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We show that the Ziegler spectrum Zgp of a valuation domain R is sober, i.e. every
nonempty, irreducible closed set is the closure of a point.

We use the Ziegler spectrum as a tool to prove the following result conjectured
by Puninksi, Puninskaya and Toffalori in [PPT07] for valuation domains with dense
value group:

Let V be an effectively given valuation domain. Then the following are equivalent:
(i) The theory of V-modules, Ty, is decidable.

(ii) There exists an algorithm which, given a,b € V, answers whether a is in the
radical of bV.

We investigate the Ziegler spectrum restricted to the subspace of injectives Zgp|in;
for R a valuation ring, a Priifer ring and the fibre product of two copies of the same
valuation ring over the residue field. For these rings, we show that Zgp|i; is sober

and compare it with the Hochster dual of the spectrum of R.
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Chapter 1

Introduction

A valuation ring is a commutative ring whose ideals form a chain.

The Ziegler spectrum Zgp of a ring R is a topological space attached to the
module category of R. It was defined by Ziegler in [Zie84]. The points of Zgy are
isomorphism classes of indecomposable pure-injective right R-modules and the closed
sets correspond to complete theories of modules closed under arbitrary direct sums.
The space Zgp plays a crucial role in understanding the model theory of modules.
Many questions in the model theory of modules can be rephrased in terms of Zgp.
In this thesis we investigate Zgp for R a valuation ring and use it as a tool to prove
decidability results.

Chapter 2 contains background material which can be found in more detail in
[Lam99], [Pre88] and [Pre09].

The main result in chapter 3 is that the Ziegler spectrum of a valuation domain is
sober. We say a topological space is sober if its irreducible closed sets are the closures
of points. Soberness for the Ziegler spectrum was shown by Herzog in |[Her93] for
countable rings. The proof given in [Her93|] does not have an obvious generalisation
to arbitrary rings.

In the same paper, Herzog used Prest’s notion of duality for pp-formulae to give
a lattice isomorphism between the lattice of open sets of the right and left Ziegler
spectra of a ring. If both the left and ring Ziegler spectra of R are sober this means

that up to topologically indistinguishable points, the left and right Ziegler spectra



of a ring are homeomorphic. In the situation of commutative rings this in general
gives a non-trivial automorphism of Zgy up to topologically indistinguishable points.
For valuation domains we do better than this by giving in |3.4.1| a natural continuous
automorphism at the level of points.

We use a formulation of the Ziegler spectrum in terms of equivalence classes of
pairs of ideals which is specific to valuation domains. This can be found in [Pun99.
So the proof we give of soberness for the Ziegler spectrum of a valuation domains is
unlikely to generalise to arbitrary rings.

We show in that an arbitrary commutative ring R has sober Ziegler spec-
trum if and only if each of its localisations at maximal ideals has sober Ziegler spec-
trum. This result relies on a result due to Prest [Pre09, Theorem 5.5.3] which says
that an epimorphism of rings R — S induces a continuous embedding from Zgg to
Zgp and the image of this embedding is closed.

Therefore the Ziegler spectrum of a Priifer domain is sober (cf. [3.6.17).

In chapter 4 we show that, for an effectively given valuation domain V', the fol-

lowing are equivalent:
1. The theory of V-modules is decidable.
2. There is an algorithm which, given a,b € V', answers whether a € rad(bV).

This was conjectured for valuation domains with dense value group in [PPT07] where
it was shown that if V' is an effectively given valuation domain with dense archimedean
value group then the theory of modules is decidable (since such a valuation domain
has only one non-zero prime ideal, the radical condition is trivial).

The proof of this result goes via the Ziegler spectrum. This method for proving
decidability of theories of modules was described in [Zie84] and is the method used
in [PPTO7].

In chapter 5 we investigate topologies on the set of isomorphism classes of in-
decomposable injectives, injp, over valuation rings, Priifer rings and fibre products
of valuation rings. We consider two topologies, the Ziegler spectrum restricted to

injective modules and the idealsy topology. The idealsyr topology is a refinement
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of the Ziegler topology restricted to injectives. It is defined by giving a basis of open

sets

O(I) ={FE € inj, | Homg(R/I, E) # 0}

where I << R. We use a simplified formulation of the Ziegler spectrum restricted to
injectives [PRI10, Corollary 7.4] which says that Zgp|in; has basis of open sets O(I)
where [ is a pp-definable ideal.

The map t taking an indecomposable injective F to the prime ideal consisting of
the elements of R which annihilate non-zero elements of E' is a continuous map from
inj, to Spec”R when either topology is put on injg. In the case of a coherent ring
ZgRlinj is homeomorphic to Spec”R after identifying topologically indistinguishable
points in Zgp|inj. This is not necessarily the case for non-coherent rings. For example
[GPO8b] or . We use the map t to compare Spec*R with Zgp|in;, by which we
mean we look at the complexity of the fibres of . For R a valuation ring, there is at
most one fibre containing topologically distinguishable points and that fibre contains
at most two pairwise topologically distinguishable points . We give an example
of a fibre product of valuation rings where the fibre of the maximal ideal contains 3
pairwise topologically distinguishable points .

We show that injy is sober with both the Ziegler topology and the idealsy topol-

ogy for R a Priifer ring or a fibre product of two copies of the same valuation ring

over its residue field, [5.0.18] [5.2.6] [5.3.3] [5.3.4]
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Chapter 2

Background

Throughout, we will assume that all rings are unital.

2.1 Injective modules and irreducible ideals

Background material on injectives can be found in [Lam99, Chapter 3.

Definition 2.1.1. Let R be a ring. We say a module E is injective if for every
embedding i - A — B and map f : A — E there exists a map h : B — E such that
hoi=f.

Proposition 2.1.2. Let R be a ring and N an R-module. There exists an injective
module E(N) such that N is a submodule of E(N) and for all injective modules E'
and all embeddings f : N < E' there is an extension of f embedding E(N) into E'.

Moreover, E(N) is unique up to isomorphism.

Definition 2.1.3. Let R be a ring. Let N and E(N) be as in the above proposition.
We call E(N) the injective hull of N.

Definition 2.1.4. Let R be a ring. A right ideal I <1 R is said to be irreducible if for
all right ideals K, L << R, K N L = I implies either K =1 or L = 1.

Definition 2.1.5. Let R be a ring. We say an R-module M is uniform if for all
non-zero submodules N1, No C M, Ny N Ny # 0.

12



The following theorem is taken from [Lam99] page 84.

Theorem 2.1.6. For any injective right module M over a ring R, the following

conditions are equivalent:

(i) M is indecomposable.

(i) M # 0 and M = E(M') for any non-zero submodule M' C M.

(iii) M is uniform.

(iv) M =E(U) for some uniform module U.

(v) M =E(R/I) for some irreducible right ideal I C R.

(vi) M is strongly indecomposable; that is, End(M) is a local ring.

We denote the set of isomorphism classes of indecomposable injective R-modules

by injp.

Lemma 2.1.7. Let R be a commutative ring and E an indecomposable injective

R-module. Then for all non-zero w € E, anngw is an irreducible ideal in R.

Proof. Suppose w € E and w is non-zero. Then wR = R/anngw. Let I = anngw.
Suppose K, L <R and KNL =1 then K O [ and L O I so K/I and L/I are
submodules of R/I. Since KN L =1, K/INL/I =0. Note that a submodule of a
uniform module is uniform. Hence, since R/I is uniform, either K/I =0or L/I =0

so either XK =71 or L = 1. O]

Definition 2.1.8. Let R be a commutative ring and I,J <1 R. We define the ideal
quotient:

(I:J):={reR|JrCI}.
If I <R and x ¢ I then we write (I : x) for (I : zR).

Lemma 2.1.9. [Nis72] Let R be a commutative ring and let I, J <1 R be irreducible.
Then E(R/I) =2 E(R/J) if and only if there exists r € R\I and s € R\J such that
(I:7r)=(J:s).

13



Definition 2.1.10. Let R be a commutative ring and E be an indecomposable injec-
tive R-module, then the attached prime of E, denoted AttE is the set of all v € R

such that there exists a non-zero w € E with wr = 0.

Lemma 2.1.11. Let R be a commutative ring and E be an indecomposable injective

R-module. Then AttE is a prime ideal.

Proof. Suppose r,s € AttE and A € R. There exists non-zero w,u € E such that
wr =0 and us = 0. Then wrA =0 so rA € AttE. Since E is uniform wR NuR # 0.
Take non-zero v € wR N uR then vr = 0 since v € wR and vs = 0 since v € uR.
Therefore v(r +s) = 0 so r + s € AttE. Hence AttE is an ideal.

Suppose s, ¢ AttE. Then for any non-zero w € E, ws # 0 and wr # 0 therefore

for any non-zero w € E, wrs # 0. Hence rs ¢ AttE. So AttE is a prime ideal. [

Definition 2.1.12. Let R be a commutative ring and I < R an irreducible ideal then
the attached prime of I, denoted I7, is the set of all v € R such that there exists

g & I with gr € 1.

Lemma 2.1.13. Let R be a commutative ring and I < R a irreducible ideal. Then
= Jd ).
x¢l
Lemma 2.1.14. Let R be a commutative ring and I <t R an irreducible ideal. Then

AttE(R/I) = I,

Proof. Suppose x € I*. Then there exists 7 ¢ I such that zr € I so x € (I : r). By
lemma 2.1.9) E(R/I) =2 E(R/(I : r)). Hence R/(I : 7) = E(R/I). So x € AttE.
Suppose x € AttE. Take non-zero w € F to be such that wx = 0. Then
z € annpw. By theorem [2.1.6] since E is indecomposable, E = E(wR). Since wR =
R/annpw, E = E(R/anngw). By lemmal[2.1.9] there exists s ¢ annpw and r ¢ I such
that (I : r) = (anngw : s). Therefore z € (I : r), since x € anngw C (anngw : s). So

xr € I and r ¢ I. Therefore z € I*. O

Lemma 2.1.15. Let R be a commutative ring and I < R an irreducible ideal then

the attached prime I is a prime ideal.
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Proof. Let I <1 R be irreducible. By 2.1.14] AttE(R/I) = I¥. By [2.1.11}, AttE(R/I)

is a prime ideal. Hence I* is prime. O

2.2 pp-formulae, pp-types and pure-injectives

Background material for this section can be found in [PreQ9] or [Pre8§].

If R is a ring then the language of right R-modules, denoted Lg, is (+,0, {r}.cr)
where + is a binary function symbol, 0 is a constant symbol and for each r € R, r is
a unary function symbol. By abuse of notation we write ¢(Z) € Lg to mean ¢(Z) is

an Lr-formula. We write gL for the language of left R-modules.

Definition 2.2.1. A formula ¢(Z) € Lr is a pp-formula if it is of the form:
Jy(yz)A =0

where A is a matriz with entries in R.

We extend the term pp-formula to include formulae equivalent in the theory of

R-modules to a pp-formula. We call a pp-formula in n free variables, a pp-n-formula.
Proposition 2.2.2. Let R be a ring, ¢ a pp-formula and M a right R-module.
(i) (M) is an additive subgroup of M™ where n is the number of free variables in
0.
(ii) If ¢(x) is a pp-1-formula then ¢(M) is a left End(M)-submodule of M.

(i11) If R is commutative and ¢(x) is a pp-1-formula then ¢(M) is an R-submodule
of M.

We say pp-formulae ¢, are equivalent if their solution sets are equal in every

R-module, that is, they are equivalent in the theory of R-modules.

Proposition 2.2.3. The set of equivalence classes of pp-n-formulae endowed with

the ordering, ¢ < v if and only if ¢ — 1, is a modular lattice where the supremum

of pp-n-formulae ¢, is
o(Z) + ¥(2) = Iy (A1) A Y(h2) AT =41 + §2)

15



and infimum is ¢(Z) N Y(Z).

Note that, though + is the join in the lattice of pp-n-formulae, it should not be

confused with disjunction in Lg.

Definition 2.2.4. Let R be a ring. An invariants sentence is a sentence in L which
expresses the statement ’%‘ > n in all modules, for some ¢, pp-formulae of the

same arity and n € N.

Theorem 2.2.5 (Baur-Monk Theorem). [Pre88] Let R be a ring. Then, for every
formula £(z) € Lg there is a formula T7(Z), a boolean combination of pp-formulae and

invariants sentences, which is equivalent to £(x) in all R-modules.

Corollary 2.2.6. Let R be a ring. Then every sentence x € L is equivalent to a

o(z)
¥(z)

boolean combination of invariants sentences )

Proof. 1t is enough to show that for any n € N greater than 1 and any pair of pp-n-

formulae ¢, 1), the sentence &’B%‘ > m can be written as a boolean combination of

sentences ¢( 2 ‘ > m/ where each pair ¢', 1’ has strictly less that n free variables.
Let ¢, w be pp-n-formulae and N an R-module. Let f : ¢ ) gzi((N" 222 be the

map given by projecting onto the first (n — 1)-variables, this map is an eplmorphlsm

6(0,N)
$(O,N)

of abelian groups. The kernel of this map is isomorphic to

#(O0,N) | | Fys(N"~y)
YON) | | By (N1 y)

P(N™)
P(N™)

> m is equivalent to

> m. Therefore the sentence

Hence ‘

¢

>in|

=R

where L% is the least integer greater than “*.

For the following lemma see [Pre88, Lemma 2.10].

Lemma 2.2.7. Suppose ¢(Z),¥(Z) are pp-formulae with the same number of free
variables and let {M; | i € I} be any set of modules. Then

s( M) = P s(M

i€ 1€L
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and

¢(@iez M@) . ¢(Mz)
U@ M) @ O(My)’

Definition 2.2.8. Let R be a ring and M an R-module. We say a pp-pair ¢/
is minimal in the theory of M if ¢(M) strictly contains (M) but no pp-definable
subgroup of M lies strictly between ¢p(M) and (M).

We now define a map from the set of right pp-n-formulae to the set of left pp-n-
formulae of a ring. This map induces a lattice anti-isomorphism between the lattice
of equivalence classes of right pp-n-formulae and the lattice of equivalence classes of
left pp-n-formulae. It sends the right pp-1-formula zr = 0 to the left pp-1-formula

r|z and the right pp-1-formula 7|z to the left pp-1-formula ra = 0.

Definition 2.2.9. Let R be a ring and let ¢ be a pp-n-formula in the language of

right R-modules 3y(Z,y)H = 0. Then D¢ is the pp-n-formula in the language of left

Hl !/
R-modules 3z =0, where =H.
0 H” z H"

&I

Proposition 2.2.10. [Pre09/[Pre8§] For each n > 1 the operator D is a duality
between the lattice of equivalence classes of pp-n-formulae in the language of right
R-modules and the lattice of equivalence classes of pp-n-formulae in the language of

left R-modules. That is, for every pp-n-formula ¢ we have D*¢ equivalent to ¢ and
also Y < ¢ if and only if Do < D).

Corollary 2.2.11. For all pp-formulae ¢, in the same number of free variables we

have D(¢ + 1) = Do A DY and D(¢ A ) = D¢ + Dip.

Definition 2.2.12. Let R be a ring and N, M R-modules. Let f : N — M be
an embedding. We say that f is a pure-embedding if for every pp-formula ¢(z),
f(O(N)) = (M) N f(N)" where n is the arity of ¢(Z).

We say N a submodule of M is pure in M if its embedding into M is pure.

Definition 2.2.13. Let R be a ring. We say a module N is pure-injective if for every
pure-embedding i : A — B and map f : A — N there exists a map h : B — N such
that ho1 = f.

17



Note that injective modules are pure-injective. We denote the set of isomorphism

classes of indecomposable pure-injective modules by pinjp.

Proposition 2.2.14. Let R be a ring and M be an R-module then there exists a
pure-injective module PE(M) such that M is a pure-submodule of PE(M) and for
all pure-injectives M’ and all pure-embeddings f : M — M’ there is an extension of f
embedding PE(M) purely into M'. Moreover, PE(M) is unique up to isomorphism

over M.

Definition 2.2.15. Let R be a ring. Let M and PE(M) be as in the above proposi-
tion. We call PE(M) the pure-injective hull of M.

Proposition 2.2.16. [Pre88, Corollary 4.11] Let R be a ring and N an indecom-
posable pure-injective R-module. Then for any non-zero a,b € N, there exists a
pp-formula ¢(x,y) such that N |= ¢(a,b) A=¢(a,0). We call such a formula a linking

formula.

Definition 2.2.17. Let R be a ring and M an R-module. The pp-type, pp,y(m) ,of

a tuple of elements m € M 1is the set of pp-formulae it satisfies.

Lemma 2.2.18. [Pre(d, 3.2.5] Let p be a filter in the lattice of pp-n-formulae. Then

there is a module M and an n-tuple m € M such that pp™ (m) = p.

Definition 2.2.19. We say a pp-type is irreducible if it can be realised in an inde-

composable pure-injective module.

Theorem 2.2.20 (Ziegler’s criterion). [Zie84)] Let p be a pp-n-type. Then the fol-

lowing are equivalent:
(i) For all ¢,v & p there exists o € p such that 9 Ao+ Ao & p.
(ii) The pp-n-type p is irreducible.

Proposition 2.2.21. [ZHZ78, Theorem 9] Let R be a ring and N an indecomposable

pure-injective module. Then N has local endomorphism ring.
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2.3 The Ziegler Spectrum

Background material on the Ziegler spectrum can be found in [Pre09, Chapter 5].

Definition 2.3.1. [Zie8]] Let R be a ring. The (right) Ziegler spectrum, Zgg, is
a topological space with set of points isomorphism classes of indecomposable pure-

injective modules and a basis of open sets:

(£) =15 € pinia | 63 2 0}
where ¢, are pp-1-formulae.

We denote the left Ziegler spectrum by gZg. Throughout this text, we will say a
subset X of a topological space T is compact if every open cover of X has a finite

subcover. Note that we do not include Hausdorff in our definition of compact.
Proposition 2.3.2. [Zie8/, 4.9/[Pre09, Theorem 5.1.22] Let R be a ring. Then:
(i) For all pp-1-formulae ¢,1, the open set (%) is compact.

(ii) All compact open sets are finite unions of sets of the form (%) for some pp-1-
formulae ¢, .

(iii) The Ziegler spectrum is compact.

One important property of the Ziegler spectrum is that its closed sets correspond
to theories of modules closed under arbitrary direct sums. The following definition

and lemma explicitly gives this correspondence.

Definition 2.3.3. Let T be a complete theory of modules closed under arbitrary direct

sums. We define C(T') to be the following set of isomorphism classes of pure injectives:
{N € pinj, | N is a direct summand of some model of T'}.
Let C be a Ziegler closed set. We define T(C) to be the theory aziomatised by
(i) ’g‘ —1if (g) ne =9.
(1) ’%‘ >n for alln € N if <%) NC #10.

19



Lemma 2.3.4. [Pre88, Theorem 4.67] Let R be a ring. If C is a closed subset of Zgp
and T is a theory of modules closed under arbitrary direct sums then the following

statements hold:
(i) C(T) is a closed set.
(ii) T(C) is a complete theory of modules closed under products.

(iii) C(T(C)) = C.

T.

(i) T(C(T))

Definition 2.3.5. Let T be a topological space and X C T. We say X is an irre-
ducible set if for all closed subsets Y, Z of T, X CY UZ implies X CY or X C Z.

Definition 2.3.6. We say a topological space is sober if every non-empty irreducible

closed set is the closure of a point.

Note that the above definition is not the usual definition of soberness. The usual
definition says a topological space is sober if every irreducible closed set is the closure
of a unique point. Thus the usual definition of soberness implies that the space is Tj.
As many of the spaces we consider are not Tj, the usual definition of soberness is not

appropriate. Moreover, for Ty spaces the two definitions are equivalent.

Definition 2.3.7. Let T be a topological space and X an irreducible closed set of T .

We say x is a generic point of X if the closure of x in T is X.

The normal definition of a generic point includes its uniqueness, again this is not

appropriate for our situation.

Definition 2.3.8. Let T be a topological space. We say a point x € T specialises to

a point y € T if y is in the closure of x.

So if X is an irreducible closed set then a generic point of X is a point which

specialises to all points in X.

Lemma 2.3.9. Let T be a topological space with basis of open sets {W; | i € I}.

Then x € T specialises to y € T if and only if for alli € I, y € W; implies x € W.

20



Lemma 2.3.10. Let T be a topological space. Then for all x € T, the closure of x

1s an 1rreducible closed set.

We say that two points in a topological space are topologically indistinguishable
if they are contained in exactly the same open sets. If 7 is a topological space, let ~
be the equivalence relation on points of 7 such that x ~ y if and only if x and y are
topologically indistinguishable in 7T .

The open sets of any topological space are a complete lattice under inclusion.
Recall that a complete lattice is a partially ordered set for which every subset has
a supremum (and therefore also an infimum). Let L, Lo be lattices, then a lattice
morphism from f : L; — L; is a poset morphism which preserves meets and joins.
Following [Pre09, Section 5.4], we say that two topological spaces are homeomorphic
at the level of topology if there is an isomorphism between their lattices of open sets.
Note that lattice isomorphisms preserve arbitrary infima and suprema.

The following three statements are taken from [Pre09] and were originally in

[Her93].

Theorem 2.3.11. For any ring R, the right and left Ziegler spectra of R are home-

omorphic at the level of topology, the isomorphism being defined by taking the basic
open set (%) to (%)'
Proposition 2.3.12. If C is an irreducible closed set in Zgp such that C has a

countable basis of open sets in the relative topology, then C has a generic point.

Proof. Suppose C is an irreducible closed set in Zgy, with countable basis of open sets
O; indexed by ¢ € N. We define, by induction, a sequence of pp-1-formulae ¢;,;
such that () # (%) NC C O; and ¢; > ¢;41 > Y1 > 1; in the lattice of pp-formulae.

Since the open sets (%) with pp-1-formulae ¢, 1, are a basis for Zgp, we can take
¢1, 11 such that () # (%) NC C O,.

Suppose we have already defined ¢;,1);, the irreducibility of C implies C N (%) N
Oip1 # 0.

Let N e Cn (%) N O;41 and take ¢ € N such that ¢ € ¢;(N)\v;(N). By [Zie84,
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4.9], there exists ¢;,1 € pp”(c) and ;11 ¢ pp™(c) such that ¢; > ¢s1 > Vi1 > s
and <iz—i> NC COys.

Let @ be the filter generated by {¢; | ¢ € N} and ¥ the ideal generated by
{¢i | i € N}. By [Pre88 Theorem 4.33], there is an irreducible 7'(C)-consistent pp-
type p such that pN'¥ = () and ® C p. Let N be a indecomposable pure-injective
module realising p. Then N € C and N € <%) C O; for every i. Therefore N is a

generic point of C.

]

It is not obvious how to generalise this proof to arbitrary rings as if we had an
uncountable basis of open sets indexed by some ordinal, it is not clear how one would

define ¢;,1; at limit ordinals.

Definition 2.3.13. Let R be a ring and C a closed subset of Zgp. Then C =
Zgr\ U (%) for some set of pp-pairs ¢;/1;. Define DC to be the rZg closed sub-

set rZg\ U <g—’f;’)

Theorem 2.3.14. [Her93] If C is a closed subset of Zgp and has countable basis of
open sets, then C/ = is homeomorphic to DC/ =. In particular, if R is a countable

ring, then Zggr/ = is homeomorphic to rZg/ ~.

Definition 2.3.15. Let R be a commutative ring. By SpecR we mean the set of
prime ideals of R equipped with basis of open sets D(f) = {p € SpecR | f ¢ p} where
f € R. For <R, let V(I) denote the set of prime ideals containing I.

Proposition 2.3.16. Let R be a commutative ring.
(i) All closed sets are of the form V(I) for some ideal I < R.
(i) Let I,J < R then V(I)NV(J)=V(I+J) and V(I)UV(J) =V (IJ).

(iii) An open set in SpecR is compact (recall that we do not include Hausdorff in
the definition of compact) if and only if it is the complement of V(I) for some
finitely generated I <1 V'. Thus SpecR has a basis of compact open sets stable

under intersection i.e the intersection of two compact open sets is compact open.
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(iv) SpecR is Tj.
(v) SpecR is sober.

Proof. Parts (i), (ii) and (v) can be found in many commutative algebra or algebraic

geometry text book, for instance in [Bou98]. Part (iv) is obvious.

(iii) For all f € R, the open set D(f) is compact ([Bou98, II §4 Proposition 12 |).
Thus, since the open sets D(f) are a basis for SpecR, all compact open sets are of

the form (J;_, D(f;) where f1,..., f, € R. Finally,

n

Speck\ [ D(fi) = [|SpecB\D(f:) = (\V(fiR) = V(}_ fiR).

i=1

O

Definition 2.3.17. Let R be a commutative ring. Let Spec*R denote the Hochster
dual of SpecR, that is the topological space got by declaring all compact open sets in

SpecR as closed.

Proposition 2.3.18. The sets V(I) where [ < R is finitely generated form a basis
for Spec*R and the sets V(fR) where f € R form a sub-basis for Spec*R.

Proof. Proposition (iii) implies that the V(I) where I <1 R is finitely generated
are a sub-basis for Spec*R. By proposition (ii) if Iy,..., I, < R are finitely
generated ideals then N7, V(I;) = V(3.7 I;) and Y ., I; is finitely generated. So
the V' (I) where I < R is finitely generated are a basis for Spec*R.

In order to show that the V(fR) where f € R are a sub-basis for Spec” R we need
only observe that for any ideal I = (fi, ..., fn), V(I) = N, V(fiR). O

We say a topological space is spectral if it is homeomorphic to SpecR for some
commutative ring R. In [Hoc69], Hochster showed that if a topological space is

spectral then the dual space is also spectral. Hence we have the following proposition.
Proposition 2.3.19. Let R be a commutative ring. Spec*R is sober.

Proposition 2.3.20. Let R be a commutative ring. The irreducible closed sets of
SpecR are exactly V(p) where p<iR is prime and p is the generic point. The irreducible

closed sets of Spec™R are W(p) = {q € Spec*R | q C p} and p is the generic point.

23



Proof. Let R be a commutative ring. By lemma [2.3.9, a prime ideal p specialises to
a prime ideal q in SpecR if and only if for all f € R, q € D(f) implies p € D(f), that
is for all f € R, f ¢ q implies f ¢ p. Therefore p specialises to q in SpecR if and
only if p C g. Therefore, for any prime ideal p, the closure in SpecR of p is V(p).
Hence, since SpecR is sober, the irreducible closed sets of SpecR are exactly V(p)
where p <<V is prime and p is the generic point.

In the dual topology the specialisation relation is reversed. Hence the closure
of p a prime in Spec*R is W(p). Since Spec*R is sober, the irreducible closed sets
of Spec*R are exactly of the form W(p) for some p < R prime and p is the generic

point. O]

Proposition 2.3.21. [Zie8j|] Let R be a ring and C(R) the centre of R. Then for
any indecomposable pure-injective module N, the set of r € C'(R) whose action on N

by multiplication is not bijective is a prime ideal of C(R).

Proof. Let N be an indecomposable pure-injective module and p the set of central
elements of R which act non-bijectively on N. Let f : C(R) — End(N) where
r € C(R) is mapped to the endomorphism of N given by multiplication of . Then r
acts bijectively if and only if the image of r under f in End(/NV) is not in the maximal
ideal of End(N) (unique since End(N) is local by [2.2.21). Hence p is the inverse

image of the maximal ideal of End(/V). Therefore p is a prime ideal. [

Definition 2.3.22. Let R be a commutative ring and N an indecomposable pure-

ingjective module. We call the prime ideal in the above proposition the attached prime

of N, AttN.

For an indecomposable injective module F over a commutative ring R we have
already defined the attached prime for F to be the set of all » € R which annihilate
some non-zero element of F (see [2.1.10). The following lemma shows that these two

definitions of attached prime, of an indecomposable injective, coincide.

Lemma 2.3.23. Let R be a commutative ring. Suppose E is an indecomposable
imjective module then if the action by multiplication of r € R on E is not bijective

then it is not injective.
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Proof. Let E be an indecomposable injective R-module. Suppose multiplication by
r € R gives an injective map from E to E. Let Er denote the image of E under this
map. Since Er is isomorphic to E, Er is an injective module and therefore Er is a
direct summand of E. As F is indecomposable, ¥ = Er. Hence the action of r on E

is bijective. [
For the proof of the following lemma and a more general statement, see [PreS§|

Chapter 4 section 4.4.

Lemma 2.3.24. Let N be an indecomposable pure-injective module. For any non-

zero x € N and r € AttN, pp™ (zr) 2 pp™(z).

Proposition 2.3.25. Let R be a commutative ring. The map taking an indecompos-
able pure-injective module to its attached prime induces a continuous map from Zgp

to Spec*R.
Proof. In order to check that
f:72gr — Spec’R, f: N — AttN

is continuous, it is enough to check the preimage of subbasic open sets are open.
First note that the collection of open sets V(aR) = {p € Spec” | a € p}, a € R are
a sub-basis for Spec*R so it is enough to check that the pre-image under f of each
V(aR) is open. Suppose N is an indecomposable pure-injective module and a € R.

Observe that the following 3 statements are equivalent:
(i) f(N) € V(aR).

(ii) Either there exists n € N\{0} such that na = 0 or there exists n € N such

that a does not divide n.

(i) N € (557) U (%)

0 alz

Hence for any a € R the pre-image of V' (a) under f is (’;“::0) U <I:x) hence f is

continuous. ]
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Theorem 2.3.26. [Pre(9, pg67] Suppose that f : R — S is an epimorphism of
rings. If N s an indecomposable pure injective S-module then as an R-module, N
15 indecomposable pure-injective. The induced map from Zgg to Zgp continuously

embeds Zgg into Zgp as closed set.
If Ris aring and p < R is prime then we denote the localisation of R at p by R,.

Lemma 2.3.27. Let R be a commutative ring, p<<R be a prime ideal and f : R — R,.
Then the image of the map induced by f from Zgp, to Zgy is the set of indecomposable

pure-injectives with attached prime contained in p.

Proof. Suppose N has attached prime q C p. Then for all » ¢ p, multiplication by
r is a bijective map. Hence we may define multiplication by 1/r to be the inverse of
this map. So N can be endowed with the structure of an R,-module.

Suppose N is an Ry-module. Then N may be viewed via f as an R module. For
any ¢t ¢ p, since N is an R,-module, the action of ¢ is invertible. Hence t ¢ AttNpg.
Therefore p O AttNg. [

Proposition 2.3.28. Let R be a commutative ring. Then the following are equiva-

lent:

(i) Zgp is sober.

