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Abstract

Foreign exchange carry trades involve buying high yielding currencies while selling low
yielding currencies. Contrary to the implications of the uncovered interest parity con-
dition, carry trades have generated consistent profits in the past decades. As foreign
exchange has gained increased relevance as an asset class in its own, the carry trade
emerged as a major driver of foreign exchange market turnover. Given the widespread
use and ease of implementation of carry strategies, active currency managers should
be evaluated relative to a benchmark which incorporates a proxy for carry trade returns.

Within this thesis we study the profitability of various carry portfolio strategies on
a very recent data set ranging from the 1st of January 1999 to the 5th of March 2010.
Within three distinct empirical chapters we analyse whether different asset allocation,
market-timing and money management methodologies have the potential to improve
the performance of a simple carry portfolio, such as the one implemented by the Cur-

rency Harvest exchange traded fund by Deutsche Bank.

Three main findings emerge from our investigation on carry trade portfolios.
First, we find that a simple carry trade proxy is difficult to outperform with asset

allocation and market-timing techniques. Nevertheless, we would not conclude that
professional currency managers should cease to implement carry strategies, since they
can add value to the investment process by successfully addressing the issue of optimal
leveraging for carry trades.

Second, we find that the portfolio flows of carry traders do uncover pockets of
predictability in the FX market. Strategies which aim at front-running the trades of
carry strategies, do generate positive returns with low correlations to traditional carry
trade strategies and therefore offer good diversification vehicles for carry portfolios.

Lastly, we find that while profitable market-timing seems feasible on historical back-
tests, the results are strongly dependent on the correctly timing the credit crisis. Thus,
we note that our results are affected by a lookback bias. We posit that before the
credit crisis, portfolio managers would not have had the foresight to select the correct
market-timing indicators. We thus advocate a broad diversification of risk indicators
for carry trade timing.

xiv



Chapter 1

Introduction

The foreign exchange (FX) market runs 24 hours a day and with a daily turnover

in excess of USD 3trn it constitutes the largest financial market in the world

(see Borio et al. [2007]). The main financial instruments for trading currencies

are swaps, spot transactions, forwards and options. Currencies are traded in an

interbank exchange system by market making currency traders. The main par-

ticipants in the FX market are central banks, commercial banks, institutional

investors, traders, hedge funds, commercial companies and retail investors. The

objectives pursued by these participants in the FX market range from pure profit

generation (hegde funds, financial institutions) to hedging cash flows from busi-

ness core activities (corporations) to implementing macroeconomic and monetary

policy objectives (central banks).

According to Borio et al. [2007], the foreign exchange transaction volume more

than doubled between April 2004 and April 2007. This increase of trading activity

is attributed mainly to the growing importance of FX as an asset class. Pojarliev

and Levich [2008] found that the bulk of managed FX returns can be explained

by the returns to the four FX investment-styles carry, momentum, valuation and

volatility. Since these investment-styles can be implemented systematically or

even through the purchase of special exchange traded funds (ETFs), the genera-

tion of returns associated to these known factors does not require any particular

skill. Pojarliev and Levich [2008] concluded that the returns inherent to these

trading-styles should replace the riskless interest rate as the benchmark for pro-

fessional FX managers, since simple replication of these popular return factors

should not entitle to an extraordinary remuneration.

Within this thesis we will focus on the FX carry investment-style, which -

1



given its profitability over the past two decades, the thorough media coverage and

the rising amount of academic publications - arguably denotes the most popular

strategy for trading currencies. An FX carry trade involves buying a high yielding

currency while selling a low yielding currency. The uncovered interest parity

condition (UIP) states that exchange rate fluctuations should offset the interest

rate differential earned on a cross currency position. Thus, the profitability of FX

carry trades has been facilitated by the empirical failure of the uncovered interest

rate parity condition.

Within our empirical research we will investigate on how different asset allo-

cation, market-timing and money management methodologies affect the perfor-

mance of currency portfolios implementing the carry investment-style. Thereby,

we explore whether a simple proxy for carry trade returns can be outperformed

by the application of such methodologies, thus justifying the deployment of ad-

vanced FX carry trade strategies by professional FX managers. We believe that

our analyses of FX carry trade strategies from a portfolio managers perspec-

tive are essential to better understand current FX market dynamics, since the

FX carry trade has been recognised a major driver of FX market turnover (see

Galati et al. [2007a]).

In Chapter 4 of this thesis we will focus on testing different asset allocation

techniques for FX carry portfolios. We will test the performance of three sets

of currency portfolios related to the FX carry theme. With the first set of cur-

rency portfolios we compare the performance of simple equally weighted asset

allocation algorithms versus mean-variance optimised asset allocation algorithms

for setting up FX carry portfolios. Second, we will allocate capital to currencies

based on different yield maturities in order to test whether the maturity of yields

has a significant impact on carry trade returns. The third set of currency port-

folios analysed in Chapter 4 will allocate capital to currencies according to how

their attractiveness from an FX carry trading perspective has changed. Thus,

this third set of currency portfolios mimics the likely portfolio flows generated by

carry traders. We find that the portfolio positions to these ’carry-flows’ currency

portfolios point out to pockets of predictability in foreign exchange rates fluctu-

ations.

Recent literature on the carry trade has found significant relationships be-

tween FX carry trade returns and proxies for global volatility and liquidity (see

2



Section 3.3.4). Dunis and Miao [2007] analysed volatility-based trading filters

for timing FX carry trades and found that they delivered improved risk adjusted

performances over a long-only FX carry trade benchmark. Based on these find-

ings, in Chapter 5 we develop and test several trading filters for market-timing

FX carry portfolios. The market-timing signals are based on proxies for global

volatility, liquidity and interest rate differentials. The aim of this research is to

analyse the profitability of the carry trade during periods of global risk aversion

or -appetite. Our findings suggest that market-timing the carry trade might be

feasible using aggregated risk indicators for the generation of market-timing sig-

nals. Further, we detect a lookback bias in our analyses: Some market-timing

signals which improve the carry trade performance by correctly timing the credit

crisis, would not have been chosen before the credit crisis.

Carry trades are typically executed with leverage. We expand on research by

Darvas [2009] who found that at high levels of leverage the risk-adjusted perfor-

mance metrics to FX carry trading deteriorate significantly. We do so by testing

a time-varying leverage algorithm based on the Kelly criterion. Moreover, we

introduce a novel performance evaluation measure which allows for an evaluation

of trading strategies with respect to capital growth and security. We find that

conditional, time-varying, leverage models outperform optimal constant leverage

levels for trading FX carry portfolios. Further, we demonstrate how the Sharpe

ratio can lead to erroneous conclusions about the real-world profitability of lever-

aged trading strategies.

The remainder of this thesis is organised as follows. First, we provide an

introduction into the foreign exchange market (Chapter 2). Second, we present

current research on currency speculation and expand on the FX carry trading-

style whose profitability is facilitated by the empirical failure of uncovered interest

rate parity (Chapter 3). Third, we perform empirical research on asset allocation

methodologies for setting up FX carry portfolios (Chapter 4). Fourth, we test

market-timing indicators for trading FX carry portfolios (Chapter 5). Fifth,

we analyse novel models for determining optimal leverage levels for FX carry

portfolios (Chapter 6). Lastly, we summarise our main findings and draw a

conclusion (Chapter 7).
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Chapter 2

The Foreign Exchange Market

The foreign exchange market, or FX market, is the market where currencies are

exchanged against each other. The FX market has some very unique character-

istics which can be summarised as follows:

Market Size The FX market is by far the most liquid market in the world.

This high liquidity has pushed transactions costs to very low levels.

Market Structure Exchange rates are traded around the clock in an in-

terbank market. Customers do not have access to this market and have to refer

to specialised dealers for quotes.

Market Participants A very heterogeneous set of actors participates in

the FX market. Market participants often do not share the same interests when

trading currencies.

After defining how the term exchange rate is applied throughout the research,

these characteristics will be outlined in the following sections.

2.1 What is an Exchange Rate?

An exchange rate represents the number of units of one currency that can be

exchanged for a unit of another. There are two ways to express an exchange rate

between two currencies (e.g., the US Dollar USD and the Euro EUR). One can

either write USD

EUR
or EUR

USD
. These are reciprocals of each other, if the exchange
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rate S is the price for one EUR in USD (S = USD

EUR
) and the exchange rate S

�

is

the price for one USD in EUR (S
�

= EUR

USD
), then S = 1

S
� must hold.

Throughout this thesis an exchange rate S will denote the domestic currency

price for one unit of foreign currency. If the EUR is regarded as domestic currency

and the USD is regarded as foreign currency the exchange rate will be S = EUR
USD

.

2.2 The G10 Currency Universe

Throughout this thesis, we focus on the G10 currency universe. The G10 currency

universe consists of 9 out of the 10 most traded currencies, and the New Zealand

Dollar, which is the eleventh currency when focusing on market turnover (see

Borio et al. [2007]). The currencies of the G10 basket and their respective ISO−
4217 currency codes are summarised in the Table below.

Country Currency Currency Code Market Share in %

United States Dollar USD 88.70
Euro-area Euro EUR 37.20
Japan Yen JPY 20.30
Great Britain Pound Sterling GBP 16.90
Switzerland Franc CHF 6.10
Australia Dollar AUD 5.50
Canada Dollar CAD 4.20
Sweden Krona SEK 2.30
Norway Krone NOK 1.90
New Zealand Dollar NZD 1.40

Table 2.1: The G10 Currency Universe

Note that volume percentages in Table 2.1 would add up to 200% when con-

sidering all currencies: 100% for all the sellers and 100% for all the buyers.

2.3 Market Size

The foreign exchange market is the largest international financial market with an

estimated daily turnover of USD 3.21 trillion (see Borio et al. [2007]). According

to Borio et al. [2007] the foreign exchange transaction volume between foreign

exchange dealers and both financial- and non-financial institutions more than

doubled between April 2004 and April 2007. The increase of trading activity

from these institutions is attributed to increased speculation by investors, who will

have profited from the recent period of trending exchange rates and low market

volatility (see Borio et al. [2007]), and to the growing importance of FX as an asset
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class (see Section 3.1.1). Another cause for the surge in foreign exchange trading

is the tendency of institutional investors to hold more internationally diversified

portfolios, which involves buying and therefore usually hedging foreign currency

in order to be able to enter into transactions abroad (see Borio et al. [2007]).

2.4 The Interbank Market

The FX market is a decentralised market with multiple dealers in many locations

quoting and trading currencies simultaneously. The main trading centres are

in London, New York, Tokyo, and Singapore, but banks throughout the world

participate in the market. Currency trading happens around the globe for 24

hours a day and 5 days a week. As the Asian trading session ends, the European

session begins, followed by the North American session and then back to the Asian

session. Figure 2.2 depicts the largest providers of FX liquidity, as of May 2007.

The Chicago Mercantile Exchange (CME) and the Philadelphia Stock Exchange

(PHLX) are centralised exchanges that offer standardised derivative products on

currencies.

Trading in the FX market can be divided into customer trading and interbank

trading, which can be direct or brokered. Dealers provide liquidity by continually

putting both bid (buy) and ask (sell) prices into the market. The bid/ask spread

is the difference between the price at which a bank or market maker will sell (ask)

and the price at which a market-maker will buy (bid) from a customer. The high

amount of competition has caused bid/ask spreads to narrow drastically (see

Lyons [2006]).

Electronic dealing platforms such as EBS or Reuters Dealing are currently

established brokers. Borio et al. [2007] attributed the increase in global foreign

exchange market turnover partly to the spread of such electronic trading platforms

which enabled large financial institutions to set up automated trading systems,

and provided better trading facilities to retail investors.

2.5 Traded Financial Instruments

The FX market offers a variety of financial instruments related to exchange rates.

These are:
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Spot This trade represents a direct exchange between two currencies at the

spot exchange rate S. A spot transaction is a two-day delivery transaction and

involves cash rather than a contract.

Forwards One way to deal with foreign exchange risk is to engage in a

forward transaction. In this transaction, the parties agree on a spot transaction

at a fixed exchange rate on some future date. Currency Forwards are over-the-

counter (OTC) instruments and thus very flexible with regards to the duration

and size of the contract.

Futures Foreign currency futures are forward transactions with standard-

ised contract sizes and maturity dates (maturities are usually at 3-month in-

tervals). Currency futures are traded on centralised exchanges like the Chicago

Mercantile Exchange, the Bolsa de Mercadorias e Futuros, the Budapest Stock

Exchange, the Tokyo International Financial Futures Exchange, Euronext Lon-

don and the New York Board of Trade (see Galati et al. [2007b]).

Swaps In a foreign currency swap transaction, two parties exchange curren-

cies and reverse the transaction after an agreed period of time. FX swaps are not

standardised contracts and are traded on the OTC market.

Options A foreign exchange option is a derivative where the owner has the

right but not the obligation to exchange money denominated in one currency into

another currency at an agreed exchange rate on a specified date. FX options are

usually traded on the OTC market, although the Philadelphia Stock Exchange

offers options with standardised strike prices and expiration dates to clients.

Figure 2.1 depicts the distribution of the traditional (over-the-counter) global

foreign exchange market turnover over the available financial instruments.

2.6 Market Participants

The participating market actors in the FX market can have very different mo-

tivations for trading foreign exchange rates. In the following the main market

participants, and their main interests will be described.
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Figure 2.1: Over-the-counter FX Market Turnover Share of the main Financial
Instruments (Source: Borio et al. [2007]).
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Figure 2.2: Market Share of the Largest Currency Dealing Institutions (Source:
ECB [2007]).
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Corporations Corporations buy and sell foreign currency in order to pay

for goods or services or to hedge future revenues in foreign currency. Multinational

companies can have an unpredictable impact on exchange rates when very large

amounts are traded due to reasons that are not widely known by other market

participants (e.g., mergers or acquisitions).

Banks The top-tier interbank market accounts for 53% of all transactions

in the FX market (see Borio et al. [2007]). The investment banks act as liquidity

providers for customers and also take part in speculative trading.

Central Banks National central banks often have official or unofficial target

rates for their currencies. They can use their often substantial foreign exchange

reserves to stabilise the market. It is worth mentioning that considering the size of

the FX market, direct intervention by central banks may not be effective. Central

banks can however use their trades to signal their intentions to the market and

attempt to arrest or reinforce a trend.

Mutual- and Pension Funds Mutual- and pension funds use the foreign

exchange market mainly to perform transactions in foreign securities. An invest-

ment manager with an international equity portfolio will need to buy and sell

foreign currencies in the spot market in order to pay for purchases of foreign

equities. Since the FX transactions are often secondary to the actual investment

decision, they are not seen as speculative or aimed at profit-maximisation. Some

investment management firms also have more speculative specialised currency

overlay programmes, which aim to limit the risks of the currency exposure of the

fund, and eventually generate additional excess returns. This attitude of fund

managers towards the FX market has shifted in recent years, as non-traditional

asset classes are looked to by investment professionals in a search for sources

of returns which are uncorrelated to traditional asset classes (see Galati et al.

[2007a]).

Hedge funds Hedge funds have gained a reputation for aggressive currency

speculation since 1992, when large foreign currency speculation by hedge funds

forced the Pound Sterling to depreciate substantially in a short period of time.

Galati and Melvin [2004] noted that Hedge funds participating in the FX market

grew markedly over the period from 2001 to 2004 both in terms of number and
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overall size.
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Chapter 3

The Carry Trade

In this thesis we focus on the foreign exchange carry trade which denotes one of

the main known strategies for currency speculation. In Section 3.1 we will give

an overview on the practice of currency speculation. Investment strategies for

currencies and insights into the trading techniques adopted by FX hedge-funds

are discussed. In this section, the carry trade will emerge as a main driver behind

the profits of a whole industry. Section 3.2 will focus on the forward rate bias

(FRB), a major puzzle in financial economics which constitutes the theoretical

basis behind the profitability of carry trading. Finally, in Section 3.3 we will

discuss literature dealing directly with the phenomenon of the carry trade, its

profitability, trading strategies and drivers.

3.1 Currency Speculation

Professional investment managers constantly search for alternative sources of in-

come and diversification for their portfolios and the financial industry is keen to

provide the market with innovative products and investable indices also for the

realm of currency trading. Important developments and research results concern-

ing these topics will be discussed in the following sections.

3.1.1 Foreign Exchange as an Asset Class

Over the last 20 years professional currency speculators have been able to gener-

ate positive returns. Indices which track the performance of professional currency

managers exhibited good risk adjusted returns over this period. E.g., the Bar-

clays Currency Traders Index, a benchmark which measures the returns of global
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currency managers, reveals healthy returns of 7.73% percent p.a. since 1987. 1

A possible explanation for the ability of certain fund managers to generate posi-

tive returns by trading currencies might be the existence of profit opportunities

generated by the activity of non-profit maximising actors in the FX market (e.g.,

central banks and corporations).

It has been shown that the returns to currency speculation exhibited very low,

sometimes negative, correlations to more traditional asset classes like equities

and bonds (see Pojarliev and Levich [2008] and DB [2009]). It is therefore not

surprising that an increasing number of real money managers and hedge funds are

treating FX as an asset class in its own, since it promises to act as a good vehicle

for diversifying portfolios of traditional assets. An indication for this increased

interest in FX as an asset class is given by the fact that the number of funds in

the Barclays Currency Traders has grown from 44 in 1993 to 106 in 2006 (see

Pojarliev and Levich [2008]). Galati and Melvin [2004] even attributed a part of

the recent increased FX market turnover to the growing relevance of FX as an

asset class.

Despite the increased popularity of currency trading, the sources of returns

from professional currency speculation were not revealed to the public. Recent

research into foreign exchange trading strategies and currency hedge funds helps

to gain a better understanding of the mechanics of the industry of currency spec-

ulation and the drivers behind foreign exchange managers returns.

3.1.2 Popular FX Trading Strategies

Throughout the literature we find a set of recurring investment approaches when

it comes to profitable currency speculation. The most widespread approaches

are:

• Momentum strategies,

• Carry strategies,

• Valuation strategies,

• Volatility strategies.

1Information retrieved from http://www.barclayhedge.com/research/indices/cta/sub/curr.html
in April 2010.
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There is evidence that these trading strategies or investment-styles could rep-

resent important tools in the investment processes of FX managers with a total

return mandate (see Galati and Melvin [2004] and James [2005]). In the follow-

ing paragraphs the rationale behind these investment strategies will be briefly

discussed.

Carry The so-called carry trade denotes a very popular investment-style

for currencies. In an FX carry trade, an investor borrows funds in a low interest

rate currency and invests them in a higher interest rate currency. In doing so,

the carry trader is betting that the exchange rate will not offset the positive

interest rate differential that he is earning on the carry trade. Carry trading

has produced good risk-adjusted returns in the past decades (see James [2005],

Rosenberg [2003] or Vesilind [2006]).

Carry trading returns can be proxied by the G10 Currency Harvest Index by

Deutsche Bank. The index tracks a portfolio which buys the 3 G10 currencies with

the highest yields, while selling the 3 G10 currencies with the lowest yields. In-

vestors can participate to the returns associated by such carry strategies, through

a set of available products on the market, e.g., the DBV ETF2.

Momentum or Trend Another popular strategy for currency speculation

is momentum trading. Investors trading this investment strategy would buy cur-

rencies which exhibited a recent period of appreciation while selling currencies

which exhibited a recent period of depreciation. Momentum trading in the FX

market has produced positive returns in the past decades, as reported by James

[2005], Lequeux and Acar [1998] or DB [2009].

As a proxy for FX momentum trading returns, the AFX Currency Manage-

ment Index can be used. The AFX Currency Management Index is based on a set

of trend-following moving average rules with different window lengths (32, 61 and

117 days). Lequeux and Acar [1998] showed that the AFX Index exhibited a high

correlation with the returns of managed FX funds, indicating that professional

currency managers might use trend following strategies.

Valuation A somewhat less popular, but academically very sound invest-

ment principle in the FX market is valuation investing. After determining a

2An exchange traded fund by Invesco Powershares which tracks the DB Currency Harvest
Index (see Invesco [2010]).
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fair-value 3 for the currencies in the individual currency universe, the speculator

would buy undervalued currencies and sell overvalued currencies. This trading

rules can be motivated by empirical evidence which suggests that currencies of-

ten overshoot their fair values in the short run, and show a tendency to revert

back toward their fair values in the longer run (see Pojarliev and Levich [2008]).

Valuation trading strategies have generated positive returns in the past 20 years

(see DB [2009]).

Investors can gain exposure to a valuation-based portfolio strategy through the

DB Currency Valuation Index by Deutsche Bank (see DB [2007] and Figure 3.1)4

Volatility Volatility trading is perhaps the least implemented investment-

style by professional currency managers, since it involves trading options, an

activity practiced by about 10 percent of currency funds with a total return

mandate (see James [2005]). A simple approach of profitably trading options in

the FX market has been presented by James [2005]. The strategy, which sells

short-dated straddles when the implied volatility is exceptionally high, was able

to produce a Sharpe ratio of 0.607 in a backtest during the period betwen 1992

and 2005 (see James [2005]). James [2005] noted that - as the returns to volatil-

ity trading in the FX market are negatively correlated to carry- and momentum

trading - the interest in such strategies is growing rapidly. Foreign exchange im-

plied volatility can also be traded through specialised indices, e.g., the Deutsche

Bank Currency Volatility Index (CVIX) which tracks 3-month implied volatility

of a broad currency basket, weighted by market turnover (see DB [2007]).

A good overview of the returns to most of these FX investment-styles is pro-

vided by the Deutsche Bank Currency Return Indices, which are specifically

designed to track the returns associated with these investment-styles (see DB

[2007]). Figure 3.1 depicts the cumulative returns to momentum, carry and valu-

ation investing, as well as a portfolio consisting out of the carry, momentum and

valuation investment approaches (the DB Currency Returns Index ). Figure 3.1

3Purchasing Power Parity (PPP) in one of its many variants is a commonly used methodology
to determine the long-run fair value of a currency.

The idea behind PPP is that a unit of currency should buy the same basket of goods in one
country as the equivalent amount of foreign currency, at the actual exchange rate, can buy
in that foreign country. If that relationship would not hold, then arbitrage possibilities could
arise.

4 The valuation index is constructed by Deutsche Bank and is based on the OECD Pur-
chasing Power Parity figures (see EUROSTAT-OECD [2006] for the methodology behind the
OECD PPP model.)
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illustrates how the three single strategies have produced attractive returns during

the last 2 decades, and how a portfolio of the different investment-styles produces

a smoother cumulative return curve, due to positive diversification effects.
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Figure 3.1: Historical Performance of Indices Tracking popular Foreign Exchange
Trading Styles. Source: Bloomberg, Deutsche Bank

3.1.3 Benchmarks for Professional Currency Managers

At a first glance, currency speculation does not lend itself to traditional bench-

marking. Unlike in the equity market, there is no natural market portfolio to

track since each FX trade has the character of a long-short position. De facto,

positive returns from currency speculation were traditionally termed as pure al-

pha returns (see James [2005]), since they were not correlated with traditional

benchmarks such as equity market indices and lacked an own benchmark.

Recent literature on hedge funds performance evaluation opens up a different

perspective on the evaluation of currency trading returns. In their seminal pa-

per Fung and Hsieh [1997] showed that a vast part of hedge fund returns could

be explained by easily replicable risk premia in the market. These replicable

risk premia could not be attributed to individual manager skill and are termed

alternative beta’s by this line of hedge-fund research. Further research on the

investment-styles adopted by hedge-funds has been performed amongst others by
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Hasanhodzic and Lo [2006], Jaeger [2005], Briand et al. [2009] or Anson [2008].

However, these studies have examined a general universe of hedge funds using

mainly equity market and bond market factors as alternative beta’s. In a recent

paper by Pojarliev and Levich [2008] these analyses have been extended to the

industry of currency hedge-funds.

Pojarliev and Levich [2008] examined the relationship between a data set of

FX hedge-fund returns from the Barclays Currency Traders Index with proxies

for the popular FX investment-styles momentum, carry, valuation and volatility.

The aim of Pojarliev and Levich [2008] was to estimate what portion of currency

trading profits by professional FX managers is due to exposure to these specific

trading style or risk factors, and what portion is due to genuine manager skill

(i.e. alpha).

The main findings of the study by Pojarliev and Levich [2008] were:

• A substantial part of the returns generated by FX hedge-funds can be ex-

plained by systematic exposure to known investment strategies.

• On average, professional FX managers do not exhibit significant ability to

generate positive returns uncorrelated with the four investment-styles.

• Some FX funds show the ability to generate genuine alpha. This outperfor-

mance of traditional investment-styles seems to be the result of successful

market-timing in some of the FX investment-styles.

The conclusion that Pojarliev and Levich [2008] drew from these results are

that the definition and measurement of alpha returns in professional currency

speculation should be changed. From their point of view, only those returns which

are not associated to known and transparent currency trading strategies should

be termed as alpha returns. Thus, following Pojarliev and Levich [2008], an

aggregate of the main investment strategies for FX trading should constitute the

new benchmark for professional currency managers. This notion is also advocated

by Deutsche Bank in the prospectus for the Deutsche Bank Currency Return

Index (see DB [2009]), which is marketed as the new benchmark for currency

managers.
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3.2 The Forward Rate Bias and the Carry Trade

The forward rate bias (FRB) is a major puzzle in financial economics. Since

the hypothesis that the forward rate constitutes an unbiased estimator of future

spot rates has been violated in empirical datasets, profit opportunities emerged

for speculators willing to engage in risky foreign exchange trades. Such trades

attempting to exploit the FRB puzzle are called carry trades. In the following

sections we will discuss the theoretical construct leading to the formulation that

the forward rate should be an unbiased predictor of exchange rates and present

empirical findings in literature on the validity of this relationship. Subsequently,

the concept of carry trading as a means to exploit the FRB is introduced.

3.2.1 Foreign Exchange Market Efficiency

The Efficient Market Hypothesis (EMH) states that financial markets are in-

formationally efficient, i.e. prices fully reflect information available to market

participants and therefore are unbiased in the sense that they reflect the beliefs

of all investors about future developments of the assets (see Fama [1970]). There-

fore, if the EMH holds, there should be no opportunities for market participants

to earn excess profits from speculative activities.

The Rational Expectations Theory (RE) provides the basis for the EMH to

hold. If investors have rational expectations, the outcomes that are being fore-

cast ex-ante are assumed not to differ systematically from the ex-post realised

outcomes, i.e. investors do not make systematic errors when predicting the future

market prices.

Tests for the efficiency of the foreign exchange market have to take into ac-

count all the factors which influence the total return of an exchange rate position.

When trading exchange rates, the total return of a speculative position which is

opened at time t and closed at t+k is dependent on three different factors. These

factors are: the change in the spot exchange rate St+k

St
, the earned interest rate in

the home country it,k, and the earned interest rate in the foreign country with a

similar maturity i∗t,k. Equation 3.1 illustrates the calculation of the total return

TR of a foreign exchange spot position:

TRt,t+k =
St+k

St

(1 + i∗t,k) − (1 + it,k) (3.1)

In order to consider the FX market efficient, there should be no opportunity to
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achieve systematic positive total returns from speculative activity in the foreign

exchange market. A vast number of studies have investigated foreign exchange

market efficiency by testing the validity of the following necessary conditions:

• The forward discount has to be equal to the interest differential (this no-

arbitrage condition implies that covered interest rate parity (CIP) holds).

• The opportunity costs of holding a foreign exchange position, i.e. the in-

terest rate differential, has to be offset by the shifts in exchange rates. The

expected total return of an exchange rate position is thus zero (this uncov-

ered interest rate parity (UIP) condition implies speculative efficiency of

the FX market).

• The forward discount is a good predictor of the change in the future spot

rate (implying CIP, UIP and RE).

Figure 3.2 presents the general relationship between interest rate differentials,

the forward discount and expected exchange rate changes under efficient markets

and rational expectations. Foreign exchange interest rate parity conditions de-

termine how inflation differentials, interest rate differentials, forward exchange

rates, and expected changes in exchange rates should be linked internationally

in efficient markets. These international parity conditions would dictate that

high inflation countries should see their currencies depreciate, whereas low infla-

tion countries should see their currencies appreciate. They also indicate that the

forward rate should act as an unbiased estimator of future spot exchange rates.
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Figure 3.2: General Relationships in the FX Market under EMH and RE
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In the following sections the CIP, UIP and the forward rate unbiasedness hy-

pothesis (FRUH) will be briefly presented and the findings in academic literature

about their empirical validity will be discussed.

3.2.2 Covered Interest Rate Parity

Theory In the absence of market frictions an investment in foreign cur-

rency that is fully hedged against foreign exchange rate risk should yield exactly

the same return as a comparable domestic currency investment (see Rosenberg

[2003]). The left hand side of Equation 3.2 illustrates the return an investor

would earn when investing a unit of currency in the home country for k periods

in a fixed-income security with interest rate it. The right hand side of Equa-

tion 3.2 represents the hedged return of investing the same amount abroad. This

operation involves an exchange rate transaction, an investment in a foreign fixed

income security with the interest i∗t,k and forward selling of the foreign currency at

time k through a currency forward F k
t . The no-arbitrage principle should ensure

that both sides of the equation are equal. If this is not the case, arbitrageurs will

exploit this risk free profit opportunity until the market prices are at equilibrium

again.

1 + it,k = (1 + i∗t,k)
F k

t

St

(3.2)

Hence, the forward rate of a currency forward has to equal the actual exchange

rate adjusted by the interest rate payments on the spot position:

F k
t =

1 + it,k
1 + i∗t,k

St (3.3)

Equation 3.3 can be reformulated and approximated by Equation 3.4, which

constitutes the CIP condition:

FD = fk
t − st = it,k − i∗t,k (3.4)

Where FD is the forward discount rate, fk
t is the logarithm of the forward

exchange rate at time t for k periods ahead and st is the logarithm of the spot

exchange rate at time t. If the relation in Equation 3.4 holds, there will be no

advantage to investing in an exchange rate of a specific country while hedging the

foreign exchange risk on the forward market. Equation 3.4 can be reformulated

to an econometric regression equation, generally applied to test for the empirical
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validity of CIP (see Sarno and Taylor [2002]):

FD = α + β(it,k − i∗t,k) + �t (3.5)

For CIP to hold empirically, the regression estimation should produce an α pa-

rameter differing insignificantly from zero, a β parameter differing insignificantly

from unity and non serially correlated regression errors �t.

