
Verification of Floating Point

Programs

Jan Andrzej Duracz

Doctor Of Philosophy

Aston University

December 2010

This copy of the thesis has been supplied on condition that anyone who

consults it is understood to recognise that its copyright rests with its author

and that no quotation from the thesis and no information derived from it

may be published without proper acknowledgement.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by OpenGrey Repository

https://core.ac.uk/display/40022434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Aston University

Verification of Floating Point
Programs

Jan Andrzej Duracz

Doctor Of Philosophy, 2010

Thesis Summary

In this thesis we present an approach to automated verification of floating point programs.
Existing techniques for automated generation of correctness theorems are extended to pro-
duce proof obligations for accuracy guarantees and absence of floating point exceptions.
A prototype automated real number theorem prover is presented, demonstrating a novel
application of function interval arithmetic in the context of subdivision-based numerical
theorem proving. The prototype is tested on correctness theorems for two simple yet non-
trivial programs, proving exception freedom and tight accuracy guarantees automatically.
The prover demonstrates a novel application of function interval arithmetic in the context
of subdivision-based numerical theorem proving. The experiments show how function
intervals can be used to combat the information loss problems that limit the applicability
of traditional interval arithmetic in the context of hard real number theorem proving.

Keywords: static analysis, floating point, formal software verification, automated
theorem proving

Acknowledgements

I thank my supervisor Michal Konečný, for his patience in guiding me through the theory

of computing, and for his availability whenever advise or guidance was needed. It kept

me motivated and made the research experience most enjoyable. I thank Dr. Amin Farju-

dian for his collaboration and inspiring discussions.

I thank Dr. Alan Barnes, for providing accommodation and stimulating conversations. I

extend special thanks to Dr. Patchara Punyamoonwongsa, she has been a great friend and

provided valuable advise and motivation.

It gives me great pleasure to thank my dear parents Anna and Andrzej and brother Adam.

During the course of my studies they have provided me with all I could wish for and it is

thanks to them that I have had the peace of mind to focus completely on my studies.

Finally, I acknowledge the Engineering and Physical Sciences Research Council and

Praxis High Integrity Systems, who funded my research. In particular, I thank Dr. Roder-

ick Chapman, the project liaison at Praxis, for providing generous access to training and

other resources at the company.

3

Contents

1 Introduction 9

1.1 History of verification . 11

1.2 Related work . 13

1.3 Contents of Thesis . 16

1.4 Summary of contributions . 18

2 Background 20

2.1 Posets . 21

2.2 Interval arithmetic . 25

2.3 Approximation in complete semilattices 28

3 Generation of correctness theorems 31

3.1 Model language PROC . 32

3.1.1 Syntax of PROC . 32

3.1.2 PROC functions as procedures 34

3.2 Annotated model language PEA . 36

3.2.1 Syntax of ANOT . 36

3.2.2 Syntax of PEA . 36

3.2.3 PEA functions as procedures . 37

3.3 Structural operational semantics for PROC and PEA 38

3.3.1 The map [[·]]S OS . 38

3.3.2 Operational correctness for PEA programs 40

3.4 Predicate transformer semantics for PEA 41

3.4.1 The map CT . 42

3.4.2 The predicate transformer [·] . 43

3.5 CT is stronger than [[·]]S OS . 44

4

CONTENTS

3.6 Referential transparency . 49

3.6.1 Pure and Purple expressions . 49

3.6.2 PROC statements . 51

4 Floating point computation 55

4.1 Floating point numbers . 57

4.2 The IEEE floating point standard . 58

4.2.1 Standard floating point formats 59

4.2.2 Special floating point values . 59

4.2.3 Rounding modes . 60

4.2.4 Accuracy of elementary operations 60

4.3 The ARM numeric annex . 60

4.3.1 Ada model of FP arithmetic . 62

4.3.2 Accuracy guarantees for numeric functions 62

4.3.3 Ada Floating Point Exceptions 63

5 Specification of floating point properties 65

5.1 Rounding operators . 66

5.2 Specification of built in operations . 67

5.2.1 Addition, Subtraction, Multiplication and Division 67

5.2.2 Power . 69

5.3 Specification of elementary functions 70

5.3.1 Square root . 70

5.3.2 Exponentiation . 70

5.4 Specification of functions and procedures 71

5.4.1 Extending the annotation language with the integral operator . . . 71

5.4.2 Error function example . 72

5.4.3 Extending the annotation language with intervals 75

5.4.4 Square root example . 77

5.5 Concluding remarks . 80

6 Implementation in SPARK 82

6.1 The SPARK Ada language . 83

6.1.1 Syntax of SPARK annotations 83

5

CONTENTS

6.1.2 An example program . 84

6.2 The SPARK tool set . 85

6.2.1 The Examiner . 85

6.2.2 The Simplifier . 86

6.2.3 The Proof Checker . 86

6.3 SPARK.Numerics . 87

6.3.1 Erf example . 87

6.3.2 Sqrt example . 88

7 Background 95

7.1 Approximation continued . 96

7.1.1 Approximation of real numbers 96

7.1.2 Approximation of total real functions 96

7.1.3 Finitary approximation of numbers 97

7.1.4 Finitary approximation of total functions 98

7.1.5 Approximation of total interval functions 99

7.1.6 Inner approximations . 101

7.1.7 Generalised intervals . 102

7.2 Partial functions . 105

7.2.1 Partial extensions . 106

7.2.2 Making partial functions total 108

7.2.3 Many valued logics . 109

8 Automated numerical theorem prover 111

8.1 Approximation of predicates . 113

8.1.1 Safe numerical approximation 114

8.1.2 Domain subdivision . 115

8.1.3 Approximation of Boolean functions 117

8.1.4 Partial functions continued . 120

8.1.5 Polynomial function intervals 123

8.2 Implementation . 125

8.2.1 The correctness theorem language CTL 125

8.2.2 Exact and approximate semantics for CTL 126

8.2.3 Note on the approximation of
∫ b

a
f (x)dx 129

6

CONTENTS

8.3 Experiments . 130

8.3.1 Motivation . 130

8.3.2 Experimental setup . 131

8.3.3 erf correctness theorem . 132

8.3.4 erf proving results . 133

8.3.5 erf counterexample discovery 135

8.3.6 square root correctness theorem 137

8.3.7 Revised square root program 138

8.3.8 Revised square root proving results 140

9 Conclusions and further work 143

9.1 Summary . 144

9.2 Contributions . 144

9.2.1 Defining referential transparency for statement languages 144

9.2.2 Automated generation of floating point proof obligations 145

9.2.3 Introduction of the integration operator 145

9.2.4 Introduction of interval expressions 145

9.2.5 Reduction of information loss in subdivision search algorithms . . 146

9.3 Further work . 146

9.3.1 Referential transparency for statement languages 146

9.3.2 Generation of proof obligations 147

9.3.3 Integration operator . 147

9.3.4 Reduction of information loss 148

7

List of Figures

3.1 Declarations of example programs one, two and three. 34

3.2 Declarations resulting from applying a2p and f 2p to example programs . 35

3.3 Declaration of annotated example program one 38

5.1 Implementation of the error function in PEA. 72

5.2 Example of function composition. 76

5.3 Example implementation of the square root function in PEA 78

6.1 Example program specification . 85

6.2 Exact package specification fragment 87

6.3 Numeric package specification fragment 89

6.4 Erf program code . 91

6.5 Exact package specification fragment 92

6.6 Numeric package specification fragment 93

6.7 Sqrt program code . 94

8.1 Standard extension of propositional Boolean logic to {t, f, u} 118

8.2 Conservative extension of propositional Boolean logic to {e, t, f, u} . . . 118

8.3 Alternative extension of propositional Boolean logic to {e, t, f, u} 119

8.4 Flat partial Booleans . 121

8.5 Proving the true erf functional correctness VC. 134

8.6 Disproving the false Erf functional correctness VC 136

8.7 Revised implementation of the square root function in PEA 139

8.8 Proving the revised square root functional correctness VC 141

8

1 Introduction

CONTENTS
1.1 History of verification . 11

1.2 Related work . 13

1.3 Contents of Thesis . 16

1.4 Summary of contributions . 18

9

Chapter 1 INTRODUCTION

It is trivial to implement any algorithm incorrectly

While the statement above is trivial in itself it raises an interesting question: what does

it mean to implement an algorithm correctly? The answer that is usually given is that

one defines the correctness of a program relative to a specification stating the desired

properties the program should satisfy. To reach mathematical precision, this statement of

properties must be expressed in a formal language, allowing for a rigorous analysis of the

correspondence between program and contract. The field of formal verification collects

techniques to support and automate such analyses. A program specification may be see

as a contract between the provider and user of the program. The type of contract depends

on the application area for the program. In high integrity applications, such as control

systems and embedded software in the aerospace, rail, nuclear and military industries,

the consequence of failure can be catastrophic. Therefore, it becomes imperative to reach

high confidence that safety properties, such as exception freedom, of such systems are

satisfied. Systems handling sensitive data, or that control access to such data, need to

satisfy security properties, such as isolation between parts of the system dealing with data

of different sensitivity. As pointed out in the opening statement one really should always

aim to verify that a given program satisfies its contract, but due to the increased costs,

the deployment of formal verification techniques in the industry has generally been lim-

ited to those areas where other methods, such as code inspection and testing, are deemed

insufficient. Among industrially used languages for high integrity applications, SPARK

Ada [9, 10, 21, 49] has proved to be particularly successful, with over twenty years of

deployment. It does however lack adequate support for expressing functional properties

of floating point programs. As of late a major air traffic system has been commissioned

to be written in SPARK Ada, but due to the lack of support in the language and tool set,

formal verification of the numeric algorithms has not been employed.

The work presented in this thesis addresses the particular case of verifying properties re-

lated to execution of real number algorithms using finite precision arithmetic and focuses

on automation of such correctness proofs. Although applicable to any classical imperative

language, one of the aims of the work has been to provide concrete advice for an extension

of the SPARK Ada language and supporting tool set to include verification of functional

properties of floating point programs. Consequently, the approach has been to leverage

10

Chapter 1 INTRODUCTION

the facilities already existing in SPARK Ada for automated generation of correctness the-

orems, by extending the annotation language and verification condition generator, and to

look at ways to extend the capacity of existing theorem proving technologies to automat-

ically prove the resulting correctness theorems.

The introduction continues with a brief account of the history of verification, abridged

and adapted from [50], followed by an overview of approaches to automated verification

and concludes with a summary of the contents of the thesis.

1.1 History of verification

The idea of formally reasoning about programs seems to go back to the very origins of

automated computation. Charles Babbage (1791-1871), who is commonly considered the

father of the computer, wrote on the “Verification of the Formulae Placed on the [Oper-

ation] Cards” [65]. In modern times, Goldstine and von Neumann wrote the 1947 paper

[41] about using “assertion boxes” to reason about the effects of “operation boxes”. While

they also discussed issues with numerical approximations and rounding errors, the focus

was on reasoning as an aid for program development. They did however hit upon a central

idea in verification, that of combining the control part of a program with assertions about

the values it computes.

Turing presented a correctness proof for a program computing the factorial function [71]

at the 1949 Cambridge conference on high speed automatic calculating machines. He

illustrated his reasoning using a flow diagram labelled with control points where asser-

tions about the state are made. In a 1961 presentation and the following 1963 paper [54]

McCarthy called for the investigation of a “Mathematical Theory of Computation”. He

makes the point that in order to reason about programs one needs to make the semantics

of the programming language precise. This is clear, since one cannot draw conclusions

about the execution of a program from the program’s code, unless the compiler preserves

the semantics of the program. Wijngaarden gave a presentation in 1964 and published

the paper [72] in 1966 where he outlines a formal framework for reasoning about the

evaluation of expressions in inexact arithmetic. The 1966 paper by Naur [59] introduced

“General Snapshots”, which are assertions formulated in plain English mathematics and

written into the code of a program as comments. It is similar to the approach of Turing,

11

Chapter 1 INTRODUCTION

updated for a higher level language. Naur still promotes a carefully formulated correct-

ness argument in English, rather than a proof in a formal language. In contrast to Naur,

the 1967 paper by Floyd [39] used propositional logic as the language for assertions and

placed them as labels on the edges of the control flow graph of the program.

Floyd gave verification conditions ensuring that the assertions in the flow chart corre-

sponded to the program statements. In the paper Floyd was using “strongest verifiable

consequents”, which are obtained from an assertion preceding a statement by deducing

the strongest assertion that holds after the statement. The rule for assignment statements

thus obtained becomes complicated as it uses an existential quantifier. Floyd subsequently

found the “backwards rule” for assignment statements. The main difference between Tur-

ing’s and Floyd’s work is the expressivity of the assertion languages. Jones [50] points

out that in Turing’s paper [71], the assertions may only relate values between variables in

terms of explicit expressions, while Floyd’s allows arbitrary predicates. Floyd cites Perlis

and Gorn as inspiration for his approach to correctness. Jones confirms that Gorn was us-

ing flow diagrams to reason about programs in [42] and that he gives an “induction rule”

foreshadowing loop invariants, but that no systematic treatment of assertions was given.

Crucially, Floyd was the first to present formal rules for checking verification conditions.

Hoare adopted the backwards rule in his axiomatic approach, presented in his celebrated

1969 paper [47], where he introduces Hoare triples, citing the papers by Floyd, Naur and

van Wijngaarden mentioned above as inspiration. A Hoare triple {P}S {Q} contains the

precondition assertion P and postcondition assertion Q placed within braces around the

program segment S , the braces representing comments à la Naur’s General Snapshots.

The triple has the following interpretation: if S is executed in a state satisfying P, then,

provided the execution terminates, the state after execution will satisfy Q. Hoare gives de-

duction rules defined inductively over the language constructs: assignments, conditionals

and while loops. Jones points out that this marks a departure from reasoning operationally

about the program execution, by presenting a proof as a sequence of deductions using in-

ference rules. The property proved by this method is called partial correctness, where

partial refers to the termination requirement. If proof of termination is provided as well,

we say that total correctness has been established.

12

Chapter 1 INTRODUCTION

The development of formal frameworks for program verification in the direction of in-

creasing formalisation makes possible the development of algorithms that automate the

translation of specified programs into correctness theorems. Dijkstra’s 1975 paper [34]

moves verification yet another step towards automation by introducing the predicate trans-

former wp. Dijkstra’s idea is to view program constructs as parameters of functions that

transform (assertion) predicates. In Hoare’s approach a triple {P}S 1; S 2{Q} is constructed

from triples {P}S 1{R} and {R′}S 2{Q}, with R ⇒ R′. Dijkstra in contrast asks what the

weakest precondition is, such that S 1; S 2 terminates and produces a state for which Q is

true. The advantages compared to Hoare’s approach is that wp handles termination and

that wp has an appealing calculus that is well suited for implementation on a computer.

The (total) correctness theorem corresponding to a Hoare triple {P}S {Q} has the succinct

form

P⇒ wp(S ,Q)

where wp(S ,Q) stands for the weakest predicate that makes S terminate and produce a

result satisfying Q.

Since its introduction wp has been generalised in various ways to include a wider class of

language constructs. In [35] Dijkstra relaxed the termination requirement on wp obtaining

the weakest liberal precondition wlp, later generalised by Lamport in [53] to the weakest

invariant predicate transformer win for reasoning about concurrency. Probabilistic pred-

icate transformers were described by Morgan, McIver and Seidel in [58] and a quantum

weakest precondition predicate transformer was introduced by D’Hondt and Panangaden

in [33].

1.2 Related work

Proving software correctness may of course be done by hand, in the way mathematicians

usually solve problems. The main drawback of this approach is that it does not scale well

in the sense that due to human factors, sufficiently large analyses will inevitably contain

errors, some of which may invalidate the correctness proofs. Thus, even partial automa-

tion of analysis and certification is a highly attractive goal for research aimed at practical

software verification. The two main approaches to proving software correctness choose

either full automation for a fixed set of properties, or partial automation for a larger class

13

Chapter 1 INTRODUCTION

of properties. Techniques such as Model Checking and Abstract Interpretation belong the

former group, while Verification by Theorem Proving belongs to the latter.

In abstract interpretation [23, 24, 25, 26] computation is soundly approximated, yielding

abstractions of the state space over which some properties may be safely verified. The

drawback is that the representations we may choose for an abstract state are limited on

one side by the efficiency with with it may be computed and on the other by the prop-

erty we wish to prove over it. Full automation is achieved by using coarsely grained

approximations, which are computationally tractable but imprecise and can therefore not

prove highly accurate properties. When precision loss becomes prohibitive, one needs

to use abstract states that encode information about relations between program variables.

To this end specialised domains have been proposed [55, 67] which attempt to strike a

balance between information loss and computational complexity. Most implementations

are however based on interval arithmetic and therefore suffer the usual information loss

resulting from wrapping effects described in Section 2.2. Tools based on abstract inter-

pretation, such as Fluctuat [43, 64], have been developed specifically with verification of

floating point properties in mind. Industrial applications of abstract interpreters have been

described in e.g. [7, 32, 38]. The most notable application to floating point verification is

the certification of aeronautical software using the Astrée Static Analyzer [15, 16, 27].

Model checking algorithms solve the following problem: given a model of the system,

automatically check that a given property is satisfied by the model [48]. In practice such

algorithms work by building a representation of the state space of the model and then

traversing the space, checking that the property is satisfied in each particular state. This

approach is limited by the size of the state space, and is generally applied only to Boolean

and integer problems [3]. Model checking has had some success in software verifica-

tion, notably static analysis of C implementations of device drivers using the BLAST

model checker [14] and of Microsoft Windows device drivers using the SLAM model

checker [8]. Attempts have been made to combat the state space problem by combining

model checking and theorem proving [22], but to date no success at verification of float-

ing point programs has been reported.

The theorem proving approach splits the verification task into two steps. First, a correct-

ness theorem is generated for the contract-program pair and then a theorem prover is used

to prove the generated theorem. Automation, which is achieved through approximation,

14

Chapter 1 INTRODUCTION

becomes nearly impossible when wishing to prove very precise properties of a program.

In such cases at least the generation of correctness theorems from formally specified pro-

grams may be automated. The proof effort consists of modelling the computation in an

interactive proving environment and then manually guiding the proof construction. Often

some of this work can be performed during the generation of the correctness theorem, e.g.

most verification condition generators eliminate control flow from the generated theorem.

We show in Chapters 3 and 5 that it is possible to eliminate all references to operational

semantics in the generation step, resulting in correctness theorems for floating point pro-

grams containing only the usual real number functions and relations. Verification of func-

tional properties of floating point C programs has been demonstrated using the Caduceus

verification condition generator and the Coq interactive theorem prover [17, 18].

The main contribution of [18] was the introduction of so-called model values, which are

ghost variables serving as documentation of the intended real number values a program

computes. Thus, it becomes possible to specify both method error, i. e. the error intro-

duced by rounding operations, as well as model error, i. e. the total deviation of the actual

values returned by the program from the values sought by the programmer. The drawback

with this approach is that the model values are given by equalities of exact real number

expressions, often involving transcendental functions, which famously are not decidable.

Since our aim is to automate correctness theorem proofs we have to abandon model values

and instead formulate error properties of floating point programs using approximations,

such as the ones presented in Chapter 5.

The advantages of the theorem proving approach compared to proving by hand are that a

correctly implemented system will not allow erroneous deductions and that the generated

proofs may be mechanically checked by external systems. A drawback is that the typical

system will require a high level of familiarity to be used efficiently and even then the

proof efforts may take months even for rather simple theorems. The solution is to employ

an automated theorem prover in the second step, as is demonstrated in [19] where the au-

tomated prover Gappa [19, 30, 31] is used to discharge verification conditions generated

by Caduceus. Unlike most automated numerical theorem provers, Gappa also generates

a formal proof that may be checked by an independent prover, thus giving even greater

confidence in the validity of the proof. As is the case for the vast majority of automated

numerical theorem provers, Gappa uses interval arithmetic to obtain bounds on numeric

15

Chapter 1 INTRODUCTION

expressions. The pathological information loss of interval arithmetic, described in Sec-

tion 2.2, limits the range of properties that may be automatically verified this way. In

Chapters 7 and 8 we address the problem of proof automation for numerical programs

and demonstrate how using an arithmetic that is less prone to information loss can im-

prove the performance of subdivision-based decision procedures.

1.3 Contents of Thesis

The work presented in this thesis is divided into two parts. Each begins with introduc-

tions of definitions and concepts and a recount of related work. The first part comprises

Chapters 2 to 6 and the second Chapters 7 and 8.

Part One

The first part of the thesis addresses the problem of automated generation of proof obli-

gations for functional properties of floating point code.

In Chapter 2 mathematical definitions needed in the following chapters are given and a

review of relevant work is presented. Chapter 3 introduces the model programming lan-

guage PROC and its extension PEA by contracts and invariants. PROC is obtained from

the extension of WHILE with procedures as defined in Section 1.2 and 2.5 of [13] by

disallowing global variables, allowing multiple procedure in and out parameters and in-

troducing implicit declaration of functions from procedure declarations with a single out

parameter. Operational and denotational semantics for PROC and PEA are then intro-

duced along with corresponding notions of correctness. The operational semantics take

a particularly simple form, when compared with the operational sematics given for the

extended WHILE in Section 2.21 and 2.5.1 in [13], due to the lack of global variables in

PROC. A theorem is stated and proved, showing that denotational correctness is stronger

than operational correctness, in the sense that it is sufficient to prove the denotationally

derived correctness theorem in order to prove operationally defined correctness. The main

reason for the introduction of the model languages is to allow for the statement and proof

of this theorem and to set the discussion of program specification on a firm footing. The

chapter concludes with a discussion of referential transparency, where the notion is lifted

from the usual setting of expression languages to statement languages, making precise the

16

Chapter 1 INTRODUCTION

intuition that PROC is in essence a pure language.

Chapter 4 is a short account of the IEEE floating point standard and the parts of the Ada

language standard relating to the implementation of floating point functions. In Chap-

ter 5 suitable specifications for the built-in operations and the library functions described

in Chapter 4 are considered. Then, the problem of specifying arbitrary floating point

programs is addressed, resulting in an extension of the PEA annotation language with

primitives making the formulation of certain contracts more succinct and introducing the

integral operator to the expression sublanguage.

Chapter 6 concludes part one with complete implementations in SPARK Ada of the ex-

ample PEA programs given in the preceding chapter. The implementation serves as a

recommendation for the extension of the facilities in SPARK Ada for verification of float-

ing point programs.

Part Two

The second part of the thesis addresses the problem of proof automation for the correct-

ness theorems generated by the methods described in part one.

Chapter 7 defines the notion of approximation and generalisations of interval arithmetic

used in the subsequent discussion and implemented by the prototype theorem prover pre-

sented in the following chapter.

Chapter 8 describes a prototype theorem prover, based on the classical subdivision search

algorithm used in most numerical constraint solvers. The novelty is the use of polynomial

function interval arithmetic, which extends the interval arithmetic traditionally used in the

field, allowing for variable precision approximation of continuous functions over the real

numbers. Chapter 8 concludes by presenting experiments showing that the computational

overheads of using polynomial function interval arithmetic compared to traditional inter-

val arithmetic are outweighed by the increased approximation precision when used in a

subdivision search algorithm.

Chapter 9 presents the conclusions drawn from the investigation, questions left unan-

swered and potential directions that future investigations may take.

17

Chapter 1 INTRODUCTION

1.4 Summary of contributions

The problem this work addresses is that of automation of correctness proofs for imperative

floating point programs in general and SPARK Ada floating point programs in particular.

The approach taken is by automated generation of correctness theorems followed by au-

tomated theorem proving. The main contributions are the following:

Defining referential transparency for statement languages, which we take to mean

that each variable a program interacts with is passed explicitly as a parameter. In SPARK

Ada this is achieved by demanding that all variables that are not formal parameters of the

program, but that are written or read by the program, are declared in the program’s specifi-

cation. Using this property we formulate a simplified form of operational semantics for a

model language based on the SPARK Ada core language in Chapter 3. A denotational se-

mantics based on Dijkstra’s weakest precondition predicate transformer semantics is also

presented in Chapter 3 formalising the generation of correctness theorems for the model

language and a theorem relating the denotational and operational semantics is given. Pre-

viously, a predicate transformer semantics has been given in [46] for a sublanguage of

SPARK Ada with side-effecting functions. Due to our approach disallowing global state

the exposition is simplified by allowing the omission of a top level environment. Ref-

erential transparency for procedural languages is formalised by treating statements as

generalised expressions and lifting the standard definition, as given in [70], accordingly.

Automated generation of floating point proof obligations is achieved by extending

the existing verification condition generation facilities to programs with floating point

expressions by equipping floating point operations and functions with specifications for

functional properties. Alternative ways to specify these properties are discussed in Chap-

ter 5 and SPARK Ada implementations of these ideas are provided in Chapter 6.

Introduction of the integration operator to the specification language, making the ex-

pression sublanguage more expressive. Described in Section 5.4.1, the extension allows

users to relate values computed by a program with functions defined in terms of integrals,

giving an alternative to adding special functions to the specification language.

Introduction of interval expressions to the specification language, described in Sec-

tion 5.4.3. The extension allows users to express program properties in terms of intervals,

making the resulting contracts concise and composable. To our knowledge these exten-

18

Chapter 1 INTRODUCTION

sions are novel in the context of specification languages for floating point programs.

Novel approach to information loss in subdivision search algorithms. So called wrap-

ping effects and the dependency problem of interval arithmetic limit the size and com-

plexity of numerical theorems that these standard techniques can tackle. We propose for

the first time to use function interval arithmetic to reduce such information loss effects

in numerical theorem provers and describe the implementation of a prototype prover in

Chapter 8. An informal analysis of the information loss reduction is presented for two

small but nontrivial programs but future rigorous analyses for various classes of programs

will be needed before definite conclusions may be drawn.

Automation of some exception freedom and hard functional property proofs, de-

scribed in Section 8.3. The hypothesis that function interval arithmetic may improve

the overall performance of subdivision search algorithms is tested by using the prover to

mechanise the proofs of exception freedom and tight accuracy guarantees for two non-

trivial programs, including one with a while loop.

19

2 Background

CONTENTS
2.1 Posets . 21

2.2 Interval arithmetic . 25

2.3 Approximation in complete semilattices 28

20

Chapter 2 BACKGROUND

In the following chapter we define concepts necessary for specifying approximate prop-

erties of FP programs. In Chapter 5 we will use real interval arithmetic to express bounds

on results of floating point computations. The definitions will be given in some general-

ity, as we hope to show that the various levels of approximation presented throughout the

work follow a natural pattern. We begin by defining partially ordered sets in Section 2.1

and then intervals and interval arithmetic in Section 2.2. In Section 2.3 we outline issues

associated with approximation of elements of a poset with elements of its poset of order

intervals.

2.1 Posets

Definition 2.1.1 (Partial order). A partial order ω on a set R is a relation on R, i. e. a

subset of R × R, for which the following properties hold:

• if (x, y) and (y, z) are in ω, then (x, z) is in ω (transitive)

• (x, x) is in ω for all x in R (reflexive)

• if (x, y) and (y, x) are in ω, then x = y (antisymmetric)

We will usually write relations in-fix, so that the statement xω y will mean (x, y) ∈ ω.

Each partial order ω has a strict version defined by: (x, y) ∈ ω ∧ x , y, we will usually

denote partial orders by ≤ or v, and their strict versions by < and @, respectively. When

x ≤ y, we say that x is lesser than or below y, or dually, that y is greater than or above x.

In the case when x < y we say that x is strictly lesser than or strictly below y, or dually,

that y is strictly greater than or strictly above x.

Definition 2.1.2 (Opposite relation). Each relation ρ ⊆ X × X on a set X has an opposite

version ρ ⊆ X × X defined by (x, y) ∈ ρ ⇐⇒ (y, x) ∈ ρ.

Example 2.1.3 (Opposite partial order). Each partial order ω has an opposite version ω

given by the corresponding opposite relation, i. e. xω y ⇐⇒ yω x. The opposites of ≤

and v are denoted by ≥ and w, respectively.

Definition 2.1.4 (Poset). A pair (R,≤), where R is a set and ≤ is a partial order on R, is

called a partially ordered set, or poset.

21

Chapter 2 BACKGROUND

Whenever (R,≤) is a poset, we will also refer to the set R as partially ordered. Each subset

S ⊆ R of a poset defines a poset ordered by the order on R, restricted to S . We call such

posets sub-posets of R.

Example 2.1.5 (Powerset and opposite powerset poset). The poset (℘(X),⊆) is given by

the powerset ℘(X) of a set X ordered by set inclusion. Its opposite poset (℘(X),⊇) is

ordered by reverse set inclusion.

Example 2.1.6 (Poset-valued function poset). The poset (X→R, ≤̇) is given by the set

X→R of functions from a set X to a poset (R,≤), ordered by the pointwise ≤-order ≤̇,

defined by

f ≤̇ g ≡ ∀x ∈ X . f (x) ≤ g(x)

for all f , g ∈ X→R.

Definition 2.1.7 (Poset morphism). Let (R,≤) and (S ,v) be posets. A function f : R→ S

is called a poset morphism if it is order preserving, i. e. if

x ≤ y⇒ f (x) v f (y)

for all x, y ∈ R.