(i) For all p < R prime, Zgg s sober.
(iii) For all m < R maximal, Zgg_ is sober.

Proof. (i)=(ii) Suppose Zgp, is sober then for any prime ideal p < R, Zgp_ is homeo-
morphic to a closed subset of Zg, and hence is sober. (ii)= (iii) is obvious.

(iii)= (i) Suppose C' C Zgp, is an irreducible closed set. Then its image f(C') in Spec”
is irreducible. Therefore the closure of this set has a generic point p. Hence N € C
implies f(N) C p. Let m be a maximal ideal containing p. Then N € C implies

f(N) € m. Therefore by lemma [2.3.27 C' is contained in a closed set homeomorphic

to Zgp, . Hence, if Zgp is sober then C has a generic point. ]
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Thus, the question of whether Zgy is sober for all commutative rings reduces to

the question of whether Zgp, is sober for all local commutative rings.

2.4 Valuation rings

Definition 2.4.1. A commutative ring is called a valuation ring if its set of ideals is
totally ordered by inclusion. Thus a valuation ring is a local ring. We say a valuation

ring is a valuation domain if it has no zero divisors.

Note that, since the ideals of a valuation ring form a chain, for all a,b € V either

a divides b or b divides a and all ideals in a valuation ring are irreducible.

Lemma 2.4.2. Let R be a valuation ring. Then I C R is an ideal if and only if for

alli € I andr € R, ir € 1.

Proof. <= Suppose I C R such that for all i € I and r € R, ir € I. In order to show
that I is an ideal we need to show that if a,b € I then a +b € I. Suppose a,b € I
then without loss of generality we may assume a = by for some v € R. Therefore

a+b=0b(y+1) hence a+b € I. O
If K is a field we denote K'\{0} by K*.

Definition 2.4.3. Let K be a field and G a totally ordered abelian group. Then a

surjective function v : K* — G is called a valuation if v(z.y) = v(x) + v(y) and

v(z +y) = inf{o(z), v(y)}-

Lemma 2.4.4. Let R be a valuation domain with maximal ideal m, field of quotients
Q) and group of units U. Then the canonical map v : Q* — Q*/U is a valuation when
Q* /U is given the ordering aU > bU if and only if ab™! € R.

Let Q be a field and v : Q* — G a valuation. Then R = {0}U{z € Q* | v(x) > 0}

is a valuation domain with group of units U = {z € Q* | v(z) = 0}, so G ~ Q*/U.

We call Q*/U the value group of a valuation domain R.
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Theorem 2.4.5. [Kru3?] Let k be a field and G a totally ordered abelian group. Then
there exists a valuation domain with residue field isomorphic to k and value group

isomorphic (as an ordered group) to G.

In chapter 3 we separate valuation domains into those with dense value group, by
which we mean densely ordered, and those with non-dense value group. The following
lemma gives two conditions on a valuation domain equivalent to its value group being

dense.

Lemma 2.4.6. Let R be a wvaluation domain and m <1 R its mazimal ideal. The

following are equivalent:
(i) The value group of R is dense.
(ii) The mazimal ideal m is not finitely generated.
(iii) m? = m.
Proof. Let G be the value group of R, () the quotient field of R and v : Q* — G the

valuation map.

(i)<(ii) Suppose m is finitely generated. Let t generate m. Then v(¢) is greater than
0 and there is no element in G smaller than v(¢) and greater than 0. Hence G is not
dense.

Suppose G is not dense. Then there exists g;, g2 € G such that g; < ¢go and there
is no element in G between ¢g; and go. Therefore g, — g1 is the least strictly positive

element of G. Take r € v™!(g2 — ¢1). Then
m={seR|v(s) >0} ={se R|v(s)>v(r)}=rR.

So m is finitely generated.

(i)« (iii) Suppose m is finitely generated by r € R. Then r ¢ r*R so m? # m.
Suppose m? # m. Take r € m\m?. Suppose ¢t ¢ rR then r = t) for some non-unit

A € R. Hence A € m. Therefore t ¢ m. Hence m = rR.
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Chapter 3

The Ziegler Spectrum of a

Valuation Domain

Throughout this chapter, V will be a valuation domain and m will denote its (unique)

maximal ideal.

3.1 Some lemmas

We will start this section by explaining the relationship between ideals of V' and
particular convex subsets of the value group of V. Let V' be a valuation domain with
field of fractions (), value group I' and valuation map v : Q* — I'. If I is a proper

ideal of V', let v(I) be the set
{y €T | there exists z € I\{0} with v(z) =~}

and let —v(I) be the set {—vy | v € v(I)}.

The map S that sends a proper ideal I of V' to
S(I) =T\ (v(I) U —v(]))

is an inclusion reversing bijection between proper ideals of V' and non-empty sym-
metric convex subsets of I'. Under S, prime ideals correspond to convex subgroups
of I'. Note that the zero ideal of V' corresponds to the whole of I' and the maximal

ideal m corresponds to the trivial subgroup of I'.
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If I is a proper ideal of V' then it is readily seen that
S(I*)y={yeT| forall 6 € S(I), v+0d € S(I)}.

Lemma 3.1.1. If V is a valuation domain and I <V then x € I* if and only if

Iz C 1.

Proof. First, note that for any x,g € V, gx € Iz implies g € I. To see this, suppose
gx € Iz. There exists ¢ € I such that gr = 1x. Hence, since V' is a domain, g = i.
Therefore g € 1.

Suppose = € I* then there exists g ¢ I such that gz € I. Since g ¢ I, gz ¢ Ix.
Therefore I 2 Ix.

Suppose Iz C I. If x € I then « € I#. So suppose x ¢ I. Then for all g € I, x
divides g. Take g € I\Ix then g = xr for some r € V and r ¢ I since g ¢ [x. Hence

xe I, [
Lemma 3.1.2. Suppose I <V then for all X\ € V., X ¢ I if and only if \m D I.

Proof. Suppose A ¢ I. Then AV D [ since ideals are totally ordered. Suppose i € [
then there exists r € V such that i = A\r. If r ¢ m then r is a unit so A € I. Therefore
r € m. Hence A\m D 1.

Suppose Am D I. As V is local, A ¢ Am. Hence \ ¢ I. O
Lemma 3.1.3. Let I <V. Then for all X\ €V, X & I if and only if \I* D I.

Proof. Let I <V. Suppose A ¢ [. Take ¢ € I then there exists r € V such that
Ar = i. Therefore r € I so i € A7,

Suppose A\I[#* D I then Am D M\[# so X\ ¢ I. ]

Lemma 3.1.4. Let I,J V. Suppose J C I?. Then there exists a ¢ I such that
JC(I:a).

Proof. Take t € I#\J then there exists a ¢ I such that ta € I. Therefore t € (I : a).

Since ideals are totally ordered J C tR so J C (I : a). O

We will use the following lemma through out this chapter and the next. For a

proof see [F'S01, Chapter II Lemma 4.6].
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Lemma 3.1.5. Let V' be a valuation domain and I,J proper ideals of V. Then
I#nJ#* = (1J)*.

3.2 pp-formulae and pp-types over valuation do-
mains

The following lemma is crucial in the reduction of pp-formulae over valuation domains
to various special forms. We follow the proof given in [PunOl] for serial rings, we
specialise to valuation domains. A more general version of this result was first seen

in [Dro75] and [War75].

Theorem 3.2.1 (Drozd’s diagonalisation theorem for valuation domains). Suppose
M is an mxXn matrix over a valuation domain V. Then there exist invertible matrices
T and S over V such that TMS is diagonal. That is all entries of TMS are zero

except for the leading diagonal.

Proof. We will show the equivalent statement that any matrix over a valuation do-
main can be made diagonal by a series of invertible row and column operations.
By padding with zeroes we may assume that the matrix is square. We proceed by
induction on n the number of rows of the matrix. Suppose that the statement of
the lemma is true for all matrices of dimension smaller than n. Then consider an
n X n matrix M with entries m; ;. Consider the ideal generated by the elements m; ;.
Since V' is a valuation ring, there exist k£ and [ such that m;; generates this ideal.
It is clear that there exists a series of invertible row operations that leave us with a
matrix with zeroes down the [th column except for the (k,[)th entry and a series of
invertible column operations that leave us with a matrix with zeros across the kth
row except for the (k,[)th entry . By the induction hypothesis we may now apply
elementary invertible row and column operation to make the (k,!) minor diagonal
without effecting the [th column or the kth row. The matrix we now get is diagonal.

]
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The following two lemmas and their corollaries can be found in [EH95] and

[Pun92].

Lemma 3.2.2. Let V be a valuation ring. Then every pp-formula over V' is equivalent

to a pp-formula of the form:

n

N(ailzb)

i=1
Proof. Suppose ¢ is of the form Jdy yM = xB. By the previous theorem there exists
invertible matrices S and T" over V such that T'M S is diagonal. Let v be the formula
Jy yTMS = zBS. Suppose N is an V-module. Then 1 € ¢(N) if and only if there
exists m a tuple in N such that mM = nB if and only if there exists m € N such
that mMS = nBS since S is invertible if and only if there exists m € N such that
mTMS = nBS since T is invertible. Now v is of the form A}, (a;|Zb;). O

Corollary 3.2.3. Let V' be a valuation ring. Then every pp-1-formula over V' is

equivalent to a pp-formula of the form:

n

/\(ai|x) + (zb; =0)

=1

for some a;,b; € V.

Proof. It remains to show that a formula of the form Jy ya = z\ is equivalent to one
of the required form. Let 6 = dy ya = z\ for some a, A € V and N an V-module.
Suppose a divides A then there exists ¢ € V' such that A = at. Then z € () if and
only if there exists y € N such that (y — zt)a = 0, this is true for all x € N so 6 is
identically true. Suppose A divides a then there exists t € V such that At = a. Then
x € O(N) if and only if there exists y € N such that (yt — x)\ = 0 that is if and only
if x € ((N) where ¢ = (t|z) 4+ (A = 0). O

Lemma 3.2.4. Let V be a valuation ring. Then every pp-formula over V' is equivalent

to a pp-formula of the form:

k

Z Fyi /\(95] = yirij) A (yisi = 0)
i—1

j=1

for some r;;,s, € V.
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Proof. Let ¢ be a pp-formula in k-variables over V. Then D¢, the dual of ¢, is
equivalent to a pp-formula of the form A}, (a;|Zb;). Therefore D?¢ is equivalent to
a formula of the form Y . | Jy; /\le(xj = y;7i5) A (y;5; = 0), as the dual of a formula
of the form (a|zb) is Jy /\?:1(%‘ = yb;) A (ya = 0). This is enough since D?¢ is

equivalent to ¢. [

Corollary 3.2.5. Let V' be a valuation ring. Then every pp-1-formula over V is

equivalent to a pp-formula of the form:

n

Z(xai = 0 A b;|x)

i=1

for some a;,b; € V.

Lemma 3.2.6. [EH95] Let V' be a valuation domain and N an indecomposable pure-

injective V-module. Then the pp-1-definable subgroups of N are totally ordered.

Proof. This proof will follow closely the proof (of a more general statement) given in
Lemma 11.4 in [Pun01].

Corollary states that the lattice of pp-1-formulae is generated by the sets
of pp-1-formulae {zr = 0 | r € V} and {s|z | s € V}. Each of these sets is a
chain in the lattice of pp-1-formulae. It is stated in [Gra03l Theorem 13 Chapter IV]
that a modular lattice generated by two chains is distributive. Hence the lattice of
pp-1-formulae over a valuation domain is distributive.

We now show that if V is an indecomposable pure-injective VV-module then as an
End(N)-module, it is uniserial, that is its End(/V)-submodules are totally ordered by
inclusion. Since the endomorphism ring of any indecomposable pure-injective module
is local it is enough to show that the End(/V)-submodules are distributive, see [Ste74].
It is stated in [Pre09, 4.3.10] that if N is pure-injective and a € N with p = pp” (a)
then p(N) = Sa where S = End(NN). Therefore for any pp-1-types p,q,r we need
to show that p(N) N [¢(N) + r(N)] = [p(N) N g(N)] + [p(N) N r(N)]. In fact this is
enough because this proves the result for cyclic End(/N)-modules and if the lattice of
cyclic End(V)-submodules is distributive then the lattice of all End(/N)-submodules

is distributive.
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Hence we need to show that p(N)N[¢(N)+7(N)] C [p(N)Ng(N)]+ [p(N)Nr(N)]
since the other inclusion is true in any module. Suppose n € p(N) N [q(N) + r(N)].
Then n € ¢(N)N[P(N) +I(N)] for all ¢ € p, 1 € g and ¥ € r. Hence n € [p(N) N
Y(N)]+ [p(N)NYI(N)] because the lattice of pp-1-formulae is distributive. Since N is
pure-injective, hence algebraically compact, this means n € [p(N)Nq(N)] + [p(N) N
r(NN)]. Hence we have shown that the lattice of End(/V)-submodules is distributive
hence totally ordered by inclusion.

It remains to note that pp-1-definable subgroups are End(V)-submodules. So the

lattice of pp-1-definable subgroups is totally ordered by inclusion. ]

Corollary 3.2.7. Let V' be a valuation domain. Then a pp-1-type p is irreducible if

and only if for all pp-1-formulae ¢, ¢, & p implies ¢ + 1 & p.

Proof. Suppose that p is a pp-1-type and for all pp-1-formulae ¢, v, ¢, ¢ p implies
¢ + 1 ¢ p then by Ziegler’s Criterion p is irreducible.

Suppose p is an irreducible pp-1-type, then p is realised in some indecomposable
pure-injective module N. Suppose a € N realises p. Then ¢,1 ¢ p implies a ¢
¢(N) and a ¢ 1(N) but since N is indecomposable pure-injective, the pp-definable
subgroups are totally ordered. Therefore ¢(N) = ¢(N) + ¢(N) or »(N) = ¢(N) +

Y(N). So a ¢ ¢(N)+¢(N). Hence ¢+ ¢ p. O

We now give a correspondence between irreducible pp-types over valuation do-

mains and pairs of ideals.

Lemma and Definition 3.2.8. [Zie8//[EHI95] Let V' be a valuation domain and p
an irreducible complete pp-1-type. Let I, = {r € V | zr =0 € p} and J, = {r €

V| r|lz & p}. Then I, and J, are ideals and (I,, J,) is called the pair associated to p.

Proof. Let p be a complete pp-1-type and let I, and J, be as defined above. Suppose
r € I, and A € V. Then zr = 0 € p implies 2rA = 0 € p since p is closed under
implication. Therefore I, is an ideal. Suppose r € J, and A € V. Then r|z ¢ p so

rA|z ¢ p since rA|x € p implies 7|z € p. O
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Lemma 3.2.9. [Zie84J[EHI95] Let V' be a valuation domain. There is a bijective
correspondence between the irreducible pp-1-types of V' and pairs of proper ideals of
V. Under this correspondance an irreducible pp-1-type p is sent to its associated
pair (I,,J,) and a pair of ideals (I,J) is sent to the (unique) irreducible pp-1-type
generated by the formulae {xa = 0la € 1} U {blz|b & J}.

Proof. Suppose p is an pp-1-type over V. Let ¢ be a pp-1-formula over V. Then ¢
is equivalent to a formula of the form A}, (a;|z) + (xb; = 0) for some a;,b; € V. So
¢ € p if and only if for each i, (a;|z) + (xb; = 0) € p. Since p is irreducible this is
true if and only if (a;|x) € p or (xb; = 0) € p that is, if and only if a; ¢ J, or b; € I,
So we have show that a pp-1-type p is uniquely determined by its associated pair of
ideal (1, J,).

It remains to show that every pair of proper ideals (I, .J) is the associated pair
of some irreducible pp-1-type. In , for each pair of proper ideals (I, J) we will
give a uniserial module M and a non-zero element m € M such that m satisfies the
formula za = 0 if and only if @ € I and m satisfies the formula b|x if and only if
b ¢ J. By [EH95, Proposition 4.1], the pure-injective hull of a uniserial module is
indecomposable. Note that since M embeds purely into its pure-injective hull, the
pp-type of m in M is equal to the pp-type of m in the pure-injective hull of M. So for
every pair of proper ideals (I, .J) there is an indecomposable pure-injective module
N and an element n € N such that n satisfies the formula xa = 0 if and only if a € 1
and n satisfies the formula b|x if and only if b ¢ J. Therefore every pair of proper

ideals (I, J) is the associated pair of some irreducible pp-1-type. ]

3.3 The Ziegler spectrum of a valuation domain

The aim of this section is to formulate the Ziegler spectrum in terms of pairs of ideals

under an equivalence relation.

Definition 3.3.1. [Zie8]/[EH95] Let V' be a valuation domain and I, Jy, I, Jo < R.
Then we say (11, J1) ~ (2, Jo) if either of the following hold:
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1. There exists a ¢ I such that (I : a) = I and Jia = Js.
2. There exists a ¢ Jy such that [ya = I and (J; : a) = J.

We will show that ~ is an equivalence relation on the set of pairs of proper ideals
of V and that (I,J) ~ (K, L) if and only if the irreducible pp-type corresponding to
(I, J) and the irreducible pp-type corresponding to (K, L) (under the correspondence

in lemma [3.2.9)), are realised in the same indecomposable pure-injective module.

Lemma 3.3.2. Let V be a valuation domain. The binary relation ~ is symmetric

and reflezive.

Proof. 1t is clear that ~ is reflexive. We now show that ~ is symmetric. Suppose
that (Iy, J1) ~ (I, Jo). First suppose that the first condition in definition [3.3.1] holds.
Then there exists a ¢ I; such that (I; : a) = Iy and Jya = Jy. Since V' is a valuation
domain Iy = lha, a ¢ Jy and J; = (J3 : a). Hence (I, J5) ~ (I1,J1). Next suppose
that the second condition in definition holds. Then there exists a ¢ J; such
that Iya = I and (J; : a) = J3. Since V' is a valuation domain J; = Ja, a ¢ I and

I, = (I3 : a). Hence (Is, J2) ~ (11, J1). Therefore ~ is symmetric. O

Lemma 3.3.3. Let V' be a valuation domain and N be an indecomposable pure-
injective V-module. Let a,b € N, p = ppn(a), ¢ = ppn(b) and (I, J,) be the pair
associated to p. Suppose that b = a\ for some X\ ¢ I,. Then the pair associated to q
is ((Lp = A), Jp.A), so in particular (L, J,) ~ (1, J,).

Proof. For any r € V, br = 0 if and only if aAr = 0 if and only if r € (I, : ).
Therefore I, = (I, : A).

We now show that J,.A = J,. Take r € V such that r doesn’t divide a. Then 7\
doesn’t divide b = a) since A # 0. Therefore J,A C J,.

Take r € J,. Then r doesn’t divide b, so r doesn’t divide A\. Hence there exists
~v € V such that Ay = r. Note that v does not divide a since if v divided a then
r = Ay would divide b = a\. Therefore v € J,. Hence r € J,A. So J, C J,A. ]
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Lemma 3.3.4. [EH9)][Zie8])] Let p, q be irreducible pp-1-types. Then p and q are
realised in the same indecomposable pure injective module if and only if their corre-

sponding pairs of ideals are such that (1,,J,) ~ (1, J,).

Proof. Suppose that p and ¢ are realised in the same indecomposable pure injective
N, p is realised by a € N and q is realised by b € N. Then there exists a linking
formula ¢(z1, x2) (2.2.16) such that (a,b) € ¢(N) and (a,0) ¢ ¢(N). By lemma [3.2.4]

¢ is equivalent to a pp-formula of the form:

n 2
Z 3y /\(951 = yirij) A (yisi = 0)
i=1 1

j=

2

for some 75,5, € R. Let p;(x1,22) = Jy; /\jzl(xj = y;1ij) N (y;s;i = 0). Then

N ¢z, 22) < Y pilwn, x2)

=1

SO

N | Jzop(xq, 22) <> Jzo Zpi(xl,xg)

=1

hence

N ): E|$2¢(.T1, LCQ) — Z ngpi($1,$2).

=1

Since N |= Jua¢(a, x2) and by lemma [3.2.6] the pp-1-definable subgroups of N
in one variable form a chain, there exists an i such that N |= Jzap;(a, x2). We may
assume i = 1. But this means there is a ¢ € N such that N |= pi(a,c). Hence
N = —pi1(a,0) since (a,0) ¢ ¢(N) and N | ¢(a,c).

Now observe that since N = p;(a, ¢), either a is a multiple of ¢ or ¢ is a multiple
of a. Therefore by lemma the pp-type of ¢ has associated pair (., J.) such
that (I, J,) ~ (., J.) . It now remains to show that ¢ has pp-type ¢. Suppose that
N |= 6(b), then since the lattice of pp-1-subgroups of N is a chain and b ¢ ¢(0, N),
O(N) D ¢(0,N). Note that N | ¢(0,c —b) so since ¢ = b+ (¢ — b), ¢ € O(N).
Similarly if ¢ € () then b € §(N).

We now prove the converse. Suppose p,q are irreducible pp-1-types such that
(I, Jp) ~ (I, Jy). Since p is irreducible, it is realised in an indecomposable pure-

injective module N. Suppose n € N realises p.
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Case 1: There exists v ¢ I, such that (I, : v) = I, and Jpy = 1.

By lemma |3.3.3, ny has pp-type q.
Case 2: There exists v ¢ J, such that I,y = I, and (J, : v) = J,.

Since v ¢ Jp, y|n. Let m € N be such that mvy = n and suppose the pp-type of m
has associated pair (K, L). By (K :7) =1, and Ly = I,. Therefore I,y = K

and (I, : v) = L so m has pp-type gq. ]

Lemma [3.3.4] implies that ~ is a transitive relation. So lemma [3.3.2] and [3.3.4]

together imply that ~ is an equivalence relation.
Lemma 3.3.5. Let I <V. Then

(i) If v ¢ I then (I : x)% = I7.

(ii) If x # 0 then (Iz)# = I7.

Proof. (1) Fix x ¢ I. Suppose v € (I : z)# then there exists s ¢ (I : z) (here we are
using that = ¢ I) such that vs € (I : z). Therefore sz ¢ I and vsx € I so v € I*.
Suppose v € I* then there exists s ¢ I such that vs € I. If v € (I : z) then
v € (I:x)*. Sosupposev & (I : x). Hence vz ¢ I. Therefore there exists t € V such
that vat = vs since vs € I. Hence xt = s. Sot ¢ (I : x) and vat € [ so vt € (I : x).

Therefore v € (I : z)%.

(2)If  # 0 then x ¢ Iz and (Iz : x) = I. Therefore by (1) (Ix)# = I7*. O

Note that this means if I, J,K,L <V and (I,J) ~ (K, L) then I* = K# and
J# = L#. Also, note that if (I,J) ~ (K,L) then IJ = KL since for any = ¢ I,
({:z)Je=({:x)x] =1J.

Proposition 3.3.6. Let p be a pp-type realised in an indecomposable pure-injective

module N and (I,,J,) be the pair associated to p. Then AttN = Iﬁ U Jf.

Proof. Suppose the action by multiplication of » € V on N is not injective. Then
there exists n € N such that nr = 0. Let (I,,J,) be the pair associated to pp" (n)
and note r € I,,. Since p and pp™(n) are realised in the same indecomposable pure-

injective, (I, J,) ~ (I, J,). Therefore r € I# = I7.
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Suppose the action by multiplication of » € V on N is not surjective. There there
exists n € N such that r does not divide n. Let (I,,J,) be the pair associated to
pp"(n) and note r € J,. As above, r € J¥ = J¥. Hence we have shown that if
r € AttN then r € I U J¥.

Suppose 1 € If U Jf. Iftre ]f then there exists an x ¢ I, such that r € (I, : ).
Therefore, there exists n € N with ((I, : ), J,z) the associated pair of pp™(n).
Hence nrr = 0. If r € J# then there exists = ¢ J, such that r € (J, : ). Therefore,
there exists n € N with (I,z, (J, : )) the associated pair of pp”(n). Hence r does

not divide n. ]

Recall that a pp-type is irreducible if it can be realised in a indecomposable pure-

injective module (definition [2.2.19) and that, by lemma [3.2.9 every pair of proper

ideals (I, J) corresponds to an irreducible pp-1-type. For an arbitrary ring R, if p is an
irreducible pp-n-type and N, M are indecomposable pure-injective modules realising
p then N = M. A proof of this fact can be found in [Pre09, Corollary 4.3.47.]. In

the case of valuation domains, since ~ is symmetric, it is implied by lemma [3.3.4]

Definition 3.3.7. Let I,J V. Denote by N(I,J) the (unique) indecomposable
pure-injective module in which the pp-type corresponding to (I,J) is realised.

By lemma (3.3.4) N(I,J) = N(K, L) if and only if (I, J) ~ (K, L).
Lemma 3.3.8. Let I,m,n € N and a;,b;,¢c;,d; € V for 0 <i <l and 0 < j < m.
Let ¢; = (za; = 0 A bj|x) and ¢; = (xc; = 0+ dj|x). Suppose ¢ is the pp-1-formula
Zizl ¢; and 1 is the pp-1-formula /\T’:1 Y; then for all indecomposable pure-injective

modules N the following are equivalent:

1 |p(N)/$(N)| = n.

2. There exists 0 < h <l and 0 < k < m such that |pn(N)/Yx(N)| = n and
|0i(N) /i (N)| <n forall0<i<land0<j<m.

Proof. Let N be an indecomposable pure-injective V-module. By [3.2.6, the pp-1-

definable subgroups of N are totally ordered. Therefore

[6(N)/Y(N)| = max;; {[¢:(N)/1h;(N)][}-
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]

Lemma 3.3.9. [Pun99] Let V be a valuation domain. Let a,b,c,d € V. Let ¢ be the
pp-1-formula xa = 0 A blz and let ¢ be the pp-1-formula xc = 0+ d|z. The following

are equivalent:
1. For all indecomposable pure-injective modules N, |¢p(N)/w(N)| = 1.
2. ce€aV orbedV orc=0 orb=0.

Proof. (2)=-(1) Suppose ¢ = 0 then for any V-module the pp-subgroup defined by
zc = 0 + d|x is the whole module. Therefore (1) holds. Suppose b = 0 then for any
V-module the pp-subgroup defined by xa = 0 A b|z is 0. Therefore (1) holds.
Suppose ¢ € aV then ¢ = at for some t € V' then for all modules the pp-subgroup
defined by xa = 0 is contained in the pp-subgroup defined by zat = 0 hence (1) holds.
Suppose b € dV then b = dt for some ¢t € V then for all modules the pp-subgroup
defined by b|z is contained in the pp-subgroup defined by d|x hence (1) holds.
(1)=(2) Suppose for all indecomposable pure-injective modules N, |¢(N)/¢¥(N)| = 1.
Then since every module is elementary equivalent to a direct sum of indecomposable

pure-injective modules
Ty E (za=0Ablzx) = (zc =0+ d|x).

Suppose ¢ # 0 and b # 0. If a is a unit then ¢ € aV for all c € V.

Suppose a not a unit. Consider the module V/abV'. The image of b in V/abV
satisfies za = 0 A b|x hence satisfies z¢ = 0 + d|x. Since V/abV is uniserial either
bc € abV hence ¢ € aV or there exists y € V such that dy — b € abV hence
dy = b(at + 1) for some t € V. We assume a € m therefore at + 1 is a unit so

bedV. O

Lemma 3.3.10. [Pun99] Let V' be a commutative valuation domain. The collection

of sets

B zag = 0Ablz
Waros = (L5 i)

where a,b # 0 and g,h € m form a basis of 7g,, .
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Proof. Let ¢, be pp-1-formulae. Then by corollary[3.2.5] ¢ is equivalent to a formula
Yoy aix = OAb;|z for some n € N and a;, b; € V and by corollary 1 is equivalent
to a formula /\j cjx = 0+d;|x for some ¢j,d; € V. Bythe pp-definable subgroups
of an indecomposable pure-injective N are totally ordered hence N € (¢/v) if and

only if N € <M> for some 7, j. So

cjz=0+d;|x
¢\ za; = 0 A b|x
(1/1 —U re; =04djlz )

i)j

By lemma (3.3.9 (%) is empty unless ¢; divides a;, b; divides d;, b;,¢; # 0

and a;/c;j,d;/b; € m. Therefore the open sets of the form W, ,, with a,b € V\{0}

and g, h € m are a basis for Zg,, . ]

Lemma 3.3.11. Let N be an indecomposable pure-injective module over V. The

following are equivalent:
(Z) N € Wa,b,g,h'

(ii) There is a pp-1-type realised in N with associated pair (I,J) such that a ¢ I,
b¢ J,ag €l and bh € J.

Proof. Suppose N € W45 There exists an element n € N such that nag = 0, b|n,
na # 0 and bh t n. Let p = ppn(n) and (I, J,) be the pair associated to p. Then
a¢l, b¢ J, ag € I, and bh € J,.

Let n € N with pp-type p and let (1,,.J,) be the pair associated to p. Suppose
that a ¢ I,,, b ¢ J,, ag € I, and bh € J, then zag = 0 Ab|x € p and since the pp-type
of n is irreducible (za = 0) + (bh|x) € p implies xa = 0 € p or bh|z € p. Therefore
(za = 0) + (bh|z) ¢ p. Hence N € W, p g1 O

Remark 3.3.12. Let (I,J) be a pair of proper ideals of V.. From here on, we will
identify the ~ equivalence class of (I,J) with the indecomposable pure-injective mod-
ule N(I,J). We will say (I,J) € Wapgn to mean N(I,J) € Wapgn. By lemma
N(I,J) € Wapgn if and only if there exists (K,L) a pair of ideals with
(K,L)~(I,J) anda ¢ K,b¢ L, ag € K and bh € L.
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The above remark reformulates the Ziegler spectrum of a valuation domain in

terms of pairs of ideals in V' under the equivalence relation ~.

Corollary 3.3.13. Let V be a valuation domain, a,b € V\{0} and g,h € m. Let
(1,J) be a pair of ideals in V.. Then (I,J) € Wap g if and only if one of the following
holds:

1. There exists v ¢ I such thata & (I :7), b ¢ Jv, ag € (I : ) and bh € Jv.
2. There exists v ¢ J such that a ¢ Iy, b ¢ (J : ), ag € Iy and bh € (J : 7).

