

In this work, a comparison between different methods reported
n the literature on estimating optimal sensor locations to com-
ute system parameters was presented. Three relevant methods
rom the literature were presented, and a number of observations
ased on three case studies were made. Moreover, a new method
here sensors placed at the positions where POD functions cap-

uring most of the system’s energy reach their extrema values was

iscussed. Furthermore, the equivalence between the extrema val-
es of sensitivity functions and of POD modes was proven and

llustrated. The method based on the Gram determinant evolu-
ion, might not produce accurate results in some cases, since is
trongly dependent on the behaviour of sensitivity coefficients and
most energy from the system are needed

ted by the presence of noise in the experimental data. This problem can be solved
modes calculated.

it also, requires extensive calculations. The max–min optimisation
method can produce more than one optimal solution, depend-
ing on the number of sensors prescribed. Its computational cost
increases significantly as the size of the distributed parameter sys-
tem increases. Hence model reduction is required to handle large
systems. This method depends on the magnitude of output val-
ues, assigning the measurements points to the positions where the
outputs reach their extrema values. The D-optimal design method
produces as results the number and positions where the mea-
surements should be made in the spatial domain. This method
depends strongly on the sensitivity coefficients, but mostly on their
spatial evolution rather than their exact magnitudes. The results
are strongly affected by the presence of noise in the system, but
this can be partly solved using common filtering techniques. The
methods that are based on the calculation of sensitivity coeffi-
cients are the ones most affected by the presence of noise. While
the D-optimal design requires post-processing of the sensitivity
coefficients to determine positions and the optimal number of
measurements, a mere observation of the extrema values of the
sensitivity coefficients can produce equally good results. It was
observed in all cases studied that using the extrema values of the
dominant POD modes to estimate measurement positions not only
produced very good results in all cases with small computational
cost, but also associating the computed measurement locations
with the energy captured by each mode, an estimate of the mini-
mum measurements required could be implicitly obtained. This can
be important especially in situations where experimental observa-
tions are expensive.
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A new approach to identify the temporal coefficients of an empirical approximator of a process without
any knowledge of the mathematical model of the system is introduced. This approach is based on the
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eywords:
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Proper Orthogonal Decomposition method, and only a few experimental values are required to determine
the empirical eigenfunction, and the temporal coefficients. The scheme studied is verified by a numerical
example regarding the chemical reaction in a tubular reactor. The approach consists of the minimisation of
an objective function, which is based on the sum of the square errors between the original snapshots and
the values predicted from the linear combination of the empirical eigenfunctions and the time coefficients.
This method is easy and fast to implement, produces the lowest deviation from the original experimental

hen t
emporal coefficient data, and is very useful w

. Introduction

This paper introduces a useful approach that uses experimental
ata taken from a process to identify an empirical approximator
f the system. The sorts of process studied here are described by a
istributed parameter system. In general, a model can be obtained
sing knowledge of the physics and chemistry of the system, and
diversity of theoretical methods to arrive at a solution. How-

ver, the explicit functional form and parameters required are often
nknown or demand sophisticated estimation methods to arrive at
ealistic results. In addition, the conventional solution techniques
ften lead to high-order realisations, which are sometimes incon-
ruent to the objective of finding simple and easy to solve models.

In a distributed parameter system, the process variables, and the
arameters might change as a function of time and space. Usually,
he exact description of these sorts of systems consists of partial
ifferential equations with either mixed or homogeneous bound-
ry constraints. Such a system by its very nature has distributed
roperties, and it is not surprising that there are an infinite num-
er of spatially dependent state variables. In practical applications,
distributed parameter system is usually modelled by disregard-
ng the spatial nature of the process and employing lumped system
echniques. However, by doing so, interactions and noticeable time
elays due to the underlying convection and diffusion phenomena
re neglected.

∗ Tel.: +58 261 7598100.
E-mail addresses: joalana@luz.edu.ve, jorge alana@hotmail.co.uk.

098-1354/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2010.02.001
he theoretical model of the system is unknown or difficult to determine.
© 2010 Elsevier Ltd. All rights reserved.

Methods to solve distributed parameter system are especially
helpful in research and engineering practice. There exists, unfor-
tunately, some distance between mathematicians who explore
models of systems and practical researchers who execute exper-
iments. The beautiful, proficient, and potentially very useful
mathematical results are frequently not accessible for the wide
range of experimental researchers and engineers which each time
need to face similar problems.

This incentivises the improvement of methods, which allow
the identification of models accounting for the spatially chang-
ing nature of the system. Additionally, practice dictates that these
methods should use information collected from the process by
simple experimental procedures. This is the cornerstone of the
approach presented here.

Many authors have focused on data-driven techniques. Gay and
Ray (1995) proposed a data-driven system identification approach
to obtain a low-order model using singular value decomposition
theory for linear distributed parameter system. They found a gen-
eral pseudomodal model that reproduces the dominant behaviour
of the system by means of data collected in a stable nominal oper-
ation condition. These data are approximated by spline functions
and subsequently employed to determine the kernel operator that
relates the process variables.

A different data-driven method, presented by Sirovich (1987),

uses the Karhunen–Loève expansion. This technique yields empir-
ical eigenfunctions that represent the dominant characteristics of
the system in an ordered fashion. That is, the first empirical eigen-
function captures the dominant behaviour; the second one captures
the next dominant, and so forth. Next, these eigenfunctions are

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:joalana@luz.edu.ve
mailto:jorge_alana@hotmail.co.uk
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sed as basis functions, in a method such a Galerkin, to arrive at
low-order model.

The approach presented here uses the approximation for the
pecific case of unknowing the model of the process. This approx-
mation is defined as the linear combination of the empirical
igenfunctions and the temporal coefficients. The model obtained
rovides an accurate spatial and temporal representation of the
rocess. Local measurements provide the necessary information to
enerate the kernel operator. The Proper Orthogonal Decomposi-
ion is then applied to determine a basis set that is a function only
f the spatial dimension and a corresponding set of coefficients
hat is a function of time. All this can be accomplished without a
revious knowledge of the equations, parameters, and boundary
onditions that constitute the conventional distributed parameter
ystem models.

. Proper Orthogonal Decomposition—Galerkin procedure

The proper orthogonal decomposition has received much atten-
ion in recent years as a tool to analyse complex physical systems.
he idea is to use a reliable solver to produce a number of snap-
hots from the physical model. This technique is used to produce an
ptimal representation of these snapshots in an average sense. The
ower of this method lies in its mathematical properties suggesting
hat it is the preferred method to use in many applications.

Proper orthogonal decomposition was independently proposed
y several researchers including Karhunen (1946), Loève (1945),
ougachev (1953), and Obukhov (1954). For surveys in this area,
he works of Lumley (1970) and Berkooz (1992) can be men-
ioned. This technique has been applied for numerous purposes.
ne such important application was the attraction of spatial organ-

sed motions in fluid flows. Sirovich (1991), Berkooz, Holmes,
umley, and Mattingly (1997) adapted this method to study turbu-
ent flows. Other applications include channel flows by Moin and

oser (1989), Ball, Sirovich, and Keefe (1991), square-duct flows
y Reichert, Hatay, Biringers, and Husser (1994) and shear flows by
ajaee, Karlson, and Sirovich (1994). Proper orthogonal decompo-
ition has also been applied to fluid related problems. For instance,
o the Burgers’ equation by Chambers, Adrian, Moin, Stewart, and
ung (1988), the Ginsburg–Landau equation and the Bérnard con-
ection by Sirovich (1989). Interesting non-fluid applications of
his approach are the characterisation of human faces by Kirby
nd Sirovich (1990) and image recognition by Hilai and Rubinstein
1994).

The Proper Orthogonal Decomposition had been formulated as
reasonable method of representing a stochastic field with a mini-
um degree of freedom. This technique is going to be used here to

pproximate an experimental field without knowing the model of
he system.

Consider a set of N arbitrary shaped functions. This ensemble it
s called snapshots {ui}, i = 1, 2, . . ., N. The objective is to obtain the

ost typical structure �(z) among these snapshots {ui}. Here some
otations used in this work,

i(z) : a snapshot in L2(˝) (1)

ui

}
: ensemble of snapshots (2)

f, g) ≡
∫

f (z)g(z)d˝ : inner product in L2 (3)

˝

ui〉 ≡ 1
N

N∑
i=1

ui(z) : Ensemble average of snapshots (4)
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Then the objective is equivalent expressed as to find a set of func-
tions �(z) such that,

max � ≡
〈

(�, ui)
2〉

(�, �)
(5)

The numerator of this equation can be written as,〈
(�, ui)

2〉 =
∫

˝

{∫
˝

〈
ui(z), ui(z

′)
〉

�(z)dz

}
�(z′)dz′ (6)

Eq. (6) can be represented compactly by introducing a two-point
correlation function K(z,z′) and an integral operator R having K(z,z′)
as the kernel,

K(z, z′) ≡
〈

ui(z), ui(z
′)
〉

= 1
N

N∑
i=1

ui(z)uT
i (z′) (7)

R ≡
∫

˝

K(z, z′)dz′ (8)

Now (6) takes the form,〈
(�, ui)

2〉 =
∫

˝

{R�}{�}dz = (R�, �) (9)

Substituting (9) into (5), it is found that the maximisation prob-
lem is equivalent to a eigenvalue problem,

R� = �� (10)

or,∫
˝

K(z, z′)�(z′)dz′ = ��(z) (11)

The function that maximises � on (5) is the eigenfunction of (11)
with the largest eigenvalue. The eigenfunction �(z) is expressed
linearly in terms of the N snapshots,

�(z) =
N∑

k=1

ωkuk(z) (12)

Substituting (12) into (11) yields a matrix eigenvalue problem,

Cikωk = �ωk (13)

where

Cik = 1
N

∫
˝

uT
i (z′)ui(z

′)dz (14)

The eigenvector ω of (13), is then substituted into (12) to pro-
duce a set of empirical eigenfunctions �(z).

Considering the eigenvalues �1 > �2 > . . . > �N and the corre-
sponding eigenfunctions �1,�1,. . .,�N in the order of magnitude of
the eigenvalues. The eigenfunction �1 corresponds to the largest
eigenvalue �1 and is the most representative structure of the snap-
shots {ui}, the eigenfunction �2 with the next largest eigenvalue �2
is the next typical structure, and so forth. The span of these eigen-
functions is precisely the span of all the realisation of snapshots. In
consequence, any feasible solution can be represented as a linear
combination of these eigenfunctions.

3. The system and governing equations

A homogeneous tubular reactor without catalyst packing is con-

sidered. An irreversible first-order chemical reaction A → B takes
place and it is described by the concentration rate CA(t,z) and the
temperature T(t,z). This reaction is exothermic and a cooling jacket
is used to remove heat from the reactor. A fraction of the prod-
ucts can be recycled, r, and mixed with the reactants at the inlet of



1222 A.J. Enrique / Computers and Chemical E

Table 1
Parameter values.

t
2

a
i
b
e
f

r
t
fl
v
t
fi

t
b

z

t

s

4

o
a
f

y

y

p

+ BT BC

∫ 1

0

�j(z)(1 − ȳ2(z)) exp(wi)dz (22e)

∫ 1(
1 ∂�j(z)

)
∂ȳ2(z)
PeC PeT BC � BT ˇT

7.0 7.0 0.1 10.0 2.5 2.0

he reactor (z = 0) (Bendersky & Christofides, 2000; Li & Chistofides,
007).

Derived from mass and energy balances and under the standard
ssumptions of constant density (�); heat capacity of the react-
ng fluid (cp) and constant axial fluid velocity (v), the dynamic
ehaviour of the process is described by a set of partial differential
quations defined on a spatial domain z ∈ (0,1), in dimensionless
orm;

∂y1(t, z)
∂t

= −∂y1(t, z)
∂z

+ 1
PeT

∂2y1(t, z)
∂z2

+ BT BC (1 + y2(t, z)) exp
(

�y1(t, z)
1 + y1(t, z)

)
− ˇT (uC − y1(t, z)) (15)

∂y2(t, z)
∂t

= −∂y2(t, z)
∂z

+ 1
PeC

∂2y2(t, z)
∂z2

+ BC (1 + y2(t, z)) exp
(

�y1(t, z)
1 + y1(t, z)

)
(16)

Here y1(t,z), y2(t,z) are the temperature and concentration,
espectively. The control variable uC is the cooling water tempera-
ure. The terms PeC, PeT are the Peclet numbers of mass and energy
ows, correspondingly, BC is the Damkohler number, � is the acti-
ation energy, BT and ˇT are related to heat of reaction and heat
ransfer, in that order, and t ∈ [t0,tf], where t0 and tf are initial and
nal times.

Assuming negligible reaction in the recycle loop and instan-
aneous mixing of fresh feed and recycle at the reactor inlet, the
oundary and initials conditions take the form,

z = 0;
∂y1(t, 0)

∂z
= PeT [y1(t, 0) − (1 − r)y1 − ry1(t, 1)]

∂y2(t, 0)
∂z

= PeC [y2(t, 0) − (1 − r)y20 − ry2(t, 1)]
(17a)

= 1;
∂y1(t, 1)

∂z
= 0,

∂y2(t, 1)
∂z

= 0 (17b)

= 0; y1 = y20 = uC = 0 (17c)

The parameter values for the system studied in this work are
hown in Table 1.

