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Abstract 

Airway wall remodelling contributes to decreased lung function in asthma. 
Key features of the remodelling process are thickening of the reticular 
basement membrane, differentiation of fibroblast-like cells with contractile 
properties termed myofibroblasts and sub-epithelial deposition of 
extracellular matrix.The pro-fibrogenic cytokine transforming growth factor-
β2 (TGF-β2) is purported to drive remodelling responses. TGF-β2 may be 
upregulated in asthmatic epithelium, and is secreted by bronchial epithelial 
cells following injury.  
 
In this study significant increases in reticular basement membrane thickening 
and myofibroblast differentiation were identified by histology and 
immunohistochemistry of  mild asthmatic and healthy human bronchial 
biopsy tissue, although no significant differences in TGF-β2 expression were 
identified.  
 
It was hypothesised that the proteolytic action of house dust mite (HDM) 
allergens would lead to increased activation of latent TGF-β2 secreted by 
bronchial epithelial cells. A transformed cell line, 16HBE14o-, did not show 
increased activation or expression following HDM extract challenge, however 
TGF-β2 activation and expression was increased following exposure of 
primary human bronchial epithelial cells to a HDM extract.  
 
Myofibroblast differentiation and matrix deposition by healthy and mild 
asthmatic- derived primary bronchial fibroblasts were assessed by α-smooth 
muscle actin expression and soluble collagen production, following challenge 
with exogenous TGF-β2. Results presented here show asthmatic bronchial 
fibroblasts are more sensitive to the myofibroblast priming effects of TGF-β2. 
Bronchial epithelial cell conditioned media challenge of healthy fibroblasts led 
to greater increases in matrix deposition and myofibroblast differentiation 
than was attributable to TGF-β2, with greatest increases seen following 
asthmatic epithelial cell conditioned media exposure. Responses were greater 
than suggested by the epithelial TGF-β2 levels, so it is suggested that 
additional  soluble mediators play a part in airway wall remodelling responses. 
Further work is required to identify the soluble mediators secreted by 
bronchial epithelial cells that control the responses of the underlying 
fibroblasts.  
 
Gaynor Anne Campbell 
The University of Manchester 
Degree: PhD Medicine (Translational Medicine) 
 
Thesis Title: In vitro investigations of Transforming Growth 
Factor-β2 induced airway wall remodelling.  
 
Jan. 2011 
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Chapter 1: Introduction 

 

1.1     Asthma 

Asthma is a disorder of the lung characterised by inflammation, over-

production of mucus and bronchial smooth muscle contraction. It was 

previously thought that asthma was a condition of episodic broncho-

constriction with a remitting pathology, however it is clear that both acute and 

chronic inflammatory responses occur, alongside extensive structural changes 

in the conducting airway wall. The structural changes are collectively termed 

airway wall remodelling (AWR), and evidence suggests AWR may precede the 

development, and thereby diagnosis, of asthma (Bush, 2008; Cohn et al., 

2004).  

 

Investigations of disease heterogeneity show asthma is not a single entity 

differing in severity, but an overlapping range of phenotypes with divergent 

measures of inflammation, allergic stimulation, cell-type involvement and 

airway remodelling. These features contribute to airway hyperresponsiveness 

(AHR) and decreases in lung function  (Holgate and Polosa, 2006). 

  

Pharmacological intervention focuses on relief of asthma symptoms and 

reduction of underlying inflammation. In recent years new treatments have 

been developed directed at reducing or blockading known originators of acute 

asthmatic episodes such as IgE and IL-5. Treatments do not target airway wall 

remodelling, and much remains unknown regarding how remodelling 

phenomena are initiated and maintained, and their contribution to disease 

morbidity.  

 

1.1.1  Asthma prevalence and symptoms 

Asthma affects 300 million people worldwide, including 5.4 million sufferers 

in the UK requiring NHS treatment costing an estimated £996 million in 2009 

(AsthmaUK, 2010). Asthma can be defined as widespread variable airflow 

obstruction that is often reversible (GINA, 2010). Asthma symptoms include, 
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but are not limited to, cough, wheeze and shortness of breath, which can be 

both acute and chronic. Often symptoms occur with diurnal variation, and 

severity of symptoms is increased in the early hours of the morning. Airway or 

bronchial hyper-responsiveness (AHR/BHR), whereby an abnormal degree of 

airway narrowing occurs following inhaled exposure to a bronchoconstrictor, 

is an important indicator of asthma. Pathological hallmarks of asthma are 

limited to regions of the conducting airways: the bronchi and bronchioles. 

 

1.1.2  Asthma diagnosis and treatment 

A diagnosis of asthma is made by a clinician following consideration of 

numerous factors including patient history, symptoms and triggers, in 

conjunction with pulmonary function tests. Measurements of forced 

expiratory volume in one second (FEV1) and peak expiratory flow (PEF), 

typically show decreased values in comparison to healthy individuals and are 

characteristically variable (BTS, 2008). Variability can indicate poor disease 

management or difficult disease. Analysis of severe asthma patient 

characteristics has identified four subclinical phenotypes of asthma: 

eosinophilic inflammation positive and eosinophilic inflammation negative, 

subdivided into Th2-cytokine high and Th2-cytokine low (Bradding and 

Green, 2009). 

 

Disease management can require a number of treatments. For the majority of 

asthmatics the condition is well controlled by a combination of β2-

adrenoreceptor antagonists and inhaled glucocorticoids. However, only 70% of 

asthmatics respond to glucocorticoids (Mjaanes et al., 2006). This variation in 

response is possibly due to differences in disease phenotype and genetic 

background. A brief description of commonly used treatments follows. 

 

1.1.2.1  β2-adrenoreceptor agonists  

Delivered by inhalation and commonly referred to as β2-agonists, these bind 

β2-adrenergic receptors (β2AR) on airway smooth muscle cells, activating 

downstream signalling pathways that result in relaxation of the muscle 
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thereby reducing bronchoconstriction. β2-agonists can be broadly split into 

long-acting (LABA- up to 12 hours) and short-acting (SABA- 1-2 hours). 

LABAs or SABAs can be used alone as “rescue therapy” during asthma 

exacerbations. The B2AR gene is encoded on chromosomal region 5q31-32 in 

the IL-4 gene cluster, and can be downregulated by repeated exposure to β2-

agonists (Bhatnagar et al., 2006). LABAs plus inhaled glucocorticoids act 

synergistically in relief of asthma symtoms.  

 

1.1.2.2  Glucocorticoids  

Inhaled glucocorticoids (GC), also referred to as glucocorticosteroids, 

downregulate inflammation in the asthmatic airway. In severe asthma, a 

course of oral steroids may also be used. Glucocorticoids enter cells by 

diffusion across the cell membrane and bind glucocorticoid receptors (GR) in 

the cytoplasm. The receptor is activated and released from a chaperone 

protein, allowing the GC-GR complex to enter the nucleus and bind to 

glucocorticoid response elements (GRE) and co-activator complexes, exerting 

a direct affect on inflammatory gene transcription (Adcock and Caramori, 

2001). 

 

Glucocorticoids downregulate pro-inflammatory genes through inhibition of 

MAPK signalling via induction of MAPK phosphatase-1 (MKP1), and 

inhibition of NFκB (Barnes and Karin, 1997). This  switches off transcription 

of inflammatory genes, and upregulated transcription of anti-inflammatory 

cytokines such as IL-10 may also occur (Adcock et al., 2004). GC may also 

prevent desensitization to β2-agonists by blocking the downregulation of β2AR 

caused by repeated exposure to β2-agonists (Bhatnagar et al., 2006). 

 

1.1.2.3  Leukotriene receptor antagonists 

Leukotrienes are pro-inflammatory mediators generated from arachidonic 

acid and released by immune cells including eosinophils and neutrophils, and 

by mast cells at degranulation. Leukotriene receptor antagonists (LTRA) act by 

sequestering leukotriene receptors preventing pro-inflammatory leukotrienes 
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including LTC4 and LTD4 from binding. The smooth muscle contraction and 

vascular permeability effected by leukotrienes is thus downregulated. LTRAs 

are now often prescribed in mild-moderate asthma for their dual 

bronchodilatory and anti-inflammatory properties.  

 

1.1.2.4  Monoclonal antibody therapy 

The reductionist approach to new asthma therapies has increasingly led to the 

targeting of individual novel components of the asthmatic disease response. A 

number of monoclonal antibodies have been developed for therapeutic use 

following this approach. 

 

Omalizumab is a murine anti-human IgE monoclonal antibody that binds 

circulating IgE at the Fc region, blocking binding to IgE receptors including 

high-affinity FcεRI. This inhibits binding of IgE to receptors on basophils and 

dendritic cells, and the binding and subsequent cross-linking of IgE on mast 

cells (Clark et al., 2006; D'Amato, 2006). Through this sequestration of free 

circulating IgE the allergic response can be attenuated. This treatment is of 

use in those individuals with persistent allergic asthma that is poorly 

controlled by inhaled glucocorticoids, and is not considered suitable for all 

asthmatics. Other monoclonal antibodies have been trialled including 

mepolizumab, an IL-5 blocking antibody. Although mepolizumab reduced 

numbers of circulating eosinophils, it had limited success in reducing tissue 

eosinophils, and had no effect on asthmatic lung response to inhaled allergen 

challenge (Büttner et al., 2003). 

 

Many trials have produced disappointing results in reduction of asthma 

symptoms and/or number of exacerbations. Current research indicates these 

therapies may show greater efficacy when patients are selected by disease 

phenotype beforehand, to identify those whose disease is at least partially 

mediated by the treatment target. 

 

The therapies described were developed either to provide symptomatic relief 

or resolve inflammation in asthma, and have only limited ability to alter the 



 Gaynor A. Campbell 

  19 

remodelling response. Long-term treatment with GC shows a reduction in 

remodelling markers in some studies (Hoshino et al., 1998c), however there 

remains an opportunity to identify new targets for manipulation that will alter 

the AWR response.  

 

Airway wall remodelling may occur prior to the development of diagnosable 

asthma, and it is not apparent whether this is a purely protective response or 

contributes to progression and maintenance of the disease state. Alteration of 

AWR could potentially have unintended downstream effects. 

 

Finally, an understanding of how the asthmatic disease is initiated could aid in 

identification of targets that are not limited to relief of symptoms, but instead 

aim to “cure” asthmatic disease.  

 

1.1.3  Asthma initiation 

1.1.3.1  Genetics and Environment 

Given the heterogeneity of asthma as a disease, there is no consensus on what 

precludes disease development. It is generally agreed that a combination of 

genetic and environmental factors act to influence the development of asthma.  

 

In a review of asthma genetics, Weiss et al. excluded genetic association 

studies (where a specific genetic variant is tested for in affected individuals 

versus controls) with less than 300 total subjects as, in a complex trait such as 

asthma, smaller sample sizes are statistically underpowered. The studies that 

remained identified 43 candidate genes, on more than 20 different 

chromosomes, that could be associated with asthma. A number of genes are 

also associated with atopy- a known risk factor for asthma (Weiss et al., 2009). 
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Chromosome Gene 

2q 
CTLA4 
IL1RN 

5q 

IL4 
IL13 
CD14 
IL9 

12q 
IFN-γ 

STAT6 

20p ADAM33 

 

Table 1.1 Chromosomal regions of interest and genes associated with 

asthma (Blumenthal, 2005; Van Eerdewegh et al., 2002; Wills-Karp and Ewart, 

2004). 

 

Around 500 genetic loci in total have been proposed as candidate “asthmatic” 

genes. As asthma is heterogenous and complex so is the genetic background 

and heritability of the disease. Phenotypic variation is however currently 

unlinked to the genome. From the large number of candidate genes identified 

and the low significance of these gene polymorphisms individually, it is 

apparent that asthma is the product of accumulations of genetic 

polymorphisms. It is possible these alone do not induce asthma per se, and 

that gene interactions with environmental stimuli are required to initiate and 

drive disease development. Studies on the environmental effects on asthma 

development are often contradictory, however of interest to this project was 

the finding that house dust mite (HDM) exposure in infancy is a risk factor for 

subsequent asthma development (Huss et al., 2001). 

 

Understanding of allergic sensitisation in the lung and the factors leading to 

subsequent development of asthmatic disease is incomplete, and insufficient 

to identify a definite asthmatic prior to disease manifestation. Characterisation 

of cell behaviour in the time period between sensitisation and overt disease 
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could produce information allowing the targeting of asthma initiators in a 

window of opportunity, thereby precluding further disease development. Until 

that possibility is realised it is important to extend understanding of 

established disease mechanisms to subsequently improve treatment regimens 

for established asthmatic disease. 

 

1.1.3.2  Allergic sensitisation 

Although the mechanisms of asthmatic disease initiation are unclear, 

initiation of an allergic asthmatic response is not. Asthma is a Th2 type 

disease, typified by the production of cytokines interleukin-4 (IL-4), IL-5 and 

IL-13, with immunoglobulin E (IgE) a major initiator of pathophysiology 

(Barnes et al., 2002). Sensitisation to allergen occurs in many asthmatics, with 

allergen exposure often leading to a symptomatic response (Craig, 2010; Tovey 

et al., 1981). Briefly, sensitization occurs when dendritic cells in the mucosal 

lining of the lung take up inhaled antigen and migrate to the lymph nodes, 

where they function as professional antigen-presenting cells with 

costimulatory capacity. Antigen presented to naïve T cells as immunogenic 

peptides, alongside costimulation (via CD86) drives CD4+ T cells down the 

Th2 lineage pathway in asthmatics. When Th2 cells in circulation meet specific 

antigen, cytokines such as IL-4, IL-5 and IL-13 (encoded on chromosomal 

region 5q31-32, also known as the IL-4 gene cluster) are secreted. Genetic 

studies have shown mutations in this region to predispose to the development 

of asthma. IL-13 induces goblet cell differentiation in the airway epithelium 

and promotes AHR (Walter et al., 2001; Wills-Karp et al., 1998). IL-4 

promotes B cell production of IgE and IL-5 promotes eosinophil production 

and recruitment from the bone marrow. Antigen specific IgE produced by B 

cells binds FcεRI receptors on the surface of mast cells. Mast cells are 

normally resident in the respiratory tract; greater numbers may accumulate in 

allergic asthma (Brightling et al., 2002). Cross-linking of FcεRI  by IgE on 

mast cells initiates the acute phase asthmatic response (Section 1.1.4.1). 

 



 Gaynor A. Campbell 

  22 

1.1.4   Asthmatic airway inflammation 

Asthmatic exacerbation stimuli are broadly definable as allergenic, 

environmental or mechanical. In the asthmatic airway, the response to these 

stimuli is abnormal and termed AHR. Approximately 90% of asthmatics may 

suffer acute asthmatic episodes triggered by allergen, the remainder being 

induced by environmental or mechanical stimuli. Exercise induced asthma, 

where symptoms are only present following physical exertion, occurs even in 

very fit individuals, whilst those with no history of atopy (the predisposition to 

produce IgE upon low dose protein antigen challenge) can experience wheeze, 

cough and tightening of the chest in response to environmental triggers such 

as sudden air temperature change (moving from warm to cold or cold to warm 

areas) and occupational exposure to chemical agents.  

 

1.1.4.1  The acute phase response 

In allergic asthma inhalation of an offending antigen cross-links specific IgE 

bound to FcεRI receptors on mast cells resident in the respiratory tract. IgE 

cross-linking signals the release of potent granule contents from the mast cell, 

initiating the acute phase response. Histamine and prostaglandins released 

cause smooth muscle contraction and rapidly increase vascular permeability 

leading to bronchoconstriction. 

 

The immediate smooth muscle contraction and increased mucus production 

result in the symptoms experienced by sufferers. Increased vascular 

permeability leads to constriction of the airways by increasing tissue volume. 

It also contributes to the chronicity of inflammation by allowing influx of a 

number of inflammatory mediator cells to the area of injury, namely 

eosinophils, CD4+ TH2 cells, additional mast cells and neutrophils. These cells 

are activated in the cytokine milieu of the injury area and release other factors 

that contribute to the ongoing inflammation. TH2  cell release of IL-3 and GM-

CSF recruits and activate eosinophils, which go on to release further 

inflammatory mediators. A “chronic wound” scenario may result through 

these mechanisms, and thus drive further exacerbations and remodelling 

(Holgate et al., 2004). 
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The acute phase reaction may be followed 6-8 hours later by the late-phase 

response. 

 

1.1.4.2  The late phase response 

This can be attributed to other mediators released by mast cells, such as LTD4 

and TNF-α, and the action of eosinophils and macrophages chemotactically 

attracted to the lung following mast cell degranulation. Some mast cell-derived 

molecules and their primary effects are listed in Table 1.2. The late-phase 

reaction results in a second stage of smooth muscle contraction and sustained 

oedema; in essence a further asthmatic episode. 

 

Effector molecule Effect of release 
Tryptase, Cathepsin G Extracellular matrix remodelling 

Leukotrienes C4, D4, E4 
Smooth muscle contraction 
Inc. vascular permeability 
Inc. mucus production 

IL-4, IL-13 
TH2 response promotion 
Mucus production 

IL-3, IL-5, GM-CSF 
Eosinophil activation 
Inc. eosinophil production 

TNF-α 
Endothelium  activation 
Inc. vascular permeability 
Inc. cytokine production 

Histamine 
Smooth muscle contraction 
Inc. vascular permeability 

 

Table 1.2 Effector molecules released by mast cell activation and their 

major effects.  

 

LABAs are often used as “rescue therapy” during acute asthma attacks, and 

inhaled GC treatment can dampen underlying inflammation. However these 

treatments do not resolve the underlying structural changes attributed to 

AWR processes. 

  

1.1.5  Asthmatic airway wall remodelling 

Airway wall remodelling (AWR) is a complex phenomenon with the significant 

effect of reduction of airway calibre, leading to fixed airflow limitation and 
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AHR (Aysola et al., 2008; James et al., 1989; Mitchell et al., 1998). Thickening 

of the airway wall  has been shown to greatly increase the degree of airway 

narrowing that can occur during an acute asthma attack. Airway thickness 

data collected from post-mortem and surgically resected lungs of normal, 

COPD and severe asthma patients, was used to model increasing airway 

resistance caused by calibre reduction using the Poiseuille equation. This 

equation (ΔP=8lµV/πr4, where ΔP= change in pressure, l= length, µ= gas 

velocity, V= flow and  r= airway radius), equates pressure to laminar flow. 

Using this model, it was demonstrated that small alterations in the airway 

radius (narrowing), led to greatly increased pressure (airway resistance) 

(Bossé et al., 2010; Wiggs et al., 1992). 

 

It is unclear whether remodelling is (partially) driven by the inflammatory 

response, or whether the non-resolving inflammatory response is due in some 

part to AWR. With evidence to suggest remodelling occurs prior to or 

concurrently with the development of airway inflammation, it is possible 

remodelling begins as a protective mechanism (Bush, 2008). Regardless of the 

driving factors, AWR has consequences in bronchial architecture and 

behaviour. AWR should be regarded not only as structural changes, but also as 

alterations in the relationship between and among structural cells and other 

airway constituents.  

 

Pathologically, asthma is broadly restricted to the bronchi and bronchioles, 

which form part of the conducting airway tree. Multiple AWR phenomena 

have been identified, and this review shall focus on those reported in the 

epithelium and underlying fibroblasts in the lamina propria.  

 

1.1.5.1 Epithelium 

The archetypal respiratory epithelium of the bronchi consists of 

pseudostratified, ciliated columnar epithelial cells interspersed by non-ciliated 

mucus-producing goblet cells and small basal cells. The asthmatic epithelium 

is often described as fragile, with biopsy studies suggesting increased epithelial 

shedding and damage in asthmatics (Demoly et al., 1995). Basal cell loss of 
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columnar cell attachments is accompanied by increased EGFR and CD44 

expression, suggesting an active process rather than an artefact of biopsy 

sampling and processing (Lackie et al., 1997; Puddicombe et al., 2000). This is 

supported by the finding of increased Creola bodies (clumps of epithelial cells) 

in BAL fluid from asthmatics compared to control subjects (Montefort et al., 

1992). 

 

Goblet cell hyperplasia has been identified in asthmatic epithelium (Ordoñez 

et al., 2001), and their contribution to mucus hyper-secretion is a factor in 

mucus plugging of the airway seen in fatal asthma (Kuyper et al., 2003). A 

number of other features have been identified in asthmatic epithelium, 

including increased PAR-2 expression (Knight et al., 2001), increased STAT6 

expression (Mullings et al., 2001) and increased Endothelin (Vittori et al., 

1992).  

 

Of relevance to this project are the findings of Chu et al. who demonstrated 

increased TGF-β2 expression in asthmatic biopsy tissue compared to healthy 

(Chu et al., 2004). Segmental allergen challenge led to increased TGF-β2 in 

BAL, although in this study basal levels of TGF-β2 were higher in healthy 

individuals (Batra et al., 2004). This is however indicative of a role for TGF-β2 

in maintaining normal lung homeostasis. There is a correlation between TGF-

β positive epithelium and reticular basement thickness (Vignola et al., 1997) 

Furthermore, the identification of increased phospho-Smad-2 signalling and 

decreased Smad-7 expression in asthmatic epithelium suggests a 

dysregulation of TGF-β responsiveness (Nakao et al., 2002; Sagara et al., 

2002). Decreased Smad-7 expression was inversely correlated to reticular 

basement thickness and AHR.  

 

1.1.5.2 Reticular basement membrane 

Anchoring the epithelium to the underlying connective tissue is the reticular 

basement membrane (RBM). This layer can become thickened in asthma, due 

to increased deposition of ECM molecules including the fibrillar collagens I, 

III and V (Wilson and Li, 1997). Increased RBM thickness has been positively 
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correlated with AHR (Hoshino et al., 1998a) and with frequency of asthma 

attacks (Evans et al., 1999). Treatment with inhaled glucocorticoids can 

reduce RBM thickness (Hoshino et al., 1998c) 

 

Increased deposition of Tenascin-C (Tn-C), collagen III and lumican have 

been described at baseline in asthmatics, that could be subsequently decreased 

by anti-IL-5 treatment or inhaled GC (Flood-Page et al., 2003; Laitinen et al., 

1997). An allergen challenge study of asthmatics identified a significant 

increase in Tn-C deposition in the RBM at 24h post-challenge (Phipps et al., 

2004b). With regard to this thesis, Thompson et al. reported induction of Tn-

C expression by bronchial epithelial cells following challenge with exogenous 

TGF-β2. Expression was also increased following a model “scrape” injury 

(Thompson et al., 2006). 

1.1.5.3 (Myo)fibroblasts 

Fibroblasts are the predominant cell type in the lamina propria, responsible 

for the majority of extracellular matrix production and of the lamina propria 

itself. 

The lamina propria appears ultrastructurally as loose connective tissue 

composed of collagens and proteoglycans, with longitudinal bundles of elastic 

fibres of elastin and fibrillin, and nerves. The major components of the 

extracellular matrix are described in Table 1.3. 

 

Component Function 
Fibrillar collagens (Types 
I, II, III, V) 

Resist tensile forces, mix with elastin to 
limit stretch and stop tearing of tissue. 