Empirical Evidence Studies on the validity of CIP have often been based

on regression analysis, generally performing regressions based on Equation 3.5.

Frenkel and Levich [1975] performed early tests on CIP. Using weekly observations

from January 1962 to November 1967, they found that covered interest parity held

for three-month horizons after accounting for transactions costs. Later Frenkel

and Levich [1977] extended their study into three periods (1962-67, 1968-69,

and 1973-1975) in order to differentiate between different foreign exchange rate

regimes. This confirmed their previous findings: CIP still holds during these

periods even when the effect of transaction costs is taken into account. Subsequent

studies supporting the absence of arbitrage opportunities in the foreign exchange

market include Rhee and Chang [1992], Fletcher and Taylor [1994] and Juhl et al.

[2006].

The main conclusion that can be drawn by this line of research is that CIP

holds. Some tests exhibit alpha values which are significantly different from zero,

but market features as taxes, illiquidity, political risk and transaction costs are

then held responsible for these results (see Taylor [1987]).

Taylor [1987] questioned previous studies reporting evidence of deviations

from CIP, since they were not based on contemporaneous high frequency data

from currency and interest rate markets, and thus produced results that could not

be implemented realistically in a trading situation. Taylor tested for the validity

of CIP using a high-frequency data set composed of interest rate and exchange

rate data points at about one minute intervals during the most active trading

hours in London over three days in 1985. Taylor found strong support for CIP,

since he did not find any profitable arbitrage opportunity within the data set,

thus confirming the results from previous studies.

3.2.3 Uncovered Interest Rate Parity and the Forward

Rate Bias
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Theory In a fully efficient market, actual prices should incorporate all infor-

mation which is available to market participants (see Sarno and Taylor [2002]).

According to the efficient markets hypothesis, it should not be possible for an

investor to earn excess returns from speculation, since all potentially relevant fu-

ture information would have been already discounted into the market price (see

Fama [1984]). Therefore the expected total return from holding a certain cur-

rency rather than another, should be zero. Since the total return of an exchange

rate position is made up of a risky exchange rate component as well as a risk-free

interest rate component, the former is expected to be offset by the latter. By

extension therefore, the expectations of spot rate changes should be explained by

Equation 3.6:

∆ks
e
t+k = it,k − i∗t,k (3.6)

Where st is the logarithm of the spot exchange rate S at time t, it,k and i∗t,k are

the nominal interest rates on similar domestic and foreign securities respectively

(with k periods to maturity), ∆ks
e
t+k denotes the market expectation of the change

in the exchange rate from t to t + k based on information at time t.

A second necessary condition, besides the validity of the efficient market hy-

pothesis for deriving the UIP relationship is the rational expectations hypothesis,

which states that market participants behave rationally and thus the deviation

between their market forecasts and realised spot exchange rate changes should

be unpredictable and zero on average. If investors have rational expectations,

Equation 3.7 must hold.

se
t+k = st+k + ut+k (3.7)

The term ut+k represents an error term, with a mean equal to zero, se
t+k and

st+k are respectively the logarithms of the expected exchange rate in t for k

periods ahead and the logarithm of the realised exchange rate k periods ahead.

By substituting Equation 3.7 into Equation 3.6 we obtain Equation 3.8, which

describes the uncovered interest rate parity UIP condition when investors are

rational and markets efficient:

∆kst+k = it,k − i∗t,k + vt+k (3.8)

Where vt+k is an error term with mean zero and no serial correlation. Equa-

tion 3.8 states that the returns from the spot exchange rates should be directly

21



offset, on average, by the relevant interest rate differential of that currency po-

sition. Reformulating Equation 3.8 by using the relationship for the covered

interest rate parity (see Equation 3.4), the uncovered interest rate parity can be

interpreted as the hypothesis that the forward rate is an unbiased predictor of the

future spot rate, i.e. that the forward discount accurately predicts the changes

in spot exchange rates:

∆kst+k = fk
t − st + ut+k (3.9)

According to UIP, the interest rate differential should be offset by the ap-

preciation of the low yielding currency and the depreciation of the high yielding

currency. The condition expressed by Equation 3.8 can be tested through the

Fama-regression Equation 3.10:

∆kst+k = α + β(it,k − i∗t,k) + �t+k (3.10)

Where ∆kst+k is the change in the spot rate from time t to k, it,k is the

interest rate for the home currency at time t, i∗t,k represents the interest rate for

the foreign currency at time t and �t+k are the regression residuals with a mean

equal to zero.

By substituting Equation 3.4 into the econometric regression Equation 3.10

for testing the uncovered interest rate parity, the typical regression for testing for

the unbiasedness of the forward rate as a predictor for the future spot exchange

rate can be obtained (Equation 3.11). The forward rate unbiasedness hypothesis

(FRUH) states that the forward rate should correctly predict future spot exchange

rates.

∆kst+k = α + β(fk
t − st) + ξt+k (3.11)

Where ξt+k is a disturbance term. If agents are risk-neutral and have rational

expectations, as in the UIP regression, we should expect the slope parameter β

to be equal to unity and the disturbance term ξt+k - the rational expectations

forecast error - to be uncorrelated with information available at t. This property

of the disturbance term follows from a standard property of rational expecta-

tions forecast errors that E[ξt+k|Ωt] = 0, where E[.|Ωt] denotes the mathematical

expectation conditioned on the information set available at time t, Ωt.

Since CIP has been shown to hold in practice, tests for UIP and FRUH should

produce very similar results. The literature review is therefore congruent for both
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hypotheses.

Empirical Evidence Interestingly, the vast majority of literature states

that the UIP does not hold empirically. Meese and Rogoff [1983a] and Meese and

Rogoff [1983b] found that a random walk model consistently forecasts future spot

rates better than the any alternative structural models, including the forward rate

model at horizons under two years. Empirical studies based on the estimation

of Equation 3.10 and Equation 3.11, generally report results that contradict the

UIP and FRUH hypotheses, thus disproving the efficient markets hypothesis un-

der risk neutrality. The estimated β coefficients can be shown to be statistically

different from unity in the majority of cases. Often the estimated β coefficient

even assumes negative values, implying that the forward premium systematically

predicts changes in the spot exchange rate in the wrong direction. Froot and

Thaler [1990] reported that the average beta coefficient across 75 published es-

timates is −0.88. This empirical finding of the misprediction of the direction of

exchange rates by the forward premium has been called the forward rate bias

FRB.

Conversely, studies which examined very long data sets claim that UIP holds

in the very long run, but can deviate for extended periods of time due to slow ad-

justment of expectations to actual regime changes or to peso-effects (see Lothian

and Simaan [1998] and Lothian and Wu [2003]).

The level of economic development of countries and the length of the yield

maturities seem to have an influence on the strength of the departures from UIP.

Bansal and Dahlquist [2000] and Frankel and Poonawala [2006] compared the

forward rate bias in major currencies with emerging market currencies and have

found that the bias is weaker in the emerging market currencies, since the beta

coefficient there is, on average, slightly above zero. Also, UIP is more likely to be

violated for short maturity bonds, than on longer horizons. Alexius [2001] and

Chinn and Meredith [2005] have shown that the negative β coefficient does not

arise when using long maturity bonds, even in the major currencies.

3.2.4 Explanations for Empirical Failure of UIP

Meredith and Ma [2002] note that the FRB puzzle must be caused by the failure

of one or both parts of the joint hypothesis of efficient markets and risk neutrality.

Efficient markets make sure that the expectations of future variables, including
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the foreign exchange rate, embody all information available at the time when the

expecations are formed. Risk neutrality implies that the forward rate equals the

market expectation of the future spot rate. Combining these postulates in the

risk-neutral efficient-markets hypothesis implies that the deviation between the

forward rate and the realisation of the future spot rate is a white-noise error term

not correleted with past information. The Fama-regressions (see Equation 3.10)

should then yield a beta coefficient of unity.

Thus, since UIP has been shown to fail empirically, possible explanations

include irrationality in investors expectations formation or risk-averse speculators.

Moreover, we have identified two additional categories which provide of potential

explanations for the FRB puzzle, namely in-sample bias and regime shifts and

heterogeneous beliefs. In the following paragraphs we will provide an overview of

the literature analysing explanations behind the failure of UIP.

Irrationality

Explanations based on irrationality assume that the failure of UIP stems from

irrational traders whose predictions about future prices are systematically biased.

This scenario conflicts with the rational expectations hypothesis.

A variety of studies have examined the relationship between the errors of price

forecasts in surveys and predictable elements of excess returns (see e.g. Froot and

Frankel [1989], Chinn and Frankel [1994], Cavaglia et al. [1993], Bacchetta and

Wincoop [2005]). These studies consistently found that the measures of forecast

errors had a strong relationship with the excess returns. Thus, Froot and Frankel

[1989] concluded that the forward rate bias is due to errors in forecasts by market

participants and does not arise as a compensation for risk.

A possible explanation for the emergence of such forecast errors has been

provided by Lewis [1989] who demonstrates that they can be caused by changes in

the markets that are not fully understood by market participants. The reasoning

behind this is that market participants will gradually update their beliefs that a

new regime is in place, generating systematic forecast errors during the transition.

A similar explanation is given by Froot and Thaler [1990] who noticed that the

FRB might be caused by investors which are either slow in adapting to interest

rate changes, or are unable to do so because of regulatory restrictions. The slow-

mover hypothesis of Froot and Thaler [1990] provides an explanation why high

interest yielding currencies continue to appreciate, whereas low yielding currencies

continue to devalue over prolonged periods.
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In-Sample Bias

Engel [1996] argued that tests for uncovered interest rate parity could suffer from

an in-sample bias. Such an in-sample bias arises when the information set of the

researcher differs from that of the market. When that happens, regressions could

erroneously reject or accept the efficiency hypothesis (see e.g. Krasker [1980]).

Incongruency in information sets can be caused by peso effects or learning effects.

Peso effects are characterised when low probability events such as a currency

crisis occur in the data and models are unable to describe such extreme events

appropriately 5.

By contrast, learning effects denote a situation where the market participants

are not sure if a change in regime has taken place or not, or they do not fully

understand all the relevant information for the exchange rates contained in a

policy change.

By analising FX options data, Bates [1996] showed that expected exchange

rate distributions vary considerably over time, especially with regards to skewness

and kurtosis. Although peso effects emerge, he rejects that they were the cause

for the empirical deviation from UIP between the USD and DEM (German Mark)

during the 1980s.

Lewis [1989] indicates that the general underprediction of the US Dollar

strength in the first half of the 1980s can be attributed to learning effects. She

provides evidence that the money demand in the United States experienced a

sensible increase during those years. She argues that the increase in demand

was not offset by an appropriate increase in the supply of money. This led to

a steady appreciation of the USD. Since markets did not adapt immedeately to

the accelerating demand for money, exchange rate expectations and forward rates

persistently underestimated the appreciation of the USD.

The problem with accepting peso problems, bubbles or learning as explana-

tions for the forward bias is that the large number of econometric studies encom-

passing a large range of exchange rates and sample periods, have found that the

direction of the bias is the same under each scenario (see e.g. Lewis [1989]). This

is not in line with the learning explanation since agents cannot forever be learning

about a unique regime shift. Similarly, the peso problem and speculative bubbles

are essentially a small-sample phenomenon which cannot explain the fact that

estimates of the beta parameter in the Fama-regressions are generally negative.

5see e.g. the Peso crisis 1994, when there was a sudden devaluation of the Mexican Peso
that caused other currencies in the region to decline
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Regime Shifts and Heterogeneous Beliefs

The in-sample bias literature is closely related to literature which attributes the

FRB to regime shifts and heterogeneous beliefs. These theories account for sys-

tematic deviation from UIP and for long-lasting trends of exchange rate appreci-

ation and depreciation.

Engel and Hamilton [1990] study the phases of USD strength (early 1980’s)

and weakness (1985 to 1988) and find that forward rates systematically under-

predicted these trends in the USD. They argue that exchange rates incur long

trending periods which lead currencies to have long periods of appreciation and

depreciation. Engel and Hamilton [1990] proposed a model where exchange rates

follow two normal distributions. More specifically, they set up a segmented trends

model with an appreciating and a depreciating regime. In the model, the param-

eters of both distributions and whether they are in regime one or regime two

are known to investors. On the other hand, they do not know at which point in

time the regimes switch. Since the investors are assumed to be risk-neutral, the

forward rate is given by a probability-weighted average of their regime predic-

tions. Such predictions lead to a misalignment between forward and future spot

exchange rates. The resulting bias is an increasing function of the probability of

a regime shift and of the expected magnitude of the exchange rate movement in

case of a regime shift. Whereas this specification of Engel and Hamilton [1990]

failed empirically, an extension of the model by Kaminsky [1993] generated more

favorable results. Kaminsky [1993] assumes that investors try to predict a regime

shift by evaluating information from announcements of the Federal Reserve Board

(FED). Another succesful model has been proposed by Evans and Lewis [1995]

postulating exchange rate jumps when regimes switch. The models by Engel

and Hamilton [1990], Kaminsky [1993] and Evans and Lewis [1995] are primar-

ily descriptive since they do not aspire to explain the reasons for changes in FX

regimes.

Despite extensive research, there does not exist a structural model delivering

reliable predictions for short-term exchange rate fluctuations (see e.g. Rosenberg

[2003]). Thus, it is no surprise that expectations are very varied amongst survey

respondents. That is what has been found by Tagaki [1990] by analysing differ-

ent surveys on exchange rate predictions. Rogoff [1996] and Rogoff [2002] found

that long-term exchange rates are influenced by inflation differentials. Taylor

and Allen [1992] evaluated results from a quastionnaire survey and found that

26



long-term predictions are formed based on fundamentals, while in the short run

investors base their decisions strongly on technical analysis. This is confirmed by

Frankel and Froot [1990]. Using data from various surveys, Frankel and Froot

[1990] study how exchange rate expectations are formed by investors. They dis-

tinguish between technical speculators, who extrapolate their forecasts from cur-

rent exchange rate trends, and fundamental investors, who assume that exchange

rates converge to some long-term equilibrium. Based on these findings, Ahrens

and Reitz [2005] propose a model where investors are considering both the views

of technical traders and fundamental investors. In the technical regime exchange

rate changes are predicted on the basis of a simple momentum strategy. In the

fundamental regime exchange rate changes are formed based on deviations from

purchasing power parity. Investors form their expectations by a weighted average

of the fundamental and the technical views. Ahrens and Reitz [2005] demonstrate

how exogeneous shocks can cause departures from the fair value which explain

not only UIP, but also long term exchange rate trends.

Risk Premia

The theories presented in the above points assume risk neutrality. This means

that investors exploit all available opportunities for profit in the markets irre-

specitively of the risks involved. Since real-world investors do exhibit aversion

to risk, these theories are based on unrealistic assumptions (see Kohler [2008]).

A risk-averse investor will carefully balance his profit opportunities against the

risks of the specific investment. Thus, the risk premia literature examines whether

deviations from UIP arise as a compensation for currency risk exposure.

Studies relating the FRB puzzle to risk utilise different methodologies which

range from CAPM and conditional CAPM settings to portfolio-balance and gen-

eral equilibrium models (see e.g. Kohler [2008])

Bansal and Dahlquist [2000] tested for currency risk premia in a CAPM frame-

work. They calculated deviation from UIP for 27 currencies against the USD.

As a benchmark portfolio they chose the aggregate performance of U.S. equities.

In their regressions, the equity risk factor failed to explain the cross sectional

variation in currency risk premia. Bansal and Dahlquist [2000]’s estimation is

based on a constant beta specification and cannot capture time-variation in risk

premia. Mark [1988] additionally incorporated time variation in the beta coeffi-

cient of the CAPM model. He used a weighted average of the US, German, Swiss,

Japanese and British stock market as the market portfolio. Mark [1988] found
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that his model could not be rejected by the data, and interpreted his findings as

providing evidence for currency risk premia being driven by international equity

markets. Unfortunately, he does not provide any goodness-of-fit statistics so that

the explanatory power of the model can not be accurately assessed. Lustig and

Verdelhan [2005] obtained good results when estimating a CAPM model by using

interest rate differentials as explanatory variables. Lustig and Verdelhan [2005]

find R-squared measures of up to 36%, i.e. their model could capture about a

third of the total variation in currency risk premia.

If the negative beta coefficients in the Fama-regression were due to the omis-

sion of a time-varying risk premium, the vast majority of studies, which are

estimated using ordinary least squares, would yield biased and inconsistent esti-

mates of β due to the presence of an omitted risk premium in the Fama-regression

(see Fama [1984] and Liu and Maddala [1992]). Fama [1984] and Hodrick and

Srivastava [1986] found that the forward rate bias bias can be explained by a non-

zero risk premium. Conversely, Froot and Frankel [1989] later inferred from their

studies that the systematic portion of forward discount prediction errors does

not capture a time-varying risk premium. The results of Frankel and Poonawala

[2006], which showed that the forward rate bias is larger in currencies of developed

countries than in emerging market currencies also contrasts with the suggestion

that the phenomenon of the forward rate bias can be attributed to a risk pre-

mium. If that were truly the case, the FRB would be greater for emerging market

currencies, since they bear more risks, than in developed market currencies.

3.2.5 Exploiting the Forward Rate Bias through Carry

Trading

The phenomenon of the forward rate bias creates the possibility of implementing

trades in the foreign exchange market that generate profits by exploiting this

market inefficiency. These trades involve buying high yielding currencies and at

the same time selling low yielding currencies. Since high yielding currencies have

tended to depreciate less - and low yielding currencies have tended to appreciate

less than suggested by financial theory, this style of trading is expected to produce

positive excess returns. Betting on the FRB in the foreign exchange market is

also called carry trading (see Rosenberg [2003]), since if the spot exchange rate

does not change over time the investor earns interest by carrying the FX position.

Carry strategies can be implemented as a dynamic borrowing and lending
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strategy in two currencies or through a simple long or short speculation in the

forward market. The implementation of carry trades with currency forwards is

the most frequently applied of the two alternatives. At time t the investor will

buy a currency forward which sells at a discount, i.e. he will agree to buy the

high yielding currency against the low yielding currency on a specified date in the

future. When the forward contract reaches maturity the trader will be able to buy

the currency at a lower price than the actual market price and make an immediate

profit, as long as the exchange rate have did not offset the earned interest. When

implementing a carry trade through a forward contract, the return of the carry

trade rcarry
t,t+k can be computed as:

rcarry
t,t+k =



















fk
t − st+k, if it,k < i∗t,k

st+k − fk
t , if it,k > i∗t,k

0, if it,k = i∗t,k

(3.12)

An atypical approach to implementing carry trades involves currency options

trading. Since options are priced through a replication argument including the

eventually biased forward rate, they are also mispriced in the case where the

forward rate bias continues to exist. For an example of such an implementation

we refer to Hochradl and Wagner [2010].

3.3 The Carry Trade in Literature

In Section 3.2 we reviewed the literature on the forward rate bias puzzle, which

focuses implicitly on the mean return of the carry trade. Motivated by the im-

portant profits and practical implications of the carry trades, a good number of

research publications have focused directly on the carry trade in recent academic

literature.

Research on the carry trade can be divided into research concerning the for-

mulation and refinement of profitable carry trading strategies, and into empirical

research which examines the drivers behind the returns to carry trading. Fur-

thermore, since activity of speculators in the interbank FX market is relatively

opaque, we will look at empirical evidence for carry trading activity by large in-

stitutional investors. In the following section these branches of research on the

FX carry trade will be discussed.
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3.3.1 The Profitability of the Carry Trade

Simulations of carry strategies have been performed in literature amongst oth-

ers by Rosenberg [2003], Hochradl and Wagner [2010] and Vesilind [2006]. Al-

though the algorithms and currency baskets used for the strategy simulations

differ slightly, the carry strategies were always able to produce substantial excess

returns. Many investment banks also simulate the performance of carry strategies

applying similar methodologies and getting similar results as the models analysed

in academic literature (see Gyntelberg and Remolona [2007]).

The reported profitability of carry trading strategies is in line with the conclu-

sions of academic research, which reports the existence of a forward rate bias in

foreign exchange forward rates (see Section 3.2.3). Since historically high (low)

yielding currencies have tended to depreciate (appreciate) less than suggested

by financial theory, it is obvious that carry trade strategies which assume long

(short) positions in high (low) yielding currencies, have generated profits.

The reasons for the existence of these carry trade profits over the examined

data sets are not clear. Possible reasons for the profitability of carry trading are

the same as those evaluated by researchers in attempting to explain the empirical

failure of uncovered interest rate parity, e.g., risk-premia, forecast errors and

rational bubbles. As in the case of the failure of UIP, there is no generally

accepted theory which explains the profitability of the carry trade.

A possible explanation for the enduring profitability of the carry trade has

been given by Lyons [2006], with the limits to speculation hypothesis (LSH).

The LSH states that large financial institutions will not allocate risk capital to

trading strategies with Sharpe ratios under a certain threshold. Lyons [2006],

reported that major financial institutions show little interest in allocating capital

to trading strategies with Sharpe ratios below 0.4. Following this assumption, if

returns from carry trading yield insufficient risk-adjusted profits they will not be

exploited by large speculators, thus leaving the opportunity for investors willing

to take the risks associated with this strategy to generate returns from carry

trading.

Hochradl and Wagner [2010] specifically addressed the question whether the

LSH has relevance in the case of the carry trade. By simulating carry trading

strategies and showing that the performance measures of the carry strategies

easily exceed the Sharpe ratio threshold of 0.4, they strongly questioned the

validity of the LSH as an explanation for enduring carry trade profits.
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Similarly, Burnside et al. [2006] questioned the practical relevance of the carry

trade, noting that carry trading strategies typically generated low absolute re-

turns which would make it necessary to wager large amounts of money to achieve

acceptable levels of return. Trading such large amounts would create market

frictions like price pressure, i.e. worse execution prices than actual market prices

(i.e. slippage) and wider bid-ask spreads. Burnside et al. [2006] noted that the

existence of such market frictions may erode the profits inherent to the carry

trade.

3.3.2 Evidence for Carry Trading Activity

The carry trade is an investment strategy which is widely used by practitioners

(see Burnside et al. [2006]). Galati and Melvin [2004] even attributed the surge

in trading activity in the foreign exchange markets, which emerged in the 2004

BIS Triennial Survey (see Galati et al. [2007a]), to a large extent to the growing

volume of FX carry trade positions held by market participants, especially large

financial institutions such as hedge funds and CTA’s. The magnitude of the

international exposure to the carry trade is very difficult to quantify through

publicly available information however, since individual transaction data is not

available. Moreover, the distinction of carry trade positions from trades initiated

for other reasons is problematic, also because of a lack of consensus about how a

carry trade should be defined (see McGuire and Upper [2007]).

Due to these reasons, one has to rely on a set of potential indicators to detect

carry trade activities in the foreign exchange markets. These indicators include

balance sheets of investment banks, positioning data from the OTC market and

futures exchanges, correlation of transaction volume data with measures of carry

attractiveness and statistical analysis of hedge fund returns.

Analysis of the balance sheets of investment banks could provide some evi-

dence for the existence of carry trades. Banks serve as market intermediaries pro-

viding loans and taking deposits in the currencies used by carry trade investors,

as well as holding carry positions for proprietary speculative reasons. This would

generate higher liabilities denominated in the carry trade funding currencies and

higher assets denominated in the target currencies on the banks balance sheet

(see Galati et al. [2007b]). Since carry trades often involve derivative instru-

ments, especially forwards, which do not appear on the banks balance-sheet, this

type of data can only be useful in detecting carry trade activity executed in the
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cash market. Also, it is not clear from the balance sheets whether the positions

are actually caused by carry trade activity or by lending and borrowing related to

different activities. These reasons make the establishment of direct links between

balance-sheet data and the existence of carry trades in the market very difficult.

Galati et al. [2007b] reported evidence of a rising role of the Japanese Yen JPY

and the Swiss Franc CHF as funding currencies, since claims in these currencies

on balance sheets of banks have been rising in absolute terms in the recent years.

Since both these currencies have exhibited very low yields throughout the last

years, this might be an indication for rising carry trade activity.

Data from the Chicago Mercantile Exchange on open currency futures posi-

tions has been analysed by McGuire and Upper [2007]. They noted that the rise in

speculative short positions in Japanese Yen JPY futures grew as the JPY depre-

ciated from mid-2006 to February 2007. A quantitative study of such correlations

between measures of carry trade attractiveness like interest rate differentials and

carry-to-risk ratios has been conducted by Galati and Melvin [2004] and Galati

et al. [2007b]. Correlation analysis between carry-to-risk ratios6 and foreign ex-

change market turnover is reported to be varying but high enough to suggest a

relationship between the market turnover and carry trade activity. The highest

correlations existed for the Norwegian Krone NOK (0.79), the Australian Dollar

AUD (0.53), the South African Rand ZAR (0.36), the Mexican Peso MXN (0.28)

and the New Zealand Dollar NZD (0.24). Galati and Melvin [2004] tested the

impact of interest rate differentials and trends in exchange rates on the change

in OTC market turnover of the exchange rate using BIS survey data from 1992

to 2004 . They conclude that turnover growth is positively related to increases

in interest rate differentials and past exchange rate price changes. These results

would seem to indicate that increased market activity in an exchange rate is

triggered both by carry trading and by trend following behaviour of speculators.

A further indication for the practical relevance of the carry trade comes from

the analysis of hedge fund returns. McGuire and Upper [2007] performed style

analysis regressions on hedge fund returns and proxies for returns related to carry

trading. They conclude that carry trading returns are statistically significant

determinants of hedge fund performance. This result has been confirmed also by

Jylha and Suominen [2009] and Pojarliev and Levich [2008] (see Section 3.1.3).

6Galati et al. [2007b] computed carry-to-risk ratios as a measure of the attractiveness of
a currency for carry trading. The carry-to-risk ratios were calculated through dividing the
interest rate differential by the historical volatility of the currency.
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The fact that investment banks are offering research and tradeable indices

which target specifically the carry trade in foreign exchange, provides an addi-

tional qualitative confirmation for the practical relevance of carry trading found

in the statistical regressions.

Although it seems difficult to detect evidence for carry trading from publicly

available data, the aggregation of the above mentioned indications makes it pos-

sible to draw the conclusion that carry trading constitutes an important reality

in foreign exchange trading.

3.3.3 Risks Associated with Carry Trading

Despite having produced good risk adjusted returns in the last two decades,

there are considerable risks associated to carry trading strategies. The most

relevant being the large potential drawdowns associated with periods of collective

unwinding of carry positions, and the meltdown of diversification benefits during

phases of financial market turmoil.

Collective Unwinding of Carry Positions A major property of FX carry

trade returns is their exposure to currency and stock market crashes. Galati et al.

[2007b] suggested that the reason behind the profitability of carry strategies comes

from the positive feedback caused by the build-up of large carry positions. Active

carry trading from the investment community would have the effect of further

strengthening high yielding currencies and weakening low yielding currencies,

and thus lead to an ever increasing profitability of the carry trade.

If liquidated collectively, these large carry trade positions in the portfolios

of institutional investors can trigger huge volatility increases in exchange rates,

causing high yielding currencies to depreciate, and low yielding currencies to ap-

preciate substantially in short periods of time (see Gagnon and Chaboud [2007]).

According to Galati et al. [2007b], the sudden and sharp appreciation of the

Japanese Yen JPY during October 1998 provides a good example for the dras-

tic effects a global unwinding of carry trade positions can have on the involved

currencies.

This intuition is confirmed by Brunnermeier et al. [2008] who showed that

carry trade returns are negatively skewed and that therefore carry trading exposes

the speculator to so called crash risk. This negative skew is attributed to the

sudden unwinding of large carry trade positions by large investors described by

33



Galati et al. [2007b]. Further, Brunnermeier et al. [2008] documented that such

carry trade unwinding tends to occur in periods of stock market or currency

crises, in which risk appetite and funding liquidity typically decrease.

Meltdown of Diversification Benefits A further important property of

carry trade returns is the low correlation to more traditional asset classes like

equities and bonds. This property has been reported by e.g. Jylha and Suomi-

nen [2009] or DB [2009]. Recent research by Kohler [2007] analysed correlation

dynamics between returns on a global equity index and returns of carry trades.

Kohler [2007] showed that the correlation between stocks and carry strategies sig-

nificantly increases during periods of financial turmoil. Carry traders which set

up carry trades to enhance their portfolio diversification will therefore experience

a severe diversification meltdown in times of global stock market crises.

3.3.4 Carry Trade Dynamics and Risk Premia

An important line of research concerning the dynamics behind the carry trade is

the analysis of factors which could explain the risk-premium associated to carry

trading profits.

Several authors have expressed the idea that constructing indices which track

the general risk-appetite in the markets could be useful for timing FX carry trades

(see Rosenberg [2003] and Vesilind [2006]). Risk factors used by the industry to

measure global risk-appetite include the US Treasury Yield Error7, the 10-year

Swap Spread, the Emerging Markets Bond Index spread, the US High Yield 8

spread and FX market volatility (see Vesilind [2006]).

Academic research in this field has been conducted by Burnside et al. [2006]

by performing regressions of the returns to carry strategies on a variety of risk

factors. The risk factors include U.S. per capita consumption growth, the returns

to the S&P500, the Fama-French stock market factors9, the slope of the yield

curve computed as the yield on 10-year U.S. treasury bills minus the 3-month

U.S. treasury-bill rate, the luxury retail sales series constructed by T-Sahalia

et al. [2004], U.S. industrial production, the return to the FTSE 100, and per-

7i.e. the difference between on-the-run and off-the-run government bond interest rates
8i.e. yield on non-investment grade debt
9Fama-French factors are Rm-Rf, SMB and HML, respectively (see Fama and French [1992]

for details)
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capita UK consumption growth. However other than two notable exceptions, i.e.

the Fama-French HML factor and real UK consumption growth, no risk factor

is found to be significantly correlated with the returns from a set of different

carry strategies. Burnside et.al. therefore conclude that risk factors do not offer

an empirically plausible explanation for the returns to carry trading in foreign

exchange.

