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Abstract 

Platinum-based anticancer drugs are believed to exert their action through chemical 

reactions with genomic DNA, forming adducts with DNA bases. Although the 

pharmacology of such adducts has been widely studied, the cytotoxic mechanism 

remains unclear. The possibility that non-DNA molecules have the potential to alter the 

types of adducts formed has received very little attention, and limited information is 

available on the levels of adducts formed in clinical tumours. Further understanding of 

platinum-DNA adduct formation may be important in explaining the efficacy of 

platinum-based drugs in different tumour types, providing insights into both the 

cytotoxic mechanism and the development of clinical resistance. 

  

The aims of the work described in this thesis were: a) to analyse the nature of DNA 

adducts formed by three clinically used platinum-based anticancer drugs and to 

investigate the potential intracellular formation of additional types of adducts to those 

previously characterised on pure DNA; b) to determine platinum-DNA adduct levels 

formed in solid ovarian cancer tissue following treatment of patients with carboplatin 

and test the hypothesis that these levels are comparable to the levels of DNA adducts 

formed in blood cells; and c) to determine whether sodium thiosulfate (STS), which is 

currently in clinical trials to protect against cisplatin-induced normal tissue toxicity, 

impacts on DNA adduct formation. 

 

Analysis of the properties of all DNA adducts formed in cells was made possible by 

analysing enzymatically digested DNA using anion exchange chromatography together 

with inductively-coupled plasma mass spectrometry (ICP-MS). Putative adducts 

involving deoxyguanosine monophosphate cross-linked via cisplatin to glutathione 

were prepared and the chromatographic properties determined. Studies were carried out 

to characterise the types of adducts formed following incubations of cisplatin with four 

cancer cell lines. No additional types of adducts were observed compared to those 

formed by the reaction of cisplatin with pure DNA. The chromatographic behaviour of 

adducts formed in cells incubated with carboplatin and oxaliplatin were comparable to 

those formed by cisplatin. 
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This study is the first to investigate carboplatin-DNA adduct levels induced in solid 

tumours during therapy in patients. Total DNA adduct levels in tumour biopsies and 

blood cells were measured using ICP-MS with thallium as an internal standard. Tumour 

biopsies from all four patients studied showed clearly detectable levels of treatment-

induced DNA adducts ranging from 1.9 - 4.2 nmoles Pt/g DNA. Blood cell adduct 

levels ranged from 0.15 – 3.5 nmoles Pt/g DNA. Both tumour and blood cell adduct 

levels were significantly above background measurements. No correlation was 

observed between adduct levels in DNA from biopsies and levels in DNA from 

peripheral blood cells. 

 

Concurrent incubation of four human tumour cell lines with cisplatin and STS caused 

greater than 2-fold decreases in total DNA adducts. Delayed administration of STS had 

no effect of adducts levels. STS did not appear to affect the chromatographic behaviour 

of DNA adducts formed in cells following incubation with cisplatin.  
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Chapter 1 

Introduction 

 

1.1: Cancer and Cancer Treatment 

 

1.1.1: Cancer 

 

1.1.1.1: The origin of the word cancer 

 

The Edwin Smith papyrus (c1600 B.C.) and the Ebers papyrus (c1550 B.C.) are 

believed to be two of the oldest surgical documents, and the first to describe tumours of 

the breast and uterus respectively. Furthermore, they are based on material from a 

thousand years earlier. The term cancer however is credited to the Greek physician 

Hippocrates (460-370 B.C.) who used the terms carcino‟s and carcinoma to describe 

non-ulcer-forming and ulcer-forming tumours. In Greek terminology these words refer 

to the crab, probably applied describing the spreading projections from a cancer in a 

similar manner to that of the shape of the crab (Diamandopoulos 1996). Some of the 

earliest direct evidence of cancer was found in bone tumours in ancient Egyptian 

mummies. 
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1.1.1.2: What is cancer? 

 

Cancer is a non-specific term that describes a group of diseases characterized by 

deregulated growth mechanisms. Normal cells acquire the ability to proliferate 

abnormally to form tumours, which can be benign or malignant. This “transformation” 

from normal to cancerous cells is a multi-stage process, and major advances have been 

made in demonstrating that many of the steps involved reflect genetic alterations or 

abnormalities. Normal cells acquire tumourogenic potential as a result of an initiating 

factor causing mutations, for example chemicals or radiation. Mutations can also occur 

through spontaneous DNA damage. Hanahan and Weinberg proposed that the 

transformation of cells to a cancerous genotype involves six hallmark characteristics, 

shown in Figure 1.1 (Hanahan and Weinberg 2000). A brief description of each 

proposed acquired potential is given below. 

 

 

Figure 1.1: Acquired capabilities of cancer cells (Hanahan and Weinberg 2000). 
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Acquired Capability: Self -sufficiency in growth signalling 

In normal cells, mitogenic growth signal cascades control the progression from a 

quiescent state into an active proliferative state. Oncogenes are mutated forms of proto-

oncogenes usually involved in the positive regulation of this progression. Activation of 

proto-oncogenes can occur through point mutations, amplification, translocation and/or 

epigenetic up-regulation, causing normal cells to grow uncontrollably and giving them 

a selective growth advantage. Examples of these include growth factors such as 

platelet-derived growth factor and tumour growth factor α (Fedi et al 1997) and growth 

factor receptors such as EGF-R/erb2 and HER2/neu, both up-regulated in stomach and 

breast cancers (Yarden and Ullrich 1988, Slamon et al 1987). Growth signalling 

autonomy can also arise through alterations in the downstream signalling circuitry that 

processes growth signalling, such as the SOS-Ras-Raf-MAPK cascade. The Ras protein 

has been found to be structurally altered in approximately 25% of human tumours, 

allowing continuous signalling without stimulation from their normal upstream 

regulators (Medema and Bos 1993). 

 

Acquired Capability: Insensitivity to anti-growth signalling 

Normal cells and tissues receive multiple anti-proliferative signals which act to either 

force cells into the quiescent (G0) state of the cell cycle, or to permanently relinquish 

their proliferative capabilities. Tumour suppressor genes code for proteins that function 

in the opposite manner to that of oncogenes, with a primary function of slowing cell 

division and maintaining genetic stability. At the molecular level, many, if not all anti-

proliferative signals are processed by the retinoblastoma protein (pRb) (Hanahan and 

Weinberg 1996), which in its hyperphosphorylated form, blocks progression from G1 to 

S phase in the cell cycle (Weinberg 1995). Functional impairment of tumour suppressor 
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gene signalling can be a result of reduced expression, mutation or deletion and leads to 

uncontrolled cellular growth and genetic instability. The anti-proliferative signalling 

circuit that acts through pRb is disrupted in a majority of human cancers (Dyson et al 

1989, Fynan and Reiss 1993, Markowitz et al 1995, Schutte et al 1996, Chin et al 

1998). 

 

Acquired Capability: Evasion of apoptosis 

Programmed cell death (apoptosis) is a process that maintains the healthy development 

of multi-cellular organisms, and evidence suggests the apoptotic program is present in 

virtually all cell types found throughout the body. The ability of tumour cell 

populations to expand is determined both by the ability of the population to maintain 

proliferation, and also to evade apoptosis. Acquired resistance to apoptosis is a 

hallmark of most types of cancer and can occur through a variety of mechanisms. The 

most commonly occurring loss of pro-apoptotic regulation involves mutation of the p53 

protein, and inactivation of p53 is found in greater than 50% of human cancers 

(Anthoney et al 1996, Harris 1996, Soussi and Wiman 2007), although not all cancers 

are hallmarked by p53 mutations (Peng et al 1993). Loss of the tumour suppressor 

pTEN has been linked to mitigating apoptosis (Cantley and Neel 1999), and 

mechanisms for avoiding death signals conveyed through the FAS receptor have been 

found in lung and colon cancers (Pitti et al 1998). 

 

Acquired Capability: Limitless replicative potential 

Cellular senescence is a phenomenon that stops cells from proliferating indefinitely, 

effectively giving cells a finite lifespan. Immortality genes allow cells to proliferate 

indefinitely. Cancer cells are often described as immortal, and this may be attributed to 
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up-regulation of telomerase, an enzyme that adds specific DNA repeats (3‟-TTAGGG-

5‟) to the ends of telomeres (Zakian 1995). Telomeric DNA comprises tandem repeats 

that protect the chromosome from degradation. During replication DNA is shortened 

and in normal dividing cells critical shortening of telomeres can cause cells to stop 

replicating and senesce (Harley et al 1990, Hastie et al 1990).  Up-regulation of 

telomerase enables cancer cells to overcome telomere shortening by continually 

synthesising the repeat sequence, effectively immortalizing the cells. This has been 

demonstrated in many different tumour types (Kim et al 1994, Hiyama et al 1995 (a), 

Hiyama 1995 et al (b), Langford et al 1995, Hiyama et al 1996, Shay and Wright 1996, 

Wright et al 1996). 

 

Acquired Capability: Sustained angiogenesis 

Cell function and survival is critically dependent on a constant supply of oxygen and 

nutrients provided by the vasculature. This dependence on supply obliges virtually all 

cells to reside within 100 µm of a capillary blood vessel (Hanahan and Weinberg 1996). 

This closeness is maintained during organogenesis, and the process of angiogenesis is 

closely regulated. It was initially assumed therefore that proliferating cells were 

intrinsically able to stimulate blood vessel development, but the evidence suggested 

otherwise. Proliferating cells initially lack angiogenic signalling capacity, and the 

ability to induce and sustain angiogenesis is therefore a critical step in tumour 

development. This ability is believed to be acquired during tumour development 

through an “angiogenic switch”, and this was found to be activated in mid-stage 

lesions, prior to full tumour appearance, although the mechanisms involved are poorly 

understood (Reviewed in Hanahan and Folkman 1996). Angiogenesis inhibitors have 

been found to impair the growth of human tumour cells inoculated into mice (Folkman 
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1997) and tumours in cancer-prone transgenic mice have demonstrated susceptibility 

(Bergers et al 1999), further supporting the essential role of angiogenesis in tumour 

development. 

 

Acquired Capability: Tissue invasion and metastasis 

In addition to the alterations described above, full malignancy is associated with the 

spread of tumour cells outside of the site of origin, invading neighbouring tissues and 

allowing the tumours to metastasise. Metastasis describes the movement and 

subsequent re-development of cancer cells from their primary site to secondary 

locations around the body, facilitated by transport through the vasculature. Metastasis is 

a defining event in cancer and is believed to account for 90% of human cancer deaths 

(Sporn 1996). Invasion and metastasis are complex mechanisms, and the genetics and 

biochemical processes involved are incompletely understood. 
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1.1.2: Cancer treatment 

 

Early detection of cancerous cells significantly improves outcome for patients, 

increasing the potential for complete elimination of the malignant population. However, 

in many cases by the time of diagnosis the tumour has already metastasised and 

invaded vital organs, complicating treatment and resulting in poorer prognosis. Cancer 

therapy is therefore often multi-modal, involving surgery, radiotherapy and/or 

chemotherapy.  

 

1.1.2.1: Surgery 

 

For established solid cancers, removal of the tumour by surgery is the preferred 

approach to treatment. In the early stages of tumour development surgery can be 

curative, as can cyto-reduction surgery followed by chemotherapy. However surgery 

has many limitations and excision of the full tumour from essential organs such as the 

brain or lungs is often not possible. For most haematological cancers, such as 

leukaemia, lymphoma and myeloma, surgery is not an option. Furthermore for cancers 

that have spread through metastasis, surgery is mainly of palliative value to patients.  

 

1.1.2.2: Radiotherapy 

 

There are three main divisions of radiotherapy used clinically: external beam 

radiotherapy, brachytherapy (sealed source radiotherapy) and systemic radioisotope 

therapy (unsealed source radiotherapy). Conventional external beam radiotherapy 

consists of a single beam of ionising radiation, often in the form of x-rays, being 
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delivered to the patient from several directions but is limited by collateral damage to 

surrounding tissues. Stereotactic and 3-D conformal radiotherapy were developed in an 

attempt to reduce the collateral damage, and involve focusing directed beams of 

radiation to the tumour using well defined scans and images of the tumour. Particle 

therapy is another form of external beam radiotherapy that involves directing energised 

particles (protons or carbon ions) to the tumour. Brachytherapy is delivered by placing 

the radiation source directly at the site of treatment, which limits the irradiation to a 

localized area and minimises surrounding tissue damage, allowing for higher doses of 

radiation to be used. Brachytherapy is commonly used in the treatment of cervical, 

prostate and breast cancer (Gaffney et al 2007, Morris et al 2009, Polgar and Major 

2009). Systemic radioisotope therapy generally involves infusion of isotopes either 

alone, or coupled to another molecule or antibody to target specific tissues. A major use 

of systemic radiotherapy is in the treatment of bone metastasis (Lin and Ray 2006). 

Radiotherapy however is not effective as a single modality treatment for cancer, and as 

with surgery, radiotherapy has limited application in haematological malignancies. For 

advanced metastatic cancers, radiotherapy is mainly of palliative value. 

 

1.1.2.3: Chemotherapy 

 

One of the major advantages of chemotherapy over alternative treatments is the 

potential to treat tumours that have metastasised or which are in surgically inaccessible 

locations. Chemotherapy is generally divided into two categories; cytotoxic 

chemotherapy and targeted chemotherapy. Cytotoxic chemotherapy kills cancer cells 

through the inhibition of replication and mitotic division. There are numerous classes of 

cytotoxic chemotherapeutic agents that elicit their effect in a number of ways and show 
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varying efficacy against different tumour types. The cytotoxic agents were amongst the 

earliest anticancer drugs to be discovered at a time when the underlying biology of 

cancer was poorly understood. The first cytotoxic agents to demonstrate anti-tumour 

activity were the mustards, developed after the discovery that soldiers exposed to 

“mustard gas” (1,5-dichloro-3-thiapentane) during World War One often presented 

with leukopaenia (Reviewed in Hall and Tilby 1992). Although treatment of superficial 

tumours with small quantities of liquid sulfur mustard was possible, damage to 

surrounding tissue was severe and administration was a hazard for both patient and 

clinician. During the Second World War, in an effort to create improved chemical 

warfare agents, the sulfur atom of mustard gas was replaced by an amine. These new 

“nitrogen mustards” were less reactive than their sulfur counterpart, and were entered 

into clinical trials in 1942, although no data was published until 1946 due to wartime 

secrecy constraints. Many derivatives of the nitrogen mustards were synthesised and 

tested in animal tumour systems, and it was shown that having a benzene ring coupled 

to the nitrogen mustard reduced the reactivity of the chloroethyl groups of the mustard. 

This increase in the chemical half life of the drug allowed more effective distribution 

throughout the body. After nitrogen mustard itself (mechlorethamine), chlorambucil 

was the first analogue of this type to be successful in clinical practice, and is still used 

today in the treatment of chronic lymphocytic leukaemia (CLL) (Begleiter et al 1994, 

Begleiter et al 1996). During the second half of the 20
th

 century a number of major 

cytotoxic drugs were discovered through screening programmes.  

 

The vast majority of cytotoxic agents act to kill cells by disrupting DNA function and 

synthesis, with the notable exceptions of the vinca alkaloids and the taxanes which 

disrupt microtubule dynamics. Cytotoxic agents may act through chemical reactions 
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with DNA to form adducts (alkylating and platinating agents), blocking synthesis of 

DNA precursors (anti-metabolites), blocking enzymes that control DNA structure 

(topoisomerase poisons), or by affecting microtubule metabolism (tubulin binding 

agents). The platinum-based chemotherapy drugs are sometimes described as being 

“alkylating-like” agents as they form adducts on DNA but they do not contain an alkyl 

group. 

 

It is generally thought that dividing cells are more susceptible to cytotoxic 

chemotherapy. Rapidly dividing cells, such as cells in bone marrow, hair follicles and 

the intestinal lining are frequent sites of toxicity (Corrie 2004). Dysregulation of cell 

growth and cell cycle checkpoints, both common hallmarks of many cancers, could 

potentially explain why cancer cells can be more susceptible to cytotoxic drugs 

compared to normal tissues. 

 

The cytotoxic agents have generally been used clinically with limited or no 

understanding of their mechanism of action. This contrasts to targeted agents, which are 

being developed strategically to target a specific characteristic of a tumour. The first 

successful small molecule drug of this class was the tyrosine kinase inhibitor Imatinib 

(Glivec). This works by blocking the active site of the fused bcr-abl protein, a product 

of the rearranged genes in the Philadelphia chromosome. It is used for chronic myeloid 

leukaemia (CML) and gastrointestinal stromal tumours (GISTs) (Kantarjian et al 2001, 

Kantarjian and Talpaz 2001, Eisenberg et al 2003). Trastuzumab (Herceptin) is a 

monoclonal antibody that was designed to target the HER2/neu receptor, amplified in 

breast cancer. It has had a significant impact in the treatment of metastatic HER2
+
 

breast cancer (Baselga et al 1998, Baselga et al 1999). Although there have been 
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important advances in targeting tumours for many types of cancer, cytotoxic 

chemotherapy is likely to remain the most effective treatment for the immediate future, 

and seems likely to continue to play an important role in combination with new targeted 

agents, particularly drugs that inhibit DNA repair, such as inhibitors of PARP 

(Calabrese et al 2004, Curtin 2005) and DNA PK (Salles et al 2006, Zhao et al 2006, 

Bolderson et al 2009). It is therefore important to continue to improve our 

understanding of the precise mechanisms involved in the anticancer activity of both 

newer and more established agents. 
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1.2: Platinum Complexes 

 

1.2.1: Discovery of cisplatin 

 

Diamminedichloroplatinum (DDP) is an inorganic compound with platinum (II) atom 

co-ordinated to two ammonia molecules and two chlorine atoms. It was first described 

by Michel Peyrone in 1845 and originally known as Peyrone‟s salt (Peyrone 1845). The 

chemical structure was elucidated in 1893 by Alfred Werner (Werner 1893) and is 

shown in Figure 1.2.  

 

 

Figure 1.2: The chemical structure of diamminedichloroplatinum (II) in cis- and trans- 

isomers 

 

Diamminedichloroplatinum (II) was re-discovered in 1965 at Michigan State University 

by Dr Barnett Rosenberg (Rosenberg et al 1965). Rosenberg was investigating the 

effects of electric fields on growth processes of Escherichia coli cells. Experiments 

were carried out in a continuous culture chamber in a chemically defined medium. 

Importantly this growth medium contained ammonium chloride. The electric current 

was applied using an audio oscillator generating between 50 and 10
5
 c/s frequency 

(alternating current). Platinum electrodes were chosen as they were believed to be 

chemically inert and alternating current chosen to eliminate the effects of electrolysis 

and electrode polarization. 
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Microscopic examination of the E. coli cells showed that cell division ceased after 1-2 

hours of exposure to the electric field. However the bacteria continued to elongate, 

growing unusually long and filamentous, to up to 300 times their normal length of 

between 2 – 5 µm as shown in Figure 1.3 (Rosenberg et al 1965). Further investigation 

concluded that the reason for the inhibition of bacterial cell division was not the action 

of the electric field directly on the cells, but platinum-containing chemical species 

formed between the platinum electrodes and the bacterial growth medium containing 

ammonium chloride. Many platinum-containing complexes were discovered in the 

media, with the most biologically active being the chemically neutral 

diamminedichloroplatinum (II) (Rosenberg et al 1965, Rosenberg 1967 et al (a). 

Rosenberg further concluded that it was the cis- conformation (cis-DDP) and not the 

trans- conformation that was the active species (Rosenberg 1967 et al (a), Rosenberg et 

al 1967 (b)). 

 

 

Figure 1.3: Scanning electron micrograph of E. coli grown in normal media (A) and in 

normal media containing low levels of cis-DDP (B). Figure taken from Lippert 1999 
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1.2.2: Cisplatin – from bench to bedside 

 

Following on from the interesting results found in bacteria, Rosenberg hypothesised 

that cis-DDP might be effective at inhibiting cell division in mammalian cells, and 

investigated the effects on two murine cell lines implanted into mice (Sarcoma 180 and 

Leukaemia L1210). Cis-DDP was injected i.p. at 0.5 – 2.0 mg/kg daily and 1.25 – 10.0 

mg/kg daily for mice implanted with Sarcoma 180 and L1210 cells respectively. There 

was a marked difference between the treated groups compared with the untreated, with 

cis-DDP causing tumour regression, and a complete cure in mice which were kept alive 

for 6 months (Rosenberg et al 1969). Following confirmatory in vivo investigations 

which were carried out at the Chester Beatty Institute (UK), cis-DDP was entered into 

clinical trials in 1970, with encouraging results obtained despite toxic side effects 

(Kelland 2007). The first patients were treated with cis-DDP in 1971, and the drug was 

approved for clinical use by the Food and Drug Administration (FDA) against 

metastatic testicular and metastatic ovarian cancer in 1978, under the generic name 

cisplatin. 

 

Cisplatin is currently used clinically in the treatment of a variety of different cancers as 

a single agent, or more commonly, as part of combination therapies. Administration is 

generally intravenous, and adults typically receive doses of 50 – 100 mg/m
2
 repeated 

every 3 to 4 weeks (McKeage 1995). Prior to the introduction of cisplatin, the cure rate 

for testicular cancer was approximately 10%. However, currently more than 90% of 

patients are cured after undergoing surgery and chemotherapy, and this improvement 

was mainly due to the introduction of cisplatin in combination therapy. Ovarian cancer 

response rate to chemotherapy prior to the introduction of cisplatin was between 30-
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60%, with 5 year survival less than 10% (Young et al 1974). Use of cisplatin as a single 

agent showed a response rate of 50% in previously untreated patients, and in 

combination with doxorubicin this rose to between 55-96% (Cvitkovic et al 1977). 

Cisplatin use in ovarian cancers however has been widely superseded by carboplatin 

(discussed in section 1.2.3). Cisplatin is also an important drug in combination therapy 

for treatment of bladder cancer (Noguchi et al 1992, Keane et al 1994, Hussain et al 

2001), and in other cancers such lung and neuroblastoma (Meczes et al 2002, Lee et al 

2004, Mishima et al 2004, Hirose et al 2006, Feliu et al 2009). 

 

Clinically, despite its broad spectrum of activity, cisplatin is very toxic and causes 

severe side effects in some patients even following single doses ≥ 50 mg/m
2
. These 

include nephrotoxicity, ototoxicity, myelosuppression, neurotoxicity, and also nausea 

and vomiting (McKeage 1995). Less common side effects that have been linked to 

cisplatin include pancreatitis, seizures and vision loss (Loehrer and Einhorn 1984). 

Nephrotoxicity is potentially the most severe side effect encountered in cisplatin-treated 

patients, and involves cumulative damage to both tubules and glomeruli (Weiner and 

Jacobs 1983, McKeage 1995). Saline hydration can be used to decrease nephrotoxicity, 

but it does not completely prevent the damage (Hayes et al 1977, Al-Sarraf et al 1982). 

Cisplatin induced ototoxicity is cumulative with treatment, and causes irreversible 

damage to the inner ear cells (Rybak et al 2005, Thomas et al 2006). Myelosuppression 

is considered a mild toxicity which allows combination of cisplatin with other highly 

myelosuppressive agents (McKeage 1995). Cisplatin causes leukopaenia in up to 50% 

of patients, with a typical onset of between 6-26 days, and recovery occurring between 

days 21-45 (Von Hoff et al 1979). Cisplatin also causes thrombocytopaenia in nearly 

half of all patients, with a typical onset between 10 to 26 days, whilst recovery occurs 
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between days 22 to 45 (Von Hoff et al 1979). Anaemia has also been reported in some 

patients (Von Hoff et al 1979). Neurotoxicity presents often in the form of peripheral 

neuropathy, seizures and muscle cramps (Cersosimo 1989, Harmers et al 1991). Nausea 

and vomiting can last up to 24 hours after treatment, though is easily treatable with 

anti-emetics. Toxicity limits administration of higher doses of cisplatin and can result in 

early cessation of therapy. 

 

1.2.3: Carboplatin 

 

In an effort to improve the efficacy of platinum drugs and decrease the severe toxicities 

associated with cisplatin, other platinum-containing compounds were screened for 

anticancer activity (Kelland 2007). One of the most successful of these compounds was 

cis-diammine-[1,1-cyclobutanedicarboxylato] platinum (II), (cis-Pt(NH3)2CBDCA-

O,O’) (Figure 1.4) developed in an industry-academia collaboration between the 

Institute of Cancer Research (ICR) in London, and Johnson-Matthey Plc (Reviewed in 

Kelland 1993 and Kelland 2007). Cis-Pt(NH3)2CBDCA-O,O’ proved significantly less 

toxic than cisplatin, particularly to the kidneys and nervous system (McKeage 1995, 

Ozols et al 2003), whilst maintaining comparable anti-tumour activity, especially in 

ovarian cancer (Aabo et al 1998, Sandercock et al 2002, Ozols et al 2003). It is thought 

that the more stable bound CBDCA leaving group is the reason for greater stability of 

the compound and the decrease in toxicity compared to cisplatin.  
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Figure 1.4: The chemical structure of carboplatin 

 

Cis-Pt(NH3)2CBDCA-O,O’ was approved by the FDA for palliative treatment of 

ovarian cancer following previous chemotherapy in 1989, and as a first-line agent 

against ovarian cancer in 1991, under the generic name carboplatin. Currently, 

carboplatin is widely used in the treatment of advanced ovarian cancer in combination 

with paclitaxel (Sandercock et al 2002). Carboplatin has also been used in combination 

treatments for hormone refractory prostate cancer (Urakami et al 2002), 

nephroblastoma (Kremens et al 2002) and non-small cell lung cancer (Vieitez et al 

2003).  

 

Long-term follow up studies of renal function in patients treated with carboplatin 

showed no significant effects on renal function (Mason 1991), although carboplatin at 

doses higher than 1200 mg/m
2
 has been associated with reductions in glomerular 

filtration rate in over 50% of patients (Gore 1987). Typical doses for adults receiving 

carboplatin are between 250-400 mg/m
2
 (McKeage 1995) or doses based on individual 

patient GFR (Calvert et al 1989). Haematological toxicity is the major dose-limiting 

toxicity associated with carboplatin, with thrombocytopaenia a greater problem than 

leukopaenia at conventional doses (Calvert et al 1982, Curt et al 1983). Carboplatin is 

often used in high-dose chemotherapy (greater than 1200 mg/m
2
) due to its lack of non-

haematological toxicities, although more than 90% of patient‟s present grade IV 
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neutropaenia and thrombocytopaenia in these regimes. Carboplatin has also been linked 

with ototoxicity in humans and animals (Kennedy 1990, McAlpine and Johnstone 

1990) but this is only dose-limiting when carboplatin dosing is greater than 2000 mg/m
2
 

(Kennedy et al 1990, McAlpine and Johnstone 1990, Neuwelt et al 1996). Compared to 

cisplatin, carboplatin is associated with greatly reduced neurological toxicity (Shea et al 

1989) and is considerably less emetogenic (Harvey et al 1991). 

 

 1.2.4: Oxaliplatin 

 

Oxaliplatin (1R,2R-diaminocyclohexane)oxalatoplatinum(II)) (Figure 1.5) was 

originally discovered in 1976 at Nagoya City University, Japan (Kidani et al 1978). It 

was licensed to Debiopharm for development as a treatment for advanced colorectal 

cancer. Sanofi-Avensis gained the license in 1994, and oxaliplatin became licensed for 

clinical use in Europe in 1996 under the trade name Elaxotin. The FDA initially 

approved oxaliplatin for treatment of metastatic colorectal cancer (second line) in 2002, 

and as a first line agent in 2004 (Kelland 2007). Oxaliplatin is based on the 1,2-

diaminocyclohexane carrier ligand (DACH), and is a more water soluble derivative of 

the failed drug tetraplatin (Kelland 2007). DACH compounds were thought to be 

promising as drugs development targets due to their lacking of the major toxicities of 

cisplatin and carboplatin (Burchenal et al 1979, Hoeschele et al 1994, Monti et al 

2005). Also, of particular importance, cells resistant to cisplatin have demonstrated a 

lack of cross-resistance with oxaliplatin (Fukuda et al 1995, Rixe et al 1996). 
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Figure 1.5: The chemical structure of oxaliplatin 

 

Oxaliplatin has demonstrated modest activity when used as a single agent in the 

treatment of colorectal cancer (Machover et al 1996) but greater activity when used in 

combination with 5-fluorouracil and folinic acid (Levi et al 1992). Neither cisplatin nor 

carboplatin demonstrate any significant clinical activity against colorectal cancer. 

Oxaliplatin has also been reported to have activity as both a single agent (Misset et al 

1991) and in combination with cisplatin and/or paclitaxel (Soulie et al 1997, Faivre et al 

1999, Delaloge et al 2000, Piccart et al 2000) in the treatment of ovarian cancer. 

 

The major dose limiting toxicity with oxaliplatin is peripheral neuropathy, associated 

with acute paraesthesia of the lips and extremities, and peripheral sensory neuropathy 

can develop with repeated treatment (Extra et al 1990). Other toxicities associated with 

oxaliplatin include myelosuppression, emesis and gastrointestinal tract toxicity. 

Nephrotoxicity observed following oxaliplatin treatment is far less severe than that 

associated with cisplatin allowing administration of oxaliplatin without hydration 

(Cassidy and Misset 2002). 
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1.3: Molecular mechanism of action of platinum complexes 

 

1.3.1: Identification of genomic DNA as the principle target for platinum 

complexes 

 

Platinum complexes can react with many molecules in the intracellular environment 

including DNA, RNA, proteins, membrane phospholipids and cytoskeletal 

microfilaments (Akaboshi et al 1992, Kopf-Maier and Muhlhausen 1992, Speelmans et 

al 1996, Speelmans et al 1997). It is commonly accepted that platinum binding to DNA 

is responsible for the major cytotoxic effects of platinum complexes (Jamieson and 

Lippard 1999, Wong and Giandomenico 1999) although only 5-10% of the total 

platinum binding is to DNA, with the majority (85-90%) binding to proteins (Fuertes et 

al 2003).  

 

Some of the earliest evidence that identified DNA as the principal cellular target was 

the filamentous growth of bacteria induced by cisplatin (Rosenberg et al 1965, Witkin 

1967). This is a common attribute to DNA damaging agents such as UV and ionising 

radiation. DNA damaging agents also cause lysis of E. coli cells containing 

bacteriophage λ, and this phenomenon was demonstrated with cisplatin (Reslova 1971). 

Most of this initial evidence was obtained in bacteria. Investigation of DNA, RNA and 

protein synthesis using radiolabelled precursors provided early indications that DNA 

was also the target for cisplatin in mammalian cells. DNA synthesis was inhibited when 

cells were exposed to cisplatin, but there was no effect on RNA or protein synthesis 

(Harder and Rosenberg 1970, Howle and Gale 1970), further implicating DNA as the 

principle target. Additional studies investigating the mechanisms are discussed in 
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greater detail in section 1.3.3, providing further evidence supporting DNA as the 

principle target (Roberts and Pascoe 1972, Fichtinger-Schepman et al 1985). 

 

1.3.2: Behaviour of platinum complexes in cells and tissues 

 

Once administered into the bloodstream, cisplatin is believed to remain in its non-

aquated form due to the high chloride ion (Cl
-
) concentration. Cisplatin uptake into 

cells and tissues is a much debated issue and is addressed in section 1.4. It is proposed 

that a lower intracellular chloride ion concentration facilitates the aquation of cisplatin 

to its active form, but this is a debated topic. The effects of intracellular chloride ion on 

the pharmacodynamics of cisplatin are reviewed in Jennerwein and Andrews 1995. 

 

Cisplatin reacts with biological molecules by substitution of one or both of the chlorine 

atoms. Cisplatin in its dichloro form (Figure 1.6, structure A) is not believed to be 

reactive with molecules such as DNA, and it appears that initially one or both of the 

chlorine atoms must be replaced by water molecules (Riley et al 1983, el Khateeb et al 

1999) (Figure 1.6, structures B and D). This is kinetically favourable because of the 

high concentration of water (~ 55 M). The resulting positively charged mono- or di-

aqua derivatives of cisplatin are the species which are believed to react with DNA. The 

reaction with DNA involves the substitution of a water molecule, and investigation with 

free nucleobases and short oligo-nucleotides provided evidence that platinum binds to 

the N7 atom of guanine, the N7 and N1 atoms of adenine, and the N3 atom of cytosine 

(Marcelis et al 1984, Hambley 1997, Wang and Lippard 2005). In polymeric DNA 

however it has been shown that the substitution of a water molecule occurs primarily at 

the N7 position of guanine and adenine. In DNA, the N7 atoms of the purines are 
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exposed on the surface of the major groove of DNA, making them very accessible to 

metal binding (Sherman and Lippard 1987). The aquated cisplatin molecule can also 

undergo ionisation to yield neutral hydroxy derivatives (Figure 1.6, Structures C, E and 

F), thought to be non-reactive with DNA. It seems likely that two factors contribute to 

the reactivity of the aquated form of cisplatin with DNA. Firstly, the Pt-O bond is less 

stable than Pt-Cl (Zhou et al 1994), and secondly, the overall positive charge on the 

molecule will result in electrostatic interaction to DNA. As discussed above, it is 

believed that DNA bases are unable to directly attack the non-aquated molecule. 

 

 

Figure 1.6: Different chemical species of cisplatin. Cisplatin can potentially form six 

species from aquation with water or ionisation: A, cis-Pt(NH3)2Cl2; B, cis-

Pt(NH3)2(Cl)(OH2); C, cis-Pt(NH3)2(Cl)(OH); D, cis-Pt(NH3)2(OH2)2; E, cis-

Pt(NH3)2(OH)(OH2) and F, cis-Pt(NH3)2(OH)2. These species occur in equilibrium in 

solution.  
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1.3.3: Platinum-DNA (Pt-DNA) adducts formed by platinum complexes 

 

The establishment of DNA as the major target for cisplatin led to further investigations 

to characterise the nature of platinum binding to DNA. The interaction with DNA is 

believed to be a multi-step process which involves formation of monofunctional lesions 

with the mono-aquated complex, followed by aquation of the second arm and closure to 

a bifunctional adduct. Cisplatin and carboplatin form the same bifunctional complexes 

with DNA of the general structure cis-Pt(NH3)2(R)2 where R represents individual 

bases of DNA. However, their intermediate complexes differ, with cis-[Pt(NH3)2Cl(OH 

2)]
+
 for cisplatin and cis-[Pt(NH3)2CBDCA(OH2)]

+
 for carboplatin. The diaqua form 

cis-[Pt(NH3)2(OH2)2]
2+

 is the same for both compounds but is much less prevalent 

(Kozelka et al 1999, McGowan et al 2005). As expected, aquation has been shown to 

be much slower for carboplatin than cisplatin (Knox et al 1986). The intracellular 

mechanism of removal of the oxalate ligand from oxaliplatin is unknown, but it is 

probable that, like cisplatin and carboplatin, it involves aquation. Pt(DACH)Cl2 had 

been proposed previously as a potential intermediate product, and there is evidence that 

Pt(DACH)Cl2 causes formation of two-fold more adducts than oxaliplatin in 

mammalian cells at equimolar concentrations (Luo et al 1998). However, further 

investigation showed that with Pt(DACH)Cl2 there was a 30-fold higher intracellular 

platinum level, so the conversion from oxaliplatin to Pt(DACH)Cl2 seems to make only 

a minor contribution to oxaliplatin cytotoxicity. 

 

Before the development of chromatographic methods to separate and characterise Pt-

DNA products the only specific adducts that could be detected were cross-links 

between two opposite strands of DNA. Roberts et al used a caesium chloride density 
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gradient centrifugal technique based on 5-bromo-2'-deoxyuridine (bUDR) 

incorporation to separate and study cross-linking of “light” and “heavy” strands of 

DNA (Roberts and Pascoe 1972). When incubated with cisplatin, a third chain of 

“hybrid” DNA consisting of both strands of DNA was detected. The study further 

investigated the formation of these cross-links by using concomitant radioactive and 

density labelling of DNA to achieve radiolabelled heavy chain DNA. The extent of 

formation of hybrid DNA was found to be dependent on the concentration of platinum.  

 

Early techniques to study Pt-DNA cross-links however were unable to investigate the 

formation of specific adducts. Interstrand cross-links could be analysed, but based on 

the size of DNA have been shown to account for less than 1% of the total Pt-DNA 

adducts (Roberts and Friedlos 1981). Atomic absorption spectrometry (AAS) has been 

used to study total Pt-DNA adducts, but due to its inherent lack of sensitivity for 

platinum has limited application for studying specific adducts. Pt-DNA adducts have 

also been shown to block DNA synthesis in vitro (Pinto and Lippard 1985) but such 

methods don‟t address the nature or proportions of such adducts. Pt-DNA adducts have 

also been shown to block Taq polymerase primer extension in PCR reactions (Ponti et 

al 1991). 

 

A major step forward in understanding the nature of Pt-DNA adducts other than 

interstrand cross-links was the development of suitable chromatographic techniques. 

Several studies investigated the nature of Pt-DNA complexes using chromatographic 

separation methods, with three main strategies employed for these investigations. 

Approaches involving enzymatic digestion of platinated DNA were deployed by 

Eastman (Eastman 1983, Eastman 1985, Eastman 1986) and Fichtinger-Schepman et al 
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(Fichtinger-Schepman et al 1985, Fichtinger-Schepman et al 1987). A major difference 

between the two techniques was differing end-points of enzymatic digestion, and the 

results obtained were determined by the specificity of the enzymes used in the 

digestion. The third strategy involved removal of platinum-modified adenine and 

guanine bases from DNA by acid depurination, followed by separation of free and 

platinum-bound nucleobases by cation exchange chromatography (Johnson 1982, 

Johnson et al 1985). The latter technique was found to be less informative as it involved 

removal of the sugar-phosphate linkages between platinated bases. 

 

Fichtinger-Schepman et al enzymatically digested salmon sperm DNA that had been 

incubated with cisplatin using deoxyribonuclease 1 and nuclease P1. These enzymes 

cut 3' phosphate bonds resulting in the formation of 5' deoxyribonucleotides. It is 

suggested that these enzymes were unable to cut the deoxyribose-3'-phosphate bond 

between two adjacent platinum cross-linked deoxynucleotides. Anion exchange 

chromatography was used based on the use of DEAE-Sephacel and MonoQ columns to 

separate negatively charged nucleotides. The amount of DNA-bound platinum in 

collected fractions was determined by AAS (Fichtinger-Schepman et al 1985, 

Fichtinger-Schepman et al 1987). Eastman employed a method that involved digestion 

with alkaline phosphatase, resulting in deoxyribonucleosides, which were separated 

using reverse-phase chromatography (Eastman 1983, Eastman 1985, Eastman 1986).  

 

Analyses by Fichtinger-Schepman et al (Fichtinger-Schepman et al 1985) showed the 

separation of four major products after the reaction of pure DNA with cisplatin. They 

found that the major cross-link formed was the 1,2-intrastrand cross-link involving 

adjacent guanine bases (cis-Pt(NH3)2d(GpG)), with a 1,2-intrastrand cross-link 
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involving adjacent guanine and adenine bases (cis-Pt(NH3)2d(ApG)) also identified. 

Analysis by 
1
H-NMR analysis showed the product to be cis-Pt(NH3)2d(ApG) and not 

cis-Pt(NH3)2d(GpA). A third identified product was cis-Pt(NH3)2(dGMP)2. This was 

attributed to cross-links formed between guanines on opposite strands of DNA or 

between non adjacent guanines on the same strand of DNA (cis-Pt(NH3)2d(GpXpG)) 

The fourth product was found to be cis-Pt(NH3)3dGMP, proposed to form as a result of 

the monofunctional reaction of cisplatin with the N7 position of guanine. In the above 

mentioned work the second arm of monofunctionally bound cisplatin was inactivated 

by addition of ammonium bicarbonate before enzymatic digestion. Further studies 

revealed that the 1,2-intrastrand cis-Pt(NH3)2d(GpG) adducts accounted for 

approximately 60-65% of the total adducts formed. The 1,2-intrastrand cis-

Pt(NH3)2d(ApG) adduct accounted for 20-25%, and the 1,3-intrastrand cis-

Pt(NH3)2d(GpXpG) adduct accounted for 5-10%. Only a very small percentage (less 

than 1%) was comprised of interstrand cross-links or monofunctional lesions. If 

cisplatin reacted randomly with all the guanines in DNA, only 37% of the total adducts 

formed would be expected to be 1,2-d(GpG) (Fichtinger-Schepman et al 1985). The 

fact that over 60% of the total adducts are of this type suggests that cisplatin has a 

strong binding preference for adjacent guanines. 

  

Comparative analyses to the above were performed by Eastman, analysing DNA 

modified by [
3
H]-cis-dichloro(diethylenediammine)platinum (II) (cis-DEP). This gave 

similar results (Eastman 1986). Eastman showed that the major product formed was a 

cross-link between two deoxyguanosines connected by a phosphodiester linkage 

(dGpdG), followed by a similar adduct between adjacent deoxyadenine and 

deoxyguanosine (dApdG), with adenine always 5' to the guanine. A minor product 
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involving two deoxyguanosines with no phosphate (dG-Pt-dG) was also observed. A 

similar spectral distribution was obtained.  

 

However, the extension of analyses to DNA from drug-treated cells was not possible 

due to the low sensitivity of AAS for detecting platinum. The development of 

immunochemical (Fichtinger-Schepman et al 1987, Tilby et al 1991, Meczes et al 2005, 

Liedert et al 2006) and 
32

P post-labelling assays (Blommaert and Saris 1995, Welters et 

al 1997, Pluim et al 1999) enabled investigation of adducts in DNA extracted from cells 

where the levels of platinum were too low to detect by AAS.  

 

The first antibodies used in immunochemical studies (Fichtinger-Schepman et al 1987) 

were raised against dinucleotide cross-links in collected fractions eluted 

chromatographically and used in immunoassays to detect specific Pt-DNA cross-links. 

Unfortunately there are two major problems with this approach: firstly, the antibodies 

are raised against specific dinucleotide cross-links and would be incapable of detecting 

alternative cross-links, and secondly they wouldn‟t work on high molecular weight 

DNA. Antibodies that detect Pt-DNA cross-links on high molecular weight DNA have 

also been developed for use in immunoassays (Tilby et al 1991, Meczes et al 2005, 

Liedert et al 2006), but again are limited to detection of the cross-link antigen they are 

raised against and may not recognise new cross-links altogether. 
32

P post-labelling 

techniques have also been used to study cross-links (Blommaert and Saris 1995, 

Welters et al 1997, Pluim et al 1999). Briefly, in these assays Pt-DNA adducts are 

separated by strong cation exchange chromatography after enzymatic digestion, then 

deplatinated with sodium cyanide. The resulting dinucleotides are labelled with [γ-
32

P] 

ATP, then further separated by thin-layer or high-performance liquid chromatography. 
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Radioactivity is detected by scintillation counting. 
32

P post-labelling techniques have 

demonstrated high sensitivity for analysis of low levels of 1,2-intrastrand cis-

Pt(NH3)2d(GpG) adducts, and a less sensitive analysis of low levels of 1,2-intrastrand 

cis-Pt(NH3)2d(ApG) adducts. However, these assays are unable to detect interstrand 

and monofunctional products due to their lack of a 3' phosphate bond. 

 

Figure 1.7: Diagrams of the known adducts formed following the reaction of cisplatin 

with DNA. The majority of adducts formed are intrastrand (greater than 90%). Adducts 

can also form between DNA and non-DNA molecules. Diagram modified from Masters 

and Koberle 2003  
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The formation of Pt-DNA cross-links structurally distorts DNA and binding of cisplatin 

has been shown to unwind the helix and to disrupt helical stability (Maeda et al 1990). 

This destabilisation is more predominant with 1,2-intrastrand cis-Pt(NH3)2d(GpG) 

adducts and flanking base sequences have been demonstrated to alter the levels of 

destabilisation (Poklar et al 1996). Cisplatin binding has been shown to induce a bend 

in the helix towards the major groove, widening the minor groove with the 1,2 

intrastrand cis-Pt(NH3)2d(GpG) and cis-Pt(NH3)2d(ApG) adducts inducing 

approximately a 30-35˚ bend in the helix (Bellon and Lippard 1990, Bellon et al 1991). 