Hyaluronan 
–ve charge attracts +ve ions which draws 
water into matrix ∴ can withstand 
compressive forces 

Proteoglycans  
Withstands compressive forces. Bind FGF 
and other factors 

Tenascin 
Guides cell migration through integrin 
binding. 

Fibronectin 
Aids cell attachment to ECM, and cell 
migration through matrix 

Elastin Allow stretch of tissue.  
Laminin Cell adhesion at basal lamina 

Table 1.3 Extracellular matrix components of the bronchi.  
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Differentiation of fibroblasts to myofibroblasts occurs naturally during the 

tissue repair response, although persistence is associated with fibrosis 

(Brewster et al., 1990). Myofibroblasts gain a contractile function due to the 

accumulation of stress fibres and smooth muscle related proteins;  α-smooth 

muscle actin (α-SMA) is used as a marker of myofibroblast differentiation 

(Hinz et al., 2007a), and subepithelial collagen deposition in AWR is thought 

due to greater numbers of myofibroblasts in the lamina propria (Zhang et al., 

1994). Increased myofibroblast number correlates with RBM thickness 

(Gizycki et al., 1997) and differentiation follows TGF-β stimulation (Hu et al., 

2003). 

 

Asthmatic fibroblasts challenged with TGF-β2 upregulated smooth muscle 

related mRNA transcripts to a greater degree than healthy and were 

maximally primed at 10-fold lower concentration of TGF-β2 than healthy. This 

suggests that fibroblasts from asthmatic subjects may be more sensitive to 

TGF-β2 than healthy cells (Wicks et al., 2006). 

 

1.2 Transforming Growth Factor-β  

Transforming growth factor- β (TGF-β) is a pro-fibrogenic cytokine implicated 

in the remodelling and repair processes in the airways. TGF-β is part of the 

TGF-β superfamily of cytokines, of which there are around 40 mammalian 

members including bone morphogenetic proteins (BMP), activins and 

macrophage inhibitory cytokine-1 (MIC-1). TGF-β is considered a vital 

element in maintaining tissue homeostasis in the healthy lung, with effects on 

matrix production and turnover key to this process. Complex interlinking 

pathways of cell activation, proliferation, downregulation and mediator release 

are affected and regulated by active TGF-β, and disseminating the cytokine’s 

effects on individual cell types has provided data on the possible outcomes of 

activation in-vivo. Three isoforms of TGF-β have been identified in humans: 

TGF-β1, TGF-β2 and TGF-β3. Of these TGF-β1 is the best characterised. The 

individual isoforms are encoded on different genes. The majority of published 

data focuses on TGF-β1, however the role of TGF-β2 in asthmatic remodelling 
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and repair is gaining prominence and it is the TGF-β2 isoform that shall be 

evaluated in experimental work presented in this thesis.  

 

1.2.1  TGF-β  secretion 

TGF-β2 is first transcribed and translated as pre-pro-TGF-β, the pre section 

being an N-terminal 19 amino acid signal peptide for translocation to the 

Golgi, where the C-terminal pro-region is cleaved by a furin-like peptidase at a 

dibasic cleavage site (Figure 1.1). The cleaved pro-peptide forms the 75kDa 

homodimer of latency associated protein (LAP). The mature TGF-β is a 25kDa 

homodimer that non-covalently associates with LAP. The molecule is now 

designated latent TGF-β (LTGF-β) or the small latent complex (SLC). LAP 

covalently binds a latent TGF-β binding protein (LTBP) forming the large 

latent complex (LLC) (Figure 1.2) (Todorovic et al., 2005). LTBP is thought to 

anchor the TGF-β complex in the ECM by co-localising with fibrillins, thereby 

providing a reservoir of biologically inactive TGF-β (Chaudhry et al., 2007). 

The majority of this work was carried out on TGF-β1. 

 

The LTBPs are members of the LTBP-fibrillin superfamily as they have 

structural similarities with the fibrillins. The SLC of TGF-β2 can bind to either 

LTBP-1 or LTBP-3, both expressed in lung. Each isoform contains 4 cysteine 

rich (CR) domains. The third CR domain in each binds covalently to LAP. The 

cysteine rich domain at the N-terminus of the LTBP mediates covalent linking 

to the extracellular matrix. LTBPs may thus play a role in controlling 

bioavailability of TGF-β in tissues (Ramirez and Rifkin, 2009). 

 

1.2.2   TGF-β2 activation 

The SLC and LLC are biologically inactive complexes containing mature TGF-

β. Before receptor binding can occur TGF-β must disassociate from LAP. The 

activation of TGF-β can occur through several mechanisms. TGF-β2 LAP does 

not contain an argine-glycine-aspartic acid (RGD) sequence, and so does not 

appear to bind integrins as a method of activation as TGF-β1 and TGF-β3 do.  

 



 Gaynor A. Campbell 

  29 

TGF-β latency is governed by LAP, as it blocks sites of receptor binding on the 

mature TGF-β dimer. Immobilisation on the cell surface may be required for 

presentation to proteases. This can occur via binding of mannose-6-phosphate 

(M-6-P) moieties of the LAP to M-6-P receptors (M-6-PR) on the cell surface 

(Yang et al., 2001). In this way plasminogen-derived plasmin has been shown 

to cleave LAP and activate TGF-β1 (Khalil et al., 1996). 

 

Activation of TGF-β1 and TGF-β2 has been demonstrated in various in-vitro 

systems through the activity of both serine and cysteine proteases. An 

overview of these studies is given in Table 1.4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Schematic of pre-pro-TGF-β2. The pre-TGF-β signal peptide targets 

the complex to the Golgi, where the pro-region is cleaved by a furin-like peptidase. 

TGF-β2 forms a mature, 25kDa homodimer, which non-covalently associates with a 

homodimer of the pro-region, now termed latency-associated peptide (LAP). 
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Figure 1.2 Schematic of mature TGF-β2 in the large latent complex (LLC) 

25kDa mature TGF-β2 associated with 75kDa LAP forms the small latent complex 

(SLC). LAP has covalently bound a latent TGF-β binding protein (LTBP-1S), forming 

the large latent complex (LLC).  

 

 

 

 

 

 

Mature TGF-β2 

Latency associated peptide (LAP) 

LTBP-1S 

8-cys repeat 

Hybrid domain 

Ca2+ binding EGF-like repeat 

Non-Ca2+ binding EGF-like repeat 

Hinge region 

 

Key 



 

Protease Class 
TGF-β  

isoform 
Cell 

associated? 
Reference 

Plasmin Serine TGF-β1 Cell assoc. 
(Khalil et al., 

1996; Lyons et 
al., 1988) 

Prostate-specific 
antigen (PSA) 

Serine TGF-β2 Cell-free & 
assoc. 

(Dallas et al., 
2004) 

Tryptase Serine TGF-β1 Cell-free & 
assoc. 

(Tatler et al., 
2008) 

Der f 1 Cysteine TGF-β1 Cell-free 
(Nakamura et 

al., 2009) 

Calpain Cysteine TGF-β1 Cell-free & 
assoc. 

(Abe et al., 
1998) 

Cathepsin B Cysteine TGF-β1 Cell-assoc. 
(Gantt et al., 

2003) 

Cathepsin B/D Cysteine TGF-β1 Cell-free & 
assoc. 

(Oursler et al., 
1993) 

Table 1.4 Proteinases shown to activate latent TGF-β  isoforms 
 

1.2.3   TGF-β  Receptors 

There are three subsets of  transmembrane TGF-β receptors, Type I (TβR-I) 

and Type II (TβR-II), both of which are required for TGF-β signal transduction 

and TβRIII. The TβR-I family contains two receptors which bind TGF-β: 

activin receptor-like kinase 1 (ALK-1) and ALK-5. TβR-I have intrinsic 

serine/threonine kinase activity in the cytoplasmic portion and a short 

cysteine-rich extracellular domain, features which are shared by TβR-II. TβR-

II differ from TβR-I in a longer cytoplasmic domain and a spacer region lying 

between transmembrane and kinase sequences. TβR-II lack the characteristic 

glycine/serine rich domain found next to the kinase domain in TβR-I.  

 

TGF-β2 must bind the 250-350 kDa proteoglycan betaglycan, also known as 

TGF-β receptor type III (TβR-III), to mediate strong binding to TβR-II, 

although recent evidence shows a splice variant of TβR-II can bind TGF-β2 

without the requirement for betaglycan (del Re et al., 2004a). Once a TβR-II 

dimer is bound by active TGF-β, the dimeric TβR-I associates forming a 

tetrameric receptor complex. The cytoplasmic domain of TβR-I is 

phosphorylated by TβR-II, signalling the start of the signal transduction 

pathway.  



 Gaynor A. Campbell 

  32 

1.2.4   TGF-β-Smad signalling  

The primary signalling pathway of TGF-β is Smad-dependent. Smads are a 

family of eight intracellular transcription factors classified as receptor 

associated (R-Smad 1, 2, 3, 5 and 8), common (Co-Smad 4) or inhibitory (I-

Smad 6 and 7). R-Smads 2 and 3 are activated by TGF-β (and activin) binding. 

The Smad proteins consist of two globular domains designated Mad-homology 

1 (MH1) and MH2 joined by a flexible linker. In the inactive form, the MH1 

and MH2 domains are bound together (Massagué et al., 2005). 

 

Upon ALK-5 phosphorylation R-Smad 2 and R-Smad 3 are presented to the 

receptor complex by the membrane-anchored Smad anchor for receptor 

activation (SARA) which binds a Smad interaction motif (SIM) in the linker 

region. R-Smad2 and 3 are phosphorylated by ALK-5 which leads to 

dissociation from SARA, the MH1 and MH2 domains are forced apart by the 

conformational change then dimerisation in the cell cytoplasm. The R-Smad2 

and 3 heterodimers associate with Co-Smad4 which aids translocation into the 

nucleus.  In the nucleus the complex binds to Smad-binding elements (SBE), 

specific motifs found in the promoter regions of genes regulated by TGF-β.  

 

R-Smad activation is regulated by kinase activity in the cell cytoplasm. 

Phosphorylation of residues in the linker regions of R-Smads by MAPKs 

(mitogen associated protein kinases) such as Erk MAPK in the cytoplasm 

blocks Smad translocation into the nucleus and therefore abrogates TGF-β 

signalling.  

 

Nuclear Smad complexes can co-operate with transcription factors and DNA 

binding proteins to influence gene transcription. Co-Smad4 is important in 

these interactions stabilises the association of R-Smads with DNA binding 

factors.  Co-factor identity is dependent upon cell type and environment, thus 

TGF-β isoforms have multiple and wide ranging effects on many cell types. A 

selection of known Smad2 and Smad3 co-factors are shown in Table 1.5. 



 

Smad Co-

factor 

Interacting 

Smad 
Results of interaction 

Max Smad3 Inhibition of Smad3-mediated transcription 

TFE3 Smad3 
Synergistic cooperative effects on PAI-1 and 

Smad7 genes. 

c-Fos Smad3 Associate at AP-1-dependent target genes 

c-Jun, JunB, 

JunD 
Smad3 

+ve and –ve regulation of Smad3 activity 

FoxH1 Smad2 & 3 Bind Activin-responsive promoters 

FoxO Smad2 & 3 Regulation of p21 expression 

Estrogen 

receptor 
Smad3 

Repression of Smad3 target genes 

Glucocorticoid 

receptor 
Smad3 

Inhibition of Smad3 activity 

Sp1 Smad2 
Activation of numerous target genes eg. P15, 

PAI-1, Smad7 and collagen.  

IRF-7 Smad3 Activation of IRF-7 transactivation effects 

NFκB p52 Smad3 Activation of κB site 

P53 Smad2 Synergism and antagonism of Smad2 targets 

Table 1.5 Smad2 and Smad3 binding partners and their major function. 

Adapted from (Feng and Derynck, 2005; Van Eerdewegh et al., 2002). 

 

TGF-β1 has been shown to induce expression of cdk inhibitors p15, p21 and 

p27 in bronchial epithelial cells, and p21 is increased in asthmatic epithelium 

(Puddicombe et al., 2003).  In the case of p21 this occurs when Smad3 

interacts with the forkhead protein FoxO and binds to the p21 gene promoter 

region. In the zinc-finger protein family Sp1 interacts with Smad2, 3 and 4. 

Association with Smad2 and Smad3 can result in transcription of α2(I) 

collagen, Smad7 and PAI-1 genes, all of which may have further downstream 

effects on AWR. Smad3 cooperation with the co-factor TFE3 also leads to 

transcription of PAI-1 and Smad7, and also the laminin-γ-chain gene (Feng 

and Derynck, 2005). TGF-β mediated upregulation of these matrix-associated 

genes could contribute to AWR.   
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1.2.5   TGF-β  in asthma 

The predominance of TGF-β2 in the epithelial layer and immediately below in 

healthy and asthmatic bronchial tissue suggests it may be of interest in AWR. 

Much of the literature investigating TGF-β in the airway refers  to the TGF-β1 

isoform. 

 

Bronchial biopsy studies provide a snapshot of bronchial tissue in time. 

Thirteen atopic asthmatics were biopsied before and 24h following allergen 

challenge (HDM, cat dander or grass pollen, dependent on most reactive skin 

prick test reponse), and TGF-β1, TGF-β2 and TGF-β3  stained  for. All three 

isoforms were present in the epithelium in this study, however only TGF-β2 

showed a significant increase in expression following allergen challenge. 

Tenascin-C expression was also increased post-challenge (Torrego et al., 

2007). These results are of relevance to this study, however it must be noted 

that no healthy controls were included.  

 

Batra et al. undertook a timecourse study of BAL cytokine levels, with 

timepoint 0 compared to 24h, 1 week and 2 weeks following allergen challenge 

(ragweed extract) in both healthy controls and mild asthmatics. TGF-β2 was 

greater at baseline in healthy controls compared with asthmatics in this study. 

Following allergen challenge, TGF-β1, TGF-β2, IL-4 and IL-13 were increased 

in asthmatic samples only, and IL-4 remained elevated the longest. This 

clearly indicates a role for TGF-β2 in healthy lung, that is dysregulated in 

asthmatics (Batra et al., 2004). 

 

Following on from Batra and colleagues BAL analysis, Balzar et al. reported on 

a biopsy-based study of severe asthmatics compared with mild asthmatics and 

healthy controls. All tissue was at baseline, that is no allergen challenge took 

place. Following assessment of all 3 TGF-β isoforms in biopsy tissue, the 

authors reported only the TGF-β2 isoform was upregulated in asthmatics. It 

was also reported that CTGF (a downstream marker of TGF-β activation) was 

downregulated in all asthmatics. This could be attributable to the decreased 

TβRI and low levels of TβRIII descibed in the asthmatic tissue (Balzar et al., 
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2005a). It is possible that this downregulation of receptor expression is due to 

maintenance of lung homeostasis. If there are consistently high levels of active 

TGF-β2, then sensitivity to the cytokine may become blunted.  

 

Healthy control and mild asthmatic bronchial biopsy tissue was analysed for 

expression of TGF-β1 and TGF-β2 at baseline by Chu and colleagues, who 

demonstrated increased TGF-β2 over TGF-β1 in both sample cohorts. 

Furthermore, TGF-β2 was significantly increased in asthmatic compared with 

healthy tissue. The authors also established primary bronchial epithelial cell 

cultures at air-liquid interface (ALI) from a subset of study participants, and 

assessed mucin production as a marker of goblet cell  hyperplasia following 

TGF-β exposure. TGF-β2 exposure led to a non-significant increase in mucin 

protein secretion, however no changes were observed following TGF-β1 

exposure (Chu et al., 2004). 

 

The results discussed above strongly indicate a role for epithelial-derived TGF-

β2 in AWR. Reactivation of the epithelial-mesenchymal trophic unit (EMTU) 

of epithelium and underlying mesenchymal cells (fibroblasts) may  drive AWR 

in asthma (Holgate et al., 2004; Knight et al., 2004). Several groups have 

published in-vitro studies purporting to mimic this reactivation through 

challenge of the epithelium.  

 

Thompson et al. determined levels of TGF-β2 from healthy HBECs at baseline 

and following scrape injury. TGF-β1 was below the level of detection in 

conditioned medium (CM), however active TGF-β2 rose from 50-70pg/ml to 

around 150pg/ml following injury; tenascin C was also increased. Exogenous 

TGF-β2 alone induced Tn-C expression also (Thompson et al., 2006). This is 

of interest as tenascin C has been suggested as a marker of EMTU reactivation. 

Exposure of lung fibroblasts either to scrape-injured epithelial CM or in co-

culture below the injured cells led to significant increases in α-SMA protein 

expression, indicative of myofibroblast differentiation. Only healthy cells were 

used in this study, so again the role of TGF-β2 in maintaining lung 

homeostasis upon injury is shown.  
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Tschumperlin et al. devised a mechanical stress model for HBEC culture at 

ALI, to mimic the bronchoconstriction aspect of the asthmatic response. 

Increased active TGF-β2 secretion was reported, but mRNA levels remained 

steady, suggesting the epithelial cells contained a pre-formed pool of TGF-β2, 

and protein was not newly synthesised. CM also resulted in increased collagen 

synthesis measured by [3H]proline incorporation (Tschumperlin, 2003).  

 

Continuous exposure of HBEC cultures to IL-13 led to a “pro-fibrotic” cell 

phenotype. HBEC cultures in this study continously secreted higher levels of 

active TGF-β2 than controls, and exposure of fibroblasts to IL-13 pre-treated 

cultures led to increases in collagen production. The authors suggest that the 

continuous exposure to the Th2 cytokine IL-13 models the allergic asthmatic 

airway (Malavia et al., 2008).  

 

It is apparent from these studies that environmental insult, including physical 

injury/stress and exogenous TGF-β2 in culture,  of epithelia leads to 

alterations in cell behaviour that drive remodelling in underlying fibroblasts. 

Allergen challenge of human subjects and subsequent alterations in TGF-β2 

levels demostrated a novel mechanism by which AWR responses could be 

continuously driven.  

1.3   The role of house dust mite allergens in asthma  

An allergen is an antigen capable of provoking an IgE antibody response. The 

biological function of an allergen has the potential to affect the physiological 

response. In allergen nomenclature, the first three letters of the Linnean genus 

are used, together with a single letter of species name and a number denoting 

the order in which allergens were purified. Hence, the first purified allergen of 

house dust mite (HDM) Dermatophagoides pteronyssinus becomes Der p 1. 

Dermatophagoides pterronysinus is a common source of allergens and 

subsequent allergic sensitisation in Western Europe. The pathogenesis of 

allergic asthma may in part be due to the proteolytic activity of HDM allergens 

including Der p 1 (Asokananthan et al., 2002; Gough et al., 1999; Wan et al., 

1999) 
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Inflammatory responses to HDM allergens are well documented (Custovic et 

al., 1996). In-vitro challenges of healthy control and asthmatic epithelial cells 

consistently show release of proinflammatory cytokines such as GM-CSF, IL-6 

and IL-8 following challenge that is further upregulated in asthma (Lordan et 

al., 2002; Pichavant et al., 2005; Rusznak et al., 2001). Activity of a selection 

of HDM allergens is given in Table 1.6. 

 

Allergen 
Biochemical 

Function 
Effect of cell 

challenge 
Reference 

Der p 1 Cysteine protease 

Inactivated elastase 
inhibitors 
Enhanced DC 
recruitment 
Cleaved CD25 

(Brown et al., 
2003; Pichavant et 

al., 2005) 
(Gough et al., 

1999) 

Der p 2 
Unknown, no 

protease activity 

GM-CSF, IL-6 & 
IL-8 release by 
epithelial cells 

(Osterlund et al., 
2009) 

Der p 3 
 

Serine protease 
(trypsin) 

Cleavage of 
complement C3 & 
C5. 
PAR-2 activation 

(Maruo et al., 1997; 
Sun et al., 2001) 

Der p 5 
 

Unknown, no 
protease activity 

IL-6 & IL-8 release 
by epithelial cells 

(Kauffman et al., 
2006) 

Der p 9 
Collagenolytic 

serine protease 
PAR-2 activation (Sun et al., 2001) 

Table 1.6 HDM-derived major allergens and selected effects 

 

As seen in Table 1.6, both proteolytically inert and active allergens activate the 

respiratory epithelium to varying degrees. Also of importance in asthma 

pathogenesis is the ability of HDM allergens to disrupt the integrity of the 

epithelial layer. Wan et al. illustrated tight junction breakdown and increase in 

epithelial permeability in 16HBE14o- cultures challenged with Der p 1 (Wan et 

al., 2000). The loss of airway epithelial integrity may be key to downstream 

effects of HDM exposure, however this was not investigated in this study. 

The proteolytic activity of HDM allergens is of interest in this study.  Exposure 

of BEAS-2B cells to Der p 1 or Der p 9 revealed that at concentrations required 

for cytokine (GM-CSF, IL-6, IL-8) release (10µg/ml) IL-6 was proteolytically 

degraded by both Der p 1 and Der p 9 (King et al., 1998). Cytokine secretion 

responses are partly mediated by PAR-2 cleavage (Adam et al., 2006). PAR-2 
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is upregulated in asthmatic epithelium (Knight et al., 2001), and in-vitro Der 

p 1 challenge of primary HBECs  showed increased secretion of GM-CSF, IL-6 

and IL-8 by allergic asthmatic HBECs over non-atopic controls (Pichavant et 

al., 2005).  

 

The reports above all used single purified allergens of Der p. Heterogenous 

mixtures of proteolytically active HDM extracts may exert additonal effects. 

HDM extracts are variable preparations between companies/lab groups, as 

they are highly dependent upon the source material and the method of 

preparation. For example, an aqueous extract prepared from frozen whole 

mites will contain substantially  less Der p 1 than a preparation that contains a 

variable mix of whole mites, nymphs (the larval stage), fecal pellets, eggs and 

spent culture media (Jeong et al., 2010; Thomas et al., 2002). Der p 1 and Der 

p 2 are thought to have a role in the mite gut, and are concentrated in fecal 

pellets (Park et al., 2000). Variation in cellular responses between groups may 

be due to different formulations of the extracts used, and this should be borne 

in mind when assessing results.  

 

Repeated insult to the lung through allergic responses, with the resultant 

activation of cell types including epithelial cells, fibroblasts, mast cells and 

eosinophils may promote the airway wall remodelling seen in asthmatic lung, 

namely increased deposition of collagens and other proteins in the basement 

membrane and mucosa, myofibroblast differentiation, goblet cell hypertrophy 

and submucosal gland hyperplasia, and smooth muscle hyperplasia. Holgate 

et al. propose the reactivation of a developmental unit, the epithelial-

mesenchymal trophic unit (EMTU), as the source of remodelling phenomena,  

1.4.   Aims and hypothesis 

Decreased lung function in asthma has been partially attributed to airway wall 

remodelling. Increases in the pro-fibrogenic cytokine TGF-β2 have been 

reported in asthmatic tissue and BAL fluid. It is therefore hypothesised here 

that alterations in active TGF-β2 levels contribute to airway wall remodelling 

in the asthmatic lung.    
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The aims of this project are: 

1. To identify and measure AWR markers in healthy and asthmatic human 

bronchial biopsy tissue, including reticular basement membrane 

thickening, myofibroblast differentiation and TGF-β2 expression 

2. To identify whether house dust mite extracts can activate latent TGF-β2 

secreted by bronchial epithelial cells. 