Proof. Suppose (I,J) € Wypgn. By lemma there exists (K, L) a pair of
ideals realised in N(I,J) such that a ¢ K, b ¢ L, ag € K and bh € L. Since
(I,J) and (K, L) are realised in the same indecomposable pure-injective module,
(I,J) ~ (K,L). Therefore, by definition of ~, either there exists v ¢ I such that
K = (I :~)and L = Jv or there exists v ¢ J such that K = Iy and L = (J : 7).
Thus, either there exists v ¢ I such thata ¢ (I : ), b ¢ Jv,ag € (I :v) and bh € Jv
or there exists v ¢ J such that a ¢ Iy, b ¢ (J :7), ag € Iy and bh € (J : 7).
Conversely, first suppose that there exists v ¢ I such that a & (I : v), b ¢ Jv,
ag € (I : v) and bh € Jvy. Then ((I : v),Jy) ~ (I,J). So by lemma [3.3.11]
(I,J) € Wypgn Now suppose that v ¢ J such that a ¢ Iy, b ¢ (J :v), ag € Iy and
bh € (J : 7). Then (I, (J : 7)) ~ (I,J). So be lemma [3.3.11}, (I,J) € Wypgn. O

3.4 Duality for the Ziegler spectrum of a valuation
domains

In this section we give an automorphism of Zg;, which induces the lattice isomorphism

D given in theorem [2.3.11]

Proposition 3.4.1. The map t : Zgp — Zgr : N(I,J) — N(J,I) is a well-defined

homeomorphism. Moreover, t induces the lattice isomorphism D : Zgp — Zgp :

(%) — (g—g) gwen in theorem |2.5.11|
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Proof. First we note that t is well defined since (1, J) ~ (K, L) if and only if (J, I) ~
(L, K).
Claim: For any a,b € V\{0}, g,h € m and pair of ideals (I, J), (I,J) € Wypgn if
and only if (J,1) € Wiy ang-
Suppose (I,J) € Wypgn then there exists (K, L) such that (I,J) ~ (K,L) and
a¢ K,ag € K,b¢ L and bh € L. Therefore (L, K) € Wyany and (J,1) ~ (L, K)
s0 (J,1) € Wy any. The reverse direction is by symmetry.

Therefore t is a homeomorphism and

zrag =0 A blz

xbh =0 A alx
za =0+ bhlx '

NI if ly if N(J, 1
(,J)E( )1andony1 (J, )€<xb:O+ag\x

Noting lemma this means that for any «, 5,0,v € V,
zxa=0ABlz = xd =0ANv|z
zy =0+ 0|z f=0+alz/)’

It remains to show that for each pp-pair <%> > (%)' Take ¢, 1 pp-1-formulae.

By lemma we can find a pp-formula Y"1 (za; = 0 A fi]z) equivalent to ¢

and by lemma |3.2.3|a pp-formulae A", (z7; = 0 + §;|x) equivalent to . So <%> =

U, (%). By lemma[2.2.10| D¢ is equivalent to D(3>_"_, (za; = 0AS;|z)) which

is equivalent to Ai_, (28 = 0+ ay|x) and Dy is equivalent to 77" (zd; = 0 A v;lz).

D o (26;=0Av,|x) D
So (D—Zi) =U;; <—(w§:o+l’i|x)>- Hence (%) —> (D—1£>

3.5 Description of the open sets

The aim of this section is to get a more manageable characterisation of when a pair
(I,J) € Wypgn That is we will replace the existential quantifiers in corollary
with simple conditions on pairs of ideals (1, J) invariant under ~.

The following lemma reduces the number of coefficients needed to describe a basic

open set.

Lemma 3.5.1. Let V' be a valuation domain. Let a,b,g,h € V, a,b# 0 and g,h € m.
Then Wa,b,g,h = Wa.b,Lg,h = Wl,a.b,g,h-
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Proof. First note that Wy p g1 = Wap1,g,n implies Wy b g = Wi a9, because
(I, J) € Wapgh if and only if (J, ]) € Whahg = Wab1,hg

and

(J.I) € Wap1,n,y if and only if (1, J) € Wi ap g.n-

Now we prove the first equality. Suppose (I,J) € Wap 4. Take (K,L) ~ (1,J)
with a ¢ K, ag € K, b ¢ L and bh € L. Since b ¢ L, (K,L) ~ (Kb, (L : b)).
Now ab ¢ Kb (as a ¢ K), abg € Kb (as ag € K) and h € (L : b) (as bh € L). So
(£, J) ~ (Kb, (L : b)) € Wab,gh-

Conversely, suppose (I,.JJ) € Wyp14n- Take (K, L) ~ (I,J) with ab ¢ K, abg €
K and h € L. Thenb ¢ K, a ¢ (K :b), ag € (K :b), b ¢ Lband bh € Lb. So
(I,.) ~ ((K : b), Lb) € Wapgn. O

The following 4 lemmas will be used in the proof of proposition [3.5.6]
Lemma 3.5.2. Let J <V and a,b € V. Then a ¢ Jb if and only if b € (am: J).
Proof. By definition, b € (am : J) if and only if Jb C am if and only if a ¢ Jb. O

Lemma 3.5.3. Let \,g,h € V, A # 0 and g,h € m. Let (1,J) be a pair of V. Then
(I,J) € Wyagn tmplies A\ ¢ 1.J, \gh € I.J, g € I* and h € J#.

Proof. Suppose (I,J) € Wi \gn. By corollary either there exists v ¢ I such
that g € (I : ), A ¢ J~y and Ah € Jy or there exists v ¢ J such that g € 1.7,
A (J:v)and A € (J : ). In either case lemma implies that g € I* and
h € J#. If v ¢ I then it is clear that (I : v).J.y = I[.J since (I : ).y = I. Similarly,
if v ¢ J then I.y(J : v) = I.J. Therefore in either of the above cases A ¢ I.J and
Agh € 1.J. 0

Lemma 3.5.4. Let I, J<V. Then I.J C K if and only if [ C (K : J). Equivalently,
for valuation domains, I.J 2 K if and only if I 2 (K : J).

Proof. Suppose I.J C K. Take x € I. Then x.J CI.J C K. Sox € (K : J).
Suppose I C (K : J). Takei € Tand j € J. Theni.j €i.J C K. Sol.J C K. [
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Lemma 3.5.5. Suppose that J 9V and \,h € V such that \b € J and h € J7.
Then (Ahm = J) € (Am: J).

Proof. If Am O J then (Am : J) =V and Ahm C J so (Mm@ J) # V. Otherwise
A€ J. Since h € J#, Jh C J. Take a € J\Jh. Then am D Jh D M\hV. Let t € m
be such that at = Ah. Since a ¢ Jh, aX ¢ JAh. So a\ ¢ Jat. Hence X\ ¢ Jt. So
Am D Jt. Since a € J, a\h € JAh = Jat. So Ah € Jt. Hence Ahm C t.J. Therefore
te(Am:J)and t & (Ahm: J). O

Proposition 3.5.6. Let \,g,h € V, A # 0 and g,h € m. Let (I,J) be a pair of

ideals in V. Then the following are equivalent:
(Z) (Ia J) S Wl,)\,g,h-
(ii) g € I*, h € J#, \gh € IJ and (I,J) € Wi r00-

Proof. (ii)=(i). We split the proof into two cases:

Case 1: \h € J.

In order to show that (I,.J) € Wi x4, we must find = ¢ I such that g € (I : x),
A ¢ J.x and Ah € J.z. This follows from corollary and \h € J.

We can rewrite g € ([ :x) asz € ([ : g), A\ ¢ Jx asz € (Am: J) by lemma [3.5.2]
and A\h € Jx as x ¢ (Ahm : J) by lemma As ideals are totally ordered, it is

enough to show that the following strict inequalities hold:
(1) 1S (I:9)
(2) 1S (m: )
(3) (Ahm:J) S (I :g)
(4) (Ahm : J) C (Am:J)

(1) is true since g € I** and (4) holds by using h € J¥.
(3) By (ii) Agh € I.J, which implies that Aghm C I.J. If g € I then (I : g) =V so
Ahm C (I : g)J. Otherwise g ¢ I. Suppose for a contradiction that Ahm D (I : g)J.
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Then Aghm DO I.J, a contradiction since Agh € I.J. Therefore Ahm C (I : g)J so by
BS54 (Am: ) S (I g).

(2) By (ii) (£, J) € Wi x00- So either A ¢ J or there exists v ¢ I such that A\ ¢ ~.J.
If A\ ¢ J then Am D J. So (Am : J) = V. Therefore (2) holds. If there exists v ¢ I
such that A ¢ ~.J then Am O ~.J i.e. there exists v € (Am : J) not in I. So (2)
holds.

Case 2 Mh ¢ J

Again, by corollary and Ah ¢ J, in order to show that (I,J) € Wy 4n we
must find x ¢ J such that g € .z, A ¢ (J: x) and Ah € (J : x). That is = ¢ J such
that v ¢ (gm : I), x ¢ (J : X\) and © € (J : Ah). So it is enough to show that the

following strict inequalities hold:
(1) (J:Ah) 2 (gm: 1)
(2) (J:Ah) 2 (J:N)

(1) By hypothesis Agh € I.J. Therefore A\ghm C [.J. Hence gm C I.(J : Ah),
therefore by proposition (gm: 1) C (J : Ah).
(2) The second is clear since A\h ¢ J and h € J#.
(i)=(ii). Now suppose (I,J) € Wi ,n. There exists (I’,J') such that (I,J) ~
(I',J') and g € I') X ¢ J and Ah € J'. Therefore (I',J") € Wio0, so (I,J) €
Wi x00 and by proposition Mgh €1.J,g€I# and h € J#.

[

From proposition we can deduce that if I, J <V and I# = J# then (I,J)
and (J, I) are topologically indistinguishable since W 0.0 = Wi 1,0,0-

It remains to consider when a pair (/,.J) € Wy 0. In order to do this we first
group ideals into 4 distinct classes. We start by showing that if I <V and (I#)% # [#

then I = aI# for some a € V.

Lemma 3.5.7. Suppose that p is a prime ideal and p> # p. Then if I <V with
I# = p there exists a € V\{0} such that I = ap.
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Proof. Suppose I <AV, I# = p and p? # p. Take k € p\p?. Since [ = p there exists
a ¢ I such that k € (I : a). Given any t € p, either t € kV sot € (I : a) or k = tc for
some ¢ € V. Note that ¢ ¢ p since k ¢ p?. Hence t € (I : a) since (I : a)# = I# = p.

Therefore (I : a) =p. So I = ap. O
Definition 3.5.8. Let p <V be a prime ideal and let a € p be non-zero. We define

I" = {b eV | there exists r ¢ p such that br € aV'}.

The ideal I? is the pre-image of the ideal generated by a in V,. Note that for
any valuation domain V' and any a € m\{0}, I* = aV. The following lemmas give

properties of the ideals I?.

Lemma 3.5.9. Let p <V be a prime ideal and let a € p be non-zero. Then I} is an

1deal with attached prime p.

Proof. Suppose b € I? and r € V. Then there exists k ¢ p such that bk € aV.
Therefore (br)k € aV. So brr € I?. Hence, by [2.4.2] I? is an ideal.

We now show that [P has attached prime p. Suppose that b ¢ I, ¢ € V and
be € IP. Then there exists k ¢ p such that bck € aV but since b ¢ I?, ck € p.
Therefore ¢ € p.

Suppose ¢ € p. Then either ¢ € aV' (hence ¢ € I¥) or ¢ ¢ aV. Suppose ¢ ¢ aV.
Then a = ¢y for some v € V. Suppose, for a contradiction, that v € I?. Then there
exists t ¢ p such that vt € aV = ¢yV. Hence t € ¢V. A contradiction since ¢ € p.

Therefore ¢ € (I?)¥.

Lemma 3.5.10. Let p <V be a prime ideal, a € p and A € V. Then
A ¢ IP if and only if a € \p.

Proof. 1t is clear that a € Ap implies A ¢ I?. Suppose A ¢ [!. Then X ¢ aV. So

a = Ay and v € p. Hence a € \p. ]

Lemma 3.5.11. Let p <V be a prime ideal and a,b € p be non-zero. Then I? - b =

pr=1r,
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Proof. Claim: I? - b= IP1}.

First note that b € I}. So I?-b C I*I}. Suppose x € I?I}. Then x = z;z, for some
x1 € I? and x5 € I}. So there exists v, ¢ p such that z17y; € aV and y ¢ p such that
Toy2 € V. Since x1 € p and 2 ¢ p there exists pu € V such that yo4 = x1. Therefore
p € IP since puy1ye = 171 € aV and y172 ¢ p. Hence v = x129 = p.(y222) € IF - bV.
SoIP-bDI°I}.

Claim: I? - b=1I7,.

Suppose x € I¥,. Then b|z. To see this, suppose for a contradiction that b = zy
for some v € V. Then, since x € I¥,, there exists ¢ ¢ p such that zt € abV = azyV.
Hence t € ayV, contradicting ¢ ¢ p. Hence b divides z.

Let p1 € V be such that x = bu. It remains to show that u € I?. Since by € I,
there exists k ¢ p such that buk € abV therefore uk € aV so p € I¥. Hence x € I? -b.

Suppose x € I?. Then there exists k ¢ p such that xk € aV. Therefore xbk € abV .

So zb e I’

Lemma 3.5.12. Let p <V be a prime ideal and a € p. Then I¥p = ap.

Proof. The inclusion I’p D ap holds as I? D aV. Suppose t € I?. There exists
v ¢ p such that ty € aV. Take any p € p. Then p = yr for some r € p. Therefore

tp =tyr € ap. So I'p C ap. ]

Lemma 3.5.13. Let p <<V and I 9V such that p> = p and I* =p. Then Ip C I if

and only if I = I? for some a € p.

Proof. = Suppose a € I\Ip. We will now show that I = I?.

Take t € I. Then either ¢t € aV or a = tr for some r € V. If t € aV then t € I}.
Suppose a = tr. Then r ¢ p since a ¢ Ip. Hence t € I?.

Now suppose t € I?. There exists v ¢ p such that ¢y € aV/. Hence ty € I. Since
yé¢pandp=1I7 tel.

< Suppose a € p. Then I'p = ap. Clearly ap C I! since a ¢ ap and a € I?. ]
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Definition 3.5.14. We say that I <V with I* = p is a proper cut if it is not equal
to I? for any a € p\{0} or bp for any b € V\{0}.

We now given an example of a proper cut. Let V be a valuation domain with
value group Q under addition. Such a valuation domain exists by [2.4.5] Let v be the
valuation map. Then I <V is a proper cut if and only if I = {r € V | v(r) > ¢} for
some strictly positive irrational real number c.

We now split the question of when a pair of ideals (7, J) lies in W o into the

following cases:
1. I# # J# (lemma [3.5.16 and discussion directly below that).

2. I# = J# = p and exactly one of the following conditions

(i) p # p? (lemma |3.5.18) noting lemma [3.5.7)).

(ii) p=p? I =tp and J = sp for some non-zero t,s € V (lemma [3.5.18)).
(iii) p =p? [ = I and J = I} for some non-zero a,b € p (lemma [3.5.19).

(iv) p = p?, I = I and J = tp for some non-zero a € p and non-zero t € V

or I =tp and J = I? for some non-zero ¢t € V' and some non-zero a € p

(lemma [3.5.21]).

(v) p=p?and I or J is a proper cut (lemma [3.5.22)).

Lemma 3.5.15. Suppose I,.J <V such that J D I¥. Then IJ = I.

Proof. Suppose I, J <1V such that J 2 I*#. Suppose x € I. Take y € J\I#. Then
there exists r € V such that yr = 2. Therefore r € I since y ¢ I*. So x € I.J. Hence

IJ D I. The other inclusion is true for all ideals so IJ = I. O

Lemma 3.5.16. Let A € V' be non-zero and (I,J) a pair in V such that ¥ C J.

The following are equivalent:
(i) (I,J) € Wixoo-

(i) (I,J%) e Wi x0,0-
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(iii) N I.J.

Proof. First note that if I,.JJ <1V are such that J D I# then x ¢ I implies Jz D I.
To see this, suppose ¢ I and take ¢ € I. There exists v € V such that i = zv.

Then v € J since v € I#. Soi € Jx.

(i)=(ii). Suppose that (I,J) € Wi x00. Then there exists x ¢ I such that A ¢ Jx
but then A ¢ I. Hence (I, J#) € Wi x0, since X ¢ J#.\.

(ii)=-(i). Suppose (I, J#) € Wi r00. Then there exists z ¢ I such that \ ¢ J#.x.
Therefore A ¢ J.x. Hence (1,J) € Wi 00-

(i)<>(iii). Suppose A ¢ IJ. So A ¢ I since IJ = I (by lemma [3.5.15). So (I,J) ~
((I:X),JN)) and A ¢ JA. Hence (I,.J) € Wy x00. The reverse implication is part of

proposition [3.5.3] O

Note that for any ideals I, J <1V with I# C J# and any A\ € V\{0},
(I,J) € Wy if and only if A & I.J.

To see this, note that there exists « ¢ J such that [# C (J : ). Therefore (Ix, (J :
r)) € Winoo if and only if A ¢ Iz(J : x) = IJ. Since (I,J) ~ (Iz,(J : x)),
(I,J) € Wiapo if and only if A ¢ I.J.

Corollary 3.5.17. Suppose (I,J) is a pair in V such that I* C J#. Then there
ezists T <1V with T# = I* such that (T, J#) is topologically indistinguishable from
(1,J).

Proof. Suppose I#* C J#. Then there exists z ¢ J such that I# C (J : ). Note
that (Iz)# = I* and (J : 2)# = J#, by lemma [3.3.5, Therefore, by [3.5.16] for any
A€ V\{0}, (Iz, (J : x)) € Wi a0 if and only if (Iz, J#) = (Iz,(J : )%) € Wi o0
By lemma(3.5.15, [x(J : x) = Ix(J : 2)% = IxJ#. Hence, by proposition, for
any A € V\{0} and g,h € m, (Iz, (J : ©)) € Wy 4 if and only if (Iz, J#) € Wy 5 g1

Since (I,J) ~ (Iz,(J : z)), (I,J) is topologically indistinguishable from (/z, J#).
[
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Lemma 3.5.18. Suppose p <V is prime and X\, t1,ts € V\{0}. Then the following

are equivalent:
(i) (tip,t2p) € Winoo-

Proof. (ii)=(i). First note that (t1p,tap) ~ (p,t1tep). Soif A & titop then (t1p, top) €
Wi x0,0-

(i)= (ii). Suppose (t1p,t2p) € Wi r00- Then there exists v ¢ ¢1p such that A & ~tap.
If v & tip then vp D t1p. Therefore yiop D titop. Hence A\ ¢ t1top. O

Lemma 3.5.19. Suppose that p <V is a prime ideal and p*> = p. If a,b € p then
(I*, I}) € Wiro0 if and only if X ¢ I¥I}.

Proof. By lemma [3.5.3] (I}, I]) € Wi 0, implies A ¢ I?If. Suppose A ¢ I}I} = I?,.
Either A ¢ I} so (I?,If) € Wisop or A € If. Suppose A € If. By lemma [3.5.10]
this means ab € Ap and b ¢ Ap. Let k € V be such that \p = kbp. Such a k exists
since either A\p = bp or bp D Ap hence A € bp. Then a € kp since ab € A\p = kbp.
As p = p? there exists 71,7, € p such that a = ky172. So a € kyip and kv, € kp.
So by lemma kyo ¢ 1P and X ¢ I}, = Iky since ky1b € Ap. Therefore
(I8, 1)) € Wixoo- ]

Lemma 3.5.20. Let (I, J) be a pairin'V such that I* = J#. Then for all A € V\{0},
N# D 1J implies (I,J) € Wi 00-

Proof. Suppose I,J <V, I#* = J# =pand \p 2 [J. If X ¢ J then (I,J) € Wi o0
So suppose A € J. Take p € p such that Ap ¢ IJ. So Apm D I.J. Hence, by [3.5.4]
(Apm : J) D I and by B.5.5 (Am : J) 2 (Apm : J). Take z € (Am : J)\I. Then
A¢ Jrandx ¢ 1. So (I,J) € Wi oo0- O]

Suppose p? = p, [ = I and J = tp for some non-zero a € p and non-zero t € V.
Then t ¢ J, (J :t) = p and by lemma I.t = I¥,. Therefore (I,.J) ~ (I¥,,p).

The following lemma characterises when a pair of the form (I¥, p) lies in W , 0o where
p? =p and a € p\{0}.
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Lemma 3.5.21. Let p <V be a prime ideal such that p> = p and a € p\{0}. Let
A € V\{0}. Then the following are equivalent:

(i) (I5,p) € Wixroo-
(ii) Ap 2 I}p.
(iii) \ & I?.
Proof. (ii)=-(i) is by lemma [3.5.20
(iii)=(ii) By lemma [3.5.10, A ¢ I¥ implies a € Ap. By lemma [3.5.12[ I’p = ap C Ap.
(1)=>(iil) Suppose (I2,p) € Wi x00. Then there exists v ¢ I? such that A ¢ yp. Hence

WD I So ¢ IV
O

Lemma 3.5.22. Suppose that (I,J) is a pair in V, p = I* = J# and p = p*. If

either I or J corresponds to a proper cut then (I,J) € Wi x0,0 if and only if \p D I.J.

Proof. Let I,J <1V with I# = J# = p be such that either I or J is a proper cut.
Suppose that (I,J) € Wiroo. Then X ¢ I.J. So Ap D [.J. If I.J # Ap then
we are done so suppose for a contradiction that A\p = I.J. Since (I,J) € Wi 00
there exists v ¢ I such that A ¢ Jv. Therefore I.J = Ap O Jv and Jv D I.J since
v ¢ I hence Jy = I.J. This means that (I : v)J = J. Take any ¢ ¢ (I : 7). Then
tV 2O :7). SotJ D (I:7)J =J. Therefore t ¢ p. Hence (I : v) =p. So I = p~.
But IJ = Jv = Ap. So neither I or J is a proper cut, a contradiction. Therefore
Ap 2 1J.

The converse is by lemma |3.5.20,
]

Definition 3.5.23. We say that a pair (I,J) is a normal point if for all A € V\{0},
A& 1J implies (I,J) € Wi x00. Otherwise we call a pair (I,J) abnormal.

Lemma 3.5.24. Let p <V be prime and let I,J <1V be such that I* = J#* =p and
(1,J) is abnormal. Then for all X € V\{0} the following are equivalent:
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(i) (I,J) € Wixop-
(1)) Ap 2 1J.

Proof. (ii)= (i) By lemma [3.5.20 Ap 2 I.J implies (1, J) € Wi 0.

(i)=(ii) Let a € V be such that a ¢ I.J and (I, J) ¢ W 400. Such an a exists since
(1,J) is abnormal. Suppose (I,J) € Wi »00. There exists v ¢ I such that A ¢ J7.
Hence A\p D J~y. Since (I,J) ¢ Wi 400, a € Jy. Hence a € A\p. Therefore \p 2 ap.
Since a ¢ IJ,ap D IJ. SoA\p Dap D 1J. O

Lemma 3.5.25. Let p <1V be a prime ideal such that p*> = p and (I,J) an abnormal
point with [* = J# = p. Then there exists non-zero a € p such that (I,J) and (I*,p)

are topologically indistinguishable.

Proof. Let p <<V be a prime ideal such that p?> = p and let I,.J <V be such that
I* = J# = p. First we show that (I, J) abnormal implies that there exists a € p
such that IJ = ap. Suppose (I, J) is abnormal. By definition of abnormal, there
exists a ¢ I.J such that (I,J) ¢ Wi 400. Since a ¢ I.J and (IJ)#* =p, ap D I.J. By
lemma and because (I, .J) ¢ Wi 4,00, we have ap C I.J.

By lemma and since IJ = ap = Ip, for all A € V\{0}, (I, J) € Wy o0 if
and only if (I?,p) € Wi 00-

Consequently, using proposition 3.5.6] (1, J) and (I?,p) are topologically indistin-
guishable. ]

Note that (7, .J) abnormal implies [#* = J# by lemma Suppose (I, J) is
a point with I# = J# = p. Then p? # p implies (I,.J) is abnormal. Lemma
implies that if (1, .J) is abnormal then IJ = ap for some a € V\{0}. Moreover, if
IJ = ap for some a € V\{0} then (I, J) is abnormal if and only if (1, .J) & W\ 40,0

Finally note that if p> = p then for any non-zero a,b € p, the point (I, I) is
normal and for any non-zero a,b € V' the point (ap, bp) is normal (cf. lemma
and lemma [3.5.18).

We now give some examples of normal and abnormal points in Zg, for particular

valuation domains.
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Example 3.5.26. Suppose V' is a valuation domain with value group Z. The mazimal

tdeal m of V' is finitely generated. Let k generate m.

1. For alln,m € N, (k"V,k™V) ~ (m, k™" 2m) and (k"V,k™V) is an abnormal

point.
2. The points (I,0), (0,1) and (0,0) are normal for all proper I <1V'.

Proof. First note, such a valuation domain exists by [2.4.5 Also note that m is the
only non-zero prime ideal in V and since Z is not dense, m? # m and m is finitely
generated. All proper non-zero ideals of V' are of the form ™V for some n € N.

(1) For any n,m € N, (k"V,k™V) ~ (m, k™" ?m) since (k"V : k" !) = m and
EmV.Er! = k" 2m. By lemma , (m, k™72 m) & W) pmtn-19, sSince
Frin=l g pmin=2m = pmtn=ly/ - Therefore, since k™™ ~1 ¢ m2pmtn=2 = pmtny,
(m, k™™™ 2m) is abnormal. Hence the points (k"V,k™V') where m,n € N are abnor-
mal.

(2) The points (1,0), (0,1) are normal by lemma [3.5.16] The point (0,0) is normal
since (0,0) € Wy a4 if and only if g = h = 0. O

Example 3.5.27. Suppose V' s a valuation domain with value group Q under ad-
dition. Let v be the valuation map. Suppose q € Q s strictly positive and s € V' is
such that v(s) = q. Let I, be the ideal {r € V | v(r) > q}, note that this ideal is
generated by s. Suppose c¢,d € R are strictly positive and irrational. Let I. be the
ideal {r € V | v(r) > ¢} and 1; be the ideal {r € V | v(r) > d}.

1. The point (I>,,m) is abnormal.

2. If ¢+ d is irrational then (1., 1;) is normal.

3. If ¢ +d is rational then (1., 1;) is abnormal.

4. If c+d is rational then (1., 1;) is topologically indistinguishable from (Iscqq, m).

Proof. First note, such a valuation domain exists by 2.4.5] Also note that m is the

only non-zero prime ideal in V' and since Q is dense, we have m? = m.
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(1) Since Is,m = sm, we have s ¢ I>,m. By lemma [3.5.21] and as s € Is,,

(I>q,m) € Wi 500. Therefore (Is,, m) is abnormal.

(2) First note that the ideals I. and I; have attached prime m. Since I.I; = [.iq4,
there does not exist a € V' such that I..4, = am. Therefore, (I, I;) is normal.

(3) Let r € V be such that v(r) = ¢+ d. We now show that [.[; = I.;q = rm,
where I..q = {t € V | v(t) > ¢+ d}. If x € V and v(z) > ¢ then v(z) > ¢,
since ¢ is irrational and v(x) is rational. Therefore, if x € I. and y € I; then
v(zy) =v(z) +v(y) > c+d=v(r). Sozy € rm. If x € rm then v(z) > r = c+d.
So, since Q is dense, there exists strictly positive a,b € QQ such that a > ¢, b > d and
a+b=v(z). We can now pick y,z € V such that v(y) = a, v(z) = b and = = yz.
Therefore y € I. and z € 14, so x € I.1;. Hence I.I; = rm.

Suppose, for a contradiction, that (I.,1;) € Wi, 00. Then there exists v ¢ 1.
such that r ¢ ~I;. This means that v(vy) < c and ¢ +d = v(r) < v(y) +d. So
v(y) = c. But this is a contradiction, since v(y) is rational and ¢ is irrational.
Therefore (I.,1;) € Wi, 00. Hence (1., 1) is abnormal, since r ¢ I.I; = rm.

(3) Note that if ¢ + d is rational then (I, I;) is topologically indistinguishable from

(I>ctd,m) (cf. lemma [3.5.25)). O

3.6 The Ziegler spectrum of a valuation domain is
sober

The aim of this section is to show that if V' is a valuation domain then every irreducible

closed set in Zg, is the closure of a point.

Lemma 3.6.1. Let T be a topological space and C' an irreducible closed set in T .
Then for allU, and Uy open sets in T, CNU; # O and COUy # ) implies Uy NU,NX #
0.

Proof. Suppose C' is an irreducible closed set and U;,Us are open sets such that
UyNUs N C = (. Then C C T\(Uh NUy) = (T\U1) U (T\Us). So, since C is
irreducible, either C' C T\U; or C C T\Us. Therefore CNU; =@ or CNUy = 0. [
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Lemma 3.6.2. Let t,s €m. Then Wl,ts,O,O N Wl,l,t,s = 0.

Proof. For any pair of ideals (1,.J), (I,J) € Wi 50,0 implies ts ¢ IJ and (I,J) €
Wi 14 implies ts € IJ. Therefore W 4500 N Wiats = 0. O

Lemma 3.6.3. Let C' be an irreducible closed set of Zgy,. Then there exists T <1V
such that T'= 1J for all normal points (I,J) € C.

Proof. Let (I,J),(K,L) € C and suppose both are normal points. Suppose, for a
contradiction, that [J C KL. Take A € KL, A ¢ I.J. Then A = kl for some k € K
and | € L. Therefore (I,J) € Wi 00, (K,L) € Wi and Wi x00 " Wik = 0,
contradicting the irreducibility of C'. Hence IJ = K L. [

Lemma 3.6.4. Suppose C' is an irreducible closed set containing at least one normal

point. LetT' be as in lemma . If (I,J) is an abnormal point contained in C' then
TIN* CIJCT.

Proof. Let (K, L) be a normal point in C' and (/,.J) an abnormal point in C. Note
that I# = J#.

Suppose that "= KL C IJ. Take i € I and j € J such that ij ¢ T. Then
(I,J) € Wiaij, (K,L) € Wiijo0 and Wy, N Wyii00 = 0, contradicting the
irreducibility of C'. Hence T 2O I.J.

Suppose [J C T(IJ)#. Then there exists u € T such that IJ C u(IJ)*#. So
(I,J) € Wi 00, by lemma and there exists k € K and [ € L such that kil = pu.
Hence (K, L) € Wi 1. But Wi 10 "W 00 = 0, contradicting the irreducibility of
C. Therefore T(IJ)#* C I.J. O

Corollary 3.6.5. Suppose C' is an irreducible closed set containing at least one nor-
mal point. Let T be as in[3.6.3. Then each normal point in C' specialises to each

abnormal point in C.