As the major and minor grooves are important in protein binding and recognition, and 

are sites of functional group presentation, helical disturbance can hinder the ability of 

proteins to interact with DNA. 

 

Carboplatin is believed to form the same types of cross-links as cisplatin (Knox et al 

1986). Blommaert et al incubated salmon sperm DNA with carboplatin, and 

demonstrated a similar profile of Pt-DNA adduct formation to that of cisplatin, with the 

1,2-intrastrand cis-Pt(NH3)2d(GpG) adducts accounting for approximately 58% of the 

total Pt-DNA adducts, the 1,2-intrastrand cis-Pt(NH3)2d(ApG) adducts accounting for 

approximately 11% of the total Pt-DNA adducts, 9% 1,3-intrastrand cis-

Pt(NH3)2d(GpXpG) adducts and 22% monofunctionally bound lesions (Blommaert et al 

1995). Platinum was detected using AAS. However, in the same study when Chinese 

hamster ovary cells were incubated with carboplatin and platinum levels determined by 

ELISA, the ratio of adducts was different, with 30% 1,2-intrastrand cis-

Pt(NH3)2d(GpG) adducts, 16%  1,2-intrastrand cis-Pt(NH3)2d(ApG) adducts, 40%  1,3-

intrastrand cis-Pt(NH3)2d(GpXpG) adducts and 14% monofunctionally bound lesions. 

These data suggest that unlike cisplatin, carboplatin does not show an intrinsic 
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preference for formation of 1,2-intrastrand cis-Pt(NH3)2d(GpG) adducts. Similar data 

was also provided by Fichtinger-Schepman et al (Fichtinger-Schepman et al 1995). In 

this study only the levels of 1,2-intrastrand cis-Pt(NH3)2d(ApG) adducts were 

comparable. It is interesting to note that a much higher concentration of carboplatin is 

required to achieve comparable platination levels to cisplatin (Blommaert et al 1995, 

Fichtinger-Schepman et al 1985). This may be reflective of differences in the rate of 

aquation (Knox et al 1986). 

 

Oxaliplatin is also believed to form the same types of adducts as cisplatin, albeit with a 

DACH ligand in the place of two ammonia molecules. Jennerwein et al analysed DNA 

incubated with oxaliplatin and separated by reverse-phase chromatography, and 

identified the same types of adducts as cisplatin at similar ratios (Jennerwein et al 

1989). Platinum was detected by AAS and the chemical nature of the products was 

confirmed by 
1
H-NMR. Oxaliplatin has demonstrated equal cytotoxicity to cisplatin 

(Saris et al 1996), and experiments have shown that the levels of adducts for oxaliplatin 

compared to cisplatin were significantly lower, both at equimolar and equitoxic 

concentrations (Saris et al 1996, Woynarowski et al 1998, Woynarowski et al 2000). 

The structural differences of oxaliplatin adducts appear to be biologically significant 

and appear to make them more toxic than similar levels of cisplatin adducts. 
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1.4: Resistance to Platinum Complexes 

 

Platinum-based drugs are one of the most commonly prescribed classes of anticancer 

agents in clinical use. Whilst patients can show good initial responses to platinum drug 

chemotherapy, resistance develops in most cases and is a major factor in therapeutic 

failure. Resistance to platinum drugs can be either intrinsic, i.e. a property of the 

tumour at the start of treatment, or may be acquired as a result of repeated exposure to 

the drug. When tumour cells become resistant to a platinum drug, they can also become 

cross-resistant to other drugs, and this has been demonstrated with other classes of 

cytotoxic drugs including melphalan, etoposide, adriamycin, mitoxantrone and taxol 

(Hamaguchi et al 1993). Cisplatin and carboplatin have also demonstrated cross-

resistance (Hamaguchi et al 1993). Resistance has been attributed to a number of 

different molecular mechanisms through studies involving cell lines (Figure 1.8). 

However, the underlying mechanisms that lead to development of resistance in clinical 

tumours are poorly understood. 
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Figure 1.8: Postulated mechanisms of resistance to cisplatin: Resistance could result 

from decreased uptake or increased efflux of the drug, both leading to decreased drug 

accumulation; inactivation by cytoplasmic thiols such as glutathione, or through an 

enhanced capacity for repair of or tolerance to Pt-DNA adducts. Taken from Kartalou 

and Essigman 2001 
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1.4.1: Decreased Drug Accumulation 

 

Drug accumulation is critical for therapeutic efficacy and has been studied in many cell 

lines, including human ovarian, testicular, head and neck, lung and murine L1210 cells 

(Strandberg et al 1982 (a), Strandberg et al 1982 (b), Andrews et al 1987, Richon et al 

1987, Teicher et al 1987, Waud 1987, Eastman and Schutte 1988, Hospers et al 1988, 

Parker et al 1991 (a), Dabholkar et al 1992, Kelland et al 1992). The majority of cell 

lines that are selected for resistance display a decreased accumulation phenotype, and 

this is generally considered to be a result of decreased uptake into the cell as opposed to 

increased efflux.  

 

The exact mechanism of uptake of platinum drugs is poorly understood and passive 

diffusion appears to be the main route, with evidence of some active transport (Fuertes 

et al 2003). Cells which are resistant to cisplatin often display resistance to copper 

(Katano et al 2002), and reduced uptake of cisplatin has been shown in cells deficient in 

the copper transporter CTR1 (Ishida et al 2002, Lin et al 2002). Human CTR1 has been 

shown to be localised to both the plasma membrane, and also in intracellular vesicle 

perinuclear compartments (Klomp et al 2002). CTR1 deficient cells have also been 

linked with reduced uptake of carboplatin and oxaliplatin (Lin et al 2002) and there is 

growing evidence linking the expression and function of the human copper transporter 

CTR1 with uptake of platinum complexes (Lin et al 2002, Holzer et al 2004 (a), Holzer 

et al 2004 (b), Safaei et al 2004 (a), Safaei et al 2004 (b), Safaei and Howell 2005, 

Chen et al 2008, Larson et al 2009). In particular, strong evidence linking an increase in 

cisplatin and copper uptake with increased expression of CTR1 came from experiments 

with human ovarian cancer cells transfected to over-express CTR1 (Holzer et al 2004). 
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However, it is noteworthy that, the increased uptake was not accompanied by an 

increase in Pt-DNA adducts compared to cells transfected with empty vector. It remains 

unclear whether reduced accumulation of platinum could result from reduced 

expression of CTR1 or impaired function of CTR1, but it is possible that varying levels 

of CTR1 expression in different tumours might contribute to the variable responses 

observed to platinum complexes.  

 

Resistance to platinum complexes has also been associated with increased efflux both 

from cells (Mann 1990) and from the nucleus into the cytoplasm (Wang et al 2004). 

The copper exporter pumps ATP7A and ATP7B have been linked with efflux of 

platinum complexes (Katano et al 2003, Samimi et al 2003, Samimi et al 2004 (a), 

Samimi et al 2004 (b), Safaei et al 2008) and over-expression of ATP7B has been 

linked with poor outcome in both squamous cell head and neck (Miyashita et al 2003) 

and esophageal (Higashimoto et al 2003) cancers. The clinical significance of 

variations in uptake and efflux in solid tumours has yet to be fully addressed, with most 

information arising from studies in tissue culture monolayers. 
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1.4.2: Inactivation of Platinum Complexes 

 

Inactivation of platinum complexes through co-ordination to sulfur-containing 

molecules has been proposed as a potential mechanism of resistance. Thiol (-SH) 

containing molecules are implicated in inactivation of platinum complexes, of which 

the most abundant intracellular thiol is glutathione (GSH) (Meister 1983). There are 

many studies linking resistance to increased interaction of drug with GSH, and this is 

addressed in detail in section 1.7. The thiol-containing α-amino acid cysteine has also 

been implicated with co-ordination and inactivation of platinum complexes (Bose 1995, 

Bose et al 1997, Sadowitz et al 2002, Volckova et al 2002). Metallothioneins are 

cysteine-rich proteins involved in zinc homeostasis that have been associated with 

resistance to cisplatin (Andrews et al 1987, Endo et al 2004), although there is 

conflicting evidence (Masters et al 1996) and their contribution to resistance, if any, is 

unclear. Biomolecules containing thioethers (-C-S-C-), such as the amino-acid 

methionine, have also been investigated. There is limited evidence supporting a 

proposed role in forming a reservoir for platinum complexes that mediates the transfer 

of platinum to DNA (van Boom and Reedijk 1993, Barnham et al 1995). However, 

there is also evidence that they act in a similar manner to thiol-containing molecules 

and inactivate platinum complexes (Reedijk 1999, Reedijk and Teuben 1999).  
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1.4.3: DNA Repair 

 

Formation of adducts with DNA is considered to be a major part of the mechanism of 

platinum complexes, with increased tolerance and an improved ability to repair DNA 

seen as potentially important factors in the development of drug resistance. Tolerance 

to platinated DNA is a phenotype demonstrated in resistant cells from chemotherapy 

refractory patients (Johnson et al 1997), and also in cells selected for resistance in vitro 

(Johnson et al 1994 (a), Johnson et al 1994 (b)). Interstrand cross-links are believed to 

inhibit DNA replication as they block the unwinding of the DNA helix and strand 

separation. Intrastrand Pt-DNA adducts have been linked with stalling of DNA 

replication, although there is evidence that the replication mechanism can bypass the 

lesion by recruiting alternative DNA polymerases to the damaged site, and synthesising 

new DNA post-lesion (Reviewed by Prakash et al 2005).  

 

Following Pt-DNA adducts formation, repair systems intrinsic to cells are activated to 

recognize the damage and where possible to repair the DNA restoring normal structure 

and function. Several major repair processes have been implicated as determinants of 

cellular sensitivity to platinum-induced DNA modifications; nucleotide excision repair 

(NER), mismatch repair (MMR) and homologous recombination (HR)/ interstrand 

cross-link repair.  

 

The biochemical mechanism of nucleotide excision repair has been extensively studied, 

and is described in detail elsewhere (de Laat et al 1999, Costa et al 2003). NER is sub-

divided into two categories, global genome (GG-NER) and transcription coupled (TC-

NER), which are believed to recognise DNA damage through different mechanisms, 
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although the underlying repair mechanism is the same. GG-NER is believed to be 

initiated following recognition of DNA damage by the XPC-HR23B complex 

(Sugasawa et al 1998), although there is also evidence for involvement of the XPE 

protein (Kusumoto et al 2001). TC-NER initiation is believed to arise as a result of 

blockage of transcription elongation by RNA polymerase II when lesions are 

encountered (de Laat et al 1999). It is not known whether the stalled RNA polymerase 

II is displaced and/or dissociated from DNA to allow the NER machinery access to the 

damaged site. Cockayne Syndrome proteins A (CSA) and B (CSB) are believed to be 

involved, though their exact functions are not yet known. 

 

After initial recognition of DNA damage, TFIIH, XPA and RPA are the first set of 

NER proteins to assemble at the damaged site, followed by XPB and XPD helicases, 

which unwind the DNA helix allowing XPG and XPF-ERCC1 to bind to the unwound 

DNA. XPG makes an incision 3' to the damage (approximately 2-10 bases from the 

damage) and XPF-ERCC1 makes another incision 5' to the damage (approximately 15-

24 bases from the damage. The excised oligonucleotide containing the damaged section 

is released from the DNA leaving an exposed hydroxy (-OH) group at the 3' terminus 

of the gap, believed to act as a primer for DNA polymerases to synthesise the new 

DNA fragment. DNA polymerases delta and epsilon are implicated as the NER 

polymerases, with PCNA and RFC cofactors working as a complex to facilitate 

polymerase assembly. The last step in the process is the ligation of the newly 

synthesised DNA into the gap by DNA ligase I.  

 

There is strong evidence linking defects in NER with sensitivity to Pt-DNA damage, 

and NER-deficient cell lines have shown greater sensitivity to cisplatin than proficient 
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lines (Beck and Brubaker 1973, Drobnik and Horacek 1973, Markham and Brubaker 

1980, Brouwer et al 1981, Beck et al 1985, Fram et al 1985, Popoff et al 1987). Cells 

lacking specific components of the NER machinery have been shown to be 5- to 10-

fold more sensitive to cisplatin (Furuta et al 2002) and cells resistant to cisplatin have 

displayed greater than 2-fold increases in levels of proteins such as XPA, XPC and 

ERCC1 (Weaver et al 2005). Extracts of tissues from ovarian patients who have 

demonstrated resistance to cisplatin and carboplatin have also been shown to exhibit 

elevated levels of XPC and ERCC1 (Dabholkar et al 1994) and it has been suggested 

that the sensitivity of testicular tumours to cisplatin may be a direct result of decreased 

levels of NER proteins such as XPA, XPC and ERCC1 (Koberle et al 1997, Koberle et 

al 1999, Welsh et al 2004). 

 

The effect of NER on excision of individual cisplatin-DNA adducts however is poorly 

understood, with limited direct evidence of repair derived from studies investigating 

synthetic fragments of DNA in vitro (Szymkowski et al 1992, Huang et al 1994, 

Zamble et al 1996). Initial studies indicated that the 1,2-d(GpG) intrastrand cross-link 

was refractory to NER. Further studies however suggested that it is removed by NER, 

although at a lower efficiency than the 1,3-(GpXpG) intrastrand cross-link (Huang et al 

1994, Zamble et al 1996, Moggs et al 1997). No excision repair was identified for 

interstrand cross-links. (Zamble et al 1996). XPF and ERCC1, both components of the 

NER machinery, have previously been shown to have a potential role in the early stages 

of NER, possibly contributing to the excision of ICLs, but no further role in the repair 

process (de Silva et al 1999, de Silva et al 2000, McHugh et al 2000). However, it is 

important to note that the attribution of NER in the removal of Pt-DNA damage is 
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mainly inferred from studies of cellular sensitivity to platinum complexes, with very 

limited data on direct removal of Pt-DNA adducts.  

 

Defects in mismatch repair (MMR) have been shown to be associated with resistance to 

cisplatin. MMR is a post-replicative DNA repair system that corrects single base 

mismatches (Parsons et al 1993, Chu 1994). Proteins of the MMR system have been 

shown to recognise Pt-DNA cross-links (Duckett et al 1996, Yamada et al 1997), 

although MMR is not believed to directly repair such adducts. Studies using MMR 

defective cell lines have demonstrated that inactivation of MMR genes confer 

resistance to cisplatin (Aebi et al 1996, Anthoney et al 1996, Drummond et al 1996). 

Similarly, restoration of MMR function in yeast lacking the hMLH1 protein has been 

shown to restore sensitivity to cisplatin (Durant et al 1999). However, the underlying 

mechanism of cell death induction by MMR proteins remains unclear. There are two 

predominant hypotheses for MMR involvement in sensitivity to cisplatin. The first 

hypothesis is that proteins of the MMR system bind to damaged DNA and cell death is 

initiated by downstream pro-death molecules (Chu 1994, Fink et al 1996). The second 

is a repair-dependent hypothesis, where mismatches arise in the daughter strand of 

DNA as a result of translesion DNA synthesis. However, the damage remains on the 

parent strand and „futile‟ cycles of repair and re-synthesis of the daughter strand occur, 

believed to ultimately lead to double strand breaks (DSB) and induction of cell death 

(Karran and Bignami 1994, Mello et al 1996, Vaisman et al 1998). These hypotheses 

suggest that MMR defects confer resistance as a result of failure to recognise DNA 

damage and induce apoptosis, enabling resistant cells to acquire and tolerate damage 

that would otherwise be lethal. 
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Interstrand cross-links are not believed to be repaired by NER, but homologous 

recombination (HR) has been proposed to be involved. HR defective mammalian cells 

have shown greater sensitivity to cisplatin than wild type (Raaphorst et al 2005). HR is 

involved in repair of DSB and there is evidence of DSB occurring following incubation 

with cisplatin (Sorenson and Eastman 1988 (a)). However, there is conflicting evidence 

suggesting that cisplatin does not induce DSB (Frankenberg-Schwager et al 2005). It 

has been suggested that that HR may be important in repair of DSB caused as a result 

of interstrand cross-linking by cisplatin (Eastman and Schutte 1988), although it is 

important to distinguish that DSB result from cross-link repair as a specific mechanism 

from those that occur as a result of apoptotic degradation. 

 

1.4.4: Defective Apoptosis Response 

 

Cispaltin resistance has been linked with a decreased apoptotic response in ovarian 

carcinoma and lymphoma cells, and cisplatin-resistant ovarian cells have been shown to 

need higher levels of cisplatin to elicit a response (Fan et al 1994, Fajac et al 1996, 

Perego et al 1996). Alterations in expression of apoptotic regulators have also been 

linked to differences in sensitivity of cells to cisplatin. Decreased levels of Bax, an 

apoptosis promoter, have been shown in resistant ovarian cancer cells (Fajac et al 1996, 

Perego et al 1996, Sakakura et al 1997). Other reports have linked increased levels of 

Bax to the inherent increased sensitivity of testicular cancer cells to cisplatin and 

Lutzker and Levine 1996), although there is contradictory data to this (Burger et al 

1999). It is important to consider defects in apoptosis and drug resistance since, as 

described in the next section, apoptosis is involved in cell death following Pt-drug 

treatment.  
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1.5: Cell death induced by platinum complexes 

 

Apoptosis is the process of programmed cell death that normally occurs during 

development and aging as a homeostatic mechanism involved in maintaining the 

normal health and development of multicellular organisms. Apoptosis also occurs as a 

defence mechanism when cells are damaged by disease or noxious agents (Norbury and 

Hickson 2001).  Apoptosis is triggered by a variety of physiological signals and 

consists of a series of genetically programmed biochemical processes. Conversely 

necrosis refers to the disintegration of damaged cells, with the release of products of 

cellular degradation which have inflammatory effects in vivo. 

 

During the early stages of apoptosis, cells decrease in size making the cytoplasm denser 

and compacting organelles. Chromatin becomes irreversibly condensed in the nucleus 

(pyknosis), one of the most characteristic features of apoptosis (Kerr et al 1972, Wyllie 

et al 1980). On histologic examination the cell appears as a round/oval mass with a dark 

cytoplasm and dense chromatin fragments (see Elmore 2007). Extensive plasma 

membrane blebbing, nuclear fragmentation (karyorrhexis) and separation of cell 

fragments follows, forming apoptotic bodies which consist of a tightly packed 

cytoplasm, often with no visible signs of a nuclear compartment. Organelle integrity is 

retained as the plasma membrane remains intact. These apoptotic bodies are 

subsequently phagocytosed by macrophages. There is no inflammatory response 

involved with apoptosis, as unlike necrosis, no intracellular components are released 

into the surrounding tissues and the apoptotic bodies are quickly phagocytosed 

preventing secondary necrosis (Savill and Fadok 2000, Kurosaka et al 2003). 
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Studies using murine leukaemia L1210 and Chinese hamster ovarian cells provided the 

first details about the mechanism of cisplatin-induced cell death, with cells incubated 

with cisplatin shown to arrest in the G2 phase of the cell cycle. Cells incubated with low 

levels of cisplatin were able to recover from this arrested state, but cells incubated with 

increasing concentrations of cisplatin showed decreasing numbers of surviving cells 

(Sorenson and Eastman 1988 (a), Sorenson and Eastman 1988 (b)). The appearance of 

DSB in the DNA was the first detectable sign of cell death, and further investigation 

utilising gel electrophoresis studies identified these breaks as occurring in the 

nucleosome spacer region of the DNA. Cleavage of genomic DNA is a major part of 

the apoptotic process and is hallmarked by the appearance of nucleosome ladders of 

fragmented DNA in these studies. The appearance of nucleosome ladders has been 

shown after cisplatin treatment in murine leukaemia L1210 cells (Sorenson et al 1990), 

implicating apoptosis in the mechanism of cell death. The same study also showed a 

decrease in cell volume and the occurrence of surface blebbing, additional common 

hallmarks observed in cells undergoing apoptosis. These observations were also seen in 

Chinese hamster ovary cells (Barry et al 1990). However, it is not known to what extent 

apoptosis is essential for cytotoxicity, particularly in clinical tumours. Also, it is not 

understood how various types of DNA damage trigger apoptosis. 
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1.6: Adduct levels in clinical samples of cancer patients 

 

Platinum-based anticancer drugs are believed to exert their anti-tumour effect by 

reacting with DNA, and there have been many studies investigating adduct formation in 

vitro with purified DNA and human tumour cells (Roberts and Pascoe 1972, Johnson 

1982, Eastman 1983, Eastman 1985, Fichtinger-Schepman et al 1985, Johnson 1985, 

Eastman 1986, Fichtinger-Schepman et al 1987, Roberts and Friedlos 1987). However, 

it is inherently more complicated to study adduct formation in animals and in cancer 

patients because of the inability to repeatedly sample the tumour mass, the small 

sample sizes and numbers, and the low levels of Pt-DNA adducts requiring highly 

sensitive assays. Formation of Pt-DNA adducts in peripheral blood leukocytes (PBLs) 

has been correlated with clinical response and toxicity, suggesting that adduct 

formation in normal cells may be reflective of adduct formation in tumour tissue (Reed 

et al, 1988, Reed et al 1990, Parker et al 1991 (b), Schellens et al 1996). Correlations 

between adduct levels in PBLs of patients receiving cisplatin chemotherapy and adduct 

formation in PBLs from the same patients incubated with cisplatin in vitro have also 

been published (Fichtinger-Schepman et al 1990, Oshita et al 1995), but contradictory 

data has also been published (Bonetti et al 1996). Unfortunately pharmacokinetic 

parameters were not investigated. This means the data published may not reflect the 

effects on Pt-DNA adduct formation, but might be a result of differences in 

pharmacokinetics rather than differences in drug/DNA access. More recent studies have 

measured pharmacokinetics as well as Pt-DNA adducts formation in patients treated 

with cisplatin and carboplatin. Ghazal-Aswad et al showed that pharmacokinetic-based 

dosing of carboplatin accurately predicted the required dose to achieve a target AUC 

resulting in consistent patient exposure to active drug (Ghazal-Aswad et al 1999). The 
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same study also showed that Pt-DNA adduct levels in PBLs were positively related to 

carboplatin dose and AUC. However, similar studies that also investigated 

pharmacokinetics (Peng et al 1997, Veal et al 2001, Veal et al 2007) showed a poor 

correlation between the AUC of active drug and Pt-DNA adduct levels. The conclusion 

from these studies was that whilst pharmacokinetic monitoring is important to maintain 

a consistent AUC value in patients receiving cisplatin or carboplatin, variation in Pt-

DNA adduct formation cannot simply be attributed to the dose administered or drug 

exposure in patients. It is more likely therefore that differences in Pt-DNA adduct 

formation are attributable to host-specific characteristics such as variations in drug 

uptake in PBLs, differences in intracellular inactivation of the drugs or differences in 

factors in the blood that would affect drug availability (Veal et al 2001).  

 

The studies referred to above involved measurement of Pt-DNA adducts in normal 

blood cells. There are very limited data available on Pt-DNA adduct formation in 

tumour tissue from patients receiving cisplatin or carboplatin. Recently, Pt-DNA 

adducts in tumour biopsies from head and neck squamous cell carcinomas have been 

investigated (Hoebers et al 2006, Hoebers et al 2008). Normal tissue samples (WBCs 

and buccal cells) and tumour biopsies were investigated using a 
32

P post-labelling assay 

to quantify adduct levels. Although adduct levels were found to be higher in tumour 

biopsies than normal tissue samples, no correlation in Pt-DNA adducts levels was 

observed. As described more fully in chapter 6, one of the aims of the work described 

in this thesis was to measure the levels of Pt-DNA adducts formed in a small number of 

tumour biopsies removed from solid tumours during therapy. 
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1.7: Glutathione 

 

1.7.1: Intracellular chemistry and redox state of glutathione 

 

Glutathione (L-γ-glutamyl-L-cysteine-glycine) (GSH) is the most abundant non-protein 

thiol found in nearly all eukaryotic and prokaryotic cells at concentrations ranging 

between 0.5 and 10 mM (Meister 1983). GSH plays a major role in protecting cells 

from organic and inorganic xenobiotics by undergoing spontaneous or enzyme 

catalysed binding to form a conjugate with the toxic chemical species (Arrick and 

Nathan 1984). The resulting compounds are hydrophilic and readily excretable. GSH 

concentrations are highest in the liver, kidneys and spleen, probably due to the 

intrinsically high exposure of these organs to toxins. Many carcinogens and drug 

metabolites are excreted this way, although the pathway can also have the negative 

effect of inactivating reactive cytotoxic anticancer drugs before they reach DNA.  
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Figure 1.9: Structure of reduced GSH. Oxidised GSH comprises two molecules joined 

by an S-S bond 
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GSH is a tripeptide synthesised from three amino acid precursors (cysteine, glutamic 

acid and glycine) in a two step ATP-dependent manner (Meister 1983). The reactive 

sulfhydryl (-SH) group comes from the cysteine residue. Firstly, γ-glutamylcysteine is 

synthesised from L-glutamate and cysteine, catalysed by γ-glutamylcysteine synthetase.  

The enzyme γ-glutamylcysteine synthetase can be inhibited with D, L-buthionine-(S, 

R)-sulfoximine (BSO) and this has been widely used for investigating the role of GSH 

in cellular processes. The second step involves addition of glycine to the carboxyl 

group of the cysteine moiety via the enzyme GSH synthetase. In cells, GSH exists in 

the reduced form (GSH) and the oxidized or disulfide form (GSSG) (Arrick and Nathan 

1984). The overall cellular ratio of GSH:GSSG ranges from 30:1 to 100:1 (Bass 2004). 

In mammalian cells approximately 90% of the GSH is contained in the 

cytosolic/nuclear compartments, with approximately 10% in mitochondria and a very 

small amount in the endoplasmic reticulum (ER) (Meredith and Reid 1982, Hwang et al 

1992, Lu 1999). In the ER the ratio of GSH:GSSG differs to the normal cellular state in 

a range of 1:1 to 3:1, although it is not known how this oxidative state is maintained 

(Hwang et al 1992). Mitochondria are heavily dependent on GSH for prevention of 

oxidative damage as a result of aerobic respiration, although they cannot synthesise 

GSH de novo and require salvage from GSSG catalysed by GSH reductase and uptake 

of cytosolic GSH (Griffith and Meister 1985). GSH breakdown is initiated by γ-

glutamyl transpeptidase.  
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1.7.2: GSH and platinum drug resistance 

 

As discussed in section 1.3.2, intracellular cisplatin aquates, forming a species that is 

believed to be reactive with DNA. However, the intracellular environment is rich in 

thiols such as cysteine and GSH which are known to bind readily to cisplatin. 

Interestingly, there is evidence that, unlike DNA which reacts with cisplatin in its 

aquated from, GSH can directly attack and inactivate the dichloro form of the drug 

(Dedon et al 1987). This raises the interesting question of how cisplatin is able to react 

with DNA in the presence of the very high molar ratio of intracellular GSH to cisplatin 

(Reedijk, 1999). There have been studies that propose platinum-sulfur binding is 

kinetically less favourable than platinum-nitrogen, suggesting a possible reason why 

platinum drugs bind the nitrogen residues of DNA (Deubel 2004). However, the data 

come from theoretical modelling and have limited relevance to the intracellular 

pharmacology of platinum binding. It is interesting to note that the monoaqua and 

diaqua species of cisplatin were investigated. It is believed that the non-aquated form of 

cisplatin does not react with DNA, whereas it has been proposed that sulfur-containing 

molecules can attack the dichloro species of cisplatin.  

 

Many studies have investigated the role of GSH in resistance to cisplatin. Differences 

in GSH levels have been correlated with sensitivity to cisplatin with increased levels of 

GSH observed in cisplatin resistant cell lines (Behrens et al 1987, Wolf et al 1987, 

Godwin et al 1992). Studies in colon cancer cells have found a 3-fold increase in GSH 

in cisplatin-resistant cells (Fram et al 1990). Conversely, no increase in GSH was seen 

in ovarian carcinoma cells and human testicular nonseminomatous germ cells resistant 

to cisplatin compared to parental lines (Kelland et al 1992).  
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Covalent binding of cisplatin and GSH leads to formation of a complex which is 

believed to be inactive and is exported from cells by the ATP-dependent GSH C-

conjugate efflux pump (Dedon and Borch 1987, Ishikawa and Aliosman 1993). In 

addition, it has been proposed that GSH conjugated to monofunctionally platinated 

DNA inhibits the conversion to bifunctional cross-links, reducing the cytotoxic 

potential of the initial lesion (Eastman 1987). However, there is also the potential for 

conjugated cis-Pt(NH3)2(DNA)(GSH) cross-links to be cytotoxic as discussed below. 

 

1.7.3: Evidence for potential cis-Pt(NH3)2(DNA)(GSH) cross-links 

 

Current knowledge of Pt-DNA cross-links stems from the discovery of interstrand 

(Roberts and Pascoe 1972) and intrastrand (Fichtinger-Schepman et al 1985) cross-

links. In recent years evidence has been obtained that an additional class of DNA cross-

link can be formed in cells, potentially accounting for up to 25% of the total Pt-DNA 

products (Azim-Araghi 2003). These data arose from the novel combination of anion-

exchange chromatographic separation as described previously (Fichtinger-Schepman et 

al 1985), with the sensitive technique of inductively coupled plasma mass spectrometry 

(ICP-MS), to detect platinum in chromatographic fractions. ICP-MS is a technique 

principally developed for geochemical analyses and methodologies have been 

developed to allow detection limits of ~ 0.5 attomolar Pt levels, allowing for highly 

accurate and sensitive analysis of experimental samples at clinically relevant cross-link 

levels. This permitted the direct analysis of adducts present in DNA extracted from 

drug treated cells. As discussed in section 1.3.3, previous analyses relied on the use of 

antibodies or 
32

P post-labelling to increase detection sensitivity. Both methods are 

established and highly sensitive for specific adducts, but equally both could fail to 
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detect additional types of Pt-DNA cross-links that are formed in cells. The introduction 

of ICP-MS for detecting low levels of platinum has made possible new investigations. 

 

In the work referred to above (Azim-Araghi 2003) lung carcinoma cell lines were 

treated with cisplatin, DNA was extracted and enzymatically hydrolysed prior to 

analysis by anion exchange chromatography and ICP-MS. The results revealed the 

presence of additional products not detected when purified DNA was incubated with 

cisplatin (Figure 1.10). Comparison of calf thymus DNA incubated with cisplatin in the 

presence and absence of GSH confirmed these findings (Figure 1.11). Further analysis 

with increased nuclease concentrations confirmed these were not products of 

incomplete digestion of the DNA. Since these new cross-links had not been identified 

previously in purified DNA reacted with cisplatin (Fichtinger-Schepman et al 1985), or 

on single strand oligodeoxynucleotides (Meczes et al 2005), it was hypothesised that 

their formation was a result of platinum-mediated cross-linkage to a non-DNA 

molecule. The hypothesis underlying much of the work in this thesis is that this new 

type of cross-link is formed between GSH and Pt-DNA. 
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Figure 1.10: Mono-Q elution pattern for digested calf-thymus DNA (A) and Mor/P cell 

DNA (B) after incubation with cisplatin. DNA was enzymatically digested and eluted 

with increasing NaCl concentrations. Solid blue line: OD 260 nm () Platinum levels 

measured in collected fractions using ICP-MS. (1): Pt(NH3)2(R)(dGMP); (2): cis-

Pt(NH3)2d(ApG); (3): cis-Pt(NH3)2d(GpG); (4): cis-Pt(NH3)2(dGMP)2; (X): new 

product possibly involving thymine; (Y) new product possibly involving GSH. Adapted 

from Azim-Araghi 2003 
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Figure 1.11: Mono-Q elution pattern for digested calf-thymus DNA incubated with 

cisplatin in the presence and absence of GSH. (▲): Platinum after 2-hour incubation 

of DNA with 50 mM GSH (μmol/ml). (■): Platinum after 24 hour incubation of DNA 

with 50 mM GSH (μmol/ml). (▼): Platinum after 24 hour incubation of DNA in the 

absence of GSH (μmol/ml). (1): Pt(NH3)2(R)(dGMP); (2): cis-Pt(NH3)2d(ApG); (3): 

cis-Pt(NH3)2d(GpG); (4): cis-Pt(NH3)2(dGMP)2; (Y): new product possibly involving 

GSH. Adapted from Azim-Araghi 2003 
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Evidence for the cross-linking of GSH to purified DNA in the presence of cisplatin was 

first published by Eastman over twenty years ago (Eastman 1987). Eastman 

enzymatically digested salmon testes DNA incubated with cisplatin with and without 

GSH and chromatographically separated the resulting products. GSH was found to be 

able to react with monofunctionally platinated DNA, but was unable to form complexes 

with DNA that had no monofunctionally bound platinum. Eastman proposed therefore 

that GSH can block the conversion of monofunctional Pt-DNA lesions to the toxic 

bifunctional cross-links. The possibility that GSH could quench monofunctional Pt-

DNA adducts before rearrangement had been proposed previously (Micetich et al 

1983). Micetich et al presented kinetic data comparing mouse leukaemia L1210 cells 

resistant to cisplatin (L1210/PAM) with its parent cell line (L1210/NCL). The data 

showed an increased resistance to cisplatin in the L1210/PAM cells and proposed that it 

may be due to increased thiol content in the cell line blocking conversion to 

bifunctional cross-links. Suzukake et al had previously found the L1210/PAM cell line 

to have elevated levels of GSH compared to its parental line and concluded that this 

may be the reason for its resistance to L-phenylalanine mustard (Suzukake et al 1982, 

Suzukake et al 1983).  

 

Interestingly, the data described above made no suggestion that the formation of cross-

links with GSH could generate potentially cytotoxic lesions. The cross-linking of GSH 

to DNA was proposed to stop the conversion of monofunctional Pt-DNA lesions to 

toxic bifunctional Pt-DNA cross-links, and GSH binding to cisplatin was proposed to 

detoxify the drug. Two possible mechanisms were suggested for this. The first 

mechanism involved cisplatin binding to the sulphydryl residue in GSH, thereby 

blocking access of the drug to DNA (Eastman 1987). The second mechanism involved 
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binding to cisplatin monofunctionally bound to DNA, thereby detoxifying the lesion 

(Micetich et al 1983, Eastman 1987). Both mechanisms are plausible. Formation of 

monofunctional Pt-DNA lesions is believed to occur relatively rapidly, with conversion 

to bifunctional lesions occurring for up to 12 hours after drug removal (Zwelling et al 

1978, Eastman 1986). Even though the reaction of GSH with monofunctional Pt-DNA 

adducts is slow (Eastman 1987), the lengthy time to form bifunctional adducts suggests 

this is a possibility. Binding to and inactivating cisplatin in the cytoplasm may be a 

more efficient method of detoxification, especially considering the molar excess of 

GSH to drug, although the limited time between cisplatin uptake and reacting with 

DNA may limit the extent to which this occurs (Eastman 1987). It has also been 

suggested that reaction of cisplatin with intracellular sulfur ligands may form a 

reservoir from which the platinum complex is slowly released (van Boom and Reedijk 

1993) though this theory is not supported by more recent studies (Lau and Deubel 

2005). It is conceivable that both mechanisms may in turn contribute to the modulation 

of platinum drug toxicity. However, should cis-Pt(NH3)2(DNA)(GSH) cross-links 

contribute to platinum drug cytotoxicity it seems unlikely that this would involve initial 

binding to GSH, although neither possibility can be totally ruled out. 

 

Recent unpublished investigations at Newcastle have supported the possibility that 

GSH can cross-link to DNA in three ways. Firstly, in the presence of cisplatin, 

radioactively labelled GSH became bound to DNA. Secondly, the level of intrastrand 

1,2-d(GpG) cross-links as a proportion of total Pt-DNA adducts was reduced when the 

reaction between cisplatin and DNA took place in the presence of GSH. In this work 

total platinum was measured by AAS and intrastrand 1,2-d(GpG) cross-links by 

immunoassay with monoclonal antibody CP9/19. Thirdly, studies on two lung cancer 
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cell lines (Mor/P and H69), again using AAS for total platinum and immunoassay for 

cross-links, indicated that cross-links formed in Mor/P cells showed a smaller 

proportion of 1,2 cross-links than those formed in H69 cells (Tilby and Twentyman, 

unpublished). If the existence of such a new class of cross-links were to be proven, it 

would have a significant impact on our understanding of platinum drug pharmacology. 

  

1.7.4: Potential clinical implications of cis-Pt(NH3)2(DNA)(GSH)  cross-links 

 

It is well established that clinically active platinum complexes possess the cis-planar 

conformation and that trans-DDP, the structural isomer of cisplatin, is clinically 

ineffective (Roberts and Friedlos 1987). Investigations of the reactions of trans-DDP 

with DNA suggested that 85% of adducts formed are monofunctional, and the rate of 

conversion to bifunctional cross-links is very slow (Eastman 1987). Furthermore, it has 

been suggested that the lack of activity of trans-DDP may be attributable to its inability 

to form intrastrand 1,2- cross-links (Pinto and Lippard 1985).  

 

Early investigations with cis-DDP used thiourea to block monofunctional lesions 

rearranging to bifunctional cross-links (Micetich et al 1983, Eastman 1986). This 

approach was deployed by Eastman to study trans-DDP adducts formed in DNA 

(Eastman 1987). However, rather than “trapping” monofunctional lesions, thiourea 

displaced the drug from DNA. Eastman concluded that this was not surprising as ‘the 

strength of any ligand is markedly influenced by the ligand in a trans orientation’. 

Sulfur is a stronger ligand than nitrogen, and hence when thiourea was bound to DNA, 

the opposing Pt-N (guanine) bond was sufficiently labilised to remove the drug. 

Eastman further concluded that the major reaction of monofunctionally bound trans-
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DDP in cells would be with GSH (Eastman 1987). Andrews et al demonstrated that 

reducing GSH levels markedly enhanced toxicity to trans-DDP with little effect on 

cisplatin toxicity (Andrews et al 1985) supporting the possibility that GSH may act in a 

manner similar to that of thiourea in displacing trans-DDP from DNA. The trans-

labilising effect is particularly strong for the bond between Pt and the sulfur of GSH 

(Lau and Deubel 2005). The presence of GSH would cause the labilisation of one of the 

usually stable ammonia moieties in cisplatin, thus becoming a potential leaving group. 

The resulting adduct could then possibly undergo delayed reactions with other 

molecules, with possible implications on cell survival and drug efficacy. The same 

mechanism for trans-DDP would lead to the dissociation from DNA (Figure 1.12). 

 

Figure 1.12: Trans-labilisation of cis-DDP and trans-DDP by GSH and subsequent 

effect on binding of molecule to DNA. Red circles indicate active bond 

 

As described more fully in chapters 3 and 4, one of the aims of the work described in 

this thesis was to investigate whether or not cis-Pt(NH3)2(DNA)(GSH) cross-links can 

be formed in cells.  
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1.8: Sodium thiosulfate 

 

1.8.1: Sodium thiosulfate as a chemo-protective agent 

 

Cisplatin binds readily to sulfur-containing molecules. Thiourea is a sulfur-containing 

molecule that has previously been shown to reduce the toxicity and anti-tumoural 

activity of cisplatin (Burchenal et al 1978, Filipski et al 1979). It was proposed that 

sulfur-containing molecules may have a role in the selective protection from toxicity by 

reducing the amount of active drug in the circulation, although there was no data from 

animal or mouse studies at the time. 

 

 

Figure 1.13: The chemical structure of sodium thiosulfate 

 

Sodium thiosulfate (Na2S2O3) (STS) is a sulfur-containing molecule that is known to 

react with metals. It is used in the photographic industry as a fixative where it reacts 

with silver halides. It is also known to readily react with gold, and is often used in 

extraction as a replacement for cyanide. STS has also been used in patients as an 

antidote for cyanide poisoning. Howell et al proposed that like thiourea, STS could 

potentially have a role in modulating cisplatin toxicity (Howell and Taetle 1980). STS 

was shown to be toxic to CFU-C cells in vitro at concentrations above 10 mg/ml, 

whereas at 0.1 mg/ml STS significantly reduced the toxicity of cisplatin at 
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concentrations up to 10 µg/ml. The same study also showed STS to cause a dose-related 

decrease in nephrotoxicity in mice. Interestingly, simultaneous injection into mice 

reduced the antitumoural effect of cisplatin. STS has since been shown to bind and 

inactivate cisplatin and carboplatin in vitro (Abe et al 1986, Elferink et al 1986, Dedon 

et al 1988), and to reduce cisplatin-induced nephrotoxicity in animal models (Iwamoto 

et al 1984, Nagai et al 1995) and patients (Howell et al 1982, Pfeifle et al 1985). The 

exact mechanism by which STS protects against nephrotoxicity is unclear. There is 

evidence that STS binds and inactivates cisplatin in the kidneys, and high 

concentrations of thiosulfate have been found in urine during thiosulfate administration, 

suggesting that concentrations in kidney tissues are high (Shea and Howell 1984). At 

these high concentrations the reaction rate between cisplatin and STS is increased 

(Elferink et al 1986). Cisplatin nephrotoxicity is believed to be a result of cisplatin 

reacting with protein-bound thiol groups in the renal tubules (Weiner and Jacobs 1983), 

and this mechanism suggests that competition between the thiosulfate and thiol groups 

for binding cisplatin might explain the decreased nephrotoxicity. However, there is 

evidence that thiosulfate distribution remains extracellular (Gilman et al 1946), and that 

STS binds directly to inactive cisplatin in the systemic circulation, resulting in a 

decreased amount of cisplatin in the kidneys (Nagai et al 1995). This would suggest 

that the decrease in nephrotoxicity is attributable to cisplatin being inactivated before it 

reaches sites of potential toxicity. However, the exact mechanism through which STS 

protects against nephrotoxicity is still unknown. 

 

Platinum-induced hearing loss (ototoxicity) is progressive and irreversible in patients, 

and is associated in animal models with loss of the inner and outer hair cells of the 

inner ear (Neuwelt et al 1996). Ototoxicity is a particularly significant problem in 
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children receiving platinum-based chemotherapy, with ototoxicity noted by Parsons et 

al in 9/11 (82%) of children treated with carboplatin for neuroblastoma (Parsons et al 

1998). Hearing loss significantly affects quality of life and has been linked with 

delayed development of language and reading skills in children (Hindley 1997), and the 

development of depressive symptoms in elderly patients (Cacciatore et al 1999, Keller 

et al 1999).  

 

High frequency hearing loss is a major form of ototoxicity, and was a key negative 

finding in a study investigating the effects of carboplatin on human brain tumours, with 

blood brain barrier disruption to optimise drug delivery (Williams et al 1995). The 

positive reports of STS protecting against cisplatin-induced nephrotoxicity suggested 

that STS may have a role in protection against ototoxicity. Although the mechanism for 

protection against nephrotoxicity is unknown, the available evidence suggests a role for 

STS as a scavenger of free cisplatin in the kidneys. In protection against ototoxicity, 

STS is hypothesised therefore to accumulate in the cells of the inner ear, and bind and 

inactivate free drug (Neuwelt et al 1996). Neuwelt et al investigated the effects of STS 

in vitro and in vivo in protecting against carboplatin-induced ototoxicity, and found that 

STS protected against carboplatin toxicity in vitro when incubated for up to 8 hours 

after carboplatin was added, but no protection was seen at 24 hours (Neuwelt et al 

1996). In the same study, STS was found to be neurotoxic in vivo when administered 

immediately after blood brain barrier disruption, but no toxicity was seen at 30 minutes 

or 60 minutes after disruption, by which time the barrier is believed to have become re-

established (Neuwelt et al 1996). Further in vitro studies and investigations in animals 

and patients have confirmed the findings that delaying administration of STS can be 

used to reduce ototoxicity and have also indicated that this occurs without 
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compromising the anti-tumour effects of either cisplatin or carboplatin (Neuwelt et al 

1998, Muldoon et al 2000, Doolittle et al 2001, Harned et al 2008). STS is currently in 

a phase III clinical trial (SIOPEL 6) designed to investigate a potential role in reducing 

ototoxicity in paediatric patients receiving cisplatin for standard risk hepatoblastoma.  