3. To assess whether asthmatic bronchial fibroblasts are intrinsically more 

sensitive to the pro-remodelling effects of TGF-β2 than healthy 

fibroblasts. 
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Chapter 2: Materials and Methods 

 

Materials were obtained from Invitrogen (Paisley, UK), unless otherwise 

stated.  

2.1   Tissue Culture 

Human bronchial epithelial and fibroblast cells were required for this project 

and were obtained from commercial and non-commercial sources. An SV-40 

transformed bronchial epithelial cell line was also used: 16HBE14o-. Tissue 

culture procedures were carried out in a class II microbiological safety cabinet. 

 

2.1.1  Primary bronchial fibroblast isolation and 

maintenance  

Informed consent was obtained from healthy and asthmatic individuals 

attending Wythenshawe Hospital to undergo a single bronchoscopic 

procedure performed by a respiratory physician in the bronchoscopy suite of 

the North West Lung Centre. Information regarding patient smoking history, 

chest related medication, forced expiratory volume in 1 second (FEV1) and 

allergy was compiled. Ethical approval was given by South Manchester Ethics 

Committee.  

 

Bronchial biopsies were taken using 1.8mm alligator cup biopsy forceps (Type 

100503, Conmed UK Ltd, Swindon, UK) and dropped into sterile HBSS in the 

bronchoscopy suite. In the lab, biopsies were rinsed in chilled DMEM 

containing 100units/ml penicillin, 100ng/ml streptomycin and 25ng/ml 

amphotericin B before being placed in a 25cm2 tissue culture flask and allowed 

to attach for 30mins at 37°C, then 2ml of complete DMEM (containing 10% 

fetal calf serum (PAA Laboratories, Somerset, UK), 50 units/ml penicillin, 

50ng/ml streptomycin and 2mM L-glutamine) with 0.25ng/ml amphotericin 

B, was added dropwise. Medium was changed after 24 hours, and every 3 days 

following. Fibroblast-like (spindle-shaped) cell migration from biopsy tissue 

was seen around 14 days after seeding. Cultures were maintained until areas of 

80% confluence were seen, then cells passaged as follows. Medium was 
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removed and cells washed twice with PBS. 0.05% Trypsin/EDTA was added at 

1ml/flask and incubated at 37°C until cells detached. Active trypsin was 

diluted out by addition of 10ml complete DMEM. The cell suspension was 

centrifuged at 300g for 5 min, the cell pellet resuspended in complete DMEM 

and subcultured in a 75cm2 flask (Corning Life Sciences). Cells were expanded 

and subcultured at a 1:4 split, before being frozen at a low passage in DMEM 

freezing mix (80% complete DMEM, 10% FCS, 10% DMSO). Fibroblasts were 

used at passages 4 through 8. Donor characteristics are given in Table 2.1. 

Donor  Age Sex/Race 
FEV1 (% 

predicted) 
Steroid 
naïve? 

Smoking 
status 

Medication 

Asthmatic 
1 

22 M/Caucasian 96% Yes 
Non-
smoking 

Inhaled β2 
agonists  

Asthmatic 
2 

37 M/Caucasian 103% Yes 
Non-
smoking 

Inhaled β2 
agonists  

Healthy 2 23 F/Caucasian 108% Yes 
Non-
smoking 

None 

Table 2.1 Donor information for primary fibroblasts 

2.1.2  Maintenance of commercially sourced cells 

Commercially available primary cells from donors selected according to age, 

smoking history and health status were purchased from Lonza. One normal 

human lung fibroblast (NHLF) and three normal human bronchial epithelial 

cell (NHBEC) donors were used, and information provided by the company is 

shown in Table 2.2. 

Donor  Cell Type Sex/Race Age 
Smoking 

status 
4F0768 Fibroblast M/Caucasian 31 Non-smoking 
2F1578 Epithelial M/Caucasian 17 Non-smoking 
7F3081 Epithelial M/Caucasian 49 Non-smoking 
7F3000 Epithelial M/Hispanic 27 Non-smoking 

Table 2.2 Donor information obtained from supplier (Lonza). 

 

The SV-40 virally transformed airway epithelial cell line 16HBE14o- was 

obtained from within the University of Manchester (D. Thornton, Faculty of 

Life Sciences). These cells have epithelial features including tight junction 

formation and cytokeratin expression, but do not differentiate at ALI.  
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2.1.2.1  NHBEC maintenance  

Cryopreserved NHBEC were initially seeded at 3500 cells/cm2, as stipulated in 

Lonza literature, in Bronchial Epithelial Growth Medium (BEGM). BEGM 

consists of Bronchial Epithelial Basal Medium (BEBM) supplemented with a 

BEBM SingleQuotTM kit (bovine pituitary extact, epidermal growth factor, 

epinephrine, gentamicin-amphotericin, hydrocortisone, insulin, retinoic acid, 

triiodothyronine and transferrin).  Medium was changed every 2nd day. When 

80% confluent, cells were trypsinised and frozen down. Aliquots of 1 x 106 

NHBEC were expanded in 75 cm2 tissue culture flasks before experimental 

use. NHBEC were not used beyond passage 3 as the ability to differentiate at 

ALI is decreased in further passages.  

  

2.1.2.2  NHLF maintenance 

Initial seeding of cryopreserved cells (a single vial of 565,000 cells) used 

Fibroblast Basal Medium (FBM), a serum-free formulation supplemented with 

insulin and recombinant human fibroblast growth factor-B (rhFGF-B), as 

recommended by Lonza. The supplier’s protocol was followed, with cells 

seeded at 2500 cells/cm2. Subsequent expansion of NHLF used complete 

DMEM. Cells were used between passages 4 and 8. 

 

2.1.2.3  Transformed epithelial cell line maintenance 

Transformed epithelial cell line 16HBE14o- was grown in 75cm2 tissue culture 

flasks (Corning) containing 10ml minimum essential medium with Earle’s 

salts (Sigma-Aldrich), supplemented with 10% fetal calf serum (FCS), 

50units/ml penicillin, 50ng/ml streptomycin and 2mM L-glutamine. Medium 

was changed every 2-3 days. At 70-80% confluence, cells were passaged as for 

fibroblasts, subcultured at a 1:6 split. Cell stocks were routinely frozen in 

MEM freezing mix (80% complete MEM, 10% FCS, 10% DMSO).   

 

2.1.3   Air-liquid interface epithelial cell culture 

NHBEC are induced to differentiate into ciliated, goblet and basal cells when 

cultured at an air-liquid interface (ALI) in the presence of retinoic acid. For 
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ALI culture, hanging inserts (Millipore, UK) were placed in 12-well culture 

plates, 1ml bronchial epithelial differentiation medium (BEDM: 50% serum-

free DMEM + 50% BEGM without triiodothyronine) added basolaterally and 

250µl apically to wet the polycarbonate membrane. The prepared inserts were 

equilibrated at 37°C for 30 min. 82500 BEC were seeded into each insert in 

250µl BEDM, to total 500µl BEDM apically. On day 1 media was changed 

apically and basolaterally, and every 2-3 days thereafter until cells reached 

around 80% confluence at day 7 after seeding. Cultures were brought to ALI 

by removing all medium, and replacing basolateral medium only with 1 ml 

BEDM Differentiation markers (mucus-production, cilia formation) were 

observed from day 7 onward. ALI cultures were maintained for up to 21 days.  

 

2.1.4  Bronchial epithelial cell challenge assays  

Primary HBEC challenges were carried out on cultures maintained at ALI for a 

minimum of 7 days to allow cell differentiation. Scratch assays were based on 

the protocol of Thompson et al. (Thompson et al., 2006). Briefly, a 200µl 

pipette tip was used to make a single score down the centre of the insert 

membrane, disrupting the epithelial cell layer. Cells were monitored 

microscopically, and conditioned medium taken from the basal compartment 

at specified timepoints. For mRNA analysis, culture membranes were cut from 

inserts and immersed in 1ml TRIzol reagent, cells lysed by repeated gentle 

pipetting, and frozen at -80°C until further processing (Section 2.5.1). 

 

To mimic environmental stresses, house dust mite preparations were applied 

to the apical surface, dissolved in serum-free DMEM. Control wells were 

exposed to SF-DMEM only. Cells were monitored and samples taken as for 

scratch assay cultures. LPS (Sigma-Aldrich) was added to basal media. 

 

Epithelial cell line (16HBE14o-) experiments were carried out under 

submerged culture conditions in 6 well culture plates at 80% confluence. 

Scratch assays were carried out as for primary BEC, using a 200µl pipette tip 

to make two scratches in a cross and immediately changing the medium, to 
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remove apoptotic scratched cells that may produce a confounding effect on 

results. 

 

2.1.5  Bronchial fibroblast challenge studies 

Fibroblasts were seeded in 6 well tissue culture plates (Corning Life Sciences) 

and grown to 80% confluence in complete DMEM. Cells were quiesced for 24 

hours in serum-free DMEM prior to experimental procedures. 

 

For primary BEC conditioned media challenge studies, conditioned media was 

collected and pooled from individual donors from days 7-21 ALI, when apical-

basal polarity and differentiation were established. Scratch-injured BEC 

culture medium and HDM-exposed BEC culture medium were applied to 

fibroblast cultures and cells harvested at specified timepoints. TGF-β2 

stimulated fibroblast cultures were harvested in the same manner.  

 

Q-proteome mammalian protein kit was used (Qiagen, Crawley, UK) for whole 

cell lysate preparation, and the manufacturer’s protocol followed to produce 

samples stored at -20°C until further use.   

 

Collagen protein production was assessed in both culture supernatant and the 

cell layer using the Sircol collagen assay. For cell-associated collagen, 500µl 

0.5M acetic acid containing 1mM EDTA was pipetted onto cells, scraped into a 

1.5ml eppendorf and frozen at -20°C until use. Conditioned media for the 

assessment of soluble secreted collagen was collected and stored at -20°C until 

assayed.  

 

For mRNA extraction, cultures were washed briefly with PBS prior to the 

addition of TRIzol reagent at 1ml/well (see Section 2.5.1). 

 

2.1.6  Rat tail tendon collagen extraction 

Type I collagen was isolated from rat tail tendons as previously described 

(Piez, 1967). In a laminar flow hood ten frozen rat tails were thawed in 70% 
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IMS and the skin and tendon sheath removed to expose tendon fibres. Fibres 

were removed and submerged in 500ml sterile 0.5M acetic acid. The mixture 

was stirred for 48 hours at 4°C, then centrifuged at 1600g for 3 hours. The 

precipitate was discarded, and supernatant added to an equal volume of sterile 

1.5M NaCl. This was precipitated at 4°C for 48 hours, then centrifuged at 

1700g O/N. Supernatant was discarded and the pellets (now composed 

primarily of Type I collagen) were redissolved in 500ml sterile 0.5M acetic 

acid. The acidic collagen solution was dialysed against sterile water 3 times at 

4°C using 10000 MWCO dialysis tubing (Perbio Science, Crawlington, UK) for 

a total of 48 hours. The resultant Type I collagen solution was decanted into a 

sterile Duran bottle and stored at 4°C. Soluble collagen concentration was 

obtained using the Sircol assay kit (Biocolor Ltd., Ireland), following the 

manufacturer’s protocol. Rat tail derived collagen concentration was read from 

the standard curve prepared. 

 

2.2  Histological methods 

2.2.1  Bronchial biopsy tissue donor characteristics 

The characteristics of biopsy tissue donors used in Chapter 3 are shown in 

Table 2.3. All donors were caucasian, steroid naïve and reported no 

respiratory illness in 3 months prior to sampling. 

Group 
Sex Ratio 

M:F 
Age range 

(years) 

FEV1 % 
predicted 

range 

Current 
medication 

Asthmatic 9:3 19 - 58 85% - 115% 
β2-agonists 

only 

Healthy 5:5 22 - 47 94% - 117% None 

Table 2.3 Bronchial biopsy tissue donor demographics  

2.2.2   Tissue processing for histological analysis  

Biopsy samples were fixed O/N at 4°C in formal buffered saline (10%, pH 7.4), 

and stored in 50% industrial methylated spirits (IMS) prior to tissue 

processing. Samples were processed in a Tissue-Tek Vacuum Infiltration 

Processor (Bayer Diagnostics, Newbury, UK) running a dehydration and wax 

infiltration program as detailed in Table 2.2. Samples were embedded in 
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paraffin wax blocks and allowed to set O/N. Wax blocks were trimmed and 

sectioned at 4-5µm on a Reichert-Jung 2030 microtome (C. Reichert AG, 

Wien, Austria) fitted with disposable Accu-edge blades (Sakura Finetek, 

Zoeterwoude, The Netherlands). Sections were floated on cold deionised water 

then transferred to a 40°C water bath to smooth “wrinkling” of the tissue 

samples. Sections were collected onto Poly-L-Lysine coated microscope slides 

(Menzel GmbH, Braunschweig, Germany) and dried on a 40°C heated block 

before storage at room temperature, protected from light.        



 

Step Solution 
Time 
(min) 

Temperature 
(°C) 

1 50% IMS 45 Ambient 
2 70% IMS 45 Ambient 
3 90% IMS 60 35 
4 100% IMS 30 35 
5 100% IMS 30 35 
6 100% IMS 60 35 
7 Toluene 30 35 
8 Toluene 30 35 
9 Toluene 60 50 

10 1st Wax 30 60 
11 2nd Wax 30 60 
12 3rd Wax 30 60 
13 4th Wax 60 60 

 

Table 2.2 Tissue-Tek Vacuum infiltration processor program for wax 

embedding of biopsy tissue. In each step an ambient pressure/vacuum cycle 

ensured complete infiltration of the tissue. 

 

2.2.3  Histological staining techniques 

Tissue sections were dewaxed by immersion in two consecutive xylene baths, 

followed by rehydration through a series of graded alcohols (IMS) (100%, 

100%, 90%, 70% and 50%), and immersion in tap water. Haemotoxylin and 

eosin staining was used to demonstrate general tissue architecture, whilst 

Masson’s trichrome identified the collagen and Miller’s elastin stain the 

presence of elastic fibres throughout the tissue. Standard histological stains as 

listed in “Theory and Practice of Histological Techniques” (Bancroft and 

Stevens, 1990) were prepared and followed with the exception of periodic acid 

solution and Schiff’s reagent, which were purchased from Sigma-Aldrich 

(Poole, UK). For further details of staining techniques, see Appendix A.  

 

2.3  Immunohistochemistry  

Tissue sections were dewaxed and rehydrated as for histological staining. 

Briefly, endogenous peroxidase activity was quenched by incubation with 1% 

hydrogen peroxide solution in methanol. Serum from the animal in which the 
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secondary antibody was raised was used to block sites of non specific binding, 

before samples were incubated with primary antibody in BSA-containing 

antibody diluent. After washing, incubation with biotin-conjugated secondary 

antibody followed, or antibody diluent without antibody as negative control, 

for 1 hour. Primary antibodies used are shown in Table 2.4. After further 

washing, 30 minutes of avidin-biotin conjugation using a Vectastain Elite 

Standard ABC kit (Vector Labs Ltd., Peterborough, UK) was carried out at RT. 

Slides were washed, rinsed in distilled water and diaminobenzidine (DAB) 

(Vector Labs Ltd.) substrate incubated on sections for between 1 and 5 min. 

Slides were rinsed in distilled water and counterstained with Harris’s 

haematoxylin for 30 seconds before dehydration through a series of alcohols 

into xylene, and mounted using Depex mounting medium (BDH Lab Supplies, 

Poole, UK). 

 

Antigen Raised 
in 

Dilution 
used 

Protein 
concentration Supplier 

TGF-β1 Rabbit 1/400 200µg/ml Santa Cruz 

TGF-β2 Rabbit 1/400 200µg/ml Santa 
Cruz 

TβRIII Goat 1/200 200µg/ml Santa Cruz 

α-SMA Mouse 1/400 4.5mg/ml Sigma-
Aldrich 

Tenascin C Rabbit 1/500 100µg/ml Monosan 

Occludin Goat 1/400 200µg/ml Santa Cruz 

β-tubulin IV Mouse 1/400 500µg/ml Sigma-
Aldrich 

Anti-rabbit IgG, 
biotinylated 

Donkey 1/1000 500µg/ml Amersham 

Anti-goat IgG, 
biotinylated 

Rabbit 1/2000 500µg/ml Dako 

Anti-mouse IgG, 
biotinylated 

Goat 1/2000 0.5 mg/ml Dako 

Table 2.4 Primary and secondary antibodies used in biopsy assessments 

 

 



 Gaynor A. Campbell 

  49 

2.4  Microscopy and Image analysis 

Standard histological stains (H&E, Masson’s trichrome, PAS-Alcian blue) were 

used to highlight tissue architecture. Stained sections were viewed using an 

Axiostar plus light microscope (Zeiss, Hertfordshire, UK), with 4x, 10x, 20x 

and 40x objective lenses. Images were captured using a Spot-32 digital camera 

(Diagnostic Instruments Inc, USA) coupled with Spot-RT version 2.1.2 

software running on a Dell Optiplex GX620 computer. Images of a 100µm 

graticule (Psyer, SKI Limited, UK) were taken at the same magnification for 

calibration purposes. 

 

All image analysis was performed using Image Pro-Plus software (Media 

Cybernetics, California, USA), using a graticule image to calibrate. Scoring was 

performed blinded, and repeat scoring/measurements were made at least 2 

weeks apart. 

 

2.4.1   Determination of basement membrane thickness 

For RBM measurements, either Masson’s trichrome or PAS-Alcian blue 

stained sections were analysed as both allow clear differentiation between the 

reticular basement membrane and underlying mucosa.  

 

Three sections with sufficient intact epithelium to confirm correct orientation 

of the reticular basement membrane were selected from throughout each 

biopsy. Images were taken at x200 magnification, and an outline was traced 

around the horizontal sections of reticular basement membrane on each 

section. The selections were filled and converted to objects (Figure 2.1). 

Objects were converted to white against a black background, and merged with 

an image of horizontal lines set at 2µm intervals. All bright object pixel heights 

created were calculated, and converted to microns. This produced a 

measurement at 2µm intervals along the selected RBM. A graticule image at 

x200 magnification was used to calibrate measurements. Each section was 

viewed and analysed on three separate occassions to give an average, and 

ensure intra-observer variation was within acceptable limits (below 10%). 
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Figure 2.1 Measurement of reticular basement membrane thickness.  

Images taken at an original magnification of 200x were orientated using the Image 

Pro-plus software package so maximal length of basement membrane was horizontal. 

A. Basement membrane sections were  selected. B. A grid mask was applied to convert 

selected areas to a set of objects.  Object heights were calculated, and the average 

taken.  

2.4.2  α-Smooth muscle actin immunoreactive cell counts 

To quantify levels of myofibroblast differentiation in healthy and asthmatic 

bronchial biopsy tissue, three 5µm sections of tissue from throughout each 

biopsy were immunostained for the presence of α-smooth muscle actin (α-

SMA) protein, a commonly used marker of muscle-like cells, with a 

monoclonal antibody raised in mouse. Smooth muscle bands within the tissue 

were used as a positive control, and normal mouse IgG as a negative control. 

Images of α-SMA immunostained tissue were taken at x20 magnification for 

assessment. Positive cells were counted to a depth of 100µm below a 1mm 

length of RBM, giving a total area analysed of 100µm2. Blood vessels and 

smooth muscle bundles were not included. The area examined was limited to 

this depth to assess cells directly involved in the EMTU. Results were 

expressed as a percentage of total cells identified. 

A

. 

B. 
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2.4.3  Immuno-quantitation of TGF-β2, Tenascin C and TβRIII 

A single section was selected from each biopsy. The standard 

immunohistochemistry protocol was followed, with the addition of a sodium 

citrate antigen retrieval step prior to endogenous peroxidase reduction. Slides 

were fully submerged in 10mM citrate buffer pH 6.0, heated on full power in a 

900watt microwave for 4min then allowed to cool for 20min before 

proceeding. For TGF-β2 stained sections, the epithelium, lamina propria and 

smooth muscle were scored seperately on a scale of 0-3: 0= no/background 

immunoreactivity, 1= low, 2= moderate and 3= intense immunoreactivity. In 

tenascin C stained sections the area to a depth of 100µm below the RBM, and 

including the epithelial layer, was assessed on scale of 0-3 as for TGF-β2. 

TβRIII stained sections were assessed for total staining as for tenascin C.  

 

2.5   Molecular Biology 

Analysis of messenger RNA levels of cells was carried out to determine 

changes in gene expression following exposure to TGF-β2, conditioned 

medium or other challenge. Although gene expression levels do not necessarily 

correlate to increased protein levels, analysis of mRNA identifies increases or 

decreases in gene transcription levels in response to stimulation.  All materials 

were molecular biology grade. 

 

2.5.1  RNA isolation 

Cultured cells in monolayer were washed twice in pre-warmed PBS, then 

TRIzol reagent added at 20µl/cm2 or 1ml/sample, whichever was the greater. 

Cells were scraped from the culture surface using a disposable cell scraper and 

transferred to a 1.5ml microtube. For membrane grown BEC, after washing the 

membrane was cut from the insert and placed into a 1.5ml eppendorf before 

adding TRIzol reagent. BEC were lysed by repeated gentle pipetting through a 

200µl tip. Samples were incubated at room temperature for 5 min to allow 

dissociation of nucleoprotein complexes. Following centrifugation at 12000g 

for 10 min at 4°C, the supernatant was transferred to a fresh microtube. 200µl 

chloroform per ml of TRIzol reagent was added and shaken vigorously for 15 
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sec before incubating at room temperature for 2-3min. Samples were then 

centrifuged at 12000g for 15 min at 4°C. The upper aqueous phase containing 

RNA was pipetted into a clean microtube, and the same volume of isopropyl 

alcohol added. Following incubation at -20°C for 1 hour, samples were 

centrifuged at 12000g for 10 min at 4°C. The resulting pellet was washed with 

1ml of 75% ethanol, mixed by brief vortexing and re-centrifuged at 7500g for 5 

min at 4°C. The pelleted sample was then air-dried before 30µl water was 

added and the sample incubated at 60°C in a water bath for 10 min. The 

purified nucleic acids were stored at -40°C, or -80°C for longer term storage. 

 

2.5.2  Determination of RNA Quantity and Quality 

A ND-1000 Nanodrop spectrophotometer (Lab-tech International, East 

Sussex, UK) coupled with ND-1000 version 3.5.2 software was used to 

determine RNA quantity and quality. A 1µl sample was used in this analysis. 

Measurement of absorbance at 260nm (A260) and at 280nm (A280) 

wavelength was taken, and the A260/A280 ratio determined. An A260/A280 

ratio of between 1.7 and 2.1 was accepted as being of sufficient quality for 

subsequent use.   