Proof. Suppose (I,J) € C abnormal with I#* = J# = p. In order to show that a
normal point (K, L) € C specialises to (I, J), it is enough to show for all basic open
sets WL)\,g,h, if (I, J) € Wl,)\,g7h then (K, L) € W1,)\7gjh.
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Suppose (I,J) € Wixgn Then A\p D IJ D AghV and g,h € p. By lemma [3.6.4]
IJ 2D TpsoAp 2 Tp. Hence A ¢ T. Again, by [3.6.4 A\gh € IJ implies Agh € T. Now
suppose, for a contradiction, that p 2 T#. Then T(IJ)#* =Tp =T. So IJ =T, by
lemma m Hence T# = p. So T# D p. Therefore g,h € p implies g,h € T#. If
(K, L) € C is a normal point then K# O T# and L# D T#. So g € K# and h € L¥.

Hence (K, L) € Wy x40 So (K, L) specialises to (1, J). O

Lemma 3.6.6. Let C' be an irreducible closed set containing at least one normal

point. Let T be as in lemma|3.0.5. Then one of the following is true:

e For all normal (I,J) € C either [* = T# and J#* = T# or (I, J) is topologically

indistinguishable from (T, p) for some prime ideal p D T¥.

e For all normal (I,J) € C either [ = T# and J#* = T# or (I, J) is topologically

indistinguishable from (p,T) for some prime ideal p D T7.

Proof. Let C' be an irreducible closed set containing at least one normal point and let
T be as in lemma[3.6.3] Note that if C'is an irreducible closed set and (I, J) € C' then
I# 2> T#, J# O T# and either [* = T# or J# = T# since I* N J#* = (I1J)# =T%#.

Suppose, for a contradiction, that there exists (I,J) € C' and (K, L) € C both
normal points such that I# O T# and L# D T#. Then I#* N L#* D T#. Take
te I*NL#A\T# and pu € T. Then pu = tr for some r € T#. So (I,.J) € Wi 1., and
(K,L) € Wy 1,4 Hence COWy 1, :MWi 14, # 0. Butif (M, N) € COWy 1 MWi140
then t € M# and t € N# so N# D T# and M# 2 T# hence (M, N) is an abnormal
point. So by lemmam, T(NM)* C NM CT but T(NM)# =T so MN =T, a
contradiction.

Therefore if (I, J), (K, L) € C and both are normal points such that I#UJ# D T#
and K#*UL# D T# then either I# D T# K# D T# and J* = L# = T# or J# D T¥,
L# D T# and I* = K# =T%#.

It remains to show that if (I, ) € C' a normal point and I# 2 T# then (I,.J) is
topologically indistinguishable from (I#,T). Note that (1, J) € Wi 4 if and only
ifA¢[J =T, \ghell=T,gel*andheJ*=T#%and I# ,T) € Wirgn if
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and only if \ @ [#*T =T, A\gh € [*T =T, g € I and h € T#. Therefore (I, J) and

(I#,T) are topologically indistinguishable. O

Lemma 3.6.7. Let {p; | i € T} be a set of prime ideals of V' and let T be an ideal of
V such that T# C p; for each i € 3. If C is a closed set in Zgy, such that (T,p;) € C

for alli € T then (T,Uesp;) € C

Proof. Suppose A € V non-zero and g,h € m are such that (T, U;esp;) € Wi gn-
Since (T, Usesp;) is a normal point A ¢ T, A\gh € T, g € T# and h € U;csp;. Therefore

h € p; for some i € T so (T,p;) € Wi xgn- O
Definition 3.6.8. Let p,q <V be prime ideals. Then
Xoa=A{(I.J) € Zgy | I" =p and J* = q}.

Lemma 3.6.9. Let p <V be a prime ideal. Suppose C' is an irreducible closed set in

Zgy. Then all normal points in X, , N C are topologically indistinguishable.

Proof. Suppose p <1V is a prime ideal. Let T be as in lemma Suppose (I, J) €
C' N X,, is a normal point in Zg,,. Then for all A € V\{0} and g,h € m, (I,J) €
Wiagn if and only if X ¢ I[J =T, A\gh € IJ =T and g,h € I* = J# = p. Since
whether (1, J) is in W) 5 4 depends only on 7" and p, all normal points in C' N X, ,

must be topologically indistinguishable. O

Proposition 3.6.10. Let C' be an irreducible closed set containing at least one normal

point. Then C' has a generic point.

Proof. Let T be as in lemma Without loss of generality we may assume that
for all normal points (I, J) € C either I# = T# and J# = T# or (I, J) topologically
indistinguishable from (T, p) where T# C p is a prime ideal (see lemma [3.6.6).

First suppose all normal (I,J) € C have I# = T# and J#* = T#. By lemma
, C' contains at most one normal point (up to topological indistinguishability).
By lemma this normal points specialises to all abnormal points in C'. Hence C'

has a generic point.

58



Now suppose there exists at least one point (T,p) € C with p D T#. Let J
index prime ideals p; such that (T,p;) € C with p; 2 T#. Then by lemma m
(T, Ujesp) € C. It remains to show that (7', U;csp) specialises to all points in C'. This
follows for abnormal points by Suppose (I, J) € C is a normal point. Then
either I# = T# and J# = T% or (I,.J) is topologically indistinguishable from (T’ p;)
for some i € J. Therefore if (I,.J) € Wy ,n then A\ & T, A\gh € T, g € I* and
h € J#. So g€ T# and h € p; for some i € J. Therefore h € U;cyp;. So, noting that
T - (Uiespi) = T and (T, U;ezp;) is a normal point, (T, U;espi) € Wi gn. Therefore

(T, Uiesp;) specialises to (I, J). Hence C has generic point (T, U;esp;). ]

Lemma 3.6.11. Let C' be an wrreducible closed set of Zg,, containing only abnormal
points. Then for each prime ideal p <V, all points in C'N X, , are topologically

indistinguishable.

Proof. Suppose p <V is a prime ideal such that p* = p and C' N X,, # 0. Suppose,
for a contradiction, (I, J),(K,L) € CNX,, with IJ C KL. As noted earlier (see
proof of since (I, J) and (K, L) are abnormal there exists a,b € V such that
IJ = ap and KL = bp. Since p?> = p there exists ¢ € p such that ap C cp C bp.
Therefore (I,J) € W) .00 and since p = p? there exists 71,72 € p such that 1,79 = ¢
50 (K,L) € Wi But Wi .00 M Wi14 4 = 0, contradicting the irreducibility
of C. Therefore IJ = KL. So, using proposition and lemma [3.5.24] (1, J) is
topologically indistinguishable from (K, L).

Suppose p<1V is a prime ideal such that p? # p and CNX,, # 0. Choose k € p\p*.
Let a,b € V be such that (p,ap), (p,bp) € C. First suppose ap 2 akp 2 bp. Then
ak® ¢ bp and ak* € ap®. Hence (p,bp) € Wi ar200 and (p,ap) € Wi 1. But this
contradicts irreducibility of C' since Wi 4x2.00 N Wi 1 ko = 0.

Next suppose that bp = akp. Then (p,akp) € Wi ko0 and (p,ap) € Wi 1k ak-
Suppose (I,J) € Wi 1 xak N Wiakoo N C is abnormal. Then I# = J# = q for some
prime ideal q and q 2 p. Suppose q*> = q. Then (I, J) is topologically indistinguish-
able from (19, q) for some v € q.

Claim: Either vq 2 ap® or ap® 2 I1.
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Suppose I? D ap®. Then vq = Iq 2 ap*q = ap®. Therefore yq 2 ap®.

If vq 2 ap? take p € ~q, p ¢ ap? and uy,pus € q such that pius = p. So
(p,akp) € Wi 00 and (13,9) € Wh1 e But Wiy e D Wi = 0, contradicting
irreducibility of C. If ap® 2 I% take p € ap®, p ¢ I3 and py,pp € p such that
pape = p. Then (p,ap) € Wi, 4, and (If'/7 q) € Wi u00- But Wit Wi 00 = 0,
contradicting irreducibility of C'.

Next suppose q? # q. Then (I, .J) is topologically indistinguishable from a point

of the form (g, cq) for some ¢ € q.

Claim:Either cq? 2 ap? or ap? D cq

Suppose ap? C cq. Then ap?q C cq? but since q 2 p, ap?q = ap®. Therefore ap? C cq?
since q 2 p. Hence ap? C cq?, again since q D p.

If cq? D ap® take t € cq®, t ¢ ap® = akp and ti,ty € q such that t1t, = t. So
(p,akp) € W00 and (q,¢q) € Wi 1. But Wi00 N Wiis, 1, = 0, contradicting
irreducibility of C. If ap? 2 cq take t € ap? t ¢ cq and t;,to € p such that
tita = t. So (q,¢q) € Wiropo and (p,ap) € Wit 1, But W00 " Wiiss, = 0,
contradicting irreducibility of C'. Therefore all points in C'N X, , are topologically

indistinguishable. O

Lemma 3.6.12. Suppose p 2D q are prime ideals in V, v € V and J <V with J# = q.

Then vp D J implies yp? D J.
Proof. Suppose j € J. Take t € p\q. Then j = tj’ for some j' € J. Hence j’' € vp so
j=j't €yp> O

Lemma 3.6.13. Let p,q <V be prime ideals with p 2 q. Suppose (I,p) € X, , is an
abnormal point and I C q. Then there exists (J,q) € Xqq such that (I,p) € cl(J,q).

Proof. We split the proof into 4 cases:

Case 1: p* = p and ¢° = q.

If (I,p) is an abnormal point there exists v € p such that I = I¥. Note that v € g
and let J = II. Then (J,q) € Wi, if and only if X ¢ J, Agh € Jq and g,h € q.
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Note that I3 2 IF so A ¢ I¥ and Ip = vp 2 vq = Jq so A\gh € vp. Since p 2 q,
g,h € p. Hence (I,p) € Wi gn-

Case 2: p* =p and ¢* # q.

If (1,p) is an abnormal point there exists v € V' such that I} = I. Note that I} C g
implies v € q. If 7 ¢ g* let v/ = 1 and k = v, otherwise take k € q\g?, then there
exists v/ € V such that k7' = 7. Note that, in either case, 7'q? = ~vq and v € 7q.
Let J =+q.

Suppose (J,q) € Wi gn Then X ¢ ~'q, Agh € 7/9*> = vq and ¢,h € q. Hence
Agh € ~p since vp 2 vq and g,h € p since p 2 q. It remains to show that A ¢ I¥,
equivalently, v € Ap. But A ¢ 7/q and v € +'q. Therefore v € Aq. So v € Ap since
Aq C Ap. Hence (I,p) € Wi s g
Case 3: p* # p and ¢° = q.

If (1,p) is an abnormal point there exists v € V such that I = yp. Let J = II. Then
(J,q) € Wi g implies that A ¢ I3, Agh € yq and g, h € q. Therefore A ¢ vp since

I8 2 p, Agh € yp* since vq € yp® and g, h € p since q C p. Hence (I,p) € Wi g

Case 4: p* # p and ¢* # q.

If (I, p) is an abnormal point there exists v € V such that I = vp, in fact vy € q since
I Cq. If v € g% take k € q\g? then v = +'k for some 4" € V, otherwise let k = v and
v =1. Let J =+'q. Note that vq = v'kq hence v'q 2 vp = 7'kp since k € q.

Then (J,q) € Wy rgn implies A ¢ J, Agh € Jq and ¢, h € q. Therefore A ¢ vp
since J D vp, Agh € yp? since vp? 2 Jq = +'q* = vq (by lemma[3.6.12) and g,h € p
since q C p. Hence (I,p) € Wi\ gh-

0]

Proposition 3.6.14. Let C' be an irreducible closed set containing only abnormal

points. Then C has a generic point.

Proof. Let J be a totally ordered set indexing the prime ideals p; with C N X, ,, # 0
such that ¢ > j if and only if p; 2 p;. For all i € 7, let J; = I}? for some a; € p; where

(I p;) € Cif p? = p; and J; = a;p; where (a;p;,p;) € C otherwise. We can do this
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since an abnormal point (I,.J) with I# = J# = p is topologically indistinguishable
from (I, p) for some a € p if p?> = p and if p* # p then (I,J) ~ (p,ap) for some
aeV.
Claim: If 7 > j then J; C J;.
Suppose @ > j and J; 2 J;. Take v € p;\p; and ¢ € J;. Then ¢ = yu for some
p € Jj. Hence p € J; sot = yu € Jip;. Therefore J;p; O J;. Hence J;p; 2 J; since
p; # p;. Take A € J;p;\J;, a € J; and b € p; such that ab = A. Then (J;,p;) € Wi1.ap
and (Jj,p;) € Wi, contradicting irreducibility of C' since Wi 146 N Wir00 = 0.
Therefore if ¢ > j then J; C J;.
Claim: (Nies i, Uieapi) € C
Let A € V\{0} and g, h € m. Suppose (NiczJ;, Uicapi) € Wi rgn- Then

(Nieadi, Uieapi) € Wiro0, Agh € (Niexdi)(Uieabs), g € (Niea ;)™ and h € Ujeap;.

We aim to show that there exists ¢ € J such that (J;,p;) € Wi gn-

First note that (N;eyJ;)# C Uiesps. To see this, suppose that x € (M;e5J;)#. Then
there exists v ¢ (M;ezJ;) such that 7y € (Njes ;). So xy € J; for alli € T and v ¢ Jj
for some k € J. Hence x € J,f.

Therefore g € (N;eyJ;)* implies g € p; for some i € J. Note also that h € U;esp;
implies h € p; for some i € J.

Suppose, for a contradiction, that (J;,p;) ¢ Wi for all ¢ € 3. Then A\ € J;
for all i € 3. So A € Njesd;. Since (Niex i, Uicapi) € Wingns A € (NieaJi)(Uieahs)-
Therefore Mics i 2 (Miesdi)(Uieapi).  So either Uiesp; € (Nies ;)™ contradicting
(Nic3i)® C Uieap; or (MicaJi)® = Uieapi. If (Uieahi)? = Uieap; then (Mg J;) = Iie®
for some r € U;c3p;, by . Otherwise (U;esp;i)? # Uieaps. Hence (Nies i, Uieapsi) €
Wi implies A ¢ Nje3J;. Therefore A ¢ J; for some j € J. Since ¢ > j implies
J; C J;, there exists j € J such that A ¢ J; for all ¢ > j.

If A\gh € (NierJ;)(Uieap;) then Agh = ts for some t € (Ner;) and s € (Uieah;).
Therefore there exists ¢ € J such that s € p; for all 5 > 7. So since ¢ € J; for all

Jj €T, Agh =ts e Jjp; for all j > i.
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Therefore there exists i € J such that (J;, p;) € Wi 4.n. Hence for all closed sets
C, (Jl,p,) cCforallied implies (miejJi, Uiejpi) eC.
It remains to show that (N;e3J;, Uijesp;) is a generic point for C'. This follows from

[3.6.13 and 3.6.111

O
Theorem 3.6.15. Let V' be a valuation domain. Then Zgy, is sober.
Proof. Follows directly from proposition and proposition [3.6.10} O]

Definition 3.6.16. An integral domain R is called a Prifer domain if its localisations

at all maximal ideals are valuation domains.
Theorem 3.6.17. Let R be a Prifer domain. Then Zgp s sober.

Proof. By lemma [2.3.28| Zgp is sober if and only if Zgy is sober for all maximal
ideals m <« R. So by theorem [3.6.15 Zg is sober. O
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Chapter 4

Decidability

Convention: Throughout this chapter we will use a naive notion of cardinality.
That is, if X, Y are sets then |X| = |Y'| means, if either X or Y is of finite cardinality
then their cardinality is equal.

Suppose R is a commutative ring and I <t R. The radical of I is the following set

rad(I) = {r € R | there exists n € N such that r" € '}

Note that for any commutative ring R and I < R, rad(]) is the intersection of all
prime ideals containing I.

The following statement was conjectured for valuation domain with dense value

group in [PPTO7].

Theorem 4.0.1. Let V' be an effectively given valuation domain. Then the following

are equivalent:
1. The theory of V-modules, Ty, is decidable
2. There is an algorithm which, given a,b € V decides whether a € rad(b).

The aim of this chapter is to prove the above theorem. The key step in proving
this theorem is to show that there is an algorithm which answers whether one Ziegler

basic open set (7%) is contained in a finite union U:;l(%) of Ziegler basic open sets.
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We largely follow the structure of the proof given in [PPT07]. In fact, the only
ingredient needed to extend the proof given in [PPT07] for archimedean valuation
domains to valuation domains with dense value group is an algorithm to effectively
decide when a basic Ziegler open set is contained in a finite union of other basic
Ziegler open sets. Both our decidability proof and the proof given in [PPT07] are

inspired by a remark in [Zie84] (immediately before example 9.5).

Definition 4.0.2. A valuation domain V is said to be effectively given if it has
a byection with N such that the maximal ideal s a recursive set and addition and
multiplication are recursive functions. Note that this of course implies we can decide

equality of ring elements.

4.1 Necessary conditions for the theory of mod-
ules of a commutative ring to be decidable

It only makes sense to talk about decidability of the theory of V-modules for countable

rings, as otherwise the language is uncountable.

Lemma 4.1.1. Let V be an effectively given valuation domain. Then there is an

algorithm which decides, given a,b € V whether alb and if so gives the quotient.

Proof. Since V is effectively given, we have a bijection between V and N and multi-
plication is a recursive function. Take the first element \; on the list of elements of
V', ask whether a.\; = b, if not ask whether bA; = a. Continue with all elements \;
until we find an 7 € N such that a)\; = b or bA; = a. We will find such an i because
for all a,b € V either alb or b|a.

If this process ends by finding an i such that a\; = b then a|b and )\; is the
quotient.

If this process ends by finding an i such that bA; = a, check if A\; € m. We can do
this since m is a recursive set. If A\; € m then a does not divide b. If A; ¢ m then a
divides b and it remains to find the quotient. To do this simply search through the
list of € V until we find a p such that ap = b. ]
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Proposition 4.1.2. Let R be a countable commutative ring with decidable theory
of modules. Then multiplication and addition are recursive function and there is an

algorithm which, given a,b € V', answers whether alb.
Proof. Let r,s,t € R. Then r + s =t if and only if

Tr = Va(or +zs = xt).
Let r,s,t € R. Then rs =t if and only if

Tr = Vady(ar =y Ays = xt).
Let r,s € R. Then r|s if and only if
Tg = YxIy(yr = xs).
O

Proposition 4.1.3. Let R be a countable commutative ring with a decidable theory
of modules. Then there is an algorithm which, given a,b € V decides whether a €

rad(bR).
Proof. Claim:
Tp=Jox(x #0AN2b=0) = Jy(y # 0 A za =0)
if and only if
a € rad(bR).

First suppose that a € rad(b), so there exists an n € N such that a" € bV. Suppose
N is an R-module and x € N such that x # 0 and xb = 0. Then xa™ = 0. Take m
least such that za™ = 0, then (za™ ')a = 0 and xa™ ! # 0.

Now suppose that
Tr = Jx(x #0AN2b=0) — Jy(y # 0 Aza =0).

Let p < R be a prime ideal such that b € p. Then 1+ p € R/p is annihilated by b
and non-zero. Hence there exists y € V\p such that ay € p. Therefore a € p. So
a € p for every prime ideal p containing b. Hence a € rad(bV') since rad(bV) is the

intersection of all prime ideals containing b. [

66



4.2 Algorithms

In this section we show that if V' is an effectively given valuation domain with an
algorithm which, given a,b € V, answers whether a € rad(bV') then there exists an

algorithm which given n € N, a pp-pair ¢/v and n pp-pairs 9, /¢;, answers whether

(£)<U(E)
v) =Yg
For any n € N, pp-1-formulae ¢, and pp-1-formulae 9;,¢§; for 0 < i < n, T

= (‘%‘ >1ANAL = 1) is equivalent to (%) C Ui, <%) . Hence, decidability

of T implies we can effectively decide whether (%) C U, <%>

9y
&i

Lemma 4.2.1. Let V' be an effectively given valuation domain. There exists an
algorithm which, given a pp-1-formula ¢, produces a formula of the form > (xa; =

0 A bj|x) equivalent to ¢.

Proof. Since V' is effectively given its theory of modules is recursively axiomatisable,
so we have an algorithm which lists sentences true in all V-modules. By lemma|3.2.5]
we know that there exists a formula of the form "  (za; = 0 A b;|x) equivalent to
¢. Hence we need only look down the list of sentences true in all V-modules until we

find one of the form:

Va <q§(az) “ Zn:(xai =0A bJ:c))

i=1
for some n € N and a;,b; € V. O
Lemma 4.2.2. Let V' be an effectively given valuation domain. There exists an
algorithm which, given a pp-1-formula ¢, produces a formula of the form \;_, (va; =

0+ bi|z) equivalent to ¢.

Proof. Since V' is effectively given its theory of modules is recursively axiomatisable,
so we have an algorithm which lists sentences true in all V-modules. By lemma |3.2.3]
we know that there exists a formula of the form A]_,(za; = 0+ b;|z) equivalent to
¢. Hence we need only look down the list of sentences true in all V-modules until we

find one of the form:

Va <¢(x) “ /\(:cai =0+ bz|x)>



for some n € N and a;,b; € V. O

The algorithms described above would be rather inefficient. There is a possibly
more efficient algorithm which would be based on diagonalising a matrix over a val-
uation domain. The proof of clearly shows that diagonalisation is an effective
process. Plus, taking the dual of a pp-formula is also clearly effective. The above two
lemmas were proved this way in [PPT07].

Recall that, lemma the sets W40 were originally sets of isomorphism

classes of indecomposable pure-injective modules.

Corollary 4.2.3. Let V' be an effectively given valuation domain. Then there exists
an algorithm which, given ¢/v a pp-pair, returns the symbol O if (%) 15 empty and

otherwise returns n € N, a;,b; € V\{0} and g;, h; € m such that

Proof. By lemma we can effectively rewrite ¢ as Y. (a;x = 0 A b;|z) for some
n € N and a;,b; € V for 0 < 7 < n and by lemma we can effectively rewrite v
as \j_,(cjz = 0+ d;|z) for some m € N and ¢;,d; € V for 0 < j < m. Lemmam
states that the pp-definable subgroups of an indecomposable pure-injective module

are totally ordered. Therefore, for any indecomposable pure-injective module N,

N e (%) if and only if N € (%) for some 0 <7 <n and 0 < j < m. Hence

o\ za; = 0N\ b|x
(E)__LJ(H%:O**%W>‘

,J

By lemma [3.3.9 (fgzgf;gl'g) is empty if and only if & ¢ ym, § ¢ fm, § =0 or

~v = 0. Hence for each 0 < 7 < n and 0 < j < m either <%> is empty and
this can be effectively checked or (%) = We, biai/e;d; b and a;/c; and d;/b;

can be effectively calculated.

Definition 4.2.4. Suppose x,y € V. We define < x,y > as

y/z if oy,
< T,y >=

x/y otherwise
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Definition 4.2.5. Lett € V. Denote by p; the radical of tV'.

Lemma 4.2.6. For anyt € V, p; 1s a prime ideal and hence is the smallest prime

1deal containing t.

Proof. Recall that the radical of an ideal is the intersection of all prime ideals con-
taining it. Since V is a valuation domain these prime ideals are totally ordered. The
intersection of any chain of prime ideals is prime. Hence the radical of any ideal in a

valuation domain is prime. O

Lemma 4.2.7. Let n be a natural number, A € V\{0}, g,h € m and for each
natural number 0 < ¢ < n let p; € V\{0}, a;,b; € m. If there exists (I, J) a normal
point such that (I, J) € Wixgn and (I, J) ¢ U, Wh ps.asp: then there exists a point
(K,L) € Wiagn and (K, L) ¢ Ur; Wi psaip; Such that K# = p, L¥* = p, where

r=<ux,y>emand s =< u,w >€m and x,y,u,w are taken from the set
{miaib; , i | 0<i<n}U{l,X,g,h, Agh}.

Proof. First, recall that for any normal point (I, J), (I,J) ¢ Wi . if and only if
either y € I.J, pab ¢ IJ, a & I# or b ¢ J#. Therefore, if (1,.J) & U, Wi ;.a:6; then
for each 0 < i < m, either u; € I.J, wa;b; & IJ, a; ¢ I# or b; ¢ J7*.

We now choose a, b, u,d € V as follows:

Suppose there exists 0 < i < n such that a; ¢ I#. Let a be such that a ¢ I7,
a; = a for some 0 < ¢ < n and a; divides a for all a; ¢ I7. If, for all 0 < i < n,
a; € I then let a = 1. Note, this means for any ideal K if a ¢ K and a; ¢ I* then
a; ¢ K.

Suppose there exists 0 < i < n such that b; ¢ J#. Let b be such that b ¢ J#,
b = b; for some 0 < i < n and b; divides b for all 0 < i < n such that b; ¢ J# . 1If for
all 0 < i < n, b; € J# then let b = 1. Note, this means for any ideal K if b ¢ K and
0 < i < nissuch that b; ¢ J# then b, ¢ K.

Suppose there exists 0 < ¢ < n such that u; € I.J. Let u = p; for some 0 <i <n

such that p; € I.J and p divides p; for all 0 <@ < n with u; € IJ. Ifforall 0 <7 < n,
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p; & IJ, let p = 0. Note, this means for any ideal K, if p € K and 0 < i < n is such
that p; € I.J then u; € K.

Suppose there exists 0 < i < n such that p;a;b; ¢ I.J. Let d = p;a;b; for some
0 < i < nsuch that p;a;b; ¢ 1J and p;a;b; divides d for all 0 < i < n with p;a;b; & I.J.
If for all 0 < i < n, wab; € 1J, let d = 1. Note, this means for any ideal K, if d ¢ K
and 0 < i < n is such that p;a;b; ¢ IJ then p;a;b; ¢ K.

Note that for any point (K, L), if p # 0 then (K, L) & Wi .00, d ¢ KL, a ¢ K#
and b ¢ L# implies (K, L) & Wi ,, 0,0, for all 0 < i < n and if 4 = 0 then d ¢ KL,
a ¢ K# and b ¢ L* implies (K, L) & Wi i, 0,0, for all 0 < i < n.

We now choose py,ps,t € V as follows:

If d divides A, let p; = A, otherwise let p; = d. Note that for any ideal K, p; ¢ K
implies A ¢ K and d ¢ K. If p divides Agh, let py = p, otherwise let ps = Agh.
Note that for any ideal K, p; € K implies u € K and Agh € K. Since p; ¢ I.J and
p2 € IJ, there exists t € (IJ)#* = I* N J# such that p, = pyt.

First observe that a ¢ p, and a ¢ p, since t € I#, g € I* and a ¢ I*. Similarly,

b¢p,and b ¢ py.

We split the rest of the proof into two cases.

Case 1: pg Upe # pr, U pe or Py Upe = P, Upe and (pg Upy)® = py U pe

Then (pgUpe, p1(prUpe)) is a normal point and (pgUpy).(prUpe) = (PgUp:)N(prUpe)
80t € (pg Upe)-(pr U o).

The point (py U pe, p1(pr U pe)) € Wiagn since g € p, Ups; h € pp, Uy p1 ¢
P1(PgUP:).(pnUp:) implies A & p1(pg Ups).(prUp:) and py = pit € pi(p,Ups).(PrUp:)
implies Agh € p1(pyUp:).(prUP:). It remains to show (pyUpe, p1(prUp:)) & Wi i a0
for all 7.

We have shown that a ¢ p, Upy, b & pp Up,. Since pr & pi(pg U pe) - (pr U pe),
d & pi(pg U pe) - (pn Upy). Since pz € pi(pg Upe) - (b U pe), 11 € palpg U pe) - (b U ).
Therefore either 1 =0 or (py Ut p1(pn Upi)) & Wi since (py U ps, py(ps U ) is
a normal point. Therefore, for all 0 < i < n, (pg U pe, p1(Pr UPs)) € Wi a06s-

Case 2: p=p,Up, =p, Up, and p* #p
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Observe that for any = € V, in order to show that (p,mp) € Wy \ 4 and (p, mp) ¢
Wi i aib; We must show that A & 7p, u € mp, Agh € mp? and d ¢ 7p>.

It is clear that A & pip, u € pip and d & pip?. If Agh € pip?, let m = p;.
Otherwise, Agh ¢ p;p?. Then X\ ¢ p,V since gh € p?. Therefore p; = \y for some
v e m.

Now Agh & A\yp? so gh ¢ yp?. So v € p since gh € p*.

Since v € p, there exists 7 € p\p? and k € V such that v = 7k. This means that
kp? = vp. Hence M\kp? = A\yp = p1p. Therefore A\gh € \kp? = pip since py € pib.

It remains to show that X\ ¢ Mkp, p € Mkp and d ¢ Akp?. Since py € pip,
p € pip = M\kp? C Akp. Since p; € pip, d & M\kp? = pip and A € Akp. Let m = k.

Therefore there exists a m € V such that (p,mp) € Wi\ gn and (p, 7p) € Wi 4, as s
forall 0 <17 <mn.

Finally note that p; U p, = p, and p, U p, = ps for some r =< z,y > and

s =< u,v > where x,y,v,u are taken from the set:
[

Lemma 4.2.8. Let n be a natural number, A\ € V\{0} and g,h € m and for each
natural number 0 < i < n let p; € V\{0} and a;,b; € m. If there exists (I,J)
an abnormal point such that (I, J) € Wixgn and (1, J) & Ui Wi ui.aip; then there
exists a point (K,L) € Wisgn and (K,L) & U, Whiab; Such that K# = p,

L# =p, wherer =< x,y > and s =< u,w > and x,y,u,w are taken from the set

Proof. First note that since (I, J) is abnormal I# = J# let p = I*.

We now choose a, b, i, d € V as follows:

Suppose there exists 0 < ¢ < n such that a; ¢ p. Let a be such that a ¢ p, a; = a
for some 0 < i < n and a; divides a for all a; ¢ p. If for all 0 < i < n, a; € p then let

a = 1. Note, this means for any ideal K if a ¢ K and a; ¢ p then a; ¢ K.
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Suppose there exists 0 < ¢ < n such that b; ¢ p. Let b be such that b ¢ p, b = b;
for some 0 < ¢ < n and b; divides b for all 0 < ¢ < n such that b; ¢ p. If for all
0 <i<mn,b; €pthen let b = 1. Note, this means for any ideal K, if b ¢ K and
b; ¢ p then b; ¢ K.