Burnside et al. [2006] also examined the relationship between monetary vari-

ables and the returns to the carry trade. The carry trade returns are regressed on

the Federal Funds rate, the rate of inflation, and the growth rates of four different

measures of money supply. Burnside et al. [2006] found significant relationships

between carry strategy returns and inflation and the Fed funds rate. They con-

sider their results as supportive of theories that suggest a link between monetary

policy and the empirical failure of UIP.

More recent research found interesting relationships between risk-factors and

carry trade returns. Wagner [2009] showed that the carry trade strategy entails

a time-varying risk premium. Menkhoff et al. [2009] found a significant negative

return return co-movement of high interest rate currencies with global volatility,

whereas low interest rate currencies provided a hedge against volatility shocks.

Christiansen et al. [2009] followed a similar line of research. By estimating factor

models for carry trade strategies where regression coefficients are dependent on

market volatility and liquidity, they show that the carry trade exhibits a higher

exposure to the stock market in volatile periods. These results are in line with the

findings of Kohler [2007]. By looking at the behaviour of carry trade strategies

during the credit crisis from 2007 to 2010, Vistesen [2009] reached very similar

conclusions. By estimating a factor model which relates FX carry trade returns

to equity returns and market volatility Vistesen [2009] showed that low yielding

currencies such as the JPY and the CHF can be modelled as a negative function

of equity returns and positive function of market volatility.

Dunis and Miao [2007] examined the behaviour of carry trade returns during

different regimes of FX market volatility, proxied by the RiskMetrics volatility of

a portfolio of currencies weighted by their market turnover. They find that the

returns to carry trading are higher during periods of low FX market volatility

than during periods of high FX market volatility.
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Chapter 4

Carry Trade Asset Allocation

4.1 Introduction

Setting up carry trade positions, which involve buying a high yielding currency

and selling a low yielding currency, has produced positive excess returns in the

past decades. Higher risk-adjusted returns can be achieved by creating more

diversified portfolios which take long positions in a set of high yielding currencies

and short positions in a set of low yielding currencies (see Rosenberg [2003]).

Rosenberg [2003] proposed a portfolio approach to carry trading which com-

putes the portfolio positions by ranking the G10 currencies according to the value

of the 1-month deposit interest rates. Cross-currency positions are initiated with

1-month forward contracts by buying the three highest yielding currencies and

selling the three lowest yielding currencies. The backtesting results of this FX

carry portfolio strategy generated a Sharpe ratio of 0.73 during the period from

1986 to 2003 (see Rosenberg [2003]). This carry trade strategy is also popular

in the investment community. E.g., the Deutsche Bank G10 Currency Harvest

Index replicates the performance of this strategy. The returns to the Deutsche

Bank G10 Currency Harvest Index are tracked by an Exchange Traded Fund and

thus tradeable by a wide range of investors (see also Section 3.1.2).

Vesilind [2006] analysed a similar framework for trading foreign exchange port-

folios aimed at exploiting the forward rate bias. He implemented Rosenberg’s

approach on the G10 currencies on a data set ranging from 1993 to mid-2006,

also rebalancing the portfolio at monthly intervals. The annualised Sharpe ratio

of the portfolio was 0.94 and that of individual currency pairs ranged between

0.38 and 0.95. Vesilind [2006] noted, that more than half of the returns of the
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carry portfolio were achieved by earning the interest rate differential. The other

part of the portfolio returns came from profitable currency fluctuations. This can

only be the case if, on average, the exchange rates moved in the opposite direction

as predicted by UIP.

Vesilind [2006] also analysed a variation of this simple portfolio strategy which

includes volatility as a risk factor. By computing carry-to-risk ratios, i.e., dividing

the yield differential by the historical volatility for a set of 14 currency crosses,

the model took a long position on the four currency crosses with the highest

carry-to-risk ratios. The portfolio was rebalanced at a monthly frequency. The

foreign exchange rate universe available to Vesilind’s model was the USD exchange

rate against the EUR, JPY, SEK, CAD, GBP, NOK, AUD, CHF, NZD and the

EUR exchange rate against the JPY, SEK, GBP, NOK and CHF. The annualised

Sharpe ratio of the carry portfolio was 1.53 and that of the individual currency

pairs ranged between 0.60 and 1.67.

A model developed at ABN AMRO (see Mackel [2005]) also uses the risk-

adjusted interest rate differential as an input to the formulation of a carry strat-

egy. In this model, the 3-month deposit interest rate spread in two countries is

divided by the 3-month actual volatility of the currency pair. The trade is initi-

ated when the risk-adjusted carry is above its 2-year rolling average. The model

signals are updated on a daily basis. The best Sharpe ratio of the strategy was

1.61 on the AUD/USD currency pair.

Taking the approach of including the volatility of currencies in the formulation

of carry trading strategies one step further, correlations between currencies could

provide an additional input to the asset allocation process of a carry strategy. Ellis

and Jiltsov [2004] developed a foreign exchange carry portfolio based on a mean-

variance optimisation algorithm. They calculate the variance-covariance (VCV)

matrix historically and by exponential smoothing. On a portfolio backtest from

1987 to 2003 they report Sharpe ratios ranging between 0.64 and 0.87, depending

on the methodology applied for the VCV matrix estimation.

Hochradl and Wagner [2010] extended the mean-variance approach by setting

constraints on the maximum value-at-risk of the currency portfolio and allow-

ing changes in the portfolio weights only in specific, discrete, amounts. Since

the restrictions on the model mimic restrictions which portfolio managers face in

practical currency management, the performance of this strategy should provide a

good proxy for the returns generated by FX carry trading institutions. Hochradl

and Wagner [2010] tested whether the limits to speculation LSH hypothesis for-
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mulated by Lyons [2006] could have some relevance in explaining the enduring

profitability of the FX carry trade. The LSH hypothesis states that when the ex-

ploitation of a known market inefficiency does not promise to deliver risk-adjusted

returns over a specific threshold level, these inefficiencies could persist due to a

lack of speculative arbitrage. Sarno et al. [2006] suggested a Sharpe ratio of 0.4 as

the critical threshold which would need to be surpassed by a trading strategy in

order for the LSH hypothesis to be rejected. Hochradl and Wagner [2010] showed

that the FX carry strategy with realistic backtesting assumptions generated a

Sharpe ratio of over 0.4 and thus conclude that in order to accept the LSH as a

possible explanation for the persistence of carry trading profits, the Sharpe ratio

threshold of 0.4 suggested by Sarno et al. [2006] would need to be increased.

4.2 Contributions

The research question we pose in this chapter is twofold.

Firstly, we would like to ascertain how diversification is beneficial to the per-

formance of carry portfolios. To achieve this, we compare the performances of a

set of simple scorecard-based and mean-variance optimised FX carry portfolios.

While similar backtests have been performed in literature, a thorough comparison

of these asset allocation methodologies on a homogeneous data set is, to date,

missing. In order to ensure that these results are not too sensitive on the estima-

tion of the VCV matrix, we perform portfolio backtests based on two different

VCV estimators, i.e. a historical VCV matrix estimator and an exponentially-

smoothed (RiskMetrics) VCV matrix estimator.

Secondly, we would like to assess whether alternative ranking criteria for the

construction of scorecard-based currency portfolios are able to generate excess

trading profits. We formulate two alternative ranking criteria which are closely

related to the theme of carry trading.

Research by Chinn and Meredith [2005] has shown that the negative beta

coefficient does not arise in the Fama-regressions (see Equation 4.2) when using

long maturity bonds. These findings suggest that FX carry portfolios ranked by

shorter maturity yields, should achieve better results than portfolios based on

longer yield maturities. Since we would like to study this phenomenon in the

context of currency speculation, the first alternative ranking criterion is to adopt

yields of varying durations for the ranking of the G10 currencies. Specifically, we

38



will study the carry trading results of currency portfolios ranked by their 1-week,

1-month, 3-month, 2-year and 10-year yields.

The second alternative ranking criterion we consider is the momentum, or

change, of the G10 currency yields. As discussed in Section 3.3.2, there is sub-

stantial evidence for large exposure to the FX carry trade by financial institutions.

A change in the level of a yield in a specific currency denotes a change of carry-

trade-attractiveness of this currency almost by construction. A lowering (height-

ening) of the interest rates should therefore be followed by sell (buy) pressure

on the respective currency by carry traders, and a depreciation (appreciation) of

the respective currency. We find indications for such buy/sell pressure by carry

traders in research which relates changes in foreign exchange turnover to changes

in measures of carry attractiveness for specific currencies (see Section 3.3.2). We

will test portfolios aimed at exploiting these FX carry portfolio flows by rank-

ing the G10 currencies by their respective yield momentum and taking equally

weighted long (short) positions in the 3 currencies with the highest (lowest) ranks.

Not knowing the precise carry strategies and rebalancing frequencies of all insti-

tutional carry traders, we examine the performance of such carry-flows portfolios

based on the 1-week, 4-week, 8-week, 12-week, 26-week and 52-week momentum

of the 2-year yields.

Pojarliev and Levich [2008] suggested that the return of FX managers should

be benchmarked against the returns of four popular trading styles in the foreign

exchange market (see Section 3.1.3). Since we focus on testing different method-

ologies for trading FX carry portfolios, we choose to utilise a simple proxy for the

FX carry factor as the sole benchmark for our FX carry portfolio construction

methodologies. We define our proxy for the FX carry trading-style by simulating

the returns to a currency portfolio which takes equally weighted long positions in

the three highest yielding G10 currencies against equally weighted short positions

in the three lowest yielding currencies. The portfolio is rebalanced at a weekly

frequency (see Appendix A, for a detailed description of the methodology and a

performance analysis of the Benchmark FX Carry Portfolio).

Throughout this thesis we measure the relative FX carry trade outperfor-

mance (which we define as carry-alpha), as well as the exposure to the known

FX carry factor (which we define as carry-beta) of the tested trading strategies.

Similarly to popular factor models for modelling stock returns (see Fama and

French [1992] and Carhart [1997]), we determine the loadings on the FX carry
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factor and the relative outperformance by estimating a simple one factor model

regressing the specific carry strategy returns on an intercept term and the re-

turns of our Benchmark FX Carry Portfolio (see Section 4.4.4). We stress that

the aim of our regressions is not to uncover risk factors which might contribute

to explain the returns inherent to the FX carry trade itself. Instead, we address

the question whether a simple implementation of the FX carry trade can be out-

performed by more sophisticated methodologies, and thus whether there is room

for professional currency managers to offer FX carry-related strategies at their

habitual fees, considering the existence of low cost alternatives to gain exposure

to carry-beta.

4.3 Data

4.3.1 The Currency Universe

Throughout this thesis we have chosen to analyse the FX carry trade on the G10

currency universe, which is composed exclusively of currencies from developed

economies.1 At first this choice might seem arbitrary, since the FRB has been

observed on a multitude of currencies including emerging market currencies. E.g.

Bansal and Dahlquist [2000] and Flood and Rose [2002] have found statistically

significant departures from UIP in emerging market currencies. Mayer [2009]

analyses the performance of FX carry strategies in emerging market economies as

well as developed economies. Using a dataset of 38 currencies Mayer [2009] shows

how both classes of currencies exhibit significant speculation returns and thus

discards the limits to speculation hypothesis (see Lyons [2006] and Section 4.1).

Nevertheless, there are reasons for concentrating the research focus on the

G10 currency basket. An important reason is given by the fact that the majority

of studies in literature have been concerned with portfolios of currencies of de-

veloped countries (see Frankel and Poonawala [2006]). Also, the character of the

carry returns of emerging market currency portfolios would merit a distinctively

different treatment: Firstly, a speculator who buys emerging market currencies

would find himself exposed to a different bouquet of risks and also a somewhat

higher idiosyncracy of risks. For instance, emerging market countries might dis-

play very specific political and regulatory frameworks such as high default risks,

political instability, capital controls or interest rate interventions.

1See Section 2.2 for the components of the G10 currency basket.
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Secondly, implementational issues like data availability, lower liquidity and

thus higher transactions costs, pose significant problems when directly comparing

emerging market FX carry and developed markets FX carry strategies. These

inherent differences seem to have a direct cause on the returns of the FX carry

strategies. The different character of emerging market carry returns has been

pointed out by Frankel and Poonawala [2006] who analysed the returns of carry

trade portfolios of emerging market currencies. Frankel and Poonawala [2006]

found that although the emerging market currencies are arguably riskier than

developed market currencies, the bias in their forward rates, i.e. the potential

return of trading FX carry portfolios, is smaller.

We note that future research should add to the scope of the following empirical

studies by analysing similar methodologies on a broader currency universe.

4.3.2 G10 Foreign Exchange and Yields Data

Throughout this paper we will use foreign exchange spot rates, 1-week interest

rates, 3-month interest rates, 2-year interest rates and 10-year year interest rates

data for the G10 currencies. The data sources are Bloomberg and Datastream

for the foreign exchange rates and the interest rates. The source for the 1-week

interest rate data for Australia, New Zealand and Sweden are the respective

central banks. The data set has a weekly frequency and spans the period from

the 1st of January 1999 to the 5th of March 2010 (584 weekly observations). We

also utilise gold spot rate data (as we later use gold as numeraire good) which we

obtained from Bloomberg.

4.3.3 Yields Momentum Data

In order to simulate the currency portfolios tracking the portfolio flows of FX

carry traders (see Section 4.2), we need to calculate the momentum, i.e. the

change, of the yields for each currency in the G10 universe. The momentum time

series are computed according to:

Y D.MOMC,d
t (l) = iC,d

t − iC,d
t−l (4.1)

Where Y D.MOMC,d
t (l) denotes the yield-momentum for the currency C with

momentum-length l in time period t and iC,d
t denotes the yield for currency C in

period t. The duration of the yields is denoted by d. In our computations we will
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utilise d = 2 (i.e. we compute the momentum of the 2-Year yields).

In the empirical section, we will test FX carry portfolios with different pa-

rameters for the momentum lag l, and thus compute the yield momentum time

series for l = 1, 4, 8, 12, 26, 52.

4.3.4 Fama Regressions

To gain a better understanding of our data set, we estimate the Fama regression

(see Section 3.2.3), which allows us to test for the validity of the UIP within our

data set:

∆kst+k = α + β(FDt,k) + �t+k (4.2)

where ∆kst+k = log(St+k) − log(St), and FDt,k = it,k − i∗t,k.

For UIP to hold, the β coefficient should assume a value of unity. If β is zero,

the exchange rate follows a random walk. We perform a two-sided statistical test

with the following hypotheses:

H0 : β = 0 (random walk) (4.3)

H1 : |β| > 0 (no random walk) (4.4)

The Fama-regressions are estimated for the G10 exchange rates against the

Euro on the whole data sample from the 1st of January 1999 to the 5th of March

2010. In addition, we split the data set into two subsamples which are used to

examine the stability of the coefficients and their behaviour during the recent

credit crisis. The first data subsample begins on the 1st of January 1999 and

ends on the 29th of December 2006, the second data subsample begins on the 5th

of January 2007 and ends on the 5th of March 2010.

The regression results for the whole data set exhibit a negative β coefficient in

6 out of 9 cases (see Table 4.1). Only the EUR/AUD, EUR/NZD and EUR/JPY

currency crosses exhibited positive β coefficients. In no instance the null hy-

pothesis of the exchange rate following a random-walk could be discarded at a

statistically significant level.

In the first data subsample the forward rate bias is even stronger since only

2 out of 9 exchange rates exhibit a positive β coefficient (see Table 4.2). The
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negative β coefficient on the EUR/CHF currency cross was even statistically

significant (p-value of 0.02). On average, on these two data samples the forward

discount predicted the exchange rate change in the wrong direction.

Interestingly these results change dramatically when we consider the most

recent data sample which coincides with the credit crisis. In this case, most

of the beta coefficients were positive and over unity (see Table 4.3). Albeit a

statistically significant positive β could only be found in the case of EUR/NZD,

we note that there has been a tendency for the forward discount to underestimate

the subsequent exchange rate changes during the credit crisis.

Our results are in line with previous academic research which finds that the

forward premium systematically predicts changes in the spot exchange rate in

the wrong direction (see Section 3.2.3). From these results we would intuitively

expect carry trading strategies to be profitable within the whole data set, and that

the period of the credit crisis should produce worse carry trading performances

than the first data subsample.

Currency Pair α Pr(> |tα|) β Pr(> |tβ |)

EUR/USD -4e-04 0.49 -2.41 0.22
EUR/JPY -1e-04 0.95 0.46 0.89
EUR/GBP -0.0016 0.08 -4.36 0.13
EUR/CHF 0.0015 0.06 -4.37 0.08
EUR/CAD 1e-04 0.91 -4.35 0.21
EUR/AUD 9e-04 0.62 1.17 0.77
EUR/NZD 0.0034 0.06 5.47 0.06
EUR/NOK 1e-04 0.89 -0.25 0.86
EUR/SEK -1e-04 0.8 -3.44 0.37

Table 4.1: Fama Regression Results for the Data Set from the 1st of January 1999
to the 5th of March 2010.

Currency Pair α Pr(> |tα|) β Pr(> |tβ |)

EUR/USD -7e-04 0.29 -4.43 0.04
EUR/JPY 5e-04 0.84 -1.68 0.71
EUR/GBP -0.0012 0.27 -4.09 0.19
EUR/CHF 0.0023 0.03 -7.27 0.02
EUR/CAD -4e-04 0.58 -6.66 0.09
EUR/AUD 5e-04 0.79 0.33 0.93
EUR/NZD 0.0019 0.29 2.75 0.35
EUR/NOK -2e-04 0.79 -0.93 0.47
EUR/SEK 0 0.95 -3.85 0.23

Table 4.2: Fama Regression Results for the Data Set from the 1st of January 1999
to the 29th of December 2006.
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Currency Pair α Pr(> |tα|) β Pr(> |tβ |)

EUR/USD -4e-04 0.71 5.48 0.27
EUR/JPY -5e-04 0.89 4.39 0.49
EUR/GBP -0.0016 0.37 0.92 0.91
EUR/CHF 0.001 0.49 -1.53 0.74
EUR/CAD 5e-04 0.7 1.23 0.91
EUR/AUD 0.0092 0.37 16.51 0.39
EUR/NZD 0.0126 0.03 19.46 0.02
EUR/NOK 0.0035 0.16 12.45 0.14
EUR/SEK -4e-04 0.7 1.24 0.94

Table 4.3: Fama Regression Results for the Data Set from the 1st of January 2007
to the 5th of March 2010.

4.4 Methodology

In the following we will outline the simple and optimised asset allocation method-

ologies for constructing FX carry portfolios (Section 4.4.1 and Section 4.4.2). The

historical and RiskMetrics estimators for the variance-covariance matrix will be

outlined in Section 4.4.3. Finally, we will introduce statistical regressions for de-

termining the potential of the asset allocation algorithms to generate carry-alpha

(Section 4.4.4).

4.4.1 Simple Scorecard-based Asset Allocation

As described by Rosenberg [2003], the simple scorecard-based asset allocation

algorithm assumes long and short positions in currencies based on the ranking

of specific variables associated with the currencies. In the case of a standard FX

carry portfolio, these variables would be interest rates of the same maturity for

each currency.

After ranking the currencies based on the variable of choice, the algorithm

takes long positions in the highest-ranked N currencies and short positions in

the lowest-ranked N currencies (see Rosenberg [2003]). The portfolio weights

of the resulting N cross-currency positions are equally weighted with w = 1
N

.

In the following section equally weighted carry portfolio strategies are tested for

N = 1, 2, 3, 4.

4.4.2 Mean-Variance Optimised Asset Allocation

The basic assumption behind the mean-variance optimised currency portfolios is

that exchange rates follow a random walk (see Hochradl and Wagner [2010], Ellis

and Jiltsov [2004]). This assumption is in line with academic literature which
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finds that the best model for explaining exchange rate movements is indeed the

random-walk model (see Meese and Rogoff [1983a] and Meese and Rogoff [1983b]).

The random walk model for the log-levels is given by Equation 4.5:

st+k = st + �t+k (4.5)

Where �t+k is a disturbance term with E[�t+k] = 0. The expected exchange

rate in k periods would then be:

se
t+k = st (4.6)

Using Equation 4.6 and equation Equation 3.1, the expected excess return

of a foreign exchange position under the random walk assumption is the inter-

est rate differential between the foreign currency and the home currency (see

Equation 4.7).

re
t+k = se

t+k − st − (it,k − i∗t,k) (4.7)

= i∗t,k − it,k (4.8)

Following these assumptions, for a euro-based investor, the expected return of

each single currency is thus given by its interest rate differential to the Euro. In

our G10 currency portfolios the vector of expected returns re is a (10× 1) vector

composed of the interest rate differential for each G10 currency to the Euro:

re =
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(4.9)

For a given set of portfolio weights wP , also a (10 × 1) vector, the expected

return of the portfolio rP can be computed according to Equation 4.10.
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rP = wT re (4.10)

The expected volatility of a portfolio of assets can be computed by Equa-

tion 4.11.

σ2
P = wTΣrrw (4.11)

Where Σrr is the estimated variance-covariance matrix (10×10) of the returns

of the G10 currencies quoted against an auxiliary numeraire good (i.e. gold). We

introduced gold as a numeraire, in order to more elegantly align currency perfor-

mances with the yields in all 10 economies of the G10 currency basket. Moreover,

the introduction of the numeraire allows us to impose homogeneous restrictions

on all currencies, as long as the restriction of wT1 = 0 holds. This restriction

ensures that the performance of the numeraire does not affect the performance

of the FX carry portfolios. If the portfolios were backtested against a base cur-

rency, the sum of the weights would correspond to the negative exposure of the

base currency. In order to treat that base currency like the other 9 currencies at

least two restrictions specifying the upper and the lower bounds of the sum of

the weights (i.e. of the negative exposure to the base currency) would need to be

set, which is arguably a less elegant solution.

The mean-variance portfolio selection algorithm computes the optimal vector

of weights w∗
P for a currency portfolio, s.t. the portfolio variance is minimised

given a specific level of portfolio return. Since minimising portfolio variance is

equivalent to minimising the portfolio standard deviation, the algorithm is ef-

fectively maximising the Sharpe ratio of the portfolio. We impose an additional

restriction on the portfolio weights, which states that the sum of the portfolio

weights has to net out to zero. This restriction ensures the typical self-financing

character of foreign exchange positions, since the exposure to the auxiliary nu-

meraire good gold is set to null. This portfolio selection problem can be expressed

mathematically as:

min
w

σ2
P = wTΣrrw , (4.12)

s.t.

rP = wT re = r̃ , (4.13)
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and

wT1 = 0. (4.14)

We calculate the solution via a quadratic programming solver, as implemented

by Würtz et al. [2009].

We set r̃ to an arbitrary small and positive value. The value of r̃ in each

period t is set at one tenth the value of the accrued carry of the simple G10 FX

carry portfolio with 3 long and 3 short positions. Now, given this target return

the weights are calculated such that the portfolio variance is minimised according

to Equation 4.12, s.t. Equation 4.13 and Equation 4.14 hold. This is equivalent

to maximising the Sharpe ratio for that given level of return is maximised. The

portfolio weights are subsequently rescaled in order to achieve constant long and

short exposures of 1 (i.e. 100 percent of capital).

Discusion of the Mean-Variance Approach in this Context Although

the mean-variance optimisation techniques implemented by Hochradl and Wag-

ner [2010] and Ellis and Jiltsov [2004] to optimise FX carry portfolios offer a sim-

ple framework to address the question of how to best diversify carry portfolios,

they do also entail several drawbacks when used for practical portfolio manage-

ment. Most prominently, important caveats of the mean-variance methodology

are: High sensitivity to estimation error in the input parameters (see e.g. Black

and Litterman [1992], Michaud [1989]), the fact that the distributional assump-

tion does not match stylized facts of financial returns (see e.g. Jondeau and

Rockinger [2005], Cont [2001]), the objective function which is arguably inappro-

priate (see e.g. Scott and Horvath [1980] and Bernartzi and Thaler [1995]) and

the assumption of a single period model is not realistic (see e.g. Rotando and

Thorp [1992]).

Michaud [1989] noted that wrong estimation of the models inputs (µ and σ)

leads to suboptimal portfolio allocations, and called mean-variance optimisers

error-maximisers. Following Jorion [1986], unconstrained mean-variance port-

folios tend to strongly overweight assets with high expected returns. Michaud

[1989] postulated, that especially those assets with the highest expected returns

exhibit large estimation errors. While also the variance-covariance matrix consti-

tutes a source of estimation error, its impact on the result of the mean variance

optimisation is somewhat smaller than the effect of errors in the expected returns

vector (see Chopra and Ziemba [1993]).
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The predictability of stock market returns has been a challenge to market

practitioners and financial economists for a long time. While numerous stud-

ies have proposed successful financial forecasting methodologies 2, other studies

question these results (see e.g. Nelson and Kim [1993] and Staumbaugh [1999])

and raise doubts on the evidence of predictability of financial returns, since out-

of-sample forecasts have often performed worse than a random walk model (see

Meese and Rogoff [1983a]). Thus, most attempts to predict returns fail to dis-

prove the Efficient Market Hytpothesis EMH.3 As Michaud [1989] stated though,

errors in the estimation of the means will significantly distort the output of the

mean-variance optimisation. A possible remedy to this problem is to completely

renounce to the need of formulating the expected returns as input to the op-

timisation process altogether, by e.g. computing minimum variance portfolios

which require only the variance-covariance matrix as an input (see Amenc and

Martellini [2002]). An alternative solution to this problem is provided by the

Black-Litterman methodology. The Black-Litterman methodology reduces the

impact of erroneous return estimates on the returns vector by setting a stable

prior which is then updated with individual return forecast while accounting for

estimation errors within these (see Black and Litterman [1992]).

In our empirical research, we only implicitly estimate FX returns by setting

the expected return on a currency position equal to its interest rate. This is de

facto equivalent to assuming a random walk for the FX spot rates, an empiri-

cal observation well documented throughout the UIP and FRB literature (see

Section 3.2.3). These return estimates offer intertemporaly stable estimations,

resulting in smooth portfolio weights, reducing turnover and therefore keeping

transactions costs low.

The second essential input to mean variance optimisation consists of the

variance-covariance matrix σ. Difficulties in the estimation of this input include

the curse of dimensionality when estimating model parameters and the danger of

getting non-positive semi-definite matrices (see e.g. Engle [2002]). As the num-

ber of assets increases, the number of parameters which have to be estimated

increases at least quadratically (see Engle and Sheppard [2009]). Numerous ap-

2See e.g. Dempster and Jones [2001], Lyons [2006], Zimmermann et al. [2006] and Dunis
et al. [2010], just to name a few.

3The EMH states that in an efficient financial market it is not possible to predict financial
returns with any satisfactory degree of accuracy, since all relevant information is immedeately
reflected in the price of the assets (see also Section 3.2.1).
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proaches for addressing these problems have been proposed in literature.4 A good

overview on the methodologies is provided by e.g. Engle and Sheppard [2009],

Engle and Kroner [1995] and Palandri [2009].

While some studies find economical value in optimizing portfolios with more

complex estimators for the VCV matrix (see Engle and Sheppard [2009]), oth-

ers find that the additional complexity associated with selecting and estimating a

specific multivariate VCV estimator is not remunerated by significantly enhanced

statistical and economic performance. West and Cho [1999] found that GARCH

models did not significantly outperform the equally weighted standard deviation

estimates in out-of-sample forecasts, except for very short time horizons. The

RiskMetrics technical document (see Zangari and Longerstaey [1996]) demon-

strates that the dynamics of the exponential model’s forecasts closely mimic

those produced by the GARCH(1,1) model. Suganuma [2000] applies White’s

Bootstrap Reality Check (see White [2000]) to the problem of selecting the best

volatility model, testing rolling window, EWMA, GARCH and stochastic volatil-

ity models and finds that no model consistently outperforms the benchmark

methodology defined as the exponentially weighted moving average EWMA with

decay factor λ = 0.94 for daily returns.

For our practical investigation of FX carry portfolios we thus decide to limit

our tests to two naive VCV matrix estimators, namely the simple historical VCV

estimator and the EWMA RiskMetrics estimator, which we will outline in the

following section.

4.4.3 Variance-Covariance Matrix Estimators

Having a clearly defined vector of expected returns for the mean-variance optimi-

sation (see Equation 4.9), the question arises whether the estimation methodology

of the variance-covariance matrix has a substantial effect on the profitability of

the optimised carry trading portfolios.

The variance-covariance matrix at time t, Σrr,t, is composed of all variances

σ2
ii,t and covariances σ2

ij,t of returns of the n (in our case n = 10) currencies in the

carry portfolio versus gold:

4E.g. Constant Conditional Correlations and Dynamical Conditional Correlations (see Engle
[2002]), Orthogonal GARCH (see Alexander [2000]), BEKK (see Engle and Kroner [1995])
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We examine the performance of mean-variance optimised carry portfolios

based on two different methodologies for the estimation of the variance-covariance

matrix. These methodologies are historical VCV matrix estimation, and exponen-

tial smoothing VCV matrix estimation as advocated by Zangari and Longerstaey

[1996]. Both methodologies are briefly outlined below. We maintain the assump-

tion of the exchange rate following a random walk, thus the mean return can

be omitted from the traditional formulas for the calculation of the variances and

covariances.

The estimation of both VCV matrices is performed on a rolling basis with a

fixed starting point on the 16th of January 1998. The first available data window

starts on the 16th of January 1998 and ends on the 1st of January 1999 (50 weekly

observations). This data window is sequentially expanded in order to include all

available data on each estimation date.

Historical Variance-Covariance Matrix The historical estimation of the

variance σ2
ii of the returns r of a currency i is calculated according to the following

formula:

σ2
ii(t+1|t,n) =

1

n − 1

n−1
�

k=0

r2
i(t−k) (4.16)

The variances of all currencies in the currency portfolio lie on the diagonal of

the variance-covariance matrix. The off-diagonal elements, which correspond to

the covariances between the returns of two currencies, are calculated according

to Equation 4.17.