 

2.5.3  DNase removal of of contaminating genomic DNA 

A commercial DNase kit (Sigma Aldrich, UK) was used to eradicate DNA 

contamination. Thin-walled PCR tubes containing 1µg sample RNA in 8µl 

molecular grade water, 1µl 10x reaction buffer and 1µl DNase I (1Unit/µl) were 

incubated at RT for 15 min, then 1µl stop solution added, and tubes heated to 

70°C for 10 minutes to destroy residual DNase activity before chilling on ice.  

 

2.5.4  Reverse transcription of mRNA to cDNA 

1µl dNTP mix and 1µl random nonamers were added to the 1µg sample of 

DNase-treated mRNA, mixed and incubated at 65°C for 5 min. Microtubes 

were then placed on ice before adding: 4µl 5x First Strand buffer, 2µl DTT and 

1µl RNase OUT. Microtubes were incubated at 42°C for 2 min, 1µl Superscript 
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II Reverse Transcriptase added, and samples incubated at 25°C for 10 min, 

42°C for 50 min then the reaction stopped by heating to 70°C for 15 min. 

cDNA samples were stored at -20°C short-term, or at -80°C for longer term. 

 

2.5.5   Quantitative Real Time PCR 

cDNA samples were serially diluted 10-fold with molecular grade water. One 

sample was used to produce a standard curve by assigning arbitrary values of 

concentration to each dilution. SensiMixPlus SYBR 2x mastermix (Quantace, 

Finchley, UK) containing heat-activated DNA polymerase, dNTPs, 6mM 

MgCl2 and SYBR Green I dye, was used for all reactions. Primers were 

reconstituted in molecular grade water, and used in reactions at 15µM. For 

each 25µl reaction, 12.5µl mastermix, 0.225µl each of forward and reverse 

primers, 2.05µl water and 10µl cDNA was prepared. Reactions were pipetted 

into a 96 well plate (MJ Research, Hertfordshire, UK) in triplicate, alongside 

negative controls (water and non-transcribed RNA). Plates were sealed with 

Microseal ‘B’ sealer film (Bio-Rad, UK) and PCR performed on a MJ Research 

thermocycler  that monitored sample fluorescence. PCR cycling was as follows: 

 

1. Denaturation 10 min 95°C   

Followed by 40 cycles of:  

2.  Denaturation 15 sec 95°C 

3.  Annealing 1 min 60°c 

4.  Extension 30 sec 72°C (sample fluorescence read) 

 

Following cycle completion, a melt curve was performed to assess product 

specificity. The mixture is gradually heated and fluorescence measured. SYBR 

Green fluoresces when bound to double stranded DNA, so at the temperature 

the double stranded DNA is denatured, there is a sudden decrease in 

fluorescence. When this decrease is plotted as an inverse function of time, a 

single peak will show one specific product is formed.  
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All primer sets were designed using BLAST searches and Primer3 web-based 

software. Primer pairs resulted in one specific product as assessed by melt 

curve analyses.  

 

A threshold crossing the amplification curve in the linear phase was set to 

begin analysis of sample concentration. From the intercept of the threshold 

and the amplification curve the cycle threshold value was taken. This value 

was used to determine the arbitrary concentration of each standard sample. 

The concentrations of the standard were plotted against the cycle threshold to 

produce a standard curve. An R2 value of greater than 0.995 was required for 

the standard curve to be acceptable for determining concentrations of other 

samples in the reaction. When the arbitrary concentrations of interest were 

determined, all results from genes of interest were normalised against 

housekeeping genes, selected for stable expression as described in Section 

2.5.6. For fibroblast experiments the housekeeping genes used were GAPDH 

and ATP5B, and epithelial experiments used GAPDH. Results were analysed 

for statistical significance with Prism software package, using one-way 

ANOVA followed by Dunnett’s post-hoc with confidence intervals of 95%. 

 

2.5.6 Housekeeping gene selection for gene expression studies.  

Primer sets for ten candidate housekeeping genes were purchased from 

PrimerDesign Ltd, UK. and gene expression evaluated in control and 

experimentally modulated (TGF-β2 stimulated) NHLF cultures, following the 

protocol supplied. Results were analysed using the GeNorm software program 

(PrimerDesign Ltd) as previously described (Vandesompele et al., 2002). This 

identified the most stably expressed genes. Phospholipase A2 (YWH) and 

ubiquitin C (UBC) were least stable and glyceraldehyde-3-phosphate 

dehydrogenase (GAPDH) and Adenosine tri-phosphate synthase (ATP5B) 

were most stably expressed following TGF-β2 stimulation (Figure 2.2). 

Fibroblast q-PCR experimental results were therefore normalised to the 

geometric mean of GAPDH and ATP5B in all qPCR analyses. 
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Figure 2.2  Expression stability values of control genes. 

3 control and 3 TGF-β2 (1ng/ml) stimulated NHLF cultures were harvested at 24h, 

mRNA extracted and RT-PCR performed with 10 genes. GeNorm analysis of the 

results identified GAPDH and ATP5B as most stably expressed following TGF-β2 

exposure.  

 

2.5.7  Formaldehyde gel electrophoresis 

A 1.2% Formaldehyde agarose gel was prepared (Table 2.5) and cast. Once 

cool, the gel was equilibrated in 1x FA buffer for 30 min, before 1µg RNA 

samples in a total volume of 8µl were prepared in 2µl of 5x Loading buffer 

(Table 2.6), heated to 65°C for 5 min and chilled on ice before loading into gel. 

The gel was run at 100V for between 60-90 min and visualised with UV light. 



 

1.2% FA Gel 10x FA Gel Buffer (pH 7.0) 
1.2g Agarose 200mM MOPS 

10ml 10x FA buffer 50mM Sodium acetate 
90ml RNase free water 10mM EDTA 

1.8ml 37% Formaldehyde For 1x buffer, 100ml 10x + 20ml 37% 
formaldehyde + 880ml RNase free water 

1ul 10mg/ml Ethidium bromide  

Table 2.5 Gel and gel buffer for nucleic acid quality assessment 

 

16µl saturated aqueous bromophenol blue 

80µl 500mM EDTA pH8 

720µl 37% Formaldehyde 

2ml 100% Glycerol 

3084µl Formamide 

4ml 10x FA gel buffer 

RNase free water to 10ml 

 

Table 2.6  5x RNA loading buffer  

 

2.6  Intra-cellular protein detection by immunoblot  

Fibroblasts were grown in 6 well plates in complete DMEM until 80% 

confluent. Wells were rinsed with serum-free DMEM and cells quiesced in SF-

DMEM for 24 hours prior to challenge. Cells were stimulated with a range of 

TGF-β2 concentrations (1ng-20ng/well), for 15 minutes at 37°C. Cells were 

washed with ice-cold PBS, 500µl ice-cold lysis buffer added, and cells scraped 

into a 1.5ml eppendorf. Cell lysates were mixed on a rotory mixer for 30 min at 

4°C, then centrifuged at 13000g for 5 min. The supernatant was retained and 

stored at -80°C until use in western blotting analyses.  

 

2.6.1   SDS-PAGE 

This technique allows the seperation of proteins according to molecular 

weight. 10% bis-tris acrylamide gel solutions were prepared and cast in 1mm 

BioRad glass plates.  20µg total protein samples in 2x Laemmli SDS-PAGE 
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sample buffer were loaded into wells. Electrophoresis was carried out at 200V 

for approximately 1hour. 

 

2.6.2   Western Blotting 

SDS-PAGE gels were transferred to a nitrocellulose membrane at 30V for 90 

min. After transfer, gels were discarded and the membrane probed with 

Ponceau stain (Sigma Aldrich) to confirm transfer of proteins onto the 

membrane. Non-specific protein binding was reduced by blocking the 

membrane in 5% non-fat milk powder in blotting buffer (10mM Tris-base, 

100mM NaCl, 0.1% Tween) for 1 hour at RT. Primary antibody diluted in 

blocking buffer was incubated on the membrane for 1 hour at RT or O/N at 

4°C, with constant agitation. The membrane was washed 6 times in blotting 

buffer before incubation with HRP-conjugated secondary antibody for 1 hour 

at RT. The membrane was washed as before then exposed to ECL reagent 

(Pierce) for 1 min. The membrane was drained, wrapped in clingfilm for 

protection and stored in a lightproof cassette until film exposure (within 30 

min of ECL reaction). In a darkroom, light sensitive film (Kodak) was placed 

against the membrane in the cassette and exposed for 1 min. The film was then 

removed and placed in developing solution until bands appeared, transferred 

to a fixative solution then rinsed in water before allowing to dry.  

 

2.8   Proteolytic activity assay 

The synthetic amino acid substrate, N-benzoyl-Phe-Val-Arg-p-nitroanilide 

hydrochloride (Sigma-Aldrich), was dissolved in methanol to a stock 

concentration of 25mM. All other components are listed in Table 2.7. 



 

Component Diluent 
Final 

concentration 
Supplier 

Trypsin PBS 3U/ml Sigma-Aldrich 
Papain PBS 200mU/ml Sigma-Aldrich 
HDM Skin Prick Test 
Extract SF-DMEM 100000U/ml ALK-Abello 

HDM Fecal pellet prep. SF-DMEM 
1mg/ml 

(saturated) 
Indoor 

Biotechnologies 
E64 PBS 10µM Sigma-Aldrich 
PMSF Methanol 1mM Sigma-Aldrich 

Table 2.7 Proteolytic activity assay components 

 

50µl protease samples were added to a 96 well plate in triplicate. 10µl 

reducing agent (1mM DTT) was added to cysteine protease samples and 

allowed to equilibrate for 5min at RT. 20µl protease inhibitor, cysteine 

protease inhibitor E-64, serine inhibitor PMSF or Complete Mini protease 

inhibitor cocktail (Roche, UK) stock prepared as per the manufacturers 

instructions, was added to negative controls. All samples were made up to 

150µl with PBS and allowed to stand for 15min at RT. Amino acid substrate 

was diluted to a final concentration of 1mM, and 50µl added to each well. The 

plate was protected from light and held at 37°C. Absorbance readings at 

405nm were taken at 20min intervals over 2h and reaction progression curves 

prepared. 

 

2.9  TGF-β  detection by ELISA 

TGF-β1 and TGF-β2 Emax Immunoassay Systems were used according to 

manufacturer’s instructions (Promega UK Ltd, Southhampton, UK). These kits 

allow detection of biologically active TGF-β1 and TGF-β2 isoforms. 96-well 

Nunc Maxisorp ELISA plates (Thermo Fisher Scientific, UK) were coated with 

either a monoclonal TGF-β1 or -β2 specific capture antibody (supplied), O/N 

at 4°C in carbonate coating buffer. The plate was warmed to RT for 15 min and 

emptied, then 270µl of blocking buffer (supplied) pipetted into each well. The 

plate was sealed and incubated at 37°C for 35 min. Samples and standards 

were prepared. Active TGF-β standards are supplied at 1µg/ml, and were used 

between 15.6pg/ml and 1000pg/ml. The standard curve is linear between 



 Gaynor A. Campbell 

  59 

32pg/ml and 1000pg/ml. Samples were either untreated to detect the active 

portion only or heated at 80°C for 6min (which activates any latent TGF-β 

present) to detect total (latent + active) TGF-β. Following activation samples 

were chilled on ice until use. Samples and standards (100µl/well) were 

incubated for 90 min on a plate shaker at RT. The plate was washed 5 times 

using TBS-Tween wash buffer then incubated with 100µl of rabbit anti-human 

TGF-β polyclonal antibody diluted 1:2000 in sample buffer (supplied), for 2 

hours at RT, on a plate shaker. Plates were washed 5 times as before, and an 

HRP-conjugated anti-rabbit antibody diluted 1:100 in sample buffer added at 

100µl well. A 2 hour incubation at RT with shaking followed. After plate 

washing, 100µl of room temperature TMB One solution was added to wells, 

and incubated at RT for 15 min. The chromogenic reaction was stopped with 

the addition of 100µl 1N HCl to each well. Absorbance was read at 450nm 

using an Asys UVM340 microplate reader (Biochrom Ltd., UK). A standard 

curve was created and sample concentration calculated.  

 

2.9   Data analysis and statistics 

All statistical analyses were carried out using Prism version 5.0b (GraphPad 

Software, USA). Values for immunohistochemistry measurement and scoring 

were analysed by Student’s unpaired t-test. Subsequent correlations were 

computed by Spearman’s rank correlation coefficient. Values for mRNA 

expression and protein production were analysed by one way ANOVA followed 

by Dunnett’s test where stimulated samples were compared to control only, or 

followed by Tukey’s test when all samples were compaired pair-wise. In all 

analyses a p value of <0.05 was considered significant.  
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Chapter 3: Evidence of airway wall remodelling in mild 

asthmatic bronchial biopsy tissue 

 

3.1   Overview 

Airway wall remodelling (AWR) contributes to the decline in respiratory 

function and symptom persistence observed in many asthmatics (Bai, 2009). 

AWR is independent of inflammation and largely unaffected by current 

medications  (Bourke et al., 2010; Ward and Walters, 2005). Thickening 

and/or stiffening of the conducting airway wall may reduce airflow by 

reduction of airway diameter (Aysola et al., 2008; James et al., 1989; Mitchell 

et al., 1998). 

 

Alterations in the composition of the asthmatic airway wall have been 

described, and include changes in both matrix and cellular components 

(Johnson and Burgess, 2004; Li and Wilson, 1997; Roche et al., 1989). 

Increased deposition of ECM molecules including collagens I, III and V in the 

lamina reticularis have been shown to lead to reticular basement membrane 

thickening (Wilson and Li, 1997), and have been linked to measures of airway 

hyper-responsiveness and asthma severity (Kariyawasam et al., 2007; 

Westergren-Thorsson et al., 2002). Differentiation of fibroblasts to a 

myofibroblastic phenotype can occur. Myofibroblasts are associated with 

fibrotic conditions and identified by accumulation of stress fibres and smooth 

muscle related proteins (Hinz et al., 2007b). Alterations in matrix production 

may follow this phenotypic change due to increased activation and matrix 

secretory properties of myofibroblasts. Additional structural changes observed 

in asthma include goblet cell hypertrophy, submucosal gland hyperplasia, 

smooth muscle hypertrophy and increased angiogenesis (Johnson and 

Burgess, 2004; Ordoñez et al., 2001). 

 

Reactivation of the epithelial-mesenchymal trophic unit has been suggested as 

an initiator of AWR in asthma (Holgate et al., 2004). Comprising the 

epithelium, lamina reticularis and cells immediately adjacent in the lamina 
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propria, the EMTU is identified during embryonic development by tenascin C 

deposition. Tenascin C is increased in asthmatic bronchial biopsy tissue 

following segmental allergen challenge and increased expression has been 

identified in asthmatic biopsy tissue (Flood-Page et al., 2003; Phipps et al., 

2004b). The EMTU represents the primary site of environment-host 

interaction in the lung, and continuous phenotypic or behavioural changes in 

cells residing in this area may be indicative of the breakdown of normal 

homeostasis.  

 

If the purported effects of AWR in the asthmatic individual arise from matrix 

component alterations and/or increases, it leads to the question:  what drives 

the remodelling response? As a pro-fibrotic cytokine, expressed in healthy 

lung and identified as an inducer of pathology in a number of fibrotic diseases, 

transforming growth factor-β has been investigated as a determinant of AWR 

in several studies. Correlations between TGF-β1 positive cell number and TGF-

β intra-cellular signalling with RBM thickness have been found (Sagara et al., 

2002; Vignola et al., 1997). It has been demonstrated that the TGF-β2 isoform 

predominates in bronchial tissue (Balzar et al., 2005a; Minshall et al., 1997; 

Torrego et al., 2007), and expression is increased upon epithelial cell injury 

(Holgate et al., 2000).For this reason, the TGF-β2 isoform was chosen for 

further investigation in this project.  

 

3.2  Aims and Hypothesis  

This chapter aims to address the hypothesis: there is no significant difference 

in AWR between healthy and asthmatic bronchial biopsy tissue. 

The hypothesis shall be tested through the following aims: 

 

1. Quantify remodelling phenomena: RBM thickness, myofibroblast 

differentiation and tenascin C deposition. 

2. Determine relative expression of TGF-β2 in healthy compared with 

asthmatic tissue.  

3. Assess correlation of TGF-β2 expression with remodelling phenomena. 

 



3.3  Results  

Bronchial biopsy tissue collected from 10 healthy and 12 mild asthmatic 

individuals was analysed. Paraffin wax embedded sections (5µm) were cut and 

collected onto poly-L-lysine coated slides. Standard histological stains were 

used to highlight tissue architecture and selected features. 

 

3.3.1  Reticular basement membrane thickness 

The RBM, or lamina reticularis, is composed primarily of collagens I, III and V 

and lies immediately below the true basement membrane- a thin meshwork of 

type IV collagen. RBM thickness has been has been used in several studies as a 

measure of AWR. In this study, periodic acid-Schiff’s /alcian blue or Masson’s 

trichrome stained sections were utilised, as both allowed a clear differentiation 

between the RBM and the underlying lamina propria.   

 

Three representative sections from each biopsy were analysed to produce an 

average measurement per sample. All 12 asthmatic and 10 healthy biopsy 

samples were examined and data normally distributed according to the 

Shapiro-Wilk test. Healthy tissue mean measurement range was 3.13-9.21µm 

(Figure 3.1), and 3.03-10.18µm in asthmatic tissue (Figure 3.2). Mean RBM 

thickness was significantly different between groups as calculated by unpaired 

t-test (Figure 3.3), with asthmatic tissue showing a significantly thickened 

RBM (healthy mean ± SEM = 6.038 ± 0.562; asthmatic mean ± SEM = 7.824 ± 

0.537; p<0.05). 
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Figure 3.1 Appearance of RBM in healthy bronchial biopsy tissue.  

Mean RBM thickness A=3.13µm and B= 9.21µm. PAS/Alcian blue stained 5µm 

sections of biopsy tissue were imaged using a Spot camera and analysed using Image 

Pro-plus. C- cilia; E- Epithelium; GC- Goblet cell; LP- Lamina Propria; R-RBM; S- 

Smooth muscle. Scalebar  - 100µm.  

A. 

B

. 

E R 

LP 

R 
E 

GC 

LP 

S
M 

C 



 Gaynor A. Campbell 

  64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Appearance of RBM thickness in asthmatic bronchial biopsy 

tissue. Mean RBM thickness in A=5.28µm and B= 10.18µm. PAS/Alcian blue stained 

5µm sections of biopsy tissue were imaged using a Spot camera and analysed using 

Image Pro-plus. C- cilia; E- Epithelium; E(d)- Epithelium (denuded); GC- Goblet cell; 

LP- Lamina Propria; R-RBM; S- Smooth muscle. Scalebar  - 100µm. 
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Figure 3.3 Mean RBM thickness in healthy vs. asthmatic biopsy tissue.   

Asthmatic RBM was significantly thicker than healthy sample RBM. Each data point 

represents the average measurement in µm from 3 sections of one biopsy, one biopsy 

per subject. Healthy mean ± SEM = 6.038 ± 0.562, range 3.13-9.21; Asthmatic mean ± 

SEM= 7.824 ± 0.537, range 5.28-10.57; p<0.05 (n=10 healthy & n=12 asthmatic).  
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3.3.2   Myofibroblast frequency in lamina propria 

To assess myofibroblast differentiation, three sections from each biopsy were 

probed with a monoclonal anti-α-smooth muscle actin antibody. Bands of 

smooth muscle within the tissue were used as an internal positive control. α-

SMA positive cells in each section were counted, limited to a depth of 100µm 

beneath the true basement membrane as the interest here was on cells directly 

involved in epithelial-mesenchymal interactions. Sections where dehydration 

of the tissue had resulted in diffusely spread collagen fibres were excluded to 

ensure a similar area of complete lamina propria was assessed in each case. 

Smooth muscle, sub-mucosal gland and blood vessel-associated positive cells 

were not counted. Where cell type was in doubt, such as around small blood 

vessels, cell shape was accounted for, and cells of the characteristic spindle-

shape of fibroblasts were included. Data are expressed as the mean percentage 

of total cells stained positively (Figure 3.4). 

 

Myofibroblast frequency was significantly increased in asthmatic compared 

with healthy tissue (Figure 3.5), as assessed by unpaired t-test. 
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Figure 3.4 α-SMA immunoreactivity in healthy and asthmatic bronchial 

biopsy tissue. 5µm sections were probed with a monoclonal anti-α-SMA antibody, 

developed with DAB and counterstained with haematoxylin. A. healthy biopsy tissue, 

and B. asthmatic biopsy tissue with smooth muscle “block” staining used an internal 

positive control. Arrow identifies a line of myofibroblast-like cells immediately below 

the RBM. E- Epithelium; E(d)- Epithelium (denuded); LP- Lamina Propria; R-RBM; 

S- Smooth muscle; V- vessel. Scalebar - 100µm.
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Figure 3.5 Frequency of α-SMA immunopositive fibroblast-like cells in 

healthy and asthmatic bronchial biopsy tissue. Data points represent 

percentage of positive cells in lamina propria area to depth of 100µm from basement 

membrane, in 3 sections from each sample. Healthy mean ± SEM = 5.593 ± 0.714; 

Asthmatic mean ± SEM = 9.164 ± 1.037; p<0.05 (n=6 healthy & n=8 asthmatic). 
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3.3.3   Tenascin C immunoreactivity 

Tenascin C expression has been reported in the RBM of asthmatics during 

“active” remodelling as assessed following segmental allergen challenge. De 

novo deposition has been suggested as a marker of EMTU re-activation and 

subsequent remodelling in asthmatic lung.  

 

A single section from each biopsy was immunostained with an anti-tenascin C 

antibody and total immunoreactivity scored on a scale from 0-3. Tenascin C 

immunoreactivity was seen in the RBM against the true basement membrane 

as expected. Expression was not significantly different between groups as 

assessed by unpaired t-test (Figure 3.6). Both healthy and asthmatic tissue 

showed a range of staining intensity, however no asthmatic samples scored 0 

(no staining) compared with 2 healthy samples, indicating possible increased 

basal levels of repair and regeneration in asthmatic tissue. 

 

3.3.4   Transforming Growth Factor β-2 immunoreactivity 

It has been reported that asthmatic lung tissue shows increased TGF-β2 levels. 

Increased TGF-β2 in the asthmatic lung may be an indicator of fibrotic and/or 

anti-inflammatory activity. Several studies report an increase in TGF-β2 levels 

following allergen challenge, while TGF-β1 levels remain unchanged. 

 

A single section from each biopsy was probed with a TGF-β2 polyclonal 

antibody and scored from 0-3. In this study, TGF-β2 was localised primarily to 

the epithelial layer and smooth muscle bands, with limited scattered cell 

positivity in the lamina propria in both healthy and asthmatic subjects 

(Figures 3.7 & 3.8).  There was no significant difference in TGF-β2 score in 

either the epithelium or smooth muscle compartments (Figure 3.9), or the 

lamina propria (data not shown). Figure 3.10 shows the frequency distribution 

of total (epithelium + smooth muscle + lamina propria) TGF-β2 scoring of 10 

healthy and 12 asthmatic biopsy samples. There is a trend towards increased 

TGF-β2 scoring in the asthmatic group that is not statistically significant.  
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Figure 3.6 Tenascin-C immunoreactivity score of healthy and asthmatic 

biopsy tissue. 5µm tissue sections were immunostained with a monoclonal tenascin 

C antibody, developed with DAB substrate and counterstained with haematoxylin. 