 

The hypothesis for protection against nephrotoxicity and ototoxicity involves STS 

accumulating in the kidneys and inner ears respectively, and potentially binding and 

inactivating free drug. However, the mechanism through which this protection occurs is 

unknown. STS has previously been shown to remain extracellular (Gilman et al 1946) 

although this data is based on whole body distribution in dogs. It is therefore unclear to 

what extent STS is able to enter cells in humans. More recent studies have 

demonstrated that the human sulfate transporter SLC13A1 (NaS1, previously known as 

SUT-1) a member of the SLC13 sulfate transporter family found on the plasma 

membranes of mammalian cells and located on the apical membrane of the renal 

proximal tubule, is involved in the active transport of thiosulfate ions across the cell 

membrane (Busch et al 1994, Lee et al 2000, Pajor 2006). There is limited information 

available on another member of the SLC13 transporter family, SLC13A4 (NaS2), found 

predominantly in human placenta, although it is believed to have similar substrate 

specificity to SLC13A1 (Pajor 2006). This suggests a potential mechanism through 

which STS can enter cells, and we hypothesise that intracellular STS has the potential 

to interact with intracellular platinum drugs and even modify platinated DNA. Potential 

mechanisms by which this may occur include removal of pre-formed Pt-DNA adducts 

or removal of bound platinum, inactivation of cytoplasmic platinum drugs and/or 

quenching of monofunctionally bound Pt-DNA lesions. 
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1.9: Aims of this study 

 

The work described in this thesis addresses three topics related to the quantity and 

quality of DNA adducts formed by platinum drugs. 

 

1: To test the hypothesis that GSH can become cross-linked to DNA by platinum 

drugs 

 

Available evidence to support this hypothesis was described in section 1.7. If such 

adducts were to form in human tumour cells it would have broad implications in 

understanding the pharmacology of platinum-based anticancer drugs. 

 

This study was approached in two ways: 

1. To attempt to synthesise the putative cis-Pt(NH3)2(DNA)(GSH) cross-link using 

dGMP as a surrogate for DNA so as to identify its chromatographic behaviour 

2. To combine the methods of HPLC and ICP-MS for the analysis of DNA from a 

number of human tumour cell lines that had been exposed to platinum drugs to 

seek evidence of additional adducts to those previously identified 

 

2. To test the hypothesis that STS protects cancer cells by reduction of Pt-DNA 

interactions 

 

The effects of STS on modulating platinum drug toxicity were discussed in section 1.8. 

However, little is known about the mechanisms through which such protection occurs, 

or the effects of STS on Pt-DNA adduct formation. 
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This study was approached in two ways: 

1. To investigate the potential of STS to interact with platinated DNA using 

dGMPas a surrogate for DNA so as to identify its chromatographic behaviour 

and to identify any additional products in pure DNA 

2. To determine the effect of concurrent and delayed administration of STS on 

growth inhibition and total Pt-DNA adduct formation in human tumour cell 

lines exposed to cisplatin 

 

3. To assess the levels of Pt-DNA adducts achieved in human tumour biopsies 

compared to blood samples 

 

There is very limited data on the formation of Pt-DNA adducts in human tumours. The 

work described in the thesis aimed to establish the feasibility of analysing adducts in 

human tumour biopsies following treatment with carboplatin. 

 

This study aimed to measure adducts levels in solid tumour biopsies and peripheral 

blood mononuclear cells from patients treated with carboplatin for advanced ovarian 

cancer. This was approached in two ways: 

1. Determine the DNA adduct levels achieved in solid ovarian tumour tissue 

during therapy 

2. To compare these levels to adduct levels formed in peripheral blood 

mononuclear cells from the same patients 

3. To compare adducts levels to plasma pharmacokinetics for carboplatin 
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Chapter 2 

Materials and Methods 

 

2.1: Materials 

 

2.1.1: Reagents 

 

Unless otherwise stated all chemical reagents used were of analytical grade and 

purchased from Sigma-Aldrich Company ltd. (UK). 

 

Cisplatin was dissolved in sterile de-ionised water to a final concentration of 2 mM and 

stored at -20°C. Carboplatin (Johnson Mathey, UK) was dissolved in either full growth 

media or water immediately prior to use. Oxaliplatin was dissolved in sterile de-ionised 

water to a final concentration of 10 mM, then diluted in full growth medium 

immediately prior to use. Carboplatin and oxaliplatin were always prepared fresh for 

experiments. All handling of cytotoxic drugs for exposure to DNA was carried out in a 

BioMAT
2
 class II pharmaceutical safety cabinet (Medical Air Technology Ltd, UK) . 

All drugs were filter-sterilised immediately before use in tissue culture.  
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2.1.2: Solutions and Buffers 

 

Buffer C1 (QIAGEN) 1.28 M sucrose, 40 mM Tris-Cl, pH 7.5 

containing 20 mM magnesium chloride and 4% 

Triton X-100 

 

Buffer G2 (QIAGEN) 800 mM guanidine-HCl, 30 mM Tris-Cl, 30 mM 

disodium salt of ethylenediaminetetraacetate 

(EDTA), pH 8.0 containing 5% Tween-20 and 

0.5% Triton X-100 

 

Buffer QBT (QIAGEN) 750 mM sodium chloride, 50 mM 3-(N-

morpholino)propanesulfonic acid (MOPS), pH 7.0 

containing 15% isopropanol and 0.15% Triton X-

100 

 

Buffer QC (QIAGEN) 1 M sodium chloride, 50 mM MOPS, pH 7.0 

containing 15% isopropanol 

 

Buffer QF (QIAGEN) 1.25 M sodium chloride, 50 mM Tris-Cl, pH 8.5 

containing 15% isopropanol 

 

DNA buffer (DB) 50 mM sodium chloride, 50 mM sodium 

dihydrogen phosphate, 0.02% sodium azide, pH 

7.0  
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DNA digest buffer 10 mM Tris, pH 7.2 containing 0.1 mM EDTA. 

 

Freezing Solution 90% v/v foetal calf serum (FCS), 10% (v/v) 

dimethyl sulfoxide (DMSO) 

  

HA lysis buffer 80 mM potassium phosphate, 1% (v/v) Sarkosyl 

NL30 detergent, 10 mM EDTA, pH 6.8 

 

HPLC buffer A   12.5 mM Tris, pH 8.8 

 

HPLC buffer B   12.5 mM Tris, pH 8.8 with 1 M sodium chloride 

 

Kirby‟s Phenol 500 g phenol, 0.5 g 8-hydroxyquinoline, 55 ml 

de-ionised water, 70 ml m-cresol, pH 7.0. Prior to 

use Kirby‟s phenol was saturated with water by 

mixing with 80 mM KP buffer and centrifuged 

(150 x g, 5 minutes) 

 

Phosphate buffer (PB) 50 mM sodium phosphate, 0.02% sodium azide, 

pH 7.0 

 

10X PB 500 mM sodium phosphate, 0.02% sodium azide, 

pH 7.0 
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Phosphate Buffered Saline (PBS) 10 mM phosphate buffer, 2.7 mM potassium 

chloride, 137 mM sodium chloride, pH 7.4 

 

80 mM potassium phosphate (KP) 80 mM potassium phosphate, pH 6.8 

 

0.5 M KP    0.5 M potassium phosphate, pH 6.8 

 

Ribonuclease A (RNAase A) buffer 10 mg/ml RNAase A from bovine pancreas in 1.2 

g/l 10 mM Tris and 0.44 g/l 15 mM sodium 

chloride, pH 7.5.  

 

30 mM sodium acetate 172 µl glacial acetic acid in 100 ml water, 

adjusted to pH 5.3 with sodium hydroxide 

 

SRB stain    0.4% sulphorhodamine B in 1% acetic acid 

 

TE 10X Trypsin-EDTA (Gibco BRL) diluted 10-fold 

in warm PBS 

 

Tissue culture media Roswell Park Memorial Institute (RPMI-1640) 

tissue culture media with HEPES modification, 

supplemented with 10% (v/v) foetal calf serum 

(FCS) and 2 mM L-Glutamine, Penicillin (100 

units/ml) and Streptomycin (100 µg/ml) were also 

present in the media 
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10 mM Tris    10 mM Tris, no pH adjustment (pH ~ 9.6) 

 

5 M Urea, 80 mM KP   80 mM KP buffer containing 5 M Urea, pH 6.8 

 

6 M Urea, 80 mM KP   80 mM KP buffer containing 6 M Urea, pH 6.8 

 

2.1.3: Enzymes 

 

Ribonuclease A (RNAase A) was dissolved at 10 mg/ml in Ribonuclease 1 buffer and 

incubated in a boiling water bath for 15 minutes to inactive deoxyribonucleases. 

Aliquots were stored at -20°C. Deoxyribonuclease 1 (DNAase 1) was dissolved at 20 

Kunitz units/ml in DNA digest buffer immediately before use. Nuclease P1 was 

dissolved in 30 mM sodium acetate buffer at 200 units/ml and stored at -20°C. 
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2.2: Tissue Culture 

 

2.2.1: Equipment 

 

All tissue culture procedures were carried out in a BioMAT
2
 class II pharmaceutical 

safety cabinet (Medical Air Technology Ltd, UK). Cells were incubated in an MCO-

20AIC CO2 incubator (Sanyo Biomedical, Japan) maintained at 37°C, 5% CO2. A 

VacuSafe Comfort aspirator (Integra Biosciences, UK) was used to aspirate all culture 

media and drugs. All tissue culture plastic ware were obtained from Nunc (Fisher 

Scientific, UK). Routine centrifugation was carried out using a CR-4-22 refrigerated 

centrifuge (Jouan, UK), 

 

2.2.2: Cell lines 

 

Human testicular germ cell tumour cells (833K) and human colon adenocarcinoma cells 

(LoVo) were obtained from the American Type Culture Collection. Human ovarian 

carcinoma cells (A2780) were kindly donated by Dr Sally Coulthard, NICR. Cisplatin-

resistant human lung adenocarcinoma cells (Mor/CPR) were obtained from the 

European Collection of Cell Cultures (now HPA cultures). All cell lines were cultured 

in Roswell Park Memorial Institute (RPMI-1640) tissue culture media and maintained 

at 37°C, 5% CO2. 
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2.2.3: Maintenance of cell lines 

 

All cell lines were cultured as adherent mono-layers in tissue culture flasks and were 

sub-cultured frequently (less than 90% confluence) to maintain continuous growth. For 

routine sub-culture of all cell lines, media was removed through aspiration and cells 

washed with 10 ml warm PBS. Following aspiration, 2 ml warm TE was added to the 

flask and passed across the cells. Excess TE was aspirated after 30 seconds exposure 

and the flasks incubated at 37°C until all cells had detached. Cells were protected from 

TE through addition of 10 ml fresh culture media and cells counted. An appropriate 

volume of cell suspension was added to fresh culture media and transferred to a new 

flask. Mycoplasma testing was carried out every 3 months using a Mycoplasma 

Detection Kit (Roche Diagnostics, UK) and cells were negative for contamination 

throughout. 

 

2.2.4: Counting cells 

 

A haemocytometer comprises a glass slide containing chambers of a known depth with 

grids etched onto the surface. Each chamber is divided into 9 squares with surface areas 

of 1 mm
2
. When a glass cover slip is placed over the chambers and grid, the depth is 0.1 

mm and hence the volume of solution for each 1 mm
2
 is 10

-4 
ml. Cell samples were 

loaded into the counting chamber through capillary action. Cells were counted using a 

microscope and the density of cells per ml = average cell count per mm
2
 x 10

4
. To 

avoid overestimating the number of cells, any cells touching the upper and right hand 

perimeter lines were ignored. 
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2.2.5: Cryogenic storage and resuscitation of frozen cells 

 

Storage 

Cells were harvested using trypsin-EDTA as described in section 2.2.3 and collected by 

centrifugation (275 x g, 20°C for 5 minutes). Excess media was aspirated and cell 

pellets resuspended in freezing solution at a concentration of 10
6
 cells/ml. Cell 

suspensions (1 ml) was transferred into a cryovial, and then frozen for 24hr at -80°C in 

an expanded polystyrene box to achieve a slow freezing rate. Slow freezing and the 

presence of DMSO in the freezing solution help to minimise the formation of ice 

crystals which could potentially damage the cells. After initial freezing, cells were 

transferred to liquid nitrogen. 

 

Resuscitation 

Aliquots of frozen cells (1 ml), stored in liquid nitrogen, were thoroughly thawed to 

37°C and immediately added to 9 ml fresh tissue culture media. Cells were washed by 

centrifugation (275 x g, 20°C for 5 minutes) before being innoculated into tissue culture 

flasks. Cells were not used for experimentation for at least one week to ensure recovery 

from the effects of cryopreservation. 
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2.3: Exposure of cells to cytotoxic drugs 

 

Cell Lines – Incubations in flasks 

Cisplatin, carboplatin and oxaliplatin were prepared in medium at 5 to 10-fold higher 

initial concentrations and appropriate volumes added to cell cultures to achieve the 

desired final concentrations. For control experiments water without drug was added. 

Sterile sodium chloride was added to correct for osmotic changes as a result of adding 

water or aqueous drug solution. After exposure cells were washed three times with 

PBS, before harvesting by trypsinisation. Following centrifugation (275 x g, 20°C for 

10 minutes), pellets were stored at -20°C. 

 

Cell Lines – Incubations in 96 well plates 

Cisplatin, carboplatin and oxaliplatin were prepared in medium at 2-fold higher initial 

concentrations, and 100 µl/well added to cell cultures to achieve the desired final 

concentrations. For control experiments medium without drug was added. Cells were 

incubated at 37°C for varying times dependent on the experimental setup. 

 

Volunter Human Blood 

Blood was collected in sterile heparinised tubes, and then incubated in tissue culture 

flasks with 2 mM carboplatin (dissolved in saline) or saline alone for 60 minutes. 

Immediately after incubation, 10 ml blood samples were layered onto Lymphoprep 

(Axis Shield, Norway) and centrifuged (800 x g, 20°C for 15 minutes). Peripheral 

blood lymphocytes were collected and washed twice in sterile PBS, then pellets frozen 

at -20°C. Prior written consent was obtained for all volunteer samples. 
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2.4: Sulphorhodamine B colorimetric assay 

 

Principle 

Sulphorhodamine B (SRB) is an aminoxanthine dye with two sulphonic groups that 

binds electrostatically to basic amino acids of cell proteins under mildly acidic 

conditions. The intensity of staining is proportional to the amount of cellular protein 

and therefore cell number, assuming cell size is consistent. As described previously 

(Skehan et al 1990) the SRB colorimetric assay can be used as a rapid and sensitive 

means of determining cellular growth rate and growth inhibition. The SRB assay was 

carried out using 96-well microtitre plates. The number of cells plated was dependent 

on growth rate of the cells, the confluent cell density and the duration of the 

experiment. Cells were inoculated only in the inner 60 wells on the plate to avoid 

“edge-effect”, a phenomena that can cause abnormal growth in the outer wells (Dr 

Rony Nuydens, Jansenn Cilag ltd, Belgium - personal communication).  

 

Method: SRB Assay 

Cells were fixed by aspirating all media from the plates, followed by addition of 200 µl 

cold PBS and then 50 µl cold 50% trichloroacetic acid (TCA). After incubating at 4°C 

for 1hr, plates were washed with water and stored at 4°C ready for staining. To each 

well 100 µl SRB stain was added and incubated at room temperature for 30 minutes. 

Excess dye was removed by rinsing 5 times with 1% acetic acid (VWR). Rinsing was 

performed quickly but gently to avoid dislodging cells and prevent desorption of the 

protein-bound dye. Stained plates were air-dried overnight before addition of 100 µl 10 

mM Tris to each well to solubilise the dye. Staining intensity was then analysed at 490 

nm using a SpectraMAX 250 microplate reader (Molecular Devices). 
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2.5: DNA extraction 

 

2.5.1: DNA extraction using hydroxyapatite 

 

Principle 

DNA extraction using hydroxyapatite was described previously (Tilby et al 1991) for 

preparation of cellular DNA for measurement of melphalan-DNA adducts by 

immunoassay. Hydroxyapatite is a calcium phosphate mineral that is believed to 

interact with phosphate groups on DNA. By manipulating phosphate concentration (i.e. 

low phosphate concentration in solution) it is possible to bind DNA to hydroxyapatite, 

allowing retention of DNA whilst washing away any remaining cellular material. 

Increasing phosphate ion concentration causes DNA to elute from the hydroxyapatite. 

This method can reliably produce a good yield of DNA from a relatively small number 

of cells and produces low molecular weight DNA free of alcohol, RNA and protein. 

 

Method: DNA extraction 

Frozen cell pellets were lysed by addition of 2 ml HA lysis buffer and then sonicated 

for 2 minutes at full power in a 600 W Vibracell ultrasonic processor equipped with a 

water-filled cup-horn (Roth Scientific, UK). After sonication 20 µl RNAase A was 

added to each lysate to digest RNA and samples were incubated at 37°C for 15 minutes. 

Following incubation, an additional 3 ml HA lysis buffer was added along with 5 ml 

water saturated Kirby‟s phenol, and samples mixed by rotation at room temperature for 

20 minutes. Samples were centrifuged (700 x g, 4°C for 15 minutes) to separate the two 

phases. For each sample the aqueous upper phase (approximately 5ml) was collected 

and transferred to a fresh tube.  
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To each tube 25 ml of 6 M urea, containing 80mM KP buffer and 0.5 g DNA grade 

hydroxyapatite BioGel (BioRad, UK), was added to the DNA solution and mixed by 

rotation at room temperature for 20 minutes. The hydroxyapatite with DNA bound was 

collected above a filter in a spin column, which comprised a 10 ml syringe barrel 

(central Luer connection) with a piece of plastic gauze covering the bottom and a close-

fitted glass fibre filter paper disc. The syringes were suspended inside 50 ml tubes. 

Excess liquid was removed by centrifugation (50 x g, 20°C for 5 minutes) and washed 

twice with 10 ml 5 M Urea containing 80 mM KP buffer to remove traces of proteins, 

phenol and detergent, followed by three further washes with 10 mM KP buffer to 

remove urea. After each volume of wash buffer had been added the columns were 

centrifuged (50 x g, 20°C for 5 minutes) and the eluate discarded. DNA was finally 

eluted from the hydroxyapatite by addition of 2 ml 0.5 M KP buffer followed by 

centrifugation (50 x g, 4°C for 5 minutes). Eluates were stored at -80°C. 

 

Method: Removal of salt and concentration of DNA 

Desalting of the DNA solution was carried out using Centricon Ultracel YM-10 

centrifugal filter units (Millipore, UK). Initially the units were washed thoroughly with 

de-ionised water, then the DNA samples were added and centrifuged (5000 x g, 4°C) 

until the volume in the Centricon was approximately 60 µl. DNA was washed twice by 

addition of 1 ml DNA digest buffer and further centrifugation. 440 µl DNA digest 

buffer was added to the unit which was then left to stand at room temperature for one 

hour to allow DNA to dissociate from the filter. The resulting concentrated DNA 

solution was collected by placing a vial over the top of the Centricon, inverting, and 

centrifuging (500 x g, 4°C for 5 minutes). The DNA solution was stored at -80°C. 

 



98 

 

2.5.2: DNA extraction using QIAGEN Blood and Cell Culture DNA midi kit 

 

Principle 

The blood and cell culture DNA midi kit makes use of the QIAGEN „Genomic-tips‟, 

which use an anion exchange resin to retain DNA, without use of phenol or chloroform. 

In this procedure cells were lysed and digested with protease enzyme and the lysates 

then added to the column and allowed to pass through by gravity flow. The pH and low 

salt conditions of the buffer caused DNA to bind to the QIAGEN resin whilst other 

cellular constituents passed through. Purified DNA was eluted in a high salt buffer. The 

type of kit used was limited to processing cellular samples with a maximum cell count 

of 2 x 10
7
 (see section 1A) or tissue samples up to approximately 100 mg (see section 

1B). Section 2 was the same for both cellular and tissue preparations. 

 

Method 

Section 1A: Cell Pellets 

Frozen cell pellets were thawed fully, re-suspended in 1 ml PBS, and transferred to 15 

ml centrifuge tubes (Sarstedt, Germany). Ice cold buffer C1 (2 ml) was added and 

mixed and then 6 ml ice cold de-ionised water added. Samples were placed on ice for 

15 minutes, followed by centrifugation (1300 x g, 4°C for 15 minutes). Supernatants 

were discarded and pellets were each re-suspended in 1 ml ice cold buffer C1, mixed, 

and then 3 ml ice cold de-ionised water was added. They were again placed on ice for 

10 minutes, followed by centrifugation (1300 x g, 4°C for 15 minutes). Supernatants 

were discarded and pellets re-suspended in 1 ml buffer G2 and samples were sonicated 

for 2 minutes at full power in a 600 W Vibracell ultrasonic processor equipped with a 

water-filled cup-horn (Roth Scientific, UK). After sonication, buffer G2 (4 ml) and 



99 

 

RNAase A solution (10 µl) were added and incubated at 37°C for 20 minutes, followed 

by addition of QIAGEN protease (95 µl) and incubation at 50°C for 1hr.  

 

Section 1B: Human or Mouse Tissue Samples 

Tissue samples up to 100 mg were initially homogenised with 100 µl buffer G2 in a 1.5 

ml microtube using a plastic “pellet pestle” (Anachem, UK). A further 900 µl buffer G2 

was added and the sample transferred to a 15 ml centrifuge tube (Sarstedt, Germany). A 

further 1 ml buffer G2 was added and samples were sonicated for 2 minutes at full 

power in a 600 W Vibracell ultrasonic processor equipped with a water-filled cup-horn 

(Roth Scientific, UK). After sonication 7.5 ml buffer G2 and 19 µl RNAase A were 

added and samples incubated at room temperature for 15 minutes, followed by addition 

of 500 µl QIAGEN protease and incubation at 50°C for 2hr. 

 

Section 2: Genomic Tip DNA Extraction 

During the incubation steps columns were equilibrated with 4 ml buffer QBT. After 

incubation samples were added to the columns. At this point DNA became bound to the 

column, and was washed twice with 7.5 ml of buffer QC. DNA was eluted into 15 ml 

centrifuge tubes (Sarstedt, Germany) by addition of 5 ml of buffer QF. Isopropanol (3.5 

ml) was added to each DNA sample. The samples were centrifuged (5000 x g, 4°C for 

25 minutes). Supernatant was carefully poured off and 2 ml cold 70% ethanol was 

added, followed again by centrifugation (5000 x g, 4°C for 15 minutes). Supernatant 

was carefully poured off and samples were air-dried. DNA was dissolved in 500 µl de-

ionised water and stored at -80°C. 
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2.5.3: Measurement of DNA concentration 

 

The concentration of isolated DNA was quantified using either an NanoDrop ND-1000 

spectrophotometer (Thermo Finnigan, USA) or a Lambda 2 UV/Vis Spectrophotometer 

(Perkin Elmer, USA). DNA maximally absorbs light at a wavelength of 260 nm. A 

sample of pure DNA has a ratio of optical density (OD) 260/280 which is empirically 

determined to be 1.8. The overall absorbance of DNA is a combination of the 

absorbance peaks of the four DNA bases. Sample contamination, with proteins for 

example, can cause the OD 260/280 ratio to vary. Samples with an OD 260/280 of less than 

1.75 or greater than 1.90 were discarded. 

 

NanoDrop Spectrophotometer 

The NanoDrop is a rapid and simple method for measuring absorbance without the use 

of cuvettes. Samples (1 µl) are loaded onto a fibre optic cable (receiving fibre). 

Samples are maintained on the cable by surface tension. A second fibre optic cable 

(source fibre) is brought into contact with the sample, bridging the gap between the two 

fibres. The gap is controlled at 0.2 and 1 mm distances. A pulsed xenon flash lamp 

provides the light source, and a spectrophotometer with a linear CCD array used to 

analyse the light passing through the sample. The concentration of DNA is 

automatically calculated by the NanaDrop software, based on the principle that a 

sample of 50 µg/ml pure DNA has an absorbance of 1 AU at 260 nm in a 10 mm path 

length cuvette. This method was used for all samples of DNA isolated using Qiagen 

kits (section 2.5.2) and DNA concentrated from gel filtration (section 2.8) 
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Lambda 2 UV/Vis Spectrophotometer 

This method is much slower for determining DNA concentration, but possibly more 

reliable. The Lambda 2 uses double-beam optics for excellent long term stability, 

reference compensation and baseline correction, and can be used for measuring 

individual or multiple wavelengths, or for scanning wide wavelengths ranging from 

190-1100 nm, with scan speeds between 7.5-2880 nm/min. The Lambda 2 was used for 

measuring DNA isolated using hydroxyapatite (section 2.5.1) using a 1 mm path length 

cuvette and for measuring dissolved pure DNA (section 2.7.1) or DNA in gel filtration 

fractions (section 2.8) using a 10 mm path length cuvette.  

 

For DNA isolated by hydroxyapatite, approximately 500 µl samples were added. DNA 

digest buffer was initially measured at OD254nm to provide a blank reading. OD280nm was 

also measured to test sample purity. Between each sample the cuvette was rinsed 

thoroughly with acetone and air dried. DNA concentration was determined using the 

equation below: 

 

DNA concentration (µg/ml) = Absorbance 260nm * 50 * 10 

 

DNA in collected gel filtration fractions was measured at OD 254nm. Initially, OD 254nm 

of 50 mM sodium phosphate buffer was measured to provide a blank reading. The 

cuvette was not rinsed between samples. DNA concentration was not calculated as all 

gel filtration plots in this thesis used OD254nm as a vertical Y2 axis. 
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2.6: Enzymatic digestion of platinated DNA 

 

Principle 

Prior to chromatographic separation of Pt-DNA adducts DNA samples were 

enzymatically digested to form 5' mononucleotides and 5' dinucleotides, where adjacent 

nucleotides are joined by a Pt atom. DNAase1 was initially added to DNA samples and 

incubated. DNAase1 is a nuclease that cleaves DNA at phosphodiester linkages, 

preferentially adjacent to pyrimidine bases. This results in 5'-phosphate 

polynucleotides, with a free 3'-hydroxyl. Nuclease P1, which further cleaves DNA 

yielding 5'-monophosphate nucleotides, was added after incubation with DNAase1. 

Importantly, nuclease P1 cannot cleave dinucleotides linked by Pt, possibly due to 

steric hindrance. This allows for cleavage of Pt-DNA adducts from DNA with a 

terminal 5'-phosphate 

 

 

Figure 2.1 Enzymatic hydrolysis of platinated DNA to mono- and di-nucleotides, which 

were subsequently separated by anion exchange chromatography under varying salt 

concentrations 
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Method 

The volume of DNA solution required in each digest was calculated by dividing the 

required [DNA] from the measured [DNA], and multiplying this value by the total 

digest volume. The final concentration of DNA was 0.25 mg/ml, made up in a final 

volume of 200 µl. 20 Kunitz units of DNAase1, 4.8 µl 10 mM zinc sulfate and 3.2 µl 

250 mM magnesium chloride was added and incubated for an initial 2hr at 37°C. 

Nuclease P1 (200 units/ml) was added after the initial 2hr and incubated for a further 

16hr at 37°C. After the incubation period the digested DNA samples were added to a 

Microcon YM-10 ultrafiltration unit (Millipore, UK) (nominal 10 kDa MW cut-off) and 

centrifuged (14000 x g, 4°C for 1hr) to remove proteins prior to chromatography. 

Ultrafiltrates were stored at -80°C.  
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2.7: Reactions of cisplatin with nucleic acids 

 

2.7.1: Reaction of cisplatin with highly purified calf thymus DNA in the presence 

or absence of GSH or STS 

 

Highly purified calf thymus DNA (Merck, USA) was dissolved in 5 mM sodium 

chloride over several days at 4°C. DNA concentration was determined at OD260nm using 

a Lambda 2 UV/VIS spectrophotometer as described in section 2.5.3. Cisplatin was 

diluted in de-ionised water from a 2 mM stock stored at -20°C. The final required 

concentration was achieved by diluting cisplatin in water and 10X PB. GSH and STS 

were dissolved in PB immediately prior to use, and pH adjusted with 10 M and 1 M 

sodium hydroxide. 

 

Cisplatin was reacted with calf thymus DNA in the presence and absence of GSH or 

STS to give a final DNA concentration of 500 µg/ml. The DNA, GSH and STS 

solutions were prepared in PB. Cisplatin was added and the reaction vessels were 

immediately gassed with nitrogen to prevent oxidation. The mixture was then incubated 

at 37°C. Samples were stored at -80°C. Platinated DNA was separated by gel filtration 

chromatography as described in section 2.8. 
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2.7.2: Reaction of cisplatin with deoxyguanosine monophosphate (dGMP) in the 

presence or absence of GSH or STS 

 

dGMP was dissolved in de-ionised water to a concentration of 2 mM to match the 

concentration of cisplatin. Equal volumes of cisplatin and dGMP were mixed to achieve 

a final concentration of 1 mM, and incubated at 37°C. GSH and STS were dissolved in 

de-ionised water immediately prior to use, and pH adjusted with 10 M and 1 M sodium 

hydroxide. GSH and STS were added to the dGMP/cisplatin reaction mixture after 24hr 

incubation at 37°C. Reaction samples were stored at -80°C. 
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2.8: Gel filtration chromatography  

 

Principle 

Following reaction of calf thymus DNA with cisplatin in the presence or absence of 

GSH or STS, platinated DNA was separated from unreacted drug and other low 

molecular weight material by gel filtration chromatography. Gel filtration 

chromatography is a method that allows separation of molecules through a gel column 

on the basis of their molecular size. Molecules move through a bed of porous beads, 

diffusing into the beads based on size. Smaller molecules diffuse further and more often 

into the beads and therefore spend a greater proportion of time in the stationary phase 

compared to larger molecules, such as high molecular weight DNA, which are excluded 

from the pores of the stationary phase. Movement of solutes through the column is 

dependent on mobile phase flow rate and partitioning of molecules between the 

stationary and mobile phases based on molecular size. Molecules are eluted in the order 

of decreasing molecular size. 

 

Method – Gel Filtration 

PB was used as the mobile phase, and Sephadex G-75 as the stationary phase. 

Sephadex G-75 is a porous gel with a fractionation range of 3000 – 80000 MW, and 

was prepared by swelling the beads in de-ionised water overnight at room temperature, 

and then boiling for an hour to remove air. Two XK26 gel columns (Pharmacia, 

Sweden), each with an approximate bed volume of 400 ml, were used to contain the 

gel. The apparatus comprised two P1 peristaltic pumps (Pharmacia, Sweden), both 

routed through a 1.5 mm bore Omnifit rotary valve (Kinesis, UK) allowing 

simultaneous separation and flushing of alternate columns. Samples were introduced 



107 

 

through a Valve V7 mixer (Pharmacia) into a 10 ml sample loop (Pharmacia, Sweden) 

and collected using a Frac 200 collector (Pharmacia, Sweden). Fractions were collected 

over 5 minutes at a flow rate of 2.0 ml/min. DNA was detected in collected fractions by 

measuring OD254nm using a Lambda 2 UV/VIS spectrophotometer as described in 

section 2.5.3. Pt content determined by atomic absorption spectrometry as described in 

section 2.10, using nitric acid standards containing sodium phosphate to replicate the 

phosphate concentration of the diluted samples.  

 

Method – Concentration and Buffer Exchange of Solutions 

Fractions containing DNA were transferred to an Amicon stirred ultrafiltration cell 

model 8050 (Millipore, UK) with a 10000 kDA molecular weight cut off filter. DNA 

was concentrated under nitrogen gas pressure (~ 70 PSI). Phosphate buffer was 

replaced with DNA digest buffer through a series of washes under nitrogen gas 

pressure. DNA was collected from the cell in approximately 1 ml DNA digest buffer 

after the cell was stirred for 1hr with no nitrogen gas. This was necessary to allow the 

release of DNA from the membrane, thereby maximising DNA recovery. DNA 

concentration was determined by measuring OD260nm using a NanoDrop 

spectrophotometer as described in section 2.5.3. 
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2.9: Anion exchange chromatography 

 

Principle 

Ion exchange chromatography is a technique that allows separation of molecules based 

on their charge and can be sub-divided into cation and anion exchange chromatography. 

Cation exchange chromatography relies on positively charged molecules binding to 

negatively charged residues on the stationary phase of a column, whereas anion 

exchange chromatography relies on negatively charged molecules binding to positively 

charged residues on the stationary phase of the column. In the ion exchange 

chromatography method used here the ionic strength was increased over time by 

mixing together two buffers of different ionic composition. Samples were introduced in 

a starting buffer (low chloride ion concentration) and became bound to the column. The 

concentration of chloride ions was increased by steadily increasing the proportion of 

the second buffer (high chloride ion concentration). Molecules were selectively eluted 

based on their different binding affinity to the column at varying ionic strengths. 

 

Method 

DNA nucleotides (negatively charged) were separated using a MonoQ 5/50 GL anion 

exchange column (Amersham, UK) which carries –CH2-N
+
(CH3)3 as the charged 

group. Chromatography was carried out using a modified “FPLC system” with two P-

500 pumps (Pharmacia, Sweden) coupled to a mixer (Pharmacia, Sweden) and a Waters 

2487 dual λ absorbance detector (Waters, UK) with an inert taper split flow cell 

(Waters, UK). Samples were introduced through a Rheodyne 9725i manual injector 

port. Fractions of eluent were collected in a Frac 100 collector (Pharmacia, Sweden). 

The system was controlled through Clarity
®

 Chromatography data station software 
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(DataApex, UK). The pumps were controlled via a Clarity CB20 digital to frequency 

converter board and outputs from the UV monitor and injection valve were connected 

to a Clarity Int7 analogue to digital converter board.  

 

The chromatographic method for separating Pt-DNA adducts after enzymatic digestion 

was based on a method published previously (Fichtinger-Schepman et al 1985). Before 

sample injection the column was equilibrated with Cl
-
 ions by performing the salt 

gradient program as used for elution. This gradient was formed between HPLC buffers 

A and B by altering the proportion of each buffer entering the column by varying the 

pump rates (Table 2.1). The overall flow rate was 1 ml/min, with a typical pressure of 

between 3-3.5 MPa. During elution 500 µl fractions were collected every 30 seconds 

over a 25 minutes period. Fractions were stored at -20°C prior to further analysis.  

 

A mixture of dAMP, dCMP, TMP and dGMP (50 µg/ml final concentration) was 

analysed at the beginning and end of each set of chromatographic analyses of 

experimental samples to serve as a control to confirm satisfactory performance of the 

MonoQ column. 
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Table 2.1: Chromatographic gradient used for selective elution of mono- and di-

nucleotides from the MonoQ column 

Time (Minutes) HPLC Buffer B Salt Ion (M) 

0 – 1 Isocratic elution, 5% 0.05 

1 – 4 Linear Increase, 5% to 7.5% 0.05 to 0.075 

4 – 7.5 Isocratic elution, 7.5% 0.075 

7.5 – 10.5 Linear Increase, 7.5% to 10% 0.075 to 0.1 

10.5 – 25 Linear Increase, 10% to 25% 0.1 to 0.25 

25 – 26 Linear Increase, 25% to 100% 0.25 to 1 

26 – 30 Isocratic elution, 100% 1 

30 – 34 Wash, 0% 0 
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2.10: Graphite furnace Atomic Absorption Spectrometry (AAS) 

 

Principle 

Atomic absorption is a process that occurs when a ground state atom, usually a vapour, 

absorbs energy in the form of light of a specific wavelength and becomes elevated to an 

excited state. The amount of light energy absorbed at this wavelength increases as the 

number of atoms increases. Unknown concentrations of an element in a sample can be 

calculated by comparison to the amounts of light absorbed by a series of known 

standards. Graphite furnace AAS requires 1: a primary light source, e.g. a hollow 

cathode lamp; 2: an atom source, which is a sample in the form of a vapour generated 

in an electrically heated graphite cartridge; 3: a monochromator to isolate a specific 

wavelength of light; 4: a detector to measure light accurately; and 5: electronics to treat 

the signal and process the results. Samples are injected directly into a graphite tube and 

heated through a series of programmed steps to remove solvent and matrix components, 

before then finally atomising the remaining sample for analysis. 
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Method 

Analysis was performed using a flameless Perkin Elmer AAnalyst 600 graphite furnace 

AAS (Perkin Elmer, UK) using a method designed for analysis of Pt. The 

monochromator was set to a wavelength of 265.9 nm. The furnace program steps are 

shown in Table 2.2.  

 

A standard curve of known Pt concentrations ranging from 0-2000 ng/ml was prepared 

by diluting stock Pt standards 10-fold in 0.1 M nitric acid. These standards were used to 

determine Pt concentration in samples. Standards for analysis of gel filtration fractions 

contained 5 mM sodium phosphate to match the concentration of phosphate ions in the 

diluted samples. Samples were diluted 10-fold in 0.1 M nitric acid. Analysis of each 

sample was carried out in duplicate. 20 µl aliquots were injected into the graphite tube 

by an autosampler. 

 

Table 2.2: Furnace program used for determination of Pt concentration 

Step Temperature (°C) Ramp Time (secs) Hold Time (secs) 

1 110 1 60 

2 130 15 30 

3 1300 10 20 

4 2200 1 5 

5 2450 1 10 
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Figure 2.2: Typical standard curve used for determination of unknown Pt 

concentrations in samples by atomic absorption spectrometry 
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2.11: Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) 

 

Principle 

ICP-MS is an analytical technique used to determine the isotopic composition and 

concentration of elements present in samples. Samples are converted to atoms by high 

temperature and become ionised whereby they can be analysed by mass spectrometry. 

Sensitivity of detection varies between elements as a result of differences in: 1, ease of 

ionisation; 2, background levels of elements in the environment; 3, matrix effect and 4, 

interferences from combinations of atoms that form ions with the same mass/charge 

ratio as the element being detected. 

 

High temperature and ionisation is achieved by passing a volume of sample through an 

atomiser. This generates a fine mist which is then sprayed into an inductively couple 

plasma (ICP) torch. Argon gas flows inside the ICP torch, connected to a radio-

frequency (RF) generator connected to an RF load coil. As power is supplied to the 

load coil from the RF generator, oscillating electric and magnetic fields are generated at 

the tip of the ICP torch. When a spark is applied to argon flowing through the torch, 

electrons are stripped from the argon atom to form argon ions. These ions collide with 

other argon ions in the oscillating fields to form the argon plasma torch, maintained at 

approximately 10‟000°K by an induction coil supplied with an electric current. The 

Atomic Spectroscopy detection limit for Pt by ICP-MS is 0.002 µg/L. Samples are 

typically introduced in liquid state and nebulised before entry into the plasma torch, 

where in the high temperature of the plasma metals become ionised through electron 

loss and are extracted into the mass spectrometer. ICP-MS is a method suitable for 
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detecting low levels of Pt as sensitivity of detection is less than 0.1 parts per trillion 

(PPT). 

 

Two instruments were used in this thesis – A Sciex Elan 6000 Quadrupole ICP-MS 

(Perkin Elmer, UK) and a Finnigan Element2 Magnetic Sector Field ICP-MS (Thermo 

Electron, Germany). All ICP-MS analysis was carried out at the Northern Centre for 

Isotopic and Elemental Tracing at the Department of Earth Sciences, Durham 

University, Durham, UK. 

 

2.11.1: Sciex Elan 6000 Quadrupole ICP-MS 

 

Detection Principle 

Metals ions are extracted through a series of cones with decreasing sample holes (1 mm 

„sampler‟ cone and 0.4 mm „skimmer‟ cone) into the quadrupole mass spectrometer. 

The quadrupole consists of four parallel metal rods. Opposing rods are connected 

electrically, and a radio frequency applied between paired-rods. A direct current voltage 

is superimposed over the radio frequency voltage and ions are separated based on the 

stability of their trajectories in the oscillating electric fields that are applied to the 

quadrupole rods. Only ions of a certain mass/charge ratio can pass through the 

quadrupole to the detector. Pt ions hitting the detector were counted and the count rate 

was proportional to the concentration of Pt in the sample. The actual concentrations 

were calculated using a standard curve of known Pt concentrations. 
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Sample Preparation 

All samples were prepared in ultrapure nitric acid (UpA) (Romil, UK) with a Pt 

contamination of < 1 PPT diluted to 3.5% w/v in high purity water. For analysis of total 

Pt-DNA adducts on DNA, 20 µl samples were diluted in 980 µl UpA, then acid 

hydrolysed at 70°C overnight. For analysis of chromatographically separated individual 

adducts, 100 µl samples were diluted in 900 µl UpA. Maximum salt concentration in 

samples after dilution was 25 mM.  

 

Sample Analysis 

Samples were introduced by a peristaltic pump into a standard cross-flow nebuliser 

fitted to a Scott type double pass spray chamber. This ensured a fine mist entered the 

plasma torch, and removed large droplets of liquid that would hamper ionisation. 

Nebuliser gas flow rate was between 0.8-1.0 L/min, and this was optimised to maintain 

the production of cerium (Ce) oxide (CeO
+
) at less than 3% of the total Ce

+
 signal. Ce 

is prone to formation of oxides and is used as a measure of oxide formation for 

monitoring elemental interference. Maintaining low levels of interference ensures the 

detected signal originates from the element of interest. This is especially important for 

low level elemental analysis. RF power was generally 1150 W. 

 

Three isotopes of Pt were monitored: 
194

Pt (32.97% abundance), 
195

Pt (33.83% 

abundance) and 
196

Pt (25.24% abundance) allowing for evaluation of isotopic 

differences as a check for errors or interferences in the analysis. Concentrations 

calculated using each Pt isotope agreed within analytical error, indicating that other 

potential interferences are negligible. Hafnium (Hf) oxide species (
178

Hf
16

O and 

179
Hf

16
O) are the commonest potential isobaric interference when detecting Pt. The 
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very low levels of Hf in the DNA solutions meant that such interferences were 

insignificant to the analyses in this thesis and therefore no oxide corrections were 

required. Pt concentrations in samples were calculated from average values produced 

by the three isotopes. Previous studies at Newcastle had determined that procedural 

blanks of approximately 1 PPT, give limits of quantitation of close to 1.1 PPT in the 

final solution (Azim-Araghi 2001). Therefore, no blank corrections were made to the 

data. 

 

The samples analysed were low in dissolved solids and therefore could be analysed 

using instrument calibration based on standard Pt solutions. Pt standards of 0, 100, 500, 

1000 and 2000 PPT were made from a 1000 PPM Pt stock (Romil, UK). Most samples 

in the study gave signals within this range. The standard solutions were analysed at the 

beginning of the analytical session, and again at the end. The 500 PPT standard was 

checked routinely during each analysis. It was critical to monitor the standards before, 

during and after analysis for two reasons: 1, instrumental drift can occur as the number 

of analyses increases and 2, the mass spectrometer was set to detect Pt using a detection 

process called peak hopping. During peak hopping the spectrometer moves between 

pre-set peaks (values entered as integers) causing the mass spectrometer to detect the 

tops of the mass peaks. This requires knowledge of the composition of the element 

being analysed to ensure the tops of the mass peaks are correctly identified. The 

calibration was monitored routinely to ensure this. An alternative to peak hopping is 

mass focusing (see section 2.11.2). 
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Figure 2.3: Typical standard curve used for determination of unknown Pt 

concentrations in samples on the Sciex Elan 

 

2.11.2: Finnigan Element2 Magnetic Sector Field ICP-MS 

 

Detection Principle 

Magnetic sector field ICP-MS relies on a magnetic field to disperse metal ions 

according to their mass and energy, determining the trajectory by which they pass 

through the mass analyser. Faster moving (lighter) ions are deflected more than slower 

moving (heavier) ions and the mass analyser can be adjusted to deflect and thus detect a 

narrow range of ion masses, or to scan through a range of known ion mass/charge ratios 

to analyse specific ions.  