σ2
ij(t+1|t,n) =

1

n − 1

n−1
�

k=0

ri(t−k)rj(t−k) (4.17)

Conditional Variance-Covariance Matrix: RiskMetrics Exponential

Smoothing A further simple forecasting method which can be applied for the

estimation of the variances and covariances is exponential smoothing. Exponen-

tial smoothing models can be seen as a special case of the GARCH model of
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Bollerslev [1986] with a pre-determined smoothing parameter α. Volatility is

then estimated using the following formula:

σ2
ij(t+1|t,α) = ασ2

(t|t−1) + (1 − α) (ri,trj,t) (4.18)

High values of α would generate a more responsive and rougher behaviour

in the volatility estimate and low values of α give less responsive and smoother

volatility estimates. As suggested by Zangari and Longerstaey [1996], we set the

smoothing parameter α to 0.97.

4.4.4 Statistical Test for Carry-Alpha

After simulating the performance of the currency portfolios, we test whether they

exhibit a statistically significant ability to generate carry-alpha (see Section 4.2).

Following recent research on FX hedge funds performance attribution (see Pojar-

liev and Levich [2008]), we estimate a factor model of the form:

Rt = α + βFt + �t (4.19)

where Rt is the excess return generated by the relevant currency portfolio

strategy, Ft is the return generated by the Benchmark FX Carry Portfolio, β is a

coefficient or factor loading that measures the sensitivity of the strategy returns

to the FX carry benchmark, α is a measure of return associated purely to the

specific portfolio strategy and � is a random error term. Statistically significant

positive values of the α-intercept would signal the potential of the specific asset

allocation methodology to outperform the FX carry benchmark.

The returns to the Benchmark FX Carry Portfolio Ft are computed by simu-

lating the returns of a currency portfolio based on the allocation algorithm of the

Currency Harvest Index by Deutsche Bank (see Section 3.1.2). In Appendix A we

discuss the methodology and performance of our Benchmark FX Carry Portfolio

in more detail.
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4.5 Empirical Results

4.5.1 Discussion of the FX Carry Portfolio Asset Alloca-

tion Performances

In this chapter we simulated the trading performance of three classes of G10

currency portfolios aimed at trading the FX carry theme. With the first set

of currency portfolios we examine the performance of different asset allocation

methodologies for implementing FX carry portfolios. With the second set of

currency portfolios we will analyse the results of selecting the currencies according

to yields of different durations. Finally, the third set of currency portfolios is

constructed in order to follow the portfolio flows of FX carry traders.

Table 4.4 summarises performance metrics and return attribution measures

for the three different classes of currency portfolios. The first column of Ta-

ble 4.4 describes the criterion after which the G10 currencies are ranked (see

Section 4.4.1). In the case of the optimised asset allocation strategies, the ’Cri-

terion’ -column represents the source for the vector of expected returns (see Sec-

tion 4.4.2). The second column (’Allocation’ ) of Table 4.4 describes the utilised

asset allocation methodology (i.e. simple or optimised). In the third and fourth

columns the annualised arithmetic return ra and the Sharpe ratio SR are listed

for each currency portfolio. The last three columns of Table 4.4 allow to identify

the source of the strategy total returns listed in the ra-column: ra
FX represents the

annualised arithmetic returns generated from FX movements, ra
Y D the annualised

arithmetic return generated from yield pickup and ra
TC represent the annualised

transactions costs in percent.

Figure 4.1 depicts the cumulative performances of the three classes of currency

portfolios related to the FX carry trade. Table 4.5 summarises the regression

results of the factor model testing for the ability of the portfolio algorithms to

outperform the FX carry trade proxy.

In the following we will discuss the empirical results of backtesting these three

classes of currency portfolios.

1st Set of FX Portfolios: Asset Allocation Algorithms A key result

which emerges from the asset allocation backtests is that FX carry portfolios

benefit from portfolio diversification. This becomes evident when looking at the

Sharpe ratios of the different strategies in Table 4.4: The simple strategy with
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Figure 4.1: Cumulative Returns of the Asset Allocation Models based on the FX
Carry Trade (PANEL A: Different Asset Allocation Algorithms; PANEL B: Vary-
ing Yield Durations as Allocation Criteria; PANEL C: 2-Year Yield Momentum
as Allocation Criteria)
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Criterion Allocation ra SR ra
FX ra

Y D ra
TC

1-Week Yields Simple 1-1 0.0593 0.38 0.0009 0.0630 -0.0047
1-Week Yields Simple 2-2 0.0595 0.49 0.0109 0.0517 -0.0031
1-Week Yields Simple 3-3 0.0651 0.67 0.0255 0.0426 -0.0030
1-Week Yields Simple 4-4 0.0419 0.52 0.0105 0.0349 -0.0035
1-Week Yields Opt. (Hist.) 0.0284 0.61 0.0052 0.0283 -0.0051
1-Week Yields Opt. (RiskM.) 0.0320 0.73 0.0104 0.0282 -0.0066
1-Week Yields Simple 3-3 0.0651 0.67 0.0255 0.0426 -0.0030
1-Month Yields Simple 3-3 0.0610 0.64 0.0206 0.0426 -0.0021
3-Month Yields Simple 3-3 0.0561 0.60 0.0158 0.0424 -0.0020
2-Year Yields Simple 3-3 0.0532 0.51 0.0148 0.0418 -0.0033
10-Year Yields Simple 3-3 0.0526 0.53 0.0162 0.0402 -0.0037
Yields Mom. (1) Simple 3-3 -0.0389 -0.57 0.0314 -0.0021 -0.0681
Yields Mom. (4) Simple 3-3 -0.0125 -0.17 0.0262 -0.0021 -0.0365
Yields Mom. (8) Simple 3-3 0.0154 0.19 0.0426 -0.0019 -0.0253
Yields Mom. (12) Simple 3-3 0.0108 0.14 0.0320 -0.0011 -0.0201
Yields Mom. (26) Simple 3-3 0.0157 0.18 0.0280 0.0010 -0.0133
Yields Mom. (52) Simple 3-3 0.0247 0.29 0.0291 0.0048 -0.0092

Table 4.4: Performance Metrics of the Asset Allocation Models for FX Carry Port-
folios ( ra: Annualised Arithmetic Return, SR: Sharpe Ratio, ra

FX : Annualised
Return from FX Movements, ra

Y D: Annualised Return from Yield Differentials,
ra
TC : Annualised Return from Transactions Costs)

Criterion Allocation α Pr(> |tα|) β Pr(> |tβ |)

1-Week Yields Simple 1-1 -0.0004 0.4439 1.26 0.0000
1-Week Yields Simple 2-2 -0.0003 0.1883 1.18 0.0000
1-Week Yields Simple 3-3 -0.0000 1.0000 1.00 0.0000
1-Week Yields Simple 4-4 -0.0002 0.2126 0.79 0.0000
1-Week Yields Opt. (Hist.) 0.0001 0.5047 0.33 0.0000
1-Week Yields Opt. (RiskM.) 0.0003 0.1448 0.24 0.0000
1-Week Yields Simple 3-3 -0.0000 1.0000 1.00 0.0000
1-Month Yields Simple 3-3 -0.0000 0.5838 0.97 0.0000
3-Month Yields Simple 3-3 -0.0001 0.4366 0.94 0.0000
2-Year Yields Simple 3-3 -0.0003 0.0908 1.03 0.0000
10-Year Yields Simple 3-3 -0.0002 0.4656 0.94 0.0000
Yields Mom. (1) Simple 3-3 -0.0007 0.0722 -0.03 0.3221
Yields Mom. (4) Simple 3-3 -0.0001 0.8645 -0.14 0.0000
Yields Mom. (8) Simple 3-3 0.0005 0.2249 -0.19 0.0000
Yields Mom. (12) Simple 3-3 0.0004 0.3612 -0.16 0.0000
Yields Mom. (26) Simple 3-3 0.0006 0.2360 -0.22 0.0000
Yields Mom. (52) Simple 3-3 0.0008 0.1135 -0.22 0.0000

Table 4.5: Regression Results for the Factor Model Rt = α + βFt + �t (Ft =
Benchmark FX Carry Portfolio Returns, Rt = Portfolio Returns of the Carry
Trade Asset Allocation Strategies).

one long and one short position generates a Sharpe ratio of 0.38; the more di-

versified simple strategy with three long and three short positions generates a

higher Sharpe ratio of 0.67. An explanation for the better risk-adjusted perfor-

mance of the more diversified strategies can be found in Table 4.4. Whereas the

least diversified simple carry portfolios with one and two long and short positions

generate the highest yield pickup (cumulative 6.30% per annum and 5.17% per

annum), their profits from FX movements are relatively small (cumulative 0.09%
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per annum and 1.09% per annum). The higher FX returns generated by the more

diversified strategies compensate for the lower pickup in yield of these strategies.

In addition, the returns of the more diversified carry strategies exhibit a lower

volatility of returns, which is the principal reason behind the higher Sharpe ratios

of these strategies.

A second noteworthy result is that the simple, equally weighted carry portfo-

lios, exhibit higher annualised returns than the optimised carry portfolios. While

the simple strategies generate annualised returns of around 4% per annum to

6.5% per annum, the returns of the optimised portfolios are around 3% per an-

num (see Table 4.4). Nevertheless, the two optimised strategies generate higher

Sharpe ratios (Sharpe ratios of respectively 0.61 and 0.73) than most of the sim-

ple, equally weighted strategies. Only the simple strategy with three long and

three short positions (Sharpe ratio of 0.67) generated a comparable result (see

table Table 4.4).

On the other hand, the results also reveal a negative feature of the optimised

FX carry asset allocation methodologies since they generate higher transactions

costs than the simple carry portfolios (see Table 4.4). These transactions costs

originate in the higher rebalancing frequency inherent to the optimised asset al-

location algorithms.

The results for the regressions testing for the ability of the different asset

allocation algorithms to generate carry-alpha are summarised in Table 4.5. The

regressions show that no asset allocation methodology was able to generate carry-

alpha at a statistically significant level, when compared to the benchmark carry

portfolio strategy (see Appendix A). Notably, the RiskMetrics-optimised carry

portfolio strategy was able to produce returns which were unrelated to the carry-

beta, but the intercept could not be regarded statistically significantly different

from zero at a lower confidence level than 14.48%.

2nd Set of FX Portfolios: Alternative Yield Maturities In Table 4.4

a general pattern can be recognised for the second set of currency portfolios:

The shorter the yields used for the ranking of the currencies in the simple asset

allocation methodology, the better the FX carry portfolio performance. The

portfolios with the shorter yields as allocation criteria exhibit larger annualised

returns ra, as well as higher Sharpe ratios SR. While the portfolio with the

shortest maturity yields as ranking criterion generated a Sharpe ratio of 0.67,
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the currency portfolio with the longest maturity yields as allocation criterion

generated a lower Sharpe ratio of 0.53.

Since the return generated by the carry component ra
Y D is fairly constant in

all six portfolios of this group, the better performance of the portfolios based on

the shorter maturity yields can be attributed the returns generated by the FX

component ra
FX (see Table 4.4).

The regressions testing for carry-alpha reveal that disregarding the maturity of

the yields used for the portfolio construction, the returns are correlated to the FX

carry benchmark; all beta’s are close to unity and highly statistically significant

(see Table 4.5). Also in this case, no portfolio could generate investment-style-

alpha at a statistically significant level.

3rd Set of FX Portfolios: Trading Carry Portfolio Flows The third

set of currency portfolios is computed according to the simple scorecard based

asset allocation methodology described in Section 4.4.1. The allocation criterion

consists in the momentum of the 2-Year yields (see Section 4.3.3) for each of the

currencies in the portfolio. We compare the performance of different lag lengths

for computing the 2-Year yields momentum. The different lag lengths are: 1

(1-Week yield change), 4 (1-Month yield change), 8 (2-Month yield change), 12

(3-Month yield change), 26 (1
2
-Year yield change) and 52 (1-Year yield change).

Figure 4.1 reveals the general tendency, that the performance of the currency

portfolios increases as the lags for compting the yield momentum rise. The per-

formance metrics in Table 4.4 confirm this intuition: The annualised returns ra

exhibit their lowest value of −3.89% per annum in the 1-week yield momentum

portfolio and their highest value of 2.47% per annum in the 52-week yield mo-

mentum portfolio. The Sharpe ratios SR behave analogously, since they exhibit

their lowest value of −0.057 in the 1-week yield momentum portfolio and their

highest value of 0.29 in the 52-week yield momentum portfolio.

When we observe the source of the returns to the carry-flows portfolios in

Table 4.4, we gain further insight into the source of the profits associated to

these portfolios. The carry-flows portfolio profits tend to derive mainly from FX

movements while there is no relevant yield pickup associated with these portfo-

lios. All carry-flows portfolios generate returns from the currency fluctuations

ra
FX ranging between 2.91% per annum and 4.26% per annum, while their carry

return ranges only between −0.21% per annum and 0.48% per annum. The gener-
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ated transactions costs ra
TC generated by implementing these portfolio strategies

are relatively high (0.92% per annum - 6.81% per annum) and rise as the lag

length for the computation of the yield momentum criterion shortens. In all six

yield-momentum based currency portfolios, the transactions costs significantly

influence the overall profitability of the asset allocation strategy.

The regression tests for carry-alpha are summarised in Table 4.5. A further

important feature of the portfolios aimed at exploiting the portfolio flows of carry

traders is the negative beta they exhibit to the carry trade benchmark (the beta

values range from −0.03 to −0.22 in this group of FX portfolios). Also in this

case the portfolios do not exhibit statistically significant ability for carry-alpha

generation. We note that this may be due solely to the effect of the high trans-

actions costs since the p-values decrease with the length of the carry-momentum,

reaching a low value of 0.11 in the case of the portfolios based on the 52-week

yield change.

4.5.2 Additional Considerations

Comprehensive Risk-Adjustments

The portfolios presented in this chapter aim at improving the performance of

the G10 FX carry trade by alternative asset allocation techniques. Thus, the

appropriate benchmark for our approaches is the performance of a simple FX

carry portfolio. As we discussed in Section 3.1.2, a good number of risk factors

other than carry have been proposed for the FX markets. These other risk factors

are: value, momentum and volatility. Considering these additional risk factors,

the question arises whether our FX carry portfolios are outperforming the vanilla

returns because they are loading on some risk factors and thus earning a risk

premium to do so. In order to evaluate this possibility, we have performed addi-

tional factor-regressions for two representative strategies, namely the RiskMetrics

optimised FX carry portfolio and the frontrunning FX carry portfolio with a lag

parameter of 52. For each portfolio we have performed regressions on three dis-

tinct data-ranges, namely the full data-range (January 1999 - March 2010), a

pre-crisis data-range (January 1999 - May 2007) and a post-crisis data-range

(June 2007 - March 2010).

The regression results for the RiskMetrics optimised portfolio are summarised

in Table 4.6 - Table 4.8. The regression results for the representative frontrunning

portfolio are summarised in Table 4.9 - Table 4.11.
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We now analyse the risk-adjustment regression results for the RiskMetrics FX

carry portfolio. As expected the carry-beta factor is positive and highly statis-

tically significant throughout all three data-ranges. Surprisingly though, other

significant risk-factor loadings can be observed. Throughout all three data-ranges

also the value-beta is significantly positive. Additionally, on the pre-crisis data-

range the momentum risk-factor exhibits a statistically significant negative coef-

ficient. Except on the pre-crisis sample the alpha-intercept is negligibly small,

signifying that the RiskMetrics optimised FX carry portfolio is not able to pro-

duce superior returns, when adjusted for common risk factors in the FX markets.

Similar to the results presented in Section 4.5.1, the comprehensive risk-

adjustment regressions for the frontrunning portfolio with a lag parameter of

52 (Table 4.9 - Table 4.11) display a negative loading on the carry-coefficient.

Some of the positive loading that we observed in Table 4.5 on the alpha-intercept

is now taken over by the risk-factors value and momentum: the momentum fac-

tor receives significantly positive factor loadings in the full and post-crisis data-

ranges; the value factor receives a significantly positive loading in the pre-crisis

data-range and a significantly negative loading in the post-crisis data-range.

The results in this section thus outline that the alpha that could be obtained

by optimising the asset allocation of FX carry portfolios is eroded when compre-

hensive risk adjustments are being performed. Thus, by optimising the FX carry

strategy we have effectively loaded on other risk factors.
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Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.36 0.17

Carry 0.27 0.02 14.22 0.00
Momentum -0.03 0.02 -1.57 0.12

Value 0.09 0.01 6.45 0.00
Volatility -0.03 0.04 -0.81 0.42

Table 4.6: Comprehensive Risk-adjustment regression for the RiskMetrics opti-
mised FX carry portfolio (January 1999 - March 2010)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 2.44 0.01

Carry 0.42 0.03 13.38 0.00
Momentum -0.13 0.02 -5.32 0.00

Value 0.08 0.02 3.95 0.00
Volatility -0.07 0.05 -1.40 0.16

Table 4.7: Comprehensive Risk-adjustment regression for the RiskMetrics opti-
mised FX carry portfolio (January 1999 - May 2007)

Estimate Std. Error t value Pr(>|t|)
Intercept -0.00 0.00 -1.14 0.25

Carry 0.21 0.03 6.34 0.00
Momentum -0.02 0.04 -0.37 0.71

Value 0.07 0.03 2.67 0.01
Volatility -0.05 0.07 -0.77 0.44

Table 4.8: Comprehensive Risk-adjustment regression for the RiskMetrics opti-
mised FX carry portfolio (June 2007 - March 2010)
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Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.25 0.21

Carry -0.18 0.04 -4.69 0.00
Momentum 0.36 0.03 12.54 0.00

Value 0.07 0.04 1.91 0.06
Volatility -0.13 0.08 -1.69 0.09

Table 4.9: Comprehensive Risk-adjustment regression for the frontrunning FX
carry portfolio with lag 52 (January 1999 - March 2010)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.34 0.18

Carry -0.13 0.07 -1.75 0.08
Momentum 0.05 0.04 1.24 0.22

Value 0.18 0.06 3.14 0.00
Volatility -0.21 0.12 -1.79 0.07

Table 4.10: Comprehensive Risk-adjustment regression for the frontrunning FX
carry portfolio with lag 52 (January 1999 - May 2007)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 0.44 0.66

Carry -0.12 0.05 -2.59 0.01
Momentum 0.54 0.04 14.49 0.00

Value -0.24 0.06 -3.96 0.00
Volatility -0.07 0.09 -0.78 0.43

Table 4.11: Comprehensive Risk-adjustment regression for the frontrunning FX
carry portfolio with lag 52 (June 2007 - March 2010)

Rolling-Window versus Fixed-Window VCV Estimation

A rolling window estimation of the VCV matrices could be better able to gauge

potential structural changes within the data than an expanding window estima-

tion since old and potentially irrelevant data is not included any more in the

modelling. Therefore, we have also tested the performance of the two optimised

FX carry portfolios based on VCV matrices which are estimated on a rolling fixed

window length of 52 periods. In a first step, we estimated the RiskMetrics VCV

matrix and the historical VCV matrix based on a rolling window with a constant
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window length of 52 weeks. As with the fixed window estimation, our first sample

starts on the 16th of January 1998.

The annualised return, standard deviation and Sharpe ratios for the expanding

and rolling window portfolios are summarised below in Table 4.12. The sensitiv-

ity of the results with respect to a rolling or expanding estimation window vary

based on the nature of the chosen VCV matrix estimator. The performance of

the optimised portfolio based on the RiskMetrics VCV matrix is very insensitive

with respect to the decision of whether to expand the window or roll it. The

differences in performance concerning the annualised return and the annualised

standard deviation are minimal and sharpe ratios are equal at 0.73. Conversely,

we observe a somewhat higher impact on the backtesting results when the VCV

matrix is estimated historically. The returns are slightly higher when the estima-

tion window is rolled (2.87% versus 2.84%) and the standard deviation of returns

is slightly lower when the window is rolled (4.49% versus 4.67%). Consequently

the Sharpe ratio is slightly higher when the estimation window is rolled (0.64

versus 0.61).

These differences are due to the inherent differences on how the two method-

ologies weight historical information. Whereas each observed datapoint impacts

the historical variance estimation with an equal weight, the RiskMetrics variance

estimator will quickly decrease the relevance of older observations.

Ann. Return Ann. St.Deviation Sharpe Ratio

Historical (Fixed Window) 0.0284 0.0467 0.61
Historical (Rolling Window) 0.0287 0.0449 0.64
RiskMetrics (Fixed Window) 0.0320 0.0440 0.73

RiskMetrics (Rolling Window) 0.0322 0.0440 0.73

Table 4.12: Annualised return, annualised standard deviation and Sharpe ratios
of the optimised carry portfolios estimated with an expanding window and a
rolling window of 52 periods.

4.6 Conclusion

As outlined in Section 4.1, a possible explanation for the enduring profitability of

the carry trade is the limits to speculation hypothesis LSH, formulated by Lyons

[2006] (see Section 4.1). The main statement of LSH is that market inefficiencies

whose risk-adjusted returns do not surpass a specific threshold level, could persist
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because of their limitation in attracting speculative capital. Since 5 out of 6

asset allocation algorithms (see Section 4.5) produced Sharpe ratios over the 0.4

threshold proposed by Sarno et al. [2006], we can discard the applicability of

LSH to the FX carry trade. This finding confirms research results from Hochradl

and Wagner [2010]. This result further proves the practical relevance of FX carry

trade strategies for which we already found indications in literature (see Pojarliev

and Levich [2008] and Section 3.3.2)

Also, we can confirm that diversification is beneficial to the trading perfor-

mance of carry portfolios (see Burnside et al. [2006], Hochradl and Wagner [2010]

and Vesilind [2006]). More specifically, we find that mean-variance optimisa-

tion has the potential of outperforming simple equally weighted asset allocation

methodologies in the case of the FX carry trade. However, we show how the mean-

variance asset allocation algorithms are sensitive to the choice of the variance-

covariance matrix used for the optimisation. The RiskMetrics variance-covariance

matrix produced a better Sharpe ratio than the historical variance-covariance ma-

trix (Sharpe ratios of 0.73 against 0.61). We believe that more sophisticated VCV

estimation methodologies, e.g. orthogonal GARCH (see Alexander [2001]), might

further improve the backtesting results of FX carry portfolios. Nevertheless, even

if on average the optimised FX carry portfolios produced better results than the

simple scorecard-based FX carry portfolios, the higher transactions costs and

the degrees of freedom associated with choosing an appropriate VCV matrix es-

timation methodology and its correspondent parameters, make well diversified,

equally weighted carry portfolios seem the best choice in terms of tradeoff be-

tween diversification, performance and robustness. This intuition is confirmed by

the regression results summarised in Table 4.5 which show that the optimised FX

carry portfolios were not able to generate carry-alpha at a statistically significant

level.

Furthermore, this paper examines two alternative approaches for generating

currency portfolios based on the FX carry trade theme.

The first alternative approach consists in allocating the funds according to

yields of a different maturity than the weekly rebalancing frequency. This ap-

proach illustrated that shorter term yields performed best when used for carry

trading. Chinn and Meredith [2005] found that UIP is more likely to be violated

for short maturity bonds than for long maturity bonds. Although our FX carry

portfolios are rebalanced on a weekly basis instead of holding the currencies for
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the whole maturity of the yields used for the ranking algorithm, the findings by

Chinn and Meredith [2005] are reflected in the trading performance of our second

set of FX carry portfolios.

The second alternative FX carry-related asset allocation approach consists in

formulating and testing currency portfolios aimed at following the portfolio flows

caused by FX carry traders in the market. We propose a simple methodology

to implement such a trading strategy by ranking the currencies according to the

momentum of their 2-Year yields and assuming equally weighted long (short)

positions in the highest (lowest) ranked currencies. The assumption behind this

approach is that positive yield changes in a currency tend to attract specula-

tive carry capital, while negative yield changes would encourage carry traders to

sell the respective currency short (see Section 3.3.2). We examined six differ-

ent currency portfolios of this type, each based on a different lag length for the

computation of yield momentum (see Section 4.3.3). Contrary to traditional FX

carry portfolios, these yield-momentum based portfolios were not able to gener-

ate significant returns from the yield component while exhibiting positive returns

from exchange rate movements.

We stress that this positive return from foreign exchange rate movements is

inherent to the aggregated positions of the currency portfolios over time. There-

fore, the predictability of single currencies is only given in certain situations when

the criteria for inclusion in the carry-flows portfolios are met. Thus, our finding

of the predictability of foreign exchange rates in the carry-flows portfolio context

does not conflict with the finding by Meese and Rogoff [1983a] and Meese and

Rogoff [1983b], who stated that the random walk model is the best model for

explaining exchange rate movements.

The high transactions costs generated by the carry-flows portfolios, had a

substantial impact on the final performance of the trading strategies. The best

strategy in the third set of currency portfolios exhibited a Sharpe ratio of just

0.29. According to the LSH hypothesis (see Section 4.1) these relatively low risk-

adjusted returns would not attract significant amounts of speculative capital.

This would mean that the returns inherent to strategies following the portfolio-

flows of FX carry traders will not disappear in the future.

Since the returns to the carry-flows portfolio strategies are linked to buy and

sell pressure on currencies exercised by FX carry traders, we assume that there

might be a correlation between the returns inherent to this type of strategy and
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the amount of speculative capital tied to the FX carry trade. In a market envi-

ronment where no one trades the FX carry trade, the profitable FX fluctuations

inherent to the carry-flows portfolios should cease to exist.

From a portfolio management perspective, the carry-flows portfolios based on

the longer lag lengths (i.e. 8−52 periods) for computing the yield momentums (see

Section 4.3.3) could serve as good diversification vehicles for FX carry portfolios,

since they exhibit positive returns while delivering a negative loading on the FX

carry factor in Equation 4.19 (see Table 4.5).
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Chapter 5

Carry Trade Market Timing

5.1 Introduction

5.1.1 Market Timing

Following Taliaferro [2009], a fund times a market by adjusting its exposure to

the market in advance of significant price action in that market. As an exam-

ple Taliaferro [2009] referred to a fund that times the U.S. equities market by

increasing its market exposure in advance of high aggregate market returns, and

lowering its exposure in advance of low aggregate market returns.

If performed successfully, such market-timing has the potential to earn large

profits. This has been shown, among others, by Shilling [1992] who found that

during the period from 1946 to 1991 speculators could have increased their re-

turns from 11.2% per annum to 19.0% per annum by exiting from the stock

market during the 50 weakest months. Mistakes in market-timing decisions, such

as exiting a profitable market too early may have severe implications as well. As

Brunnermeier and Nagel [2004] showed, hedge funds that did not ride the tech-

nology bubble from 1998 to 2000 suffered large capital outflows, forcing some of

them to liquidate.

Theoretical Feasibility of Market Timing The successful implementa-

tion of market-timing constitutes a particularly difficult task, and it is an open

question whether real-money fund managers possess such market-timing ability

(see Taliaferro [2009]). The theoretical discourse on the feasibility of market-

timing in financial speculation is driven by two contrasting financial paradigms:
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The Efficient Market Hypothesis EMH (see also Section 3.2.1) and Behavioural

Finance.

Under the assumptions of the efficient market hypothesis, capital markets are

efficient and investors rational. Prices reflect all information available to market

participants at a specific point in time, and therefore investors should not be

able to use currently available information to select profitable trades. Hence,

according to the EMH, market-timing should not be feasible.

On the other hand, Behavioural Finance explicitly questions the assumptions

set-up by the EMH, recognising that investors are irrational and are subject to

specific behavioural biases such as overconfidence, information overload, herding,

loss avoidance or anchoring (see Shleifer [2000]). By identifying and exploiting

these behavioural biases, an investor has the possibility to generate excess re-

turns from trading financial markets (see Heidorn and Siragusano [2004]). Thus,

unlike the EMH, Behavioural Finance does not exclude the theoretical feasibility

of market-timing.

Empirical Market Timing Literature An examination of the market-

timing literature shows that different sets of market-timing-rules have been pre-

sented and tested with varying degrees of success. In this area of financial re-

search, the U.S. equity market is the asset-class which received by far the most

attention.

Starting with Sharpe [1975], many early studies were unable to find rules with

the ability to time the market. This lead Clarke et al. [1989] to suggest that even

people who think that it is possible to beat the market through stock selection

seem to think that successful market-timing is impossible.

On the other hand, more recent studies present market-timing strategies and

indicators which had the ability to outperform the market. For example, Shen

[2002] presented simple market-timing strategies which are able to outperform

a buy-and-hold strategy for the S&P 500 Index. The trading simulations are

based on a dataset ranging from 1970 to 2000. Shen [2002] derived the successful

trading rules from spreads between the earnings-to-price ratio of the S&P 500

Index and short term interest rates. He shows that a strategy which exits from

the equity market when the earnings-to-price ratio to interest rates spread is under

a predefined threshold was able to produce superior returns, even after including

transactions costs. Brooks et al. [2005] expanded on the results presented by Shen
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[2002] by focusing on a very long dataset of the S&P 500 Index and a wider range

of market-timing indicators and rules to derive the market exposure in the S&P

500 Index. Brooks et al. [2005] found that all but one of the suggested approaches

were able to beat the buy-and-hold benchmark in risk-adjusted terms. The best

strategy is based on the spread between the earnings-to-price ratio and short term

treasury yields, confirming the results of Shen [2002].

A further study on market-timing strategies is the paper by Faber [2009].

Faber [2009] presented a quantitative market-timing framework based on simple

moving averages. He applied the same methodology for market-timing on the

United States equity market since 1900, and on other diverse and publicly traded

asset class indices including the Morgan Stanley Capital International EAFE In-

dex, the Goldman Sachs Commodity Index, the National Association of Real

Estate Investment Trusts Index and United States government 10-year Treasury

bonds, since 1973. The market-timing model was able to improve risk-adjusted re-

turns on most tested markets. Utilising a monthly system since 1973, an investor

would have been able to avoid being invested during many of the protracted bear

markets in various asset classes. Avoiding these large losses would have resulted

in equity-like returns with bond-like volatility and drawdown.