Images were taken with a Spot-32 camera and scored blindly in 3 independent 

screenings. Healthy mean ± SEM= 1.600 ± 0.371; Asthmatic mean ± SEM= 1.917 ± 

0.259; p>0.05. 0= no staining, 1=mild, 2= moderate, 3= intense immunostaining. 
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Figure 3.7 TGF-β2 immunoreactivity in healthy bronchial biopsy tissue. 

5µm sections were probed with a polyclonal TGF-β2 antibody, developed with DAB 

substrate and counterstained with haematoxylin. Images were taken with a Spot-32 

camera and analysed. Epithelial staining intensity scored as A=0, B=1 mild, C=2 

moderate and D=3 intense. E- Epithelium; LP- Lamina propria; R- RBM; S- Smooth 

muscle.  Scalebar  - 50µm.  
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Figure 3.8 TGF-β2 immunoreactivity in asthmatic bronchial biopsy 

tissue. 5µm tissue sections were incubated with a polyclonal TGF-β2 antibody, 

developed with DAB substrate and counterstained with haematoxylin. Images were 

taken with a Spot-32 camera and analysed. Epithelial staining intensity scored as 

A=0, B=1, C=2 and D=3. E- Epithelium; LP- Lamina propria; R- RBM; V- Vessel. 

Scalebar  - 50µm. 
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Figure 3.9 TGF-β2 immunoreactivity scores of epithelial and smooth 

muscle bronchial tissue compartments. Tissue sections were scored blindly on 

a scale from 0-3 as for Tn-C.  Healthy mean± SEM: epithelium=1.40±0.305, lamina 

propria=0.700±0.152, smooth muscle= 1.20±0.133. Asthmatic mean ± SEM: 

epithelium= 1.58±0.358, lamina propria= 0.9167± 0.1930, smooth muscle = 1.46± 

0.215. Unpaired t-test showed no significant difference. 
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Figure 3.10 Frequency of total TGF-β2 score distribution. Total of 

epithelium, lamina propria and smooth muscle scores for each sample, shown as the 

number of samples (frequency) to attain each total score. A trend towards increased 

asthmatic total score, and therefore biopsy immunoreactivity, is apparent.  
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3.3.5   TGF-βReceptor III (TβRIII) 

TGF-β2 has low binding affinity for the TβRI - TβRII hetero-dimer receptor 

complex that facilitates signal transduction. In contrast to other isoforms, 

TGF-β2 requires the TβRIII receptor (betaglycan) to present the TGF-β2 

dimer to the signalling complex. 

 

A single section from each biopsy was probed with a polyclonal TβRIII 

antibody and examined (Figure 3.11). Positive immunoreactivity was observed 

primarily in the epithelium, with scattered weak staining in the lamina propria 

and smooth muscle, similar to that reported by Balzar et al. (Balzar et al., 

2005a). No difference was observed between healthy and asthmatic samples. 

 

3.3.6   Correlation of TGF-β2 and remodelling phenomena 

TGF-β2 is a pro-fibrogenic cytokine, and expression has been linked to 

increased AWR in asthmatics (Chu et al., 2004). To investigate whether this 

finding was repeated in this sample cohort, Spearman’s rank correlation 

coefficient (RS) was calculated for all samples, assessing correlation between 

epithelial, lamina propria, smooth muscle and total TGF-β2 scores with RBM 

thickness, myofibroblast frequency and TnC expression. The RS values for 

each calculation are shown in Table 3.1. There were no statistically significant 

associations between TGF-β2 and remodelling, with one exception: healthy 

epithelial TGF-β2 scores associated with myofibroblast frequency, p=0.024, 

RS=-0.771. Asthmatic lamina propria TGF-β2 and myofibroblast frequency 

approached significance at p=0.057 and RS=-0.617. Following on from the 

work of  Brewster et al. (Brewster et al., 1990), the inter-relation betweeen 

RBM thickness and myofbroblast frequency was assessed, shown in a scatter 

plot in Figure 3.12. Significant correlation was not found in this sample cohort, 

however clustering of samples by disease status is apparent.



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 TGF-β Receptor III expression in bronchial biopsy tissue. 5µm 

sections of healthy and asthmatic biopsy tissue were immunostained with anti-

TβRIII, counterstained with haematoxylin. A representative image taken using a Spot 

camera is shown. Scalebar  - 100µm. 

 

Table 3.1 Spearman Rank (RS) correlation statistics. Remodelling markers 

and TGF-β2 score were analysed together in asthmatic (red) and healthy (blue) tissue.  
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Figure 3.12 RBM thickness and myofibroblast frequency correlation. 

Asthmatic (red) and healthy (blue) scores were plotted. Spearman rank correlation 

analysis indicated no significant association between these variables, although 

clustering of each phenotype is apparent. Healthy p=0.401, RS=0.142; Asthmatic 

p=0.303, RS= -0.187. 
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Figure 3.13 TGF-β2 expression scores of epithelium, lamina propria and 

smooth muscle plotted against RBM thickness, myofibroblast frequency 

and tenascin-C expression. No statistically significant differences between 

healthy and asthmatic samples were observed, but a minor trend of healthy samples 

grouping on the lower end of the scale, and asthmatic towards the upper is apparent. 
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Scatter plots of TGF-β2 scores (for individual tissue compartments) vs. 

remodelling scores are shown (Figure 3.13). Although not significant, a trend 

towards clustering of healthy samples to lower scale, and asthmatic to the 

upper is apparent, suggestive of transient increases in TGF-β2 expression in 

asthmatic tissue. 

 

3.4   Summary 

This study assessed bronchial biopsy tissue from 12 mildly asthmatic and 10 

healthy individuals, for remodelling phenomena and TGF-β2 expression. 

Additionally, association of TGF-β2 expression with remodelling features was 

investigated. Evaluation of biopsy tissue was undertaken to prime future in-

vitro work using primary bronchial cells, to inform whether mildly asthmatic 

EMTU cells have an altered phenotype and could thus produce different 

responses in culture. 

 

For RBM thickness measurements results were calculated from 3 independent 

evaluations of each image. Intra-observer variation was below 8%, similar to 

that reported by Chu et al. Asthmatic samples displayed a significantly thicker 

RBM compared with healthy control tissue, similar to and in agreement with 

other published studies (Chu et al., 1998; James et al., 2002; O'Shaughnessy 

et al., 1997) 

 

Frequency of myofibroblast differentiation was determined in lamina propria 

cells. Asthmatic tissue had a statistically significant increase in myofibroblast 

frequency compared to healthy tissue.  

 

Tenascin C expression levels were not significantly different between healthy 

and asthmatic tissue. However, none of the asthmatic samples scored 0, 

suggesting a greater incidence of stress/injury and therefore subsequent TnC 

response in that group. 

 

TGF-β2 expression was evaluated in a single section of each biopsy using a 

polyclonal antibody following sodium citrate antigen retrieval. Expression in 
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separate anatomical “compartments” was scored, comprised of the epithelium, 

lamina propria and smooth muscle. There were no statistically significant 

differences in these samples, however a trend towards increased total TGF-β2 

expression levels in asthmatic tissue was observed. 

 

In correlation analyses, only epithelial TGF-β2 and myofibroblast frequency 

expression in healthy samples reached statistical significance. Asthmatic 

lamina propria TGF-β2 expression and myofibroblast frequency approached 

significance at p=0.057.  

 

In summary, measurable statistically significant evidence of remodelling was 

shown in mildly asthmatic tissue used in this study, therefore the null 

hypothesis that there is no significant difference in measures of AWR between 

healthy and asthmatic bronchial biopsy tissue can be rejected.  

3.5   Discussion 

Airway wall remodelling (AWR) encompasses alterations both in the 

extracellular matrix and cells resident in the airway, and contributes to the 

symptom persistence and decrease in respiratory function observed in many 

asthmatics (Bai, 2009). AWR is largely untreated by current medications and 

as such, understanding of the processes that drive AWR may lead to improved 

treatment options. Reactivation of the epithelial-mesenchymal trophic unit 

has been posited by some researchers as an initiator of AWR (Holgate et al., 

2004).  This study aimed to quantify commonly held markers of the 

remodelling process: reticular basement membrane (RBM) thickness, 

myofibroblast differentiation and tenascin C (TnC) deposition, in bronchial 

biopsy tissue. The pro-fibrotic, anti-inflammatory cytokine TGF-β2 was 

investigated as it is transiently upregulated in allergic asthma, and may also be 

a contributory factor in AWR processes.  

 

RBM thickening is the typical measure of AWR in asthma. Investigating the 

hypothesis that AWR led to thickened airway walls and thus decreased 

respiratory function, a number of studies showed RBM thickness correlated 

with increased overall thickness of the bronchial wall measured by high-
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resolution computerised tomographic scanning (James et al., 2002; Kasahara 

et al., 2002). Other studies have shown a positive correlation between 

increasing RBM thickness and inhaled glucocorticoid use (indicating increased 

severity of asthma), with greater increases demonstrated in atopic compared 

with non-atopic asthmatics (Amin et al., 2000). Whether RBM thickness may 

be used as a marker of asthma severity is a point for debate. Several groups 

have shown a positive correlation between increased RBM thickness and 

decreased FEV1% predicted(Bourdin et al., 2007; Hoshino et al., 1998b; Shiba 

et al., 2002) whilst others show no association(Chu et al., 1998; Hoshino et 

al., 1998a; Liesker et al., 2009; Tillie-Leblond et al., 2008). The disparity 

between groups may be explained by the use of single biopsies from different 

levels of the bronchi, the grade of asthmatic severity used (mild vs. moderate 

vs. severe), and the criteria used to to determine these classifications. Different 

methods used in measuring RBM thickness may also play a role. 

 

Two methods of calculating RBM thickness are predominant in the literature. 

Sullivan et al. devised a multiple point-to-point method of measurement, 

whereby the top and bottom of the RBM are marked then multiple top-to-

bottom measurements made along the length of the selection (Sullivan et al., 

1998). Wilson & Li selected whole areas of RBM and performed area/length 

calculations (Wilson and Li, 1997). To ensure their method was robust, Wilson 

& Li used transmission electron microscopy (TEM) measurements as a “gold 

standard” for comparative purposes.  Use of TEM was not practical for this 

study due to the requirement for multiple biopsies for specialised sample 

preparation; with a single biopsy available per patient,  wax-embedding tissue 

allowed both histological and immunohistochemical analyses. A comparative 

study found both methods produced similar results, as long as sufficient 

length of RBM was included in the analysis (Bourdin et al., 2007). The point to 

point method of Sullivan et al. was chosen for this study as it was marginally 

less reliant on biopsy tissue with continuous straight lengths of RBM to 

generate reliable data.  

 

All asthmatic biopsy samples used in this study were obtained from mild, 

steroid-naïve asthmatic subjects. Asthmatic RBM was significantly thicker 
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compared with healthy samples, even within the small sample size. Studies 

using similarly designated tissue, reported results within comparable limits. 

Chu et al. report RBM thickness increasing with severity of disease, from 

control bronchial biopsy tissue at 5.2µm, mild asthmatic 5.5µm, to moderate 

and severe at 6.8µm and 6.5µm respectively, although as in this study each 

subset contained a wide range of measurements (Chu et al., 1998). It is of note 

that the severe asthmatic mean was marginally less than the moderate. This 

may be attributable to the use of oral steroids in this subset, which can exert a 

small reducing effect on RBM thickness during treatment, as demonstrated in 

other studies (Shiba et al., 2002). RBM thickness appears fairly fixed by 6 

years of age in asthmatics, and so variability in age of study participants 

should not affect results (Bush, 2008). RBM thickening is not confined to 

asthmatic lung and has been quantified in eosinophilic bronchitis, allergic 

rhinitis and cystic fibrosis (Brightling et al., 2002; Hilliard et al., 2007). It is 

unknown whether the mechanism of thickening is the same. That it is 

identifiable in other disease states points to it being a response to bronchial 

stress. It has been suggested that RBM changes may protect from 

bronchospasm (Milanese et al., 2001).  

 

Myofibroblasts are fibroblast-like cells with increased matrix synthesis 

capacity and augmented contractile features. They are associated with tissue 

repair and fibrosis and are the main matrix-producing cell in tissue repair 

events throughout the body (Brewster et al., 1990). The physical strain of 

asthma attacks and increased TGF-β isoform production provide an ideal 

environment for fibroblast differentiation, which requires both active TGF-β 

exposure and mechanical strain (Desmoulière et al., 1993). Myofibroblasts 

were quantified in a region of tissue limited to 100µm depth from the 

basement membrane. This method was selected as a consistent way to 

differentiate collagen deposition capacity in bronchial biopsy tissue 

(O'Shaughnessy et al., 1997). The statistically significant increased 

myofibroblast representation amongst the cell population in the asthmatic 

samples found here is significant due to the increased matrix secretory 

capacity of these cells. The origin of myfibroblasts in subepithelial fibrosis is 

not defined.  The majority differentiate from resident fibroblasts, but these 
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may be supplemented by migrating smooth muscle cells and circulating 

fibrocytes that differentiate into myofibroblast-like cells (Hinz et al., 2007a). 

Increased secretion of cytokines by myofibroblasts has been identified, and 

may contribute to the continual activation state of cells resident in the 

asthmatic EMTU and beyond (Ward et al., 2008). Previously published work 

used BAL fluid to assay MMP and TIMP levels to evaluate possible collagen 

turnover, however BAL fluid was not available for this study. 

 

The dynamic deposition pattern of glycoprotein tenascin C at points of tissue 

injury/stress make it a useful marker of remodelling activity in the asthmatic 

bronchi. In a murine model of lung epithelial cell injury, Tn-C was increased at 

day 1 after injury, returning to baseline by day 3, confirming the limited 

temporal increase after epithelial injury of this protein (Snyder et al., 2009). 

In human tissue, Tn-C was increased in asthmatics at baseline (Flood-Page et 

al., 2003), and also significantly increased 24h after segmental allergen 

challenge in asthmatics (Phipps et al., 2004a). In this study there was no 

significant difference between healthy and mild asthmatic biopsy tissue. All 

asthmatic samples were scored above background, unlike healthy tissue 

samples. It may be hypothesised that positive immunoreactivity in healthy and 

asthmatic samples is indicative of remodelling in some form being part of 

healthy lung homeostasis. However, as only a single section was scored from 

each biopsy, this cannot be considered indicative of the lung tissue.  

 

Remodelling may be driven by increased TGF-β activity in the asthmatic lung. 

An investigation into TGF-β isoform expression in healthy and asthmatic 

biopsy tissue showed TGF-β2 to be the predominant isoform, localised 

primarily to the epithelium with limited expression in smooth muscle. TGF-β2 

was also the only isoform to be elevated in asthmatic tissue (Balzar et al., 

2005b). In  BAL fluid, Batra et al. found TGF-β2 expressed at slightly higher 

levels at baseline in healthy controls compared to atopic asthmatics. Allergen 

challenge led to a large spike in TGF-β2 levels at 24h in asthmatic subjects that 

was not seen in healthy controls. TGF-β1 levels also spiked in asthmatics, but 

in all cases TGF-β1 levels were consistently lower than TGF-β2, at all 

timepoints (Batra et al., 2004). The results in that study did not reach 
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significance, however there was a trend towards increasing TGF-β2 expression 

in the asthmatic tissue samples. These results were echoed here, whereby a 

general trend towards increased TGF-β2 expression was observed but did not 

reach statistical significance. All the asthmatic tissue was phenotypically mild 

and steroid naïve; Balzar et al. showed TGF-β2 increasing in line with asthma 

severity, whilst other groups have identified increasing TGF-β1 levels 

proportional to asthma severity in biopsy and lavage respectively (Minshall et 

al., 1997; Tillie-Leblond et al., 1999) . Results shown here may be limited by 

the mild tissue phenotype used; the inclusion of moderate/severe asthmatic 

tissue samples may produce statistically significant increases in TGF-β2 

expression. 

 

Increased phosphorylated Smad2 protein has been described in the asthmatic 

epithelium at baseline (Sagara et al., 2002) and after allergen challenge 

(Phipps et al., 2004b). Upregulation of TGF-β receptor signalling could be 

partly explained by the finding of Nakao et al., who illustrated decreased basal 

Smad7 (a negative regulator of the TGF-β-Smad signalling pathway) 

expression in the epithelial layer in asthmatic biopsy tissue (Nakao et al., 

2002). The reduction in downregulatory/control capacity this could effect 

exemplifies the multi-layered mechanisms by which TGF-β activity may be 

modulated in the asthmatic airway. Results such as those cited above indicate 

there may be increased TGF-β activity in the asthmatic lung that exclude the 

need for concomitant increases in active TGF-β2 levels.  

 

Active TGF-β2 must bind to specific receptors and signal intracellularly to 

produce downstream effector functions. TGF-β2 presentation to the TβRI-

TβRII heterodimer TβRIII expression was assessed due to the role of this 

molecule in TGF-β2 receptor binding. No differences were found between 

healthy and asthmatic tissue expression levels in this study. Animal studies 

have identified alterations in TβRIII expression induced by periods of hypoxia, 

however there is no published data on TβRIII expression in asthma (Vicencio 

et al., 2002). It has been reported that a splice variant of TβRII (TβRII-B) is 

sufficient for TGF-β2 signalling so bypassing the requirement for TβRIII, 
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however commercial antibodies were unavailable (del Re et al., 2004b; Rotzer 

et al., 2001). 

 

The causal relationship between the AWR features discussed earlier and 

asthmatic disease manifestations is broadly unknown. Delineation of these 

relationships relies on correlation between remodelling phenomena and other 

features of asthmatic disease. Increased RBM thickness has been positively 

correlated with AHR (Hoshino et al., 1998a) and with frequency of asthma 

attacks (Evans et al., 1999). However, other groups have found asthma 

exacerbations predict decline in lung function, and not the extent of  

remodelling (O'Byrne et al., 2009). AHR measures were not taken from all 

subjects whose tissue was acquired for inclusion in this study, and asthma 

exacerbation frequency was very low in the mild steroid naïve asthmatic 

subjects used, with no exacerbations in the previous month as a standard 

minimum. Regarding TGF-β, the majority of published data concerns the -β1 

isoform, and increased TGF-β1 expression in the submucosa has been 

identified. The same study also highlighted increased sub-epithelial fibrosis 

(RBM thickness) correlated to increased asthma severity (Minshall et al., 

1997), again indicating remodelling may directly affect AHR.  Sagara et al. 

established that TGF-β specific signalling via p-Smad2 was increased in 

asthmatic bronchial tissue over healthy controls, correlated with increases in 

RBM thickness (Sagara et al., 2002). Although correlation analyses in this 

study did not lead to any significant associations, there was a clear separation 

of the samples into their respective groups when remodelling scores were 

plotted against TGF-β2 expression. Again, statistical significance may only be 

reached with increased sample number, possibly including asthmatic biopsy 

tissue from moderate/severe phenotypes. 

 

The studies discussed above add weight to the hypothesis that TGF-β2 can 

promote remodelling responses in asthma. It is clear from results presented 

here that mild asthmatic tissue undergoes remodelling processes. Cells 

derived from such subjects may show altered responses compared with 

healthy controls in-vitro, to be investigated in further chapters. 
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Regarding the mild asthmatic phenotype studied, it would be possible to 

differentiate between “inactive” and “active” allergic asthma through the 

enumeration of mast cells in the tissue. Tissue and BAL fluid from “active” 

asthmatics shows increased mast cell infiltration, however with the mild 

phenotype accessed a significant difference may not be identifiable.   

 

The majority of TGF-β2 immunoreactivity in this study was found in the 

epithelial layer, but other studies have focused on TGF-β levels in specific cell 

populations to identify drivers or promotors of remodelling. Such work could 

be repeated in this sample cohort, perhaps  through identification of co-

localization of TGF-β2 expression with activated eosinophils, identified by 

EG2 immunoreactivity. Additionally, in-situ hybridisation to identify which 

cells are actively producing TGF-β2, or laser capture microdissection of cell 

populations followed by RT-PCR may provide additional information on TGF-

β2 and it’s downstream effects.  
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Chapter 4: Expression and activation of TGF-β2 following 

experimental injury of human bronchial epithelial cells 

 

4.1   Overview 

The upper respiratory tract functions to warm, moisten and filter inhaled 

environmental factors from air before it reaches the lower respiratory tract. 

Despite this, the bronchial epithelium is challenged by a proportion of 

environmental matter, and acts to maintain tissue homeostasis and 

appropriate barrier function through the mucociliary escalator, epithelial 

repair and immunomodulation. TGF-β2 is transiently upregulated at some 

sites of epithelial injury, promoting wound repair. Dysfunctional repair and 

incomplete resolution of inflammation are thought to occur in the asthmatic 

epithelium leading to airway wall remodelling (AWR). Increased TGF-β2 

expression levels have been identified in the asthmatic epithelium following 

segmental allergen challenge in human bronchial biopsy studies (Batra et al., 

2004), and in-vitro studies have demonstrated the increased sensitivity of 

asthmatic fibroblasts to TGF-β2 mediated myofibroblast transition effect 

(Wicks, 2006). Myofibroblasts go on to increase extracellular matrix molecule 

production, contributing to remodelling. Increased TGF-β2 production by the 

bronchial epithelium, possibly arising from a non-resolving wound response, 

could therefore drive some aspects of AWR. Expression and activation of TGF-

β isoforms are tightly regulated processes both temporally and spatially 

however,  

 

House dust mite is a prominent source of environmental allergens in the 

western hemisphere, present at levels sufficient for sensitization (Platts-Mills 

et al., 1992). Approximately 21 allergens have been identified from house dust 

mite species thus far and at least 12 have been isolated from the European 

house dust mite, Dermatophagoides pterronysinus (Thomas et al., 2002). 

Many of these allergens have proteolytic activity. Group 1 allergen, Der p 1, 

was identified in 1980  as a cysteine protease (Chapman and Platts-Mills, 
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1980), with sequence homology to papain (Chua et al., 1988). Subsequent 

purification identified allergens including Der p 3 and 6, with serine protease 

activity (Stewart et al., 1989; Yasueda et al., 1993). The proteolytic activity of 

these allergens can affect epithelial permeability through degradation of the 

tight junction protein occludin (Wan et al., 2001; Wan et al., 1999), and can 

activate epithelial cells by cleavage of protease activated receptor-2 (PAR-2) 

(Kauffman et al., 2006). 

 

Latent TGF-β1 can be activated by several proteases in-vivo, including the 

serine proteases plasmin (Nunes et al., 1997),  tryptase (Tatler et al., 2008), 

chymase, neutrophil elastase  and thrombin (Taipale et al., 1992; Taipale et 

al., 1995), and the cysteine protease cathepsin B (Gantt et al., 2003). Abe et al. 

presented evidence of latent TGF-β1 activation in-vitro in the presence of cells 

by the cysteine protease calpain (Abe et al., 1998). An investigation into 

increased TGF-β activation following glucocorticoid treatment identified 

increased cathepsin-B protein secretion (a cysteine protease) by osteoblast 

cells as a possible mechanism; osteoblast conditioned medium alone was 

sufficient to activate latent TGF-β1 (Oursler et al., 1993).  Less is known in 

terms of TGF-β2 activation by proteases. In–vitro, Dallas et al. established the 

preferential activation of recombinant latent TGF-β2 by the serine protease 

prostate specific antigen, from primary human cells (Dallas et al., 2004). 