It follows that the image f (R) of a poset morphism f : R → S is a sub-poset of S .

Functions of many arguments that are a poset morphism in each argument are called

isotonic:

Definition 2.1.8 (Isotonic function). Let (R,≤) and (S v) be posets and f : Rn → S a

function. We call f isotonic if xi ≤ x′i implies f (x1, . . . , xi, . . . , xn) v f (x1, . . . , x′i , . . . , xn)

for each i ∈ {1, . . . , n}.

Definition 2.1.9 (Maximal and Minimal). Let (R,≤) be a poset and S ⊆ R. We call x ∈ S

• a maximal element of S whenever there is no y ∈ R strictly greater than x

• a minimal element of S whenever there is no y ∈ R strictly lesser than x

Example 2.1.10 (Maximal subsets). In the sub-poset (℘(X) \{∅},⊇) of the opposite pow-

erset poset from Example 2.1.5 the maximal elements are the singleton sets {x}, for each

x ∈ X.

22

Chapter 2 BACKGROUND

Example 2.1.11 (Minimal functions). Let (X→R, ≤̇) be the pointwise ordered poset val-

ued functions from Example 2.1.6 and Rmin the set of minimal elements of R. Then the set

X→Rmin of Rmin-valued functions is the set of minimal elements of X→R.

Definition 2.1.12 (Upper and lower bound, greatest and least element). Let (R,≤) be a

poset, S ⊆ R and x ∈ R. We call x

• an upper bound of S whenever x is greater than any y ∈ S , and say that S is

bounded above by x. If x in addition lies in S we call x a greatest element of S

• a lower bound of S whenever x is lesser than any y ∈ S , and say that S is bounded

below by x. If x in addition lies in S we call x a least element of S

Note that greatest and least elements need not exist, but when they do they are unique by

antisymmetry.

Example 2.1.13 (Two-point extended reals). The poset (R,≤) of real numbers with the

usual order has no maximal or minimal elements. Extending R and ≤ by the points −∞

and +∞ in the obvious way we get the poset (R±∞,≤) of two-point extended reals, with

−∞ as least element and +∞ as greatest element.

Example 2.1.14 (Greatest and least subset). In the sub-poset (℘(X) \{∅},⊇) of the oppo-

site powerset poset from Example 2.1.5, the set X is the least element and if X has two or

more elements, then there is no greatest element.

Definition 2.1.15 (Supremum and infimum). Let (R,≤) be a poset and S ⊆ R be a

bounded subset of R

• if S is bounded above and the set of upper bounds has a least element, then we call

this element the least upper bound, or the supremum, of S and denote it by sup S

• if S is bounded below and the set of lower bounds has a greatest element, then we

call this element the greatest lower bound, or infimum, of S and denote it by inf S

Example 2.1.16 (Supremum and infimum in ℘(X)). In the powerset poset (℘(X),⊆) from

Example 2.1.5, the supremum is given by ∪ and infimum by ∩. Dually, we may order ℘(X)

by the superset relation ⊇, in which case the roles of ∪ and ∩ are reversed.

23

Chapter 2 BACKGROUND

Definition 2.1.17 (Lattice). A poset L is called a join-semilattice if each finite subset has

a supremum in L and called a meet-semilattice if each finite subset has an infimum in L.

L is called a lattice if L is both a join and a meet semilattice.

In the language of lattices, sup and inf are usually called join and meet and denoted by t

and u, respectively. We shall often write meet and join in-fix for two element sets, i. e.

x t y for t{x, y} and x u y for u{x, y}. When viewing a poset L as a lattice we often make

the lattice operation explicit, writing (L,t), (L,u) and (L,t,u) for a meet-semilattice,

join-semilattice and lattice, respectively.

Example 2.1.18 (Real number lattice). The set of real numbers R with max and min as

join and meet form the lattice (R,max,min) associated to the usual partial order ≤ on R.

Example 2.1.19 (Powerset lattices). The powerset poset (℘(X),⊆) and opposite powerset

poset (℘(X),⊇) correspond to the powerset lattice (℘(X),∪,∩) and opposite powerset

lattice (℘(X),∩,∪).

Example 2.1.20 (Lattice valued function lattice). (X→ L, ṫ, u̇), the set X→ L of func-

tions from a set X to a lattice (L, ṫ, u̇), with pointwise join ṫ and meet u̇, defined by

f ṫ g = λx . f (x) t g(x) and f u̇ g = λx . f (x) u g(x)

for all f , g ∈ X→ L.

Definition 2.1.21 (Complete lattice). A join-semilattice in which any subset has a supre-

mum and a meet-semilattice in which any subset has an infimum are called complete. A

lattice that is complete as join- and meet-semilattice is called complete.

In particular, complete join/meet-semilattices have a greatest/least or top/bottom element,

denoted> and⊥ respectively. It is customary to make the top and bottom element explicit

in complete lattices, writing (L,t,u,>,⊥). When a join- or meet-semilattice L is not

complete one can always extend L to a complete semilattice L> or L⊥ by adding a top or

bottom element to L and extending the lattice operation in the obvious way. Any lattice

(L,t,u) can therefore be extended to a complete lattice (L>⊥,t,u,>,⊥).

Example 2.1.22 (Two-point extended reals lattice). The two-point extended reals R±∞

from Example 2.1.13 extend the real number lattice from Example 2.1.18 to the complete

lattice (R, sup, inf,+∞,−∞).

Example 2.1.23 (The complete powerset lattices). The powerset lattice (℘(X),∪,∩, X,∅)

is complete, as is the opposite powerset lattice (℘(X),∩,∪,∅, X).

24

Chapter 2 BACKGROUND

2.2 Interval arithmetic

In the previous section various order structures were defined. In the present section we

shall focus on the meet-semilattice associated with a particular sub-poset of the poset

(℘(R),⊇) and the interplay of the order structure with the arithmetic structure in R.

Interval Arithmetic (IA) was first published in its current form by M. Warmus in the

1956 paper “Calculus of Approximations” [73]. R. E. Moore re-discovered and popu-

larised [57] IA by demonstrating the first nontrivial applications. Below we present the

basic definitions in some generality.

Definition 2.2.1 (Order interval). Let (R,≤) be a poset and a, b ∈ R such that a ≤ b, then

the R-interval given by a and b is the set

{x ∈ R | a ≤ x ∧ x ≤ b}

We write the interval given by a ≤ b as [a, b]. The requirement that a ≤ b guarantees that

an interval is nonempty.

Definition 2.2.2 (R-intervals). Let (R,≤) be a poset. The set I(R) of R-intervals is defined

by

I(R) = {[a, b] | a, b ∈ R ∧ a ≤ b}

We shall use boldface letters for interval variables: r ∈ I(R) and underline the lower and

overline the upper bounds: r = [r, r]. We define a partial order v on I(R) in terms of the

order ≤ on R:

Example 2.2.3 (Real intervals). The set of compact and connected subsets of R coincides

with the set I(R) of R-intervals.

Relations on posets may be lifted to the associated interval poset in a canonical fashion:

Definition 2.2.4 (Induced relation). Let (R,≤) be a poset and ρ a relation on R. The

relation ρI induced by ρ on I(R) is defined by

r1 ρI r2 ≡ ∀r1 ∈ r1, r2 ∈ r2 . r1 ρ r2 (2.1)

for r1, r2 ∈ I(R).

25

Chapter 2 BACKGROUND

Example 2.2.5 (Induced relation). Let (R,≤) be a poset. By Definition 2.2.4, ≤ induces a

relation ≤I on I(R) satisfying (2.1). In this case we can express the relation in terms of the

endpoints of its interval arguments:

[a, b]≤I[c, d] ≡ b ≤ c

for [a, b], [c, d] ∈ I(R). Note that ≤I is no longer reflexive and therefore not a partial order

on I.

Definition 2.2.6 (Refinement order). Let (R,≤) be a poset, and [a, b], [c, d] ∈ I(R). The

refinement partial order v on I(R) is defined by

[a, b] v [c, d] ≡ a ≤ c ∧ d ≤ b

and we say that [a, b] is refined by [c, d].

Note that v is just the superset relation ⊇ on R. Indeed, (I(R),v) is a sub-poset of (℘(R),⊇).

The refinement order v is often referred to as the information order. In this context one

reads r1 v r2 as “r1 approximates r2”, for r1, r2 ∈ I(R). Traditionally, approximation

of elements of R within I(R) is studied in the complete meet-semilattice (I(R)⊥,u,⊥),

associated to the sub-poset (I(R),v) of (℘(R),⊇). The maximal elements of (I(R),w) are

the singleton intervals [x, x] with x ∈ R. When the interval r2 approximates an element r ∈

R i. e. r2 v [r, r] and r1 v r2, then r1 also approximates r but the information about r in

r1 is more “diluted” than in r2. Thus, the maximal elements in (I(R),v) provide maximal

information about the elements of R and the bottom element, which approximates any

element of R, provides none.

Definition 2.2.7 (Interval semilattice). Let (L,t,u) be a lattice and (L,≤) the associated

poset. Then (I(L), ū) is the meet-semilattice associated to the refinement order on I(L),

where ū is defined by

[a, b] ū[c, d] = [a u c, b t d]

for [a, b], [c, d] ∈ I(L). By adding a bottom element ⊥ we obtain the complete interval

semilattice (I(L)⊥, ū,⊥).

Definition 2.2.8 (Outer interval extension, containment property). Let R be a poset. Given

an operation ◦ : R×R → R on R we call an operation • : I(R)× I(R) → I(R) on I(R) an

outer interval extension of ◦ whenever it satsifies the containment property:

x • y ⊇ {x ◦ y | x ∈ x ∧ y ∈ y}

26

Chapter 2 BACKGROUND

for intervals x,y ∈ I(R).

Operations on a lattice (L,max,min) that are monotonic in each argument can be extended

by defining the extension directly on the endpoints of its arguments:

[a, b] • [c, d] = [min{a ◦ c, a ◦ d, b ◦ c, b ◦ d},max{a ◦ c, a ◦ d, b ◦ c, b ◦ d}] (2.2)

Equation (2.2) gives a general formula for interval extensions of isotonic operators. Be-

low, we give extensions for the field operations in R.

Definition 2.2.9 (Arithmetic in I(R)). Let [a, b], [c, d] ∈ I(R), then the interval extensions

of the operations +,−, ·, / : R × R→ R are given by

• [a, b] + [c, d] = [a + c, b + d]

• [a, b] − [c, d] = [a − d, b − c]

• [a, b] · [c, d] = [min{a · c, a · d, b · c, b · d},max{a · c, a · d, b · c, b · d}]

• [a, b]/[c, d] = [min{a/c, a/d, b/c, b/d},max{a/c, a/d, b/c, b/d}]

where in the case of division we demand that c > 0 or d < 0, i. e. that the denominator

interval does not contain zero.

Note that the formulas for addition and subtraction have been simplified. This is due to

a ≤ b and c ≤ d implying min{a+c, a+d, b+c, b+d} = a+c and max{a+c, a+d, b+c, b+

d} = b+d for addition, and analogously for subtraction, min{a−c, a−d, b−c, b−d} = a−d

and max{a − c, a − d, b − c, b − d} = b − c. The main attraction of this arithmetic is that

it is defined over sets, but computed over elements, i. e. it makes it possible to perform

a possibly infinite number of evaluations by a finite number of computations. Clearly

(2.2) may be used for operations that are monotonic in each argument, or more generally,

whenever the maximal/minimal values are attained at endpoints of the argument intervals.

This poperty holds true for unary operations/functions as well. Let f : R → R be a

function and f : I(R)→ I(R) be an extension of f , then:

f ([a, b]) ⊇
{
f (x) | x ∈ [a, b]

}
(2.3)

for intervals [a, b] ∈ I(R). When we have equality in (2.3), we call f the maximal ex-

tension of f . When f attains its maximal/minimal values at a and b, as is the case for

monotonic functions, then we get an analogue of (2.2):

f ([a, b]) =
[
min{ f (a), f (b)},max{ f (a), f (b)}

]
27

Chapter 2 BACKGROUND

and we see that such functions have canonical maximal extensions. The containment

property of interval arithmetic makes it useful for safely approximating numeric expres-

sions. It suffices to define interval extensions of the constituent functions and operations,

after which bounds for the compound expression are computed automatically. Here, the

term safe approximation refers to an outer approximation, in the sense that all values of

the approximated expression will be contained within the approximation, possibly also

including superfluous values. This means that we may safely use the obtained approxima-

tion in place of the approximated expression when attempting to decide relations involv-

ing the approximated expression, leading to a sound, if not complete analysis, i. e. we can

prove some but not all relations using outer approximations.

2.3 Approximation in complete semilattices

When we extend the set I(R) of R-intervals with a bottom element ⊥ to I(R)⊥ there is a

canonical way to extend interval extensions of partial functions and operations Rn ⇀ R to

total ones, by mapping elements for which the function is undefined to ⊥. Thus, let n ∈ N

and f : Rn ⇀ R be a partial function, defined on a subset S ⊂ Rn, and let f : I(R)n ⇀ I(R)

be an extension of f , then we may extend f to f̄ : I(R)n → I(R)⊥ as follows:

f̄ (x) =

 f (x) if x ⊆ S

⊥ otherwise
(2.4)

Going one step futher, we may extend f̄ : I(R)n → I(R)⊥ to ¯̄f : I(R)n
⊥ → I(R)⊥ by mapping

⊥ to⊥ and we see that any (possibly partial) R-valued function on Rn may be extended to a

total I(R)⊥-valued function on I(R)n
⊥. This property, along with the containment property,

make interval arithmetic very useful when reasoning about real functions. Containment

means that we may use approximations, that may be easier to handle than the original

expressions, to safely reason about relations over real numbers, with the bottom element⊥

acting as an exception that is “thrown” whenever a function may be called with arguments

for which it is undefined and that then is propagated throughout the approximation.

We have seen that bounded semilattices are suitable for approximate reasoning and we

have shown that given a partially ordered set R, there is a canonical bounded semilattice

of intervals I(R)⊥ within which arithmetic in R may be approximated. While I(R)⊥ is

suitable for approximating elements of R, it is less so for approximating functions on R.

28

Chapter 2 BACKGROUND

The reason is that R-intervals track the extreme values of an expression, i. e. they use a

uniform approximation over the entire domain of the function. While functions remain

close to constant this approximation is acceptable, but when approximating a function

over a set where it is varies significantly, we encounter the main drawback with interval

arithmetic, the information loss problem. Different causes exist for this phenomenon;

wrapping effects refer to the loss of information about the shape of the function graph.

Wrapping effects

As an example of wrapping consider approximating the square root over the interval [0, 4].

The maximal interval extension maps the interval to [0, 2], i. e. we approximate the graph

of √ over [0, 4], with the rectangle [0, 4] × [0, 2]. Now consider the relation

√
x ≥

1
2

(x − 1)

over [0, 4]. We already have the approximation [0, 4] × [0, 2] of √, and the maximal

extension of x
2 −

1
2 over [0, 4] gives [0, 4] × [−1

2 ,
3
2]. Although the distance between the

two graphs is at least 1
2 , the two rectangles intersect and we cannot prove the relation. As

we alluded to above, the shape of the graphs have been lost to the approximation. There

is a way around this problem, by reducing the size of the domain. When we approximate

the relation above over [1, 3] instead of [0, 4], we obtain the rectangle [1, 3] × [1,
√

3] for

the left hand side and the rectangle [1, 3]× [0, 1] for the right hand side. As the right hand

rectangle clearly is above the left hand rectangle, we can safely conclude that the relation

holds over [1, 3]. In part two we shall see that reducing the domain width is no panacea

for wrapping effects as it has an intristic exponential cost limiting its applicability.

The dependency problem

A second instance of the information loss problem is the dependency problem. The issue

here is that due to the representation of approximations as intervals, all information about

dependencies between sub-expressions of two given expressions is lost. As an example

consider approximating the expression x− x over some interval [a, b]. The approximation

first approximates each x by [a, b] and then uses the maximal extension for the difference

29

Chapter 2 BACKGROUND

as given by (2.3):

x − x = [a, b] − [a, b]

= [a − b, b − a]

= (b − a) · [−1, 1]

Thus we see that the width of the interval approximating the actual value 0, is directly

proportional to the width of the domain over which we are approximating.

30

3 Generation of correctness

theorems

CONTENTS
3.1 Model language PROC . 32

3.1.1 Syntax of PROC . 32

3.1.2 PROC functions as procedures 34

3.2 Annotated model language PEA . 36

3.2.1 Syntax of ANOT . 36

3.2.2 Syntax of PEA . 36

3.2.3 PEA functions as procedures 37

3.3 Structural operational semantics for PROC and PEA 38

3.3.1 The map [[·]]S OS . 38

3.3.2 Operational correctness for PEA programs 40

3.4 Predicate transformer semantics for PEA 41

3.4.1 The map CT . 42

3.4.2 The predicate transformer [·] 43

3.5 CT is stronger than [[·]]S OS . 44

3.6 Referential transparency . 49

3.6.1 Pure and Purple expressions 49

3.6.2 PROC statements . 51

31

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

In the following chapter we show how to derive proof obligations, or verification con-

ditions (VCs), for a small imperative language. The approach is to extend the language

with annotations, allowing for the expression of program properties directly in the pro-

gram source code. In this sense, the approach implements a version of the interpretation

of programs proposed by Floyd [39], as described in the introduction. The choice of

model language was made to suit two purposes. Firstly, the language should model rele-

vant aspects of SPARK Ada, so that the intuition and solutions developed for the model

language carry over to practice. Secondly, the language should be small, so as to make

the exposition of ideas and techniques as clear as possible.

In Section 3.1 we present the model imperative language PROC and in Section 3.2 PROC

is equipped with the annotation language ANOT, extending PROC it to the annotated

model language PEA. In Section 3.3 an operational semantics for PROC is introduced

and extended to PEA, allowing for the formal definition of operational correctness. Sec-

tion 3.4 presents a denotational, or logical, semantics for PEA based on predicate trans-

formers in the spirit of Dijkstra’s weakest precondition predicate transformer. It is used to

formally define a notion of denotational, or logical correctness for PEA programs. Sec-

tion 3.5 concludes the chapter with a theorem relating the two notions of correctness by

comparing the strength of the resulting correctness theorems. To keep it small, the chosen

language only models a subset of SPARK Ada programs.

3.1 Model language PROC

PROC is a slight variation on the WHILE language, as presented in [60], adapted for the

purpose of demonstrating derivation of correctness theorems for imperative programs.

3.1.1 Syntax of PROC

We give the syntax of the PROC language in classical BNF but will withhold details for

as long as possible to keep the presentation focused. We define the following syntactic

32

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

categories:

a ∈ AExp arithmetic expressions

b ∈ BExp Boolean expressions

c ∈ Conn Boolean connectives

d ∈ Dom domain declarations

D ∈ Decl declarations

f ∈ Fun functions

n ∈ Num numerals

p ∈ Proc procedures

r ∈ Rel relations

S ∈ Stmt statements

x ∈ Var variables

where we assume Fun to contain the usual arithmetic operations, Rel the equality and

order relations and Conn the propositional connectives. The syntax of the PROC language

is given by:

a ::= x | n | f (a1, . . . , ak)

b ::= > | ⊥ | ¬b | b1 c b2 | a1 r a2

S ::= skip | x := a | S 1; S 2 | p(a1, . . . , am; x1, . . . , xn) |

if b then S 1 else S 2 fi | while b do S od

d ::= null | x ∈ [n1, n2]

D ::= d | D1; D2 | proc p(in d1, . . . , dm; out dm+1, . . . , dn) is D begin S end

The statement S in a procedure declaration is called the body of the program. We de-

mand that in-mode parameters of procedures are immutable, in the sense that they do not

appear on the left hand side of assignments or as out-mode parameters in calls to subpro-

cedures. We also demand that each out-mode parameter appears on the left hand side of

an assignment or as out-mode parameter of a subprocedure call in S . Further, we demand

that each variable x appearing in the procedure body, that is not a formal parameter of the

procedure, has a domain [n1, n2] declared in the procedure definition. We do not allow

global variables, and require that values are passed between program and subprogram via

the parameters of the subprogram. A program in PROC is given by a procedure declara-

tion.

Figure 3.1 shows three example programs one, two and three. Given f , g, h ∈ Fun and

n ∈ Num, one computes the composition of f with g, two attempts to compute a fixpoint

of f and three computes the function h defined by:

h(x) =

f (x) when x < n

g(x) when x ≥ n

33

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

� �
proc one(in x ∈ F; out y ∈ F) is . . . begin

y := f (g(x))

end� �� �
proc two(in x ∈ F; out y ∈ F) is . . . begin

y := x; while f (y) , y do y := f (y) od

end� �� �
proc three(in x ∈ F; out y ∈ F) is . . . begin

if x < n then y := f (x) else y := g(x) fi

end� �
Figure 3.1: Declarations of example programs one, two and three.

which is a generalisation of the classical step function defined as 0 for negative x and 1

otherwise. Note that the floating point format F in the domain declaration x ∈ F in the

example programs corresponds to the subset of finite values in the format.

3.1.2 PROC functions as procedures

Functions in arithmetic expressions in PROC programs may be replaced with procedure

calls by means of the map f 2p defined below.

f 2p defines, for each function f : F1 × . . . × Fm → F, a procedure p f declared by:

proc p f (in x1 ∈ F1, . . . , xm ∈ Fm; out y ∈ F) is null begin y := f (x1, . . . , xm) end

and adds the definition of p f to the program declaration, provided that p f is not the pro-

gram itself and that it does not yet appear in the program declaration. Assignments of

function values become interchangeable with procedure calls:

y := f (a1, . . . , ak) ↔ p f (a1, . . . , ak; y)

Note that procedures having precisely one out-mode parameter implicitly define func-

tions through this correspondence and that the function defined by p f is f itself. We will

often use the same name for the function and procedure versions of a subprogram, since

the appropriate version always can be identified from the context, as functions only ap-

pear in expressions and procedures in statements and declarations.

We define a map a2p that unrolls composite expressions within a statement into a se-

34

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

� �
proc one(in x ∈ F ; out y ∈ F) is

proc p f (in x ∈ F; out y ∈ F) is null begin y := f (x) end;

proc pg(in x ∈ F; out y ∈ F) is null begin y := g(x) end;

y1 ∈ F

begin

pg(x;y1); p f (y1;y)

end� �� �
proc two(in x ∈ F; out y ∈ F) is . . . begin

y := x; p f (y; y1); while y , y1 do p f (y; y); p f (y, y1) od

end� �� �
proc three(in x ∈ F; out y ∈ F) is . . . begin

if x < n then p f (x, y) else pg(x, y) fi

end� �
Figure 3.2: Declarations resulting from applying a2p and f 2p to the example programs

from Figure 3.1 now use procedure calls. The omitted procedure declarations for p f and

pg in two and three are identical to those in one.

quence of statements using the correspondence defined by f 2p:

x := f (. . .) 7→ p f (. . . ; x)

p(. . . f (. . .) . . .) 7→ p f (. . . ; x1); p(. . . x1 . . .)

if b(f (. . .)) then . . . 7→ p f (. . . ; x1); if b(x1) then . . .

while b(f (. . .)) do S od 7→ p f (. . . ; x1); while b(x1) do S ; p f (. . . ; x1) od

where x1 is a fresh variable with domain equal to the codomain of f . Each new variable

introduced this way is added by a2p to the declaration of the program.

While f 2p declares new procedures in a program, corresponding to functions appearing in

the program body, a2p transforms the body of a program by replacing composite expres-

sions with sequences of procedure calls and adds domain declarations for local variables

to the program definition.

By repeated application of f 2p and a2p to a PROC program we obtain a program with a

body that is a sequence of statements entirely without functions. In Figure 3.2 we show

the result of applying f 2p and a2p to the example programs one, two and three in

Figure 3.1.

35

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

3.2 Annotated model language PEA

The notion of correctness for a program in PROC is defined relative to a contract, i. e.

a statement of conditions under which the program is to be called and guarantees on

the results for legal calls. The conditions are formalised as a precondition predicate on

in mode parameters and guarantees are expressed as a postcondition predicate on the

parameters of the program. The pre- and postcondition predicates are expressed in an an-

notation language, i. e. a formalisation of first order predicate logic embedded within the

programming language. In the following sections we give the definition of the annotation

language ANOT for PROC and show how to embed ANOT within PROC, yielding our

model annotated language PEA.

3.2.1 Syntax of ANOT

ANOT extends the arithmetic and Boolean expression sublanguages of PROC, defined in

Section 3.1.1, by providing additional functions, relations and quantifiers. To this end we

define the following syntactic categories:

γ ∈ Abs abstract functions

τ ∈ Term terms

ϕ ∈ Form formulas

and syntax of the ANOT language

τ ::= a | γ(τ1, . . . , τk)

ϕ ::= b | ¬ϕ | τ1 r τ2 | ϕ1 c ϕ2 | ∃x ∈ [τ1, τ2] . ϕ | ∀x ∈ [τ1, τ2] . ϕ

In ANOT we have syntactic sugar and the usual operator precedence for arithmetic op-

erations allowing us to use infix notation for binary operations and omission of many

parentheses.

3.2.2 Syntax of PEA

Correctness of a program is defined relative to a description of the intended behaviour of

the program. Such a description is often called a contract as it may be seen as a contract

between the provider of the program and its users. In PEA precondition predicates are

preceded by the keyword pre and postcondition predicates are preceded by the keyword

36

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

post. A loopcut assertion is a predicate on program variables that is expected to hold

when execution reaches it. Assertion predicates in PEA are preceded by the keyword

assert. The syntax of PEA is obtained from PROC by adding contracts to procedure

declarations:

proc p(in x1 ∈ F1, . . . , xm ∈ Fm; out xm+1 ∈ Fm+1, . . . , xn ∈ Fn) pre ϕ1 post ϕ2 is . . .

where ϕ1 depends on x1 . . . xm and ϕ2 depends on x1 . . . xn, and adding loopcut assertions

to PROC while statements:

while b assert ϕ do S od

Thus, PEA programs may be translated to PROC by deleting all pre, post, and assert

keywords and ANOT formulas from the program text.

3.2.3 PEA functions as procedures

In PEA we demand that functions have contracts. As described in Section 3.1.2, com-

posite expressions may be unrolled into sequences of procedure calls. The map f 2p

taking functions to procedures in PROC is extended to PEA by lifting function contracts

to procedure contracts. As functions have a single anonymous return value they require

a special kind of postcondition, called a return condition, naming the returned value so

that its properties may be stated. Thus, each function f ∈ Fun in PEA with parameters

x1 . . . xk has a contract:

pre ϕ f return y . ψ f (3.1)

where y ∈ Var, ϕ f depends on x1 . . . xk and ψ f depends on x1 . . . xk and y. The return

condition return y . ψ f is pronouned “given the values x1 . . . xk the function f returns a

value y such that ψ f (x1, . . . , xk, y) holds”. A PEA function f : F1 × . . . × Fm → F with the

contract (3.1) now corresponds to the PEA procedure declaration:

proc p f (in x1 ∈ F1, . . . , xm ∈ Fm ; out y ∈ F) pre ϕ f post ψ f is null

begin y := f (x1, . . . , xk) end

Our work addresses the problem of choosing apropriate pre- and postconditions for pro-

grams, such as one in Figure 3.3, when given contracts for its subprograms. In the case

of one we wish to find ϕone and ψone, given ϕ f , ψ f , ϕg and ψg. We shall make the problem

precise and lay the ground for constructing a solution in the following section.

37

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

� �
proc one(in x ∈ F ; out y ∈ F) pre ϕone post ψone is

proc f (in x ∈ F; out y ∈ F) pre ϕ f post ψ f is . . . end;

proc g(in x ∈ F; out y ∈ F) pre ϕg post ψg is . . . end

begin

y := f (g(x))

end� �
Figure 3.3: Declaration of annotated example program one using procedure declaration

to implicitly define the functions f and g.

3.3 Structural operational semantics for PROC and PEA

To give correctness theorems for PEA programs a precise meaning this section presents

a structural operational semantics [[·]]S OS for PEA, introduced as a function from state-

ments to functions on state. In Section 3.3.1 we give the definition of the semantics for

PROC and PEA and in section 3.3.2 we use [[·]]S OS to formally define correctness of

terminating PEA programs.

3.3.1 The map [[·]]S OS

We begin by defining elements of the set StateR of R-states. An R-stateσ is a partial func-

tion Var ⇀ R taking a variable x, with domain declaration x ∈ [x, x], to a real number

σ(x) ∈ [x, x]. Numerals are interpreted as real numbers through the map N : Num → R.

An R-state encodes the program’s state vector at a specific point of the execution of the

program. Initially, only variables corresponding to the in-mode parameters of the pro-

gram are initialised to actual values. The operational semantics then defines how execu-

tion of consecutive statements in the program updates the values of variables in the state

vector. We assume that the program body has been fully simplified using the transfor-

mations a2p and f 2p, from Section 3.1.2 on page 34, so that arithmetic expressions are

either numerals or variables. Evaluation of expressions is assumed not to have effect on

state, we therefore drop the semantic bracket around expressions to make the distinction

38

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

explicit:

xσ = σ(x)

nσ = N(n)

f (a1, . . . , ak)σ =
[[
f
]]S OS (a1σ, . . . , akσ)

(a1 r a2)σ = (a1σ) [[r]]S OS (a2σ)

(b1 c b2)σ = (b1σ) [[c]]S OS (b2σ)

(¬b)σ = ¬(bσ)

(3.2)

where
[[
f
]]S OS , [[r]]S OS and [[c]]S OS are the semantic counterparts of the syntactic elements

f , r and c in PROC. When there is no risk of confusion we shall use the same notation for

the syntactic and semantic version of functions, relations and connectives.