Market Timing in Real-World Investing Brooks et al. [2005] posed

the question whether real-money portfolio managers are applying market-timing

techniques for the allocation of their assets. He provides qualitative evidence that

fund managers make significant changes to the composition of their portfolios

when they believe that assets they hold are overvalued and could fall in value.

The yearly Quantitative Analysis of Investor Behaviour study by Dalbar Inc.

Dalbar [2010] provided some quantitative evidence concerning the ability of equity

funds to time the market. The study found, that while the S&P 500 Index has

returned 8.20% per annum over a 20 year period ending in December 2009, the

average equity fund investor has earned only 3.17% per annum. These results

suggest that the market-timing ability of fund managers is limited and that an

investor should invest in a broad market index instead of trying to outperform

the market through market-timing techniques. However, the Dalbar study is

based on a wide range of institutional investors and thus it cannot exclude that

individual portfolio managers might possess market-timing ability.

A further investigation on fund managers’ ability to time the market has been

performed by Bollen and Busse [2001]. He found increased evidence for market-
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timing ability of fund managers when analysing the dataset on a daily frequency

instead of a monthly frequency and concludes that fund managers might possess

a better market-timing ability than previously documented in literature.

More recently, Chen and Liang [2006] analysed a data set consisting of the

returns of 221 mutual funds which adopt market-timing strategies. In his in-

vestigations on the market-timing ability of these funds, he found statistically

significant evidence for market-timing ability at both the aggregate and individ-

ual levels. The results also indicate a higher market-timing ability by the funds

during periods of falling equity prices and high volatility.

Evidence for market-timing ability by FX hedge-funds has been found by

Pojarliev and Levich [2008], a more detailed discussion of which can be found in

the subsequent Section 5.1.2.

5.1.2 Foreign Exchange Investment-Style Timing

In Section 3.1 we discussed new benchmarks for currency managers based on the

FX investment-styles carry, momentum, volatility and valuation. These bench-

marks can be tracked at low cost through e.g. ETF’s (see Section 3.1.2). Accord-

ing to Pojarliev and Levich [2008], such a market environment creates the need

for innovative alpha strategies that produce returns which can not be explained

by popular investment-style proxies.

Pojarliev and Levich [2008] showed that professional currency managers have

the ability to generate ’genuine’ alpha, i.e. returns not explicable by typical FX

investment-styles. Further, he investigates whether the alpha generated by these

FX funds comes from successful market-timing activity in any of the major FX

investment-styles. The results indicate that, out of a data sample of 34 FX hedge

funds from 2001 to 2006, about half of the examined funds possessed statistically

significant market-timing ability in one or more of the four major FX investment-

styles.

More specifically

• 3 out of 34 funds (8.82%) were able to time the carry investment-style,

• 7 out of 34 funds (20.56%) were able to time the trend investment-style,

• 3 out of 34 funds (8.82%) were able to time the valuation investment-style,

• 6 out of 34 funds (17.65%) were able to time the volatility investment-style.
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Pojarliev and Levich [2008] concluded that some FX hedge funds possess

market-timing ability. This result raises the question of how these funds actu-

ally perform the investment-style timing. Empirical literature on market-timing

strategies for FX investment-styles is scarce. The issue has been addressed mainly

by Dunis et.al. in a set of research papers (see Dunis and Miao [2005], Miao and

Dunis [2006] and Dunis and Miao [2007]).

Dunis and Miao [2005] studied the returns inherent to technical trading strate-

gies on a set of currency pairs. The trading strategies are based on the MACD

indicator, a popular indicator in technical analysis. Dunis and Miao [2005] found

that the returns of technical trading strategies for individual currency pairs are

related to the volatility regime of the currency pair. More specifically, the tech-

nical strategies exhibited higher returns in periods of relatively low volatility and

lower, often negative, returns during periods of high market volatility. 1

In a subsequent paper, Miao and Dunis [2006] applied volatility-based trading

filters on the AFX Index 2. In addition to the RiskMetrics methodology, some

alternative procedures for the estimation of the FX volatility are used. The two al-

ternative volatility forecast models used in Miao and Dunis [2006] are the GARCH

model and a stochastic volatility model with Markov switching. Similarly to Du-

nis and Miao [2005], the returns inherent to the FX trend investment-style are

negatively related to FX market volatility. Trading filters based on FX volatility

proxies improve the returns to the AFX Index in risk-adjusted terms. Further,

the results indicate that the alternative volatility models fail to improve the per-

formance of the RiskMetrics volatility model, when used as switching filters for

trading the FX momentum investment-style.

Dunis and Miao [2007] examined the performance of returns to the FX carry

trade during different regimes of (RiskMetrics) FX volatility. Dunis and Miao

[2007] found that, similarly to the case of momentum strategies, FX carry trade

returns deteriorate during periods of high FX market volatility. Subsequently,

Dunis and Miao [2007] applied the market-timing methodology proposed in Miao

and Dunis [2006] to the FX carry trade. The results indicate that the addition of

volatility filters for FX carry trading produces better risk-adjusted returns than

trading a long-only carry portfolio: While the long-only carry strategy produced

1Dunis and Miao [2005] calculated the FX volatility proxy via the RiskMetrics methodology
(see Section 4.4.3).

2The AFX Index constitutes a proxy for the momentum investment-style in the FX market
(see Section 3.1.2).
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a sharpe ratio of 1.04 from January 1999 to March 2005, the market-timed carry

strategies produced sharpe ratios of 1.37 in the case of the long-neutral filter, and

1.43 in the case of the long-short filter.

5.1.3 Market Timing Indicators for FX Carry Portfolios

Market-timing rules usually build on empirical findings of the ability of certain

indicators to predict future market performance. The literature has identified

many useful indicators for timing the equities markets. Examples for these in-

dicators are the earnings-to-price ratio, the dividend yield, the dividend-payout

ratio, the maturity spread and the credit spread and the gilt-equity yield ratio

(see Neuhierl and Schlusche [2009]).

Since our purpose is to study the performance of market-timing the FX carry

trade, we would like to utilise market-timing indicators which are more specific

to the FX markets and the FX carry trade. Apart from Dunis and Miao [2005],

Miao and Dunis [2006] and Dunis and Miao [2007], which proposed the use of

RiskMetrics FX market volatility as a timing-indicator for FX investment strate-

gies, we are not aware of any published academic research on the market-timing

of FX trading styles.

Nevertheless, we are able to identify some data categories which could provide

useful market-timing indicators for the FX carry trade. The data categories from

which we will choose the indicators used for the empirical research in Section 5.5

are:

• Volatility

• Liquidity

• FX Yield Differentials

• Aggregate Risk-Aversion Indicators

In the following, we will briefly discuss these indicator categories. In Sec-

tion 5.3 we will choose and present specific market-timing indicators from these

categories.

Volatility We expect periods of high global volatility to coincide with weak

FX carry trade performances and vice versa. The reason for this is that periods of

high market volatility often occur during periods of financial turmoil (see Whaley
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[2000]). Such market environments are negative for the FX carry trade (see

Section 3.3.3).

We find evidence in literature for volatility as a successful indicator for FX

carry trade returns. Carins and McCauley [2007] found indications for a re-

lationship between increases in the VIX3 and depreciation of the USD against

the JPY, a major carry trading currency pair during the period under examina-

tion. Menkhoff et al. [2009] found a statistically significant negative relationship

between the returns of high yielding currencies and global volatility levels. Simi-

larly, Vistesen [2009] found that low yielding currencies (the JPY and CHF) can

be successfully modelled as a negative function of equity returns and a positive

function of volatility in the market. carry trade strategies would suffer from these

scenarios. Furthermore, as discussed in Section 5.1.2, Miao and Dunis [2006] and

Dunis and Miao [2007] have shown that proxies for FX market volatility can serve

as successful market-timing filters for the trend investment-style and the carry

investment-style.

Liquidity We expect FX carry trade performance to deteriorate during pe-

riods of low market liquidity. As in the case of high aggregate market volatility,

periods of low liquidity tend to coincide with financial market turmoil and investor

uncertainty (see Allen and Carletti [2008]), which are bad market conditions for

carry trading strategies.

This rationale is confirmed by Menkhoff et al. [2009], who showed that liq-

uidity risk matters for excess returns to the FX carry trade, although to a lesser

extent than volatility.

FX Yield Differentials The motivation behind using yield differentials as

timing factors for FX carry portfolios is based upon the observation that foreign

exchange rate portfolio flows are statistically significantly related to measures of

carry trade attractiveness like e.g. the yield differentials on currency positions

(see Galati et al. [2007b] or 3.3.2). This observation means that currency investors

would tend to hold larger amounts of currency, as the possibility to generate a

pickup in yields rises. Thus, using yield differentials as a timing factor for FX

carry trades can constitute a very simplistic model of the observed behavior of

FX portfolio managers which drives foreign exchange rate transactions.

3See Section 5.3.2.
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Market timing FX carry portfolios based on the level of the earned yield differ-

entials aims at frontrunning the empirically observed behavior of FX speculators,

thus opening up the opportunity for capitalising on the price fluctuations induced

by the buying and selling pressures of the FX maket participants. To our knowl-

edge, no research on the profitability of FX carry trade timing with this indicator

has been performed.

Aggregate Risk-Aversion Indicators Several authors have expressed the

idea that constructing indices that track the general risk-aversion in the markets

could be useful for timing FX carry trades (see Rosenberg [2003] or Vesilind

[2006]). Such approaches are also popular in quantitative research publications in

the financial industry, which markets them as profitable market-timing indicators

for FX strategies. For a more extensive discussion of aggregated risk aversion

indicators used in the financial industry we refer to Bundesbank [2005].

Despite the interest shown, we stress that up to this point academia has pro-

vided no evidence for the profitability of rules based on these indicators. Vesilind

[2006] mentioned that his attempts to construct and use an aggregate risk appetite

index for timing the FX carry trade, did not improve the cumulative performance

of the strategy. Vesilind [2006] failed to provide the methodology and empirical

results behind his conclusion.

5.2 Contributions

In the remainder of this chapter we continue our empirical investigation on quan-

titative methodologies for trading FX carry portfolios. The central research ques-

tion which we pose here asks whether market-timing signals based on a variety of

risk factors (see Section 5.1.3) are suitable for actively trading FX carry portfo-

lios. The market-timing signals which determine when to take a long, neutral or

short position in the FX carry trade are computed using a simple signal genera-

tion methodology (see Section 5.4.1) in order to keep the results transparent and

replicable. To our knowledge, except in Dunis and Miao [2007], such a treatment

of the FX carry investment-style as an underlying financial instrument in its own

right has not been performed before. Thus, this chapter contributes to the lim-

ited body of literature on market-timing strategies for FX investment-styles (see

Section 5.1.2).

As Pojarliev and Levich [2008] showed, active trading of FX investment-styles
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is being performed by a good number of FX hedge funds. This is is not surprising,

since the possibility of low-cost replication of FX hedge fund returns makes the

service of professional (and expensive) FX managers seem useless, if they do

not deliver currency alpha as understood by Pojarliev and Levich [2008]. The

research performed in the following sections therefore contributes to the research

on modern FX hedge fund strategies which still have to be uncovered.

Furthermore, our analysis may deliver new insights into the mechanics of the

forward rate bias, which is directly linked to FX carry trade returns. Recent

literature on the drivers of carry trade profits studies the relationship between

risk factors and carry trade returns by fitting linear regressions and searching for

statistically significant coefficients (see Section 3.3.4). In contrast to that line of

research, we choose to assess the relevance of the risk factors for FX carry trade

returns by evaluating the financial performance metrics of market-timed FX carry

portfolios.

The logic behind the construction of the market timed trading rule is analo-

geous to the logic behind the perceptron which constitutes the smalles unit of an

artificial neural network (see e.g. Zimmermann and Rehkugler [1994] and Grimm

[1997]). Like the market timing filter, a perceptron receives a set of inputs and

outputs a transformed version of these inputs. Mostly the output of a percep-

tron consists of binary data which is calculated depending on whether the input

surpasses a given threshold level or not. Perceptrons represent the most basic

version of artificial neural networks, whose strength lies in their capability to

approximate highly dimensional and nonlinear functions. Thus, a successful (i.e.

profit-enhancing) application of a market-timing rule would signal the presence

of a nonlinear relationship between the specific risk factor and the strength of the

forward rate bias. We note that other approaches which are able to model and

capture nonlinear dynamics have been presented in financial research. Exam-

ples for these models are Feedforward and Recurrent Neural Networks, Markov

Switching models, Threshold Autoregression models and Smooth Transition Au-

toregression models, just to name a few. We refer to Mills and Markellos [2008]

for a survey on nonlinear time series analysis in financial economics.

In addition to the financial performance evaluation metrics, we will test the

presented trading-strategies for carry-alpha generation and market-timing ability

(see Section 5.4.2).
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5.3 Data

In order to test the performance of market-timed FX carry portfolios we require

a set of data series specific to the Benchmark FX Carry Portfolio, as well as a

set of risk-indicators.

Our data set starts on the 01.01.1999 and ends on the 05.03.2010. Since we lose

50 observations for the calculation of the market-timing signals (see Section 5.4.1),

the backtesting period for the portfolios in this chapter starts on the 10.12.1999

and ends on the 05.03.2010 (534 weekly observations). In the following sections

we describe the relevant datasets for the empirical analyses conducted in this

chapter.

5.3.1 The Benchmark FX Carry Portfolio

The starting point for the analysis of our market-timing algorithms is the Bench-

mark FX Carry Portfolio. Details concerning the raw data sources, the method-

ology and the performance of the Benchmark FX Carry Portfolio are outlined in

Appendix A.

The portfolio yield differentials inherent to the Benchmark FX Carry Portfolio

(see Section A.5), as well as the RiskMetrics conditional volatility estimates of this

portfolio (see Section A.5) will serve as inputs to the market-timing methodology

described in Section 5.4.1.

5.3.2 Carry Timing Indicators

In the following paragraphs, we provide an overview of the financial time series

which will be used to construct the market-timing signals for actively trading

the FX carry trade. A visual representation of these time series is given in the

left-hand-side of Figure 5.1.

VIX (CBOE S&P 500 Volatility Index) The VIX is an index of the

expected return volatility of the S&P 500 Index over the next 30 days (see Wha-

ley [2008]). The values of the VIX are calculated in real-time by the Chicago

Board Options Exchange. The quoting methodology is analogous to the pricing

of variance swaps (see CBOE [2009]), using prices from different traded options

on the S&P 500 Index to determine the expected return volatility.
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The VIX is sometimes called ’the fear gauge’ by the financial industry, since

it is often used to represent equity market volatility as well as risk aversion (see

Lustig et al. [2008] and Whaley [2000]). As discussed in Section 5.1.3, we would

expect high values of the VIX to signal negative periods for the FX carry trade.

CarryVola (Benchmark FX Carry Portfolio RiskMetrics Volatility)

We compute the RiskMetrics volatility on the Benchmark FX Carry Portfolio

(see Section A.5) as a proxy for FX market volatility specific to the FX carry

trade. As shown by Dunis and Miao [2007], we expect high values of FX market

volatility to coincide with periods of negative carry performance.

USSP2 (2-Year U.S. Swap Spread) The 2-Year U.S. Swap Spread de-

notes the difference between the 2-year swap rate and the yield on a government

bond with 2-year maturity (see Cortes).

Possible interpretations of swap spread dynamics range from an indicator of

systemic risk in the banking sector to an indicator for credit and/or liquidity

risk (see Kobor et al. [2005]). A study by Huang et al. [2002] agreed with the

prevailing view among swap traders that swap spreads are mainly an indicator of

market liquidity risk. Therefore, as discussed in Section 5.1.3, we would expect

high values of the 2-Year U.S. Swap Spread to signal negative periods for the FX

Carrry Trade.

TEDSP (Ted Spread) The Ted Spread is is defined as the interest rate

difference between 3-month Libor and 3-month T-bill rates (see Menkhoff et al.

[2009]).

Differences between these rates reflect, among other things, the willingness

of banks to provide funding in the interbank market: When the TED Spread

increases, that is a sign that lenders believe the risk of default on interbank loans

is increasing. Interbank lenders therefore demand a higher rate of interest, or

accept lower returns on safe investments such as T-bills. When the risk of bank

defaults is considered to be decreasing, the TED spread decreases. The TED

Spread can be interpreted as a measure for illiquidity in global money markets

(see Brunnermeier et al. [2008] and Menkhoff et al. [2009]). Again, as discussed

in Section 5.1.3, as with the swap spread we would therefore expect high values

of the TED Spread to signal negative periods for the carry trade.
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CarryYield (Benchmark FX Carry Portfolio Yield Differential) The

overall yield differential of the FX positions in the Benchmark FX Carry Portfo-

lio (see Section A.5) is used to proxy the attractiveness of setting up diversified

carry trades, as far as the pure carry component is concerned. We expect high

interest rate differentials to be beneficial to carry trading strategies, since they

allow for larger FX drawdowns before generating an overall loss to the FX carry

Portfolio.4

5.4 Methodology

In the following sections the methodology for the derivation of market-timing

rules and statistical tests for market-timing ability are presented.

5.4.1 Market-Timing Rules

We employ and compare 3 different sets of market-timing rules:

• Simple An approach based on the methodologies proposed by Brooks et al.

[2005] and Dunis and Miao [2007], utilising the risk indicators described

above.

• Average An approach based on the average market-timing signal derived

from the first approach.

• Majority An approach based on the majority vote market-timing signal

derived from the first approach.

In the following paragraphs these methodologies for market-timing rule cre-

ation are presented in more detail.

Simple The simple market-timing algorithm, is derived from the method-

ologies proposed by Brooks et al. [2005] and Dunis and Miao [2007].

Brooks et al. [2005] exited the market, when the relevant risk indicator value

is over its historical 90th percentile. Instead of calculating the value of the 90th

percentile in each week, we have chosen to calculate the p-values φI of the specific

4Note that in the subsequent analyses we invert the value of the CarryYield indicator to
be congruent with the other indicators (s.t. high values have a negative influence on FX carry
trades).
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risk indicator I. The p-value indicates the percentage of values which historically

have been smaller than the actual value of a specific time series. As an example,

a p-value of 0.65, indicates that on that particular week the specific indicator

is larger than 65% of its historical realisations. The rolling p-values for all risk

indicators used in this chapter are depicted in Figure 5.1.

Analogous to Dunis and Miao [2007] we test 2 different filter rule settings,

i.e. long-neutral and long-short. In the long-neutral setting, the possible market

positions for the FX carry trade Strategy are either long or neutral. In the

long-short setting, long as well as short positions in the FX carry trade can be

assumed. Computationally we specify [long/neutral/short ] positions with the

identifiers [1/0/ − 1].

In order to calculate a simple market-timing signal, the following parameters

have to be set once:

• Select the relevant risk indicator I (e.g., I = V IX)

• Set the p-value φI threshold level L (e.g., L = 0.7)

• Set the filter-rule setting (long-neutral or long-short)

Subsequently, the following calculations have to be performed each week (t =

50, ...., T ) on a rolling basis, to ensure the real-time character of the trading

simulations. Note that the first data window contains 50 observations. Each week

the dataset on which the p-value calculations are based will expand to include

every observation starting from the 01.01.1999 and ending on the respective date

in the rolling procedure.

1. Calculate the actual p-value pI
t

2. Calculate the actual market position MP I
t :

MP I
t =



















1, if φI
t <= L

0, if φI
t > L and long-neutral setting

−1, if φI
t > L and long-short setting

(5.1)

Throughout the calculations, we arbitrarily set the threshold L to 0.7. A test

of multiple threshold values has been intentionally omitted, in order to avoid the

problem of data-mining.
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Average The average market-timing signal consists of a weighted average of

all computed simple market-timing signals. The steps involved in the calculation

of the average market-timing signal in a specific week t are:

1. Calculate the simple market-timing signals for all available risk indicators.

2. Compute the average of all market-timing signals.

Also the average market-timing signal will be tested for the long-neutral and

long-short strategy settings.

Majority Similar to the average market-timing signal, the majority market-

timing signal considers all simple market-timing signals. Here, the market-timing

signal which is exhibited by the majority of the simple market-timing, will be

chosen. The steps involved in the calculation of the majority market-timing

signal in a specific week t are:

1. Calculate the simple market-timing signals for all available risk indicators.

2. Select the market-timing signal which is most prevalent amongst all simple

market-timing rules.

Figure 5.1 depicts the raw risk indicators (left-hand-side) and the correspond-

ing rolling p-values φ with the chosen threshold level L (right-hand-side). Fig-

ure 5.2 depicts the market positions MP for all market-timing rules in the long-

neutral setting (left-hand-side) and the long-short setting (right-hand-side).

5.4.2 Statistical Test for Market-Timing Ability

After simulating the performance of the market-timed FX carry portfolios, we

want to test whether the market-timing rules exhibit statistically significant

market-timing ability.

We follow the approach proposed by Treynor and Mazuy [1966], who were

among the first to propose a dynamic measure of active management. To detect

market-timing skills, Treynor and Mazuy [1966] augmented the linear framework

presented in Section 4.4.4 with a quadratic term. Thus, in order to test for

the ability of the market timing rules to generate abnormal returns, we perfrom

regressions of the following form:
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Rt = α + βFt + γF 2
t + �t (5.2)

where Rt is the excess return generated by the market-timed Benchmark FX

Carry Portfolio in week t, Ft is the excess return generated by Benchmark FX

Carry Portfolio in week t, F 2
t the squared excess return generated by Benchmark

FX Carry Portfolio in week t, α (the intercept) is a measure of active trading

rule skill, β is the coefficient for the Benchmark FX Carry Portfolio factor, γ is

the coefficient for the squared Benchmark FX Carry Portfolio factor and � is a

random error term.

A statistically significant positive γ coefficient would signal market-timing

ability of the specific market-timing rule.

We note that a good number of alternative approaches to test for market

timing ability have been presented in literature.5 Our choice for the particu-

lar approach in Equation 5.2 follows the methodology of Pojarliev and Levich

[2008], whose contribution on active FX management performance attribution is

of central importance to our research on the FX carry trade.

5.5 Empirical Results

5.5.1 Discussion of the FX Carry Portfolio Market-Timing

Performances

In this chapter we tested the performance of trading FX carry portfolios with

market-timing signals based on risk indicators. We utilised different risk indi-

cators and analysed long-neutral and long-short trading filters for the FX carry

trade. We will now interpret the effects of market-timing FX carry portfolios, by

examining the results in Table 5.1, Table 5.2, Table 5.3 and Figure 5.3.

Table 5.1 summarises performance metrics and return attribution measures for

the market-timed FX carry portfolios. The first column of Table 5.1 describes the

allowed positions which are used for the market-timing experiments. The allowed

positions are long-neutral and long-short. The second column (’Indicator’ ) of

Table 5.1 describes the chosen risk indicator for the computation of the market-

timing signal. In the third and fourth columns the annualised arithmetic return

5See e.g. the Henriksson/Merton test (see Merton [1981b] and Merton [1981a]), the Con-
nor/Korajczyk model (see Connor and Korajczyk [1991]) and the Bhattacharya/Pfleiderer
model (see Bhattacharya and Pfleiderer [1983]).
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ra and the Sharpe ratio SR are listed for each currency portfolio. The last

three columns of Table 5.1 allow us to identify the source of the strategy total

returns listed in the ra-column: ra
FX represents the annualised arithmetic returns

generated from FX movements, ra
Y D the annualised arithmetic return generated

from yield pickup and ra
TC represent the annualised transactions costs in percent.

Figure 5.3 depicts the cumulative performance of the market-timed FX carry

portfolios. Table 5.2 summarises the regression results of the factor model testing

for the ability of the market-timing signals to generate carry-alpha. Table 5.3

summarises the regression tests for market-timing ability of the market-timing

signals.

Timing Indicator ra SR ra
FX ra

Y D ra
TC

Long-Only - 0.0639 0.64 0.0242 0.0425 -0.0028
Long-Neutral VIX 0.0433 0.69 0.0204 0.0301 -0.0071
Long-Neutral USSP2 0.0780 1.16 0.0510 0.0308 -0.0038
Long-Neutral TEDSP 0.0603 0.97 0.0351 0.0298 -0.0045
Long-Neutral YDDIFF 0.0321 0.38 0.0025 0.0337 -0.0041
Long-Neutral RISKM 0.0469 0.81 0.0220 0.0286 -0.0037
Long-Neutral MAJVOTE 0.0619 0.99 0.0349 0.0324 -0.0053
Long-Neutral AVGSIGNAL 0.0512 0.91 0.0251 0.0306 -0.0044
Long-Short VIX 0.0204 0.20 0.0166 0.0170 -0.0132
Long-Short USSP2 0.0900 0.91 0.0779 0.0186 -0.0063
Long-Short TEDSP 0.0547 0.55 0.0460 0.0165 -0.0078
Long-Short YDDIFF -0.0032 -0.03 -0.0192 0.0243 -0.0083
Long-Short RISKM 0.0276 0.28 0.0199 0.0140 -0.0062
Long-Short MAJVOTE 0.0579 0.58 0.0456 0.0217 -0.0093
Long-Short AVGSIGNAL 0.0378 0.57 0.0260 0.0184 -0.0066

Table 5.1: Performance Metrics of the Market-Timed FX Carry Portfolios ( ra:
Annualised Arithmetic Return, SR: Sharpe Ratio, ra

FX : Annualised Return from
FX movements, ra

Y D: Annualised Return from Yield Differentials, ra
TC : Annu-

alised Return from Transactions Costs)

Market-Timed FX Carry Portfolios (Long-Neutral Setting) Analysing

the performance metrics in Table 5.1 we see that the long-neutral market-timed

FX carry portfolios outperformed the Benchmark FX Carry Portfolio in 6 out of

7 cases: The Sharpe Ratios of the 6 top-performing market-timing signals range

between 0.69 and 1.16, while the long-only Benchmark FX Carry Portfolio gen-

erated a Sharpe Ratio of 0.64 during the relevant data period (see Section 5.3).

The best simple market-timing signals are based on the time series which proxy

liquidity risk. Timing the carry trade with these signals generated high absolute

Sharpe ratios of 1.16 in the case of the 2-Year U.S. Swap Spread (USSP2) and 0.97

in the case of Ted Spread (TEDSP) as a liquidity proxy. The simple volatility-

based timing signals also performed well, generating a Sharpe ratio of 0.81 in the
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Figure 5.3: Cumulative Returns for Long-Neutral (PANEL A) and Long-Short
(PANEL B) Market-Timed FX Carry Portfolios.
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Timing Indicator α Pr(> |tα|) β Pr(> |tβ |)

Long-Neutral VIX 0.0003 0.24 0.39 0.00
Long-Neutral USSP2 0.0009 0.00 0.46 0.00
Long-Neutral TEDSP 0.0007 0.02 0.39 0.00
Long-Neutral YDDIFF -0.0003 0.27 0.74 0.00
Long-Neutral RISKM 0.0005 0.09 0.34 0.00
Long-Neutral MAJVOTE 0.0007 0.02 0.39 0.00
Long-Neutral AVGSIGNAL 0.0004 0.03 0.46 0.00
Long-Short VIX 0.0007 0.27 -0.21 0.00
Long-Short USSP2 0.0018 0.00 -0.08 0.05
Long-Short TEDSP 0.0013 0.02 -0.23 0.00
Long-Short YDDIFF -0.0006 0.22 0.48 0.00
Long-Short RISKM 0.0009 0.11 -0.32 0.00
Long-Short MAJVOTE 0.0014 0.02 -0.22 0.00
Long-Short AVGSIGNAL 0.0008 0.04 -0.08 0.01

Table 5.2: Regression Results for the Factor Model Rt = α + βFt + �t (Ft =
Benchmark FX Carry Portfolio Returns, Rt = Market Timed Carry Portfolio
Returns).

Timing Indicator α Pr(> |tα|) β Pr(> |tβ |) γ Pr(> |tγ |)

Long-Neutral VIX -0.0000 0.72 0.43 0.00 2.18 0.00
Long-Neutral USSP2 0.0000 0.53 0.52 0.00 3.53 0.00
Long-Neutral TEDSP 0.0000 0.63 0.43 0.00 2.55 0.00
Long-Neutral YDDIFF 0.0000 0.20 0.69 0.00 -3.03 0.00
Long-Neutral RISKM 0.0000 0.52 0.36 0.00 1.38 0.00
Long-Neutral MAJVOTE 0.0000 0.59 0.43 0.00 2.59 0.00
Long-Neutral AVGSIGNAL 0.0000 0.43 0.48 0.00 1.22 0.00
Long-Short VIX -0.0000 0.68 -0.14 0.00 4.32 0.00
Long-Short USSP2 0.0000 0.57 0.03 0.48 7.03 0.00
Long-Short TEDSP 0.0000 0.67 -0.14 0.00 5.07 0.00
Long-Short YDDIFF 0.0000 0.24 0.38 0.00 -6.05 0.00
Long-Short RISKM 0.0000 0.56 -0.28 0.00 2.73 0.01
Long-Short MAJVOTE 0.0000 0.62 -0.14 0.00 5.14 0.00
Long-Short AVGSIGNAL 0.0000 0.45 -0.04 0.17 2.41 0.00

Table 5.3: Regression Results for the Factor Model Rt = α + βFt + γF 2
t + �t (Ft

= Benchmark FX Carry Portfolio Returns, Rt = Market Timed Carry Portfolio
Returns).

case of the RiskMetrics carry portfolio Volatility based timing signal (RISKM),

and 0.69 in the case of the S&P 500 Volatility Index based timing signal (VIX).