These findings are of interest in asthma as the major dust mite allergen Der p 1 

is a cysteine protease, and Der p 3, 6 and 9 are serine proteases. Furthermore, 

it was recently shown that purified Der f 1 (from the North American dust mite 

Dermatophagoides farinae), can proteolytically cleave and activate latent 

TGF-β1 (Nakamura et al., 2009). However, the effect of European house dust 

mite allergens with protease activity on latent TGF-β activation has not been 

investigated.  

 

4.2   Aims and Hypothesis 

The aims of this chapter are: 

1. To characterise the proteolytic activity of commercial HDM 

preparations  
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2. To investigate whether these HDM preparations activate native 

latent TGF-β2 

3. To assess whether HDM exposure leads to increased expression of 

TGF-β2 by transformed and primary bronchial epithelial cells 

 

It is hypothesised that the proteolytic activity of HDM can activate latent TGF-

β2 produced by human bronchial epithelial cells. 

 

4.3  Results 

4.3.1  Commercial amino acid enzyme substrate is cleaved by both 

serine and cysteine proteases 

Prior to performing experimental work with HDM preparations, the 

proteolytic cleavage susceptibility of the selected enzyme substrate was 

confirmed. The amino acid substrate N-benzoyl-Phe-Val-Arg-p-nitroanilide-

hydrochloride (NBPVANA) has been reported to be sensitive to both serine 

(trypsin) and cysteine (papain, Der p 1) protease activity (Sehgal, 2005). 

NBPVANA cleavage produces a colorimetric product measurable by 

absorbance at 405nm.  

 

The NBPVANA substrate was incubated with trypsin (3U/ml) or papain 

(200mU/ml) at 37°C for 2 hours, and 405nm absorbance readings taken at 

20min intervals, following the protocol of Sehgal. Absorbance readings were 

plotted against time, and the reaction progression curves show both trypsin 

(serine) and reduced papain (cysteine) proteolytically cleaved the NBPVANA 

substrate. Trypsin reached a reaction plateau by 20 min, with an activity rate 

of  3.86µM/min in this time period. Papain showed a rate of substrate 

breakdown of 1.53µM/min over the same time.  Class-specific protease 

inhibitors of trypsin (PMSF) and papain (E64) were included to confirm their 

efficacy in excess, while unreduced papain (no DTT reduction) showed no 

activity (Figure 4.1).  



 Gaynor A. Campbell 

  90 

 

 

 

Figure 4.1 Reaction progression curves of substrate cleavage by a serine 

or cysteine protease. NBPVANA substrate (125µM ) was incubated with serine 

protease trypsin (3U/ml) or cysteine protease papain (200mU/ml), with and without 

class-specific inhibitors PMSF (1mM) and E64 (10µM). Unreduced papain showed no 

activity, confirming reduction of the thiol group is essential for cysteine protease 

activity.  

 

4.3.2  Serine and cysteine proteolytic profiles of commercial house 

dust preparations 

Following confirmation of substrate suitability, a commercially available HDM 

extract (HDM SPT) (ALK-Abello, Netherlands) was assessed in the assay. The 

extract is used in skin prick testing and is therefore expected to contain the 

major allergens of Dermatophagoides pterronysinus. An initial experiment 

using 100,000 and 10,000U/ml showed that the lower concentration had very 

limited proteolytic activity. The extract was therefore used in the assay 

undiluted, at 100,000U/ml as this produced progression curves comparable to 

the concentrations of other enzymes selected. Units given are not indicative of 

protease activity units, instead they are a measure of skin prick test 

responsiveness as determined by the manufacturer. Protease activity and 

allergen level data is not supplied or available for this product.   
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HDM SPT continous rate assays show that activity was not affected by 

reduction (Figure 4.2). Incubation with class-specific protease inhibitors 

showed that HDM SPT has serine protease activity. Combined protease 

inhibitor cocktail (PIC) inhibited all activity, as did the serine protease 

inhibitor PMSF alone, with no appreciable protease activity remaining. 

Cysteine protease inhibitor E64 showed no effect. Substrate breakdown rate 

for reduced HDM SPT was 1.88µM/min, and for unreduced HDM SPT was 

1.81µM/min in the linear phase of the reaction. 

 

Comparison of HDM SPT extract activity with cysteine protease papain 

confirmed that reduction was not necessary for HDM SPT proteolytic activity 

(Figure 4.3).  

 

The lack of measurable cysteine protease activity was unexpected as Der p 1, 

reportedly the most abundant allergen in house dust mite, is a cysteine 

proteae with structural homology to papain. It is possible that serine protease 

activity outweighed cysteine protease activity simply because there was a 

greater amount of serine protease activity present in the preparation. The 

manufacturers do not divulge data on the mixture/proportion of allergens 

present. Allergen levels can vary widely in preparations from different 

suppliers (Ford et al., 1985). 
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Figure 4.2 Reaction progression curves of substrate cleavage by a 

commercial HDM extract. HDM extract (100000U/ml) was incubated with and 

without serine (PMSF- 1mM), cysteine (E64- 10µM) and a complete protease 

inhibitor cocktail (PIC-20µl stock) prior to the addition of 125µM NBPVANA 

substrate. Unreduced HDM extract maintained over 95% activity, revealing minimal 

contribution from cysteine proteases.  

 

 

 

Figure 4.3 Comparison of papain and HDM extract proteolytic activity. 

Reaction progression curves of substrate cleavage over time by HDM extract 

(100,000U/ml) and cysteine protease papain (200mU/ml). Unreduced papain shows 

no activity, but unreduced HDM extract maintains a similar activity profile to the 

reduced sample. 
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The HDM SPT extract used in this study is a standardised mixture of allergens, 

however it does not bear much resemblance to environmental presentation of 

HDM. Alternatively, mite stocks can be cultured in the lab, where they secrete 

major allergens into the culture media. Lyophilised spent culture media, 

consisting of a mixture of HDM fecal pellets, eggs, nymphs and other variables  

(HDM FP) was acquired for use in this study (Indoor Biotechnologies Ltd, 

Warminster, UK). This product is for research use only and is not used in any 

clinical setting. HDM FP was reconstituted at 1mg/ml in solution, although a 

small proportion of the matter proved insoluble.  

 

Unreduced and reduced HDM FP showed similar proteolytic activity of 

3.16µM/min and 2.97µM/min respectively, in the linear phase of the reaction 

between 20-40min (Figure 4.4). The reaction plateaued at 6omin. HDM FP 

incubated with cysteine protease inhibitor (E64) did not differ from HDM FP 

alone. Serine protease inhibitor PMSF at 1mM slowed the rate of reaction to 

1.84µM/min, but by 2h the reaction reached the plateau. Complete protease 

inhibitor cocktail (PIC) completely abrogated all protease activity.  

 

HDM SPT and HDM FP were then assayed together. The HDM preparations 

showed almost identical proteolytic profiles (Figure 4.5). Breakdown of 

NBPVANA substrate in the linear phase  (20-40min) was 3.37µM/min by 

HDM SPT and 3.6µM/min by HDM FP. The reaction plateaued at 60min, and 

protease inhibitor cocktail blocked activity.  
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Figure 4.4 Serine and cysteine proteolytic activity of HDM fecal pellet 

solution. Reaction progression curves of NBPVANA substrate breakdown over time 

by HDM FP (1mg/ml saturated). Inhibitors of serine (PMSF- 1mM) and cysteine 

(E64- 10µM) activity were included, and protease inhibitor cocktail (PIC). 

 

 

Figure 4.5  HDM SPT extract and HDM FP proteolytic activity.   

HDM SPT (100000U/ml) and HDM FP (1mg/ml) were reduced prior to addition of 

125µM NBPVANA substrate. Protease inhibitor cocktail was effective in both HDM 

SPT and HDM FP samples.  
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A single substrate concentration of 125µM was used in all reactions, and HDM 

preparations contain a mixture of enzymes, so the results were not suitable for 

Michaelis-Menten analysis to determine reaction kinetics.  

 

This section presented evidence for proteolytic activity in 2 different HDM 

preparations.  Both preparations showed similar serine protease activity levels 

on the substrate. The quantity of PMSF used (1mM) was insufficient to 

entirely block serine protease activity of HDM FP though, and this may be due 

to greater serine activity, or possibly due to a different class of protease. There 

was no measurable cysteine protease activity in either extract. This may be due 

to low levels of Der p 1 in the preparations used.  

 

4.3.3  Activation of LTGF-β2 by proteolysis in an acellular 

environment 

It was hypothesised that proteolytic activity of HDM extract could activate 

latent TGF-β2. Proteolytic activation in-vivo is often dependent on cell- or 

matrix-association of the latent cytokine, as for the plasmin activation of 

LTGF-β1. However, initial assessments of proteolytic activation were 

performed in cell-free conditioned medium culture supernatant containing 

native latent TGF-β2. LTGF-β2 was not available from a commercial source. 

Omitting cells ensured no cell-mediated effects would interfere, for example 

through upregulation of TGF-β2 production or secretion of cellular proteases 

in response to HDM stimulation. The experiments in this section utilised cell-

free conditioned medium (CM) from the SV-40 transformed bronchial 

epithelial cell line 16HBE14o- as a source of TGF-β2 protein. These cells 

constitutively secrete latent and active TGF-β2. TGF-β2 protein levels were 

assessed by ELISA.  

 

Serum-free conditioned medium from 16HBE14o- cells was collected at 24h, 

and exposed to different protease preparations for 24h at 37°C, in order to 

analyse the ability of HDM proteases to activate latent TGF-β2 (Figure 4.6). 

HDM SPT extract was used at 2000U/ml (Salib et al., 2005), HDM FP at 

20µg/ml, papain at 100mU/ml and plasmin at 2U/ml (Lyons et al., 1990). 
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Levels of active TGF-β2 were not affected by protease incubation with the 

exception of papain-exposed samples that showed complete loss (degradation) 

of the active cytokine.  

 

Levels of total TGF-β2 (active + latent) were analysed in CM by heating to 

80°C for 6mins prior to assaying, to investigate degradation of LTGF-β2 due to 

protease activity (Figure 4.7). HDM FP degraded a small but significant 

proportion (17%) of the native LTGF-β2, and papain degraded  the majority of 

both active and latent TGF-β2.  

 

 
Figure 4.6 Active TGF-β2 in 16HBE14o- conditioned media following 24h 

incubation with protease preparations. CM was assayed by ELISA following 

incubation with HDM SPT (2000U/ml), HDM FP (20µg/ml), papain (100mU/ml) or 

plasmin (2U/ml). Data were analysed by one way ANOVA followed by Dunnett’s test 

(n=3, ***=p<0.005). 
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Figure 4.7 Total TGF-β2 in 16HBE14o- conditioned media following 24h 

incubation with protease preparations. CM was heat treated and assayed by 

ELISA following incubation with HDM SPT (2000U/ml), HDM FP (20µg/ml), papain 

(100mU/ml) or plasmin (2U/ml). Data were analysed by one way ANOVA followed by 

Dunnett’s test (n=3, *=p<0.05 ***p<0.005). 

 

Although there was no significant increase in TGF-β2 activation, a decrease in 

total TGF-β2 was identified in HDM FP exposed samples. A comparison of 

active vs. total (latent + active) TGF-β2 levels showed no significant difference 

in between HDM preparation exposed and control levels with the exception of 

papain-exposed samples that were almost entirely degraded (Figure 4.8).  
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Figure 4.8 Percentage active TGF-β2 in 16HBE14o- conditioned media 

following 24h incubation with protease preparations. Assayed by ELISA 

following incubation with HDM SPT (2000U/ml), HDM FP (20µg/ml), papain 

(100mU/ml) or plasmin (2U/ml). Data were analysed by one way ANOVA followed by 

Dunnett’s test (n=3, *** p<0.005). 

 

This section showed that HDM preparations and plasmin did not activate 

native LTGF-β2 in a cell-free environment. The experimental procedure was 

then altered to investigate the effect of protease preparations on submerged 

16HBE14o- cultures TGF-β2 secretion and activation.  

  

4.3.4  Secretion and activation of TGF-β2 by confluent 16HBE14o- 

cell cultures following protease challenge 

Confluent 16HBE14o- cells were exposed to protease preparations for 24h at 

37°C, as in the CM study.  The supernatant was harvested and assayed by 

ELISA for both active and total TGF-β2. To ensure detectable levels of TGF-β2 

were present, cell challenge began 24h after the final media change, so media 

assayed was collected at 48h, and not 24h as the CM samples used in section 

4.2.2. Tryptase (15mU/ml) was also included in these experiments as it has 

been shown to activate cell-associated latent TGF-β1 at this concentration 
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(Tatler et al., 2008), and is secreted by mast cells in the asthmatic airway 

(Woodman et al., 2008) (Figure 4.9). 

 

Challenge of cultured cells rather than conditioned media with HDM 

preparations produced marked differences in levels of active TGF-β2. Papain 

again degraded TGF-β2 secreted, and is not shown here. A significant decrease 

(p<0.005) was observed in HDM FP exposed cultures. Challenge with tryptase 

led to a small but significant (p<0.05) increase in active TGF-β2. Similar levels 

of active TGF-β2 were measured in control cultures at 48h as seen in  the 24h 

cultures.  

 

A significant decrease in total TGF-β2 was observed in HDM SPT exposed 

cultures, and a greater decrease in HDM FP exposed cultures. Both tryptase 

and papain exposure resulted in significant increases in total TGF-β2 (Figure 

4.10). 

 

To identify increases in LTGF-β2 production and effects on active TGF-β2 

levels following protease exposure, the percentage of active TGF-β2 was 

calculated. Figure 4.11 shows percentage active TGF-β2 in HDM protease-

challenged 16HBE14o- cell cultures. HDM SPT exposure did not differ from 

control proportions (around 40%). HDM FP, tryptase and plasmin all showed 

a decreased proportion compared to control cultures, of 28%, 33% and 17% 

respectively. These results indicate that HDM FP may be degrading both active 

and latent forms of TGF-β2, although may also be affecting TGF-β2 secretion 

by cells. Tryptase and plasmin exposure increased TGF-β2 production by cells.  
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Figure 4.9 Active TGF-β2 secreted by confluent 16HBE14o- cultures 

following 24h protease exposure. Supernatant was harvested at 24h and assayed 

by ELISA following exposure to HDM SPT (2000U/ml), HDM FP (20µg/ml), tryptase 

(15mU/ml) or plasmin (2U/ml). Data were analysed by ANOVA followed by 

Dunnett’s test (n=3, *p<0.05, ***p<0.005). 

 

 

Figure 4.10 Total TGF-β2 secreted by confluent 16HBE14o- cultures 

following 24h protease exposure. Supernatant was harvested at 24h, heat 

treated and assayed by ELISA following exposure to HDM SPT (2000U/ml), HDM FP 

(20µg/ml), tryptase (15mU/ml) or plasmin (2U/ml). Data were analysed by ANOVA 

followed by Dunnett’s test (n=3, *p<0.05, ***p<0.005). 
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Figure 4.11 Percentage active TGF-β2 in confluent 16HBE14o- cell 

supernatant following 24h protease exposure. Supernatant was harvested at 

24h and assayed by ELISA following exposure to HDM SPT (2000U/ml), HDM FP 

(20µg/ml), tryptase (15mU/ml) or plasmin (2U/ml). Data were analysed by ANOVA 

followed by Dunnett’s test (n=3,*p<0.05,  **p<0.01, ***p<0.005).  

 

In summary, the proteolytic activity present in HDM preparations did not 

appear to activate native LTGF-β2 in the cell-associated environment. HDM 

SPT had no effect either on the activation of or the expression of LTGF-β2, 

while HDM FP exposure appeared to degrade TGF-β2 protein and may also 

downregulate TGF-β2 expression.  

 

4.3.5  Comparison of TGF-β2 secretion and activation by 16HBE14o-

cell cultures following injury or allergen challenge 

Injury to the epithelial layer in asthma may drive increased TGF-β2 

expression. The use of “scratch” assays has become the standard method of 

injury in bronchial epithelial culture (Howat et al., 2002; Thompson et al., 

2006). Confluent cultures are subjected to a scratch across the surface using a 

sterile pipette tip. This physical injury is intended to mimic the epithelial sheet 

shearing thought to occur during the acute asthmatic response. HDM extracts 

may contain variable levels of lipopolysaccharide (LPS), a Toll-like receptor 4 
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(TLR4)  ligand, but the proteolytically inactive allergen Der p 2 (concentrated 

in fecal pellets) can activate TLR4 in the absence of LPS (Trompette et al., 

2009). To confirm whether LPS exposure was sufficient to alter TGF-β2 levels 

in a protease-independent manner, LPS was added to cell cultures at a 

concentration of 100ng/ml as a control.  

 

Cell challenge began 24h after the final media change, so supernatant assayed 

was from a total 48h. A significant decrease (p<0.05) in active TGF-β2 was 

observed in HDM FP–exposed cultures, whereas HDM SPT did not differ from 

control. Scratch injury and LPS exposure did not significantly alter active 

TGF-β2 levels (Figure 4.12A). 

 

When total TGF-β2 levels were assayed, there was a significant increase in 

TGF-β2 in HDM SPT exposed and  scratch injured cultures. No difference 

compared with control cultures was seen following HDM FP or LPS exposure 

(Figure 4.12B). The increase in total TGF-β2 in scratch injured cultures 

suggests this method of injury provokes a wound healing response, and 

correlates with previously published work (Howat et al., 2002). 

 

The percentage of active TGF-β2 was calculated, to identify alterations in  the 

proprotion of active TGF-β2 present following HDM preparation exposure or 

injury (Figure 4.12C). HDM SPT and HDM FP exposure significantly 

decreased the proportion of active TGF-β2 present. HDM FP decreases are 

likely due to proteolytic degradation of the active and latent protein. A 

significant decrease was also observed in LPS exposed cultures, but there was 

no significant difference between scratch injured and control cultures.  
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Figure 4.12 TGF-β2 production by 16HBE14o- cells 24h following HDM 

exposure or experimental injury. Cells were challenged with HDM SPT 

(2000U/ml),  HDM FP (20µg/ml), LPS (100ng/ml) or scratch injury. Media was 

collected at 24h for assay by ELISA. A. Active TGF-β2, B. Total TGF-β2 in heat-

treated media and C. Percentage active TGF-β2 produced. Data were analysed by 

ANOVA followed by Tukey’s test (n=3, *p<0.05, **p<0.01, ***P<o.oo5).  
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 To summarise, HDM challenge did not lead to increased TGF-β2 activation in 

the transformed bronchial epithelial cell line 16HBE14o-. Therefore, the next 

set of experiments investigated TGF-β2 activation following allergen exposure 

using a more physiological model, consisting of healthy primary human 

bronchial epithelial cells grown at air-liquid interface (ALI).  

4.3.6  Secretion and activation of TGF-β2 by primary bronchial 

epithelial cells following injury or allergen challenge 

Primary human bronchial epithelial cells (HBEC), from 3 different donors, 

were seeded into polycarbonate membrane hanging inserts in 12 well plates 

and grown submerged until confluence. When cells had formed a confluent 

layer, the apical media was removed, allowing cell differentiation at the air-

liquid interface. All challenges took place after a minimum of 7 days culture at 

ALI, to allow apical-basal polarity to be established, mature tight junctions to 

form and for cells to differentiate to ciliated or goblet type. Culture at ALI 

provides a more physiological epithelial layer for in-vitro experiments than 

submerged culture (Kikuchi et al., 2004; Vanwetering et al., 2007).  

 

Cell challenge began 24h after the final media change to ensure detectable 

levels of TGF-β2 were present. The culture media assayed was therefore 

collected at a total of 48h, following 24h challenge. As HDM FP appeared to 

degrade TGF-β2, only HDM SPT was used in these experiments as an allergen 

challenge. Following 24h exposure to HDM SPT (2000U apically), scratch or 

LPS (100ng/ml basally), culture media was harvested and assayed by ELISA 

for both active and total levels of TGF-β2.  

 

Figure 4.13A presents data on active TGF-β2 production from the first donor 

(2F1578). HDM SPT exposure led to a significant increase in active TGF-β2, 

and scratch injury a slight increase (not significant). There was a decrease in 

LPS exposed cultures that was not significant. The apparent increase in active 

TGF-β2 following HDM SPT exposure could be explained by a concomitant 

increase in total TGF-β2. HDM SPT, scratch and LPS all resulted in increased 

TGF-β2 levels over control (Figure 4.13B). The relative levels of active TGF-β2 

are shown in Figure 4.13C. The percentage active TGF-β2 did not differ 
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significantly from control in any experimental challenge. This may be due to 

the wide variation seen in control unstimulated samples. 

 

Figure 4.13 TGF-β2 production by NHBEC donor 2F1578 24h following 

HDM challenge or injury. ALI cultures were challenged by HDM SPT (2000U),  

LPS (100ng/ml) or scratch injury. Media was collected at 24h for assay by ELISA 

shown as A. Active TGF-β2, B. Total TGF-β2 after heat-treatment of media and C. 

Percentage active TGF-β2.  Data were analysed by ANOVA followed by Tukey’s test 

(n=3, **p<0.01, ***p<0.005). 
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Figure 4.14 TGF-β2 production by NHBEC donor 7F3081 following HDM 

exposure or injury. ALI cultures were challenged by HDM SPT (2000U),  LPS 

(100ng/ml) or scratch injury. Media was collected at 24h for assay by ELISA shown as 

A. Active TGF-β2, B. Total TGF-β2 after heat-treatment of media and C. Percentage 

active TGF-β2.  Data were analysed by ANOVA followed by Tukey’s test (n=3, 

**p<0.01). 
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Primary cells from the final donor, 7F3000, were limited and only 3 

conditions were possible, taken at the 24h timepoint (Figure 4.15). There was 

wide variation in active TGF-β2 levels following HDM SPT, and also in control 

unstimulated samples. Scratch injury produced very little active TGF-β2. 

Results were not however statistically significant (Figure 4.15A).  

 

Differences in total TGF-β2 levels were not statistically significant due to wide 

variation and overlap between repeats and conditons. There was however an 

observable decrease in HDM SPT compared to control samples (Figure 4.15B).  

The proportion of active TGF-β2 present following challenge did not differ 

significantly across experimental conditions (Figure 4.15C).  
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Figure 4.15 TGF-β2 production by NHBEC donor 7F3000 following HDM 

exposure or injury. ALI cultures were challenged by HDM SPT (2000U) or scratch 

injury. Media was collected at 24h for assay by ELISA shown as A. Active TGF-β2, B. 