. The low-order dynamic model

In this section the low dimensional dynamic model is devel-
ped. The temperature and concentration fields can be represented
s a linear combination of the empirical eigenfunctions as
ollows:

1(z, t) =
M1∑
i=1

˛i(t)�i(z) (18a)

M2∑

2(z, t) =

i=1

ˇi(t)�i(z) (18b)

Here �i(z) and �i(z) are the ith empirical eigenfunction for tem-
erature and concentration respectively, ˛i(z) and ˇi(z) are their
ngineering 34 (2010) 1220–1225

corresponding temporal coefficients. M1 and M2 are the number
of empirical eigenfunctions employed in the Proper Orthogonal
Decomposition—Galerkin procedure. The residuals for Eqs. (15) and
(16) are,

R1 ≡ −∂y1(t, z)
∂t

− ∂y1(t, z)
∂z

+ 1
PeT

∂2y1(t, z)
∂z2

+ BT BC (1 + y2(t, z)) exp
(

�y1(t, z)
1 + y1(t, z)

)
− ˇT (uC − y1(t, z))

(19)

R2 ≡ −∂y2(t, z)
∂t

− ∂y2(t, z)
∂z

+ 1
PeC

∂2y2(t, z)
∂z2

+ BC (1 + y2(t, z)) exp
(

�y1(t, z)
1 + y1(t, z)

)
(20)

Applying the Galerkin principle, which enforces these residuals
to be orthogonal to each of the trial functions, and exploiting the
boundary conditions, the reduced model has the form,

MT ˙̨ (t) = −NT ˛(t) + FT ˇ(t) + VT (21a)

MC
˙̌ (t) = −NCˇ(t) + VC (21b)

where,

mCij =
∫ 1

0

�j(z)�i(z)dz (22a)

mTij =
∫ 1

0

�j(z)�i(z)dz (22b)

nCij =
∫ 1

0

�j(z)
∂�i(z)

∂z
dz + 1

PeC

∫ 1

0

∂�j(z)
∂z

∂�i(z)
∂z

dz + �j(0)�i(0)

+ BC

∫ 1

0

�j(z)�i(z) exp(wi)dz (22c)

nTij =
∫ 1

0

�j(z)
∂�i(z)

∂z
dz + 1

PeT

∫ 1

0

∂�j(z)
∂z

∂�i(z)
∂z

dz

+ ˇT

∫ 1

0

�j(z)�i(z)z − �j(0)�i(0) (22d)

fTj = −
∫ 1

0

(
�j(z) + 1

PeT

∂�j(z)
∂z

)
∂ȳ1(z)

∂z
dz

− ˇT

∫ 1

0

�j(z)ȳ1(z)dz − �j(0)ȳ1(0)
vCj = −
0

�j(z) +
PeC ∂z ∂z

dz + �j(0) [ȳ2(0) − rȳ2(1)]

− BC

∫ 1

0

�j(z)(1 + ȳ2(z)) exp(wi)dz (22f)
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temporal coefficients

In some cases, to obtain a reduced model defined by (21) is
extremely difficult or even impossible because the original model
is not even known. The estimation of the temporal or spectral
A.J. Enrique / Computers and Chem

Tj = −
∫ 1

0

(
�j(z) + 1

PeT

∂�j(z)
∂z

)
∂ȳ1(z)

∂z
dz

− ˇT

∫ 1

0

�j(z)ȳ1(z)dz + �j(0) [ȳ1(0) − rȳ1(1)]

+ BT BC

∫ 1

0

�j(z)(1 + ȳ2(z)) exp(wi)dz (22g)

ith

i =
(

�
[∑M1

i=1˛i(t)�i(z) + ȳ1(z)
]

1 +
∑M1

i=1˛i(t)�i(z) + ȳ1(z)

)

The relevant initial conditions are,

i(0) = M−1
T

∫ 1

0

�i(z)(y10 − ȳ1(z))dz (23a)

i(0) = M−1
C

∫ 1

0

�j(z)(y20 − ȳ2(z))dz (23b)

. Empirical eigenfunctions

The Proper Orthogonal Decomposition—Galerkin procedure to
educe the degree of freedom of the system requires a set of empir-
cal eigenfunctions capturing the system behaviour adequately.
hese eigenfunctions are obtained from an ensemble of snapshots,
hich are representative of the process characteristics.

Eqs. (15)–(17) were solved using the Matlab partial differential
quation solver “pdepe” which solves initial-boundary value prob-
ems for systems of parabolic and elliptic type equations in one
pace variable and time. The spatial domain was divided into 21
quidistant intervals, and the system was solved in the time interval
∈ (0,25) with a sampling time of 0.125. The transient concentra-
ion and temperature fields were recorded and contaminated with
oise normally distributed N(0,1). An ensemble of N = 200 snap-
hots, selected randomly from the whole data, was constructed to
alculate the empirical eigenfunctions; �i(z) and �i(z).

To attain model reduction, M 	 N has to be selected and a nonlin-
ar Galerkin procedure is carried out with the set of elements {�1,
2, . . ., �M}. The fundamental question is how to select M. The term

M
i=1�i represents the average kinetic energy contained in the first
modes and consequently to capture most of the energy of the sys-

em enclosed in the N Proper Orthogonal Decomposition elements,
t suffices to choose M so that

∑M
i=1�i ≈∑N

i=1�i. In fact, the ratio
M
i=1�i/

∑N
i=1�i yields the percentage of the total kinetic energy in

he N elements that is contained in the first M elements. Given that
he associated eigenvalues are ordered �1 ≥ �2 ≥ . . . ≥ �N, it is rea-
onably expected to achieve a high percentage of the total kinetic
nergy in a reduced model of order M with M sufficiently smaller
han N.

Generally, if the samplings of the fields are obtained by
umerical simulation, the evaluation of K(z,z′) is computationally
emanding. To reduce such calculations, the snapshots method
roposed by Sirovich (1987) can be used instead. This technique

s based on the fact that the eigenfunctions can be expressed in

erms of the original set of data,

n(z) =
M1∑
k=1

y(z, tk)Ank (24)
ngineering 34 (2010) 1220–1225 1223

The following matrix eigenvalue problem must be solved,

M1∑
k=1

CkjAnk = �Anj for j = 1, . . . , M (25)

where
Ank is a constant associated to the nth eigenvector, and C is a

symmetric and positive semi-definite temporal correlation tensor
defined by,

Ckj = 1
M

∫
˝

yi(z, tk)yi(z, tj)dz (26)

It was observed for the case study considered here that
M1 = M2 = 4 yielded a kinetic energy ratio of 0.999. These first
four empirical eigenfunctions were taken into account to obtain
a reduced model of the system expressed by Eqs. (21)–(22).

6. Process predictive model. New approach to calculate the
Fig. 1. Temporal coefficients. (a) Approximation (18) and (b) reduced model (21).
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oefficients to define completely the reduced model (21) is a very
ifficult task and sometimes even impossible to achieve. A new
pproach to determine such coefficients was implemented in this
ork. This approach consists of the minimisation of an objective

unction based on the sum of the square errors between the original
napshots and the values predicted from (18),

min
ˆ i(t), ˆ̌

i(t)
s.t.

nv∑
w=1

n∑
k=1

m∑
j=1

(yw(zk, tj) − ywp(zk, tj))
2

(27a)

1p(z, t) =
M1∑
i=1

ˆ̨ i(t)�i(z) (27b)

2p(z, t) =
M2∑
i=1

ˆ̌
i(t)�i(z) (27c)
Here, nv stands for the number of state variables considered
n the problem, k and j corresponds to the snapshot in the spatial
ocation k and the time j for the variable yw(z,t).

Using the empirical eigenfunctions calculated in Section 5,
he temporal or spectral coefficients of (18); ˆ̨ i(t) and ˆ̌

i(t) are

ig. 2. Temporal coefficients. (a) Approximation (18) and (b) reduced model (21).
ngineering 34 (2010) 1220–1225

determined so the objective function (27) is minimised. These coef-
ficients will be compared and validated with the ones obtained
from the solution of the reduced model (21); ˛i(t) and ˇi(t). The
initials guess vectors used were; ˆ̨ 0 = ˆ̌ 0 = 0. After establishing
these coefficients, the model of the system is completely defined
by (18), which is the linear combination of them and the empirical
eigenfunctions obtained previously.

It is well know that problem (27) is challenging for numerous
reasons. The existence of a solution is not certain, particularly if
the observed data contains errors or if the model is grossly incor-
rect. It is unusual that any parameter set can accurately match the
experimental data used, especially when these data are contam-
inated with noise. The presence of noise can promote difficulties
during the optimisation process that can cause spurious local min-
ima and discontinuities. The gradient-based methods are the most
affected of all. In this work, several different optimisation tech-
niques (already existing in the Matlab library) were used, and
it was observed that the method of Nelder–Mead produced the
best results. This can be explained by the fact that using this

technique, poor gradient approximations are not a problem, and
continuity and differentiability of the objective function are not
required.

Fig. 3. Parities plot. (a) Approximation (18) and (b) reduced model (21).
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. Numerical results

Figs. 1 and 2 depict the temporal coefficients for the temperature
nd concentration approximations obtained using Eq. (18) and the
educed model (21).

From Figs. 1 and 2, it can be seen that the results agreed satis-
actorily using the two different calculation methods in the same
ime interval.

The predicted variables are compared with the original fields in
rder to verify the accuracy of the reduced model and the approx-
mation considered here. The parity plot and the residuals for each
eld are depicted in Figs. 3 and 4.

Both approaches produced very good results, but it is approx-
mation (18), with temporal coefficients calculated from the
ptimisation procedure that reports the best solution.

The results obtained using the temporal coefficients from the
inimisation procedure produced the lowest residuals on the

econstruction of the field. The solution of the reduced model

21) involves several numerical methods to calculate the tempo-
al coefficients (numerical integration, matrix inversion, numerical
erivation, etc.). The errors accumulate during all these calcula-
ions to solve the model and reproduce the field, which increase
ngineering 34 (2010) 1220–1225 1225

the deviations between the predicted outputs and the experimental
observations.

The optimisation problem (27) consists of the minimisation of a
linear objective function, the temporal coefficients estimation can
be done straightforwardly and easily with the lowest deviations
from the experimental snapshots. This aspect was verified using
several different systems, linear and nonlinear, and similar results
were obtained. Additionally, it was observed that the optimisation
process takes, on average, 40% less time than to solve the reduced
model (21). The optimal solution of (27) is reached independently
of the values used as initial guess.

8. Conclusions

This work has introduced and presented a new approach to iden-
tify processes without any knowledge of the mathematical model of
the system. Only a few experimental data are required to determine
the empirical eigenfunction and the temporal coefficients. Very
good results are guaranteed for any case study and/or system. This
is because it involves the minimisation of a linear objective func-
tion subject to a linear constraint defined by the linear combination
of the empirical eigenfunctions and the temporal coefficients. This
method, which is easy and fast to implement, produces the lowest
deviation from the original experimental data and is very useful
when the theoretical model of the system is unknown or difficult
to determine. The optimal solution is obtained independently of the
values used as initial guess. It is worth mentioning that the same
advantages of this approach are observed for any other empirical
approximator or ansatz used.
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Abstract 

The optimal measurement location problem on the spatial domain of a distributed parameter 

system is considered. Artificial neural networks were trained using data generated from 

simulations. These data were obtained introducing changes in the parameters of the system 

(defined as inputs to the neural network). The chain rule was applied and an analytical 

expression relating the predicted output and the inputs of the neural networks was found. 

These relationships can be used as an approximation of the sensitivity coefficients. Therefore, 

it is possible to calculate the Fisher Information Matrix and/or the covariance matrix of 

parameter estimates, which is very helpful for optimal experiment design purposes. 

Additionally, it can be used to predict the outputs of the system during the parameter 

estimation process. It is established that the optimal experimental samplings should be made 

at the positions where the sensitivity coefficients reached their largest absolute values in the 

spatial domain. A very well trained neural network can be used as a model predictor and 

sensitivity coefficients estimator at the same time.  

Key words: sensitivity coefficient, artificial neural network, measurement location, 

distributed parameter system 

 

1. Introduction 

The literature on optimal sensor position is plentiful, but mostly for state estimation. A variety 

of metrics has been proposed to place transducers in a distributed parameter system (DPS). 

Most of those techniques are based on an exhaustive exploration over a pre-defined set of 

candidates [28]. These approaches, suitable for a reduced number of locations, become 

1 



unpractical when the number of possible positions increase. In the last two decades, this 

problem has been studied considering different kind of criterion to establish the optimal 

sensor locations. Omatu et al. [41] and Harris et al. [21] used some metrics of the error 

covariance matrix of parameters estimates, its trace, and determinant. A qualitative 

information of the system as well as the minimisation of the estimated error by unobservable 

subspaces were taken into account in the works of Jørgensen et al. [26], Morari and 

Stephanopoulos [38], and Morari and O’Dowd [39]. Another category of techniques 

considered observability matrix and/or gramian, including their smallest eigenvalue, 

determinant, and trace of their inverses [16,52,54]. These approaches are based on very 

complex mathematical concepts and require a large number of calculations. 

 

Lopez and Alvarez [34] and Damak et al. [15] introduced the nonlinear observability analysis 

for sensor location. Their contributions considered the measurement cost and transducer 

failure as well as the system information. These measures are reduced to a criterion based on 

the linear observability matrix, if the system is linear and time invariant. To solve this 

problem, Georges [19] used nonlinear observability gramians, but due to numerical 

difficulties, this method is limited to low-order systems. 

 

Wouwer et al. [57] and Alonso et al. [6,7] offered significant contributions on sensor 

placement for nonlinear systems, based on the Gram determinant evolution in the spatial 

domain and using a max-min optimisation process, respectively. The maximisation of the 

Gram determinant is a measure of the linear independence of the sensitivity functions 

evaluated at sensor locations. This procedure guarantees that the parameters are identifiable 

and the correlation between the sensor outputs is minimised. The form of the criterion itself 

resembles the D-optimality approach proposed by Qureshi et al. [44] and Rafajlowicz [45]. 