The market-timing signal that exhibited the worst backtesting performance was

based on the Yield Differentials (or the carry) time series inherent to the Bench-

mark FX Carry Portfolios (YDDIFF). This strategy generated a relatively low

Sharpe ratio of 0.38 and was the only one that failed to improve the long-only

carry strategy in the long-neutral setting. The two aggregated market-timing sig-

nals generated performances which are comparable to the performances achieved

by the best simple market-timing signals: The Sharpe ratio of the average timing

signal (AVGSIGNAL) was 0.91 and the Sharpe ratio of the majority-vote timing

signal (MAJVOTE) was 0.99.
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The return attribution measures in the right-hand-side of Table 5.1 show that

all long-neutral timed carry portfolios generated good returns from the yield com-

ponent. These returns range between 2.98% per annum and 3.37% per annum

during the relevant data period. Since in this setting we never assume short po-

sitions in the carry strategy, the return from yield has to be positive by construc-

tion. A feature shared by the top three performing long-neutral market-timed FX

carry portfolios is that they were able to generate higher returns from FX fluctu-

ations than from the yield pickup. The 2-Year U.S. Swap Spread (USSP2) based

timing signal generated a return of a 5.10% per annum from currency movements

against a return of 3.08% per annum from yield differentials, the Ted Spread

(TEDSP) based timing signal generated return of 3.51% per annum from cur-

rency movements and a return of 2.98% per annum from yield differentials, and

the Majority-Vote (MAJVOTE) timing signal generated a return of 3.49% per

annum from currency movements and a return of 3.24% per annum from yield

differentials. Thus, the strength of the most profitable long-neutral market-timing

strategies is their ability to selectively assume positions in the carry trade when

the risk of incurring drawdowns from currency fluctuations is relatively small. On

the other hand, the worst performing long-neutral timed carry portfolio gener-

ated practically no return from fluctuations in exchange rates: While generating

the highest return from interest rate differentials amongst the long-neutral timed

carry portfolios (3.37% per annum), the return from FX fluctuation of the Yield-

Differentials based (YDDIFF) timing signal was only 0.25% per annum.

The results for the regressions testing for the ability of the different long-

neutral market-timing signals to generate carry-alpha are summarised in Ta-

ble 5.2. The regressions show that all but one tested market-timing signals

were able to generate positive carry-alpha. The carry-alpha of 4 long-neutral

market-timing strategies was positive at a statistically significant level (these sig-

nals were USSP2, TEDSP, AVGSIGNAL, MAJVOTE). The only long-neutral

market-timing signal which generated a negative carry-alpha parameter in the

regression was the signal based on the yield-differentials time series (YDDIFF).

With a p-value of 0.27, the negative alpha coefficient was not statistically signif-

icant. The carry-beta parameters exhibit statistically significant positive values

for all long-neutral market-timing signals (see β-column in Table 5.2).

When we extend the factor model in Equation 4.19 for a market-timing term
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γF 2
t (see Equation 5.2), the statistically significant alpha coefficients dissappear,

since the carry outperformance is now captured by the market-timing term (see

Table 5.3). The market-timing coefficient γ is positive with a high statistical

significance for VIX, USSP2, TEDSP, RISKM, MAJVOTE and AVGSIGNAL.

Only in the case of the YDDIFF-indicator does the market-timing coefficient

assume a statistically significantly negative value.

Market-Timed FX Carry Portfolios (Long-Short Setting) The per-

formance metrics listed in Table 5.1 show that when the market-timing signals

are allowed to generate long and short positions in the FX carry trade, the re-

sults deteriorate with respect to the long-neutral market-timing strategies. In

the long-short setting only 1 out of 7 market-timing signals could outperform the

long-only Benchmark FX Carry Portfolio. This market-timing signal is based

on the 2-Year U.S. Swap Spread (USSP2), which already performed best in the

long-neutral setting.

As in the long-neutral setting, the simple market-timing signals which gener-

ated the best results in terms of Sharpe ratio, are based on the liquidity-related

risk factors: The 2-Year U.S. Swap Spread based timing signal (USSP2) pro-

duced a Sharpe ratio of 0.91 and the Ted Spread based timing signal (TEDSP)

produced a sharpe ratio of 0.55. The volatility-based timing signals still gener-

ated positive Sharpe ratios of 0.20 in the case of the S&P 500 Volatility Index

based timing signal (VIX) and 0.28 in the case of the RiskMetrics carry portfolio

Volatility based timing signal (RISKM), but these are substantially lower than

the long-only Benchmark FX Carry Portfolio which exhibited a Sharpe ratio

of 0.64. The Sharpe ratio of the Yield-Differentials based indicator (YDDIFF)

assumed a negative value of -0.03.

As in the long-neutral setting, the composed market-timing signals produced

results which were comparable to the best single market-timing signals. The

Majority-Vote based timing signal (MAJVOTE) produced a Sharpe ratio of 0.58

and the Average-Signal based timing signal (AVGSIGNAL) a Sharpe ratio of

0.57.

The four best performing timing signals in terms of Sharpe ratio were the ones

able to produce a substantial amount of their return from currency fluctuations.

These foreign exchange returns even exceed those generated by the long-neutral

timed FX carry portfolios (compare the ’ra
FX ’ -column values in Table 5.1). The

2-Year U.S. Swap Spread based timing signal (USSP2) generated a higher FX
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related return of 2.69% per annum in the long-short setting than in the long-

neutral setting; the Ted Spread based timing signal (TEDSP) generated a higher

FX related return of 1.09% per annum in the long-short setting than in the long-

neutral setting; the Majority-Vote based timing signal (MAJVOTE) generated

a higher FX related return of 1.07% per annum in the long-short setting than

in the long-neutral setting; and the Average-Signal timing signal (AVGSIGNAL)

generated a higher FX related return of 0.09% per annum in the long-short setting

than in the long-neutral setting.

The long-short market timed carry strategies generated yield pickup between

1.40% per annum and 2.43% per annum during the relevant data period. This

is substantially lower than in the long-neutral setting, since now positions which

assume short trades in the carry trade are allowed. These positions generate a

negative yield by construction. A further reason for the worse performance of

the long-short market timing strategies is given by the higher transactions costs

they generate relatively to the long-neutral market-timing strategies. While the

overall level of transactions costs paid in the case of the long-neutral timed FX

carry portfolios ranged between 0.37% per annum and 0.71% per annum during

the whole backtesting period, the long-short strategies generated higher transac-

tions costs ranging from 0.62% per annum and 1.32% per annum.

The results for the regressions testing for the ability of the different long-short

market-timing signals to generate carry-alpha are summarised in Table 5.2. As in

the long-neutral setting, the regressions show that all but one of the market-timing

signals we tested were able to generate positive carry-alpha. The carry-alpha of

4 long-neutral market-timing strategies were positive at a statistically significant

level (these signals were USSP2, TEDSP, AVGSIGNAL, MAJVOTE). The only

long-neutral market-timing signal which generated a negative carry-alpha param-

eter in the regression was the signal based on the yield-differentials time series

(YDDIFF). Except for the market-timing signal based on the YDDIFF-indicator,

the carry-beta coefficients exhibited statistically significant negative values for the

long-short market timed FX carry portfolios (see β-column in Table 5.2).

As in the long-neutral setting, when we extend the factor model in Equa-

tion 4.19 for a market-timing term γF 2
t (see Equation 5.2), the statistically sig-

nificant alpha coefficients disappear, since the carry outperformance is now cap-

tured by the market-timing term (see Table 5.3). The market-timing coefficient γ

is positive with a high statistical significance for VIX, USSP2, TEDSP, RISKM,
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MAJVOTE and AVGSIGNAL. The market-timing coefficient assumes a statisti-

cally significantly negative value only in the case of the YDDIFF-indicator.

5.5.2 Additional Considerations

Comprehensive Risk-Adjustments

The portfolios presented in this chapter aim at improving the performance of the

G10 FX carry trade by market-timing a simple FX carry trade portfolio. Thus,

the appropriate benchmark for our approaches is the performance of a simple FX

carry portfolio. As we discussed in Section 3.1.2, a good number of risk factors

other than carry have been proposed for the FX markets. These other risk factors

are: value, momentum and volatility. Considering these additional risk factors,

the question arises whether our FX carry portfolios are outperforming the vanilla

returns because they are loading on some risk factors and thus earning a risk

premium to do so.

In order to evaluate this possibility, we have performed additional factor-

regressions for two representative strategies, namely the long-neutral Majority-

Vote market timing rule and the long-short Majority-Vote market timing rule.

For each portfolio we have performed regressions on three distinct data-ranges,

namely the full data-range (January 1999 - March 2010), a pre-crisis data-range

(January 1999 - May 2007) and a post-crisis data-range (June 2007 - March 2010).

The regression results for the long-neutral Majority-Vote market timing rule

are summarised in Table 5.4 - Table 5.6. The regression results for the long-short

Majority-Vote market timing rule are summarised in Table 5.7 - Table 5.9.
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Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.63 0.10

Carry 0.40 0.02 19.12 0.00
Momentum 0.18 0.02 11.11 0.00

Value 0.23 0.02 10.56 0.00
Volatility 0.12 0.04 2.56 0.01

Table 5.4: Comprehensive Risk-adjustment regression for the long-neutral market
timed FX carry portfolio with the Majority-vote timing signal (January 1999 -
March 2010)

Estimate Std. Error t value Pr(>|t|)
Intercept -0.00 0.00 -0.34 0.73

Carry 0.97 0.02 62.98 0.00
Momentum 0.03 0.01 3.05 0.00

Value -0.03 0.01 -2.36 0.02
Volatility -0.09 0.03 -3.12 0.00

Table 5.5: Comprehensive Risk-adjustment regression for the long-neutral market
timed FX carry portfolio with the Majority-vote timing signal (January 1999 -
May 2007)
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Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 0.33 0.74

Carry 0.20 0.03 6.12 0.00
Momentum 0.13 0.03 5.13 0.00

Value 0.05 0.04 1.31 0.19
Volatility 0.02 0.07 0.27 0.79

Table 5.6: Comprehensive Risk-adjustment regression for the long-neutral market
timed FX carry portfolio with the Majority-vote timing signal (June 2007 - March
2010)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.55 0.12

Carry -0.19 0.04 -4.61 0.00
Momentum 0.37 0.03 11.07 0.00

Value 0.46 0.04 10.51 0.00
Volatility 0.23 0.09 2.54 0.01

Table 5.7: Comprehensive Risk-adjustment regression for the long-short market
timed FX carry portfolio with the Majority-vote timing signal (January 1999 -
March 2010)

We now analyse the risk-adjustment regression results for the long-neutral

Majority-vote market timing rule for the FX carry portfolio. Contrary to the

regression which considered only the FX carry factor as explanatory variable (see

Table 5.2), we observe a negligible alpha coefficient which is not statistically sig-

nificant throughout all three datasets. The loadings on the FX carry factor are

significantly positive throughout all three datasets. Somewhat surprisingly, the

loading on the FX momenum factor are statistically significantly positive as well

throughout all three datasets. The loadings on the value and volatility factors do

not behave homogeneously on the three different datasets: While they are both

statistically significantly positive on the full data sample, they are significantly

negative when only the dataset ranging from January 1999 to May 2007 is con-

sidered. During the post-crisis dataset ranging from June 2007 to March 2010,

these two factors are not statistically significant.

The comprehensive risk-adjustment regressions for the long-short Majority-

vote market timing rule produce similar results to the long-neutral Majority vote

timing rule described above (see Table 5.7 - Table 5.9). The market timed FX

carry portfolios exhibit significantly positive loadings on the FX momentum factor

90



Estimate Std. Error t value Pr(>|t|)
Intercept -0.00 0.00 -0.40 0.69

Carry 0.94 0.03 30.27 0.00
Momentum 0.06 0.02 2.98 0.00

Value -0.06 0.03 -2.40 0.02
Volatility -0.18 0.06 -3.12 0.00

Table 5.8: Comprehensive Risk-adjustment regression for the long-short market
timed FX carry portfolio with the Majority-vote timing signal (January 1999 -
May 2007)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 0.24 0.81

Carry -0.60 0.07 -9.02 0.00
Momentum 0.26 0.05 5.11 0.00

Value 0.11 0.08 1.29 0.20
Volatility 0.03 0.13 0.26 0.80

Table 5.9: Comprehensive Risk-adjustment regression for the long-short market
timed FX carry portfolio with the Majority-vote timing signal (June 2007 - March
2010)

on all three datasets. Also, the signs and significance of the factor loadings on the

value and volatility factors still exhibit different behavior on all three datasets.

The major difference between the long-neutral and the long-short market timing

rules, is that the FX carry factor loadings exhibit mixed signs in the regressions

for the long-short Majority-vote timing rule. In fact the loadings on the FX carry

factor are negative both during the full data sample (January 1999 - March 2010)

and during the post-crisis data sample (June 2007 - March 2010).

We have to note that as in Chapter 4, where we tested various asset alloca-

tion strategies for FX carry portfolios, the significant regression coefficients in

Table 5.4 - Table 5.9 could be of a spurious nature. The risk factors could be

picking up the part of the returns which should be attributed to market timing.

In order to exclude this, we perform two additional regressions on the full data

range. These additional regressions have all four FX return factors (i.e. carry,

momentum, value and volatility) and additionally a market timing term as ex-

planatory variables. As discussed in Section 5.4.2, the market timing term still

consists of the squared FX carry returns. These additional regressions are sum-

marised in Table 5.10 (for the long-neutral Majority-vote rule) and in Table 5.11
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(for the long-short Majority-vote rule).

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.41 0.16

Carry 0.40 0.02 18.82 0.00
Carry Squared 0.16 0.47 0.33 0.74

Momentum 0.18 0.02 10.82 0.00
Value 0.23 0.02 10.26 0.00

Volatility 0.11 0.05 2.27 0.02

Table 5.10: Comprehensive Risk-adjustment with market-timing term (Carry
Squared) regression for the long-neutral market timed FX carry portfolio with
the Majority-vote timing signal (January 1999 - March 2010)

Estimate Std. Error t value Pr(>|t|)
Intercept 0.00 0.00 1.35 0.18

Carry -0.19 0.04 -4.47 0.00
Carry Squared 0.28 0.94 0.30 0.76

Momentum 0.36 0.03 10.79 0.00
Value 0.46 0.04 10.22 0.00

Volatility 0.22 0.10 2.27 0.02

Table 5.11: Comprehensive Risk-adjustment with market-timing term (Carry
Squared) regression for the long-short market timed FX carry portfolio with the
Majority-vote timing signal (January 1999 - March 2010)

The regression results summarised in Table 5.10 and Table 5.11 display sta-

tistically significant loadings on all four FX risk factors. Except for the case of

the FX carry factor in the long-short setting, all these factor loadings are strictly

positive. Most importantly though, the loading on the squared FX carry returns

are not significant in both regressions. Thus, the market timing rules de-facto

seem to generate exposure to the alternative risk factors momentum, volatility

and value, instead of generating genuine alpha returns. The results in this section

thus outline that the alpha that could be obtained by market timing FX carry

portfolios is eroded when comprehensive risk adjustments are being performed.

Thus, by timing the FX carry strategy we have effectively loaded on other risk

factors.
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Senitivities to Rolling and Parameter Choice

In order to obtain a deeper insight into the sensitivities of our backtesting results

to the choice of the rolling procedure and the threshold parameter, we perform a

set of backtests which cover a wide range of parameter choices. More specifically,

we tested the results for

• all market timing signals used in this chapter,

• long-neutral and long-short market timing rules,

• rolling and fixed window parameter estimation and

• threshold levels ranging from 0.50 to 0.90.

The Sharpe-ratios for the 140 backtested FX carry portfolios are summarised

in Table 5.12 - Table 5.15.
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0.50 0.60 0.70 0.80 0.90

VIX 0.86 0.71 0.69 0.81 0.81
Ted Spread 0.75 0.99 0.97 1.11 1.23

2 Yr. Swap Spread 1.32 1.19 1.16 1.04 1.11
Yield Diff. 0.08 0.27 0.38 0.34 0.34

Risk Metrics 0.68 0.73 0.81 0.93 0.49
Majority Vote 0.95 0.79 0.93 0.91 1.02

Avg. Signal 0.90 0.92 0.93 0.96 0.90

Table 5.12: Performance sensitivity analysis: Sharpe Ratios for various thresh-
old levels for the long-neutral market timing rule estimated with a fixed and
expanding window.

0.50 0.60 0.70 0.80 0.90

VIX 0.27 0.19 0.20 0.41 0.53
Ted Spread 0.15 0.50 0.55 0.82 1.16

2 Yr. Swap Spread 0.85 0.83 0.91 0.85 1.06
Yield Diff. -0.56 -0.23 -0.03 -0.08 -0.06

Risk Metrics -0.04 0.14 0.28 0.46 0.07
Majority Vote 0.30 0.54 0.63 0.73 0.50

Avg. Signal 0.26 0.48 0.61 0.77 0.88

Table 5.13: Performance sensitivity analysis: Sharpe Ratios for various threshold
levels for the long-short market timing rule estimated with a fixed and expanding
window.
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0.50 0.60 0.70 0.80 0.90

VIX 0.47 0.72 0.83 0.90 0.95
Ted Spread 0.38 0.38 0.60 0.67 0.68

2 Yr. Swap Spread 1.05 1.11 1.01 1.13 0.94
Yield Diff. 0.28 0.16 0.23 0.34 0.32

Risk Metrics 0.72 0.75 0.77 0.83 0.59
Majority Vote 0.75 0.54 0.73 0.49 0.59

Avg. Signal 0.73 0.76 0.81 0.90 0.79

Table 5.14: Performance sensitivity analysis: Sharpe Ratios for various threshold
levels for the long-neutral market timing rule estimated with a rolling window
with a constant length of 52 weeks.

0.50 0.60 0.70 0.80 0.90

VIX 0.47 0.72 0.83 0.90 0.95
Ted Spread 0.38 0.38 0.60 0.67 0.68

2 Yr. Swap Spread 1.05 1.11 1.01 1.13 0.94
Yield Diff. 0.28 0.16 0.23 0.34 0.32

Risk Metrics 0.72 0.75 0.77 0.83 0.59
Majority Vote 0.80 0.57 0.54 0.70 0.66

Avg. Signal 0.73 0.76 0.81 0.90 0.79

Table 5.15: Performance sensitivity analysis: Sharpe Ratios for various threshold
levels for the long-short market timing rule estimated with a rolling window with
a constant length of 52 weeks.

Analysing the Sharpe ratios for all permutations of parameters in Table 5.12

- Table 5.15, we do not detect a particular structure or a drastic breakdown in

performance for a change in the parameters. Thus, we consider our analyses

based on a fixed window estimation of the timing rules and a threshold level of

0.70, as robust.

5.6 Conclusion

In this chapter we developed market-timing signals using a series of risk indicators

and backtested the performance of trading FX carry portfolios with these signals.

At first glance, our results suggest that the scepticism about the feasibility of

market-timing proclaimed by efficient market theorists (see Section 5.1.1) might

be misplaced, since without permitting our analysis to turn into a data-mining
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exercise 6 out of 7 market-timing signals were able to outperform the Benchmark

FX Carry Portfolio in the long-neutral setting.

On the other hand only 1 out of 7 market-timing signals was able to outper-

form the long-only benchmark when allowing long as well as short positions in

the FX carry portfolio. In fact, all market-timing signals exhibited a better risk-

adjusted performance in terms of Sharpe ratio in the long-neutral setting than

in the long-short setting. An intuitive explanation for this is that in the long-

short setting the strategies accept to pay a riskless negative yield differential (or

carry), in order to potentially improve the performance on the volatile FX return

component. The precision of the timing of the FX return component would have

to be even better than our indicators were able to achieve in order to successfully

take long as well as short positions in the FX carry trade.

As far as the interpretation of the quality of specific risk factors for FX carry

market-timing is concerned, we were able to identify the liquidity related indi-

cators as the most profitable during our backtesting period. Contrary to our

expectations (see Section 5.1.3), the novel yield differentials based timing indica-

tor (YDDIFF) performed very poorly. This means that periods of relatively low

interest rate differentials, i.e. periods which offer low yield-pickup in FX carry

portfolios, are not necessarily bad for the carry trade performance and vice versa.

We partially confirm the results obtained by Dunis and Miao [2007] who

showed that trading filters based on volatility proxies could improve the perfor-

mance of FX carry strategies. The VIX and RISKM based timing signals pro-

duced enhanced trading results in terms of their Sharpe ratio in the long-neutral

setting. Unlike Dunis and Miao [2007] we find that timing FX carry trades in

a long-short setting produces poor results compared to the long-only benchmark

and the long-neutral timed FX carry portfolios.

The aggregated market-timing signals (AVGSIGNAL and MAJVOTE) were

shown to produce stable results. The performance of the aggregated timing sig-

nals were comparable to the best performing single indicators and did not suffer

excessively from the inclusion of poorly performing timing indicators (e.g., YD-

DIFF). These results provide some justification for efforts undertaken by the

industry to construct aggregated risk indicators for foreign exchange market tim-

ing (see Section 5.1.3). As such, our findings contradict those of Vesilind [2006],

who stated that timing the FX carry trade with aggregated risk indicators does

not produce enhanced trading results.

A visual analysis of the market-timing signals (see Figure 5.3) clarifies that
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the major performance improvement comes from successfully timing the FX carry

drawdown associated with the recent credit crisis. In our dataset, the drawdowns

incurred by the FX carry trade before the credit crisis would have been very

small. Thus, we have to question whether our market-timing strategies would

have been used in practice, since the performance of the long-neutral FX carry

portfolio would have been difficult to beat during the period from 1999 to 2007.

Also, including liquidity related risk factors (such as the Ted spread TEDSP and

the 2 year swap spread USSP2 ) for timing the FX carry trade is a much easier

decision today than it was before the credit crisis.

We conclude that timing the FX carry trade in a long-neutral setting promises

to enhance FX carry trade performance and that market-timing signals based on

aggregated risk factors produce robust results which are comparable to the best

single risk factors. Nevertheless we notice a lookback bias in our selection of

risk factors, since before the credit crisis we would probably have put a greater

emphasis on volatility related time series at the cost of the liquidity proxies. To

overcome the risk of considering inappropriate risk indicators in the future, we ad-

vocate a broader diversification of risk proxies when constructing the aggregated

market-timing signals.
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Chapter 6

Carry Trade Money Management

6.1 Introduction

In this chapter we will study how different models for determining leverage levels

affect the performance of the FX carry trade. Such a study is relevant since it has

been shown that FX traders typically execute the FX carry trade with leverage

(see Section 6.1.1). Since the seminal work by Kelly [1956] financial practitioners

and gamblers have become aware of the important effect that leverage has on

the final performance of trading and gambling strategies (see Section 6.1.3). In

the following sections, we aim at providing an overview of existing literature on

leveraged FX carry trades and money management methodologies (i.e. optimal

leverage models). Subsequently, with our empirical analyses we contribute to the

very limited empirical research available on optimal leverage models for trading

systems. We will show how the choice of the leverage model substantially affects

the final performance of FX carry portfolios. Also, we expose the weaknesses of

the Sharpe-ratio as a performance metric, when it comes to assessing the capital

growth of leveraged trading strategies. In order to address the shortcomings of the

Sharpe-ratio, a novel performance metric will be introduced (see Section 6.4.4).

6.1.1 The Carry Trade and Leverage

Literature provides indications that FX carry trades are often executed with

leverage (see Gagnon and Chaboud [2007] and Galati et al. [2007b]). Motivated

by this evidence Darvas [2009] analysed the impact of different levels of leverage on

the performance of FX carry trading strategies on a monthly dataset from January

1976 to April 2008. Darvas [2009] found that the risk adjusted performance of
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FX carry strategies decreases with increasing levels of leverage. Most FX carry

strategies went bankrupt when large leverage levels were applied. Darvas [2009]

concluded that the forward rate bias inefficiency (see Section 3.2.3) is dependent

on the selection of the level of leverage by the investor.

We do not agree with this conclusion reached by Darvas [2009]. The fact

that excessive leverage can cause bankruptcy is a well known consequence of

overinvesting (i.e. bad money management) and is independent of the underlying

return process.

6.1.2 Empirical Applications of Kelly Criterion in Finance

Despite the good theoretical treatment of the Kelly criterion in literature, we find

few empirical studies which analyse the effects of money management techniques

on the profitability of trading strategies.

Wetzer [2003] applied various money management methodologies for calcu-

lating the position sizes of trading systems based on technical trading rules and

ARIMA forecasts. By analysing the profits and losses of 280 trading systems

Wetzer [2003] showed that money management has the potential to alter the

profitability of trading systems more than a market-timing signal. Wetzer [2003]

concluded that money management should play a bigger role in finance and quan-

titative trading systems development.

Anderson and Faff [2004] tested the performance of a simple technical trading

rule on five futures markets. The position sizes were computed via the optimal f

methodology proposed by Vince [1990]. 1 Similarly to Wetzer [2003], Anderson

and Faff [2004] found that the performance of the trading strategy is dramati-

cally influenced by the money management strategies. Anderson and Faff [2004]

concluded that money management plays a more important role in trading rule

profitability than previously considered.

6.1.3 The Kelly Criterion

Money Management is concerned with the determination of the optimal amount

of capital to invest in trading situations with positive expected returns. In his

seminal paper, Kelly [1956] presented a criterion for optimising the betting size

1 The optimal-f money management technique consists in numerically optimising the fraction
of capital to risk in a given trade, such that the unconditional expected geometric return of the
trading strategy is maximised (see Vince [1990]).
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when gambling with an informational advantage over the bookmaker. Kelly’s

concepts have been understood very quickly by the gambling community. The

first published system for beating the casino game of Blackjack (see Thorp [1962])

was based on a combination of card counting techniques and a variable bet sizing

methodology based on Kelly’s criterion.2

Kelly recognised that a gambler should address two main objectives when

determining the optimal amount of capital to place on a specific bet. These ob-

jectives are expected return maximisation on one hand, and capital preservation

on the other hand. Both objectives represent a tradeoff. The expected return of

a bet with positive expectancy is maximised by betting the maximum possible

amount. But betting a too large amount would almost surely cause the gamblers

ruin since, no matter how large his edge might be, in the long run he would lose

his entire capital during a sequence of losing bets. The Kelly criterion (see Kelly

[1956]) solves the return-security tradeoff by determining the optimal amount of

capital to put at stake such that the long term capital growth is maximised.3

The wealth distribution generated by sizing bets according of the Kelly cri-

terion has been shown to possess positive characteristics. MacLean et al. [1992]

proved that the expected wealth generated by the Kelly strategy is superior to the

wealth produced by any other money management system, Hakansson and Miller

[1975] showed that the Kelly strategy never risks ruin, and Algoet and Cover

[1988] showed that the Kelly strategy minimises the expected time to achieve a

given investment objective.

On the other hand, managing position sizes according to the Kelly criterion

also entails some drawbacks for real-world investment situations. Following Thorp

[2006], the Kelly strategy can be very risky in the short term. Several studies (see

e.g. Kahneman and Tversky [1979], Ert and Erev [2008] and Kahneman et al.

[1990]) have demonstrated that the human brain associates a larger relevance

to the experience of losses versus the experience of gains. Thus, the high level

of risk inherent to Kelly position sizing models, would cause investors to prefer

other investment opportunities trading some of the expected wealth generated by

the Kelly strategy against more security. The utility function that leads to the

Kelly criterion would only be suitable for investors with an absolutely risk-neutral

2Poundstone [2005] contains a popular treatment of the application of the Kelly criterion in
gambling and finance.

3The focus on long term performance differentiates the Kelly criterion from Modern Portfolio

Theory MPT, which is based on optimal one-period investment decisions (see Markowitz [1952]).
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attitude to risk, and is thus not appropriate for most subjects.

Moreover, MacLean and Ziemba [1999] noted that the optimal position sizes

computed by the Kelly strategy are sensitive to estimation errors in the model

inputs, and that investing more than the optimal amount lowers the expected

capital growth while increasing risk.

A practical solution to the danger of overinvesting and the high volatility

inherent to the Kelly strategy, would be to trade growth for security through

investing only a fraction of the optimal Kelly position size. Some authors propose

to invest half of the optimal Kelly-amount, while others even advocate to size the

position down to one fourth of the optimal Kelly position size (see McDonnell

[2008] and Thorp [2006]).

Formalizing the Kelly Criterion In the following we will formalise the

intuition behind the Kelly criterion. Firstly, we define a random variable Ht as

the percentage of the current amount of capital Ct relative to the previos period

capital Ct−1. Furthermore, the return on the capital in period t is modeled as the

position size f multiplied with a random variable Rt, whose distribution will not

be specified here.

Ht =
Ct

Ct−1

= 1 + fRt (6.1)

If in t = 0 an investor had a given amount of capital C0, and was to play

this investment game a given number of periods T while reinvesting the previous

periods winnings, his final capital CT would amount to:

CT = C0

T
�

t=1

Ht (6.2)

The objective of the Kelly criterion is to maximise the long-run rate of capital

growth. By rearranging CT = C0e
TGT , we define the exponential rate of growth

of the capital GT as:

GT =
1

T
log(

CT

C0

) (6.3)

By inserting Equation 6.2 into Equation 6.3, we get:

GT =
1

T

T
�

i=t

log(Ht) (6.4)
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If we assume that the random variables Ht=1,..,T form a sequence of indepen-

dent and identically distributed random variables, we can apply the law of large

numbers and find:

lim
T→∞

GT = E[log(H)] (6.5)

Thus, in order to maximise the growth function

g(f) = E[log(H(f))] (6.6)

with respect to f , we set

dg

df
= 0. (6.7)

Solving this term for f yields the optimal fraction of capital f ∗ to put at risk.

The Traditional Kelly Formula The first Kelly formulas for determining

growth-optimal betting sizes f ∗ were presented by Kelly [1956] and, in a more

general way, Thorp [1969]. These ’traditional’ Kelly formulas are suitable for bets

with two distinct outcomes (WIN and LOSE), known probabilities for these

outcomes (pWIN and pLOSE = 1 − pWIN) and a fixed payout ratio B, defined as

the ratio of the amount won in case of a successful bet to the amount wagered

for that bet. In that case the random variable Rt (see Equation 6.1) is:

Rt = (1 + B)Xt − 1 (6.8)

where P (X = 1) = pWIN and P (X = 0) = pLOSE. The corresponding growth

function is given by (see Thorp [1969]):

g(f) = pWIN ln(1 + fB) + (1 − pWIN)ln(1 − f). (6.9)

We can easily compute dg

df
by applying the chain rule. Solving dg

df
= 0 for f

yields the well known Kelly formula:

f ∗ = pWIN − 1 − pWIN

B
(6.10)

In his original paper, Kelly [1956] presented the derivation for the special case

where the payoffs of winning and losing are equal (i..e B = 1): The solution to

this case is nested in the more general Equation 6.10:
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f ∗ = pWIN − pLOSS (6.11)

The Kelly Formula for Gaussian Return Distributions In the finan-

cial markets, an investment typically has many potential outcomes rather than

just a few.4 Thus, the popular Kelly formulas presented above (Equation 6.10

and Equation 6.11) are not ideally suited for the domain of securities trading.