Total TGF-β2 after heat-treatment of media and C. Percentage active TGF-β2.  Data 

were analysed by ANOVA followed by Tukey’s test (n=3, **p<0.01). 
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To determine the temporal pattern of TGF-β2 production and activation 

following HDM exposure or injury, ALI cultures were challenged and media 

collected for assay at earlier timepoints alongside the 24h timepoint. Two 

donors were available for this study: 2F1578 and 7F3081.  

 

The levels of active and total TGF-β2 produced at 1h, 4h and 24h post-

challenge by donor 2F1578 are shown in Figure 4.16A and 4.16B respectively. 

For active TGF-β2, control samples peaked at 4h, whereas HDM SPT exposed 

cultures displayed a continual increase. Low levels of active TGF-β2 were 

measured throughout the timecourse following LPS exposure, while scratch  

led to a 1h peak then drop at 4h before increasing to a level similar to control. 

All samples showed an increase in total TGF-β2 levels over time, regardless of 

experimental condition.  

 

Production of TGF-β2 by donor 7F3081 at 2h, 8h and 24h post-challenge is 

shown in Figure 4.17.  Active TGF-β2 levels in control samples were variable 

whilst HDM SPT exposure resulted in a peak 2h following challenge, and did 

not exceed control levels at 24h. Scratch injured levels fell between 8 and 24 

hours (Figure 4.17A). Active TGF-β2 production by NHBEC donor 7F3081 was 

disimilar to donor 2F1578. Total TGF-β2 production did not differ 

significantly between experimental groups in donor 7F3081 (Figure 4.17B), 

with the exception of HDM SPT exposure at 2h (p<0.05).  
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Figure 4. 16 Timecourse of TGF-β2 production by NHBEC donor 2F1578.  

ALI cultures were challenged by HDM SPT (2000U), LPS (100ng/ml) or scratch 

injury. Media was collected at 1, 4 and 24h for assay by ELISA shown as A. Active 

TGF-β2 and  B. Total TGF-β2 after heat-treatment of media (n=3 at each timepoint). 
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Figure 4. 17 Timecourse of TGF-β2 production by NHBEC donor 7F3081.  

ALI cultures were challenged by HDM SPT (2000U), LPS (100ng/ml) or scratch 

injury. Media was collected at 1, 4 and 24h for assay by ELISA shown as A. Active 

TGF-β2 and  B. Total TGF-β2 after heat-treatment of media (n=3 at each timepoint). 
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In all samples the majority of TGF-β2 was secreted by 1-2h, followed by a 

gradual accumulation. This may be due to the media change prior to challenge 

that removed any previously secreted soluble factors, inciting cells to replenish 

cytokine levels. Active TGF-β2 levels did not correlate well with total TGF-β2; 

the fluctuations in active TGF-β2 levels imply a complex and dynamic 

turnover in the presence of TGF-β responsive primary cells.  

 

Wide donor variability was apparent in this set of experiments. This was not 

unexpected, as donors are randomly acquired independent samples from the 

human population, and not a transformed cell line from a single source. They 

are a good model for respiratory research in this respect, as the irregularity in 

responses is indicative of responses amongst the wider population, but means 

that increased sample numbers are required to formulate an over-arching 

concept of normal cellular responses to challenge.  

 

The scope of donor variability was examined. Statistical analyses (one way 

ANOVA followed by Tukey test) were carried out between different donors for 

each challenge, with differences in active and total TGF-β2 levels shown in 

Figure 4.18A and 4.18B respectively. Scratch injured and LPS challenged 

samples showed statistically significant differences in active TGF-β2 levels 

between donors. Variation in control samples between donors is marked, and 

response to HDM extract also shows pronounced differences within and 

between donor samples. Active TGF-β levels were consistently variable across 

challenge types however, with total TGF-β2 appearing more regular. Total 

TGF-β2 levels (Figure 4.18B) were broadly consistent across the NHBEC 

donors. Only HDM extract challenge resulted in a statistically significant 

difference. The similarity in challenge response is especially surprising given 

the variation in control unstimulated cultures. This suggests that the 

injury/damage response is tightly regulated even in monotype culture with 

regard to LTGF-β2. Much greater variation was apparent in active TGF-β2 

levels. 

 

 

 



 Gaynor A. Campbell 

  113 

 

Figure 4.18 Comparison of TGF-β2 production 24h post-challenge in 3 

independent NHBEC donors. ALI cultures were challenged by HDM SPT 

(2000U) LPS (100ng/ml) or scratch injury. Media was collected at 24h for assay by 

ELISA shown as A. Active TGF-β2 and B. Total TGF-β2 after heat-treatment of media. 

Data were analysed by ANOVA followed by Tukey’s test (n=3, *p<0.05). 

 

 

 

 

 

 

 

 



 Gaynor A. Campbell 

  114 

 

4.4   Summary 

In this chapter, a house dust mite extract containing major allergens, used in 

skin prick testing (HDM SPT), and a preparation of lyophilised HDM spent 

culture matter (HDM FP) were shown to have detectable serine but not 

cysteine protease activity.  

 

HDM preparations did not directly activate native LTGF-β2 in a cell-free 

environment, although HDM FP partially degraded LTGF-β2 and TGF-β2 to a 

lesser extent than the archetypal cysteine protease papain.  

 

In the 16HBE14o- transformed cell line, HDM FP decreased both active and 

latent TGF-β2 levels, through proteolytic degradation of the cytokine and 

possibly other cell-mediated effects. HDM SPT decreased total TGF-β2 but 

had no significant effect on active cytokine levels. Plasmin and tryptase 

exposure increased total TGF-β2 levels, but the proportion of active cytokine 

was lowered by plasmin exposure. Scratch injury increased active and total 

TGF-β2 levels, in agreement with previously published work. 

 

Bronchial epithelial cells from healthy donors grown at ALI responded 

variably to HDM exposure and injury. Of 3 donors, one (2F1578) increased 

both active and total TGF-β2 levels following HDM SPT exposure.  

 

It was hypothesised that the proteolytic activity of HDM could activate latent 

TGF-β2 produced by human bronchial epithelial cells. From the results shown 

here, this was not apparent and so the hypothesis cannot be accepted.  

4.4 Discussion 

Allergen sensitisation is a contributing factor in up to 90% of asthmatic 

disease (Craig, 2010; Tovey et al., 1981). House dust mite (HDM) exposure is a 

known risk factor for the subsequent development of asthma (Platts-Mills et 

al., 1997; Sporik et al., 1992). Purified allergens from HDM have been used in 

some in-vitro studies to assess cellular responses to allergen challenge 
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(Kauffman et al., 2006; King et al., 1998), however an in-vivo study by Van 

der Veen et al. demonstrated that the asthmatic response was greater 

following exposure to a HDM extract than to purified Der p 1 or Der p 2 (Van 

Der Veen et al., 2001). This chapter aimed to identify whether HDM 

preparations could activate native latent TGF-β2 and whether HDM exposure 

led to increased expression of TGF-β2 by transformed and primary bronchial 

epithelial cells. TGF-β activation may be a multi-step proteolytic process, 

therefore this study utilised two HDM extracts containing a heterogenous mix 

of proteases. The HDM SPT extract is intended for clinical use in skin prick 

testing, and contains unspecified levels of major Dermatophagoides 

pterronysinus allergens. The HDM FP extract was derived from spent culture 

media of the Der p mite.  

 

The NBPVANA substrate had previously established protease activity of 

affinity-purified Der p 1 (Sehgal, 2005; Wan et al., 2000), and was cleaved 

here by the cysteine protease papain. However, cysteine protease activity was 

not detected in either HDM SPT or HDM FP using NBPVANA substrate. HDM 

SPT at 100,000U/ml contains around 9000ng/ml of total Der p protein 

(Rusznak et al., 2001), however specific levels of Der p 1 are unknown. The 

lack of cysteine protease activity could possibly be due to sensitivity of the 

assay in this case. HDM FP appeared to cleave both latent and active TGF-β2, 

and it is possible (although unlikely) that following solubilisation the protease 

mixture cleaved self proteins including Der p 1. Both preparations showed 

serine protease activity. HDM extracts can also contain collagenolytic (Der p 

9) and amylase-like (Der p 4) proteins, and may contain many more active 

substances (Thomas et al., 2002). The HDM preparations were not assayed for 

other protease classes. 

 

Latent TGF-β can be activated directly by proteolysis (Lyons et al., 1990; 

Oursler et al., 1993), although cell and/or matrix interactions may also be 

required (Abe et al., 1998; Sato et al., 1993). Nakamura et al. demonstrated 

activation of the small latent complex (SLC) of TGF-β1 in a cell-free system by 

the proteolytic action of purified Der f 1, an allergen from the North American 

Dermatophagoides farinae dust mite. Der p 1 and Der f 1 share 82% sequence 
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homology (Takai et al., 2005), so it may be supposed that Der p 1 has the 

potential to activate the SLC of TGF-β1. There are no similar studies of latent 

TGF-β2 activation.  

 

Results from TGF-β1 activation studies should not be directly extrapolated to 

TGF-β2. TGF-β1, -β2 & -β3 have 75% amino acid homology and share common 

receptors and signalling pathways. In contrast, their respective LAPs have 45-

50% amino acid homology, and can be further altered by glycosylation 

(Saharinen et al., 1999). LAP of TGF-β2 does not contain an RGD amino acid 

sequence and is therefore not thought to undergo integrin-mediated 

conformational or proteolytic activation. These differences may lead to 

differences in activation susceptibility, although the physicochemical 

activation profiles (via heat or acidification) of all three SLC isoforms are very 

similar (Brown et al., 1990). Activation by proteolysis is however more 

sensitive to sequence and structural differences that arise as these may affect 

enzyme recognition sites. Indeed, previous reports suggest that protease 

activation experimentally activates only 15-20% of the latent pool of TGF-β, 

but also degrades a proportion of the cytokine (Brown et al., 1990). 

Degradation of TGF-β2 by papain and HDM preparations was observed in 

cell-free and cell-associated experiments in this study. It should also be noted 

that no cell viability assays were carried out following protease exposure. It is 

therefore possible that decreases in TGF-β2 levels observed were due to 

decreased numbers of viable cells in the population. This could be ascertained 

through Annexin V staining of cultures, or trypan blue exclusion analysis of 

cell layers.  

 

The configuration of LTGF-β2 produced by bronchial structural cells is 

unknown. In the kidney, 5 different arrangements of latent TGF-β1 have been 

identified, and 3 in the prostate, due to secretion as either the SLC or large 

latent complex (LLC), and alternative splicing of LTBP proteins (Hyytiäinen et 

al., 2004). It would be of interest to determine the composition of latent TGF-

β2 complexes secreted by cells used in this study as these differences may be 
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important physiologically in determining the susceptibility of the latent 

cytokine to activation.  

 

The majority of cell types secrete TGF-β as a LLC, therefore removal of both 

LTBP and LAP to expose the receptor binding site of mature TGF-β2 is a 

requirement of activation. Cleavage of LTBP-1 in bone matrix secreted by 

osteoclasts has been identified through the proteolytic action of plasmin, 

elastase, MMP-2 and MMP-9 (Dallas, 2002). This freed the SLC for secondary 

steps of activation. Additionally, plasmin activation of TGF-β1 in the SLC was 

shown in a separate study to occur by proteolytic “nicking” of the latency-

associated peptide (LAP) (Lyons et al., 1988). Proteolytic processing of TGF-β 

from a latent to an active state can therefore occur via a multi-step process, 

and may involve multiple proteases.  

 

The serine protease tryptase is released by a a subset of mast cells upon 

degranulation. Tryptase-mediated activation of LTGF-β1 was previously 

shown by Tatler et al. in the presence of human airway smooth muscle cells 

(ASM), however total levels of TGF-β2 remained unchanged (Tatler et al., 

2008). In this study tryptase activated TGF-β2 in the presence of cells, and 

increased the total level of LTGF-β2 (Section 4.2.5). This discrepancy between 

results may be attributable to the use of a different cell type (ASM vs. 

transformed bronchial epithelial cells). Tryptase-mediated activation of cells 

provides a possible mechanism by which allergic asthmatics show increased 

epithelial TGF-β2 levels. 

 

Salib et al. investigated TGF-β production following HDM challenge (with a 

skin prick test formulation of HDM) of the nasal epithelial cell line RPMI 

2650, and found increased total TGF-β2. This is in contrast to the results from 

the transformed cell line 16HBE14o- reported here (Section 4.2.5). However, 

this may be due to differences arising from the use of transformed 

cells.Challenge with IL-4 or IL-13 did not alter TGF-β2 expression (Salib et al., 

2005). This is in contrast to data from primary HBEC challenge reported by 

Richter et al., whereby IL-4 and IL-13 exposure stimulated HBEC TGF-β2 
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release (Richter et al., 2001). This highlights the potential differences between 

transformed and primary cells, and  upper (nasal) and lower (bronchial) 

airway epithelial responses.  

 

The increase in active and total levels of TGF-β2, above that of physical injury, 

following HDM SPT challenge of a primary HBEC donor reported here is a 

novel finding. However, variability of primary cell responses means increased 

donor numbers are required for further investigations. 
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Chapter 5: TGF-β2 mediated remodelling responses of 

healthy and asthmatic bronchial fibroblasts 

 

5.1  Overview 

Chapter 3 demonstrated that mild asthmatic bronchial biopsy tissue had 

significant reticular basement membrane thickening and increased 

myofibroblast-like cells in the lamina propria. Chapter 4 established possible 

bronchial epithelial cell modulation of TGF-β2 secretion and activation linked 

to environmental challenge. Other authors have shown increased TGF-β2 in 

asthmatic tissue, both at baseline and following allergen challenge (Balzar et 

al., 2005a; Batra et al., 2004; Chu et al., 2004).  

 

It has been suggested that fibroblastic cells derived from asthmatic donors 

may show alterations at the level of morphology and baseline proliferation 

(Westergren-Thorsson et al., 2010). Increased collagen production has been 

identified in asthmatic lung, and linked with TGF-β1 expression and 

eosinophil infiltration (known secretors of TGF-β2 in the lung) (Nomura et al., 

2002). Previous publications by other groups using asthmatic fibroblasts 

demonstrated significant phenotypic changes using 500pg/ml TGF-β2 

(Thompson et al., 2006; Wicks et al., 2006). 

 

5.2   Aims & hypothesis 

This chapter addresses the  hypothesis that bronchial fibroblasts derived from 

mildly asthmatic donors are more sensitive to the pro-remodelling effects of 

TGF-β2 in comparison to healthy donor cells.  

The hypothesis will be tested through the following aims: 

1. Investigate alterations in ECM production following TGF-β2 exposure 

through pro-collagen Iα1 and pro-collagen III mRNA expression 

changes, and acid-soluble collagen protein measurements.  
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2. Evaluate myofibroblast differentiation by measurement of α-SMA 

expression levels.  

3. Evaluate non-contact communication from bronchial epithelial cells to 

underlying fibroblasts, by challenge of NHLF with HBEC conditioned 

media. ECM production and α-SMA changes will be monitored 

following challenge.  

 



5.3   Results 

5.3.1  Morphology and proliferation of primary bronchial 

fibroblasts from healthy and asthmatic donors 

The cells used in this study between passages 4-8 were grossly examined for 

alterations in appearance between healthy and asthmatic cells (Figure 5.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Primary healthy and asthmatic fibroblasts are morphologically 

indistinguishable in culture. Representative photomicrographs of healthy (A & 

C) and asthmatic (B & D)  fibroblasts. All donor cells showed the archetypal spindle 

shape of fibroblasts in culture. Positive staining (in green) for vimentin  (C & D, at 

x40 original magnification) confirmed a mesenchymal phenotype; nuclei are shown 

in blue (DAPI) (Scalebar = 50µm).  
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Gross examination of ongoing cultures did not reveal differences in cell 

phentoype. Mesenchymal cell type was confirmed by positive vimentin 

immunostaining.  There is no archetypal fibroblast protein marker, so instead 

cells were confirmed negative for desmin protein (smooth muscle marker), 

von Willebrand factor (endothelial marker) and cytokeratin (epithelial 

marker)(results not shown). Both healthy and asthmatic cells displayed the 

same marker expression profile. 

 

Initial assessment of fibroblast proliferation was carried out following 48h in 

culture with and without TGF-β2 (Figure 5.2). A preliminary experiment using 

1, 5 and 10ng/ml TGF-β2 showed the lower limit of 1ng/ml TGF-β2 was 

sufficient to increase collagen protein production. Previous publications by 

other groups using asthmatic fibroblasts demonstrated significant phenotypic 

changes using 500pg/ml TGF-β2 (Thompson et al., 2006; Wicks et al., 2006). 

In addition, NHBEC were shown to secrete up to 600pg/ml total TGF-β2 in 

the previous chapter (Section 4.2.6). For all fibroblast stimulations it was 

decided to use 1ng/ml as standard. 

 

Assessment of proliferation rate was carried out 48h after seeding in 12 well 

plates, with and without TGF-β2. Results are shown as proliferation rate 

(Figure 5.2). Baseline fibroblast proliferation did not differ between healthy 

and asthmatic donor cells used in this study. TGF-β2 exposure led to a 

decrease in proliferation, more apparent in healthy samples tested.  

 

Donor cells used in this study showed no significant increases in cell 

morphology, baseline proliferation or proliferative response to TGF-β2.  
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Figure 5.2 Fibroblast proliferation in-vitro following TGF-β2 stimulation 

No significant difference in proliferation was observed following 1ng/ml TGF-β2 

exposure for 48h, or between healthy and asthmatic cell basal or TGF-β2 stimulated 

rates. (2 subjects/group; n=6 for each subject). Data is expressed as % fibroblast 

proliferation (cell no. at 48h/(initial seeding cell no./100). 
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5.3.2  Timecourse gene expression analyses  

Quantitative PCR (q-PCR) was used to determine the expression of COLIα1 

(pro-collagen Iα1), α-SMA and TGF-β2 in healthy NHLF over time. The 

expression pattern of these genes thought to be upregulated in asthma and 

following TGF-β2 stimulation. mRNA was extracted at timepoints between 0 

and 72h. Cells were between 70-80% confluency at 0h to avoid contact 

inhibition affecting mRNA transcription. Gene expression results were 

normalised to GAPDH and ATP5B, and shown as a fold change from baseline 

expression at timepoint 0h (Figure 5.4). Results were analysed by one-way 

ANOVA, followed by Dunnett’s post-hoc test comparing values to that of the 

time zero control. 
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Figure 5.3 Timecourse of mRNA expression levels in NHLF following 

TGF-β2 stimulation. Fibroblast cultures were stimulated with 1ng/ml TGF-β2, 

mRNA harvested and reverse transcribed, then q-PCR analysis of A. COLIα1, B. α-

SMA and C. TGF-β2 performed. Values were normalised to GAPDH and ATP5B,  and 

are shown as a fold change from time zero, +/- SEM. n=5 independent samples at 

each timepoint. Data analysis showed no statistical significance. 
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Expression of COLIα1 was variable over the timecourse, showing greatest 

increases at 24h and 48h after stimulation. At 72h following stimulation 

cultures had become quiescent and did not yield sufficient RNA for analysis. 

Up to 48h, fold change increases in COLIα1 expression were consistently 

observed, but did not show statistical significance were statistically 

insignificant due to wide variation within each timepoint.  

 

α-smooth muscle actin mRNA expression was nominally greatest 6h following 

stimulation, however variation within the sample group meant it was not 

significant. At 24h, there was a consistent trend towards increased α-SMA 

expression, that fell to below baseline levels by 48h. TGF-β2 expression was 

marginally increased over the timecourse, but again showed wide within-

timepoint variability, and was not statistically significant.  

 

In the healthy bronchial fibroblasts used results were not statistically 

significant, however increases in expression were observed at 24h for the three 

genes analysed. Pro-collagen Iα1 showed greatest increases following TGF-β2 

exposure. This timepoint was used in all further q-PCR analyses.  

 

5.3.3 Comparison of collagen production by healthy and asthmatic 

bronchial fibroblasts in culture  

The previous section established that 24h was an optimal timepoint for mRNA 

analyses using commercially obtained healthy fibroblasts. In the following set 

of experiments, fibroblasts isolated from 1 healthy and 2 mildly asthmatic 

donors were challenged with TGF-β2 at 1ng/ml. Cultures were harvested at 

24h, mRNA extracted and reverse transcribed, and q-PCR performed (Figure 

5.5). Only one healthy donor sample was available for qPCR analysis due to 

limited sample availability.  
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Figure 5.4 mRNA expression levels of COLIα1 (A) and COLIII (B) in 

healthy and asthmatic fibroblasts at 24h post TGF-β2 stimulation. mRNA 

was harvested 24h after challenge with 1ng/ml TGF-β2. mRNA levels are expressed 

relative to GAPDH and ATP5B, and as a fold change from time-matched unstimulated 

controls. ** p=<0.01. N=3 for each subject.  
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Pro-collagen Iα1 expression was increased in all samples following 24h TGF-

β2 exposure. There was a significant increase in COLIα1  between asthmatic 

sample 2 and healthy, and between asthmatic sample 2 and asthmatic sample 

1. Greatest increases from time matched controls were observed in healthy 

fibroblasts. Results here suggest that the 2 asthmatic fibroblast samples  

assessed did not have an increased TGF-β2 initiated collagen response 

compared with healthy fibroblasts. 

 

The mRNA levels indicate up- or downregulation of the gene, but not the 

successful secretion of the protein. Determination of collagen protein 

production in-vitro in this study was by SircolTM assay. This contains Sirius 

red dye that binds to the Gly-X-Y helical structure of mammalian collagen 

fibrils types I-V. It does not detect mature fibrils of covalently cross-linked 

collagen without prior acid-pepsin digestion, and so measured only newly 

synthesised collagen. To gauge complete collagen production, both soluble 

secreted levels in conditioned media and cell layer-associated collagen were 

measured in 2 healthy and 2 asthmatic-derived fibroblast donors. The results 

were normalised to cell number (Figure 5.6). 

 

Results illustrate increased total (media + cell layer) collagen protein 

production within each donor cell set. Figure 5.6A shows a significant 

response (p<0.001) to TGF-β2 stimulation by a healthy donor, whilst the 

healthy donor 2 in Figure 5.6B did not reach statistical significance. Both 

asthmatic donor samples 1 and 2 significantly increased collagen production 

when exposed to TGF-β2 (p<0.05). To assess whether these changes were 

significantly different between groups, collagen protein levels were converted 

to percentage increases (Figure 5.7). 
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Figure 5.5 Analysis of total collagen secretion at 48h in healthy and 

asthmatic fibroblasts, with and without  TGF-β2 stimulation.  

Total collagen produced by healthy (A & B) and asthmatic (C & D) fibroblasts, 48h 

following TGF-β2 stimulation, in the presence of L-proline and ascorbic acid. 

Collagen production is shown normalised to cell number. Within donor data 

(stimulated vs. unstimulated) were analysed by t-test. *p<0.05, n=5 for each donor 

and condition.  
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Figure 5.6 Percentage collagen production increase following  TGF-β2 

stimulation. Results were analysed by ANOVA followed by Dunnett’s test.  
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Collagen protein production was variable both within and between donors. 

Healthy donor 1 showed a significant increase (p<0.05) in % collagen 

production compared with healthy donor 2 and asthmatic donor 1 fibroblasts.  

