
ZIEGLER SPECTRA OF VALUATION

RINGS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Engineering and Physical Sciences

2010

Lorna Gregory

School of Mathematics

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40024236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Contents

Abstract 4

Declaration 5

Copyright Statement 6

Acknowledgements 8

1 Introduction 9

2 Background 12

2.1 Injective modules and irreducible ideals . . . . . . . . . . . . . . . . . 12

2.2 pp-formulae, pp-types and pure-injectives . . . . . . . . . . . . . . . . 15

2.3 The Ziegler Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Valuation rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 The Ziegler Spectrum of a Valuation Domain 29

3.1 Some lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 pp-formulae and pp-types over valuation domains . . . . . . . . . . . 31

3.3 The Ziegler spectrum of a valuation domain . . . . . . . . . . . . . . 35

3.4 Duality for the Ziegler spectrum of a valuation domains . . . . . . . . 42

3.5 Description of the open sets . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 The Ziegler spectrum of a valuation domain is sober . . . . . . . . . . 55

4 Decidability 64

2



4.1 Necessary conditions for the theory of modules of a commutative ring

to be decidable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Valuation domains with infinite residue field . . . . . . . . . . . . . . 79

4.4 Valuation domains with finite residue field . . . . . . . . . . . . . . . 81

4.5 Valuation domains with finite residue field and non-dense value group 95

5 The Ziegler spectrum restricted to injectives and other topologies

on indecomposable injectives. 115

5.1 Examples and possible behaviour . . . . . . . . . . . . . . . . . . . . 123
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We show that the Ziegler spectrum ZgR of a valuation domain R is sober, i.e. every
nonempty, irreducible closed set is the closure of a point.

We use the Ziegler spectrum as a tool to prove the following result conjectured
by Puninksi, Puninskaya and Toffalori in [PPT07] for valuation domains with dense
value group:

Let V be an effectively given valuation domain. Then the following are equivalent:

(i) The theory of V -modules, TV , is decidable.

(ii) There exists an algorithm which, given a, b ∈ V , answers whether a is in the
radical of bV .

We investigate the Ziegler spectrum restricted to the subspace of injectives ZgR|inj

for R a valuation ring, a Prüfer ring and the fibre product of two copies of the same

valuation ring over the residue field. For these rings, we show that ZgR|inj is sober

and compare it with the Hochster dual of the spectrum of R.
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Chapter 1

Introduction

A valuation ring is a commutative ring whose ideals form a chain.

The Ziegler spectrum ZgR of a ring R is a topological space attached to the

module category of R. It was defined by Ziegler in [Zie84]. The points of ZgR are

isomorphism classes of indecomposable pure-injective right R-modules and the closed

sets correspond to complete theories of modules closed under arbitrary direct sums.

The space ZgR plays a crucial role in understanding the model theory of modules.

Many questions in the model theory of modules can be rephrased in terms of ZgR.

In this thesis we investigate ZgR for R a valuation ring and use it as a tool to prove

decidability results.

Chapter 2 contains background material which can be found in more detail in

[Lam99], [Pre88] and [Pre09].

The main result in chapter 3 is that the Ziegler spectrum of a valuation domain is

sober. We say a topological space is sober if its irreducible closed sets are the closures

of points. Soberness for the Ziegler spectrum was shown by Herzog in [Her93] for

countable rings. The proof given in [Her93] does not have an obvious generalisation

to arbitrary rings.

In the same paper, Herzog used Prest’s notion of duality for pp-formulae to give

a lattice isomorphism between the lattice of open sets of the right and left Ziegler

spectra of a ring. If both the left and ring Ziegler spectra of R are sober this means

that up to topologically indistinguishable points, the left and right Ziegler spectra
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of a ring are homeomorphic. In the situation of commutative rings this in general

gives a non-trivial automorphism of ZgR up to topologically indistinguishable points.

For valuation domains we do better than this by giving in 3.4.1 a natural continuous

automorphism at the level of points.

We use a formulation of the Ziegler spectrum in terms of equivalence classes of

pairs of ideals which is specific to valuation domains. This can be found in [Pun99].

So the proof we give of soberness for the Ziegler spectrum of a valuation domains is

unlikely to generalise to arbitrary rings.

We show in 2.3.28 that an arbitrary commutative ring R has sober Ziegler spec-

trum if and only if each of its localisations at maximal ideals has sober Ziegler spec-

trum. This result relies on a result due to Prest [Pre09, Theorem 5.5.3] which says

that an epimorphism of rings R → S induces a continuous embedding from ZgS to

ZgR and the image of this embedding is closed.

Therefore the Ziegler spectrum of a Prüfer domain is sober (cf. 3.6.17).

In chapter 4 we show that, for an effectively given valuation domain V , the fol-

lowing are equivalent:

1. The theory of V -modules is decidable.

2. There is an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ).

This was conjectured for valuation domains with dense value group in [PPT07] where

it was shown that if V is an effectively given valuation domain with dense archimedean

value group then the theory of modules is decidable (since such a valuation domain

has only one non-zero prime ideal, the radical condition is trivial).

The proof of this result goes via the Ziegler spectrum. This method for proving

decidability of theories of modules was described in [Zie84] and is the method used

in [PPT07].

In chapter 5 we investigate topologies on the set of isomorphism classes of in-

decomposable injectives, injR, over valuation rings, Prüfer rings and fibre products

of valuation rings. We consider two topologies, the Ziegler spectrum restricted to

injective modules and the idealsR topology. The idealsR topology is a refinement

10



of the Ziegler topology restricted to injectives. It is defined by giving a basis of open

sets

O(I) = {E ∈ injR | HomR(R/I,E) 6= 0}

where I C R. We use a simplified formulation of the Ziegler spectrum restricted to

injectives [PR10, Corollary 7.4] which says that ZgR|inj has basis of open sets O(I)

where I is a pp-definable ideal.

The map t taking an indecomposable injective E to the prime ideal consisting of

the elements of R which annihilate non-zero elements of E is a continuous map from

injR to Spec∗R when either topology is put on injR. In the case of a coherent ring

ZgR|inj is homeomorphic to Spec∗R after identifying topologically indistinguishable

points in ZgR|inj. This is not necessarily the case for non-coherent rings. For example

[GP08b] or 5.1.6. We use the map t to compare Spec∗R with ZgR|inj, by which we

mean we look at the complexity of the fibres of t. For R a valuation ring, there is at

most one fibre containing topologically distinguishable points and that fibre contains

at most two pairwise topologically distinguishable points (5.1.5). We give an example

of a fibre product of valuation rings where the fibre of the maximal ideal contains 3

pairwise topologically distinguishable points (5.3.8).

We show that injR is sober with both the Ziegler topology and the idealsR topol-

ogy for R a Prüfer ring or a fibre product of two copies of the same valuation ring

over its residue field, 5.0.18, 5.2.6, 5.3.3, 5.3.4.
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Chapter 2

Background

Throughout, we will assume that all rings are unital.

2.1 Injective modules and irreducible ideals

Background material on injectives can be found in [Lam99, Chapter 3].

Definition 2.1.1. Let R be a ring. We say a module E is injective if for every

embedding i : A ↪→ B and map f : A → E there exists a map h : B → E such that

h ◦ i = f .

Proposition 2.1.2. Let R be a ring and N an R-module. There exists an injective

module E(N) such that N is a submodule of E(N) and for all injective modules E ′

and all embeddings f : N ↪→ E ′ there is an extension of f embedding E(N) into E ′.

Moreover, E(N) is unique up to isomorphism.

Definition 2.1.3. Let R be a ring. Let N and E(N) be as in the above proposition.

We call E(N) the injective hull of N .

Definition 2.1.4. Let R be a ring. A right ideal I CR is said to be irreducible if for

all right ideals K,LCR, K ∩ L = I implies either K = I or L = I.

Definition 2.1.5. Let R be a ring. We say an R-module M is uniform if for all

non-zero submodules N1, N2 ⊆M , N1 ∩N2 6= 0.
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The following theorem is taken from [Lam99] page 84.

Theorem 2.1.6. For any injective right module M over a ring R, the following

conditions are equivalent:

(i) M is indecomposable.

(ii) M 6= 0 and M = E(M ′) for any non-zero submodule M ′ ⊆M .

(iii) M is uniform.

(iv) M = E(U) for some uniform module U .

(v) M = E(R/I) for some irreducible right ideal I ( R.

(vi) M is strongly indecomposable; that is, End(M) is a local ring.

We denote the set of isomorphism classes of indecomposable injective R-modules

by injR.

Lemma 2.1.7. Let R be a commutative ring and E an indecomposable injective

R-module. Then for all non-zero w ∈ E, annRw is an irreducible ideal in R.

Proof. Suppose w ∈ E and w is non-zero. Then wR = R/annRw. Let I = annRw.

Suppose K,L C R and K ∩ L = I then K ⊇ I and L ⊇ I so K/I and L/I are

submodules of R/I. Since K ∩ L = I, K/I ∩ L/I = 0. Note that a submodule of a

uniform module is uniform. Hence, since R/I is uniform, either K/I = 0 or L/I = 0

so either K = I or L = I.

Definition 2.1.8. Let R be a commutative ring and I, J C R. We define the ideal

quotient:

(I : J) := {r ∈ R|Jr ⊆ I} .

If I CR and x /∈ I then we write (I : x) for (I : xR).

Lemma 2.1.9. [Nis72] Let R be a commutative ring and let I, J CR be irreducible.

Then E(R/I) ∼= E(R/J) if and only if there exists r ∈ R\I and s ∈ R\J such that

(I : r) = (J : s).
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Definition 2.1.10. Let R be a commutative ring and E be an indecomposable injec-

tive R-module, then the attached prime of E, denoted AttE is the set of all r ∈ R

such that there exists a non-zero w ∈ E with wr = 0.

Lemma 2.1.11. Let R be a commutative ring and E be an indecomposable injective

R-module. Then AttE is a prime ideal.

Proof. Suppose r, s ∈ AttE and λ ∈ R. There exists non-zero w, u ∈ E such that

wr = 0 and us = 0. Then wrλ = 0 so rλ ∈ AttE. Since E is uniform wR ∩ uR 6= 0.

Take non-zero v ∈ wR ∩ uR then vr = 0 since v ∈ wR and vs = 0 since v ∈ uR.

Therefore v(r + s) = 0 so r + s ∈ AttE. Hence AttE is an ideal.

Suppose s, r /∈ AttE. Then for any non-zero w ∈ E, ws 6= 0 and wr 6= 0 therefore

for any non-zero w ∈ E, wrs 6= 0. Hence rs /∈ AttE. So AttE is a prime ideal.

Definition 2.1.12. Let R be a commutative ring and I CR an irreducible ideal then

the attached prime of I, denoted I#, is the set of all x ∈ R such that there exists

g /∈ I with gx ∈ I.

Lemma 2.1.13. Let R be a commutative ring and I CR a irreducible ideal. Then

I# =
⋃
x/∈I

(I : x).

Lemma 2.1.14. Let R be a commutative ring and I C R an irreducible ideal. Then

AttE(R/I) = I#.

Proof. Suppose x ∈ I#. Then there exists r /∈ I such that xr ∈ I so x ∈ (I : r). By

lemma 2.1.9, E(R/I) ∼= E(R/(I : r)). Hence R/(I : r) ↪→ E(R/I). So x ∈ AttE.

Suppose x ∈ AttE. Take non-zero w ∈ E to be such that wx = 0. Then

x ∈ annRw. By theorem 2.1.6, since E is indecomposable, E = E(wR). Since wR ∼=

R/annRw, E ∼= E(R/annRw). By lemma 2.1.9, there exists s /∈ annRw and r /∈ I such

that (I : r) = (annRw : s). Therefore x ∈ (I : r), since x ∈ annRw ⊆ (annRw : s). So

xr ∈ I and r /∈ I. Therefore x ∈ I#.

Lemma 2.1.15. Let R be a commutative ring and I C R an irreducible ideal then

the attached prime I is a prime ideal.
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Proof. Let I C R be irreducible. By 2.1.14, AttE(R/I) = I#. By 2.1.11, AttE(R/I)

is a prime ideal. Hence I# is prime.

2.2 pp-formulae, pp-types and pure-injectives

Background material for this section can be found in [Pre09] or [Pre88].

If R is a ring then the language of right R-modules, denoted LR, is (+, 0, {r}r∈R)

where + is a binary function symbol, 0 is a constant symbol and for each r ∈ R, r is

a unary function symbol. By abuse of notation we write φ(x̄) ∈ LR to mean φ(x̄) is

an LR-formula. We write RL for the language of left R-modules.

Definition 2.2.1. A formula φ(x̄) ∈ LR is a pp-formula if it is of the form:

∃ȳ(ȳx̄)A = 0

where A is a matrix with entries in R.

We extend the term pp-formula to include formulae equivalent in the theory of

R-modules to a pp-formula. We call a pp-formula in n free variables, a pp-n-formula.

Proposition 2.2.2. Let R be a ring, φ a pp-formula and M a right R-module.

(i) φ(M) is an additive subgroup of Mn where n is the number of free variables in

φ.

(ii) If φ(x) is a pp-1-formula then φ(M) is a left End(M)-submodule of M .

(iii) If R is commutative and φ(x) is a pp-1-formula then φ(M) is an R-submodule

of M .

We say pp-formulae φ, ψ are equivalent if their solution sets are equal in every

R-module, that is, they are equivalent in the theory of R-modules.

Proposition 2.2.3. The set of equivalence classes of pp-n-formulae endowed with

the ordering, φ ≤ ψ if and only if φ → ψ, is a modular lattice where the supremum

of pp-n-formulae φ, ψ is

φ(x̄) + ψ(x̄) = ∃y1y2(φ(ȳ1) ∧ ψ(ȳ2) ∧ x̄ = ȳ1 + ȳ2)
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and infimum is φ(x̄) ∧ ψ(x̄).

Note that, though + is the join in the lattice of pp-n-formulae, it should not be

confused with disjunction in LR.

Definition 2.2.4. Let R be a ring. An invariants sentence is a sentence in LR which

expresses the statement
∣∣∣ φ(x̄)
ψ(x̄)

∣∣∣ ≥ n in all modules, for some φ, ψ pp-formulae of the

same arity and n ∈ N.

Theorem 2.2.5 (Baur-Monk Theorem). [Pre88] Let R be a ring. Then, for every

formula ξ(x̄) ∈ LR there is a formula τ(x̄), a boolean combination of pp-formulae and

invariants sentences, which is equivalent to ξ(x̄) in all R-modules.

Corollary 2.2.6. Let R be a ring. Then every sentence χ ∈ LR is equivalent to a

boolean combination of invariants sentences
∣∣∣ φ(x)
ψ(x)

∣∣∣ ≥ n where φ, ψ are pp-1-formulae.

Proof. It is enough to show that for any n ∈ N greater than 1 and any pair of pp-n-

formulae φ, ψ, the sentence
∣∣∣ φ(x̄)
ψ(x̄)

∣∣∣ ≥ m can be written as a boolean combination of

sentences
∣∣∣ φ′(x̄)
ψ′(x̄)

∣∣∣ ≥ m′ where each pair φ′, ψ′ has strictly less that n free variables.

Let φ, ψ be pp-n-formulae and N an R-module. Let f : φ(Nn)
ψ(Nn)

� ∃yφ(Nn−1,y)
∃yψ(Nn−1,y)

be the

map given by projecting onto the first (n− 1)-variables, this map is an epimorphism

of abelian groups. The kernel of this map is isomorphic to φ(0̄,N)
ψ(0̄,N)

.

Hence
∣∣∣ φ(Nn)
ψ(Nn)

∣∣∣ ≥ m if and only if
∣∣∣ φ(0̄,N)
ψ(0̄,N)

∣∣∣·∣∣∣ ∃yφ(Nn−1,y)
∃yψ(Nn−1,y)

∣∣∣ ≥ m. Therefore the sentence∣∣∣ φψ ∣∣∣ ≥ m is equivalent to

m∨
i=1

(∣∣∣∣φ(0̄, x)

ψ(0̄, x)

∣∣∣∣ ≥ i ∧
∣∣∣∣∃yφ(x̄, y)

∃yψ(x̄, y)

∣∣∣∣ ≥ xmi y
)

where xm
i
y is the least integer greater than m

i
.

For the following lemma see [Pre88, Lemma 2.10].

Lemma 2.2.7. Suppose φ(x̄), ψ(x̄) are pp-formulae with the same number of free

variables and let {Mi | i ∈ I} be any set of modules. Then

φ(
⊕
i∈I

Mi) =
⊕
i∈I

φ(Mi)
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and
φ(
⊕

i∈IMi)

ψ(
⊕

i∈IMi)
=
⊕
i∈I

φ(Mi)

ψ(Mi)
.

Definition 2.2.8. Let R be a ring and M an R-module. We say a pp-pair φ/ψ

is minimal in the theory of M if φ(M) strictly contains ψ(M) but no pp-definable

subgroup of M lies strictly between φ(M) and ψ(M).

We now define a map from the set of right pp-n-formulae to the set of left pp-n-

formulae of a ring. This map induces a lattice anti-isomorphism between the lattice

of equivalence classes of right pp-n-formulae and the lattice of equivalence classes of

left pp-n-formulae. It sends the right pp-1-formula xr = 0 to the left pp-1-formula

r|x and the right pp-1-formula r|x to the left pp-1-formula rx = 0.

Definition 2.2.9. Let R be a ring and let φ be a pp-n-formula in the language of

right R-modules ∃ȳ(x̄, ȳ)H = 0. Then Dφ is the pp-n-formula in the language of left

R-modules ∃z̄

 I H ′

0 H ′′

 x̄

z̄

 = 0, where

 H ′

H ′′

 = H.

Proposition 2.2.10. [Pre09][Pre88] For each n ≥ 1 the operator D is a duality

between the lattice of equivalence classes of pp-n-formulae in the language of right

R-modules and the lattice of equivalence classes of pp-n-formulae in the language of

left R-modules. That is, for every pp-n-formula φ we have D2φ equivalent to φ and

also ψ ≤ φ if and only if Dφ ≤ Dψ.

Corollary 2.2.11. For all pp-formulae φ, ψ in the same number of free variables we

have D(φ+ ψ) = Dφ ∧Dψ and D(φ ∧ ψ) = Dφ+ Dψ.

Definition 2.2.12. Let R be a ring and N,M R-modules. Let f : N ↪→ M be

an embedding. We say that f is a pure-embedding if for every pp-formula φ(x̄),

f(φ(N)) = φ(M) ∩ f(N)n where n is the arity of φ(x̄).

We say N a submodule of M is pure in M if its embedding into M is pure.

Definition 2.2.13. Let R be a ring. We say a module N is pure-injective if for every

pure-embedding i : A ↪→ B and map f : A → N there exists a map h : B → N such

that h ◦ i = f .

17



Note that injective modules are pure-injective. We denote the set of isomorphism

classes of indecomposable pure-injective modules by pinjR.

Proposition 2.2.14. Let R be a ring and M be an R-module then there exists a

pure-injective module PE(M) such that M is a pure-submodule of PE(M) and for

all pure-injectives M ′ and all pure-embeddings f : M ↪→M ′ there is an extension of f

embedding PE(M) purely into M ′. Moreover, PE(M) is unique up to isomorphism

over M .

Definition 2.2.15. Let R be a ring. Let M and PE(M) be as in the above proposi-

tion. We call PE(M) the pure-injective hull of M .

Proposition 2.2.16. [Pre88, Corollary 4.11] Let R be a ring and N an indecom-

posable pure-injective R-module. Then for any non-zero a, b ∈ N , there exists a

pp-formula φ(x, y) such that N |= φ(a, b)∧¬φ(a, 0). We call such a formula a linking

formula.

Definition 2.2.17. Let R be a ring and M an R-module. The pp-type, ppM(m̄) ,of

a tuple of elements m̄ ∈M is the set of pp-formulae it satisfies.

Lemma 2.2.18. [Pre09, 3.2.5] Let p be a filter in the lattice of pp-n-formulae. Then

there is a module M and an n-tuple m̄ ∈M such that ppM(m̄) = p.

Definition 2.2.19. We say a pp-type is irreducible if it can be realised in an inde-

composable pure-injective module.

Theorem 2.2.20 (Ziegler’s criterion). [Zie84] Let p be a pp-n-type. Then the fol-

lowing are equivalent:

(i) For all φ, ψ /∈ p there exists σ ∈ p such that φ ∧ σ + ψ ∧ σ /∈ p.

(ii) The pp-n-type p is irreducible.

Proposition 2.2.21. [ZHZ78, Theorem 9] Let R be a ring and N an indecomposable

pure-injective module. Then N has local endomorphism ring.
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2.3 The Ziegler Spectrum

Background material on the Ziegler spectrum can be found in [Pre09, Chapter 5].

Definition 2.3.1. [Zie84] Let R be a ring. The (right) Ziegler spectrum, ZgR, is

a topological space with set of points isomorphism classes of indecomposable pure-

injective modules and a basis of open sets:(
φ

ψ

)
= {N ∈ pinjR | φ(N) ) ψ(N)}

where φ, ψ are pp-1-formulae.

We denote the left Ziegler spectrum by RZg. Throughout this text, we will say a

subset X of a topological space T is compact if every open cover of X has a finite

subcover. Note that we do not include Hausdorff in our definition of compact.

Proposition 2.3.2. [Zie84, 4.9][Pre09, Theorem 5.1.22] Let R be a ring. Then:

(i) For all pp-1-formulae φ, ψ, the open set
(
φ
ψ

)
is compact.

(ii) All compact open sets are finite unions of sets of the form
(
φ
ψ

)
for some pp-1-

formulae φ, ψ.

(iii) The Ziegler spectrum is compact.

One important property of the Ziegler spectrum is that its closed sets correspond

to theories of modules closed under arbitrary direct sums. The following definition

and lemma explicitly gives this correspondence.

Definition 2.3.3. Let T be a complete theory of modules closed under arbitrary direct

sums. We define C(T ) to be the following set of isomorphism classes of pure injectives:

{N ∈ pinjR | N is a direct summand of some model of T}.

Let C be a Ziegler closed set. We define T (C) to be the theory axiomatised by

(i)
∣∣∣ φψ ∣∣∣ = 1 if

(
φ
ψ

)
∩ C = ∅.

(ii)
∣∣∣ φψ ∣∣∣ > n for all n ∈ N if

(
φ
ψ

)
∩ C 6= ∅.

19



Lemma 2.3.4. [Pre88, Theorem 4.67] Let R be a ring. If C is a closed subset of ZgR

and T is a theory of modules closed under arbitrary direct sums then the following

statements hold:

(i) C(T ) is a closed set.

(ii) T (C) is a complete theory of modules closed under products.

(iii) C(T (C)) = C.

(iv) T (C(T )) = T .

Definition 2.3.5. Let T be a topological space and X ⊆ T . We say X is an irre-

ducible set if for all closed subsets Y, Z of T , X ⊆ Y ∪ Z implies X ⊆ Y or X ⊆ Z.

Definition 2.3.6. We say a topological space is sober if every non-empty irreducible

closed set is the closure of a point.

Note that the above definition is not the usual definition of soberness. The usual

definition says a topological space is sober if every irreducible closed set is the closure

of a unique point. Thus the usual definition of soberness implies that the space is T0.

As many of the spaces we consider are not T0, the usual definition of soberness is not

appropriate. Moreover, for T0 spaces the two definitions are equivalent.

Definition 2.3.7. Let T be a topological space and X an irreducible closed set of T .

We say x is a generic point of X if the closure of x in T is X.

The normal definition of a generic point includes its uniqueness, again this is not

appropriate for our situation.

Definition 2.3.8. Let T be a topological space. We say a point x ∈ T specialises to

a point y ∈ T if y is in the closure of x.

So if X is an irreducible closed set then a generic point of X is a point which

specialises to all points in X.

Lemma 2.3.9. Let T be a topological space with basis of open sets {Wi | i ∈ I}.

Then x ∈ T specialises to y ∈ T if and only if for all i ∈ I, y ∈ Wi implies x ∈ Wi.
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Lemma 2.3.10. Let T be a topological space. Then for all x ∈ T , the closure of x

is an irreducible closed set.

We say that two points in a topological space are topologically indistinguishable

if they are contained in exactly the same open sets. If T is a topological space, let ≈

be the equivalence relation on points of T such that x ≈ y if and only if x and y are

topologically indistinguishable in T .

The open sets of any topological space are a complete lattice under inclusion.

Recall that a complete lattice is a partially ordered set for which every subset has

a supremum (and therefore also an infimum). Let L1, L2 be lattices, then a lattice

morphism from f : L1 → L1 is a poset morphism which preserves meets and joins.

Following [Pre09, Section 5.4], we say that two topological spaces are homeomorphic

at the level of topology if there is an isomorphism between their lattices of open sets.

Note that lattice isomorphisms preserve arbitrary infima and suprema.

The following three statements are taken from [Pre09] and were originally in

[Her93].

Theorem 2.3.11. For any ring R, the right and left Ziegler spectra of R are home-

omorphic at the level of topology, the isomorphism being defined by taking the basic

open set
(
φ
ψ

)
to
(

Dψ
Dφ

)
.

Proposition 2.3.12. If C is an irreducible closed set in ZgR such that C has a

countable basis of open sets in the relative topology, then C has a generic point.

Proof. Suppose C is an irreducible closed set in ZgR with countable basis of open sets

Oi indexed by i ∈ N. We define, by induction, a sequence of pp-1-formulae φi, ψi

such that ∅ 6=
(
φi
ψi

)
∩C ⊆ Oi and φi ≥ φi+1 ≥ ψi+1 ≥ ψi in the lattice of pp-formulae.

Since the open sets
(
φ
ψ

)
with pp-1-formulae φ, ψ, are a basis for ZgR, we can take

φ1, ψ1 such that ∅ 6=
(
φ1
ψ1

)
∩ C ⊆ O1.

Suppose we have already defined φi, ψi, the irreducibility of C implies C ∩
(
φi
ψi

)
∩

Oi+1 6= ∅.

Let N ∈ C ∩
(
φi
ψi

)
∩Oi+1 and take c ∈ N such that c ∈ φi(N)\ψi(N). By [Zie84,

21



4.9], there exists φi+1 ∈ ppN(c) and ψi+1 /∈ ppN(c) such that φi ≥ φi+1 ≥ ψi+1 ≥ ψi

and
(
φi+1

ψi+1

)
∩ C ⊆ Oi+1.

Let Φ be the filter generated by {φi | i ∈ N} and Ψ the ideal generated by

{φi | i ∈ N}. By [Pre88, Theorem 4.33], there is an irreducible T (C)-consistent pp-

type p such that p ∩ Ψ = ∅ and Φ ⊆ p. Let N be a indecomposable pure-injective

module realising p. Then N ∈ C and N ∈
(
φi
ψi

)
⊆ Oi for every i. Therefore N is a

generic point of C.

It is not obvious how to generalise this proof to arbitrary rings as if we had an

uncountable basis of open sets indexed by some ordinal, it is not clear how one would

define φi, ψi at limit ordinals.

Definition 2.3.13. Let R be a ring and C a closed subset of ZgR. Then C =

ZgR\
⋃(φi

ψi

)
for some set of pp-pairs φi/ψi. Define DC to be the RZg closed sub-

set RZg\
⋃(Dψi

Dφi

)
.

Theorem 2.3.14. [Her93] If C is a closed subset of ZgR and has countable basis of

open sets, then C/ ≈ is homeomorphic to DC/ ≈. In particular, if R is a countable

ring, then ZgR/ ≈ is homeomorphic to RZg/ ≈.

Definition 2.3.15. Let R be a commutative ring. By SpecR we mean the set of

prime ideals of R equipped with basis of open sets D(f) = {p ∈ SpecR | f /∈ p} where

f ∈ R. For I CR, let V (I) denote the set of prime ideals containing I.

Proposition 2.3.16. Let R be a commutative ring.

(i) All closed sets are of the form V (I) for some ideal I CR.

(ii) Let I, J CR then V (I) ∩ V (J) = V (I + J) and V(I) ∪ V(J) = V (IJ).

(iii) An open set in SpecR is compact (recall that we do not include Hausdorff in

the definition of compact) if and only if it is the complement of V (I) for some

finitely generated I C V . Thus SpecR has a basis of compact open sets stable

under intersection i.e the intersection of two compact open sets is compact open.
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(iv) SpecR is T0.

(v) SpecR is sober.

Proof. Parts (i), (ii) and (v) can be found in many commutative algebra or algebraic

geometry text book, for instance in [Bou98]. Part (iv) is obvious.

(iii) For all f ∈ R, the open set D(f) is compact ([Bou98, II §4 Proposition 12 ]).

Thus, since the open sets D(f) are a basis for SpecR, all compact open sets are of

the form
⋃n
i=1D(fi) where f1, ..., fn ∈ R. Finally,

SpecR\
n⋃
i=1

D(fi) =
n⋂
i=1

SpecR\D(fi) =
n⋂
i=1

V (fiR) = V (
n∑
i=1

fiR).

Definition 2.3.17. Let R be a commutative ring. Let Spec∗R denote the Hochster

dual of SpecR, that is the topological space got by declaring all compact open sets in

SpecR as closed.

Proposition 2.3.18. The sets V (I) where I C R is finitely generated form a basis

for Spec∗R and the sets V (fR) where f ∈ R form a sub-basis for Spec∗R.

Proof. Proposition 2.3.16 (iii) implies that the V (I) where ICR is finitely generated

are a sub-basis for Spec∗R. By proposition 2.3.16 (ii) if I1, ..., In C R are finitely

generated ideals then ∩ni=1V (Ii) = V (
∑n

i=1 Ii) and
∑n

i=1 Ii is finitely generated. So

the V (I) where I CR is finitely generated are a basis for Spec∗R.

In order to show that the V (fR) where f ∈ R are a sub-basis for Spec∗R we need

only observe that for any ideal I = 〈f1, ..., fn〉, V (I) = ∩ni=1V (fiR).

We say a topological space is spectral if it is homeomorphic to SpecR for some

commutative ring R. In [Hoc69], Hochster showed that if a topological space is

spectral then the dual space is also spectral. Hence we have the following proposition.

Proposition 2.3.19. Let R be a commutative ring. Spec∗R is sober.

Proposition 2.3.20. Let R be a commutative ring. The irreducible closed sets of

SpecR are exactly V(p) where pCR is prime and p is the generic point. The irreducible

closed sets of Spec∗R are W(p) = {q ∈ Spec∗R | q ⊆ p} and p is the generic point.
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Proof. Let R be a commutative ring. By lemma 2.3.9, a prime ideal p specialises to

a prime ideal q in SpecR if and only if for all f ∈ R, q ∈ D(f) implies p ∈ D(f), that

is for all f ∈ R, f /∈ q implies f /∈ p. Therefore p specialises to q in SpecR if and

only if p ⊆ q. Therefore, for any prime ideal p, the closure in SpecR of p is V(p).

Hence, since SpecR is sober, the irreducible closed sets of SpecR are exactly V(p)

where pC V is prime and p is the generic point.

In the dual topology the specialisation relation is reversed. Hence the closure

of p a prime in Spec∗R is W(p). Since Spec∗R is sober, the irreducible closed sets

of Spec∗R are exactly of the form W(p) for some p C R prime and p is the generic

point.

Proposition 2.3.21. [Zie84] Let R be a ring and C(R) the centre of R. Then for

any indecomposable pure-injective module N , the set of r ∈ C(R) whose action on N

by multiplication is not bijective is a prime ideal of C(R).

Proof. Let N be an indecomposable pure-injective module and p the set of central

elements of R which act non-bijectively on N . Let f : C(R) → End(N) where

r ∈ C(R) is mapped to the endomorphism of N given by multiplication of r. Then r

acts bijectively if and only if the image of r under f in End(N) is not in the maximal

ideal of End(N) (unique since End(N) is local by 2.2.21). Hence p is the inverse

image of the maximal ideal of End(N). Therefore p is a prime ideal.

Definition 2.3.22. Let R be a commutative ring and N an indecomposable pure-

injective module. We call the prime ideal in the above proposition the attached prime

of N , AttN .

For an indecomposable injective module E over a commutative ring R we have

already defined the attached prime for E to be the set of all r ∈ R which annihilate

some non-zero element of E (see 2.1.10). The following lemma shows that these two

definitions of attached prime, of an indecomposable injective, coincide.

Lemma 2.3.23. Let R be a commutative ring. Suppose E is an indecomposable

injective module then if the action by multiplication of r ∈ R on E is not bijective

then it is not injective.
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Proof. Let E be an indecomposable injective R-module. Suppose multiplication by

r ∈ R gives an injective map from E to E. Let Er denote the image of E under this

map. Since Er is isomorphic to E, Er is an injective module and therefore Er is a

direct summand of E. As E is indecomposable, E = Er. Hence the action of r on E

is bijective.

For the proof of the following lemma and a more general statement, see [Pre88]

Chapter 4 section 4.4.

Lemma 2.3.24. Let N be an indecomposable pure-injective module. For any non-

zero x ∈ N and r ∈ AttN , ppN(xr) ) ppN(x).

Proposition 2.3.25. Let R be a commutative ring. The map taking an indecompos-

able pure-injective module to its attached prime induces a continuous map from ZgR

to Spec∗R.

Proof. In order to check that

f : ZgR → Spec∗R, f : N → AttN

is continuous, it is enough to check the preimage of subbasic open sets are open.

First note that the collection of open sets V (aR) = {p ∈ Spec∗ | a ∈ p}, a ∈ R are

a sub-basis for Spec∗R so it is enough to check that the pre-image under f of each

V (aR) is open. Suppose N is an indecomposable pure-injective module and a ∈ R.

Observe that the following 3 statements are equivalent:

(i) f(N) ∈ V (aR).

(ii) Either there exists n ∈ N\{0} such that na = 0 or there exists n ∈ N such

that a does not divide n.

(iii) N ∈
(
xa=0
x=0

)
∪
(
x=x
a|x

)
.

Hence for any a ∈ R the pre-image of V (a) under f is
(
xa=0
x=0

)
∪
(
x=x
a|x

)
hence f is

continuous.
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Theorem 2.3.26. [Pre09, pg67] Suppose that f : R → S is an epimorphism of

rings. If N is an indecomposable pure injective S-module then as an R-module, N

is indecomposable pure-injective. The induced map from ZgS to ZgR continuously

embeds ZgS into ZgR as closed set.

If R is a ring and pCR is prime then we denote the localisation of R at p by Rp.

Lemma 2.3.27. Let R be a commutative ring, pCR be a prime ideal and f : R→ Rp.

Then the image of the map induced by f from ZgRp
to ZgR is the set of indecomposable

pure-injectives with attached prime contained in p.

Proof. Suppose N has attached prime q ⊆ p. Then for all r /∈ p, multiplication by

r is a bijective map. Hence we may define multiplication by 1/r to be the inverse of

this map. So N can be endowed with the structure of an Rp-module.

Suppose N is an Rp-module. Then N may be viewed via f as an R module. For

any t /∈ p, since N is an Rp-module, the action of t is invertible. Hence t /∈ AttNR.

Therefore p ⊇ AttNR.

Proposition 2.3.28. Let R be a commutative ring. Then the following are equiva-

lent:

(i) ZgR is sober.

(ii) For all pCR prime, ZgRp
is sober.

(iii) For all mCR maximal, ZgRm
is sober.

Proof. (i)⇒(ii) Suppose ZgR is sober then for any prime ideal pCR, ZgRp
is homeo-

morphic to a closed subset of ZgR and hence is sober. (ii)⇒ (iii) is obvious.

(iii)⇒ (i) Suppose C ⊆ ZgR is an irreducible closed set. Then its image f(C) in Spec∗

is irreducible. Therefore the closure of this set has a generic point p. Hence N ∈ C

implies f(N) ⊆ p. Let m be a maximal ideal containing p. Then N ∈ C implies

f(N) ⊆ m. Therefore by lemma 2.3.27 C is contained in a closed set homeomorphic

to ZgRm
. Hence, if ZgRm

is sober then C has a generic point.
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Thus, the question of whether ZgR is sober for all commutative rings reduces to

the question of whether ZgR is sober for all local commutative rings.