The value of aσ is either a real number or an exceptional value, resulting from the appli-

cation of a partial function outside its domain, denoted by •. Each
[[
f
]]S OS thus becomes

a total R ∪ {•}-valued function. Functions applied to • result in • and relations applied to

• return false. Semantically, • is intended to model the special floating point value NaN,

defined in Section 4.2.2 on page 60.

Executing a skip statement has no effect on the state:

[[skip]]S OS σ = σ (3.3)

or equivalently, [[skip]]S OS is the identity function. In the case of an assignment x := a

we have:

[[x := a]]S OS σ = σ[x 7→ aσ] (3.4)

where σ[x 7→ aσ] denotes the state obtained from σ by updating the value of the variable

x to aσ. Note that it is implicitly assumed here that evaluation of the expression a does not

have any effect on the state. Executing a sequence of statements has the effect of updating

the state in the order prescribed by the sequence:

[[S1; S2]]S OS σ = [[S2]]S OS
(

[[S1]]S OS σ
)

(3.5)

or equivalently, sequencing [[S1; S2]]S OS is mapped to reverse composition [[S2]]S OS [[S1]]S OS .

The effect of executing a conditional statement depends on the value of the conditional:

[[if b then S1 else S2 fi]]S OS σ =

[[S1]]S OS σ if bσ is true

[[S2]]S OS σ if ¬bσ is true
(3.6)

39

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

Execution of a loop repeatedly updates the state according to the effect of the loop body

until the exit condition evaluates to true:

[[while b do S od]]S OS σ =

[[S; while b do S od]]S OS σ if bσ is true

σ if ¬bσ is true
(3.7)

We note that the definition above introduces the possibility for non-termination, which

is correct as while statements may loop indefinitely, as is the case when b = >. Note

also that, as in the case of assignments above, the evaluation of the Boolean expression in

conditionals and loops does not affect the state. As we have disallowed global variables

in PROC the semantics of a call to a procedure p is declared by:

proc p(in x1 ∈ F1, . . . , xm ∈ Fm; out xm+1 ∈ Fm+1, . . . , xn ∈ Fn) is . . . begin S end

may be expressed in terms of states as follows:

[[
p(a1, . . . , am; ym+1, . . . , yn)

]]S OS σ = σ[ym+1 7→ xm+1σ
′, . . . , yn 7→ xnσ

′] (3.8)

where σ′ is obtained from σ by executing the body of p in a state where no variable other

than x1, . . . , xm has been initialised:

σ′ = [[S]]S OS
(
[x1 7→ a1σ, . . . , xm 7→ amσ]

)
The definition ensures that no values can pass between the main program’s state and the

state of the subprogram, other than explicitly through the subprogram’s parameters. This

property simplifies the definition of operational semantics given above by eliminating the

need to factor states into environments and stores maintaining global state. For the case

of semantics that allow subprogram calls to read and modify variables that do not appear

explicitly in parameters see e.g. [60, 63]. The operational semantics for PROC are readily

extended to PEA by treating annotations as comments:[[
proc p(. . .) pre ϕ post ψ is . . .

]]S OS
=

[[
proc p(. . .) is . . .

]]S OS

[[
while b assert ϕ do . . .

]]S OS
= [[while b do . . .]]S OS

3.3.2 Operational correctness for PEA programs

The evaluation bσ of boolean expressions b at states σ is extended to formulas by evalu-

ating each boolean expression in the formula:

ϕ(b)σ ⇔ ϕ(bσ) (3.9)

40

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

Using [[·]]S OS and the notation ϕσ for the predicate ϕ at the state σ we may now formally

define the notion of correctness theorem corresponding to the Hoare [47] triple {ϕ}S {ψ}

for a terminating PEA statement S , as follows:

∀σ . ϕσ→ ψ
(

[[S]]S OS σ
)

(3.10)

i. e. if the precondition holds at some initial state σ, then the postcondition holds at the

final state [[S]]S OS σ. The definition (3.10) is extended to programs with subprogram dec-

larations:

proc p(in x1 ∈ F1 . . . ; out xm+1 ∈ Fm+1 . . .) pre ϕ post ψ is D begin S end

by demanding that (3.10) be proved for the main program p and each subprogram pi,

with pre- and postcondition ϕi and ψi and program body S i, declared in D, then (3.10)

becomes:

∀σ . ϕσ→ ψ
(

[[S]]S OS σ
)
∧ ∀i . ϕiσ→ ψi

(
[[Si]]S OS σ

)
∧ . . . (3.11)

In the following section we present a method for deriving proof obligations that imply

this statement through predicate transformer semantics.

3.4 Predicate transformer semantics for PEA

In the preceding section an operational notion of correctness was described. It has the

advantage of being intuitive but relies on both the initial and the end state of the program.

To enable static, or compile time, verification one needs a notion of correctness that refers

to the initial state only, i. e. one that does not rely on the operational semantics of the

language.

In this section we formalise an alternative notion of correctness for the annotated model

language PEA from Section 3.2 on page 36. As discussed in the introduction, the idea of

Floyd [39] was to reason over the control flow graph (CFG) of the program. Invariants

are placed in the body of while statements, yielding loop cuts, which define cutpoints

in the CFG. The analysis is thereby split into analyses over the control flow paths (CFPs)

between the beginning, end and cutpoints in the CFG. The following section will present

one way of deriving proof obligations, called verification conditions (VCs) and how they

combine to form the correctness theorem (CT) for the entire program.

41

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

We present a slight variation on the algorithm suggested above. Instead of computing

VCs for CFPs we will present a predicate transformer semantics in the spirit of Dijk-

stra’s weakest precondition semantics with the differences that we relax the requirement

that the transformer should produce the weakest precondition and that we shall assume

termination, rather than, as Dijkstra does, demand that the result guarantees termination.

The idea is to compute the correctness theorem directly from the syntax of the program.

We define the map CT from program declarations to formulas quantified over state, tak-

ing annotated programs with subprogram declarations to their associated CT, in terms of

the predicate transformer [·] from statements to maps from formulas to formulas, taking

statements to the corresponding map on formulas.

3.4.1 The map CT

The map CT gives us the CT of a PEA program, it is defined inductively over the syntactic

structure of PEA declarations:

CT (d) = true

i. e. the null program and domain declarations for local variables are trivially correct. The

CT of a sequence of declarations demands we prove the CT for each declaration in the

sequence:

CT (D1; D2) = CT (D1) ∧ CT (D2)

and the CT of a procedure declaration demands we prove each declared subprocedure and

the proof obligation that the body S satisfies the contract pre ϕ post ψ, given that each

subprocedure is correct:

CT (proc . . . pre ϕ post ψ is D begin S end) = CT (D) ∧ ∀σ .
(
ϕ→ [S]ψ

)
σ

where ∀σ . φσ ≡ ∀x1 ∈ x1 . . .∀xk ∈ xk . φ , assuming the set of all free variables

in φ is {x1, . . . , xk}. The domain xi for each variable xi is obtained from its declaration

di = xi ∈ xi as procedure parameter or local variable. Thus, quantifying a predicate over

all states is taken to mean quantification over each free variable in the predicate, ranging

over its declared domain. We will assume that the program body has been fully simplified

using a2p and f 2p, so that expressions are either numerals or variables. We make this

assumption to simplify the exposition of CT generation.

42

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

3.4.2 The predicate transformer [·]

Our take on Dijkstra’s weakest precondition [34] predicate transformer produces for each

PROC statement S a map [S] on formulas by pulling back a predicate on state after a

statement to a predicate on state before the statement. The property we wish [·] to have

is that if the predicate [S]φ, resulting from an application of [S] to the predicate φ, holds

at a state σ, then φ holds at the state resulting from executing S beginning at σ. skip

statements do not affect state, and should therefore act as the identity on predicates:

[skip]φ = φ (3.12)

while assignments update the state of a variable to that of the assigned expression at the

initial state:

[x := a]φ = φ[a/x] (3.13)

where φ[a/x] denotes φ with each occurrence of x replaced by a.

Pulling back a predicate through a sequence of statements correspond to pulling them

through one statement at a time:

[S 1; S 2]φ = [S 1]
(
[S 2]φ

)
(3.14)

or, equivalently, the action of a sequence [S 1; S 2] is the composition of the action of the

constituent statements [S 1][S 2].

The execution of a conditional statement can take either of two paths, depending on the

value of the Boolean guard b, so we generate a proof obligation for each alternative:

[if b then S 1 else S 2 fi]φ =
(
b→ [S 1]φ

)
∧

(
¬b→ [S 2]φ

)
(3.15)

There are four paths to consider for a while statement. When b holds we enter the loop

and stop at the loop cut θ. If b holds after a traversal of the loop we traverse it again,

starting and ending at θ. Once θ is false, we exit the loop and if b was false to begin with,

we skip past the loop. In total we get four proof obligations:

[while b assert θ do S od]φ =(
b→ θ

)
∧

〈
θ → [S]

(
b→ θ

)〉
∧

〈
θ → [S]

(
¬b→ φ

)〉
∧

(
¬b→ φ

) (3.16)

where the angled brackets 〈·〉 denote implicit renaming of all variables, preventing substi-

tution in proof obligations for paths beginning inside the loop.

43

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

To illustrate the use of 〈·〉 we apply [·] to a statement corresponding to a loop preceded by

an initialisation statement:

[S 1 ; while b assert θ do S 2 od] φ =

[S 1]
((

b→ θ
)
∧

〈
θ → [S 2]

(
b→ θ

)〉
∧

〈
θ → [S 2]

(
¬b→ φ

)〉
∧

(
¬b→ φ

))
=(

[S 1] (b→ θ)
)
∧

〈
θ → [S 2]

(
b→ θ

)〉
∧

〈
θ → [S 2]

(
¬b→ φ

)〉
∧

(
[S 1] (¬b→ φ)

)
i. e. [·] acts as the identity on 〈·〉-bracketed expressions. Evaluation of a formula at a state

treats 〈·〉 as grouping (·). As a result, initialisation is only taken into account in proof

obligations for paths starting before the loop, as one would expect.

A call p(a1, . . . , am; ym+1, . . . , yn) to a procedure with the specification:

p(in x1 ∈ F1, . . . , xm ∈ Fm; out xm+1 ∈ Fm+1, . . . , xn ∈ Fn) pre ϕ post ψ is . . .

is modelled by a proof obligation demanding that the call is legal, i. e. that the precondition

is satisfied at the time of call, and a proof obligation corresponding to the assumption that

the contract is valid, i. e. that the postcondition holds at the point of return from legal

calls. In order to make sure that the postcondition only states current properties, out-

mode parameters ym+1 . . . yn are substituted by fresh variables zm+1 . . . zn, with domains

equal to those of the corresponding substituted variable: y j ∈ [n1, n2] ⇒ z j ∈ [n1, n2]. We

get the following two proof obligations:

[p(a1, . . . , am; ym+1, . . . , yn)]φ = ϕ′ ∧
(
ψ′ → φ[zm+1/ym+1] · · · [zn/yn]

)
(3.17)

where ϕ′ ≡ ϕ[a1/x1] · · · [am/xm] and ψ′ ≡ ψ[a1/x1] · · · [am/xm][zm+1/xm+1] · · · [zn/xn].

3.5 CT is stronger than [[·]]S OS

In Section 3.3 we gave an operational semantics [[·]]S OS for PEA and defined the CT for

a PEA program using [[·]]S OS in (3.11). In Section 3.4 we gave a predicate transformer

semantics CT , generating the CT for a PEA programs using the predicate transformer [·].

In this section we show that the CT derived using [·] implies the CT formulated using

[[·]]S OS , providing simpler goals for verification.

Theorem 3.5.1. Correctness theorems derived by CT imply operational correctness.

44

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

Proof. It suffices to show: (
[S]φ

)
σ→ φ

(
[[S]]S OS σ

)
(3.18)

for all R-states σ, formulas φ and terminating statements S in PEA, since ∀σ . ϕσ →(
[S]ψ

)
and (3.18) together imply (3.10). We proceed to prove (3.18) by induction on

S ∈ Stmt.

• for skip statements the result follows directly:(
[skip]φ

)
σ ⇔ φσ by (3.12)

⇔ φ
(

[[skip]]S OS σ
)

by (3.3)

• as does the case for assignment statements:(
[x := a]φ

)
σ ⇔

(
φ[a/x]

)
σ by (3.13)

⇔ φ
(
σ[x 7→ aσ]

)
by (3.2) and (3.9)

⇔ φ
(

[[x := a]]S OS σ
)

by (3.4)

• the case for sequencing statements requires induction steps because we are proving

the case without knowing what each component statement does:(
[S 1;S 2]φ

)
σ ⇔

(
[S 1]

(
[S 2]φ

))
σ by (3.14)

⇒ [S 2]φ
(

[[S1]]S OS σ
)

by induction hypothesis

⇒ φ
(

[[S2]]S OS
(

[[S1]]S OS σ
))

by induction hypothesis

⇔ φ
(

[[S1; S2]]S OS σ
)

by (3.5)

• the conditional case must likewise use the induction hypothesis:

(
[if b then S 1 else S 2 fi]φ

)
σ ⇔

((
b→ [S 1]φ

)
∧

(
¬b→ [S 2]φ

))
σ

by (3.15), which is equivalent to

(
bσ→

(
[S 1]φ

)
σ
)
∧

(
¬bσ→

(
[S 2]φ

)
σ
)

by (3.2) and (3.9), which implies

(
bσ→ φ

(
[[S1]]S OS σ

))
∧

(
¬bσ→ φ

(
[[S2]]S OS σ

))

45

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

by the induction hypothesis. This is equivalent to
φ
(

[[S1]]S OS σ
)

if bσ is true

φ
(

[[S2]]S OS σ
)

if ¬bσ is true

which, by (3.6), is equivalent to

φ
(

[[if b then S1 else S2 fi]]S OS σ
)

• the case for terminating while statements requires some setting up. We define states

σi = [[S]]S OS σi−1 for all i > 0 and σ0 = σ. Since S is assumed to terminate, it

follows that there exists a least non-negative integer n such that:

∀i ≥ 0 .
(
i < n→ bσi

)
∧ ¬bσn

i. e. σn is the state at which computation exits the loop. We have(
[while b assert θ do S od]φ

)
σ ⇔(

b→ θ
)
σ ∧

〈
θσ→

(
[S]

(
b→ θ

))
σ
〉
∧〈

θσ→
(
[S]

(
¬b→ φ

))
σ
〉
∧

(
¬b→ φ

)
σ

for all σ, by (3.16). In particular, this implies(
b→ θ

)
σ ∧

〈
θσ→

(
[S]

(
b→ θ

))
σ
〉
∧〈

θσ1 →
(
[S]

(
b→ θ

))
σ1

〉
∧ . . . ∧

〈
θσn−2 →

(
[S]

(
b→ θ

))
σn−2

〉
∧〈

θσn−1 →
(
[S]

(
¬b→ φ

))
σn−1

〉
∧

(
¬b→ φ

)
σ

which implies (
b→ θ

)
σ ∧

〈
θσ→

(
b→ θ

)(
[[S]]S OS σ

)〉
∧〈

θσ1 →
(
b→ θ

)(
[[S]]S OS σ1

)〉
∧ . . . ∧

〈
θσn−2 →

(
b→ θ

)(
[[S]]S OS σn−2

)〉
∧〈

θσn−1 →
(
¬b→ φ

)(
[[S]]S OS σn−1

)〉
∧

(
¬b→ φ

)
σ

by induction hypothesis, which is equivalent to(
b→ θ

)
σ ∧

〈
θσ→

(
b→ θ

)
σ1

〉
∧〈

θσ1 →
(
b→ θ

)
σ2

〉
∧ . . . ∧

〈
θσn−2 →

(
b→ θ

)
σn−1

〉
∧〈

θσn−1 →
(
¬b→ φ

)
σn

〉
∧

(
¬b→ φ

)
σ

46

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

by the definition of σi above. By (3.2) and (3.9) this is equivalent to(
bσ→ θσ

)
∧

〈
θσ→

(
bσ1 → θσ1

)〉
∧〈

θσ1 →
(
bσ2 → θσ2

)〉
∧ . . . ∧

〈
θσn−2 →

(
bσn−1 → θσn−1

)〉
∧〈

θσn−1 →
(
¬bσn → φσn

)〉
∧

(
¬bσ→ φσ

) (3.19)

which implies ¬bσ → φσ. If n = 0, then ¬bσ is true and then (3.19) implies φσ,

which by (3.7) is equivalent to

φ
(

[[while b assert θ do S od]]S OS σ
)

as required. If instead n > 0, then bσi is true for each i < n and ¬bσn is true.

Therefore, (3.19) is equivalent to

θσ ∧
〈
θσ→ θσ1

〉
∧

〈
θσ1 → θσ2

〉
∧ . . .

. . . ∧
〈
θσn−2 → θσn−1

〉
∧

〈
θσn−1 → φσn

〉
which implies φσn. By definition, σn is the state at termination of the loop, i. e.

under the assumptions made on n above, φσn is equivalent to

φ
(

[[while b assert θ do S od]]S OS σ
)

as required.

• A call to the procedure p with declaration:

proc p(in x1 ∈ F1 . . . ; out xm+1 ∈ Fm+1 . . .) pre ϕ post ψ is . . . begin S end

assumes that the body of the procedure satisfies the contract, i. e. that (3.10) holds

for ϕ, S and ψ. Then, by (3.17), we have(
[p(a1, . . . , am; ym+1, . . . , yn)]φ

)
σ ⇔

ϕ′σ ∧
(
ψ′σ→

(
φ[zm+1/ym+1] · · · [zn/yn]

)
σ
) (3.20)

where ϕ′ ≡ ϕ[a1/x1] · · · [am/xm] and ψ′ ≡ ψ[a1/x1] · · · [am/xm][zm+1/xm+1] · · · [zn/xn]. Since the

set of free variables in ϕ is contained in {x1, . . . , xm} and the set of free variables in

ψ is contained in {x1, . . . , xn} and zm+1, . . . , zn are fresh, we have:

ϕ′σ ⇔ ϕ[x1 7→ a1σ, . . . , xm 7→ amσ]

ψ′σ ⇔
(
ψ[zm+1/xm+1] · · · [zn/xn]

)
[x1 7→ a1σ, . . . , xm 7→ amσ]

47

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

Therefore, the right hand side of (3.20) is equivalent to:

ϕ[x1 7→ a1σ, . . . , xm 7→ amσ] ∧((
ψ[zm+1/xm+1] · · · [zn/xn]

)
[x1 7→ a1σ, . . . , xm 7→ amσ]→

(
φ[zm+1/ym+1] · · · [zn/yn]

)
σ
)

where the fresh variables zm+1, . . . , zn represent values returned by the procedure

through its out-mode parameters xm+1, . . . , xn. Since the zis are implicitly uni-

versally quantified, we may specialise them to the operationally defined values

z′i = xi

(
[[S]]S OS [x1 7→ a1σ, . . . , xm 7→ amσ]

)
, for i ∈ {m + 1, . . . , n}, in:

ϕ[x1 7→ a1σ, . . . , xm 7→ amσ] ∧((
ψ[z′m+1/xm+1] · · · [z′n/xn]

)
[x1 7→ a1σ, . . . , xm 7→ amσ]→

(
φ[z′m+1/ym+1] · · · [z′n/yn]

)
σ
)

Because S may not assign to the in-mode parameters x1, . . . , xm of the procedure,

the above is equivalent to:

ϕσ′ ∧
(
ψ
(

[[S]]S OS σ′
)
→ φσ′′

)
where

σ′ = [x1 7→ a1σ, . . . , xm 7→ amσ]

σ′′ = σ[ym+1 7→ xm+1
(

[[S]]S OS σ′
)
, . . . , yn 7→ xn

(
[[S]]S OS σ′

)
]

Since we assumed ∀σ . ϕσ→ ψ
(

[[S]]S OS σ
)
, then in particular ϕσ′ → ψ

(
[[S]]S OS σ′

)
:

ϕσ′ ∧
(
ψ
(

[[S]]S OS σ′
)
→ φσ′′

)
∧

(
ϕσ′ → ψ

(
[[S]]S OS σ′

))
⇒

ψ
(

[[S]]S OS σ′
)
∧

(
ψ
(

[[S]]S OS σ′
)
→ φσ′′

)
⇒

φσ′′ ⇔

φ
([[

p(a1, . . . , am; ym+1, . . . , yn)
]]S OS σ

)
by (3.8), which concludes the last case of the induction.

We have proven: (
[S]φ

)
σ→ φ

(
[[S]]S OS σ

)
for all R-states σ, formulas φ and terminating statements S in PEA, which concludes the

proof of the theorem. �

48

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

3.6 Referential transparency

In the introduction we mentioned as one of our contributions the treatment of SPARK

Ada as a referentially transparent language. The notion of referential transparency is

usually encountered in the context of functional languages so we need to specify what

we mean by a referentially transparent imperative language. In the sections below we

give the definition as formalised in [70] for purely applicative languages, i. e. languages

consisting entirely of expressions and lacking side-effects, and then lift the definition to

side-effecting languages containing statements.

3.6.1 Pure and Purple expressions

In [70] Søndergaard and Sestoft give a detailed analysis of referential transparency and

other related substitution principles and show how a simple purely applicative model

language may be modified to possess all, some or none of these properties. The definitions

given below are slightly simplified compared to those given by the authors, but they yield

an equivalent notion of referential transparency.

Given syntactic categories Term of terminal symbols t, Oper of operator symbols Ω,

and Expr of expression symbols e, the syntax of the applicative language is given by:

e ::= t | Ω e1 . . . en

The syntax is interpreted by means of a denotational semantics D [[·]] : Expr → D,

whereD is the set of denotations. The identity D
= of expressions is defined by denotational

equivalence:

e1
D
= e2 ⇔ D [[e1]] = D [[e2]]

A position p is defined as a sequence of natural numbers, expressed in the grammar:

p ::= ε | i · p

where ε denotes the empty sequence, “·” denotes the sequence constructor and i ∈ N. The

partial operation (e, e′, p) 7→ e[e′/p] of inserting expression e′ at position p in expression e

is defined by:

e[e′/ε] ::= e′

(Ω e1 . . . ei . . . en)[e′/i·p] ::= (Ω e1 . . . ei[e′/p] . . . en)

49

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

and undefined otherwise.

A position may thus be viewed as the address of a node in the parsing tree for an expres-

sion, and the insertion operation may be visualised as replacing the subtree at position p

in the tree for e with the tree for e′.

Definition 3.6.1 (Purely referential position). An expression e is purely referential in po-

sition p if and only if

e1
D
= e2 ⇒ e[e1/p] D

= e[e2/p]

for all e1, e2 ∈ Expr.

Definition 3.6.2 (Referentially transparent/opaque operator). An operator Ω is referen-

tially transparent in place i if and only if

ei is purely referential in p ⇒ Ω e1 . . . ei . . . en is purely referential in i · p

for all ei ∈ Expr. Otherwise Ω is referentially opaque in place i. An operator is referen-

tially transparent if it is referentially transparent in each place and referentially opaque

otherwise.

The applicative language Expr is then said to be referentially transparent if and only

if each of its operators is referentially transparent, and otherwise said to be referentially

opaque. Thus, the substitution property possessed by a referentially transparent applica-

tive language is that replacement of denotationally equivalent expressions within an ex-

pression preserves denotational equivalence.

The problem of lifting the concept of referential transparency to a statement language has

partially been addressed in unpublished work [28] by A. Daniels. The author defines refer-

ential transparency for expression sublanguage of the procedural language Purple, which

in essence is an extension of WHILE with procedures and types. Procedures in Purple

may be declared as pure and then have restrictions put on parameters similar to those

imposed on PROC procedures, i. e. in-mode parameters are immutable and all assigned

variables must be passed as out-mode parameters. Functions in Purple are restricted from

accessing global variables, performing input/output (I/O), or calling impure procedures.

Thanks to these restrictions, pure Purple procedures may be called from within functions

without breaking referential transparency.

Daniels provides a definition of referential transparency for the expression sublanguage

50

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

of Purple, and thus generalises the definition given in [70] to typed expression languages

with imperatively defined functions. Equality of expressions is parametrised by a set X of

identifiers and the expressions E1 and E2 are deemed X-equal whenever E1 and E2 yield

the same values for all states that map each member of X to a non-bottom value. An

expression E is then called referentially transparent if and only if, expressions E1 and E2,

that are well-typed and X-equal, may replace a given sub-expression within E to produce

two expressions that are well-typed and X-equal, for every E1 and E2.

We see that Daniels has not completely resolved the problem, although the notion can

now be applied to typed expressions defined using functions containing procedure calls,

the notion of referential transparency is still confined to an expression language. Our aim

is to define what a referentially transparent statement is.

3.6.2 PROC statements

One would usually refrain from defining referential transparency of statements in terms

of an operational semantics, i. e. as a substitution property based on identity of statements

under operational equivalence, since this would involve an explicit global context. It is

often argued that the advantage of computing with pure expressions is that their evalu-

ation abstracts from operations on memory, i. e. does not make explicit the allocation,

update and deallocation of temporary variables used by the constituent functions, thus

simplifying reasoning about such computations. This abstraction makes it useful to in-

troduce substitution principles that formalise situations when it is possible to localise the

reasoning, thus making it safe to use optimisations based on rewriting. We will define

equivalence of statements in terms of a state-transformer semantics and then lift referen-

tial transparency accordingly.

The main problem we are facing is that of restricting the equivalence of statements so that

a sufficiently strong notion of referential transparency is obtained. Drawing inspiration

from Daniels’ work we parametrise equivalence of statements by a set of variables:

Definition 3.6.3 (Restricted equivalence). Let S 1, S 2 ∈ Stmt and X ⊆ Var. Given a

state transformer semantics [[·]] : Stmt → (StateR → StateR) we say that S 1 and S 2 are

X-equivalent with respect to the semantics [[·]], and write S 1
[[·]],X
� S 2, if and only if

[[S 1]]σ|X = [[S 2]]σ|X

51

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

where σ|X denotes the restriction of σ to X, for each σ ∈ StateR. If [[·]] or X are obvious

from the context we omit them and write S 1
[[·]]
� S 2, S 1

X
� S 2 or simply S 1 � S 2. In the latter

case we call S 1 and S 2 equivalent.

Thus, restricted equivalence is simply the equivalence relation induced by the function

λS .λσ. [[S]]σ|X.

Definition 3.6.4 (Strength ordering). The subset relation ⊆ on Var induces a partial or-

dering on restricted equivalences. Whenever X ⊆ Y, we call X-equivalence weaker than

Y-equivalence, and dually, Y-equivalence stronger than X-equivalence, for X,Y ⊆ Var.

So two statements equivalent under a weaker equivalence may not be equivalent under a

stronger one, since the corresponding state transformations are compared over additional

variables. The utility of the definitions above comes from the parametrisation of the cor-

responding notion of referential transparency obtained from restricted equivalences.

The constructs of the statement language Stmt may, in analogy with the operators of

the expression language Expr, be viewed as generalised operators Σ with argument

types restricted by syntax. In this view, loop statements while b do S od correspond

to expressions Σwhile s1 s2 with s1 ∈ BExp and s2 ∈ Stmt, procedure call statements

p(a1, . . . , am; xm+1, . . . , xn) correspond to expressions Σp s1 . . . sn where s1, .., sm ∈ AExp

and sm+1, . . . , sn ∈ Var, etc. This view leads to a generalised view of expressions and with

it a generalisation of purely referential positions:

Definition 3.6.5 (Visible variables). The functionW : AExp ∪BExp ∪ Stmt→ ℘ (Var)

maps a generalised expression to its set of visible variables. It is defined by

W (Σ s1 . . . sn) =
⋃n

i=1W(si) and W(t) =

 { t } if t ∈ Var

∅ otherwise

Definition 3.6.6 (Generalised purely referential position). A generalised expression s ∈

AExp ∪ BExp ∪ Stmt is purely referential in position p if and only if

s1
W
� s2 ⇒ s[s1/p]

Var
� s[s2/p] (3.21)

for all s1, s2 ∈ AExp ∪ BExp ∪ Stmt such that s[s1/p], s[s2/p] ∈ AExp ∪ BExp ∪ Stmt,

with W =W(s1) ∪W(s2).

52

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

The definition states that a generalised expression s is purely referential in a position p

if the expressions obtained by replacing sub-expressions at p, which modify their visi-

ble variables in the same way, yield the same state transformations. Having obtained a

notion of pure referentiality in the context of a statement language, we can now define

referentially transparent statements:

Definition 3.6.7 (Referentially transparent/opaque generalised operator). A generalised

operator Σ is referentially transparent in place i if and only if

si is purely referential in p ⇒ Σ s1 . . . si . . . sn is purely referential in i · p

for all si ∈ AExp ∪ BExp ∪ Stmt and i ∈ N such that Σ s1 . . . si . . . sn ∈ AExp ∪

BExp ∪ Stmt. Otherwise Σ is referentially opaque in place i. A generalised operator is

referentially transparent if it is referentially transparent in each place and referentially

opaque otherwise.