This leads to the use of continuous instead of discrete probability distributions.

Thorp [2006] derived a solution for the Kelly formula which assumes normally

distributed securities returns and accounts for a risk free interest rate i. The

random variable H in a specific period t would then be modelled as:

Ht = 1 + (1 − f)it + fRt, (6.12)

where it is the available risk free interest rate at time t and Rt ∼ N (µt, σ2
t ).

Following Thorp [2006], the growth function for such a process can be approxi-

mated by:

g(f) = i + f ∗ (µ − i) − σ2f 2

2
(6.13)

The growth-optimal position size f ∗ can then be computed by solving

dg

df
= µ − i − σ2f = 0, (6.14)

i.e.:

f ∗ =
µ − i

σ2
(6.15)

6.2 Contributions

According to Ziemba [2003], the two central aspects of an investment strategy are

a) when to invest (i.e. signal generation) and b) how much to invest (i.e. money

management). Chapter 4 and Chapter 5 focused on optimal ways to implement

FX carry trades and thus address the signal generation aspect of the strategy.

In the remainder of this chapter we will examine the effect of different money

management methodologies on the profitability of FX carry portfolios.

4An exception being the trading of derivatives with a binary payout, e.g. digital options.
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The first part of our empirical analysis consists in testing the performance

of FX carry portfolios traded with constant leverage levels ranging from 0.5 to

10, a methodology similar to the one adopted by Darvas [2009]. We will select

three constantly-leveraged FX carry portfolios and use them as benchmarks to

assess adaptive time-varying leverage models based on the Kelly criterion (see

Section 6.4.2). Furthermore, the sequential backtest of constantly leveraged FX

carry portfolios will serve as an illustration of the effects that leverage can have

on trading performance.

The following empirical research adds to the limited body of research quan-

tifying the impact of money management strategies on trading strategy perfor-

mance. Furthermore, this research expands on research initiated by Darvas [2009]

on the effects of leverage on the returns generated by professional FX managers.

The performance of leveraged FX carry strategies during the recent credit crisis

should offer new insights into the maximum leverage which FX carry portfolios

can withstand during periods with high drawdowns.

In Section 6.4.2 we propose extensions to the Kelly formula for gaussian return

processes. The extensions allow for a practical management of the problems of

overinvesting and high short-term risk inherent to the Kelly strategy.

6.3 Data

We perform simulations of leveraged FX carry portfolios on a weekly data set

from 10.12.1999 to 05.03.2010. In the following, we briefly outline the data base

for the research in this chapter.

6.3.1 The Benchmark FX Carry Portfolio

The starting point for the analyses of our dynamical position sizing algorithms

is the Benchmark FX Carry Portfolio. Details concerning the raw data sources,

the methodology and the performance of the Benchmark FX Carry Portfolio are

outlined in Appendix A.

The portfolio yield differentials inherent to the Benchmark FX Carry Portfolio

(see Section A.5), as well as the RiskMetrics conditional volatility estimates of this

portfolio (see Section A.5) will serve as central inputs for the money management

methodology outlined in Section 6.4.2.
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6.3.2 Risk Indicators

The risk indicators 2-Year U.S. Swap Spread (USSP2), Ted Spread (TEDSP) and

CBOE S&P 500 Volatility Index (VIX) will serve as inputs for the construction

of confidence measures for FX carry trade profitability (see Section 6.4.3). For a

detailed description of these time series we refer to Section 5.3.2.

6.4 Methodology

6.4.1 Constant Leverage Levels for FX Carry Trading

We will compute the performance of FX carry portfolios with constant leverage

levels ranging from 0.5 to 10 in 0.5 increments. Thus, we apply the method-

ology proposed by Darvas [2009] on the Benchmark FX Carry Portfolio (see

Appendix A). The portfolio weights to these leveraged FX carry strategies will

be computed according to:

wBMCP
t,f = f ∗ wBMCP

t (6.16)

Where wBMCP
t,f denotes the current vector of portfolio weights for a given

leverage level f (f = 0.5, 1, 1.5, ..., 10), and wBMCP
t denotes the current portfolio

weights vector of the simple Benchmark FX Carry Portfolio (see Section A.2).

The leveraged FX carry portfolio performance will then be computed according

to the methodology described in Section A.3 and Appendix B.

6.4.2 A Time-varying Leverage Model based on the Kelly

Formula

We propose a time-varying leverage model based on the Kelly formula for contin-

uous gaussian return processes (see Equation 6.15). Since FX carry portfolios are

fully self financed, we can omit the risk free interest rate it from Equation 6.15

and get:

f ∗
t =

µt

σ2
t

(6.17)

Since we keep the assumption of the spot exchange rates following a random

walk, the expected FX carry portfolio returns µ̂t consist of the yield differentials of
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the Benchmark FX Carry Portfolio in each week t (see Section A.5). We estimate

the FX carry portfolio variances σ̂2
t by the RiskMetrics exponential smoothing

methodology (see Section A.5).

In order to allow for a more conservative strategy than the Kelly criterion,

we extend the money management formula to allow for fractional Kelly position

sizing, as advocated by some authors in literature (see Section 6.1.3). This is

achieved by multiplying the f ∗
t ’s by a constant risk appetite factor c (0 ≤ c ≤ 1).

Errors in the estimation of the input parameters of the Kelly formula can lead

to overinvesting (see Section 6.1.3). We address this problem by weighting the

expected returns for the FX carry portfolio µ̂t by the confidence measures κI,t,

with 0 ≤ κ ≤ 1. These confidence measures will assume small values when the

FX carry portfolio is expected to perform badly, and large values when the FX

carry portfolio is expected to perform well. We will discuss our choice for the κ

factors in Section 6.4.3.

Thus, the extended money management formula based on the Kelly criterion

becomes:

f ∗
t (I, c) =

µ̂tκI,t

σ̂2
t

c (6.18)

We test 15 time-varying leverage models for all combinations of c = (1
4
, 1

2
, 1)

and I = (NAIV E, USSP2, TEDSP, V IX, AV G) on the Benchmark FX Carry

Portfolio. The portfolio weights of the Benchmark FX Carry Portfolio will be

multiplied by the leverage levels computed by Equation 6.18:

wBMCP
t (I, c) = f ∗

t (I, c) ∗ wBMCP
t (6.19)

The leveraged FX carry portfolio performance will then be computed accord-

ing to the methodology described in Section A.3 and Appendix B.

Figure 6.1 depicts the optimal time-varying leverage levels for all confidence

measures and c = 1.

The Normality Assumption in Dynamical Leverage Models The

assumption of normally distributed returns for financial market data is typically

not confirmed by empirical financial data. Stylised facts about financial returns

which are not accurately described by a gaussian distribution include heavy tails,

gain/loss asymmetries and volatility clustering (see e.g. Cont [2001]).

So how can the application of Equation 6.18 for determining growth-optimal
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Figure 6.1: Time-varying Leverage Levels computed according to f ∗
t (I, c) =

µ̂tκI,t

σ̂2
t

c with the Parameters I = NAIV E and c = 1 (PANEL A); I = USSP2

and c = 1 (PANEL B); I = TEDSP and c = 1 (PANEL C); I = V IX and c = 1
(PANEL D); I = AV G and c = 1 (PANEL E).
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leverage sizes be justified, given that it originates from the assumption of normally

distributed returns?

As we have outlined in Section 6.1.3, Thorp [2006] derived the analytical

solution to the Kelly criterion for normally distributed returns. 5

Thus, the main advantage in assuming normally distributed returns, is that

this assumption allows for an elegant analytical solution to the Kelly criterion.

The closed form solution to the Kelly formula for gaussian returns allows us

to empirically test and analyse conditional optimal leverage techniques instead

of relying on historical unconditional data, thereby contributing to the limited

empirical literature on the subject.

Nevertheless, we argue that as conditional dynamic leverage models become

more established in literature, future research should aim at studying these tech-

niques based on returns distributions which more appropriately describe asset

price returns. An interesting approach on the Kelly criterion with alternative

returns distributions has been presented by Osorio [2008], who investigated the

effect of fat-tails and investor risk aversion on optimal leverage levels. Osorio

[2008] developed a procedure for determining the optimal Kelly-leverage for t-

distributed returns, since the t-distribution matches empirical properties of fi-

nancial time series such as positive excess kurtosis, a power-law tail behavior,

and near-normal behavior in the central part of the probability distribution func-

tion. In his numerical experiments Osorio [2008] finds that the optimal leverage

levels of the Kelly model are lower when the tails of the distribution are fatter or

the investors level of risk aversion increases. Nevertheless, Osorio [2008] does not

provide trading strategy simulations based on his optimal conditional leverage

model.

6.4.3 Confidence Measures for FX Carry Trade Profitabil-

ity based on Risk Factors

In the following we describe how we construct the confidence measures which will

be used as κ inputs to the time varying money management formula Equation 6.18

(see Section 6.4.2).

The three risk indicators (see Section 6.3.2) are processed into rolling p-values

5As other popular models used in mathematical finance are often based on the assump-
tion of normally distributed returns for analogeous reasons (e.g. Modern Portfolio Theory
(Markowitz [1952]), the Black-Scholes options pricing model (Black and Scholes [1973]) or the
Black-Litterman portolio optimisation model (Black and Litterman [1992]).
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φ according to the methodology described in Section 5.4.1. In order to represent a

suitable confidence measure for the profitability of FX carry trades κ, we perform

the following computations:

κI,t = 1 − φI,t (6.20)

Where I indicates the risk indicator (USSP2,TEDSP or V IX) and t is the

actual time-period. Furthermore, we compute an aggregated confidence measure

κAV G by taking the average confidence measure of the three risk indicators:

κAV G,t =
κUSSP2,t + κTEDSP,t + κV IX,t

3
(6.21)

Also, we define a naive confidence measure (I = NAIV E) which will assume

a constant value of 1:

κNAIV E,t = 1 (6.22)

The values of the confidence measures κ are by construction bounded between

zero and unity. We expect low values in the confidence measures to coincide with

periods of FX carry trade underperformance. Conversely high confidence measure

values should coincide with positive FX carry returns.6

For this piece of research we have chosen to utilise confidence measures based

on the risk factors used for the carry timing analyses performed in Chapter 5.

The test results which were discussed in Chapter 5 (see Section 5.5) showed, that

most of the risk indicators were able to outperform the long-only FX carry portfo-

lio. In order to mantain a coherent framework we thus integrate these indicators

as heuristic confidence measures in this chapter. We note that probabilistic fore-

casting models7 would be formally more adequate since they are able to directly

model the probability of the FX carry trade perfroming well in the next period.

We thus point out that such models should be considered for further research and

in extensions of our proposed approach.

6For a discussion on the expected relationship between the risk indicators and FX carry
trade returns we refer to Section 5.1.3.

7E.g. Logit/Probit Models (see Hosmer and Lemeshow [2000]), Nearest Neigbour Models
(see Bishop [2006]) and Artificial Neural Networks (see Zimmermann and Rehkugler [1994]).
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6.4.4 A Performance Measure for evaluating Capital Growth

with respect to Risk

In this section we aim to introduce a novel performance metric which addresses

some of the shortcomings of the Sharpe ratio (see Section B.3). The Sharpe ratio

constitutes a standard risk-adjusted performance measure for trading strategies.

Since its computation is based on arithmetic mean returns, it is not suitable

for assessing the long term growth potential of trading strategies. The Sharpe

ratio performs a risk adjustment by dividing the excess returns by the standard

deviation of returns. Arguably, the standard deviation does not consititute an

appropriate measure of risk for trading strategies since asset returns have been

shown not to follow a gaussian distribution (see Cont [2001]).

We postulate that an enhanced performance metric should be able to as-

sess the performance of alternative position sizing methodologies by considering

capital growth (i.e. the geometric mean return) as well as adjusting for risk in

order to reflect the risk-aversion ordinarily displayed by speculators (see Kahne-

man et al. [1990]). Naturally, we would expect the performance measure to be

increasing with respect to the capital growth. Also, the performance measure

should decrease with respect to capital losses and risk. Following prospect theory

(see Kahneman and Tversky [1979]), the utility function that speculators pos-

sess with regards to capital losses is convex. To embody this feature, the second

derivative of the performance measure with respect to losses should be strictly

positive.

Moreover, the same underlying trading strategy should display different per-

formance metrics for changing constant leverage levels, since the absolute level

of leverage affects the properties of a given trading strategies wealth distribution

(see e.g. Darvas [2009]). As we will confirm in the empirical results throughout

the following sections, the Sharpe ratio fails to satisfy this requirement, since

leverage affects the arithmetic return and the standard deviation linearly and

with the same multiplier.

As a proxy for the risk of a trading strategy we choose the maximum drawdown

measure (see Section B.5). The maximum drawdown measure constitutes an

arguably better risk measure than the standard deviation, since it does not suffer

from the drawbacks associated with the stylised facts observed in financial data

as the non-normality of asset returns and potential serial correlation within those

returns (see e.g. Alexander and Baptista [2006]). We consider the maximum
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drawdown measure as particularly appropriate since it accurately measures how

much capital has been lost by a trading strategy during its the worst losing streak.

Also, the maximum drawdown is capped at unity. When a trading strategy

exhibits a maximum drawdown of unity, the maximum capital that was lost by

that trading strategy was 100%. In such a case the strategy went bankrupt and

the performance measure should discard the trading strategy.

In order to assess the performance of the leveraged FX carry portfolios under

consideration of their growth potential and their risk as measured by the maxi-

mum drawdown while satisfying all of the features described above, we define a

novel performance measure drawdown-adjusted-growth (DAG) as:

DAG = max(−log(MAX.DD) ∗ rg, 0) (6.23)

Where rg is the annualised geometric return of the strategy and MAX.DD

denotes the maximum drawdown in percent.8 The performance measure in Equa-

tion 6.23 has the following desirable properties:

• DAG rises as the geometric return rg rises, i.e.
dDAG

drg > 0 ∀rg >= 0.

• DAG falls as the maximum drawdown rises, i.e.
dDAG

dMAX.DD
< 0.

• The second derivative of the DAG with respect to losses is strictly positive
d2DAG

dMAX.DD2 > 0.

• DAG assumes a zero-value when the strategy leads to bankruptcy, i.e.

DAG(MAX.DD = 1.00) = 0.

• DAG assumes a zero-value when the strategy exhibits a negative capital

growth, i.e.

DAG(rg <= 0) = 0.

• DAG approaches infinity if the growth is positive and the maximum draw-

down approaches zero, i.e.

limMAX.DD→0 DAG(GR > 0, MAX.DD) = ∞.

8See Appendix B for the methodology behind the computation of the geometric return and
the maximum drawdown metrics.
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The DAG performance measure severely penalises large drawdowns and volatil-

ity while rewarding capital growth. Thus, the DAG represents a methodology

for evaluating trading strategies according to risk-adjusted-growth. DAG values

of zero indicate that the strategy will invariably lead to bankruptcy in the long

run and should therefore not be implemented in practice.

6.4.5 Statistical Tests for Carry-Alpha and Market-Timing

Ability

Analogeous to the methodology adopted in Chapter 4 and Chapter 5, we will

benchmark the different money management methodologies against the Bench-

mark FX carry portfolio (see Appendix A). In order to test for the existence

of carry-alpha, we will run regressions of the form Rt = α + βFt + �t, outlined

in Section 4.4.4. Furthermore, we will test for the existence of a market-timing

effect in the money management models by estimating regressions of the form:

Rt = α + βFt + γF 2
t + �t, outlined in Section 5.4.2.

6.5 Empirical Results

6.5.1 Constant Leverage Levels

In this section we will present the results of sequentially backtesting FX carry

portfolios with different constant leverage levels.

Figure 6.2 depicts the development of 100 EUR starting capital invested in

the constantly leveraged FX carry portfolios. Figure 6.2 visualises the effect that

overleveraging can have on the equity curve of a trading strategy: During periods

of stable and positive returns, highly leveraged strategies will generate very high

absolute returns. The FX carry strategy with a constant leverage of 10 reached

a maximum equity of 20, 900.50 EUR on the 20th of July 2007. On the other

hand overinvesting will, in the long run, cause large equity drawdowns and in the

worst case bankruptcy. We already ascertained that the FX carry trade suffered

a high drawdown phase during the credit crisis (see Section 4.6 and Section A.3).

Figure 6.2 visualises the dramatic effect of this drawdown phase on the equity of

the highly leveraged FX carry strategies. At the end of our backtesting period

on the 05th of March 2010 the equity of the FX carry portfolio with a constant

leverage level of 10 was only at 15 EUR (i.e. the strategy lost 99.93% from its
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peak on the 20th of July 2007).
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Figure 6.2: Capital Growth of 100 EUR for FX Carry Portfolios with Constant
Leverage Levels f=0.50, 1.00, 1.50, ..., 10.00.

Figure 6.3 depicts the annualised geometric returns GR (PANEL A), the

maximum drawdown measures MAX.DD (PANEL B) and the DAG measures

(PANEL C) of the constantly leveraged FX carry portfolios. The performance

metrics in Figure 6.3 quantify the effect that different leverage levels had on the

FX carry portfolios performance during our backtesting period from. The high-

est capital growth would have been generated by the FX carry portfolio with a

constant leverage level of 5.5 (see Figure 6.3, PANEL A). Portfolios with a higher

leverage than 5.5 would have produced a smaller capital growth at a higher risk

than the portfolios with a lower leverage than 5.5. Leverage levels over 9 would

have generated a negative capital growth, even though the unleveraged FX carry

portfolio strategy exhibited a positive mean return. PANEL B of Figure 6.3 de-

picts the maximum drawdowns for the different leverage levels. As visualised

by the equity lines in Figure 6.2, the drawdowns increase as the leverage in-

creases. The highest leverage levels generate maximum drawdown levels very

near to unity (which would signify total loss of capital). In PANEL C of Fig-

ure 6.3, the risk-adjusted performance measure drawdown-adjusted-growth DAG

(see Section 6.4.4) is depicted in relation to the applied leverage levels. We find
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the maximum value of the DAG at a constant leverage level of 1.5.

This sequence of backtests thus exemplifies the reason behind the propaga-

tion of fractional Kelly approaches by various authors (see Section 6.1.3). The

parabolic form of the growth function g(f) in PANEL A of Figure 6.3 offers an

intuitive understanding of the Kelly criterion: A positive expectancy strategy has

a specific optimal fraction f ∗ which generates maximum wealth over time. Over-

leveraging would be highly inefficient, since a) a lower geometric return will be

achieved (see PANEL A in Figure 6.3) and b) this lower return could be achieved

by adopting a lower risk (see PANEL A and PANEL C in Figure 6.3). The risk-

adjusted DAG measure provides a methodology for selecting portfolios with high

growth rates and low risk as measured by the maximum drawdown metric.
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Figure 6.3: Performance Metrics for the FX Carry Portfolios with Constant Lever-
age Levels (PANEL A: Annualised Geometric Return GR; PANEL B: Maximum
Drawdown MAX.DD; PANEL C: Drawdown Adjusted Growth DAG).

We select three constantly leveraged FX carry portfolios for further compar-

ison with the time-varying leverage models (see Section 6.5.2). These portfolios

have constant leverage levels of:

• 1.0 : This is the standard leverage level used in the previous chapters of

this research.
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• 1.5 : This is the constant leverage level with the highest DAG measure.

• 5.5 : This is the constant leverage level with the highest growth rate as

measured by the annualised geometric return.

We stress that the leverage levels 1.5 and 5.5 are selected with hindsight.

Nevertheless we will use them as benchmarks to assess the time-varying leverage

models.

6.5.2 Time-varying Leverage Levels

Table 6.1 summarises the average leverage level fAV G and the performance metrics

annualised geometric return GR, maximum drawdown MAX.DD, drawdown-

adjusted-growth DAG and Sharpe ratio SR inherent to the FX carry portfo-

lios traded with the time-varying leverage model and 3 constant leverage money

management models. The equity lines resulting from applying the time-varying

leverage levels to the FX carry portfolio are depicted in Figure 6.4.

An analysis of the performance metrics in Table 6.1 reveals that the Kelly

based money management models performed better than the FX carry portfo-

lios with constant leverage levels. Most Kelly based money management models

generated higher annualised geometric returns than the constant leverage mod-

els. An assessment of the money management strategies according to the risk

adjusted performance measures drawdown-adjusted-growth DAG and Sharpe ra-

tio SR results in an even clearer outperformance of the Kelly based strategies

versus the constant leverage models. The best Kelly based money management

strategy in terms of the DAG metric is the one with the parameter combination

(I = USSP2, c = 1.00) with a DAG value of 0.2968 and a corresponding Sharpe

ratio of 1.18. In contrast, the best constantly leveraged FX carry portfolio is the

model with a constant leverage level of 1.5. This portfolio exhibited a DAG value

of 0.0726 and a Sharpe ratio of 0.64.

The results summarised in Table 6.1 also illustrate the high level of risk asso-

ciated to the full Kelly strategy with the non-informative confidence measure (i.e.

I = NAIV E and c = 1.00). The high maximum drawdown of 94.01% is respon-

sible for a very low DAG value of 0.0143. Thus, despite the decent Sharpe ratio

of 0.72, we would not recommend this type of strategy in multi period investment

situations. Similar results are generated by the full Kelly strategy with the con-

fidence measure based on the CBOE S&P 500 Volatility Index (i.e. c = 1.00 and
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I = V IX). While the strategy generates a good Sharpe ratio of 0.75 and a high

capital growth of 23.60% per annum, the high maximum drawdown of 76.62%

and the low DAG value of 0.0628 indicate the excessive risk inherent to the full

Kelly strategy with I = V IX. As the risk appetite factor c assumes lower values,

the risk-adjusted performance metrics of these strategies improve. We observe

that the most profitable strategies assume their maximum DAG value at higher

values of c than the more volatile and less profitable strategies. Since future

strategy performances are not known, we would suggest to set the risk appetite

coefficient at a conservative level (i.e., c < 1).

Overall, weighting the expected return estimate µ̂ with confidence measures

based on risk factors enhances the risk-adjusted performance metrics of the time-

varying leverage strategies. For all levels of risk appetite c, the Kelly strategies

weighted with confidence measures based on risk factors (I=USSP2, TEDSP ,

V IX, AV G) outperform the non-informative confidence measure (I = NAIV E)

in terms of drawdown-adjusted-growth DAG and Sharpe ratio SR. As far as the

suitability of specific risk factors as confidence measures for FX carry portfolios is

concerned, we find that the best results were generated by the 2-Year U.S. Swap

Spread risk factor (USSP2). The average confidence measure (AV G) produced

good and robust results (only second to I = USSP2 in therms of the Sharpe

ratio SR).

Leverage Parameter fAV G rg MAX.DD DAG SR

Constant 1.0 1.00 0.0589 0.2983 0.0712 0.64
Constant 1.5 1.50 0.0845 0.4234 0.0726 0.64
Constant 5.5 5.50 0.1854 0.9332 0.0128 0.64
Time-varying I=NAIVE,c=1.00 7.50 0.2315 0.9401 0.0143 0.72
Time-varying I=USSP2,c=1.00 4.49 0.3830 0.4608 0.2968 1.18
Time-varying I=TEDSP,c=1.00 4.09 0.2503 0.4381 0.2066 0.89
Time-varying I=VIX,c=1.00 5.09 0.2360 0.7662 0.0628 0.75
Time-varying I=AVG,c=1.00 4.56 0.3073 0.5422 0.1881 1.00
Time-varying I=NAIVE,c=0.50 3.75 0.1753 0.6680 0.0707 0.72
Time-varying I=USSP2,c=0.50 2.25 0.2109 0.2464 0.2954 1.18
Time-varying I=TEDSP,c=0.50 2.05 0.1415 0.2339 0.2055 0.89
Time-varying I=VIX,c=0.50 2.54 0.1483 0.4824 0.1081 0.75
Time-varying I=AVG,c=0.50 2.28 0.1729 0.3092 0.2029 1.00
Time-varying I=NAIVE,c=0.25 1.88 0.1011 0.3883 0.0956 0.72
Time-varying I=USSP2,c=0.25 1.12 0.1102 0.1271 0.2272 1.18
Time-varying I=TEDSP,c=0.25 1.02 0.0747 0.1206 0.1580 0.89
Time-varying I=VIX,c=0.25 1.27 0.0813 0.2700 0.1065 0.75
Time-varying I=AVG,c=0.25 1.14 0.0911 0.1648 0.1643 1.00

Table 6.1: Performance Metrics of Constant and Time-varying Leverage Mod-
els for FX Carry Portfolio Money Management (fAV G: Average Leverage Level,
rg: Annualized Geometric Return, MAX.DD=Maximum Drawdown, DAG:
Drawdown-Adjusted-Growth Measure, SR: Sharpe Ratio)
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Figure 6.4: Capital Growth of 100 EUR for FX Carry Portfolios with Time-
varying Leverage Levels computed according to f ∗

t (I, c) =
µ̂tκI,t

σ̂2
t

c with the Pa-

rameters I = NAIV E, USSP2, TEDSP, V IX, AV G and c = 1.00 (PANEL A);
c = 0.50 (PANEL B); c = 0.25 (PANEL C)
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The results of the regressions for carry-alpha and market-timing ability of the

money management models are summarised in Table 6.2 and Table 6.3.

The constantly leveraged FX carry portfolios by construction exhibit no carry-

alpha, and a carry-beta equal to the constant leverage level inherent to the specific

portfolio (see Table 6.2 and Table 6.3). Similarly, the Kelly-based money man-

agement strategies, exhibit α and β coefficients which increase proportionally to

the value of the risk appetite factor c. All Kelly strategies exhibit positive beta

coefficients, with the Kelly strategy weighted by the non-informative confidence

measure (I = NAIV E) displaying the highest beta estimates (respectively 1.26,

2.51 and 5.02 for settings of c of 0.25, 0.50 and 1.00).

The Kelly strategies with confidence measures based on the risk factors USSP2,

TEDSP and AV G exhibit a statistically significant positive α coefficient at a

significance level of 5%. Also the Kelly strategies weighted with the confidence

measures NAIV E and V IX exhibit a positive alpha coefficient, albeit not at a

statistically significant level.

By examining the results in Table 6.3, we find that these statistically signifi-

cant positive carry-alpha coefficients disappear when the regressions are extended

with a market-timing term γF 2
t . The carry-alpha produced by the Kelly-based

money management strategies is now captured by the market-timing coefficient

γ, which is now statistically significantly positive for Kelly strategies with the

confidence measures I = USSP2, TEDSP, V IX, AV G. The non-informative

confidence measure (I = NAIV E) retains a relatively high alpha value, albeit

not statistically significant, while being the only one that exhibits a negative

market-timing term (also at a non significant level).

6.6 Conclusion

In this chapter, we examined the effect of various money management strategies

on the equity of FX carry portfolios.

In a first step, we tested the performance of trading the Benchmark FX Carry

Portfolio (see Appendix A) with constant leverage levels ranging from 0.5 to 10.

During the analysed data period, we find that a constant leverage level of 5.5

would have produced the highest capital growth, while a constant leverage level

of 1.5 would have been optimal according to the risk-adjusted performance crite-

rion DAG (see Section 6.5.1). Still, we would not advocate to select the leverage

level for FX carry trades according to this methodology. Firstly, the leverage
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Leverage Parameter α Pr(> |tα|) β Pr(> |tβ |)

Constant 1.0 -0.0000 1.00 1.00 0.00
Constant 1.5 0.0000 0.56 1.50 0.00
Constant 5.0 0.0000 0.01 5.50 0.00
Time-varying I=NAIVE,c=1.00 0.0026 0.28 5.02 0.00
Time-varying I=USSP2,c=1.00 0.0061 0.00 2.22 0.00
Time-varying I=TEDSP,c=1.00 0.0036 0.04 2.01 0.00
Time-varying I=VIX,c=1.00 0.0036 0.13 2.63 0.00
Time-varying I=AVG,c=1.00 0.0046 0.01 2.29 0.00
Time-varying I=NAIVE,c=0.50 0.0013 0.28 2.51 0.00
Time-varying I=USSP2,c=0.50 0.0031 0.00 1.11 0.00
Time-varying I=TEDSP,c=0.50 0.0018 0.04 1.00 0.00
Time-varying I=VIX,c=0.50 0.0018 0.13 1.32 0.00
Time-varying I=AVG,c=0.50 0.0023 0.01 1.14 0.00
Time-varying I=NAIVE,c=0.25 0.0006 0.28 1.26 0.00
Time-varying I=USSP2,c=0.25 0.0015 0.00 0.56 0.00
Time-varying I=TEDSP,c=0.25 0.0009 0.04 0.50 0.00
Time-varying I=VIX,c=0.25 0.0009 0.13 0.66 0.00
Time-varying I=AVG,c=0.25 0.0011 0.01 0.57 0.00

Table 6.2: Regression Results for the Factor Model Rt = α + βFt + �t (Ft =
Benchmark FX Carry Portfolio Returns, Rt = Money Managed Carry Portfolio
Returns).