2.4 Valuation rings

Definition 2.4.1. A commutative ring is called a valuation ring if its set of ideals is

totally ordered by inclusion. Thus a valuation ring is a local ring. We say a valuation

ring is a valuation domain if it has no zero divisors.

Note that, since the ideals of a valuation ring form a chain, for all a, b ∈ V either

a divides b or b divides a and all ideals in a valuation ring are irreducible.

Lemma 2.4.2. Let R be a valuation ring. Then I ⊆ R is an ideal if and only if for

all i ∈ I and r ∈ R, ir ∈ I.

Proof. ⇐ Suppose I ⊆ R such that for all i ∈ I and r ∈ R, ir ∈ I. In order to show

that I is an ideal we need to show that if a, b ∈ I then a + b ∈ I. Suppose a, b ∈ I

then without loss of generality we may assume a = bγ for some γ ∈ R. Therefore

a+ b = b(γ + 1) hence a+ b ∈ I.

If K is a field we denote K\{0} by K∗.

Definition 2.4.3. Let K be a field and G a totally ordered abelian group. Then a

surjective function v : K∗ → G is called a valuation if v(x.y) = v(x) + v(y) and

v(x+ y) ≥ inf{v(x), v(y)}.

Lemma 2.4.4. Let R be a valuation domain with maximal ideal m, field of quotients

Q and group of units U . Then the canonical map v : Q∗ → Q∗/U is a valuation when

Q∗/U is given the ordering aU ≥ bU if and only if ab−1 ∈ R.

Let Q be a field and v : Q∗ → G a valuation. Then R = {0}∪{x ∈ Q∗ | v(x) ≥ 0}

is a valuation domain with group of units U = {x ∈ Q∗ | v(x) = 0}, so G ' Q∗/U .

We call Q∗/U the value group of a valuation domain R.
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Theorem 2.4.5. [Kru32] Let k be a field and G a totally ordered abelian group. Then

there exists a valuation domain with residue field isomorphic to k and value group

isomorphic (as an ordered group) to G.

In chapter 3 we separate valuation domains into those with dense value group, by

which we mean densely ordered, and those with non-dense value group. The following

lemma gives two conditions on a valuation domain equivalent to its value group being

dense.

Lemma 2.4.6. Let R be a valuation domain and m C R its maximal ideal. The

following are equivalent:

(i) The value group of R is dense.

(ii) The maximal ideal m is not finitely generated.

(iii) m2 = m.

Proof. Let G be the value group of R, Q the quotient field of R and v : Q∗ → G the

valuation map.

(i)⇔(ii) Suppose m is finitely generated. Let t generate m. Then v(t) is greater than

0 and there is no element in G smaller than v(t) and greater than 0. Hence G is not

dense.

Suppose G is not dense. Then there exists g1, g2 ∈ G such that g1 < g2 and there

is no element in G between g1 and g2. Therefore g2 − g1 is the least strictly positive

element of G. Take r ∈ v−1(g2 − g1). Then

m = {s ∈ R | v(s) > 0} = {s ∈ R | v(s) ≥ v(r)} = rR.

So m is finitely generated.

(ii)⇔ (iii) Suppose m is finitely generated by r ∈ R. Then r /∈ r2R so m2 6= m.

Suppose m2 6= m. Take r ∈ m\m2. Suppose t /∈ rR then r = tλ for some non-unit

λ ∈ R. Hence λ ∈ m. Therefore t /∈ m. Hence m = rR.
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Chapter 3

The Ziegler Spectrum of a

Valuation Domain

Throughout this chapter, V will be a valuation domain and m will denote its (unique)

maximal ideal.

3.1 Some lemmas

We will start this section by explaining the relationship between ideals of V and

particular convex subsets of the value group of V . Let V be a valuation domain with

field of fractions Q, value group Γ and valuation map v : Q∗ → Γ. If I is a proper

ideal of V , let v(I) be the set

{γ ∈ Γ | there exists x ∈ I\{0} with v(x) = γ}

and let −v(I) be the set {−γ | γ ∈ v(I)}.

The map S that sends a proper ideal I of V to

S(I) = Γ\(v(I) ∪ −v(I))

is an inclusion reversing bijection between proper ideals of V and non-empty sym-

metric convex subsets of Γ. Under S, prime ideals correspond to convex subgroups

of Γ. Note that the zero ideal of V corresponds to the whole of Γ and the maximal

ideal m corresponds to the trivial subgroup of Γ.
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If I is a proper ideal of V then it is readily seen that

S(I#) = {γ ∈ Γ | for all δ ∈ S(I), γ + δ ∈ S(I)}.

Lemma 3.1.1. If V is a valuation domain and I C V then x ∈ I# if and only if

Ix ( I.

Proof. First, note that for any x, g ∈ V , gx ∈ Ix implies g ∈ I. To see this, suppose

gx ∈ Ix. There exists i ∈ I such that gx = ix. Hence, since V is a domain, g = i.

Therefore g ∈ I.

Suppose x ∈ I# then there exists g /∈ I such that gx ∈ I. Since g /∈ I, gx /∈ Ix.

Therefore I ) Ix.

Suppose Ix ( I. If x ∈ I then x ∈ I#. So suppose x /∈ I. Then for all g ∈ I, x

divides g. Take g ∈ I\Ix then g = xr for some r ∈ V and r /∈ I since g /∈ Ix. Hence

x ∈ I#.

Lemma 3.1.2. Suppose I C V then for all λ ∈ V , λ /∈ I if and only if λm ⊇ I.

Proof. Suppose λ /∈ I. Then λV ⊇ I since ideals are totally ordered. Suppose i ∈ I

then there exists r ∈ V such that i = λr. If r /∈ m then r is a unit so λ ∈ I. Therefore

r ∈ m. Hence λm ⊇ I.

Suppose λm ⊇ I. As V is local, λ /∈ λm. Hence λ /∈ I.

Lemma 3.1.3. Let I C V . Then for all λ ∈ V , λ /∈ I if and only if λI# ⊇ I.

Proof. Let I C V . Suppose λ /∈ I. Take i ∈ I then there exists r ∈ V such that

λr = i. Therefore r ∈ I# so i ∈ λI#.

Suppose λI# ⊇ I then λm ⊇ λI# so λ /∈ I.

Lemma 3.1.4. Let I, J C V . Suppose J ( I#. Then there exists a /∈ I such that

J ( (I : a).

Proof. Take t ∈ I#\J then there exists a /∈ I such that ta ∈ I. Therefore t ∈ (I : a).

Since ideals are totally ordered J ( tR so J ( (I : a).

We will use the following lemma through out this chapter and the next. For a

proof see [FS01, Chapter II Lemma 4.6].
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Lemma 3.1.5. Let V be a valuation domain and I, J proper ideals of V . Then

I# ∩ J# = (IJ)#.

3.2 pp-formulae and pp-types over valuation do-

mains

The following lemma is crucial in the reduction of pp-formulae over valuation domains

to various special forms. We follow the proof given in [Pun01] for serial rings, we

specialise to valuation domains. A more general version of this result was first seen

in [Dro75] and [War75].

Theorem 3.2.1 (Drozd’s diagonalisation theorem for valuation domains). Suppose

M is an m×n matrix over a valuation domain V . Then there exist invertible matrices

T and S over V such that TMS is diagonal. That is all entries of TMS are zero

except for the leading diagonal.

Proof. We will show the equivalent statement that any matrix over a valuation do-

main can be made diagonal by a series of invertible row and column operations.

By padding with zeroes we may assume that the matrix is square. We proceed by

induction on n the number of rows of the matrix. Suppose that the statement of

the lemma is true for all matrices of dimension smaller than n. Then consider an

n×n matrix M with entries mi,j. Consider the ideal generated by the elements mi,j.

Since V is a valuation ring, there exist k and l such that mk,l generates this ideal.

It is clear that there exists a series of invertible row operations that leave us with a

matrix with zeroes down the lth column except for the (k, l)th entry and a series of

invertible column operations that leave us with a matrix with zeros across the kth

row except for the (k, l)th entry . By the induction hypothesis we may now apply

elementary invertible row and column operation to make the (k, l) minor diagonal

without effecting the lth column or the kth row. The matrix we now get is diagonal.

31



The following two lemmas and their corollaries can be found in [EH95] and

[Pun92].

Lemma 3.2.2. Let V be a valuation ring. Then every pp-formula over V is equivalent

to a pp-formula of the form:
n∧
i=1

(ai|x̄b̄i)

Proof. Suppose φ is of the form ∃ȳ ȳM = x̄B. By the previous theorem there exists

invertible matrices S and T over V such that TMS is diagonal. Let ψ be the formula

∃ȳ ȳTMS = x̄BS. Suppose N is an V -module. Then n̄ ∈ φ(N) if and only if there

exists m̄ a tuple in N such that m̄M = n̄B if and only if there exists m̄ ∈ N such

that m̄MS = n̄BS since S is invertible if and only if there exists m̄ ∈ N such that

m̄TMS = n̄BS since T is invertible. Now ψ is of the form
∧n
i=1(ai|x̄b̄i).

Corollary 3.2.3. Let V be a valuation ring. Then every pp-1-formula over V is

equivalent to a pp-formula of the form:

n∧
i=1

(ai|x) + (xbi = 0)

for some ai, bi ∈ V .

Proof. It remains to show that a formula of the form ∃y ya = xλ is equivalent to one

of the required form. Let θ = ∃y ya = xλ for some a, λ ∈ V and N an V -module.

Suppose a divides λ then there exists t ∈ V such that λ = at. Then x ∈ θ(N) if and

only if there exists y ∈ N such that (y − xt)a = 0, this is true for all x ∈ N so θ is

identically true. Suppose λ divides a then there exists t ∈ V such that λt = a. Then

x ∈ θ(N) if and only if there exists y ∈ N such that (yt− x)λ = 0 that is if and only

if x ∈ ζ(N) where ζ = (t|x) + (xλ = 0).

Lemma 3.2.4. Let V be a valuation ring. Then every pp-formula over V is equivalent

to a pp-formula of the form:

n∑
i=1

∃yi
k∧
j=1

(xj = yirij) ∧ (yisi = 0)

for some rij, si ∈ V .
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Proof. Let φ be a pp-formula in k-variables over V . Then Dφ, the dual of φ, is

equivalent to a pp-formula of the form
∧n
i=1(ai|x̄b̄i). Therefore D2φ is equivalent to

a formula of the form
∑n

i=1 ∃yi
∧k
j=1(xj = yirij)∧ (yisi = 0), as the dual of a formula

of the form (a|x̄b̄) is ∃y
∧k
j=1(xj = ybj) ∧ (ya = 0). This is enough since D2φ is

equivalent to φ.

Corollary 3.2.5. Let V be a valuation ring. Then every pp-1-formula over V is

equivalent to a pp-formula of the form:

n∑
i=1

(xai = 0 ∧ bi|x)

for some ai, bi ∈ V .

Lemma 3.2.6. [EH95] Let V be a valuation domain and N an indecomposable pure-

injective V -module. Then the pp-1-definable subgroups of N are totally ordered.

Proof. This proof will follow closely the proof (of a more general statement) given in

Lemma 11.4 in [Pun01].

Corollary 3.2.5 states that the lattice of pp-1-formulae is generated by the sets

of pp-1-formulae {xr = 0 | r ∈ V } and {s|x | s ∈ V }. Each of these sets is a

chain in the lattice of pp-1-formulae. It is stated in [Grä03, Theorem 13 Chapter IV]

that a modular lattice generated by two chains is distributive. Hence the lattice of

pp-1-formulae over a valuation domain is distributive.

We now show that if N is an indecomposable pure-injective V -module then as an

End(N)-module, it is uniserial, that is its End(N)-submodules are totally ordered by

inclusion. Since the endomorphism ring of any indecomposable pure-injective module

is local it is enough to show that the End(N)-submodules are distributive, see [Ste74].

It is stated in [Pre09, 4.3.10] that if N is pure-injective and ā ∈ N with p = ppN(ā)

then p(N) = Sā where S = End(N). Therefore for any pp-1-types p, q, r we need

to show that p(N) ∩ [q(N) + r(N)] = [p(N) ∩ q(N)] + [p(N) ∩ r(N)]. In fact this is

enough because this proves the result for cyclic End(N)-modules and if the lattice of

cyclic End(N)-submodules is distributive then the lattice of all End(N)-submodules

is distributive.
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Hence we need to show that p(N)∩ [q(N)+r(N)] ⊆ [p(N)∩q(N)]+[p(N)∩r(N)]

since the other inclusion is true in any module. Suppose n ∈ p(N) ∩ [q(N) + r(N)].

Then n ∈ φ(N) ∩ [ψ(N) + ϑ(N)] for all φ ∈ p, ψ ∈ q and ϑ ∈ r. Hence n ∈ [φ(N) ∩

ψ(N)]+[φ(N)∩ϑ(N)] because the lattice of pp-1-formulae is distributive. Since N is

pure-injective, hence algebraically compact, this means n ∈ [p(N) ∩ q(N)] + [p(N) ∩

r(N)]. Hence we have shown that the lattice of End(N)-submodules is distributive

hence totally ordered by inclusion.

It remains to note that pp-1-definable subgroups are End(N)-submodules. So the

lattice of pp-1-definable subgroups is totally ordered by inclusion.

Corollary 3.2.7. Let V be a valuation domain. Then a pp-1-type p is irreducible if

and only if for all pp-1-formulae φ, ψ, φ, ψ /∈ p implies φ+ ψ /∈ p.

Proof. Suppose that p is a pp-1-type and for all pp-1-formulae φ, ψ, φ, ψ /∈ p implies

φ+ ψ /∈ p then by Ziegler’s Criterion 2.2.20, p is irreducible.

Suppose p is an irreducible pp-1-type, then p is realised in some indecomposable

pure-injective module N . Suppose a ∈ N realises p. Then φ, ψ /∈ p implies a /∈

φ(N) and a /∈ ψ(N) but since N is indecomposable pure-injective, the pp-definable

subgroups are totally ordered. Therefore φ(N) = φ(N) + ψ(N) or ψ(N) = φ(N) +

ψ(N). So a /∈ φ(N) + ψ(N). Hence φ+ ψ /∈ p.

We now give a correspondence between irreducible pp-types over valuation do-

mains and pairs of ideals.

Lemma and Definition 3.2.8. [Zie84][EH95] Let V be a valuation domain and p

an irreducible complete pp-1-type. Let Ip = {r ∈ V | xr = 0 ∈ p} and Jp = {r ∈

V | r|x /∈ p}. Then Ip and Jp are ideals and (Ip, Jp) is called the pair associated to p.

Proof. Let p be a complete pp-1-type and let Ip and Jp be as defined above. Suppose

r ∈ Ip and λ ∈ V . Then xr = 0 ∈ p implies xrλ = 0 ∈ p since p is closed under

implication. Therefore Ip is an ideal. Suppose r ∈ Jp and λ ∈ V . Then r|x /∈ p so

rλ|x /∈ p since rλ|x ∈ p implies r|x ∈ p.
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Lemma 3.2.9. [Zie84][EH95] Let V be a valuation domain. There is a bijective

correspondence between the irreducible pp-1-types of V and pairs of proper ideals of

V . Under this correspondance an irreducible pp-1-type p is sent to its associated

pair (Ip, Jp) and a pair of ideals (I, J) is sent to the (unique) irreducible pp-1-type

generated by the formulae {xa = 0|a ∈ I} ∪ {b|x|b /∈ J}.

Proof. Suppose p is an pp-1-type over V . Let φ be a pp-1-formula over V . Then φ

is equivalent to a formula of the form
∧n
i=1(ai|x) + (xbi = 0) for some ai, bi ∈ V . So

φ ∈ p if and only if for each i, (ai|x) + (xbi = 0) ∈ p. Since p is irreducible this is

true if and only if (ai|x) ∈ p or (xbi = 0) ∈ p that is, if and only if ai /∈ Jp or bi ∈ Ip.

So we have show that a pp-1-type p is uniquely determined by its associated pair of

ideal (Ip, Jp).

It remains to show that every pair of proper ideals (I, J) is the associated pair

of some irreducible pp-1-type. In 4.4.4, for each pair of proper ideals (I, J) we will

give a uniserial module M and a non-zero element m ∈ M such that m satisfies the

formula xa = 0 if and only if a ∈ I and m satisfies the formula b|x if and only if

b /∈ J . By [EH95, Proposition 4.1], the pure-injective hull of a uniserial module is

indecomposable. Note that since M embeds purely into its pure-injective hull, the

pp-type of m in M is equal to the pp-type of m in the pure-injective hull of M . So for

every pair of proper ideals (I, J) there is an indecomposable pure-injective module

N and an element n ∈ N such that n satisfies the formula xa = 0 if and only if a ∈ I

and n satisfies the formula b|x if and only if b /∈ J . Therefore every pair of proper

ideals (I, J) is the associated pair of some irreducible pp-1-type.

3.3 The Ziegler spectrum of a valuation domain

The aim of this section is to formulate the Ziegler spectrum in terms of pairs of ideals

under an equivalence relation.

Definition 3.3.1. [Zie84][EH95] Let V be a valuation domain and I1, J1, I2, J2 CR.

Then we say (I1, J1) ∼ (I2, J2) if either of the following hold:

35



1. There exists a /∈ I1 such that (I1 : a) = I2 and J1a = J2.

2. There exists a /∈ J1 such that I1a = I2 and (J1 : a) = J2.

We will show that ∼ is an equivalence relation on the set of pairs of proper ideals

of V and that (I, J) ∼ (K,L) if and only if the irreducible pp-type corresponding to

(I, J) and the irreducible pp-type corresponding to (K,L) (under the correspondence

in lemma 3.2.9), are realised in the same indecomposable pure-injective module.

Lemma 3.3.2. Let V be a valuation domain. The binary relation ∼ is symmetric

and reflexive.

Proof. It is clear that ∼ is reflexive. We now show that ∼ is symmetric. Suppose

that (I1, J1) ∼ (I2, J2). First suppose that the first condition in definition 3.3.1 holds.

Then there exists a /∈ I1 such that (I1 : a) = I2 and J1a = J2. Since V is a valuation

domain I1 = I2a, a /∈ J2 and J1 = (J2 : a). Hence (I2, J2) ∼ (I1, J1). Next suppose

that the second condition in definition 3.3.1 holds. Then there exists a /∈ J1 such

that I1a = I2 and (J1 : a) = J2. Since V is a valuation domain J1 = J2a, a /∈ I2 and

I1 = (I2 : a). Hence (I2, J2) ∼ (I1, J1). Therefore ∼ is symmetric.

Lemma 3.3.3. Let V be a valuation domain and N be an indecomposable pure-

injective V -module. Let a, b ∈ N , p = ppN(a), q = ppN(b) and (Ip, Jp) be the pair

associated to p. Suppose that b = aλ for some λ /∈ Ip. Then the pair associated to q

is ((Ip : λ), Jp.λ), so in particular (Ip, Jp) ∼ (Iq, Jq).

Proof. For any r ∈ V , br = 0 if and only if aλr = 0 if and only if r ∈ (Ip : λ).

Therefore Iq = (Ip : λ).

We now show that Jp.λ = Jq. Take r ∈ V such that r doesn’t divide a. Then rλ

doesn’t divide b = aλ since λ 6= 0. Therefore Jpλ ⊆ Jq.

Take r ∈ Jq. Then r doesn’t divide b, so r doesn’t divide λ. Hence there exists

γ ∈ V such that λγ = r. Note that γ does not divide a since if γ divided a then

r = λγ would divide b = aλ. Therefore γ ∈ Jp. Hence r ∈ Jpλ. So Jq ⊆ Jpλ.
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Lemma 3.3.4. [EH95][Zie84] Let p, q be irreducible pp-1-types. Then p and q are

realised in the same indecomposable pure injective module if and only if their corre-

sponding pairs of ideals are such that (Ip, Jp) ∼ (Iq, Jq).

Proof. Suppose that p and q are realised in the same indecomposable pure injective

N , p is realised by a ∈ N and q is realised by b ∈ N . Then there exists a linking

formula φ(x1, x2) (2.2.16) such that (a, b) ∈ φ(N) and (a, 0) /∈ φ(N). By lemma 3.2.4

φ is equivalent to a pp-formula of the form:

n∑
i=1

∃yi
2∧
j=1

(xj = yirij) ∧ (yisi = 0)

for some rij, si ∈ R. Let ρi(x1, x2) = ∃yi
∧2
j=1(xj = yirij) ∧ (yisi = 0). Then

N |= φ(x1, x2)↔
n∑
i=1

ρi(x1, x2)

so

N |= ∃x2φ(x1, x2)↔ ∃x2

n∑
i=1

ρi(x1, x2)

hence

N |= ∃x2φ(x1, x2)↔
n∑
i=1

∃x2ρi(x1, x2).

Since N |= ∃x2φ(a, x2) and by lemma 3.2.6, the pp-1-definable subgroups of N

in one variable form a chain, there exists an i such that N |= ∃x2ρi(a, x2). We may

assume i = 1. But this means there is a c ∈ N such that N |= ρ1(a, c). Hence

N |= ¬ρ1(a, 0) since (a, 0) /∈ φ(N) and N |= φ(a, c).

Now observe that since N |= ρ1(a, c), either a is a multiple of c or c is a multiple

of a. Therefore by lemma 3.3.3 the pp-type of c has associated pair (Ic, Jc) such

that (Ip, Jp) ∼ (Ic, Jc) . It now remains to show that c has pp-type q. Suppose that

N |= θ(b), then since the lattice of pp-1-subgroups of N is a chain and b /∈ φ(0, N),

θ(N) ⊇ φ(0, N). Note that N |= φ(0, c − b) so since c = b + (c − b), c ∈ θ(N).

Similarly if c ∈ θ(N) then b ∈ θ(N).

We now prove the converse. Suppose p, q are irreducible pp-1-types such that

(Ip, Jp) ∼ (Iq, Jq). Since p is irreducible, it is realised in an indecomposable pure-

injective module N . Suppose n ∈ N realises p.

37



Case 1: There exists γ /∈ Ip such that (Ip : γ) = Iq and Jpγ = Iq.

By lemma 3.3.3, nγ has pp-type q.

Case 2: There exists γ /∈ Jp such that Ipγ = Iq and (Jp : γ) = Jq.

Since γ /∈ Jp, γ|n. Let m ∈ N be such that mγ = n and suppose the pp-type of m

has associated pair (K,L). By 3.3.3, (K : γ) = Ip and Lγ = Ip. Therefore Ipγ = K

and (Ip : γ) = L so m has pp-type q.

Lemma 3.3.4 implies that ∼ is a transitive relation. So lemma 3.3.2 and 3.3.4

together imply that ∼ is an equivalence relation.

Lemma 3.3.5. Let I C V . Then

(i) If x /∈ I then (I : x)# = I#.

(ii) If x 6= 0 then (Ix)# = I#.

Proof. (1) Fix x /∈ I. Suppose v ∈ (I : x)# then there exists s /∈ (I : x) (here we are

using that x /∈ I) such that vs ∈ (I : x). Therefore sx /∈ I and vsx ∈ I so v ∈ I#.

Suppose v ∈ I# then there exists s /∈ I such that vs ∈ I. If v ∈ (I : x) then

v ∈ (I : x)#. So suppose v /∈ (I : x). Hence vx /∈ I. Therefore there exists t ∈ V such

that vxt = vs since vs ∈ I. Hence xt = s. So t /∈ (I : x) and vxt ∈ I so vt ∈ (I : x).

Therefore v ∈ (I : x)#.

(2)If x 6= 0 then x /∈ Ix and (Ix : x) = I. Therefore by (1) (Ix)# = I#.

Note that this means if I, J,K, L C V and (I, J) ∼ (K,L) then I# = K# and

J# = L#. Also, note that if (I, J) ∼ (K,L) then IJ = KL since for any x /∈ I,

(I : x)Jx = (I : x)xJ = IJ .

Proposition 3.3.6. Let p be a pp-type realised in an indecomposable pure-injective

module N and (Ip, Jp) be the pair associated to p. Then AttN = I#
p ∪ J#

p .

Proof. Suppose the action by multiplication of r ∈ V on N is not injective. Then

there exists n ∈ N such that nr = 0. Let (In, Jn) be the pair associated to ppN(n)

and note r ∈ In. Since p and ppN(n) are realised in the same indecomposable pure-

injective, (In, Jn) ∼ (Ip, Jp). Therefore r ∈ I#
n = I#

p .
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Suppose the action by multiplication of r ∈ V on N is not surjective. There there

exists n ∈ N such that r does not divide n. Let (In, Jn) be the pair associated to

ppN(n) and note r ∈ Jn. As above, r ∈ J#
n = J#

p . Hence we have shown that if

r ∈ AttN then r ∈ I#
p ∪ J#

p .

Suppose r ∈ I#
p ∪ J#

p . If r ∈ I#
p then there exists an x /∈ Ip such that r ∈ (Ip : x).

Therefore, there exists n ∈ N with ((Ip : x), Jpx) the associated pair of ppN(n).

Hence nr = 0. If r ∈ J#
p then there exists x /∈ Jp such that r ∈ (Jp : x). Therefore,

there exists n ∈ N with (Ipx, (Jp : x)) the associated pair of ppN(n). Hence r does

not divide n.

Recall that a pp-type is irreducible if it can be realised in a indecomposable pure-

injective module (definition 2.2.19) and that, by lemma 3.2.9, every pair of proper

ideals (I, J) corresponds to an irreducible pp-1-type. For an arbitrary ring R, if p is an

irreducible pp-n-type and N,M are indecomposable pure-injective modules realising

p then N ∼= M . A proof of this fact can be found in [Pre09, Corollary 4.3.47.]. In

the case of valuation domains, since ∼ is symmetric, it is implied by lemma 3.3.4.

Definition 3.3.7. Let I, J C V . Denote by N(I, J) the (unique) indecomposable

pure-injective module in which the pp-type corresponding to (I, J) is realised.

By lemma 3.3.4, N(I, J) ∼= N(K,L) if and only if (I, J) ∼ (K,L).

Lemma 3.3.8. Let l,m, n ∈ N and ai, bi, cj, dj ∈ V for 0 < i ≤ l and 0 < j ≤ m.

Let φi = (xai = 0 ∧ bi|x) and ψj = (xcj = 0 + dj|x). Suppose φ is the pp-1-formula∑l
i=1 φi and ψ is the pp-1-formula

∧m
j=1 ψj then for all indecomposable pure-injective

modules N the following are equivalent:

1. |φ(N)/ψ(N)| = n.

2. There exists 0 < h ≤ l and 0 < k ≤ m such that |φh(N)/ψk(N)| = n and

|φi(N)/ψj(N)| ≤ n for all 0 < i ≤ l and 0 < j ≤ m.

Proof. Let N be an indecomposable pure-injective V -module. By 3.2.6, the pp-1-

definable subgroups of N are totally ordered. Therefore

|φ(N)/ψ(N)| = maxi,j {|φi(N)/ψj(N)|} .
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Lemma 3.3.9. [Pun99] Let V be a valuation domain. Let a, b, c, d ∈ V . Let φ be the

pp-1-formula xa = 0∧ b|x and let ψ be the pp-1-formula xc = 0 + d|x. The following

are equivalent:

1. For all indecomposable pure-injective modules N , |φ(N)/ψ(N)| = 1.

2. c ∈ aV or b ∈ dV or c = 0 or b = 0.

Proof. (2)⇒(1) Suppose c = 0 then for any V -module the pp-subgroup defined by

xc = 0 + d|x is the whole module. Therefore (1) holds. Suppose b = 0 then for any

V -module the pp-subgroup defined by xa = 0 ∧ b|x is 0. Therefore (1) holds.

Suppose c ∈ aV then c = at for some t ∈ V then for all modules the pp-subgroup

defined by xa = 0 is contained in the pp-subgroup defined by xat = 0 hence (1) holds.

Suppose b ∈ dV then b = dt for some t ∈ V then for all modules the pp-subgroup

defined by b|x is contained in the pp-subgroup defined by d|x hence (1) holds.

(1)⇒(2) Suppose for all indecomposable pure-injective modules N , |φ(N)/ψ(N)| = 1.

Then since every module is elementary equivalent to a direct sum of indecomposable

pure-injective modules

TV |= (xa = 0 ∧ b|x)→ (xc = 0 + d|x).

Suppose c 6= 0 and b 6= 0. If a is a unit then c ∈ aV for all c ∈ V .

Suppose a not a unit. Consider the module V/abV . The image of b in V/abV

satisfies xa = 0 ∧ b|x hence satisfies xc = 0 + d|x. Since V/abV is uniserial either

bc ∈ abV hence c ∈ aV or there exists y ∈ V such that dy − b ∈ abV hence

dy = b(at + 1) for some t ∈ V . We assume a ∈ m therefore at + 1 is a unit so

b ∈ dV .

Lemma 3.3.10. [Pun99] Let V be a commutative valuation domain. The collection

of sets

Wa,b,g,h =

(
xag = 0 ∧ b|x

(xa = 0) + (bh|x)

)
where a, b 6= 0 and g, h ∈ m form a basis of ZgV .
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Proof. Let φ, ψ be pp-1-formulae. Then by corollary 3.2.5 φ is equivalent to a formula∑n
i=1 aix = 0∧bi|x for some n ∈ N and ai, bi ∈ V and by corollary 3.2.3 ψ is equivalent

to a formula
∧
j cjx = 0+dj|x for some cj, dj ∈ V . By 3.2.6 the pp-definable subgroups

of an indecomposable pure-injective N are totally ordered hence N ∈ (φ/ψ) if and

only if N ∈
(
aix=0∧bi|x
cjx=0+dj |x

)
for some i, j. So

(
φ

ψ

)
=
⋃
i,j

(
xai = 0 ∧ bi|x
xcj = 0 + dj|x

)
.

By lemma 3.3.9
(
aix=0∧bi|x
cjx=0+dj |x

)
is empty unless cj divides ai, bi divides dj, bi, cj 6= 0

and ai/cj, dj/bi ∈ m. Therefore the open sets of the form Wa,b,g,h with a, b ∈ V \{0}

and g, h ∈ m are a basis for ZgV .

Lemma 3.3.11. Let N be an indecomposable pure-injective module over V . The

following are equivalent:

(i) N ∈ Wa,b,g,h.

(ii) There is a pp-1-type realised in N with associated pair (I, J) such that a /∈ I,

b /∈ J , ag ∈ I and bh ∈ J .

Proof. Suppose N ∈ Wa,b,g,h. There exists an element n ∈ N such that nag = 0, b|n,

na 6= 0 and bh - n. Let p = ppN(n) and (Ip, Jp) be the pair associated to p. Then

a /∈ Ip, b /∈ Jp, ag ∈ Ip and bh ∈ Jp.

Let n ∈ N with pp-type p and let (Ip, Jp) be the pair associated to p. Suppose

that a /∈ Ip, b /∈ Jp, ag ∈ Ip and bh ∈ Jp then xag = 0∧ b|x ∈ p and since the pp-type

of n is irreducible (xa = 0) + (bh|x) ∈ p implies xa = 0 ∈ p or bh|x ∈ p. Therefore

(xa = 0) + (bh|x) /∈ p. Hence N ∈ Wa,b,g,h.

Remark 3.3.12. Let (I, J) be a pair of proper ideals of V . From here on, we will

identify the ∼ equivalence class of (I, J) with the indecomposable pure-injective mod-

ule N(I, J). We will say (I, J) ∈ Wa,b,g,h to mean N(I, J) ∈ Wa,b,g,h. By lemma

3.3.11, N(I, J) ∈ Wa,b,g,h if and only if there exists (K,L) a pair of ideals with

(K,L) ∼ (I, J) and a /∈ K, b /∈ L, ag ∈ K and bh ∈ L.
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The above remark reformulates the Ziegler spectrum of a valuation domain in

terms of pairs of ideals in V under the equivalence relation ∼.

Corollary 3.3.13. Let V be a valuation domain, a, b ∈ V \{0} and g, h ∈ m. Let

(I, J) be a pair of ideals in V . Then (I, J) ∈ Wa,b,g,h if and only if one of the following

holds:

1. There exists γ /∈ I such that a /∈ (I : γ), b /∈ Jγ, ag ∈ (I : γ) and bh ∈ Jγ.

2. There exists γ /∈ J such that a /∈ Iγ, b /∈ (J : γ), ag ∈ Iγ and bh ∈ (J : γ).

Proof. Suppose (I, J) ∈ Wa,b,g,h. By lemma 3.3.11, there exists (K,L) a pair of

ideals realised in N(I, J) such that a /∈ K, b /∈ L, ag ∈ K and bh ∈ L. Since

(I, J) and (K,L) are realised in the same indecomposable pure-injective module,

(I, J) ∼ (K,L). Therefore, by definition of ∼, either there exists γ /∈ I such that

K = (I : γ) and L = Jγ or there exists γ /∈ J such that K = Iγ and L = (J : γ).

Thus, either there exists γ /∈ I such that a /∈ (I : γ), b /∈ Jγ, ag ∈ (I : γ) and bh ∈ Jγ

or there exists γ /∈ J such that a /∈ Iγ, b /∈ (J : γ), ag ∈ Iγ and bh ∈ (J : γ).

Conversely, first suppose that there exists γ /∈ I such that a /∈ (I : γ), b /∈ Jγ,

ag ∈ (I : γ) and bh ∈ Jγ. Then ((I : γ), Jγ) ∼ (I, J). So by lemma 3.3.11,

(I, J) ∈ Wa,b,g,h. Now suppose that γ /∈ J such that a /∈ Iγ, b /∈ (J : γ), ag ∈ Iγ and

bh ∈ (J : γ). Then (Iγ, (J : γ)) ∼ (I, J). So be lemma 3.3.11, (I, J) ∈ Wa,b,g,h.

3.4 Duality for the Ziegler spectrum of a valuation

domains

In this section we give an automorphism of ZgV which induces the lattice isomorphism

D given in theorem 2.3.11.

Proposition 3.4.1. The map t : ZgR → ZgR : N(I, J) 7→ N(J, I) is a well-defined

homeomorphism. Moreover, t induces the lattice isomorphism D : ZgR → ZgR :(
φ
ψ

)
7→
(

Dψ
Dφ

)
given in theorem 2.3.11.
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Proof. First we note that t is well defined since (I, J) ∼ (K,L) if and only if (J, I) ∼

(L,K).

Claim: For any a, b ∈ V \{0}, g, h ∈ m and pair of ideals (I, J), (I, J) ∈ Wa,b,g,h if

and only if (J, I) ∈ Wb,a,h,g.

Suppose (I, J) ∈ Wa,b,g,h then there exists (K,L) such that (I, J) ∼ (K,L) and

a /∈ K, ag ∈ K, b /∈ L and bh ∈ L. Therefore (L,K) ∈ Wb,a,h,g and (J, I) ∼ (L,K)

so (J, I) ∈ Wb,a,h,g. The reverse direction is by symmetry.

Therefore t is a homeomorphism and

N(I, J) ∈
(
xag = 0 ∧ b|x
xa = 0 + bh|x

)
if and only if N(J, I) ∈

(
xbh = 0 ∧ a|x
xb = 0 + ag|x

)
.

Noting lemma 3.3.9, this means that for any α, β, δ, γ ∈ V ,(
xα = 0 ∧ β|x
xγ = 0 + δ|x

)
7→
(
xδ = 0 ∧ γ|x
xβ = 0 + α|x

)
.

It remains to show that for each pp-pair
(
φ
ψ

)
7→
(

Dψ
Dφ

)
. Take φ, ψ pp-1-formulae.

By lemma 3.2.5 we can find a pp-formula
∑n

i=1(xαi = 0 ∧ βi|x) equivalent to φ

and by lemma 3.2.3 a pp-formulae
∧m
j=1(xγj = 0 + δj|x) equivalent to ψ. So

(
φ
ψ

)
=

∪i,j
(
xαi=0∧βi|x
xγj=0+δj |x

)
. By lemma 2.2.10 Dφ is equivalent to D(

∑n
i=1(xαi = 0∧βi|x)) which

is equivalent to
∧n
i=1(xβi = 0 + αi|x) and Dψ is equivalent to

∑m
j=1(xδj = 0 ∧ γj|x).