Suppose there exists 0 < i < n such that (I,J) ¢ Wi, 00. Let p = p; for
some 0 < ¢ < n such that (I,J) € Wi 4,00 and p divides p; for all 0 < 4 < n such
(£, J) & Wiu.00-

Note, this means for any pair (K, L) ¢ Wi .00, if 0 < ¢ < n is such that (I, J) ¢
Wi ;00 then (K, L) € Wi 00 fforall 0 < i <mn, (I,J) € Wi, 00, let p=0.

Suppose there exists 0 < i < n such that p;a;b; ¢ I.J. Let d = p;a;b; for some
0 < i < n such that pab; ¢ I.J and p;a;b; divides d for all pa;b; ¢ I.J. Note,
this means for any ideal K, if d ¢ K and 0 < i < n is such that p;a;b; ¢ I1.J then
piab; ¢ K. If for all 0 < i <mn, pab; € 1.J,let d = 1.

If 4 € IJ then precede as in the proof of lemma [4.2.7] Otherwise, A\p 2 dp =
up = I1J D AghV and p # 0. Note that p € p since p D A\p D up.

We now choose t € V and v € V' as follows:

Let t € V be such that d = A\t and v € V such that A\gh = py. Note that since
t,v,9.he€p, a,bgp,Up, Up,Up,. Let q=p,Up, Up,Up,. Then either p = q so
dq=pgorqC psodq=dpg=ppg=pq.

Note that t =< d,\ > and d = 1 or d = p;a;b; for some 0 < i < n. Note
that v =< Agh,u > and p = p; for some 0 < 7 < n. Therefore q = p, for some

r =< x,y > where x,y are taken from the set:

Case 1: q = ¢°

Consider (I],q). Then A\ ¢ I (since d € \q), A\gh € Ilq =dq, g € qand h € q so

(I1,q) € Wi gn by lemmas [3.5.6( and (3.5.21]

Then p € I (since d ¢ pq), d ¢ I]-q = dq, a ¢ q and b ¢ g. Therefore
(I3, q) € Wh s a0, for all 0 < i <n.

Case 2: q # q°.
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If d ¢ q?, consider (q,q). Then A ¢ q since d = M\t and t € q. Hence (q,q) € Wi gn
since A ¢ q, g € g and \h € q.

Since p € q,d ¢ q*, a ¢ qand b ¢ q, by lemmas3.5.6/and [3.5.18} (q,q) & Wi, a;.0:

forall 0 < i <n.

If d € ¢%, take 7 € q\q? then there exists k € V such that d = 7k. Hence dq = kq?.
Consider (q,kq).

Then Agh € kq*> = dq. Since 7 ¢ q*, 7 ¢ tq because t € q. Therefore A7 ¢ Atq
hence A7 ¢ dq. Therefore A7 ¢ 7kq so A ¢ kq.

Therefore, by lemma and lemma [3.5.18, (q,kq) € Wi x4 since g, h € q.

It remains to show that (q,%kq) & Wi, 6,0, for all 0 < i < n. By lemmas [3.5.6]
and it is enough to show that u € kq and d ¢ kq? since a,b ¢ q. Suppose
w & kqthen pug O kq 2 k7q = dq, a contradiction. Therefore p € kq. Since kq? = dq,
d ¢ kq®. Therefore (q,kq) ¢ Wi ;0,0 for all 0 < i < n.

[

Lemma 4.2.9. Let V be an effectively given valuation domain. Suppose p,q <1V are
prime ideals and that p C q. Suppose there is an algorithm that given a € V', answers
whether a € p and an algorithm that given b € V', answers whether b € q. Then
for any natural number n there is an algorithm that given X, py, .....pt, € V\{0} and

n
g,h,ai1,...,an, b1, ...,b, € m, answers whether W x g0 N Xp.q € Uiy Wi st N Xpg-

Proof. First note that, by lemma [£.1.2] if there is an algorithm that, given a € V,
answers whether a € p then there is an algorithm that, given a,b € V, answers
whether a € bp.

Suppose n is a fixed natural number. First we will describe an algorithm that,
given A, puy, ...t € V\{0}, g,a1,...,a, € p and h,by,....,b, € q, answers whether
Wingh N Xpg C Uiy Wi piaib; N Xpq- 1t is enough to describe such an algorithm as
ifagporbd¢qthen Wi, .pNXyq =0 forall pe V\{0}.

STEP 1 Let ¢ty =\ and 7 = 0.
STEP 2 If there does not exist 0 < i < n such that u; ¢ ¢;p and pa;b; € t;p
then FALSE. Otherwise, let i be the least ¢ such that p; ¢ t;p and p,a;b; € t;p. If
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Agh ¢ p;a;b;p then TRUE. Otherwise, set t;41 = p;a;b; and s;41 = ;. Then go back
to the start of STEP 2 with j increased by 1.

It is obvious that the above algorithm terminates since, for all values of j which occur,
t;p 2 tj11p and the values of ¢t; are taken from a finite set.

Suppose the above algorithm returns FALSE. We must show there exists a point
(I,J) € X, qsuch that (I,J) € Wign and (I, J) & Wy 4, 6, Tor all 0 < i <mn.

Suppose the algorithm returns FALSE when j = 0. Then (p, Aq) € Wi 4 since
A& \q, g €pand A\h € \q. Note that, since p C q, p-q = p. For all 0 < i < n, either
pi € Ap = Apq or pab; ¢ Ap = Apq. Therefore (p, \q) € Wi ,.a,5, for all 0 <i < n.

Suppose the algorithm returns FALSE when j # 0. Then Agh € t;p = t;pq and
Ap 2 tip = t;pq so A ¢ t;pq therefore (¢;p,q) € Wi 4n and there does not exist an
0 < < n such that p; ¢ t;p = t;pq and pa;b; € t;p = t;pq so (¢;p,q) € Wi 0.6, fOr
all 0 <7 <n.

Suppose the above algorithm returns TRUE. We must show Wi gn N Xpq C
Uy Wiaib N Xpq. Suppose (1,J) € Wiagn, I# =p and J# = q. Then (I, J) is
normal since p # q. Therefore A\ ¢ I.J and Agh € I.J. It is enough to show that there
exists an j such that s; ¢ I.J and t; € IJ.

Let k be the value of j at which the algorithm terminates, then there is an i such
that Agh ¢ pa;b;p and pab; € typ. Using Agh € IJ and Agh ¢ p;a;b;p we get
piab; € IJ. Note p; ¢ tip so either ty, € IJ or pu; ¢ IJ. If p; ¢ IJ and pab; € IJ
then we are done. So suppose ty € I.J. Hence if s ¢ IJ we are done. So assume
s € IJ. Observe that s; ¢ I.J since A ¢ IJ and s; ¢ A\p. Therefore there exists
a j such that s; ¢ IJ and s;;; € IJ. Note that s;;; € IJ implies ¢; € IJ since
Sj+1 ¢ t;p. Hence s; ¢ IJ and t; € 1.J.

Definition 4.2.10. Let a,b €V and p <V be prime. We write
a <, b if and only if b € ap

and

a =, b if and only if ap = bp.
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Definition 4.2.11. Let p <V be prime, t € V and s € p. We define
(t,st)y :={reV |t<,r<,st}

and

[t,stly ={reV |t<,r<, st}

Proposition 4.2.12. Suppose p <V is prime, n € N, Ay, ..., pun € V\{0} and

g,h,ay,...,an,b1,....b, € p. Then the following are equivalent:
n
(A, Agh), U i, f1i0iD; )

n
Wl,k,g,h N Xp,p < U le#iaaivbi N Xp,p‘

i=1
Proof. (1)= (2) Suppose (A, Agh), C U™, (i, priaibi)p-

Suppose first that (7, J) is a normal point in X, ,, recall that this means p? = p.
Suppose for a contradiction that (I,J) € Wi gp and (I,J) & Wi a0 for all
0 <i <mn. Then for all 0 < i < n either y; € I.J or pa;b; ¢ I.J.

Let k; € V be such that

V=) wmV

wi€lJ

or 0if p; ¢ I.J for all i. So p; € I.J implies p; € k1V hence p; >, ky
Let ks € V be such that
kop = ﬂ pia;bip
wiaibi&IJ

or 1if p;a;b; € IJ for all i. So p;a;b; ¢ IJ implies p;a;b;p O kop hence ky >, p1;a,b;.

Claim: [k’g, kl]p N U(,u“ [Lz(lzbl)p = @

i=1
Suppose that ky <, [ <, kq, that is kyp D Ip D kip. Suppose for some 0 < ¢ < n

pi <p L. Then p; ¢ 1.J; for otherwise ky <, [. Therefore p;a;b; ¢ 1.J. So ky >, p1;a:b;.
Therefore [ ¢ (j;, 1;0;b; ).
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Claim: [ky, k1], N (A, Agh), # 0.

Let d € V be such that dV = k1V U AghV. So d € IJ since ky € IJ and Agh € 1J.
Let p € V be such that pp = ApNkap. Since A ¢ IJ and kg ¢ I.J, IJ C pp. Therefore
dV C IJ C pp. Hence, there exists § € p such that d = pd. Since p?> = p, there
exists 01,02 € p such that 6,00 = 0. Now d € pdip and pd; € pp. Hence ky € pdp,
Agh € porp, poy € Ap and pdy € kop. So pdy € (A, Agh), and péy € (K1, k2),.

Combining these two claims contradicts (A, Agh), € U, (p4, tia;b;),. Therefore
(I,J) € Wi 0:; for some 0 < i <n.

Suppose that (I, J) is an abnormal point, p*> = p and (I,J) € Wi 4, Then
(1,J) is topologically indistinguishable from (I?,p) for some vy € p by lemma .
Therefore (I,p) € Wingn 50 A ¢ IF and Agh € vp. Hence v € Ap and Agh € vp,
that is A <, v <, Agh. Therefore v € (4, p1;a;b;), for some i. Hence p1; <, v <, p;a;:b;
so p; ¢ I and pa;b; € vp. Therefore (I8, p) € Wh ;0,0 S0 (I, J) € Wi a0,

Suppose that (I, .J) is an abnormal point, p* # p and (I, J) € Wy 4. Then we
may assume [ = p and J = vp for some v € V. If (p,yp) € Wy gn then X & vp
and Agh € yp?. Take k € p\p® Then vk € A\p and Agh € vkp, so A <, 7k <, Agh.
Therefore vk € (p, pia;b;), for some 0 < i < n. Hence vk € p;p. Therefore vp C p;p,
so p; & vp and pab; € vkp = yp*. Hence (p,yp) € Wi ;0,0 by lemmas and
3.5.6l

(2)=(1) Suppose Wi x g0 N Xpp C U W1 piasb N Xpp-

Case 1: p* = p.
Take v € (A, Agh),. Then v € Ap. Hence A ¢ I¥ and Agh € yp. So (IF,p) € Wi gn-
Therefore (I¥,p) € Wi p;.0,6, for some 0 < i < n. Hence p; ¢ I, so v € p;p and

piaib; € yp. Therefore v € (i, pia;b;)p-

Case 2: p # p2.

Take v € (A, Agh), and let k& € p\p?. Then v € A\p and Agh € vp (hence v € p). First
suppose that v € p2. Then v = kt for some t € V. So X ¢ tp and A\gh € tp? = ~p.

Therefore (p,tp) € Wi\ gn. So there exists an 0 < ¢ < n such that (p,tp) € Wi ,.4,.b:-
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Hence p; ¢ tp. So v € wip and pab; € tp? = vp. Therefore v € (i, pia;b;),. Now
suppose that v € p\p? Then 7p = p? and X\ ¢ p. Therefore (p,p) € Wi gn S0
there exists an 0 < i < n such that (p,p) € Wi a- S0 pi & p and pa;b; € p2.
Therefore v € pp = p and wiab; € yp = p2. So v € (wi, pia;ibi)y.

O

Corollary 4.2.13. Let V be an effectively given valuation domain. Suppose p <1V is
a prime ideal. Suppose there is an algorithm that given a € V', answers whether a € p.
Then for any natural number n there is an algorithm that given X, py, .....p, € V\{0}
and g, h,ay, ..., a,, by, ...,b, € m, answers whether
Wingn N Xpp S Wipans N Xpp-
i=1

Proof. f g ¢ por h ¢ pthen Wi 5 gnNXpp =0. SO Wi 300N Xpp C Uiy Wi piaib: N
X p-

Suppose g, h € p. Then (p,Ap) € Wy g since g € p, A ¢ Ap and A\h € p. If,
for all 0 < ¢ < n, either a; ¢ p or b; ¢ p then U, Wi a0 N Xpp = 0. Hence
Wingn 0V Xpp € Uit Wipeann 0 Xpp-

Now suppose g, h € p and there exists 0 < ¢ < n such that a;,b; € p. Let J be the
set of all 0 < ¢ < n such that a;,b; € p. Then Wiy g0 N Xpp € Uy Whpsasb: N Xpp
if and only if Wixgn N Xpp € Uics Wiiais: N Xpp-

By proposition , Wingh N Xpp € Uics Wipnais: N Xpyp if and only if
(A Agh)p € Uses (i, priaibi)y.

The existence of an algorithm which, given a € V', answers whether a € p means,
since V' is effectively given, there exists an algorithm which, given a,b € V| answers
whether a € bp. Therefore, there is an algorithm which given A, puy, ..., . € V\{0}
and g, h, a1, ..., ax, by, ..., bp € p, answers whether (A, Agh), C (U, 7 (1, piaib;)y. ]

Lemma 4.2.14. Letn € N. Let V' be an effectively given valuation domain such that
there exists an algorithm which, given a,b € V', answers whether a € rad(bV'). Then

there exists an algorithm which, given a,b, oy, 5; € V\{0} and g, h,~;,d; € m for each
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0 < i <n, answers whether

n
Wapgh & UWaiﬁim,&"
=1

Proof. First note for any a,b € V\{0} and g,h € m, Wapgn = Wiabgn Sup-
pose n € N, A u; ¢ V\{0} and g,h,a;,b; € m. Let T = {< u,v >€ m | u,v €
{1, X,9,h, wab; , ;| 0 < i < n}t}. Note that T is a finite set and there is
an algorithm which, given A, g, h and u;, a;, b; for 0 < ¢ < n, computes 1" since the
function < , > and multiplication of ring elements is recursive.
Then in order to check whether
Wl,)\,g,h g U Wl,,u,',ai,bi
i=1
by lemma and lemma 4.2.8] it is enough to check
WL)\’guh ﬂ vaq g U Wlnuf'ivaiybi m Xpuq
i=1
for p =radtV and q =radsV for each t,s € T'.
By lemma {4.2.9[ and corollary [4.2.13| there exists an algorithm determining the

truth of the above statement. O]

Theorem 4.2.15. Let V' be an effectively given valuation domain with an algorithm
which, given a,b € V', answers whether a € rad(bV'). Let n € N. Then there is an

algorithm which, given ¢/v a pp-pair and 9;/&; a pp-pair for each 0 < i < n, answers

(F)=u(2)

Proof. By corollary |4.2.3] given a pp-pair ¢/¢ we can effectively check whether (%)

whether:

is non-empty.

Again using corollary 4.2.3| given a pp-pair ¢ /v, if <%) is non-empty we can

effectively find a;,b; € V\{0} and g¢;, h; € m such that:

(3) - L}JWaj,bmvhj
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and for each i, if <%> is non-empty we can effectively find o, g, Bix € V\{0} and

Viks 0ix € m such that:

v;
(g_ = U Wai,kyﬂi,kﬁi,kaéi,k
(]

ik

Therefore it is enough to check for each j whether:
Wa]-,bj,gj,hj g UWai,kaﬂi,ky'Yi,kv(Si,k'
ik

By lemma [4.2.14] there exists an algorithm which determines the truth of the

above statement.

4.3 Valuation domains with infinite residue field

In this section we prove theorem for valuation domains with infinite residue

field. This case is significantly easier than the case of valuation domains with finite

% is either 1 or

residue field since for all pp-formulae ¢, and all modules M,

infinite (corollary [4.3.2)).

Lemma 4.3.1. Let V' be a valuation domain with infinite residue field. Then all

non-zero V-modules have infinitely many elements.

Proof. First note that for any I <V, V/I is infinite since V/I surjectively maps
onto V/m. Suppose M is a non-zero V-module. Take non-zero m € M. Then

mV = V/annym. Therefore mV is infinite, so M is infinite. O

Corollary 4.3.2. Let V be a valuation domain with infinite residue field. Then for
all V-modules N and all pp-pairs ¢/ either |p(N)/Y(N)| = 1 or |¢p(N)/)(N)| is

infinite.

Theorem 4.3.3. Let V' be an effectively given valuation domain with infinite residue

field. Then the following are equivalent:

1. The theory of V-modules, Ty, is decidable.
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2. There exists an algorithm which, given a,b € V', answers whether a € rad(bV).

Proof. Let V' be an effectively given commutative valuation domain with infinite
residue field and an algorithm which, given a,b € V| answers whether a € rad(bV).
First note that since V is effectively given, Ty is recursively axiomatised. Hence we
have an algorithm which produces a list of sentences true in all V-modules. Since
Ty is not a complete theory, in order to show Ty, is decidable we need to effectively
produce a list of sentences which are false in some module. Equivalently, we need to
effectively produce a list of sentences which are true in at least one module.

By the Baur-Monk theorem every sentence is equivalent to a boolean combination
of invariants sentences.

Since Ty is effectively axiomatised, if x is a sentence in Ly then we can effec-
tively find a sentence #, a boolean combination of these invariants sentences, which
is equivalent to y in Ty. That is, we simply look down the list of sentences true in
all modules until we find one of the form x <+ 6 where 6 is of the correct form. The
Baur-Monk theorem ensures that we will find such a sentence.

Thus we may assume y = \/ 0y, a finite disjunction of conjunctions of invariants
sentences and their negations. Suppose M, = o3 for some h, then M), = \/ op.
Therefore we may assume y is a conjunction of invariants sentences and their nega-
tions. Since V' has infinite residue field, if ¢/t is a pp-pair and n € N then the
invariants sentence |¢/1| > n is equivalent to the invariants sentence |¢/1| > 1. So

we may assume Y is a conjunction of the following sentences:
L |¢i/i] > 1.
2. |9;/&1 = 1.

where n,m € N, ¢;,; are pp-1-formulae for 0 < ¢ < n and 9;,¢; are pp-1-formulae
for 0 <j <m.

We may now assume that (1) contains at most one sentence, otherwise it is enough
to find a V-module M; for each 0 < ¢ < n which satisfies |¢;/¢;| > 1 and [9;/¢;| =1
for all 0 < j < m as then @@, M; satisfies |¢;/1;| > 1 and |¢,/§;| =1forall 0 <i <n

and 0 < 7 < m.
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Recall that every module is elementary equivalent to a direct sum of indecompos-
able pure-injective modules. Suppose M = @, Ny, is a direct sum of indecomposable
pure-injectives. Then, for any pp-pair ¢/¢, |¢(M)/p(M)| > 1 if and only if there
exists a k such that |¢(Ny)/¥(Ng)| > 1. For, any pp-pair ¢/¢, |¢(M)/(M)| =1 if
and only if for all k, [¢(Ny)/¢(Ny)| = 1. Therefore if there exists a module satisfying
|p1/11| > 1 and |9;/&;| = 1 for all 0 < j < m then there exists an indecomposable
pure-injective module satisfying |¢1 /1| > 1 and |;/¢;| = 1. Hence this becomes the

question of whether:

(¢1/¢1) C U (05/&5).

By lemma we can effectively answer this question.

The other direction is by lemma 4.1.3|

4.4 Valuation domains with finite residue field

In this section we prove theorem for the case of valuation domains with finite
residue field and dense value group.
In this section we will describe exactly the indecomposable pure-injective modules

N for which there are pp-formulae ¢, such that ‘% is finite and not equal to

1 (lemma [4.4.14). We will then go on to show that for such modules N, given pp-

formulae ¢, we can effective calculate (corollaries 4.4.16| and |4.4.18]).

(
‘ o) ‘

The main tool used in this section is that every irreducible pp-1-type over a val-

uation domain is realised in a uniserial module (lemma and thus, since the
pure-injective hull of a uniserial module is indecomposable ([EH95]), every indecom-
posable pure-injective module is elementary equivalent to a uniserial module. Because
uniserial modules are in general much simpler than indecomposable pure-injective

‘ when

modules, this allows us, given pp-formulae ¢, to effectively calculate ’ w0

M 1is uniserial.

Lemma 4.4.1. Let V be a valuation domain. Suppose u,v,s,t € m\{0}. Then
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(uV,vV) ~ (sV,tV) if and only if uwV = stV.

Proof. < Suppose uvV = stV. Without loss of generality we may assume uV C sV.
Then there exists u € m such that v = su. Therefore (uV : p) = sV and wopV =
stuV = utV. Hence vuV = tV. Therefore (sV,tV) = ((uV : p),vuV) ~ (uV,0V).

= We have noted (paragraph below lemma that for any ideals I, J, K, L <V,
(I,J) ~ (K, L) implies I.J = K L. O

Lemma 4.4.2. Let V be a valuation domain. Suppose u,v,s,t € V\{0}. Then

(um,vm) ~ (sm,tm) if and only if uvvm? = stm? if and only if vvm = stm.

Proof. Suppose uvm? = stm?. Then either m®> = m, so uvm = stm or m is finitely
generated by k. If m is finitely generated by k then wvkm = uvm? = stm? = stkm.
Hence uvvm = stm. So uwvm? = stm? if and only if uvm = stm.

Suppose uvm = stm. Then (sm,tm) ~ (m, stm) and (um,vm) ~ (m,uvm). Hence

(um,vm) ~ (sm,tm). O

Definition 4.4.3. Let V' be a valuation domain, Q) its quotient field and suppose
J V. We define
m:J):={xe@ | JrCm}.

Note that [m : J| is a V-submodule of Q.

It is noted in [Zie84] that every indecomposable pure-injective module over a valu-
ation domain is the pure-injective hull of a uniserial module. Hence every irreducible
pp-type is realised in a uniserial module. The following lemma explicitly gives a

uniserial module realising p(I, J) for each I, J < V.

Lemma 4.4.4. Let I,J <V The pp-type p(1,J) is realised in the following uniserial

module:

[m: J]
T

Proof. The quotient field @ of V' is uniserial as a V-module. Hence [m : .J] is uniserial.

Therefore [m—l‘]] is uniserial. Let a be the image of 1 in [m—l‘]] Then forallr € V, ar =0

if and only if r € I. Suppose that r € V and r|a. Then there exists y € [m : J] such
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that yr — 1 € I. Therefore 1 € m+ [m: J]r. Hence 1 € [m: J]r, so 1 = zr for some

z € m:J]. SoJ = Jrr Crm. Therefore, by lemma [3.1.2 r ¢ J. O

The following definition extends the notion of attached prime for ideals to ar-
bitrary proper non-zero V-submodules of () the quotient field of V' (i.e. fractional
ideals).

Definition 4.4.5. Let I be a proper non-zero submodule of Q) the quotient field of V.
The attached prime 17 of I is the set of r € V such that Ir C I. Note that as in the

case of ideals 17 is a prime ideal in V.
Lemma 4.4.6. Let J <V, byx € V. Then [bm : J]x = [bam : J].

Proof. Suppose t € [bm : J]z. Then t = vz for some vy € [bm : J]. Hence tJ = yaJ C

bxm. Suppose t € [bxm : J|. Then tJ C bxm, so t/xJ C bm. Hence t € [bm : J]z. [

Proposition 4.4.7. Let J 9V and v € Q non-zero. Then [m : J] = xm implies
J=(1/z)V.

Proof. First we show that 1/2 € J. Suppose 1/x ¢ J. Since @ is uniserial (1/z)m D
J,som D Jx. A contradiction since x ¢ [m : J].
Suppose y € J. Then zym C m so zy € V. Therefore y € (1/x)V.
[

Proposition 4.4.8. Let J <V and v € Q non-zero. Then [m : J| = zV implies
J = (1/x)m.

Proof. Since x € [m: J], xJ Cm. So J C (1/x)m.
Suppose, for a contradiction, that ¢t € m and ¢/z ¢ J. Then (t/x)m O J. Hence
m D (z/t)J. So xz/t € [m : J] = V. Hence t ¢ m, a contradiction. Therefore

J = (1/x)m.

Lemma 4.4.9. Let J<V,beV and x € J#. Then [brm: J] C [bm : J].
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Proof. Since z € J#, J 2 Jx. Take a € J\Jz. Then, since a ¢ Jz, am D Jz.
Therefore m O J(z/a). So bm 2O J(bzx/a). Hence bx/a € [bm : J]. Since a € J,
bx € (bx/a)J. Therefore bxm C (bx/a)J. Hence bx/a ¢ [bxm : J|.

So since () is uniserial, [bxm : J] C [bm : J]. O

Proposition 4.4.10. Let V' be a valuation domain, () the quotient of V., a € V and
I 2 J V-submodules of ). Then
I | Ia

J "~ Ja

Proof. Let f : § — % be the map induced by multiplication by a. The map f is well
defined since if x € J then za € Ja and a homomorphism since V' is commutative.
The map is injective since if za € Ja then z € J. The map is clearly surjective.

Hence f is an isomorphism. [

Lemma 4.4.11. Let V be a valuation domain with finite residue field consisting of
q elements and dense value group. Then, up to isomorphism, V/m is the only finite
non-zero uniserial V-module. Moreover, any non-zero V-module of finite size is of

size ¢" for some n € N.

Proof. First note that V/m is the only finite non-zero cyclic V-module since V' has
dense value group. Suppose M is a finite non-zero uniserial module. Then all cyclic
submodules of M are isomorphic to V/m. Since V/m is simple and M is uniserial, M
is isomorphic to V/m, i.e. if M has two non-zero cyclic submodules N; and N; then
either N1 O Ny or Ny O N; but since both N7 and Ny are simple N; = Ns.

We now prove the second claim. Suppose M is a non-zero V-module of finite size.
Then, since V/m is the only finite non-zero cyclic V-module, every cyclic submodule
of M is isomorphic to V/m. Since V/m is simple and M is finite, we can pick pairwise
non-equal my, ..., m, € M\{0} such that for each 0 < i,j < n m;V Nm;V = 0 unless
i =jand mV + ...+ m,V = M. For each 0 < ¢ < n, |/m;V| = q. Therefore
|M| = q". O

Lemma 4.4.12. Let V be a valuation domain with dense value group and finite

residue field of size q. Then for all pp-1-formulae ¢, and all indecomposable pure-
S(N)

imjective modules N, ) 1s either 1, q or infinite.
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Proof. Suppose ¢, 1 are pp-1-formulae and N an indecomposable pure-injective mod-

ule. By lemma [£.4.4] and comments just before, there is a uniserial module M ele-

2N | s of finite size greater than g then M‘

v e
is of finite size greater than ¢. But, since M uniserial, —f;((%))

mentary equivalent to N. Hence, if
is uniserial. This can

only have finite size 1 or ¢ by lemma O

Lemma 4.4.13. Let V' be a valuation domain and finite residue field consisting of
q elements. Let ¢ be the pp-fomula (xag = 0 A blx) and let 1p be the pp-formula
(xa = 0 + bh|z) where a,b € V\{0} and g,h € m. Then for any I,J <V, ifa ¢ I,
ag€ I, b¢ J and bh € J then
N(I,J I:a
- (e

Proof. By lemma we know that p(I,J) is realised in [m—IJ] Since M = @ is

[ : ag]
[bhm : J]

) )

mt). i)

[I:a [bhm : J]|

uniserial, its pure-injective hull is indecomposable (see [EH95, propostion 4.1]) and is
therefore isomorphic to N (I, J). Recall that a module is elementary equivalent to its
pure-injective hull. Hence ¢(M) /¢ (M) is finite if and only if ¢(N (1, J))/Y(N(L,J))

is finite and in this situation

[o(M) [/ (M)] = |p(N (I, J) [ (N(L, J))| .

Claim: The solution set of ¢ in M is

[ :ag]Nbm: J]
7 :

Take x € [m : J]. Let 2’ be the image of z in [m : J|/I. For any v € V, 2’v = 0 if
and only if zv € I. So 2’ag = 0 if and only if z € [I : ag]. For any v € V| v|2’ if and
only if there exists y € [m : J]| such that yv —z € I 'if and only if z € [m: J]w+ [ =
[om: J]+ 1. Sinceb¢ J, [bm:J]| DV D 1,80 [bm: J|+ I = [bm: J]. So bz’ if and
only if x € [bm : J]. Hence we have proved the claim.

Claim: The solution set of ¢ in M is

I a] U [bhm : J]
; .
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As in previous claim, for any z € [m : J] with image 2’ in [m : J]/I, ’a = 0 if and
only if € [I : a] and bh|2" if and only if x € [bhm : J]. Since V is commutative

pp-definable subgroups are submodules. As M is uniserial, the solution set of v is

[I:a]Ubhm: J]

I
Hence, since M is uniserial,
‘%’ - {‘[{I;:aag]] | [b[inszga]n’ | 'UE‘;“;"}]\ | ‘Vgﬂ}

]

Lemma 4.4.14. Suppose V is a valuation domain with dense value group such that
the residue field of V' consists of q elements. Let ¢ be the pp-1-formula (xag =
0) A (blz) and let ¥ be the pp-1-formula (xa = 0) + (bh|x) where a,b € V\{0} and
g,h € m. Then for any ideals I,J <1V the following are equivalent:

(i) ’f;g%(ég))’ is finite and not equal to 1.
(ii) (I,J) ~ (agV,bhV) or (I,J) ~ (am,bm).

Proof. (i)=-(ii) Suppose

Z((%gj))% is finite and not equal to 1. Then N (I, J) € <%> SO

(I,J) € Wypgn Therefore there exists K, L<V such that (K, L) ~ (I, J) anda ¢ K,

b¢ L,ag € K and bh € L. Note that, since (I,J) ~ (K,L), N(I,J) = N(K, L).
Hence, by lemma 4.4.13]

SN, J)) | . K : ag] (K : ag] [bm : L] [bm : L]
2 = min .
Y(N(I,J)) [K :a) | |[bhm:L]|  |bhm:L]|  |[K :d
Thus we must consider when [[If(éiﬁ] , UEZ;L";% , [Lﬁﬁ%‘ and ‘[[b;ﬁ‘ are finite and
not equal to 1.
By lemma |4.4.10)
K :ag] , K
[K:a] Kg
So by lemma it is either infinite or 1.

By lemma
[bm: L]  [bm: L]

[bhm: L]  [bm: LA
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So by lemma |4.4.11}it is either infinite or 1.