 

Sample Preparation  

All samples were prepared in UpA nitric acid (Romil, UK). This was diluted to 7% w/v 

in high purity water. The 7% UpA was spiked with a small volume of 3% UpA spiked 

with 50 PPB thallium (Tl) for analysis of instrumental drift and Pt sample correction 
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(see data analysis section below). This acid had a final composition of 7% UpA with 2 

PPB Tl. DNA samples (100 µg/ml) were prepared in ultra pure water and diluted with 

equal volumes of 7% UpA with 2 PPB Tl to achieve a final concentration of 50 µg/ml 

DNA in 3.5% UpA, 1PPB Tl. Samples were acid hydrolysed at 70°C overnight. 500 µl 

of sample was sufficient for analysis. 

 

A series of Pt standards were prepared for calibration of the ICP-MS. These standards 

were made fresh for each analysis. 7% UpA was diluted to 3.5% UpA with high purity 

water. The 3.5% UpA was spiked with a small volume of 3% UpA spiked with 50 PPB 

Tl to ensure the acid used in the standards was of the same final composition as the 

samples. This acid had a final composition of 3.5% UpA with 2 PPB Tl. A stock of 

1000 PPM Pt (Johnson Matthey, USA) was prepared in 3.5% UpA, 2PPB Tl was used 

to prepare standards. This was diluted to 1000 PPT Pt in 3.5% UpA, 2PPB Tl, and 

mixed at varying volumes with 3.5% UpA to achieve the desired final concentrations as 

shown in Table 2.3. 
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Table 2.3: Standards used for calibration of the Element2 ICP-MS. The 1000 PPT Pt 

stock was prepared in 3.5% UpA/2 PPB Tl 

Standard (PPT) Vol. 3.5% UpA (µl) Vol. 1000 PPT Stock (µl) 

0 10000 0 

1 9990 10 

2 9980 20 

5 9950 50 

10 9900 100 

50 9500 500 

100 9000 1000 

250 7500 2500 

500 5000 5000 

 

 

Sample Analysis 

Unlike the Sciex Elan which uses a peristalitic pump, samples are introduced into the 

Element2 by capillary action. This is a much slower method of sample introduction. 

Samples entered into a 100 µl/min microflow nebuliser fitted to a cyclone scott double 

pass spray chamber. This set up was similar to the Sciex Elan but sample flow was 

greatly reduced. Nebuliser gas flow rate was varied to maintain a CeO/Ce of less than 

3%. Typically, nebuliser gas flow was in the region of 0.95 L/min. RF power was 1300 

W. Plasma cool gas (Argon) flow rate was 16 L/min. Auxillary gas flow rate (Argon) 

was 1 L/min. Individual sample analysis time was 26 seconds. 
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Very low levels of Pt were expected to be detected in the samples analysed on the 

Element2 ICP-MS, so an increased number of elements were detected. As with the 

Sciex Elan, three isotopes of Pt were monitored: 
194

Pt (32.967% abundance), 
195

Pt 

(33.832% abundance) and 
196

Pt (25.242% abundance). As mentioned above, samples 

were spiked with Tl, and two isotopes of Tl were measure: 
203

Tl (29.524% abundance) 

and 
205

Tl (70.476% abundance). At the expected low levels of Pt, isotopic interference 

has a greater effect on accurately determining the actual element levels, so a number of 

elements were detected by the Element2 ICP-MS to confirm the detected Pt levels were 

correct. These are shown in Table 2.4. 

 

Table 2.4: Isotopes detected by the Element2 ICP-MS. Natural abundance values were 

obtained from Rosman and Taylor 1998 

Element Isotope Measured Natural Abundance 

Neodymium 
143

Nd 12.18% 

Dysprosium 
161

Dy 18.91% 

Hafnium 
178

Hf 27.28% 

 
179

Hf 13.62% 

Platinum 
194

Pt 32.967% 

 
195

Pt 33.832% 

 
196

Pt 25.242% 

Mercury 
200

Hg 23.10% 

Thallium 
203

Tl 29.524% 

 
205

Tl 70.476% 
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The standard solutions (Table 2.3) were analysed at the beginning of the analytical 

session, and again at the end. The 5 PPT standard was checked routinely during each 

analysis. The Element2 mass spectrometer detector uses a process of mass focusing to 

determine the levels of each isotope analysed. In this process a mass is programmed for 

each isotope, and around this a mass window is determined. In this mass window the 

mass spectrometer is focused to finding the nominal peak for each isotope through a 

number of scans inside the window, allowing a more accurate determination of the 

levels of each element. For this analysis a mass window of 60 was used (+/- 30). Three 

passes were made per isotope, and an average value per isotope calculated per run. Five 

runs were made in total, meaning the final value produced for elemental concentration 

was a result of 5 distinct averages.  

 

Data Analysis 

The measured levels of neodymium, dysprosium and hafnium were determined to be at 

satisfactorily low levels that they were having no interference on the levels of Pt being 

detected. As a result, they were excluded from further analysis of the data. Mercury is 

commonly detected in nitric acid (Dr Chris Ottley, personal communication) but does 

not interfere with the elements being detected and such was excluded also. 

 

Throughout analysis of samples, a blank UpA sample and the 5 PPT standard were 

analysed. An average value of all the blank UpA samples analysed for each of the three 

Pt and two Tl isotopes was calculated, and subtracted from all samples to subtract 

background element levels. The 5 PPT values were compared after the wash value had 

been subtracted to monitor instrument drift. No significant drift was detected in any 

analyses, and therefore no correction was applied. 
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To confirm all ICP-MS readings were reliable, the ratio of 
203

Tl:
205

Tl was calculated. 

The natural abundances are 29.524% 
203

Tl and 70.476% 
205

Tl so a ratio of 1:2.3 was 

expected. An average ratio of 1:2.95 (+/- 0.1) was achieved, though this was constant 

throughout all analyses. To normalise the detected Pt values throughout, the individual 

counts per second (CPS) was divided by the CPS for the 
205

Tl isotope. This was applied 

to all standards to produce a standard curve of Pt (PPT) against CPS Pt/CPS 
205

Tl. A 

typical standard curve is shown in Figure 2.4. The concentration of Pt (PPT) in each 

sample was calculated in Prism4 (GraphPad Software). This value was converted to 

moles/ml by multiplying the value (PPT) by 5.13e
-15

. An average value for the three Pt 

isotopes was determined, and subsequently divided by the concentration of DNA in the 

sample (5.0e
-5

 g/ml) to determine an overall Pt-DNA adduct level in nmol Pt g
-1

 DNA. 
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Figure 2.4: Typical standard curve used for determination of unknown Pt 

concentrations in samples analysed on the Element2 ICP-MS. () 
194

Pt, () 
195

Pt and 

() 
196

Pt  
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2.12: Matrix-Assisted Laser Desorption/Ionisation Time-of-Flight Mass 

Spectrometry (MALDI-TOF) 

 

MALDI-TOF mass spectrometry is a widely used technique for biomolecule analysis. 

Samples are mixed with a molar excess of ultraviolet absorbing matrix and dried on 

MALDI plates. MALDI is a “soft” ionisation technique in which samples become 

ionized by laser pulses through proton transfer: 

 

Matrix-H
+
 + Sample → Matrix + Sample-H

+
 

 

Ions of varying sizes are formed in pulses and extracted through a drift tube to a 

detector, with smaller ions reaching the detector more rapidly. The “Time-of-Flight” 

(TOF) mass analyser measures the time taken for ions to reach the detector (drift time). 

The mass/charge ratio of the ions is proportional to the square of the drift time, and is 

calculated using the following equation: 

 

m/z = 2t
2
 x K / L

2
 

 

m mass 

z number of charges on ion 

t drift time 

K kinetic energy of ion 

L drift length 
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MALDI-TOF mass spectrometry was performed at the Institute for Cell and Molecular 

Biosciences Pinnacle laboratory for Proteomics and Biological Mass Spectrometry, 

Newcastle University by Dr Joe Gray and Mr Robert Liddell. MALDI-TOF mass 

spectrometry was carried out using a Voyager-DE STR Biospectrometry workstation 

(Applied Biosystems, UK).  
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2.13: Nuclear Magnetic Resonance Spectrometry (NMR) 

 

NMR is a powerful spectroscopic method based on absorption of energy in the 

radiofrequency region of the electromagnetic spectrum by nuclei (hydrogen) of 

elements that have spin angular momentum and a magnetic moment. Elements whose 

nuclei possess spin angular momentum and a magnetic moment are assigned half-

integral or integral numbers, which determine the number of orientations in space that 

can be adopted by the spinning nuclei when an external magnetic field is applied. 

Electrons also possess a spin angular momentum, which generates a magnetic moment 

that affects the magnitude of the external field experienced by the nuclei.  

 

Nuclei of a particular element that occur in different chemical environments generally 

experience slightly different magnetic field strengths due to shielding and deshielding 

by nearby electrons, and thus their resonant frequencies differ in a way that is defined 

as a chemical shift value. The spin states of one nucleus can affect the magnetic field 

experienced by nearby elements and groups through intervening bonds causing the 

absorption peaks to split into multiple components. This effect provides information 

that permits interpretation of spectra to determine specific locations of nuclei in 

compounds. NMR spectrometers comprise a superconducting solenoid or 

electromagnet to generate a stable magnetic field, a transmitter to generate the required 

radiofrequencies, and a receiver coil to monitor the detector signal. 

 

Two NMR methods were applied in this thesis – proton NMR (
1
H-NMR) and two-

dimensional correlation NMR (COSY-NMR). NMR spectra are often too complex to 

interpret due to signal overlap. Two dimensional NMR (such as COSY-NMR) allows 
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determination of molecular connectivity based on spin-spin interactions. In two-

dimensional NMR both the X and Y axes plot chemical shifts and 2D spectra can be 

plotted like a grid.  

 

Samples for NMR were prepared in ultrapure water. dGMP and GSH were dissolved at 

10 mM, and cisplatin at 5 mM. For NMR analyses of dGMP and GSH alone, samples 

were freeze dried then re-dissolved in D2O. This was done twice. For NMR analyses of 

platinated dGMP and GSH, samples were incubated with cisplatin (2:1 molar ratio) for 

72hr, then freeze-dried and re-dissolved in D2O. This was done once. All samples for 

NMR were dissolved in 0.7 ml D2O. 

 

NMR was performed at the School of Chemistry by Professor William McFarlane 

using a Jeol Eclipse 11.7 Tesla (
1
H at 500 MHz) spectrophotometer with Delta 

software.  
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2.14: Statistical analysis 

 

Statistical analyses were carried out using GraphPad prism software version 4.0. Unless 

otherwise indicated, unpaired t-tests were used for analysing significance.  

 

For the curve fitting to data (SRB data) the following logistic equation was used: 

 

Y = M*X^S / (X^S+K^S) 

 

Where 

 

M = Maximum value of Y 

S = Slope 

K = Value of X at which Y = 0.5*M 

 

So: 

 

Y = OD as % of control and M is fixed at 100%, X = drug concentration 

K therefore is the drug concentration at which Y = 50% (GI50 value)
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Chapter 3 

In vitro characterisation of potential new Pt-DNA adducts 

formed in the presence of glutathione 

 

3.1: Introduction 

 

The early works of Roberts et al (1972) and Fichtinger-Schepman et al (1985) 

described in detail in chapter one provided the foundation for the understanding of the 

cytotoxic properties mechanisms of Pt-based anticancer drugs (Roberts and Pascoe 

1972, Fichtinger-Schepman et al 1985). Their findings provided evidence that 

formation of lesions across DNA was a major part of the mechanism attributed to such 

drugs, and although the exact mechanisms of cytotoxicity are still unclear, it is accepted 

that DNA is the major target. 

 

A major limitation in many early studies however was the lack of sensitivity in 

detection. AAS was often used to determine the levels of Pt in DNA hydrolysates or 

chromatographically separated DNA which had been enzymatically digested to mono- 

and dinucleotides. AAS was used with pure DNA that had been reacted with high 

concentrations of cisplatin, but unfortunately it was not possible to extend such 

techniques to the study of DNA from drug-treated cells. The development of sensitive 

immunochemical methods (Tilby et al 1991, Meczes et al  2005, Liedert et al 2006) and 

32
P post-labelling assays (Blommaert and Saris 1995, Welters et al 1997, Pluim et al 

1999) as described in chapter 1, enabled investigation of more clinically relevant levels 
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of Pt and investigation of DNA from drug treated cells. However, there are inherent 

limitations with both approaches. Immunochemical studies involve antibodies raised 

against specific lesions, and thus are limited to detection of those specific adducts. 

Postlabelling assays are highly sensitive for the 1,2-intrastrand cis-Pt(NH3)2d(GpG) 

adduct, and to a lesser extent the cis-Pt(NH3)2d(ApG) adduct. Indeed, neither method is 

appropriate for the study of all types of adducts that might be present in DNA in cells. 

 

The limitation of AAS for detecting Pt in DNA from drug-treated cells has more 

recently been overcome through the development of assays involving the highly 

sensitive method of ICP-MS. Although originally a geochemical technique developed 

for studying low level elements, ICP-MS has been used in studying the interactions of 

Pt with cytoplasmic molecules (Esteban-Fernandez et al 2007, Esteban-Fernandez et al 

2008) and Pt-DNA adducts (Sar et al 2008, Harrington et al 2010). In more recent 

years, through the application of ICP-MS, evidence has been obtained suggesting that 

an additional class of novel Pt-DNA adducts is formed in drug-treated cells, accounting 

for up to 25% of the total Pt-DNA products (Azim-Araghi 2003). These data arose from 

the novel combination of anion exchange chromatographic separation of enzymatically 

digested DNA from drug treated cells as described previously (Fichtinger-Schepman et 

al 1985, Azim-Araghi 2003) with ICP-MS to detect Pt in chromatographic fractions. In 

this work, DNA from two lung carcinoma cell lines (H69/p and Mor/p) incubated with 

cisplatin was enzymatically digested and separated as described above. Analysis by 

ICP-MS revealed the presence of additional products not detected when purified DNA 

was incubated with cisplatin. From these data it was hypothesised that the newly 

detected product was a result of a Pt-mediated cross-link to a non-DNA molecule with 

this molecule proposed to be glutathione (GSH). 
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The first evidence that GSH is able to cross-link to DNA via Pt was published over 

twenty years ago (Eastman 1987). Eastman provided evidence that GSH was able to 

form lesions with monofunctionally bound Pt and proposed that this form of binding 

stopped the conversion of monofunctional to bifunctional cross-links, believed to be 

responsible for cytotoxicity. These data fitted with previous findings that GSH could 

quench monofunctional adducts (Micetich et al 1983). No indication was presented 

however to support the role that such adducts could contribute to the cytotoxic 

mechanism of Pt-based drugs. 

 

Previous work at Newcastle (Azim-Araghi 2003) has indicated that GSH is able to 

cross-link to DNA via cisplatin, forming a novel adduct in cells. However, there is 

limited information on the chromatographic properties of such a product. The 

experiments presented in this chapter investigated the in vitro formation of putative cis-

Pt(NH3)2(DNA)(GSH) adducts. The aim of the experiments was to synthesise putative 

products using 5'-deoxyguanosine monophosphate (dGMP) as a surrogate for DNA 

products. This would allow characterisation of the chromatographic properties of GSH-

containing adducts, thereby facilitating their identification in DNA hydrolysates. The 

use of dGMP permitted investigations at high concentrations of cisplatin so that Pt-

containing products formed in the reactions with cisplatin in the presence and absence 

of GSH could be readily detected by AAS.  

 

Following characterisation of the chromatographic system to be used, initial 

experiments were aimed at generating dGMP-Pt-Cl, whereby dGMP is bound to one of 

the arms of cisplatin, mimicking the formation of monofunctional Pt-DNA adducts. 

These products would then be further reacted with GSH with the aim of generating cis-
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Pt(NH3)2(dGMP)(GSH) products. It was anticipated that this approach would also 

provide sufficient quantities of product to allow for structural analysis. The findings in 

this chapter would therefore provide important information for investigating novel Pt-

DNA adducts formed in cells incubated with Pt drugs. 
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3.2: Chromatographic system 

 

Experiments in this study investigating the formation of Pt-DNA adducts used an anion 

exchange chromatographic system with a MonoQ column (section 2.9) to detect 

potential products by UV absorbance, and either AAS (dGMP) or ICP-MS (DNA) to 

detect Pt in collected fractions. Anion exchange was chosen for the separation 

procedure for three reasons: (1) a similar setup had previously been used for the 

identification of Pt-DNA adducts formed in pure DNA (Fichtinger-Schepman et al 

1985); (2) the combination of the MonoQ system with ICP-MS had provided the initial 

evidence of additional types of DNA adducts formed in cells to those characterised in 

purified DNA (Azim-Araghi 2003) and (3) anion exchange analysis allowed for the 

study of nucleotides. Eastman had previously used a reverse-phase chromatographic 

system to study nucleosides (Eastman 1983), but this involved additional enzymatic 

digestion of DNA incubation with alkaline phosphatase. As the nature and stability of 

the putative cis-Pt(NH3)2(DNA)(GSH) products was unclear, limiting the processing 

steps prior to analysis was favourable. The actual MonoQ chromatographic setup and 

method is described in section 2.9. 
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3.3: Results 

3.3.1: Characterisation of the chromatographic system using mononucleotides  

 

Four mononucleotides of dAMP, dCMP, dGMP and TMP were analysed individually 

using the MonoQ system to determine their retention times for future reference. 

Mixtures containing the four mononucleotides were analysed to assess the effectiveness 

of the MonoQ column in separating multiple components. Solutions (100 µl at 50 

µg/ml) were injected onto the column and the optical densities of the eluents were 

measured at 254nm and 230nm. Typical results are shown in order of increasing 

retention time for dCMP, dAMP, TMP and dGMP (Figure 3.1), with elution patterns 

for a mixture containing 50 µg/ml or 100 µg/ml of the four mononucleotides shown in 

Figure 3.2. Typical retention times compared to previous analyses (Fichtinger-

Schepman et al 1985, Azim-Araghi 2003) are shown in Table 3.1. 

 

Absorbance at 254 nm was higher for dAMP, dGMP and TMP than at 230 nm. 

Conversely, absorbance was higher at 230 nm for dCMP. This is in agreement with 

data obtained for each solution (50 µg/ml) analysed for absorbance in the UV 

wavelength region of 210-320 nm, using the scanning function of the Lamdba 2 

UV/Vis spectrophotometer (typically used for measuring DNA concentration (section 

2.5.3)) (Figure 3.3) and data published previously (Cavaluzzi and Borer 2004). 

 

Separation of the four nucleotides confirmed that the MonoQ system gave reproducible 

results and the separations were consistent with previous work (Fichtinger-Schepman et 

al 1985, Azim-Araghi 2003).  
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Figure 3.1:  Typical MonoQ elution profiles for individual mononucleotides. Solutions 

(100 µl at 50 µg/ml) of dCMP (A), dAMP (B), TMP (C) and dGMP (D) were injected 

onto the MonoQ column and eluted at 1 ml/min with increasing NaCl concentrations. 

(▲, dotted black line): NaCl concentration gradient; solid red line: OD 254 nm; solid 

blue line: OD 230 nm 
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Figure 3.2: Typical MonoQ elution profile for a mixture of the four mononucleotides. 

Solutions (100 µl at 50 µg/ml (A) or 100 µg/ml (B)) of the mononucleotide mixture 

were injected onto the MonoQ column and eluted at 1 ml/min with increasing NaCl 

concentrations. (▲, dotted black line): NaCl concentration gradient; solid red line: 

OD 254 nm; solid blue line: OD 230 nm 
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Figure 3.3: Analysis of absorbance of dAMP (black), dCMP (red), dGMP (blue) and 

TMP(green) in the UV region 210-320 nm using scanning function of the Lambda 2 

UV/Vis spectrophotometer. Solutions (50 µg/ml) were placed inside a 10 mm path 

length cuvette and UV absorbance measured. 
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Table 3.1: Average retention times on MonoQ column for the four mononucleotides 

compared with previous observations by Azim-Araghi (2003) and Fichtinger-Schepman 

et al (1985). Standard deviation for this study is shown in brackets. 

 

 

Retention Time (min) 

Current Study 

Retention Time (min) 

Azim-Araghi 

Retention Time (min) 

Fichtinger-Schepman 

dCMP 5.2 (0.1) 4.6 5.0 

dAMP 6.0 (0.2) 5.6 5.8 

TMP 6.7 (0.2) 6.1 6.4 

dGMP 12.5 (0.1) 11.8 12.0 
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3.3.2: Anion exchange separation of enzymatically digested calf thymus DNA 

 

Before analysing Pt-DNA adducts in DNA from drug-treated cells, it was important to 

confirm that the MonoQ chromatographic system used here yielded the same pattern of 

Pt-DNA adducts previously identified on purified DNA (Fichtinger-Schepman et al 

1985).  

 

Calf thymus DNA (500 µg/ml) was incubated with or without cisplatin (15 µM) for 2 

hours at 37°C, then DNA was separated from unreacted drug by gel filtration on a G-75 

Sephadex column (section 2.8). DNA (0.25 mg/ml) was enzymatically digested to 

mono and dinucleotides (section 2.6), then nucleotides were separated using the 

MonoQ anion exchange column (section 2.9). Pt species in collected fractions were 

detected using ICP-MS (section 2.11). 

  

A typical MonoQ elution profile for enzymatically digested calf thymus DNA not 

exposed to cisplatin is shown in Figure 3.4 (graph A). The four mononucleotides eluted 

in a similar manner to that seen with a mixture of deoxynucleotides (Figure 3.2). As 

expected Pt levels were at instrument background, showing no major Pt contamination 

during sample preparation. 

 

Calf thymus DNA incubated with 15 µM cisplatin (Figure 3.4, graph B) showed the 

presence of four Pt-containing products with similar retention times to previous studies 

(Fichtinger-Schepman et al 1985, Azim-Araghi 2003). Retention times for these 

products and the percentage of total Pt eluted in each adduct is shown in Table 3.2. A 

comparison of these data with the above mentioned studies is also given in Table 3.2.  
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The similarity between the present data and those of Fichtinger-Schepman et al (1985) 

and Azim-Araghi (2003), regarding retention times and distribution of Pt across the 

four peaks, suggests that the nature of the four detected products in this study is the 

same as the products characterised by DEAE-Sephacel and NMR previously 

(Fichtinger-Schepman et al 1985). The four peaks therefore were attributed to: A: 

Pt(NH3)2(R)(dGMP); B: cis-Pt(NH3)2d(ApG); C: cis-Pt(NH3)2d(GpG) and D: cis-

Pt(NH3)2(dGMP)2 (Figure 3.4). 

 

The percentage of Pt eluted for each individual product is similar between this study 

and previous studies, although a difference was seen in the total percentage of eluted Pt 

in the cis-Pt(NH3)2d(GpG) between this study (64.4%) and Azim-Araghi 2003 (66.6%), 

when compared to the percentage reported by Fichtinger-Schepman et al 1985 (47%). 

The quantity of the four eluted adducts expressed as a percentage of total eluted Pt was 

similar in this study (94.7%) to that of Azim-Araghi (95.2%). Total Pt recovery was 

always greater than 90% of the total amount of Pt injected. 
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Figure 3.4: Typical MonoQ elution profile for enzymatically digested calf thymus DNA 

(A) and calf thymus DNA incubated with 15 µM cisplatin (B). Solutions (100 µl) were 

injected onto the MonoQ column and eluted at 1 ml/min with increasing NaCl 

concentrations. Pt concentration in collected fractions was determined by ICP-MS. (●) 

Pt concentration; dotted line: OD 254 nm. Peaks A: Pt(NH3)2(R)(dGMP); B: cis-

Pt(NH3)2d(ApG); C: cis-Pt(NH3)2d(GpG) and D: cis-Pt(NH3)2(dGMP)2 
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Table 3.2: Chromatographic separation of enzymatically digested pure DNA reacted with cisplatin. Retention times (RT) of 8 substances eluted 

from the MonoQ column and quantity of adducts expressed as a percentage of the total Pt recovered. Data from three separate digestions in this 

current study, compared to Azim-Araghi 2003 and Fichtinger-Schepman 1985. SD is shown in brackets  

Peak Substance This Study Azim-Araghi 2003 Fichtinger-Schepman 1985 

  RT (min) % Pt Eluted RT (min) % Pt Eluted RT (min) % Pt Eluted 

 dCMP 5.2 (0.1)  4.6  5.0  

 dAMP 6.0 (0.2)  5.6  5.8  

 TMP 6.7 (0.2)  6.1  6.4  

 dGMP 12.5 (0.1)  11.8  12.0  

A Pt(NH3)2(R)(dGMP) 1.5 (1.0) 2.9 (0.8) 1.0 1.4 1.7 3 

B cis-Pt(NH3)2d(ApG) 4.0 (1.0) 20.5 (3.5) 2.5 20.7 3.5 23 

C cis-Pt(NH3)2d(GpG) 7.5 (1.5) 64.4 (3.1) 8.0 66.6 7.8 47 

D cis-Pt(NH3)2(dGMP)2 9.5 (2.0) 6.9 (1.8) 11.5 6.5 9.7 8 

TOTAL (% of Pt in adducts) 94.7 (3.7)  95.2  81 
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3.3.3: Identification of products formed in the reaction of cisplatin with 

deoxyguanosine monophosphate 

 

The key aim of this particular section of the study was to determine appropriate 

incubation conditions for the reaction between cisplatin and dGMP to maximise 

formation of the monofunctionally bound cisplatin-dGMP species. Three incubation 

conditions were considered: cisplatin and dGMP in an equimolar ratio, cisplatin in 

excess of dGMP in a 2:1 molar ratio or dGMP in excess of cisplatin in a 2:1 molar 

ratio. Cisplatin in excess of dGMP would be advantageous as it would favour the 

formation of monofunctionally bound dGMP products, although this condition was 

eliminated due to concerns of excess cisplatin interacting with other molecules during 

further reactions. An excess of dGMP was also excluded as this condition would favour 

the formation of bifunctionally bound species, which are considered to be non-reactive. 

An equimolar ratio was chosen for the reaction conditions to maximise the formation of 

monofunctionally bound products, accepting that there would be some bifunctional 

products also formed. 
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3.3.3.1: Preliminary Identification of products formed between cisplatin and 

dGMP 

 

Reaction of equimolar cisplatin and dGMP was predicted to yield four products. Three 

of these products were predicted to be monofunctionally bound cisplatin-dGMP with 

the chemical composition cis-Pt(NH3)2(R)(dGMP), where R could be either an aqua 

(OH2), hydroxy (OH) or chlorine (Cl) ligand. The fourth product was predicted to have 

dGMP bifunctionally bound to cisplatin (cis-Pt(NH3)2(dGMP)2). The retention time for 

the four products was unknown, but cis-Pt(NH3)2(OH2)(dGMP) was predicted to elute 

first due to a net electropositive charge across the molecule.  

 

As the equimolar incubation of cisplatin with dGMP was predicted to leave residual 

unreacted cisplatin in the reaction mixture, it was necessary to initially identify the 

chromatographic nature of cisplatin alone. A typical MonoQ elution profile for 1 mM 

cisplatin is shown in Figure 3.5. Analysis of Pt content in collected fractions (by AAS) 

showed that cisplatin typically eluted very rapidly from the column (less than 2 minutes 

retention). 

 

Equimolar cisplatin and dGMP were incubated for 24 hours, with aliquots removed at 

2hr, 4hr, 8hr and 24hr and analysed by MonoQ anion exchange chromatography 

(Figure 3.6). Incubation times of 2hr and 4hr were insufficient for the reaction, with 

detectable levels of unreacted dGMP observed in the UV traces (Figure 3.6, graphs A 

and B). When incubated for 8hr (Figure 3.6, graph C) and 24hr (Figure 3.6, graph D) 

there was no detectable unreacted dGMP. AAS analysis of collected fractions eluted 

from the MonoQ column indicated five Pt-containing species (Figure 3.7). The first 
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eluting species (approximately 1.5 minutes, label cis) had previously been determined 

to be unreacted cisplatin in the reaction mixture. The remaining four species were 

believed to represent the predicted three monofunctionally bound cis-

Pt(NH3)2(R)(dGMP) species and one bifunctionally bound cis-Pt(NH3)2(dGMP)2 

species, although at this stage the order of elution was unknown. 

 

The average retention time for peak 4 (later identified as the cis-Pt(NH3)2(GMP)2 

species) was 10 minutes, although the range of retention varied between 9-12 minutes 

in different experiments. As the analyses were performed on different days it is most 

likely that this difference arose from subtle variations in the salt concentration and 

overall pH of buffer B (12.5 mM tris, 1 M NaCl, pH 8.8). The elution of products is 

based on varying concentrations of ions, so it is most probable that when the product 

eluted at later times, it was a result of slightly lower salt concentrations. However, as 

the overall effect of this would be reflected in the elution of all products (larger 

variations seen as the salt concentrations increases) this was not deemed to be 

detrimental to the analyses. 
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Figure 3.5: Typical MonoQ elution profile for 1mM cisplatin. Solutions (100 µl) were 

injected onto the MonoQ column and eluted at 1 ml/min with increasing NaCl 

concentrations. Pt concentration in collected fractions was determined by AAS. (●) Pt 

concentration; dotted line: OD 254 nm. Pt recovery was always greater than 90% of 

the total Pt loaded. 
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Figure 3.6: Typical MonoQ elution profile for 1mM cisplatin incubated with 1 mM 

dGMP. Solutions (100 µl) of cisplatin and dGMP incubated for 2 hours (A), 4 hours 

(B), 8 hours (C) and 24 hours (D) were injected onto the MonoQ column and eluted at 

1 ml/min with increasing NaCl concentrations. (▲, dotted black line): NaCl 

concentration gradient; solid red line: OD 254 nm; solid blue line: OD 230 nm 
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Figure 3.7: Typical MonoQ elution profile for 1mM cisplatin incubated with 1 mM 

dGMP for 24hr. Solutions (100 µl) were injected onto the MonoQ column and eluted at 

1 ml/min with increasing NaCl concentrations. Pt concentration in collected fractions 

was determined by AAS. (●) Pt concentration; dotted line: OD 254 nm. Peak cis 

represents unreacted cisplatin as identified previously. Peaks 1-4 are unknown species. 

Total Pt recovery was always greater than 90% of total Pt loaded. 
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3.3.3.2: Determination of the chemical nature of the products formed between 

cisplatin and dGMP 

 

Four cisplatin-dGMP products were identified by MonoQ anion exchange 

chromatography coupled with Pt species detection by AAS (Figure 3.7). These were 

predicted to be three monofunctionally bound cis-Pt(NH3)2(R)(dGMP) and one 

bifunctionally bound cis-Pt(NH3)2(dGMP)2 species. A series of experiments were 

conducted to determine the identities of the four Pt-containing species, in which 

cisplatin and dGMP were incubated initially for 24 hours, followed by a further 24 

hours in the presence of 1 mM and 2.5 mM dGMP, NaCl and NaOH. The rationale for 

incubating further with dGMP was to favour the conversion of monofunctionally bound 

to the bifunctionally bound cis-Pt(NH3)2(dGMP)2 species. Further incubation with 

NaCl and NaOH was designed to favour the formation and/or conversion to the 

monofunctionally bound cis-Pt(NH3)2(Cl)(dGMP) and cis-Pt(NH3)2(OH)(dGMP) 

species respectively. The remaining Pt-containing species was predicted therefore to be 

the cis-Pt(NH3)2(OH2)(dGMP) species, expected to elute first of the four based on its 

net electropositive charge. 

 

Further incubation with 1 mM and 2.5 mM dGMP favoured the formation of peak 4 

(Figure 3.7), with increases in ratio of peak area of 1:1.6 and 1:2.3 for 1 mM (Figure 

3.8, graph A) and 2.5 mM (Figure 3.8, graph B) respectively, when compared to the 

initial identified peak (Figure 3.7). Incubation with 1 mM and 2.5 mM NaCl favoured 

the formation of peak 3 (Figure 3.7), with increases in ratio of peak area of 1:1.3 and 

1:1.8 for 1 mM (Figure 3.9, graph A) and 2.5 mM (Figure 3.9, graph B) respectively, 

when compared to the initial identified peak (Figure 3.7). Incubation with 1 mM and 
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2.5 mM NaOH favoured the formation of peak 2 (Figure 3.7), with increases in ratio of 

peak area of 1:1.1 and 1:2.1 for 1 mM (Figure 3.10, graph A) and 2.5 mM (Figure 3.10, 

graph B) respectively, when compared to the initial identified peak (Figure 3.7). The 

remaining unidentified peak (Figure 3.7, peak 1) therefore was assigned to be the cis-

Pt(NH3)2(OH2)(dGMP) species, eluting first of the four species as predicted. The order 

of elution for the four species was cis-Pt(NH3)2(OH2)(dGMP), cis-

Pt(NH3)2(OH)(dGMP), cis-Pt(NH3)2(Cl)(dGMP) and finally cis-Pt(NH3)2(dGMP) 2. 
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Figure 3.8: Typical MonoQ elution profile for cisplatin-dGMP incubated with dGMP. 

Solutions (100 µl) of cisplatin-GMP reacted with 1 mM dGMP (A) and 2.5 mM dGMP 

(B) were injected onto the MonoQ column and eluted at 1 ml/min with increasing NaCl 

concentrations. (▲, dotted black line): NaCl concentration gradient; solid red line: 

OD 254 nm; solid blue line: OD 230 nm. Proposed nature of the peaks is 1: cis-

Pt(NH3)2(OH2)(dGMP), 2: cis-Pt(NH3)2(OH)(dGMP), 3: cis-Pt(NH3)2(Cl)(dGMP), and 

4: cis-Pt(NH3)2(dGMP)2). 
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Figure 3.9: Typical MonoQ elution profile for cisplatin-dGMP incubated with NaCl. 

Solutions (100 µl) of cisplatin-dGMP reacted with 1 mM NaCl (A) and 2.5mM NaCl 

(B) were injected onto the MonoQ column and eluted with increasing NaCl 

concentrations. (▲, dotted black line): NaCl concentration gradient; solid red line: 

OD 254 nm; solid blue line: OD 230 nm. Proposed nature of the peaks is 1: cis-

Pt(NH3)2(OH2)(dGMP), 2: cis-Pt(NH3)2(OH)(dGMP), 3: cis-Pt(NH3)2(Cl)(dGMP), and 

4: cis-Pt(NH3)2(dGMP)2). 
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Figure 3.10: Typical MonoQ elution profile for cisplatin-dGMP incubated with NaOH. 

Solutions (100 µl) of cisplatin-dGMP reacted with 1 mM NaOH (A) and 2.5mM NaOH 

(B) were injected onto the MonoQ column and eluted with increasing NaCl 

concentrations. (▲, dotted black line): NaCl concentration gradient; solid red line: 

OD 254 nm; solid blue line: OD 230 nm. Proposed nature of the peaks is 1: cis-

Pt(NH3)2(OH2)(dGMP), 2: cis-Pt(NH3)2(OH)(dGMP), 3: cis-Pt(NH3)2(Cl)(dGMP), and 

4: cis-Pt(NH3)2(dGMP)2). 
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3.3.3.3: Timecourse of the formation of products between cisplatin and dGMP  

 

The reaction of cisplatin with dGMP was performed on three separate occasions. 

Aliquots were taken at 2, 4, 8 and 24hr (Figure 3.6) and analysed using the MonoQ 

system. Using Clarity 4.0 software (DataApex, UK), peak area for the detected peaks as 

a percentage of total peak area was determined. Analysis of the loss of free dGMP over 

time is shown in Figure 3.11. Analysis of the formation of the four products is shown in 

Figure 3.12. 

 

Using Prism 4 software (GraphPad), a one-phase exponential decay was fitted to the 

data for the loss of the free dGMP in the reaction with cisplatin (Figure 3.11). From this 

a half-life of 1.5hr was determined. After 8 and 24hr reactions, the total amount of free 

GMP accounted for less than 1% of the total products detected. 

 

Peaks 2 and 4, attributed to cis-Pt(NH3)2(OH)(dGMP) and cis-Pt(NH3)2(dGMP)2 

respectively, increased over the 24hr incubation period (Figure 3.12).  Peak 1, 

attributed to cis-Pt(NH3)2(OH2) reached its maximum amount after 8hr, then decreased 

at 24hr. Peak 3, attributed to cis-Pt(NH3)2(Cl)(dGMP), reached its maximum amount 

after 2hr, and then levels decreased up to 8hr and remained constant through 24hr.  
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Figure 3.11: Timecourse of the decrease in free dGMP in the reaction of equimolar (1 

mM) cisplatin and dGMP. Peak area was determined using Clarity 4.0 software and is 

expressed as a percentage of total area. A one-phase exponential decay line was fitted 

in Prism 4 software. Each point represents the mean of 3 different experiments and 

error bars reflect standard deviation. Where not shown, error bars lie within the points. 
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Figure 3.12: Timecourse of the formation of four products during the reaction of 

equimolar (1 mM) cisplatin and dGMP. Peak area was determined using Clarity 4.0 

software and is expressed as a percentage of total area. (): Peak 1, (): Peak 2, 

(): peak 3, and (): Peak 4.  One-phase exponential association line fitted in Prism 

4 software for peaks 2 and 4 (r
2
 of 0.98 and 0.97 respectively). Peak identities are 

proposed to be 1: cis-Pt(NH3)2(OH2)(dGMP), 2: cis-Pt(NH3)2(OH)(dGMP), 3: cis-

Pt(NH3)2(Cl)(dGMP) and 4: cis-Pt(NH3)2(dGMP)2.  
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3.3.3.4: MALDI-TOF mass spectrometric analysis of products formed in the 

reaction of cisplatin and dGMP 

 

Equimolar (1 mM) cisplatin and dGMP were incubated at 37°C for 24hr, and then 

stored at -20°C. Prior to storage, aliquots of the reaction mixture were removed and 

analysed by MALDI-TOF mass spectrometry. Mass spectrometry of reaction mixtures 

was either performed by Mr Robert Liddell or Dr Joe Gray in the Pinnacle Lab in the 

Institute for Cell and Molecular Biosciences at Newcastle University. 

 

Monofunctionally bound cisplatin-dGMP could be in the form of 3 individual products 

of the species cis-Pt(NH3)2(R)(dGMP) where R was either OH2, OH or Cl. Based on 

computer analysis of such species using ChemOffice software, products with masses of 

594.38, 593.37 and 611.81 were predicted to be detected by mass spectrometry, based 

on the 
195

Pt isotope. The cis-Pt(NH3)2(dGMP)2 species was predicted to have a mass of 

923.58. Typical MALDI-TOF mass spectrometric analyses are shown in Figure 3.13 

and Figure 3.14. 

 

Three major peaks with masses of 921.1, 922.1 and 923.1 were detected, and these 

were attributed to the cis-Pt(NH3)2(dGMP)2 species, with the three masses representing 

the 
194

Pt, 
195

Pt and 
196

Pt isotopes of cisplatin (Figure 3.13). Masses in the region of 904-

906 m/z were also detected, and these were attributed to the loss of one NH3 ligand to 

form the species [cis-Pt(NH3)(dGMP)2]
+
. Further species with masses in the region of 

887-889 were also detected, and these were attributed to the loss of the both NH3 

ligands, possibly during ionisation, forming [cis-Pt(dGMP)2]
2+

. 
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Three major peaks of 610.0 m/z, 611.0 m/z and 612.0 m/z were detected, and these 

were attributed to the 
194

Pt, 
195

Pt and 
196

Pt isotopes of cisplatin in the species cis-

Pt(NH3)2(Cl)(dGMP) (Figure 3.14). 

 

A series of peaks were detected in the region of 592-597 m/z, and in these peaks were 

the two remaining monofunctional species (cis-Pt(NH3)2(OH2)(dGMP) and cis-

Pt(NH3)2(OH)(dGMP)) (Figure 3.14). The group of products detected with masses in 

the region 574-576 m/z were predicted to be isotopic variants of the [cis-

Pt(NH3)2(dGMP)]
+
 species (Figure 3.14). 
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Figure 3.13: Typical MALDI-TOF mass spectrometry analysis of products formed in the reaction of equimolar (1mM) cisplatin and dGMP after 

a 24hr incubation. Products with masses in the range of 250-1500 m/z were scanned, and a typical 800-1000 m/z region is shown. MALDI-TOF 

mass spectrometry data were acquired by either Mr Robert Liddell or Dr Joe Gray (Newcastle University)  
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Figure 3.14: Typical MALDI-TOF mass spectrometry analysis of products formed in the reaction of equimolar (1mM) cisplatin and dGMP after 

a 24hr incubation. Products with masses in the range of 250-1500 m/z were scanned, and a typical 550-800 m/z region is shown. MALDI-TOF 

mass spectrometry data were acquired by either Mr Robert Liddell or Dr Joe Gray (Newcastle University) 
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Summary of the evidence presented to support the proposed peak identities 

Peak Identification Evidence 

Peak 1 

Retention Time ~ 2.5mins 

 

Mono-Aqua 
 

 Decreases after further incubation with dGMP 

 Decreases when NaCl added - Not mono-chloro 

 Decreases when NaOH added - Not mono-hydroxy 

 Net positive charge - should interact least with the MonoQ column 

 MALDI-TOF data showing product with correct mass 

Peak 2 

Retention Time ~ 4.5mins 

 

Mono-Hydroxy 
 

 Decreases after further incubation with dGMP 

 Decreases when NaCl added - Not mono-chloro 

 Increases when NaOH added - Favours mono-hydroxy 

 MALDI-TOF data showing product with correct mass 

Peak 3 

Retention Time ~ 5.5mins 

 

Mono-Chloro  

 Decreases after further incubation with dGMP 

 Increases when NaCl added - Favours mono-chloro 

 Decreases when NaOH added - Not mono-hydroxy 

 MALDI-TOF data showing product with correct mass 

 

Peak 4 

Retention Time ~ 9.5mins 

 

di-GMP 
 

 Increases after addition of dGMP 

 Peaks 1-3 all decrease after addition of dGMP, whereas peak 4 

increases 

 MALDI-TOF data showing product with correct mass 
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3.3.4: Identification of products formed in the reaction of platinated dGMP with 

GSH 

 

Having identified three monofunctional products with reactive potential, the next step 

was to incubate further with various concentrations of GSH. As carried out the 

reactions described earlier, equimolar (1 mM) cisplatin and dGMP were initially 

incubated for 24hr. At 24hr, varying concentrations of GSH were added and further 

incubated for 24hr. GSH was added after the initial incubation of cisplatin and dGMP 

because cisplatin rapidly reacts with glutathione and under such incubation conditions 

the amounts of product formed are markedly lower. As described earlier, the reaction 

conditions chosen meant that there was unreacted cisplatin remaining in the mixture. It 

was therefore also important to investigate the reaction of cisplatin and GSH alone. 
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3.3.4.1: Incubation of cisplatin with GSH 

 

Immediately before incubation with cisplatin, GSH was dissolved in water (4 mM) and 

pH adjusted to 7.0. It was important to dissolve GSH before each reaction to limit the 

amount of the oxidised GSSG product in the mixture. Cisplatin was incubated with 

GSH in a 1:2 molar ratio to ensure that no unreacted drug would be present in the 

mixture. Immediately after addition of cisplatin, reaction mixtures were gassed with 

nitrogen to limit the oxidation of GSH to GSSG. Reaction mixtures were analysed 

using the MonoQ system. Pt content in collected fractions was measured by AAS. A 

typical MonoQ elution for the reaction of cisplatin with GSH is shown in Figure 3.15. 