So
(

Dψ
Dφ

)
= ∪i,j

(
(xδj=0∧γj |x)

(xβi=0+αi|x)

)
. Hence

(
φ
ψ

)
7→
(

Dψ
Dφ

)
.

3.5 Description of the open sets

The aim of this section is to get a more manageable characterisation of when a pair

(I, J) ∈ Wa,b,g,h. That is we will replace the existential quantifiers in corollary 3.3.13

with simple conditions on pairs of ideals (I, J) invariant under ∼.

The following lemma reduces the number of coefficients needed to describe a basic

open set.

Lemma 3.5.1. Let V be a valuation domain. Let a, b, g, h ∈ V , a, b 6= 0 and g, h ∈ m.

Then Wa,b,g,h =Wa.b,1,g,h =W1,a.b,g,h.
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Proof. First note that Wa,b,g,h =Wa.b,1,g,h implies Wa,b,g,h =W1,a.b,g,h because

(I, J) ∈ Wa,b,g,h if and only if (J, I) ∈ Wb,a,h,g =Wab,1,h,g

and

(J, I) ∈ Wab,1,h,g if and only if (I, J) ∈ W1,ab,g,h.

Now we prove the first equality. Suppose (I, J) ∈ Wa,b,g,h. Take (K,L) ∼ (I, J)

with a /∈ K, ag ∈ K, b /∈ L and bh ∈ L. Since b /∈ L, (K,L) ∼ (Kb, (L : b)).

Now ab /∈ Kb (as a /∈ K), abg ∈ Kb (as ag ∈ K) and h ∈ (L : b) (as bh ∈ L). So

(I, J) ∼ (Kb, (L : b)) ∈ Wa.b,1,g,h.

Conversely, suppose (I, J) ∈ Wa.b,1,g,h. Take (K,L) ∼ (I, J) with ab /∈ K, abg ∈

K and h ∈ L. Then b /∈ K, a /∈ (K : b), ag ∈ (K : b), b /∈ Lb and bh ∈ Lb. So

(I, J) ∼ ((K : b), Lb) ∈ Wa,b,g,h.

The following 4 lemmas will be used in the proof of proposition 3.5.6.

Lemma 3.5.2. Let J C V and a, b ∈ V . Then a /∈ Jb if and only if b ∈ (am : J).

Proof. By definition, b ∈ (am : J) if and only if Jb ⊆ am if and only if a /∈ Jb.

Lemma 3.5.3. Let λ, g, h ∈ V , λ 6= 0 and g, h ∈ m. Let (I, J) be a pair of V . Then

(I, J) ∈ W1,λ,g,h implies λ /∈ I.J , λgh ∈ I.J , g ∈ I# and h ∈ J#.

Proof. Suppose (I, J) ∈ W1,λ,g,h. By corollary 3.3.13, either there exists γ /∈ I such

that g ∈ (I : γ), λ /∈ J.γ and λh ∈ J.γ or there exists γ /∈ J such that g ∈ I.γ,

λ /∈ (J : γ) and λh ∈ (J : γ). In either case lemma 3.3.5 implies that g ∈ I# and

h ∈ J#. If γ /∈ I then it is clear that (I : γ).J.γ = I.J since (I : γ).γ = I. Similarly,

if γ /∈ J then I.γ(J : γ) = I.J . Therefore in either of the above cases λ /∈ I.J and

λgh ∈ I.J .

Lemma 3.5.4. Let I, JCV . Then I.J ⊆ K if and only if I ⊆ (K : J). Equivalently,

for valuation domains, I.J ) K if and only if I ) (K : J).

Proof. Suppose I.J ⊆ K. Take x ∈ I. Then x.J ⊆ I.J ⊆ K. So x ∈ (K : J).

Suppose I ⊆ (K : J). Take i ∈ I and j ∈ J . Then i.j ∈ i.J ⊆ K. So I.J ⊆ K.
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Lemma 3.5.5. Suppose that J C V and λ, h ∈ V such that λh ∈ J and h ∈ J#.

Then (λhm : J) ( (λm : J).

Proof. If λm ⊇ J then (λm : J) = V and λhm ( J so (λhm : J) 6= V . Otherwise

λ ∈ J . Since h ∈ J#, Jh ( J . Take a ∈ J\Jh. Then am ⊇ Jh ⊇ λhV . Let t ∈ m

be such that at = λh. Since a /∈ Jh, aλ /∈ Jλh. So aλ /∈ Jat. Hence λ /∈ Jt. So

λm ⊇ Jt. Since a ∈ J , aλh ∈ Jλh = Jat. So λh ∈ Jt. Hence λhm ( tJ . Therefore

t ∈ (λm : J) and t /∈ (λhm : J).

Proposition 3.5.6. Let λ, g, h ∈ V , λ 6= 0 and g, h ∈ m. Let (I, J) be a pair of

ideals in V . Then the following are equivalent:

(i) (I, J) ∈ W1,λ,g,h.

(ii) g ∈ I#, h ∈ J#, λgh ∈ IJ and (I, J) ∈ W1,λ,0,0.

Proof. (ii)⇒(i). We split the proof into two cases:

Case 1: λh ∈ J .

In order to show that (I, J) ∈ W1,λ,g,h we must find x /∈ I such that g ∈ (I : x),

λ /∈ J.x and λh ∈ J.x. This follows from corollary 3.3.13 and λh ∈ J .

We can rewrite g ∈ (I : x) as x ∈ (I : g), λ /∈ J.x as x ∈ (λm : J) by lemma 3.5.2

and λh ∈ J.x as x /∈ (λhm : J) by lemma 3.5.2. As ideals are totally ordered, it is

enough to show that the following strict inequalities hold:

(1) I ( (I : g)

(2) I ( (λm : J)

(3) (λhm : J) ( (I : g)

(4) (λhm : J) ( (λm : J)

(1) is true since g ∈ I# and (4) holds by 3.5.5 using h ∈ J#.

(3) By (ii) λgh ∈ I.J , which implies that λghm ( I.J . If g ∈ I then (I : g) = V so

λhm ( (I : g)J . Otherwise g /∈ I. Suppose for a contradiction that λhm ⊇ (I : g)J .
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Then λghm ⊇ IJ , a contradiction since λgh ∈ IJ . Therefore λhm ( (I : g)J so by

3.5.4, (λhm : J) ( (I : g).

(2) By (ii) (I, J) ∈ W1,λ,0,0. So either λ /∈ J or there exists γ /∈ I such that λ /∈ γ.J .

If λ /∈ J then λm ⊇ J . So (λm : J) = V . Therefore (2) holds. If there exists γ /∈ I

such that λ /∈ γ.J then λm ⊇ γ.J i.e. there exists γ ∈ (λm : J) not in I. So (2)

holds.

Case 2: λh /∈ J

Again, by corollary 3.3.13 and λh /∈ J , in order to show that (I, J) ∈ W1,λ,g,h we

must find x /∈ J such that g ∈ I.x, λ /∈ (J : x) and λh ∈ (J : x). That is x /∈ J such

that x /∈ (gm : I), x /∈ (J : λ) and x ∈ (J : λh). So it is enough to show that the

following strict inequalities hold:

(1) (J : λh) ) (gm : I)

(2) (J : λh) ) (J : λ)

(1) By hypothesis λgh ∈ I.J . Therefore λghm ( I.J . Hence gm ( I.(J : λh),

therefore by proposition 3.5.4 (gm : I) ( (J : λh).

(2) The second is clear since λh /∈ J and h ∈ J#.

(i)⇒(ii). Now suppose (I, J) ∈ W1,λ,g,h. There exists (I ′, J ′) such that (I, J) ∼

(I ′, J ′) and g ∈ I ′, λ /∈ J ′ and λh ∈ J ′. Therefore (I ′, J ′) ∈ W1,λ,0,0, so (I, J) ∈

W1,λ,0,0 and by proposition 3.5.3 λgh ∈ I.J , g ∈ I# and h ∈ J#.

From proposition 3.5.6 we can deduce that if I, J C V and I# = J# then (I, J)

and (J, I) are topologically indistinguishable since W1,λ,0,0 =Wλ,1,0,0.

It remains to consider when a pair (I, J) ∈ W1,λ,0,0. In order to do this we first

group ideals into 4 distinct classes. We start by showing that if ICV and (I#)2 6= I#

then I = aI# for some a ∈ V .

Lemma 3.5.7. Suppose that p is a prime ideal and p2 6= p. Then if I C V with

I# = p there exists a ∈ V \{0} such that I = ap.

46



Proof. Suppose I C V , I# = p and p2 6= p. Take k ∈ p\p2. Since I# = p there exists

a /∈ I such that k ∈ (I : a). Given any t ∈ p, either t ∈ kV so t ∈ (I : a) or k = tc for

some c ∈ V . Note that c /∈ p since k /∈ p2. Hence t ∈ (I : a) since (I : a)# = I# = p.

Therefore (I : a) = p. So I = ap.

Definition 3.5.8. Let pC V be a prime ideal and let a ∈ p be non-zero. We define

Ipa = {b ∈ V | there exists r /∈ p such that br ∈ aV }.

The ideal Ipa is the pre-image of the ideal generated by a in Vp. Note that for

any valuation domain V and any a ∈ m\{0}, Ima = aV . The following lemmas give

properties of the ideals Ipa.

Lemma 3.5.9. Let pC V be a prime ideal and let a ∈ p be non-zero. Then Ipa is an

ideal with attached prime p.

Proof. Suppose b ∈ Ipa and r ∈ V . Then there exists k /∈ p such that bk ∈ aV .

Therefore (br)k ∈ aV . So br ∈ Ipa. Hence, by 2.4.2, Ipa is an ideal.

We now show that Ipa has attached prime p. Suppose that b /∈ Ipa, c ∈ V and

bc ∈ Ipa. Then there exists k /∈ p such that bck ∈ aV but since b /∈ Ipa, ck ∈ p.

Therefore c ∈ p.

Suppose c ∈ p. Then either c ∈ aV (hence c ∈ Ipa) or c /∈ aV . Suppose c /∈ aV .

Then a = cγ for some γ ∈ V . Suppose, for a contradiction, that γ ∈ Ipa. Then there

exists t /∈ p such that γt ∈ aV = cγV . Hence t ∈ cV . A contradiction since c ∈ p.

Therefore c ∈ (Ipa)
#.

Lemma 3.5.10. Let pC V be a prime ideal, a ∈ p and λ ∈ V . Then

λ /∈ Ipa if and only if a ∈ λp.

Proof. It is clear that a ∈ λp implies λ /∈ Ipa. Suppose λ /∈ Ipa. Then λ /∈ aV . So

a = λγ and γ ∈ p. Hence a ∈ λp.

Lemma 3.5.11. Let pC V be a prime ideal and a, b ∈ p be non-zero. Then Ipa · b =

Ipa.I
p
b = Ipab.
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Proof. Claim: Ipa · b = IpaI
p
b .

First note that b ∈ Ipb . So Ipa ·b ⊆ IpaI
p
b . Suppose x ∈ IpaI

p
b . Then x = x1x2 for some

x1 ∈ Ipa and x2 ∈ Ipb . So there exists γ1 /∈ p such that x1γ1 ∈ aV and γ2 /∈ p such that

x2γ2 ∈ bV . Since x1 ∈ p and γ2 /∈ p there exists µ ∈ V such that γ2µ = x1. Therefore

µ ∈ Ipa since µγ1γ2 = x1γ1 ∈ aV and γ1γ2 /∈ p. Hence x = x1x2 = µ.(γ2x2) ∈ Ipa · bV .

So Ipa · b ⊇ IpaI
p
b .

Claim: Ipa · b = Ipab.

Suppose x ∈ Ipab. Then b|x. To see this, suppose for a contradiction that b = xγ

for some γ ∈ V . Then, since x ∈ Ipab, there exists t /∈ p such that xt ∈ abV = axγV .

Hence t ∈ aγV , contradicting t /∈ p. Hence b divides x.

Let µ ∈ V be such that x = bµ. It remains to show that µ ∈ Ipa. Since bµ ∈ Ipab
there exists k /∈ p such that bµk ∈ abV therefore µk ∈ aV so µ ∈ Ipa. Hence x ∈ Ipa · b.

Suppose x ∈ Ipa. Then there exists k /∈ p such that xk ∈ aV . Therefore xbk ∈ abV .

So xb ∈ Ipab.

Lemma 3.5.12. Let pC V be a prime ideal and a ∈ p. Then Ipap = ap.

Proof. The inclusion Ipap ⊇ ap holds as Ipa ⊇ aV . Suppose t ∈ Ipa. There exists

γ /∈ p such that tγ ∈ aV . Take any p ∈ p. Then p = γr for some r ∈ p. Therefore

tp = tγr ∈ ap. So Ipap ⊆ ap.

Lemma 3.5.13. Let pC V and I C V such that p2 = p and I# = p. Then Ip ( I if

and only if I = Ipa for some a ∈ p.

Proof. ⇒ Suppose a ∈ I\Ip. We will now show that I = Ipa.

Take t ∈ I. Then either t ∈ aV or a = tr for some r ∈ V . If t ∈ aV then t ∈ Ipa.

Suppose a = tr. Then r /∈ p since a /∈ Ip. Hence t ∈ Ipa.

Now suppose t ∈ Ipa. There exists γ /∈ p such that tγ ∈ aV . Hence tγ ∈ I. Since

γ /∈ p and p = I#, t ∈ I.

⇐ Suppose a ∈ p. Then Ipap = ap. Clearly ap ( Ipa since a /∈ ap and a ∈ Ipa.
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Definition 3.5.14. We say that I C V with I# = p is a proper cut if it is not equal

to Ipa for any a ∈ p\{0} or bp for any b ∈ V \{0}.

We now given an example of a proper cut. Let V be a valuation domain with

value group Q under addition. Such a valuation domain exists by 2.4.5. Let v be the

valuation map. Then I C V is a proper cut if and only if I = {r ∈ V | v(r) > c} for

some strictly positive irrational real number c.

We now split the question of when a pair of ideals (I, J) lies in W1,λ,0,0 into the

following cases:

1. I# 6= J# (lemma 3.5.16 and discussion directly below that).

2. I# = J# = p and exactly one of the following conditions

(i) p 6= p2 (lemma 3.5.18, noting lemma 3.5.7).

(ii) p = p2, I = tp and J = sp for some non-zero t, s ∈ V (lemma 3.5.18).

(iii) p = p2, I = Ipa and J = Ipb for some non-zero a, b ∈ p (lemma 3.5.19).

(iv) p = p2, I = Ipa and J = tp for some non-zero a ∈ p and non-zero t ∈ V

or I = tp and J = Ipa for some non-zero t ∈ V and some non-zero a ∈ p

(lemma 3.5.21).

(v) p = p2 and I or J is a proper cut (lemma 3.5.22).

Lemma 3.5.15. Suppose I, J C V such that J ) I#. Then IJ = I.

Proof. Suppose I, J C V such that J ) I#. Suppose x ∈ I. Take y ∈ J\I#. Then

there exists r ∈ V such that yr = x. Therefore r ∈ I since y /∈ I#. So x ∈ IJ . Hence

IJ ⊇ I. The other inclusion is true for all ideals so IJ = I.

Lemma 3.5.16. Let λ ∈ V be non-zero and (I, J) a pair in V such that I# ( J .

The following are equivalent:

(i) (I, J) ∈ W1,λ,0,0.

(ii) (I, J#) ∈ W1,λ,0,0.
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(iii) λ /∈ I.J .

Proof. First note that if I, J C V are such that J ⊇ I# then x /∈ I implies Jx ⊇ I.

To see this, suppose x /∈ I and take i ∈ I. There exists γ ∈ V such that i = xγ.

Then γ ∈ J since γ ∈ I#. So i ∈ Jx.

(i)⇒(ii). Suppose that (I, J) ∈ W1,λ,0,0. Then there exists x /∈ I such that λ /∈ J.x

but then λ /∈ I. Hence (I, J#) ∈ W1,λ,0,0 since λ /∈ J#.λ.

(ii)⇒(i). Suppose (I, J#) ∈ W1,λ,0,0. Then there exists x /∈ I such that λ /∈ J#.x.

Therefore λ /∈ J.x. Hence (I, J) ∈ W1,λ,0,0.

(i)⇔(iii). Suppose λ /∈ IJ . So λ /∈ I since IJ = I (by lemma 3.5.15). So (I, J) ∼

((I : λ), Jλ)) and λ /∈ Jλ. Hence (I, J) ∈ W1,λ,0,0. The reverse implication is part of

proposition 3.5.3.

Note that for any ideals I, J C V with I# ( J# and any λ ∈ V \{0},

(I, J) ∈ W1,λ,0,0 if and only if λ /∈ IJ.

To see this, note that there exists x /∈ J such that I# ( (J : x). Therefore (Ix, (J :

x)) ∈ W1,λ,0,0 if and only if λ /∈ Ix(J : x) = IJ . Since (I, J) ∼ (Ix, (J : x)),

(I, J) ∈ W1,λ,0,0 if and only if λ /∈ IJ .

Corollary 3.5.17. Suppose (I, J) is a pair in V such that I# ( J#. Then there

exists T C V with T# = I# such that (T, J#) is topologically indistinguishable from

(I, J).

Proof. Suppose I# ( J#. Then there exists x /∈ J such that I# ( (J : x). Note

that (Ix)# = I# and (J : x)# = J#, by lemma 3.3.5. Therefore, by 3.5.16, for any

λ ∈ V \{0}, (Ix, (J : x)) ∈ W1,λ,0,0 if and only if (Ix, J#) = (Ix, (J : x)#) ∈ W1,λ,0,0.

By lemma 3.5.15, Ix(J : x) = Ix(J : x)# = IxJ#. Hence, by proposition 3.5.6, for

any λ ∈ V \{0} and g, h ∈ m, (Ix, (J : x)) ∈ W1,λ,g,h if and only if (Ix, J#) ∈ W1,λ,g,h.

Since (I, J) ∼ (Ix, (J : x)), (I, J) is topologically indistinguishable from (Ix, J#).
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Lemma 3.5.18. Suppose p C V is prime and λ, t1, t2 ∈ V \{0}. Then the following

are equivalent:

(i) (t1p, t2p) ∈ W1,λ,0,0.

(ii) λ /∈ t1t2p.

Proof. (ii)⇒(i). First note that (t1p, t2p) ∼ (p, t1t2p). So if λ /∈ t1t2p then (t1p, t2p) ∈

W1,λ,0,0.

(i)⇒ (ii). Suppose (t1p, t2p) ∈ W1,λ,0,0. Then there exists γ /∈ t1p such that λ /∈ γt2p.

If γ /∈ t1p then γp ⊇ t1p. Therefore γt2p ⊇ t1t2p. Hence λ /∈ t1t2p.

Lemma 3.5.19. Suppose that p C V is a prime ideal and p2 = p. If a, b ∈ p then

(Ipa, I
p
b ) ∈ W1,λ,0,0 if and only if λ /∈ IpaI

p
b .

Proof. By lemma 3.5.3 (Ipa, I
p
b ) ∈ W1,λ,0,0 implies λ /∈ IpaI

p
b . Suppose λ /∈ IpaI

p
b = Ipab.

Either λ /∈ Ipb so (Ipa, I
p
b ) ∈ W1,λ,0,0 or λ ∈ Ipb . Suppose λ ∈ Ipb . By lemma 3.5.10

this means ab ∈ λp and b /∈ λp. Let k ∈ V be such that λp = kbp. Such a k exists

since either λp = bp or bp ) λp hence λ ∈ bp. Then a ∈ kp since ab ∈ λp = kbp.

As p = p2 there exists γ1, γ2 ∈ p such that a = kγ1γ2. So a ∈ kγ1p and kγ1 ∈ kp.

So by lemma 3.5.10 kγ1 /∈ Ipa and λ /∈ Ipkγ1b = Ipbkγ1 since kγ1b ∈ λp. Therefore

(Ipa, I
p
b ) ∈ W1,λ,0,0.

Lemma 3.5.20. Let (I, J) be a pair in V such that I# = J#. Then for all λ ∈ V \{0},

λI# ) IJ implies (I, J) ∈ W1,λ,0,0.

Proof. Suppose I, J C V , I# = J# = p and λp ) IJ . If λ /∈ J then (I, J) ∈ W1,λ,0,0.

So suppose λ ∈ J . Take p ∈ p such that λp /∈ IJ . So λpm ⊇ IJ . Hence, by 3.5.4,

(λpm : J) ⊇ I and by 3.5.5 (λm : J) ) (λpm : J). Take x ∈ (λm : J)\I. Then

λ /∈ Jx and x /∈ I. So (I, J) ∈ W1,λ,0,0.

Suppose p2 = p, I = Ipa and J = tp for some non-zero a ∈ p and non-zero t ∈ V .

Then t /∈ J , (J : t) = p and by lemma 3.5.11, I.t = Ipat. Therefore (I, J) ∼ (Ipat, p).

The following lemma characterises when a pair of the form (Ipa, p) lies inW1,λ,0,0 where

p2 = p and a ∈ p\{0}.

51



Lemma 3.5.21. Let p C V be a prime ideal such that p2 = p and a ∈ p\{0}. Let

λ ∈ V \{0}. Then the following are equivalent:

(i) (Ipa, p) ∈ W1,λ,0,0.

(ii) λp ) Ipap.

(iii) λ /∈ Ipa.

Proof. (ii)⇒(i) is by lemma 3.5.20.

(iii)⇒(ii) By lemma 3.5.10, λ /∈ Ipa implies a ∈ λp. By lemma 3.5.12 Ipap = ap ( λp.

(i)⇒(iii) Suppose (Ipa, p) ∈ W1,λ,0,0. Then there exists γ /∈ Ipa such that λ /∈ γp. Hence

γp ⊇ Ipa. So λ /∈ Ipa.

Lemma 3.5.22. Suppose that (I, J) is a pair in V , p = I# = J# and p = p2. If

either I or J corresponds to a proper cut then (I, J) ∈ W1,λ,0,0 if and only if λp ) I.J .

Proof. Let I, J C V with I# = J# = p be such that either I or J is a proper cut.

Suppose that (I, J) ∈ W1,λ,0,0. Then λ /∈ I.J . So λp ⊇ I.J . If I.J 6= λp then

we are done so suppose for a contradiction that λp = I.J . Since (I, J) ∈ W1,λ,0,0

there exists γ /∈ I such that λ /∈ Jγ. Therefore I.J = λp ⊇ Jγ and Jγ ⊇ I.J since

γ /∈ I hence Jγ = I.J . This means that (I : γ)J = J . Take any t /∈ (I : γ). Then

tV ⊇ (I : γ). So tJ ⊇ (I : γ)J = J . Therefore t /∈ p. Hence (I : γ) = p. So I = pγ.

But IJ = Jγ = λp. So neither I or J is a proper cut, a contradiction. Therefore

λp ) IJ .

The converse is by lemma 3.5.20.

Definition 3.5.23. We say that a pair (I, J) is a normal point if for all λ ∈ V \{0},

λ /∈ IJ implies (I, J) ∈ W1,λ,0,0. Otherwise we call a pair (I, J) abnormal.

Lemma 3.5.24. Let pC V be prime and let I, J C V be such that I# = J# = p and

(I, J) is abnormal. Then for all λ ∈ V \{0} the following are equivalent:
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(i) (I, J) ∈ W1,λ,0,0.

(ii) λp ) IJ .

Proof. (ii)⇒ (i) By lemma 3.5.20, λp ) IJ implies (I, J) ∈ W1,λ,0,0.

(i)⇒(ii) Let a ∈ V be such that a /∈ IJ and (I, J) /∈ W1,a,0,0. Such an a exists since

(I, J) is abnormal. Suppose (I, J) ∈ W1,λ,0,0. There exists γ /∈ I such that λ /∈ Jγ.

Hence λp ⊇ Jγ. Since (I, J) /∈ W1,a,0,0, a ∈ Jγ. Hence a ∈ λp. Therefore λp ) ap.

Since a /∈ IJ , ap ⊇ IJ . So λp ) ap ⊇ IJ .

Lemma 3.5.25. Let pCV be a prime ideal such that p2 = p and (I, J) an abnormal

point with I# = J# = p. Then there exists non-zero a ∈ p such that (I, J) and (Ipa, p)

are topologically indistinguishable.

Proof. Let p C V be a prime ideal such that p2 = p and let I, J C V be such that

I# = J# = p. First we show that (I, J) abnormal implies that there exists a ∈ p

such that IJ = ap. Suppose (I, J) is abnormal. By definition of abnormal, there

exists a /∈ IJ such that (I, J) /∈ W1,a,0,0. Since a /∈ IJ and (IJ)# = p, ap ⊇ IJ . By

lemma 3.5.20 and because (I, J) /∈ W1,a,0,0, we have ap ⊆ IJ .

By lemma 3.5.24 and since IJ = ap = Ipap, for all λ ∈ V \{0}, (I, J) ∈ W1,λ,0,0 if

and only if (Ipa, p) ∈ W1,λ,0,0.

Consequently, using proposition 3.5.6, (I, J) and (Ipa, p) are topologically indistin-

guishable.

Note that (I, J) abnormal implies I# = J# by lemma 3.5.16. Suppose (I, J) is

a point with I# = J# = p. Then p2 6= p implies (I, J) is abnormal. Lemma 3.5.20

implies that if (I, J) is abnormal then IJ = ap for some a ∈ V \{0}. Moreover, if

IJ = ap for some a ∈ V \{0} then (I, J) is abnormal if and only if (I, J) /∈ W1,a,0,0.

Finally note that if p2 = p then for any non-zero a, b ∈ p, the point (Ipa, I
p
b ) is

normal and for any non-zero a, b ∈ V the point (ap, bp) is normal (cf. lemma 3.5.19

and lemma 3.5.18).

We now give some examples of normal and abnormal points in ZgV for particular

valuation domains.
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Example 3.5.26. Suppose V is a valuation domain with value group Z. The maximal

ideal m of V is finitely generated. Let k generate m.

1. For all n,m ∈ N, (knV, kmV ) ∼ (m, km+n−2m) and (knV, kmV ) is an abnormal

point.

2. The points (I, 0), (0, I) and (0, 0) are normal for all proper I C V .

Proof. First note, such a valuation domain exists by 2.4.5. Also note that m is the

only non-zero prime ideal in V and since Z is not dense, m2 6= m and m is finitely

generated. All proper non-zero ideals of V are of the form knV for some n ∈ N.

(1) For any n,m ∈ N, (knV, kmV ) ∼ (m, km+n−2m) since (knV : kn−1) = m and

kmV.kn−1 = kn+m−2m. By lemma 3.5.18, (m, km+n−2m) /∈ W1,km+n−1,0,0, since

km+n−1 ∈ km+n−2m = km+n−1V . Therefore, since km+n−1 /∈ m2km+n−2 = km+nV ,

(m, km+n−2m) is abnormal. Hence the points (knV, kmV ) where m,n ∈ N are abnor-

mal.

(2) The points (I, 0), (0, I) are normal by lemma 3.5.16. The point (0, 0) is normal

since (0, 0) ∈ W1,l,λ,g,h if and only if g = h = 0.

Example 3.5.27. Suppose V is a valuation domain with value group Q under ad-

dition. Let v be the valuation map. Suppose q ∈ Q is strictly positive and s ∈ V is

such that v(s) = q. Let I≥q be the ideal {r ∈ V | v(r) ≥ q}, note that this ideal is

generated by s. Suppose c, d ∈ R are strictly positive and irrational. Let Ic be the

ideal {r ∈ V | v(r) > c} and Id be the ideal {r ∈ V | v(r) > d}.

1. The point (I≥q,m) is abnormal.

2. If c+ d is irrational then (Ic, Id) is normal.

3. If c+ d is rational then (Ic, Id) is abnormal.

4. If c+d is rational then (Ic, Id) is topologically indistinguishable from (I≥c+d,m).

Proof. First note, such a valuation domain exists by 2.4.5. Also note that m is the

only non-zero prime ideal in V and since Q is dense, we have m2 = m.
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(1) Since I≥qm = sm, we have s /∈ I≥qm. By lemma 3.5.21 and as s ∈ I≥q,

(I≥q,m) /∈ W1,s,0,0. Therefore (I≥q,m) is abnormal.

(2) First note that the ideals Ic and Id have attached prime m. Since IcId = Ic+d,

there does not exist a ∈ V such that Ic+d = am. Therefore, (Ic, Id) is normal.

(3) Let r ∈ V be such that v(r) = c + d. We now show that IcId = Ic+d = rm,

where Ic+d = {t ∈ V | v(t) > c + d}. If x ∈ V and v(x) ≥ c then v(x) > c,

since c is irrational and v(x) is rational. Therefore, if x ∈ Ic and y ∈ Id then

v(xy) = v(x) + v(y) > c + d = v(r). So xy ∈ rm. If x ∈ rm then v(x) > r = c + d.

So, since Q is dense, there exists strictly positive a, b ∈ Q such that a > c, b > d and

a + b = v(x). We can now pick y, z ∈ V such that v(y) = a, v(z) = b and x = yz.

Therefore y ∈ Ic and z ∈ Id, so x ∈ IcId. Hence IcId = rm.

Suppose, for a contradiction, that (Ic, Id) ∈ W1,r,0,0. Then there exists γ /∈ Ic

such that r /∈ γId. This means that v(γ) ≤ c and c + d = v(r) ≤ v(γ) + d. So

v(γ) = c. But this is a contradiction, since v(γ) is rational and c is irrational.

Therefore (Ic, Id) ∈ W1,r,0,0. Hence (Ic, Id) is abnormal, since r /∈ IcId = rm.

(3) Note that if c + d is rational then (Ic, Id) is topologically indistinguishable from

(I≥c+d,m) (cf. lemma 3.5.25).

3.6 The Ziegler spectrum of a valuation domain is

sober

The aim of this section is to show that if V is a valuation domain then every irreducible

closed set in ZgV is the closure of a point.

Lemma 3.6.1. Let T be a topological space and C an irreducible closed set in T .

Then for all U1 and U2 open sets in T , C∩U1 6= ∅ and C∩U2 6= ∅ implies U1∩U2∩X 6=

∅.

Proof. Suppose C is an irreducible closed set and U1,U2 are open sets such that

U1 ∩ U2 ∩ C = ∅. Then C ⊆ T \(U1 ∩ U2) = (T \U1) ∪ (T \U2). So, since C is

irreducible, either C ⊆ T \U1 or C ⊆ T \U2. Therefore C ∩U1 = ∅ or C ∩U2 = ∅.
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Lemma 3.6.2. Let t, s ∈ m. Then W1,ts,0,0 ∩W1,1,t,s = ∅.

Proof. For any pair of ideals (I, J), (I, J) ∈ W1,ts,0,0 implies ts /∈ IJ and (I, J) ∈

W1,1,t,s implies ts ∈ IJ . Therefore W1,ts,0,0 ∩W1,1,t,s = ∅.

Lemma 3.6.3. Let C be an irreducible closed set of ZgV . Then there exists T C V

such that T = IJ for all normal points (I, J) ∈ C.

Proof. Let (I, J), (K,L) ∈ C and suppose both are normal points. Suppose, for a

contradiction, that IJ ( KL. Take λ ∈ KL, λ /∈ IJ . Then λ = kl for some k ∈ K

and l ∈ L. Therefore (I, J) ∈ W1,λ,0,0, (K,L) ∈ W1,1,k,l and W1,λ,0,0 ∩ W1,1,k,l = ∅,

contradicting the irreducibility of C. Hence IJ = KL.

Lemma 3.6.4. Suppose C is an irreducible closed set containing at least one normal

point. Let T be as in lemma 3.6.3. If (I, J) is an abnormal point contained in C then

T (IJ)# ⊆ IJ ⊆ T.

Proof. Let (K,L) be a normal point in C and (I, J) an abnormal point in C. Note

that I# = J#.

Suppose that T = KL ( IJ . Take i ∈ I and j ∈ J such that ij /∈ T . Then

(I, J) ∈ W1,1,i,j, (K,L) ∈ W1,ij,0,0 and W1,1,i,j ∩ W1,ij,0,0 = ∅, contradicting the

irreducibility of C. Hence T ⊇ IJ .

Suppose IJ ( T (IJ)#. Then there exists µ ∈ T such that IJ ( µ(IJ)#. So

(I, J) ∈ W1,µ,0,0, by lemma 3.5.20 and there exists k ∈ K and l ∈ L such that kl = µ.

Hence (K,L) ∈ W1,1,k,l. But W1,1,k,l ∩W1,µ,0,0 = ∅, contradicting the irreducibility of

C. Therefore T (IJ)# ⊆ IJ .

Corollary 3.6.5. Suppose C is an irreducible closed set containing at least one nor-

mal point. Let T be as in 3.6.3. Then each normal point in C specialises to each

abnormal point in C.

Proof. Suppose (I, J) ∈ C abnormal with I# = J# = p. In order to show that a

normal point (K,L) ∈ C specialises to (I, J), it is enough to show for all basic open

sets W1,λ,g,h, if (I, J) ∈ W1,λ,g,h then (K,L) ∈ W1,λ,g,h.
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Suppose (I, J) ∈ W1,λ,g,h. Then λp ) IJ ⊇ λghV and g, h ∈ p. By lemma 3.6.4,

IJ ⊇ Tp so λp ) Tp. Hence λ /∈ T . Again, by 3.6.4 λgh ∈ IJ implies λgh ∈ T . Now

suppose, for a contradiction, that p ) T#. Then T (IJ)# = Tp = T . So IJ = T , by

lemma 3.6.4. Hence T# = p. So T# ⊇ p. Therefore g, h ∈ p implies g, h ∈ T#. If

(K,L) ∈ C is a normal point then K# ⊇ T# and L# ⊇ T#. So g ∈ K# and h ∈ L#.

Hence (K,L) ∈ W1,λ,g,h. So (K,L) specialises to (I, J).

Lemma 3.6.6. Let C be an irreducible closed set containing at least one normal

point. Let T be as in lemma 3.6.3. Then one of the following is true:

• For all normal (I, J) ∈ C either I# = T# and J# = T# or (I, J) is topologically

indistinguishable from (T, p) for some prime ideal p ) T#.

• For all normal (I, J) ∈ C either I# = T# and J# = T# or (I, J) is topologically

indistinguishable from (p, T ) for some prime ideal p ) T#.

Proof. Let C be an irreducible closed set containing at least one normal point and let

T be as in lemma 3.6.3. Note that if C is an irreducible closed set and (I, J) ∈ C then

I# ⊇ T#, J# ⊇ T# and either I# = T# or J# = T# since I# ∩ J# = (IJ)# = T#.

Suppose, for a contradiction, that there exists (I, J) ∈ C and (K,L) ∈ C both

normal points such that I# ) T# and L# ) T#. Then I# ∩ L# ) T#. Take

t ∈ I# ∩ L#\T# and µ ∈ T . Then µ = tr for some r ∈ T#. So (I, J) ∈ W1,1,t,r and

(K,L) ∈ W1,1,r,t. Hence C∩W1,1,r,t∩W1,1,t,r 6= ∅. But if (M,N) ∈ C∩W1,1,r,t∩W1,1,t,r

then t ∈M# and t ∈ N# so N# ) T# and M# ) T# hence (M,N) is an abnormal

point. So by lemma 3.6.4, T (NM)# ⊆ NM ⊆ T but T (NM)# = T so MN = T , a

contradiction.

Therefore if (I, J), (K,L) ∈ C and both are normal points such that I#∪J# ) T#

and K#∪L# ) T# then either I# ) T#, K# ) T# and J# = L# = T# or J# ) T#,

L# ) T# and I# = K# = T#.