Suppose ‘[E)I}fnf% is finite and not equal to 1. Then
K : ag] ~V
[bhm: L] m’

Hence [K : ag] = 7V for some v € Q\{0}, so K = yagV. Therefore [bhm : L] =
yagm, so L = 1/4bhV, by lemma [£.4.7] Hence (I,J) ~ (K, L) ~ (agV,bhV).

Suppose ‘[[b;ff}] is finite and not equal to 1. Then
[bm: L] V
[K:a] m

Hence [bm : L] = 4V for some v € Q\{0} so L = b/ym, by lemma [1.4.8, Therefore
[K :a] =~m, so K =~yam. Hence (I, J) ~ (K, L) ~ (am, bm).

(ii)=-(i) We may assume I = agV and J = bhV or I = am and J = bm since if
(I,J) ~ (K, L) then N(I,J) = N(K, L).

Asin lemma.4.13| (first paragraph), we need only con81der — a7 for M a uniserial

module realising p(1, J).

Suppose I = agV and J = bhV. Then M = [m Il o = = realises p(1,J).

m : bm

T 1S Ty and the solution set of the

The solution set of the formula b|z in

_bhV
abghV * So

4 m _ bmNbhV
abghV') —  abghV

is

formula xag = 0 in bghV

Since bh € bm,

o ™ ) bRV
abghV ) abghV’

" m _ bhm + bghV
abghV' )~ abghV

Similarly,

Since bhg € bhm,

” m ~ bhm
abghV' )~ abghV’

o(M) _ bV _V
ey

So

(M) bhm
Suppose I = am and J = bm. Then M = u =

OV ~
am

# realises p(I, J).
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The solution set of the formula xag = 0 in % is % and the solution set of
the formula blz in - is 2. So
1% (abm : ag) N BV
o - .
abm abm

Asgem, be (abm:ag). So

NEAN
abm ) abm’

" (l) _ bm—i—th‘

abm abm

Similarly,

Since bh € bm,

So

]

Lemma 4.4.15. Let V' be a valuation domain with dense value group and finite
residue field consisting of q elements. Let I =tV and J = sV for some t,s € m,
N = N(I1,J), let ¢ be the pp-1-formula xag = 0 A blx and let 1 be the pp-1-formula
za = 0+ bh|x where a,b € V\{0} and g,h € m. Then the following holds:

(i) % =1 if and only if ab € tsV or abgh ¢ tsV .

—

(i1) jZE_]J\\[f = q if and only if abghV = stV.

~

(iii) % = o0 if and only if ab & stV and abgh € stm.

In particular, if V is effectively given, then there exists an algorithm which, given any
t,s € m and o, 5,0,y € V, returns the value of ’%‘ where ¢ is xa = 0 A\ S|z and
Y is xy =0+ dlx and N = N(tV,sV).

Proof. (i) Since a,b € V\{0} and ¢g,h € m, (%) is the basic open set W pgn. SO
’%’ = 1 if and only if (tV,sV) ¢ W, 4n. The point (tV,sV) is a normal point

since m* = m. So, for all A € V\{0}, (tV,sV) € Wi o0 if and only if X\ ¢ tsV.
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Therefore, by proposition W, (tV,sV) € Wypgn if and only if ab ¢ tsV and
abgh € tsV. Thus,

%‘ = 1 if and only if ab € tsV or abgh ¢ tsV .

(ii) By lemma |4.4.14 ‘M is finite and not equal to 1 if and only if (agV,bhV) ~

P(N)
(tV,sV) or (am,bm) ~ (tV,sV). For any pairs of ideals (I, J) and (K, L), (I,J) ~

(K, L) implies IJ = KL. Therefore, since m is not finitely generated, it is not

possible that (am,bm) ~ (tV, sV'). By lemma stV = abghV implies (tV,sV') ~

(agV,bhV'). Hence ‘%‘ = ¢ if and only if abghV = stV

(iii) For any indecomposable pure-injective module N and any pair of pp-1-formulae
2WV)

6.0, [ 45

abgh € tsV and abghV # stV if and only if ab ¢ stV and abgh € stm.

is either 1, ¢ or infinite. Therefore it is enough to note that ab ¢ tsV,

It remains to consider the final claim that if V' is effectively given, then there
exists an algorithm which, given any ¢,s € m and «, 3,9,y € V, returns the value of
‘%‘ where ¢ is zav = 0 A S|z and ¢ is 2y = 0+ 6|z and N = N(tV, sV).

Suppose V is effectively given. First note that if « ¢ ym, 6 ¢ fm, 5=0o0r vy =10

then ‘M =1 for all V-modules M. Since V is effectively given, we can effectively

V(M)
check whether o ¢ ym, 6 ¢ fm, f = 0 or v = 0. Otherwise, let a = v, b = 3,

g =a/yand h =4/8. Hence ¢ is zag = 0 Abjx and ¢ is xa = 0+ bh|x. Therefore it
is enough to note that for any r, s € V we can effectively check whether r € sV and

r € sm. ]

Corollary 4.4.16. Let ¢, be pp-1-formulae and I =tV , J = sV for somet,s € m.

P(N(L,J))
YN(LJ)) |

Then we can effectively calculate the value of

Lemma 4.4.17. Let V' be a valuation domain with dense value group and finite
residue field consisting of q elements. Let [ =tm and J = sm for some t,s € V\{0},
N = N(I,J), ¢ be the pp-1-formula xag = 0 A blx and let 1) be the pp-1-formula
za = 0+ bh|x where a,b € V\{0} and g,h € m. Then the following holds:

(i) YN — 1 if and only if ab € tsm or abgh ¢ tsm.

(1) YN = ¢ if and only if abm = stm.

(iii) YN\ — o0 if and only if ab ¢ stV and abgh € stm.
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In particular, if V' is effectively given, then there exists an algorithm which, given any
t,s € V\{0} and o, 8,6,y € V, returns the value of ‘ ‘ where ¢ is xa = 0 A Blx
and ¢ is xy =0+ 0|z and N = N(tm, sm).

Proof. (i) Since a,b € V\{0} and g,h € m, (%)

’%’ = 1 if and only if (tm,sm) & W, 4. The point (¢m,sm) is a normal point

is the basic open set W, gn. So

since m? = m. Therefore (tm, sm) € W, if and only if ab ¢ tsm and abgh € tsm.

Thus, ’ = 1 if and only if ab € tsm or abgh ¢ tsm.

ke

.. $(N)
(ii) By lemma [4.4.14 ‘MN

(tm, sm) or (am,bm) ~ (tm,sm). For any pairs of ideals (/,J) and (K, L), (I,J) ~

is finite and not equal to 1 if and only if (agV,bhV) ~

(K, L) implies IJ = KL. Therefore, since m is not finitely generated, it is not
possible that (agV,bhV) ~ (tm,sm). By lemma [£.4.2] (tm,sm) ~ (am,bm) if and
only if tsm = abm.

(iii) For any indecomposable pure-injective module N and any pair of pp-1-formulae
6.0, |25
abgh € tsm and abghm # stm if and only if ab ¢ stV and abgh € stm.

is either 1, ¢ or infinite. Therefore it is enough to note that ab ¢ tsm,

It remains to consider the final claim that if V is effectively given, then there

exists an algorithm which, given any ¢,s € V\{0} and «, 3,7,0 € V, returns the

value of ‘% where ¢ is za = 0 A S|z and ¢ is 2y = 0+ |z and N = N(tm, sm).
Suppose V is effectively given. First note that if « ¢ ym, 6 ¢ fm, 5=0o0r vy =10
then ‘ 2(M) ‘ =1 for all V-modules M. Since V is effectively given, we can effectively
check whether o ¢ ym, 6 ¢ fm, f = 0 or v = 0. Otherwise, let a = v, b = 3,
g=«a/vyand h =4§/p. Hence ¢ is xrag = 0 A b|x and ¥ is za = 0+ bh|z. Therefore it

is enough to note that for any r, s € V we can effectively check whether r € sV and

r € sm. ]

Corollary 4.4.18. Let ¢, be pp-1-formulae and I = tm, J = sm for some t,s €

N(L,J))
w(N L) |

V\{0}. Then we can effectively calculate the value of |2

Lemma 4.4.19. Let V' be an effectively given valuation domain with dense value

group and finite residue field consisting of q elements. There is an algorithm which,
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given pp-1-formulae ¢,v, gives a finite list L of pairs of ideals (I,J) such that
|o(N)/Y(N)| = q if and only if N = N(I,J) for some (I,J) € L.

Proof. A priori, it is not clear that one can even explicitly write down pairs of ideals
(1,J) such that |p(N)/¢¥(N)| = q where N = N(I,J). Therefore first we must show,
using [4.4.14] that if (7, J) is such that |¢(N)/¢(N)| = ¢ where N = N(I,J) then
(I1,J) = (aV,bV) for some a,b € m\{0} or (I,J) = (am,bm) for some a,€ V\{0}.
First, rewrite ¢ as ) i (za; = 0 A Bi|x) and ¢ as \T-,(vy; = 0 + d;|x) for some
a;, Bi, Vi, 0i € V. Let ¢; be (za; = 0Af;|z) and ¢, be (xy; = 049;]|z). We can do this

effectively by lemmas [4.2.1] and 4.2.2] Then for any indecomposable pure-injective

e~ sl

»(N)
We know that ¢;(N)/1;(N) is the zero module for all indecomposable pure-

N,

injectives if a; ¢ vyym, §; ¢ fm, B; = 0 or 7; = 0. If for all 4,j and all indecom-
posable pure-injectives N ¢;(N)/1;(NN) is zero then there is no N indecomposable
pure-injective such that ¢(N)/1(N) is non-zero.
By for any pp-1-formula ¢ of the form zag = 0 A blx and ¢ of the form
za = 0+ bhlx where a,b € V\{0} and ¢g,h € m, the only indecomposable pure-
injective modules N such that ’ ‘ =gqare N = N(agV,bhV) and N = N(am, bm).
If ; € yym, 6; € fm, B; # 0 and v; # 0, let a;; = 7, bij = Bi, gij = a;/7; and
hij = d;/Bi. So we need only consider the pure-injective modules N (a; jm, b; jm) and

N(ai,jgi,j‘/a b@jhi’jV) where a; g, b@j, Gi,j and hi,j are defined.

By lemmas4.4.15/and [4.4.17} for any pp-1-formula ¢ of the form za = 0A S|z and

¥ of the form zy = 0 + |z and any indecomposable pure-injective N = N (am, bm)

or N = N(tV,sV) where a,b € V and t, s € m we can effectively calculate the size of

oN)
w(N) |

Hence we can make a finite list of indecomposable pure-injective modules N such

that E o) is finite and not of size 1. O

Lemma 4.4.20. Let R be a ring and x a boolean combination of invariants sentences
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and negations of invariants sentences. If there exists an R-module M which satis-
fies x then there exists a finite direct sum of pure-injective indecomposable modules
satisfying x.

Proof. Without loss of generality we may assume that x is the conjunction of the

following invariants sentences:

1
2= (1)
e
w—é > w; (2)
J
3
=1 )

where I,m,n € N and for all 0 <4 <1, 0<j <m, 0 <k <n, ¢, ¥}, ¢3, V7, &, U
are pp-1-formulae and v;, w; € N. This is because any boolean combination of invari-
ants sentences and negations of invariants sentences is a disjunction of conjunctions
of invariants sentences of this form.

Suppose M satisfies x. We may assume M = @Me m IV, since every module

is elementary equivalent to a direct sum of pure-injective indecomposable modules.

Since M |= x, for each N, and for all 0 < k <n

UR(N,)
For each 0 < i <, let A; be the set of u € M such that
1
(N
Vi (Ny,)
Note that for each 0 < i <[, A; is a finite set, since if it had more than v; elements
b; (M) v ,
then w}(M)‘ > 2V > ;.
For each 0 < j < 'm, let Q; be the set of € M such that
2
(N,
%2( ) > 1.
V7 (Ny)
For each 0 < j < m, if §2; is not finite replace it by a subset of size w;. Then ; is
2
finite for all 0 < 7 < m and @MEQ]' N, satisfies 1%2 > wj.

Let A=, AU Uiz, €. Then B, N, satisfies x and A is a finite set. [
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Theorem 4.4.21. Let V be an effectively given valuation domain with dense value
group and finite residue field consisting of q elements. Then the following are equiv-

alent:
(i) The theory of V-modules, Ty, is decidable.
(ii) There exists an algorithm which, given a,b € V, answers whether a € rad(bV').

Proof. As in theorem in order to show that Ty is decidable it is enough to
show that there exists an algorithm which, given x a finite conjunction of invariants
sentences and negations of invariants sentences, answers whether there is a module
M satisfying y.

Suppose Y is a conjunction of the following sentences:

1
it 1)
Z—z > q" (2)
J
3
= ®)

where [,m,n € Nand forall 0 <4 < 1,0 <j <m, 0 <k <n, ¢}, ¥}, o3, V3, ¢}, U}

7 7
are pp-1-formulae and v;, w; € N.

It is enough to consider x of this form since for any V-module M and any ¢,

(M)

P(M)

If 7 is a conjunction of invariants sentences like those in (1), (2) and (3) then we

= ¢" for some v € N or is infinite. See lemma [4.4.11}

o(M)
pp-1-formulae, ‘ )

call 22:1 v; the exponent of the statement.

We proceed by induction on Zizl v;, the exponent of the conjunction of invariants
sentences in (1).

Suppose 22:1 v; = 0, that is (1) is empty. Suppose there exists a module M

satisfying x. By lemma [4.4.20] we may assume M = @ue/\/t N,, for some finite

indexing set M. Therefore for each 0 < 57 < m, there is u € M such that

¢ (N,,)
CHOM
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and for all p € M and all 0 < k < n,

(V)
VR (Ny)

2
Hence, for each 0 < j < m, there exists N, such that N, € (%) and N, ¢ (i—%)
j k
for all 0 < k < n. For each 0 < j < m, let N; be such a module. Then there exists
t
t € N such that (@;n:l Nj> satisfies (2) and (3).

Hence, there exists a module M satisfying (2) and (3) if and only if for all 0 <

(22U

Theorem {4.2.15[ asserts that there exists an algorithm to check this, so we are

j<m

done.

Now suppose L = Zi:l v; > 0, so (1) is not empty and that for any conjunction
O of invariants sentences and negations of invariants sentences with exponent strictly
smaller than L, there is an algorithm which answers whether there exists a module
M satisfying ©.

By lemmal4.4.12] for any indecomposable pure-injective N and any pp-1-formulae

0,1, ‘% is either 1, ¢ or infinite.
Suppose there exists M satisfying y. By lemma [4.4.20| we may assume M =

@ﬂe m Ny where M is a finite indexing set and each IV, is an indecomposable pure-

WLV |

o1 (Ny)
By lemma[4.4.19] we can list all indecomposable pure-injective V-modules Ny, ..., NV

injective module. Hence there exists a u € M such that

such that
¢1(Ns)

Y (Ns)
Note that, using 4.4.14] for each module Nj, there either exists a,b € V\{0} such

that Ny = N(am,bm) or there exists a,b € m\{0} such that Ny = N(aV,bV). By

lemmas [4.4.16| and [4.4.18] for each N, we can effectively calculate

&3 (Ns) Gi(NVs)
b (N)

Yip(Ns)
foreach 0 < j <mand 0 < k < n.
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For each N, 1f

b} (Ns)

I is infinite.

remove N, from the hst 1f

If the list is now empty, no module M satisfying y exists. Otherwise for each
module Ny we produce new lists of sentence (1)*, (2)® and (3)°. For each s start with

(1)* and (2)® empty, and (3)® consisting of all sentences in (3).
o]

For each 0 < ¢ < [, if ng = q and v; > 1, add the sentence Z—ll = ¢" ! to
(1)e. ; < 1, add the sentence 1% =1 to (3)°. o (Nj =1,
v (1)8
For each 0 < j < m, if % = q and w; > 1, add the sentence j;_jz > gwi~! to
(2)s. If wZ(Ns; 1, add the sentence ZZ > q" to (2)°.

For each s, if there exists a module M satisfying all sentences in (1)°, (2)° and
(3)® then Ny @ M satisfies (1), (2) and (3) and if there exists M satisfying (1), (2)
and (3) then there exists an s such that M’ satisfies (1)*, (2)® and (3)®.

Note that for each s, the exponent of the conjunction of conditions in (1)* is
strictly smaller than Zizl v;. Therefore by the induction hypothesis, for each s,
there exists an algorithm which answers whether there exists a module M which
satisfies (1)%, (2)® and (3)°.

The other direction is lemma [4.1.3] O

4.5 Valuation domains with finite residue field and
non-dense value group

Throughout this section let V' be a valuation domain with non-dense value group
and finite residue field. Recall that if V' has non-dense value group then m is finitely
generated. Let k be a fixed generator of the maximal ideal m.

The main work of this section is, given ¢, pp-1-formulae and n € N\{0}, to

P(N(L,J))

effectively determine if there exist I,J <V such that SNTT)

= n (in fact we

need to determine if there exist I, J <1V satisfying a boolean combination of such

sentences).
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d(N(I,J))
P(N(I,]))

then either I# =m or J# = m (lemma [4.5.7)). Since m is finitely generated, if I <<V

First we show that for any pp-1-pair ¢/, if

‘ is finite and not equal to 1

has attached prime m then there exists r ¢ I such that (I : ) = m (note that this

means that [ = rm, so I if finitely generated).

Therefore, if ‘ N([J

is finite and not equal to 1 for some pp-1-pair ¢/1 then
(I,J) ~(m, K)o (I,J)N(K,m) for some K < V.

The next step is to show that given a sentence of the form ‘%’ =1, 9‘ > n or

E
‘%) = n where ¢/ is a pp-1-pair and n € N, we can effectively produce conditions on
an ideal K such that if K satisfies these conditions then N (m, K') satisfies the sentence

and we can effectively produce conditions on an ideal L such that if L satisfies these

conditions then N(L, m) satisfies the sentence. (See [4.5.13) 4.5.14] |4.5.15, 4.5.18]

[1.5.10, [1.5.20, [1.5.24] [£.5.25| and [1.5.26)).

Finally we show that given any boolean combination of conditions that we have

effectively produced, we can effectively check if there exists an ideal K satisfying it.

(See [4.5.27| and 4.5.28]).

Unlike in the case of a valuation domain with dense value group we will not be
able to make a finite list of indecomposable pure-injectives such that ‘d’(N ‘ =n, as
there may not be finitely many of them. In fact there may be uncountably many of
them.

Throughout this section we will tacitly use the following two lemmas.

Lemma 4.5.1. Let V' be an effectively given valuation domain with non-dense value
group. For any k € V which generates m, the function f : V — Vi,a — ak is

recursive.

Proof. The function t;, : V. — V x V; a + (a, k) is recursive since both component
maps are recursive. The map s : V xV — V; (a,b) — a - b is recursive since V is

effectively given. Therefore sty : V' — V is recursive. [

Lemma 4.5.2. Let V' be an effectively given valuation domain. For any k which

generates m, the function f:m — V; a > a/k is recursive.
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Proof. By lemma [4.1.1] the function f:V x V — V x {0, 1} defined by

() (0,0) if a does not divide b,
a,b) —

(b/a,1) otherwise
is recursive. The function g, : V. — V x V : a — (k,a) is recursive since both
component maps are recursive. The function t : V' x {0,1} — V : (a,7) — a is
recursive. Therefore tfg is recursive and for any a € m, tfgr(a) = a/k since k

generates m.

]

Lemma 4.5.3. Let V' be a valuation domain with non-dense value group and residue

\%
mn

field consisting of q elements. Then, for all n € N, = q" and all finite uniserial

modules are isomorphic to V/m™ for some n € N.

Proof. First note that for any n € N, m"/m"*! = k"V/E"'V = V/m. Hence
n‘t"/n‘ﬂ”rl has size q. By considering the chain V' O m D m%.. D m", we see that
for all n € N, |%’ =q".

Note that if I <V and V/I is finite then I = m™ for some n € N.

Suppose M is a finite uniserial module. Let x be an element of M with smallest
annihilator. Then xV = V/m" for some n € N, since all quotients of V' of finite size
are of this form. Therefore annyxz = m”. Suppose y € M. Since M is uniserial,
either y € 2V or x € yV. If x € yV then © = yr for some r € V. Therefore
annyy = (annyx)r C annyx hence (annyx)r = annyx. So 7 ¢ (annyz)* = m.

Hence r is a unit. So y € V. Therefore M = zV'. [

Corollary 4.5.4. Let V' be a valuation domain with non-dense value group and finite
residue field consisting of q elements. Then, all non-zero modules of finite size are of

size ¢ for some n € N.

Proof. Suppose M is a finite non-zero V-module. Let 0 C M; C M,.... € M; = M be
a chain of submodules of M such that M is cyclic and for each 0 < i <1, M;1/M;

is cyclic. Since all cyclic modules over a valuation domain are uniserial, for each
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0 <i<l, |Mi1/M;| = q" for some v; € N and |M;| = ¢* for some w € N. Now,

| M| = |Mi|T]gcic; [Miy1/M;|. Hence M is of size ¢" for some n € N. O

Note that the above lemma and corollary imply that for any pp-pair ¢/ and any

V-module M, )%‘ = q" for some n € N or ‘%‘ is infinite.

Lemma 4.5.5. Suppose V' is a valuation domain with finite residue field and non-
dense value group. Let Q) be the quotient field of V and J C I C @ be V-modules.
Then |I/J| is finite if and only if I and J are principally generated and Ik™ = J for

some n € N where k generates the mazimal ideal.

Proof. First note that I/J is a uniserial module because @ is uniserial. Therefore if
I/J is finite and not the zero module then I/J = V/m" for some n € N by [4.5.3
Hence I is principally generated say by v € Q\{0} and vk" € J but vk"~! ¢ J so
J = kY.

For the other direction note that for any v € Q\{0} and any n € N, 4yV/k"~yV =
V/m". O

Lemma 4.5.6. Suppose V' is a valuation domain with non-dense value group and

finite residue field consisting of q elements. For all a,b € V\{0} with aV 2 bV

and each v € N,

%’ = ¢" if and only if ak®V = bV and ‘%‘ > q" if and only if

ak®V D bV.

Proof. For all a,b € V with aVV O bV there exists ¢ € V such that ac = b and

aV ~ V.
BV Ve
Suppose ¢ € V. Then, by lemma , |%| = ¢" if and only if % = % if and

only if ¢V = Ek"V.

Suppose ¢ € V. Then |%’ > ¢¥ if and only if ¢V = k™V for some n > v or ’%‘
is infinite. Note that |%| is infinite if and only if ¢ € N,enk™V. Therefore %’ >q°
if and only if £V D ¢V.

Hence, for all a,b € V with aV 2 bV and v € N, 4| = ¢" if and only if

ak’V = bV and for all a,b € V with aV 2 bV and v € N, |%7| > ¢” if and only if
ak’V 2 bV.
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]

Lemma 4.5.7. Let V' be a valuation domain with non-dense value group and finite

residue field consisting of q elements. Let ¢, be pp-1-formulae. Then, for all I,J <

(N (I,J))

Vo SN T D)

’ is finite and not equal to 1 implies either I =m or J# = m.

Proof. Suppose ‘%‘ is finite and not equal to 1. Then there exists a pp-1-formula

Y’ such that ¢(N) 2 ¢'(N) D (V) and ¢/’ is a minimal pair (see definition [2.2.8])

2N 1'is finite and not equal to 1, 125’((]1\\[/))

U(N) is finite and not
equal to 1. Suppose N has attached prime p not equal to m. Then, for all » € p and

in the theory of N. Since

all non-zero x € N, xr has strictly greater pp-type than x by lemma [2.3.24] Hence

if © € ¢(N) then ar € ¢'(N). Therefore ¢(1]\Q) is an V/p module. All r ¢ p act as

Y'(N)
5,((]]\% is a V,,/p-module (i.e. vector space) and therefore

infinite or the zero module since V/p is of infinite size.

automorphisms on N. Hence

Therefore, if % is finite and not equal to 1 then AttN = m. By lemma |3.3.6,
I# U J#* = m. Therefore either [#* =m or J# = m. O

Recall that, since m is finitely generated and so m? # m, if I <V with I” =m
then I = am for some a € V\{0}. See lemma [3.5.7 So by lemma [£.5.7) above, for

Y(N(I,J))
either (I, J) ~ (m,K) or (I,J) ~ (K, m) for some K < V.

any pair of pp-1-formulae ¢, v, if I, J <1V such that ‘ (N(L,J)) ’ is finite and not 1 then

Lemma 4.5.8. Let V' be a valuation domain with non-dense value group and finite
residue field. Then for all b € V\{0} if J <V is not principal then [bm : J] is not

principally generated.

Proof. Let b € V\{0} and J < V. Suppose [bm : J] = 4V for some v € (). Then
Jy C bm = bkV and bkV C Jvk™!, since vk~! ¢ [bm : J]. Hence bV C Jvk™! so
bk € Jv. Therefore Jy = bkV, so J = bk/~vV. So J is principal. ]

Lemma 4.5.9. Let V' be a valuation domain with non-dense value group and finite
residue field consisting of q elements. Let v € N\{0}, let ¢ be the pp-formula (zag =
0Ab|z) and let ) be the pp-formula (xa = 0+ bh|zx) where a,b € V\{0} and g, h € m.
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Suppose J <V is such that J#* C m and N(m,J) € <%> Then w(%((zj))))’ = ¢ if

and only if gV = m".

Proof. Since N(m,J) € (%), there exists some ¢t ¢ J such that a ¢ tm, ag € tm,

b¢ (J:t)and bh € (J : t). By lemma[4.4.13

oI

[tm : ag]
T[ohm (J )] |

[tm : ag|
[tm : df

‘ [bnft%(?]é]t)] ’ | ' [z[iu;::(éfztg] ’} |

Note that since J#* C m, J is not principal. Hence (J : t) is not principal. So by
lemma [£.5.8] [bm : (J : ¢)] and [bhm : (J : t)] are not principally generated. So by

lemma [4.5.5] [bh[;m(:igl))] [b‘;“s‘]a}t and ‘ e ( J t are either 1 or infinite. But since
) ¢> [tm:ag] [bm:(J:1)] [bm:(J:1)]
N(m,J) € E) ‘ > 1. Hence [bhm“:(Jf’t))} ‘, Em:a] and [bhmm | must all
be infinite.
Hence ‘i(N ) ‘ = ¢" if and only if [7[5;‘;2‘1] =q".
By lemma [4.4.10] and since m is finitely generated ,
tm:ag] , tm _ V
tm:a]  tgm gV’
By lemma [4.5.6], gLV = ¢" if and only if gV = m". Hence ‘¢ N(mJ ‘ = ¢" if and
only if gV =m". [

Lemma 4.5.10. Let V' be a valuation domain with non-dense value group and finite
residue field consisting of q elements. Let v € N\{0}, let ¢ be the pp-formula (zag =
0Ab|x) and let ¢ be the pp-formula (xa = 0+ bh|x) where a,b € V\{0} and g, h € m.

Suppose I <V is such that I* Cm and N(I,m) € (%) Then ’ Ng:g))‘ =q" if and

only if RV = m".

Proof. The following proof is very similar to that of it is included for the

convenience of the reader. Since N(I,m) € (g), there exists some ¢ ¢ I such that

a¢ (I:t),b¢tm,ag € (I:t)and bh € tm. By lemma {4.4.13

(L : 1) : ag]
[bhm : tm]

[bm : tm]

"[(f:w:a]’

)

[bhm : tm]
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Note that since I# C m, I is not principal. Hence (I : t) is not principal. So [(I : t) : d

and [(] : t) : ag] are not principally generated. So by K4.5.5] ‘[ )) ’ bifn tanf]] and
[[é) 5 ]‘ are either 1 or infinite. But since N (I, m) € <—), ¢(]]:][(§ ‘:1) [[((I[tz)aa*‘j} ,
Hg)hm) = nf]] nd ’[[b;‘ttm] are infinite.
Hence w(N %g‘ ¢’ if and only if ‘[l[)l;;l‘fﬂ =q".
By lemma |4.4.10] and since m is finitely generated,
[bm:tm]  bm V.
[bhm :tm]  bhm AV’
By lemma [4.5.6 ‘%| = ¢" if and only if AV = m". Hence ’ %(ﬁ))) = ¢" if and
only if AV = m". O

Lemma 4.5.11. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and o, 3,7,0 € V, produces A, a boolean combination of
conditions on an ideal of the form r € J, s € J#, such that for all J <V, J satisfies
A if and only if J* C m and

pN(m, J)| _

(N (m, J>>’ -

where ¢ is xao = 0N\ S|z and ¢ is xy = 0+ §]z.

Proof. First note that if a ¢ ym, § ¢ fm, v =0 or = 0 then for all V-modules M,
’%‘ = 1. We can effectively check if & ¢ ym, § ¢ fm, v = 0 or § = 0. In this
situation let A = FALSE.

Otherwise let a =, b=, g = a/y and h = §/[5.

By lemma [4.5.9] if J# C m, the following are equivalent:

(N(m,7))
1. ‘w(N( >>)

2. (m,J) € Wapgn and ’gLV‘ =q".

By lemma|.5.5| = ¢" if and only if k*V = ¢gV'. This can be checked effectively

gV

by lemmas [4.5.2| and [4.5.1] Hence, if k*V # gV, let A = FALSFE.
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If &V = gV, let A = (abgh € J)A(ab & J)A(h € J*) A (k ¢ J¥). The last
conjunct is equivalent to J# C m. Recall that if J# C m then (m,.J) is a normal
point by lemma [3.5.16, Given that J# C m, the first 3 conjuncts are equivalent to

(m,J) € Wapgn since (m, J) is a normal point and mJ = J. O

Corollary 4.5.12. Let V be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and o, 5,v,0 € V, produces A, a boolean combination of
conditions on an ideal of the form r € J, s € J#, such that for all J <V, J satisfies

A if and only if J* C m and

SN )|,
’wuv(m, J))‘ =4

where ¢ is xae = 0 A Blz and ¢ is xy =0+ 0|x.