The statement language Stmt is then said to be referentially transparent if and only if

each of its generalised operators is referentially transparent, and otherwise said to be ref-

erentially opaque.

It should be clear from the definition that PROC is referentially transparent. The language

owes this property to the restriction that statements may only modify visible variables.

PROC actually satisfies a much stronger property. Since functions do not modify state,

and procedures may only modify variables appearing as out-mode parameters, the W-

equivalence in (3.21) could be weakened e.g. by only demanding U-equivalence of sub-

stituted expressions, where U is the set of updateable variables, i. e. variables appearing

on the left of assignments and as out-mode parameters in procedure calls. Note however

that the current notion of generalised statement does not allow for the identification of

operator arguments yielding updateable variables. It is an interesting question, how to de-

sign a framework for defining language syntax that is general enough to allow for a clean

definition of referentiality, while offering the possibility of defining equivalences weaker

than the one given by visibility.

From the discussion above we can easily see how to define referentially opaque languages.

One obvious way is to lift the restriction forbidding global variables. Suppose there are

two functions f and g, identically declared, except for g containing an additional assign-

ment to a variable declared in the main procedure and not appearing as a formal parameter.

53

Chapter 3 GENERATION OF CORRECTNESS THEOREMS

Clearly, f and g are W-equivalent, but when substituted yield non-identical state transfor-

mations.

54

4 Floating point computation

CONTENTS
4.1 Floating point numbers . 57

4.2 The IEEE floating point standard 58

4.2.1 Standard floating point formats 59

4.2.2 Special floating point values 59

4.2.3 Rounding modes . 60

4.2.4 Accuracy of elementary operations 60

4.3 The ARM numeric annex . 60

4.3.1 Ada model of FP arithmetic 62

4.3.2 Accuracy guarantees for numeric functions 62

4.3.3 Ada Floating Point Exceptions 63

55

Chapter 4 FLOATING POINT COMPUTATION

In the previous chapter we saw how correctness theorems for annotated while procedures

may be generated by the predicate transformer [·], and Theorem 3.5.1 on page 44 shows

that the generated correctness theorem is a sufficient condition for operational correct-

ness. The reductions a2 f and a2p, described in Section 3.1.2, eliminate expressions from

a program, replacing them with procedure calls corresponding to the constituent functions

of the reduced expressions. The operational semantics for expressions given in (3.2) on

page 39 is retrieved in the denotational semantics by equipping functions with contracts

defining their semantic interpretation. Clearly, it is essential that compilers, or ideally

languages, give accuracy guarantees for implementations of built-in operations and nu-

meric functions provided by standard libraries. Our approach to verification of SPARK

Ada floating point properties relies on the Ada language definition providing such guar-

antees. In the current chapter we list the relevant parts of the IEEE-754 and IEEE-854

standards for floating point arithmetic [68, 69] and the ISO-8652:1995 Ada 95 language

definition [1] showing how one may view the Ada accuracy guarantees as generalisations

of the accuracy guarantees of basic operations given by the IEEE standards. In Chapter 5

we consider various ways of expressing the guarantees described in the present chapter in

the model language PEA from Chapter 3.

The finitary nature of digital computation imposes two main restrictions on the imple-

mentation of numeric algorithms. Finite execution time means that in many cases we

cannot compute the sought values completely, since such computation may involve an

infinite number of steps, as in the evaluation of Taylor series or Newton’s algorithm. Fi-

nite storage space limits the representation of computed values. We may e.g. wish to

compute the value of a function at 1/3 while having only base 2 and 10 formats available.

In this case we have to settle for an approximate value resulting from rounding of the

infinite expansion 0.01010101. . . in base 2 or 0.33333333. . . in base 10. Narrow ranges

of rational numbers may be represented by integers scaled by a fixed representable num-

ber, so called fixed point numbers. In order to represent a wider range of real numbers,

scaling by a variable representable number yields floating point numbers, which may be

seen as a compromise between optimal precision and size of the representation. One may

view floating point types as discretisations of bounded subsets of the real line. In this

view it should not come as a surprise that the behaviour of an algorithm operating on real

numbers may change considerably when executed using floating point arithmetic. One of

56

Chapter 4 FLOATING POINT COMPUTATION

many accounts of the dangers of reasoning about floating point programs as if they were

executed using exact real numbers is given in [56].

4.1 Floating point numbers

The main idea behind floating point numbers is based on the following identity [44]

x = sign(x) ·
|x|

βblogβ |x|c
· βblogβ |x|c (4.1)

which holds for any nonzero real number x and positive integer β ≥ 2. It factors x into

its sign, a real number between 1 and β and an integer power of β. Thus, (4.1) defines

functions s(x) = sign(x), f (x) = |x|
β
blogβ |x|c

and e(x) = blogβ|x|c, called the sign, fraction and

exponent, such that

x = s(x) · f (x) · βe(x) (4.2)

In order to represent the fraction in finite memory we have to approximate f (x) somehow.

From the definition of f we have 1 ≤ f (x) < β, thus there is a sequence {di}i∈N of digits,

with di ∈ {0, . . . , β − 1} and d0 , 0, such that

f (x) = d0.d1d2 · · · (4.3)

is the expansion of f (x) in base β. In order to represent the number within finite memory,

say using p digits, we can make the following approximation of f (x)

f0(x) = b f (x) · βp−1c · β1−p

corresponding to truncation after p digits, or equivalently, to rounding f (x) towards zero

to p digits. Implementations of interval arithmetic need approximations that consequently

round in the same direction. An approximation of f (x) from below can be obtained by

setting

f−∞(x) = s(x) · bs(x) · f (x) · βp−1c · β1−p

which corresponds to rounding f (x) down to p digits. Reversing the direction, i. e. ap-

proximating f (x) from above, can be realised as follows

f+∞(x) = s(x) · ds(x) · f (x) · βp−1e · β1−p

57

Chapter 4 FLOATING POINT COMPUTATION

which corresponds to rounding f (x) up to p digits. Denoting rounding by R, we arrive at

the following finite/storable approximations for nonzero real numbers

R0(x) = s(x) · f0(x) · βe(x)

R−∞(x) = s(x) · f−∞(x) · βe(x)

R+∞(x) = s(x) · f+∞(x) · βe(x)

(4.4)

Each floating point format is thus determined by a choice of base β, precision p and

bounds emin ≤ e ≤ emax on the exponent. The format is denoted Fβ,p,emin,emax which we

abbreviate as F whenever possible. We have obtained a family of formats that use fixed

amounts of memory to represent real numbers between Fmin = −(β − 1)pβemax and Fmax =

(β − 1)pβemax . Restricting R0,R−∞ and R+∞ to the range [Fmin,Fmax] defined by a format F

gives roundings:

RF0 ,R
F
−∞,R

F
+∞ : [Fmin,Fmax]→ F (4.5)

taking a real number to its approximation in F. We drop the superscript F whenever it

is evident from the context. We shall sometimes refer to a general rounding operator,

writing R with no subscript, meaning one of the operators defined in this chapter. In

addition, each format defines an absolute epsilon value εabs = βemin and an additional

choice of rounding operator defines a relative epsilon value εrel, defined as the smallest

positive value in F such that 1.0 ⊕ εrel , 1.0, where ⊕ denotes rounded addition. Sect. 4.2

and 4.3 present standards for implementations of floating point arithmetic and exception

handling.

4.2 The IEEE floating point standard

In order to give a uniform framework for implementations of floating point arithmetic,

the IEEE-754 [68] standard for binary floating point arithmetic and the IEEE-854 [69]

standard for radix independent floating point arithmetic were issued by the Institute of

Electrical and Electronics Engineers. A short summary of the relevant properties of IEEE

FP arithmetic are given below.

58

Chapter 4 FLOATING POINT COMPUTATION

4.2.1 Standard floating point formats

A nonzero floating point number x is represented as in Sect. 4.1

x = s(x) · f (x) · βe(x)

where s, f and e are defined as by 4.2 and

f (x) = d0.d1d2 . . . dp−1 (4.6)

IEEE-754 defines single precision floating point numbers by

β = 2, p = 23, emin = −126 and emax = 127

and double precision floating point numbers by

β = 2, p = 52, emin = −1022 and emax = 1023

In IEEE-754 the only allowed base is 2 while IEEE-854 also allows base 10. A floating

point number is normalised when d0 , 0 in (4.6). Normalised numbers have unique

representations. In order to handle numbers approaching zero, denormalised numbers are

defined by d0 = · · · = dk = 0 in (4.6) for some 0 ≤ k < p − 1 and e = emin. This departs

from our earlier presentation of floating point formats as it effectively extends the format

to include values with exponent emin − q and precision p − q, with 0 < q < p.

4.2.2 Special floating point values

When performing a FP operation and the exponent of the resulting number is larger than

emax we say that the number overflows. Similarly, when the result of a FP operation has an

exponent less than emin, then we say that the number underflows. In order to handle over-

flows and underflows, the standard defines, in addition to normalised and denormalised

numbers, the following special values:

• the signed infinities +∞ and −∞, resulting from overflows and division by zero

• their reciprocals, the signed zeros +0 and −0, resulting from underflows and divi-

sion by an infinity

FP operations are not total even when disregarding over- and underflows. Examples of

expressions with undefined values are ±∞ · ±0 and ±∞ + ∓∞. To handle such cases the

standard defines an additional special value to represent undefined values:

59

Chapter 4 FLOATING POINT COMPUTATION

• the not a number value NaN, representing undefined values resulting from the ap-

plication of partial functions to values outside their domain

4.2.3 Rounding modes

In Section 4.1 we defined, for each FP format F, rounding operations R : [Fmin,Fmax]→ F

taking a real number x to a FP number neighbour x̃. When the real number is itself a

member of F, then x = x̃, but whenever x < F, a choice has to be made: which or the two

nearest FP numbers should be chosen? In addition to the rounding modes: upward round-

ing, downward rounding and rounding to zero, corresponding to the rounding operators

R+∞, R−∞ and R0, the IEEE standard specifies rounding to nearest R∼, which chooses the

floating point neighbour of a real number that is closer. When both neighbours are at an

equal distance the one with even last digit is chosen. Rounding to nearest will, over a suf-

ficiently large sample, result in an even distribution of upward and downward roundings,

and may therefore lead to better performance of algortithms that can otherwise experience

“drift” caused by consistently rounding in a fixed direction.

4.2.4 Accuracy of elementary operations

The IEEE standard demands that implementations of the arithmetic operations +,−, ·, /

and √ are exactly rounded. This means that the FP result is obtained by rounding the

result of the corresponding real operation:

x } y = R(x ◦ y) (4.7)

where R denotes rounding in one of the modes defined above and } denotes the float-

ing point operation corresponding to the real operation ◦ ∈ {+,−, ·, /, √}. The precision

requirements on other functions commonly found in numeric packages, such as the expo-

nential and trigonometric functions as well as their inverses, are left to the implementa-

tion.

4.3 The ARM numeric annex

One of the goals stated in the introduction to the thesis was to propose an extension of

the industrially deployed language SPARK Ada that would facilitate the verification of

60

Chapter 4 FLOATING POINT COMPUTATION

functional properties of floating point code. We pointed out above that Ada is a suit-

able language for floating point verification, as the language definition specifies accuracy

properties of the arithmetic operators and numeric functions provided by the standard li-

braries. Below follows a distillation of the relevant properties from the Ada 95 language

reference manual.

Section G.2.4 “Accuracy Requirements for the Elementary Functions” of the Ada Ref-

erence Manual’s Numerics Annex [1] gives guarantees on the accuracy of the functions

found in the standard numeric packages. The main difference from the guarantees given

by the IEEE standard is that for these functions, the result will not be a single point value.

Instead, an interval is given, within which the result is guaranteed to lie. The interval

itself is determined by the operation and the argument values. The guarantees assume

that compilation is performed in a so-called strict mode, if this is not the case, then no

guarantees on exceptional behaviour or accuracy are given by the language standard.

The standard specifies the two constants π and e and the behaviour of the built-in op-

erations; addition, subtraction, multiplication, division and power, where power is the

operation raising a floating point value to an integer power. In addition to the built-in

operations the standard also specifies the package Ada.Numerics.Elementary Functions,

containing a number of functions corresponding to the most common functions from ele-

mentary analysis: square root, natural logarithm, logarithm with given base, exponential

function, forward and inverse trigonometric functions taking arguments in radians, or

with a specified cycle, and hyperbolic trigonometric functions.

Note that the inverse tangent and cotangent functions come in one and two parameter

versions. The two argument arctangent implements the argument function, which gen-

eralises the inverse tangent function. The inverse cotangent function correponds to the

inverse tangent function with its arguments flipped. The argument function takes two pa-

rameters y and x and returns the angle θ in the interval (−π, π] that the vector x + iy in

the complex plane makes with the positive real axis. The sign of the angle is given by

sgn(θ) = sgn(y). The restriction of the codomain corresponds to choosing the principal

branch of the argument function. The one parameter versions are implemented as the

corresponding two argument version with its second argument set to one.

61

Chapter 4 FLOATING POINT COMPUTATION

4.3.1 Ada model of FP arithmetic

The accuracy requirements are formulated generically for floating point formats F in terms

of model numbers, which are floating point numbers on the same form as the format, but

without an upper bound on the exponent. The arguments and results of floating point

operations and functions are assumed to lie in model intervals, which are intervals whose

end points are model numbers. The model interval corresponding to a numeric value is

the smallest model interval containing the value. The result of conversion of a numeric

value to a floating point type is the model interval associated with the operand value. The

result of evaluating a FP function f at a value v is required to belong to a model interval,

called the result interval, containing all values of the form (1 + d) · f (x), where x lies in

the model interval for v, f : R → R is the exact real function that f is approximating and

d is a real number such that |d| is less than or equal to the function’s maximum relative

error.

The standard requires that implementations of built in binary arithmetic operations +,−, ∗, /

have zero maximum relative errors. Exponentiation to integer power has accuracy corre-

sponding to evaluation of the corresponding sequence of multiplications, allowing for

arbitrary grouping, e.g. x4 can be computed as x ∗ (x ∗ x ∗ x) or (x ∗ x) ∗ (x ∗ x), followed

by a final division in the case of negative exponents. If division is implemented as mul-

tiplication with reciprocal in the underlying hardware, then the accuracy of division and

exponentiation with negative integer exponents are implementation defined.

4.3.2 Accuracy guarantees for numeric functions

Below follow the maximum relative errors for functions in the Ada numerics package.

• sqrt, sin and cos have a maximum relative error of 2 · εrel

• log,exp,tan and cot have a maximum relative error of 4 · εrel

• the forward and inverse hyperbolic functions have a maximum relative error of 8·εrel

• the maximum relative error for exponentiation with floating point exponent depends

on the parameter values of the base x and exponent y, it is
(
4 +

|y·log(x)|
32

)
· εrel

where εrel is defined in 4.1 on page 58. If we assume that all values passed to functions

are finite floating point numbers in the format of their corresponding function parameters,

62

Chapter 4 FLOATING POINT COMPUTATION

then the model interval of a value v contains just v itself. The guarantees then say that the

result of a floating point function f at v is the rounding of some number in the interval

(1 + εf) f (v), where εf = [−εf, εf], εf is the maximum relative error of f and f : R → R

is the exact real function that f approximates. Being exactly rounded is then equivalent to

having zero maximum relative error. One may therefore view the statement of accuracy

guarantees in the Ada language in terms of maximum relative errors as generalising the

exact rounding property of IEEE floating point formats. In the next chapter we shall look

further at using intervals to approximate floating point functions.

4.3.3 Ada Floating Point Exceptions

The Ada standard defines two exceptions that may be raised by incorrect use of numeric

functions. Constraint Error is raised to signal overflow and Numerics.Argument Error is

raised to signal that an argument value is passed for which the function is undefined. To

guarantee predictable behaviour of numeric exceptions, compilation must be performed

in strict mode and in addition, the flag Machine Overflows must be set to true. Otherwise,

the behaviour of numerical exceptions is implementation defined, i. e. no guarantees for

the behaviour are given.

It is guaranteed that the result of a built-in floating point operation returns a value in the

result interval, provided the result interval is contained within the range defined by the

floating point type. Otherwise, either a value in the result interval is returned, or the error

Constraint Error is raised. The behaviour of numeric functions provided in the Numer-

ics.Elementary Functions package have similar behaviour to the built-in operations. If

the result interval is contained in the range defined by the floating point type, then a value

in the result interval is returned. Otherwise a value in the result interval is returned or the

error Constraint Error is raised, signaling overflow.

When an argument of an elementary function is outside the domain of the corresponding

real function, then the error Numerics.Argument Error is raised. In particular, the error is

raised by:

• any forward or inverse trigonometric function with specified cycle when the value

of the cycle parameter is zero or negative

• the logarithm function with specified base, when the value of the base parameter is

63

Chapter 4 FLOATING POINT COMPUTATION

zero, one or negative

• the square root and natural logarithm functions when the argument is negative

• the exponentiation operator when the left operand value is negative or when both

operand values are zero

• the inverse sine and cosine and inverse hyperbolic tangent functions when the ab-

solute value of the argument exceeds one

• the inverse tangent and cotangent functions when the parameters y and x both have

the value zero

• the inverse hyperbolic cosine function when the value of the parameter x is less than

one

• the inverse hyperbolic cotangent function when the absolute value of the parameter

x is less than one

Evaluation of an elementary function at a pole of the corresponding real function causes

the function to raise Constraint Error. The error is raised by:

• the natural logarithm, cotangent and hyperbolic cotangent functions when the ar-

gument value is zero

• the exponentiation operator when the left operand value is zero and the right operand

value is negative

• the tangent function with specified cycle, when the value of the argument is an odd

multiple of the quarter cycle

• the cotangent function with specified cycle, when the value of the argument is zero

or a multiple of the half cycle

• the inverse hyperbolic tangent and cotangent functions, when the absolute value of

the argument is one

When both Constraint Error and Numerics.Argument Error are to be raised, then the lat-

ter takes precedence.

64

5 Specification of floating

point properties

CONTENTS
5.1 Rounding operators . 66

5.2 Specification of built in operations 67

5.2.1 Addition, Subtraction, Multiplication and Division 67

5.2.2 Power . 69

5.3 Specification of elementary functions 70

5.3.1 Square root . 70

5.3.2 Exponentiation . 70

5.4 Specification of functions and procedures 71

5.4.1 Extending the annotation language with the integral operator . . 71

5.4.2 Error function example . 72

5.4.3 Extending the annotation language with intervals 75

5.4.4 Square root example . 77

5.5 Concluding remarks . 80

65

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

A specification for a program serves as documentation describing the intended use of

the program. It is therefore important that a specification is unambiguous and succinct.

Also, it is important that the specifications for subprograms combine in some intuitive

way, thus making it easier to infer specifications for programs from the specifications of

their subprograms. In Chapter 3 we mentioned that the semantics of floating point expres-

sions are included in the generation of verification conditions by equipping operations and

functions with contracts expressing properties of interest. In this chapter the annotation

language of our model language PEA is extended to facilitate the expression of functional

and exception freedom properties for floating point functions and procedures based on

the accuracy guarantees in the Ada Reference Manual Numerics Annex [1]. We focus on

describing functional properties, i. e. tight approximations of the actual behaviour. Ex-

pressing the strongest possible properties is intractable due to the prohibitive complexity

of rounding behaviour. We may however recover some of the relative simplicity of exact

real number computation by abstracting rounding through approximation. We find inter-

val arithmetic to provide a suitable language for expressing such approximate properties,

additionally recovering the compositional nature of exact arithmetic which supports mod-

ular reasoning about floating point computations.

5.1 Rounding operators

In Section 4.2.4 we saw that the accuracy of built-in operations can be conveniently ex-

pressed in terms of rounding operators R satisfying:

∀x . ∃e . |e| ≤ max(εrel|x|, εabs) ∧ R(x) = x + e (5.1)

where εabs and εrel are the absolute error and relative error of the floating point format.

εabs is defined as the smallest normalised number in the format and εrel is defined as the

smallest positive number x in the format for which 1.0 ⊕ x , 1.0 holds. We approximate

the exact rounding operators in (5.1) by the interval valued outward rounding operator

Rout defined by:

Rout(x) = (1 + εrel)x + εabs (5.2)

where εabs = [−εabs, εabs] and εrel = [−εrel, εrel]. Clearly, we have R(x) ∈ Rout(x) for each

rounding operator R ∈ {R+∞,R−∞,R0,R∼} defined in 4.2.3. In Section 4.3.2, the accuracy

of an elementary function was expressed in terms of its maximum relative error. Letting

66

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

f be an elementary function, f the corresponding exact function on real numbers and εf

the maximum relative error of f, we have an analogue of (5.1):

∀x . ∃d . |d| ≤ εf ∧ f(x) = R((1 + d) f (x)) (5.3)

We approximate the right hand side of the equation in (5.3) by abstracting the variable d

using the generalised outward rounding operator Sout. It is an interval valued function

defined by:

Sout(e, x) = Rout

((
1 + e[−1, 1]

)
x
)

(5.4)

The trivial equality Rout(x) = Sout(0, x) formally connects the exact rounding property

of IEEE arithmetic and Ada numeric functions noted in the previous chapter. We have

arrived at the following approximation for result values of floating point functions:

f(x) ∈ Sout(εf, f (x)) (5.5)

5.2 Specification of built in operations

In the following section we present formal specifications for built in operations and ele-

mentary functions derived from the corresponding specifications given in the Ada Refer-

ence Manual [1], as presented in section 4.3 above.

5.2.1 Addition, Subtraction, Multiplication and Division

We use the membership relation e ∈ F to succinctly express that an expression e lies

within the range defined by a numeric type F in the contracts for floating point operations.

The simplest contract for a built in operation leaves the operation uninterpreted. The

precondition should restrict the arguments of the operation to the subset of the domain for

which the result interval is completely contained in the range of the type. In the case of

floating point addition ⊕ we get the following precondition:

pre x ⊕ y ∈ F

while the postcondition simply states that the returned value is the result of the operation:

return r . r = x ⊕ y

67

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

The drawback of this approach is that we need to know how to interpret each floating

point operation separately. We can simplify the situation by eliminating floating point op-

erations from our specifications by expressing that the result lies within a rounding of the

exact value that the floating point operation approximates. This can be expressed using a

general rounding R, representing rounding in one of the modes described in Section 4.2.3

on page 60, each satisfying (5.1), to interpret the result of the operation in terms of the

corresponding exact operation on real numbers and the equality relation:

pre R(x + y) ∈ F

return r . r = R(x + y)
(5.6)

Since we have not included rounding direction in (5.6), we are making an approximation

of the exact behaviour of the program. An alternative approximation uses directed round-

ing operators, defined in section 4.2, to express bounds on the result using inequalities:

pre R+∞(x + y) ∈ F ∧ R−∞(x + y) ∈ F

return r . r ≤ R+∞(x + y) ∧ r ≥ R−∞(x + y)
(5.7)

The rounding operators in the specifications above may also be approximated using the

signum operator on real numbers:

return r . r ≤
(
1 + sign(x + y)εrel

)
(x + y) + εabs ∧

r ≥
(
1 − sign(x + y)εrel

)
(x + y) + εabs

where sign(x) = |x|/x for x , 0 and sign(0) = 0. The constants εabs and εrel may of

course be replaced by their corresponding values, yielding a contract expressing the value

of x ⊕ y in terms of real numbers and standard real operations. The interval rounding

operator defined above may be used to express the contracts (5.6) and (5.7) using the

membership and subset relations:

pre Rout(x + y) ⊆ F

return r . r ∈ Rout(x + y)

While R simplifies contracts by replacing the four possible rounding operators by a single

one, it remains difficult to reason about. Rout simplifies things further by having a simple

definition in terms of intervals.

The contracts for subtraction, multiplication and division are analogous.

Note that the division precondition analogue R(x/y) ∈ F of the addition precondition in

68

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

(5.6) suffices, as the rules for evaluating relations with partial expressions, given in Sec-

tion 4.2.2 on page 60, imply that R(x/y) ∈ F⇒ y , 0.

5.2.2 Power

The Ada standard specifies the power operator in terms of the corresponding sequence

of multiplications, taken in arbitrary order, with a final division in the case of a negative

exponent. For non-negative values n of the exponent the power operator satisfies the

following equation:

power(x, n) = power(x, n1) ~ power(x, n2)

where n = n1 + n2. The condition that the multiplications may be taken in arbitrary order

results in a complicated contract if we try to capture the strongest possible property. We

can however approximate and thus express the specification much more concisely using

intervals:

power(x, n) ∈ (1 + εrel)n(xn + nεabs)

For negative exponents n we have:

power(x, n) = 1 � power(x,−n)

We have obtained the following contract for power:

pre
(
n < 0→ (1 + εrel)

(1
(1+εrel)n(xn+nεabs)

) + εabs ⊆ F
)
∧(

n ≥ 0→ (1 + εrel)n(xn + nεabs) ⊆ F
)

return r .
(
n < 0→ r ∈ (1 + εrel)

(1
(1+εrel)n(xn+nεabs)

) + εabs

)
∧(

n ≥ 0→ r ∈ (1 + εrel)n(xn + nεabs)
)

Note that we have used the subset relation ⊆ between an interval expression and the in-

terval given by the floating point type F. In section 5.4.3 we shall argue that interval

expressions and the subset relation form an attractive basis on which to build specifica-

tion languages for floating point programs.

69

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

5.3 Specification of elementary functions

The postcondition for an elementary function f may be expressed in terms of the gener-

alised outward rounding operator Sout as given by (5.5) in section 5.1:

f(x) ∈ Sout(εf, f (x))

where f is the corresponding real function and εf is the maximum relative error of f, as

defined in section 4.3. The precondition needs to enforce conditions under which neither

of the possible Ada exceptions will be thrown. In the sections below we show how to

express this property for the square root and exponentiation operators.

5.3.1 Square root

As specified in section 4.3.1, sqrt is undefined for negative arguments and returns non-

negative values:

pre x ≥ 0

return r . r ≥ 0 ∧ r ∈ Sout(2εrel,
√

x)

5.3.2 Exponentiation

The operation of raising a floating point value to another floating point value is provided as

an elementary function. In section 4.3 conditions were given under which no exceptions

will be raised. Thus, the precondition must contain:

x ≥ 0 ∧
(
x , 0 ∨ y , 0

)
The precondition guaranteeing no overflows and the postcondition may, as we have seen

previously, be expressed using the generalised outward rounding operator:

exponential(x, y) ∈ Sout

((
4 +
|y · log(x)|

32

)
εrel, xy

)
We have obtained a contract for the exponential operator:

pre x ≥ 0 ∧
(
x , 0 ∨ y , 0

)
∧ Sout

((
4 +

|y·log(x)|
32

)
εrel, xy

)
⊆ F

return r . r ∈ Sout

((
4 +

|y·log(x)|
32

)
εrel, xy

)
Contracts for the remaining elementary functions are readily obtained in a similar fashion,

by transcribing the exception freedom conditions into the precondition and the accuracy

guarantees into the postcondition, using the generalised outward rounding operator Sout.

70

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

5.4 Specification of functions and procedures

In the previous sections we described the arithmetic operations and elementary functions

in terms of the corresponding operations and functions on real numbers. The main dif-

ference in specifying a user defined function or procedure is that the annotation language

will generally not contain the (abstract) real analogue of the implemented function. In the

section below we look at one way of providing some flexibility to the annotation language,

allowing users to define new functions using a higher-order operator, without modifying

the annotation language itself.

5.4.1 Extending the annotation language with the integral operator

We extend the term sublanguage of ANOT with the integral operator:

τ ::= . . . |

∫
x∈[τ1,τ2]

τ3

where we use the notation x ∈ [τ1, τ2] to indicate the integration variable and domain. We

now have available all functions f of the form:

f (x) = f (x0) +

∫ x

x0

f ′(t)dt (5.8)

where f ′ is expressed by a composition of functions already in ANOT. The integral op-

erator introduced above is a kind of specialised lambda constructor, turning the integrand

term into a function of the integration variable. It is tempting to introduce the general

lambda constructor at this point. The argument against embedding full lambda calcu-

lus within the annotation language is that lambdas, although conceptually simple, are far

from universally known. One of the most important properties of an annotation language

is that it needs to be universal in the sense that the meaning of an annotation should be

evident to the intended user. Needing to inspect the code that an annotation describes

defeats the role of the annotation as a specification for the program. The integral operator

is part of basic education and we may therefore expect a user to immediately recognise

its intended meaning. In the following section we present an example of a program that

implements a function defined by (5.8) to illustrate the use of the integral operator in a

concrete specification.

71

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES� �
1 proc erf(in x ∈ F; out r ∈ F)

2 pre 0 ≤ x ∧ x ≤ 4

3 post 2
√
π

∫
t∈[0,x]

e−t 2
− 0.00005 ≤ r ∧ r ≤ 2

√
π

∫
t∈[0,x]

e−t 2
+ 0.00005

4 is ...