It remains to show that if (I, J) ∈ C a normal point and I# ) T# then (I, J) is

topologically indistinguishable from (I#, T ). Note that (I, J) ∈ W1,λ,g,h if and only

if λ /∈ IJ = T , λgh ∈ IJ = T , g ∈ I# and h ∈ J# = T# and (I#, T ) ∈ W1,λ,g,h if
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and only if λ /∈ I#T = T , λgh ∈ I#T = T , g ∈ I# and h ∈ T#. Therefore (I, J) and

(I#, T ) are topologically indistinguishable.

Lemma 3.6.7. Let {pi | i ∈ I} be a set of prime ideals of V and let T be an ideal of

V such that T# ( pi for each i ∈ I. If C is a closed set in ZgV such that (T, pi) ∈ C

for all i ∈ I then (T,∪i∈Ipi) ∈ C

Proof. Suppose λ ∈ V non-zero and g, h ∈ m are such that (T,∪i∈Ipi) ∈ W1,λ,g,h.

Since (T,∪i∈Ipi) is a normal point λ /∈ T , λgh ∈ T , g ∈ T# and h ∈ ∪i∈Ipi. Therefore

h ∈ pi for some i ∈ I so (T, pi) ∈ W1,λ,g,h.

Definition 3.6.8. Let p, qC V be prime ideals. Then

Xp,q = {(I, J) ∈ ZgV | I# = p and J# = q}.

Lemma 3.6.9. Let pC V be a prime ideal. Suppose C is an irreducible closed set in

ZgV . Then all normal points in Xp,p ∩ C are topologically indistinguishable.

Proof. Suppose pCV is a prime ideal. Let T be as in lemma 3.6.3. Suppose (I, J) ∈

C ∩ Xp,p is a normal point in ZgV . Then for all λ ∈ V \{0} and g, h ∈ m, (I, J) ∈

W1,λ,g,h if and only if λ /∈ IJ = T , λgh ∈ IJ = T and g, h ∈ I# = J# = p. Since

whether (I, J) is in W1,λ,g,h depends only on T and p, all normal points in C ∩Xp,p

must be topologically indistinguishable.

Proposition 3.6.10. Let C be an irreducible closed set containing at least one normal

point. Then C has a generic point.

Proof. Let T be as in lemma 3.6.3. Without loss of generality we may assume that

for all normal points (I, J) ∈ C either I# = T# and J# = T# or (I, J) topologically

indistinguishable from (T, p) where T# ( p is a prime ideal (see lemma 3.6.6).

First suppose all normal (I, J) ∈ C have I# = T# and J# = T#. By lemma

3.6.9, C contains at most one normal point (up to topological indistinguishability).

By lemma 3.6.5 this normal points specialises to all abnormal points in C. Hence C

has a generic point.

58



Now suppose there exists at least one point (T, p) ∈ C with p ) T#. Let I

index prime ideals pi such that (T, pi) ∈ C with pi ) T#. Then by lemma 3.6.7

(T,∪i∈Ip) ∈ C. It remains to show that (T,∪i∈Ip) specialises to all points in C. This

follows for abnormal points by 3.6.4. Suppose (I, J) ∈ C is a normal point. Then

either I# = T# and J# = T# or (I, J) is topologically indistinguishable from (T, pi)

for some i ∈ I. Therefore if (I, J) ∈ W1,λ,g,h then λ /∈ T , λgh ∈ T , g ∈ I# and

h ∈ J#. So g ∈ T# and h ∈ pi for some i ∈ I. Therefore h ∈ ∪i∈Ipi. So, noting that

T · (∪i∈Ipi) = T and (T,∪i∈Ipi) is a normal point, (T,∪i∈Ipi) ∈ W1,λ,g,h. Therefore

(T,∪i∈Ipi) specialises to (I, J). Hence C has generic point (T,∪i∈Ipi).

Lemma 3.6.11. Let C be an irreducible closed set of ZgV containing only abnormal

points. Then for each prime ideal p C V , all points in C ∩ Xp,p are topologically

indistinguishable.

Proof. Suppose pC V is a prime ideal such that p2 = p and C ∩Xp,p 6= ∅. Suppose,

for a contradiction, (I, J), (K,L) ∈ C ∩ Xp,p with IJ ( KL. As noted earlier (see

proof of 3.5.25) since (I, J) and (K,L) are abnormal there exists a, b ∈ V such that

IJ = ap and KL = bp. Since p2 = p there exists c ∈ p such that ap ( cp ( bp.

Therefore (I, J) ∈ W1,c,0,0 and since p = p2 there exists γ1, γ2 ∈ p such that γ1γ2 = c

so (K,L) ∈ W1,1,γ1,γ2 . But W1,c,0,0 ∩ W1,1,γ1,γ2 = ∅, contradicting the irreducibility

of C. Therefore IJ = KL. So, using proposition 3.5.6 and lemma 3.5.24, (I, J) is

topologically indistinguishable from (K,L).

Suppose pCV is a prime ideal such that p2 6= p and C∩Xp,p 6= ∅. Choose k ∈ p\p2.

Let a, b ∈ V be such that (p, ap), (p, bp) ∈ C. First suppose ap ) akp ) bp. Then

ak2 /∈ bp and ak2 ∈ ap2. Hence (p, bp) ∈ W1,ak2,0,0 and (p, ap) ∈ W1,1,k,ak. But this

contradicts irreducibility of C since W1,ak2,0,0 ∩W1,1,k,ak = ∅.

Next suppose that bp = akp. Then (p, akp) ∈ W1,ak,0,0 and (p, ap) ∈ W1,1,k,ak.

Suppose (I, J) ∈ W1,1,k,ak ∩W1,ak,0,0 ∩ C is abnormal. Then I# = J# = q for some

prime ideal q and q ) p. Suppose q2 = q. Then (I, J) is topologically indistinguish-

able from (Iqγ, q) for some γ ∈ q.

Claim: Either γq ) ap2 or ap2 ) Iqγ.

59



Suppose Ipγ ⊇ ap2. Then γq = Iqγq ⊇ ap2q = ap2. Therefore γq ) ap2.

If γq ) ap2 take µ ∈ γq, µ /∈ ap2 and µ1, µ2 ∈ q such that µ1µ2 = µ. So

(p, akp) ∈ W1,µ,0,0 and (Iqγ, q) ∈ W1,1,µ1,µ2 . But W1,1,µ1,µ2 ∩W1,µ,0,0 = ∅, contradicting

irreducibility of C. If ap2 ) Iqγ take µ ∈ ap2, µ /∈ Iqγ and µ1, µ2 ∈ p such that

µ1µ2 = µ. Then (p, ap) ∈ W1,1,µ1,µ2 and (Iqγ, q) ∈ W1,µ,0,0. ButW1,1,µ1,µ2∩W1,µ,0,0 = ∅,

contradicting irreducibility of C.

Next suppose q2 6= q. Then (I, J) is topologically indistinguishable from a point

of the form (q, cq) for some c ∈ q.

Claim:Either cq2 ) ap2 or ap2 ) cq

Suppose ap2 ⊆ cq. Then ap2q ⊆ cq2 but since q ) p, ap2q = ap2. Therefore ap2 ⊆ cq2

since q ) p. Hence ap2 ( cq2, again since q ) p.

If cq2 ) ap2 take t ∈ cq2, t /∈ ap2 = akp and t1, t2 ∈ q such that t1t2 = t. So

(p, akp) ∈ W1,t,0,0 and (q, cq) ∈ W1,1,t1,t2 . But W1,t,0,0 ∩ W1,1,t1,t2 = ∅, contradicting

irreducibility of C. If ap2 ) cq take t ∈ ap2, t /∈ cq and t1, t2 ∈ p such that

t1t2 = t. So (q, cq) ∈ W1,t,0,0 and (p, ap) ∈ W1,1,t1,t2 . But W1,t,0,0 ∩ W1,1,t1,t2 = ∅,

contradicting irreducibility of C. Therefore all points in C ∩ Xp,p are topologically

indistinguishable.

Lemma 3.6.12. Suppose p ) q are prime ideals in V , γ ∈ V and JCV with J# = q.

Then γp ⊇ J implies γp2 ⊇ J .

Proof. Suppose j ∈ J . Take t ∈ p\q. Then j = tj′ for some j′ ∈ J . Hence j′ ∈ γp so

j = j′t ∈ γp2.

Lemma 3.6.13. Let p, qC V be prime ideals with p ) q. Suppose (I, p) ∈ Xp,p is an

abnormal point and I ⊆ q. Then there exists (J, q) ∈ Xq,q such that (I, p) ∈ cl(J, q).

Proof. We split the proof into 4 cases:

Case 1: p2 = p and q2 = q.

If (I, p) is an abnormal point there exists γ ∈ p such that I = Ipγ . Note that γ ∈ q

and let J = Iqγ. Then (J, q) ∈ W1,λ,g,h if and only if λ /∈ J , λgh ∈ Jq and g, h ∈ q.
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Note that Iqγ ⊇ Ipγ so λ /∈ Ipγ and Ip = γp ⊇ γq = Jq so λgh ∈ γp. Since p ⊇ q,

g, h ∈ p. Hence (I, p) ∈ W1,λ,g,h.

Case 2: p2 = p and q2 6= q.

If (I, p) is an abnormal point there exists γ ∈ V such that Ipγ = I. Note that Ipγ ⊆ q

implies γ ∈ q. If γ /∈ q2 let γ′ = 1 and k = γ, otherwise take k ∈ q\q2, then there

exists γ′ ∈ V such that kγ′ = γ. Note that, in either case, γ′q2 = γq and γ ∈ γ′q.

Let J = γ′q.

Suppose (J, q) ∈ W1,λ,g,h. Then λ /∈ γ′q, λgh ∈ γ′q2 = γq and g, h ∈ q. Hence

λgh ∈ γp since γp ⊇ γq and g, h ∈ p since p ⊇ q. It remains to show that λ /∈ Ipγ ,

equivalently, γ ∈ λp. But λ /∈ γ′q and γ ∈ γ′q. Therefore γ ∈ λq. So γ ∈ λp since

λq ⊆ λp. Hence (I, p) ∈ W1,λ,g,h.

Case 3: p2 6= p and q2 = q.

If (I, p) is an abnormal point there exists γ ∈ V such that I = γp. Let J = Iqγ. Then

(J, q) ∈ W1,λ,g,h implies that λ /∈ Iqγ, λgh ∈ γq and g, h ∈ q. Therefore λ /∈ γp since

Iqγ ⊇ γp, λgh ∈ γp2 since γq ⊆ γp2 and g, h ∈ p since q ⊆ p. Hence (I, p) ∈ W1,λ,g,h.

Case 4: p2 6= p and q2 6= q.

If (I, p) is an abnormal point there exists γ ∈ V such that I = γp, in fact γ ∈ q since

I ⊆ q. If γ ∈ q2 take k ∈ q\q2 then γ = γ′k for some γ′ ∈ V , otherwise let k = γ and

γ′ = 1. Let J = γ′q. Note that γq = γ′kq hence γ′q ⊇ γp = γ′kp since k ∈ q.

Then (J, q) ∈ W1,λ,g,h implies λ /∈ J , λgh ∈ Jq and g, h ∈ q. Therefore λ /∈ γp

since J ⊇ γp, λgh ∈ γp2 since γp2 ⊇ Jq = γ′q2 = γq (by lemma 3.6.12) and g, h ∈ p

since q ⊆ p. Hence (I, p) ∈ W1,λ,g,h.

Proposition 3.6.14. Let C be an irreducible closed set containing only abnormal

points. Then C has a generic point.

Proof. Let I be a totally ordered set indexing the prime ideals pi with C ∩Xpi,pi 6= ∅

such that i ≥ j if and only if pi ⊇ pj. For all i ∈ I, let Ji = Ipiai for some ai ∈ pi where

(Ipiai , pi) ∈ C if p2
i = pi and Ji = aipi where (aipi, pi) ∈ C otherwise. We can do this
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since an abnormal point (I, J) with I# = J# = p is topologically indistinguishable

from (Ipa, p) for some a ∈ p if p2 = p and if p2 6= p then (I, J) ∼ (p, ap) for some

a ∈ V .

Claim: If i ≥ j then Ji ⊆ Jj.

Suppose i > j and Ji ) Jj. Take γ ∈ pi\pj and t ∈ Jj. Then t = γµ for some

µ ∈ Jj. Hence µ ∈ Ji so t = γµ ∈ Jipi. Therefore Jipi ⊇ Jj. Hence Jipi ) Jj since

pi 6= pj. Take λ ∈ Jipi\Jj, a ∈ Ji and b ∈ pi such that ab = λ. Then (Ji, pi) ∈ W1,1,a,b

and (Jj, pj) ∈ W1,λ,0,0, contradicting irreducibility of C since W1,1,a,b ∩W1,λ,0,0 = ∅.

Therefore if i ≥ j then Ji ⊆ Jj.

Claim: (∩i∈IJi,∪i∈Ipi) ∈ C

Let λ ∈ V \{0} and g, h ∈ m. Suppose (∩i∈IJi,∪i∈Ipi) ∈ W1,λ,g,h. Then

(∩i∈IJi,∪i∈Ipi) ∈ W1,λ,0,0, λgh ∈ (∩i∈IJi)(∪i∈Ipi), g ∈ (∩i∈IJi)# and h ∈ ∪i∈Ipi.

We aim to show that there exists i ∈ I such that (Ji, pi) ∈ W1,λ,g,h.

First note that (∩i∈IJi)# ⊆ ∪i∈Ipi. To see this, suppose that x ∈ (∩i∈IJi)#. Then

there exists γ /∈ (∩i∈IJi) such that xγ ∈ (∩i∈IJi). So xγ ∈ Ji for all i ∈ I and γ /∈ Jk

for some k ∈ I. Hence x ∈ J#
k .

Therefore g ∈ (∩i∈IJi)# implies g ∈ pi for some i ∈ I. Note also that h ∈ ∪i∈Ipi

implies h ∈ pi for some i ∈ I.

Suppose, for a contradiction, that (Ji, pi) /∈ W1,λ,0,0 for all i ∈ I. Then λ ∈ Ji

for all i ∈ I. So λ ∈ ∩i∈IJi. Since (∩i∈IJi,∪i∈Ipi) ∈ W1,λ,g,h, λ /∈ (∩i∈IJi)(∪i∈Ipi).

Therefore ∩i∈IJi ) (∩i∈IJi)(∪i∈Ipi). So either ∪i∈Ipi ( (∩i∈IJi)# contradicting

(∩i∈IJi)# ⊆ ∪i∈Ipi or (∩i∈IJi)# = ∪i∈Ipi. If (∪i∈Ipi)2 = ∪i∈Ipi then (∩i∈IJi) = I∪i∈Ipir

for some r ∈ ∪i∈Ipi, by 3.5.13. Otherwise (∪i∈Ipi)2 6= ∪i∈Ipi. Hence (∩i∈IJi,∪i∈Ipi) ∈

W1,λ,0,0 implies λ /∈ ∩i∈IJi. Therefore λ /∈ Jj for some j ∈ I. Since i ≥ j implies

Ji ⊆ Jj, there exists j ∈ I such that λ /∈ Ji for all i ≥ j.

If λgh ∈ (∩i∈IJi)(∪i∈Ipi) then λgh = ts for some t ∈ (∩i∈IJi) and s ∈ (∪i∈Ipi).

Therefore there exists i ∈ I such that s ∈ pj for all j ≥ i. So since t ∈ Jj for all

j ∈ I, λgh = ts ∈ Jjpj for all j ≥ i.
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Therefore there exists i ∈ I such that (Ji, pi) ∈ W1,λ,g,h. Hence for all closed sets

C, (Ji, pi) ∈ C for all i ∈ I implies (∩i∈IJi,∪i∈Ipi) ∈ C.

It remains to show that (∩i∈IJi,∪i∈Ipi) is a generic point for C. This follows from

3.6.13 and 3.6.11.

Theorem 3.6.15. Let V be a valuation domain. Then ZgV is sober.

Proof. Follows directly from proposition 3.6.14 and proposition 3.6.10.

Definition 3.6.16. An integral domain R is called a Prüfer domain if its localisations

at all maximal ideals are valuation domains.

Theorem 3.6.17. Let R be a Prüfer domain. Then ZgR is sober.

Proof. By lemma 2.3.28 ZgR is sober if and only if ZgRm
is sober for all maximal

ideals mCR. So by theorem 3.6.15, ZgR is sober.
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Chapter 4

Decidability

Convention: Throughout this chapter we will use a naive notion of cardinality.

That is, if X, Y are sets then |X| = |Y | means, if either X or Y is of finite cardinality

then their cardinality is equal.

Suppose R is a commutative ring and I CR. The radical of I is the following set

rad(I) = {r ∈ R | there exists n ∈ N such that rn ∈ I}

.

Note that for any commutative ring R and I CR, rad(I) is the intersection of all

prime ideals containing I.

The following statement was conjectured for valuation domain with dense value

group in [PPT07].

Theorem 4.0.1. Let V be an effectively given valuation domain. Then the following

are equivalent:

1. The theory of V -modules, TV , is decidable

2. There is an algorithm which, given a, b ∈ V decides whether a ∈ rad(b).

The aim of this chapter is to prove the above theorem. The key step in proving

this theorem is to show that there is an algorithm which answers whether one Ziegler

basic open set ( φ
ψ

) is contained in a finite union
⋃n
i=1(φi

ψi
) of Ziegler basic open sets.
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We largely follow the structure of the proof given in [PPT07]. In fact, the only

ingredient needed to extend the proof given in [PPT07] for archimedean valuation

domains to valuation domains with dense value group is an algorithm to effectively

decide when a basic Ziegler open set is contained in a finite union of other basic

Ziegler open sets. Both our decidability proof and the proof given in [PPT07] are

inspired by a remark in [Zie84] (immediately before example 9.5).

Definition 4.0.2. A valuation domain V is said to be effectively given if it has

a bijection with N such that the maximal ideal is a recursive set and addition and

multiplication are recursive functions. Note that this of course implies we can decide

equality of ring elements.

4.1 Necessary conditions for the theory of mod-

ules of a commutative ring to be decidable

It only makes sense to talk about decidability of the theory of V -modules for countable

rings, as otherwise the language is uncountable.

Lemma 4.1.1. Let V be an effectively given valuation domain. Then there is an

algorithm which decides, given a, b ∈ V whether a|b and if so gives the quotient.

Proof. Since V is effectively given, we have a bijection between V and N and multi-

plication is a recursive function. Take the first element λ1 on the list of elements of

V , ask whether a.λ1 = b, if not ask whether bλ1 = a. Continue with all elements λi

until we find an i ∈ N such that aλi = b or bλi = a. We will find such an i because

for all a, b ∈ V either a|b or b|a.

If this process ends by finding an i such that aλi = b then a|b and λi is the

quotient.

If this process ends by finding an i such that bλi = a, check if λi ∈ m. We can do

this since m is a recursive set. If λi ∈ m then a does not divide b. If λi /∈ m then a

divides b and it remains to find the quotient. To do this simply search through the

list of µ ∈ V until we find a µ such that aµ = b.
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Proposition 4.1.2. Let R be a countable commutative ring with decidable theory

of modules. Then multiplication and addition are recursive function and there is an

algorithm which, given a, b ∈ V , answers whether a|b.

Proof. Let r, s, t ∈ R. Then r + s = t if and only if

TR |= ∀x(xr + xs = xt).

Let r, s, t ∈ R. Then rs = t if and only if

TR |= ∀x∃y(xr = y ∧ ys = xt).

Let r, s ∈ R. Then r|s if and only if

TR |= ∀x∃y(yr = xs).

Proposition 4.1.3. Let R be a countable commutative ring with a decidable theory

of modules. Then there is an algorithm which, given a, b ∈ V decides whether a ∈

rad(bR).

Proof. Claim:

TR |= ∃x(x 6= 0 ∧ xb = 0)→ ∃y(y 6= 0 ∧ xa = 0)

if and only if

a ∈ rad(bR).

First suppose that a ∈ rad(b), so there exists an n ∈ N such that an ∈ bV . Suppose

N is an R-module and x ∈ N such that x 6= 0 and xb = 0. Then xan = 0. Take m

least such that xam = 0, then (xam−1)a = 0 and xam−1 6= 0.

Now suppose that

TR |= ∃x(x 6= 0 ∧ xb = 0)→ ∃y(y 6= 0 ∧ xa = 0).

Let p C R be a prime ideal such that b ∈ p. Then 1 + p ∈ R/p is annihilated by b

and non-zero. Hence there exists y ∈ V \p such that ay ∈ p. Therefore a ∈ p. So

a ∈ p for every prime ideal p containing b. Hence a ∈ rad(bV ) since rad(bV ) is the

intersection of all prime ideals containing b.
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4.2 Algorithms

In this section we show that if V is an effectively given valuation domain with an

algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ) then there exists an

algorithm which given n ∈ N, a pp-pair φ/ψ and n pp-pairs ϑi/ξi, answers whether(
φ

ψ

)
⊆

n⋃
i=1

(
ϑi
ξi

)
.

For any n ∈ N, pp-1-formulae φ, ψ and pp-1-formulae ϑi, ξi for 0 < i ≤ n, TR |=

¬
(∣∣∣ φψ ∣∣∣ > 1 ∧

∧n
i=1

∣∣∣ϑiξi ∣∣∣ = 1
)

is equivalent to
(
φ
ψ

)
⊆
⋃n
i=1

(
ϑi
ξi

)
. Hence, decidability

of TR implies we can effectively decide whether
(
φ
ψ

)
⊆
⋃n
i=1

(
ϑi
ξi

)
.

Lemma 4.2.1. Let V be an effectively given valuation domain. There exists an

algorithm which, given a pp-1-formula φ, produces a formula of the form
∑n

i=1(xai =

0 ∧ bi|x) equivalent to φ.

Proof. Since V is effectively given its theory of modules is recursively axiomatisable,

so we have an algorithm which lists sentences true in all V -modules. By lemma 3.2.5,

we know that there exists a formula of the form
∑n

i=1(xai = 0 ∧ bi|x) equivalent to

φ. Hence we need only look down the list of sentences true in all V -modules until we

find one of the form:

∀x

(
φ(x)↔

n∑
i=1

(xai = 0 ∧ bi|x)

)
for some n ∈ N and ai, bi ∈ V .

Lemma 4.2.2. Let V be an effectively given valuation domain. There exists an

algorithm which, given a pp-1-formula φ, produces a formula of the form
∧n
i=1(xai =

0 + bi|x) equivalent to φ.

Proof. Since V is effectively given its theory of modules is recursively axiomatisable,

so we have an algorithm which lists sentences true in all V -modules. By lemma 3.2.3,

we know that there exists a formula of the form
∧n
i=1(xai = 0 + bi|x) equivalent to

φ. Hence we need only look down the list of sentences true in all V -modules until we

find one of the form:

∀x

(
φ(x)↔

n∧
i=1

(xai = 0 + bi|x)

)
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for some n ∈ N and ai, bi ∈ V .

The algorithms described above would be rather inefficient. There is a possibly

more efficient algorithm which would be based on diagonalising a matrix over a val-

uation domain. The proof of 3.2.1 clearly shows that diagonalisation is an effective

process. Plus, taking the dual of a pp-formula is also clearly effective. The above two

lemmas were proved this way in [PPT07].

Recall that, lemma 3.3.10, the sets Wa,b,g,h were originally sets of isomorphism

classes of indecomposable pure-injective modules.

Corollary 4.2.3. Let V be an effectively given valuation domain. Then there exists

an algorithm which, given φ/ψ a pp-pair, returns the symbol ∅ if
(
φ
ψ

)
is empty and

otherwise returns n ∈ N, ai, bi ∈ V \{0} and gi, hi ∈ m such that(
φ

ψ

)
=

n⋃
i=1

Wai,bi,gi,hi .

Proof. By lemma 4.2.1 we can effectively rewrite φ as
∑n

i=1(aix = 0 ∧ bi|x) for some

n ∈ N and ai, bi ∈ V for 0 < i ≤ n and by lemma 4.2.2 we can effectively rewrite ψ

as
∧m
j=1(cjx = 0 + dj|x) for some m ∈ N and cj, dj ∈ V for 0 < j ≤ m. Lemma 3.2.6

states that the pp-definable subgroups of an indecomposable pure-injective module

are totally ordered. Therefore, for any indecomposable pure-injective module N ,

N ∈
(
φ
ψ

)
if and only if N ∈

(
xai=0∧bi|x
xcj=0+dj |x

)
for some 0 < i ≤ n and 0 < j ≤ m. Hence(

φ

ψ

)
=
⋃
i,j

(
xai = 0 ∧ bi|x
xcj = 0 + dj|x

)
.

By lemma 3.3.9,
(
xα=0∧β|x
xγ=0+δ|x

)
is empty if and only if α /∈ γm, δ /∈ βm, β = 0 or

γ = 0. Hence for each 0 < i ≤ n and 0 < j ≤ m either
(
xai=0∧bi|x
xcj=0+dj |x

)
is empty and

this can be effectively checked or
(
xai=0∧bi|x
xcj=0+dj |x

)
= Wcj ,bi,ai/cj ,dj/bi and ai/cj and dj/bi

can be effectively calculated.

Definition 4.2.4. Suppose x, y ∈ V . We define < x, y > as

< x, y >=


y/x if x|y,

x/y otherwise
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Definition 4.2.5. Let t ∈ V . Denote by pt the radical of tV .

Lemma 4.2.6. For any t ∈ V , pt is a prime ideal and hence is the smallest prime

ideal containing t.

Proof. Recall that the radical of an ideal is the intersection of all prime ideals con-

taining it. Since V is a valuation domain these prime ideals are totally ordered. The

intersection of any chain of prime ideals is prime. Hence the radical of any ideal in a

valuation domain is prime.

Lemma 4.2.7. Let n be a natural number, λ ∈ V \{0}, g, h ∈ m and for each

natural number 0 < i ≤ n let µi ∈ V \{0}, ai, bi ∈ m. If there exists (I, J) a normal

point such that (I, J) ∈ W1,λ,g,h and (I, J) /∈
⋃n
i=1W1,µi,ai,bi then there exists a point

(K,L) ∈ W1,λ,g,h and (K,L) /∈
⋃n
i=1W1,µi,ai,bi such that K# = pr L

# = ps where

r =< x, y >∈ m and s =< u,w >∈ m and x, y, u, w are taken from the set

{µiaibi , µi | 0 < i ≤ n} ∪ {1 , λ , g , h , λgh} .

Proof. First, recall that for any normal point (I, J), (I, J) /∈ W1,µ,a,b if and only if

either µ ∈ IJ , µab /∈ IJ , a /∈ I# or b /∈ J#. Therefore, if (I, J) /∈
⋃n
i=1W1,µi,ai,bi then

for each 0 < i ≤ n, either µi ∈ IJ , µiaibi /∈ IJ , ai /∈ I# or bi /∈ J#.

We now choose a, b, µ, d ∈ V as follows:

Suppose there exists 0 < i ≤ n such that ai /∈ I#. Let a be such that a /∈ I#,

ai = a for some 0 < i ≤ n and ai divides a for all ai /∈ I#. If, for all 0 < i ≤ n,

ai ∈ I# then let a = 1. Note, this means for any ideal K if a /∈ K and ai /∈ I# then

ai /∈ K.

Suppose there exists 0 < i ≤ n such that bi /∈ J#. Let b be such that b /∈ J#,

b = bi for some 0 < i ≤ n and bi divides b for all 0 < i ≤ n such that bi /∈ J#. If for

all 0 < i ≤ n, bi ∈ J# then let b = 1. Note, this means for any ideal K if b /∈ K and

0 < i ≤ n is such that bi /∈ J# then bi /∈ K.

Suppose there exists 0 < i ≤ n such that µi ∈ IJ . Let µ = µi for some 0 < i ≤ n

such that µi ∈ IJ and µ divides µi for all 0 < i ≤ n with µi ∈ IJ . If for all 0 < i ≤ n,
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µi /∈ IJ , let µ = 0. Note, this means for any ideal K, if µ ∈ K and 0 < i ≤ n is such

that µi ∈ IJ then µi ∈ K.

Suppose there exists 0 < i ≤ n such that µiaibi /∈ I.J . Let d = µiaibi for some

0 < i ≤ n such that µiaibi /∈ IJ and µiaibi divides d for all 0 < i ≤ n with µiaibi /∈ IJ .

If for all 0 < i ≤ n, µiaibi ∈ IJ , let d = 1. Note, this means for any ideal K, if d /∈ K

and 0 < i ≤ n is such that µiaibi /∈ IJ then µiaibi /∈ K.

Note that for any point (K,L), if µ 6= 0 then (K,L) /∈ W1,µ,0,0, d /∈ KL, a /∈ K#

and b /∈ L# implies (K,L) /∈ W1,µi,ai,bi for all 0 < i ≤ n and if µ = 0 then d /∈ KL,

a /∈ K# and b /∈ L# implies (K,L) /∈ W1,µi,ai,bi for all 0 < i ≤ n.

We now choose p1, p2, t ∈ V as follows:

If d divides λ, let p1 = λ, otherwise let p1 = d. Note that for any ideal K, p1 /∈ K

implies λ /∈ K and d /∈ K. If µ divides λgh, let p2 = µ, otherwise let p2 = λgh.

Note that for any ideal K, p2 ∈ K implies µ ∈ K and λgh ∈ K. Since p1 /∈ IJ and

p2 ∈ IJ , there exists t ∈ (IJ)# = I# ∩ J# such that p2 = p1t.

First observe that a /∈ pt and a /∈ pg since t ∈ I#, g ∈ I# and a /∈ I#. Similarly,

b /∈ pt and b /∈ ph.

We split the rest of the proof into two cases.

Case 1: pg ∪ pt 6= ph ∪ pt or pg ∪ pt = ph ∪ pt and (pg ∪ pt)
2 = pg ∪ pt

Then (pg∪pt, p1(ph∪pt)) is a normal point and (pg∪pt).(ph∪pt) = (pg∪pt)∩(ph∪pt)

so t ∈ (pg ∪ pt).(ph ∪ pt).

The point (pg ∪ pt, p1(ph ∪ pt)) ∈ W1,λ,g,h since g ∈ pg ∪ pt; h ∈ ph ∪ pt; p1 /∈

p1(pg∪pt).(ph∪pt) implies λ /∈ p1(pg∪pt).(ph∪pt) and p2 = p1t ∈ p1(pg∪pt).(ph∪pt)

implies λgh ∈ p1(pg∪pt).(ph∪pt). It remains to show (pg∪pt, p1(ph∪pt)) /∈ W1,µi,ai,bi

for all i.

We have shown that a /∈ pg ∪ pt, b /∈ ph ∪ pt. Since p1 /∈ p1(pg ∪ pt) · (ph ∪ pt),

d /∈ p1(pg ∪ pt) · (ph ∪ pt). Since p2 ∈ p1(pg ∪ pt) · (ph ∪ pt), µ ∈ p1(pg ∪ pt) · (ph ∪ pt).

Therefore either µ = 0 or (pg ∪ pt, p1(ph ∪ pt)) /∈ W1,µ,0,0 since (pg ∪ pt, p1(ph ∪ pt)) is

a normal point. Therefore, for all 0 < i ≤ n, (pg ∪ pt, p1(ph ∪ pt)) /∈ W1,µi,ai,bi .

Case 2: p = pg ∪ pt = ph ∪ pt and p2 6= p
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Observe that for any π ∈ V , in order to show that (p, πp) ∈ W1,λ,g,h and (p, πp) /∈

W1,µi,ai,bi we must show that λ /∈ πp, µ ∈ πp, λgh ∈ πp2 and d /∈ πp2.

It is clear that λ /∈ p1p, µ ∈ p1p and d /∈ p1p
2. If λgh ∈ p1p

2, let π = p1.

Otherwise, λgh /∈ p1p
2. Then λ /∈ p1V since gh ∈ p2. Therefore p1 = λγ for some

γ ∈ m.

Now λgh /∈ λγp2 so gh /∈ γp2. So γ ∈ p since gh ∈ p2.

Since γ ∈ p, there exists τ ∈ p\p2 and k ∈ V such that γ = τk. This means that

kp2 = γp. Hence λkp2 = λγp = p1p. Therefore λgh ∈ λkp2 = p1p since p2 ∈ p1p.

It remains to show that λ /∈ λkp, µ ∈ λkp and d /∈ λkp2. Since p2 ∈ p1p,

µ ∈ p1p = λkp2 ⊆ λkp. Since p1 /∈ p1p, d /∈ λkp2 = p1p and λ /∈ λkp. Let π = λk.

Therefore there exists a π ∈ V such that (p, πp) ∈ W1,λ,g,h and (p, πp) /∈ W1,µi,ai,bi

for all 0 < i ≤ n.

Finally note that pt ∪ pg = pr and pt ∪ ph = ps for some r =< x, y > and

s =< u, v > where x, y, v, u are taken from the set:

{1 , λ , g , h} ∪ {µi , µiaibi | 0 < i ≤ n} .

Lemma 4.2.8. Let n be a natural number, λ ∈ V \{0} and g, h ∈ m and for each

natural number 0 < i ≤ n let µi ∈ V \{0} and ai, bi ∈ m. If there exists (I, J)

an abnormal point such that (I, J) ∈ W1,λ,g,h and (I, J) /∈
⋃n
i=1W1,µi,ai,bi then there

exists a point (K,L) ∈ W1,λ,g,h and (K,L) /∈
⋃n
i=1W1,µi,ai,bi such that K# = pr

L# = ps where r =< x, y > and s =< u,w > and x, y, u, w are taken from the set

{µiaibi , µi | 0 < i ≤ n} ∪ {1 , λ , g , h , λgh} .

Proof. First note that since (I, J) is abnormal I# = J#, let p = I#.

We now choose a, b, µ, d ∈ V as follows:

Suppose there exists 0 < i ≤ n such that ai /∈ p. Let a be such that a /∈ p, ai = a

for some 0 < i ≤ n and ai divides a for all ai /∈ p. If for all 0 < i ≤ n, ai ∈ p then let

a = 1. Note, this means for any ideal K if a /∈ K and ai /∈ p then ai /∈ K.

71



Suppose there exists 0 < i ≤ n such that bi /∈ p. Let b be such that b /∈ p, b = bi

for some 0 < i ≤ n and bi divides b for all 0 < i ≤ n such that bi /∈ p. If for all

0 < i ≤ n, bi ∈ p then let b = 1. Note, this means for any ideal K, if b /∈ K and

bi /∈ p then bi /∈ K.

Suppose there exists 0 < i ≤ n such that (I, J) /∈ W1,µi,0,0. Let µ = µi for

some 0 < i ≤ n such that (I, J) /∈ W1,µi,0,0 and µ divides µi for all 0 < i ≤ n such

(I, J) /∈ W1,µi,0,0.

Note, this means for any pair (K,L) /∈ W1,µ,0,0, if 0 < i ≤ n is such that (I, J) /∈

W1,µi,0,0 then (K,L) /∈ W1,µi,0,0. If for all 0 < i ≤ n, (I, J) ∈ W1,µi,0,0, let µ = 0.

Suppose there exists 0 < i ≤ n such that µiaibi /∈ I.J . Let d = µiaibi for some

0 < i ≤ n such that µiaibi /∈ I.J and µiaibi divides d for all µiaibi /∈ I.J . Note,

this means for any ideal K, if d /∈ K and 0 < i ≤ n is such that µiaibi /∈ I.J then

µiaibi /∈ K. If for all 0 < i ≤ n, µiaibi ∈ I.J , let d = 1.

If µ ∈ IJ then precede as in the proof of lemma 4.2.7. Otherwise, λp ) dp =

µp = IJ ⊇ λghV and µ 6= 0. Note that µ ∈ p since p ⊇ λp ) µp.

We now choose t ∈ V and γ ∈ V as follows:

Let t ∈ V be such that d = λt and γ ∈ V such that λgh = µγ. Note that since

t, γ, g, h ∈ p, a, b /∈ pt ∪ pγ ∪ pg ∪ ph. Let q = pt ∪ pγ ∪ pg ∪ ph. Then either p = q so

dq = µq or q ( p so dq = dpq = µpq = µq.