The counterpart of the Fisher Information Matrix (FIM) used takes on much larger 
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dimensions, which suggest that the approach involves more calculations that are cumbersome. 

On the other hand, Alonso et al. [7] showed that the most appropriated location for the 

measurements for state estimation is found by the solution of a max-min optimisation 

problem, with the number of sensors predefined by the user. 

 

A closely related problem is sensor placement for parameter estimation, but only few 

contributions for this subject can be found in the literature [9,29,59]. This is mainly because a 

direct extension of sensor location for parameter estimation from the results obtained for state 

estimation is not straightforward and has not been pursued. These two problems are 

essentially different, in the first for instance the current state usually depends strongly on 

nonlinearly of the unknown parameters.  

 

Most of the existing optimality criteria for sensor location for parameter identification are 

based on scalar measures of the FIM, e.g. its determinant. Using a related approach relying on 

principal component analysis of the output sensitivity matrix, Li et al. [31] computed the best 

set of parameters to be estimated if a collection of measurement positions is already given. 

These techniques require computation of the parametric sensitivity coefficients based on local 

sensitivity analysis. Therefore, the results obtained might not capture the nonlinearity and 

may only be suitable for small changes in the parameters. Singh and Hahn [47] have 

computed sensor position with information derived from observability covariance matrices. 

They proposed this approach based on the degree of observability of a nonlinear system over 

a certain operating region [55]. Nahor et al. [40] minimised the ratio of the largest to the 

smaller eigenvalue of the FIM to compute optimal temperature sensor positions for food 

process. To the best of our knowledge, most of these techniques have not been applied yet to 

systems described by DPS, in spite of their resolute advantages [13,53,56].  
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In summary, the state of the art indicates that more attention should be paid to the sensor 

position for parameter estimation problem, especially for DPSs. From an engineering point of 

view, the use of the existing scarce methods is restricted due to computational difficulties 

[30,36].  

 

More recently, some new approaches introduce the use of artificial neural networks (ANN) to 

estimate parameters [1,5,32,37]. These ANNs are considered universal approximator capable 

of reproduce an unknown mapping and its derivatives arbitrarily well [24]. 

 

Approximating the derivatives of the output with respect to the inputs is of significant 

importance in many applications. For instance, in process optimisation, the first and second 

order derivatives may be used in estimating the gradient vector and the Hessian matrix. This 

allows the use of techniques such as Newton’s method to optimise the process under 

consideration [61]. 

 

The capability of a multilayer ANNs to replicate an unknown mapping  

arbitrarily well has been investigated by Cybenko [14], Funahashi [18], Hecht-Nielson [22], 

Hornik, Stinchcombe and White [24]. Moreover, Hornik et al. [25] showed that a multilayer 

feedfoward neural network (FFNN), with as few as a single hidden layer with appropriately 

smooth activation function, is capable of accurately approximate to a function and its 

derivatives. The realisation to be approximated need not be differentiable in the classical 

sense as long as it possesses a generalised derivative, which is the case for certain piecewise 

differentiable functions [10,27]. This fundamental result provides the necessary theoretical 

foundation for sensitivity analysis and definition of the optimal sensor locations for parameter 

estimation purposes presented. 

ℜ→ℜn:f
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In this paper, the largest absolute value analysis of the sensitivity coefficients to define the 

optimal number and the spatial positions of the experimental measurements is introduced. The 

sensitivity coefficients are determined using an ANN. The data used to train these ANNs 

correspond to simulations of the system varying the value of the parameters. The 

approximations obtained are then used to calculate the sensitivity coefficients of the system, 

which allow defining a set of optimal sensor locations. This information can be employed to 

compute the FIM and the covariance matrix of the parameter estimates. Additionally, the 

ANN can be utilised as predictive model during the parameter identification procedure. 

 

2. Optimal experiment design 

Optimal experiment design for precise parameters estimation can be defined as the 

determination of the experimental conditions which leads to parameter estimates with the best 

possible precision [17,45].  

 

To understand this concept, let us consider a general DPS with Ω⊂R2 as a bounded simply 

connected open domain with a sufficiently smooth boundary, ∂Ω. A given DPS can be 

represented by a system of n (possibly non-linear) partial differential equations (PDEs) as 

follows [50,51], 
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Where x=(x1,x2)∈Ω  is the vector of spatial coordinates, y=y(x,t) the vector of state variables 

∈Rn and G some function mapping its arguments to Rp, possibly including terms accounting 

for a priori known forcing inputs. The boundary conditions are, 
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Here ϑ  is some known function that maps its arguments to Rr. The model above contains a 

vector of unknown parameters θ∈Rnv to be estimated based on the observations, 

( ) iij
i

ij r,...,1jp,...,1i,,xy ==+= εθη  (3)

Made at point xi, where εij denotes the noise in measurements satisfying a Gaussian 

distribution, 

{ } { } ( )i
jsiq

T
qsijij xCE,0E δδεεε ==  (4)

With δij being the Kronecker delta and C(xi)∈Rnxn a known positive-definite matrix. 

Replicated measurements can be admitted, i.e., some values xi may appear several times in the 

optimal solution (an unavoidable consequence of independent measurements). Then it is 

sensible to distinguish only the components of the sequence x1,…,xN, which are different and, 

if there are p of such components, to re-label them as x1,…,xp while introducing r1,…,rp as the 

corresponding numbers of replications. 

 

It is assumed that some, albeit rough, a priori estimate of the parameter vector θ0 is available 

e.g. from preliminary experiments. The goal here is to select the state sampling policy, which 

will maximise the accuracy of the parameter estimates from data generated in the 

corresponding new experiments. It has been shown that this task corresponds to the 

maximisation of a scalar concave function of the FIM whose inverse gives a lower bound on 

the covariance matrix of the estimates [8,12]. The average per observation (or normalised) 

FIM takes the following form, 

( ) ( ) ( ) ( )∑
=

−=
p

1i

i
y

i1iT
yi

* xJxCxJM ωξ  (5)

Where Nrii /=ω ,  and∑
=

=
p

1i
irN ( ) ( )

θ
θ

∂
∂

=
,xyxJ

i
i

y  is the Jacobian matrix consisting of the 

sensitivity coefficients. The collection of variables, ξ∗ that define the exact design of the 

experiment is given below, 
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The proportion iω  of observations made at xi can be considered as the percentage of 

experimental effort spent at that location. It can be assumed that iω ’s can be any real numbers 

in the interval [0,1] such that  and in terms of the design they can be considered as 

probability distributions on 

∑
=

=
p

1i
i 1ω

( )p21 x,...,x,x . The purpose of the optimal experimental design 

can be then defined as the search for a design ( )X* Ξξ ∈ , which satisfies [55], 

( )[ ]
( )

( )[ ]ξΨξΨ
Ξξ

MmaxM
X

*

∈
=  (7)

Here  is the set of all admissible designs (i.e. all probability distributions on the spatial 

domain X, where measurements are allowed). This can be formulated using a metric of the 

covariance matrix of the parameter estimates. Among these, the most widely used design 

criteria are [50], 

)X(Ξ

• A-optimality: A design is said to be A-optimal if it minimises the trace of the covariance 

matrix. 

• D-optimality: A design is said to be D-optimal if it minimises the determinant of the 

covariance matrix. 

• E-optimality: A design is said to be E-optimal if it minimises the maximal eigenvalue of 

the covariance matrix. 

 

3. Parameter estimation 

Model calibration consists of finding a set of parameter values that produces the best model 

output, which fit the observed data. This calibration is usually done by the minimisation of the 

objective function presented in equation (8).  
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Once the sensor locations have been determined, the parameter estimation problem can be 

viewed as matching the model to the real system through the minimisation of an error 

criterion over a set of admissible parameters. This can be defined as, 

( ) ( ) ( )( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∫ ∑

=

ft

0

m
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2
ipie

f

dt,t,xyt,xy
t
1

m
1J θθ  (8)

Where, yp(xi,t,θ) is defined as the predicted response of the model at location xi, and ye(xi,t) as 

the experimental response at the same location, m is the number of optimal measurement 

locations. Unfortunately, elements in the vector yp(xi,t,θ) are not linear functions of the 

parameters θ, and multiple solutions of the equation (8) are possible. This vector can be either 

obtained by the use of the original governing equations of the system or from a very well 

trained non-parametric model (as will be shown later in the equation (14)). 

 

3.1. Covariance matrix of parameter estimates 

When assessing the quality of an identified dynamic model, the covariance matrix of the 

estimated parameters gives an important measure [33,48]. In a maximum likelihood context, 

the inverse of the expected value of the negative of the Hessian provides the Cramer-Rao 

lower bound on the variance-covariance matrix of the parameter estimates. Large variances 

imply imprecise parameter estimates. The arrival of new data, or data measurement, can lead 

to substantial change in parameter estimates if the variance-covariance matrix is ill-posed. 

Therefore, the goal of the estimation procedure is to determine unknown parameters in such a 

way that the difference between the sample covariance matrix and the implied covariance 

matrix is minimised in a certain sense [60]. 

 

For the systems studied here, it is usual to obtain the covariance matrix of parameters 

estimates [58] by the following approximation, 
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⎛
≈

σ
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Where,  represents the Jacobian matrix of estimated variable y with respect to changes in 

the parameters, nv is the parameter dimension, and  is the variance of the variable y. In this 

equation, it is easy to view the influence of field data quality and quantity in parameter 

uncertainty. Since these Jacobian matrices are evaluated at those locations for which 

observations are available, any experimental design should aim at sampling at those locations 

where the variables are most sensitive to the estimated parameters. Such a design is said to 

provide the maximum amount of information about the unknown parameters [29]. 

yJ

2
yσ

 

It is intuitively obvious that the experimental design objective should be intended at 

minimising the norm of (9); that is, to make matrix ( ) 1
y

T
y JJ −  as  small as possible. The 

variance term , it is often admitted constant for simply the numerical procedure, and can 

be dropped from the formulation. To measure the accuracy of the estimates we like to 

summarise the information about the variability in the covariance matrix into a single number. 

Here we used the determinant of (9) as the function that transforms a matrix into a scalar. This 

is quite informative as in fact it relates to the volume of the multidimensional simplex defined 

by the column/row vectors of the matrix [23,46].  

2
yσ

 

Using different norms leads to different conclusions regarding the optimal design. The D-

optimality criterion minimises the volume of the hyper-ellipsoid in the parameter space, with 

no consideration of the relationship between the ellipsoid’s axes lengths, which are in turn 

proportional to the square root of the covariance matrix eigenvalues. 
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It can be shown that under some assumptions of regularity or for a sufficiently large sample 

size N the vector (with  denoting the ‘true’ but unknown value of the parameters 

and 

⎟
⎠
⎞

⎜
⎝
⎛ −

*

)N(
ˆ θθ

*
θ

)N(θ̂  obtained using the least square parameter estimates) has approximately a normal 

distribution with zero mean and covariance matrix, 

⎟
⎠
⎞

⎜
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⎛−

*
1

2

,M
N

θξσ  (10)

Where  denotes the standard deviation of the errors in the model. In principle, the 

covariance matrix is a measure for the precision of the least square estimator for the unknown 

parameter  and a ‘smaller’ matrix yields estimates that are more precise. For example, the 

ith diagonal element of (10) will be denoted by 

2σ

*
θ

ii

*
1

2

,M
N ⎟
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⎜
⎝
⎛− θξσ  and approximates the 

variance or mean squared error for the ith component )N(,iθ̂  of the least squared estimator 

)N(θ̂ . A confidence interval for the ith component iθ  of the vector θ  is given by, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛− −−−−

ii

*
121

)N(,i
ii

*
121

)N(,i ,M
N

uˆˆ,,M
N

uˆˆ θξ
σ

θθξ
σ

θ αα  (11)

Where 21u α−  denotes the 1-α/2 quantile of the standard normal distribution. For most cases, it 

was shown that for moderate sample sizes N the sampling variances of the parameter 

estimates are well approximate. 

 

If the parameters values do not change significantly the imprecision of the estimates can 

always be decreased by increasing the sample size N, which yields a ‘smaller’ covariance 

matrix and smaller variances of the least square estimates. However, in practice the sample 

size is usually fixed, due to cost considerations of each additional experiment. To improve the 

quality of the estimates or, from a different point of view, to reduce the number of experiment 
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measurements needed to obtain the estimates with a given accuracy, we note that the 

variances of  the estimates )N(,iθ̂  and the covariance matrix of the vector )N(θ̂  also depend on 

the given design, ξ, which determines the relative proportion of total observations to be taken 

at the experimental locations. 

 

It is desirable to check that the confidence interval magnitude agrees with the sensitivity 

analysis, the parameter with the largest sensitivity coefficient should have the smallest 

confidence interval. Because of the consideration of the measurement error only, if the FIM is 

well-defined, the confidence intervals may result in very small values. Grimstat and Mannseth 

[20] indicate that the use of such approximation of the confidence intervals was usually 

justified even for the highly nonlinear models analysed. 

 

4. Sensitivity coefficients using Artificial Neural Networks 

Among the many ways to develop mathematical models, artificial neural networks, have 

found successful applications in the approximation of multivariable nonlinear functions, their 

modelling, and control. A model based on an ANN is a typical black-box system where the 

system structure is implied by its weights. These weights carry no obvious meaning and the 

ANN only establishes a mapping of inputs to outputs. Therefore, the model cannot be 

formulated by explicit expressions. The sensitivity coefficients ( )
i

,y
fs

i θ
θ

θ ∂
∂

=  in the model 

cannot be calculated, which makes it impossible to estimate measurement uncertainty on the 

results. This problem can be solved by setting up a parameterised model based on an ANN 

using Radial Basis Functions (RBF) and/or FFNN. An analytic equation of the model and the 

computing formula of its sensitivity coefficients can be obtained. The effectiveness and 

precision of this approach can be proved by simulation [25,61]. 
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An indirect measurement model can be denoted by, 

),...,,(f),t,x(y n21p θθθθ =  (12)

Where y(x,t,θ) is the predicted output and n21 ,...,, θθθ  are the input variables. 