5 t1, t2, t3 ∈ F

6 begin

7 t1 := 1.0 ⊕ 0.47047 ~ x;

8 t2 := t1 ~ t1;

9 t3 := t1 ~ t2;

10 r := 1.0 	 exp(−x ~ x) ~ (0.3480242 � t1 	 0.0958798 � t2 ⊕ 0.7478556 � t3);

11 end� �
Figure 5.1: Implementation of the error function in PEA.

5.4.2 Error function example

The error function is often used to evaluate the cumulative density function of a normally

distributed random variable. It is given by the integral:

erf(x) =
2
√
π

∫ x

0
e−t2dt

Implementation in PEA

Rather than compute the integral directly, our program, shown in Figure 5.1, uses a ratio-

nal approximation. The main advantages, compared to implementing the function using

a loop computing an approximation of the Riemann sum of the integral, is the speed of

execution and that termination of our program is trivially guaranteed. According to [2],

this approximation has a maximal absolute error of less than 2.5 · 10−5. When taking

rounding into account, the approximation’s error could increase. Therefore we specified

the discrepancy of our procedure to be below 5 · 10−5.

Using the integral operator in a specification does decrease the readability compared to

having the real error function in the specification language, it does however increase the

portability, in the sense that a user may not know the error function, but may be expected

to know integrals. As pointed out in the previous section, using a generic operator, such

as the integral, makes the specification language smaller and more expressive.

72

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

Correctness theorem

We derive the correctness theorem for the erf example above, assuming the simplest

form of postconditions for arithmetic operations and the exponential function:

return r . r = . . .

using the predicate transformer [·], defined in Chapter 3. To make the derivation more

readable we give the postcondition a short name:

φ(r) =
2
√
π

∫
t∈[0,x]

e−t2 − 0.00005 ≤ r ∧ r ≤
2
√
π

∫
t∈[0,x]

e−t2 + 0.00005

making dependency on the free variable r explicit, as it will be transformed during the

derivation. We wish to compute: t1 := 1.0 ⊕ 0.47047 ~ x; t2 := t1 ~ t1; t3 := t1 ~ t2;

r := 1.0 	 exp(−x ~ x) ~ (0.3480242 � t1 	 0.0958798 � t2 ⊕ 0.7478556 � t3)

 φ(r)

We begin by transforming composite expressions into a sequence of procedure calls by

applying f 2p to the program and then a2p to the assignment statements: ⊕(1.0, 0.47047 ~ x; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

	(1.0, exp(−x ~ x) ~ (0.3480242 � t1 	 0.0958798 � t2 ⊕ 0.7478556 � t3); r)

 φ(r)

and again, unfolding the procedure parameters: ~(0.47047, x; r1); ⊕ (1.0, r1; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

~(exp(−x ~ x),
(
0.3480242 � t1 	 0.0958798 � t2

)
⊕ 0.7478556 � t3; r2); 	 (1.0, r2; r)

 φ(r)

and so on until the program body has been fully simplified:

~(0.47047, x; r1); ⊕ (1.0, r1; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

~(x, x; r5); exp(−r5; r3); � (0.3480242, t1; r7); � (0.0958798, t2; r8);

	(r7, r8; r6); � (0.7478556, t3; r9); ⊕ (r6, r9; r4);

~(r3, r4; r2); 	 (1.0, r2; r)

φ(r)

applying the procedure call rule for [·] to the rightmost statement:
~(0.47047, x; r1); ⊕ (1.0, r1; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

~(x, x; r5); exp(−r5; r3); � (0.3480242, t1; r7); � (0.0958798, t2; r8);

	(r7, r8; r6); � (0.7478556, t3; r9); ⊕ (r6, r9; r4); ~ (r3, r4; r2)

(
1.0 	 r2 ∈ F ∧

(
r′ = 1.0 	 r2 → φ(r′)

))
73

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

and again:
~(0.47047, x; r1); ⊕ (1.0, r1; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

~(x, x; r5); exp(−r5; r3); � (0.3480242, t1; r7); � (0.0958798, t2; r8);

	(r7, r8; r6); � (0.7478556, t3; r9); ⊕ (r6, r9; r4)

 r3 ~ r4 ∈ F ∧
(
r′2 = r3 ~ r4 →

1.0 	 r′2 ∈ F ∧
(
r′ = 1.0 	 r′2 → φ(r′)

))

and again:
~(0.47047, x; r1); ⊕ (1.0, r1; t1); ~ (t1, t1; t2); ~ (t1, t2; t3);

~(x, x; r5); exp(−r5; r3); � (0.3480242, t1; r7); � (0.0958798, t2; r8);

	(r7, r8; r6); � (0.7478556, t3; r9)

r6 ⊕ r9 ∈ F ∧

(
r′4 = r6 ⊕ r9 →

r3 ~ r′4 ∈ F ∧
(
r′2 = r3 ~ r′4 →

1.0 	 r′2 ∈ F ∧
(
r′ = 1.0 	 r′2 → φ(r′)

)))

and so on, until we have reduced all statements to one formula:

0.47047 ~ x ∈ F ∧
(
r′1 = 0.47047 ~ x→

1.0 ⊕ r′1 ∈ F ∧
(
t′1 = 1.0 ⊕ r′1 →

t′1 ~ t′1 ∈ F ∧
(
t′2 = t′1 ~ t′1 →

t′1 ~ t′2 ∈ F ∧
(
t′3 = t′1 ~ t′2 →

x ~ x ∈ F ∧
(
r′5 = x ~ x→

exp(−r′5) ∈ F ∧
(
r′3 = exp(−r′5)→

0.3480242 � t′1 ∈ F ∧
(
r′7 = 0.3480242 � t′1 →

0.0958798 � t′2 ∈ F ∧
(
r′8 = 0.0958798 � t′2 →

r′7 	 r′8 ∈ F ∧
(
r′6 = r′7 	 r′8 →

0.7478556 � t′3 ∈ F ∧
(
r′9 = 0.7478556 � t′3 →

r′6 ⊕ r′9 ∈ F ∧
(
r′4 = r′6 ⊕ r′9 →

r′3 ~ r′4 ∈ F ∧
(
r′2 = r′3 ~ r′4 →

1.0 	 r′2 ∈ F ∧
(
r′ = 1.0 	 r′2 → φ(r′)

))
· · ·

)
corresponding to thirteen precondition checks, one for each rounded floating point oper-

ation, and one VC for the unique path through the program.

74

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

5.4.3 Extending the annotation language with intervals

The example in the previous section shows how adding a higher order operator to the term

sublanguage of the annotation language makes the language extensible, which makes it

smaller and more expressive. We now turn our attention to another important property of

specifications; namely composability. The postcondition of the erf procedure expresses

bounds on the returned value in terms of inequalities. The advantage to using inequali-

ties is that their meaning is completely unambiguous, they do however have a drawback

in that they do not compose easily. In the following section we elaborate on this, mak-

ing an argument for another extension of the annotation language, by interval terms and

relations.

As pointed out earlier in the chapter, bounds on the return values of a function f may be

expressed in terms of the corresponding function f on real numbers and two inequalities:
f(x) ≥ R−∞

((
1 − sign(f (x))εf

)
f (x)

)
f(x) ≤ R+∞

((
1 + sign(f (x))εf

)
f (x)

) (5.9)

The main problem with (5.9) is that it de-couples the bounds on f(x), making it difficult to

reason with such constraints. As an example, consider the program in Fig. 5.2 , computing

the composition sin(cos(x)). Formulating the accuracy guarantees for sin and cos as in

(5.9), we obtain the following information about resulting value r:

y ≤ R+∞

((
1 + sign

(
cos(x)

)
2εrel

)
cos(x)

)
y ≥ R−∞

((
1 − sign

(
cos(x)

)
2εrel

)
cos(x)

)
r ≤ R+∞

((
1 + sign

(
sin(y)

)
2εrel

)
sin(y)

)
r ≥ R−∞

((
1 − sign

(
sin(y)

)
2εrel

)
sin(y)

)
(5.10)

To mechanically eliminate the intermediate variable y — that is to derive bounds for r that

are functions of x — is not trivial in cases where the functions are not monotonic. In such

cases the difficulty lies in determining which of the bounds should be used. In contrast,

(5.11) shows the equivalent information expressed using intervals:

y ∈ Rout

((
1 + 2εrel

)
cos(x)

)
r ∈ Rout

((
1 + 2εrel

)
sin(y)

) (5.11)

Note the use in (5.11) of the interval εrel = [−εrel, εrel] corresponding to εrel ∈ F. Since

we know that y lies in a given interval, and that the interval for r is given in terms of y, we

75

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES� �
1 y := cos(x);

2 r := sin(y);� �
Figure 5.2: Example of function composition.

may replace y in the constraint to obtain a constraint on r involving only x. It follows that

the two constraints in (5.11) compose to:

r ∈ Rout

((
1 + 2εrel

)
sin

(
Rout

((
1 + 2εrel]

)
cos(x)

)))
This compositionality of interval inclusion constraints is one of two main advantages of

using these constraints, the second being conciseness of the resulting annotations. What

may seem to be an aesthetic argument, is in fact one found in engineering, which is that

a clearly formulated specification is less likely to be misinterpreted. Now that we have

motivated the utility of an interval annotation language, we must formally describe how

ANOT is extended with interval terms and relations. We do this by interpreting the terms

of ANOT not as terms over real numbers, but as terms over intervals. This is done through

the embedding of the real numbers in the set of real intervals, taking the real number x to

the thin interval x = [x, x]. Continuous functions f : R → R are lifted to functions on

intervals by taking the image of the argument interval, which under a continuous function

is also an interval, as result interval: f (x) = { f (x) | x ∈ x} i. e. they are lifted to their

maximal extensions, as defined in Section 2.2 on page 27. We introduce intervals into the

term sublanguage of ANOT by adding an interval constructor:

τ ::= . . . | [τ1, τ2]

and syntactic sugar εabs, εrel for the intervals [−εabs, εabs] and [−εrel, εrel], respectively.

We also extend the formula sublanguage of ANOT by the thin inclusion relation ∈ and

the subset relation ⊆:

ϕ ::= . . . | τ1 ∈ τ2 | τ1 ⊆ τ2

with the constraint that the left hand term τ1 in τ1 ∈ τ2 must be a thin interval. Thin in-

clusion should be understood as approximation in the following sense: the approximation

of a numeric expression a by an interval τ = [τ, τ] is written a ∈ τ and is equivalent to

τ ≤ a ∧ a ≤ τ.

76

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

5.4.4 Square root example

In this section we analyse an algorithm and express it together with its properties in PEA

in order to provide another example of correctness theorem derivation using the predicate

transformer [·] and show the use of interval terms and relations in specifications. The

chosen algorithm is an instance of Newton’s algorithm generating a sequence of values

converging to the square root of an initial non-negative real number. The inductive defi-

nition of the sequence is as follows:

xn+1 =

x0 if x0 = 0

1
2

(
xn + x0

xn

)
if x0 > 0

(5.12)

for non-negative integers n and real number x0. It follows from (5.12) that the sequence

{xn}n≥1 is decreasing and bounded from below by
√

x0, and therefore that {xn}n≥0 con-

verges to
√

x0. Note however that the algorithm only converges in a finite number of

steps for the initial values 0 and 1, i. e. when the generated sequence is constant. When

executing a real number algorithm using finite precision arithmetic issues of stability may

arise. An algorithm that is sensitive to perturbations of the initial conditions, or values in

intermediate stages of the computation, may very well loop indefinitely due to rounding

an xn to an xm with m < n. For stable algorithms finite precision arithmetic can simplify

an implementation of a real number algorithm such as (5.12), since the algorithm effec-

tively converges in a finite number of steps due to each xn rounding to the fixpoint, for

sufficiently large n.

Note that we target partial rather than total correctness, and will therefore not specify

termination criteria in the annotations. Instead, we assume termination, and seek to spec-

ify accuracy properties of the returned value. Reasoning about termination for WHILE

programs with floating point expressions appearing in exit conditions is a hard problem.

The difficulty comes from the necessity of determinig the exact value of an expression.

The problem becomes evident when considering the implementation of the square root

function in Figure 5.3, where the exit condition is given by an equality relation. Here,

no approximation may be made, as the equality would immediatly become undecidable.

Instead, symbolic techniques must be employed, effectively tracking the exact value the

program computes. The identification of classes of programs for which termination proofs

may be tractable is an interesting and important research direction. Progress in this aera

could make it safe to employ natural expressions of algoritms, such as the one in Fig-

77

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES� �
proc square_root(in x ∈ F; out r ∈ F)

pre x ∈ [0, 1]

post r ∈ (1 + 4εrel)
√

x + εabs

is ...

s ∈ F

begin

r := x;

s := 0.0;

while r , s assert r > 0 do

s := r;

r := 0.5 ~
(
s ⊕ (x � s)

)
od

end� �
Figure 5.3: Example implementation of the square root function in PEA specified using

standard real functions and relations.

ure 5.3, in safety critical applications.

Implementation in PEA

Fig. 5.3 shows the code for an implementation of the above algorithm in PEA. It is a

variation on the general fixpoint-finding program two listed in Fig. 3.1, modified not to

recompute previously computed xn when evaluating the exit condition.

Correctness theorem

We derive the correctness theorem for square root by applying the formalism developed

in Chapter 3. We wish to compute: r := x; s := 0.0; while r , s assert r > 0 ∧ r ≤ 1

do s := r; r := 0.5 ~
(
s ⊕ (x � s)

)
od

 r ∈ (1 + 4εrel)
√

x + εabs

which, by (3.16), is equivalent with:

[r := x; s := 0.0] (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs) ∧

〈
r > 0→[

s := r; r := 0.5 ~
(
s ⊕ (x � s)

)]
(r , s→ r > 0) ∧

(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs)

〉

78

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

We rewrite the assignment using the operators ~,⊕ and � as a sequence of procedure calls

by applying f 2p and a2p:

[r := x; s := 0.0] (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs) ∧

〈
r > 0→ s := r; � (x, s; r1);

⊕(s, r1; r2); ~ (0.5, r2, r)

 (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs)

〉

and apply (3.17) to the call to ~, introducing the fresh variable r′ to represent the returned

value:

[r := x; s := 0.0] (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs) ∧〈

r > 0→ [s := r; � (x, s; r1); ⊕ (s, r1; r2)] r2 ~
1
2 ∈ F ∧(

r′ = r2 ~
1
2 → (r′ , s→ r′ > 0) ∧

(
r′ = s→ r′ ∈ (1 + 4εrel)

√
x + εabs

)) 〉

and again, to the call to ⊕:

[r := x; s := 0.0] (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs) ∧〈

r > 0→ [s := r; � (x, s; r1)] s ⊕ r1 ∈ F ∧
(
r′2 = s ⊕ r1 → r′2 ~

1
2 ∈ F ∧(

r′ = r′2 ~
1
2 → (r′ , s→ r′ > 0) ∧

(
r′ = s→ r′ ∈ (1 + 4εrel)

√
x + εabs

))) 〉

and again, to the call to �:

[r := x; s := 0.0] (r , s→ r > 0) ∧
(
r = s→ r ∈ (1 + 4εrel

)√
x + εabs) ∧〈

r > 0→ [s := r] x � s ∈ F ∧
(
r′1 = x � s→ s ⊕ r′1 ∈ F ∧

(
r′2 = s ⊕ r′1 → r′2 ~

1
2 ∈ F ∧(

r′ = r′2 ~
1
2 → (r′ , s→ r′ > 0) ∧

(
r′ = s→ r′ ∈ (1 + 4εrel)

√
x + εabs

)))) 〉

finally, we apply (3.13) to the assignment statements:

(x , 0→ x > 0) ∧
(
x = 0→ x ∈ (1 + 4εrel

)√
x + εabs

)
∧ r > 0→

(
x � r ∈ F ∧

(
r′1 = x � r → r ⊕ r′1 ∈ F ∧

(
r′2 = r ⊕ r′1 → r′2 ~

1
2 ∈ F ∧(

r′ = r′2 ~
1
2 → (r′ , r → r′ > 0) ∧

(
r′ = r → r′ ∈ (1 + 4εrel)

√
x + εabs

)))))

We have obtained the postcondition part of the correctness theorem. By including the

precondition we have the full CT for square root:

x ∈ [0, 1]→
(
x , 0→ x > 0

)
∧

(
x = 0→ x ∈ (1 + 4εrel

)√
x + εabs

)
∧ r > 0→

(
x � r ∈ F ∧

(
r′1 = x � r → r ⊕ r′1 ∈ F ∧

(
r′2 = r ⊕ r′1 → r′2 ~

1
2 ∈ F ∧(

r′ = r′2 ~
1
2 → (r′ , r → r′ > 0) ∧

(
r′ = r → r′ ∈ (1 + 4εrel)

√
x + εabs

)))))

79

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

which may be re-written by judicious application of φ1 → (φ2 → φ3)⇔ φ1 ∧ φ2 → φ3:

x ∈ [0, 1] →
(
x , 0 → x > 0

)
∧(

x = 0 → x ∈ (1 + 4εrel
)√

x + εabs
)
∧(

r > 0 → x � r ∈ F
)
∧(

r > 0 ∧ r′1 = x � r → r ⊕ r′1 ∈ F
)
∧(

r > 0 ∧ r′1 = x � r ∧ r′2 = r ⊕ r′1 → r′2 ~
1
2 ∈ F

)
∧(

r > 0 ∧ r′1 = x � r ∧ r′2 = r ⊕ r′1 ∧ r′ = r′2 ~
1
2 ∧ r′ , r → r′ > 0

)
∧(

r > 0 ∧ r′1 = x � r ∧ r′2 = r ⊕ r′1 ∧ r′ = r′2 ~
1
2 ∧ r′ = r → r′ ∈ (1 + 4εrel)

√
x + εabs

)

5.5 Concluding remarks

There is no simple set of rules for finding an appropriate specification for a program. In

the field of information engineering heuristics such as requirements elicitation help im-

plementers to formalise essential properties that users of a program expect to hold. Such

heuristics can help to focus the specification design task by fixing a language in which

the specification is to be expressed. Also the method by which the validation of of proof

obligations is conducted can help to further constrain the expression of specifications by

eliminating specifications that lead to correctness theorems that carry an unacceptable

proof effort.

In the case of floating point properties, i. e. accuracy and absence of numerical exceptions,

the first question must be how the program will be used. If the program is the top level

procedure, then the specification may be relaxed maximally, as long as it still satisfies

the requirements of the end users. If, however, the program is to be used deep within

other programs, then it becomes essential to provide as tight properties as possible, since

any approximation will carry an information loss cost similar to that of interval arithmetic

discussed previously. Successive approximations magnify the initial information loss pos-

sibly leading to only unacceptably weak properties being provable at the top level.

It is questionable if numerically intensive subprograms can be proved using automatic

methods. Library programs intended as subroutines may have to be equipped with prop-

erties that can only be proved using interactive symbolic provers. However, if only weak

properties, such as exception freedom or loose error bounds, are sought then the type

80

Chapter 5 SPECIFICATION OF FLOATING POINT PROPERTIES

of specifications described in this chapter may suffice and yield correctness theorems

amenable to automated proof.

The exact choice of specification must thus take into consideration both the intended users

of the program, and the intended method for discharging the generated proof obligations.

The process of finding an appropriate expression may consist of a loop starting with a

choice of specification, followed by correctness theorem generation, and ending in a proof

attempt. If the proof attempt fails a new specification is chosen, and the loop is traversed

again. It is not clear if this method scales. The complexity in program size is similar

to that for backtracking exhaustive search algorithms in search space size. The method

is however the one often used in practice and it is questionable if a better one currently

exists. With advances in automated specification generation, such as the generation of

specifications for sub-programs from top level specifications, the problem of predicting

the necessary strength of subprogram specifications may be eliminated, but currently it

remains open.

In the particular case of the two example programs erf and sqrt the contracts were

found by using interval approximations, as described in this chapter, which led to fairly

tight accuracy properties. In the case of erf it was guessed that doubling of the error

bound given in literature [2] would suffice. The guess was based on the error bound for

the approximation of the integral form with the rational function provided by [2], and a

straightforward computation of the maximal thickness of the interval approximation of

the rational function over the interval [0, 4]. The interval constraint for sqrt was found

in a similar way, by estimation of the maximal width of the interval approximation of the

expression for the returned value at the fixpoint. In both cases the compositional nature of

interval approximations made it possible to derive the error bounds with relative ease.

81

6 Implementation in SPARK

CONTENTS
6.1 The SPARK Ada language . 83

6.1.1 Syntax of SPARK annotations 83

6.1.2 An example program . 84

6.2 The SPARK tool set . 85

6.2.1 The Examiner . 85

6.2.2 The Simplifier . 86

6.2.3 The Proof Checker . 86

6.3 SPARK.Numerics . 87

6.3.1 Erf example . 87

6.3.2 Sqrt example . 88

82

Chapter 6 IMPLEMENTATION IN SPARK

SPARK Ada was given in the introduction to the thesis as an example of a programming

language deployed industrially in the high integrity applications area. The SPARK Ada

approach is based on subsetting of Ada to a core language by eliminating parts of the full

language that are difficult to formally reason about. Thus, e.g. recursion and pointers are

eliminated in the SPARK Ada core language. Restrictions are also imposed that guaran-

tee predictable space usage of programs. This is particularly important for applications in

embedded systems, which often run on hardware with very limited memory.

One of our stated goals has been to propose an extension to the SPARK Ada annotation

language that would introduce capabilities for expressing and verifying functional prop-

erties of floating point code. This chapter presents one such extension, based on the work

presented in the previous chapters, formulated by presenting a SPARK Ada version of the

Ada.Numerics.Elementary Functions package and SPARK Ada implementations of the

example programs from Chapter 5.

6.1 The SPARK Ada language

The SPARK Ada language consists of a sublanguage of Ada equipped with an annota-

tion language equivalent to first order predicate logic over the real numbers. The SPARK

Ada framework consist of the language and a tool suite comprising the Examiner veri-

fication condition generator, the Simplifier automated theorem prover and an interactive

theorem prover called the Proof Checker. Currently, SPARK Ada has not fully supported

verification of floating point programs and consequently, the tools lack proper support

for handling floating point property annotations and verification conditions arising from

floating point programs.

6.1.1 Syntax of SPARK annotations

The syntax and semantics of SPARK Ada are well documented in [10]. An annotation

is a special comment denoted by an additional symbol following the usual Ada comment

declaration, with the default being --#. As a result, the operational semantics of SPARK

Ada is simply that of the Ada core language.

Imported packages are declared using the inherit annotation and main programs are

declared using the main program annotation. The derives annotation enables the Ex-

83

Chapter 6 IMPLEMENTATION IN SPARK

aminer to perform data and information flow analysis. In subprograms, the global an-

notation declares variables of the main program the subprogram interacts with. As men-

tioned in Chapter 1, the declaration of global variables makes SPARK Ada referentially

transparent as an imperative language, facilitating analysis by making all effects explicit

through variables declared in the specification of a program.

• inherit declares the import of a package.

• main program declares a procedure as top level program.

• derives declares for each output variable which input variables its new value de-

pends on.

• global declares variables of a program that a subprogram reads from or writes to.

Functional properties of the program are asserted using invariants. These may be declared

using the keywords

• pre declaring the precondition, a predicate on the input values;

• post declaring the postcondition, a predicate on the output values;

• assert declaring a predicate on the program variables at some point inside the

subprogram.

The primitives above are used to annotate executable code with predicates allowing for

the generation of correctness theorems. The annotation language is extensible by abstract

functions which are declared in the same way as Ada functions but within annotations.

They may then be used within subsequent annotations and are left uninterpreted by the

Examiner. It is possible to provide rules for abstract functions to be used by the theorem

provers in the toolset, it is however difficult to predict when and what rules the Simplifier

will apply. In our case we prefer the abstract functions to remain uninterpreted by the

SPARK Ada toolset, using them to represent new language elements.

6.1.2 An example program

As an illustration of the syntax of SPARK Ada we give the code of the example program

Twice in Figure 6.1. The precondition assures that the doubled value stays within the

range defined by the Integer type, while the postcondition states that the output value is

the double of the input value.

84

Chapter 6 IMPLEMENTATION IN SPARK� �
procedure Twice (X : in Integer; R : out Integer)

--# derives R from X;

--# pre 2*X in Integer;

--# post R = 2*X;

is begin

R := X+X;

end Twice;� �
Figure 6.1: Example program specification

6.2 The SPARK tool set

As mentioned above, the SPARK Ada language comes with a tool set comprising a veri-

fication condition generator and automated and interactive theorem provers.

6.2.1 The Examiner

The SPARK Examiner is an analyser tool that produces correctness theorems for SPARK

Ada programs. Each theorem is a conjunction of verification conditions (VCs) corre-

sponding to execution paths in the program. The VCs are obtained through a Hoare-type

backward analysis called hoisting. One equips the program code with invariants (i.e. pre-

and postconditions and loop cuts) in the form of comments and the invariants are prop-

agated backwards (i.e. hoisted) between program points. The resulting VCs are of the

form

H1 ∧ · · · ∧ Hn → C1 ∧ · · · ∧Cm

where the Hi’s are called hypotheses and the C j’s are called conclusions.

Hoisting over Assignments.

The analysis is performed by the Examiner through hoisting. It entails propagating an

invariant back along an execution path. When passing an assignment of an expression to

a variable each occurrence of the variable in the invariant is replaced by the expression,

e.g. when hoisting R=2*X over R:=X+X, it becomes X+X=2*X.

85

Chapter 6 IMPLEMENTATION IN SPARK

Hoisting over Procedure Calls.

When hoisting an invariant past a procedure call the implicit assumption is made that the

procedure is correct. Thus the precondition of the procedure holds at the point of call and

its out parameters satisfy the procedure’s postcondition. Procedure calls are thus modelled

by:

• an assignment to each of the procedure’s out parameters,

• a requirement that the precondition holds at the calling point and

• an assumption that the postcondition holds below the calling point.

The requirement generates an additional VC in the correctness theorem.

Modular Analysis.

The SPARK analysis is modular, in the sense that subprograms need not be re-proved.

This means that when changes are made to a program that leave subprograms unchanged,

then only the VCs for the changed code will need to be proved.

Current Treatment of Floating Point Computation.

Presently the Examiner treats floating point numbers and operations as exact real numbers

and functions. This is clearly dangerous and there is a warning given with each correctness

theorem, stating that the analysis is approximate.

6.2.2 The Simplifier

The SPARK tool set contains an automated theorem prover called the Simplifier. It sim-

plifies VCs by eliminating redundant hypotheses and transforming conclusions. It often

manages to reduce conclusions or whole VCs to trivial tautologies and removes them.

6.2.3 The Proof Checker

The Proof Checker is an interactive proof assistant which is used to obtain mechanically

checkable proofs of verification conditions that the Simplifier cannot discharge. Once a

proof has been performed, it may be re-run automatically, thus providing added confi-

dence in the correctness proof.

86

Chapter 6 IMPLEMENTATION IN SPARK

6.3 SPARK.Numerics

In this section we present an extension to the SPARK Ada annotation language with the

integral operator. The method has been described in depth in the previous chapters so we

will only quickly review it and refer back to Chapters 3, 4 and 5 for further details.

Our approach to verification condition generation for SPARK floating point programs is

to equip all floating point operations, functions and programs with the appropriate spec-

ifications with preconditions ensuring exception freedom and postconditions specifying

functional properties. We first begin by defining abstract functions representing the math-

ematical analogues of the elementary functions we shall use, along with new functions

implementing the integral operator and interval arithmetic extensions to the annotation

language, as described in Chapter 5.

6.3.1 Erf example

In this section we present a SPARK Ada implementation of the erf example program

from Section 5.4.2. We provide abstract functions for elementary operations and anno-

tation language extensions described in Section 5.4.1 in the package Exact, shown in

Figure 6.2.

� �
package Exact is

--# function Pi return Float;

--# function Sqrt (X : Float) return Float;

--# function Exp (X : Float) return Float;

--# function FreshVariable return Float;

--# function Integral (A,B,Integrand ,Variable : Float) return Float;

end Exact;� �
Figure 6.2: Exact package specification fragment

Note the use of abstract functions in the package Exact, declaring new annotation lan-

guage elements. The numeric ground types in the SPARK Ada annotation language are

integers and real numbers. Thus, the type Float is a synonym for the reals R in annota-

tions, and in particular in abstract function declarations.

87

Chapter 6 IMPLEMENTATION IN SPARK

In SPARK Ada there is no way to introduce new variables into annotations, other than

when bound by propositional quantifiers. We circumvent this limitation by using the

FreshVariable abstract function, providing one unique fresh variable. If more are

needed we could have represented a family of fresh variables by declaring FreshVariable

as a function taking an integer parameter, seen as the index of the represented variable.

The need for additional variables is due to the introduction of the Integral operator,

which requires an integrand expression and a variable with respect to which the integrand

is to be integrated. In effect we have introduced expressions:∫ b

a
τ dx

where τ is any term in FORM and x is the fresh variable. This approach is clearly unsatis-

factory and we would prefer to allow a third kind of binding, other than through existential

and universal quantification, which would enable the introduction of fresh variable names

by users within integrals. Then, occurrences of expressions:

Integral(A, B, T, X)

would be checked for freshness of X preventing accidental binding of program variables

and use of arbitrary expressions for X and then introduce the new variable for use within T.