Note that t =< d, λ > and d = 1 or d = µiaibi for some 0 < i ≤ n. Note

that γ =< λgh, µ > and µ = µi for some 0 < i ≤ n. Therefore q = pr for some

r =< x, y > where x, y are taken from the set:

{1 , λ , g , h , λgh} ∪ {µiaibi , µi | 0 < i ≤ n} .

Case 1: q = q2.

Consider (Iqd , q). Then λ /∈ Iqd (since d ∈ λq), λgh ∈ Iqdq = dq, g ∈ q and h ∈ q so

(Iqd , q) ∈ W1,λ,g,h by lemmas 3.5.6 and 3.5.21.

Then µ ∈ Iqd (since d /∈ µq), d /∈ Iqd · q = dq, a /∈ q and b /∈ q. Therefore

(Iqd , q) /∈ W1,µi,ai,bi for all 0 < i ≤ n.

Case 2: q 6= q2.
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If d /∈ q2, consider (q, q). Then λ /∈ q since d = λt and t ∈ q. Hence (q, q) ∈ W1,λ,g,h

since λ /∈ q, g ∈ q and λh ∈ q.

Since µ ∈ q, d /∈ q2, a /∈ q and b /∈ q, by lemmas 3.5.6 and 3.5.18, (q, q) /∈ W1,µi,ai,bi

for all 0 < i ≤ n.

If d ∈ q2, take τ ∈ q\q2 then there exists k ∈ V such that d = τk. Hence dq = kq2.

Consider (q, kq).

Then λgh ∈ kq2 = dq. Since τ /∈ q2, τ /∈ tq because t ∈ q. Therefore λτ /∈ λtq

hence λτ /∈ dq. Therefore λτ /∈ τkq so λ /∈ kq.

Therefore, by lemma 3.5.6 and lemma 3.5.18, (q, kq) ∈ W1,λ,g,h since g, h ∈ q.

It remains to show that (q, kq) /∈ W1,µi,ai,bi for all 0 < i ≤ n. By lemmas 3.5.6

and 3.5.18, it is enough to show that µ ∈ kq and d /∈ kq2 since a, b /∈ q. Suppose

µ /∈ kq then µq ⊇ kq ) kτq = dq, a contradiction. Therefore µ ∈ kq. Since kq2 = dq,

d /∈ kq2. Therefore (q, kq) /∈ W1,µi,ai,bi for all 0 < i ≤ n.

Lemma 4.2.9. Let V be an effectively given valuation domain. Suppose p, qCV are

prime ideals and that p ( q. Suppose there is an algorithm that given a ∈ V , answers

whether a ∈ p and an algorithm that given b ∈ V , answers whether b ∈ q. Then

for any natural number n there is an algorithm that given λ, µ1, .....µn ∈ V \{0} and

g, h, a1, ..., an, b1, ..., bn ∈ m, answers whether W1,λ,g,h ∩Xp,q ⊆
⋃n
i=1W1,µi,ai,bi ∩Xp,q.

Proof. First note that, by lemma 4.1.2, if there is an algorithm that, given a ∈ V ,

answers whether a ∈ p then there is an algorithm that, given a, b ∈ V , answers

whether a ∈ bp.

Suppose n is a fixed natural number. First we will describe an algorithm that,

given λ, µ1, .....µn ∈ V \{0}, g, a1, ..., an ∈ p and h, b1, ..., bn ∈ q, answers whether

W1,λ,g,h ∩Xp,q ⊆
⋃n
i=1W1,µi,ai,bi ∩Xp,q. It is enough to describe such an algorithm as

if a /∈ p or b /∈ q then W1,µ,a,b ∩Xp,q = ∅ for all µ ∈ V \{0}.

STEP 1 Let t0 = λ and j = 0.

STEP 2 If there does not exist 0 < i ≤ n such that µi /∈ tjp and µiaibi ∈ tjp

then FALSE. Otherwise, let i be the least i such that µi /∈ tjp and µiaibi ∈ tjp. If
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λgh /∈ µiaibip then TRUE. Otherwise, set tj+1 = µiaibi and sj+1 = µi. Then go back

to the start of STEP 2 with j increased by 1.

It is obvious that the above algorithm terminates since, for all values of j which occur,

tjp ) tj+1p and the values of tj are taken from a finite set.

Suppose the above algorithm returns FALSE. We must show there exists a point

(I, J) ∈ Xp,q such that (I, J) ∈ W1,λ,g,h and (I, J) /∈ W1,µi,ai,bi for all 0 < i ≤ n.

Suppose the algorithm returns FALSE when j = 0. Then (p, λq) ∈ W1,λ,g,h since

λ /∈ λq, g ∈ p and λh ∈ λq. Note that, since p ( q, p ·q = p. For all 0 < i ≤ n, either

µi ∈ λp = λpq or µiaibi /∈ λp = λpq. Therefore (p, λq) /∈ W1,µi,ai,bi for all 0 < i ≤ n.

Suppose the algorithm returns FALSE when j 6= 0. Then λgh ∈ tjp = tjpq and

λp ) tjp = tjpq so λ /∈ tjpq therefore (tjp, q) ∈ W1,λ,g,h and there does not exist an

0 < i ≤ n such that µi /∈ tjp = tjpq and µiaibi ∈ tjp = tjpq so (tjp, q) /∈ W1,µi,ai,bi for

all 0 < i ≤ n.

Suppose the above algorithm returns TRUE. We must show W1,λ,g,h ∩ Xp,q ⊆⋃n
i=1W1,µi,ai,bi ∩Xp,q. Suppose (I, J) ∈ W1,λ,g,h, I

# = p and J# = q. Then (I, J) is

normal since p 6= q. Therefore λ /∈ IJ and λgh ∈ IJ . It is enough to show that there

exists an j such that sj /∈ IJ and tj ∈ IJ .

Let k be the value of j at which the algorithm terminates, then there is an i such

that λgh /∈ µiaibip and µiaibi ∈ tkp. Using λgh ∈ IJ and λgh /∈ µiaibip we get

µiaibi ∈ IJ . Note µi /∈ tkp so either tk ∈ IJ or µi /∈ IJ . If µi /∈ IJ and µiaibi ∈ IJ

then we are done. So suppose tk ∈ IJ . Hence if sk /∈ IJ we are done. So assume

sk ∈ IJ . Observe that s1 /∈ IJ since λ /∈ IJ and s1 /∈ λp. Therefore there exists

a j such that sj /∈ IJ and sj+1 ∈ IJ . Note that sj+1 ∈ IJ implies tj ∈ IJ since

sj+1 /∈ tjp. Hence sj /∈ IJ and tj ∈ IJ .

Definition 4.2.10. Let a, b ∈ V and pC V be prime. We write

a <p b if and only if b ∈ ap

and

a =p b if and only if ap = bp.
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Definition 4.2.11. Let pC V be prime, t ∈ V and s ∈ p. We define

(t, st)p := {r ∈ V | t <p r <p st}

and

[t, st]p := {r ∈ V | t ≤p r ≤p st}

Proposition 4.2.12. Suppose p C V is prime, n ∈ N, λ, µ1, ..., µn ∈ V \{0} and

g, h, a1, ..., an, b1, ..., bn ∈ p. Then the following are equivalent:

1.

(λ, λgh)p ⊆
n⋃
i=1

(µi, µiaibi)p

2.

W1,λ,g,h ∩Xp,p ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,p.

Proof. (1)⇒ (2) Suppose (λ, λgh)p ⊆ ∪ni=1(µi, µiaibi)p.

Suppose first that (I, J) is a normal point in Xp,p, recall that this means p2 = p.

Suppose for a contradiction that (I, J) ∈ W1,λ,g,h and (I, J) /∈ W1,µi,ai,bi for all

0 < i ≤ n. Then for all 0 < i ≤ n either µi ∈ IJ or µiaibi /∈ IJ .

Let k1 ∈ V be such that

k1V =
⋃
µi∈IJ

µiV

or 0 if µi /∈ IJ for all i. So µi ∈ IJ implies µi ∈ k1V hence µi ≥p k1

Let k2 ∈ V be such that

k2p =
⋂

µiaibi /∈IJ

µiaibip

or 1 if µiaibi ∈ IJ for all i. So µiaibi /∈ IJ implies µiaibip ⊇ k2p hence k2 ≥p µiaibi.

Claim: [k2, k1]p ∩
n⋃
i=1

(µi, µiaibi)p = ∅.

Suppose that k2 ≤p l ≤p k1, that is k2p ⊇ lp ⊇ k1p. Suppose for some 0 < i ≤ n

µi <p l. Then µi /∈ IJ ; for otherwise k1 <p l. Therefore µiaibi /∈ IJ . So k2 ≥p µiaibi.

Therefore l /∈ (µi, µiaibi)p.
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Claim: [k2, k1]p ∩ (λ, λgh)p 6= ∅.

Let d ∈ V be such that dV = k1V ∪ λghV . So d ∈ IJ since k1 ∈ IJ and λgh ∈ IJ .

Let p ∈ V be such that pp = λp∩k2p. Since λ /∈ IJ and k2 /∈ IJ , IJ ⊆ pp. Therefore

dV ⊆ IJ ⊆ pp. Hence, there exists δ ∈ p such that d = pδ. Since p2 = p, there

exists δ1, δ2 ∈ p such that δ1δ2 = δ. Now d ∈ pδ1p and pδ1 ∈ pp. Hence k1 ∈ pδ1p,

λgh ∈ pδ1p, pδ1 ∈ λp and pδ1 ∈ k2p. So pδ1 ∈ (λ, λgh)p and pδ1 ∈ (k1, k2)p.

Combining these two claims contradicts (λ, λgh)p ⊆ ∪ni=1(µi, µiaibi)p. Therefore

(I, J) ∈ W1,µi,ai,bi for some 0 < i ≤ n.

Suppose that (I, J) is an abnormal point, p2 = p and (I, J) ∈ W1,λ,g,h. Then

(I, J) is topologically indistinguishable from (Ipγ , p) for some γ ∈ p by lemma 3.5.25.

Therefore (Ipγ , p) ∈ W1,λ,g,h so λ /∈ Ipγ and λgh ∈ γp. Hence γ ∈ λp and λgh ∈ γp,

that is λ <p γ <p λgh. Therefore γ ∈ (µi, µiaibi)p for some i. Hence µi <p γ <p µiaibi

so µi /∈ Ipγ and µiaibi ∈ γp. Therefore (Ipγ , p) ∈ W1,µi,ai,bi . So (I, J) ∈ W1,µi,ai,bi .

Suppose that (I, J) is an abnormal point, p2 6= p and (I, J) ∈ W1,λ,g,h. Then we

may assume I = p and J = γp for some γ ∈ V . If (p, γp) ∈ W1,λ,g,h then λ /∈ γp

and λgh ∈ γp2. Take k ∈ p\p2. Then γk ∈ λp and λgh ∈ γkp, so λ <p γk <p λgh.

Therefore γk ∈ (µi, µiaibi)p for some 0 < i ≤ n. Hence γk ∈ µip. Therefore γp ⊆ µip,

so µi /∈ γp and µiaibi ∈ γkp = γp2. Hence (p, γp) ∈ W1,µi,ai,bi by lemmas 3.5.18 and

3.5.6.

(2)⇒(1) Suppose W1,λ,g,h ∩Xp,p ⊆ ∪ni=1W1,µi,ai,bi ∩Xp,p.

Case 1: p2 = p.

Take γ ∈ (λ, λgh)p. Then γ ∈ λp. Hence λ /∈ Ipγ and λgh ∈ γp. So (Ipγ , p) ∈ W1,λ,g,h.

Therefore (Ipγ , p) ∈ W1,µi,ai,bi for some 0 < i ≤ n. Hence µi /∈ Ipγ , so γ ∈ µip and

µiaibi ∈ γp. Therefore γ ∈ (µi, µiaibi)p.

Case 2: p 6= p2.

Take γ ∈ (λ, λgh)p and let k ∈ p\p2. Then γ ∈ λp and λgh ∈ γp (hence γ ∈ p). First

suppose that γ ∈ p2. Then γ = kt for some t ∈ V . So λ /∈ tp and λgh ∈ tp2 = γp.

Therefore (p, tp) ∈ W1,λ,g,h. So there exists an 0 < i ≤ n such that (p, tp) ∈ W1,µi,ai,bi .
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Hence µi /∈ tp. So γ ∈ µip and µiaibi ∈ tp2 = γp. Therefore γ ∈ (µi, µiaibi)p. Now

suppose that γ ∈ p\p2. Then γp = p2 and λ /∈ p. Therefore (p, p) ∈ W1,λ,g,h. So

there exists an 0 < i ≤ n such that (p, p) ∈ W1,µi,ai,bi . So µi /∈ p and µiaibi ∈ p2.

Therefore γ ∈ µip = p and µiaibi ∈ γp = p2. So γ ∈ (µi, µiaibi)p.

Corollary 4.2.13. Let V be an effectively given valuation domain. Suppose pCV is

a prime ideal. Suppose there is an algorithm that given a ∈ V , answers whether a ∈ p.

Then for any natural number n there is an algorithm that given λ, µ1, .....µn ∈ V \{0}

and g, h, a1, ..., an, b1, ..., bn ∈ m, answers whether

W1,λ,g,h ∩Xp,p ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,p.

Proof. If g /∈ p or h /∈ p thenW1,λ,g,h∩Xp,p = ∅. SoW1,λ,g,h∩Xp,p ⊆
⋃n
i=1W1,µi,ai,bi ∩

Xp,p.

Suppose g, h ∈ p. Then (p, λp) ∈ W1,λ,g,h since g ∈ p, λ /∈ λp and λh ∈ p. If,

for all 0 < i ≤ n, either ai /∈ p or bi /∈ p then
⋃n
i=1W1,µi,ai,bi ∩ Xp,p = ∅. Hence

W1,λ,g,h ∩Xp,p *
⋃n
i=1W1,µi,ai,bi ∩Xp,p.

Now suppose g, h ∈ p and there exists 0 < i ≤ n such that ai, bi ∈ p. Let J be the

set of all 0 < i ≤ n such that ai, bi ∈ p. Then W1,λ,g,h ∩Xp,p ⊆
⋃n
i=1W1,µi,ai,bi ∩Xp,p

if and only if W1,λ,g,h ∩Xp,p ⊆
⋃
i∈J W1,µi,ai,bi ∩Xp,p.

By proposition 4.2.12, W1,λ,g,h ∩ Xp,p ⊆
⋃
i∈J W1,µi,ai,bi ∩ Xp,p if and only if

(λ, λgh)p ⊆
⋃
i∈J (µi, µiaibi)p.

The existence of an algorithm which, given a ∈ V , answers whether a ∈ p means,

since V is effectively given, there exists an algorithm which, given a, b ∈ V , answers

whether a ∈ bp. Therefore, there is an algorithm which given λ, µ1, ..., µk ∈ V \{0}

and g, h, a1, ..., ak, b1, ..., bk ∈ p, answers whether (λ, λgh)p ⊆
⋃
i∈J (µi, µiaibi)p.

Lemma 4.2.14. Let n ∈ N. Let V be an effectively given valuation domain such that

there exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). Then

there exists an algorithm which, given a, b, αi, βi ∈ V \{0} and g, h, γi, δi ∈ m for each
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0 < i ≤ n, answers whether

Wa,b,g,h ⊆
n⋃
i=1

Wαi,βi,γi,δi .

Proof. First note for any a, b ∈ V \{0} and g, h ∈ m, Wa,b,g,h = W1,ab,g,h. Sup-

pose n ∈ N, λ, µi /∈ V \{0} and g, h, ai, bi ∈ m. Let T = {< u, v >∈ m | u, v ∈

{1 , λ , g , h , µiaibi , µi | 0 < i ≤ n}}. Note that T is a finite set and there is

an algorithm which, given λ, g, h and µi, ai, bi for 0 < i ≤ n, computes T since the

function < , > and multiplication of ring elements is recursive.

Then in order to check whether

W1,λ,g,h ⊆
n⋃
i=1

W1,µi,ai,bi

by lemma 4.2.7 and lemma 4.2.8 it is enough to check

W1,λ,g,h ∩Xp,q ⊆
n⋃
i=1

W1,µi,ai,bi ∩Xp,q

for p = radtV and q = radsV for each t, s ∈ T .

By lemma 4.2.9 and corollary 4.2.13 there exists an algorithm determining the

truth of the above statement.

Theorem 4.2.15. Let V be an effectively given valuation domain with an algorithm

which, given a, b ∈ V , answers whether a ∈ rad(bV ). Let n ∈ N. Then there is an

algorithm which, given φ/ψ a pp-pair and ϑi/ξi a pp-pair for each 0 < i ≤ n, answers

whether: (
φ

ψ

)
⊆

n⋃
i=1

(
ϑi
ξi

)
.

Proof. By corollary 4.2.3, given a pp-pair φ/ψ we can effectively check whether
(
φ
ψ

)
is non-empty.

Again using corollary 4.2.3, given a pp-pair φ/ψ, if
(
φ
ψ

)
is non-empty we can

effectively find aj, bj ∈ V \{0} and gj, hj ∈ m such that:(
φ

ψ

)
=
⋃
j

Waj ,bj ,gj ,hj
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and for each i, if
(
ϑi
ξi

)
is non-empty we can effectively find αi,k, βi,k ∈ V \{0} and

γi,k, δi,k ∈ m such that: (
ϑi
ξi

)
=
⋃
i,k

Wαi,k,βi,k,γi,k,δi,k

Therefore it is enough to check for each j whether:

Waj ,bj ,gj ,hj ⊆
⋃
i,k

Wαi,k,βi,k,γi,k,δi,k .

By lemma 4.2.14 there exists an algorithm which determines the truth of the

above statement.

4.3 Valuation domains with infinite residue field

In this section we prove theorem 4.0.1 for valuation domains with infinite residue

field. This case is significantly easier than the case of valuation domains with finite

residue field since for all pp-formulae φ, ψ and all modules M ,
∣∣∣ φ(M)
ψ(M)

∣∣∣ is either 1 or

infinite (corollary 4.3.2).

Lemma 4.3.1. Let V be a valuation domain with infinite residue field. Then all

non-zero V -modules have infinitely many elements.

Proof. First note that for any I C V , V/I is infinite since V/I surjectively maps

onto V/m. Suppose M is a non-zero V -module. Take non-zero m ∈ M . Then

mV ∼= V/annVm. Therefore mV is infinite, so M is infinite.

Corollary 4.3.2. Let V be a valuation domain with infinite residue field. Then for

all V -modules N and all pp-pairs φ/ψ either |φ(N)/ψ(N)| = 1 or |φ(N)/ψ(N)| is

infinite.

Theorem 4.3.3. Let V be an effectively given valuation domain with infinite residue

field. Then the following are equivalent:

1. The theory of V -modules, TV , is decidable.
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2. There exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ).

Proof. Let V be an effectively given commutative valuation domain with infinite

residue field and an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ).

First note that since V is effectively given, TV is recursively axiomatised. Hence we

have an algorithm which produces a list of sentences true in all V -modules. Since

TV is not a complete theory, in order to show TV is decidable we need to effectively

produce a list of sentences which are false in some module. Equivalently, we need to

effectively produce a list of sentences which are true in at least one module.

By the Baur-Monk theorem every sentence is equivalent to a boolean combination

of invariants sentences.

Since TV is effectively axiomatised, if χ is a sentence in LV then we can effec-

tively find a sentence θ, a boolean combination of these invariants sentences, which

is equivalent to χ in TV . That is, we simply look down the list of sentences true in

all modules until we find one of the form χ↔ θ where θ is of the correct form. The

Baur-Monk theorem ensures that we will find such a sentence.

Thus we may assume χ =
∨
σh, a finite disjunction of conjunctions of invariants

sentences and their negations. Suppose Mh |= σh for some h, then Mh |=
∨
σh.

Therefore we may assume χ is a conjunction of invariants sentences and their nega-

tions. Since V has infinite residue field, if φ/ψ is a pp-pair and n ∈ N then the

invariants sentence |φ/ψ| > n is equivalent to the invariants sentence |φ/ψ| > 1. So

we may assume χ is a conjunction of the following sentences:

1. |φi/ψi| > 1.

2. |ϑj/ξj| = 1.

where n,m ∈ N, φi, ψi are pp-1-formulae for 0 < i ≤ n and ϑj, ξj are pp-1-formulae

for 0 < j ≤ m.

We may now assume that (1) contains at most one sentence, otherwise it is enough

to find a V -module Mi for each 0 < i ≤ n which satisfies |φi/ψi| > 1 and |ϑj/ξj| = 1

for all 0 < j ≤ m as then
⊕

iMi satisfies |φi/ψi| > 1 and |ϑj/ξj| = 1 for all 0 < i ≤ n

and 0 < j ≤ m.

80



Recall that every module is elementary equivalent to a direct sum of indecompos-

able pure-injective modules. Suppose M =
⊕

kNk is a direct sum of indecomposable

pure-injectives. Then, for any pp-pair φ/ψ, |φ(M)/ψ(M)| > 1 if and only if there

exists a k such that |φ(Nk)/ψ(Nk)| > 1. For, any pp-pair φ/ψ, |φ(M)/ψ(M)| = 1 if

and only if for all k, |φ(Nk)/ψ(Nk)| = 1. Therefore if there exists a module satisfying

|φ1/ψ1| > 1 and |ϑj/ξj| = 1 for all 0 < j ≤ m then there exists an indecomposable

pure-injective module satisfying |φ1/ψ1| > 1 and |ϑj/ξj| = 1. Hence this becomes the

question of whether:

(φ1/ψ1) ⊆
m⋃
j=1

(ϑj/ξj).

By lemma 4.2.15 we can effectively answer this question.

The other direction is by lemma 4.1.3.

4.4 Valuation domains with finite residue field

In this section we prove theorem 4.0.1 for the case of valuation domains with finite

residue field and dense value group.

In this section we will describe exactly the indecomposable pure-injective modules

N for which there are pp-formulae φ, ψ such that
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to

1 (lemma 4.4.14). We will then go on to show that for such modules N , given pp-

formulae φ, ψ we can effective calculate
∣∣∣ φ(N)
ψ(N)

∣∣∣ (corollaries 4.4.16 and 4.4.18).

The main tool used in this section is that every irreducible pp-1-type over a val-

uation domain is realised in a uniserial module (lemma 4.4.4) and thus, since the

pure-injective hull of a uniserial module is indecomposable ([EH95]), every indecom-

posable pure-injective module is elementary equivalent to a uniserial module. Because

uniserial modules are in general much simpler than indecomposable pure-injective

modules, this allows us, given pp-formulae φ, ψ to effectively calculate
∣∣∣ φ(M)
ψ(M)

∣∣∣ when

M is uniserial.

Lemma 4.4.1. Let V be a valuation domain. Suppose u, v, s, t ∈ m\{0}. Then
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(uV, vV ) ∼ (sV, tV ) if and only if uvV = stV .

Proof. ⇐ Suppose uvV = stV . Without loss of generality we may assume uV ( sV .

Then there exists µ ∈ m such that u = sµ. Therefore (uV : µ) = sV and uvµV =

stµV = utV . Hence vµV = tV . Therefore (sV, tV ) = ((uV : µ), vµV ) ∼ (uV, vV ).

⇒ We have noted (paragraph below lemma 3.3.5) that for any ideals I, J,K, LC V ,

(I, J) ∼ (K,L) implies IJ = KL.

Lemma 4.4.2. Let V be a valuation domain. Suppose u, v, s, t ∈ V \{0}. Then

(um, vm) ∼ (sm, tm) if and only if uvm2 = stm2 if and only if uvm = stm.

Proof. Suppose uvm2 = stm2. Then either m2 = m, so uvm = stm or m is finitely

generated by k. If m is finitely generated by k then uvkm = uvm2 = stm2 = stkm.

Hence uvm = stm. So uvm2 = stm2 if and only if uvm = stm.

Suppose uvm = stm. Then (sm, tm) ∼ (m, stm) and (um, vm) ∼ (m, uvm). Hence

(um, vm) ∼ (sm, tm).

Definition 4.4.3. Let V be a valuation domain, Q its quotient field and suppose

J C V . We define

[m : J ] := {x ∈ Q | Jx ⊆ m} .

Note that [m : J ] is a V -submodule of Q.

It is noted in [Zie84] that every indecomposable pure-injective module over a valu-

ation domain is the pure-injective hull of a uniserial module. Hence every irreducible

pp-type is realised in a uniserial module. The following lemma explicitly gives a

uniserial module realising p(I, J) for each I, J C V .

Lemma 4.4.4. Let I, J CV The pp-type p(I, J) is realised in the following uniserial

module:

[m : J ]

I
.

Proof. The quotient field Q of V is uniserial as a V -module. Hence [m : J ] is uniserial.

Therefore [m:J ]
I

is uniserial. Let a be the image of 1 in [m:J ]
I

. Then for all r ∈ V , ar = 0

if and only if r ∈ I. Suppose that r ∈ V and r|a. Then there exists y ∈ [m : J ] such
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that yr − 1 ∈ I. Therefore 1 ∈ m + [m : J ]r. Hence 1 ∈ [m : J ]r, so 1 = xr for some

x ∈ [m : J ]. So J = Jxr ⊆ rm. Therefore, by lemma 3.1.2, r /∈ J .

The following definition extends the notion of attached prime for ideals to ar-

bitrary proper non-zero V -submodules of Q the quotient field of V (i.e. fractional

ideals).

Definition 4.4.5. Let I be a proper non-zero submodule of Q the quotient field of V .

The attached prime I# of I is the set of r ∈ V such that Ir ( I. Note that as in the

case of ideals I# is a prime ideal in V .

Lemma 4.4.6. Let J C V , b, x ∈ V . Then [bm : J ]x = [bxm : J ].

Proof. Suppose t ∈ [bm : J ]x. Then t = γx for some γ ∈ [bm : J ]. Hence tJ = γxJ ⊆

bxm. Suppose t ∈ [bxm : J ]. Then tJ ⊆ bxm, so t/xJ ⊆ bm. Hence t ∈ [bm : J ]x.

Proposition 4.4.7. Let J C V and x ∈ Q non-zero. Then [m : J ] = xm implies

J = (1/x)V .

Proof. First we show that 1/x ∈ J . Suppose 1/x /∈ J . Since Q is uniserial (1/x)m ⊇

J , so m ⊇ Jx. A contradiction since x /∈ [m : J ].

Suppose y ∈ J . Then xym ⊆ m so xy ∈ V . Therefore y ∈ (1/x)V .

Proposition 4.4.8. Let J C V and x ∈ Q non-zero. Then [m : J ] = xV implies

J = (1/x)m.

Proof. Since x ∈ [m : J ], xJ ⊆ m. So J ⊆ (1/x)m.

Suppose, for a contradiction, that t ∈ m and t/x /∈ J . Then (t/x)m ⊇ J . Hence

m ⊇ (x/t)J . So x/t ∈ [m : J ] = xV . Hence t /∈ m, a contradiction. Therefore

J = (1/x)m.

Lemma 4.4.9. Let J C V , b ∈ V and x ∈ J#. Then [bxm : J ] ( [bm : J ].
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Proof. Since x ∈ J#, J ) Jx. Take a ∈ J\Jx. Then, since a /∈ Jx, am ⊇ Jx.

Therefore m ⊇ J(x/a). So bm ⊇ J(bx/a). Hence bx/a ∈ [bm : J ]. Since a ∈ J ,

bx ∈ (bx/a)J . Therefore bxm ( (bx/a)J . Hence bx/a /∈ [bxm : J ].

So since Q is uniserial, [bxm : J ] ( [bm : J ].

Proposition 4.4.10. Let V be a valuation domain, Q the quotient of V , a ∈ V and

I ⊇ J V -submodules of Q. Then

I

J
∼=
Ia

Ja
.

Proof. Let f : I
J
→ Ia

Ja
be the map induced by multiplication by a. The map f is well

defined since if x ∈ J then xa ∈ Ja and a homomorphism since V is commutative.

The map is injective since if xa ∈ Ja then x ∈ J . The map is clearly surjective.

Hence f is an isomorphism.

Lemma 4.4.11. Let V be a valuation domain with finite residue field consisting of

q elements and dense value group. Then, up to isomorphism, V/m is the only finite

non-zero uniserial V -module. Moreover, any non-zero V -module of finite size is of

size qn for some n ∈ N.

Proof. First note that V/m is the only finite non-zero cyclic V -module since V has

dense value group. Suppose M is a finite non-zero uniserial module. Then all cyclic

submodules of M are isomorphic to V/m. Since V/m is simple and M is uniserial, M

is isomorphic to V/m, i.e. if M has two non-zero cyclic submodules N1 and N2 then

either N1 ⊇ N2 or N2 ⊇ N1 but since both N1 and N2 are simple N1 = N2.

We now prove the second claim. Suppose M is a non-zero V -module of finite size.

Then, since V/m is the only finite non-zero cyclic V -module, every cyclic submodule

of M is isomorphic to V/m. Since V/m is simple and M is finite, we can pick pairwise

non-equal m1, ...,mn ∈M\{0} such that for each 0 < i, j ≤ n miV ∩mjV = ∅ unless

i = j and m1V + ... + mnV = M . For each 0 < i ≤ n, |miV | = q. Therefore

|M | = qn.

Lemma 4.4.12. Let V be a valuation domain with dense value group and finite

residue field of size q. Then for all pp-1-formulae φ, ψ and all indecomposable pure-

injective modules N ,
∣∣∣ φ(N)
ψ(N)

∣∣∣ is either 1, q or infinite.
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Proof. Suppose φ, ψ are pp-1-formulae and N an indecomposable pure-injective mod-

ule. By lemma 4.4.4 and comments just before, there is a uniserial module M ele-

mentary equivalent to N . Hence, if
∣∣∣ φ(N)
ψ(N)

∣∣∣ is of finite size greater than q then
∣∣∣ φ(M)
ψ(M)

∣∣∣
is of finite size greater than q. But, since M uniserial, φ(M)

ψ(M)
is uniserial. This can

only have finite size 1 or q by lemma 4.4.11.

Lemma 4.4.13. Let V be a valuation domain and finite residue field consisting of

q elements. Let φ be the pp-fomula (xag = 0 ∧ b|x) and let ψ be the pp-formula

(xa = 0 + bh|x) where a, b ∈ V \{0} and g, h ∈ m. Then for any I, J C V , if a /∈ I,

ag ∈ I, b /∈ J and bh ∈ J then∣∣∣∣φ(N(I, J))

ψ(N(I, J))

∣∣∣∣ = min

{∣∣∣∣ [I : ag]

[I : a]

∣∣∣∣ ,

∣∣∣∣ [I : ag]

[bhm : J ]

∣∣∣∣ ,

∣∣∣∣ [bm : J ]

[I : a]

∣∣∣∣ ,

∣∣∣∣ [bm : J ]

[bhm : J ]

∣∣∣∣} .
Proof. By lemma 4.4.4 we know that p(I, J) is realised in [m:J ]

I
. Since M = [m:J ]

I
is

uniserial, its pure-injective hull is indecomposable (see [EH95, propostion 4.1]) and is

therefore isomorphic to N(I, J). Recall that a module is elementary equivalent to its

pure-injective hull. Hence φ(M)/ψ(M) is finite if and only if φ(N(I, J))/ψ(N(I, J))

is finite and in this situation

|φ(M)/ψ(M)| = |φ(N(I, J))/ψ(N(I, J))| .

Claim: The solution set of φ in M is

[I : ag] ∩ [bm : J ]

I
.

Take x ∈ [m : J ]. Let x′ be the image of x in [m : J ]/I. For any v ∈ V , x′v = 0 if

and only if xv ∈ I. So x′ag = 0 if and only if x ∈ [I : ag]. For any v ∈ V , v|x′ if and

only if there exists y ∈ [m : J ] such that yv − x ∈ I if and only if x ∈ [m : J ].v + I =

[vm : J ] + I. Since b /∈ J , [bm : J ] ⊇ V ⊇ I, so [bm : J ] + I = [bm : J ]. So b|x′ if and

only if x ∈ [bm : J ]. Hence we have proved the claim.

Claim: The solution set of ψ in M is

[I : a] ∪ [bhm : J ]

I
.
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As in previous claim, for any x ∈ [m : J ] with image x′ in [m : J ]/I, x′a = 0 if and

only if x ∈ [I : a] and bh|x′ if and only if x ∈ [bhm : J ]. Since V is commutative

pp-definable subgroups are submodules. As M is uniserial, the solution set of ψ is

[I : a] ∪ [bhm : J ]

I
.

Hence, since M is uniserial,∣∣∣∣φ(M)

ψ(M)

∣∣∣∣ = min

{∣∣∣∣ [I : ag]

[I : a]

∣∣∣∣ ,

∣∣∣∣ [I : ag]

[bhm : J ]

∣∣∣∣ ,

∣∣∣∣ [bm : J ]

[bhm : J ]

∣∣∣∣ ,

∣∣∣∣ [bm : J ]

[I : a]

∣∣∣∣} .

Lemma 4.4.14. Suppose V is a valuation domain with dense value group such that

the residue field of V consists of q elements. Let φ be the pp-1-formula (xag =

0) ∧ (b|x) and let ψ be the pp-1-formula (xa = 0) + (bh|x) where a, b ∈ V \{0} and

g, h ∈ m. Then for any ideals I, J C V the following are equivalent:

(i)
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1.

(ii) (I, J) ∼ (agV, bhV ) or (I, J) ∼ (am, bm).

Proof. (i)⇒(ii) Suppose
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1. ThenN(I, J) ∈
(
φ
ψ

)
so

(I, J) ∈ Wa,b,g,h. Therefore there exists K,LCV such that (K,L) ∼ (I, J) and a /∈ K,

b /∈ L, ag ∈ K and bh ∈ L. Note that, since (I, J) ∼ (K,L), N(I, J) = N(K,L).

Hence, by lemma 4.4.13,∣∣∣∣φ(N(I, J))

ψ(N(I, J))

∣∣∣∣ = min

{∣∣∣∣ [K : ag]

[K : a]

∣∣∣∣ ,

∣∣∣∣ [K : ag]

[bhm : L]

∣∣∣∣ ,

∣∣∣∣ [bm : L]

[bhm : L]

∣∣∣∣ ,

∣∣∣∣ [bm : L]

[K : a]

∣∣∣∣} .
Thus we must consider when

∣∣∣ [K:ag]
[K:a]

∣∣∣, ∣∣∣ [bm:L]
[bhm:L]

∣∣∣, ∣∣∣ [K:ag]
[bhm:L]

∣∣∣ and
∣∣∣ [bm:L]

[K:a]

∣∣∣ are finite and

not equal to 1.

By lemma 4.4.10

[K : ag]

[K : a]
∼=

K

Kg
.

So by lemma 4.4.11 it is either infinite or 1.

By lemma 4.4.6

[bm : L]

[bhm : L]
=

[bm : L]

[bm : L]h
.
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So by lemma 4.4.11 it is either infinite or 1.

Suppose
∣∣∣ [K:ag]

[bhm:L]

∣∣∣ is finite and not equal to 1. Then

[K : ag]

[bhm : L]
∼=
V

m
.

Hence [K : ag] = γV for some γ ∈ Q\{0}, so K = γagV . Therefore [bhm : L] =

γagm, so L = 1/γbhV , by lemma 4.4.7. Hence (I, J) ∼ (K,L) ∼ (agV, bhV ).

Suppose
∣∣∣ [bm:L]

[K:a]

∣∣∣ is finite and not equal to 1. Then

[bm : L]

[K : a]
∼=
V

m
.

Hence [bm : L] = γV for some γ ∈ Q\{0} so L = b/γm, by lemma 4.4.8. Therefore

[K : a] = γm, so K = γam. Hence (I, J) ∼ (K,L) ∼ (am, bm).

(ii)⇒(i) We may assume I = agV and J = bhV or I = am and J = bm since if

(I, J) ∼ (K,L) then N(I, J) ∼= N(K,L).