Leverage Parameter α Pr(> |tα|) β Pr(> |tβ |) γ Pr(> |tγ |)

Constant 1.0 -0.0000 1.00 1.00 0.00 0.00 0.37
Constant 1.5 0.0000 0.58 1.50 0.00 -0.00 0.62
Constant 5.5 0.0000 0.01 5.50 0.00 -0.00 0.10
Time-varying I=NAIVE,c=1.00 0.0039 0.12 4.92 0.00 -6.28 0.13
Time-varying I=USSP2,c=1.00 0.0030 0.14 2.46 0.00 14.84 0.00
Time-varying I=TEDSP,c=1.00 0.0009 0.63 2.21 0.00 12.70 0.00
Time-varying I=VIX,c=1.00 -0.0000 0.99 2.91 0.00 16.98 0.00
Time-varying I=AVG,c=1.00 0.0014 0.46 2.53 0.00 14.81 0.00
Time-varying I=NAIVE,c=0.50 0.0020 0.12 2.46 0.00 -3.14 0.13
Time-varying I=USSP2,c=0.50 0.0015 0.14 1.23 0.00 7.42 0.00
Time-varying I=TEDSP,c=0.50 0.0004 0.63 1.11 0.00 6.35 0.00
Time-varying I=VIX,c=0.50 -0.0000 0.99 1.46 0.00 8.49 0.00
Time-varying I=AVG,c=0.50 0.0007 0.46 1.26 0.00 7.40 0.00
Time-varying I=NAIVE,c=0.25 0.0010 0.12 1.23 0.00 -1.57 0.13
Time-varying I=USSP2,c=0.25 0.0007 0.14 0.62 0.00 3.71 0.00
Time-varying I=TEDSP,c=0.25 0.0002 0.63 0.55 0.00 3.17 0.00
Time-varying I=VIX,c=0.25 -0.0000 0.99 0.73 0.00 4.25 0.00
Time-varying I=AVG,c=0.25 0.0004 0.46 0.63 0.00 3.70 0.00

Table 6.3: Regression Results for the Factor Model Rt = α+βFt +γF 2
t +�t (Ft =

Benchmark FX Carry Portfolio Returns, Rt = Money Managed Carry Portfolio
Returns).

levels of 5.5 and 1.5 are selected with hindsight after having analysed the perfor-

mance of 20 different leverage levels. Secondly, the drawdowns associated with

these historically optimal constant leverage levels are very large (42.34% with a

leverage of 1.5 and 93.32% with a leverage of 5.5). In addition, Figure 6.2 pro-

vides an intuitive visualisation of how a historical optimisation of leverage levels

could have drawn an investor to select an excessive leverage level in the period
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preceding the credit crisis: Before the credit crisis, the maximum growth level

would have been generated at a leverage level far above 10 (the maximum growth

would be located in a leverage region outside the margins of Figure 6.2). Thus

a reliance on the historically optimal constant leverage level would have caused

highly leveraged speculators to go bankrupt during the large FX carry trade

drawdown inherent to the credit crisis. By referring to an interview with an FX

hedge fund manager held in April 2009 (see Appendix C), we posit that some FX

hedge funds may have committed the mistake of optimising their leverage levels

for the FX carry trade historically, and thus were forced to liquidate after having

incurred amplified drawdowns during the credit crisis.

In our second empirical analyses in this chapter we focused on the perfor-

mance of time-varying leverage models based on the Kelly criterion. Notorious

weaknesses of the Kelly criterion for determining optimal leverage levels are

• the high short-term risk associated with the Kelly strategy, and

• the danger of overleveraging due to erroneous estimation of the input pa-

rameters return µ̂ and variance σ̂2 (see Section 6.1.3).

In Section 6.4.2 we suggested extensions to the Kelly formula that address

these issues. We computed and tested various time-varying leverage levels based

on different parameters for the extended Kelly formula. Our results suggest that

applying the time-varying leverage model produces enhanced results over the

constant leverage models in terms of geometric return and drawdown-adjusted

geometric return (see Section 6.5.2). The risk-adjusted performances of the worst

time-varying leverage models improve, as the risk appetite factor c assumes lower

values (see Section 6.4.2). Thus, we confirm the validity of the heuristic proposed

by e.g., Thorp [2006] and Ziemba [2003] of reducing risk by trading fractions of

the Kelly position size.

Weighting the estimate of the return to the FX carry portfolio by confidence

measures derived from risk factors (see Section 6.4.3) also contributes to improve

the performance of the carry portfolios. Similarly to the market-timing study in

Chapter 5, we find that the 2-Year U.S. Swap Spread (USSP2) based indicator

generated the best FX carry trading performance during the period of interest.

The confidence measure based on the average of the single confidence measures

(AV G), produced second best results across all levels of risk appetite c. Thus, we
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confirm that aggregating individual risk factors for trading FX carry portfolios

generates stable results (see Chapter 5).

In the regressions for carry-alpha and market-timing ability summarised in

Table 6.2 and Table 6.3, we find explanations for the improved performance of

weighting the estimated FX carry portfolio return µ̂ with a confidence measure

based on risk factors: The statistically significant positive alpha for the strategies

weighted with the confidence measures with I = USSP2, TEDSP, AV G disap-

pears as we extend the form of the equation to include a market-timing term

(see Equation 5.2). In contrast, the market-timing coefficient γ becomes statisti-

cally significantly positive for I = USSP2, TEDSP, V IX, AV G. Thus, a flexible

money management methodology has the ability to address both the aspect of

optimal position sizing and market-timing through variation of the leverage levels.

Pojarliev and Levich [2008] showed that some FX hedge funds exhibit positive

market-timing ability by performing regressions of the form of Equation 5.2. Our

results do not exclude that these money managers might instead adopt time-

varying leverage techniques, similar to the one proposed in Section 6.4.2. Money

managers who rely on simple market-timing techniques without considering lever-

age are not trading optimally with respect to multi-period (risk adjusted) capital

growth.

Finally, our analyses on dynamic leverage models for FX carry portfolios

strongly questions the validity of the conclusions reached by Darvas [2009]. Dar-

vas [2009] finds that the Sharpe ratio of FX carry trades degenerates with in-

creasing leverage levels. Thus, following Darvas [2009], the UIP puzzle would

exist mostly in the data and FX traders can not capitalise on it because of their

high leverage. Firstly, while Galati et al. [2007b] state that FX carry trades are

executed with leverage, there is no evidence whether these leverage levels are par-

ticularly high or just moderate. Secondly, as we show in our analyses, the Sharpe

ratio proves to be not appropriate for measuring risk adjusted capital growth.

Thus, we postulate that the conclusions reached by Darvas [2009] is drawn upon

wrong assumptions and interpretations of results.

Moreover, we show how optimising leverage levels based on historical returns

series can lead to strong overleveraging, and consequently to bancrupcy. Dy-

namic, conditional optimal leverage models are more reactive and as Thorp [2006]

points out, theoretically sound. Our results, show how most of the conditional

leverage models could outperform the constant leverage models with respect to
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our novel performance measure (DAG).
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Chapter 7

Conclusion

In this thesis we analysed the return characteristics inherent to advanced FX

carry trade strategies. The FX carry trade is of major practical relevance since

it represents a significant investment-style implemented by professional FX man-

agers (see Pojarliev and Levich [2008]). Pojarliev and Levich [2008] argued that

FX managers should not be remunerated for naive replication of FX carry returns

since the returns inherent to the FX carry trade can be generated in an easy and

systematic manner. As a solution Pojarliev and Levich [2008] suggested that FX

managers performance should be assessed according to new benchmarks which

entail proxies to the major investment-styles for the FX market. An industry-

wide acceptance of such benchmarks would force professional FX managers to

develop new trading strategies or to enhance existing ones (see Section 3.1).

The FX carry trade is relevant also from the theoretical perspective of finan-

cial economics, since its profitability stems from the well documented empirical

failure of uncovered interest rate parity (see Section 3.2). Since the FX carry

trade has been identified as a main driver of increases in FX market turnover (see

Galati and Melvin [2004]), an acknowledgement of the carry trade phenomenon

is indispensable for understanding current FX market dynamics. Throughout

the thesis we discussed literature which analysed various aspects of the FX carry

Trade phenomenon. Among others, Rosenberg [2003] and Vesilind [2006] studied

the performance of FX carry portfolios and reported the existence of diversifica-

tion benefits when implementing FX carry trades. Hochradl and Wagner [2010]

simulated the returns to a carry portfolio strategy and conclude that the risk

adjusted returns to carry trading are too high to be ignored by professional spec-

ulators. Christiansen et al. [2009] and Menkhoff et al. [2009] analysed which risk
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factors contribute in explaining the returns inherent to the carry trade and found

significant negative relationships between changes in proxies for global volatility

and liquidity and carry trade returns. Dunis and Miao [2007] deployed volatility-

based filters for market-timing the FX carry trade and finds improved Sharpe

ratios over a long-only carry trade benchmark. Darvas [2009] analysed the effect

of constant leverage levels on carry trade performance and finds that risk-adjusted

carry trading performances deteriorate as the leverage levels increase.

In the following we will briefly summarise the main findings from our three

empirical chapters.

Asset Allocation Since carry trading involves buying high yielding cur-

rencies while selling low yielding currencies, an FX carry trade should involve a

minimum amount of two currencies. The maximum number of currencies in a

FX carry portfolio however, is not limited. Rosenberg [2003] and Vesilind [2006]

showed that diversified FX carry portfolios generated higher risk-adjusted returns

than FX carry trades involving only two currencies. By analysing the performance

of three different sets of currency portfolios, in Chapter 4 we contribute to lit-

erature analysing the effect of asset allocation methodologies on FX carry trade

profitability.

Within the first set of currency portfolios we implement different algorithms

for computing the portfolio weights of diversified FX carry trade portfolios. We

find that diversification improves the Sharpe ratio of FX carry portfolios and

thereby confirm the validity of the findings by Rosenberg [2003] and Vesilind

[2006] in our own empirical results. Moreover, we find that mean-variance as-

set allocation strategies exhibit better financial performance metrics than the

simple asset allocation strategies. Nevertheless, mean-variance asset allocation

strategies fail to significantly outperform a simple scorecard-based asset alloca-

tion methodology. Also, we attribute a higher robustness to the simple asset

allocation algorithms, since they do not require an additional estimation of the

variance-covariance matrix. Thus, we do not regard mean-variance optimisation

as the better asset allocation procedure for FX carry portfolios and concentrate

our research efforts on a simple Benchmark FX Carry Portfolio, diversified ac-

cording to a simple scorecard-based weighting scheme (see Appendix A).
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Secondly, we test alternative FX carry portfolios by establishing currency ex-

posures based on different yield maturities. We find that the best performances

were achieved by ranking the currencies according to the yields with the shortest

maturity (i.e. 1-week yields). Nevertheless, the utilisation of longer maturity

yields does not significantly underperform portfolios based on shorter yield dura-

tions.

The third set of currency portfolios tested in Chapter 4 establish currency

positions according to relative changes in measures of carry trade attractiveness.

These currency portfolios mimic the portfolio flows generated by carry traders in

the FX market.

Contrary to the first two sets of currency portfolios, we find that these ’carry-

flows’ portfolios generate stable positive returns from the FX rate component

while generating no exceptional return from the yield component. We posit that

these positive FX returns are due to sustained buying (selling) pressure of FX

traders on currencies which are gaining (losing) carry trade attractiveness.

Although the carry-flows currency portfolios generate high returns from FX

fluctuations, the total returns to the portfolios are relatively low, since high trans-

actions costs erode large parts of the profits generated by the strategies. Following

Lyons [2006] and Sarno et al. [2006], the low Sharpe ratios associated to the carry-

flows portfolios should not attract significant speculative capital. Thus, according

to the limits of speculation hypothesis (see Section 4.1) the positive FX rate re-

turns inherent to carry-flows strategies could persist in the future. Nevertheless,

we posit that carry-flows portfolio strategies constitute a good diversification ve-

hicle for FX carry portfolios, since they exhibit positive returns and consistently

negative correlations to the Benchmark FX Carry Portfolio.

Market Timing Pojarliev and Levich [2008] found that about half of the

examined FX hedge funds successfully perform market-timing in one or more

investment-styles (see Section 5.1.2). In order to gain some insights into the

strategies adopted by modern FX hedge funds and contribute to literature re-

lating FX carry trade returns to global risk factors, in Chapter 5 we analysed

the performance of market-timing the Benchmark FX Carry Portfolio through

market-timing signals based on various risk factors.

We constructed simple market-timing signals based on proxies for global liq-
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uidity, volatility and interest rate differentials. We find that while long-neutral

market-timing strategies could outperform the long-only FX carry trade bench-

mark, long-short market-timing strategies consistently underperformed the long

only FX carry benchmark. On the basis of these results, we would not rec-

ommend assuming short positions in the carry trade. Moreover, we find that

the best trading performances were achieved by the market-timing signals based

on proxies for global liquidity (i.e. the Ted Spread and the U.S. 2-Year Swap

Spread). Composed risk aversion indicators, as disseminated by several financial

institutions, produced stable trading performances which were comparable to the

performances of the best single indicators.

By fixing the threshold parameter for the generation of the market-timing

signals to 0.7 from the start, we avoided allowing our analysis to degenerate into

a data-mining exercise. Still, we find our results affected by a lookback bias: The

enhanced profitability of the market-timed carry trade strategies is grounded in

the successful timing of the credit crisis. We strongly question whether carry

traders would have chosen the right (liquidity-based) risk indicators for timing

the carry trade before the credit crisis.

Since we do not know ex-ante which risk indicator will perform well within

future periods of carry trade losses, we advocate careful consideration of both

positive and negative market scenarios when developing market-timing indica-

tors. For practical market-timing applications, we would advocate the use of

aggregated risk indicators, which have been shown to produce robust trading re-

sults.

Money Management FX carry trades are typically executed with leverage

(see Gagnon and Chaboud [2007] and Galati et al. [2007b]). In a recent publi-

cation, Darvas [2009] analysed the effect of leverage on the profitability of FX

carry trades. Darvas [2009] found that risk-adjusted trading performances of FX

carry strategies decrease as leverage levels rise. This finding led Darvas [2009]

to conclude that FX markets might be more speculative efficient than previously

reported, since leveraged FX carry traders generated worse trading results than

unleveraged FX carry strategies which are typically analysed in the carry trade

literature.

In Chapter 6 we examine the effect that leverage has on FX carry trades
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by replicating and extending the research initiated by Darvas [2009]. In the

theoretical part of Chapter 6 (see Section 6.1) we discuss the implications of

using the Kelly criterion for determining optimal leverage levels. In Section 6.4 we

propose a novel performance metric (Drawdown-adjusted-Growth DAG) which

permits the evaluation of trading strategies with respect to capital growth and

security. We posit that the DAG is more appropriate for assessing multi period

investment performance than standard risk-adjusted performance measures like

the Sharpe ratio. Moreover, we propose extensions to the Kelly formula for

determining optimal leverage levels.

In the first part of our empirical analysis on leveraged FX carry trades we

simulate the trading performance of FX carry portfolios executed with different

fixed leverage factors. We find that when trading the Benchmark FX Carry

Portfolio (see Appendix A), a leverage level of 5.5 would have produced the

highest capital growth, while a leverage level of 1.5 would have produced the

highest risk-adjusted capital growth (as measured by the DAG).

Moreover, we show that carry traders who determined their leverage level by

selecting the historically growth-optimal constant leverage level would have found

themselves overleveraged during the period of the credit crisis. As a result, their

portfolios would have incurred substantial losses.

In the second part of the empirical research in Chapter 6 we analyse the

performance of trading the Benchmark FX Carry Portfolio with a time-varying

leverage model based on the Kelly criterion. We find that the time-varying lever-

age models perform better than the optimised constant leverage levels, which

were selected with hindsight on their performance.

Our trading experiments in Chapter 6 document the large effects that lever-

age has on the capital growth and the drawdowns of FX carry trade portfolios.

We posit that the large and sudden unwinding of carry trade positions during

drawdown phases, might be the result of forced liquidations of positions by over-

leveraged carry traders.

Outlook To recapitulate, in this thesis we focused on analysing the popular

FX carry trade. Reviewing recent carry trade literature, we showed that an ac-

knowledgement of the practical relevance of the FX carry trade is important for

an improved understanding of current FX market dynamics. We also conclude

that modern FX managers will have to develop enhanced methodologies for im-

plementing FX carry trades in order to compete with low cost index products
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which replicate popular investment-styles like the FX carry trade. In addition,

we find that there might be a feedback effect between the failure of uncovered

interest rate parity and the trading activity of FX carry traders.

Further, through the empirical analyses performed within the thesis, we showed

that:

• Diversification is beneficial to FX carry portfolio performance;

• Mean-variance optimisation does not significantly outperform the bench-

mark FX carry strategies;

• The FX market offers pockets of predictability facilitated by sustained buy-

ing and selling pressure on specific currencies by FX carry traders;

• Long-neutral market-timing can deliver improved risk-adjusted FX carry

performances, while long-short market-timing generates considerably lower

trading performances;

• Robust, aggregated market-timing indicators should be preferred to histori-

cally optimal indicators, in order to avoid overoptimisation and a lookback-

bias;

• Historical optimisation of leverage levels bears risks of overleveraging and

low flexibility to adapt in volatile market environments;

• Time-varying leverage levels based on Kelly produce enhanced results over

constant leverage levels;

• Performance measurement for multi-period trading strategies where lever-

age is allowed, is achieved better by the DAG (see Section 6.4.4) than by

conventional risk-adjusted performance metrics like e.g., the Sharpe ratio.

An interview with a FX hedge fund manager held in April 2009, following the

major FX carry trade losses incurred during the period of the credit crisis (see

Appendix C), provides a confirmation on the wide implementation of FX carry

strategies by FX hedge funds; the ability of some FX managers to market-time the

FX carry trade; and the failure of some FX managers to adopt effective money-

and risk management procedures. We stress the importance of this point, since

some FX hedge funds were forced to liquidate following the large losses incurred
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during the credit crisis.

We conclude that since the determination of the leverage levels for FX carry

trades constitutes the major factor in the final performance of FX carry trade

strategies, professional FX managers should put a greater focus on implementing

money management techniques for determining optimal leverage levels. Further

work in this area should focus on the optimal computation of the inputs to the

Kelly formula and on the development of solutions to the Kelly criterion for return

distributions which model the negative skewness and leptokurtosis inherent to FX

carry trade returns in a better way than the normal distribution.

Also, we stress the relevance of the findings that FX carry trade portfolio flows

can signal pockets of predictability in the movements of G10 exchange rates. Fur-

ther work in this area should deal with a refinement of a measure for determining

the change in FX carry trade attractiveness, the analysis of diversification bene-

fits gained by the inclusion of carry-flows portfolios in an FX carry portfolio, and

the interdependence of returns to the FX carry trade and carry-flows portfolios.
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Appendix A

The Benchmark FX Carry

Portfolio

In the following the we will outline the backtesting procedure and performance

metrics for the carry portfolio used as the simple proxy for carry trade returns

throughout this thesis. The computation of all currency portfolios in the thesis

is performed according to the methodology outlined in the following sections.

A.1 Defining the Currency Universe

The currency universe for the benchmark carry portfolio is denoted by the G10

currencies, i.e. the EUR, USD, JPY , GBP , CHF , CAD, AUD, NZD, NOK,

SEK (see Section 2.2).

A.2 Computing the Portfolio Weights

The portfolio weights for the benchmark carry portfolio are computed accord-

ing to the simple scorecard-based approach outlined in Section 4.4.1. Equally

weighted long positions are established with the three highest yielding currencies

and equally weighted short positions are established with the three lowest yield-

ing currencies. Figure A.1 depicts the resulting cumulative portfolio weights from

the 1st of January 1999 to the 5th of March 2010 of the Benchmark FX Carry

Portfolio.
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Figure A.1: Cumulative Portfolio Weights of the Benchmark FX Carry Portfolio

A.3 Simulating the Returns

The total returns to the currency portfolios are composed of three components.

These components are the return from FX rate movements, the return from yield

differentials and the transactions costs.

The FX return component rP
FX,t of a currency portfolio is calculated via Equa-

tion A.1:

rP
FX,t =

10
�

c=1

wc
t−1 ∗ log(

Sc
t

Sc
t−1

) (A.1)

Where c denotes the identifier for a specific currency in the G10 universe (see

Section A.1), wc
t−1 denotes the portfolio weight for currency c in period t− 1 and

log(
Sc

t

Sc
t−1

) denotes the percentage change of the exchange rate of currency c to the

Euro EUR from period t − 1 to period t.

The yields return component rP
Y D,t of the currency portfolio is calculated via

Equation A.2:

rP
Y D,t =

10
�

i=1

wc
t−1 ∗ (

ict−1

52
+ sign(wc

t−1) ∗
η

2
) (A.2)

Where ict−1 denotes the 1-week interest rate for currency c in period t− 1 and

η denotes the bid-ask spread for the 1-week yields. In order to determine the
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yield pickup for our weekly holding period, we divide the 1-week yields by 52

(the number of weeks in one year). Throughout the thesis we set the value of η

to 0.05% (i.e. 5 basis points) for all G10 currencies.

The transactions costs component rP
TC,t of the currency portfolio is calculated

via Equation A.2:

rP
TC,t =

10
�

i=1

−|wc
t − wc

t−1| ∗ (κ + ζ) (A.3)

Where κ denotes the transactions costs in percent for a one-way foreign ex-

change transaction and ζ denotes the slippage in percent for a one-way foreign

exchange transaction. We set κ to 0.03% and ζ to 0.02% throughout the thesis.

Thus, the total return rP
TOT,t generated by a currency portfolio P in a specific

period t can be computed via Equation A.4:

rP
TOT,t = rP

FX,t + rP
Y D,t + rP

TC,t (A.4)

The PANEL A of Figure A.2 depicts the cumulative total returns inherent

to the Benchmark FX Carry Portfolio as well as the cumulative single returns

components discussed above (i.e. FX, yields and transactions costs). The PANEL

A of Figure A.2 visualises how the largest contribution to the total returns of the

Benchmark FX Carry Portfolio is given by the yield component. The PANEL

B of Figure A.2 depicts the histogram of the Benchmark FX Carry Portfolio

total returns. The histogram visualises the existence of a few large (negative)

outliers in the total returns of the Benchmark FX Carry Portfolio. An analysis

of the cumulative returns depicted in PANEL A of Figure A.2 reveals that, within

our data set, the Benchmark FX Carry Portfolio incurred its largest drawdown

during the period of the credit crisis.

A.4 Performance Analysis

The performance metrics for the Benchmark FX Carry Portfolio are summarised

in Table A.1. The computation of these performance measures is outlined in

Appendix B.

The portfolio generated a return of 6.51% per annum with a standard devia-

tion of the returns of 9.71%. This yields a Sharpe ratio of 0.67. The maximum

drawdown of the Benchmark FX Carry Portfolio was 30%.
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ra σa SR rg MAX.DD DAG

0.0651 0.0971 0.67 0.0604 0.30 0.0727

Table A.1: Performance Metrics for the Benchmark FX Carry Portfolio (ra: An-
nualised Arithmetic Return, σa: Annualised Standard Deviation of Returns, SR:
Sharpe Ratio, rg: Annualised Geometric Return, MAX.DD: Maximum Draw-
down, DAG: Drawdown Adjusted Growth)

A.5 Timeseries derived from the Benchmark FX

Carry Portfolio

The yield differentials (carry) and the RiskMetrics volatility inherent to the

Benchmark FX Carry Portfolio are used as risk indicators in Chapter 5 and

Chapter 6 of the thesis. The computation of these time series is outlined in the

following paragraphs.

Benchmark FX Carry Portfolio ’Carry’ We compute the time series of

interest rate differentials (carry) inherent to the Benchmark FX Carry Portfolio

according to Equation A.5:

CBMCP
t =

10
�

i=1

wc
t ∗ ict (A.5)

Where CBMCP
t denotes the actual yield differential inherent to the Benchmark

FX Carry Portfolio positions, wc
t denotes the current portfolio weight of currency

c in the carry portfolio and ict denotes the current 1-week interest rate for currency

c. We compute the yield differentials for all periods of our weekly data set ranging

from the 1st of January 1999 to the 5th of March 2010.

Benchmark FX Carry Portfolio RiskMetrics-Volatility In order to

compute the time series of RiskMetrics volatility inherent to the Benchmark FX

Carry Portfolio, we need to calculate the portfolio weights wBMCP of the Bench-

mark FX Carry Portfolio as well as the RiskMetrics variance-covariance matrix

Σrr for the G10 currencies. The calculation of the portfolio weights is outlined in

Section A.2 while the methodology for the calculation of the RiskMetrics variance-

covariance matrix is outlined in Section 4.4.3. After having computed these two

inputs we can compute the time series of RiskMetrics volatility inherent to the

Benchmark FX Carry Portfolio according to Equation A.6:
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V BMCP
t =

�

52 ∗ wBMCP �

t ∗ Σrr,t ∗ wBMCP
t (A.6)

Where V BMCP
t denotes the actual RiskMetrics-volatility inherent to the Bench-

mark FX Carry Portfolio, wBMCP
t denotes the (10 × 1) vector of weights of the

Benchmark FX Carry Portfolio in period t and Σrr,t denotes the (10× 10) Risk-

Metrics variance-covariance matrix of the G10 currencies in period t. The stan-

dard deviation measure is annualised through multiplication with the square root

of 52 (number of weeks in one year).

Figure A.3 depicts the Carry and RiskMetrics-Volatility time series inherent

to the Benchmark FX Carry Portfolio.
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B) of the Benchmark FX Carry Portfolio

136



Appendix B

Performance Metrics

Throughout the thesis we utilise a set of performance metrics to evaluate the

currency portfolios from a portfolio managers perspective. These performance

metrics are:

• Annualised Arithmetic Return

• Annualised Standard Deviation

• Sharpe Ratio

• Annualised Geometric Return

• Maximum Drawdown

• Drawdown Adjusted Growth

In the following sections we will outline the computation of these performance

metrics.

B.1 Annualised Arithmetic Return

We compute the arithmetic mean return for a trading strategy by calculating the

average return for a period:

r̂ =
1

T

T
�

t=1

rP
TOT,t (B.1)

Where rP
TOT,t denotes the total return generated by a currency portfolio P in

a specific period t.
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Since our currency portfolios are traded on a weekly basis, we annualise the

mean return by multiplying it with the factor 52 (number of weeks in a year):

ra = 52 ∗ r̂ (B.2)

B.2 Annualised Return Standard Deviation

We calculate the weekly standard deviation of returns via Equation B.3:

σ̂ =

�

�

�

�

1

T − 1

T
�

t=1

(rP
TOT,t − r̂)2 (B.3)

Subsequently we annualise the standard deviation by multiplying the weekly

standard deviation by the factor
√

52:

σa =
√

52 ∗ σ̂ (B.4)

B.3 Sharpe Ratio

The Sharpe ratio is a very popular risk-adjusted performance metric. We calcu-

late the Sharpe ratio SR by dividing the strategy return over the riskfree rate

(ra − rrf ) by the annualised standard deviation of returns σa. We set the riskless

interest rate rrf in Equation B.5 to zero, since the currency portfolios are fully

self financed.

SR =
ra − rrf

σa
(B.5)

B.4 Annualised Geometric Return

When measuring the performance of an investment strategy over several periods

the arithmetic mean return ra, does not provide a realistic measure of investment

performance since it does not take into account the compounding of returns over

time. The geometric mean return rg denotes the average return to a trading

strategy under consideration of reinvestment of returns. The annualised geometric

return is computed via Equation B.6:
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rg = 52 ∗ (
T

�

t=1

(1 + rP
TOT,t)

1

T

− 1) (B.6)

B.5 Maximum Drawdown

The maximum drawdown metric MAX.DD measures the biggest historical price

decline in the equity of a trading strategy. If X(t) is a random process [X(0) =

0, t ≥ 0], the drawdown DD(T ) at any time T is defined as:

DD(T ) = Max[0, Maxt∈(0,T )X(t) − X(T )] (B.7)

The maximum drawdown MAX.DD up to time T is the maximum of the

drawdown over the history of the variable. More formally,

MAX.DD(T ) = Maxτ∈(0,T )[Maxt∈(0,τ)X(t) − X(τ)] (B.8)

B.6 Drawdown Adjusted Growth

Within this thesis we propose a novel performance measure which we term Draw-

down Adjusted Growth. The performance measure is suitable for evaluating geo-

metric capital growth while penalising for large drawdowns. The DAG is calcu-

lated via Equation B.9:

DAG = max(−log(MAX.DD) ∗ rg, 0) (B.9)

A more detailed discussion of the DAG performance metric can be found in

Section 6.4.4.
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Appendix C

Interview with a FX Hedge Fund

Manager

Transcript of an interview between the author (LB) and Dr. Christian von Stra-

chwitz (CVS). Christian von Strachwitz is the CEO of Frankfurt based Quaesta

Capital, a FX hedge fund specialising in managed accounts using a systematic

trading method employing genetic algorithms.

The interview was carried out in April 2009, following the large carry trade

drawdown during the period of the credit crisis. We omit parts of the interview

which are irrelevant to the thesis.

LB Do you trade carry strategies in your fund?

CVS Not directly. Since we specialise in genetic algorithms for determining

short-term FX trades, we do not focus on developing carry strategies at the

moment. This will not change in the near future, especially since the reputation

of the carry trade suffered a lot recently. Nevertheless, we can not exclude an

exposure to the carry trade within the fund-of-funds product that we offer to our

clients.

LB What is your general view on the carry trade?

CVS Nobody wants to hear anything about the carry trade at the moment.

Everyone traded it and thus during the credit crisis many investors incurred large

losses. Some fund managers traded the carry trade with high levels of leverage

and no effective stop-loss- or risk-management mechanisms. At the moment the
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industry is moving away from the carry trade and we do not intend to be the first

institution to move against this trend.

LB How do you know these facts?

CVS In order to optimise our fund-of-funds product, we maintain and anal-

yse a large data base of FX hedge funds performances. During the credit crisis,

several funds disappeared from our database. Large losses forced them to liqui-

date. Also, many FX hedge funds are abandoning the carry trade. We know this

by interpreting regression coefficients of FX hedge fund returns on e.g. proxies

for carry trade returns. We find that the factor loadings on our carry trade proxy

are declining for most FX hedge funds which survived the credit crisis.

LB Do you think that market-timing could enhance carry trade returns?

CVS We tested market-timing signals for FX carry trades based on sim-

ple risk factors. In our backtests the market-timing signals improved the risk-

adjusted performance of the carry trade. Still, it is not our main interest to

engage in carry trading activities at the moment.
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