Function wrappers for floating point operations and elementary functions are specified by

the package Numeric, shown in Figure 6.3. We equip each function with a precondition

guaranteeing that the result will be within the range defined by the type Float.

The implementation of the Erf program is shown in Figure 6.4. We have used the Ada

notation E in A..B for the simultaneous inequalities A ≤ E ≤ B. Other than that it is

a faithful implementation of the PEA program show in Figure 5.1 on page 72. Note the

use of the Numeric.Value when introducing floating point constants. The reason is that

the underlying representation of Float is in base 2, which means that values such as 0.1

cannot be exactly represented. Therefore, any assignment of a value that is not clearly

representable must be wrapped in a function representing the rounding error that may be

incurred when casting the decimal float to a binary one.

6.3.2 Sqrt example

In this section we present a SPARK Ada implementation of the square root example

program from Section 5.4.4. We provide abstract functions for elementary operations and

88

Chapter 6 IMPLEMENTATION IN SPARK� �
package Numeric is

function Value (X : Float) return Float;

function Add (X,Y : Float) return Float;

--# pre Add(X,Y) in Float;

function Multiply (X,Y : Float) return Float;

--# pre Multiply(X,Y) in Float;

function Divide (X,Y : Float) return Float;

--# pre Divide(X,Y) in Float;

function Power (X : Float; N : Integer) return Float;

--# pre Power(X,N) in Float;

function Exp (X : Float) return Float;

--# pre Exp(X) in Float;

end Numeric;� �
Figure 6.3: Numeric package specification fragment

annotation language extensions described in Section 5.4.3 in the package Exact, shown

in Figure 6.2. The relation Ni corresponds to the relation ∈ on terms in ANOT and Sqrt

corresponds to the exact square root. Procedure wrappers for floating point operations

and elementary functions are provided in the package Numeric. They are equipped with

preconditions guaranteeing that the result is in the range defined by the type Float and

postconditions expressing bounds on the result values. Note that we have eliminated

rounded operations and rounding operators from the specifications. This results in veri-

fication conditions that contain only real intervals and operations and relations on them.

The abstract functions EpsAbsi and EpsReli denote the intervals εabs = [−εabs, εabs] and

εrel = [−εrel, εrel] respectively. We have not needed to introduce the interval constructor

[τ1, τ2] as the Ada range notation is extended in SPARK to include any abstract expres-

sion as bounds. The limitation is that arithmetic of range expressions is not permitted,

which limits the utility of this notation for our purposes. An extension of the E in A..B

89

Chapter 6 IMPLEMENTATION IN SPARK

notation to permit expressions such as:

E in (A..B)+(C..D)

would make it possible to write the specifications in Figure 6.6 in the following form:

--# R in (1.0-EpsRel*(-1.0..1.0))*(X+Y)+EpsAbs*(-1.0..1.0)

In such cases one would probably introduce the unit interval Unit in the Exact package,

making the specification above slightly more readable:

--# R in (1.0+EpsRel*Exact.Unit)*(X+Y)+EpsAbs*Exact.Unit

Currently, the Examiner rewrites range memberships into the corresponding pair of in-

equalities, but as pointed out in Chapter 5, there are advantages to keeping them coupled.

We would prefer to have the option not to eliminate the in relation during verification

condition generation, but rather deferring it to the simplification phase.

Due to the handling of postconditions of functions in the freely available version of the

Examiner we have had to use procedures to implement correct handling of floating point

operations and functions. In the latest commercial version of the tool, specifications for

functions are handled in a similar manner to procedures. This means that future versions

of the Numeric package presented in this section will be implemented using function

wrappers as in Section 6.3.1, but using the specification from the current section.

The SPARK implementation of the Sqrt example program is shown in Figure 6.7. We

are using the new realtion Ni in place of the extended Ada range membership in pro-

posed above. Note that we have had to unroll the rounded operation in the loop guard, as

described in Section 3.1.2, making sure that the latest values of the program variables R

and S are used when evaluating the exit condition.

90

Chapter 6 IMPLEMENTATION IN SPARK

� �
with Exact,Numeric;

--# inherit Exact,Numeric;

--# main_program;

procedure Erf (X : in Float; R : out Float)

--# derives R from X;

--# pre X in 0.0..4.0;

--# post R in 2.0/Exact.Sqrt(Exact.Pi)

--# *Exact.Integral

--# (0.0,

--# X,

--# Exact.Exp(-Exact.FreshVariable**2),

--# Exact.FreshVariable)

--# -0.00005 ..

--# 2.0/Exact.Sqrt(Exact.Pi)

--# *Exact.Integral

--# (0.0,

--# X,

--# Exact.Exp(-Exact.FreshVariable**2),

--# Exact.FreshVariable)

--# +0.00005;

is

A1,A2,A3,P,T : Float;

begin

A1 := Numeric.Value(0.3480242);

A2 := Numeric.Value(-0.0958798);

A3 := Numeric.Value(0.7478556);

P := Numeric.Value(0.47047);

T := Numeric.Add

(1.0,Numeric.Multiply(P,X));

R := Numeric.Add

(1.0,-Numeric.Multiply

(Numeric.Exp

(-Numeric.Power(X,2)),

Numeric.Add

(Numeric.Add

(Numeric.Divide(A1,T),

Numeric.Divide

(A2,Numeric.Power(T,2))),

(Numeric.Divide

(A3,Numeric.Power(T,3))))));

end Erf;� �
Figure 6.4: Erf program code

91

Chapter 6 IMPLEMENTATION IN SPARK

� �
package Exact is

--# function Ni (X,Y : Float) return Boolean;

--# function Sqrt (X : Float) return Float;

end Exact;� �
Figure 6.5: Exact package specification fragment

92

Chapter 6 IMPLEMENTATION IN SPARK

� �
with Exact;

--# inherit Exact;

package Numeric is

function EpsAbs return Float;

--# function EpsAbsi return Float;

function EpsRel return Float;

--# function EpsReli return Float;

procedure Assign (X : in Float; R : out Float);

--# derives R from X;

--# pre (1.0+EpsReli)*X in Float;

--# post Exact.Ni(R,(1.0+EpsReli)*X+EpsAbsi);

procedure Add (X,Y : in Float; R : out Float);

--# derives R from X,Y;

--# pre (1.0+EpsReli)*(X+Y) in Float;

--# post Exact.Ni(R,(1.0+EpsReli)*(X+Y)+EpsAbsi);

procedure Multiply (X,Y : in Float; R : out Float);

--# derives R from X,Y;

--# pre (1.0+EpsReli)*(X*Y) in Float;

--# post Exact.Ni(R,(1.0+EpsReli)*(X*Y)+EpsAbsi);

procedure Divide (X,Y : in Float; R : out Float);

--# derives R from X,Y;

--# pre (1.0+EpsReli)*(X/Y) in Float;

--# post Exact.Ni(R,(1.0+EpsReli)*(X/Y)+EpsAbsi);

end Numeric;� �
Figure 6.6: Numeric package specification fragment

93

Chapter 6 IMPLEMENTATION IN SPARK

� �
with Exact,Numeric;

--# inherit Exact,Numeric;

--# main_program;

procedure Sqrt (X : in Float; R : out Float)

--# derives R from X;

--# pre X in 0.0 .. 1.0;

--# post Exact.Ni(R,(1.0+4.0*Numeric.EpsReli)*Exact.Sqrt(X));

is

R1,R2,R3,S : Float;

begin

R := X;

S := 1.0;

while R /= S loop

--# assert R > 0.0;

S := R;

Numeric.Multiply(0.5,S,R1);

Numeric.Divide(X,S,R2);

Numeric.Multiply(0.5,R2,R3);

Numeric.Add(R1,R3,R);

end loop;

end Sqrt;� �
Figure 6.7: Sqrt program code

94

7 Background

CONTENTS
7.1 Approximation continued . 96

7.1.1 Approximation of real numbers 96

7.1.2 Approximation of total real functions 96

7.1.3 Finitary approximation of numbers 97

7.1.4 Finitary approximation of total functions 98

7.1.5 Approximation of total interval functions 99

7.1.6 Inner approximations . 101

7.1.7 Generalised intervals . 102

7.2 Partial functions . 105

7.2.1 Partial extensions . 106

7.2.2 Making partial functions total 108

7.2.3 Many valued logics . 109

95

Chapter 7 BACKGROUND

The present chapter provides the mathematical background needed for the discussion of

correctness proof automation that follows in Chapter 8. It builds on and expands the

framework of approximation in the interval poset described in Chapter 2.

7.1 Approximation continued

Sections 2.1 and 2.2 outlined a framework for approximation of elements of a poset R

within an associated poset of subsets of R. We now specialise the discussion to approxi-

mation of the two point extended reals (R±∞,≤) given in Example 2.1.13 within the asso-

ciated poset (I(R±∞),v) of R±∞- intervals with the refinement order.

7.1.1 Approximation of real numbers

Since the poset (R±∞,≤) has a least element −∞ and a greatest element +∞, it follows

that the interval poset (I(R±∞),v) has a least element R±∞ = [−∞,+∞]. The maximal

elements in I(R±∞) are the singletons, i. e. intervals with identical endpoints. The corre-

spondence R±∞ 3 x ↔ [x, x] ∈ I(R±∞) embeds the extended reals within the extended

real intervals and we say that the interval x approximates the real x whenever x v [x, x]

holds. In such cases we extend the notation by writing x v x.

Definition 2.2.4 gives a canonical lifting of relations on a poset to relations on the asso-

ciated interval poset. In particular, the order relation ≤ on R±∞ lifts to the relation ≤I on

I(R±∞), and the induced relation approximates the original relation in the following sense:

if x, y ∈ R±∞ and x,y ∈ I(R±∞) are such that x v x and y v y, then x ≤I y implies x ≤ y.

7.1.2 Approximation of total real functions

In the previous chapters we have modelled floating point functions by extended real func-

tions. In this section we describe approximation of total extended real functions and relate

it to approximation of extended reals described in the section above.

The set of (R±∞)n → R±∞ of total extended real valued functions taking n extended real

arguments ordered pointwise is an instance of a poset of poset-valued functions from Ex-

ample 2.1.6. Since the poset R±∞ is a complete lattice, it follows that (R±∞)n → R±∞ is a

complete lattice with pointwise lifted operations.

96

Chapter 7 BACKGROUND

As the lattice is complete, the associated poset of intervals is a complete semilattice with

operations given in Definition 2.2.7 and [λx1 · · · xn.−∞, λx1 · · · xn.+∞] as bottom element.

Members [f , g] of I((R±∞)n → R±∞) are intervals with functions as endpoints, satisfying

f (x1, . . . , xn) ≤ g(x1, . . . , xn) for all (x1, . . . , xn) ∈ (R±∞)n.

Functions are approximated by function intervals in the same way as reals are approxi-

mated by real intervals, i. e. a function interval f approximates the function f whenever

f v f . The analogy with reals carries over to approximation of inequalities between

functions as well: if f , g : (R±∞)n → R±∞ and f , g ∈ I((R±∞)n → R±∞) are such that

f v f and g v g, then f ≤̇I g implies f ≤̇ g.

In this chapter we have so far considered exact computation. But real numbers, intervals

and functions cannot generally be stored or computed with on a digital computer. In the

following section we shall recall some concepts from our previous discussion of finitary

approximations.

7.1.3 Finitary approximation of numbers

Chapter 4 presented floating point numbers as a means of representing real numbers in

a way that may be effectively stored and computed with on digital systems. To obtain

safe approximations of real numbers we approximate numbers with intervals as described

above, but restrict ourselves to floating point intervals, i. e. intervals with floating point

endpoints. Thus, an irrational real, such as π, is approximated by an interval [x, y] when-

ever [x, y] v π, i. e. by a pair of numbers x and y such that x ≤ π and π ≤ y. Taking x

and y to be floating point numbers, say x = 3.1 and y = 3.2, we have a finitary and safe

approximation [3.1, 3.2] v π of the irrational real π.

In Section 5.1 rounding operators were described taking a real number in {x ∈ R | Fmin ≤

x ∧ x ≤ Fmax} to a floating point neighbour in F, for some floating point format F. We can

extend the rounding operators to map from R±∞ to F±∞, where F±∞ denotes the subset of

R±∞ consisting of floating point numbers in the format F and the infinities, by mapping

numbers outside the domain of the original operator to the appropriate bound of F or an

infinity. The directed rounding operators R−∞ and R+∞ then provide a lower bound x and

an upper bound x, respectively, for any extended real x ∈ R±∞. We have obtained the

following approximation of x in I(F±∞): [R−∞(x),R+∞(x)] v x.

97

Chapter 7 BACKGROUND

The approximation in the preceding paragraph is based on selecting an effectively repre-

sentable subset F±∞ of R±∞ and directed rounding operations. In the remaining discussion

we shall denote the result of rounding down an element x by x ↓ and the result of rounding

up the element x by x ↑. We shall not explicitly distinguish roundings on different sets un-

less they cannot be identified from the context. With this notation we have: R−∞(x) = x ↓

and R+∞(x) = x ↑ in R±∞. Directed roundings ↓, ↑ : R±∞ → F±∞ induce the downward

rounding ↓ : I(R±∞) → I(F±∞) defined in the obvious way: [x, y] ↓ = [x ↓, y ↑], and we

clearly have [x, y] ↓ v [x, y].

7.1.4 Finitary approximation of total functions

The notation given in the section above for roundings on numbers carries over to func-

tions:

Example 7.1.1 (Rounding to constant). Let f : X → R±∞ be a member of the poset of

extended real valued functions on a set X and define the functions ↓, ↑ : R→ R±∞ by:

f ↓ = inf
x∈X

f (x) and f ↑ = sup
x∈X

f (x)

taking a function to its lower or upper constant approximation. Then ↓ and ↑ are directed

roundings in the sense of Section 7.1.3 as f ↓ ≤̇ f ≤̇ f ↑ holds for all f : X → R±∞.

The roundings in the example above provide valid but coarse approximations in the sense

that f ↓ = g ↓ and f ↑ = g ↑ may hold although f <̇ g. Another example of roundings on

functions is provided by rounding of smooth functions to polynomials:

Example 7.1.2 (Rounding smooth functions to polynomials). Let C∞(R±∞) be the set

of extended real valued smooth functions on R±∞, f (x) =
∑∞

k=0
f (k)(0)

k! xk be the Maclaurin

expansion of f ∈ C∞(R±∞) and Mn(f) =
∑n

k=0
f (k)(0)

k! xk and Rn(f) =
∑∞

k=n+1
f (k)(0)

k! xk be

the order n Maclaurin polynomial and rest term, respectively. We define the family of

polynomial valued directed roundings ↓, ↑ : C(R±∞) × N→ R±∞[x] by

f ↓ n = Mn(f) + Rn(f) ↓ and f ↑ n = Mn(f) + Rn(f) ↑

where the roundings ↓ and ↑ are the constant roundings from Example 7.1.1.

Thus ↓ n and ↑ n round smooth functions to nth-degree polynomials. In effect, each poly-

nomial rounding refines the corresponding constant rounding and the polynomial round-

98

Chapter 7 BACKGROUND

ings for smaller degrees, with the two coinciding for zero degree polynomials, i. e. con-

stants: ↓ 0 = ↓ and ↑ 0 = ↑.

When the function to be approximated is bounded over the domain in question, then we

may use the subset of polynomials with extended real coefficients as codomain of the

rounding operations:

Example 7.1.3 (Rounding bounded functions to polynomials). Let K ⊂ R be a compact

set of reals and C(K) be the set of continuous real valued functions on K. Then each

member f of C(K) is bounded and thus there are polynomials p, q ∈ R[x] such that

p(x) ≤ f (x) ≤ q(x) for each x ∈ K. By the Axiom of Choice we may pick two such

polynomials p f and q f for each f in C(K), thus defining roundings ↓, ↑ : C(K) → R[x]

given by f ↓ = p f and f ↑ = q f .

So far the roundings defined in the present section have not provided finitary approxima-

tions. The call to the Axiom of Choice did not yield concrete approximations but merely

shows that such roundings are plausible. Even the constant rounding yields real constants

as bounds, which need further approximation. The solution is to define roundings that

yield polynomials of bounded degree and floating point coefficients. We shall provide a

description of one such rounding in the following chapter.

7.1.5 Approximation of total interval functions

In Section 7.1.2 we saw that function intervals approximate real functions in the way real

intervals approximate real numbers. In the following section we shall see how function

intervals may be used in the approximation of interval functions.

The poset of extended real intervals I(R±∞) may be embedded in a poset of extended real

valued function intervals I(X → R±∞) by the constant map:

I(R±∞) ↪→ I(X → R±∞) given by [a, b] 7→ [λx.a, λx.b] (7.1)

taking an interval [a, b] to the function interval with bound functions given by the constant

functions corresponding to the bounds a and b. Whenever there is no risk of confusion we

shall identify the image of an interval under this embedding with the interval itself, as we

did in the case of the singleton embedding mapping poset elements to singleton intervals.

99

Chapter 7 BACKGROUND

Function intervals may be approximated from the outside by constant intervals through

the outer constant approximation const defined below. In the language of the preceding

sections const yields a downward rounding ↓ : I ((R±∞)n → R±∞)→
(
I(R±∞)n → I(R±∞)

)
:

Definition 7.1.4 (Outer constant approximation). Each f = [f , f] ∈ I ((R±∞)n → R±∞)

induces an interval function const(f , ·) : I(R±∞)n → I(R±∞) called the outer constant

approximation of f at x. It is defined at each x ∈ I(R±∞)n by:

const(f ,x) = inf
x∈x

[f (x), f (x)] (7.2)

The constant map (7.1) gives a representation of I(R±∞) literals within I (X → R±∞). One

advantage of working in I (X → R±∞) over I(R±∞) is that interval variables may be repre-

sented exactly:

Definition 7.1.5 (Projection). Let x = (x1, . . . ,xn) ∈ I(R±∞)n be a tuple of extended real

intervals. The function interval [λx.xi, λx.xi] ∈ I (x→ R±∞) is called the ith projection

over x and denoted proji(x).

Using projections to represent variables means that relationships between variables are re-

tained. Since function intervals are a richer set than number intervals there are also more

ways to represent intermediate values during the evaluation of expressions. These differ-

ences lead to function interval evaluation of interval expressions generally yielding more

accurate approximations. As an illustration of such a situation consider the following

simple example:

Example 7.1.6 (Function intervals vs. number intervals). Let F : I(R±∞) → I(R±∞)

be the interval function given by λx.2x − x. Evaluating F at [−1, 1] in I(R±∞) pro-

ceeds as follows: F([−1, 1]) = 2[−1, 1] − [−1, 1] = [−2, 2] − [−1, 1] = [−3, 3]. Eval-

uation in I ([−1, 1]→ R±∞) using projections gives: F([−1, 1]) = const(2[λx.x, λx.x] −

[λx.x, λx.x]) = const([λx.2x, λx.2x] − [λx.x, λx.x]) = const([λx.2x − x, λx.2x − x]) =

const([λx.x, λx.x]). Evaluating the result at [−1, 1] yields: const([λx.x, λx.x], [−1, 1]) =

infx∈[−1,1][x, x] = [−1, 1] which is more accurate than [−3, 3].

When we partially evaluate const : I ((R±∞)n → R±∞) × I(R±∞)n → I(R±∞) at a tuple x

we obtain an outer or downward rounding ↓ = const(·,x) : I ((R±∞)n → R±∞) → I(R±∞).

The dual inner or upward rounding is readily defined by taking the supremum rather than

infimum in (7.2). The problem is that this supremum need not exist, making the resulting

100

Chapter 7 BACKGROUND

function partial. The solution is to extend the notion of interval, as we shall do in the

following section.

7.1.6 Inner approximations

So far we have considered one type of approximation, namely outer approximation, which

allows us to safely decide inequalities between expressions in a poset. We shall now con-

sider approximation for deciding inclusions between intervals over the poset, which will

lead us to the notion of inner approximation and that of generalised intervals.

How do we approximate the inclusion of intervals x ⊆ y in I(R±∞) within I(F±∞)? The

inclusion, being equivalent with reverse refinement, is equivalent with a pair of inequali-

ties:

[a, b] ⊆ [c, d]⇔ c ≤ a ∧ b ≤ d

so we can round the endpoints in the appropriate directions to obtain an inclusion of

floating point intervals:

c ↑ ≤ a ↓∧ b ↑ ≤ d ↓ ⇔ [a, b] ↓ ⊆ [c, d] ↑

where y ↑ is called upward or inner rounding of intervals and is dual to the downward or

outer rounding of intervals induced by outward rounding of endpoints introduced in the

previous section. The floating point interval inclusion thus obtained implies the original

inclusion:

[a, b] ↓ ⊆ [c, d] ↑ ⇒ [a, b] ⊆ [c, d]

and we have a way of safely and efficiently approximating extended real interval inclu-

sions.

There are however two problems hiding in the definition of inner approximation. Namely,

how does one approximate a singleton interval from within and how does one safely com-

bine inner approximations? Consider the following example:

[3, 4] ⊆ [−1, 1] + π (7.3)

To obtain an inner approximation for the right hand side of (7.3) will need an inner ap-

proximation the singleton interval π. When using real intervals the singleton itself can

be taken as an inner approximation but if we are using finitary approximations, π can no

101

Chapter 7 BACKGROUND

longer be used as an endpoint. However, there are no candidate endpoints x and y that

give an inner approximation π v [x, y]. The solution is to generalise the definition of

interval so that inner approximations of singletons may be represented, which is the topic

of the following section.

7.1.7 Generalised intervals

In his seminal work [73, 74] Warmus noted that interval arithmetic, as presented in Sec-

tion 2.2, has some undesirable properties. In particular, additive inverses do not exist

for non-singleton intervals, and as a solution generalised intervals were introduced as

alternative approximations for real numbers.

Definition 7.1.7 (Generalised interval). Let (R,≤) be a poset. A generalised interval over

R is given by a pair of elements a, b ∈ R, called the left and right endpoint of the interval,

respectively, and we write the interval as [a, b]. The set of generalised intervals is denoted

by J(R).

Since an order interval is given by an ordered pair a ≤ b of elements of R and a generalised

interval is given by any two elements of R we may view I(R) as a subset of J(R). By ex-

tending the refinement relation v syntactically from I(R) to J(R) we obtain the generalised

interval poset:

Definition 7.1.8 (Generalised interval poset). Let (R,≤) be a poset and define the refine-

ment partial order v on J(R) by [a, b] v [c, d] ≡ a ≤ c ∧ d ≤ b. Then (J(R),v) is a poset

and we call it the directed interval poset over R.

It follows that extending the identity on I(R) to I(R) ↪→ J(R) order-embeds order intervals

within the generalised intervals. Generalised intervals do not in general have an inter-

pretation as a set of elements. Instead they may be thought of as an analogy of negative

integers, added to the set of order intervals to complete the addition operation. The ana-

logue of elements of an order interval is given for generalised intervals by the singletons

that are in refinement relation with the given interval:

Definition 7.1.9 (Singleton of a generalised interval). Let J(R) be the set of generalised

intervals for some poset R and x ∈ J(R). The singletons of x are the singletons x ∈ J(R)

such that x v x or x v x. We shall extend the notation for membership and write x ∈ x

when x is a singleton of x.

102

Chapter 7 BACKGROUND

We extend the notation for singletons of a generalised interval to singletons x ∈ Rn of

tuples x ∈ J(R)n of generalised intervals by writing x ∈ x if each coordinate xi of x

is a singleton of the corresponding coordinate xi of x, i. e. whenever xi ∈ xi for each

i ∈ {1, .., n}.

The generalised intervals J(R) complete more than the additive structure on I(R), they

also provide the missing elements needed to complete the lattice structure missing in the

interval semilattice I(L) over lattices L as given in Definition 2.2.7 on page 26 :

Definition 7.1.10 (Generalised interval lattice). Let (L,t,u) be a lattice and (L,≤) the

associated poset. Then (J(L), ū, ū) is the lattice associated with the refinement partial

order v on J(L) with the lattice operations ūand ū defined by:

[a, b] ū[c, d] = [a t c, b u d] and [a, b] ū [c, d] = [a u c, b t d]

Definition 7.1.10 implies that whenever L is complete then so is J(L), with >J(L) =

[>L,⊥L] and ⊥J(L) = [⊥L,>L].

Example 7.1.11 (Generalised extended real intervals). An example of a complete gen-

eralised interval lattice is given by J (R±∞), the lattice of generalised intervals over the

lattice of two-point extended real numbers R±∞ from Example 2.1.13 on page 23, with top

and bottom elements being [∞,−∞] and [−∞,∞], respectively.

The constant embedding I(R±∞) ↪→ I (X → R±∞) in (7.1) may be syntactically extended

to an embedding of generalised intervals J (R±∞) ↪→ J (X → R±∞). Likewise, we may

lift const from a map taking order function intervals to interval functions to a map tak-

ing generalised function intervals to generalised interval functions. Generalised intervals

form a lattice and as pointed out above, whenever the base lattice is complete, then so is

the generalised interval lattice. From Example 2.1.20 we know that if L is complete, then

so is the lattice of L-valued functions. Hence, J (X → R±∞) is a complete lattice and the

definition of the dual upward rounding const corresponding to const gives a total function:

Definition 7.1.12 (Inner constant approximation). Each f = [f , f] ∈ J ((R±∞)n → R±∞)

induces an interval function const(f) : J (R±∞)n
→ J (R±∞) called the inner constant

approximation of f at x. It is defined at each x ∈ J (R±∞)n by:

const(f ,x) = sup
x∈x

[f (x), f (x)]

103

Chapter 7 BACKGROUND

Note that the supremum in the definition on the previous page is taken over singletons as

defined in Definition 7.1.9 on page 102.

We may evaluate const : J ((R±∞)n → R±∞) × J (R±∞)n
→ J (R±∞) partially at an interval

tuple as we did with the order interval version of const at the end of Section 7.1.5 to

obtain an inner or upward rounding ↑ = const(·,x) : J ((R±∞)n → R±∞) → J (R±∞) of

generalised function intervals onto generalised intervals.

The width of real order intervals may be generalised to arbitrary interval posets by giving

a decreasing function w : I(R) → R±∞, satisfying w(x) = 0 for singletons x. It follows

that any order interval has non-negative width, but with generalised intervals this is no

longer the case.

Definition 7.1.13 (Conjugate interval). Let R be a poset and x ∈ J(R). The conjugate x∗

of x is obtained by reversing the endpoints of the interval: [a, b]∗ = [b, a].

We have J (R±∞) = I(R±∞) ∪ I(R±∞)∗, where I(R±∞)∗ = {x∗ | x ∈ I(R±∞)} is the set

of directed extended real intervals with nonpositive width. The sign of the width of an

interval is sometimes called the interval’s direction. Thus, I(R±∞) may be viewed as the

sub-poset of J (R±∞) made from intervals with nonnegative direction. Note however that

J(R) cannot in general be obtained from I(R) by conjugation:

Example 7.1.14 (∃R.J(R) , I(R) ∪ I(R)∗). A counterexample is given by choosing for R

the poset (X → R±∞, ≤̇) of extended real valued functions, where e.g. f = [λx.x, λx. − x]

is in J (X → R±∞), but neither f nor f ∗ is in I (X → R±∞).

Example 7.1.15 (Conjugate approximation). Any outer approximation x of a singleton x

in J (R±∞) corresponds to an order interval, since x = [x, x] v x⇔ x ≤ x ∧ x ≤ x⇒ x ≤

x. Therefore the conjugate x∗ = [x, x] of x gives an inner approximation of x: x v x∗. In

particular, any outer approximation of π, such as [3.1, 3.2] v π from Section 7.1.3, yields

an inner approximation π v [3.2, 3.1] of π by conjugation.

Definition 2.2.8 in Section 2.2 introduced the containment property characterising outer

interval extensions. We reformulate and extend the definition in terms of generalised

intervals:

Definition 7.1.16 (Inner and outer generalised containment property). Let R be a poset

and f : Rn → R be a function. A function g : J(R)n → J(R) satisfies the inner generalised

containment property with respect to f if xi v xi implies f (x) v g(x) for each i ∈

104

Chapter 7 BACKGROUND

{1, . . . , n}, x ∈ Rn and x ∈ J(R)n. Dually, g satisfies the outer generalised containment

property with respect to f if xi v xi implies g(x) v f (x) for each i ∈ {1, . . . , n}, x ∈ Rn

and x ∈ J(R)n.

Note that g satisfies the inner or outer containment property with respect to f if and only

if f v̇ g or g v̇ f , i. e. whenever g is pointwise above or below f , respectively. Functions

satisfying a containment property are called generalised extensions:

Definition 7.1.17 (Inner and outer generalised interval extension). Let R, f and g be as in

Definition 7.1.16. If g satisfies the inner generalised containment property with respect to

f , then g is called an inner generalised interval extension of f and if g satisfies the outer

generalised containment property with respect to f , then g is called an outer generalised

interval extension of f .

Functions that satisfy both the inner and outer containment property with respect to a

function are said to satisfy the generalised containment property. Such functions are

called generalised interval extensions.

7.2 Partial functions

In the preceding discussion we have only considered total functions. In practice, many

functions will only give meaningful results for a strict subset of their domain. Functions

which are undefined over a nonempty subset of their domain are called partial.