 

Cisplatin had been identified as having a very short elution time on the MonoQ column 

(Figure 3.5).However; it was unclear where cisplatin-GSH conjugates would elute. Two 

peaks were detected by UV with elution times of approximately 7 minutes and 27 

minutes (Figure 3.15). The latter peak was the only detected species associated with Pt, 

and this was therefore determined to be Pt-GSH conjugate (Figure 3.15). The Pt-GSH 

conjugate eluted during the phase of the chromatographic program in which the salt 

concentration was at 1 M. The earlier peak was unreacted GSH in the mixture. This had 

previously been determined by injecting GSH alone into the chromatographic system.   
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Figure 3.15: Typical MonoQ elution profile for 1 mM cisplatin incubated with 2 mM 

GSH for 24hr. Solutions (100 µl) were injected onto the MonoQ column and eluted at 

1ml/min with increasing NaCl concentrations. Pt concentration in collected fractions 

was determined by AAS. (●) Pt concentration; dotted red line: OD 254 nm; dotted blue 

line: OD 230 nm. Total Pt recovery was always greater than 90% of total Pt loaded. 
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3.3.4.2: Identification of products formed in the reaction of cisplatin-dGMP with 

GSH 

 

Equimolar (1 mM) cisplatin and dGMP were incubated at 37°C for 24hr. Aliquots were 

removed and analysed using the standard MonoQ system. The remaining mixture was 

split and further incubated with GSH (1 mM, 2.5 mM and 5 mM) for 24hr. These 

reaction mixtures were again analysed using the standard MonoQ system, with Pt 

content in collected fractions determined by AAS. Typical MonoQ elution profiles are 

shown in Figure 3.16. 

 

Analysis of the aliquots removed prior to addition of GSH showed similar elution 

profiles and UV absorbing peaks with similar chromatographic properties as those 

observed previously (Figure 3.16, graph A). Following further incubation with GSH, a 

number of additional UV absorbing peaks were detected (Figure 3.16, graph B-D). 

These products typically eluted at 14, 17 and 21 minutes. AAS analysis of fractions 

eluted from the MonoQ column confirmed that all three species contained Pt (Figure 

3.17). An additional product was also seen in the incubations with 2.5 mM and 5 mM 

GSH that eluted at approximately 25.5mins (Figure 3.16, graphs C and D), but no Pt 

was associated with this species. 
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Figure 3.16: Typical MonoQ elution profile for 1mM cisplatin incubated for 24hr with 

1 mM dGMP (A), then incubated for a further 24hr with 1 mM GSH (B), 2.5 mM GSH 

(C) and 5 mM GSH (D). Solutions (100 µl) were injected onto the MonoQ column and 

eluted at 1 ml/min with increasing NaCl concentrations. (▲, dotted black line): NaCl 

concentration gradient; solid red line: OD 254 nm; solid blue line: OD 230 nm. The 

identities of peaks A-C are unknown 
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Figure 3.17: Typical MonoQ elution profile for cisplatin-dGMP incubated with 2.5 mM 

GSH for 24hr. Solutions (100 µl) were injected onto the MonoQ column and eluted at 1 

ml/min with increasing NaCl concentrations. Pt concentration in collected fractions 

was determined by AAS. (●) Pt concentration; dotted line: OD 254 nm. The identities of 

peaks A-C are unknown. Total Pt recovery was always greater than 90% of total Pt 

loaded. 
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3.3.4.3: Analysis of the three peaks identified in the reaction of GSH with 

platinated dGMP 

 

Three new Pt-containing products were identified in the reaction of cisplatin-dGMP 

with GSH. It was unclear at this point which, if any, were the proposed cis-

Pt(NH3)2(dGMP)(GSH) cross-links. Total peak areas for each of the three peaks with 

varying concentrations of GSH were therefore calculated to provide further evidence. 

Total peak areas were calculated using Clarity software. To ensure only the peaks of 

interest were analysed, integrations were applied between two timepoints: 0-7 minutes 

and 10-25 minutes. By applying such limitations the peak areas of unreacted GSH and 

of Pt-GSH were excluded from the calculations, as the increase of these peaks could in 

theory affect changes in the amount of each product. Analysis of the three 

monofunctional and cis-Pt(NH3)2d(GMP2) products is shown in Figure 3.18. Analysis 

of the three products identified following further incubation with GSH is shown in 

Figure 3.19. 

 

As would be expected, the net pattern is a loss of detection of the three monofunctional 

products as the concentration of GSH in the reaction mixture increases, with the 

exception of cis-Pt(NH3)2(Cl)(dGMP) in the incubation with 1 mM GSH which 

appeared to increase (Figure 3.18). This rise however is most probably due to the loss 

of the other peaks and the overall effect of this on total peak area, as opposed to an 

increase in the amount of this product. When the specific peak areas were calculated in 

Clarity, total areas of 5168 mV/min (+/- 847 SD) and 4497 mV/min (+/- 983 SD) were 

calculated at 0 mM GSH and 1 mM GSH respectively for the cis-Pt(NH3)2(Cl)(dGMP) 
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product, showing the increase in peak area wasn‟t reflective of increases in product 

amount. Levels of the cis-Pt(NH3)2(dGMP)2 product remained constant. 

 

Three potential cis-Pt(NH3)2(dGMP)(GSH) candidates were identified by UV 

absorbance and AAS after the reaction of cisplatin-dGMP with GSH. Of the three 

peaks identified, only levels of peak C, which typically eluted at 21 minutes, increased 

as the concentration of GSH in the reaction mixture increased. Although it is not 

possible to exclude peaks A and B from being potential GSH containing cross-links, the 

most probable candidate of the three newly identified products is peak C. 
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Figure 3.18: Analysis of the changes in peak area for the four products identified in the 

reaction of equimolar (1 mM) cisplatin with dGMP (24hr) prior to further incubation 

with GSH. Peak areas were determined using Clarity 4.0 software and are expressed as 

a percentage of total area. (): cis-Pt(NH3)2(OH2)(dGMP), (): cis-

Pt(NH3)2(OH)(dGMP),(): cis-Pt(NH3)2(Cl)(dGMP), and (): cis-Pt(NH3)2d(GMP2). 

One-phase exponential decay line fitted to data for cis-Pt(NH3)2(OH2)(dGMP) and cis-

Pt(NH3)2(OH)(dGMP) peak in Prism 4 software. Each point represents the mean of 3 

different experiments and error bars reflect standard deviation. Where not shown, 

error bars lie within the points. 
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Figure 3.19: Analysis of the changes in peak area for the three products identified in 

the reaction of equimolar (1 mM) cisplatin with dGMP (24hr) followed by further 

incubation with GSH. Peak area was determined using Clarity 4.0 software and is 

expressed as a percentage of total area. (): Peak 1, (): Peak 2 (): Peak 3. Each 

point represents the mean of 3 different experiments and error bars reflect standard 

deviation. Where not shown, error bars lie within the points. 
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3.3.5: Structural analysis of products formed in the reaction of platinated dGMP 

with GSH 

 

Seven regions of dGMP were predicted to be detected by NMR. These include the 

C(8)-H proton of guanine, five C-H protons on the deoxyribose sugar ring, and the C-

H2 protons between the sugar ring and phosphate. The locations of these protons are 

shown in the appendix. NMR analyses of dGMP alone showed the presence of seven 

protons. Analyses of platinated dGMP showed seven detectable protons, comparable to 

those of dGMP alone. 

 

Six regions of GSH were predicted to be detected by NMR. These included a C-H and 

two C-H2 protons on the glutamate chain, C-H and C-H2 protons on the cysteine chain, 

and C-H2 protons on the glycine chain. The locations of these protons are shown in the 

appendix. NMR analyses of GSH alone showed the presence of six protons. NMR 

analysis of platinated GSH failed to give interpretable data.  

 

Analyses of the putative cis-Pt(NH3)2(dGMP)(GSH) products described in chapter 3 

failed to give interpretable data. Possible reasons for this are discussed in chapter 7. 

Typical NMR data are presented in the appendix of this thesis. 

 

  



173 

 

3.4: Discussion 

 

The main aim of the experiments described in this chapter was to produce and 

characterise cis-Pt(NH3)2(dGMP)(GSH) cross-links that would help in the analysis of 

putative cis-Pt(NH3)2(DNA)(GSH) cross-links formed in DNA from drug-treated cells. 

Azim-Araghi (2003) had provided evidence for the formation of such adducts, but very 

little information on their chromatographic behaviour was available. A secondary aim 

of this chapter was to attempt to confirm the structural nature of such products. 

 

Initial experiments were carried out to re-establish the MonoQ chromatographic system 

Azim-Araghi had used in the analyses of DNA from drug-treated cells. Having re-

established the MonoQ setup, analyses were carried out on calf thymus DNA incubated 

in the presence and absence of cisplatin. Calf thymus DNA incubated with 15 µM 

cisplatin showed the presence of four Pt-containing products. The similarity between 

the present data and that of Fichtinger-Schepman et al (1985) and Azim-Araghi (2003) 

regarding retention times and distribution of Pt across the four peaks suggests that the 

four products detected in this study are the same as the products characterised by 

DEAE-Sephacel and NMR previously (Fichtinger-Schepman et al 1985). 

 

Determining the chromatographic nature of putative cis-Pt(NH3)2(dGMP)(GSH) cross-

links was the main aim for this chapter. This was approached using a two-step 

methodology. In the initial step, cisplatin and dGMP were reacted at equimolar (1 mM) 

concentrations. The second step in the approach was then to add GSH and carry out 

additional incubations, with the products of these reactions analysed during each step 

using the MonoQ system re-established as described above. 
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In the reaction of equimolar cisplatin and dGMP, four products were detected by UV 

absorbance. Confirmation that these products contained Pt was achieved using AAS. 

Further experiments showed that three of the products involved dGMP bound to one 

arm of cisplatin forming the species cis-Pt(NH3)2(R)(dGMP) in which R could be either 

a Cl, OH or OH2 ligand. MALDI-TOF mass spectrometry of the reaction mixture 

confirmed products of the expected masses were produced. The fourth product 

identified was cis-Pt(NH3)2(dGMP)2. Again, MALDI-TOF mass spectrometry of the 

reaction mixture confirmed this product was of the expected mass. 

 

The second step in the approach was to incubate GSH with the products of the 

cisplatin-dGMP reaction. The production of monofunctionally bound dGMP products 

in the first step was key to this reaction, to allow further formation of the species cis-

Pt(NH3)2(dGMP)(GSH). The chromatographic nature of this species would be 

important in analysing the Pt-DNA adducts formed in drug-treated cells. After reacting 

GSH with platinated dGMP, three products were detected by UV, all containing Pt 

(determined by AAS). Of these, the extent of formation of a product with an elution 

times of 21 minutes, increased as the concentration of GSH in the reaction mixture was 

increased. However, the other two products couldn‟t be eliminated as cis-

Pt(NH3)2(dGMP)(GSH) cross-links. Attempts were made to purify these products for 

structural analysis but these were unsuccessful. 
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Chapter 4 

Analysis of Pt-DNA adducts formed in cells 

 

4.1: Introduction 

 

Whilst investigating Pt-DNA adducts formed in human lung cancer cell lines (H69/p 

and Mor/p) (Azim-Araghi 2003), a novel Pt-containing product was detected that had 

different chromatographic properties to the known Pt-DNA adducts previously 

characterised (Fichtinger-Schepman et al 1985). As described in chapter 3, this product 

was proposed to be the result of GSH becoming cross-linked to DNA via Pt. 

 

Prior to the work by Azim-Araghi, evidence had been published suggesting that GSH 

can cross-link to monofunctionally bound Pt-DNA (Eastman 1987). Binding of 

radioactively labelled GSH to DNA in the presence of cisplatin had also been observed 

(Tilby, unpublished data). The novel Pt-DNA product observed in DNA extracted from 

drug-treated cells by Azim-Araghi was detected using a combination of MonoQ anion 

exchange chromatography with ICP-MS. When this setup was applied by Azim-Araghi 

to studying pure calf thymus DNA incubated with GSH in the presence of cisplatin, the 

same novel product seen in cellular DNA hydrolysates was detected. It is therefore 

hypothesised that the novel product detected previously is cis-Pt(NH3)2(DNA)(GSH). 

The implications of such a product for the cellular pharmacology of Pt-drugs are 

unknown. These observations need to be confirmed and extended to other Pt-containing 

drugs and other cell lines. 
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Four human tumour cell lines were chosen for investigation. 833K, A2780 and LoVo 

cells were derived from testicular, ovarian and colorectal cancer respectively, and were 

chosen as these types of cancers are often treated with the platinum-based drugs used in 

this study. The cisplatin-resistant Mor/CPR cells were chosen for two reasons: firstly, 

the parental line Mor/P was used by Ali Azim-Araghi (Azim-Araghi 2003). 

Unfortunately the parental line wasn‟t available for this study. Secondly, in order to 

include a drug-resistant cell line in the investigation. 

 

Initially the sensitivity of the four chosen cell lines to the growth inhibitory effects of 

the drugs was defined in order to ensure that the drug concentration/DNA adducts 

levels being studied were biologically relevant. Also, as a body of data was to be 

accumulated this sensitivity data would permit comparisons between adducts levels and 

growth inhibitory effects. 

 

By analysing the products of reactions with cisplatin with dGMP and GSH (see chapter 

3), a putative cis-Pt(NH3)2(dGMP)(GSH) species has been synthesised and purified by 

anion exchange chromatography. The aim of the work described in this chapter was to 

investigate the potential formation of GSH-containing Pt-DNA adducts in the DNA of 

human tumour cells incubated with cisplatin. This was approached as follows: 

 

1. Analyse the chromatographic behaviour of all adducts formed in cells by 

cisplatin to compare with adducts formed on pure DNA and, hopefully, identify 

the additional products observed previously. 

2. Extension of these analyses to the other clinically used platinum-based drugs 

carboplatin and oxaliplatin  
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4.2: Results 

4.2.1: Sensitivity of human tumour cells to Pt-drugs 

4.2.1.1: Determination of optimal seeding density 

 

The optimal incubation period of cell cultures before and after drug treatments varies 

between individual cell lines. Therefore, initial experiments were carried out to 

determine the optimal growth conditions for each of the four cell lines. Appropriate 

inoculation densities could then be chosen that would ensure cells remained in active 

phase throughout the whole period of incubation with Pt-drugs. Cells were seeded at a 

number of increasing densities into 96 well plates, and incubated at 37°C for 24hr 

initially to allow cells to settle and attach. Cells were then fixed at 0hr, 24hr, 48hr and 

72hr. Cell density was determined using the SRB assay. 

 

Typical growth curves are shown in Figure 4.1. The four cell lines were subsequently 

innoculated at 8000 cells/well. 
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Figure 4.1: Typical analysis of growth of 833K (A), A2780 (B), LoVo (C) and MorCPR 

(D) cells. Cells from each cell line were seeded in 96 well plates at (): 1000 

cells/well, (): 2000 cells/well, (): 4000 cells/well, (): 6000 cells/well, (): 8000 

cells/well, (): 10000 cells/well, (): 20000 cells/well and (): 40000 cells/well. Cell 

density was measured by the SRB assay at 24, 48 and 72 hours. Absorbance was 

measured at 490nm. Error bars represent the mean +/- standard deviation. Where not 

shown, error bars lie within the data point. 
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4.2.1.2: Determination of sensitivity to Pt drugs 

 

Cells were inoculated at the chosen density (8000 cells/well) and after 24hr; cisplatin, 

carboplatin or oxaliplatin was added at a range of concentrations. Medium in the wells 

was replaced with drug-free medium after 2, 6 or 24hr and cells were fixed at 72hr after 

addition of drugs. 

 

Initial experiments to establish appropriate ranges of drug concentrations were 

performed in triplicate. From these experiments, the final ranges of drug concentrations 

for each of the three drugs for the four cell lines were chosen. Results for triplicate 

experiments in the chosen drug concentrations are shown in Figure 4.2 - Figure 4.4. 

Calculated GI50 values are presented in Table 4.1. 

 

Comparison of GI50 values in each cell line with time 

GI50 values following exposure times of 2hr and 6hr were compared to GI50 values after 

24hr exposure. Data is shown in Table 4. 2. 24hr incubation gave the lowest GI50 values 

as expected, whereas for cisplatin shorter incubations gave GI50 values up to 9-fold 

higher. For carboplatin and oxaliplatin, the length of incubation time generally had a 

larger effect on survival with GI50 values up to 23-fold higher  

 

Analysis of sensitivity to carboplatin and oxaliplatin compared to cisplatin 

GI50 values for carboplatin and oxaliplatin were compared to cisplatin. Data is shown in 

Table 4. 3. Carboplatin was 7-52-times less toxic than cisplatin, depending on cell line 

and exposure time. Oxaliplatin showed comparable GI50 values to cisplatin, except in 

Mor/CPR cells where it was about 10-fold less toxic.  
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Analysis of variation in cell line sensitivity 

GI50 values for A2780, LoVo and Mor/CPR cells were compared to 833K cells. Data is 

presented in Table 4. 4. A2780 cells were 1.4-2.2 times less sensitive to cisplatin and 

1.9-2.6 times less sensitive to carboplatin. A2780 cells were however more sensitive to 

oxaliplatin than cisplatin. LoVo cells were 1.8-2.3, 2.7-5.5 and 1.3-1.5 times less 

sensitive to cisplatin, carboplatin and oxaliplatin respectively. Mor/CPR cells were 

markedly the least sensitive of all the cell lines. 
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Figure 4.2: The effect of cisplatin on growth inhibition in human tumour 833K (A), 

A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cell were incubated with various 

concentrations of drug for 2hr (), 6hr () and 24 hr (). Growth inhibition was 

measured using the SRB assay. Each data point represents the mean of three individual 

experiments +/- standard deviation. Where not shown, error bars lie within the data 

point. 

  



182 

 

0.1 1 10 100 1000 10000

0

25

50

75

100

125

[Carboplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

A

0.1 1 10 100 1000 10000

0

25

50

75

100

125

[Carboplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

B

0.1 1 10 100 1000 10000

0

25

50

75

100

125

[Carboplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

C

0.1 1 10 100 1000 10000 100000

0

25

50

75

100

125

[Carboplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

D

 

Figure 4.3: The effect of carboplatin on growth inhibition in human tumour 833K (A), 

A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cell were incubated with various 

concentrations of drug for 2hr (), 6hr () and 24 hr (). Growth inhibition was 

measured using the SRB assay. Each data point represents the mean of three individual 

experiments +/- standard deviation. Where not shown, error bars lie within the data 

point. 

  



183 

 

0.001 0.01 0.1 1 10 100 1000

0

25

50

75

100

125

[Oxaliplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

A

0.001 0.01 0.1 1 10 100 1000

0

25

50

75

100

125
B

[Oxaliplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)
0.001 0.01 0.1 1 10 100 1000

0

25

50

75

100

125
C

[Oxaliplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

0.01 0.1 1 10 100 1000

0

25

50

75

100

125
D

[Oxaliplatin] (µM)

G
ro

w
th

 I
n

h
ib

it
io

n

(%
 o

f 
C

o
n

tr
o

l)

 

Figure 4.4: The effect of oxaliplatin on growth inhibition in human tumour 833K (A), 

A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cell were incubated with various 

concentrations of drug for 2hr (), 6hr () and 24 hr (). Growth inhibition was 

measured using the SRB assay. Each data point represents the mean of three individual 

experiments +/- standard deviation. Where not shown, error bars lie within the data 

point. 
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Table 4.1: GI50 values for 833K, A2780, LoVo and Mor/CPR human tumour cells exposed to cisplatin, carboplatin and oxaliplatin for 2hr, 6hr 

and 24hr at 37°C. Growth Inhibition was measured at 72hr by the SRB assay. Each value represents the mean readings from 3 individual 

experiments. Standard deviation is shown in brackets. 

Cell Line Incubation Time GI50: Cisplatin (µM) GI50: Carboplatin (µM) GI50: Oxaliplatin (µM) 

833K 2hr 4.1 (0.1) 77.6 (1.2) 13.4 (0.2) 

6hr 1.6 (0.02) 24.9 (0.4) 3.3 (0.1) 

24hr 0.6 (0.01) 4.3 (0.1) 0.6 (0.01) 

A2780 2hr 6.8 (0.1) 159.5 (2.6) 8.6 (0.2) 

6hr 2.2 (0.04) 47.0 (1.0) 2.5 (0.1) 

24hr 1.3 (0.02) 11.2 (0.3) 0.4 (0.01) 

LoVo 2hr 9.3 (0.3) 207.2 (5.7) 18.0 (0.3) 

6hr 3.2 (0.1) 77.6 (1.7) 5.0 (0.1) 

24hr 1.1 (0.04) 23.5 (0.6) 0.8 (0.02) 

Mor/CPR 2hr 68.0 (1.9) 2049 (33) 986.2 (52.5) 

6hr 28.2 (1.1) 1479 (18.2) 251.5 (11.4) 

24hr 7.7 (0.2) 116.8 (1.6) 77.8 (3.7) 
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Table 4. 2: GI50 ratios for 833K, A2780, LoVo and Mor/CPR cells incubated with 

cisplatin, carboplatin or oxaliplatin. Each ratio is calculated compared to the 24hr 

incubation value (2hr/24hr or 6hr/24hr). 

Cell Line Inc. Time Cisplatin Carboplatin Oxaliplatin 

833K 2hr 6.8 18.0 22.3 

 6hr 2.7 5.8 5.5 

 24hr 1 1 1 

A2780 2hr 5.2 14.2 21.5 

 6hr 1.7 4.2 6.3 

 24hr 1 1 1 

LoVo 2hr 8.5 8.8 22.5 

 6hr 2.9 3.3 6.3 

 24hr 1 1 1 

Mor/CPR 2hr 8.8 17.5 12.7 

 6hr 3.7 12.7 3.2 

 24hr 1 1 1 
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Table 4. 3: GI50 ratios for 833K, A2780, LoVo and Mor/CPR cells incubated with 

carboplatin or oxaliplatin compared to cisplatin. Each ratio is calculated compared to 

cisplatin. 

Cell Line Inc. Time Cisplatin Carboplatin Oxaliplatin 

833K 2hr 1 18.9 3.3 

 6hr 1 15.6 2.1 

 24hr 1 7.2 1 

A2780 2hr 1 23.5 1.3 

 6hr 1 21.4 1.1 

 24hr 1 8.6 0.3 

LoVo 2hr 1 22.3 1.9 

 6hr 1 24.3 1.6 

 24hr 1 21.4 0.7 

Mor/CPR 2hr 1 30.1 14.5 

 6hr 1 52.4 8.9 

 24hr 1 15.2 10.1 
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Table 4. 4: Ratio of GI50 values for A2780, LoVo and Mor/CPR cells to 833K GI50 

values. All 833K values are considered to be 1 (not shown in table). 

Cell Line Inc. Time Cisplatin Carboplatin Oxaliplatin 

A2780 2hr 1.7 2.1 0.6 

 6hr 1.4 1.9 0.8 

 24hr 2.2 2.6 0.7 

LoVo 2hr 2.3 2.7 1.3 

 6hr 2.0 3.1 1.5 

 24hr 1.8 5.5 1.3 

Mor/CPR 2hr 16.6 26.4 73.6 

 6hr 17.6 59.4 76.2 

 24hr 12.8 27.2 129.7 
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4.2.1.3: Total Pt-DNA adducts formed in cells 

 

833K, A2780, LoVo and Mor/CPR cells were incubated in medium containing 

cisplatin, carboplatin or oxaliplatin at a range of concentrations for 2hr and 24hr. The 

concentration ranges were chosen from previous preliminary experiments. Cells were 

harvested immediately after drug exposure and cell pellets were stored at -20°C prior to 

DNA extraction. Pt levels in DNA hydrolysates were determined by ICP-MS. 

 

Mean levels of Pt-DNA adducts determined from triplicate experiments are shown in 

Figure 4.5 - Figure 4.7. Values for total Pt-DNA adducts (+/- SD) for all four cell lines 

and all three drugs are given in Table 4.5 - Table 4.7. 

 

There were clear linear relationships between drug concentration and Pt-DNA adducts 

levels at both incubation times. For both incubation schedules the total amount of Pt-

DNA adducts was highest in the A2780 cells, followed by LoVo and 833K cells, except 

after 2hr incubation with carboplatin, where the total Pt-DNA adducts level was highest 

in the 833K cells. For both incubation schedules, the total Pt-DNA adducts levels were 

lowest in the Mor/CPR cells.  
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Figure 4.5: Total Pt-DNA adducts levels formed in human tumour 833K (), A2780 

(), LoVo () and Mor/CPR () cells following incubation with various 

concentrations of cisplatin for 2hr (A) and 24hr (B). Pt levels were measured by ICP-

MS. Linear regression lines fitted by Prism 4 software. Each data point represents the 

mean of three individual experiments +/- standard deviation. Where not shown, error 

bars lie within the data point. 
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Figure 4.6: Total Pt-DNA adducts levels formed in human tumour 833K (), A2780 

(), LoVo () and Mor/CPR () cells following incubation with various 

concentrations of carboplatin for 2hr (A) and 24hr (B). Pt levels were measured by 

ICP-MS. Linear regression lines fitted by Prism 4 software. Each data point represents 

the mean of three individual experiments +/- standard deviation. Where not shown, 

error bars lie within the data point. 
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Figure 4.7: Total Pt-DNA adducts levels formed in human tumour 833K (), A2780 

(), LoVo () and Mor/CPR () cells following incubation with various 

concentrations of oxaliplatin for 2hr (A) and 24hr (B). Pt levels were measured by ICP-

MS. Linear regression lines fitted by Prism 4 software. Each data point represents the 

mean of three individual experiments +/- standard deviation. Where not shown, error 

bars lie within the data point. 
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Table 4.5: Pt-DNA adduct levels in human tumour 833K, A2780, LoVo and Mor/CPR cells following incubation with various concentrations of 

cisplatin for 2hr and 24hr. Standard deviation is shown in brackets. 

  Total Pt-DNA Adduct Level (nmol Pt g
-1

 DNA) 

Cisplatin (µM) 0 10 30 60 0 1 3 6 

833K 2hr 6.5 (0.7) 22.7 (1.45) 40.5 (3.6) 68.8 (4.2)     

24hr     8.2 (1.6) 10.3 (0.7) 23.8 (0.5) 42.9 (0.7) 

A2780 2hr 5.6 (1.2) 36.2 (1.4) 90.3 (2.7) 159.8 (9.3)     

24hr     4.7 (0.1) 21.9 (2.2) 66.6 (2.0) 148.2 (3.3) 

LoVo 2hr 6.4 (1.3) 22.5 (1.7) 63.9 (0.5) 134.5 (3.1)     

24hr     4.6 (2.0) 11.6 (0.7) 31.7 (1.6) 60.1 (1.0) 

Mor/CPR 2hr 4.0 (0.8) 8.6 (0.1) 17.0 (1.4) 45.1 (1.5)     

24hr     4.3 (0.8) 9.0 (0.4) 16.8 (1.5) 28.1 (2.4) 
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Table 4.6: Pt-DNA adduct levels in human tumour 833K, A2780, LoVo and Mor/CPR cells following incubation with various concentrations of 

carboplatin for 2hr and 24hr. Standard deviation is shown in brackets. 

  Total Pt-DNA Adduct Level (nmol Pt g
-1

 DNA) 

Carboplatin (µM) 0 250 750 1500 0 25 75 150 

833K 2hr 7.6 (0.2) 17.6 (1.6) 35.0 (3.8) 66.4 (0.7)     

24hr     8.2 (1.0) 21.9 (2.2) 47.6 (4.2) 77.4 (5.3 

A2780 2hr 7.8 (0.7) 12.5 (1.8) 26.6 (1.7) 36.1 (3.2)     

24hr     8.0 (1.1) 31. 0 (2.1) 91.3 (1.2) 194.1 (5.7) 

LoVo 2hr 6.8 (1.7) 11.1 (1.9) 17.1 (1.9) 28.5 (1.5)     

24hr     6.3 (1.2) 20.5 (1.2) 52.5 (1.2) 104.0 (9.0) 

Mor/CPR 2hr 2.0 (0.3) 6.9 (0.2) 11.9 (0.3) 16.9 (1.4)     

24hr     4.6 (0.7) 8.8 (0.4) 19.2 (1.2) 34.1 (0.6) 
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Table 4.7: Pt-DNA adduct levels in human tumour 833K, A2780, LoVo and Mor/CPR cells following incubation with various concentrations of 

oxaliplatin for 2hr and 24hr. Standard deviation is shown in brackets. 

  Total Pt-DNA Adduct Level (nmol Pt g
-1

 DNA) 

Oxaliplatin (µM) 0 10 30 60 0 1 3 6 

833K 2hr 3.1 (1.1) 11.5 (1.8) 20.7 (3.3) 35.2 (2.9)     

24hr     0.8 (0.2) 7.5 (3.0) 14.7 (0.9) 26.7 (2.7) 

A2780 2hr 1.4 (0.5) 9.1 (1.8) 30.2 (2.6) 57.1 (1.4)     

24hr     1.7 (0.7) 8.8 (2.2) 28.9 (3.9) 50.5 (1.0) 

LoVo 2hr 1.6 (0.8) 12.5 (1.3) 26.4 (1.2) 48.5 (2.8)     

24hr     1.5 (0.3) 7.0 (5.8) 17.4 (2.0) 37.3 (1.0) 

Mor/CPR 2hr 1.9 (0.4) 7.0 (0.4) 10.2 (0.7) 14.1 (0.7)     

24hr     0.4 (0.1) 5.8 (0.5) 11.8 (0.7) 25.7 (1.9) 
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4.2.2: Chromatographic Analysis of Pt-DNA adducts formed in cells 

 

As discussed in detail previously (see chapters 1 and 3) the combination of ICP-MS 

with chromatographic separation of Pt-DNA adducts permits the detection of all the 

types of adducts even at low levels. This permits the direct analysis of adducts formed 

in cells without relying on their ability to be detected by a suitable antibody or a 

specialised post-labelling assay. It was of particular interest to survey adducts formed in 

a number of cell lines because of previous results which indicated the formation, in 

cells, of a new type of adduct, hypothesised to involve GSH. 

 

Cells were incubated for 24hr with either 6 µM cisplatin or oxaliplatin, or 150 µM 

carboplatin. 24hr incubation was initially chosen for all four cell lines as previous work 

had shown monofunctional platinum products to form quickly, but closure to 

bifunctional products and/or binding of GSH to take many hours (Eastman 1987). DNA 

was extracted from cells and enzymatically digested as described in section 2.6. 

Previous work by Azim-Araghi (Azim-Araghi 2003) had confirmed that the levels of 

enzymes used in the initial digest were more than sufficient to achieve total digestion of 

the DNA. DNA ultrafiltrates were collected by centrifugation at 13000 x g, 4°C for 60 

minutes using a Microcon YM-10 ultrafiltration unit (Millipore, UK) to remove 

proteins that would increase contamination of the MonoQ column. Solutions (100 µl) 

of the digested mixture were injected into the MonoQ system and eluted at 1 ml/min in 

increasing NaCl concentrations. UV absorbance was monitored at 254 nm and fractions 

collected as described in section 2.9. Pt levels were then measured by ICP-MS.  
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4.2.2.1: DNA adducts formed in cells exposed to cisplatin for 24hr 

 

Measurements before and after ultrafiltration of enzymatic hydrolysates of DNA 

confirmed that less than 5% of the total Pt was retained by the ultrafilter. Typical 

MonoQ elution profiles for hydrolysates of DNA from 833K, A2780, LoVo and 

Mor/CPR cells incubated for 24hr with 6 µM cisplatin are shown in Figure 4.8 (graphs 

A-D respectively). Mean retention times of the four mononucleotides (detected by UV) 

and four Pt-containing species are shown in Table 4.8. This also shows that the 

recovery of Pt from the column exceeded 92%. 

 

Analyses of Pt content in collected chromatographic fractions showed the presence of 

four Pt-containing products. These products had similar retention times and relative Pt 

levels of adducts formed by the reaction of cisplatin with pure DNA analysed using a 

similar method (Meczes et al 2005). Therefore, these products are suggested to be of 

the same nature as the major Pt-DNA products characterised previously (Fichtinger-

Schepman et al 1985). The chemical nature of the four peaks in order of elution 

therefore was designated as: 1: Pt(NH3)2(R)(dGMP), 2: cis-Pt(NH3)2d(ApG), 3: cis-

Pt(NH3)2d(GpG) and 4: cis-Pt(NH3)2(dGMP)2. Four products that were detected by UV 

eluted at similar times to the previously characterised mononucleotides described in 

chapter 3, and therefore were assigned in order of elution as dCMP, dAMP, TMP and 

dGMP. 

 

The mean yields of each adduct type as a percent of total Pt recovered was calculated 

from three analyses of separate DNA preparations. The results (Table 4.11) show that 

peak 3, attributed to cis-Pt(NH3)2d(GpG) was the major Pt-containing product detected, 
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contributing approximately 60% of the total Pt detected. Peak 2, attribute to cis-

Pt(NH3)2d(ApG) was the second major Pt-containing product detected, contributing 

approximately 20% of the total Pt detected. An approximate ratio of 1: 2.5 was 

observed for the ApG: GpG adducts which is similar to previous analyses (Azim-

Araghi 2003). Levels of peak 1 (attributed to Pt(NH3)2(R)(dGMP)) ranged from 2.6-

7.3%, and levels of peak 4 (attributed to cis-Pt(NH3)2(dGMP)2) ranged from 7.1-13.3%. 

 

However, no additional Pt-containing products were detected in any of the four cell 

lines investigated and no evidence for the putative cis-Pt(NH3)2(DNA)(GSH) cross-link 

was observed. 
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Figure 4.8: Typical MonoQ elution pattern for 833K (A), A2780 (B), LoVo (C) and 

Mor/CPR (D) cells incubated with 6 µM cisplatin for 24hr. Solutions (100 µl) of DNA 

were injected into the MonoQ column and eluted at 1 ml/min. Fractions were collected 

with increasing NaCl concentration and Pt levels in each fraction measured by ICP-

MS. (), Pt concentration; dotted line: OD 254 nm. Peaks 1: Pt(NH3)2(R)(dGMP); 2: 

cis-Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4:cis-Pt(NH3)2(dGMP)2 
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Table 4.8: Mean retention times for the products detected by UV absorbance and ICP-MS in DNA extracted from cisplatin-treated cells. Mean 

values from three individual analyses are shown. Ranges in retention time are shown in brackets except for total Pt recovered in which SD is 

shown. 

Peak Identity 833K A2780 LoVo Mor/CPR 

 dCMP 5.3 (0.1) 5.4 (0.1) 5.6 (0.2) 5.4 (0.1) 

 dAMP 5.8 (0.1) 6.1 (0.2) 6.2 (0.2) 5.9 (0.2) 

 TMP 6.7 (0.2) 7.1 (0.2) 7.3 (0.1) 6.9 (0.1) 

 dGMP 12.5 (0.2) 13.0 (0.3) 13.2 (0.2) 12.4 (0.1) 

1 Pt(NH3)2(R)(dGMP) 2.5 (0.5) 3.0 (0.5) 2.5 (0.5) 2.0 (0.5) 

2 cis-Pt(NH3)2d(ApG) 4.5 (0.5) 5.5 (1.0) 4.5 (0.5) 4.5 (0.5) 

3 cis-Pt(NH3)2d(GpG) 8.5 (1.0) 9.0 (1.0) 9.0 (1.0) 9.5 (1.0) 

4 cis-Pt(NH3)2(dGMP)2 10.5 (1.0) 11.5 (1.0) 11.0 (0.5) 10.5 (0.5) 

Total Pt Recovery (%) 103.5 (6.7) 92.3 (4.4) 91.7 (5.6) 98.3 (3.3) 
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4.2.2.2: DNA adducts formed in cells exposed to carboplatin for 24hr 

 

Typical MonoQ elution profiles for hydrolysates of DNA from 833K, A2780 and LoVo 

cells incubated for 24hr with 150 µM carboplatin are shown in Figure 4.9 (graphs A-C 

respectively). Mean retention times of the four mononucleotides (detected by UV) and 

four Pt-containing species are shown in Table 4.9. This also confirms that recovery of 

Pt from the column exceeded 92%. 

 

Analyses of Pt content in collected chromatographic fractions showed the presence of 

four Pt-containing products. These products had similar retention times and relative Pt 

levels of adducts to those seen in the incubation with cisplatin and therefore are 

suggested to be of the same nature. 

 

The mean yields of each adduct type as a percent of total Pt recovered was calculated 

from three analyses of separate DNA preparations. The results (Table 4.11) show that 

the relative proportions of the peaks were very similar to those values for cisplatin and, 

like cisplatin, did not vary markedly between cell lines. 

 

Similarly to cisplatin, no additional Pt-containing products were detected in any of the 

three cell lines. No evidence has previously been presented for potential carboplatin-

DNA cross-links with GSH although, as adducts formed are believed to be the same as 

those for cisplatin, their formation was plausible. However, the data in this section 

provides no evidence to support their formation. 
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Figure 4.9: Typical MonoQ elution pattern for 833K (A), A2780 (B) and LoVo (C) cells 

incubated with 150 µM carboplatin for 24hr. Solutions (100 µl) of DNA were injected 

into the MonoQ column and eluted at 1 ml/min. Fractions were collected with 

increasing NaCl concentration and Pt levels in each fraction measured by ICP-MS. 

(), Pt concentration; dotted line: OD 254 nm. Peaks 1: Pt(NH3)2(R)(dGMP); 2: cis-

Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4:cis- Pt(NH3)2(dGMP)2 
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Table 4.9: Mean retention times for the products detected by UV absorbance and ICP-MS in DNA extracted from carboplatin-treated cells. 

Mean values from three individual analyses are shown. Ranges in retention time are shown in brackets except for total Pt recovered in which SD 

is shown. 

Peak Identity 833K A2780 LoVo 

 dCMP 5.4 (0.1) 5.5 (01.) 5.6 (0.1) 

 dAMP 6.0 (0.1) 6.0 (0.1) 6.1 (0.1) 

 TMP 7.0 (0.2) 7.1 (0.1) 7.0 (0.1) 

 dGMP 13.1 (0.1) 13.1 (0.2) 13.1 (0.2) 

1 Pt(NH3)2(R)(dGMP) 2.0 (0.5) 3.0 (1.0) 2.5 (0.5) 

2 cis-Pt(NH3)2d(ApG) 5.5 (1.0) 5.5 (0.5) 5.0 (0.5) 

3 cis-Pt(NH3)2d(GpG) 9.5 (1.0) 9.5 (1.0) 9.5 (1.0) 

4 cis-Pt(NH3)2(dGMP)2 12.0 (1.0) 12.0 (1.0) 11.5 (1.0) 

Total Pt Recovery (%) 92.3 (6.7) 104.5 (7.8) 101.3 (8.6) 
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4.2.2.3: DNA adducts formed in cells exposed to oxaliplatin for 24hr 

 

Typical MonoQ elution profiles for hydrolysates of DNA from 833K, A2780 and LoVo 

cells incubated for 24hr with 6 µM oxaliplatin are shown in Figure 4.10 (graphs A-C 

respectively). Mean retention times of the four mononucleotides (detected by UV) and 

four Pt-containing species are shown in Table 4.10. Recovery of Pt from the column 

exceeded 95%. 

 

Oxaliplatin is believed to form similar Pt-DNA cross-links as cisplatin (Jennerwein et 

al 1989, Saris et al 1996) with the major difference being the DACH ligand in place of 

the two NH3 ligands of cisplatin. Analyses of Pt content in collected chromatographic 

fractions showed the presence of four Pt-containing products. These products had 

similar retention times and relative Pt levels of adducts to those seen in the incubation 

with cisplatin and therefore are suggested to be of a similar nature. 

 

The mean yields of each adduct type as a percent of total Pt recovered was calculated 

from three analyses of separate DNA preparations. The results (Table 4.11) show that 

the relative proportions of the peaks were very similar to those values for cisplatin and, 

like cisplatin, did not vary markedly between cell lines. 

 

Similarly to cisplatin, no additional Pt-containing products were detected in any of the 

three cell lines. No evidence has previously been presented for potential oxaliplatin-

DNA cross-links with GSH although, as adducts formed are believed to be similar to 

those for cisplatin, their formation was plausible. However, the data in this section 

provides no evidence to support their formation. 
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Figure 4.10: Typical MonoQ elution pattern for 833K (A), A2780 (B) and LoVo (C) 

cells incubated with 6 µM oxaliplatin for 24hr. Solutions (100 µl) of DNA were injected 

into the MonoQ column and eluted at 1 ml/min. Fractions were collected with 

increasing NaCl concentration and Pt levels in each fraction measured by ICP-MS. 

(), Pt concentration; dotted line: OD 254 nm. Peaks are proposed to be 1: 

Pt(DACH)(R)(dGMP); 2: cis-Pt(DACH)d(ApG); 3: cis-Pt(DACH)d(GpG) and 4:cis-

Pt(DACH)(dGMP)2 
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Table 4.10: Mean retention times for the products detected by UV absorbance and ICP-MS in DNA extracted from oxaliplatin-treated cells. 

Mean values from three individual analyses are shown. Ranges in retention time are shown in brackets except for total Pt recovered in which SD 

is shown. 

Peak Identity 833K A2780 LoVo 

 dCMP 5.6 (0.1) 5.6 (0.1) 5.4 (0.1) 

 dAMP 6.1 (0.1) 6.1 (0.1) 6.0 (0.1) 

 TMP 7.4 (0.2) 7.1 (0.2) 7.2 (0.2) 

 dGMP 13.0 (0.1) 12.9 (0.2) 13.0 (0.2) 

1 Pt(DACH)(R))dGMP) 2.5 (0.5) 2.5 (0.5) 2.0 (1.0) 

2 cis-Pt(DACH)d(ApG) 5.5 (0.5) 5.0 (0.5) 4.5 (0.5) 

3 cis-Pt(DACH)d(GpG) 9.5 (1.0) 9.5 (0.5) 9.5 (1.0) 

4 cis-Pt(DACH)(dGMP)2 11.0 (0.5) 11.0 (1.0) 12.5 (1.5) 

Total Pt Recovery (%) 95.3 (3.3) 103.2 (4.7) 101.2 (5.5) 
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Table 4.11: Pt content of each of the four main peaks of Pt-containing material recovered from anion exchange chromatographic analysis of 

enzymatic hydrolysates of DNA extracted from drug-treated cells. Pt content is expressed as a percentage of Pt contained in the four identified 

peaks in relation to the total Pt recovered. Each value represents the mean of three individual analyses. Standard deviation is shown in brackets. 

Drug (conc. used) Peak Identity 833K A2780 LoVo MorCPR 

Cisplatin 1 7.1 (0.5) 2.6 (0.2) 5.2 (0.2) 7.3 (0.1) 

(60 µM) 2 21.2 (1.5) 26.5 (1.9) 26.1 (1.2) 23.6 (0.4) 

 3 58.3 (0.8) 63.8 (4.6) 56.3 (2.5) 61.0 (1.0) 

 4 13.3 (0.7) 7.1 (0.5) 12.4 (0.5) 8.1 (0.1) 

Carboplatin 1 4.7 (0.4) 3.7 (0.1) 1.9 (0.2)  

(150 µM) 2 24.7 (1.9) 29.6 (0.7) 31.7 (2.4)  

 3 61.5 (4.8) 60.3 (1.3) 60.1 (4.5)  

 4 9.2 (0.7) 6.3 (0.1) 6.3 (0.5)  

Oxaliplatin 1 5.0 (0.2) 4.6 (0.2) 3.7 (0.1)  

60 (µM) 2 24.9 (1.2) 29.3 (1.2) 25.8 (1.0)  

 3 59.5 (2.8) 59.7 (2.4) 61.7 (2.4)  

 4 10.7 (0.5) 6.4 (0.3) 8.8 (0.3)  
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4.2.2.4:  DNA adducts formed in LoVo cells exposed to drugs for 2hr 

 

Since the previous described experiments failed to provide evidence for the formation 

of additional DNA adducts in cells, the possibility was considered that the hypothesised 

adducts were short-lived because either 1, the putative cis-Pt(NH3)2(DNA)(GSH) cross-

links were unstable and/or 2, the putative cross-links were more readily repaired by 

cells than the established classes of adducts. To investigate such possibilities, LoVo 

cells were incubated for 2hr with either 60 µM cisplatin or oxaliplatin or 1500 µM 

carboplatin. Typical MonoQ elution results for DNA hydrolysates analysed using the 

standard MonoQ system are shown in Figure 4.11. 