Lemma 4.5.13. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢,¢ pp-1-formulae, produces A a boolean combination
of conditions on an ideal of the form r € J, s € J#, such that for all J <V, J
satisfies A if and only if J* C m and

oNm, J)) | _ ,
’wv(m, J))‘ -

Proof. By lemmas [4.2.1| and 4.2.2| we can effectively rewrite ¢ as >, ¢; where ¢; is

(za; = 0 Abj|z)and ¢ as AL, ¥b; where 1; is (zc; = 0+ dj|z). Then by lemma W,

for any pure-injective module N

EL—

sz’(N)‘}

¥;(N)
Hence a pure-injective module N satisfies %’ = ¢" if and only if there exists
0<i<nand0 < j <msuch that %‘ =¢'andforall0 <i<mnand 0 < j<m,
J
¢i(N) v
¥;(N) g

For each 0 < ¢ < nand 0 < j < m, let A;; be the boolean combination of

conditions on an ideal .J of the form r € J and s € J# such that .J satisfies A, if
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and only if J#* C m and
¥ (N(m, J)) '

Such a condition exists and can be effectively produced by lemma 4.5.11
For each 0 < ¢ < nand 0 < j < m, let £;; be the boolean combination of
conditions on an ideal J of the form r € J and s € J# such that .J satisfies Q,; if

and only if J# C m and
¢i(N(m, J)) ‘ S ot
Zq .
(N (m, J))

Such a condition exists and can be effectively produced by corollary [4.5.12

Therefore a pure injective module N = N(m, J) satisfies

(o) (=)

Corollary 4.5.14. Let V be an effectively given valuation domain with non-dense

’w( ‘—q and J#* Cm

if and only if J satisfies

]

value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢, pp-1-formulae, produces A a boolean combination of
conditions on an ideal of the form r € J, s € J#, such that for all J <V, J satisfies
A if and only if J* C m and

¢(N(m, J))
(N (m, J))

Lemma 4.5.15. Let V' be an effectively given valuation domain with non-dense value

’26]”-

group and finite residue field consisting of q elements. There exists an algorithm
which, given ¢, ¥ pp-1-formulae, produces A a boolean combination of conditions on
an ideal J <V of the form r € J, s € J# where r,s € V such that J satisfies A if

and only if J# C m and ‘¢(N m,J))

sy | = L

Proof. By corollary [£.2.3] there is an algorithm which, given ¢, 1) pp-1-formulae,

either returns () exactly when (%) is empty or produces n € N and for each 0 < 7 < n,
a;,b; € V\{0} and g;, h; € m such that (9> =, (%)
If (%) is empty then for all indecomposable pure-injective modules N, ’ ‘ = 1.

Solet A=TRUE.

103



Otherwise, note that for any J <V,

z((%((zﬁ)) ‘ =1 if and only if N(m, J) ¢ (%)
if and only if (m, J) & UWa, b, gin; for all 0 < i < n. For any 0 <4 <n and J# Cm,
(m, J) & W, b;.g.0; if and only if a;b; € J, a;big;ih; ¢ J or h; ¢ J#* by lemma [3.5.16
and proposition |3.5.6 Note that J# C m if and only if k ¢ J#. Therefore, let
A= (kg J*)N N(ab € J)V (abigihi € T)V (hi & J#).
i=1

O
Lemma 4.5.16. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and a, B,7,0 € V, produces A, a boolean combination of
conditions on an ideal of the form r € I, s € I**, such that for all I 9V, I satisfies
A if and only if I C m and

S,
(N(I,m))
where ¢ is xae = 0 A Blz and ¢ is xy =0+ 0|x.

Proof. As in lemma [4.5.11] replacing [£.5.9 by [£.5.10] ]

Corollary 4.5.17. Let V be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and o, 3,7,0 € V, produces A, a boolean combination of
conditions on an ideal of the formr € I, s € I, such that for all I <V, I satisfies
A if and only if I C m and
N(I,m
| 2

where ¢ is xae = 0 A Blz and ¢ is xy = 0+ 0|x.

Lemma 4.5.18. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢,¢ pp-1-formulae, produces A a boolean combination
of conditions on an ideal of the formr € I, s € I*, such that for all I AV, I satisfies

A if and only if I C m and



Proof. Exactly as in proof of lemma [4.5.13| replacing (m,J) by (I,m) and lemma
and corollary by lemma and corollary [4.5.17] O

Corollary 4.5.19. Let V' be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢,¢ pp-1-formulae, produces A a boolean combination
of conditions on an ideal of the formr € I, s € I, such that for all I AV, I satisfies
A if and only if I C m and
(NI, m))
(N (I, m))

Lemma 4.5.20. Let V' be an effectively given valuation domain with non-dense value

'qu'

group and finite residue field consisting of q elements. There exists an algorithm
which, given ¢, ¥ pp-1-formulae, produces A a boolean combination of conditions on
an ideal I AV of the formr € I, s € I wherer,s € V such I satisfies A if and only

dm) | _
if I Cm and’w(NI"‘;))‘ =1.

Proof. As in [4.5.15, ]

Lemma 4.5.21. Let V' be a valuation domain with non-dense value group and finite
residue field consisting of q elements. Let ¢ be the pp-1-formula (xag = 0 A blz) and
let ¢ be the pp-1-formula (xa = 0+ bh|z) where a,b € V\{0} and g,h € m. Ifz €m
is such that N(m,zV) € (%) then

v
G

) )

S| = ™ {fiw

xV
abghV'

abV’
2V |)
Proof. If N(m,zV) € (g) then there exists ¢t ¢ xV such that a ¢ tm, ag € tm,

b¢ (zV :t) and bh € (xV : t). Note that (zV :t) is finitely generated.
By lemma |4.4.13]

‘¢(N(m,xV))‘_min{| [tm:agll | [tm:ag] | |bm: (zV :8)] | [bm: (zV :t)] ‘}
(N (m, V)| | [tm : a] |'|[phm : (2V : 1)]]| [tm al thm (zV : t)]]

By lemma and since m is finitely generated the following equalities hold:

' [tm :ag]|
[tm : a]

tm %
~|tgm gV '
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By lemma [4.4.10] and since (zV : t) and m are finitely generated the following

equalities hold:
[bm: (V@ )]
[bhm : (xV : t)] bhm

By lemma {4.4.10] and since (zV : t) and m are finitely generated the following

equalities hold:

[tm:ag] | _[tm(V :t)
el |

. rm
| abghm

| aV
~ |abghV
By lemma [4.4.10] and since (zV : t) and m are finitely generated the following

equalities hold:

bm: (V)| | abm |
‘ tm - a] “’tmw:w"

abm‘ B

abV ‘

m zV

]

Lemma 4.5.22. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and a, 3,7,0 € V, produces A, a boolean combination of
conditions on an element x € V of the form x € rV where r € V' such that for all
x €V, x satisfies A if and only if x € m and
¢(N (m, l‘V))) >4
(N (m,zV)) |~

where ¢ is xae = 0 A Blz and ¢ is xy =0+ 0|x.

Proof Note that if & ¢ ym, § ¢ fm, v = 0 or 8 = 0 then for all V-modules M,
w(M ‘ = 1. We can effectively check whether @ ¢ ym, 6 ¢ fm, v =0or f§ =0. In
this situation, let A = FALSE.

Otherwise, let a =, b=, g = o/ and h = §/. Note that we can effectively
calculate the values of a, b, g and h.

Then by lemma [4.5.21], if € m the following are equivalent:

| oW (mzV)) v
) || 2 -

Vv

gV

(i) (m,zV) € Wypgn and min {

v

zV abV v
abghV’ , |xV }Zq'

)
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Therefore ‘%‘ > ¢¥ implies ‘gLV‘ > ¢" and ‘%| > ¢. By lemma 4.5.6

P

‘glvl > ¢° if and only if g € k°V and |%| > ¢ if and only if h € k*V. We can
effective check whether g € k*V. If g ¢ £V let A = FALSE. We can effective check
whether h € k*V. If h ¢ k*V let A = FALSE.

We may now assume g € k'V and h € k'V. Let r = ¢g/k" and note that we can

effectively calculate r.

Claim: x ¢ abrhkV and z € abk"Vif and only if 2 € m and ‘W‘ > q".

(m,zV))
= Suppose = ¢ abrhkV and z € abk"V. Since v > 0, x € abk’V implies = € m.
Since z ¢ abrhkV, zm O abrhkV. Hence abgh = abrhk’ € xm. Since x € abk'V,
z € abm. Hence ab ¢ V. Therefore (m,zV) € W, g 1.
By lemma , x € abk¥V implies “;b—“//‘ > ¢". Recall that x ¢ abrhV implies
xkV = xzm D abrhkV. Therefore xk"V 2O abrhk’ = abghV. Hence by lemma [4.5.6

‘ > ¢°. Therefore ‘M’ > qv.

abghV Y(N(m,zV))
< Suppose ‘w((%(%‘ > ¢". Then (m,zV) € W,y 4 and
) V V xV abV’ S
min } |— — :
V| v labgnv| |2V | =1

Therefore

- hV‘ > ¢¥ and ‘“W‘ > q". So zk"V D abghV and abk"V O zV. Since

zk’V D abrk’hV, xm O abrkV. Hence = ¢ abrhkV. Since abk’ 2O zV |, x € abk"V .
Therefore let A = (x ¢ abrhkV) A (z € abk®V).

H

Corollary 4.5.23. Let V' be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and o, 3,v,0 € V, produces A, a boolean combination of
conditions on an element x € V of the form x € rV where r € V' such that for all
x €V, x satisfies A if and only if x € m and
B(N(m,aV))|
(N (m, zV))

where ¢ is xao =0 A Bz and ¢ is xy = 0+ §z.
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Lemma 4.5.24. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢, pp-1-formulae, produces A, a boolean combination
of conditions on an element x € V of the form x € rV where r € V' such that for all

x €V, x satisfies A if and only if x € m and

EECETE
(N (m,zV))
Proof. As in[4.5.13] replacing [4.5.11] by [4.5.23] and [4.5.12] by [4.5.22] O

Corollary 4.5.25. Let V' be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. There exists an algorithm
which, given v € N\{0} and ¢, pp-1-formulae, produces A, a boolean combination
of conditions on an element x € V of the form x € rV where r € V such that for all

x €V, x satisfies A if and only if x € m and

V(N(m’ o)) ‘ L
P(N(m,2V)) |~
Lemma 4.5.26. Let V' be an effectively given valuation domain with non-dense value
group and finite residue field consisting of q elements. There exists an algorithm
which, given ¢, pp-1-formulae, produces A, a boolean combination of conditions on
an element x € V' of the form x € rV where r € V' such that for all x € V', x satisfies
A if and only if v € m and

o)),

(N (m, zV))

Proof. Note that for all x € m,

M’ — 1if and only if N(m,zV) ¢ (£). By

Y(N(m,zV))
corollary there is an algorithm which, given ¢, 1) pp-1-formulae, either returns ()
exactly when <%> is empty or produces n € N and for each 0 < i < n, a;,b; € V\{0}
and g;, h; € m such that (%) =Ur, (%)

If (%) is empty then for all indecomposable pure-injective modules NV, %‘ =1
Solet A=TRUE.
Otherwise, N(m,2V) ¢ (%) if and only if for all 0 < i < n, (0, 2V) & Wi, g0

Since m* # m and g;,h; € m, (m,2V) & Wy, p. g0 if and only if a;b; € 2V or
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a;big;ih; ¢ xm. Note a;b; € 2V if and only if x ¢ a;b;kV and a;b;g;h; ¢ xm if and only

if x € a;b;g;h;V. Finally x € m if and only if x € kV. Therefore, let

=1

]

Proposition 4.5.27. Let V' be an effectively given valuation domain with an algo-
rithm which, given a,b € V, answers whether a € rad(bV'). There exists an algorithm
which, given a boolean combination of conditions s € J andt € J¥ for some s,t €V,

answers whether there is an ideal J <1V satisfying these conditions.

Proof. In order to show that we can effectively decide whether there exists an ideal
J <1V satisfying a boolean combination of conditions of the form ¢ € J or t € J* it
is enough to show that we can effectively decide whether there exists an ideal J <V

satisfying a condition of the following form:

(%) (;\TQEJ)/\(/l\sh¢J>/\<7\t¢EJ#>/\(;\ujgéj#).

where k,I[,m,n € N and 7y, sp,ti,u; € Vior 0 <g <k, 0<h<I0<7<mand
0<j<n.

Since V' is a valuation domain there exists 0 < g < k such that r, generates the
ideal "V + ... + 1V, let r = r,. There exists 0 < ¢ < m such that ¢; generates
the ideal t,V + ... +t,,V, let t = t;. There exists 0 < h < [ such that s, generates
NL_;5,V, s = sj,. There exists 0 < j < n such that u; generates N_u;V, let u = ;.
It is clear that such r, s, and u can be found effectively.

Note that J < V satisfies (%) if and only if r € J, s ¢ J, t € J# and u ¢ J#.

Claim: For any 7,s,t,u € V, there exists J <<V such that r € J, s ¢ J, t € J# and
u ¢ J# if and only if s divides r, u ¢ rad(tV') and u ¢ rad(r/sV).

Suppose J <V andr € J, s ¢ J, t € J#* and u ¢ J¥. Since J¥ is prime and
t € J#, rad(tV) C J#. Therefore u ¢ rad(tV). Clearly s divides r. Let v = r/s.
Then s ¢ J and s € J so v € J#. Therefore rad(yV) C J# so u ¢ rad(yV).
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Suppose s divides 7, u ¢ rad(tV) and u ¢ rad(r/sV). Let v = r/s and J =
s(rad(tV)Urad(yV)). Then J# = rad(tV)Urad(yV) so t € J# and u ¢ J#. Clearly
s¢ Jand v €rad(yV) sor = sy € J.

[

Lemma 4.5.28. Let V' be an effectively given valuation domain. There exists an
algorithm which, given A a boolean combination of conditions on an element x € V

of the form x € rV where r € V, answers whether there exists x € V' satisfying A.

Proof. In order to show that we can effectively decide whether there exists x € V
satisfying a boolean combination of conditions of the form z € rV where r € V' it is
enough to show that we can effectively decide whether there exists x € V satisfying

a condition of the form:

n m

A= N@erV)n N\ ¢sV)

i=1 j=1
where n,m € N and r;,s; € V for 0 <7 <nand 0 < j <m. Since V is a valuation
domain there exists 0 < ¢ < n such that »,V = N7V, let r = r; and note that
we can effectively find such an i. Again, since V' is a valuation domain there exists
0 < j < m such that s;V = UL ;s;V, let s = s; and note we that we can effectively
find such a j.

There exists = satisfying A if and only if there exists x € V such that z € rV
and z ¢ sV if and only if sV C rV if and only if s € rm. Given any r,s € V we can

effectively answer whether s € rm. ]

Theorem 4.5.29. Let V' be an effectively given valuation domain with non-dense
value group and finite residue field consisting of q elements. The following are equiv-

alent:
(i) The theory of V-modules, Ty, is decidable.

(ii) There exists an algorithm which, given a,b € V, answers whether a € rad(bV').

Proof. As in theorem it is enough to show that there is an algorithm which

given a conjunction of invariant sentences and negations of invariants sentences Yy,
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answers whether there exists a module M satisfying y. Suppose x is a conjunction

of the following sentences:

1

5 =q" (1)
2

5= q" (2)
5

=1 (3)
k

where I,m,n € Nand for all 0 <4 <1, 0<j <m, 0 <k <mn, ¢, ¥}, 03, V7, &, ¥y
are pp-1-formulae and v;, w; € N.

It is enough to consider sentences of this form as any finite V-module is either the
zero module or has ¢* elements for some strictly positive v € N, by corollary [£.5.4]

As in the proof of theorem [4.4.21], if 7 is a conjunction of invariants sentences like
those in (1), (2) and (3) then we call 3\_, v; the exponent of the statement.

We proceed by induction on 22:1 v;, the exponent of the conjunction of invariants
sentences in (1).

First consider the situation when Zi:l v; = 0 that is (1) is empty. Exactly as in
theorem [4.4.21] there exists a module M satisfying x if and only if for all 0 < 7 <m

(8)2U(%)
Wi) T 2\
Theorem asserts that there exists an algorithm to check this, so we are done.
Now suppose L = Z§=1 v; > 0, so (1) is not empty and that for any conjunction
O of invariants sentences and negations of invariants sentences with exponent strictly
smaller that L, there is an algorithm which answers whether there exists a module
M satisfying ©.
Suppose there exists M satisfying x. By lemma [4.4.20] we may assume M =
) e N where M is a finite indexing set and each N, is an indecomposable pure-

injective module. Hence there exists 1 € M such that

$1(Ny)
U1 (Nw)
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and for all p e M, forall0 <<l and forall0 <k <n

i (Nu)
VR (Ny)

Let U be the set of functions u : {1,...,l + m} — NU {oo}. Let U* be the subset

‘ Nu)‘ .
21 < ¢" and
‘?/)-1 Ny,)

of U consisting of functions u € U such that 1 < u(l) < vy, for all 0 < @ < [,
0 < wu(i) <wv;and for all 0 < j < m, either 0 < u(l + j) < w; or u(l + j) = co. Note
that U* is a finite set.

We now show that for each u € U* we can effectively answer whether there exists

an indecomposable pure-injective V-module satisfying the following sentences:

(i) w_i ZQU(Z’)
2 ) 2
(ii) If u(j +1) # oo, Z_jz = ¢"U*). Otherwise z—% > qvi.
3
(iii) jz_% = 1.

Since 1 < (1), by lemma [£.5.7]if I, .J <V such that N(I, J) satisfies (i), (ii) and
(iii) then either I* = m or J# = m. So, if N(I,J) satisfies (i), (ii) and (iii), then we
may assume either / = m and J = 2V for some x € m, I =mand J¥ Cmor J=m
and I* C m.

Therefore it is enough to show how to answer the following 3 questions effectively:

Question 1: Does there exist € m such that N(m,xV) satisfies (i),(ii) and (iii)?

By lemma [4.5.24] given any sentence ’%) = ¢" where ¢, are pp-1-formulae and

v € N\{0} we can effectively produce €2 a boolean combination of conditions on an

element z € V of the form x € rV where r € V such that x satisfies ) if and only

(maV))|

1fx€mand’m = q .

By corollary 4.5.25, given any sentence ‘g‘ > q°

where ¢, 1 are pp-1-formulae and v € N\{0} we can effectively produce Q2 a boolean

combination of conditions on an element x € V of the form x € rV where r € V such

that x satisfies Q2 if and only if x € m and ’ﬁ‘ > q". By lemma 4.5.26| given
any sentence ‘%‘ = 1 where ¢, are pp-1-formulae we can effectively produce €2 a

boolean combination of conditions on an element z € V of the form x € rV where

r € V such that x satisfies € if and only if z € m and ‘%’ 1.
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Hence we can effectively produce a boolean combination of conditions © on an
element = € V such that z satisfies O if and only if x € m and N (m, V) satisfies (i),
(ii) and (iii).

By lemma [4.5.28] we can effectively decide whether there exists x € V satisfying
O.

Question 2: Does there exist J <1V such that J# C m and N(m, J) satisfies (i), (ii)

and (iii)?

By lemma [4.5.13, given any sentence ‘g‘ = ¢" where ¢, 1) are pp-1-formulae and

v € N\{0} we can effectively produce € a boolean combination of conditions on an

ideal J <V of the form r € J and s € J# where r, s € V such that J satisfies € if and

P(N(m,J))

where ¢, 1 are pp-1-formulae and v € N\{0} we can effectively produce Q2 a boolean

only if J# C m and ‘¢((N(m"]))

= ¢". By corollary [4.5.14] given any sentence ‘%‘ >q"°

combination of conditions on an ideal J <1V of the form r € J and s € J# where

r,s € V such that J satisfies Q if and only if J# C m and ‘q‘z((%((‘;‘g)) ‘ > ¢". By lemma

4.5.15} given any sentence ’%‘ = 1 where ¢, 1 are pp-1-formulae we can effectively

produce  a boolean combination of conditions on an ideal of the form r € J, s € J*

where 7,5 € V such that J satisfies (2 if and only if J C m and ‘i((%((‘:‘% ‘ = 1. Hence

we can effectively produce © a boolean combination of conditions on an ideal J <V

such that J satisfies © if and only if J C m and N(m, J) satisfies (i), (ii) and (iii).
By lemma [£.5.27] we can effectively decide whether there exists J <1 V' satisfying

©.

Question 3: Does there exist I <1V such that I# C m and N(I,m) satisfies (i), (ii)

and (iii)? Same as question 2 replacing lemma [4.5.13| by |4.5.18] corollary {4.5.14] by
corollary 4.5.19[ and lemma [4.5.15| by lemma [4.5.20]

Let U** be the set of u € U* such that an indecomposable pure-injective N exists

satisfying (i),(ii) and (iii). If 4** is empty there does not exist a module M satisfying
(1), (2) and (3).
For each u € U™ we effectively produce a new list of sentences (1)*, (2)* and (3)".

For each u start with (1)" and (2)* empty, and (3)" containing all sentences in (3).
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lon

=1 to (3)". For each 0 < j < m, if u(l +j) < wj,

= v 0 to (1) If

For each 0 < i < [, if u(i) < v;, add the sentence
¢

1
oF
2 qwjfu(l+]') to (2)“

u(i) = v;, add the sentence

2
add the sentence

?;
92

For each u € U** there exists a module M satisfying (1), (2) and (3) if and only
if there exists a module M’ satisfying (1)*, (2)* and (3)*.

Now there exists a module M satisfying (1), (2) and (3) if and only if there exists
a module M’ satisfying (1), (2)* and (3)" for some u € U™,

Note that for each u € U** the exponent of the conjunction of conditions in (1)“
is strictly smaller than L = Zizl v;. Hence by the induction hypothesis, for each
u € U** there is an algorithm which answers whether there exists a module satisfying
(1)*, (2)* and (3)*.

The other direction is by proposition [4.1.3| O
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Chapter 5

The Ziegler spectrum restricted to
injectives and other topologies on

indecomposable injectives.

Theorem 5.0.1. [PR1d, Corollary 7.4] For any ring R the Ziegler topology restricted

to the set of indecomposable injectives has a basis of open sets of the form:

(?) — {E €inj, | (R/I,E)+0}

where I ranges over right ideals of the form n(grR) where n is a pp-1-formula on left

R-modules.

We call a (right) ideal I pp-definable if there is a pp-1-formula ¢ in the language
of left R-modules such that I = ¢(gR). Note that the solution set in gR of a pp-1-
formula in the language of left R-modules will always be a right ideal of R.

We say a ring R is right coherent if every finitely generated right ideal is finitely
presented, equivalently every element of R has finitely generated right annihilator
and the intersection of two finitely generated right ideals is finitely generated. See

[Pre09, §2.3.3].

Proposition 5.0.2. [Rot85, Proposition 7][Zim77, 1.3a] The following are equivalent

for an arbitrary ring R:
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1. R s right coherent.
2. For every pp-1-formula ¢, the right ideal ¢(gR) is finitely generated.

Note that, for an arbitrary ring R, any finitely generated right ideal is pp-definable in

rR, that is, every finitely generated ideal is equal to ¢(grR) for some pp-1-formula ¢.

Lemma 5.0.3. Let R be a commutative ring. The map I' : Zgp|inj — Spec™R taking

indecomposable injectives to their attached prime is continuous.

Proof. By proposition [2.3.25/the map I' : Zgp — Spec*R is continuous. Therefore its

restriction to the subspace of injectives is continuous. ]
Combining these results we get:

Proposition 5.0.4. [GP08d, Lemma 2.1] Let R be a commutative coherent ring.
Then, after identifying topologically indistinguishable points, Zgp|im; is homeomorphic

to Spec™R.

Proof. Let I' : Zgp|inj = Spec™R : E'— AttE.
Claim: For all finitely generated ideals I, E € (?) if and only if AttE € V(I).

Suppose E € (?) Then there exists a non-zero map f : R/I — E. Therefore
there exists w € E\{0} such that imf = wR. Hence anngw 2O I. So AttE D I.
So AttE € V(I). Suppose I = (ry,...,r,) and AttE € V(I). Then I C AttE.
So there exists wy, ..., w, € E\{0} such that r; € anngw; for each 0 < ¢ < n. Take
z € N w; R\{0}, such an z exists since F is uniform. Then zr; = 0 forall 0 < ¢ < n.
So I C anngz. Hence, there is a non-zero map R/I — R/anngz = xR. Therefore
Hompg(R/I,E) #0. So E € (%).

This means that two indecomposable injectives with the same attached prime are
topologically indistinguishable, so all points in a single fibre of I' are topologically
indistinguishable. For any prime ideal p, E(R/p) is an indecomposable injective with
AttE(R/p) = p. So I is surjective.

Since the sets V(I) where [ is a finitely generated ideal are a basis of open sets

for Spec* R, the claim implies I' is a homeomorphism. ]

116



Note that a valuation ring is non-coherent if and only if there exists s € R such
that the ideal anngs is not finitely generated.

When R is a non-coherent commutative ring the above proposition does not nec-
essarily hold. We give an example (Example where it does not hold for a
valuation ring. In the rest of this section we investigate whether Zgp|in; is sober
when R is a valuation ring, a Priifer ring or the fibre product of two copies of the
same valuation ring over the residue field. We also investigate how similar Zgp|i; is
to Spec* R for these rings.

In order to show Zgg|in; is sober when R is a valuation ring we consider a finer
topology on injg, the ideals topology, denoted idealsy and defined below. We show
that for a valuation ring this topology is sober and show that for valuation rings this

implies Zgp|in;j is sober.

Definition 5.0.5. Let R be a commutative ring. We define a topology on injp,

denoted idealsy, by declaring the set
O(I) = {E € inj, | Homg(R/I, E) # 0}
open for each I < R.

Working with this topology means we don’t have to worry about which ideals are
pp-definable. It will also be useful later. Note that, by theorem the basic open
sets in Zgp|in; are exactly the open sets O(I) where [ is pp-definable. So idealsp is

a refinement of Zgp|in;.

Lemma 5.0.6. Let R be a commutative ring. The map s : idealsr — Spec*R taking

mdecomposable injectives to their attached prime is continuous.

Proof. The idealsp topology is a refinement of Zgp|iy;. In lemmal5.0.3, we show that
as a map from Zgplinj to Spec”R, s is continuous. Hence the map remains continuous

when the idealsy topology is put on inj. O]

Remark 5.0.7. Suppose E is an indecomposable injective R-module. Then E € O(I)

if and only if there exists a non-zero w € E with anngw 2 1.
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Lemma 5.0.8. Suppose R is a commutative ring and let I,J << R. Then
1. I D J implies O(I) C O(J).
2. O(I)NO(J) =0O(I+J). Therefore the open sets O(I) are a basis for ideals.
3. O(HUO(J)=0InNJ).

Proof. (1) Suppose I 2 J and E € O(I). Then there exists w € E\{0} such that
anngw 2O I. Hence anngw 2 J. So E € O(J).

(2) Suppose E € O(I + J). Then there exists w € FE\{0} such that anngw 2
I + J. Therefore anngw O [ and anngw 2 J. So E € O(I) N O(J). Suppose
E € O(I)nO(J). Then there exists wy,ws € E\{0} such that anngw; O I and
anngws O J. Since E is uniform, recall that a module is uniform if the intersection
of any pair of non-zero submodules is non-zero (deﬁnition, w1 RNwo R # 0. Take
non-zero t € wiR NwyR. Then anngt O anngpw; and anngt O anngw,. Therefore
anngt O [+ J.

(3) Suppose E € O(INJ). The map R/INJ — R/I @ R/J which takes 1+I1N.J to
(14+1,1+J) is an embedding. Therefore, if there exists a non-zero map f : R/INJ —
E then there exists a non-zero map g : R/I @ R/J — E since F is injective. Hence
there either exists a non-zero map ¢; : R/I — E or there exists a non-zero map
g2 : R/J — E. Therefore either E € O(I) or E € O(J). So O(INJ) CO(I)uO(J).
By (1), O(INJ) 2 O)UO(J). O

Lemma 5.0.9. Let R be a valuation ring. The sets

W(I) ={FE €injg | I D anngw for all w € E\{0}}
as I ranges over ideals (pp-definable ideals) are a basis of closed sets for idealsg
(resp. Zgg|inj)-

Proof. Suppose I < R. Then E € O(I) if and only if there exists w € E\{0} such
that anngw O I. Therefore £ ¢ O(I) if and only if for all w € E\{0}, I 2 anngw
if and only if £ € W(I). So, since the sets O(I) are an open basis for idealsg, the

sets W(I) are a closed basis for idealsg.
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The open sets O(I) where I ranges over pp-definable ideals are an open basis
for Zgp|inj. Therefore the sets W(I), the complements of O(I), where I ranges over

pp-definable ideals, are a closed basis for Zgp|in;. ]

Corollary 5.0.10. Let R be a valuation ring. The closed sets in tdealsg (Zgg|inj)

are totally ordered. In particular all closed sets in either topology are irreducible.

Note that this means any set X irreducible closed in Zgp|in; is closed in idealsg
and hence irreducible. Therefore, if idealsg is sober then X has a generic point x in
idealsg. So X = cligealsp ¥ C clzg,|,,;x. Since ¥ € X, X = clyg, |, .x. Therefore, for

valuation rings R, if idealsy is sober then Zgp|iy; is sober.

Lemma 5.0.11. Let R be a valuation ring, I < R and E an indecomposable injective

module. Then
1. AttE C I implies E € W(I).

2. E € W(I) implies AttE C 1.

Proof. (1) Suppose AttE C I. For all w € E\{0}, anngw C AttE. So, for all
w € E\{0}, anngw C I. Therefore £ € W(I).

(2) Suppose E € W(I). Then anngw C [ for all w € E\{0}. Hence AttE C [. O
We now show that basic closed sets in idealsy have generic points.

Lemma 5.0.12. Let R be a valuation ring. If I < R is not prime then W(I) has a

generic point. In fact there exists p < R prime such that E(R/p) is generic in W(I).

Proof. Let p be the union of all prime ideals contained in I. Then p is prime, so
p C I. Hence E(R/p) € W(I).

Suppose E € W(I). Then by lemma[5.0.11] AttE C I. Therefore AttE C p. So if
E(R/p) € W(K) then p € K. So AttE C K. Hence E € W(K). Therefore E(R/p)
specialises to E. Since F was an arbitrary member of W(I), E(R/p) is generic in

W(I). 0
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Lemma 5.0.13. Let R be a valuation ring. Suppose p < R is a prime which is not

the union of prime ideals strictly contained in it. Then W(p) has a generic point.

Proof. Let q be the union of all prime ideals strictly contained in p. Note that q is a
prime ideal. Since AttE(R/q) = q C p, by lemma [5.0.11] E(R/q) € W(p).