 

In the preceding results, no difference was attributable to the asthmatic status 

of cells. It was shown that primary cell responses are highly variable, and no  

distinction can be made between mildly asthmatic and healthy fibroblast 

collagen production. This is in agreement with previously published studies 

(Dubé et al., 1998). 

 

5.3.4 Comparison of myofibroblast differentiation in healthy and 

asthmatic bronchial fibroblasts in culture 

Differentiation of the bronchial fibroblast to a more secretory, smooth muscle-

like cell type – the myofibroblast, may be an important facilitator of AWR 

phenomena.  Conventionally this differentiation is identified by the expression 

of α-smooth muscle actin (Darby et al., 1990), and may be increased in allergic 

asthma (Gizycki et al., 1997). TGF-β2 stimulated  and control fibroblasts were 

harvested for mRNA and protein, and α-smooth muscle actin expression and 

production analysed.  

 

Asthmatic donor samples (n=2) showed a significant increase in α-SMA 

mRNA compared to healthy fibroblasts at 24h. Similar results were reported 

by Wicks et al., who also showed asthmatic fibroblasts responded with smooth 

muscle transcript increase at a ten-fold lower concentration of TGF-β2 than 

healthy (Wicks et al., 2006).  
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Figure 5.7 Expression level of  α-SMA mRNA in healthy and asthmatic 

fibroblasts 24h following TGF-β2 stimulation.  mRNA levels are expressed 

relative to GAPDH and ATP5B, and as a fold change from time-matched controls +/- 

SEM. *p<0.05, **p<001, n=3 for each subject. ANOVA followed by Tukey’s. 

 

For protein analysis, initially 24h, 48h and 72h timepoints were assayed and 

48h chosen as most representative timepoint. One healthy and one asthmatic 

donor were available for assay due to limited sample availability. TGF-β2 

challenge experiments were repeated three times in each set of donor 

fibroblasts.  

 

Fibroblast cultures were harvested at 48h in RIPA buffer, cell lysates 

seperated on 4-12% gradient SDS-PAGE gels and blotted onto nitrocellulose 

membrane. Membranes were probed for α-SMA protein. To ensure equal 

loading of gels and to normalise α-SMA band densities, membranes were 

stripped and re-probed for vimentin. Results from healthy donor fibroblasts 

are shown in Figure 5.9. α-SMA protein levels did not differ significantly from 

control at 48h. TGF-β2 challenge was repeated on one set of asthmatic donor 

fibroblasts (Figure 5.10). 
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    A. 

B.  

 

 

       1     2        3      1       2       3  

Control       + TGF-β2 

 

Figure 5.8 Healthy fibroblast α-SMA protein expression. 

Relative optical density of western blotted α-SMA protein bands were measured on ?? 

(A). A representative scanned image of α-SMA is shown in (B). α-SMA was 

normalised to vimentin expression. No significant difference was found (n=3). 
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   A. 

B.  

 

      C. 

 

           1   2       3        1       2       3  

         Control                + TGF-β2 

 

Figure 5.9 Asthmatic fibroblast α-SMA protein expression.  

Band densitometry (A)  shows significant increase in α-SMA protein (+/- SEM, 

analysed by t-test, p<0.001). Representative α-SMA protein bands shown in (B) were 

measured and normalised to vimentin levels (C) (n=3). 

 

As seen in Figure 5.10B, α-SMA was consistently increased following TGF-β2 

stimulation in asthmatic fibroblasts from one donor. This is consistent with 

qPCR results shown in Figure 5.8. Baseline protein expression did not differ 

between healthy and asthmatic donors.  A conclusion cannot be drawn from 
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these results as to whether asthmatic cells are intrinsically more sensitive to 

TGF-β2, due to insufficient donor sample number. Results do confirm 

however, the variability inherent in primary cell responses.   

 

5.3.5   Healthy bronchial fibroblast remodelling responses 

modulated by HBEC soluble secreted factors 

As the barrier between underlying lung tissue and the environment, bronchial 

epithelial cells are thought to respond to environmental challenge with a 

cascade of  actions that could affect many underlying cells including bronchial 

fibroblasts. In Chapter 4 Section 4.2.6 it was shown that TGF-β2 secretion can 

be modulated in HBEC in reponse to environmental challenge. The following 

section addresses the hypothesis that healthy bronchial fibroblasts would 

show increased remodelling responses (collagen production and myofibroblast 

differentiation) when exposed to soluble secreted factors present in bronchial 

epithelial cell conditoned media. It was also posited that exposure to 

conditioned media derived from asthmatic bronchial epithelial cells would 

generate a greater response.  

 

5.3.5.1  HBEC conditioned media effects on ECM production by 

healthy fibroblasts 

Bronchial epithelial cell conditioned media was prepared by collecting from 

healthy and asthmatic HBEC cultures between d7-21 of ALI culture. Media 

from single donors was pooled and frozen at -20°C until use. Control 

fibroblast cultures were exposed to fresh BEDM, and challenged cultures 

received half fresh BEDM, half HBEC conditioned BEDM. Only healthy 

fibroblasts were challenged in these experiments.  
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Figure 5.10 mRNA expression levels of COLIα1 in healthy fibroblasts at 

24h. Cultures were exposed to BEDM (control) or 50% healthy bronchial epithelial 

cell conditioned media (HCM). mRNA levels are expressed relative to the geometric 

mean of GAPDH and ATP5B. No significant difference was found (n=2). 

 

 

Figure 5.11 Total collagen secretion by healthy fibroblasts following 

conditioned medium exposure. Healthy (HCM) and asthmatic (ACM) HBEC CM 

exposed fibroblast cultures were analysed by Sircol assay at 48h.Results are shown 

normalised to cell number. Results were analysed by ANOVA followed by Dunnett’s 

post-hoc test. (*p<0.05, **p<0.01, n=5). 
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No difference was observed in pro-collagen Iα1 mRNA expression in healthy 

fibroblasts following healthy BEC conditioned media exposure (Figure 5.11). 

Insufficient asthmatic conditioned media was available at the time of the 

experiments, and so was not included.  Exposure to HBEC CM significantly 

increased healthy fibroblast collagen protein production compared with 

control BEDM alone (Figure 5.12). Asthmatic-derived CM exposure had an 

even greater effect than healthy CM.  

 

Asthmatic CM was  assayed by ELISA at 1036pg/ml total TGF-β2, and 

34.3pg/ml active TGF-β2, in comparison to healthy CM that had 1191pg/ml 

total TGF-β2 and 16.3pg/ml active. As the active (and therefore available) 

TGF-β2 levels are so low, it is highly likely that other secreted factors are 

affecting collagen production.  

 

5.3.5.2  HBEC conditioned media effects on myofibroblast 

differentiation by healthy bronchial fibroblasts 

α-SMA protein expression was assessed as an indicator of myofibroblast 

differentiation following conditioned media exposure. HBEC CM exposure 

significantly increased healthy fibroblast α-SMA production compared with 

control media (Figure 5.10). As with collagen protein production, asthmatic-

derived CM exposure had an even greater effect than healthy CM. 

 

Results suggest that in the asthmatic CM used, there is either an increase in 

one factor that can drive collagen production and myofibroblast 

differentiation, or that a combination of soluble factor alterations are having a 

direct effect on fibroblast phenotype and function, that could then contribute 

to AWR. 
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Figure 5.12 Healthy fibroblast α-SMA protein expression following 48h 

conditioned media exposure. Healthy (HCM) and asthmatic (ACM) HBEC CM 

exposed fibroblast cell lysates were western blotted. Band densitometry showed 

variable yet significant (p<0.01)  increases in α-SMA protein expression. Results were 

analysed by ANOVA followed by Dunnett’s test (n=3). 

 

5.3  Summary 

Fibroblasts isolated from healthy and asthmatic donors appeared 

phenotypically similar. All donor cells responded to TGF-β2 stimulation. 

 

Collagen mRNA and protein levels varied between donors. TGF-β2 stimulation 

resulted in increased expression and protein production, but this did not differ 

significantly between healthy and asthmatic donor fibroblasts. A significant 

increase in α-SMA mRNA was observed following TGF-β2 stimulation in both 

healthy and asthmatic donor cells. Asthmatic cells showed a statistically 

greater increase than healthy cells, and this was also shown at the α-SMA 

protein level.   

 

Conditioned media derived from asthmatic HBEC had a greater effect upon 

collagen production and α-SMA by NHLF than healthy HBEC CM, and was 

not attributable solely to TGF-β2 levels. 
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The aims of this chapter were conceived to test the hypothesis that bronchial 

fibroblasts derived from mildly asthmatic donors are more sensitive to the 

pro-remodelling effects of TGF-β2 in comparison to healthy donor cells. 

Experimental results showed α-SMA expression was increased in asthmatic-

derived fibroblasts to a greater degree than in healthy fibroblasts. In the 

limited sample sizes used, the hypothesis may be partially accepted; asthmatic 

fibroblasts were more susceptible to the pro-myofibroblast differentiation 

effect of TGF-β2, but not to the pro-secretory effects.  

 

5.4  Discussion 

There is a wealth of published literature that attempts to identify intrinsic 

differences in asthmatic structural cells, often employing in-vitro studies. 

There appears no consensus as to whether mildly asthmatic fibroblasts are 

morphologically distinct from their healthy counterparts. Kotaru et al. 

assessed fibroblasts from bronchial and distal regions of asthmatic lung, and 

asserted that increased cytoplasmic projections on bronchial fibroblasts was 

indicative of a resident secretory cell type, rather than a more spindle-shaped 

proliferative phenotype (Kotaru, 2006). This study did not compare asthmatic 

derived cells with healthy controls however. Nihlberg et al. used this method 

to compare healthy and mildly asthmatic cells in the same manner, finding 

that asthmatic bronchial fibroblasts had significantly (1.4x, p<0.001) more 

extensions than healthy. This was taken by the authors to indicate an ECM 

secretory phenotype (Nihlberg et al., 2010). This method was not used in this 

study as it relatively untried.  

 

The Nihlberg study above described baseline proliferation as 24% lower in 

mildly  asthmatic fibroblasts, which disagrees with the finding shown in Figure 

5.2. Other studies have found increased proliferative rates in asthma, although 

their results are taken following stimulation with the Th2 cytokines IL-4 and 

Il-13 (Kraft et al., 2001). However, the results presented here, finding no 

significant difference between healthy and asthmatic cells, are in agreement 

with other authors (Ward et al., 2008). These contrasting results may be due 

to differences in cell passage number, or confluence prior to seeding making 
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cells more quiescent and therefore increasing time taken to enter the cell 

growth cycle. Additionally, these reports use different methods to calculate 

proliferation, including MTT assay, crystal violet absorbance and cell counts.  

 

Validation of the stability of expression of housekeeping genes is an important  

pre-requisite of q-PCR studies as results may otherwise be misleading. The 

geNormTM analysis shown in Figure 5.3 was undertaken following  publication 

of an increase in expression of commonly used housekeeping genes in 

bronchial fibroblasts exposed to TGF-β2 (Wicks et al., 2006). Furthermore, 

the authors reported a 10-fold lower threshold of smooth muscle-related gene 

transcript activation in asthmatic fibroblasts, a result which broadly in 

agreement with the finding of this study that asthmatic cells were more 

predisposed to increase α-SMA protein production upon TGF-β2 stimulation.  

 

Increased collagen production in asthmatic lung was previously demonstrated 

by measurement of collagen peptides in induced sputum of asthmatics 

(Nomura et al., 2002). Other studies have used analysis of amino acid 

hydroxyproline levels by HPLC to determine collagen deposition in-vivo and 

in-vitro (Marshall et al., 2004), however the SircolTM assay is now a well-

validated and reproducible method of collagen measurement. Dube et al. 

compared baseline pro-collagen I and III production by healthy and asthmatic 

bronchial fibroblasts, and reported no difference between diseased and control 

cells. The authors did not assess collagen production following TGF-β isoform 

stimulation (Dubé et al., 1998). A study using fibroblasts isolated from lung 

resection tissue did not find a significant increase in collagen I or collagen III 

mRNA or protein following TGF-β2 or TGF-β1 stimulation (Batra et al., 2004). 

This could be attributable to fibroblast source, as cells were isolated from lung 

parenchyma and not bronchial tissue. Contrastingly, Malavia et al. reported 

TGF-β2 derived from HBECs stimulated soluble collagen production by NHLF 

as measured by SircolTM , a finding repeated in this study (Malavia et al., 

2008).  Alteration in MMP:TIMP levels is another mechanism by which 

collagen homeostasis may be altered in the asthmatic lung (Cataldo et al., 

2004), and it was reported that asthmatic bronchial fibroblasts in culture 

exhibited a decreased capacity to degrade collagen, through decreased 



 Gaynor A. Campbell 

  141 

production of MMP-2, than healthy control fibroblasts (Laliberté et al., 2001). 

Subepithelial collagen deposition is a feature of AWR thought attributable to 

increased numbers of myofibroblasts in the lamina propria (Zhang et al., 

1994). 

 

During myofibroblast differentiation cells generate an intra-cellular 

contractile apparatus containing microfilaments of α-SMA, and other smooth 

muscle related proteins. In a study comparing asthmatic and healthy bronchial 

fibroblast responses to TGF-β2, Wicks et al. showed increased α-SMA mRNA 

and protein expression in both cell types. Asthmatic cell α-SMA expression 

was not significantly greater than healthy, however expression of the smooth 

muscle related protein calponin 1 was higher in asthmatic fibroblasts. This 

work also showed asthmatic fibroblasts to be maximally responsive to TGF-β2 

at a 10-fold lesser concentration than healthy fibroblasts (500pg/ml vs. 

5ng/ml) (Wicks et al., 2006).  Similar α-SMA expression results with a single 

(1ng/ml) concentration of TGF-β2 were reported here, and subsequently it 

may be of interest to challenge healthy and asthmatic fibroblasts with a range 

of TGF-β2 concentrations for a more informative comparison of TGF-β2 

responsiveness.  

  

Bronchial epithelial cells have been shown to secrete increased amounts of 

TGF-β2 following injury, and TGF-β2 is increased in asthmatic tissue and BAL 

fluid (Balzar et al., 2005a; Thompson et al., 2006; Zhang et al., 1999). 

Exposure of fibroblasts to bronchial epithelial cells or conditioned medium 

has been used to investigate cellular responses, and here produced increases in 

collagen production and α-SMA expression that were greater than TGF-β2 

levels alone could account for. These results suggest that in the HBEC CM 

used, there is altered secretion of a soluble factor or factors that drive collagen 

production and myofibroblast differentiation, and so subsequently contribute 

to AWR. These alterations appear more pronounced in cells challenged with 

asthmatic HBEC CM than healthy HBEC CM. Identification of this activity 

could begin by fractionation of conditioned media by molecular weight prior to 
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fibroblast challenge to establish those weight fractions that produce the 

greatest increases in the chosen remodelling markers. 

 

Previous work by other groups has identified a number of soluble secreted 

factors from HBECs that affected bronchial fibroblast remodelling responses. 

Hastie et al. reported that asthmatic epithelial cell CM stimulated collagen III 

production, but not collagen I by fibroblasts (Hastie et al., 2002). In this 

Chapter, it was reported that the ColIII gene was lowly expressed and highly 

variable. Individual collagen subtypes were not assayed, instead the SircolTM 

assay used measured soluble collagens I-V, and so any increase in collagen III 

will be represented in the results given. A co-culture model of fibroblasts cast 

in type I collagen gels floating above a submerged monolayer of HBECs 

identified TGF-β2 production by HBECs as the causative factor leading to 

increased gel contraction. Similar results were reported with HBEC CM alone. 

Of note, contraction was further increased when HBEC cells were exposed to 

LPS (Mio et al., 1998). TLR-4 activation via LPS and Der p 2 is seen following 

HDM stimulation of cells. In Chapter 4, Section 4.2.6, it was shown that LPS 

exposure increased active TGF-β2 significantly in one of two primary HBEC 

donors challenged. Additionally, connective tissue growth factor (CTGF), a 

known downstream effector of TGF-β, could have been secreted by HBECs 

following autocrine TGF-β signalling and thereby increased fibroblast collagen 

production as seen (Nishioka et al., 2011).  

 

Several studies report HBEC control of fibroblast proliferative responses. Xu 

et al. reported that MMP-2 was secreted by HBECs and induced bronchial 

fibroblast proliferation (Xu et al., 2002), whilst McAnulty et al. identified 

modulation by bronchial epithelial prostaglandin E2 (PGE2) production . 

Furthermore, proliferation was increased in a study by Matsushima et al. 

showing human airway trypsin-like protease (HAT) produced by HBECs 

activated PAR-2 on bronchial fibroblasts (Matsushima et al., 2006). Following 

injury of 16HBE14o- cells, increased levels of TGF-β2, basic Fibroblast Growth 

Factor (b-FGF), platelet-derived growth factor (PDGF) and endothelin-1 levels 

were assayed in culture supernatants (Zhang et al., 1999). Exposure of 

fibroblasts to this CM increased proliferation significantly, and blocking these 
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growth factors inhibited fibroblast proliferation by 76%. Remodelling markers 

were not assessed however. 

 

Finally, of relevance to the in-vitro culture system used TβR expression can be 

affected in-vitro by cell density, with a low cell density maintaining high 

receptor levels and an enhanced response to TGF-β stimulation in comparison 

to high cell density cultures (Petridou et al., 2000; Raghu et al., 1989). 

Although cultures were time-matched, it is possible that small differences in 

confluency could have affcted the capacity of cells to respond to TGF-β2. 

Additionally, assessing cells in-vitro separate from the inflammatory context 

of the asthmatic airway could affect TGF-β responsiveness, suggested by the 

finding that GM-CSF stimulation increased expression of TGF-β receptors 

TβRI, TβRII and TβRIII on airway smooth muscle cells (Chen et al., 2003). 

 

Assessment of fibroblast responses made in complete isolation can provide 

insight into remodelling mechanisms, however the conditioned media 

challenge results confirm that crosstalk via soluble mediators between cell 

types is important in mediating cellular behaviour. Furthermore, fibroblasts 

can influence epithelial cell behaviour, shown by fibroblast CM challenge of 

bovine bronchial epithelial cells causing a proliferative response, attributed to 

fibroblast production of hepatocyte growth factor (Skibinski et al., 2007). 

Evidence presented here and from accumulated published data suggests a role 

for TGF-β2 produced by HBEC in driving the responses of underlying 

fibroblasts, although other mediators act alongside the cytokine to produce the 

sub-epithelial fibrosis of airway wall remodelling.  

 

5.5  Future Work 

The work presented in this thesis aimed to test whether alterations in active 

TGF-β2 levels contribute to airway wall remodelling in the asthmatic lung. 

Some progress was made towards this, however several points remain upon 

which this hypothesis may be further tested.  
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Improvements to the assessement of TGF-β2 protein expression in biopsy 

tissue could be made through use of a fluorescently labelled secondary 

antibody.   Subsequent measurement of fluorescent counts in a defined area of 

tissue rather than the more subjective scoring method employed in this study 

could yield more confident grading of TGF-β2 expression. Additionally, TGF-β 

activity (rather than protein) could be enumerated by intracellular staining of 

the downstream signalling protein, phospho-Smad 2.  

 

In TGF-β activation studies, phospho-Smad2 levels could be analysed by 

western blot of cell lysates, indicating whether TGF-β2 was activated and 

signalled within a short time frame not observable via ELISA of conditioned 

media. The HDM FP preparation could be fractionated into serine and 

cysteine proteinase fractions according to the protocol of Winton et al. 

(Winton et al., 1998), and used individually in cell challenges. 

 

This study examined tissue and cellular responses from mild, steriod naïve 

atopic asthmatics vs. non-atopic healthy controls. Inclding new sample groups 

of non-atopic asthmatics and atopic healthy controls could provide 

information about basal TGF-β2 regulation in an atopy as well as allergy. Most 

importantly, the study could be extended to include to include cells and tissue 

from moderate/severe asthmatics. Phenotypic differences between healthy 

and severely diseased cells are potentially larger, and therefore more easily 

identifiable. This could be of use in future experiments seeking to modulate 

the TGF-β2 response.  
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Appendix A 

Preparation of solutions and protocols for histology (all adapted from “Theory 
and Practice of Histological Techniques, Bancroft & Stevens, 1990). 
 
D.1 Haematoxylin and Eosin stain 
The basic dye haematoxylin stains acidic structures a purple-blue. Nuclei, 
ribosomes and rough endoplasmic reticulum have a strong affinity for this dye 
due to high content of DNA and RNA respectively. Eosin is an acidic dye which 
stains basic structures pink to pink-red. 
 
Harris’ Haematoxylin 
Haematoxylin monohydrate   5g 
Aluminium potassium sulphate 12 hydrate 85g 
100% alcohol (IMS)     50ml 
Glacial acetic acid     40ml 
Sodium iodate     1g 
dH2O       900ml 
 
Eosin 
Eosin y      5g 
dH2O       500ml 
 
Protocol 
1. Filtered Harris’ haematoxylin   4 minutes 
2. Running water to “blue”    5 minutes 
3. Eosin      30 seconds 
4. Brief rinse in water 
5. Dehydrate through increasing concentrations of alcohol, to xylene ready for 
mounting. 
 
D.2 Masson’s Trichrome  
Nuclei and other basophilic structures are stained blue, collagen green and 
cytoplasm and erythrocytes red.  
 
Weak picric acid (1% picric acid in 70% alcohol) 
Picric acid      6g 
100% alcohol (IMS)     350ml 
dH2O       150ml 
 
Biebrich scarlet (0.1%) 
Biebrich scarlet     0.5g 
Glacial acetic acid     5ml 
dH2O       500ml 
 
2.5% phosphomolybdic acid (PMA)/ 2.5% phosphotungstic acid 
(PTA) 
Phosphomolybdic acid    12.5g 
Phosphotungstic acid    12.5g 
dH2O       500ml 
Acids seperately dissolved in 250ml dH2O, then two solutions combined.  
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Fast green (2.5% fast green in 2.5% acetic acid) 
Fast green      12.5g 
Glacial acetic acid     12.5ml 
dH2O       487.5ml 
 
1. Harris’ haematoxylin    4 minutes 
2. Running water to “blue”    5 minutes 
3. 1% Picric acid     30 seconds 
4. Running water until faint yellow tint remains 
5. 0.1% Biebrich scarlet    1 minute 
6. Brief rinse in water 
7. 50% PMA/PTA     10minutes 
8. Fast green      6 minutes 
9. Dehydrate through increasing alcohols, to xylene ready for mounting.  
 
D.3 Periodic acid-Schiff’s (PAS) 
Stains glycogen and other reactive carbohydrates magenta, and nuclei blue.  
All stocks are bought from Sigma Aldrich, Dorset at ready to use 
concentrations. 
 
1. 1% periodic acid     10 minutes 
2. Rinse in running water    2 minutes 
3. Schiff’s reagent     10 minutes  
4. Rinse in running water    5 minutes 
5. Harris’ haematoxylin    2 minutes 
6. Dehydrate through increasing alcohols, to xylene ready for mounting.  
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