As in lemma 4.4.13 (first paragraph), we need only consider φ(M)
ψ(M)

for M a uniserial

module realising p(I, J).

Suppose I = agV and J = bhV . Then M = [m:J ]
I
∼= m

abghV
realises p(I, J).

The solution set of the formula b|x in m
abghV

is bm
abghV

and the solution set of the

formula xag = 0 in m
abghV

is bhV
abghV

. So

φ

(
m

abghV

)
=
bm ∩ bhV
abghV

.

Since bh ∈ bm,

φ

(
m

abghV

)
=

bhV

abghV
.

Similarly,

ψ

(
m

abghV

)
=
bhm + bghV

abghV
.

Since bhg ∈ bhm,

ψ

(
m

abghV

)
=

bhm

abghV
.

So

φ(M)

ψ(M)
∼=
bhV

bhm
∼=
V

m
.

Suppose I = am and J = bm. Then M = [m:J ]
I

= 1/bV
am
∼= V

abm
realises p(I, J).
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The solution set of the formula xag = 0 in V
abm

is (abm:ag)
abm

and the solution set of

the formula b|x in V
abm

is bV
abm

. So

φ

(
V

abm

)
=

(abm : ag) ∩ bV
abm

.

As g ∈ m, b ∈ (abm : ag). So

φ

(
V

abm

)
=

bV

abm
.

Similarly,

ψ

(
V

abm

)
=
bm + bhV

abm
.

Since bh ∈ bm,

ψ

(
V

abm

)
=

bm

abm
.

So

φ(M)

ψ(M)
∼=
bV

bm
∼=
V

m
.

Lemma 4.4.15. Let V be a valuation domain with dense value group and finite

residue field consisting of q elements. Let I = tV and J = sV for some t, s ∈ m,

N = N(I, J), let φ be the pp-1-formula xag = 0 ∧ b|x and let ψ be the pp-1-formula

xa = 0 + bh|x where a, b ∈ V \{0} and g, h ∈ m. Then the following holds:

(i)
∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if ab ∈ tsV or abgh /∈ tsV .

(ii)
∣∣∣ φ(N)
ψ(N)

∣∣∣ = q if and only if abghV = stV .

(iii)
∣∣∣ φ(N)
ψ(N)

∣∣∣ =∞ if and only if ab /∈ stV and abgh ∈ stm.

In particular, if V is effectively given, then there exists an algorithm which, given any

t, s ∈ m and α, β, δ, γ ∈ V , returns the value of
∣∣∣ φ(N)
ψ(N)

∣∣∣ where φ is xα = 0 ∧ β|x and

ψ is xγ = 0 + δ|x and N = N(tV, sV ).

Proof. (i) Since a, b ∈ V \{0} and g, h ∈ m, ( φ
ψ

) is the basic open set Wa,b,g,h. So∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if (tV, sV ) /∈ Wa,b,g,h. The point (tV, sV ) is a normal point

since m2 = m. So, for all λ ∈ V \{0}, (tV, sV ) ∈ W1,λ,0,0 if and only if λ /∈ tsV .
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Therefore, by proposition 3.5.6, (tV, sV ) ∈ Wa,b,g,h if and only if ab /∈ tsV and

abgh ∈ tsV . Thus,
∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if ab ∈ tsV or abgh /∈ tsV .

(ii) By lemma 4.4.14
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to 1 if and only if (agV, bhV ) ∼

(tV, sV ) or (am, bm) ∼ (tV, sV ). For any pairs of ideals (I, J) and (K,L), (I, J) ∼

(K,L) implies IJ = KL. Therefore, since m is not finitely generated, it is not

possible that (am, bm) ∼ (tV, sV ). By lemma 4.4.1, stV = abghV implies (tV, sV ) ∼

(agV, bhV ). Hence
∣∣∣ φ(N)
ψ(N)

∣∣∣ = q if and only if abghV = stV .

(iii) For any indecomposable pure-injective module N and any pair of pp-1-formulae

φ, ψ,
∣∣∣ φ(N)
ψ(N)

∣∣∣ is either 1, q or infinite. Therefore it is enough to note that ab /∈ tsV ,

abgh ∈ tsV and abghV 6= stV if and only if ab /∈ stV and abgh ∈ stm.

It remains to consider the final claim that if V is effectively given, then there

exists an algorithm which, given any t, s ∈ m and α, β, δ, γ ∈ V , returns the value of∣∣∣ φ(N)
ψ(N)

∣∣∣ where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x and N = N(tV, sV ).

Suppose V is effectively given. First note that if α /∈ γm, δ /∈ βm, β = 0 or γ = 0

then
∣∣∣ φ(M)
ψ(M)

∣∣∣ = 1 for all V -modules M . Since V is effectively given, we can effectively

check whether α /∈ γm, δ /∈ βm, β = 0 or γ = 0. Otherwise, let a = γ, b = β,

g = α/γ and h = δ/β. Hence φ is xag = 0∧ b|x and ψ is xa = 0 + bh|x. Therefore it

is enough to note that for any r, s ∈ V we can effectively check whether r ∈ sV and

r ∈ sm.

Corollary 4.4.16. Let φ, ψ be pp-1-formulae and I = tV , J = sV for some t, s ∈ m.

Then we can effectively calculate the value of
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣.
Lemma 4.4.17. Let V be a valuation domain with dense value group and finite

residue field consisting of q elements. Let I = tm and J = sm for some t, s ∈ V \{0},

N = N(I, J), φ be the pp-1-formula xag = 0 ∧ b|x and let ψ be the pp-1-formula

xa = 0 + bh|x where a, b ∈ V \{0} and g, h ∈ m. Then the following holds:

(i)
∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if ab ∈ tsm or abgh /∈ tsm.

(ii)
∣∣∣ φ(N)
ψ(N)

∣∣∣ = q if and only if abm = stm.

(iii)
∣∣∣ φ(N)
ψ(N)

∣∣∣ =∞ if and only if ab /∈ stV and abgh ∈ stm.
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In particular, if V is effectively given, then there exists an algorithm which, given any

t, s ∈ V \{0} and α, β, δ, γ ∈ V , returns the value of
∣∣∣ φ(N)
ψ(N)

∣∣∣ where φ is xα = 0 ∧ β|x

and ψ is xγ = 0 + δ|x and N = N(tm, sm).

Proof. (i) Since a, b ∈ V \{0} and g, h ∈ m, ( φ
ψ

) is the basic open set Wa,b,g,h. So∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if (tm, sm) /∈ Wa,b,g,h. The point (tm, sm) is a normal point

since m2 = m. Therefore (tm, sm) ∈ Wa,b,g,h if and only if ab /∈ tsm and abgh ∈ tsm.

Thus,
∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1 if and only if ab ∈ tsm or abgh /∈ tsm.

(ii) By lemma 4.4.14
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to 1 if and only if (agV, bhV ) ∼

(tm, sm) or (am, bm) ∼ (tm, sm). For any pairs of ideals (I, J) and (K,L), (I, J) ∼

(K,L) implies IJ = KL. Therefore, since m is not finitely generated, it is not

possible that (agV, bhV ) ∼ (tm, sm). By lemma 4.4.2, (tm, sm) ∼ (am, bm) if and

only if tsm = abm.

(iii) For any indecomposable pure-injective module N and any pair of pp-1-formulae

φ, ψ,
∣∣∣ φ(N)
ψ(N)

∣∣∣ is either 1, q or infinite. Therefore it is enough to note that ab /∈ tsm,

abgh ∈ tsm and abghm 6= stm if and only if ab /∈ stV and abgh ∈ stm.

It remains to consider the final claim that if V is effectively given, then there

exists an algorithm which, given any t, s ∈ V \{0} and α, β, γ, δ ∈ V , returns the

value of
∣∣∣ φ(N)
ψ(N)

∣∣∣ where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x and N = N(tm, sm).

Suppose V is effectively given. First note that if α /∈ γm, δ /∈ βm, β = 0 or γ = 0

then
∣∣∣ φ(M)
ψ(M)

∣∣∣ = 1 for all V -modules M . Since V is effectively given, we can effectively

check whether α /∈ γm, δ /∈ βm, β = 0 or γ = 0. Otherwise, let a = γ, b = β,

g = α/γ and h = δ/β. Hence φ is xag = 0∧ b|x and ψ is xa = 0 + bh|x. Therefore it

is enough to note that for any r, s ∈ V we can effectively check whether r ∈ sV and

r ∈ sm.

Corollary 4.4.18. Let φ, ψ be pp-1-formulae and I = tm, J = sm for some t, s ∈

V \{0}. Then we can effectively calculate the value of
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣.
Lemma 4.4.19. Let V be an effectively given valuation domain with dense value

group and finite residue field consisting of q elements. There is an algorithm which,
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given pp-1-formulae φ, ψ, gives a finite list L of pairs of ideals (I, J) such that

|φ(N)/ψ(N)| = q if and only if N = N(I, J) for some (I, J) ∈ L.

Proof. A priori, it is not clear that one can even explicitly write down pairs of ideals

(I, J) such that |φ(N)/ψ(N)| = q where N = N(I, J). Therefore first we must show,

using 4.4.14, that if (I, J) is such that |φ(N)/ψ(N)| = q where N = N(I, J) then

(I, J) = (aV, bV ) for some a, b ∈ m\{0} or (I, J) = (am, bm) for some a,∈ V \{0}.

First, rewrite φ as
∑n

i=1(xαi = 0 ∧ βi|x) and ψ as
∧m
j=1(xγj = 0 + δj|x) for some

αi, βi, γi, δi ∈ V . Let φi be (xαi = 0∧βi|x) and ψj be (xγj = 0+δj|x). We can do this

effectively by lemmas 4.2.1 and 4.2.2. Then for any indecomposable pure-injective

N , ∣∣∣∣φ(N)

ψ(N)

∣∣∣∣ = max

{∣∣∣∣φi(N)

ψj(N)

∣∣∣∣} .
We know that φi(N)/ψj(N) is the zero module for all indecomposable pure-

injectives if αi /∈ γjm, δj /∈ βim, βi = 0 or γj = 0. If for all i, j and all indecom-

posable pure-injectives N φi(N)/ψj(N) is zero then there is no N indecomposable

pure-injective such that φ(N)/ψ(N) is non-zero.

By 4.4.14 for any pp-1-formula φ of the form xag = 0 ∧ b|x and ψ of the form

xa = 0 + bh|x where a, b ∈ V \{0} and g, h ∈ m, the only indecomposable pure-

injective modules N such that
∣∣∣ φ(N)
ψ(N)

∣∣∣ = q are N = N(agV, bhV ) and N = N(am, bm).

If αi ∈ γjm, δj ∈ βim, βi 6= 0 and γj 6= 0, let ai,j = γj, bi,j = βi, gi,j = αi/γj and

hi,j = δj/βi. So we need only consider the pure-injective modules N(ai,jm, bi,jm) and

N(ai,jgi,jV, bi,jhi,jV ) where ai,j, bi,j, gi,j and hi,j are defined.

By lemmas 4.4.15 and 4.4.17, for any pp-1-formula φ of the form xα = 0∧β|x and

ψ of the form xγ = 0 + δ|x and any indecomposable pure-injective N = N(am, bm)

or N = N(tV, sV ) where a, b ∈ V and t, s ∈ m we can effectively calculate the size of∣∣∣ φ(N)
ψ(N)

∣∣∣.
Hence we can make a finite list of indecomposable pure-injective modules N such

that φ(N)
ψ(N)

is finite and not of size 1.

Lemma 4.4.20. Let R be a ring and χ a boolean combination of invariants sentences
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and negations of invariants sentences. If there exists an R-module M which satis-

fies χ then there exists a finite direct sum of pure-injective indecomposable modules

satisfying χ.

Proof. Without loss of generality we may assume that χ is the conjunction of the

following invariants sentences: ∣∣∣∣φ1
i

ψ1
i

∣∣∣∣ = vi (1)∣∣∣∣φ2
j

ψ2
j

∣∣∣∣ ≥ wj (2)∣∣∣∣φ3
k

ψ3
k

∣∣∣∣ = 1 (3)

where l,m, n ∈ N and for all 0 < i ≤ l, 0 < j ≤ m, 0 < k ≤ n, φ1
i , ψ

1
i , φ

2
j , ψ

2
j , φ

3
k, ψ

3
k

are pp-1-formulae and vi, wj ∈ N. This is because any boolean combination of invari-

ants sentences and negations of invariants sentences is a disjunction of conjunctions

of invariants sentences of this form.

Suppose M satisfies χ. We may assume M =
⊕

µ∈MNµ since every module

is elementary equivalent to a direct sum of pure-injective indecomposable modules.

Since M |= χ, for each Nµ and for all 0 < k ≤ n∣∣∣∣φ3
k(Nµ)

ψ3
k(Nµ)

∣∣∣∣ = 1.

For each 0 < i ≤ l, let ∆i be the set of µ ∈M such that∣∣∣∣φ1
i (Nµ)

ψ1
i (Nµ)

∣∣∣∣ > 1.

Note that for each 0 < i ≤ l, ∆i is a finite set, since if it had more than vi elements

then
∣∣∣ φ1i (M)

ψ1
i (M)

∣∣∣ > 2vi > vi.

For each 0 < j ≤ m, let Ωj be the set of µ ∈M such that∣∣∣∣φ2
j(Nµ)

ψ2
j (Nµ)

∣∣∣∣ > 1.

For each 0 < j ≤ m, if Ωj is not finite replace it by a subset of size wj. Then Ωj is

finite for all 0 < j ≤ m and
⊕

µ∈Ωj
Nµ satisfies

∣∣∣ φ2jψ2
j

∣∣∣ ≥ wj.

Let Λ =
⋃l
i=1 ∆i ∪

⋃m
j=1 Ωj. Then

⊕
µ∈ΛNµ satisfies χ and Λ is a finite set.
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Theorem 4.4.21. Let V be an effectively given valuation domain with dense value

group and finite residue field consisting of q elements. Then the following are equiv-

alent:

(i) The theory of V -modules, TV , is decidable.

(ii) There exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ).

Proof. As in theorem 4.3.3 in order to show that TV is decidable it is enough to

show that there exists an algorithm which, given χ a finite conjunction of invariants

sentences and negations of invariants sentences, answers whether there is a module

M satisfying χ.

Suppose χ is a conjunction of the following sentences:∣∣∣∣φ1
i

ψ1
i

∣∣∣∣ = qvi (1)∣∣∣∣φ2
j

ψ2
j

∣∣∣∣ ≥ qwj (2)∣∣∣∣φ3
k

ψ3
k

∣∣∣∣ = 1 (3)

where l,m, n ∈ N and for all 0 < i ≤ l, 0 < j ≤ m, 0 < k ≤ n, φ1
i , ψ

1
i , φ

2
j , ψ

2
j , φ

3
k, ψ

3
k

are pp-1-formulae and vi, wj ∈ N.

It is enough to consider χ of this form since for any V -module M and any φ, ψ

pp-1-formulae,
∣∣∣ φ(M)
ψ(M)

∣∣∣ = qv for some v ∈ N or
∣∣∣ φ(M)
ψ(M)

∣∣∣ is infinite. See lemma 4.4.11.

If τ is a conjunction of invariants sentences like those in (1), (2) and (3) then we

call
∑l

i=1 vi the exponent of the statement.

We proceed by induction on
∑l

i=1 vi, the exponent of the conjunction of invariants

sentences in (1).

Suppose
∑l

i=1 vi = 0, that is (1) is empty. Suppose there exists a module M

satisfying χ. By lemma 4.4.20 we may assume M =
⊕

µ∈MNµ, for some finite

indexing set M. Therefore for each 0 < j ≤ m, there is µ ∈M such that∣∣∣∣φ2
j(Nµ)

ψ2
j (Nµ)

∣∣∣∣ > 1
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and for all µ ∈M and all 0 < k ≤ n,∣∣∣∣φ3
k(Nµ)

ψ3
k(Nµ)

∣∣∣∣ = 1.

Hence, for each 0 < j ≤ m, there exists Nµ such that Nµ ∈
(
φ2j
ψ2
j

)
and Nµ /∈

(
φ3k
ψ3
k

)
for all 0 < k ≤ n. For each 0 < j ≤ m, let Nj be such a module. Then there exists

t ∈ N such that
(⊕m

j=1Nj

)t
satisfies (2) and (3).

Hence, there exists a module M satisfying (2) and (3) if and only if for all 0 <

j ≤ m (
φ2
j

ψ2
j

)
*

n⋃
k=1

(
φ3
k

ψ3
k

)
.

Theorem 4.2.15 asserts that there exists an algorithm to check this, so we are

done.

Now suppose L =
∑l

i=1 vi > 0, so (1) is not empty and that for any conjunction

Θ of invariants sentences and negations of invariants sentences with exponent strictly

smaller than L, there is an algorithm which answers whether there exists a module

M satisfying Θ.

By lemma 4.4.12, for any indecomposable pure-injective N and any pp-1-formulae

φ, ψ,
∣∣∣ φ(N)
ψ(N)

∣∣∣ is either 1, q or infinite.

Suppose there exists M satisfying χ. By lemma 4.4.20 we may assume M =⊕
µ∈MNµ where M is a finite indexing set and each Nµ is an indecomposable pure-

injective module. Hence there exists a µ ∈M such that
∣∣∣ψ1

1(Nµ)

φ11(Nµ)

∣∣∣ = q.

By lemma 4.4.19, we can list all indecomposable pure-injective V -modulesN1, ..., Nt

such that ∣∣∣∣φ1
1(Ns)

ψ1
1(Ns)

∣∣∣∣ = q.

Note that, using 4.4.14, for each module Ns, there either exists a, b ∈ V \{0} such

that Ns
∼= N(am, bm) or there exists a, b ∈ m\{0} such that Ns

∼= N(aV, bV ). By

lemmas 4.4.16 and 4.4.18, for each Ns we can effectively calculate∣∣∣∣φ2
j(Ns)

ψ2
j (Ns)

∣∣∣∣ and

∣∣∣∣φ3
k(Ns)

ψ3
k(Ns)

∣∣∣∣
for each 0 < j ≤ m and 0 < k ≤ n.
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For each Ns, if
∣∣∣φ3k(Ns)

ψ3
k(Ns)

∣∣∣ 6= 1, for any 0 < k ≤ n, remove Ns from the list. Likewise,

remove Ns from the list, if
∣∣∣ φ1i (Ns)ψ1

i (Ns)

∣∣∣ is infinite.

If the list is now empty, no module M satisfying χ exists. Otherwise for each

module Ns we produce new lists of sentence (1)s, (2)s and (3)s. For each s start with

(1)s and (2)s empty, and (3)s consisting of all sentences in (3).

For each 0 < i ≤ l, if
∣∣∣ φ1i (Ns)ψ1

i (Ns)

∣∣∣ = q and vi > 1, add the sentence
∣∣∣ φ1iψ1

i

∣∣∣ = qvi−1 to

(1)s. If
∣∣∣ φ1i (Ns)ψ1

i (Ns)

∣∣∣ = q and vi ≤ 1, add the sentence
∣∣∣ φ1iψ1

i

∣∣∣ = 1 to (3)s. If
∣∣∣ φ1i (Ns)ψ1

i (Ns)

∣∣∣ = 1,

add
∣∣∣ φ1iψ1

i

∣∣∣ = qvi to (1)s

For each 0 < j ≤ m, if
∣∣∣ φ2j (Ns)ψ2

j (Ns)

∣∣∣ = q and wj > 1, add the sentence
∣∣∣ φ2jψ2

j

∣∣∣ ≥ qwj−1 to

(2)s. If
∣∣∣ φ2j (Ns)ψ2

j (Ns)

∣∣∣ = 1, add the sentence
∣∣∣ φ2jψ2

j

∣∣∣ ≥ qwj to (2)s.

For each s, if there exists a module M satisfying all sentences in (1)s, (2)s and

(3)s then Ns

⊕
M satisfies (1), (2) and (3) and if there exists M satisfying (1), (2)

and (3) then there exists an s such that M ′ satisfies (1)s, (2)s and (3)s.

Note that for each s, the exponent of the conjunction of conditions in (1)s is

strictly smaller than
∑l

i=1 vi. Therefore by the induction hypothesis, for each s,

there exists an algorithm which answers whether there exists a module M which

satisfies (1)s, (2)s and (3)s.

The other direction is lemma 4.1.3.

4.5 Valuation domains with finite residue field and

non-dense value group

Throughout this section let V be a valuation domain with non-dense value group

and finite residue field. Recall that if V has non-dense value group then m is finitely

generated. Let k be a fixed generator of the maximal ideal m.

The main work of this section is, given φ, ψ pp-1-formulae and n ∈ N\{0}, to

effectively determine if there exist I, J C V such that
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ = n (in fact we

need to determine if there exist I, J C V satisfying a boolean combination of such

sentences).
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First we show that for any pp-1-pair φ/ψ, if
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1

then either I# = m or J# = m (lemma 4.5.7). Since m is finitely generated, if I C V

has attached prime m then there exists r /∈ I such that (I : r) = m (note that this

means that I = rm, so I if finitely generated).

Therefore, if
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1 for some pp-1-pair φ/ψ then

(I, J) ∼ (m, K) or (I, J) ∼ (K,m) for some K C V .

The next step is to show that given a sentence of the form
∣∣∣ φψ ∣∣∣ = 1,

∣∣∣ φψ ∣∣∣ ≥ n or∣∣∣ φψ ∣∣∣ = n where φ/ψ is a pp-1-pair and n ∈ N, we can effectively produce conditions on

an ideal K such that if K satisfies these conditions then N(m, K) satisfies the sentence

and we can effectively produce conditions on an ideal L such that if L satisfies these

conditions then N(L,m) satisfies the sentence. (See 4.5.13, 4.5.14, 4.5.15, 4.5.18,

4.5.19, 4.5.20, 4.5.24, 4.5.25 and 4.5.26).

Finally we show that given any boolean combination of conditions that we have

effectively produced, we can effectively check if there exists an ideal K satisfying it.

(See 4.5.27 and 4.5.28).

Unlike in the case of a valuation domain with dense value group we will not be

able to make a finite list of indecomposable pure-injectives such that
∣∣∣ φ(N)
ψ(N)

∣∣∣ = n, as

there may not be finitely many of them. In fact there may be uncountably many of

them.

Throughout this section we will tacitly use the following two lemmas.

Lemma 4.5.1. Let V be an effectively given valuation domain with non-dense value

group. For any k ∈ V which generates m, the function f : V → V ; a 7→ ak is

recursive.

Proof. The function tk : V → V × V ; a 7→ (a, k) is recursive since both component

maps are recursive. The map s : V × V → V ; (a, b) 7→ a · b is recursive since V is

effectively given. Therefore stk : V → V is recursive.

Lemma 4.5.2. Let V be an effectively given valuation domain. For any k which

generates m, the function f : m→ V ; a 7→ a/k is recursive.
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Proof. By lemma 4.1.1, the function f : V × V → V × {0, 1} defined by

(a, b) 7→


(0, 0) if a does not divide b,

(b/a, 1) otherwise

is recursive. The function gk : V → V × V : a 7→ (k, a) is recursive since both

component maps are recursive. The function t : V × {0, 1} → V : (a, π) 7→ a is

recursive. Therefore tfgk is recursive and for any a ∈ m, tfgk(a) = a/k since k

generates m.

Lemma 4.5.3. Let V be a valuation domain with non-dense value group and residue

field consisting of q elements. Then, for all n ∈ N,
∣∣ V
mn

∣∣ = qn and all finite uniserial

modules are isomorphic to V/mn for some n ∈ N.

Proof. First note that for any n ∈ N, mn/mn+1 = knV/kn+1V ∼= V/m. Hence

mn/mn+1 has size q. By considering the chain V ⊇ m ⊇ m2... ⊇ mn, we see that

for all n ∈ N,
∣∣ V
mn

∣∣ = qn.

Note that if I C V and V/I is finite then I = mn for some n ∈ N.

Suppose M is a finite uniserial module. Let x be an element of M with smallest

annihilator. Then xV ∼= V/mn for some n ∈ N, since all quotients of V of finite size

are of this form. Therefore annV x = mn. Suppose y ∈ M . Since M is uniserial,

either y ∈ xV or x ∈ yV . If x ∈ yV then x = yr for some r ∈ V . Therefore

annV y = (annV x)r ⊆ annV x hence (annV x)r = annV x. So r /∈ (annV x)# = m.

Hence r is a unit. So y ∈ xV . Therefore M = xV .

Corollary 4.5.4. Let V be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Then, all non-zero modules of finite size are of

size qn for some n ∈ N.

Proof. Suppose M is a finite non-zero V -module. Let 0 (M1 (M2.... (Ml = M be

a chain of submodules of M such that M1 is cyclic and for each 0 < i < l, Mi+1/Mi

is cyclic. Since all cyclic modules over a valuation domain are uniserial, for each
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0 < i < l, |Mi+1/Mi| = qvi for some vi ∈ N and |M1| = qw for some w ∈ N. Now,

|M | = |M1|
∏

0<i<l |Mi+1/Mi|. Hence M is of size qn for some n ∈ N.

Note that the above lemma and corollary imply that for any pp-pair φ/ψ and any

V -module M ,
∣∣∣ φ(M)
ψ(M)

∣∣∣ = qn for some n ∈ N or
∣∣∣ φ(M)
ψ(M)

∣∣∣ is infinite.

Lemma 4.5.5. Suppose V is a valuation domain with finite residue field and non-

dense value group. Let Q be the quotient field of V and J ( I ⊆ Q be V -modules.

Then |I/J | is finite if and only if I and J are principally generated and Ikn = J for

some n ∈ N where k generates the maximal ideal.

Proof. First note that I/J is a uniserial module because Q is uniserial. Therefore if

I/J is finite and not the zero module then I/J ∼= V/mn for some n ∈ N by 4.5.3.

Hence I is principally generated say by γ ∈ Q\{0} and γkn ∈ J but γkn−1 /∈ J so

J = γknV .

For the other direction note that for any γ ∈ Q\{0} and any n ∈ N, γV/knγV ∼=

V/mn.

Lemma 4.5.6. Suppose V is a valuation domain with non-dense value group and

finite residue field consisting of q elements. For all a, b ∈ V \{0} with aV ⊇ bV

and each v ∈ N,
∣∣aV
bV

∣∣ = qv if and only if akvV = bV and
∣∣aV
bV

∣∣ ≥ qv if and only if

akvV ⊇ bV .

Proof. For all a, b ∈ V with aV ⊇ bV there exists c ∈ V such that ac = b and

aV
bV
∼= V

cV
.

Suppose c ∈ V . Then, by lemma 4.5.3,
∣∣ V
cV

∣∣ = qv if and only if V
cV
∼= V

mv
if and

only if cV = kvV .

Suppose c ∈ V . Then
∣∣ V
cV

∣∣ ≥ qv if and only if cV = knV for some n ≥ v or
∣∣ V
cV

∣∣
is infinite. Note that

∣∣ V
cV

∣∣ is infinite if and only if c ∈ ∩n∈NknV . Therefore
∣∣ V
cV

∣∣ ≥ qv

if and only if kvV ⊇ cV .

Hence, for all a, b ∈ V with aV ⊇ bV and v ∈ N,
∣∣aV
bV

∣∣ = qv if and only if

akvV = bV and for all a, b ∈ V with aV ⊇ bV and v ∈ N,
∣∣aV
bV

∣∣ ≥ qv if and only if

akvV ⊇ bV .
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Lemma 4.5.7. Let V be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Let φ, ψ be pp-1-formulae. Then, for all I, J C

V ,
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not equal to 1 implies either I# = m or J# = m.

Proof. Suppose
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to 1. Then there exists a pp-1-formula

ψ′ such that φ(N) ) ψ′(N) ⊇ ψ(N) and φ/ψ′ is a minimal pair (see definition 2.2.8)

in the theory of N . Since
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to 1,
∣∣∣ φ(N)
ψ′(N)

∣∣∣ is finite and not

equal to 1. Suppose N has attached prime p not equal to m. Then, for all r ∈ p and

all non-zero x ∈ N , xr has strictly greater pp-type than x by lemma 2.3.24. Hence

if x ∈ φ(N) then xr ∈ ψ′(N). Therefore φ(N)
ψ′(N)

is an V/p module. All r /∈ p act as

automorphisms on N . Hence φ(N)
ψ′(N)

is a Vp/p-module (i.e. vector space) and therefore

infinite or the zero module since V/p is of infinite size.

Therefore, if
∣∣∣ φ(N)
ψ(N)

∣∣∣ is finite and not equal to 1 then AttN = m. By lemma 3.3.6,

I# ∪ J# = m. Therefore either I# = m or J# = m.

Recall that, since m is finitely generated and so m2 6= m, if I C V with I# = m

then I = am for some a ∈ V \{0}. See lemma 3.5.7. So by lemma 4.5.7 above, for

any pair of pp-1-formulae φ, ψ, if I, JCV such that
∣∣∣ φ(N(I,J))
ψ(N(I,J))

∣∣∣ is finite and not 1 then

either (I, J) ∼ (m, K) or (I, J) ∼ (K,m) for some K C V .

Lemma 4.5.8. Let V be a valuation domain with non-dense value group and finite

residue field. Then for all b ∈ V \{0} if J C V is not principal then [bm : J ] is not

principally generated.

Proof. Let b ∈ V \{0} and J C V . Suppose [bm : J ] = γV for some γ ∈ Q. Then

Jγ ⊆ bm = bkV and bkV ( Jγk−1, since γk−1 /∈ [bm : J ]. Hence bV ⊆ Jγk−1 so

bk ∈ Jγ. Therefore Jγ = bkV , so J = bk/γV . So J is principal.

Lemma 4.5.9. Let V be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Let v ∈ N\{0}, let φ be the pp-formula (xag =

0∧ b|x) and let ψ be the pp-formula (xa = 0+ bh|x) where a, b ∈ V \{0} and g, h ∈ m.
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Suppose J C V is such that J# ( m and N(m, J) ∈
(
φ
ψ

)
. Then

∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = qv if

and only if gV = mv.

Proof. Since N(m, J) ∈
(
φ
ψ

)
, there exists some t /∈ J such that a /∈ tm, ag ∈ tm,

b /∈ (J : t) and bh ∈ (J : t). By lemma 4.4.13∣∣∣∣φ(N(m, J))

ψ(N(m, J))

∣∣∣∣=min

{∣∣∣∣ [tm : ag]

[tm : a]

∣∣∣∣ , ∣∣∣∣ [tm : ag]

[bhm : (J : t))]

∣∣∣∣ , ∣∣∣∣ [bm : (J : t)]

[tm : a]

∣∣∣∣ , ∣∣∣∣ [bm : (J : t)]

[bhm : (J : t)]

∣∣∣∣} .
Note that since J# ( m, J is not principal. Hence (J : t) is not principal. So by

lemma 4.5.8, [bm : (J : t)] and [bhm : (J : t)] are not principally generated. So by

lemma 4.5.5,
∣∣∣ [tm:ag]

[bhm:(J :t))]

∣∣∣, ∣∣∣ [bm:(J :t)]
[tm:a]

∣∣∣ and
∣∣∣ [bm:(J :t)]

[bhm:(J :t)]

∣∣∣ are either 1 or infinite. But since

N(m, J) ∈
(
φ
ψ

)
,
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ > 1. Hence
∣∣∣ [tm:ag]

[bhm:(J :t))]

∣∣∣, ∣∣∣ [bm:(J :t)]
[tm:a]

∣∣∣ and
∣∣∣ [bm:(J :t)]

[bhm:(J :t)]

∣∣∣ must all

be infinite.

Hence
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = qv if and only if
∣∣∣ [tm:ag]

[tm:a]

∣∣∣ = qv.

By lemma 4.4.10 and since m is finitely generated ,

[tm : ag]

[tm : a]
∼=

tm

tgm
∼=

V

gV
.

By lemma 4.5.6,
∣∣∣ VgV ∣∣∣ = qv if and only if gV = mv. Hence

∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = qv if and

only if gV = mv.

Lemma 4.5.10. Let V be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Let v ∈ N\{0}, let φ be the pp-formula (xag =

0∧ b|x) and let ψ be the pp-formula (xa = 0+ bh|x) where a, b ∈ V \{0} and g, h ∈ m.

Suppose I C V is such that I# ( m and N(I,m) ∈
(
φ
ψ

)
. Then

∣∣∣ φ(N(I,m))
ψ(N(I,m))

∣∣∣ = qv if and

only if hV = mv.

Proof. The following proof is very similar to that of 4.5.9, it is included for the

convenience of the reader. Since N(I,m) ∈
(
φ
ψ

)
, there exists some t /∈ I such that

a /∈ (I : t), b /∈ tm, ag ∈ (I : t) and bh ∈ tm. By lemma 4.4.13

∣∣∣∣φ(N(I,m))

ψ(N(I,m))

∣∣∣∣ = min

{∣∣∣∣ [(I : t) : ag]

[(I : t) : a]

∣∣∣∣ , ∣∣∣∣ [(I : t) : ag]

[bhm : tm]

∣∣∣∣ , ∣∣∣∣ [bm : tm]

[(I : t) : a]

∣∣∣∣ , ∣∣∣∣ [bm : tm]

[bhm : tm]

∣∣∣∣} .
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Note that since I# ( m, I is not principal. Hence (I : t) is not principal. So [(I : t) : a]

and [(I : t) : ag] are not principally generated. So by 4.5.5,
∣∣∣ [(I:t):ag][(I:t):a]

∣∣∣, ∣∣∣ [(I:t):ag][bhm:tm]

∣∣∣ and∣∣∣ [bm:tm]
[(I:t):a]

∣∣∣ are either 1 or infinite. But since N(I,m) ∈
(
φ
ψ

)
,
∣∣∣ φ(N(I,m))
ψ(N(I,m))

∣∣∣ > 1. So
∣∣∣ [(I:t):ag][(I:t):a]

∣∣∣,∣∣∣ [(I:t):ag][bhm:tm]

∣∣∣ and
∣∣∣ [bm:tm]

[(I:t):a]

∣∣∣ are infinite.

Hence
∣∣∣ φ(N(I,m))
ψ(N(I,m))

∣∣∣ = qv if and only if
∣∣∣ [bm:tm]

[bhm:tm]

∣∣∣ = qv.

By lemma 4.4.10 and since m is finitely generated,

[bm : tm]

[bhm : tm]
∼=

bm

bhm
∼=

V

hV
.

By lemma 4.5.6
∣∣ V
hV

∣∣ = qv if and only if hV = mv. Hence
∣∣∣ φ(N(I,m))
ψ(N(I,m))

∣∣∣ = qv if and

only if hV = mv.

Lemma 4.5.11. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an ideal of the form r ∈ J , s ∈ J#, such that for all J C V , J satisfies

∆ if and only if J# ( m and ∣∣∣∣φ(N(m, J))

ψ(N(m, J))

∣∣∣∣ = qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.

Proof. First note that if α /∈ γm, δ /∈ βm, γ = 0 or β = 0 then for all V -modules M ,∣∣∣ φ(M)
ψ(M)

∣∣∣ = 1. We can effectively check if α /∈ γm, δ /∈ βm, γ = 0 or β = 0. In this

situation let ∆ = FALSE.

Otherwise let a = γ, b = β, g = α/γ and h = δ/β.

By lemma 4.5.9, if J# ( m, the following are equivalent:

1.
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = qv.

2. (m, J) ∈ Wa,b,g,h and
∣∣∣ VgV ∣∣∣ = qv.

By lemma 4.5.5,
∣∣∣ VgV ∣∣∣ = qv if and only if kvV = gV . This can be checked effectively

by lemmas 4.5.2 and 4.5.1. Hence, if kvV 6= gV , let ∆ = FALSE.
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If kvV = gV , let ∆ = (abgh ∈ J) ∧ (ab /∈ J) ∧ (h ∈ J#) ∧ (k /∈ J#). The last

conjunct is equivalent to J# ( m. Recall that if J# ( m then (m, J) is a normal

point by lemma 3.5.16. Given that J# ( m, the first 3 conjuncts are equivalent to

(m, J) ∈ Wa,b,g,h since (m, J) is a normal point and mJ = J .