Suppose E € W(p) such that E(R/q) does not specialise to £. We will now show
that if such an F exists then F is generic in W(p). Since E(R/q) does not specialise to
E there exists K < R such that E(R/q) € W(K) and £ ¢ W(K). Hence q C K, since
there exists w € E(R/q) with anngw = q. Since £ ¢ W(K), there exists w € E\{0}
such that K C anngw. Therefore AttE 2D q, by lemma and £ € W(p), so
p O AttE. Hence AttE = p. Suppose E' € W(p) and E € W(J) for some J < R.
Then p = AttE C J. Since E' € W(p), AttE’ C p. So either J =p so £/ € W(p) or
p C J. If p C J then AttE’ C J. Hence E' € W(J). Therefore F is generic in W(p)

[

The remaining basic open sets to consider are those of the form W(p) where p is
a prime ideal which is the union of all prime ideals strictly contained in it. In order
to find a generic point for such a closed set we need to find an (irreducible) ideal I
which has attached prime p and is such that for all » ¢ I, (I : r) C p. Below, we
define an ideal which will be shown to have these properties. It is the pre-image of a

finitely generated ideal in Vj,.

Definition 5.0.14. Let R be a valuation ring. Suppose p < R is a prime ideal which

is not the nil radical, N(R), and a € p which is not nilpotent. Let
I'"={reR|rsecaR for some s ¢ p}.

Lemma 5.0.15. Let R be a valuation ring. Suppose p <\ R is a prime ideal which is

not the nil radical, N(R), and a € p which is not nilpotent. Then
1. I? is an ideal.
2. (IM# =p.
3. Ifp=p*and \ ¢ I¥ then (I : \) C p.
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Proof. (1) Recalling in order to show that I? is an ideal, we only need to show
that for any r € R and ¢ € I, ir € I. Suppose v € I} and r € R. Suppose, for
a contradiction, that vr ¢ I?. Then a = wvrt for some t € p. Since v € I!, there
exists s ¢ p and pu € R such that vs = au. Hence vs — vrtp = 0, so v(s — rtu) = 0.
Therefore, either v € N(R) or s —rtp € N(R). If v € N(R) then vr € N(R). Hence
vr € aR C I¥. If s — rtpp € N(R) then s — rtu € p. Hence s € p since ¢t € p. Either

way, this contradicts our assumptions. Therefore I? is an ideal.

(2) Suppose v € (IF)#. Then there exists v ¢ I? such that vy € I?. There exists
A € p such that a = v since v ¢ I¥. Since vy € I¥ there exists s ¢ p and ¢t € R such
that yvs = at. Therefore yvs = vAt, so v(ys — At) = 0. Hence vs — At € N(R) since
v ¢ aR O N(R). Therefore vs — At € p. Hence vs € p since A € p. Therefore v € p
since s ¢ p. So (IP)# C p.

Now suppose v € p. Either v € I?, so v € (I?)# or there exists t € p such
that vt = a. In the case of the second disjunct, suppose, for a contradiction, that
t € I?. Then there exists s ¢ p and p € R such that ts = ap so ts = ytu. Therefore
t(s —yu) = 0. Note that ¢ ¢ N(R) since a ¢ N(R) (recalling vt = a). Hence
s —yu € N(R). Therefore s — yu € p. So, since s & p, yu ¢ p. Therefore v ¢ p. A

contradiction. Hence t ¢ I?. So v € (IP)¥.

(3) Suppose A & I”. Then there exists s € p such that As = a. Since p = p? there
exists s1, so € p such that s;s9 = s. Note that a ¢ N(R) so s ¢ N(R) and A ¢ N(R).
Therefore s1,s5 ¢ N(R). Suppose, for a contradiction, that s; € (I? : A). Then
s1A € I?) so there exists v ¢ p such that s; v € aR. So there exists r € R such
that s; v = ar but then s; v = Asysor. So s1A(v — sor) = 0. Since s1, A ¢ N(R),
v—syr € N(R). Hence v—sor € p,sov € p. A contradiction. Therefore s; ¢ (IF : \)

and s; € p,so (IF:A) Cp. O

Recall that lemma [2.1.15] states that if R is a commutative ring and [ is an

irreducible ideal of R then Att(E(R/I)) = I#. Hence, by lemma [5.0.15| if a is a
non-nilpotent member of p then p = Att(E(R/1F)).

Lemma 5.0.16. Let R be a valuation ring and p a prime ideal which is the union of
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all prime ideals strictly contained in it. Then W(p) has a generic point.

Proof. First note that if p is the union of all prime ideals strictly contained in it then
p? = p. Take a € p\N(R). We will first show that E(R/I?) € W(p) and then show
that it is a generic point of W(p).

By[2.1.9] we know that for all w € E(R/I?)\{0}, there exists ¢t ¢ I? and s ¢ anngw
such that (annpw : s) = (IP : t). Therefore, by [5.0.15] (3), annpw C (annpw : s) =
(I? - t) C p. Hence E(R/I?) € W(p).

We now show that E(R/I?) is generic in W(p). Suppose E' € W(p) and K < R
such that E(R/I?) € W(K). Then p = AttE(R/I?) C K by lemmal[5.0.11] If K =p
then £/ € W(K) by assumption. Otherwise £/ € W(p) implies AttE" C p. So if
p C K then AttE’ C K. So, by .0.11] E’ € W(K). Therefore E(R/I}) is generic in
W(p). O

It remains to consider non-basic closed sets.

Lemma 5.0.17. Let R be a valuation ring. Suppose I; < R is a collection of ideals
indexed by Z. Suppose W = MiezW(I;) and for all J < R, W(J) # W. Then W has
a generic point. In fact it has a generic point of the form E(R/p) for some prime

1deal p.

Proof. Let g be the union of all primes p such that E(R/p) € W. Hence q C I; for
all i € Z. But this means q C I; for all i € 7 since if q = I; then W (I;) = Niez W(L;).
Therefore E(R/q) € W and q is the largest prime strictly contained in I; for all i € Z.

Suppose E' € W. Then AttE’ C I; for all i € Z. Hence AttE’ C I; for all
i € T since if I; = AttE’ then W(I;) C MiezW(I;), so W(I;) = NiezW(I;). Therefore
AttE' C q.

Suppose K < R such that E(R/q) € W(K). Then q € K. So, if E' € W then
E' € W(K) since AttE' C q and q C K. O

Theorem 5.0.18. Let R be a valuation ring. Then idealsp and Zgp|imj are sober.

Proof. We have shown that every closed set in idealsi has a generic point. So

idealsp, is sober.
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Suppose X is a closed subset of Zgpl|inj. Then X is closed in idealsi. Hence
X has an idealsy generic point x. Since X = cligealsy% C clzg,,, v and z € X,

X = clgg;,;x. Therefore Zgp|iy; is sober. O

5.1 Examples and possible behaviour

In this section we give an example of a valuation ring R with Zgp|inj/ &~ not homeo-
morphic to Spec*R. We also show that when R is a valuation ring, Zgp|i;/ ~ differs
from Spec* R by at most one point. That is, up to topological indistinguishability the
fibres of the continuous map defined in from Zgp|in; to Spec” R are all singletons
except one.

In a valuation ring R the set of zero divisors union zero, ZD, is an ideal since if

z € ZD and r € R then zr € ZD.

Lemma 5.1.1. If R is a valuation ring then all pp-definable ideals are either principal

or the annihilator of some s € R.

Proof. Over valuation rings (as in the special case of valuation domains, see all
pp-1-formulae are equivalent to a finite conjunction of formulae of the form s|xr for
some s, € R. The solution set of s|zr in R is (sR : r) (see [EH95]). The ideals of a
valuation ring are totally ordered, so all pp-definable ideals are of the form (sR : r)
for some s, € R. If r € sR then (sR :r) = R. Therefore we may assume s = rt for
some t € R.
Claim: (rtR:r) =tR + anngr.
Suppose p € (rtR : r). Then ur € rtR. Hence there exists A € R such that
(uw—t\)r = 0. Therefore p € tR+anngr. So (rtR :r) C tR+ anngr. It is clear that
anngr C (rtR:r) and tR C (rtR : r). Therefore (rtR:r) = tR + anngr.

So, since the ideals in R are totally ordered, (rtR :r) =tR or (rtR :r) = anngr.

So all pp-definable ideals are either principal or the annihilator of some element in

R. ]
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Lemma 5.1.2. Let R be a valuation ring and s € R. If anngs is a prime ideal then

anngps = ZD.

Proof. Suppose s € R and anngs is a prime ideal. Clearly anngs C ZD. Suppose
p € ZD. Then there exists t € R\{0} such that ut = 0. If ¢|s then p € anngs.
Otherwise t = sr for some r € R\anngs. Therefore pusr = 0 so ur € anngs. Hence,

since anngs is prime, [ € anngs. O

Lemma 5.1.3. Let R be a valuation ring. Suppose r € R and rR is a prime ideal.

Then W(rR) has a generic point E(R/p) for some prime ideal p.

Proof. Suppose p is the largest prime ideal not containing r. Then for all K < R,
E(R/p) € W(K) implies p C K. Suppose E' € W(rR). Then for all w € E'\{0},
anngw C rR. Therefore r ¢ AttE’. Hence AttE’ C p. So if E(R/p) € W(K) for
some K < R then AttE’ C p C K. Hence E' € W(K). Therefore E(R/p) specialises
to E'. Hence E(R/p) is a generic point of W(rR). O

Remark 5.1.4. Let R be a valuation ring. Suppose E is an indecomposable injective
R-module with AttE = p but E not isomorphic to E(R/p). Then, for allw € E\{0},
anngw C AttE since if anngw = p then E = E(R/p). Therefore E € W(K) if
and only if p C K. Hence if E, F are indecomposable injective R-modules both with
attached prime p but neither is isomorphic to E(R/p) then E and F are topologically

indistinguishable in idealsg and therefore in Zgp|in;-

The following proposition shows that Zgp|in; is very similar to Spec*R when R is

a valuation ring.

Proposition 5.1.5. Let R be a valuation ring. Suppose p and q are non-equal prime
tdeals and E is an indecomposable injective R-module with attached prime p and
topologically distinguishable in Zgpg|wm; from E(R/p). Then if F is an indecomposable
imjective R-module with attached prime q then F' is topologically indistinguishable

from E(R/q).

Proof. By lemma [5.0.12] [5.0.17], 5.1.3] the only closed sets which may not have a

generic point isomorphic to E(R/p) for some prime ideal p are the basic open sets
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W(q) where q is prime. By , if K is a pp-definable ideal then K is either principal
or the annihilator of some element s € R. Therefore, if W(K) has a generic point
not isomorphic to E(R/p) for some prime p then K = anngs for some s € R and
K is prime. So, by lemma [5.1.2] anngs = ZD. Hence there is only one closed set in

Zgplinj With no generic point isomorphic to E(R/p) for some prime p. O

Note that the above proposition shows that at most one closed set can have a
generic point topologically distinguishable from an indecomposable injective of the
form E(R/p) where p is a prime ideal of R. Therefore, up to topological indistin-
guishability, there is only one point topologically distinguishable from a point of the
form E(R/p) where p is a prime ideal of R. So the fibres of the continuous map
defined in from Zgp|in; to Spec”R are all singletons except at most one.

We now give an example of a valuation ring for which Zgplinj/ ~ is not homeo-
morphic to Spec*R. In order to do this we recall theorem [2.4.5 ([Kru32]) which is

incredibly useful for constructing examples.

Example 5.1.6. We want to find an example of a valuation ring R such that there
exists a prime ideal p and infinitely many indecomposable injectives E; with AttE; = p
and each E; is topologically distinguishable from E(R/p) in the Ziegler topology.

Let S be a valuation domain with value group Q, such a ring exists by [2.4.5. Let
C C (1,2) C R be an uncountable set of irrational numbers such that if ¢,d € C' then
c—d ¢ Q (such a set ezists since R/Q is uncountable).

Let J ={s eS| v(s)>2} and R=S/J. Then R is a valuation ring. Let s € S
be such that v(s) = 2. Then s ¢ J. Suppose r is in the mazimal ideal of S. Then
v(r) > 0. Hence v(rs) = v(r) +v(s) > 2, sors € J. Therefore (J : s) contains the
mazimal ideal of S. So since s ¢ J, (J : s) is the mazimal ideal of S. Therefore
anng, (s + J) is the mazimal ideal in S/J and is pp-definable.

Let I.={r € S | v(r) > ¢} for each c € C. Note that for all c € C, 1. D J since
¢ <2 SoS/I. is an S/J-module. We will show that for any non-equal ¢,d € C
the S/ J-injective hulls of S/I. and S/I4 are not isomorphic. If the injective hulls of
S/14 and S/1. were isomorphic then lemma|2.1.9 would imply that there exists ju & I.
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and \ ¢ I such that (I./J : p+ J) = (Ia/J : X+ J). Suppose, for a contradiction,
that there exists p ¢ I. and \ ¢ I such that (I./J - p+ J) = (Ia/J : X+ J). Since
p I, c—v(p) >0 and since A & 1, d—v(\) > 0. Note that ¢ — v(u) # d — v(\)
since v(p),v(A) € Q. We may assume ¢ — v(u) > d —v(\). Take ¢ € Q such that
c—ov(p) >q>d—v(\) and s € S such that v(s) = q. Then c > v(s)+v(p) = v(su),
sosp ¢ I.. Hence s & (I.: ), sos+J & (I.)J :p+J). Asv(sA) =v(s)+v(\) >d,
s\ € Iy. Therefore s € (Ig: X) so s+ J € (Ig/J : X+ J). Contradicting (1./J :
pw+J) = (Ia/J : X+ J). Therefore, for any non-equal c,d € C, the S/J-injective
hulls of S/1. and S/I; are not isomorphic.

For each ¢ € C, let E. be the S/ J-injective hull of S/1.. It remains to show that
for each ¢ € C, E. is topologically distinguishable from E, the R-injective hull of
R/m where m is the mazimal ideal of R. We have shown that m is pp-definable. So
O(m) is an open set in Zgp|im; and E € O(m). In order to show that for all c € C,
E. ¢ O(m), it is enough to show that for allw € E\{0}, anng/;w C m. Equivalently,
forall X\ ¢ 1., (I./J : X+ J) C m. Note that if X ¢ I. then ¢ > v(\) since ¢ > v(A),
v(A) € Q and ¢ ¢ Q. Take q € Q such that ¢ —v(\) > ¢ > 0 and r € R such that
v(r) = q. Note that since ¢ > 0, r is not a unit. Since v(rA) = v(r) + v(\) < ¢,
rA ¢ I.. HencerN\+J ¢ 1./J. Sor+J & (I./]J: X+ J) and r + J € m. Therefore
(I/J X+ J) Cm.

5.2 Priifer rings

A Priifer ring is a commutative ring R such that for all p < R prime, R, is a valuation

ring.

Proposition 5.2.1. [Pop73] The following properties of a ring morphism u : A — B

are equivalent:
(i) u is an epimorphism;
(1t) The canonical map m : BQ) , B — B, with m(b® ') = bb' is bijective;
(iii) The functor, induced by restriction of scalars, u, : Mod — B — Mod — A is full.
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Lemma 5.2.2. Let R be a commutative ring, p a prime ideal and n : R — R, the
localisation map. Then any indecomposable injective Ry-module is an indecomposable
injective R-module via 1. Thus we have a map t : injp — injp. The map t is an

embedding with image {E € inj, | AttE C p}.

Proof. Sincen : R — R, is an epimorphism, Mod — R, embeds as a full subcategory of
Mod — R by n.. Therefore, following [Pre09], if Endg(M) contains a non-zero, non-
identity idempotent, then so does Endg, M. Therefore if M is an indecomposable
R,-module then M is an indecomposable R-module.

Since n : R — R, is flat, if F is an injective R,-module then E is an injective
R-module (via 1), by [Lam99, 3.6A].

It remains to show that the image of t is {F € inj, | AttE Cp}. If E is an
indecomposable injective R,-module then all ~ ¢ p act on £ by multiplication as an
automorphism. So the image of ¢ is contained in {F € inj, | AttE C p}. Suppose
E € {F €inj, | AttE C p}. Then for all r ¢ p, the action of r by multiplication on £
is invertible. So E ®@g Ry|r = E. Therefore the image of ¢ is {E € injy | AttE C p}.

O

Lemma 5.2.3. Let R be a commutative ring. Then idealsg, is homeomorphic to

idealsp N {E € injy | AttE C p}.

Proof. Let ¢ : injp — injp be as in Then the inverse of ¢ takes E € inj, N
{E €injy | AttE C p} to £ @p R,.

We now show that for any I < R
t ' (Or(I)N{E € injg | AttE C p}) = O, (IR,).

Claim: For any E € injg , Homg(R/I, E|g) = Hompg, (Ry/I Ry, ER,).

As Rp-modules, Er, = Homg, (R,, ER,), so as R-modules E|r = Homg, (R,, Eg,)|r.
Therefore Homg(R/I, E|r) = Homg(R/I, Homg,(R,, ER,)). So by the hom-tensor
adjunction Homg(R/I,Hompg, (R,, Eg,)) = Hompg,(R/I ® Ry, ER,). For any I < R,
R/I ® R, = R,/IR, by [Osb00, Proposition 2.2]. Therefore Homg(R/I, E|g) =
Homp, (R, /IRy, ER,).

127



Suppose E € t 1 (Or(I) N{E € injy | AttE C p}). Then ¢t(FE) = E|g € O(I), so
Hompg(R/I, E) # 0. By the above claim this is if and only if Hompg, (R,/IR,, ER,) #
0. So t 1 (Or(I) N{E € injg | AttE C p}) = Og,(IR,).

It remains to show that for any J <1 R,, t(Og,(J)) is open. But, since any ideal
J <G R, is equal to (J N R)R, by [Mat89, Ch2 Theorem 4.1] and J N R is ideal in R,
t(Or,(J)) = Or(J N R).

Therefore t is a homeomorphism. O
Lemma 5.2.4. Let R be a commutative ring. Then
Zgg,|inj and Zgglini N{E € injg | AttE Cp}
are homeomorphic.

Proof. The epimorphism f : R — R, induces a continuous embedding g from Zgp

to Zgg, (see[2.3.26). The image of injp under g is inj, N {E € injg | AttE C p} by
lemma [5.2.21

Therefore
Zg g, linj and Zgglmj N {E € injp | AttE C p}

are homeomorphic. O
Proposition 5.2.5. Let R be a commutative ring. Then
1. The space Zgpl|inj is sober if and only if Zgp, linj @s sober for all primes p < R.
2. The space idealsy, is sober if and only if idealsg, is sober for all primes p < R.

Proof. First recall, proposition [2.3.20 that all irreducible closed sets in Spec*R are
of the form

{g € Spec"R | q C p}

where p < R is prime.
Note that for any p<< R, {F € injy | AttE C p} is a closed subset of both idealsg

and Zgp|in; since it is the pre-image of {q € Spec*R | q C p} which is closed in Spec™R.
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Since for any prime ideal p, idealsg, is homeomorphic to the idealsgy closed set
idealsr N {E € inj | AttE C p}, if idealsg is sober then idealsp, is sober. By the
same argument, if Zgp|in; is sober then for any prime ideal p, ZgRP\inj is sober.

Suppose that for all prime p < R, idealsp, is sober. Suppose X is an irreducible
closed subset of idealsg. Then the image of X under the map s : idealsgp — Spec*R
given in is irreducible, so the closure of s(X) is irreducible. Hence there exists a
prime p <9 R such that the closure of s(X) in Spec*R is {q € Spec” | ¢ C p} by propo-
sition 2.3.20] Therefore X C {E € inj, | AttE C p}. Since {E € inj, | AttE C p}is
homeomorphic to idealsg, and idealsp, is sober, X has a generic point. Therefore
idealsp is sober.

By the same argument, using in place of if for all primes p<AR, Zgp [in;

is sober then Zgpliy; is sober.

Proposition 5.2.6. Let R be a Priifer ring. Then idealsg and Zgp|wm; are sober.

Proof. For any prime p < R, R, is a valuation ring. Therefore, by [5.2.5| and [5.0.18]

idealsy and Zgp|im; are sober. ]

5.3 Fibre products

Throughout this section fix V' a valuation ring, let m be the maximal ideal and
k = V/m the residue field. Let V/ >1§ V' denote the fibre product of two copies of the
valuation ring V' over its residue field k. Note that V' 2< V' is the sub-ring of V' x V'
consisting of elements (z,y) € V x V with x —y € m and V' X V is a local ring with
maximal ideal m x m.

We will show that both idealsy v and Zgy , /| is sober.
k k

Lemma 5.3.1. Let R be a commutative ring and I < R. Then Og(I) and idealsg;

are homeomorphic.

Proof. Let f : R — R/I be the quotient map. Then any R/I-module is an R-

module via f. If E is a uniform R/I-module then F is a uniform R-module. Let
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t :idealsp/; — idealsp : Fr/; — Egr(F). This map is well-defined since the injective
hull of a uniform module is indecomposable. Suppose F}, F, are indecomposable
injective R/I-modules and t(F}) = t(F,). Then there exists w; € F1\{0} and ws €
F>\{0} such that anngw; = anngw,. Therefore anng/;w; = anng/w, so Fy = Fy.
Hence t is an injective map. It remains to show that the image of ¢ is O(I) and ¢ is
a homeomorphism.

Suppose Er € O(I). Then there exists w € E\{0} such that anngpw D I. Note
that R/anngw is a uniform R/I-module. So imt C O([). If K < R is irreducible
and K O I then R/K is a uniform R/I-module. Hence its R/I injective hull E is
indecomposable and ¢(F) is the R injective hull of R/K. Therefore imt O O(I).

We now show ¢ is a homeomorphism onto Og(I).

The open sets Og(J) where J <R and I C J are a basis for Og([) since Ogr(1)N
Ogr(K) = Og(I + K) for any K < R.

Claim: t(Og/(J/1)) = Or(J) for all J < R with J 2 I.

Suppose E € t(Opr/r(J/I)). Then there exists ' an indecomposable injective R/I-
modules such that Er(F) = E and w € F\{0} such that anng,;w 2 J/I. Therefore
anngw 2 J. Hence E € Og(J).

Suppose E € O(J). Then E € O(I) so there exists F' an indecomposable injective
R/I-module with Ex(F) = E and w € E\{0} with anngw D J. Since E is uniform,
wR N F # 0. Take non-zero u € wR N F. Then anngu 2 anngw 2 J. Hence u € F

and anng/;u 2 J/I. Therefore F € Og/;(J/I). Hence E € Og/i(J/1).

It follows from the claim that ¢ is a homeomorphism onto Og(I) O]
VxV VxV
Lemma 5.3.2. Let V' be a valuation ring with residue field k. Then — & and

are wsomorphic to V.

Proof. The map f : VxV — V;(a,b) — a is a homomorphism and f(a,b) = 0 if
k
and only if @ = 0. For any b € V, (0,b) € VxV if and only if 0 — b = —b € m.
k

Therefore the kernel of f is 0 xm. Since for any a € V', (a,a) € V x V| f is surjective.
k

VxV

Therefore 47— is isomorphic to V. ]
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Lemma 5.3.3. Let V' be a valuation ring with mazimal ideal m and residue field k.

If X C idealsy v is closed in tdealsy v then
k k
(i) there exist x,y € idealsy x v such that X = cligeais(7) U cligears(y)-
k
(i) if X is irreducible then X has a generic point.

Hence tdealsy v s sober.
k

Proof. (i)First note that O(mx0)UO(0xm) = O(mx0N0xm) = O(0) = idealsy « .
k

VxV VxV
By lemma |5.3.2), —= =V and 4.— = V. Therefore, by lemma |5.3.1f O(m x 0) is

homeomorphic to idealsy and O(0 x m) is homeomorphic to idealsy .

Since V' is a valuation ring, every closed set in idealsy is irreducible. Let X
be a closed set in idealsvév. Then X N O(m x 0) is irreducible in the subspace
topology and has a generic point x. Hence cligeatsy . (z) 2 X N O(m x 0). Also,
X NO(0xm) is irreducible in the subspace topology a;d has a generic point y. Hence
Clideals, « (y) 2 X NO(0 x m). Therefore X C cligeals, « v (@) U clideals, « +(y). Since
r,ye X, X = clidealsv:v(:c) U clidealsv:v(y).

(ii) Now, let X be an irreducible closed set in idealsvév. By part (i), there exists
x,y € idealsvév such that X = cligeals, , () U clidealsv:v(y). Since X is irre-

k

ducible, either X = cligeals, , , (*) or X = clideals, , , (y). So either = is a generic
k k

point of X or y is a generic point of X. ]

Lemma 5.3.4. Let V' be a valuation ring with mazimal ideal m and residue field k.

Then Zgy v |inj is sober.
k

Proof. Suppose X C Zgy v | is an irreducible closed set. Then X is closed in
k

idealsy . So by lemma [5.3.3 there exists x,y € X such that X = cligeais(x) U
k

Clideals(iy)' Now Clideals (I‘) Q ClZgV X Vling (ZE) and Clideals (y) Q Clng X Viing (y) Hence X =
k k
clzgy v (7)) Uclgg, , - (y). Therefore, since X is irreducible, X = clzg,, i () or
% inj o inj P inj

X = ClZgVXthj (y). So ZgV:V|inj is sober. O
k
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5.3.1 Examples

In this section we will give an example of a ring R with 3 indecomposable injectives

with the same attached prime which are pairwise topologically distinguishable in

A | inj-

Lemma 5.3.5. Let R =V XV where V' 1is a valuation ring with mazimal ideal m.
k

Then, for all (u,v) € R, (u,v) is a unit if and only if u and v are units in V.

Proof. Suppose (u,v) € R and (u,v) is a unit. Then there exists (k,l) € R such
that (u,v)(k,l) = (1,1). Hence uk = 1 and vl = 1. So u and v are both units in
V. Suppose (u,v) € R and u,v are units in V. Then there exists k,[ € V such that
uk =1 and vl = 1. Since (u,v) € R, u —v € m. Therefore wv(k — 1) = v —u € m.
Since u,v ¢ m, k —1 € m. Hence (k,l) € R and (u,v).(k,1) = (1,1). So (u,v) is a
unit in R. O

Lemma 5.3.6. Let R =V XV where V is a valuation ring with maximal ideal m.
k

Then, for all I <V, I x m and m X I are irreducible ideals in R.

Proof. Suppose K, L Q9 R, I xm C K and I x m C L. Take (ki,k2) € K\I xm
and (l1,03) € L\I x m. Then kq,ko,l1,ls € m, so (k1,0) = (k1, ko) — (0,k2) € K and
(11,0) = (I1,13) — (0,12) € L since (0,ks) € I x m and (0,1) € I x m. Since V is
a valuation ring, either k1 € 1V or l; € ki V. Without loss of generality we may
assume ki = lyr for some r € V. Hence (k1,0) = (I;7,0) = ({3,0) - (r,7) € L. Hence
(k1, ko) € L since (0, ko) € I x m. Therefore I x m C KN L. So I x m is irreducible.

By symmetry, m x [ is irreducible. O

Lemma 5.3.7. Let R =V xV where V 1s a valuation ring with mazimal ideal m.
k

Then, for all [ <V, (I x m)# = I# x m and (m x [)# =m x [*.

Proof. Suppose ¢ € I# and m € m. Then there exists v ¢ I such that yc € I. Hence

(c;m) - (v,7) = (ey,my) € I x mand (v,7) ¢ I x m. So (¢,m) € (I x m)*.
Suppose (a,b) € (I xm)#. Then, there exists (c,d) ¢ I xm such that (a,b)-(c,d) =

(ac,bd) € I x m. Since (¢,d) ¢ I x m either ¢ ¢ I or d ¢ m. But, if d ¢ m then,
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since c —d € m, ¢ ¢ m. Hence ¢ ¢ I. Therefore ac € I and ¢ ¢ I. So a € I*. Hence

(a,b) € I# x m. O

Example 5.3.8. Let V' be a valuation domain with value group RE@ R with the
lexicographic order. Then V' has two non-zero prime ideals, m maximal and p non-
maximal. Note that since the value group is dense, m is not finitely generated. Take
non-zero s € p and let R be V/s?V . Let s’ denote the image of s in R and note that
anngs’' = s'R. Now R is a valuation ring with two prime ideals w' mazximal and p’
non-maximal. We now consider R >k< R where k is the residue field of R.

We now show that the R >k< R ideals m'xs'R and s Rxmw' are pp-definable. Suppose
(x,y) € RéR and (z,y)(s',0) = 0. Then xs' =0, so x € R = anngs’. Hence
rem'. Since (r,y) € R >k< R, x—yew'. Hencey € m'. Therefore (z,y) € 'R x .
It is clear that s R x m’ C annRéR(s’,O). So R xm' = annR:R(s’,O). Hence
s'R x m' is pp-definable and similarly, w' x 'R is pp-definable.

Take a non-unitt € R\{s'R}. By lemmal[5.5.0, I, = tRxw’ and I, = w' xtR are
irreducible ideals. By lemma I = (tR)* xw’ and I = w' x (tR)#. Therefore
I =w' xm' and I} =w' x m' since (tR)# = m'.

Therefore the injective hulls of R >k< R/I; and R f R/I, both have attached prime
m’ x m'.

Let E be the injective hull of R >k< R/m/ >k< m', Fy the injective hull of R : R/I; and
Fs the injective hull of R >k< R/1,.

It remains to show that E, Fy and Fy are topologically distinguishable in Zgp . glinj-
Clearly F; € O(SR x w') since t ¢ s'R, so tR xm' D sR x w'. Similarlkug €
O’ x §'R).

Suppose, for a contradiction, F; € O(w' x s'R). Then there exists w € F1\{0}
such that annRzR(w) O m' x s'R. Hence there exists (a,b) ¢ Iy such that (I :
(a,b)) 2 m’ x §’R. So there exists a ¢ tR such that (tR : a) = m'. Since a ¢ tR,
there exists r € R such that ar =t. Hence (tR:a) = (arR : a) = annga+rR. Since
r ¢ annga, (tR : a) = rR. But the maximal ideal is not finitely generated, since

RE@PR is dense. Therefore Fy ¢ O(w' x s'R). Similarly Fy ¢ O(s'R x wm'). Finally
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EeOm xsR)NO(sRx ') sincem’ xm' Dm' X R and m’ xm’' D R xm'.
Therefore E, Fy and Fy are topologically distinguishable in Zgy v |inj and AttE =
AttF) = AttFs. k
Hence E, Fy and Fy are all in a single fibre, T (AttE), of the continuous map
defined in but they are pairwise topologically distinguishable. Hence T~ (AttE)

contains at least three topologically distinguishable points.
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