 

Table 4.12 shows results for three separate experiments for each drug where the 

quantity of Pt in each peak is expressed as a percentage of the total recovered platinum. 

For the LoVo cells incubated with cisplatin and carboplatin, similar proportions of the 

peaks 2 and 3 (proposed to be cis-Pt(NH3)2d(ApG) and cis-Pt(NH3)2d(GpG) 

respectively) were detected between the two incubation times. As would be expected 

with these incubation periods, proportions of the peak 1 (proposed to be 

Pt(NH3)2(R)(dGMP)) decreased between 2hr and 24hr incubations, and proportions of 

peak 4 (proposed to be cis-Pt(NH3)2(dGMP)2) increased. These changes in yield were 

of comparable proportions (- 3.7 and + 5.1 for cisplatin and - 4.2 and + 3.3 for 

carboplatin).  

 

Similarly to cisplatin and carboplatin, for oxaliplatin the proportion of Pt in peak 1 

(proposed to be Pt(DACH)(R)(dGMP)) decreased between 2hr and 24hr. However, 
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unlike cisplatin and carboplatin, this was accompanied with a more marked increase in 

peak 3 (proposed to be cis-Pt(DACH)d(GpG). 

 

Overall, no additional Pt-containing products were detected following the 2hr 

incubations with cisplatin, carboplatin or oxaliplatin. This indicates a lack of any 

evidence for formation of the proposed cis-Pt(NH3)2(DNA)(GSH) cross-links, as was 

the case for the samples from cells exposed to drugs for 24hr. 
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Figure 4.11: Typical MonoQ elution pattern for LoVo cells incubated with 60 µM 

cisplatin (A), 1500 µM carboplatin (B) and 60 µM oxaliplatin (C) for 2hr. 100 µg/ml 

DNA was applied to the column. Fractions were collected with increasing NaCl 

concentration and Pt levels in each fraction measured by ICP-MS. (), Pt 

concentration; dotted line: OD 254 nm. Peaks for cisplatin and carboplatin are  1: 

Pt(NH3)2(R)(dGMP); 2: cis-Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4: cis-

Pt(NH3)2(dGMP)2. Peaks for oxaliplatin are proposed to be 1: Pt(DACH)(R)(dGMP); 

2: cis- Pt(DACH)d(ApG); 3: cis-Pt(DACH)d(GpG) and 4: cis-Pt(DACH)(dGMP)2. 

  

  



210 

 

Table 4.12: Pt content of each of the four main peaks of Pt-containing material recovered from anion exchange chromatographic analysis of 

enzymatic hydrolysates of DNA extracted from drug-treated LoVo cells. Pt content is expressed as a percentage of Pt contained in the four 

identified peaks in relation to the total Pt recovered. Each value represents the mean of three individual analyses. Standard deviation is shown 

in brackets. 

 Peak Identity % Pt (2hr) % Pt (24hr) Difference (2hr-24hr) 

Cisplatin 1 8.9 (0.2) 5.2 (0.2) - 3.7 

 2 25.9 (0.7) 26.1 (1.2) + 0.2 

 3 57.9 (1.5) 56.3 (2.5) - 1.6 

 4 7.3 (0.2) 12.4 (0.5) + 5.1 

Carboplatin 1 6.1 (0.3) 1.9 (0.2) - 4.2 

 2 31.9 (1.4) 31.7 (2.4) - 0.2 

 3 59.0 (2.6) 60.1 (4.5) + 1.1 

 4 3.0 (0.1) 6.3 (0.5) + 3.3 

Oxaliplatin 1 10.1 (0.5) 3.7 (0.1) - 6.4 

 2 28.6 (1.5) 25.8 (1.0) - 2.8 

 3 54.2 (2.9) 61.7 (2.4) + 7.5 

 4 7.1 (0.4) 8.8 (0.3) + 1.7 
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4.2.3: Pt-DNA adducts formed on purified DNA in the presence of GSH 

 

The main aim of studying adducts formed in cells by cisplatin was to confirm the 

previous findings that an additional major class of Pt-containing DNA adducts could be 

detected when DNA extracted from cisplatin-treated cells was analysed by anion 

exchange chromatography and ICP-MS. As discussed in chapter 1, such adducts had 

been detected previously (Azim-Araghi 2003) and were thought to contain GSH cross-

linked to DNA. However, the data described in this section so far for four cell lines 

incubated with cisplatin has shown no evidence to support this hypothesis. 

 

In the previous work (Azim-Araghi 2003) a novel Pt-containing product with similar 

chromatographic properties to the product seen in cells had been identified in pure 

DNA incubated with cisplatin. As discussed in chapter 1, this finding was consistent 

with a number of other preliminary observations and, if correct, could have significant 

implications for the cellular pharmacology of Pt-based drugs. Therefore, attempts were 

made to reproduce the putative formation of cis-Pt(NH3)2(DNA)(GSH) cross-links of 

purified DNA to determine the plausibility of such products occurring in cells. 

 

Initial experiments were aimed at defining the conditions for reacting cisplatin with 

DNA in the presence of GSH so as to generate suitable quantities of adducts for 

subsequent analysis. Then, the main aim was to test the hypothesis that the additional 

adducts could be detected on such DNA when analysed by anion exchange 

chromatography/ICP-MS compared to adducts formed in the absence of GSH. 
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Pure calf thymus DNA (500 µg/ml) was mixed with 0, 10, 25, 50 and 100 mM GSH 

before addition of 15 µM cisplatin. The mixtures were incubated for 2hr and 24hr at 

37°C under anoxic conditions (see section 2.7.1) and then stored at -80°C. DNA was 

then separated from low molecular weight products such as unreacted drug and 

products of the reaction of cisplatin with GSH by gel filtration on a G-75 Sephadex 

column as described in section 2.8. Collected fractions were analysed for DNA 

concentration by measuring O.D. at 254nm. All fractions containing DNA were pooled 

together and concentrated by ultrafiltration. Pt-DNA adduct levels were determined by 

ICP-MS.  
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4.2.3.1: Gel Filtration separation of platinated DNA 

 

Typical gel filtration chromatographic separations for reaction mixtures in the absence 

(A) and presence (B) of GSH are shown in Figure 4.12. These results showed that DNA 

passed through the column rapidly; typically eluting between 40 and 60 minutes post 

injection (Figure 4.12, peak 1). This is consistent with its exclusion from the G-75 

Sephadex beads because of its high molecular weight. Unbound Pt eluted typically 

between 110 and 150 minutes (Figure 4.12, peak 2). Following 2hr incubation, 32% of 

the total Pt eluted was associated with the DNA (Figure 4.12, graph A peak 1). 

 

The presence of 10 mM GSH in the incubation caused a decrease from 32% to 9% of 

the total Pt associated with DNA (Figure 4.12, graph B peak 1). An additional optical 

density peaked was observed between 110 and 140 minutes that eluted slightly earlier 

than unbound platinum (Figure 4.12– Graph B peak 3). This product is likely to be a 

conjugate between cisplatin and GSH. Typical Pt recovery was greater than 90% of the 

total Pt loaded for all separations. 
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Figure 4.12: Typical Sephadex G-75 gel elution profiles of calf thymus DNA (500 

µg/ml) incubated for 2hr with cisplatin (15 µM) alone (A) and with 10 mM GSH (B). 

(), Optical density was measured at OD 254 nm. (), Platinum concentrations 

determined by AAS. Peaks are: 1, DNA; 2, low molecular weight products such as 

unreacted cisplatin or GSH; 3, possible cisplatin-GSH conjugate 
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4.2.3.2: Effect of GSH on total Pt-DNA adduct level 

 

Pt-DNA adducts levels for calf thymus DNA (500 µg/ml) reacted with cisplatin (15 

µM) in the presence of increasing concentrations of GSH for 2hr and 24hr are shown in 

Table 4.13. Total adduct levels expressed as a percentage of control for 2hr (A) and 

24hr (B) are shown in Figure 4.13. 

 

When no GSH was added, a total adduct level of 3.9 (+/- 0.1 SD) µmol Pt g
-1

 DNA was 

observed after a 2hr incubation with cisplatin. This increased to 13.5 (+/- 0.4 SD) µmol 

Pt g
-1

 DNA when incubated for 24 hours. Incubation with 10 mM GSH decreased the 

total adduct level to 0.7 (+/- 0.03 SD) and 1.2 (+/- 0.1 SD) µmol Pt g
-1

 DNA (18.7% 

and 8.5% of control) for the 2hr and 24hr incubations respectively. Data interpolated 

from the graph (first order exponential decay line fitted in Prism) suggests 

concentrations of values of 3.9 mM and 2.7 mM GSH are required to achieve a 50% 

decrease in total Pt-DNA adducts levels for 2hr and 24hr respectively.  
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Table 4.13: Pt-DNA adduct levels expressed as µmoles Pt/g DNA and as a percentage of the control for calf thymus DNA mixed with increasing 

concentration of GSH, then incubated with 15 µM cisplatin for 2 and 24 hours. Each value represents the mean of 3 individual experiments. 

Standard deviation is shown in brackets. 

 Concentration of GSH (mM) 

Control (0) 10 25 50 100 

2 hours µmol Pt g
-1

 DNA 3.9 (0.1) 0.7 (0.03) 0.3 (0.01) 0.1 (0.01) 0.02 (0.01) 

% Control  18.5 (0.7) 6.4 (0.3) 2.0 (0.1) 0.5 (0.1) 

24 hours µmol Pt g
-1

 DNA 13.5 (0.4) 1.2 (0.1) 0.3 (0.01) 0.1 (0.01) 0.03 (0.01) 

% Control  8.7 (0.1) 2.2 (0.01) 0.7 (0.03) 0.2 (0.02) 
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Figure 4.13: Effect of increasing GSH concentration on total adducts formation of 

cisplatin-DNA adducts. Calf thymus DNA (500 μg/ml) was reacted with 15 µM cisplatin 

for 2 hours (A) and 24 hours (B) with increasing concentrations of GSH. () Total 

platinum levels determined by ICP-MS. Solid line indicates one phase exponential 

decay curve fitted by Prism software. Each point represents the mean of 3 different 

experiments and error bars reflect standard deviation. Where not shown, error bars lie 

within the points. 
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4.2.3.3: Effect of GSH on the formation of specific types of Pt-DNA adducts 

 

Typical MonoQ elution profiles for calf thymus DNA (500 µg/ml) incubated with 15 

µM cisplatin for 2hr is shown in Figure 4.14 and with 10 mM GSH and 15 µM cisplatin 

for 2hr and 24hr in Figure 4.15. Analyses of Pt content in collected chromatographic 

fractions showed that there were four major Pt-containing products detected with 

similar retention times seen in the previous analyses with cisplatin (section 4.2.2.1). 

The four peaks were therefore assigned the same chemical nature as those observed in 

the cisplatin analyses. 

 

Mean retention times of the four mononucleotides (detected by UV) and four Pt-

containing species are shown in Table 4.14. The percentage of Pt contained in the 

products detected by ICP-MS is shown in Table 4.15. No difference in retention times 

or relative Pt contained in the peaks was observed in the presence of absence of GSH. 

Levels of Pt were lower in the reactions containing GSH but were still readily 

detectable. 
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Figure 4.14: Typical MonoQ elution pattern for calf thymus DNA (500 µg/ml)  

incubated with 15 µM cisplatin for 2hr. Solutions (100 µl) of DNA were applied to the 

column and eluted at 1 ml/min. Fractions were collected with increasing NaCl 

concentration and Pt levels in each fraction measured by ICP-MS. (), Pt 

concentration; dotted line: OD 254 nm. Peaks 1: Pt(NH3)2(R)(dGMP)]; 2: cis-

Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4: cis-Pt(NH3)2(dGMP)2 
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Figure 4.15: Typical MonoQ elution pattern for calf thymus DNA (500 µg/ml)  

incubated with 15 µM cisplatin and 10 mM GSH for 2hr (A) and 24hr (B). Solutions 

(100 µl) of DNA were applied to the column and eluted at 1 ml/min. Fractions were 

collected with increasing NaCl concentration and Pt levels in each fraction measured 

by ICP-MS. (), Pt concentration; dotted line: OD 254 nm. Peaks 1: 

Pt(NH3)2(R)(DGMP); 2: cis-Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4:cis-

Pt(NH3)2(dGMP)2 
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Table 4.14: Mean retention times for the products detected by UV absorbance and ICP-MS in purified DNA exposed to 15 µM cisplatin in the 

presence and absence of 10 mM GSH. Mean values from individual analyses of three separate DNA preparation are shown. Ranges in retention 

time are shown in brackets except for total Pt recovered in which SD is shown. 

Peak Identity Cisplatin Alone 10 mM GSH 2hr 10 mM GSH 24hr 

 dCMP 5.4 (0.1) 5.4 (0.1) 5.3 (0.2) 

 dAMP 5.9 (0.1) 6.0 (0.1) 6.0 (0.1) 

 TMP 7.2 (0.1) 7.2 (0.1) 7.2 (0.1) 

 dGMP 13.1 (0.2) 13.0 (0.1) 13.1 (0.2) 

1 Pt(NH3)2(R)(dGMP) 2.0 (0.5) 2.0 (0.5) 2.5 (0.5) 

2 cis-Pt(NH3)2d(ApG) 4.5 (0.5) 4.5 (0.5) 4.5 (0.5) 

3 cis-Pt(NH3)2d(GpG) 9.5 (0.5) 9.5 (1.0) 9.0 (1.0) 

4 cis-Pt(NH3)2(dGMP)2 12.0 (1.0) 12.0 (0.5) 11.5 (0.5) 

Total Pt Recovery (%) 97.3 (2.1) 103.4 (4.2) 106.5 (7.2) 
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Table 4.15: Percentage of the Pt in peaks formed in calf thymus DNA (500 µg/ml) 

incubated with 15 µM cisplatin +/- 10 mM GSH for 2hr and 24hr. The percentage of 

total Pt is expressed as a percentage of Pt contained in the four identified peaks in 

relation to the total Pt in the four peaks combined. Each value represents the mean of 

three individual analyses. Standard deviation is shown in brackets. 

 

Peak CT-DNA 10 mM GSH 2hr 10 mM GSH 24hr 

1 12.6 (0.4) 11.8 (0.2) 6.3 (0.1) 

2 20.2 (0.6) 22.1 (0.4) 22.7 (0.4) 

3 59.3 (1.7) 56.6 (0.9) 56.6 (1.1) 

4 7.9 (0.2) 9.4 (0.2) 14.5 (0.3) 
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It seemed possible that the formation of the cis-Pt(NH3)2(DNA)(GSH) cross-links was 

not detected because of factors such as steric hindrance resulting in a very low 

probability that GSH would react with Pt monofunctionally bound to DNA before the 

latter had undergone second arm reaction with DNA. When cisplatin was initially 

reacted with dGMP, and then further incubated with GSH (see chapter 3), there was 

evidence of GSH cross-linking to Pt-dGMP. Therefore an attempt was made to detect 

the proposed adduct in samples in which DNA was allowed to react with cisplatin 

before addition of GSH. This approach was not physiologically relevant, but previous 

published data had shown the initial reaction of cisplatin with DNA to form 

monofunctional Pt-DNA products was rapid (Eastman 1987). The strategy for these 

experiments therefore was to initially incubate with cisplatin for 1hr, and then add GSH 

to the incubation mixture and incubate further. 

 

Pure calf thymus DNA (500 µg/ml) was incubated with 15 µM cisplatin for 1hr, 

followed by addition of 10 mM GSH and further incubation for 2hr or 24hr  at 37°C 

under anoxic conditions (see section 2.7.1) and then stored at -80°C. DNA was then 

separated from low molecular weight products such as unreacted drug and products of 

the reaction of cisplatin with GSH by gel filtration on a G-75 Sephadex column as 

described in section 2.8. Collected fractions were analysed for DNA concentration by 

measuring O.D. at 254nm. All fractions containing DNA were pooled together and 

concentrated by ultrafiltration. Pt-DNA adduct levels were determined by ICP-MS.  

 

A Typical MonoQ elution profile for calf thymus DNA (500 µg/ml) incubated with 15 

µM cisplatin for 1hr is shown in Figure 4.16. Mean retention times of the four 

mononucleotides (detected by UV) and four Pt-containing species are shown in Table 
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4.16. The percentage of Pt contained in the products detected by ICP-MS is shown in 

Table 4.17.  

 

The data confirms the expected pattern of Pt containing products similar to the data for 

purified DNA incubated with cisplatin for 2hr. The main difference was the increase in 

peak 1 (attributed to cis-Pt(NH3)2(R)(dGMP)) which was expected be higher in this 

incubation due to the rapid formation of monofunctional products and slower closure to 

bifunctional. Levels of the monofunctional product would most likely have been higher 

at the time of GSH addition to the data presented here because second-arm reactions 

would have continued during the gel filtration procedure (200 minutes). Similar to 

previous analyses however, no evidence was found of the putative cis-

Pt(NH3)2(DNA)(GSH) cross-link after further incubation in the presence of 10 mM 

GSH (Figure 4.17) 
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Figure 4.16: Typical MonoQ elution pattern for calf thymus DNA (500 µg/ml)  

incubated with 15 µM cisplatin for 1hr. Solutions (100 µl) of DNA were applied to the 

column and eluted at 1 ml/min. Fractions were collected with increasing NaCl 

concentration and Pt levels in each fraction measured by ICP-MS. (), Pt 

concentration; dotted line: OD 254 nm. Peaks 1: Pt(NH3)2(R)(dGMP); 2: cis-

Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4:cis-Pt(NH3)2(dGMP)2 
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Figure 4.17: Typical MonoQ elution pattern for calf thymus DNA (500 µg/ml)  

incubated with 15 µM cisplatin for 1hr, followed by further incubation with 10 mM 

GSH for 2hr (A) and 24hr (B). Solutions (100 µl) of DNA were applied to the column 

and eluted at 1 ml/min. Fractions were collected with increasing NaCl concentration 

and Pt levels in each fraction measured by ICP-MS. (), Pt concentration; dotted line: 

OD 254 nm. Peaks 1: Pt(NH3)2(R)(dGMP); 2: cis-Pt(NH3)2d(ApG); 3: cis-

Pt(NH3)2d(GpG) and 4:cis-Pt(NH3)2(dGMP)2 
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Table 4.16: Mean retention times for the products detected by UV absorbance and ICP-MS in purified DNA exposed to 15 µM cisplatin in the 

delayed presence and absence of 10 mM GSH. Mean values from individual analyses of three separate DNA preparation are shown. Ranges in 

retention time are shown in brackets except for total Pt recovered in which SD is shown. 

Peak Identity Cisplatin Alone 10 mM GSH 2hr 10 mM GSH 24hr 

 dCMP 5.4 (0.1) 5.5 (0.1) 5.4 (0.1) 

 dAMP 5.9 (0.1) 6.2 (0.1) 6.1 (0.1) 

 TMP 7.1 (0.1) 7.1 (0.1) 7.1 (0.2) 

 dGMP 13.1 (0.1) 13.1 (0.2) 12.9 (0.2) 

1 Pt(NH3)2(R)(dGMP) 2.5 (0.5) 2.5 (0.5) 2.5 (0.5) 

2 cis-Pt(NH3)2d(ApG) 5.5 (1.0) 4.5 (0.5) 5.0 (1.0) 

3 cis-Pt(NH3)2d(GpG) 9.5 (0.5) 9.0 (1.0) 9.0 (1.0) 

4 cis-Pt(NH3)2(dGMP)2 11.5 (0.5) 11.5 (1.0) 11.5 (1.0) 

Total Pt Recovery (%) 92.4 (2.3) 94.3 (1.7) 91.3 (3.4) 
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Table 4.17: Percentage of the Pt in peaks formed in calf thymus DNA (500 µg/ml) 

incubated with 15 µM cisplatin for 1hr, followed by further incubation with 10 mM 

GSH for 2hr and 24hr. The percentage of total Pt is expressed as a percentage of Pt 

contained in the four identified peaks in relation to the total Pt in the four peaks 

combined. Each value represents the mean of three individual analyses. Standard 

deviation is shown in brackets. 

Peak CT-DNA 10 mM GSH 2hr 10 mM GSH 24hr 

1 23.0 (0.4) 8.7 (0.3) 3.2 (0.1) 

2 21.9 (0.2) 28.1 (0.9) 29.2 (1.4) 

3 52.6 (0.9) 57.5 (1.9) 55.4 (2.6) 

4 2.5 (0.1) 5.6 (0.2) 12.2 (0.6) 
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4.3: Discussion 

 

Analysis of Pt-DNA adducts formed in cells by cisplatin 

 

Previous analyses of Pt-DNA adducts had described the nature of four major Pt-

containing products formed in purified DNA. However, these studies had been limited 

to using purified DNA due to the need to work with large quantities of cisplatin-DNA 

adducts because of the limitations of using AAS to detect Pt. Advances in studying Pt-

DNA adducts were made with the development of highly sensitive immunoassays and 

32
P post-labelling assays which allowed the study of adducts at clinically relevant drug 

concentrations and analyses of Pt-DNA adducts formed in cells. These methods 

however were inherently limited to the study of specific Pt-DNA adducts, specifically 

the 1,2-intrastrand cis-Pt(NH3)2d(ApG) and cis-Pt(NH3)2d(GpG) adducts. 

 

Azim-Araghi (2003) applied ICP-MS to the previously described method of separating 

enzymatically digested DNA by anion exchange chromatography (Fichtinger-

Schepman et al 1985), and provided evidence for the formation of novel Pt-DNA 

adducts in cells incubated with cisplatin. Further analysis with purified calf thymus 

DNA provided evidence that such adducts potentially contained GSH. 

 

Evidence that GSH is able to cross-link to monofunctionally bound Pt-DNA adducts 

was published over twenty years ago (Micetich et al 1983, Eastman 1987).  More 

recently a number of strands of unpublished evidence had accumulated in studies at 

Newcastle which supported the possibility that such adducts can form. Furthermore, it 

seemed possible that they could have interesting biologically relevant properties.  
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In the present work, similar methodology to that used by Azim-Araghi was applied to 

study, in greater depth, the adducts formed by cisplatin using four human tumour cell 

lines (833K, A2780, LoVo and Mor/CPR) following incubations with cisplatin. The 

results confirmed the presence of the four major previously identified Pt-DNA adducts. 

The percentage contribution of the two major Pt-DNA products is similar to previous 

studies (Fichtinger-Schepman et al 1985, Eastman 1986). These products were also 

identified in purified calf thymus DNA incubated with cisplatin at a similar ratio. 

 

The additional Pt-containing peak identified in the analyses of Azim-Araghi however 

was not observed in any of the four cell lines investigated in this study. Azim-Araghi 

used H69/p and Mor/p cell lines. Although the H69/p cell line was not used in this 

study, both investigations used the Mor cell line. Azim-Araghi used the parental Mor/p 

cell line, whereas this study used the cisplatin-resistant Mor/CPR sub-line because the 

original cells had become contaminated and could not be procured from elsewhere. The 

Mor/CPR cell line had been derived from the Mor/P line by selection for drug 

resistance (Twentyman et al 1991). It is possible that the resistance mechanisms 

resulted in altered types of DNA adducts being formed in the Mor/CPR line compared 

to the cells used by Azim-Araghi, but it seems unlikely that a major class of adducts 

would be completely lost, especially since the extra peak could not be detected in 

analyses of DNA from three other cell lines. 

 

The evidence for the putative cis-Pt(NH3)2(DNA)(GSH) cross-link observed by Azim-

Araghi in cellular DNA was previously supported by data from incubations of cisplatin 

with calf thymus DNA in the presence of GSH. In these analyses, a product with the 

same chromatographic properties was observed to the product identified in cellular 
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DNA. No evidence for such products in purified DNA was observed in this study using 

the same incubation conditions or when GSH addition was delayed to allow initial 

binding of cisplatin to DNA. Possible reasons for the discrepancy between the previous 

results and the present data will be discussed in chapter 7. 

 

Analysis of Pt-DNA adducts formed in cells by carboplatin and oxaliplatin 

Although the main aim was to confirm the presence of additional adducts formed by 

cisplatin in cells, the study has also investigated adducts formed by carboplatin and 

oxaliplatin using the same methods, which, as described above, permit, for the first 

time, the analysis of essentially all of the Pt-containing adducts present in DNA from 

drug-treated cells. This type of analysis has never been reported before for carboplatin 

or oxaliplatin. 

 

ICP-MS analysis of Pt content in collected fractions of DNA hydrolysates from drug 

treated cells separated using the standard MonoQ system showed the presence of four 

Pt-containing products for both carboplatin and oxaliplatin. In both cases, these 

products had similar retention times and relative Pt levels of adducts to those seen in 

the incubation with cisplatin and therefore are suggested to be of a similar nature 

(except for the non-leaving groups of NH3 for carboplatin and the DACH ligand for 

oxaliplatin). The relative proportions of the four products were very similar to those 

values for cisplatin and, like cisplatin, did not vary markedly between cell lines. 

 

No additional Pt-containing products were detected following either 2hr of 24hr 

incubations with carboplatin or oxaliplatin. This indicates a lack of any evidence for 

formation of additional adducts species such as cis-Pt(NH3)2(DNA)(GSH) cross-links. 
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However, the formation of such adducts cannot be excluded. It is possible that they are 

being formed, but at levels which fall below the limit of detection of MonoQ/ICP-MS 

detection method. The lack of detection in this work does fit with the general belief that 

the effect of GSH is to inactivate intracellular cisplatin. 

 

Relationship between adduct levels and sensitivity to growth inhibition 

Factors that affect the sensitivity of cells to Pt drugs can be grouped into three classes: 

1, factors that affect access of drug to DNA, such as differences in uptake or 

intracellular thiols; 2, the properties of the adducts formed; and 3, factors that affect 

how the cell responds to the damage, such as repair or replication by-pass mechanisms. 

The latter factors are very dependent upon the nature of adducts formed. 

 

All of these factors contribute towards the GI50 values. However, if the level of adducts 

required to achieve a 50% growth inhibition (AL50) is determined, this data is 

independent of the first set of factors and so reflects the nature of adducts and how cells 

respond to them. Since the relationship between adduct levels and drug concentrations 

were linear, these values were straightforward to calculate by combining GI50 values 

and adduct dose responses. These values are shown in Table 4.18. 

 

The GI50 values for all cell lines and drugs showed a marked decrease when the 

exposure time was increased from 2hr to 24hr, as would be expected. The ratio of GI50 

for 2hr exposure was 5-22 times larger than the equivalent 24hr values (mean ratio = 

14). A similar analysis of the AL50 values shows that exposure time affected these to a 

much smaller degree, with ratios of AL50 (2hr) to AL50 (24hr) showing an average of 

1.3 across all the cell lines and drugs investigated. These data are shown in Table 4.19. 
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These findings are consistent with the decrease in GI50 with increased exposure being 

due to increased access of drug to intracellular targets. 

 

If two drugs form the same types of adducts then they should exhibit similar AL50 

values in the same cell lines. It is not clear from the literature if DNA adducts formed 

by cisplatin and carboplatin differ and, if so, to what extent and in what manner. 

Chemically they are expected to form the same adducts because the non-leaving groups 

on Pt are the same. However, data from Fichtinger-Schepman et al (1995 a) indicated 

that carboplatin forms a larger proportion of the 1,2-intrastrand cis-Pt(NH3)2d(ApG) 

adducts. Analysis of the AL50 data in Table 4.18 shows that for the 833K cells the AL50 

values of cisplatin and carboplatin are similar. However for the other cells the values 

for carboplatin are about half of the values for cisplatin, except for LoVo cells exposed 

for 24hr. This suggests that adducts formed by carboplatin can be slightly more toxic 

than those formed by cisplatin. However, the chromatographic analysis of DNA 

adducts formed in cells by cisplatin and carboplatin (Table 4.11) showed no detectable 

differences.  

 

AL50 values for oxaliplatin are generally similar to those of cisplatin and carboplatin 

after 2hr exposure and lower after 24hr, except for Mor/CPR cells where the AL50 

values are markedly higher. These data suggest that Mor/CPR cells are able to tolerate 

much larger amounts of oxaliplatin-DNA adducts than the other cell lines investigated 

in this study. This contrasts with previous findings that showed that oxaliplatin forms 

fewer Pt-DNA adducts at equitoxic concentrations. However, these were in other cell 

lines and using less sensitive or less direct methods to measure Pt-DNA adduct levels 

(Saris et al 1996, Woynarowski et al 1998, Woynarowski et al 2000).  
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Table 4.18: Units of adduct levels (AL50) values for 833K, A2780, LoVo and Mor/CPR 

cells exposed to cisplatin, carboplatin or oxaliplatin. Values were calculated in Prism 

4.0 and are expressed in µM. 

Drug Inc. Time 833K A2780 LoVo Mor/CPR 

Cisplatin 2hr 13.7 26.5 23.0 48.1 

 24hr 9.8 31.4 13.9 35.0 

Carboplatin 2hr 10.3 11.7 9.9 22.9 

 24hr 12.0 16.8 20.3 27.4 

Oxaliplatin 2hr 11.6 9.0 17.0 187.3 

 24hr 4.5 5.1 5.7 319.0 
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Table 4.19: Ratios of 2hr and 24hr GI50 and AL50 values for 833K, A2780, LoVo and 

Mor/CPR cells exposed to cisplatin, carboplatin or oxaliplatin. 

Cell Line Cisplatin Carboplatin Oxaliplatin 

Ratio GI50 AL50 GI50 AL50 GI50 AL50 

833K 6.8 1.4 18.0 0.9 22.3 2.6 

A2780 5.2 0.8 14.2 0.7 21.5 1.8 

LoVo 8.5 1.7 8.8 0.5 22.5 3.0 

Mor/CPR 8.8 1.4 17.5 0.8 12.7 0.6 
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Chapter 5 

Characterisation of cisplatin-DNA adducts formed in the 

presence of sodium thiosulfate 

 

5.1: Introduction 

 

Platinum-based anticancer complexes are often associated with severe toxicities that 

can limit their clinical usage. Endogenous sulfur-containing compounds such as 

glutathione and thiourea have been shown to bind to and inactivate platinum complexes 

(Burchenal et al 1978, Filipski et al 1979, Micetich et al 1983, Eastman 1987). As 

described in chapter 1, exogenous sulfur-containing compounds have been proposed as 

potential protective agents to limit normal tissue toxicity, and have shown promising 

protection against chemotherapy drugs both in experimental studies and clinical trials. 

These have been recently reviewed (Wang et al 2007).  

 

Sodium thiosulfate (STS) is an exogenous compound that has been proposed as a 

protective agent for patients receiving cisplatin or carboplatin-based chemotherapy. As 

described in chapter 1, STS has been recently used in oncology to reduce 

nephrotoxicity associated with cisplatin treatment. The mechanism through which this 

occurs is unclear, but is proposed to be a result of STS reducing delivery of cisplatin, 

and by reducing cisplatin accumulation (Weiner and Jacobs 1983, Shea and Howell 

1984, Elferink et al 1986). Based on the positive data accumulated for STS in 

protection against nephrotoxicity, it was proposed that STS may have a protective role 
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against cisplatin-induced ototoxicity. Neuwelt et al investigated the effects of STS in 

vitro and in vivo in protecting against carboplatin-induced ototoxicity (Neuwelt et al 

1996). They showed that STS protected against carboplatin toxicity in vitro when 

incubated for up to 8 hours after carboplatin was added, but no protection was seen 

when STS was added 24hr post-carbopaltin (Neuwelt et al 1996). Further in vitro 

studies and investigations in animals and patients have confirmed the findings that 

delayed administration of STS can reduce ototoxicity and also have indicated that this 

occurs without compromising the anti-tumour effects of either cisplatin or carboplatin 

(Neuwelt et al 1998, Muldoon et al 2000, Doolittle et al 2001, Harned 2008). 

 

STS is currently in a phase III clinical trial (SIOPEL 6) to investigate its potential 

application as a protective against ototoxicity in paediatric patients receiving cisplatin 

for standard risk hepatoblastoma. This trial is built on positive data from experiments in 

animals that led to the hypothesis that delayed administration of STS in patients can 

protect against ototoxicity without reducing antitumour efficacy. This is based on the 

assumption that STS will inactivate any unreacted drug present in patients.  

 

It is widely believed that, like endogenous sulfur-containing compounds found inside 

cells, exogenous compounds have the potential to bind and inactivate platinum 

complexes. STS is known to rapidly react with cisplatin, therefore it may have a greater 

potential than endogenous compounds such as glutathione in blocking second arm 

reactions. However, there is very limited data available on whether STS is able to enter 

cells, and whether STS has the potential to alter cisplatin-DNA adducts. There is 

evidence suggesting STS remains extracellular, however this conclusion was drawn 

from indirect evidence from studies in dogs (Gilman et al 1946), and more recently the 
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SLC13 family of sulfate transporters has been shown to have an involvement in 

thiosulfate transport into cells (Pajor 2006). 

 

The aim of this section was to test the hypothesis that, like endogenous sulfur-

containing compounds, STS has the potential to affect the formation of cisplatin-DNA 

adducts. This was investigated as follows: 

 

1. The hypothesis that STS has the ability to interact with platinated DNA to form 

novel cross-links was tested in two ways: 

a. Calf thymus DNA was incubated with cisplatin in the presence and 

absence of STS. Enzymatically digested platinum-DNA cross-links 

were separated by anion exchange chromatography and Pt-containing 

species detected by ICP-MS 

b. STS was incubated with monofunctionally bound cisplatin-dGMP (as 

described in chapter 3). Products were separated by anion-exchange 

chromatography and Pt-containing species were detected by AAS. 

 

2. The effects of concurrent/delayed administration of STS on the formation of 

platinum-DNA adducts in four human tumour cell lines was investigated in two 

ways: 

a. The effects of concurrent/delayed administration of STS on growth 

inhibition of cisplatin was measured by SRB assay 

b. The effects of concurrent/delayed administration of STS on total 

cisplatin-DNA adduct formation was measured by ICP-MS.  
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5.2: Results 

 

Pure calf thymus DNA (500 µg/ml) was mixed with 0, 0.1, 0.3, 1, 3 and 10 mM STS 

before addition of 15 µM cisplatin. The mixtures were incubated for 2hr and 24hr at 

37°C under anoxic conditions, and then stored at -80°C. DNA was then separated from 

low molecular weight products such as unreacted drug and products of the reaction of 

cisplatin with STS by gel filtration on a G-75 Sephadex column as described in section 

2.8 (and as used in chapter 4 to separate glutathione reaction mixtures). Collected 

fractions were analysed for DNA concentration by measuring OD at 254nm and Pt 

concentration by AAS (section 2.10). All fractions containing DNA were pooled 

together and concentrated by ultrafiltration as described in section 2.8. Pt-DNA adduct 

levels were determined by ICP-MS (section 2.11).   
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5.2.1: Gel filtration separation of platinated DNA 

 

Typical gel filtration chromatographic separations for reaction mixtures in the absence 

(A) and presence (B) of STS are shown in Figure 5.1. These results showed that DNA 

passed though the column rapidly typically eluting between 40 and 60 minutes post-

injection (Figure 5.1, peak 1). This is consistent with its exclusion from the G-75 

Sephadex beads because of its high molecular weight. Unbound platinum eluted 

typically between 115 and 155 minutes (Figure 5.1 – Graph A peak 2). Following 2 

hour incubation, 37.2% of the total platinum eluted was associated with the DNA 

(Figure 5.1 – Graph A peak 1). These findings are consistent with similar separations in 

this thesis for glutathione reactions (see chapter 4). 

 

The presence of 0.1 mM STS in the incubation caused a decrease from 37% to 17% of 

the total platinum associated with DNA (Figure 5.1 – Graph B peak 1). An additional 

optical density peak was observed between 110 and 140 minutes that eluted slightly 

earlier than unbound platinum (Figure 5.1 – Graph B peak 2), a phenomenon also seen 

with glutathione (see chapter 4). This product is likely to be a conjugate between 

cisplatin and STS. Typical Pt recovery was greater than 90% of the total Pt loaded for 

all separations. 
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Figure 5.1: Typical Sephadex G-75 gel elution profiles of calf thymus DNA (500 µg/ml) 

incubated for 2hr at 37°C with cisplatin (15 µM) alone (A) and with 0.1 mM STS (B). 

(), Optical density was measured at OD 254 nm. (), Platinum concentrations 

determined by AAS. Peaks are: 1, DNA; 2, low molecular weight products such as 

unreacted cisplatin or STS; 3, possible cisplatin-STS conjugate 
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5.2.1.1: Effect of STS on total Pt-DNA adduct level 

 

Pt-DNA adducts levels for calf thymus DNA mixed with increasing concentrations of 

STS and incubated with 15 µM cisplatin for 2hr or 24hr are shown in Table 5.1. Total 

adduct levels as a percentage of control for 2 hours (A) and 24 hours (B) incubation are 

plotted in Figure 5.2. 

 

When no STS was added, a total adduct level of 10.5 (+/- 0.7 SD) µmol Pt g
-1

 DNA 

was observed after a 2hr incubation with cisplatin. This increased to 20.8 (+/- 0.4 SD) 

µmol Pt g
-1

 DNA when incubated for 24 hours. Incubation with 0.1 mM STS decreased 

the total adduct level to 4.1 (+/- 0.2 SD) and 5.8 (+/- 0.5 SD) µmol Pt g
-1

 DNA (39% 

and 28% of control) for the 2hr and 24hr incubations respectively. Incubation with 1 

mM STS caused a decrease to less than 5% of the control value. Data interpolated from 

the graph (first order exponential decay line fitted in Prism) suggests concentrations of 

values of 0.07 and 0.05 mM STS are required to achieve a 50% decrease in total Pt-

DNA adducts levels for 2hr and 24hr respectively.  
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Table 5.1: Overall Pt-DNA adducts levels formed by the reaction of cisplatin with pure DNA in the presence of varied concentrations of STS. 

DNA was reacted with 15 µM cisplatin for 2hr and 24hr. Each value represents the mean of 3 individual experiments. Standard deviation is 

shown in brackets. 

 

 Concentration of STS (mM) 

Control (0) 0.1 0.3 1 3 10 

2 hours µmol Pt g
-1

 DNA 10.5 (0.7) 4.1 (0.2) 1.6 (0.1) 0.5 (0.01) 0.2 (0.01) 0.03 (0.01) 

% Control  39.2 (1.6) 14.9 (0.5) 4.3 (0.1) 1.5 (0.1) 0.3 (0.01) 

24 hours µmol Pt g
-1

 DNA 20.8 (0.4) 5.8 (0.5) 2.6 (0.1) 0.8 (0.1) 0.2 (0.01) 0.06 (0.01) 

% Control  28.0 (2.4) 12.4 (0.5) 3.6 (0.3) 0.8 (0.02) 0.3 (0.03) 
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Figure 5.2: Effect of increasing STS concentration on the level of total adducts formed 

on DNA by cisplatin. 500 µg/ml calf thymus DNA was reacted with 15 µM cisplatin for 

2 hours (A) and 24 hours (B) with increasing concentrations of STS. () Total platinum 

levels determined by ICP-MS. Solid line indicates one phase exponential decay curve 

fitted by Prism software. Each point represents the mean of 3 different experiments and 

error bars reflect standard deviation. Where not shown, error bars lie within the points. 
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5.2.1.2: Reaction of cisplatin with STS 

 

Cisplatin was initially reacted alone with STS to determine the chromatographic 

properties of cisplatin-TS. This was important to ensure any novel chromatographic 

products formed in reactions involving dGMP, cisplatin and STS were not cisplatin-TS 

conjugates. Cisplatin was dissolved in water to a concentration of 2 mM. STS was 

dissolved in water to a concentration of 4 mM, and pH adjusted to 7.0. Cisplatin and 

GSH were incubated for 24hr in a 1:2 molar ratio (1:2 mM). Products of the reaction 

were analysed using the standard MonoQ system (section 2.9). The concentration of Pt 

in each fraction was determined by AAS. A typical MonoQ elution profile is shown in 

Figure 5.3. 

 

Cisplatin had previously been shown to elute very rapidly from the MonoQ column (see 

chapter 3). However, it was unclear where cisplatin-TS conjugates would elute. Three 

peaks were detected by UV absorbance eluting at approximately 21 minutes, and 28-29 

minutes (Figure 5.3). The latter peaks were the only detected species associated with Pt, 

and these were therefore attributed to be Pt-TS conjugates. The earlier peak eluting at 

approximately 21 minutes was unreacted STS in the mixture and not an impurity. This 

had previously been determined by injecting STS alone into the chromatographic 

system. UV absorbance for STS (injected alone) was higher at 230 nm than at 254 nm, 

and this fits in with data published showing TS has a UV absorbance, maximum at 212 

nm (Krull and LaCourse 1987). 
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Figure 5.3: Typical MonoQ elution profile for 1 mM cisplatin incubated with 2 mM 

STS for 24hr: 100 µl was applied to the MonoQ column and eluted with increasing 

NaCl concentrations. Pt concentration in collected fractions was determined by AAS. 

(●) Pt concentration; dotted red line: OD 254 nm; dotted blue line: OD 230 nm. 

Overall Pt recovery was always with 10% of total Pt loaded. 
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5.2.2: Effect of STS on the formation of Pt-DNA adducts in pure DNA 

 

Calf thymus DNA was incubated with 15 µM cisplatin in the presence and absence of 2 

mM STS as described earlier, and separated from low molecular weight material by gel 

filtration and concentrated by ultrafiltration. This DNA was enzymatically digested and 

the products by MonoQ anion exchange chromatography. Platinum eluted in collected 

fractions was measured by ICP-MS. 

 

Chromatographic separation and analysis of platinum in collected fractions of calf 

thymus DNA incubated with 15 µM cisplatin for 2 hours (Figure 5.4) confirmed the 

formation of the four known major adducts as described in chapters 3 and 4. In order of 

elution these were: Pt(NH3)2(R)(dGMP), cis-Pt(NH3)2d(ApG), cis-Pt(NH3)2d(GpG) and 

cis-Pt(NH3)2(dGMP)2.  

 

Analysis of Pt-DNA adducts present on the first preparation of DNA that had been 

reacted with cisplatin in the presence of STS revealed a clear additional Pt-containing 

peak which eluted at approximately 16 minutes (Figure 5.5, graph A). This was 

confirmed by further hydrolysis and chromatographic analysis of the same DNA 

preparation and was thought to potentially represent a cross-link between DNA and 

thiosulfate (TS). However, when further preparations of DNA were made (3 individual 

preparations) in subsequent reactions of DNA with cisplatin and STS under exactly the 

same conditions, these failed to confirm the presence of the additional peak (Figure 5.5, 

graph B).  
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Figure 5.4: Typical MonoQ elution profile for enzymatically digested calf thymus DNA 

(500 µg/ml) digested after reaction with 15 µM cisplatin. Solutions (100 µl) of DNA 

were injected onto the MonoQ column and eluted at 1 ml/min with increasing NaCl 

concentrations. Platinum levels in collected fractions was determined by ICP-MS. (●) 

Platinum concentration; dotted line: OD 254 nm. Peaks are 1: cis-

Pt(NH3)2(R)(dGMP); 2: cis-Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4: cis-

Pt(NH3)2(dGMP)2. Overall Pt recovery was greater than 90% of total Pt loaded. 

   



249 

 

0 5 10 15 20 25

0

5

10

15

20

0.0

0.2

0.4

0.6

0.8

1.0

1 2

3

4

5

A

Time (mins)

[P
la

ti
n

u
m

] 
(p

m
o

le
s
/m

l)

O
D

 2
5

4
n

m

0 5 10 15 20 25

0

5

10

15

20

0.0

0.2

0.4

0.6

0.8

1.0

1

2

3

4

B

Time (mins)

[P
la

ti
n

u
m

] 
(p

m
o

le
s
/m

l)

O
D

 2
5

4
n

m

 

Figure 5.5: Typical MonoQ elution profiles for enzymatically digested calf thymus 

DNA (500 µg/ml) digested after reaction with 15 µM cisplatin and 2 mM STS for 2hr. 