 

The model (12) is usually unknown and sometimes is difficult to establish. Therefore, a RBF 

neural network with n inputs and one output (vector) can be used as indirect measurement 

model. The mapping relation of the RBF neural network is, 

( )∑
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−+==
r

1i
ii0p cww)(f),t,x(y θφθθ  (13)

Substituting the transfer  function in equation (13), 
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This equation is the analytic form of the model based on RBF neural network. θ is the input 

vector [ n21 ,...,, ]θθθ , yp(x,t,θ) is the predicted output, ci is the centre vector [ ] of 

RBF neural network, r is the number of joints at the hidden layer of the ANN, σi is the spread 

of centre ith, and 

in2i1i c,...,c,c

[ ]r10 w,...,w,w=W  is the weight vector of output layer. This vector W can be 

determined by the learning and training process of the ANN, and given them, an analytic 

denotation of the model can be obtained. In this work, a K-mean clustering [35] and the 

orthogonal least square learning algorithm [11]  were used to train the RBF ANN and 

calculate its centres and weights.. 

 

4.1 Sensitivity coefficient calculation 

First order output sensitivity is computed by applying a simple backward chaining 

differentiation rule. For the equation (14), the sensitivity coefficients which reflect the 
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propagation law of measurement uncertainty of each θj (j=1,2,…,n) can be calculated as 

following, 
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This can be expressed as, 
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Equation (17) is the calculation formula of the sensitivity coefficient of the model based on a 

RBF neural network. Here b represents the spread of the corresponding centre. This 

approximation allows calculating the FIM, which can be used to estimate the confidence 

intervals given by (11) and to determine the optimal locations following a D-optimal design 

and any other approach requiring the sensitivity coefficients of the system. 

 

A forward predictor is obtained when the ANN is trained (14), which it can be used to 

calculate the outputs of the system in (8) during the parameter estimation process. Here some 

optimisation techniques based on gradient information were implemented using (17) to 

approximate some of its elements. It is our intention to introduce the use of well-trained 

ANNs to carry out the calculations required to determine the optimal sensor locations for 

parameter estimation purposes. 
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5. Case studies 

To study the capabilities of the ANN to calculate the sensitivity coefficients of a system, 

without a strict previous knowledge of the parameters, the following examples from the 

literature were employed. 

Example 5.1. The heat equation problem described by the one-dimensional partial differential 

equation [42], 

)1,0(x,0t
x

)t,x(y
t

)t,x(y
2

2

1 ∈>
∂

∂
=

∂
∂ θ  (18)

With the boundary and initial conditions, 
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600yand,1x,0t))t,x(yy(
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)t,x(y
aa3 ==>−=

∂
∂ θ  (19.b)

( )1,0x,0t500)0,x(y ∈==  (19.c)

This example is used to demonstrate the effectiveness of the optimal sensor location approach 

introduced in this work. Here the problem consists of determining the best measurement 

positions to estimate the parameters 1θ , 2θ  and 3θ . The nominal values for these parameters 

are; 10.01 =θ , 00.12 =θ  and 00.13 =θ . 

Example 5.2. A system described by the following nonlinear partial differential equation 

[50], 

)1,0(x),t,0(t)t,x(y
x

)t,x(y
t

)t,x(y
f

3
22

2

1 ∈∈−
∂

∂
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∂
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Subject to the conditions, 

)1,0(x)x()0,x(y 3 ∈= Ψθ  (21.a)

)t,0(t0)t,1(y)t,0(y f∈==  (21.b)

Where; tf =0.8 and; 
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)x3sin()xsin()x( ππΨ +=  (22)

This problem consists on the determination of the best measurement positions to estimates 1θ , 

2θ  and 3θ optimally. The ‘true’ values for such parameters, reported in the literature, are; 

10.0=1θ , 00.22 =θ  and 00.53 =θ . 

 

6. Numerical experimentation 

The original governing equations were solved using the Matlab® partial differential equation 

solver “pdepe”. This command solves initial-boundary value problems for systems of 

parabolic and elliptic partial differential equations in one space variable and time. The system 

is solved several times using different set of values for the parameters, far from their nominal 

values, introducing uncertainties, which factors are shown in Table 1. These values are far 

from the nominal values of the system. This will allow evaluating how good the estimation of 

the sensitivity coefficients can be. The spatial domain was divided into m=11 equidistant 

intervals. The system was solved simultaneously with the equations describing the transient 

behaviour of the sensitivity functions, as the direct method for sensitivity analysis is usually 

implemented [4]. A sampling time of 0.25 was used and a mesh solution of dimensions 11x4 

is obtained. The spatial–temporal distributions of the responses and the sensitivity coefficients 

were obtained and compared.  

Table 1 
Set of parameters and uncertainties considered to generate the training data 

 θ1 θ2 θ3 
0.10 [±0.050] 0.10 [±0.050] 0.01 [±0.005] 
3.00 [±1.50] 3.00 [±1.50] 1.00 [±0.50] 
3.00 [±1.50] 3.00 [±1.50] 0.01 [±0.005] Example 5.1 

0.10 [±0.050] 0.10 [±0.050] 1.00 [±0.500] 
0.05 [±0.005] 3.00 [±1.50] 3.00 [±1.50] 
1.00 [±0.50] 1.00 [±0.50] 10.0 [±2.50] 
1.00 [±0.50] 1.00 [±0.50] 3.00 [±1.50] Example 5.2 

0.05 [±0.005] 3.00 [±1.50] 10.0 [±2.50] 
Numbers in brackets are the uncertainty factors considered 
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An ANN was trained using the 70% of the data produced in the previous step. Two different 

kind of ANN were trained; FFNN and RBF, and their performance and prediction capabilities 

were compared. It was assumed that the activation functions of the ANN are differentiable. 

The remaining 30% of the data collected from the simulations were used to validate the 

ANNs in order to test their prediction capabilities using observations unknown by the ANNs. 

Under this assumption, the formulas to compute the first order derivatives from the trained 

network can be obtained easily as it was shown in section 4.1. 

 

The ANNs were initialised with independent random weights. Each network had as inputs the 

parameters of the systems [θ1,…, θn] and as outputs the response of the system at xi and the 

interval of time t; [y(x1,t),…,y(xm,t)]. The activation function for the hidden units was the 

logistic sigmoid function. The unconstrained optimal weights were estimated based on the 

data in the training set. The number of hidden neurons was changed until good estimates of 

the outputs were obtained. The centres for each processing unit are calculated using the K-

mean clustering algorithm. These ANNs are then used to approximate the first derivatives of 

the system by equation (17). 

 

7. Numerical Results 

7.1 Sensitivity coefficients and the optimal measurement locations 

The sensitivity coefficients for each parameter, sy,θ, calculated by the well trained and 

validated ANN, and the ones obtained from the application of the Direct method considering 

the nominal values of the parameters are compared. The normalised values, sy,θ,  for each 

example are shown Fig. 1 and 2 [2,4]. 
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Fig. 1. Spatial – temporal behaviour of the sensitivity coefficients, Example 5.1. Circles 

represent the values estimated by the ANN. 

 

 
Fig. 2. Spatial – temporal behaviour of the sensitivity coefficients, Example 5.2. Circles 

represent the values estimated by the ANN. 
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From these figures, it can be observed how efficiently the ANN can reproduce the sensitivity 

coefficients for any set of inputs used. It seems that a well-trained ANN, which adequately 

approximates a given function, will provides good estimate of the derivatives of such 

function. In addition, can be seen clearly, where the largest absolute values of the sensitivity 

coefficients are located. For all the combinations of parameter’s values, the extrema of the 

sensitivity coefficients were recorded. Example 5.1 showed that these extrema are located at 

positions x=(0.00, 0.50, 1.00) for any value considered on the parameters. For example 5.2, 

the locations obtained are x=(0.20, 0.50, 0.80). For each case study, an ANN with 40 

processing units was required to reproduce the targets of the systems satisfactorily. 

 

A D-optimal experiment design was performed for each case study following the procedure 

depicted in Fig. 3 and explained in section 2. The results obtained coincided with the ones 

derived from the extrema sensitivity analysis carried out here. 

 

Fig. 3. Post-processing of the ANN predictions 

 

Two different kind of ANN were used in the approaches explained above and it was observed 
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that the RBF ANN showed a better performance predicting the sensitivity coefficients than 

the FFNN. It is worth to mention that the methods explained and implemented in this work do 

not depend of the accuracy of the sensitivity coefficients calculated but of their spatio-

temporal behaviour.  

 

7.2. Parameter estimation 

To estimate the parameters either the original governing equations or the trained ANN can be 

used as predictive model (Fig. 4) or any other kind of reduced model [3]. In this work, both 

types of predictive models were employed reporting practically the same results. The only 

difference is established in the time of execution, which is lower when an ANN is used as 

predictive model, especially if such ANN is built with a low number of hidden neurons.  

 

Fig. 4. Parameter estimation procedure 

 

19 



The system was solved using the nominal values of the parameters. Noise, N(0,σ2), was added 

to the outputs, and the giving results are treated as experimental data. The output from the 

model together with the experimental data both taken at the optimal sensor location, xi, are 

used to minimise (8). The parameters calculated were compared with their corresponding 

nominal values (Table 2). 

 

Data set averaging is used to reduce the effect of random noise in the measurements, which 

typically arise from the data acquisition system. In practice, this implies that several data sets 

of the same signal, in response to identical perturbations, have been taken. Data set averaging 

may be obtained as, 

( ) ( ) S

nt

1j
iji N,...,1ity

nt
1tŷ == ∑

=

 (23)

Where nt is the number of data sets and NS is the number of observations per set. The effects 

of the random noise tend to cancel as several sets of data are averaged. However, the noise 

can only be reduced to a certain degree and not totally eliminated. In this work, only minimal 

improvements were achieved by averaging together, more than ten sets of data. In addition to 

averaging, the output can be low pass filtered to remove the residual random noise and the 

systematic noise. The parameters calculated were compared with their corresponding nominal 

values. 

 

The analysis of the sensitivity coefficients and of the determinant of the FIM reveals the most 

appropriate sensor locations for the estimation of the unknown parameters [49]. It is well 

known that sensitivity analysis quantifies the dependence of the system behaviour on the 

parameters that affect the process dynamics. Prasad and Vlachos [43] presented results that 

show that high values of the FIM are correlated with large normalised sensitivity coefficients. 

These results can be very helpful to reinforce the analysis carried out here.  

20 



 

These measurement locations were considered and their effects on the parameter estimation 

procedure were verified. The minimum of the determinant of the covariance matrix, equation 

(9) was used to measure the quality of the parameter estimates considering the spatial 

positions established by the extrema analysis of the sensitivity coefficients. It is our intention 

to consider the spatial locations where the sensitivity coefficients show largest absolute values 

to verify the accuracy of the parameter estimates using experimental data contaminated with 

noise [2]. At these positions, it could be logical to expect that the confidence intervals for 

each parameter should be small, according to (11) [4]. 

 

Table 2 
Parameter estimation results 

Example Measurement 
Locations θ1 θ2 θ3 J(θ) det[Cov(θ)] 

0.00 0.50 1.00a 0.1016±0.050 
(1.60%) 

1.0375±0.078 
(3.755%) 

1.0459±0.096 
(4.59%) 20.999  1.75e-3 

5.1 Whole spatial 
domain 

0.1008±0.032 
(1.60%) 

1.0166±0.049 
(1.66%) 

1.0209±0.065 
(2.09%) 18.573  0.58e-3 

0.20 0.50 0.80a 0.0096±0.017 
(0.80%) 

2.1966±0.401 
(9.83%) 

5.0889±0.989 
(1.78%) 0.0951  8.39e-3 

5.2 Whole spatial 
domain 

0.0109±0.014 
(1.09%) 

2.0733±0.279 
(3.67%) 

5.0497±0.775 
(0.99%) 0.0897  2.44e-3 

Number in parentheses represents the percentage deviation of the parameter from the nominal value 
Numbers in bold represent the uncertainties calculated using (11) 
a The same locations are obtained when the largest absolute values in the spatial domain of the predominant 
sensitivity coefficients are evaluated and/or when a D-optimal experiment design is carried out 
 
 

From Table 2 it is clear that a low deviation on the parameter estimates is obtained measuring 

at the positions where the sensitivity coefficients reached their largest absolute values. The 

poorest results are obtained when the measurements are taken at positions far from those 

largest absolute values (see [2] for more details). Additionally, the sensitivity coefficients 

calculated using the ANN were employed to compute the covariance matrix and the 

confidence intervals reporting excellent results as they were compared with the results 

obtained using the sensitivity coefficients calculated by the conventional ways. 
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It is well know that problem (8) is challenging for numerous reasons. The existence of a 

solution is not certain, particularly if the experimental data contains errors or if the model is 

grossly incorrect. The presence of noise can promotes difficulties during the optimisation 

process that can cause spurious local minima and discontinuities. In this work, several 

different optimisation techniques (already existing in the Matlab® library) were used, and it 

was observed that the method of Nelder – Mead provides the best performance. This can be 

explained by the fact that using this technique, poor gradient approximations are not a 

problem, and continuity and differentiability of the objective function are not required. This 

gives another motivation for using sensor placement strategies based on the extrema 

evaluation of the sensitivity functions, because not only the uncertainties in parameter 

estimates were reduced, but the cost associated to such measures as well, which is significant, 

especially in situations where experimental measurements are very expensive. Information 

about a physical parameter may be most accurately gained at points in space with a high 

sensitivity to the parameter.  