Definition 7.2.1 (Partial function). Let X and Y be sets and let the relation f ⊆ X × Y

satisfy the following property: for any x ∈ X there is at most one y ∈ Y related to x by f .

Whenever this is the case we call f a partial function from X to Y and write f : X ⇀ Y.

When each member of X is related to precisely one member of Y we call the relation a

total function. If some x ∈ X is related to two or more members of Y we call the relation

multi-valued at x. There is a projection of multi-valued relations onto partial functions

obtained by removing from the relation all points (x, y) for which the relation is multi-

valued at x. We shall see concrete examples of such partial functions in the section below.

105

Chapter 7 BACKGROUND

7.2.1 Partial extensions

In Section 2.3 we noted that partial functions may arise as extensions of total functions.

Extensions need not be partial, one example of a total extension is given by arithmetic

negation extended by infinities:

Example 7.2.2 (Negation total on R±∞). Negation is total on R, we therefore only need to

define the negation on the infinities: −(∞) = −∞ and −(−∞) = ∞. Thus, the extension of

negation to R±∞ is total.

Note that the infinitie values −∞ and∞ correspond to the IEEE signed infinities described

in Section 4.2.2. However, the extension of R to R±∞ does not include values correspond-

ing to the signed zeros. As a first example of a partial function consider the extension of

addition on R to R±∞:

Example 7.2.3 (Addition partial on R±∞). We wish to extend the addition operation on R

to an operation on R±∞. Since addition is total on R we only need to specify values for

x + α and α + β for x ∈ R and α, β ∈ {−∞,∞}. We may define x + α = α and α + α = α,

but there is no clear candidate value for α − α. Leaving addition undefined for (α,−α)

extends the operation partially to R±∞.

In the above example the obstruction to totality of the extended operation lies entirely

inside the set by which the domain of the operation is extended. Multiplication provides

an example where the obstruction relates an element of the original domain with the new

elements:

Example 7.2.4 (Multiplication partial on R±∞). Let x ∈ R,0 be a nonzero real number

and α ∈ {−∞,∞}. We extend multiplication from R to R±∞ by defining xα = sign(x)α,

there is however no clear candidate value for 0α. By leaving multiplication undefined at

(0, α) and (α, 0) we obtain a partial operation on R±∞.

One of the most familiar partial functions on real numbers is division, which when seen

as a real valued function is undefined for zero divisors. We may however extend division

by infinities as we did with addition in the example above:

Example 7.2.5 (Division partial on R±∞). Division by zero is undefined on all of R. Let

x ∈ R,0 be a nonzero real number and α, β ∈ {−∞,∞}. We may attempt to extend division

to an operation (R±∞)2 → R±∞ by defining 0/x = x/α = 0 and x/0 = α/x = sign(x) sign(α)∞,

106

Chapter 7 BACKGROUND

but there are no clear candidate values for 0/0 or α/β. By leaving division undefined for

(0, 0) and (α, β) division extends partially to R±∞.

Examples 7.2.3–7.2.5 above used a general strategy for extending continuous functions

to the closure of their domain. R±∞ may be seen as the topological closure of R obtained

by taking the union of R with its boundary ∂R = {−∞,∞}: R±∞ = R ∪ ∂R. The strategy

for extending a continuous function f : X → R by a point x in the boundary ∂X of X is to

extend by limits in the following sense: if each sequence {xk}k≥0 ⊂ X such that xk → x as

k → ∞ satisfies f (xk) → r as xk → x, then we define f (x) = r. If there is no such r or if

two sequences converging to x yield different rs then the extension is undefined at x and

thus a partial function.

We can now return to the examples on the previous page and formally identify the ob-

structions to totality for extended addition, multiplication and division. In the case of

addition we wish to define ∞ − ∞ as some value in R±∞. We can approach the point

(∞,−∞) ∈ (R±∞)2 along the sequences (xk, yk) = (k,−∞) and (x′k, y
′
k) = (∞,−k), but since

k − ∞ = −∞ and ∞ − k = ∞ for all k ∈ N. Thus, xk + yk → −∞ while x′k + y′k → ∞ as

k → ∞, and so the extension becomes multi-valued at (∞,−∞).

Multiplication was readily extended to all of (R±∞)2 except the points containing a zero

and an infinite coordinate. We may approach the point (0,∞) along the sequences (xk, yk) =

(0, k) and (x′k, y
′
k) = (1/k,∞), but xkyk = 0 while x′ky

′
k = ∞ for each k ≥ 1 and thus multi-

plication becomes multi-valued at (0,∞).

In the case of division we wish to define 0/0 as some value in R±∞. As we did in the pre-

ceding paragraphs, we may approach the point (0, 0) along the sequences (xk, yk) = (0, 1/k)

and (x′k, y
′
k) = (1/k, 0). Clearly, xk/yk = 0 and x′k/y′k = ∞ for each k ≥ 1 and so division

becomes multi-valued at (0, 0).

It follows from Definition 7.2.1 on page 105 that partial functions may arise as inverses

of total functions. The inverse ρ−1 of a relation ρ ⊆ X × Y is the relation {(y, x) ∈ Y × X |

(x, y) ∈ ρ}. Partiality from multi-valuedness may arise when inverses are taken of non-

injective functions. The typical example is the function that squares a real number. Since

each positive real number x ∈ R>0 is the square of both
√

x and −
√

x, it follows that the

inverse of the square function would be multi-valued at each positive real. To circumvent

this obstruction, the nonnegative branch is chosen, i. e. the positive root is chosen as the

107

Chapter 7 BACKGROUND

value of the square root, making it a total function on R≥0. An obstruction remains to the

totality of √ on all of R, namely that the function it is the inverse of is not surjective.

Partiality from undefinedness occurs for inverses of non-surjective functions. The square

root has multiple obstructions to totality and we covered one in the previous paragraph.

To give an example that relies entirely on non-surjectivity we consider the exponential

and logarithm functions. Since the exponential ex of a real number x is positive it follows

that the natural logarithm is undefined for all negative reals.

7.2.2 Making partial functions total

Any partial function f : X ⇀ Y can be extended to a total one by adding values to the

codomain Y that f can map values in X \ f −1(Y) to. In the simplest case one unique value

is used to represent undefinedness:

Definition 7.2.6 (∅-extension). Let X and Y be sets and let X∅ and Y∅ denote the disjoint

union of the empty set with X and Y, respectively. There is a canonical extension of partial

functions f : X ⇀ Y to total functions f∅ : X∅ → Y∅ defined by f∅ = f on f −1(Y) and

f∅ = ∅ on X∅ \ f −1(Y). We call f∅ the canonical total extension of f .

Partial functions f : X ⇀ Y may be retrieved from their extensions f∅ by removing each

member of f∅ containing ∅: f = f∅ \ {(x, y) ∈ X × Y | x = ∅∨ y = ∅} and we can thus go

between partial functions and canonical extensions. We shall therefore drop the subscript

∅ whenever it is clear from the context that we are using ∅-extensions.

Interval extensions of partial functions may also be total, this is because an interval may

approximate many values in the codomain of the extended function simultaneously. The

partial extension of addition in Example 7.2.3 has a total outer interval extension, in the

sense of Definition 7.1.17, given by:

[x, x] + [x′, x′] =

[−∞,∞]

if x = −x′ = ∞ or x = −x′ = −∞

or x = −x′ = ∞ or x = −x′ = −∞ and

[x + x′, x + x′] otherwise

(7.4)

If we chose to return [∞,−∞] when the operations on the bounds are undefined, rather

than [−∞,∞] as in (7.4), then the resulting interval function would be an inner interval

extension of extended real addition.

This choice always arises when a relation f is multi-valued over some set X and a total

108

Chapter 7 BACKGROUND

function which has a maximal interval extension outside X. Then the choice of interval

approximation for the set {y | (x, y) ∈ f ∧ x ∈ X}, of values y associated by f to some

member x ∈ X, determines the type of extension. As long as all approximations are

chosen consistently, i. e. all inner or all outer, then the resulting interval function is a total

inner or outer interval extension, respectively. In particular, total interval extensions for

the partial extensions of multiplication in Example 7.2.4 and division in Example 7.2.5

may be obtained in the described manner from maximal interval extensions for addition

on R and division on R with nonzero divisors.

7.2.3 Many valued logics

Let B denote the set {t, f} of Boolean truth values where t denotes true and f denotes

false. Predicates may be defined as total B-valued functions. When they are composed

with partial functions we obtain partial B-valued functions. Consider the nonnegativity

predicate p defined by x 7→ x ≥ 0 and the square root function x 7→
√

x and their compo-

sition p ◦
√
· given by x 7→

√
x ≥ 0. The composition p ◦

√
· is a partial B-valued function

on R and therefore yields a total B∅-valued ∅-extension. We may view the value ∅ in B∅

as a third truth value e.

Interpreting undefinedness as a truth value leads to a three-valued logic Be = {e, t, f},

called partial Boolean logic, with the values e, t and f called undefined, true and false,

respectively. One can retrieve the two-valued Boolean logic by mapping e to either t or

f. An example of the latter choice is given by the handling of the NaN value by predicates

in Section 3.3.

Definition 2.2.4 introduced interval extensions of relations on posets. Given a function f :

X → Y we define the set extension f ℘ of f as the set-valued function f ℘ : ℘(X) → ℘(Y)

given by A 7→ { f (x) | x ∈ A}. Set extensions of relations ρ : X2 → B become partial func-

tions ρ℘ : ℘(X)2 → ℘(B) where ℘(B) = {∅, {t}, {f}, {t, f}} may be viewed as a set of four

truth values {e, t, f, u}. We interpret the singleton values as the corresponding Boolean

value and call the values e = ∅ and u = {t, f} undefined and undecided, respectively.

Note that total relations yield non-surjective set extensions. Since each pair in X2 maps

to some member of B it follows that the extension maps sets of pairs to nonempty mem-

bers of ℘(B) effectively resulting in a three-valued logic {t, f, u}. Ordering the set under

the restriction of the relation ., given in Definition 8.1.7 on page 120, gives us the poset

109

Chapter 7 BACKGROUND

commonly known as the flat Booleans and denoted by Bu.

Set extensions of partial predicates may yield the empty truth value e representing ap-

plication of the predicate entirely outside its domain of definition. An example is given

by the partial predicate p ◦
√
· applied to the set R<0 of negative real numbers. Clearly

there is no x ∈ R<0 such that
√

x ≥ 0 so R<0 7→ ∅ by (p ◦
√
·)℘. Applying (p ◦

√
·)℘ to

a general set of reals yields sets of partial Boolean values. We will not consider the full

eight valued logic ℘({t, f, e}), instead we interpret the Boolean singletons {t} and {f} as

the corresponding Boolean values t and f, the singleton {e} and the empty set ∅ as e and

the remaining subsets as u.

The four-valued logic {e, t, f, u} generalises and unifies the three valued logics Be and

Bu by differentiating undefined and undecided truth values enabling the identification of

causes for non Boolean results. Undefined results from partiality while undecided should

be thought of as arising from multi-valuedness, e.g. by application of a set extension to a

set containing members of both the support of the predicate and its complement.

Binary Boolean logic may be retrieved from ℘(B) by mapping both undecided and unde-

fined values to singleton values. A concrete example is given by Example 2.2.5 where a

poset structure on I(R) compatible with the original order on the poset (R,≤) is recovered

from the set extension of ≤ by mapping the non singleton truth values to false.

110

8 Automated numerical

theorem prover

CONTENTS
8.1 Approximation of predicates . 113

8.1.1 Safe numerical approximation 114

8.1.2 Domain subdivision . 115

8.1.3 Approximation of Boolean functions 117

8.1.4 Partial functions continued . 120

8.1.5 Polynomial function intervals 123

8.2 Implementation . 125

8.2.1 The correctness theorem language CTL 125

8.2.2 Exact and approximate semantics for CTL 126

8.2.3 Note on the approximation of
∫ b

a f (x)dx 129

8.3 Experiments . 130

8.3.1 Motivation . 130

8.3.2 Experimental setup . 131

8.3.3 erf correctness theorem . 132

8.3.4 erf proving results . 133

8.3.5 erf counterexample discovery 135

8.3.6 square root correctness theorem 137

111

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

8.3.7 Revised square root program 138

8.3.8 Revised square root proving results 140

112

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

In the following chapter we present a prototype automated numerical theorem prover

for correctness theorems resulting from the analysis in Chapter 3. The algorithm uses a

standard approach in automated numerical theorem proving, based on safe numerical ap-

proximation and domain subdivision, but uses a novel interval arithmetic. Automation is

achieved through approximation which comes at the cost of completeness, in other words,

we prove some theorems automatically but cannot prove them all. The class of theorems

whose proofs are amenable to automation using approximate reasoning consists of theo-

rems without touching. Touching occurs when the boundaries of supports of predicates

in a theorem are not disjoint. A simple example of a theorem exhibiting touching is given

by:

Example 8.0.7 (Touching). Let ϕ be defined by D1 ⊆ D2, where the discs D1 and D2 are

given by D1 = {(x, y) ∈ R2 |
√

x2 + (y − 1)2 ≤ 1} and D2 = {(x, y) ∈ R2 |
√

x2 + (y − 2)2 ≤

2}. The boudaries of D1 and D2 are tangential at the origin and we say that ϕ exhibits

touching at (0, 0).

8.1 Approximation of predicates

A solution of a predicate p : X → B is an x ∈ X such that p(x) = t and a counterexample

to p is an x ∈ X such that p(x) = f. To prove p over A is to show that A is contained in

the set p−1(t) of solutions of p and to disprove p over A is to show that a counterexample

to p lies in A. Recall from Section 7.2.3 that we may view the values of the three valued

logic {t, f, u} as sets of Boolean values {{t}, {f}, {t, f}}. A functionAp : ℘(X)→ {t, f, u}

is called a safe approximation of p if p(x) ∈ Ap(A) for all x ∈ A and A ∈ ℘(X) andAp(A)

is then called a safe approximation of p over A. In particular, safe approximations satisfy

the following property: ifAp(A) = t then A ⊆ p−1(t) and ifAp(A) = f then A ⊆ p−1(f),

i. e. safe approximations allow us to prove or disprove predicates.

By restricting safe approximations to a subset S of ℘(X) we obtain safe S -approximations.

Approximations ℘(R) → {t, f, u} of predicates over a poset R may be restricted to I(R)-

approximations I(R)→ {t, f, u}, also called order interval approximations. As an example

we give the safe interval approximation of the inequality relation ≤ on R±∞:

Example 8.1.1 (Safe interval approximation of ≤). Let ≤ be the canonical ordering on

R±∞ and A≤ be the interval relation ≤I from Example 2.2.5 induced by ≤. Then A≤ is a

113

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

safe I(R±∞)-approximation of ≤ in each argument.

Note that considering the three-valued logic values as sets of Boolean values allows them

to be ordered by reverse inclusion ⊇, making ({t, f, u},⊇) into the poset where t and f are

maximal and u is the least element, i. e. the flat Boolean poset (Bu,.) from Section 7.2.3.

We can re-formulate the definition of safe approximation for predicates as: Ap : ℘(X)→

Bu is a safe approximation of p if Ap(A) . p(x) for each x ∈ A and each A ⊆ X. This

definition is generalised to Beu-valued predicates and extensions in Definition 8.1.13 on

page 123.

8.1.1 Safe numerical approximation

Safe approximations for real predicates are traditionally computed by natural interval

approximations of the predicates. Natural approximations are obtained from real predi-

cates by replacing the constituent real functions and relations with corresponding interval

extensions. The simplest case is provided by constant interval extensions:

Example 8.1.2 (Constant interval approximation). Consider the extended real predicate

p : R±∞ → B given by x 7→ 5x
8 ≤

3+5x
8 . A safe approximation Ap of p may be com-

puted using the outer interval extensions for addition and multiplication described in

Section 7.2.2. We get Ap([0, 1]) = A≤([0, 5
8], [3

8 , 1]) = u, where A≤ is the safe approx-

imation of ≤ from Example 8.1.1 on the previous page. We interpret the result u as the

approximationAp being too weak to decide p over [0, 1].

The undecided result of Example 8.1.2 shows that safe approximations may severely over-

approximate and often fail to decide seemingly trivially provable predicates. When we

are using isotone interval extensions in the approximation, i. e. such extensions f of con-

stituent functions f of p that x v x′ implies f (x) v f (x′), then we may increase the

precision of the approximation by reducing the domain of the predicate. By dividing the

decision problem over the initial domain into decision problems over subsets, tighter ap-

proximations of numerical expressions are obtained, leading to better approximations of

the predicate over the sub-domains. The following section describes this approach.

114

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

8.1.2 Domain subdivision

Domain subdivision is a method for improving an approximation of a predicate by re-

ducing the domain of the predicate. Consider the predicate p from Example 8.1.2. We

were unable to decide p over [0, 1] because the interval approximation [0, 5
8] of the left

hand side and [3
8 , 1] of the right hand side of the inequality intersect. By splitting the

domain [0, 1] of p into the two halves [0, 1
2] and [1

2 , 1] and then using Ap to approxi-

mate p over each half we obtain: Ap([0, 1
2]) = A≤([0, 5

16], [3
8 , 1]) = t and Ap([1

2 , 1]) =

A≤([5
16 ,

5
8], [11

16 , 1]) = t.

We have proved that p is true over sets covering [0, 1] and thus true over all of [0, 1]

using the same approximation Ap as in Example 8.1.2, but because the reduction in do-

main size led to an improvement in the approximation of p we managed to decide the

predicate, paying the cost of evaluating p twice. The fact that iterated subdivision creates

an exponential number of sub-problems means that the improvements in approximation

come at an exponential computational cost. Since implementations necessarily use fini-

tary representations and bounded space and time, it follows that many predicates become

practically undecidable with this approach. Consider the following example:

Example 8.1.3 (Tight inequality). Consider the extended real predicate p : R±∞ → B

given by x 7→ x ≤ x + 2−n and its natural constant interval approximation Ap. Clearly,

p holds over all of R±∞ and therefore over any subset, however evaluating Ap over a

generic interval [a, b] yields: Ap([a, b]) = A≤([a, b], [a + 2−n, b + 2−n]) which holds if and

only if the width of the interval is sufficiently small: Ap([a, b]) = t⇔ b − a ≤ 2−n.

The order in which the set of sub-problems is processed has an effect on the expected

complexity of the algorithm. Processing the set as a queue, i. e. in first in, first out order,

corresponds to a breadth-first search. Dually, processing the set as a stack, i. e. in last in,

first out order, corresponds to depth-first search.

Deciding p from Example 8.1.3 over the interval [0, 1] with bisection as subdivision

method requires n bisections, generating 2n sub-problems, regardless of search strategy.

The following example shows that the choice of search strategy can reduce the complexity

class of a decision problem:

Example 8.1.4 (Search strategy affects complexity). Consider deciding the extended real

predicate p given by x 7→ x > 2−n over the interval [0, 1]. As in Example 8.1.3 sub-

115

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

problems with domain width larger than 2−n yield the undecided value u. Using breadth-

first search generates a best-case exponential number of sub-problems before identifying

a counterexample. On the other hand, a left-baised depth-first search descends directly

towards 0 and decides p by returning f for the interval [0, 2−n], thus having proved the

predicate false by exhibiting a nonempty set of counterexamples, while generating a linear

number of sub-problems.

While the predicates in Examples 8.1.2, 8.1.3 and 8.1.4 may, given enough resources, be

decided using constant approximations and bisection, many cannot. A simple example is

given by taking the limit as n→ ∞ in Example 8.1.4:

Example 8.1.5 (Undecided predicate). Let the predicate p : [0, 1] → B be given by x 7→

x > 0 and Ap be the natural constant interval approximation of p. Altough Ap(x) = t

for each sub-interval x of [0, 1] that does not contain 0, we have Ap([0, 2−n]) = u for

each n. Ap can therefore not decide p over [0, 1] within a finite number of bisections.

We have seen that the choice of search strategy can have a dramatic effect on the perfor-

mance of a decision procedure. Consider a variation on Example 8.1.5 where the predicate

p is given by x 7→ x < 0. Ap(x) = f for each interval x ∈ I([0, 1]) such that 0 <I x.

If left-baised depth-first strategy is chosen, then the decision problem will not be decided

within a finite number of subdivisions. Any other search strategy will decide the predicate

as soon as the strategy deviates from left-baised depth-first, thus encountering an interval

of counterexamples witin a finite number of bisections.

Note that as a consequence of the above example any depth-first strategy may lead to a

non-terminating computation. In this particular example it is caused by a repeated failure

to generate a thin interval by bisecting non-thin ones. To eliminate non-termination due to

search strategy choice one should always choose a strategy that revisits each sub-problem

within a finite number of steps. The simplest among such strategies are the breadth-first

search strategies.

When considering subdivision for predicates with more than one variable, there is an-

other strategy choice beyond sub-problem processing order. All variable domains may

be subdivided at once, but this leads to a rapid increase in the size of the sub-problem

set potentially exhausting the available space resources. Usually, one variable domain

is subdivided at a time, which introduces the choice of a subdivision direction selection

116

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

strategy.

The subdivision direction selection strategy chosen determines the shape of the domain of

sub-problems. To see this consider a decision problem with two variables x1, x2 ∈ [0, 1]

ranging over the same interval. The domain of the problem is clearly a unit square, but

the domains of its immediate sub-problems are rectangular. In the case of bisecting say

x1 we get a left sub-problem with x1 ∈ [0, 1
2] and x2 ∈ [0, 1] and a right sub-problem with

x1 ∈ [1
2 , 1] and x2 ∈ [0, 1]. Clearly, if x1 is split more often than x2, then the generated

sub-problems will have domains that are thin and long while if x2 is split more often than

x1, then sub-problems with wide and short domains are generated.

Considering a predicate with many variables that is constant in one or more variable we

see that, much as in the case of search strategies, subdivision has to revisit each variable

within a finite number of iterations. Otherwise the computation may fail to terminate for

decidable problems due to the choice of subdivision strategy. To see this suppose that our

algorithm splits only the variables that the predicate is constant in. Since we are splitting,

the predicate was not decided before and since we are splitting along a variable that does

not affect the approximation, the splitting cannot improve the approximation obtained for

the sub-problems, resulting in a non-terminating sequence of splittings. The standard way

of eliminating non-termination due to splitting direction selection the round-robin or the

largest-first splitting strategies may be employed.

The round-robin splitting strategy amounts to ordering the variables in a circular queue,

resulting in no variable being split more than once more than any other. Round-robin

therefore maintains the proportions of the initial domain. The largest-first splitting strat-

egy chooses the variable with greatest domain width to split. As a consequence, largest-

first splitting leads to sub-problem domains with roughly the same width for each variable.

8.1.3 Approximation of Boolean functions

As we saw in the previous sections, approximations of predicates are {e, t, f, u}-valued

functions, e.g. total predicates are approximated by {t, f, u}-valued functions.

The way we lift the propositional connectives to {t, f, u} has consequences to the deduc-

tive system we are implicitly defining. The danger is that rules defined with a specific

interpretation in mind may yield a system which has surprising properties, e.g. theorems

117

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

¬

t f

f t

u u

∨ t f u

t t t t

f t f u

u t u u

Figure 8.1: Standard extension of propositional Boolean logic by the undecided value u.

¬

t f

f t

u u

e e

∨ t f u e

t t t t e

f t f u e

u t u u e

e e e e e

Figure 8.2: Propositional Boolean logic extended conservatively to {e, t, f, u}.

that should not hold may become provable. In Figure 8.1 we present the traditional exten-

sion of propositional logic by undecidedness. The interaction between u and the Boolean

values is determined by considering the set extensions of the connectives and mapping the

resulting sets back to {t, f, u}. The remaining standard connectives ∧ and→ are obtained

the usual way from:

ϕ ∧ ψ ≡ ¬ ((¬ϕ) ∨ (¬ψ)) and ϕ→ ψ ≡ (¬ϕ) ∨ ψ (8.1)

As noted in Section 7.2.3 partial functions lead to partial predicates, and the undefined

truth value e. We may further extend the three valued logic presented in Figure 8.1 to

the four valued logic {e, t, f, u}, as shown in Figure 8.2, again obtaining the remaining

connectives from (8.1). Note that the extension is conservative in the sense that partial

formulas not provable in {t, f, u} are still not provable. The undefined truth value e is

treated as an exception, signalling that nonsensical results are being obtained, such as

attempted evaluation of log(−1). Thus, as soon as an undefined value is computed for a

predicate, it is propagated through the Boolean structure and returned.

Section 11.6 of the ARM [1] describes cases when exceptional behaviour may be altered

by an Ada implementation, and conditions under which operations with undefined opera-

tions may be omitted.

118

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

¬

t f

f t

u u

e e

∨ t f u e

t t t t t

f t f u e

u t u u u

e t e u e

∧ t f u e

t t f u e

f f f f f

u u f u u

e e f u e

→ t f u e

t t f u e

f t t t t

u t u u u

e t e u e

Figure 8.3: Propositional Boolean logic extended to {e, t, f, u}.

The conservative extension of propositional logic to {e, t, f, u} has one drawback, namely

that it does not satisfy the rule of least surprise. The rule states that if there is no general

consensus on the solution to a problem, then those solutions should be adopted that result

in the most intuitive or natural system. To illustrate this vague notion consider a concrete

example:

Example 8.1.6 (Mysterious evaluation order). Let the predicate p1 be given by x 7→ x < 0

and the partial predicate p2 be given by x 7→
√

x ≥ 0. We may then form p ≡ p1 ∨ p2

and consider the validity of p over R. People tend to give two different solutions to this

problem: one group uses strict evaluation of the predicates and the conservative extension

from Figure 8.2 concluding that the problem is ill posed and therefore has no solution.

The other group inspect the predicate, realising that for any given value, either p1 or p2

returns t, and since ∨ should hold whenever any of its argument does, they conclude that

p is true over all of R.

The strict or innermost-first evaluation order used by the first group in the above example

always generates the undefined value e whenver possible. The conservative extensions

of the Boolean connectives immediatly propagate e, so whenever a function is applied

outside its domain of definition this evaluation strategy yields undefinedness regardless

of the context in which the application appears. In contrast, when a non-strict evaluation

order is used, one may use the context in which the evaluation occurs to safely ignore

some applications with undefined results.

Note that the predicate p from Example 8.1.6 may be rewritten as x ≥ 0→
√

x ≥ 0. Pre-

sented in this form p is generally believed to be true, even for negative values of x. Again,

an evaluation order is used that allows for short-circuiting the decision procedure as soon

as a Boolean result may be concluded. This order could be called non-Boolean-last as it

119

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

evaluates all expressions that yield a Boolean value and then decides the formula lazily,

only computing non-Boolean values when failing to decide the formula using Boolean

values. It is interesting that re-writing a partial predicate may alter its perceived validity,

which illustrates that the rule of least surprise is a heuristic and does not generally offer

a solution to design problems. Nevertheless, it is instructive to consider extensions of

propositional logic that come closer to satisfying the expectations of people, such as the

validity of p over R.

One such extension is presented in Figure 8.3. Since the logic allows for proving formulas

with partial predicates outside their domain of definition, this could lead to erroneous con-

clusions about the exceptional behaviour of programs. However, the precondition check

VC generated for a fall to a function f, specified as described in Chapter 5, contains a

boundedness constraint of the form f(. . .) ∈ F in its conclusion. If the call to f yields e,

then the VC can only be true if one of its hypotheses is false. The only possible cases

are then that the calling program’s precondition, a loop invariant, the postcondition for

a subprogram in a preceding call or a Boolean conditional or loop guard appearing as

hypothesis in the VC is false. If the call is reachable only the first three are possible, from

which it follows that either a loop VC is false or that a subprogram call or the program

call itself is illegal. If either of the first two is the case, then we may repeat the previous

line of reasoning and otherwise the precondition for the main program must be false for

the values yielding e. Thus, the extended logic in Figure 8.3 is safe for proving excep-

tion freedom properties as formalised using the specifications in Chapter 5 and logical

semantics from Chapter 3.

8.1.4 Partial functions continued

In Section 8.1.1 we considered approximations for extended real predicates. Our aim

however is to prove correctness theorems involving partial functions and interval relations

over real variables, meaning that we need to handle both undecidedness and undefined-

ness. We are therefore concerned with approximations Bp of partial poset predicates

p : R→ {e, t, f, u} for posets R.

Definition 8.1.7 (Flat partial Booleans). The partial order . on {e, t, f, u} determined by

u . e, u . t and u . f is called the flat partial order on {e, t, f, u}. The resulting poset

({e, t, f, u},.) is called the flat partial Boolean poset and denoted by Beu.

120

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

t

??
??

??
?? f e

��
��

��
��

u

Figure 8.4: Flat partial Booleans

In Section 2.3 we equipped interval posets I(R) acting as domains for interval extensions

of partial functions with a bottom element ⊥ acting as result for application of the ex-

tension outside the domain of definition of the underlying function. We extend this idea

further in analogy with the extension of B to Beu, providing values that propagate partial-

ity and multivaluedness information to constituent relations in the predicate:

Definition 8.1.8 (Flat partial poset). Let Xeu denote the set X extended with the distin-

guished values e and u, called erroneous and undetermined, respectively. The partial

order . on Xeu determined by u . e and u . x for each x ∈ X is called the flat partial

order on X. The resulting poset (Xeu,.) is called the flat partial poset on X.