Figures A and B are individual analyses of separate DNA preparations. Solutions (100 

µl) of DNA were injected onto the MonoQ column and eluted at 1 ml/min with 

increasing NaCl concentrations. Platinum levels in collected fractions was determined 

by ICP-MS. (●) Platinum concentration; dotted line: OD 254 nm. Peaks are 1: cis-

Pt(NH3)2(R)(dGMP); 2: cis-Pt(NH3)2d(ApG); 3: cis-Pt(NH3)2d(GpG) and 4: cis-

Pt(NH3)2(dGMP)2. The putative identity of 5 is cis-Pt(NH3)2(dGMP)(TS). Overall Pt 

recovery was greater than 90% of total Pt loaded.  
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5.2.3: Effect of STS on the reaction of cisplatin with dGMP 

 

The initial experiment with calf thymus DNA showed evidence of a potential cis-

Pt(NH3)2(DNA)(STS) cross-link. As the evidence for such a product was very limited, 

experiments similar to those described in chapter 3 with dGMP were carried out to 

determine if it was plausible that STS-nucleotide cross-links could form and, if so, to 

determine their chromatographic behaviour.  

 

Incubation of equimolar (1 mM) cisplatin with dGMP led to the formation of three 

monofunctional products and one bifunctional platinum product. The identification of 

these products is described in detail in section 3.3. Figure 5.6 (graph A) shows a typical 

MonoQ elution profile for the products formed by reaction of cisplatin with dGMP for 

24hr in the present series of experiments. The identities of the peaks are cis: unreacted 

cisplatin; 1: cis-Pt(NH3)2(OH2)(dGMP); 2: cis-Pt(NH3)2(OH)(dGMP); 3: cis-

Pt(NH3)2(Cl)(dGMP)  and 4: cis-Pt(NH3)2(dGMP)2. Interestingly, peak 5 appeared to 

elute quicker in the reaction with STS, although this is probably reflective of subtle 

variations in chromatographic buffer conditions as discussed in chapter 3. 

 

After the initial incubations of cisplatin with dGMP for 24hr to generate the products 

shown in Figure 5.6 (graph A), STS (1 mM) was added to the reaction mixture and 

further incubated at 37°C for 24hr. The products present at that time were analysed by 

chromatography using the MonoQ column Figure 5.6 (graph B). Trace levels of the cis-

Pt(NH3)2(OH2)(dGMP) species of cisplatin (peak 1) were still detectable, as was the 

bifunctional cis-Pt(NH3)2(dGMP)2 species (peak 4). There was no evidence of any 

unreacted cisplatin. An additional platinum-containing species was detected that eluted 



251 

 

at approximately 16 minutes (Figure 5.6 – Graph B). This product was observed in 3 

MonoQ analyses each of an individual reaction. It is proposed that this product is a cis-

Pt(NH3)2(dGMP)(STS) cross-link. 

 

Interestingly, the levels of the bifunctional cis-Pt(NH3)2(dGMP)2 peak were lower (10 

nmoles/ml (Figure 5.6 – Graph A peak 4) to 4 nmoles/ml (Figure 5.6 – Graph B peak 

4)). This is further complicated by the appearance of detectable levels of dGMP (Figure 

5.6 – Graph B, peak dGMP). The reason for this phenomenon is unknown, but it 

suggests a possibility that STS may have the capacity to displace dGMP bound to 

platinum. The work in this thesis does not address that possibility.  
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Figure 5.6: MonoQ elution profile for 1mM cisplatin and dGMP 24hr (A) and with STS 

(1 mM) for a further 24hr (B): Solutions (100 µl) were applied to the MonoQ column 

and eluted with increasing NaCl concentrations. Platinum concentration in collected 

fractions was determined by AAS. (●) Platinum concentration; dotted line: OD 254 nm. 

Peaks are 1: unreacted cisplatin; 2: cis-Pt(NH3)2(OH2)(dGMP); 3: cis -

Pt(NH3)2(OH)(dGMP); 4: cis-Pt(NH3)2(Cl)(dGMP)  and 5: cis-Pt[(NH3)2d(GMP2. 

Overall Pt recovery was greater than 90% of total Pt loaded. 
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5.2.4: Effect of STS on the antiproliferative activity of cisplatin in human tumour 

cell lines 

 

As discussed in section 5.1, an aim of the work described in this chapter was to 

investigate the effects of STS on cisplatin-induced DNA adduct formation in cells. 

Initially the effects of STS on cisplatin sensitivity of the cells to be used for adduct 

studies was confirmed. 

 

Three incubation schedules were chosen for measuring the effects of STS on human 

tumour cells exposed to cisplatin. The individual schedules are described in Figure 5.7. 

In the SIOPEL 6 clinical trial, cisplatin is infused i.v. over a 6hr period with 

accompanying hydration, followed by a further 6hr hydration period. At this 12hr point, 

STS infusion begins over a 6hr period, although the actual infusion is 125 mg/ml STS 

i.v. for 15 minutes. In patients with normal renal function, STS has a half-life in serum 

of 15 minutes (Schulz 1984, Araya et al 2006). The delayed schedule used in this study 

most clearly mimics this setup. A lower concentration of STS (12.6 mM) was chosen 

for these incubations to that used in the clinical trial. This equates to 2 mg/ml STS, 

which is the concentration of STS used in earlier experiments (Neuwelt et al 1996). The 

concurrent schedule is expected to demonstrate the greatest effect but this could result 

from extracellular as well as intracellular interactions of STS and cisplatin. The 

sequential schedule should eliminate the effects resulting from extracellular reactions of 

STS with cisplatin and any effects should result from inactivation of intracellular 

cisplatin or its reactive derivatives.   
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Figure 5.7: Incubation schedule for exposure of human tumour cell lines to cisplatin in 

the presence and absence of STS. Incubation schedule for growth inhibition 

experiments is shown in panel A and for determination of total Pt-DNA adducts in 

panel B. 
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5.2.5: Effect of STS on growth inhibition by cisplatin 

 

Human tumour cells 833K, A2780, LoVo and Mor/CPR were seeded into 96 well 

plates at 8000 cells/well and incubated with various concentrations of cisplatin. STS 

concentration was constant at 12.6 mM. Cisplatin and STS were added at various times 

as described in Figure 5.7 (panel A). Growth inhibition experiments were terminated at 

72hr post-cisplatin addition. This is the same endpoint used in growth inhibition 

experiments with cisplatin alone in chapter 4. Growth inhibition was assessed using the 

SRB assay as described in section 2.4. The effects of concurrent, sequential and 

delayed administration of STS are shown in Figure 5.8 - Figure 5.10. GI50 values for 

the four cell lines are given in Table 5.2. 

  

Co-incubation of cisplatin and STS led to 35, 21, 22 and >17-fold increases in GI50 

values for 833K, A2780, LoVo and Mor/CPR cells respectively. Sequential and 

delayed exposure to STS had no significant effect on growth inhibition in any of the 

four cell lines tested.  
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Figure 5.8: The effect of concurrent administration of STS on growth inhibition by 

cisplatin in 833K (A), A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cells were 

incubated with cisplatin alone () or cisplatin and 12.6 mM STS (). Each point 

represents the mean of 3 different experiments and error bars reflect standard 

deviation. Where not shown, error bars lie within the points. 
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Figure 5.9: The effect of sequential administration of STS on growth inhibition by 

cisplatin in 833K (A), A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cells were 

incubated with cisplatin alone () or cisplatin and 12.6 mM STS ().Each point 

represents the mean of 3 different experiments and error bars reflect standard 

deviation. Where not shown, error bars lie within the points. 
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Figure 5.10: The effect of delayed administration of STS on growth inhibition by 

cisplatin in 833K (A), A2780 (B), LoVo (C) and Mor/CPR (D) cells. Cells were 

incubated with cisplatin alone () or cisplatin and 12.6 mM STS (). Each point 

represents the mean of 3 different experiments and error bars reflect standard 

deviation. Where not shown, error bars lie within the points. 
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Table 5.2: GI50 values for 833K, A2780, LoVo and Mor/CPR cells incubated with 

cisplatin +/- STS and respective ratio’s. Ratios are calculated as : GI50 cisplatin + STS/ 

GI50 cisplatin.  

Cell Line Incubation Concurrent Sequential Delayed 

833K 

Cisplatin 1.4 µM 1.5 µM 1.3 µM 

Cisplatin + STS 50.3 µM 1.6 µM 1.3 µM 

Ratio 35 1 1 

A2780 

Cisplatin 2.2 µM 2.3 µM 2.2 µM 

Cisplatin + STS 45.5 µM 2.4 µM 2.2 µM 

Ratio 21 1 1 

LoVo 

Cisplatin 2.7 µM 2.9 µM 2.9 µM 

Cisplatin + STS 59.9 µM 3.0 µM 2.7 µM 

Ratio 22 1 1 

Mor/CPR 

Cisplatin 29.4 µM 30.5 µM 30.5 µM 

Cisplatin + STS > 500 µM 30.3 µM 29.7 µM 

Ratio > 17 1 1 
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5.2.6: Effect of STS on total Pt-DNA adduct formation 

 

Human tumour cells 833K, A2780 and LoVo cells were incubated with 3 µM cisplatin 

in the presence and absence of 12.6 mM STS. Mor/CPR cells were incubated with 30 

µM cisplatin +/- STS. The choice of concentrations was based on GI50 concentrations 

determined in chapter 4. Incubation times are shown in Figure 5.7 (panel B). 

Immediately after the endpoint, cells were harvested and tubes containing pellets were 

frozen at -80°C. DNA was extracted using the hydroxyapatite method as described in 

section 2.5. DNA extracted from cells was hydrolysed overnight at 70°C in 3.5% nitric 

acid. Total Pt-DNA adducts levels were determined by ICP-MS as described in 2.11. 

 

For the incubation schedules described earlier (Figure 5.7) the three treatment 

schedules resulted in sets of samples where cells were all exposed to cisplatin for 6hr 

but were harvested at three different time points. The data (Figure 5.11) shows a 

general decline in total adduct level with time, although there appears to be a transient 

rise in adduct levels at the 12hr time point for 833K cells. This will be discussed further 

at the end of this chapter. 

 

Concurrent incubation of human tumour cells with cisplatin and STS led to 2.4, 3.6, 3.1 

and 10.1 fold reductions in adduct level for 833K, A2780, LoVo and Mor/CPR cells 

respectively (Figure 5.12, Table 5.3). These values were significant (p = < 0.0001, 0.02, 

0.0002 and 0.0034 for 833K, A2780, LoVo and Mor/CPR cells respectively). No 

significant decreases in Pt-DNA adducts levels were observed in any of the four cell 

lines when STS was added in the sequential or delayed regimes (Figure 5.12, Table 

5.3).  



261 

 

0 4
0

25

50

75

100

5 10 15 20

Time (hrs)

C
is

p
la

ti
n

-D
N

A
 A

d
d

u
c
t 

L
e
v
e

l

n
m

o
l 

P
t 

g
-1
 D

N
A

 

Figure 5.11: Changes in total Pt-DNA adducts formed in 833K (), A2780 (), LoVo 

() and Mor/CPR () cells following incubation with cisplatin at 3, 3, 3 and 30 µM 

respectively. Cells were incubated with cisplatin and harvested at varying timepoints. 

Total Pt-DNA adducts levels were determined by ICP-MS. Each point represents the 

mean of 3 different experiments and error bars reflect standard deviation. Where not 

shown, error bars lie within the points. 
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Figure 5.12: Analysis of total cisplatin-DNA adduct level in 833K, A2780, LoVo and 

Mor/CPR cells following concurrent (A), sequential (B) and delayed (C) incubation 

with cisplatin +/- STS. Each bar represents the mean of 3 different experiments and 

error bars reflect standard deviation. Where not shown, error bars lie within the points. 

*, p = <0.05, **, p = < 0.01, ***, p = < 0.001 
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Table 5.3: Effect of STS of cisplatin-DNA adducts formation in four cell lines exposed to cisplatin using three different schedules. 833K, A2780, 

LoVo and Mor/CPR cells were incubated (6hr) with (3, 3, 3 and 30 µM cisplatin respectively. STS (12.6 mM, 6hr) was present concurrently, 

immediately after of or after a 6hr delay relative to the exposure of cisplatin. Each value represents the mean of 3 individual experiments. 

Standard deviation is shown in brackets. 

 Concurrent Sequential Delayed 

Cisplatin Cisplatin + STS Cisplatin Cisplatin + STS Cisplatin Cisplatin + STS 

833K nmol Pt g
-1

 DNA 39.6 (1.9) 16.6 (1.7) 50.8 (2.7) 47.5 (1.5) 31.5 (1.4) 33.5 (3.1) 

% Cisplatin Alone  41.9 (4.2)  93.3 (3.8)  106.1 (7.9) 

A2780 nmol Pt g
-1

 DNA 35.6 (4.3) 10.0 (2.2) 26.7 (3.8) 28.0 (2.6) 23.1 (1.0) 22.5 (2.0) 

% Cisplatin Alone  28.0 (6.1)  105.2 (7.2)  97.4 (5.6) 

LoVo nmol Pt g
-1

 DNA 22.6 (1.6) 7.4 (1.8) 16.3 (0.6) 17.3 (1.3) 14.6 (1.2) 15.6 (1.2) 

% Cisplatin Alone  32.5 (8.2)  106.4 (6.0)  106.9 (5.2) 

Mor/CPR nmol Pt g
-1

 DNA 81.7 (7.9) 8.0 (1.0) 50.4 (5.4) 54.4 (2.3) 44.5 (2.9) 46.0 (5.9) 

% Cisplatin Alone  9.8 (1.2)  107.8 (2.8)  103.5 (7.3) 
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5.3: Discussion 

 

STS is currently in a phase III clinical trial (SIOPEL 6) to investigate its ability to 

reduce ototoxicity in patients receiving cisplatin for standard risk hepatoblastoma. It is 

hypothesised that STS binds to unreacted platinum compounds in extracellular 

compartments, inactivating the drug before it interacts with DNA. Although there is 

recent evidence suggesting that thiosulfate ions are transported into cells by the SLC13 

family of sulfate transporters (Pajor 2006), it is generally assumed that STS does not 

enter cells and this view is based on pharmacokinetic data from dogs (Gilman et al 

1946). In the clinical trial, STS is administered 6 hours after cessation of cisplatin 

infusion. This was based on data showing that delayed administration of STS can 

significantly reduce toxicity without affecting platinum drug antitumour efficacy 

(Howell and Taetle 1980, Neuwelt et al 1996, Muldoon et al 2000). 

 

There is however no conclusive data to eliminate the possibility of STS entering cells. 

Also, it is not clear whether or not, if STS did accumulate intracellularly, it might affect 

the quantity or quality of the DNA adducts that were formed by cisplatin. Other sulfur-

containing compounds such as glutathione and thiourea have previously been shown to 

bind DNA via Pt (Burchenal et al 1978, Filipski et al 1979, Micetich et al 1983, 

Eastman 1987). It was therefore hypothesised that STS could potentially alter the types 

of Pt-DNA adducts formed in cells if it were able to enter cells. 

 

The data presented in this chapter showed that STS is able to inhibit the binding of 

cisplatin to purified DNA (Table 5.1). The extent of this inhibition is concentration 

dependent. For 2hr incubations it was estimated that 0.07 mM STS would cause a 50% 
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decrease in DNA adduct formation. In contrast, data in chapter 4 shows that 3.9 mM 

GSH was needed to cause a similar effect under exactly the same conditions of DNA 

and cisplatin concentration. For 24hr incubations, the equivalent concentrations were 

estimated to be 0.05 mM STS and 2.7 mM GSH. Thus, to achieve similar effects of 

adduct formation STS needed to be present at concentrations of approximately 55-fold 

lower than GSH. This implies that if a small quantity of STS entered cells it could, in 

principle, exert a strong effect on the intracellular pharmacology of cisplatin. 

 

Chromatographic separation and analysis of individual platinum adducts on calf thymus 

DNA by ICP-MS failed to give consistent evidence for the formation of cross-links 

involving STS. Although there was evidence for a novel platinum-containing product in 

some analyses (Figure 5.5), the majority of experiments failed to show the presence of 

detectable quantities of this product. A platinum-containing product with the same 

chromatographic properties as the novel Pt-containing product detected in hydrolysates 

of one of the DNA preparations was observed when dGMP was incubated with 

cisplatin, followed by incubation with STS (Figure 5.6). It is therefore concluded that 

although such novel products could not be reproducibly induced, the possibility that 

STS is able to form novel products with DNA can be excluded. 

 

Growth inhibition experiments confirmed that in four cell lines, concurrent incubation 

with cisplatin and STS is detrimental to the anti-tumour efficacy of cisplatin, with 35-, 

21- and 22-fold increases in GI50 concentrations observed for 833K, A2780 and LoVo 

cells. This data is consistent with previous experiments which showed that STS has an 

antagonistic effect on platinum drugs when exposed simultaneously or within a short 

period of time after (Howell and Taetle 1980, Neuwelt et al 1996, Muldoon et al 2000). 
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Neither sequential nor delayed administration of STS had any effect in this study on the 

antiproliferative effects of cisplatin as reported previously (Neuwelt et al 1996, 

Muldoon et al 2000). 

 

The incubations schedules described above for the study of total Pt-DNA adducts 

resulted in a consistent 6hr exposure to cisplatin, but varying time points at which cells 

were harvested. The data for all cell lines showed a decrease in overall adduct level 

with increase in time after the end of cisplatin incubation (Figure 5.11). This could 

reflect the effects of DNA repair processes. It is however possible that this could be a 

result of dilution of DNA adducts levels due to increases in the amount of total DNA in 

the culture as a result of continued DNA replication. Although DNA damage can halt 

DNA replication (e.g. via p53 mediated G1 arrest) or stalling at replication sites, this 

does not always occur. The p53 pathway is likely to be inactivated in cancer cell lines 

and DNA replication can by-pass Pt-DNA adducts. 

 

A general decline is seen in total adduct level over although there appears to be a 

transient rise in adduct levels at the 12hr time point for the 833K cells. This 

phenomenon is seen in both the cells incubated with cisplatin alone and the cells 

incubated with cisplatin followed by STS. Adduct levels decrease at the 18hr timepoint. 

It is possible therefore that in the 833K cells Pt-DNA adduct levels continue to increase 

during the time between the 6hr and 12hr timepoints. As the 833K cells are the most 

sensitive to cisplatin of the four cell lines studied it is possible that they were more 

strongly inhibited during the first few hours after drug exposure hence the lower values 

in the 6hr incubation. 
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The data presented in this chapter support the hypothesis that STS is unable to enter 

cells, and is effective in the extracellular compartment. The data also support the 

previous findings that delaying administration of STS has no effect on the antitumour 

effects of STS. Neither sequential nor delayed administration of STS had any 

significant effect on GI50 values in any of the four human cell lines analysed (Table 

5.2). However, concurrent incubation of human tumour cells with cisplatin and STS 

caused significant increases in GI50 values (Table 5.2). A similar trend was seen when 

total Pt-DNA adducts levels were measured, with significant decreases in total Pt-DNA 

adducts levels observed when human tumour cells were incubated with cisplatin and 

STS concurrently, and no significant effect observed when administration of STS was 

delayed (Table 5.3). 

 

What is not apparent however is the discrepancy between the fold changes observed for 

GI50 values and those found for total Pt-DNA adducts? Adduct levels are normally 

linearly related to drug dose, and higher levels of adducts observed at higher drug 

doses. In this study, 2.4-, 3.6-, 3.1- and 10.1-fold decreases in total Pt-DNA adducts 

levels were observed for 833K, A2780, LoVo and Mor/CPR cells respectively when 

cisplatin and STS were incubated with cells concurrently. However, GI50 values 

increased by 35-, 21- and 22-fold for 833K, A2780 and LoVo cells respectively. One 

potential explanation for this phenomenon is that Pt-DNA adducts formed in cells in the 

presence of STS are of a different nature to those formed when exposed to cisplatin 

alone. This is discussed further in chapter 7. 
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Chapter 6 

Investigation of adducts formed in biopsies from ovarian 

cancer patients following treatment with carboplatin 

 

6.1: Introduction 

 

Understanding of Pt drug pharmacology in vitro has provided substantial information 

on the formation of Pt-DNA adducts. Suitable techniques have been developed and 

optimised that have shed light on the nature of adducts formed, although their 

individual contribution to the cytotoxic mechanism of Pt-containing anticancer drugs 

remains unclear. However, there has been very little investigation into the formation of 

Pt-DNA adducts in patients receiving Pt-based chemotherapy clinically. Such studies 

are limited by the difficulties in obtaining tumour samples, especially from patients 

immediately after chemotherapy, which is critical to allow accurate reporting of drug 

levels in tumours at times that are clinically relevant to drug administration. The 

inability to repeatedly remove such biopsies is an additional constraint resulting in 

studies limited to small sample sizes and numbers. Investigating intra-tumoural Pt 

levels is also limited by the inherently low levels of Pt-DNA adducts. For this reason 

analysis of clinical samples has required the development of highly sensitive assays for 

studying Pt-DNA adducts. 

 

Early investigations indicated associations between adducts formed in PBLs and 

clinical response and toxicity (Reed et al 1988, Reed et al 1990) and showed 
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correlations between adducts formed in PBLs in patients receiving cisplatin 

chemotherapy and PBLs incubated with cisplatin in vitro (Fichtinger-Schepman et al 

1995, Oshita et al 1995). However, contradictory evidence has been published (Bonetti 

et al 1996). Unfortunately these earlier studies did not investigate the pharmacokinetics 

of Pt drugs. When pharmacokinetics was studied along with Pt-DNA adduct formation 

in PBLs poor correlation was found between in vivo adduct levels and unbound or total 

cisplatin plasma concentrations, leading to the conclusion that variations in Pt-DNA 

adduct formation is not predominantly determined by free drug concentration in the 

circulation (Peng et al 1997, Veal et al 2001, Veal et al 2007).  

 

It is important to note however that the studies mentioned above investigated Pt-DNA 

adduct formation in normal blood cells. Studies on tumour tissue are much less 

common. Drug exposure in tissues is intrinsically more complex than in the blood 

stream and factors such as differences in vasculature access, blood flow, capillary 

permeability, interstitial pressure and lymphatic drainage may vary in tumours (Jain 

1996). Drug access is also limited by the surrounding tissues (Hobbs et al 1998). 

 

One of the first reported in vivo studies on solid tumour Pt levels was published by 

Fichtinger-Schepman et al (Fichtinger-Schepman et al 1989). This study involved 

administration of cisplatin to female LOU/M rats bearing either a cisplatin-resistant or 

sensitive IgM immunocytoma, with animals sacrificed at 1hr or 24hr after 

administration. Total levels of Pt were determined for the kidneys, liver, spleen, tumour 

and blood by ELISA and/or AAS. After a 1hr exposure, total tissue levels of Pt were in 

the order of kidney > liver > tumour > spleen. After 24hr, Pt levels were in the order of 

kidney > liver > spleen > tumour. The greatest decrease in Pt levels was observed in the 
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resistant tumours. Cisplatin-DNA adduct levels determined by competitive ELISA 

showed the same ranking as Pt levels. Except for the kidneys, all samples showed a 

decrease in Pt-DNA adduct level between 1hr and 24hr. It was concluded from the data 

that the difference in susceptibility to cisplatin between sensitive and resistant tumours 

was not a result of decreased Pt content or lower levels of Pt-DNA adduct formation. In 

another study, Zamboni et al implanted human non-small cell lung cancer H23 cells 

into SCID mice and investigated Pt disposition in cells (Zamboni et al 2004). Total Pt 

in plasma ultrafiltrate and tissue homogenates (tumour, liver, kidney and spleen) was 

determined by AAS. Tumour extracellular fluid (ECF) was collected by microdialysis 

for determination of unbound Pt concentration. After microdialysis, tumour samples 

were collected (at the site of probe insertion). Total Pt in tumour samples was 

determined by AAS and levels of 1,2-intrastrand cis-Pt(NH3)2d(GpG) and cis-

Pt(NH3)2d(ApG) adducts determined using a 
32

P post-labelling assay. Zamboni et al 

found that the AUC of free cisplatin in the plasma increased with dose, but this was not 

consistent with the AUCECF. They also showed a considerable variability in total 

unbound Pt in both ECF and tumour homogenates, and no relationship between 

AUCECF and total Pt or Pt-DNA adduct formation. 

 

More recently, studies have been published investigating formation of Pt-DNA adducts 

in biopsies of head and neck squamous cell carcinoma (HNSCC) removed from 

patients (Hoebers et al 2006, Hoebers et al 2008). These studies investigated Pt-DNA 

adduct formation following two types of infusion – selective intra-arterial (IA) high 

dose cisplatin with systemic STS rescue and intravenous (IV) standard dose cisplatin. 

The hypothesis behind this approach was that adduct formation in the primary tumour 

would be significantly greater with the higher dose IA administration. However, no 
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significant difference was observed in primary tumours. Also, Pt-DNA adducts levels 

were found to be higher in white blood cells (WBC) following standard dose IV 

administration. No correlation was observed between Pt-DNA adducts levels in WBC 

and in tumour tissue. These findings further confirm data obtained from previous 

studies (Peng et al 1997, Veal et al 2001, Veal et al 2007), indicating that variation in 

Pt-DNA adducts formation cannot be attributed simply to drug dose or AUC of drug in 

the plasma, and suggest that WBC adducts levels may not be predictive markers for 

patient response to Pt drug chemotherapy. 

 

The aim of the work presented in this chapter was to determine Pt-DNA adduct levels 

in human ovarian tumour biopsies and compare these levels with Pt-DNA adduct levels 

in peripheral blood cells, and to compare adduct levels with plasma pharmacokinetics 

following carboplatin treatment. The techniques used here have not been previously 

applied to measuring Pt-DNA adducts levels in solid human tumour tissue and no data 

at all for adduct levels in clinical solid ovarian tumour has previously been reported. 
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6.2: Study Methods 

6.2.1:  Ovarian Cancer Overview and Patient Details 

 

Ovarian cancer is a term used to describe over 30 different types of malignancies, each 

with its own unique characteristics and responses. Ovarian tumours are divided into 

three major categories based on the cell types they originated within: epithelial 

tumours, germ-cell tumours and sex-cord stromal tumours. Epithelial tumours arise in 

the cells that cover the ovaries. All four patients in this study presented with epithelial 

tumours. 

 

Epithelial ovarian tumours are further classified by the cells from which they originate. 

The most common are serous tumours, accounting for 40% of the total epithelial 

tumours. Serous tumours typically occur in patients between the ages of 40 and 60. 

Endometrioid tumours account for 20% of total epithelial tumours and typically occur 

in patients between the ages of 50-70. Clear cell (6%) and mucinous (1%) tumours 

occur to a lesser extent and typically occur between the ages of 30-50 and 40-80 

respectively. The remaining 30% of epithelial tumours is comprised of Brenner 

tumours, undifferentiated tumours (cannot be classified by microscopy) and borderline 

ovarian tumours (occur on the surface of the ovary, not inside). 

 

Two of the most important details about a tumour are the stage and the grade of the 

cancer. Doctors use the FIGO system for determining the stage of ovarian tumours and 

assign a value of 1-4 based on how far the tumour has spread, and use this information 

to determine suitable treatment regimes (specifics of the FIGO staging system for 
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ovarian cancer are summarised in the appendix of this thesis). Lower stage tumours are 

generally considered to have a more favourable outcome.  

 

Ovarian tumours are also graded, measuring how normal/malignant the cells look under 

the microscope. Grade 0 tumours are undifferentiated/borderline ovarian tumours. 

Grade 1 tumours have well differentiated cells (similar to normal, healthy epithelial 

cells), Grade 2 tumours consist of moderately differentiated cells and Grade 3 tumour 

cells are poorly differentiated. Grade 3 tumours have the worse prognosis. 

 

Patient 1 was initially diagnosed in 2001 at the age of 47 and presented with serous cell 

ovarian cancer (stage 1C, grade 1). Patient 1 was treated with carboplatin and 

therapeutic outcome was classified as complete. Patient 1 subsequently relapsed in 

2007 at the age of 52 and was treated with carboplatin/taxol as per the adduct study 

treatment schedule. Patient 1 is still alive with disease (last recorded status 13
th

 

November 2008). 

 

Patient 2 was initially diagnosed in 2005 at the age of 74 and presented with 

endometrioid cell ovarian cancer (stage 1C, grade 3). Patient 2 was treated with 

carboplatin and therapeutic outcome was classified as complete. Patient 2 subsequently 

relapsed in 2007 at the age of 76 and was treated with carboplatin/taxol as per the 

adduct study treatment schedule. The subsequent status of Patient 2 is unknown. 

 

Patient 3 was initially diagnosed in 2004 at the age of 65 and presented with clear cell 

ovarian cancer (stage 3C, grade 3). Patient 3 was treated with carboplatin and taxol, 

therapeutic outcome was classified as optimal. Patient 3 subsequently relapsed in 2007 
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at the age of 68 and was treated with carboplatin/taxol as per the adduct study treatment 

schedule. The therapeutic outcome was classified as complete. Patient 3 subsequently 

died of the disease. 

 

Patient 4 was initially diagnosed in 2002 at the age of 62 and presented with clear cell 

ovarian cancer (stage 1C, grade 3). Patient 4 was treated with carboplatin and taxol, 

therapeutic outcome was classified as optimal. Patient 4 subsequently relapsed in 2007 

at the age of 68 and was treated with carboplatin/taxol as per the adduct study treatment 

schedule. The therapeutic outcome was classified as complete. Patient 4 is still alive 

with disease (last recorded status 6
th

 July 2010). 

 

6.2.2: Treatment Schedule and Sampling Time 

 

All samples were collected according to a protocol and using a patient information 

sheet and consent that had been approved by the Local Regional Ethics Committee. All 

samples were stored in accordance with the Human Tissue Act in a secure freezer in the 

NICR. 

 

Patients initially received a 3 hour taxol infusion i.v. followed by a 45 minute rest 

period. During this rest period a pretreatment blood sample (20 ml) was taken as a 

control for determining background levels of Pt bound to DNA in peripheral blood 

mononuclear cells (PB-MNC) and for measuring pharmacokinetics at defined 

timepoints following administration. Carboplatin was infused i.v. over a 30 minute 

period. The dosing in this time was calculated taking into account renal function to 

achieve a target AUC of 5.5 mg/ml.min. Blood samples (2 ml) for pharmacokinetic 
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analysis were taken pre-infusion, 15 minutes after the start of infusion and at 30 

minutes at the end of infusion. Further blood samples (2 ml) for pharmacokinetics were 

taken at 30, 60, 120 and 180 minutes after the end of infusion. At 180 minutes an 

additional blood sample (20 ml) was collected to determine Pt-DNA adducts levels in 

PB-MNC. At the same time biopsies were removed from accessible ovarian tumour for 

determining intra-tumoural Pt-DNA adduct levels and for histological analysis. 

Biopsies for adduct measurement were placed in 2 ml vials and maintained on dry ice 

pending transfer to the NICR and storage at -80°C. 

 

6.2.3: Preparation of blood samples at the Queen Elizabeth Hospital 

 

Determination of pharmacokinetic parameters 

Blood samples were collected into lithium heparinised tubes and were immediately 

centrifuged at 1200 x g for 10 minutes at room temperature to separate plasma. A 1 ml 

aliquot of plasma was transferred to an Amicon Centrifree micropartition unit with a 

MW cut-off of 30 kDa (Millipore, UK). The remaining plasma was transferred to a 

screw-capped 1.5 ml microfuge tube and stored on dry ice. The micropartition unit 

containing the plasma sample was centrifuged at 1900 x g for 15 minutes at 4°C, and 

the cup containing the plasma ultrafiltrate was removed, capped, and stored on dry ice. 

Samples were transferred to the NICR and stored at -80°C. Pt levels were determined 

by AAS by Dr Gareth Veal as described in section 2.10. 

 

Measurement of Pt-DNA adducts levels 

Blood samples (20 ml) were collected into lithium heparinised tubes which were 

maintained at room temperature. Samples were immediately transferred to Leucosep 
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tubes (Greiner Bio-One) containing 15 ml sterile Lymphoprep solution, centrifuged 

(1000 x g, 15 minutes at room temperature) and then plasma removed. The 

plasma/cells/lymphoprep layer was transferred into a clean 50 ml tube, diluted with a 2-

fold excess of cold PBS, and centrifuged (1000 x g, 5mins at room temperature). PB-

MNCs were washed twice with cold PBS and mononuclear cells collected as pellets by 

further centrifugation (1000 x g, 5 minutes at room temperature). Tubes containing the 

pellets were placed in dry ice. Samples were transferred to the NICR and maintained at 

-80°C prior to DNA extraction.  

 

6.2.4: Sample Handling in the NICR 

 

Pt levels in the patient samples were predicted to be very low, and therefore precautions 

were taken to ensure that external Pt was not introduced into the sample preparations at 

any time. All sample handling was carried out in a dedicated Pt-free laminar flow 

cabinet in a designated Pt-free room. All equipment used in sample preparation was 

unique to this analysis to prevent contamination from external sources, and was stored 

in a locked Pt-free cabinet when not in use.  

 

Dedicated reagents were prepared for this analysis and stored in a locked Pt-free 

cabinet when not in use. Ultrapure nitric acid (Romil, UK) was used for all preparations 

with a certified Pt content of less than 0.1 PPT. Ultrapure water (Elga, UK) was used 

throughout. All reagents (including QIAGEN kit reagents) were analysed by ICP-MS to 

confirm no external Pt content was present. 
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DNA concentration was determined using the NanoDrop spectrophotometer as 

described in section 2.5.3. An additional quality control DNA sample (50 µg/ml) was 

analysed with every sample batch to ensure accuracy. The concentration of DNA 

measured in this sample was always within 5%.  

6.2.5: Samples for checking the techniques and reagents to be used 

 

Control samples not treated with carboplatin were used to confirm both the techniques 

and reagents used in this study did not introduce external Pt into the analysis which 

could affect the results. These samples were also used to determine the background 

levels of Pt as an indicator of the significance of the results obtained from the clinical 

samples. Four kidneys obtained from (individual) female CD-1 nude mice that had not 

been treated with any drugs were used. Pre-carboplatin blood samples obtained from 

three of the four study patients, and blood from healthy volunteers incubated with 

saline were also included. An additional set of mouse kidneys which had been treated 

with 25 mg/kg carboplatin for either 30 or 60 minutes were pooled together and 

aliquots of the tissue homogenate used as a quality control with each batch of samples 

for DNA extraction and analysis. DNA was extracted from all samples using the 

QIAGEN method described in section 2.5.2. DNA was hydrolysed overnight in nitric 

acid (3.5%) at 70°C, and total Pt levels determined by ICP-MS (section 2.11 and 

below). 

6.2.6: ICP-MS analysis 

 

All samples in this chapter were analysed using a Finnigan Element2 Magnetic Sector 

Field ICP-MS (section 2.11.2). Three isotopes of Pt (
194

Pt, 
195

Pt and 
196

Pt) were 

measured. Thallium (Tl) was added (1 PPB final concentration) to all samples and 
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standards to act as an internal reference to enable monitoring of instrumental 

performance and correction for variations due to matrix effects and instrumental 

variation, particularly variation in the rate of sample entry into the plasma torch. Two 

isotopes of thallium (
203

Tl and 
205

Tl) were measured on the ICP-MS. 

 

Isotopes of neodymium (
143

Nd), dysprosium (
161

Dy) and hafnium (
178

Hf and 
179

Hf) 

were also measured. These isotopes were chosen because they are known to have the 

potential to cause interferences if present in samples being analysed for Pt. In this study 

no correction for interference was required on any samples analysed as the measured 

concentrations of each isotope in the samples were significantly lower than measured 

values for Pt, and oxide interference readings therefore contributed significantly less 

than 1% of the detected Pt signal. 

 

At the beginning of each analysis, ultrapure water and ultrapure nitric acid samples 

were analysed to ensure Pt levels were low. These samples were always followed by 

the standards (0-500 PPT Pt), followed by a series of wash samples. During analysis of 

tumour/blood samples, routine analysis of the 5 PPT standard and blank nitric acid 

samples were incorporated to monitor instrument drift. 

 

6.2.7: Data Analysis 

 

During all analyses, the ratio of 
203

Tl:
205

Tl was calculated to monitor instrument 

sensitivity. An average ratio of 1:2.95 (range +/- 0.1) was observed confirming no drift 

in instrument performance. The natural abundances are 29.524% 
203

Tl and 70.476% 

205
Tl so a ratio of 1:2.3 was expected. Counts-per-second (CPS) values for 

205
Tl were 
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chosen to correct the Pt data. CPS values for 
205

Tl varied by less than 10% across all 

analyses. 

 

CPS values for the ultrapure nitric acid wash samples often drifted down slightly during 

the analyses. This was most probably a result of continued flushing of residual Pt out of 

the instrument during analysis of a series of blanks and samples with low levels of Pt.  

Therefore where necessary drifts in instrumental background was corrected by 

subtracting the drift in CPS from the CPS values for the standards used to generate the 

standard curve. The ratio of 
194

Pt:
205

Tl, 
195

Pt:
205

Tl and 
196

Pt:
205

Tl were calculated for all 

blanks and standards, and this was plotted against Pt standard concentration to generate 

a standard curve for each Pt isotope and for each analysis batch (section 2.11.2, Figure 

2.4).  

 

The concentration of Pt (PPT) in each sample was calculated in Prism4 (GraphPad 

Software) using the appropriate standard curve. This value was converted to moles/ml 

by multiplying the value (PPT) by 5.13e
-15

. An average value for the three Pt isotopes 

was determined, and subsequently divided by the concentration of DNA in the sample 

(5.0e
-5

 g/ml) to determine an overall Pt-DNA adduct level in nmol Pt g
-1

 DNA.  
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6.3: Results 

6.3.1: Patient Pharmacokinetics 

 

The antitumour effects of carboplatin have previously been related to its 

pharmacokinetics, which vary markedly between patients, mainly as a result of 

variation in kidney function (Newell et al 987, Harland et al 1991, Horwich et al 1991). 

Doses of carboplatin are therefore typically adjusted to each individual patient taking 

into account a measurement of renal function, using a dosing formula (Calvert et al 

1989, Newell et al 1993) to target the desired area under the plasma drug concentration 

time curve (AUC). Individualised dosing results in a more consistent exposure to 

carboplatin than dosing based on surface area alone, as is typically applied for cisplatin. 

Typically a range of 4-7 mg/ml.min AUC is targeted for conventional carboplatin 

dosing (Veal et al 2007). In this study, the target AUC was 5.5 mg/ml.min.  

 

Concentrations of Pt in plasma ultrafiltrates were determined by AAS by Dr Gareth 

Veal. Unbound (ultrafilterable) plasma Pt concentrations for the four patients are 

plotted in Figure 6.1. The maximum observed unbound plasma carboplatin for all four 

patients was at 30 minutes, with concentrations of 43.72 g/ml, 33.70 g/ml, 34.72 

g/ml and 23.56 g/ml reported for patients 1-4 respectively. There was an 

approximate two fold difference in peak plasma levels, which is common for patients 

receiving carboplatin following renal-function based dosing (Veal et al 1997).  

 

AUC values for each patient were calculated using the trapezoid rule. Patients 1, 2 and 

3 achieved AUC values of 5.1, 6.2 and 4.9 mg/ml.min. Patient 4 achieved a lower AUC 
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value of 3.0 mg/ml.min. The AUC values for patients 1-3 fell within -10 to +15% of the 

target AUC whereas; the AUC for patient 4 was 44% below the target value.   
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Figure 6.1: Concentrations of unbound Pt in the plasma of four patients after a 30 

minute infusion of carboplatin. (), patient 1; (), patient 2; (), patient 3; (), 

patient 4. AUC values were 5.1 mg/ml.min for patient 1, 6.2 mg/ml.min for patient 2, 

4.9 mg/ml.min for patient 3 and 3.0 mg/ml.min for patient 4. 
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6.3.2: Determination of background Pt levels in control samples 

 

Initial test samples (not treated with carboplatin) were analysed to ensure that the 

methods and the batch of reagents to be used for the clinical tumour and blood samples 

gave low background levels of Pt associated with DNA. Confirmation that no platinum 

contamination was introduced was critical to maintain accuracy in evaluating the 

clinical samples, which were predicted to have very low Pt levels. Furthermore, the 

data from these samples helped form a basis to assess the statistics of the background 

readings against which the post-carboplatin samples could be compared. This was 

particularly important because the patient number was small, and therefore only a small 

number of pre-treatment blood samples were available and it was not possible to collect 

pre-treatment samples of tumour. Mouse kidney tissue was used as a blank to assess the 

methods for purification of DNA from solid tissue and blood samples (additional to the 

pre-treatment samples from the four patients) were used to assess methods for 

purification of DNA from blood cells. 

 

Pt concentrations were calculated for each sample from the values for each Pt isotope 

using the appropriate standard curve. Pt concentrations in DNA hydrolysates for the 

mouse tissues (Table 6.1) and volunteer blood samples (Table 6.2) were all low, close 

to the limit of detection typically seen with this instrument, with a mean of 1.4 PPT (+/- 

0.8 SD) for the mouse tissues and 0.5 PPT (+/- 0.5 SD) for the volunteer blood samples. 

This indicated that the methods and reagents used to process the biological samples 

were not introducing appreciable levels of Pt into the samples and therefore samples 

from the patients were analysed using the same batch of reagents. 
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The pre-treatment blood samples from patients 2-4 gave similarly low levels of Pt seen 

in the volunteer blood (Table 6.2) with a mean of 0.7 PPT (+/- 0.7 SD).  

 

The overall mean Pt concentration in the solutions analysed by ICP-MS was 0.8 PPT 

(+/- 0.5 SD), which equates to 4.4 fmoles/ml (+/- 2.4 SD). The overall background Pt-

DNA adducts level was 0.08 nmol Pt g
-1

 DNA (+/- 0.05 SD). 
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Table 6.1: Pt concentration and total adduct level in control mouse kidney tissues. Standard deviation is shown in brackets 

 

  

 
DNA Conc. 

(µg/ml) 
Pt Isotope 

Pt Concentration Adduct Level 

(nmol Pt g
-1

 DNA) PPT Fmoles/ml 

Mouse Kidney 1 418.4 

194
Pt 1.2 5.9  

0.15 
195

Pt 1.2 5.9 
196

Pt 1.2 6.2 

Average 1.2 (0.03) 6.0 (0.1) 

Mouse Kidney 2 348.3 

194
Pt 0.5 2.6 

0.14 
195

Pt 0.4 2.3 
196

Pt 0.7 3.6 

Average 0.6 (0.1) 2.8 (0.7) 

Mouse Kidney 3 430.2 

194
Pt 2.8 14.4 

0.15 
195

Pt 2.4 12.3 
196

Pt 2.5 12.6 

Average 2.7 (0.2) 13.1 (1.1) 

Mouse Kidney 4 322.2 

194
Pt 1.1 5.5 

0.13 
195

Pt 1.4 7.1 
196

Pt 1.3 6.6 

Average 1.3 (0.2) 6.4 (0.9) 

Overall Average 

 
1.4 (0.8) 7.1 (4.3) 0.14 (0.01) 



286 

 

Table 6.2: Pt concentration and total adduct level in control human blood. Hydrolysates from the same DNA preparation were prepared and 

analysed on three individual occasions for the patient samples or twice for the volunteer sample and average values presented. Standard 

deviation is shown in brackets 

 
DNA Conc. 