 

The parameters with the lowest absolute sensitivity coefficients are the most difficult to 

estimate, especially if the experimental measurements are taken far from the optimal 

locations. When at least one parameter shows a very low absolute sensitivity, an optimisation 

algorithm based on the gradient and/or Hessian matrix generally get stuck in a local 

minimum, distant from the optimal solution.  

 

Taking into account the largest absolute sensitivities coefficients of the parameter of interest 

through a careful choice of observation points in a sampling design will lower the variance of 

the parameter estimate. This is the motivation for examining the behaviour of sensitivities in 

the system when refinement of parameter estimates is an objective of field sampling. The use 
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of the ANNs during the parameter identification process improve remarkably the computation 

cost, which it was reduced in approximately 60% of the time required when the original 

governing equations are used to predict the outputs. The only drawbacks derived for the use 

of such non-parametric models consist in the large number of processing units required to fit 

the training data. This approach needs to be extended to systems showing dynamic behaviours 

highly nonlinear. 

 

8. Conclusions 

The optimal sensor location approach presented here depends strongly on the sensitivity 

coefficients, but mostly on their spatial and temporal evolution rather than their exact 

magnitudes. The measurements should be made at the positions where the largest absolute 

values of the sensitivity coefficients are reached in the spatial domain. In many cases, these 

locations can be obtained without information of the exact value of the parameters. Well-

trained ANNs may yield accurate approximations to an unknown function and its derivatives, 

which can be used for optimal sensor position purposes. The computational effort required for 

calculating the optimal weights of the ANN is modest and no information about the values of 

derivatives of the function at the training points is needed. Even though the FFNNs reported 

good performances, the RBF neural networks produced the best estimation of the first-order 

sensitivity coefficients. The number of hidden neurons required to fit the training data need to 

be incremented as the complexity or nonlinearity of the system increases. The ANN used to 

approximate the sensitivity coefficients could be used as a predictive model during the 

parameter estimation process. Not only the uncertainties in the parameter estimates were 

reduced, but the cost associated to such measures as well, which is significant, especially in 

situations where experimental measurements are very expensive. 
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Abstract 

A new approach for the optimal location of spatial measurements, for efficient estimation of 

parameters of nonlinear distributed systems, is introduced. This scheme is based on the Proper 

Orthogonal Decomposition (POD) and it is verified by a numerical example regarding the 

chemical reaction occurring in a tubular reactor for two possible scenarios; stable and unstable 

operation conditions. An extrema evaluation of POD modes can be used directly to define 

optimal sensor locations for parameter estimation of nonlinear distributed parameter system. This 

is a computational efficient approach that allows defining the optimal measurement placements 

without the laborious calculation of the sensitivity coefficient Jacobian matrices generally 

required by the D-optimal experiment design. Moreover, only merely system responses and/or 

experimental observations are required and used straightforwardly. The underlying combination 

of model reduction techniques and sensor location problem in this approach becomes even more 

relevant as the complexity of the system under consideration increases. By this method, not only 

the uncertainty in parameter estimates can be reduced, but cost is decreased also, which is 

significant, particularly in circumstances where experimental observations are expensive. 

 

Key words: sensitivity coefficients, measurement points, proper orthogonal decomposition, 

empirical eigenfunctions, nonlinear distributed parameter system 
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1. Sensor position problem. Review 

The sensor position problem has been analysed from various points of view, but the results 

reported by most authors are restricted to the selection of stationary sensor locations and the 

framework of state estimation (Amouroux and Babary, 1988; El Jai, 1991; El Jai and Pritchard, 

1988; Kubrusly and Malebranche, 1985). A broadening of state estimation techniques to the 

parameter estimation problem is not straightforward and somewhat difficult, given that in the 

latter the actual state usually depends nonlinearly on unidentified parameters (Korbicz and 

Uciński, 1994) even if the system is linear on unknown parameters. This important distinction 

makes the parameter estimation more complicated and for that cause the number of 

corresponding results up to date is fewer (Uciński, 2000). 

 

From the angle of the optimal sensor placement problem for parameter estimation, the existing 

approaches can be categorised into three major groups; 

 

• Methods leading to state estimation. 

• Methods making use of random field theory. 

• Methods originating in optimal experiment design. 

 

The first group convert the original problem into an estate-estimation one in such a way as to 

raise the likelihood of applying powerful techniques of optimal sensor location for estate 

estimation (Damak et al., 1992; Korbicz, 1991). The main disadvantage of such an approach is 

that simultaneous state and parameter estimation promotes a strong nonlinearity of the problem. 

Several endeavours concerning sequential linearisation at the successive state trajectories were 

performed with suboptimal filtering. However, this approach can be implemented only in simple 
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applications (Basseville et al, 1987; Korbicz et al., 1988; Malebranche, 1988). 

 

The effectiveness of the second group in the case of distributed parameter systems (DPSs) is 

relatively limited, since transformations between system descriptions, in the form of partial 

differential equations (PDEs), and appropriate random field characteristics is not straightforward. 

In addition, such conversions rely on statistics up to a given order (for example, mean, 

covariance, skewness, kurtosis, etc.) (Coate et al., 2008; Georges, 1995; Balsa-Canto et al., 

2008). 

 

The classical theory of optimal experimental design (Atkinson and Donev, 1992; Balsa-Canto et 

al., 2008; Fedorov and Hackl, 1997; Pázman, 1986; Pukelsheim and Rieder, 1992; Rafajlowicz, 

1996; Walter and Prozanto, 1997) and its extensions to dynamic systems (Titterington, 1980) 

comprises a foundation of the third category of methods. Here the problem is cast as an 

optimisation one. The performance index is defined in the form of some scalar metric operating 

on the Fisher Index Matrix (FIM), whose inverse, based on the Cramer-Rao inequality, plays the 

role of an estimate of the parameter dispersion matrix. This guide to considerable simplification, 

since even if the exact dispersion matrix is hard to obtain, the inverse of the FIM can be 

calculated without difficulty (Uciński and Demetriou, 2004; Bernaerts et al., 2005 Chmielewski 

et al., 2002; Prasad and Vlachos, 2008; Peng, 2005; Waterhouse et al., 2009). 

 

In the case of DPSs the first formulation in this character was intended by Qureshi et al. (1980) 

whose scheme based on the maximisation of the determinant of the FIM was employed to 

allocate sensors and boundary perturbations in the dynamic of the system. This approach was 

implemented for hyperbolic linear systems with identified eigenvalues and eigenfunctions, and a 
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further general outline in terms of Green’s functions was considered later for DPSs (Rafajlowicz, 

1981, 1983; Uciński, 2003; Uciński and Patan, 2007; Vande et al., 1996; Wouwer et al., 200). 

 

A fundamental problem towards identification, state estimation, and control of process described 

by DPSs is the optimal location of the measurements. This problem consists of the arrangement 

of a limited number of sensor and control devices along the spatial domain in an optimal fashion 

(Van den Berg et al., 2000; Mossberg, 2004; Papadimitriou, 2004; Rensfelt et al., 2008; Sigh and 

Hahn, 2005, 2006; Walter and Prozanto, 1990). Nahor et al. (2003) minimised the ratio of the 

largest to the smallest eigenvalue of the FIM to compute optimal temperature sensor positions for 

food processes. 

 

Christofides and Antoniades (2000, 2001, 2002) presented new approaches to calculate the 

optimal actuator/sensor locations of uncertain transport-reaction systems under control. They 

established that the solution to this problem is near-optimal for the closed-loop infinite-

dimensional processes analysed. Similar and other kind of techniques have been reported by Van 

den Berg et al. (2000), Fahroo and Demetriou (2000) and Harris et al. (1980). 

 

More recently, a number of computational approaches to address this problem have been 

introduced (Alonso et al., 2004b; Cohen et al., 2006; Löhner and Camelli, 2005; Punithakumar et 

al., 2006; Uciński and Bogacka, 2002, 2005; Zumoffen and Basualdo, 2009). The central idea is 

to define a design criterion to be minimised as a scalar of the FIM associated to the estimated 

parameter. Followed by techniques of optimum experimental plan for nonlinear systems setting 

the sensor location problem at hand, or alternatively, using standard nonlinear programming 

procedures. Olanrewaju and Al-Arfaj (2006) introduced, for a reactive distillation process, a state 
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estimation scheme based on Kalman filters without widely addressing the sensor selection 

problem. Similar applications were developed by Sumana and Venkateswarlu (2009), 

Venkateswarlu and Kumar (2006), Wahl et al. (2002), among others. For the best of our 

knowledge, these sort of techniques have not been broadly applied to system described by PDEs, 

regardless of their resolute advantages. 

 

In this paper we make use of the extrema values of the system’s POD-modes to define the 

optimal spatial locations (and number) of experimental measurements for parameter estimation 

purposes. This technique has been proven to be very efficient and practical in the case of systems 

described by DPSs but only a couple of references can be found in the literature (Yildirim et al., 

2009; Alaña and Theodoropoulos, 2010). The rest of the paper is organised as follows: section 2 

presents two illustrative case studies from the literature used for benchmarking purposes. In 

section 3, the methodology followed to define the optimal sensor locations. Section 4 is 

dedicated to parameter estimation aspects including the covariance matrix calculations and 

section 5 presents the results derived from the approach considered in this work. 

 

2. The system governing and Sensitivity equations 

The system considered is a homogeneous tubular reactor without catalyst packing. An 

irreversible first–order chemical reaction A→B takes place, and it is described by the 

concentration rate CA(t,z) and the temperature T(t,z). This reaction is exothermic and a cooling 

jacket is used to remove heat from the reactor. A fraction of the products can be recycled, r, and 

mixed with the reactants at the inlet of the reactor (z=0) (Bendersky and Christofides 2000; Li 

and Chistofides, 2008).  This example has been used to address the sensor location using the 
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techniques available and reported in the literature (Alonso et al., 2004a; Alvares et al., 1981; 

Dochain et al., 1997; Harris et al., 1980; Waldraff et al., 1998; Zamprohna et al., 2005). 

 

Derived from mass and energy balances, and under the standard assumptions of constant density 

(ρ), heat capacity  of the reacting fluid (cp), and constant axial fluid velocity (v), the dynamic 

behaviour of this system is described by a set of PDEs defined on a spatial domain z∈(0,1), in 

dimensionless form, 
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Here and  represent concentration and temperature, respectively, and  is the 

cooling water temperature. PeC, PeT are the Peclet numbers of mass and energy flows, in that 

order, BC is the Damkohler number, γ is the activation energy, BT and βT are the parameters 

related to heat of reaction and heat transfer, respectively, and t

)z,t(y1 )z,t(y2 Cu

(t0,tf), where t0 and tf are initial 

and final times, correspondingly. The terms Rij correspond to the examples; i=1 stable case with 

a recycle r=0.00, and i=2 unstable case with r=0.50, j stands for the following expression, 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−=

γ
)z,t(y1

)z,t(y
exp))z,t(y1(BBR

2

2
1CT11 ,       ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+=
)z,t(y1

)z,t(y
exp))z,t(y1(BBR

2

2
1CT21

γ  (2a)

))z,t(yu(RR 2CT2212 −−== β  (2b)

6 



⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
−−=

γ
)z,t(y1

)z,t(yexp))z,t(y1(BR
2

2
1C13 ,     ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

+=
)z,t(y1

)z,t(y
exp))z,t(y1(BR

2

2
1C23

γ  (2c)

The boundary and initial conditions are, 

 

a.- For the stable case;  ( )5,0t ∈

z = 0 )0,t(yPe
z

)0,t(y
1C

1 =
∂

∂  )0,t(yPe
z

)0,t(y
2T

2 =
∂

∂  (3a)

z = 1 0
z

)1,t(y1 =
∂

∂
 0

z
)1,t(y2 =

∂
∂

 (3b)

t = 0  0uyy C2001 ===  (3c)

 

b.- For the unstable case; assuming negligible reaction in the recycle loop and instantaneous 

mixing of fresh feed and recycle feed at the reactor inlet, the boundary and initial conditions in 

the interval  take the form, ( 25,0t ∈ )

z = 0 [ ])1,t(ryy)r1()0,t(yPe
z

)0,t(y
1101C

1 −−−=
∂

∂
 (4a)

 [ ])1,t(ryy)r1()0,t(yPe
z

)0,t(y
2022T

2 −−−=
∂

∂
 

z = 1 0
z

)1,t(y1 =
∂

∂  0
z

)1,t(y2 =
∂

∂  (4b)

t = 0  0uyy C2001 ===  (4c)

The nominal values of the parameter for the systems studied in this work are shown in Table 1. 
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Table 1 
Nominal values of the parameters 
 

Stable case, i=1 Unstable case, i=2  

0.10.2B0.1Pe
0.201Pe

TTT

C

===
==

β 0.25.2B0.7Pe
0.10Pe

TTT

C

===
=

β
 

0.1B0. C = γ 1.0B0.7 C == γ

 

 most cases study it can be assumed that some, albeit rough, a priori value of the parameters 

. Methodology 

ning equations (1) – (4) were solved using the Matlab® PDE solver “pdepe” 

he spatial domain was divided into 21 equidistant intervals, and the PDEs were solved 

In

vector θ is available, e.g. determined from preliminary experiments. The aim in this work is to 

select a state sampling scheme to maximise the expected accuracy of the parameter estimates to 

be obtained from data generated in new experiments. These parameters should be determined 

with the lower uncertainties. 

 

3

The system gover

which solves initial-boundary value problems for systems of parabolic and elliptic PDEs in one 

spatial dimension. The solver converts the PDEs to ordinary differential equations using a 

second-order accurate spatial discretisation based on a set of nodes specified by the user. Time 

integration is then performed with a multistep variable-order method based on the numerical 

differentiation formulae.  