Corollary 4.5.12. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an ideal of the form r ∈ J , s ∈ J#, such that for all J C V , J satisfies

∆ if and only if J# ( m and ∣∣∣∣φ(N(m, J))

ψ(N(m, J))

∣∣∣∣ ≥ qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.

Lemma 4.5.13. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆ a boolean combination

of conditions on an ideal of the form r ∈ J , s ∈ J#, such that for all J C V , J

satisfies ∆ if and only if J# ( m and∣∣∣∣φ(N(m, J))

ψ(N(m, J))

∣∣∣∣ = qv.

Proof. By lemmas 4.2.1 and 4.2.2 we can effectively rewrite φ as
∑n

i=1 φi where φi is

(xai = 0∧ bi|x)and ψ as
∧m
j=1 ψj where ψj is (xcj = 0 + dj|x). Then by lemma 3.3.8,

for any pure-injective module N∣∣∣∣φ(N)

ψ(N)

∣∣∣∣ = maxi,j

{∣∣∣∣φi(N)

ψj(N)

∣∣∣∣} .
Hence a pure-injective module N satisfies

∣∣∣ φ(N)
ψ(N)

∣∣∣ = qv if and only if there exists

0 < i ≤ n and 0 < j ≤ m such that
∣∣∣ φi(N)
ψj(N)

∣∣∣ = qv and for all 0 < i ≤ n and 0 < j ≤ m,∣∣∣ φi(N)
ψj(N)

∣∣∣ ≤ qv.

For each 0 < i ≤ n and 0 < j ≤ m, let ∆i,j be the boolean combination of

conditions on an ideal J of the form r ∈ J and s ∈ J# such that J satisfies ∆i,j if
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and only if J# ( m and ∣∣∣∣φi(N(m, J))

ψj(N(m, J))

∣∣∣∣ = qv.

Such a condition exists and can be effectively produced by lemma 4.5.11.

For each 0 < i ≤ n and 0 < j ≤ m, let Ωi,j be the boolean combination of

conditions on an ideal J of the form r ∈ J and s ∈ J# such that J satisfies Ωi,j if

and only if J# ( m and ∣∣∣∣φi(N(m, J))

ψj(N(m, J))

∣∣∣∣ ≥ qv+1.

Such a condition exists and can be effectively produced by corollary 4.5.12.

Therefore a pure injective module N = N(m, J) satisfies
∣∣∣ φ(N)
ψ(N)

∣∣∣ = qv and J# ( m

if and only if J satisfies (∧
i,j

¬Ωi,j

)
∧

(∨
i,j

∆i,j

)
.

Corollary 4.5.14. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆ a boolean combination of

conditions on an ideal of the form r ∈ J , s ∈ J#, such that for all J C V , J satisfies

∆ if and only if J# ( m and ∣∣∣∣φ(N(m, J))

ψ(N(m, J))

∣∣∣∣ ≥ qv.

Lemma 4.5.15. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given φ, ψ pp-1-formulae, produces ∆ a boolean combination of conditions on

an ideal J C V of the form r ∈ J , s ∈ J# where r, s ∈ V such that J satisfies ∆ if

and only if J# ( m and
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = 1.

Proof. By corollary 4.2.3, there is an algorithm which, given φ, ψ pp-1-formulae,

either returns ∅ exactly when
(
φ
ψ

)
is empty or produces n ∈ N and for each 0 < i ≤ n,

ai, bi ∈ V \{0} and gi, hi ∈ m such that
(
φ
ψ

)
=
⋃n
i=1

(
xaigi=0∧bi|x
xai=0+bihi|x

)
.

If
(
φ
ψ

)
is empty then for all indecomposable pure-injective modules N ,

∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1.

So let ∆ = TRUE.
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Otherwise, note that for any J C V ,
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = 1 if and only if N(m, J) /∈
(
φ
ψ

)
if and only if (m, J) /∈

⋃
Wai,bi,gi,hi for all 0 < i ≤ n. For any 0 < i ≤ n and J# ( m,

(m, J) /∈ Wai,bi,gi,hi if and only if aibi ∈ J , aibigihi /∈ J or hi /∈ J# by lemma 3.5.16

and proposition 3.5.6. Note that J# ( m if and only if k /∈ J#. Therefore, let

∆ = (k /∈ J#) ∧
n∧
i=1

(aibi ∈ J) ∨ (aibigihi ∈ J) ∨ (hi /∈ J#).

Lemma 4.5.16. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an ideal of the form r ∈ I, s ∈ I#, such that for all I C V , I satisfies

∆ if and only if I# ( m and ∣∣∣∣φ(N(I,m))

ψ(N(I,m))

∣∣∣∣ = qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.

Proof. As in lemma 4.5.11, replacing 4.5.9 by 4.5.10.

Corollary 4.5.17. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an ideal of the form r ∈ I, s ∈ I#, such that for all I C V , I satisfies

∆ if and only if I# ( m and ∣∣∣∣φ(N(I,m))

ψ(N(I,m))

∣∣∣∣ ≥ qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.

Lemma 4.5.18. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆ a boolean combination

of conditions on an ideal of the form r ∈ I, s ∈ I#, such that for all ICV , I satisfies

∆ if and only if I# ( m and ∣∣∣∣φ(N(I,m))

ψ(N(I,m))

∣∣∣∣ = qv.
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Proof. Exactly as in proof of lemma 4.5.13 replacing (m, J) by (I,m) and lemma

4.5.11 and corollary 4.5.12 by lemma 4.5.16 and corollary 4.5.17.

Corollary 4.5.19. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆ a boolean combination

of conditions on an ideal of the form r ∈ I, s ∈ I#, such that for all ICV , I satisfies

∆ if and only if I# ( m and ∣∣∣∣φ(N(I,m))

ψ(N(I,m))

∣∣∣∣ ≥ qv.

Lemma 4.5.20. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given φ, ψ pp-1-formulae, produces ∆ a boolean combination of conditions on

an ideal ICV of the form r ∈ I, s ∈ I# where r, s ∈ V such I satisfies ∆ if and only

if I# ( m and
∣∣∣ φ(N(I,m))
ψ(N(I,m))

∣∣∣ = 1.

Proof. As in 4.5.15.

Lemma 4.5.21. Let V be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Let φ be the pp-1-formula (xag = 0 ∧ b|x) and

let ψ be the pp-1-formula (xa = 0 + bh|x) where a, b ∈ V \{0} and g, h ∈ m. If x ∈ m

is such that N(m, xV ) ∈
(
φ
ψ

)
then∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ = min

{∣∣∣∣ VgV
∣∣∣∣ ,

∣∣∣∣ VhV
∣∣∣∣ ,

∣∣∣∣ xV

abghV

∣∣∣∣ ,

∣∣∣∣abVxV
∣∣∣∣} .

Proof. If N(m, xV ) ∈
(
φ
ψ

)
then there exists t /∈ xV such that a /∈ tm, ag ∈ tm,

b /∈ (xV : t) and bh ∈ (xV : t). Note that (xV : t) is finitely generated.

By lemma 4.4.13,∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣=min

{∣∣∣∣[tm : ag]

[tm : a]

∣∣∣∣,∣∣∣∣ [tm : ag]

[bhm : (xV : t)]

∣∣∣∣,∣∣∣∣[bm : (xV : t)]

[tm : a]

∣∣∣∣,∣∣∣∣ [bm : (xV : t)]

[bhm : (xV : t)]

∣∣∣∣}.
By lemma 4.4.10 and since m is finitely generated the following equalities hold:∣∣∣∣ [tm : ag]

[tm : a]

∣∣∣∣ =

∣∣∣∣ tmtgm
∣∣∣∣ =

∣∣∣∣ VgV
∣∣∣∣ .
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By lemma 4.4.10 and since (xV : t) and m are finitely generated the following

equalities hold: ∣∣∣∣ [bm : (xV : t)]

[bhm : (xV : t)]

∣∣∣∣ =

∣∣∣∣ bmbhm
∣∣∣∣ =

∣∣∣∣ VhV
∣∣∣∣

By lemma 4.4.10 and since (xV : t) and m are finitely generated the following

equalities hold:∣∣∣∣ [tm : ag]

[bhm : (xV : t)]

∣∣∣∣ =

∣∣∣∣tm(xV : t)

abghm

∣∣∣∣ =

∣∣∣∣ xm

abghm

∣∣∣∣ =

∣∣∣∣ xV

abghV

∣∣∣∣
By lemma 4.4.10 and since (xV : t) and m are finitely generated the following

equalities hold: ∣∣∣∣ [bm : (xV : t)]

[tm : a]

∣∣∣∣ =

∣∣∣∣ abm

tm(xV : t)

∣∣∣∣ =

∣∣∣∣abmxm
∣∣∣∣ =

∣∣∣∣abVxV
∣∣∣∣

Lemma 4.5.22. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an element x ∈ V of the form x ∈ rV where r ∈ V such that for all

x ∈ V , x satisfies ∆ if and only if x ∈ m and∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ ≥ qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.

Proof. Note that if α /∈ γm, δ /∈ βm, γ = 0 or β = 0 then for all V -modules M ,∣∣∣ φ(M)
ψ(M)

∣∣∣ = 1. We can effectively check whether α /∈ γm, δ /∈ βm, γ = 0 or β = 0. In

this situation, let ∆ = FALSE.

Otherwise, let a = γ, b = β, g = α/γ and h = δ/β. Note that we can effectively

calculate the values of a, b, g and h.

Then by lemma 4.5.21, if x ∈ m the following are equivalent:

(i)
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv.

(ii) (m, xV ) ∈ Wa,b,g,h and min
{∣∣∣ VgV ∣∣∣ ,

∣∣ V
hV

∣∣ ,
∣∣∣ xV
abghV

∣∣∣ ,
∣∣abV
xV

∣∣} ≥ qv.
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Therefore
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv implies
∣∣∣ VgV ∣∣∣ ≥ qv and

∣∣ V
hV

∣∣ ≥ qv. By lemma 4.5.6,∣∣∣ VgV ∣∣∣ ≥ qv if and only if g ∈ kvV and
∣∣ V
hV

∣∣ ≥ qv if and only if h ∈ kvV . We can

effective check whether g ∈ kvV . If g /∈ kvV let ∆ = FALSE. We can effective check

whether h ∈ kvV . If h /∈ kvV let ∆ = FALSE.

We may now assume g ∈ kvV and h ∈ kvV . Let r = g/kv and note that we can

effectively calculate r.

Claim: x /∈ abrhkV and x ∈ abkvV if and only if x ∈ m and
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv.

⇒ Suppose x /∈ abrhkV and x ∈ abkvV . Since v > 0, x ∈ abkvV implies x ∈ m.

Since x /∈ abrhkV , xm ⊇ abrhkV . Hence abgh = abrhkv ∈ xm. Since x ∈ abkvV ,

x ∈ abm. Hence ab /∈ xV . Therefore (m, xV ) ∈ Wa,b,g,h.

By lemma 4.5.6, x ∈ abkvV implies
∣∣abV
xV

∣∣ ≥ qv. Recall that x /∈ abrhV implies

xkV = xm ⊇ abrhkV . Therefore xkvV ⊇ abrhkv = abghV . Hence by lemma 4.5.6∣∣∣ xV
abghV

∣∣∣ ≥ qv. Therefore
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv.

⇐ Suppose
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv. Then (m, xV ) ∈ Wa,b,g,h and

min

{∣∣∣∣ VgV
∣∣∣∣ ,

∣∣∣∣ VhV
∣∣∣∣ ,

∣∣∣∣ xV

abghV

∣∣∣∣ ,

∣∣∣∣abVxV
∣∣∣∣} ≥ qv.

Therefore
∣∣∣ xV
abghV

∣∣∣ ≥ qv and
∣∣abV
xV

∣∣ ≥ qv. So xkvV ⊇ abghV and abkvV ⊇ xV . Since

xkvV ⊇ abrkvhV , xm ⊇ abrkV . Hence x /∈ abrhkV . Since abkv ⊇ xV , x ∈ abkvV .

Therefore let ∆ = (x /∈ abrhkV ) ∧ (x ∈ abkvV ).

Corollary 4.5.23. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and α, β, γ, δ ∈ V , produces ∆, a boolean combination of

conditions on an element x ∈ V of the form x ∈ rV where r ∈ V such that for all

x ∈ V , x satisfies ∆ if and only if x ∈ m and∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ = qv

where φ is xα = 0 ∧ β|x and ψ is xγ = 0 + δ|x.
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Lemma 4.5.24. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆, a boolean combination

of conditions on an element x ∈ V of the form x ∈ rV where r ∈ V such that for all

x ∈ V , x satisfies ∆ if and only if x ∈ m and∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ = qv.

Proof. As in 4.5.13, replacing 4.5.11 by 4.5.23 and 4.5.12 by 4.5.22.

Corollary 4.5.25. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. There exists an algorithm

which, given v ∈ N\{0} and φ, ψ pp-1-formulae, produces ∆, a boolean combination

of conditions on an element x ∈ V of the form x ∈ rV where r ∈ V such that for all

x ∈ V , x satisfies ∆ if and only if x ∈ m and∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ ≥ qv.

Lemma 4.5.26. Let V be an effectively given valuation domain with non-dense value

group and finite residue field consisting of q elements. There exists an algorithm

which, given φ, ψ pp-1-formulae, produces ∆, a boolean combination of conditions on

an element x ∈ V of the form x ∈ rV where r ∈ V such that for all x ∈ V , x satisfies

∆ if and only if x ∈ m and ∣∣∣∣φ(N(m, xV ))

ψ(N(m, xV ))

∣∣∣∣ = 1.

Proof. Note that for all x ∈ m,
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ = 1 if and only if N(m, xV ) /∈
(
φ
ψ

)
. By

corollary 4.2.3, there is an algorithm which, given φ, ψ pp-1-formulae, either returns ∅

exactly when
(
φ
ψ

)
is empty or produces n ∈ N and for each 0 < i ≤ n, ai, bi ∈ V \{0}

and gi, hi ∈ m such that
(
φ
ψ

)
=
⋃n
i=1

(
xaigi=0∧bi|x
xai=0+bihi|x

)
.

If
(
φ
ψ

)
is empty then for all indecomposable pure-injective modules N ,

∣∣∣ φ(N)
ψ(N)

∣∣∣ = 1.

So let ∆ = TRUE.

Otherwise, N(m, xV ) /∈
(
φ
ψ

)
if and only if for all 0 < i ≤ n, (m, xV ) /∈ Wai,bi,gi,hi .

Since m2 6= m and gi, hi ∈ m, (m, xV ) /∈ Wai,bi,gi,hi if and only if aibi ∈ xV or
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aibigihi /∈ xm. Note aibi ∈ xV if and only if x /∈ aibikV and aibigihi /∈ xm if and only

if x ∈ aibigihiV . Finally x ∈ m if and only if x ∈ kV . Therefore, let

∆ = (x ∈ kV ) ∧
n∧
i=1

(x /∈ aibikV ) ∨ (x ∈ aibigihiV ).

Proposition 4.5.27. Let V be an effectively given valuation domain with an algo-

rithm which, given a, b ∈ V , answers whether a ∈ rad(bV ). There exists an algorithm

which, given a boolean combination of conditions s ∈ J and t ∈ J# for some s, t ∈ V ,

answers whether there is an ideal J C V satisfying these conditions.

Proof. In order to show that we can effectively decide whether there exists an ideal

J C V satisfying a boolean combination of conditions of the form t ∈ J or t ∈ J# it

is enough to show that we can effectively decide whether there exists an ideal J C V

satisfying a condition of the following form:

(∗)

(
k∧
g=1

rg ∈ J

)
∧

(
l∧

h=1

sh /∈ J

)
∧

(
m∧
i=1

ti ∈ J#

)
∧

(
n∧
j=1

uj /∈ J#

)
.

where k, l,m, n ∈ N and rg, sh, ti, uj ∈ V for 0 < g ≤ k, 0 < h ≤ l, 0 < i ≤ m and

0 < j ≤ n.

Since V is a valuation domain there exists 0 < g ≤ k such that rg generates the

ideal r1V + ... + rkV , let r = rg. There exists 0 < i ≤ m such that ti generates

the ideal t1V + ... + tmV , let t = ti. There exists 0 < h ≤ l such that sh generates

∩lh=1shV , s = sh. There exists 0 < j ≤ n such that uj generates ∩nj=1ujV , let u = uj.

It is clear that such r, s, t and u can be found effectively.

Note that J C V satisfies (∗) if and only if r ∈ J , s /∈ J , t ∈ J# and u /∈ J#.

Claim: For any r, s, t, u ∈ V , there exists J C V such that r ∈ J , s /∈ J , t ∈ J# and

u /∈ J# if and only if s divides r, u /∈ rad(tV ) and u /∈ rad(r/sV ).

Suppose J C V and r ∈ J , s /∈ J , t ∈ J# and u /∈ J#. Since J# is prime and

t ∈ J#, rad(tV ) ⊆ J#. Therefore u /∈ rad(tV ). Clearly s divides r. Let γ = r/s.

Then s /∈ J and γs ∈ J so γ ∈ J#. Therefore rad(γV ) ⊆ J# so u /∈ rad(γV ).
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Suppose s divides r, u /∈ rad(tV ) and u /∈ rad(r/sV ). Let γ = r/s and J =

s(rad(tV )∪ rad(γV )). Then J# = rad(tV )∪ rad(γV ) so t ∈ J# and u /∈ J#. Clearly

s /∈ J and γ ∈ rad(γV ) so r = sγ ∈ J .

Lemma 4.5.28. Let V be an effectively given valuation domain. There exists an

algorithm which, given ∆ a boolean combination of conditions on an element x ∈ V

of the form x ∈ rV where r ∈ V , answers whether there exists x ∈ V satisfying ∆.

Proof. In order to show that we can effectively decide whether there exists x ∈ V

satisfying a boolean combination of conditions of the form x ∈ rV where r ∈ V it is

enough to show that we can effectively decide whether there exists x ∈ V satisfying

a condition of the form:

∆ =
n∧
i=1

(x ∈ riV ) ∧
m∧
j=1

(x /∈ sjV )

where n,m ∈ N and ri, sj ∈ V for 0 < i ≤ n and 0 < j ≤ m. Since V is a valuation

domain there exists 0 < i ≤ n such that riV = ∩ni=1riV , let r = ri and note that

we can effectively find such an i. Again, since V is a valuation domain there exists

0 < j ≤ m such that sjV = ∪mj=1sjV , let s = sj and note we that we can effectively

find such a j.

There exists x satisfying ∆ if and only if there exists x ∈ V such that x ∈ rV

and x /∈ sV if and only if sV ( rV if and only if s ∈ rm. Given any r, s ∈ V we can

effectively answer whether s ∈ rm.

Theorem 4.5.29. Let V be an effectively given valuation domain with non-dense

value group and finite residue field consisting of q elements. The following are equiv-

alent:

(i) The theory of V -modules, TV , is decidable.

(ii) There exists an algorithm which, given a, b ∈ V , answers whether a ∈ rad(bV ).

Proof. As in theorem 4.3.3 it is enough to show that there is an algorithm which

given a conjunction of invariant sentences and negations of invariants sentences χ,
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answers whether there exists a module M satisfying χ. Suppose χ is a conjunction

of the following sentences:

∣∣∣∣φ1
i

ψ1
i

∣∣∣∣ = qvi (1)∣∣∣∣φ2
j

ψ2
j

∣∣∣∣ ≥ qwj (2)∣∣∣∣φ3
k

ψ3
k

∣∣∣∣ = 1 (3)

where l,m, n ∈ N and for all 0 < i ≤ l, 0 < j ≤ m, 0 < k ≤ n, φ1
i , ψ

1
i , φ

2
j , ψ

2
j , φ

3
k, ψ

3
k

are pp-1-formulae and vi, wj ∈ N.

It is enough to consider sentences of this form as any finite V -module is either the

zero module or has qv elements for some strictly positive v ∈ N, by corollary 4.5.4.

As in the proof of theorem 4.4.21, if τ is a conjunction of invariants sentences like

those in (1), (2) and (3) then we call
∑l

i=1 vi the exponent of the statement.

We proceed by induction on
∑l

i=1 vi, the exponent of the conjunction of invariants

sentences in (1).

First consider the situation when
∑l

i=1 vi = 0 that is (1) is empty. Exactly as in

theorem 4.4.21 there exists a module M satisfying χ if and only if for all 0 < j ≤ m(
φ2
j

ψ2
j

)
*

n⋃
k=1

(
φ3
k

ψ3
k

)
.

Theorem 4.2.15 asserts that there exists an algorithm to check this, so we are done.

Now suppose L =
∑l

i=1 vi > 0, so (1) is not empty and that for any conjunction

Θ of invariants sentences and negations of invariants sentences with exponent strictly

smaller that L, there is an algorithm which answers whether there exists a module

M satisfying Θ.

Suppose there exists M satisfying χ. By lemma 4.4.20 we may assume M =⊕
µ∈MNµ where M is a finite indexing set and each Nµ is an indecomposable pure-

injective module. Hence there exists µ ∈M such that

q ≤
∣∣∣∣φ1

1(Nµ)

ψ1
1(Nµ)

∣∣∣∣ ≤ qv1
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and for all µ ∈M, for all 0 < i ≤ l and for all 0 < k ≤ n∣∣∣∣φ1
i (Nµ)

ψ1
i (Nµ)

∣∣∣∣ ≤ qvi and

∣∣∣∣φ3
k(Nµ)

ψ3
k(Nµ)

∣∣∣∣ = 1.

Let U be the set of functions u : {1, ..., l +m} → N ∪ {∞}. Let U∗ be the subset

of U consisting of functions u ∈ U such that 1 ≤ u(1) ≤ v1, for all 0 < i ≤ l,

0 ≤ u(i) ≤ vi and for all 0 < j ≤ m, either 0 ≤ u(l + j) < wj or u(l + j) =∞. Note

that U∗ is a finite set.

We now show that for each u ∈ U∗ we can effectively answer whether there exists

an indecomposable pure-injective V -module satisfying the following sentences:

(i)
∣∣∣ φ1iψ1

i

∣∣∣ = qu(i).

(ii) If u(j + l) 6=∞,
∣∣∣ φ2jψ2

j

∣∣∣ = qu(j+l). Otherwise
∣∣∣ φ2jψ2

j

∣∣∣ ≥ qwj .

(iii)
∣∣∣φ3kψ3

k

∣∣∣ = 1.

Since 1 ≤ u(1), by lemma 4.5.7 if I, J C V such that N(I, J) satisfies (i), (ii) and

(iii) then either I# = m or J# = m. So, if N(I, J) satisfies (i), (ii) and (iii), then we

may assume either I = m and J = xV for some x ∈ m, I = m and J# ( m or J = m

and I# ( m.

Therefore it is enough to show how to answer the following 3 questions effectively:

Question 1: Does there exist x ∈ m such that N(m, xV ) satisfies (i),(ii) and (iii)?

By lemma 4.5.24, given any sentence
∣∣∣ φψ ∣∣∣ = qv where φ, ψ are pp-1-formulae and

v ∈ N\{0} we can effectively produce Ω a boolean combination of conditions on an

element x ∈ V of the form x ∈ rV where r ∈ V such that x satisfies Ω if and only

if x ∈ m and
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ = qv. By corollary 4.5.25, given any sentence
∣∣∣ φψ ∣∣∣ ≥ qv

where φ, ψ are pp-1-formulae and v ∈ N\{0} we can effectively produce Ω a boolean

combination of conditions on an element x ∈ V of the form x ∈ rV where r ∈ V such

that x satisfies Ω if and only if x ∈ m and
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ ≥ qv. By lemma 4.5.26, given

any sentence
∣∣∣ φψ ∣∣∣ = 1 where φ, ψ are pp-1-formulae we can effectively produce Ω a

boolean combination of conditions on an element x ∈ V of the form x ∈ rV where

r ∈ V such that x satisfies Ω if and only if x ∈ m and
∣∣∣ φ(N(m,xV ))
ψ(N(m,xV ))

∣∣∣ = 1.
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Hence we can effectively produce a boolean combination of conditions Θ on an

element x ∈ V such that x satisfies Θ if and only if x ∈ m and N(m, xV ) satisfies (i),

(ii) and (iii).

By lemma 4.5.28, we can effectively decide whether there exists x ∈ V satisfying

Θ.

Question 2: Does there exist J C V such that J# ( m and N(m, J) satisfies (i), (ii)

and (iii)?

By lemma 4.5.13, given any sentence
∣∣∣ φψ ∣∣∣ = qv where φ, ψ are pp-1-formulae and

v ∈ N\{0} we can effectively produce Ω a boolean combination of conditions on an

ideal JCV of the form r ∈ J and s ∈ J# where r, s ∈ V such that J satisfies Ω if and

only if J# ( m and
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = qv. By corollary 4.5.14, given any sentence
∣∣∣ φψ ∣∣∣ ≥ qv

where φ, ψ are pp-1-formulae and v ∈ N\{0} we can effectively produce Ω a boolean

combination of conditions on an ideal J C V of the form r ∈ J and s ∈ J# where

r, s ∈ V such that J satisfies Ω if and only if J# ( m and
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ ≥ qv. By lemma

4.5.15, given any sentence
∣∣∣ φψ ∣∣∣ = 1 where φ, ψ are pp-1-formulae we can effectively

produce Ω a boolean combination of conditions on an ideal of the form r ∈ J , s ∈ J#

where r, s ∈ V such that J satisfies Ω if and only if J ( m and
∣∣∣ φ(N(m,J))
ψ(N(m,J))

∣∣∣ = 1. Hence

we can effectively produce Θ a boolean combination of conditions on an ideal J C V

such that J satisfies Θ if and only if J ( m and N(m, J) satisfies (i), (ii) and (iii).

By lemma 4.5.27, we can effectively decide whether there exists J C V satisfying

Θ.

Question 3: Does there exist I C V such that I# ( m and N(I,m) satisfies (i), (ii)

and (iii)? Same as question 2 replacing lemma 4.5.13 by 4.5.18, corollary 4.5.14 by

corollary 4.5.19 and lemma 4.5.15 by lemma 4.5.20.

Let U∗∗ be the set of u ∈ U∗ such that an indecomposable pure-injective N exists

satisfying (i),(ii) and (iii). If U∗∗ is empty there does not exist a module M satisfying

(1), (2) and (3).

For each u ∈ U∗∗ we effectively produce a new list of sentences (1)u, (2)u and (3)u.

For each u start with (1)u and (2)u empty, and (3)u containing all sentences in (3).
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For each 0 < i ≤ l, if u(i) < vi, add the sentence
∣∣∣ φ1iψ1

i

∣∣∣ = qvi−u(i) to (1)u. If

u(i) = vi, add the sentence
∣∣∣ φ1iψ1

i

∣∣∣ = 1 to (3)u. For each 0 < j ≤ m, if u(l + j) < wj,

add the sentence
∣∣∣ φ2jψ2

j

∣∣∣ ≥ qwj−u(l+j) to (2)u.

For each u ∈ U∗∗ there exists a module M satisfying (1), (2) and (3) if and only

if there exists a module M ′ satisfying (1)u, (2)u and (3)u.

Now there exists a module M satisfying (1), (2) and (3) if and only if there exists

a module M ′ satisfying (1)u, (2)u and (3)u for some u ∈ U∗∗.

Note that for each u ∈ U∗∗ the exponent of the conjunction of conditions in (1)u

is strictly smaller than L =
∑l

i=1 vi. Hence by the induction hypothesis, for each

u ∈ U∗∗ there is an algorithm which answers whether there exists a module satisfying

(1)u, (2)u and (3)u.

The other direction is by proposition 4.1.3.
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Chapter 5

The Ziegler spectrum restricted to

injectives and other topologies on

indecomposable injectives.

Theorem 5.0.1. [PR10, Corollary 7.4] For any ring R the Ziegler topology restricted

to the set of indecomposable injectives has a basis of open sets of the form:(
R

I

)
= {E ∈ injR | (R/I,E) 6= 0}

where I ranges over right ideals of the form η(RR) where η is a pp-1-formula on left

R-modules.

We call a (right) ideal I pp-definable if there is a pp-1-formula φ in the language

of left R-modules such that I = φ(RR). Note that the solution set in RR of a pp-1-

formula in the language of left R-modules will always be a right ideal of R.

We say a ring R is right coherent if every finitely generated right ideal is finitely

presented, equivalently every element of R has finitely generated right annihilator

and the intersection of two finitely generated right ideals is finitely generated. See

[Pre09, §2.3.3].

Proposition 5.0.2. [Rot83, Proposition 7][Zim77, 1.3a] The following are equivalent

for an arbitrary ring R:
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1. R is right coherent.

2. For every pp-1-formula φ, the right ideal φ(RR) is finitely generated.

Note that, for an arbitrary ring R, any finitely generated right ideal is pp-definable in

RR, that is, every finitely generated ideal is equal to φ(RR) for some pp-1-formula φ.

Lemma 5.0.3. Let R be a commutative ring. The map Γ : ZgR|inj → Spec∗R taking

indecomposable injectives to their attached prime is continuous.

Proof. By proposition 2.3.25 the map Γ : ZgR → Spec∗R is continuous. Therefore its

restriction to the subspace of injectives is continuous.

Combining these results we get:

Proposition 5.0.4. [GP08a, Lemma 2.1] Let R be a commutative coherent ring.

Then, after identifying topologically indistinguishable points, ZgR|inj is homeomorphic

to Spec∗R.

Proof. Let Γ : ZgR|inj → Spec∗R : E 7→ AttE.

Claim: For all finitely generated ideals I, E ∈
(
R
I

)
if and only if AttE ∈ V(I).

Suppose E ∈
(
R
I

)
. Then there exists a non-zero map f : R/I → E. Therefore

there exists w ∈ E\{0} such that imf ∼= wR. Hence annRw ⊇ I. So AttE ⊇ I.

So AttE ∈ V(I). Suppose I = 〈r1, ..., rn〉 and AttE ∈ V(I). Then I ⊆ AttE.

So there exists w1, ..., wn ∈ E\{0} such that ri ∈ annRwi for each 0 < i ≤ n. Take

x ∈ ∩ni=1wiR\{0}, such an x exists since E is uniform. Then xri = 0 for all 0 < i ≤ n.

So I ⊆ annRx. Hence, there is a non-zero map R/I � R/annRx ∼= xR. Therefore

HomR(R/I,E) 6= 0. So E ∈
(
R
I

)
.

This means that two indecomposable injectives with the same attached prime are

topologically indistinguishable, so all points in a single fibre of Γ are topologically

indistinguishable. For any prime ideal p, E(R/p) is an indecomposable injective with

AttE(R/p) = p. So Γ is surjective.

Since the sets V(I) where I is a finitely generated ideal are a basis of open sets

for Spec∗R, the claim implies Γ is a homeomorphism.
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Note that a valuation ring is non-coherent if and only if there exists s ∈ R such

that the ideal annRs is not finitely generated.

When R is a non-coherent commutative ring the above proposition does not nec-

essarily hold. We give an example (Example 5.1.6) where it does not hold for a

valuation ring. In the rest of this section we investigate whether ZgR|inj is sober

when R is a valuation ring, a Prüfer ring or the fibre product of two copies of the

same valuation ring over the residue field. We also investigate how similar ZgR|inj is

to Spec∗R for these rings.

In order to show ZgR|inj is sober when R is a valuation ring we consider a finer

topology on injR, the ideals topology, denoted idealsR and defined below. We show

that for a valuation ring this topology is sober and show that for valuation rings this

implies ZgR|inj is sober.

Definition 5.0.5. Let R be a commutative ring. We define a topology on injR,

denoted idealsR, by declaring the set

O(I) = {E ∈ injR | HomR(R/I,E) 6= 0}

open for each I CR.

Working with this topology means we don’t have to worry about which ideals are

pp-definable. It will also be useful later. Note that, by theorem 5.0.1, the basic open

sets in ZgR|inj are exactly the open sets O(I) where I is pp-definable. So idealsR is

a refinement of ZgR|inj.

Lemma 5.0.6. Let R be a commutative ring. The map s : idealsR → Spec∗R taking

indecomposable injectives to their attached prime is continuous.

Proof. The idealsR topology is a refinement of ZgR|inj. In lemma 5.0.3, we show that

as a map from ZgR|inj to Spec∗R, s is continuous. Hence the map remains continuous

when the idealsR topology is put on injR.

Remark 5.0.7. Suppose E is an indecomposable injective R-module. Then E ∈ O(I)

if and only if there exists a non-zero w ∈ E with annRw ⊇ I.
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Lemma 5.0.8. Suppose R is a commutative ring and let I, J CR. Then

1. I ⊇ J implies O(I) ⊆ O(J).

2. O(I) ∩O(J) = O(I + J). Therefore the open sets O(I) are a basis for ideals.

3. O(I) ∪ O(J) = O(I ∩ J).

Proof. (1) Suppose I ⊇ J and E ∈ O(I). Then there exists w ∈ E\{0} such that

annRw ⊇ I. Hence annRw ⊇ J . So E ∈ O(J).

(2) Suppose E ∈ O(I + J). Then there exists w ∈ E\{0} such that annRw ⊇

I + J . Therefore annRw ⊇ I and annRw ⊇ J . So E ∈ O(I) ∩ O(J). Suppose

E ∈ O(I) ∩ O(J). Then there exists w1, w2 ∈ E\{0} such that annRw1 ⊇ I and

annRw2 ⊇ J . Since E is uniform, recall that a module is uniform if the intersection

of any pair of non-zero submodules is non-zero (definition 2.1.5), w1R∩w2R 6= 0. Take

non-zero t ∈ w1R ∩ w2R. Then annRt ⊇ annRw1 and annRt ⊇ annRw2. Therefore

annRt ⊇ I + J .

(3) Suppose E ∈ O(I ∩J). The map R/I ∩J ↪→ R/I
⊕

R/J which takes 1+I ∩J to

(1+I, 1+J) is an embedding. Therefore, if there exists a non-zero map f : R/I∩J →

E then there exists a non-zero map g : R/I
⊕

R/J → E since E is injective. Hence

there either exists a non-zero map g1 : R/I → E or there exists a non-zero map

g2 : R/J → E. Therefore either E ∈ O(I) or E ∈ O(J). So O(I ∩J) ⊆ O(I)∪O(J).

By (1), O(I ∩ J) ⊇ O(I) ∪ O(J).

Lemma 5.0.9. Let R be a valuation ring. The sets

W(I) = {E ∈ injR | I ) annRw for all w ∈ E\{0}}

as I ranges over ideals (pp-definable ideals) are a basis of closed sets for idealsR

(resp. ZgR|inj).

Proof. Suppose I C R. Then E ∈ O(I) if and only if there exists w ∈ E\{0} such

that annRw ⊇ I. Therefore E /∈ O(I) if and only if for all w ∈ E\{0}, I ) annRw

if and only if E ∈ W(I). So, since the sets O(I) are an open basis for idealsR, the

sets W(I) are a closed basis for idealsR.
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The open sets O(I) where I ranges over pp-definable ideals are an open basis

for ZgR|inj. Therefore the sets W(I), the complements of O(I), where I ranges over

pp-definable ideals, are a closed basis for ZgR|inj.

Corollary 5.0.10. Let R be a valuation ring. The closed sets in idealsR (ZgR|inj)

are totally ordered. In particular all closed sets in either topology are irreducible.

Note that this means any set X irreducible closed in ZgR|inj is closed in idealsR

and hence irreducible. Therefore, if idealsR is sober then X has a generic point x in

idealsR. So X = clidealsRx ⊆ clZgR|injx. Since x ∈ X, X = clZgR|injx. Therefore, for

valuation rings R, if idealsR is sober then ZgR|inj is sober.

Lemma 5.0.11. Let R be a valuation ring, ICR and E an indecomposable injective

module. Then

1. AttE ( I implies E ∈W(I).

2. E ∈W(I) implies AttE ⊆ I.

Proof. (1) Suppose AttE ( I. For all w ∈ E\{0}, annRw ⊆ AttE. So, for all

w ∈ E\{0}, annRw ( I. Therefore E ∈W(I).