(µg/ml) 
 

Pt Concentration Adduct Level 

(nmol Pt g
-1

 DNA) PPT Fmoles Pt/ml 

Patient 2 147.74 

A 1.8 (0.3) 9.3 

0.16 (0.03) 
B 1.5 (0.5) 7.8 

C 1.3 (0.3) 6.5 

Average 1.5 (0.3) 7.8 (1.4) 

Patient 3 230.60 

A 1.2 (0.1) 6.0 

0.05 (0.06) 
B 0.2 (0.3) 1.1 

C 0.1 (0.2) 0.5 

Average 0.5 (0.6) 2.5 (3.0) 

Patient 4 281.75 

A 0.3 (0.1) 1.4 

0.01 (0.02) 
B 0.1 (0.2) 0.6 

C 0.2 (0.3) 1.0 

Average 0.2 (0.1) 1.0 (0.4) 

 

 
 Average 0.7 (0.7) 3.7 (3.7) 0.07 (0.08) 

Volunteer A 144.25 
A 0.9 (0.4) 4.4 0.09 

B 0.0 (0.0) 0.0 0.00 

Volunteer B 304.76 
A 0.5 (0.4) 2.7 0.05 

B 0.0 (0.0) 0.0 0.00 

Volunteer C 162.7 A 0.9 (0.1) 4.8 0.09 

 Average 0.5 (0.5) 2.4 (2.3) 0.05 (0.05) 
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6.3.3: Analysis of Pt-DNA adducts levels in patient blood samples 

 

PB-MNCs isolated from blood samples 15 minutes prior to carboplatin infusion (Pre) 

and 180 minutes after carboplatin infusion (Post) were analysed for determination of 

therapy-induced Pt-DNA adduct levels. Data for pre- and post-carboplatin blood 

samples are presented in Table 6.3 and Table 6.4 respectively. 

 

Pt concentrations in patient pre-treatment blood samples all fell within 2 SD of the 

overall mean background Pt concentration (Table 6.3). Pt concentrations in patient 

post-carboplatin blood samples ranged from 2.8-68.4 SD above overall mean 

background Pt concentration (Table 6.4). 

 

All patient post-carboplatin blood Pt-DNA adducts levels were significantly higher than 

overall mean background Pt-DNA adducts levels (p = 0.0008, <0.0001, <0.0001 and 

0.0029 for patients 1-4 respectively). Patients 2-4 had significantly higher Pt-DNA 

adducts levels in their post-carboplatin sample compared to their pre-carboplatin 

samples (p = <0.0001, 0.009 and 0.001 for patients 2-4 respectively). 
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Table 6.3: Pt concentration and adduct level in patient pre-carboplatin blood samples (repeat data from Table 6.2). Hydrolysates from the same 

DNA preparation were prepared and analysed on three individual occasions and average values presented. Number of SD above background is 

calculated as: ((Average patient Pt conc. (PPT) – Mean background Pt conc. (0.8 PPT)/ SD of background data (0.5)) SD is shown in brackets. 

  

 
DNA Conc. 

(µg/ml) 
 

Average Pt Concentration Number of SD 

above background 

Adduct Level 

(nmol Pt g
-1

 DNA) PPT Fmoles Pt/ml 

Patient 2 147.7 

A 1.8 (0.3) 9.3 

1.4 0.16 (0.03) 
B 1.5 (0.5) 7.8 

C 1.3 (0.3) 6.5 

Average 1.5 (0.3) 7.9 (1.4) 

Patient 3 230.6 

A 1.2 (0.1) 6.0 

0 0.05 (0.06) 
B 0.2 (0.3) 1.1 

C 0.1 (0.2) 0.5 

Average 0.5 (0.6) 2.5 (3.0) 

Patient 4 281.8 

A 0.3 (0.1) 1.4 

0 0.01 (0.02) 
B 0.1 (0.2) 0.6 

C 0.2 (0.3) 1.0 

Average 0.2 (0.1) 1.0 (0.4) 
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Table 6.4: Pt concentration and adduct level in patient post-carboplatin blood samples. Hydrolysates from the same DNA preparation were 

prepared and analysed on three individual occasions and average values presented. Number of SD above background is calculated as: 

((Average patient Pt conc. (PPT) – Mean background Pt conc. (0.8 PPT)/ SD of background data (0.5)) SD is shown in brackets. ND = no data 

available for sample. 

 

 
DNA Conc. 

(µg/ml) 
 

Average Pt Concentration Number of SD 

above background 

Adduct Level 

(nmol Pt g
-1

 DNA) PPT Fmoles Pt/ml 

Patient 1 66.21 

A 3.7 (0.6) 18.9 

6.4 0.8 (0.1) 
B 4.4 (0.2) 22.6 

C ND ND 

Average 4.0 (0.5) 20.7 (2.6) 

Patient 2 171.98 

A 31.3 (0.04) 160.5 

68 3.6 (0.3) 
B 36.1 (0.4) 185.2 

C 37.2 (0.1) 191.0 

Average 35.0 (3.2) 178.9 (16.2) 

Patient 3 319.14 

A 2.2 (0.2) 11.5 

2.8 0.2 (0.01) 
B 2.2 (0.5) 11.2 

C 2.1 (0.5) 10.8 

Average 2.2 (0.1) 11.2 (0.4) 

Patient 4 311.51 

A 2.7 (0.1) 13.6 

2.8 0.2 (0.04) 
B 1.8 (0.8) 9.4 

C 2.1 (0.7) 10.9 

Average 2.2 (0.4) 11.3 (2.1) 
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6.3.4: Analysis of Pt-DNA adducts in patient tumour biopsies 

 

Tumour biopsies, obtained from patients 180 minutes after carboplatin infusion, were 

analysed for determination of therapy-induced Pt-DNA adduct levels. Biopsies that 

were sufficiently large were subdivided to give 13 pieces of tissue that were processed 

and analysed separately. These are summarised in Figure 6.2. Only one sample was 

available for patient 4, due to the tumour being less surgically accessible than patients 

1-3. Histology of additional biopsy samples confirmed the obtained material was from 

the tumour (Dr Richard Edmondson, personal communication). Data is summarised in 

Table 6.5. 

 

Pt concentrations in the DNA preparations extracted from the 13 biopsy pieces ranged 

from 18.6 to 37.1 PPT Pt (Table 6.5). These Pt concentrations were between 36 and 62 

SD above the overall mean background Pt concentration (Table 6.5) 

 

All seven biopsy pieces analysed (by ICP-MS) on three separate occasions had 

significantly higher Pt-DNA adducts levels compared to overall mean background Pt-

DNA adducts levels: P1-A, p = 0.0002; P1-B, p = 0.0021; P2-A1, p= 0.0002; P2-B2, p 

= 0.0001; P3-B, p = 0.0006, P3-C, p = <0.0001 and P4-A, p = <0.0001.  

 

Only patient 3 demonstrated any significance between pieces of biopsy from the same 

tumour (P3-B and P3-C, p = 0.0242). No significant difference in Pt-DNA adduct level 

was observed between patients 1-3. Patient 4 had significantly higher Pt-DNA adducts 

levels than patients 1-3 (p = 0.0002, <0.0001 and 0.0096 respectively). 
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Figure 6.2: Summary of the source of the 13 biopsy pieces used in this study for 

measuring Pt-DNA adducts in patient tumours following carboplatin administration. 
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Table 6.5: Pt concentration and adduct level in patient biopsies. Individual hydrolysates were analysed either on one occasion, or hydrolysates 

from the same DNA preparation were prepared and analysed on three individual occasions and average values (+/- SD) presented. Number of 

SD above background is calculated as: ((Average patient Pt conc. (PPT) – Mean background Pt conc. (0.8 PPT)/ SD of background data (0.5)).  

 Biopsy Piece 
Pt Concentration Number of SD 

above background 

Adduct Level  

(nmol Pt g
-1

 DNA) PPT Fmoles/ml 

Patient 1 

P1-A 24.1 (0.4) 123.4 (15.8) 47 2.5 (0.3) 

P1-B 22.7 (0.1) 116.4 (26.4) 44 2.3 (0.5) 

P1-B2 18.6  95.2 36 1.9 

Patient 2 

P2-A1 21.6 (0.3) 110.7 (15.1) 54 2.2 (0.3) 

P2-A2 27.2 139.3 53 2.8 

P2-B1 23.7 121.4 46 2.4 

P2-B2 19.0 (0.4) 97.6 (10.8) 36 2.0 (0.2) 

P2-B3 20.1  103.0 39 2.1 

P2-B4 24.8  127.1 48 2.5 

Patient 3 

P3-A 31.7  162.7 62 3.3 

P3-B 31.7 (0.3) 162.4 (26.1) 62 3.2 (0.5) 

P3-C 19.9 (0.4) 102.3 (9.4) 38 2.0 (0.2) 

Patient 4 P4-A 20.6 (0.3) 105.8 (3.8) 40 4.2 (0.2) 
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6.4: Comparison of patient pharmacokinetic parameters with adduct levels 

 

AUC vs. PB-MNCs 

A very weak relationship was observed between plasma carboplatin AUC and post-

treatment Pt-DNA adducts levels in the PB-MNC. A weak correlation was observed 

between plasma carboplatin AUC and post-treatment Pt-DNA adducts levels in PB-

MNCs. (r
2
 = 0.5772, slope 0.9166) (Figure 6. 3A). This correlation was not significant 

(p = 0.2402).  

 

AUC vs. Tumour Biopsies  

A weak correlation was apparent between plasma carboplatin AUC and Pt-DNA adduct 

levels detected in the tumour biopsies (r
2
 = 0.7845, slope -0.5738) (Figure 6. 3B). This 

correlation was not significant (p = 0.1143). Furthermore, it was a negative trend which 

is opposite to what would be expected. 
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Figure 6. 3: Relationship between patient AUC and Pt-DNA adduct levels in PB-MNCs 

(A) and human tumour biopsies (B).  (), patient 1; (), patient 2; (), patient 3; (), 

patient 4. No significant correlation was observed (graph A, p = 0.2402; graph B, p = 

0.1143). 
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6.5: Comparison of adduct levels in blood cells and tumour 

 

No correlation was observed between Pt-DNA adducts levels in PB-MNCs and in 

tumour biopsies (r
2
 = 0.1960, slope -0.2377) (Figure 6. 4). Furthermore, it was a 

negative trend which is opposite to what would be expected. These findings suggest 

that Pt-DNA adduct levels in patient blood are not a good marker for Pt-DNA adduct 

levels in patient biopsies. 
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Figure 6. 4: Relationship between in vivo Pt-DNA adducts levels in PBLs and human 

tumour biopsies. (), patient 1; (), patient 2; (), patient 3; (), patient 4 
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6.6: Discussion 

 

There is currently limited data available on levels of Pt-DNA adducts in tumours of 

patients receiving Pt-based chemotherapy. Several factors have probably contributed to 

this, as described in section 6.1. A sensitive 
32

P post-labelling assay has recently been 

applied to investigations of intra-tumoural Pt-DNA adducts levels in patients receiving 

cisplatin-based chemotherapy for HNSCC (Hoebers et al 2006, Hoebers et al 2008). 

The results described in this chapter are the first application of ICP-MS to the analysis 

of therapy-induced Pt-DNA adducts levels in solid clinical tumours. 

 

Initially, an absolute background level of Pt was calculated using control human blood 

and mouse tissues. This was important to ensure the methods involved did not 

introduce external Pt to the clinical samples ensuring reliability in the measurements, 

and also to provide a value for background levels of Pt present resulting from the 

control samples and from the reagents and apparatus used, including the ICP-MS 

instrument itself. A background level of Pt of 0.8 PPT (+/- 0.5 SD) was measured in 

this study (4.1 fmoles/ml). The corresponding background Pt-DNA adducts level was 

0.08 nmol Pt g
-1

 DNA (0.05 SD). 

 

An AUC of 5.5 mg/ml.min carboplatin was targeted for the four patients studied, with 

dosing based on renal function. The range of AUC values for free Pt in plasma was 

within the range of values expected which, for a targeted AUC value in conjunction 

with renal-based dosing typically covers a 2-fold range (Dr Gareth Veal, personal 

communication). 
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Pt-DNA adducts levels in PB-MNCs obtained from patients post-carboplatin therapy 

ranged from 0.2-3.6 nmol Pt g
-1

 DNA and are comparable to previous studies (Peng et 

al 1997, Veal et al 2001). Peng et al had previously published Pt-DNA adduct levels in 

PBLs of patients receiving carboplatin therapy of 1-3.2 nmol Pt g
-1

 DNA 6hr after the 

end of infusion, and 1-5.9 nmol Pt g
-1

 DNA 24hr after the end of infusion (Peng et al 

1997). These values had been determined by ELISA. More recently Veal et al have 

published data on Pt-DNA adduct levels in children receiving high dose carboplatin for 

solid tumours using ICP-MS to measure Pt (Veal et al 2007). They found Pt-DNA 

adduct levels of 0.24-2.29 nmol Pt g
-1

 DNA in patients 24hr after the end of infusion. 

 

Hoebers et al had previously measured Pt-DNA adduct formation in patients receiving 

cisplatin-based chemotherapy using a 
32

P-post-labelling assay (Hoebers et al 2006, 

Hoebers et al 2008). Normal tissue (WBC) Pt-DNA adduct levels in all the regimes 

investigated ranged from 0.34-1.05 nmol Pt g
-1

DNA and 0.05-0.12 nmol Pt g
-1 

DNA for 

the intrastrand 1,2-d(GpG) and 1,2-d(ApG) adducts respectively. The background Pt-

DNA adduct level observed in the present work was 0.08 nmol Pt g
-1

 DNA (range 0.0-

0.19 nmol Pt g
-1

 DNA). Hoebers et al reported Pt-DNA adduct levels in tumour tissue 

ranging from 0.66-4.55 nmol Pt g
-1 

DNA and 0.1-0.43 nmol Pt g
-1 

DNA for the 

intrastrand 1,2-d(GpG) and 1,2-d(ApG) adducts respectively. Pt-DNA adducts levels in 

patient tumour biopsies in the present study ranged from 1.9-4.2 nmol Pt g
-1

 DNA. 

Comparable levels of Pt-DNA adducts were observed between this study and the 

studies of Hoebers et al. 

 

Pt-DNA adducts level in blood cells had previously been suggested as a marker for 

adduct levels in tumours (Reed et al 1988, Reed et al 1990). More recent published data 
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however has found no correlation was seen between Pt-DNA adduct levels in blood 

cells and tumour biopsies (Hoebers et al 2006, Hoebers et al 2008). The data obtained 

from the present investigation are in agreement with those recent findings. 

 

No significant differences in Pt-DNA adduct level in tumour biopsies was observed 

between patients 1-3. Patient 4 had significantly higher Pt-DNA adducts levels than 

patients 1-3 (p = 0.0002, <0.0001 and 0.0096 respectively). For patients 1 and 2, no 

significant differences in Pt-DNA adduct levels was observed in different biopsies 

obtained from the same tumour. Three pieces of biopsy were obtained from patient 3, 

and although two pieces (P3-A and P3-B) had comparable Pt-DNA adduct levels (3.17 

nmol Pt g
-1

 DNA), a third piece had significantly lower Pt-DNA adduct levels (1.97 

nmol Pt g
-1

 DNA, p = 0.0242). These data suggest that intratumour platination levels 

may vary depending on other factors than carboplatin dose, such as tumour location and 

vasculature access. When Pt-DNA adduct levels were compared with calculated AUC 

values for each patient, no correlation was observed. This suggests that patient AUC is 

not a reliable indicator of adduct levels in tumours. 

 

The application of ICP-MS in this study for measuring Pt-DNA adducts levels in solid 

tissues is novel, and has demonstrated that although material is hard to obtain, analyses 

of Pt adducts in clinical samples is possible.  

 

The very low levels of Pt detected in the DNA samples suggests that the application of 

ICP-MS to detect specific types of adducts will be challenging. However, recently a 

method has been published that does allow for detection of the low levels of the 1,2- 

intrastrand cis-Pt(NH3)2d(GpG) adducts in DNA from PBLs obtained from patients 
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after cisplatin-based chemotherapy (Harrington et al 2010). In this study, PBLs were 

isolated from 8 patients each receiving cisplatin chemotherapy (60 mg m
-2

) and DNA 

extracted. Levels of the cis-Pt(NH3)2d(GpG) adduct ranged from 0.58-6.4 nmol Pt g
-1

 

DNA, in the same range of values as reported in this chapter. The application of such a 

method for studying specific Pt-DNA adducts other than the cis-Pt(NH3)2d(GpG) or for 

studying Pt-DNA adducts in patient tumour biopsies is unknown. 
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Chapter 7 

Final Discussion 

7.1: Introduction 

 

Platinum-based anticancer drugs are believed to exert their action through chemical 

reactions with genomic DNA, forming adducts with DNA bases. Although the 

pharmacology of such adducts has been widely studied, many aspects of the cytotoxic 

mechanisms remain unclear. The possibility that non-DNA molecules have the 

potential to alter the types of adducts formed has received very little attention, and 

limited information is available on the levels of adducts formed in clinical tumours. 

Further understanding of platinum-DNA adduct formation may be important in 

explaining the efficacy of platinum-based drugs in different tumour types, providing 

insights into the cytotoxic mechanism, the development of clinical resistance and how 

to modulate response to therapy using additional drugs. 

  

The aims of the work described in this thesis were: a) to analyse the nature of DNA 

adducts formed in cells by three clinically used platinum-based anticancer drugs and to 

investigate the potential intracellular formation of additional types of adducts to those 

previously characterised on pure DNA; b) to determine platinum-DNA adduct levels 

formed in solid ovarian cancer tissue following treatment of patients with carboplatin 

and test the hypothesis that these levels are comparable to levels of DNA adducts 

formed in blood cells; and c) to determine whether STS impacts on DNA adduct 

formation.  
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7.2: Effects of GSH and STS on total Pt-DNA adduct formation in pure DNA 

 

Sulfur-containing molecules are known to react rapidly with Pt-containing compounds, 

due to the strong affinity of the metal for sulfur (Reedijk 1999, Reedijk 2003, Deubel 

2004). The effects of GSH, an endogenous sulfur containing compound found at 

millimolar concentrations in cells (Meister and Anderson 1983), and STS, an 

exogenous sulfur-containing compound currently in a phase III clinical trial 

investigating otoprotection, on the formation of cisplatin-DNA were therefore 

investigated. 

 

The data presented in chapters 4 and 5 shows that both GSH and STS were able to 

markedly inhibit the binding of cisplatin to purified DNA in a concentration-dependent 

manner. For 2hr incubations it was estimated that 0.07 mM STS would cause a 50% 

decrease in DNA adduct formation. In contrast, 3.9 mM GSH was needed to cause a 

similar effect under exactly the same conditions of DNA and cisplatin concentration. 

For 24hr incubations, the equivalent concentrations were estimated to be 0.05 mM STS 

and 2.7 mM GSH. Thus, to achieve similar effects on adduct formation STS needed to 

be present at concentrations approximately 55-fold lower than GSH. These data are 

consistent with published data suggesting that the reaction of the thiosulfate ion (TS) 

with cisplatin in solution is much faster than the reaction of cisplatin with GSH under 

similar conditions (Leeuwenkamp et al 1991, Dabrowiak et al 2002).  
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7.3: Can GSH and STS be cross-linked to DNA by cisplatin? 

 

Using a similar chromatographic separation to that of Fichtinger-Schepman et al 

(1985), Azim-Araghi (2003) investigated the formation of Pt-DNA adducts in lung 

cancer cell lines (H69/p and Mor/p), using ICP-MS to detect Pt species. Azim-Araghi 

provided evidence for an additional major class of Pt-DNA adducts in DNA from drug-

treated cells compared to those described previously on purified DNA. Analysis of 

cisplatin-DNA adducts formed in purified DNA in the presence of GSH showed further 

evidence of additional types of Pt-DNA adducts being formed. Interestingly, the 

additional adducts found in purified DNA displayed the same chromatographic 

characteristics as those detected in cellular DNA, leading to the hypothesis that GSH is 

able to cross-link to DNA in cells via cisplatin. Evidence that GSH is able to cross-link 

to monofunctionally bound Pt-DNA adducts was published over twenty years ago 

(Micetich et al 1983, Eastman 1987). Limited information is available regarding the 

formation of such adducts involving STS, but assuming that the putative cis-

Pt(NH3)2(DNA)(GSH) cross-link was formed via a Pt-S linkage, it seemed plausible 

that STS should react in a similar manner. If the existence of such Pt-S cross-links were 

to be proven, it would have a significant impact on our understanding of platinum drug 

pharmacology. 

 

The hypothesis for the formation of such Pt-S cross-links was through binding of either 

GSH or STS to cisplatin-bound monofunctionally to DNA. An alternative to this 

approach would be initial binding of GSH or STS to cisplatin, which then reacts with 

DNA. The data described above suggest that initial binding of cisplatin to either GSH 

or STS is more likely to lead to inactivation of drug as opposed to being an 
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intermediate step in adduct formation. However, as Pt-DNA adducts do still form this 

mechanism cannot be totally excluded. Initial experiments were carried out to 

investigate the plausibility of DNA-Pt-S cross link formation, and to identify their 

chromatographic behaviour. The latter information would be an important step to 

identifying novel products formed in cells. 

 

Following incubation of equimolar (1mM) cisplatin with dGMP (used as a surrogate for 

DNA) three monofunctional products were identified with the proposed chemical 

nature cis-Pt(NH3)2(R)(dGMP) where R could be any of Cl
-
, OH or OH2. Further 

incubations with GSH or STS provided evidence for the formation of cis-

Pt(NH3)2(dGMP)(GSH) and cis-Pt(NH3)2(dGMP)(STS) products, eluting from the 

MonoQ system at 21 and 16 minutes respectively. These products provided important 

information about the chromatographic behaviour of putative DNA-Pt-S cross-links, 

and indicated the times and conditions the predicted products would elute. Incubations 

of cisplatin and DNA in the presence of either GSH or STS however failed to provide 

consistent evidence for the formation of DNA-Pt-S cross-links.  

 

One possible reason for the lack of consistent evidence of putative DNA-Pt-S cross-

links was the use of a more robust and efficient gel filtration system to that used by 

Azim-Araghi (2003). The gel filtration column used in this study was somewhat more 

efficient at separating Pt-GSH and Pt-TS products from DNA. If Pt-GSH products 

contaminated previous DNA preparations they could have contributed to observations 

such as the apparent cross-linking of radioactive GSH to DNA by cisplatin. MonoQ 

chromatographic analysis showed that both Pt-GSH and Pt-TS eluted much later to the 

dGMP-Pt-S products so it seems unlikely that this would explain the discrepancy 
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between the data in this study and the new peak seen previously by Azim-Araghi 

(2003). 

 

Two factors that could influence the ability of either GSH or TS to interact with 

platinated DNA and might also explain the lack of consistent evidence of DNA-Pt-S 

products are steric hindrance and charge effects. GSH has a molar mass of 307.6 g/mol, 

and steric effects could inhibit the interaction of GSH with monofunctionally platinated 

DNA. As the thiosulfate ion is much smaller (molar mass of 112.12 g/mol) and more 

reactive, steric effects might be less pronounced. DNA is polyanionic in nature, and has 

an overall negative charge. At neutral pH, GSH has an overall -1 charge, and the 

thiosulfate ion -2. Since both GSH and TS possess negative charges, they should in 

theory be repelled from DNA. In cells DNA is complexed with positively charged 

proteins (such as histones) which would have effects on the ability of GSH and TS to 

interact with monofunctional adducts. While these factors could explain the lack of 

evidence in this study, they fail to address differences between the data presented here 

and in the work of Azim-Araghi (2003). 

 

The formation of Pt-GSH and Pt-TS products is an important issue in understanding the 

availability of Pt binding to DNA. It is believed that cisplatin will react with DNA in its 

aquated form, but not in its dichloro form. GSH and STS however are believed to be 

reactive with cisplatin in both forms. Aquation of cisplatin is the rate limiting step in 

reaction with DNA. It is possible therefore that such competition limits the amount of 

Pt available to bind DNA. Therefore, it is possible that changes to the reaction 

conditions such as altered ionic strength of Cl
-
 could increase the probability of GSH 
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reacting with monofunctionally bound drug through changes to ionic interaction and/or 

the state of aquation of cisplatin. 

 

A further possibility for a lack of evidence for DNA-Pt-S cross-link formation is that 

such cross-links lack stability. Attempts at analysing the putative dGMP-Pt-S products 

by MALDI-TOF mass spectrometry and NMR have proven unsuccessful and this might 

also be explained by lack of stability. However, the proposed DNA-Pt-GSH cross-link 

observed by Azim-Araghi was detected in purified DNA following 2hr and 24hr 

incubation. 

 

Incomplete digestion of DNA in the work of Azim-Araghi (2003) may also explain the 

discrepancy between these data and findings from the current study. Azim-Araghi 

provided evidence showing that increased concentrations of enzymes used in the 

digestion of DNA did not affect the results. However it is still possible that the novel 

products identified by Azim-Araghi were artefacts of incomplete digestion. The ratio of 

DNA to enzymes in this study was less than was used previously (100 μg versus 250 μg 

DNA per 20 units DNAase1 and 200 units/ml nuclease P1). Also, a different 

preparation of P1 was used as the previous supplier ceased its production. 
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7.4: Nature of Pt-DNA adducts formed in cells 

 

Although Pt complexes can interact with many molecules in the intracellular 

environment, it is commonly accepted that platinum binding to DNA is responsible for 

the major cytotoxic effects of platinum complexes. The formation of Pt-DNA adducts 

in purified DNA has been widely studied for cisplatin, and to a lesser extent for 

carboplatin, with more limited data available relating to oxaliplatin-DNA adducts 

formation. However, markedly less information has been published on the formation of 

Pt-DNA adducts in cells exposed to any of the three drugs has been published. In this 

study, the formation of Pt-DNA adducts in four human tumour cell lines (833K, A2780, 

LoVo and Mor/CPR) exposed to cisplatin, carboplatin or oxaliplatin was investigated. 

 

Analyses of adducts formed in cellular DNA incubated with cisplatin confirmed the 

presence of peaks corresponding to the four major previously identified Pt-DNA 

adducts. The percentage contribution of the two major Pt-DNA products was similar to 

previous studies (Fichtinger-Schepman et al 1985, Eastman 1986). Pt-DNA adducts 

formed in cells exposed to carboplatin or oxaliplatin showed very similar retention 

times and relative Pt levels to those seen in the incubation with cisplatin. It is possible 

that the use of a different chromatographic system, such as reverse-phase analysis of 

platinated nucleosides may have revealed differences between adducts formed by 

oxaliplatin compared to cisplatin. 

 

Of particular importance, however, was the lack of evidence for additional types of 

adducts in the regions where cis-Pt(NH3)2(dGMP)(GSH) products eluted or where the 

additional Pt-containing peak was identified in the analyses of Azim-Araghi (2003). 
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The reasons for this are unclear, but two possible factors might have contributed: 1, the 

use of different cell lines and 2, differences in cross-link repair. Potential issues with 

enzyme levels and stability of the proposed adducts have been discussed above. 

 

In the analyses by Azim-Araghi (2003), two non-small cell lung cancer cell lines 

(H69/p and Mor/p) were investigated, whereas in the current study three different cell 

lines were investigated (833K, A2780 and LoVo). Similar retention times of the 

identified peaks and relative proportions of Pt adducts were observed, therefore it 

seems unlikely that adducts formed in these cells differed to those formed in the H69/p 

and Mor/p cells in such a way as to explain the lack of novel products previously 

detected. Furthermore, one of the cell lines used in this study, Mor/CPR, is a cisplatin-

resistant sub-line of the Mor/p cells used by Azim-Araghi. The Mor/CPR cell line had 

been derived from the Mor/P line by selection for drug resistance (Twentyman et al 

1991). It is possible that the resistance mechanisms resulted in altered types of DNA 

adducts being formed in the Mor/CPR line compared to the cells used by Azim-Araghi, 

but it seems unlikely that a major class of adducts would be completely lost, especially 

since the extra peak could not be detected in analyses of DNA from the three other cell 

lines. 

 

Another possibility is that cis-Pt(NH3)2(DNA)(GSH) cross-links were repaired more 

efficiently than their classical counterparts. Analysing Pt-DNA adducts in cells with 

compromised repair capacity would be a way of investigating this. However, repair-

compromised cells demonstrate elevated sensitivity to cisplatin (Beck and Brubaker 

1973, Drobnik and Horacek 1973, Markham and Brubaker 1980, Brouwer et al 1981, 

Beck et al 1985, Fram et al 1985, Popoff et al 1987) so such investigations would 
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require careful decisions regarding drug concentration. In addition, as 2hr drug 

exposures were investigated in the present work, it seems unlikely that the proposed 

adducts would have been removed by DNA repair processes in that time, with the loss 

of total Pt adducts proceeding over a much longer timescale (Fraval and Roberts 1979, 

Roberts and Friedlos 1987). 

 

Overall, the failure to confirm the presence of additional Pt-DNA adducts in cells is 

consistent with the generally accepted model in which GSH protects cells against Pt 

drugs either directly by simple inactivation of the drug or indirectly by affecting the 

redox state of certain proteins. 
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7.5: Effect of STS on the antiproliferative activity of cisplatin in human tumour 

cell lines 

 

When STS was present concurrently with cisplatin it caused 35, 21, 22 and >17-fold 

increases in GI50 values for 833K, A2780, LoVo and Mor/CPR cells respectively 

(Table 5.2). Under the same conditions, 2.4, 3.6, 3.1 and 10.1 fold reductions in adduct 

level were observed (Table 5.3). In this study, the decreases in Pt-DNA adduct levels 

measured after concurrent incubation of cells with cisplatin and STS are lower than 

what would be expected based on the increase in GI50 concentrations. 

 

One potential explanation for this phenomenon is that Pt-DNA adducts formed in cells 

in the presence of STS are of a different nature to those formed when exposed to 

cisplatin alone. There is very limited data however to support the idea that STS is able 

to enter cells, and so it is unclear what to what extent, if any, STS is altering the nature 

of the adducts. Further investigations into the ability of STS to enter cells are required 

to determine the plausibility of STS affecting Pt-DNA adduct structure. Further 

incubations of human tumour cells with STS and cisplatin might permit analysis of 

adducts formed by chromatography/ICP-MS, but significantly higher levels of cisplatin 

would be required due to the effectiveness of STS in binding to and inactivating 

cisplatin. However, such an analysis seems not worthwhile in view of the lack of 

reliable evidence for the formation of altered cisplatin adducts in purified DNA in the 

presence of STS. 

 

A related possible explanation for the discrepancy between the effects of STS on GI50 

and adduct levels is that STS had a particularly strong effect at blocking formation of a 
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minor adduct which is strongly cytotoxic. The clear candidate for this would be the 

interstrand cross-links but this would require entry of STS into cells. This could be 

studied by alkaline elution analysis, but seems an unlikely mechanism because of the 

lack of any effect of delayed addition of STS on growth inhibition. 

 

Finally it is possible that STS was very effective at blocking the reaction of cisplatin 

with cell surface proteins which influence the way that cells respond to DNA damage. 

Such a mechanism could be relevant to the protective effects reports for STS on 

ototoxicity. 

 

Sequential and delayed exposure to STS had no significant effect on growth inhibition 

or adducts levels in any of the four cell lines tested. This is consistent with the proposed 

delayed administration of STS to patients to protect against ototoxicity without 

compromising the anti-tumour activity of cisplatin. 
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7.6: Analysis of Pt-DNA adducts in relation to growth inhibition data 

 

Factors known to affect the sensitivity of cells to Pt drugs can be grouped into three 

classes: 1, factors that affect access of drug to DNA, such as differences in uptake or 

intracellular thiols; 2, the properties of the adducts formed; and 3, factors that affect 

how the cell responds to the damage, such as repair or replication by-pass mechanisms. 

The latter factors are very dependent upon the nature of adducts formed.All of these 

factors contribute towards the GI50 values. However, if the level of adducts required to 

achieve a 50% growth inhibition (AL50) is determined, this data is independent of the 

first set of factors and so reflects the nature of adducts and how cells respond to them.  

 

Cisplatin and carboplatin are believed to form the same types of Pt-DNA adducts; with 

similar relative yields of major adduct types. In three of the four cell lines investigated 

here (A2780, LoVo and Mor/CPR), after 2hr incubations with equitoxic concentrations, 

carboplatin formed 2-fold lower levels of Pt-DNA adducts in cells than cisplatin. As the 

Pt-DNA adducts formed are believed to be the same, it would be expected that the 

levels of adducts required to achieve equal toxicity would be comparable. The 

differences presented here suggest that adducts formed by carboplatin can be slightly 

more toxic than those for cisplatin. However, chromatographic analysis of DNA 

adducts showed no detectable differences. 

 

Pt-DNA cross-links involving proteins were not analysed chromatographically. It is 

therefore possible that these adducts are contributing to cytotoxicity in a different 

manner in cells incubated with carboplatin or cisplatin. Another limitation of the 
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chromatographic separation is the lack of information about the distribution of adducts 

across the genome, and the implication of adducts forming at different sites. 

 

An alternative explanation could be that the drugs interact with other non-DNA 

molecules either intracellularly or on the cell surface, and this could have effects on the 

response of cells. It is possible that interactions of cisplatin or carboplatin with 

intracellular structures or proteins might have detrimental effects of cell signalling 

which could lead to variations in cytotoxicity. 

 

One unexpected finding was the large amount of oxaliplatin-DNA adducts tolerated by 

Mor/CPR cells. This increased tolerance might be a direct result of the cell line being 

resistant to cisplatin, and further understanding of the resistance mechanisms might 

provide evidence for this.  
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7.7: Analysis of Pt-DNA adducts formed in tumour biopsies and blood cells of 

ovarian cancer patients treated clinically with carboplatin  

 

Very few investigations of Pt-DNA adducts levels in solid tumours of patients 

receiving Pt-based chemotherapy have been published. Factors that may have 

contributed to this lack of data include difficulties in obtaining tumour samples at 

appropriate times after drug administration and the small size of such biopsies, 

combined with the inherent low levels of Pt-DNA adducts formed.  

 

In this study, Pt-DNA adducts levels in tumour biopsies and blood cells obtained from 

four patients receiving carboplatin-based chemotherapy were analysed. Pt-DNA 

adducts levels measured in tumour biopsies ranged from 1.9-4.2 nmol Pt g
-1

 DNA. 

These levels are comparable to Pt-DNA adduct levels detected in head and neck cancer 

patients receiving cisplatin-based chemotherapy by Hoebers et al (2006 and 2008). Pt-

DNA adducts levels in blood cells ranged from 0.15-3.5 nmol Pt g
-1

 DNA, comparable 

to previously published studies (Peng et al 1997, Veal et al 2001, Veal et al 2007). No 

correlation was observed between Pt-DNA adduct levels in tumour biopsies and adduct 

levels in blood cells. The lack of correlation between tumour adduct levels and blood 

cell adduct levels is in agreement with previous published findings (Hoebers et al 2006, 

Hoebers et al 2008) It is important to note however the small sample numbers used in 

this study, with only four patients investigated due to the inherent limitations in 

obtaining samples.  

 

In the most sensitive cell line studied (833K), adduct levels required to achieve 50% 

growth inhibition were 9.9 and 12.0 nmol Pt g
-1

 DNA for 2hr and 24hr incubations 
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respectively. The highest adduct level detected in the tumour biopsies was 4.2 nmol Pt 

g
-1

 DNA. These differences suggest that either the doses used clinically were 

ineffective, or the data obtained using cell line models or analysis by SRB assay is not 

directly relevant to the clinical situation. Investigations of drug sensitivity using a 

method such as a clonogenic assay might provide lower estimates of GI50 

concentrations and hence lower AL50 values. The patients studied were being treated 

for advanced metastatic ovarian cancer and had been previously treated with 

carboplatin. Importantly, all four patients had shown prior response to carboplatin-

based therapy as this was a pre-requisite in selection of suitable patients. It is possible 

therefore that resistance to carboplatin may have developed. Information on response of 

the patients has not yet been provided by the clinician. 

 

There is currently major interest in personalising cancer therapy to individual patients. 

A rationale for studying Pt-DNA adducts levels is that they could be used as a 

predictive assay for patient response, with higher levels of adducts potentially resulting 

in a more favourable outcome. Pt-DNA adducts level in blood cells had previously 

been suggested as a possible biomarker for adduct levels in tumours (Reed et al 1988, 

Reed et al 1990, Bonetti et al 1996). These studies were based on the assumption that 

normal tissue could act as a surrogate for tumour tissue. However, more recently 

published data found no correlation between Pt-DNA adduct levels in blood cells and 

tumour biopsies (Hoebers et al 2006, Hoebers et al 2008). The results obtained from the 

present investigation are in agreement with those recent findings. 

 

Welters et al (1999) investigated the formation of Pt-DNA adducts in biopsies taken 

from patients with head and neck or testicular cancer incubated ex vivo with cisplatin. 
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Adduct levels achieved were comparable between head and neck and testicular 

biopsies. These data suggest that analysis of Pt-DNA adducts achieved in patient 

tumour biopsies incubated ex vivo with Pt drugs is a feasible approach towards 

predicting patient response. However, this approach would require intensive laboratory 

work for each sample and it would need to be shown to produce clinically useful data. 

 

This study has demonstrated a successful application of ICP-MS for analysis of total Pt-

DNA adducts in solid ovarian tumour tissue. A major advantage of ICP-MS is the 

minimum preparation steps required from DNA extraction to analysis, improving 

sensitivity of detection. This is further supported by the comparable adduct levels 

detected in this study with those of Hoebers et al (2006 and 2008). A weakness of this 

approach however is that any Pt present in samples will appear to be a Pt-DNA adduct. 

Combining chromatographic separation with ICP-MS is a potential mechanism to 

overcome this, but might decrease sensitivity.   
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7.8: Overall Conclusions 

 

1. It was confirmed that adducts formed in cells incubated with cisplatin were of a 

similar nature to those described previously based on analysis of pure DNA 

incubated with cisplatin. 

2. No evidence was found to support the observations of Azim-Araghi 2003, that 

in cells exposed to cisplatin, an additional major class of Pt-DNA adducts is 

formed. 

3. The chromatographic behaviour of Pt-DNA adducts formed in cells exposed to 

either carboplatin or oxaliplatin are comparable to those of cisplatin, suggesting 

the nature of such adducts is broadly similar. 

4. STS was much more effective than GSH at limiting reaction of cisplatin with 

purified DNA. However, since no evidence of either forming additional adducts 

with platinated DNA was found the direct protective effect appears to result 

from inactivation of free Pt drug rather than modulation of adduct formation. 

5. STS protected cells against cisplatin but only when present concurrently. Effects 

on total adduct levels were not fully consistent with the effects on cytotoxicity. 

6. Pt-DNA adduct levels in tumour biopsies and blood cells obtained from patients 

receiving Pt-based chemotherapy were shown to be quantifiable by ICP-MS 

7. Pt-DNA adducts levels in tumour biopsies and blood cells showed no 

correlation indicating that blood cells have limited value as a marker of tumour 

response. 
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Appendix 

 

Section A: NMR 

 
 

Section 1: Reaction of cisplatin with dGMP 

 

Samples for NMR were prepared in ultrapure water. dGMP was dissolved at 10 mM, 

and cisplatin at 5 mM. For the NMR analyses of dGMP alone, samples were freeze 

dried then re-dissolved in 0.7 mL D2O. This was done twice. For the NMR analyses 

platinated dGMP samples were incubated with cisplatin (2:1 molar ratio) for 72hrs, and 

then freeze dried and re-dissolved in D2O. This was done once. 

 

NMR analysis of dGMP was predicted to detect 7 protons, as labelled in figure A1. 
1
H- 

and COSY-NMR analysis of dGMP alone is shown in figures A2 and A3. 
1
H- and 

COSY-NMR analysis of a reaction mixture of cisplatin with dGMP is shown in figures 

A4 and A5. 

 

NMR analysis of dGMP alone showed 7 detectable proton peaks. These were assigned 

as shown in figure A1 (assignment by Professors Bernard Golding and William 

McFarlane). NMR analysis of a mixture of cisplatin-dGMP showed 7 peaks 

comparable to those seen in the analysis of dGMP alone. 
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Figure A1: Structure of dGMP and 7 protons predicted detected by NMR 

  



362 

 

 

 
 

Figure A2:  
1
H-NMR analysis of 10 mM dGMP dissolved in water 
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Figure A3: COSY-NMR analysis of 10 mM dGMP dissolved in water 
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Figure A4: 
1
H-NMR analysis of a reaction mixture of 5mM cisplatin and 10 mM dGMP 

dissolved in water 
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Figure A5: COSY-NMR analysis a reaction mixture of 5mM cisplatin and 10 mM 

dGMP dissolved in water 
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Section 2: Reaction of cisplatin with GSH 

 

Samples for NMR were prepared in ultrapure water. GSH was dissolved at 10 mM, and 

cisplatin at 5 mM. For the NMR analyses of GSH alone, samples were freeze dried then 

re-dissolved in 0.7 mL D2O. This was done twice. For the NMR analyses platinated 

GSH samples were incubated with cisplatin (2:1 molar ratio) for 72hrs, and then freeze 

dried and re-dissolved in D2O. This was done once. 

 

NMR analysis of GSH was predicted to detect 7 protons, as labelled in figure A6. 
1
H- 

and COSY-NMR analysis of GSH alone is shown in figures A7 and A8. 
1
H- and 

COSY-NMR analysis of a reaction mixture of cisplatin with GSH is shown in figures 

A9 and A10. 

 

NMR analysis of GSH alone showed 6 detectable proton peaks. These were assigned as 

shown in figure A6 (assignment by Professors Bernard Golding and William 

McFarlane). NMR analysis of a mixture of cisplatin-dGMP showed multiple peaks, 

though it was not possible to draw any reliable conclusions from the data. 
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Figure A6: Structure of GSH and 6 protons predicted detected by NMR 
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Figure A7:
 1

H-NMR analysis of 10 mM GSH dissolved in water 

  



369 

 

 
 

Figure A8: COSY-NMR analysis of 10 mM GSH dissolved in water 
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Figure A9: 
1
H-NMR analysis of a reaction mixture of 5mM cisplatin and 10 mM GSH 

dissolved in water 
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Figure A10: COSY-NMR analysis a reaction mixture of 5mM cisplatin and 10 mM 

dGMP dissolved in water 
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Section B:  FIGO Staging for Ovarian Cancer 

 

The FIGO (International Federation of Gynaecological Oncologists) staging system is 

used to identify the spread of an ovarian cancer at the time of diagnosis and is used to 

determine appropriate therapy regimes. 

 

Stage 1: The tumour is confined to the ovary/ovaries 

 Stage 1A 

 Only one ovary is affected by the tumour, the ovary capsule is intact 

 No tumour is detectable on the surface of the ovary 

 No malignant cells are detected in the abdominal fluid 

 Stage 1B 

 Both ovaries are affected by the tumour, the ovary capsule is intact 

 No tumour is detectable on the surface of the ovary 

 No malignant cells are detected in the abdominal fluid 

 Stage 1C 

 The tumour occurs in one/both ovaries, the ovary capsule is ruptured 

 Tumour growth is detectable on the ovarian surface 

 Positive malignant cells are detected in the abdominal fluid 

 

Stage 2: The tumour involves one/both ovaries and has extended into the pelvic region 

 Stage 2A 

 The tumour has extended in the fallopian tubes and/or the uterus 

 No malignant cells are detected in the abdominal fluid 

 Stage 2B 

 The tumour has extended into another organ in the pelvis (such as the 

bladder or rectum) 

 No malignant cells are detectable in the abdominal fluid 

 Stage 2C 

 The tumour has extended into the pelvic region as defined in 2A/2B 

 Positive malignant cells are detected in the abdominal fluid 
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Stage 3: The tumour involves one/both ovaries with microscopically confirmed 

peritoneal metastasis (outside the pelvis) or regional lymph node metastasis 

 Stage 3A 

 Microscopic peritoneal metastasis beyond the pelvis 

 Stage 3B 

 Macroscopic peritoneal metastasis beyond the pelvis 

 Tumours less than 2 cm maximum diameter 

 Stage 3C 

 Macroscopic peritoneal metastasis beyond the pelvis ( > 2cm tumour 

diameter) and/or regional lymph node metastasis 

 

Stage 4: Distant metastasis beyond the peritoneal cavity 

 

 

 

 

 

 

 