 

T

simultaneously with the equations describing the transient behaviour of the sensitivity 

coefficients considering n time reporting intervals. Hence, the spatio–temporal distributions of 

the response and the sensitivity coefficients are obtained.  
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The method of snapshots (Sirovich, 1987) was performed and the empirical eigenfunctions 

. Parameter estimation 

 of finding a set of parameter values that produces the best model 

nce the sensor locations have been determined, the parameter estimation problem can be 

corresponding to concentration and temperature;  φi(z) and θi(z), respectively, for each system 

were calculated, their extrema values satisfying ∂φi(z)/∂z=0 and ∂θi(z)/∂z=0 were evaluated and 

the resultant locations were considered for optimal sensor placement purposes (Alaña and 

Theodoropoulos, 2010).  

 

4

Model calibration consists

output which fit the observed data. This calibration is usually done by the minimisation of the 

objective function (5).  

 

O

viewed as matching the model to the real system through the minimisation of an error criterion 

over a set of admissible parameters. This can be defined as, 

( ) ( ) ( )( )
⎥
⎥
⎦

⎤⎡ ft m
211

⎢
⎢
⎣

−=ℑ ∫ ∑
=

0
1i

ipie
f

dt,z,tyz,ty
tm

θθ  (5)

Where, yp(t,zi,θ) is defined as the predicted response of the model at location zi, and ye(t,zi) as the 

experimental response at the same location, m is the number of optimal measurement locations 

determined by the POD extrema analysis studied in this work. Unfortunately, elements in the 

vector yp(t,zi,θ) are not linear functions of the parameters θ, and multiple solutions of (5) are 

possible. This vector can be obtained either by the use of the original governing equations of the 

system or by a reduced model derived from the application of the Galerkin projection in 

conjunction with the empirical eigenfunctions calculated by the snapshots procedure. 
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It is well known that problem (5) is challenging for numerous reasons. The existence of a 

.1. Covariance matrix of parameter estimates 

namic model, the covariance matrix of the 

solution is not certain, particularly if the observed data contains errors or if the model is grossly 

incorrect. It is unusual that any parameter set can accurately match the experimental data used, 

especially when these data are contaminated with noise. The presence of noise can promote 

difficulties during the optimisation process causing spurious local minima and discontinuities. 

The gradient-based methods are the most affected of all. In this work, several different 

optimisation techniques (already existing in the Matlab® library) were used. The method of 

Nelder–Mead produced the best results for the scenarios studied. This can be explained by the 

fact that using this technique, poor gradient approximations are not a problem, and continuity 

and differentiability of the objective function are not required.  

 

4

When assessing the quality of an identified dy

estimated parameters gives an important measure (Ljung, 1999; Söderström and Stoica, 1989). In 

a maximum likelihood context, the inverse of the expected value of the negative of the Hessian 

provides the Cramer-Rao lower bound on the variance-covariance matrix of the parameter 

estimates. Large variances imply imprecise parameter estimates. The arrival of new data, or data 

measurement, can lead to substantial change in parameter estimates if the variance-covariance 

matrix is ill-conditioned. So, the goal of the estimation procedure is to determine unknown 

parameters in such a way that the difference between the sample covariance matrix and the 

implied covariance matrix is minimised in a certain sense (Sorenson, 1980; Zhun and Stein, 

2005). 
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Based on the system studied here, the approximation of the parameters covariance matrix (Yen 

and Yoon, 1981) can be approximated by, 

( )
1

y
T
y2

y
y

T
y2

y
nv 22

2

11

1

JJ1JJ1ˆCov
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+≈
σσ

θ  (6)

Where,  and  represent the Jacobian matrix of estimated variables; y1 and y2, respectively, 

with respect to changes in the parameters. nv is the parameter dimension, and  is the variance 

of the variable k. In this equation it is easy to view the influence of field data quality and quantity 

in parameter uncertainty. Since these Jacobian matrices are evaluated at those locations for 

which observations are available, any experimental design should aim at sampling at those 

locations where the variables are most sensitive to the estimated parameters. Such a design is 

said to provide the maximum amount of information about the unknown parameters (Knopman 

and Voss, 1987). 

1yJ
2yJ

2
kσ

 

It is intuitively obvious that the experimental design objective should be intended at minimising 

the norm of (6); that is, to make matrices ( ) 1
y

T
y 11

JJ −  and ( ) 1
y

T
y 22

JJ −  as  small as possible. The 

variance terms  and  are constants, and can be dropped from the formulation. To measure 

the accuracy of the estimates we like to summarise the information about the variability in the 

covariance matrix into a single number. Here we used the determinant of (6) as the function that 

transforms a matrix into a scalar. This is quite informative as in fact it relates to the volume of 

the multidimensional simplex defined by the column/row vectors of the matrix (Hernandez et al., 

2004; Rutzler, 1987).  

2
y1

σ 2
y2

σ
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Experimental design for parameter  estimation deals with the problem of defining experimental 

conditions that increase the reliability of a simulation model. This can be formulated using a 

measure of the covariance matrix of the parameter estimates. Among these, the most widely used 

design criteria are, 

• A-optimality: when the trace of (6) is minimised. 

• D-optimality: when the determinant of (6) is minimised. 

• E-optimality: when the maximal eigenvalue of (6) is minimised. 

 

Using different norms leads to slightly different conclusions regarding the optimal design. The 

D-optimality criterion minimises the volume of the hyper-ellipsoid in the parameter space, which 

no consideration of the relationship between the ellipsoid’s axes lengths, which are in turn 

proportional to the square root of the covariance matrix eigenvalues. 

 

In general, it can be shown that under some assumptions of regularity and for a sufficiently large 

sample size N the vector (with  denoting the ‘true’ but unknown value of the 

parameters and 

⎟
⎠
⎞

⎜
⎝
⎛ −

*

)N(
ˆ θθ

*
θ

)N(θ̂  the least square parameter estimates) has approximately a normal 

distribution with zero mean and covariance matrix, 

⎟
⎠
⎞

⎜
⎝
⎛−

*
1

2

,M
N

θξσ  (7)

Where  denotes the standard deviation of the errors in the model, ξ represent a design 

experiment (including the measurement locations) and the  is the FIM, defined by, 

2σ

⎟
⎠
⎞

⎜
⎝
⎛ *

,M θξ
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( ) ( )
N

0j,i

n

1k j

k

i

k
* ,z,ty,z,ty

,M
==

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛ ∑ θ

θ
θ

θ
θξ  (8)

In principle the covariance matrix is a measure for the precision of the least square estimator for 

the unknown parameter  and a ‘smaller’ matrix yields more precise estimates. For example, the 

ith diagonal element of (7) will be denoted by 

*
θ

ii

*
1

2

,M
N

⎟
⎠
⎞

⎜
⎝
⎛− θξσ  and is an approximation of the 

variance or mean squared error for the ith component )N(,iθ̂  of the least squared estimator )N(θ̂ . 

An approximate confidence interval for the ith component iθ  of the vector θ  is given by, 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛− −−−−

ii

*
121

)N(,i
ii

*
121

)N(,i ,M
N

uˆˆ,,M
N

uˆˆ θξ
σ

θθξ
σ

θ αα  (9)

Where 21u α−  denotes the 1-α/2 quantile of the standard normal distribution and  is an 

estimate of the unknown variance of the error. For most cases it was shown that for moderate 

sample sizes N the sampling variances of the parameter estimates are well approximate. 

2σ̂

 

The precision of the estimates can always be decreased by increasing the sample size N, which 

yields a ‘smaller’ covariance matrix and smaller variances of the least square estimates. 

However, in practice the sample size is usually fixed, due to cost considerations of each 

additional experiment. To improve the quality of the estimates or, from a different point of view, 

to reduce the number of experiment measurements needed to obtain the estimates with a given 

accuracy, we note that the variances of  the estimates )N(,iθ̂  and the covariance matrix of the 

vector )N(θ̂  also depend on the given design, ξ, which determines the relative proportion of total 

observations to be taken at the experimental locations. 
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It is advisable to check that the confidence interval magnitude agrees with the sensitivity 

analysis, which is the parameter which has the largest sensitivity coefficient should have the 

smallest confidence interval. Because of the consideration of the measurement error only, if the 

FIM is well-defined, the confidence intervals may result in very small values. Grimstadt and 

Mannseth (1998) indicate that the use of such approximation of the confidence intervals was 

almost always justified even for the highly nonlinear model they analysed. 

 

4.2 Experimental sampling design 

Data set to be used in the enhancement of parameter estimates should be preceded by initial 

assumptions concerning the physical model, taking account of geometry, boundary conditions, 

and parameters. This is the fundamental idea of sampling design. Design of an optimal sampling 

scheme consequently requires the ability to mathematically model the physical system either 

analytically or numerically. 

 

A sampling design is usually described as, 

( ){ }m,...,1i,t,z;t,z iiii =∈∈=
∗

ΤΖξ  (10)

The set  identifies the locations in space and time from which m observations of the system are 

taken and  and  define the spatial and temporal domains, respectively, of design space. 

Therefore a collection of n measurement points is delineated for the system transient response as 

pairs (  for i . In addition to the  and  coordinates, the number of observations 

in an optimal design is also unknown. 

∗

ξ

ii t,

Ζ

)

Τ

1=z m,..., iz it
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Sampling design, like parameter estimation, is an optimisation problem. Here the problem is how 

to select the time, location, and number of observations to maximise the value of the data 

collected while minimising the sampling effort. The meaning of “value” depends on the use to 

which the data is put. For applications to parameter estimation, a practical aim would be to 

identify a sampling design that is most likely to yield parameter estimates with low variances and 

covariances. In theory, such estimates would imply a model that more accurately represents 

system behaviour. 

 

An optimal design is based on preliminary assumptions about the physical model including the 

true parameters, which paradoxically, are the target of the estimation process. This difficulty may 

be circumvented, first, by viewing sampling design as a sequential process in which model 

assumptions are updated following each round of sampling and, second, by robust designs that 

perform well over a range of possible true parameter values and boundary conditions.  

 

One possible objective of sampling design is a scalar performance criterion related to the 

covariance matrix, theoretically defined as, 

( ) ( ) 1T2 JJCovCov −∗

=≈⎟
⎠
⎞

⎜
⎝
⎛ σθθ  (11)

Where  is the common variance of the random error terms and J is the Jacobian matrix. The 

covariance matrix  is exactly equals to 

2σ

⎟
⎠
⎞

⎜
⎝
⎛ ∗

θCov ( )θCov

Cov⎜
⎝
⎛

 when the regression model is linear 

respect to the parameters. For a nonlinear model,  only in a neighbourhood 

near 

( )θθ Cov=⎟
⎠
⎞∗

θ  in parameter space when the predictive approximation of the system, ( )θ,t,zy p , is a 

smooth function. 
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An example of scalar performance criterion is the maximisation of the determinant of ( )JJ T  

known as D-optimality. Assuming the theoretical expression for the covariance matrix (11) is a 

valid approximation in the neighbourhood of θ , then it can be seen that the elements of the J 

matrix determine the variance and covariance of parameters in addition to an estimate of 

variance  in the random errors in the experimental observations. Recall that the inverse of a 

matrix is defined as, 

2σ

( ) ( )JJadj
JJ

1JJ T
T

1T =
−  (12)

Where adj is the adjoint of ( )JJ T . 

 

The solution to the D-optimality problem is mathematically equivalent to the solution of the 

problem of minimising the determinant of the covariance matrix ( ) 1T2 JJ −
σ , assuming the 

validity of (11) near the estimated parameters set θ . In parameter space, the determinant of the 

covariance matrix is proportional to the volume of the confidence ellipsoid surrounding the 

parameter estimates. Thus the determinant of ( )JTJ  may be used as a surrogate measure of 

overall uncertainty in parameter estimates. Although algorithms for identifying D-optimal 

designs have been developed, none guarantees a global optimum. An enumerative exploration 

through design space, although inefficient, is nonetheless a satisfactory means of finding local 

optima for the purpose of the present work. 

 

The D-optimality criterion depends on an adequate approximation of the covariance matrix for 

the parameter set θ , either by the theoretical expression (11) or by estimation from a Monte 
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Carlo experiment. Each trial in a Monte Carlo experiment is a different realisation of 

observations from which parameters are then estimated. As many as 1000 trials may be required 

to arrive at a stable estimate of variance for a single design. As a consequence it would be 

attractive to establish the validity of the theoretical covariance matrix over the range of variance 

in random error and parameter values for which the regression model would be applied. To test 

the validity of the least squares assumption of linearity in the neighbourhood of the solution  

for a particular regression model, the theoretical approximation of the covariance matrix should 

be compared with a sample covariance matrix generated from a large number of trials. If the 

theoretical approximation of 

∗θ

( )θCov  is sufficiently close to the sampling covariance matrix, then 

the theoretical approximation may be considered adequate for the particular regression model. 

Nevertheless, this is not known a priori. If the theoretical and sampling covariance matrices are 

calculated for a range of variance in random error and a range of parameter values, then the 

validity of the theoretical approximation is proven for the complete range. 

 

To illustrate the basic relationship between the covariance matrix and sampling design, it is 

useful to examine the case of a simple, two-parameter regression model. For a given design the 

appropriate entries to the J matrix in (11) are as follow; 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=

2

m

1

m

2

2

1

2

2

1

1

1

yy
.
.
.

.

.