(2) Suppose E ∈W(I). Then annRw ( I for all w ∈ E\{0}. Hence AttE ⊆ I.

We now show that basic closed sets in idealsR have generic points.

Lemma 5.0.12. Let R be a valuation ring. If I C R is not prime then W(I) has a

generic point. In fact there exists pCR prime such that E(R/p) is generic in W(I).

Proof. Let p be the union of all prime ideals contained in I. Then p is prime, so

p ( I. Hence E(R/p) ∈W(I).

Suppose E ∈W(I). Then by lemma 5.0.11, AttE ⊆ I. Therefore AttE ⊆ p. So if

E(R/p) ∈ W(K) then p ( K. So AttE ( K. Hence E ∈ W(K). Therefore E(R/p)

specialises to E. Since E was an arbitrary member of W(I), E(R/p) is generic in

W(I).
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Lemma 5.0.13. Let R be a valuation ring. Suppose p C R is a prime which is not

the union of prime ideals strictly contained in it. Then W(p) has a generic point.

Proof. Let q be the union of all prime ideals strictly contained in p. Note that q is a

prime ideal. Since AttE(R/q) = q ( p, by lemma 5.0.11, E(R/q) ∈W(p).

Suppose E ∈W(p) such that E(R/q) does not specialise to E. We will now show

that if such an E exists then E is generic in W(p). Since E(R/q) does not specialise to

E there exists KCR such that E(R/q) ∈W(K) and E /∈W(K). Hence q ( K, since

there exists w ∈ E(R/q) with annRw = q. Since E /∈W(K), there exists w ∈ E\{0}

such that K ⊆ annRw. Therefore AttE ) q, by lemma 5.0.11 and E ∈ W(p), so

p ⊇ AttE. Hence AttE = p. Suppose E ′ ∈ W(p) and E ∈ W(J) for some J C R.

Then p = AttE ⊆ J . Since E ′ ∈W(p), AttE ′ ⊆ p. So either J = p so E ′ ∈W(p) or

p ( J . If p ( J then AttE ′ ( J . Hence E ′ ∈W(J). Therefore E is generic in W(p)

The remaining basic open sets to consider are those of the form W(p) where p is

a prime ideal which is the union of all prime ideals strictly contained in it. In order

to find a generic point for such a closed set we need to find an (irreducible) ideal I

which has attached prime p and is such that for all r /∈ I, (I : r) ( p. Below, we

define an ideal which will be shown to have these properties. It is the pre-image of a

finitely generated ideal in Vp.

Definition 5.0.14. Let R be a valuation ring. Suppose pCR is a prime ideal which

is not the nil radical, N(R), and a ∈ p which is not nilpotent. Let

Ipa = {r ∈ R | rs ∈ aR for some s /∈ p} .

Lemma 5.0.15. Let R be a valuation ring. Suppose pCR is a prime ideal which is

not the nil radical, N(R), and a ∈ p which is not nilpotent. Then

1. Ipa is an ideal.

2. (Ipa)
# = p.

3. If p = p2 and λ /∈ Ipa then (Ipa : λ) ( p.
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Proof. (1) Recalling 2.4.2, in order to show that Ipa is an ideal, we only need to show

that for any r ∈ R and i ∈ I, ir ∈ I. Suppose v ∈ Ipa and r ∈ R. Suppose, for

a contradiction, that vr /∈ Ipa. Then a = vrt for some t ∈ p. Since v ∈ Ipa, there

exists s /∈ p and µ ∈ R such that vs = aµ. Hence vs − vrtµ = 0, so v(s − rtµ) = 0.

Therefore, either v ∈ N(R) or s− rtµ ∈ N(R). If v ∈ N(R) then vr ∈ N(R). Hence

vr ∈ aR ⊆ Ipa. If s− rtµ ∈ N(R) then s− rtµ ∈ p. Hence s ∈ p since t ∈ p. Either

way, this contradicts our assumptions. Therefore Ipa is an ideal.

(2) Suppose γ ∈ (Ipa)
#. Then there exists v /∈ Ipa such that vγ ∈ Ipa. There exists

λ ∈ p such that a = vλ since v /∈ Ipa. Since vγ ∈ Ipa there exists s /∈ p and t ∈ R such

that γvs = at. Therefore γvs = vλt, so v(γs− λt) = 0. Hence γs− λt ∈ N(R) since

v /∈ aR ⊇ N(R). Therefore γs− λt ∈ p. Hence γs ∈ p since λ ∈ p. Therefore γ ∈ p

since s /∈ p. So (Ipa)
# ⊆ p.

Now suppose γ ∈ p. Either γ ∈ Ipa, so γ ∈ (Ipa)
# or there exists t ∈ p such

that γt = a. In the case of the second disjunct, suppose, for a contradiction, that

t ∈ Ipa. Then there exists s /∈ p and µ ∈ R such that ts = aµ so ts = γtµ. Therefore

t(s − γµ) = 0. Note that t /∈ N(R) since a /∈ N(R) (recalling γt = a). Hence

s − γµ ∈ N(R). Therefore s − γµ ∈ p. So, since s /∈ p, γµ /∈ p. Therefore γ /∈ p. A

contradiction. Hence t /∈ Ipa. So γ ∈ (Ipa)
#.

(3) Suppose λ /∈ Ipa. Then there exists s ∈ p such that λs = a. Since p = p2 there

exists s1, s2 ∈ p such that s1s2 = s. Note that a /∈ N(R) so s /∈ N(R) and λ /∈ N(R).

Therefore s1, s2 /∈ N(R). Suppose, for a contradiction, that s1 ∈ (Ipa : λ). Then

s1λ ∈ Ipa, so there exists v /∈ p such that s1λv ∈ aR. So there exists r ∈ R such

that s1λv = ar but then s1λv = λs1s2r. So s1λ(v − s2r) = 0. Since s1, λ /∈ N(R),

v−s2r ∈ N(R). Hence v−s2r ∈ p, so v ∈ p. A contradiction. Therefore s1 /∈ (Ipa : λ)

and s1 ∈ p, so (Ipa : λ) ( p.

Recall that lemma 2.1.15 states that if R is a commutative ring and I is an

irreducible ideal of R then Att(E(R/I)) = I#. Hence, by lemma 5.0.15, if a is a

non-nilpotent member of p then p = Att(E(R/Ipa)).

Lemma 5.0.16. Let R be a valuation ring and p a prime ideal which is the union of
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all prime ideals strictly contained in it. Then W(p) has a generic point.

Proof. First note that if p is the union of all prime ideals strictly contained in it then

p2 = p. Take a ∈ p\N(R). We will first show that E(R/Ipa) ∈ W(p) and then show

that it is a generic point of W(p).

By 2.1.9, we know that for all w ∈ E(R/Ipa)\{0}, there exists t /∈ Ipa and s /∈ annRw

such that (annRw : s) = (Ipa : t). Therefore, by 5.0.15 (3), annRw ⊆ (annRw : s) =

(Ipa : t) ( p. Hence E(R/Ipa) ∈W(p).

We now show that E(R/Ipa) is generic in W(p). Suppose E ′ ∈ W(p) and K C R

such that E(R/Ipa) ∈W(K). Then p = AttE(R/Ipa) ⊆ K by lemma 5.0.11. If K = p

then E ′ ∈ W(K) by assumption. Otherwise E ′ ∈ W(p) implies AttE ′ ⊆ p. So if

p ( K then AttE ′ ( K. So, by 5.0.11, E ′ ∈W(K). Therefore E(R/Ipa) is generic in

W(p).

It remains to consider non-basic closed sets.

Lemma 5.0.17. Let R be a valuation ring. Suppose Ii C R is a collection of ideals

indexed by I. Suppose W = ∩i∈IW(Ii) and for all J C R, W(J) 6= W . Then W has

a generic point. In fact it has a generic point of the form E(R/p) for some prime

ideal p.

Proof. Let q be the union of all primes p such that E(R/p) ∈ W . Hence q ⊆ Ii for

all i ∈ I. But this means q ( Ii for all i ∈ I since if q = Ij then W (Ij) = ∩i∈IW(Ii).

Therefore E(R/q) ∈ W and q is the largest prime strictly contained in Ii for all i ∈ I.

Suppose E ′ ∈ W . Then AttE ′ ⊆ Ii for all i ∈ I. Hence AttE ′ ( Ii for all

i ∈ I since if Ii = AttE ′ then W(Ii) ⊆ ∩i∈IW(Ii), so W(Ii) = ∩i∈IW(Ii). Therefore

AttE ′ ⊆ q.

Suppose K C R such that E(R/q) ∈ W(K). Then q ( K. So, if E ′ ∈ W then

E ′ ∈W(K) since AttE ′ ⊆ q and q ( K.

Theorem 5.0.18. Let R be a valuation ring. Then idealsR and ZgR|inj are sober.

Proof. We have shown that every closed set in idealsR has a generic point. So

idealsR is sober.
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Suppose X is a closed subset of ZgR|inj. Then X is closed in idealsR. Hence

X has an idealsR generic point x. Since X = clidealsRx ⊆ clZgR|injx and x ∈ X,

X = clZgR|injx. Therefore ZgR|inj is sober.

5.1 Examples and possible behaviour

In this section we give an example of a valuation ring R with ZgR|inj/ ≈ not homeo-

morphic to Spec∗R. We also show that when R is a valuation ring, ZgR|inj/ ≈ differs

from Spec∗R by at most one point. That is, up to topological indistinguishability the

fibres of the continuous map defined in 5.0.3 from ZgR|inj to Spec∗R are all singletons

except one.

In a valuation ring R the set of zero divisors union zero, ZD, is an ideal since if

x ∈ ZD and r ∈ R then xr ∈ ZD.

Lemma 5.1.1. If R is a valuation ring then all pp-definable ideals are either principal

or the annihilator of some s ∈ R.

Proof. Over valuation rings (as in the special case of valuation domains, see 3.2.2) all

pp-1-formulae are equivalent to a finite conjunction of formulae of the form s|xr for

some s, r ∈ R. The solution set of s|xr in R is (sR : r) (see [EH95]). The ideals of a

valuation ring are totally ordered, so all pp-definable ideals are of the form (sR : r)

for some s, r ∈ R. If r ∈ sR then (sR : r) = R. Therefore we may assume s = rt for

some t ∈ R.

Claim: (rtR : r) = tR + annRr.

Suppose µ ∈ (rtR : r). Then µr ∈ rtR. Hence there exists λ ∈ R such that

(µ− tλ)r = 0. Therefore µ ∈ tR+ annRr. So (rtR : r) ⊆ tR+ annRr. It is clear that

annRr ⊆ (rtR : r) and tR ⊆ (rtR : r). Therefore (rtR : r) = tR + annRr.

So, since the ideals in R are totally ordered, (rtR : r) = tR or (rtR : r) = annRr.

So all pp-definable ideals are either principal or the annihilator of some element in

R.

123



Lemma 5.1.2. Let R be a valuation ring and s ∈ R. If annRs is a prime ideal then

annRs = ZD.

Proof. Suppose s ∈ R and annRs is a prime ideal. Clearly annRs ⊆ ZD. Suppose

µ ∈ ZD. Then there exists t ∈ R\{0} such that µt = 0. If t|s then µ ∈ annRs.

Otherwise t = sr for some r ∈ R\annRs. Therefore µsr = 0 so µr ∈ annRs. Hence,

since annRs is prime, µ ∈ annRs.

Lemma 5.1.3. Let R be a valuation ring. Suppose r ∈ R and rR is a prime ideal.

Then W(rR) has a generic point E(R/p) for some prime ideal p.

Proof. Suppose p is the largest prime ideal not containing r. Then for all K C R,

E(R/p) ∈ W(K) implies p ( K. Suppose E ′ ∈ W(rR). Then for all w ∈ E ′\{0},

annRw ( rR. Therefore r /∈ AttE ′. Hence AttE ′ ⊆ p. So if E(R/p) ∈ W(K) for

some K C R then AttE ′ ⊆ p ( K. Hence E ′ ∈W(K). Therefore E(R/p) specialises

to E ′. Hence E(R/p) is a generic point of W(rR).

Remark 5.1.4. Let R be a valuation ring. Suppose E is an indecomposable injective

R-module with AttE = p but E not isomorphic to E(R/p). Then, for all w ∈ E\{0},

annRw ( AttE since if annRw = p then E ∼= E(R/p). Therefore E ∈ W(K) if

and only if p ⊆ K. Hence if E,F are indecomposable injective R-modules both with

attached prime p but neither is isomorphic to E(R/p) then E and F are topologically

indistinguishable in idealsR and therefore in ZgR|inj.

The following proposition shows that ZgR|inj is very similar to Spec∗R when R is

a valuation ring.

Proposition 5.1.5. Let R be a valuation ring. Suppose p and q are non-equal prime

ideals and E is an indecomposable injective R-module with attached prime p and

topologically distinguishable in ZgR|inj from E(R/p). Then if F is an indecomposable

injective R-module with attached prime q then F is topologically indistinguishable

from E(R/q).

Proof. By lemma 5.0.12, 5.0.17, 5.1.3, the only closed sets which may not have a

generic point isomorphic to E(R/p) for some prime ideal p are the basic open sets
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W(q) where q is prime. By 5.1.1, if K is a pp-definable ideal then K is either principal

or the annihilator of some element s ∈ R. Therefore, if W(K) has a generic point

not isomorphic to E(R/p) for some prime p then K = annRs for some s ∈ R and

K is prime. So, by lemma 5.1.2, annRs = ZD. Hence there is only one closed set in

ZgR|inj with no generic point isomorphic to E(R/p) for some prime p.

Note that the above proposition shows that at most one closed set can have a

generic point topologically distinguishable from an indecomposable injective of the

form E(R/p) where p is a prime ideal of R. Therefore, up to topological indistin-

guishability, there is only one point topologically distinguishable from a point of the

form E(R/p) where p is a prime ideal of R. So the fibres of the continuous map

defined in 5.0.3 from ZgR|inj to Spec∗R are all singletons except at most one.

We now give an example of a valuation ring for which ZgR|inj/ ≈ is not homeo-

morphic to Spec∗R. In order to do this we recall theorem 2.4.5 ([Kru32]) which is

incredibly useful for constructing examples.

Example 5.1.6. We want to find an example of a valuation ring R such that there

exists a prime ideal p and infinitely many indecomposable injectives Ei with AttEi = p

and each Ei is topologically distinguishable from E(R/p) in the Ziegler topology.

Let S be a valuation domain with value group Q, such a ring exists by 2.4.5. Let

C ⊆ (1, 2) ⊆ R be an uncountable set of irrational numbers such that if c, d ∈ C then

c− d /∈ Q (such a set exists since R/Q is uncountable).

Let J = {s ∈ S | v(s) > 2} and R = S/J . Then R is a valuation ring. Let s ∈ S

be such that v(s) = 2. Then s /∈ J . Suppose r is in the maximal ideal of S. Then

v(r) > 0. Hence v(rs) = v(r) + v(s) > 2, so rs ∈ J . Therefore (J : s) contains the

maximal ideal of S. So since s /∈ J , (J : s) is the maximal ideal of S. Therefore

annS/J(s+ J) is the maximal ideal in S/J and is pp-definable.

Let Ic = {r ∈ S | v(r) > c} for each c ∈ C. Note that for all c ∈ C, Ic ⊇ J since

c < 2. So S/Ic is an S/J-module. We will show that for any non-equal c, d ∈ C

the S/J-injective hulls of S/Ic and S/Id are not isomorphic. If the injective hulls of

S/Id and S/Ic were isomorphic then lemma 2.1.9 would imply that there exists µ /∈ Ic
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and λ /∈ Id such that (Ic/J : µ + J) = (Id/J : λ + J). Suppose, for a contradiction,

that there exists µ /∈ Ic and λ /∈ Id such that (Ic/J : µ + J) = (Id/J : λ + J). Since

µ /∈ Ic, c − v(µ) ≥ 0 and since λ /∈ Id, d − v(λ) ≥ 0. Note that c − v(µ) 6= d − v(λ)

since v(µ), v(λ) ∈ Q. We may assume c − v(µ) > d − v(λ). Take q ∈ Q such that

c− v(µ) > q > d− v(λ) and s ∈ S such that v(s) = q. Then c > v(s) + v(µ) = v(sµ),

so sµ /∈ Ic. Hence s /∈ (Ic : µ), so s+J /∈ (Ic/J : µ+J). As v(sλ) = v(s) +v(λ) > d,

sλ ∈ Id. Therefore s ∈ (Id : λ) so s + J ∈ (Id/J : λ + J). Contradicting (Ic/J :

µ + J) = (Id/J : λ + J). Therefore, for any non-equal c, d ∈ C, the S/J-injective

hulls of S/Ic and S/Id are not isomorphic.

For each c ∈ C, let Ec be the S/J-injective hull of S/Ic. It remains to show that

for each c ∈ C, Ec is topologically distinguishable from E, the R-injective hull of

R/m where m is the maximal ideal of R. We have shown that m is pp-definable. So

O(m) is an open set in ZgR|inj and E ∈ O(m). In order to show that for all c ∈ C,

Ec /∈ O(m), it is enough to show that for all w ∈ Ec\{0}, annS/Jw ( m. Equivalently,

for all λ /∈ Ic, (Ic/J : λ + J) ( m. Note that if λ /∈ Ic then c > v(λ) since c ≥ v(λ),

v(λ) ∈ Q and c /∈ Q. Take q ∈ Q such that c − v(λ) > q > 0 and r ∈ R such that

v(r) = q. Note that since q > 0, r is not a unit. Since v(rλ) = v(r) + v(λ) < c,

rλ /∈ Ic. Hence rλ + J /∈ Ic/J . So r + J /∈ (Ic/J : λ + J) and r + J ∈ m. Therefore

(Ic/J : λ+ J) ( m.

5.2 Prüfer rings

A Prüfer ring is a commutative ring R such that for all pCR prime, Rp is a valuation

ring.

Proposition 5.2.1. [Pop73] The following properties of a ring morphism u : A→ B

are equivalent:

(i) u is an epimorphism;

(ii) The canonical map m : B
⊗

AB → B, with m(b⊗ b′) = bb′ is bijective;

(iii) The functor, induced by restriction of scalars, u∗ : Mod−B → Mod−A is full.
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Lemma 5.2.2. Let R be a commutative ring, p a prime ideal and η : R → Rp the

localisation map. Then any indecomposable injective Rp-module is an indecomposable

injective R-module via η. Thus we have a map t : injRp
→ injR. The map t is an

embedding with image {E ∈ injR | AttE ⊆ p}.

Proof. Since η : R→ Rp is an epimorphism, Mod−Rp embeds as a full subcategory of

Mod− R by η∗. Therefore, following [Pre09], if EndR(M) contains a non-zero, non-

identity idempotent, then so does EndRpM . Therefore if M is an indecomposable

Rp-module then M is an indecomposable R-module.

Since η : R → Rp is flat, if E is an injective Rp-module then E is an injective

R-module (via η), by [Lam99, 3.6A].

It remains to show that the image of t is {E ∈ injR | AttE ⊆ p}. If E is an

indecomposable injective Rp-module then all r /∈ p act on E by multiplication as an

automorphism. So the image of t is contained in {E ∈ injR | AttE ⊆ p}. Suppose

E ∈ {E ∈ injR | AttE ⊆ p}. Then for all r /∈ p, the action of r by multiplication on E

is invertible. So E ⊗R Rp|R ∼= E. Therefore the image of t is {E ∈ injR | AttE ⊆ p}.

Lemma 5.2.3. Let R be a commutative ring. Then idealsRp is homeomorphic to

idealsR ∩ {E ∈ injR | AttE ⊆ p}.

Proof. Let t : injRp
→ injR be as in 5.2.2. Then the inverse of t takes E ∈ injR ∩

{E ∈ injR | AttE ⊆ p} to E ⊗R Rp.

We now show that for any I CR

t−1(OR(I) ∩ {E ∈ injR | AttE ⊆ p}) = ORp(IRp).

Claim: For any E ∈ injRp
, HomR(R/I,E|R) ∼= HomRp(Rp/IRp, ERp).

As Rp-modules, ERp
∼= HomRp(Rp, ERp), so as R-modules E|R ∼= HomRp(Rp, ERp)|R.

Therefore HomR(R/I,E|R) ∼= HomR(R/I,HomRp(Rp, ERp)). So by the hom-tensor

adjunction HomR(R/I,HomRp(Rp, ERp))
∼= HomRp(R/I ⊗ Rp, ERp). For any I C R,

R/I ⊗ Rp
∼= Rp/IRp by [Osb00, Proposition 2.2]. Therefore HomR(R/I,E|R) ∼=

HomRp(Rp/IRp, ERp).
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Suppose E ∈ t−1(OR(I) ∩ {E ∈ injR | AttE ⊆ p}). Then t(E) = E|R ∈ O(I), so

HomR(R/I,E) 6= 0. By the above claim this is if and only if HomRp(Rp/IRp, ERp) 6=

0. So t−1(OR(I) ∩ {E ∈ injR | AttE ⊆ p}) = ORp(IRp).

It remains to show that for any J C Rp, t(ORp(J)) is open. But, since any ideal

J CRp is equal to (J ∩R)Rp by [Mat89, Ch2 Theorem 4.1] and J ∩R is ideal in R,

t(ORp(J)) = OR(J ∩R).

Therefore t is a homeomorphism.

Lemma 5.2.4. Let R be a commutative ring. Then

ZgRp
|inj and ZgR|inj ∩ {E ∈ injR | AttE ⊆ p}

are homeomorphic.

Proof. The epimorphism f : R → Rp induces a continuous embedding g from ZgRp

to ZgR, (see 2.3.26). The image of injRp
under g is injR ∩ {E ∈ injR | AttE ⊆ p} by

lemma 5.2.2.

Therefore

ZgRp
|inj and ZgR|inj ∩ {E ∈ injR | AttE ⊆ p}

are homeomorphic.

Proposition 5.2.5. Let R be a commutative ring. Then

1. The space ZgR|inj is sober if and only if ZgRp
|inj is sober for all primes pCR.

2. The space idealsR is sober if and only if idealsRp is sober for all primes pCR.

Proof. First recall, proposition 2.3.20, that all irreducible closed sets in Spec∗R are

of the form

{q ∈ Spec∗R | q ⊆ p}

where pCR is prime.

Note that for any pCR, {E ∈ injR | AttE ⊆ p} is a closed subset of both idealsR

and ZgR|inj since it is the pre-image of {q ∈ Spec∗R | q ⊆ p} which is closed in Spec∗R.
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Since for any prime ideal p, idealsRp is homeomorphic to the idealsR closed set

idealsR ∩ {E ∈ inj | AttE ⊆ p}, if idealsR is sober then idealsRp is sober. By the

same argument, if ZgR|inj is sober then for any prime ideal p, ZgRp
|inj is sober.

Suppose that for all prime pC R, idealsRp is sober. Suppose X is an irreducible

closed subset of idealsR. Then the image of X under the map s : idealsR → Spec∗R

given in 5.0.6 is irreducible, so the closure of s(X) is irreducible. Hence there exists a

prime pCR such that the closure of s(X) in Spec∗R is {q ∈ Spec∗ | q ⊆ p} by propo-

sition 2.3.20. Therefore X ⊆ {E ∈ injR | AttE ⊆ p}. Since {E ∈ injR | AttE ⊆ p} is

homeomorphic to idealsRp and idealsRp is sober, X has a generic point. Therefore

idealsR is sober.

By the same argument, using 5.0.3 in place of 5.0.6, if for all primes pCR, ZgRp
|inj

is sober then ZgR|inj is sober.

Proposition 5.2.6. Let R be a Prüfer ring. Then idealsR and ZgR|inj are sober.

Proof. For any prime p C R, Rp is a valuation ring. Therefore, by 5.2.5 and 5.0.18,

idealsR and ZgR|inj are sober.

5.3 Fibre products

Throughout this section fix V a valuation ring, let m be the maximal ideal and

k = V/m the residue field. Let V ×
k
V denote the fibre product of two copies of the

valuation ring V over its residue field k. Note that V ×
k
V is the sub-ring of V × V

consisting of elements (x, y) ∈ V × V with x− y ∈ m and V ×
k
V is a local ring with

maximal ideal m×m.

We will show that both idealsV ×
k
V and ZgV ×

k
V |inj is sober.

Lemma 5.3.1. Let R be a commutative ring and I CR. Then OR(I) and idealsR/I

are homeomorphic.

Proof. Let f : R → R/I be the quotient map. Then any R/I-module is an R-

module via f . If E is a uniform R/I-module then E is a uniform R-module. Let
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t : idealsR/I → idealsR : FR/I 7→ ER(F ). This map is well-defined since the injective

hull of a uniform module is indecomposable. Suppose F1, F2 are indecomposable

injective R/I-modules and t(F1) ∼= t(F2). Then there exists w1 ∈ F1\{0} and w2 ∈

F2\{0} such that annRw1 = annRw2. Therefore annR/Iw1 = annR/Iw2 so F1
∼= F2.

Hence t is an injective map. It remains to show that the image of t is O(I) and t is

a homeomorphism.

Suppose ER ∈ O(I). Then there exists w ∈ E\{0} such that annRw ⊇ I. Note

that R/annRw is a uniform R/I-module. So imt ⊆ O(I). If K C R is irreducible

and K ⊇ I then R/K is a uniform R/I-module. Hence its R/I injective hull E is

indecomposable and t(E) is the R injective hull of R/K. Therefore imt ⊇ O(I).

We now show t is a homeomorphism onto OR(I).

The open sets OR(J) where J CR and I ⊆ J are a basis for OR(I) since OR(I)∩

OR(K) = OR(I +K) for any K CR.

Claim: t(OR/I(J/I)) = OR(J) for all J CR with J ⊇ I.

Suppose E ∈ t(OR/I(J/I)). Then there exists F an indecomposable injective R/I-

modules such that ER(F ) = E and w ∈ F\{0} such that annR/Iw ⊇ J/I. Therefore

annRw ⊇ J . Hence E ∈ OR(J).

Suppose E ∈ O(J). Then E ∈ O(I) so there exists F an indecomposable injective

R/I-module with ER(F ) = E and w ∈ E\{0} with annRw ⊇ J . Since E is uniform,

wR ∩ F 6= 0. Take non-zero u ∈ wR ∩ F . Then annRu ⊇ annRw ⊇ J . Hence u ∈ F

and annR/Iu ⊇ J/I. Therefore F ∈ OR/I(J/I). Hence E ∈ OR/I(J/I).

It follows from the claim that t is a homeomorphism onto OR(I)

Lemma 5.3.2. Let V be a valuation ring with residue field k. Then
V ×
k
V

m×0
and

V ×
k
V

0×m

are isomorphic to V .

Proof. The map f : V ×
k
V → V ; (a, b) 7→ a is a homomorphism and f(a, b) = 0 if

and only if a = 0. For any b ∈ V , (0, b) ∈ V ×
k
V if and only if 0 − b = −b ∈ m.

Therefore the kernel of f is 0×m. Since for any a ∈ V , (a, a) ∈ V ×
k
V , f is surjective.

Therefore
V ×
k
V

0×m is isomorphic to V .
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Lemma 5.3.3. Let V be a valuation ring with maximal ideal m and residue field k.

If X ⊆ idealsV ×
k
V is closed in idealsV ×

k
V then

(i) there exist x, y ∈ idealsV ×
k
V such that X = clideals(x) ∪ clideals(y).

(ii) if X is irreducible then X has a generic point.

Hence idealsV ×
k
V is sober.

Proof. (i)First note thatO(m×0)∪O(0×m) = O(m×0∩0×m) = O(0) = idealsV ×
k
V .

By lemma 5.3.2,
V ×
k
V

m×0
∼= V and

V ×
k
V

0×m
∼= V . Therefore, by lemma 5.3.1, O(m × 0) is

homeomorphic to idealsV and O(0×m) is homeomorphic to idealsV .

Since V is a valuation ring, every closed set in idealsV is irreducible. Let X

be a closed set in idealsV ×
k
V . Then X ∩ O(m × 0) is irreducible in the subspace

topology and has a generic point x. Hence clidealsV ×
k
V

(x) ⊇ X ∩ O(m × 0). Also,

X∩O(0×m) is irreducible in the subspace topology and has a generic point y. Hence

clidealsV ×
k
V

(y) ⊇ X ∩O(0×m). Therefore X ⊆ clidealsV ×
k
V

(x) ∪ clidealsV ×
k
V

(y). Since

x, y ∈ X, X = clidealsV ×
k
V

(x) ∪ clidealsV ×
k
V

(y).

(ii) Now, let X be an irreducible closed set in idealsV ×
k
V . By part (i), there exists

x, y ∈ idealsV ×
k
V such that X = clidealsV ×

k
V

(x) ∪ clidealsV ×
k
V

(y). Since X is irre-

ducible, either X = clidealsV ×
k
V

(x) or X = clidealsV ×
k
V

(y). So either x is a generic

point of X or y is a generic point of X.

Lemma 5.3.4. Let V be a valuation ring with maximal ideal m and residue field k.

Then ZgV ×
k
V |inj is sober.

Proof. Suppose X ⊆ ZgV ×
k
V |inj is an irreducible closed set. Then X is closed in

idealsV ×
k
V . So by lemma 5.3.3, there exists x, y ∈ X such that X = clideals(x) ∪

clideals(y). Now clideals(x) ⊆ clZgV ×
k
V |inj

(x) and clideals(y) ⊆ clZgV ×
k
V |inj

(y). Hence X =

clZgV ×
k
V |inj

(x)∪ clZgV ×
k
V |inj

(y). Therefore, since X is irreducible, X = clZgV ×
k
V |inj

(x) or

X = clZgV ×
k
V |inj

(y). So ZgV ×
k
V |inj is sober.
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5.3.1 Examples

In this section we will give an example of a ring R with 3 indecomposable injectives

with the same attached prime which are pairwise topologically distinguishable in

ZgR|inj.

Lemma 5.3.5. Let R = V ×
k
V where V is a valuation ring with maximal ideal m.

Then, for all (u, v) ∈ R, (u, v) is a unit if and only if u and v are units in V .

Proof. Suppose (u, v) ∈ R and (u, v) is a unit. Then there exists (k, l) ∈ R such

that (u, v)(k, l) = (1, 1). Hence uk = 1 and vl = 1. So u and v are both units in

V . Suppose (u, v) ∈ R and u, v are units in V . Then there exists k, l ∈ V such that

uk = 1 and vl = 1. Since (u, v) ∈ R, u − v ∈ m. Therefore uv(k − l) = v − u ∈ m.

Since u, v /∈ m, k − l ∈ m. Hence (k, l) ∈ R and (u, v).(k, l) = (1, 1). So (u, v) is a

unit in R.

Lemma 5.3.6. Let R = V ×
k
V where V is a valuation ring with maximal ideal m.

Then, for all I C V , I ×m and m× I are irreducible ideals in R.

Proof. Suppose K,L C R, I × m ( K and I × m ( L. Take (k1, k2) ∈ K\I × m

and (l1, l2) ∈ L\I × m. Then k1, k2, l1, l2 ∈ m, so (k1, 0) = (k1, k2)− (0, k2) ∈ K and

(l1, 0) = (l1, l2) − (0, l2) ∈ L since (0, k2) ∈ I × m and (0, l1) ∈ I × m. Since V is

a valuation ring, either k1 ∈ l1V or l1 ∈ k1V . Without loss of generality we may

assume k1 = l1r for some r ∈ V . Hence (k1, 0) = (l1r, 0) = (l1, 0) · (r, r) ∈ L. Hence

(k1, k2) ∈ L since (0, k2) ∈ I ×m. Therefore I ×m ( K ∩ L. So I ×m is irreducible.

By symmetry, m× I is irreducible.

Lemma 5.3.7. Let R = V ×
k
V where V is a valuation ring with maximal ideal m.

Then, for all I C V , (I ×m)# = I# ×m and (m× I)# = m× I#.

Proof. Suppose c ∈ I# and m ∈ m. Then there exists γ /∈ I such that γc ∈ I. Hence

(c,m) · (γ, γ) = (cγ,mγ) ∈ I ×m and (γ, γ) /∈ I ×m. So (c,m) ∈ (I ×m)#.

Suppose (a, b) ∈ (I×m)#. Then, there exists (c, d) /∈ I×m such that (a, b)·(c, d) =

(ac, bd) ∈ I × m. Since (c, d) /∈ I × m either c /∈ I or d /∈ m. But, if d /∈ m then,
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since c− d ∈ m, c /∈ m. Hence c /∈ I. Therefore ac ∈ I and c /∈ I. So a ∈ I#. Hence

(a, b) ∈ I# ×m.

Example 5.3.8. Let V be a valuation domain with value group R
⊕

R with the

lexicographic order. Then V has two non-zero prime ideals, m maximal and p non-

maximal. Note that since the value group is dense, m is not finitely generated. Take

non-zero s ∈ p and let R be V/s2V . Let s′ denote the image of s in R and note that

annRs
′ = s′R. Now R is a valuation ring with two prime ideals m′ maximal and p′

non-maximal. We now consider R×
k
R where k is the residue field of R.

We now show that the R×
k
R ideals m′×s′R and s′R×m′ are pp-definable. Suppose

(x, y) ∈ R×
k
R and (x, y)(s′, 0) = 0. Then xs′ = 0, so x ∈ s′R = annRs

′. Hence

x ∈ m′. Since (x, y) ∈ R×
k
R, x− y ∈ m′. Hence y ∈ m′. Therefore (x, y) ∈ s′R×m′.

It is clear that s′R × m′ ⊆ annR×
k
R(s′, 0). So s′R × m′ = annR×

k
R(s′, 0). Hence

s′R×m′ is pp-definable and similarly, m′ × s′R is pp-definable.

Take a non-unit t ∈ R\{s′R}. By lemma 5.3.6, I1 = tR×m′ and I2 = m′×tR are

irreducible ideals. By lemma 5.3.7, I#
1 = (tR)#×m′ and I#

2 = m′× (tR)#. Therefore

I#
1 = m′ ×m′ and I#

2 = m′ ×m′ since (tR)# = m′.

Therefore the injective hulls of R×
k
R/I1 and R×

k
R/I2 both have attached prime

m′ ×m′.

Let E be the injective hull of R×
k
R/m′×

k
m′, F1 the injective hull of R×

k
R/I1 and

F2 the injective hull of R×
k
R/I2.

It remains to show that E, F1 and F2 are topologically distinguishable in ZgR×
k
R|inj.

Clearly F1 ∈ O(s′R × m′) since t /∈ s′R, so tR × m′ ⊇ s′R × m′. Similarly F2 ∈

O(m′ × s′R).

Suppose, for a contradiction, F1 ∈ O(m′ × s′R). Then there exists w ∈ F1\{0}

such that annR×
k
R(w) ⊇ m′ × s′R. Hence there exists (a, b) /∈ I1 such that (I1 :

(a, b)) ⊇ m′ × s′R. So there exists a /∈ tR such that (tR : a) = m′. Since a /∈ tR,

there exists r ∈ R such that ar = t. Hence (tR : a) = (arR : a) = annRa+ rR. Since

r /∈ annRa, (tR : a) = rR. But the maximal ideal is not finitely generated, since

R
⊕

R is dense. Therefore F1 /∈ O(m′ × s′R). Similarly F2 /∈ O(s′R × m′). Finally
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E ∈ O(m′ × s′R) ∩ O(s′R×m′) since m′ ×m′ ⊇ m′ × s′R and m′ ×m′ ⊇ s′R×m′.

Therefore E, F1 and F2 are topologically distinguishable in ZgV ×
k
V |inj and AttE =

AttF1 = AttF2.

Hence E, F1 and F2 are all in a single fibre, Γ−1(AttE), of the continuous map

defined in 5.0.3 but they are pairwise topologically distinguishable. Hence Γ−1(AttE)

contains at least three topologically distinguishable points.
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