.

yy

yy

J

θθ

θθ

θθ

 (13)

The square of the J matrix ( )JJ T  is therefore, 
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( ) ⎥
⎦

⎤
⎢
⎣

⎡
=

2221

1211T JJ
κκ
κκ

 (14)

Where, 

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

m

1j

2

1

j
11

y
θ

κ  (15a)

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
==

m

1j 2

j

1

j
2112

yy
θθ

κκ  (15b)

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

m

1j

2

2

j
22

y
θ

κ  (15c)

The determinant of ( )JJ T  is thus given by, 

( )2
122211

T JJ κκκ −=  (16)

Assuming independence in the rows and columns of J, it can be shown that ( )JJ T  is positive 

definite and hence ( ) 0JJdet T > . The determinant of ( )JJ T  will increase as the sum of squared 

sensitivity coefficients for each parameter increases, and decrease as the correlation between the 

sensitivity of the two parameters increases. 

 

The adjoint of the ( )JJ T  matrix for the two-parameter problem is, 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

1121

1222T JJadj
κκ
κκ

 (17)

Both ( )JJ T  and its adjoint are symmetric. 

Using parameter 1θ  as an example, its relative variance can be expressed as, 
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( )
( )2

122211

22
2

1Cov
κκκ

κ
σ
θ

−
=  (18)

Dividing through by 11κ  and rearranging, 

( )
( )2

1211
2

1

1
1Cov
ζκσ

θ
−

=  (19)

Where 12ζ  is a simple correlation coefficient for the sensitivities defined by, 

( ) 21
2211

12
12 κκ

κ
ζ =  (20)

This coefficient is indicative of the linear relationship between the sensitivities for 1θ  and 2θ . 

The extent to which maximising 11κ  will minimise ( )
2

1Cov
σ
θ  depends on the collinearity among 

the sensitivities. As collinearity increases, the influence of a large 11κ  on ( )
2

1Cov
σ
θ  diminishes, 

although increasing 11κ  will continue to reduce variance. 

 

The connotations of the previous argument also apply to 2θ . For problems with more than two 

parameters, the analysis may be easily generalised. Maximising the sum of absolute sensitivities 

to the parameter of interest through a careful choice of observation points in a sampling design 

will lower the variance of the parameter estimate. This is the incentive for examining the 

behaviour of sensitivities in the system studied when improvement of parameter estimates is a 

purpose of field sampling. 

 

To maximise 11κ , consider the following optimisation problem, 
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∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
=

m

1j

2

1

j
11

y
maxmax

θ
κ  (21)

Or alternatively, 

⎪⎭

⎪
⎬
⎫
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θθθ
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Or, 

{ }2
m1

2
12

2
1111 S...SSmaxmax +++=κ   with 

1

j
j1

y
S

θ∂
∂

=  (23)

Taking derivative with respect to variable z, 

z
S

S2...
z

SS2
z

SS2
z

m1
m1

12
12

11
11

11

∂
∂

++
∂
∂

+
∂
∂

=
∂
∂κ  (24a)

∑
= ∂

∂
=

∂
∂ m

1j

j1
j1

11

z
S

S2
z
κ  (24b)

Then to maximise 11κ  it is necessary that, 

0
z
11 =

∂
∂κ  (25)

Which it can be achieved when, 

1) m,...,1j0
z

S 1j ==
∂

∂
 (26a)

2)  m,...,1j0S 1j == (26b)

Then if we select carefully the locations j for which 0
z

S 1j =
∂

∂
 we could warrantee that the 

( )
2

iCov
σ
θ

 is minimised, which is the same to consider the locations of the extrema values 

corresponding to each POD-mode capturing most of the kinetic energy of the system. 

20 



 

Considering the equivalence between the sensitivity coefficients of a general system and the 

same given by an approximator based on the POD-modes (Alaña and Theodoropoulos, 2010), 

( )∑∑∑
= = =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂

∂
∂

∂
∂

=
∂
∂ m

1j

M

1k

M

1w
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k

1
jkk

1

11

z
)z(

)t()z()t(
z

φ
α

θ
φα

θ
κ  (27)

Here it can be seen that (25) is accomplished when, 

M,...,1kfor0)z(or/and0
z

)z(
jk

jk ===
∂

∂
φ

φ
 (28)

Then it can be observed that the variance of the parameter estimates can be lowered by means of 

an optimal selection of measurement points,  for jz m,...,1j =  where the sum of the absolute 

POD-modes is maximised, according to (22) and (27). 

 

5. Numerical Results 

The spatial variability of sensitivities and/or POD-modes has a significant impact on parameter 

estimation and sampling design for studies of DPSs. Information about a physical parameter will 

be most accurately gained at points in space with a high sensitivity to the parameter.  

 

The set of PDEs described in Section 2 above was solved using nominal values for the 

parameters (Table 1) and random noise with zero mean, N(0,σ2), was added to the outputs, the 

variance used here, σ2=0.0005. For each case 10 replications of the digital experiment were 

collected.  

 

Data set averaging is used to reduce the effect of random noise in the measurements which 

typically arise from the data acquisition system. In practice, this implies that several data sets of 
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the same signal, in response to identical perturbations, have been taken. Data set averaging may 

be obtained as, 

( ) ( ) s

n

1j
iji N,...,1iz,ty

n
1z,tŷ == ∑

=

 (29)

Where n is the number of data sets and Ns is the number of observations per set. The effects of 

the random noise tend to cancel as several sets of data are averaged. However, the noise can only 

be reduced to a certain degree and not totally eliminated. In this work only minimal 

improvements were achieved by averaging together more than ten sets of data. In addition to 

averaging, the output can be low pass filtered to remove the residual random noise and the 

systematic noise. 

 

An ensemble of N=50 snapshots, selected randomly from the whole data, was constructed to 

calculate the empirical eigenfunctions; )z(iφ  and )z(iϕ  for each field. A reduced model was 

derived for each example applying Galerkin projection to the original governing equations and 

using as basis the empirical eigenfunctions obtained from the previous step. For each example 

the relative and total kinetic energy captured by the POD-modes are shown in Tables 2 and 3. 

 

The average responses obtained applying (29) were treated as experimental data and used during 

the minimisation of (5). The parameters calculated were compared with their corresponding 

nominal values and some extra analyses were carried out (Alaña and Theodoropoulos, 2010). 

 

The parameter estimation was carried out considering the governing equations as predictive 

model and the equivalent reduced model obtained for each example studied and the results 

obtained were compared. The initial guess used, in most of cases, corresponds to the 50% of the 
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nominal values given in Table 1, otherwise it is mentioned in the corresponding results. 

Table 2 
Relative and total system’s energy captured by the POD-modes. Tubular reactor stable operation 
conditions 

  λ1 λ2 
Total kinetic 
energy (%) 

Field y1(t,z) 0.41082 
(0.99995) 

0.00002 
(5.12e-5) 99.999 

Tubular 
Reactor 
Stable 
Operation Field y2(t,z) 0.41786 

(0.99980) 
0.00009 
(2.04e-4) 99.999 

Number in parentheses represent the relative energy captured by the ith POD-
mode, defined by, 

∑
=

=
m

1k
kiiE λλ  

The accumulative sum of the relative energies approaches 1.00 as the number of 
modes in the reconstruction increases to m. 

 

Table 3 
Relative and total system’s energy captured by the POD-modes. Tubular reactor unstable 
operation conditions 
 

  λ1 λ2 λ3 λ4 
Total kinetic 
energy (%) 

Field y1(t,z) 0.61849 
(0.97479) 

0.01449 
(0.02283) 

0.001460 
(0.00229) 

0.000050 
(7.30e-5) 99.999 

Tubular 
Reactor 
Unstable 
Operation Field y2(t,z) 1.17224 

(0.97860) 
0.01994 

(0.01665) 
0.005578 
(0.00466) 

0.000105 
(8.78e-5) 99.999 

Number in parentheses represent the relative energy captured by the ith POD-mode, defined by, 

∑
=

=
m

1k
kiiE λλ  

The accumulative sum of the relative energies approaches 1.00 as the number of modes in the 
reconstruction increases to m. 

 

The field reconstruction for the stable scenario can be achieved by considering the first two 

empirical eigenfunctions. The unstable case requires the first four POD-modes to reproduce 

satisfactorily the concentration and temperature fields. Figures 1 and 2 show these empirical 

eigenfunctions in the spatial domain for each example. The locations of the extrema values can 

be extracted by mere observations of these figures and are depicted in corresponding tables. This 

information is particularly important if the POD-based method is used to directly reduce the 

system at hand leading to efficient linking the sensor placement problem with the on-line 
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optimisation and control strategies for DPSs. The spatial positions of the POD-modes extrema 

values and the parameter estimation scenarios performed in this work are show in Table 4. 

 
Table 4 
Extrema spatial locations of the empirical eigenfunctions 
 

Tubular reactor stable 
operation conditions 

Tubular reactor unstable 
operation conditions 

Scenario Concentration 
y1(t,z) 

Temperature
y2(t,z) 

Concentration
y1(t,z) 

Temperature 
y2(t,z) 

A Whole spatial 
domain 

Whole spatial 
domain 

Whole spatial 
domain 

Whole spatial 
domain 

Ba 0.00  0.05  1.00 0.00  0.05  1.00 
0.00  0.05  0.15  
0.20  0.40  0.50   
0.55  1.00 

0.00  0.05  
0.20  0.45  
0.50  1.00 

Cc 0.00  1.00 0.00  1.00 N/a N/a 

Db 0.00  0.05  1.00 0.00  0.05  1.00 
0.00  0.05  0.15  
0.20  0.40  0.50   
0.55  1.00 

0.00  0.05  
0.20  0.45  
0.50  1.00 

a The experimental measurements positions are based in the allocation of the extrema values 
of the POD-modes in the spatial domain 
b Same case as B but the reduced model was used as predictive model 
c This case was carried out to quantify the effect of considering or not the sensor location at 
z=0.05 stable operation conditions 

 

Additionally, a D-optimal experiment design (Uciński, 2005; Alaña and Theodoropoulos, 2010) 

was carried out for each example considering the normalised and non-normalised sensitivity 

coefficients during the computation of the FIM. The results reported by this approach are shown 

in Table 5. 
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Table 5 
Optimal sensor positions. D-optimal experiment design 
 

Tubular reactor stable 
operation conditions 

Tubular reactor unstable 
operation conditions 

D-optimal experiment 
design Concentration

y1(t,z) 

Temperature

y2(t,z) 

Concentration 

y1(t,z) 

Temperature

y2(t,z) 
Normalising the sensitivity 
coefficients 
Case E 

0.00 1.00 0.00 1.00 0.00 0.10 1.00 0.00 0.55 0.95 

Non normalising the 
sensitivity coefficients 
Case F 

0.10 1.00 0.15 1.00 0.00 0.25  0.30 0.20 1.00 

 

In this table it can be observed that the D-optimal method reported slightly different results when 

the FIM uses normalised and/or non-normalised sensitivity coefficients. These optimal locations 

were considered to estimate parameters for each example and the results were compared with the 

ones obtained using the method introduced here. 

 

To verify the quality of the results produced by the different approaches followed to define the 

optimal positions of the observations, a parameter estimation procedure, explained in Section 4, 

was implemented. The parameter estimates were compared with the nominal values shown in 

Table 1. The determinant of the parameter covariance matrix, equation (6), was used as a 

measure of identifiability and the design aim of the parameter estimates considering the 

scenarios reported in Tables 4 and 5. The confidence intervals, given by (9), were also calculated 

and the results are shown in Tables 6 and 7. 
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Table 6 
Parameter estimates. Tubular reactor stable case 
 

Parameter estimates – Tubular reactor stable operation 

conditions 
 

Scenario 

PeC PeT BC BT γ βT 
SSE and 

det[Cov(θ)] 

A 

0.9947 

(0.53%) 

[± 0.053] 

1.0002 

(0.02%) 

[± 0.003] 

1.0026 

(0.26%) 

[± 0.024] 

1.9960 

(0.20%) 

[± 0.036] 

19.1941 

(4.03%) 

[± 0.368] 

0.9933 

(0.67%) 

[± 0.061] 

1.04e-4 

2.10e-3 

B 

0.9887 

(1.13%) 

[± 0.102] 

1.0009 

(0.09%) 

[± 0.008] 

0.9963 

(0.37%) 

[± 0.034] 

2.0043 

(0.22%) 

[± 0.044] 

21.3920 

(6.96%) 

[± 0.709] 

1.0021 

(0.21%) 

[± 0.019] 

7.57e-4 

5.33e-3 

C 

0.9957 

(0.43%) 

[± 0.039] 

1.0018 

(0.18%) 

[± 0.016] 

1.0027 

(0.26%) 

[± 0.024] 

2.0035 

(0.18%) 

[± 0.017] 

15.4678 

(22.66%) 

[± 7.670] 

1.0001 

(0.01%) 

[± 0.002] 

8.37e-3 

25.67e-1 

D 

0.9917 

(0.83%) 

[± 0.075] 

0.9983 

(0.17%) 

[± 0.016] 

1.0022 

(0.22%) 

[± 0.020] 

1.9976 

(0.12%) 

[± 0.011] 

19.1229 

(4.39%) 

[± 0.400] 

0.9985 

(0.15%) 

[± 0.013] 

1.12e-4 

5.59e-3 

Number in parentheses represents the percentage deviation of the parameter from the nominal value (Table 1) 
Number in brackets represents the confidence interval. 

 

The parameter more difficult to fit was γ. This can be explained by the fact of being the 

parameter with the lowest absolute sensitivity in the spatio-temporal domain. The presence of 

noise in the experimental data complicates even more its estimation. A large improvement is 

obtained when the measurements at location z=0.05 is considered, especially to identify γ. The 

uses of a reduced model to predict the outputs during the optimisation process enhance 

remarkably the estimates and the computation cost. This computation cost it correspond to the 

60% of using the original governing equations. The covariance matrix is implicitly dependent on 

the sensor location. The variance of the estimates is thus influenced by the choice of sensor 

positions and the number of sensors m, which in turn means that an optimal choice of 

measurement locations will improve the accuracy of the estimates 
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Table 7 
Parameter estimates. Tubular reactor unstable case 
 

Parameter estimates – Tubular reactor unstable operation 

conditions 
 

Scenario 

PeC PeT BC BT γ βT 
SSE and 

det[Cov(θ)] 

Aa 

6.9932 

(0.10%) 

[± 1.100] 

6.8257 

(2.49%) 

[± 1.248] 

0.0995 

(0.50%) 

[± 0.017] 

2.4685 

(1.26%) 

[± 0.244] 

10.0926 

(0.93%) 

[± 0.854] 

1.9910 

(0.45%) 

[± 0.344] 

1.89e-4 

4.09e-3 

B 

7.0116 

(0.17%) 

[± 1.053] 

7.0317 

(0.43%) 

[± 0.655] 

0.0994 

(0.60%) 

[± 0.020] 

2.3963 

(4.15%) 

[± 0.705] 

10.2110 

(2.11%) 

[± 1.002] 

1.9470 

(2.65%) 

[± 0.997] 

5.98e-4 

9.65e-3 

D 

7.0328 

(0.47%) 

[± 1.201] 

7.0199 

(0.29%) 

[± 0.322] 

0.0992 

(0.80%) 

[± 0.038] 

2.4155 

(3.38%) 

[± 0.414] 

10.1098 

(1.10%) 

[±0.899] 

1.9684 

(1.58%) 

[± 0.505] 

3.24e-4 

7.01e-3 

Eb 

5.2873 

(24.47%) 

[± 3.001] 

5.8595 

(16.29%) 

[± 2.444] 

0.0995 

(0.50%) 

[± 0.053] 

2.4077 

(3.69%) 

[± 0.400] 

10.2595 

(2.60%) 

[± 1.323] 

1.9553 

(2.24%) 

[± 0.873] 

7.22e-2 

141.33e-1 

a In this particular case the initial guess vector for the parameter needed to be changed as 70% of the nominal 
value (Table 1) 
b Results obtained considering the optimal locations reported the D-optimal experiment design using the 
normalised sensitivity coefficients 
Number in parentheses represents the percentage deviation of the parameter from the nominal value. 
Number in brackets represents the confidence interval. 

 

For this example, considering the measurements in the whole spatial domain, Case A, required 

initial parameters as a guess vector closer to the real ones, using the 50% of the nominal values 

do not produced good results, which indicates how the identification depends of the initial guess 

used during the optimisation process. This aspect can be overcome when the observations are 

taken at the locations established by the extrema values of the POD-modes and/or using a 

reduced model to predict the outputs. 

 

Comparison of optimisation runs for the global objective function show that the information 

gained from the POD-modes extrema analysis was effective in both reducing the computational 
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load of the optimisation and finding an optimum parameter set. This analysis yielded that the 

measurement locations plays an essential role in the parameter estimation problem. 

 

Due the complex nature of this example, the nominal values of the parameters are not reproduced 

satisfactorily, not even considering the whole experimental data in the spatial domain. PeT and 

PeC are the parameters showing the highest deviation from its nominal value. This gives another 

motivation for using sensor placement strategies based on the extrema evaluation of the 

predominant empirical eigenfunctions, because not only the uncertainty in parameter estimation 

was reduced (See the deviation from the nominal values, number in parentheses, shown in Tables 

6 and 7), but the cost associated to such measures as well, which is significant, especially in 

situations where experimental measurements are very expensive. Information about a physical 

parameter may be most accurately gained at points in space with a high sensitivity to the 

parameter. Taking observations at locations defined by the extrema values of the POD-modes 

tends to yield relatively low variance.  

 

The tubular reactor operating at unstable conditions it is highly nonlinear and difficult to control 

and indentify. In the particular case analysed here it was observed that parameters PeT and PeC 

show the lowest absolute sensitivity coefficients. Preliminary results have proven that the inverse 

problem it is usually bad conditioned; as some sensitivity coefficients are very small. In practice, 

this implies that any method based on gradient and/or Hessian information only modifies a few 

parameters (parameters with the highest values of the sensitivity coefficients). This problem can 

be overcome using optimisation techniques that do not use such information, as the Nealder-

Mead method. A further improvement can be achieved if the experimental observations are taken 

at the locations where the POD-modes show extrema values combined with the use of a reduced 
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model to predict the outputs of the system. Here the objective function was evaluated varying 

PeT and PeC and keeping the other parameters constant using the original governing equations or 

the reduced model as predictive model (Fig. 3). 

 

It can be noticed in Fig. 3 how the surface of ( )θℑ  changed when a reduced model is used. On 

the three-dimensional surface of ( )θℑ , when the original governing equations were used as 

predictive model, a flat valley can be seen as well as multiple areas with local minima. Each 

combination of parameter values in this valley corresponds to a model simulation which is able 

to describe the measured data equally well. This poses problems for the optimisation algorithms 

because no clear direction can be found in which ( )θℑ  value improves and this result in a 

premature convergence of the algorithm and wrongly estimated parameters. When the reduced 

model is used to predict the outputs the areas with local minima disappeared which can improves 

the optimum search. Also, new curvatures in ( )θℑ  are produced which can enhance to reach the 

global minimum of the objective function. 

 

It is valuable to investigate, in future works, the influence of the predictive model used over the 

objective function for parameter estimation of highly nonlinear problems. 

 

6. Conclusions 

A sampling placement scheme to estimate parameters is introduced. The definition of the spatial 

positions is crucial in the parameter estimation process. The latter can be performed optimally 

when the observations are taken at the locations in the spatial domain where the empirical 

eigenfunctions reached their extrema values. The parameters estimates with the highest deviation 

from the nominal values are generally the ones exhibiting the lowest absolute sensitivity 
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coefficients. This estimation can be improved measuring at the locations where the POD-modes 

show extrema values. The results are strongly influenced by the presence of noise in the 

experimental data, but this can be solved using common filtering techniques. Not only the 

uncertainty in parameter estimation can be reduced by considering these sensor locations, but 

cost is decreased also, which is significant, especially in situations where experimental 

observations are expensive. While the D-optimal design requires post-processing of the 

sensitivity coefficients to determine positions and the optimal number of measurements, a mere 

observation of the extrema values of the POD-modes can produce the same results.  
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Fig. 1. Empirical eigenfunctions and extrema locations. Tubular reactor stable case 
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Fig. 2. Empirical eigenfunctions and extrema locations. Tubular reactor unstable case 
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a) Using the original governing equations as predictive model in (5) 

 
a) Using the reduced model as predictive model in (5) 

 
Fig. 3. Objective function surface. Tubular reactor unstable operation conditions 
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“Models, of course, are never true, but fortunately 
it is only necessary that they be useful 

 

Box
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APPENDIX A    

 

For the reaction system introduce in Chapter VI, Figure 6.2. Under the standard 

assumptions of constant density (ρ) and heat capacity (cp) of the reacting fluid, and 

constant axial fluid velocity (v), the dynamic behaviour of the reactor is described by 

the following set of partial differential equations defined on a spatial domain z∈(0,1) 

derived from the mass and energy balances; 
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Where CA(z,t) and T(z,t) stand for temperature and concentration of species A in the 

reactor, respectively, k and DA are the thermal conductivity and mass diffusivity of the 

reacting fluid, respectively, k0, E and (-ΔH) represent the pre-exponential constant, 

activation energy and the heat of the reaction, respectively, h is the heat transfer 

coefficient between  the reactor and the cooling jacket, As is the surface area of the 

reactor walls, and Tc(t) corresponds to the temperature of the cooling medium . 

Assuming negligible reaction in the recycle loop and instantaneous mixing of fresh feed 
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and the recycle at the inlet, the boundary conditions of the system take the form; 

At z=0; 
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At z=1; 
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Where T0(t) and CA0(t) denote the inlet temperature and concentration of species A in 

the reactor, r is the recycle ratio, which varies from zero to one, with one corresponding 

to total recycle and zero to fresh feed or no recycle. To simplify this representation, the 

following dimensionless variables can be introduced; 
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The system of equations (A.1) can be written in the following form; 
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At z=0; 
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For the particular case studied here, the operating conditions of the reactor are; 

CA0=T0=Tc=0 with a recycling relation r=0.5. The initial conditions in dimensionless 

form are; 

02001 === Cyyy  (A.8)

 

In the specific case of no recycle in the system (r=0.00). The equations are; 
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At z=0; 
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With the same initial conditions presented above. 
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APPENDIX B    
 

pdepe  
 
 

Solve initial-boundary value problems for systems of parabolic and elliptic partial 

differential equations (PDEs) in one space variable and time. 

 

Syntax 

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) 

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) 

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options,p1,p2...) 

 

Arguments 

m  A parameter corresponding to the symmetry of the problem. m can be 

slab = 0, cylindrical = 1, or spherical = 2.  

pdefun A function that defines the components of the PDE.  

icfun  A function that defines the initial conditions.  

bcfun  A function that defines the boundary conditions.  

xmesh  A vector [x0,x1,...,xn] specifying the points at which a numerical solution 

is requested for every value in tspan. The elements of xmesh must satisfy x0<x1<...<xn. 

The length of xmesh must be >= 3. 
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tspan  A vector [t0,t1,...,tf] specifying the points at which a solution is requested 

for every value in xmesh. The elements of tspan must satisfy t0<t1<...<tf. The length of 

tspan must be >= 3.  

options Some options of the underlying ordinary differential equations solver are 

available in pdepe: RelTol, AbsTol, NormControl, InitialStep, and MaxStep. In most 

cases, default values for these options provide satisfactory solutions. 

p1, p2,... Optional parameters to be passed to pdefun, icfun, and bcfun.  

 

Description 

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves initial-boundary value problems 

for systems of parabolic and elliptic partial differential equations in the one space 

variable x and time t. The ordinary differential equations resulting from discretization in 

space are integrated to obtain approximate solutions at times specified in tspan. The 

pdepe function returns values of the solution on a mesh provided in xmesh.  

 

pdepe solves PDEs of the form: 
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The PDEs hold for and fttt ≤≤0 bxa ≤≤ . The interval [ ]b,a  must be finite. m can be 

0, 1, or 2, corresponding to slab, cylindrical, or spherical symmetry, respectively. If 

m>0, then  must be >= 0. In Equation B.1, ⎟
⎠
⎞

⎜
⎝
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∂
∂ut ,,,

x
uxf is a flux term and 
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uutxs ,,, is a source term. The coupling of the partial derivatives with respect to 

time is restricted to multiplication by a diagonal matrix ⎟
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x
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elements of this matrix are either identically zero or positive. An element that is 

identically zero corresponds to an elliptic equation and otherwise to a parabolic 

equation. There must be at least one parabolic equation. An element of “c” that 

corresponds to a parabolic equation can vanish at isolated values of x if those values of 

x are mesh points. Discontinuities in “c” and/or “s” due to material interfaces are 

permitted provided that a mesh point is placed at each interface. For t=t0 and all x, the 

solution components satisfy initial conditions of the form, 

( ) (xutxu 00, = ) (B.2)

For all t and either x=a or x=b, the solution components satisfy a boundary condition of 

the form, 

( ) ( ) 0,,,,,, =⎟
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+
x
uutxftxqutxp  (B.3)

Elements of q are either identically zero or never zero. Note that the boundary 

conditions are expressed in terms of the flux “f” rather than 
x
u
∂
∂ . Also, of the two 

coefficients, only “p” can depend on u. 

Example. This example illustrates the straightforward formulation, computation, and 

plotting of the solution of a single PDE. 
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x
u

xt
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This equation holds on an interval 1x0 ≤≤  for times . 0t ≥

The PDE satisfies the initial condition, 

( ) ( xxu )πsin0, =  (B.5)

And boundary conditions, 

( ) 0,0 =tu  (B.6a)
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x
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It is convenient to use subfunctions to place all the functions required by pdepe in a 

single M-file.  

 

function pdex1 
m = 0; 
x = linspace(0,1,20); 
t = linspace(0,2,5); 
sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t); 
% Extract the first solution component as u. 
u = sol(:,:,1); 
% A surface plot is often a good way to study a solution. 
surf(x,t,u)     
title('Numerical solution computed with 20 mesh points.') 
xlabel('Distance x') 
ylabel('Time t') 
% A solution profile can also be illuminating. 
figure 
plot(x,u(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 
ylabel('u(x,2)') 
% -------------------------------------------------- 
function [c,f,s] = pdex1pde(x,t,u,DuDx) 
c = pi^2; 
f = DuDx; 
s = 0; 
% -------------------------------------------------- 
function u0 = pdex1ic(x) 
u0 = sin(pi*x); 
% -------------------------------------------------- 
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t) 
pl = ul; 
ql = 0; 
pr = pi * exp(-t); 
qr = 1; 



 

 

 

 

APPENDIX C   
 

SENSITIVITY ANALYSIS. TUBULAR REACTOR WITH 
RECYCLE 
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At z=0; 
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At z=1; 
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The parameters values are, 
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The reactor is operating at CA0=To=Tc=0 with a recycling relation r=0.5. 
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At z=0; 

[ ])1,()0,( 11
1 trytyPe
z
y

T −=
∂
∂  (C.6a)

[ ])1,()0,( 22
2 trytyPe

z
y

C −=
∂
∂  (C.6b)

 

At z=1; 
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The derivatives of equations (C.5) – (C.7) with respect to each parameter; 
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APPENDIX D   
 

REDUCED MODEL. TUBULAR CHEMICAL REACTOR 

WITH RECYCLE 

This system is described by the following non – linear partial differential equations, 
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The reactor is operating at CA0=To=Tc=0 with a recycling relation r=0.5. 
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Applying Galerkin projection, 
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For the mass balance,  
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For the energy balance,  
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With initial conditions, 
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