By the calling the values e and u distinguished we mean that they can only be added once.

Consequently, the operation of taking the flat partial poset is idempotent, i. e. (Xeu)eu =

Xeu. Note that the flat order relates any value to itself and u only. In particular, the flat

order . on posets (R,≤) generally has no relation to the partial order ≤.

Partial functions from X to Y lift trivially to partial functions from Xeu to Yeu and may

then be canonically extended to total functions, i. e. partial functions extend canonically

to total functions between the flat partial posets on their carrier sets:

Definition 8.1.9 (Flat partial function extension). Let {Xi}
n
i=1 be a family of sets, Y be

a set and f :
∏n

i=1 (Xi)eu ⇀ Yeu be a partial function. The canonical total function

feu :
∏n

i=1 (Xi)eu → Yeu is defined by:

feu(a) =

f (a) if f is defined at a

u if f is undefined at a and u ∈ {a1, . . . , an} and e < {a1, . . . , an}

e otherwise

(8.2)

and called the flat partial extension of f .

Taking the flat poset does not generally commute with set operations and an important

counterexample is given by the powerset operation:

121

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

Definition 8.1.10 (Flat partial powerset). Let X be a set. The powerset ℘(Xeu) of the flat

partial poset over X is projected onto the flat poset ℘(X)eu over the powerset of X by the

surjective map π℘eu : ℘(Xeu)� ℘(X)eu defined by:

π℘eu(A) =

A if A ⊆ X

e if A = {e}

u otherwise

(8.3)

The composition of the above projection with the powerset operation is called the flat

partial powerset operation and denoted by ℘eu.

It follows from the definition of ℘eu that ℘eu(Xeu) = ℘(X)eu. Recall that the definition of

set extensions f ℘ was given on page 109, for total functions f : X → Y , as the image

f ℘(A) = { f (x) ∈ Y | x ∈ A} of A under f , for A ⊆ X. The generalisation to set extensions

f ℘ : ℘(X)n → ℘(Y) of functions f : Xn → Y on products is defined identically, but still

yields partial extensions for partial functions. However, partial functions lift canonically

to total functions on the flat powersets of their carrier sets:

Definition 8.1.11 (Flat partial set extension). Let Xi, Y and f :
∏n

i=1 (Xi)eu ⇀ Yeu be

a partial function. Then the canonical total function f ℘eu :
∏n

i=1 ℘(Xi)eu → ℘(Y)eu is

defined as the composition f ℘eu = π℘eu ◦ (feu)℘, called the flat partial set extension of f .

Example 8.1.12 (Flat set extension of the logarithm). The logarithm function on real

numbers log : R ⇀ R is defined for x ∈ R>0. In particular it is a partial function

Reu ⇀ Reu with flat partial extension logeu : Reu → Reu given by:

logeu(a) =

log(a) if a > 0

u if a = u

e otherwise

The total function logeu has the set extension
(
logeu

)℘ : ℘ (Reu)→ ℘ (Reu) given by:(
logeu

)℘(A) =
{
logeu(a) | a ∈ A

}
= log℘ (A ∩ R>0) ∪ {e | A ∩ R≤0 , ∅ ∨ e ∈ A} ∪ {u | u ∈ A}

and the composition π℘eu ◦
(
logeu

)℘ yields the flat partial set extension log℘eu : ℘(R)eu →

℘(R)eu of the logarithm on real numbers:

log℘eu(A) =

log℘(A) if A ⊆ R>0

e if A ⊆ R≤0 ∪ {e}

u otherwise

122

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

The above example shows how to compute the domain over which set extensions of par-

tial numeric functions have numeric results. Flat set extensions over posets immediately

yield flat order interval extensions and by defining general interval extensions by the cor-

responding equations we arrive at flat generalised interval extensions.

Using the flat ordering on Beu we order predicates pointwise as in Example 2.1.6 on

page 22 and formalise the approximation of partial poset predicates in terms of isotonic

functions:

Definition 8.1.13 (Safe interval approximation). Let R be a poset and p : Rn → Beu be a

function. An isotonic function Bp : I(R)n → Beu is called a safe interval approximation of

p whenever:

ri v ri ⇒ Bp(r) . p(r) (8.4)

holds for each i ∈ {1, . . . , n}, each r ∈ r and each r ∈ I(R)n.

Property (8.4) guarantees that Bp(x) is .-maximal only if p is constant over x and that

a maximal Bp(x) is equal to p(x) for x ∈ x. Put another way, safe extensions Bp decide

p as true, false or undefined over a box only if p is everywhere true, everywhere false or

everywhere undefined over the box.

8.1.5 Polynomial function intervals

As previously noted interval approximations cannot always decide a predicate. Often the

problem is that the chosen approximations are too coarse, meaning they over-approximate

ranges for expressions over a domain, forcing an exponentially costly subdivision loop.

One solution is to make the accuracy of the approximation variable. In such cases failing

to decide does not immediately induce subdivision, instead the accuracy of the approx-

imation is increased and the approximation re-computed, now standing a better chance

of deciding a Boolean value for the problem. Clearly this approach will be computation-

ally less costly, provided that increasing the accuracy has polynomial cost. The prototype

prover presented in this chapter is intended to test this assumption. There are many meth-

ods for increasing the accuracy of constant interval approximations, however they all use

interval arithmetic to some degree, meaning that there are bounds on the accuracy im-

provement imposed by wrapping effects and the dependency problem.

Our approach is to use polynomial function intervals, also called polynomial function en-

123

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

closures (PFEs), whose bounds are polynomials of bounded size with arbitrary precision

coefficients, to construct safe approximations for the floating point and interval functions

and relations that appear in correctness theorems for numerical programs specified in the

way presented in Chapters 3–6.

Recalling the definition of floating point formats from Section 4.1 where we denoted by

Fβ,p,emin,emax the format given by base β, precision p and maximum and minimum expo-

nents emin and emax, respectively. We specialise to the binary format F±∞g = F±∞2,g,2g+1−1,1−2g+1

parametrised by the single natural number g, called the granularity of the format.

Formally, a PFE f is a generalised function interval, bounded by polynomials in m real

variables with Fg-coefficients and degree ≤ n, written as f ∈ J(F±∞g [x1, . . . , xm]≤n), where

F±∞g [x1, . . . , xm]≤n =
⊕n

i=0 F
±∞
g [x1, . . . , xm]i is set of Fg-polynomials of degree 0 to n.

The bound on the degree is necessary to limit the complexity of the arithmetic as it-

erated multiplications of non-constant polynomials generate a sequence of polynomials

of strictly increasing degree. To enforce the bound it is necessary to interleave arith-

metic operations that potentially increase the degree of the bound functions with directed

roundings ↓ n, ↑ n : F±∞g [x1, . . . , xm] → F±∞g [x1, . . . , xm]≤n, for n ∈ N, taking polynomi-

als f of arbitrary degree to polynomials of degree ≤ n that bound f from below and

above: f ↓ n ≤̇ f ≤̇ p ↑ f . As we saw in Chapter 7 directed roundings on the base poset

induce directed roundings on intervals over the poset, so we have directed roundings

↓ n, ↑ n : J(F±∞g [x1, . . . , xm]) → J(F±∞g [x1, . . . , xm]≤n) taking arbitrary polynomial intervals

f to intervals f ↓ n and f ↑ n with bounds of degree ≤ n, approximating f from outside

and inside, respectively.

The maxdegree parameter n and granularity g of PFEs provide a way of increasing ap-

proximation effort before subdividing that generalises the common approach of constant

interval approximations with arbitrary precision coefficients. Any interval in J(x→ R±∞),

with continuous endpoint functions and domain x ∈ I(R)m, may be approximated by a

PFE in m variables and that the approximation can be made arbitrarily accurate by choos-

ing sufficiently high degree and coefficient granularity. In particular, PFEs approximate

exact real interval and continuous floating point expressions over interval boxes.

124

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

8.2 Implementation

Recall the formula sublanguage of ANOT from Section 3.2.1, used to represent proof

obligations for PEA programs. Using the exact real and interval expressions provided

by the language we can conveniently approximate floating point expressions appearing in

the program code, the conditions under which execution of the program cannot generate

numeric exceptions and accuracy properties for the resulting values. The following sec-

tions show how we approximate the exact formulas using safe numeric approximations,

making it possible to automate some correctness proofs.

The implementation is a straightforward translation of the semantics of interval expres-

sions and relations that has been developed in the preceding chapters. Floating point func-

tions are viewed as partial real functions and approximated by intervals safely bounding

the function in the interval lattice.

8.2.1 The correctness theorem language CTL

Chapters 3–5 outlined a method for specification and correctness theorem generation for

algorithms expressed in the PEA language from Section 3.2.2. PEA consists of the pro-

cedural language PROC from Section 3.1.1 annotated by formulas in the ANOT language

from Section 3.2.1. The denotational semantics described in Section 3.4 translates the

PEA program into an ANOT formula encapsulating the correctness condition for the pro-

gram. We will not address the proving of formulas with nested quantifiers, rather we will

be proving propositional formulas closed by outermost universal quantification. We also

restrict our attention to the functions and relations appearing in the example programs Erf

and Sqrt from Sections 5.4.2 and 5.4.4. Thus, the grammar of the correctness theorems

under consideration is the sub-grammar of the ANOT language given by:

τ ::= q | e | π | x | [τ1, τ2] | − τ |
√
τ | τ1 + τ2 | τ1 ∗ τ2 | τ1/τ2 | τ

τ2
1 |

∫
x∈[τ1,τ2]

τ3 |

εabs | εrel | εabs | εrel | exp(τ) | τ1 ⊕ τ2 | τ1 ~ τ2 | τ1 � τ2

ϕ ::= > | ⊥ | τ1 < τ2 | τ1 ≤ τ2 | τ1 = τ2 | τ1 ≥ τ2 | τ1 > τ2 | τ1 ∈ τ2 | τ1 ⊆ τ2 |

¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2

where q ∈ Q. Correctness theorems are formulas ϕ with all its free variables closed

by a universal quantifier. The domain of each variable is obtained from the obligatory

125

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

declarations provided by PEA programs. Correctness theorems then have the form:

∀x1 ∈ x1 · · · ∀xm ∈ xm . ϕ (8.5)

where {x1, . . . , xm} is the set of free variables in ϕ and x = (x1, . . . ,xm) ∈ I(R)m is an

interval tuple, also called the domain box of the correctness theorem. We call the lan-

guage of formulas of the form (8.5) the correctness theorem language and abbreviate it

as CTL. We will also refer to CTL formulas without quantifiers as CTL’ formulas. The

following section describes how the framework for safe approximation of exact numeri-

cal, floating point and Boolean expressions described previously is applied to obtain safe

approximations for CTL formulas.

8.2.2 Exact and approximate semantics for CTL

The exact semantics of the grammar given on the previous page is expressed in terms of

safe generalised function interval approximations of predicates as defined on page 123.

The exact semantics, used to approximate floating point expressions, is in turn approx-

imated in the prover by means of safe PFE approximations, as defined in the preceding

chapter. Formally, the exact interpretation of a formula ϕ is given by the map [[·]] : CTL→

Beu: [[
∀x1 ∈ x1 · · · ∀xm ∈ xm . ϕ

]]
=

[[
ϕ
]]
x (8.6)

where x = (x1, . . . ,xm) and
[[
ϕ
]]
x is defined recursively over the grammar of CTL’ as

follows: [[
ϕ1 c ϕ2

]]
x = Bc(

[[
ϕ1

]]
x ,

[[
ϕ2

]]
x)[[

¬ϕ
]]
x = B¬(

[[
ϕ
]]
x)

(8.7)

for Boolean connectives c ∈ {∧,∨,→} with B¬ and Bc given by the {e, t, f, u}-extensions

of ¬ and c in Figure 8.3 on page 119, respectively. Continuing, the containment relation

⊆ and the thin containment relation ∈ both have exact semantics B⊆ =B∈ given by the

reverse refinement relation w on flat partial generalised extended real function intervals:

[[τ1 ⊆ τ2]]x = [[τ1 ∈ τ2]]x = [[τ2]]x v [[τ1]]x (8.8)

126

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

and are approximated in terms of flat PFEs by:

[[τ2]]x v [[τ1]]x &

t if [[τ2]]PFE ↑
x vPFE [[τ1]]PFE ↓

x

f if [[τ2]]PFE ↓
x 6v

PFE [[τ1]]PFE ↑
x

e if e ∈
{
[[τ1]]PFE ↑

x , [[τ1]]PFE ↓
x , [[τ2]]PFE ↑

x , [[τ2]]PFE ↓
x

}
u otherwise

(8.9)

where the flat inner and outer PFE semantics [[τ]]PFE ↑
x and [[τ]]PFE ↓

x of terms are described

below and vPFE and 6vPFE are safe PFE approximations of v and 6v, respectively. Order

relations r ∈ {<,≤,=,≥, >} and Boolean literals have exact semantics Br,B⊥ and B>

given by:

[[τ1 r τ2]]x = [[τ1]]x rI [[τ2]]x

[[⊥]]x = f

[[>]]x = t

(8.10)

where the interval relation rI induced by r is approximated by:

[[τ1]]x rI [[τ2]]x &

t if [[τ1]]PFE ↓
x rPFE

I [[τ2]]PFE ↓
x

f if [[τ1]]PFE ↓
x (¬r)PFE

I [[τ2]]PFE ↓
x

e if e ∈
{
[[τ1]]PFE ↓

x , [[τ2]]PFE ↓
x

}
u otherwise

(8.11)

where rPFE
I is a safe flat PFE approximation of the interval relation rI and ¬r is the strict

opposite version of the exact relation r, with e.g. ¬(≤) being >.

The refinement and interval order relation approximations in (8.9) and (8.11) use the flat

outer PFE semantics [[τ]]PFE ↓
x . The exact outer semantics B↓} and B↓exp of floating point

operations and functions is given by the generalised outward rounding operator Sout from

Section 5.1. It approximates floating point expressions from below by pessimistically

assuming that maximal rounding errors arise from each constituent floating point func-

tion. The exact outer semantics [[τ]]↓x is approximated from below by the flat outer PFE

semantics [[τ]]PFE ↓
x defined for floating point terms τ by:

[[τ1 } τ2]]PFE ↓
x = B

PFE ↓
} ([[τ1]]PFE ↓

x , [[τ1]]PFE ↓
x)

[[exp(τ)]]PFE ↓
x = B

PFE ↓
exp ([[τ]]PFE ↓

x)

[[ε]]PFE ↓
x = [λx. − ε, λx.ε]

[[ε]]PFE ↓
x = λx.ε

(8.12)

127

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

where } ∈ {⊕,~,�}, ε ∈ {εabs, εrel} and ε ∈ {εabs, εrel}. B
PFE ↓
} and BPFE ↓

exp are given in terms

of the natural flat outer PFE extension SPFE ↓
out of the exact operator Sout:

B
PFE ↓
}

(
f1,f2

)
= S

PFE ↓
out

(
[[ε}]]PFE ↓

x ,f1 ◦
PFE ↓ f2

)
= R

PFE ↓
out

((
1 +PFE ↓ [[ε}]]PFE ↓

x ∗PFE ↓ [−1, 1]
)
∗PFE ↓

(
f1 ◦

PFE ↓ f2
))

=
(
1 +PFE ↓ [−εrel, εrel]

)
∗PFE ↓

((
1 +PFE ↓ [[ε}]]PFE ↓

x ∗PFE ↓ [−1, 1]
)

∗PFE ↓
(
f1 ◦

PFE ↓ f2
))

+PFE ↓ [−εabs, εabs]

(8.13)

where ◦ ∈ {+, ∗, /} is the exact operation corresponding to } and ◦PFE ↓ is an isotonic outer

generalised PFE extension of ◦ in the sense of Chapters 2 and 7 and:

BPFE ↓
exp

(
f
)

= S
PFE ↓
out

([[
εexp

]]PFE ↓

x ,BPFE ↓
e

(
f
))

(8.14)

where BPFE ↓
e is an isotonic outer generalised interval extension of the extended real ex-

ponential function. In particular, the exact outer semantics approximates floating point

functions over an interval x with a function interval in J (x→ R±∞).

The exact interpretation Bγ of exact functions γ is given by the corresponding interval

function and approximated in terms of PFE extensions:[[
γ(τ1, . . . , τk)

]]PFE ↓
x = B

PFE ↓
γ

(
[[τ1]]PFE ↓

x , . . . , [[τk]]PFE ↓
x

)
[[∫

x′∈[τ1,τ2]
τ3

]]PFE ↓

x
= B

PFE ↓∫ (
[[τ3]]PFE ↓

x′
)
◦

PFE ↓

ix′
[[τ2]]PFE ↓

x −PFE ↓

B
PFE ↓∫ (

[[τ3]]PFE ↓

x′
)
◦

PFE ↓

ix′
[[τ1]]PFE ↓

x

[[[τ1, τ2]]]PFE ↓
x =

[
[[τ1]]PFE ↓

x , [[τ2]]PFE ↓
x

]
[[x]]PFE ↓

x = projix(x)

(8.15)

where [a, b] = a, [a, b] = b and x′ is the domain box x extended by an interval for the

variable x′ such that:

projix′
(x′) = [[[τ1, τ2]]]PFE ↓

x ↓ 0 (8.16)

and ◦PFE ↓

ix′
denotes outer PFE approximation of composition in the variable ix′ . The outer

approximations BPFE ↓
γ are given by isotonic flat outer PFE extensions of the possibly par-

tial exact functions γ ∈ {−, √,+, ∗, /, ˆ ,
∫
}, where ˆ denotes the binary exponentiation

operator. The exact semantics of exact literals l ∈ {e, π} ∪Q is given by the embedding of

real numbers within function intervals, [[l]]x = [λx.l, λx.l], and approximated by outward

rounding:

[[l]]PFE ↓
x = [λx.l ↓, λx.l ↑] (8.17)

128

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

Note that this is in fact how the floating point epsilons were handled in (8.12), but since

they are representable, the resulting interval is thin.

The containment relation approximations in (8.9) use both the outer PFE semantics [[τ]]PFE ↓
x

and the inner PFE semantics [[τ]]PFE ↑
x of terms. The latter is defined dually to [[τ]]PFE ↓

x and

may be obtained from (8.12)–(8.17) by:

• reversing left and right interval bounds, i. e. x becomes x and vice versa, in the

interval constructor equation in (8.15)

• reversing all downward arrows to upward arrows, except those in (8.16)

• replacing the isotonic outer generalised interval extensions with isotonic inner gen-

eralised interval extensions

• using the conjugate of the outward semantics for interval floating point literals:

[[ε]]↑x = [λx.ε, λx. − ε] (8.18)

• and replacing generalised outward rounding Sout by generalised inward rounding:

Sin(e, x) = Rin
((

1 + e[1,−1]
)
x
)

(8.19)

where Sin is defined in terms of the inward rounding operator Rin given by:

Rin(x) =
(
1 + [εrel,−εrel]

)
x + [εabs,−εabs] (8.20)

8.2.3 Note on the approximation of
∫ b

a f (x)dx

Equation (8.15) describes how outer PFE approximations of definite integrals are ob-

tained. First, the integration variable domain is approximated by constant outer approxi-

mation of the interval given by outer approximations of the integration bound expressions,

as described by (8.16), which guarantees that the PFE approximation of the primitive

function will be safe. The domain box x is then extended by the domain of the integra-

tion variable to the box x′ and an outer PFE approximation of the primitive function of

the integrand expression is constructed over x′. Finally, the resulting enclosure is com-

posed in the integration variable with outer approximations of the bound expressions and

the safe difference is taken. Note that while the outer approximation of the integral is ob-

tained using outer approximations of the constituent expressions, an inner approximation

129

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

of the integral still approximates the integration domain from below, using outer approxi-

mations of the bound expressions, while composing inner approximations of the primitive

function and the bound expressions.

Currently, the implementation only supports integration of expressions with monotone

primitive functions, due to the same restriction on the composition operator.

The implementation also provides a parameter for the integration operation, called in-

tegration depth, intended to provide a means of increasing approximation precision for

computational effort. If the integration depth is set to n, then the integration variable

domain is bisected n times and approximations of the integrand expression are computed

over each sub-interval, effectively yielding a piece-wise PFE approximation over the orig-

inal domain. The piece-wise approximations are then safely combined over the range of

each integration bound, hopefully resulting in tighter approximations of the bounds, and

thus of the definite integral.

In the following section we investigate how solving times for the functional correctness

VC of the erf example program are affected by enclosure degree and integration depth.

The expectation is that increasing either parameter should initially decrease solving times

as improved precision allows earlier decisions and then increase as redundant precision

no longer allows earlier decisions while incurring additional cost. Eventually, increas-

ing either parameter should incur precision loss, due to superfluous rounded operations,

yielding no improvement in precision at increased computational cost.

8.3 Experiments

8.3.1 Motivation

The task our work set out to address is the automation of floating point verification. We

have shown how to specify accuracy properties for floating point programs and how to

generate proof obligations for programs specified in this way. Further, we have described

the various pitfalls facing algorithms automating the proof of such proof obligations, re-

ferring to these obstructions collectively as the information loss problem. We proposed a

way to reduce information loss in algorithms combining interval evaluation with domain

subdivision by increasing the information stored in the intermediate values during eval-

130

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

uation. Our solution uses polynomial bounds in intervals to store approximations to the

dependency relations between variables and to reduce information loss due to wrapping.

The hypothesis is that the computational overheads that come from computing with poly-

nomials over floating point numbers, rather than just with floating point numbers, are

sufficiently outweighed by increased approximation accuracy, leading to earlier decision

of relations, and thereby to a reduction in domain splitting. Since the main cost of subdi-

vision based algorithms comes from the exponential cost of splitting, we conjecture that

problems where the boundaries of relations lie sufficiently close to force a state explo-

sion in algorithms using traditional interval evaluation, our higher precision arithmetic

can succeed. The hypothesis was tested by using a variable precision arithmetic with

polynomial degree as one of the parameters. This allowed us to compare proof attempts

using higher degree polynomial bound evaluation and evaluation with constant polyno-

mial bounds, i. e. using traditional intervals. We could also see the effect of increasing

polynomial degree on proof effort and identified, within a given range, the optimal degree

for the given problem.

8.3.2 Experimental setup

The experiments were conducted to probe the assumption that VCs for floating point prop-

erties require higher degree enclosures in order to minimise approximation error during

solving. The argument is that since precision loss in the arithmetic may force subdivision,

it follows that precision enhancement at sub-exponential cost may delay subdivision and

yield overall reduced solving effort.

We have not formally proved that the four-valued logic from Figure 8.3 is suitable for

discharging the exception freedom proof obligations in the experiments below. However,

since all predicates appearing in the examples are total over the prescribed domains, the

logic used by the prover is in effect the usual three-valued logic from Figure 8.1, which is

perfectly safe to use in this context.

The correctness theorems generated for the erf example program in Figure 5.1 on page 72

and the square root example program in Figure 5.3 on page 78 are shown on page 74

and on page 80 respectively. The CTs were simplified by iterated application of φ1 →

(φ2 ∧ φ3) ⇒ (φ1 → φ2) ∧ (φ1 → φ3) and φ1 → (φ2 → φ3) ⇒ (φ1 ∧ φ2) → φ3 and

replacing of equal expressions. The resulting sets of verification conditions are shown

131

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

in Section 8.3.3 and 8.3.6 respectively and correspond one-to-one with verification con-

ditions generated by the Examiner and Simplifier tools for the corresponding SPARK

implementation of erf on page 91 and of square root on page 94.

The prover attempts to decide the VC over the prescribed domain, meaning that it can

identify counterexamples if the VC is false over an entire sub-box of its domain. To test

this functionality we modify the specification of the erf program by inverting the signs

of the additive constant 0.00005 in the postcondition, obtaining (8.35) a false version of

the functional correctness VC (8.34).

Timing data for each proof obligation was generated on an Intel Core2 Duo 1.86 GHz

machine with 3GB RAM and 6MB cache, running Kubuntu 10.10, and timeout set to one

hour. Proving would also be halted when attempting to split an interval with neighbouring

maximum granularity numbers as endpoints. The prover was compiled with the Glasgow

Haskell Compiler (GHC) version 6.12.3. The results are presented and discussed in Sec-

tion 8.3.4

Solving was timed for enclosure degrees between 0 and 16 and the results presented be-

low indicate that increasing the degree of PFEs can help improve the overall performance

of subdivision based solving. Note however that the presented experiments are only suffi-

cient to give an indication of performance as a function of enclosure degree. A systematic

study for a suite of elementary problems will be needed before any general conclusions

can be deduced about the real life performance of the system. To further make claims

about the performance of the approach for floating point proof obligations it is essen-

tial to obtain a suite of industrial code examples of sufficient size to substantiate basic

statistical methods. Then it may be possible to deduce approximations of the amortized

performance of the algorithm.

8.3.3 erf correctness theorem

The proof obligations below were derived from the correctness theorem shown on page 74,

with the variable x ranging over the interval [0,4]:

0.47047 ~ x ∈ F (8.21)

1.0 ⊕ (0.47047 ~ x) ∈ F (8.22)

132

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

to make the formulas more readable we let T = 1.0 ⊕ (0.47047 ~ x) below:

T ~ T ∈ F (8.23)

T ~ (T ~ T) ∈ F (8.24)

x ~ x ∈ F (8.25)

exp(−x ~ x) ∈ F (8.26)

0.3480242 � T ∈ F (8.27)

0.0958798 � (T ~ T) ∈ F (8.28)

0.3480242 � T 	 0.0958798 � (T ~ T) ∈ F (8.29)

0.7478556 � (T ~ (T ~ T)) ∈ F (8.30)

0.3480242 � T 	 0.0958798 � (T ~ T) ⊕ 0.7478556 � (T ~ (T ~ T)) ∈ F (8.31)

we also let S = 0.3480242�T 	 0.0958798� (T ~T)⊕ 0.7478556� (T ~ (T ~T)) below:

exp(−x ~ x) ~ S ∈ F (8.32)

1.0 	 exp(−x ~ x) ~ S ∈ F (8.33)

2
√
π

∫
t∈[0,x]

e−t2 − 0.00005 ≤ 1.0 	 exp(−x ~ x) ~ S ≤ 2
√
π

∫
t∈[0,x]

e−t2 + 0.00005 (8.34)

where a ≤ b ≤ c abbreviates a ≤ b ∧ b ≤ c.

8.3.4 erf proving results

The thirteen exception freedom VCs in (8.21)–(8.33) were all proved within 10 seconds

for all enclosure degrees. Minimal solving times were obtained for degree 0 enclosures,

for which all exception freedom VCs were proved within 10 ms. Higher degrees yielded

monotonically increasing solving times, indicating that the the additional precision and

computational cost of higher degree enclosures was wasted.

The solving times for the functional correctness VC (8.34) are presented in Figures 8.5a

and 8.5b. The missing data points in Figure 8.5a for integration depths 0 and 1 correspond

to the solving being terminated due to attempted splitting of an interval with neighbour-

ing floating point endpoints, indicating that a prohibitive number of sub-problems may

have to be evaluated to decide the VC over the initial domain. We conclude that for these

133

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

 100

 1000

 6 8 10 12 14 16

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

enclosure degree

correct erf proved true

depth 0

depth 1

depth 2

depth 3

(a) Solving time, as function of maximum enclosure degree, for integration depths 0 to 3.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 5 6 7 8 9 10

m
a

x
im

u
m

 p
ro

v
e

d
 x

enclosure degree

correct erf partially proved true

depth 0

depth 1

depth 2

(b) Maximum proved x, as function of maximum enclosure degree, for integration depths 0 to 2.

Figure 8.5: Proving the true erf functional correctness VC.

134

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

enclosure degrees the approximation precision is insufficient, forcing splitting and lead-

ing to exponential growth of the sub-problem queue. We used depth-first search to reach

these atomic intervals as breadth-first search results in timeout.

Figure 8.5a presents the solving efforts for enclosure degrees 5 to 10 and integration

depths 0 to 2. Plotting the right bound x of the domain [0, x] for which the prover suc-

ceeds in proving the VC as a function of enclosure degree clearly shows that the fraction

of the domain for which the prover succeeds in proving the VC increases monotonically

with enclosure degree and integration depth.

As expected, the timing graphs have a roughly convex shape. The shape is explained

in terms of two main sources of computational cost: average evaluation time per sub-

problem and the number of computed sub-problems. Increasing enclosure degree leads

to increased computational effort and, at least initially, to improved precision. Improved

precision leads to earlier decisions, reducing the total amount of generated sub-problems.

As long as the number of generated sub-problems decreases faster than the average per-

problem computation time, as functions of enclosure degree, then the solving time graph

should decrease as maximum enclosure degree increases. Eventually, an optimal enclo-

sure degree should be reached, after which additional degrees add comparatively little

precision, while incurring additional computational cost, meaning the graph should level

off and then start increasing.

The graphs in Figure 8.5a roughly follow the above prediction. The exponential cost of

precision improvement through domain subdivision is dramatically reduced by increas-

ing enclosure degree, reaching a minimum after which increased computational effort is

wasted. We see that increasing the integration depth can have a beneficial effect, reducing

the minimum enclosure degree for which the minimum solving time is achieved.

The conclusion drawn from the above experiment is that higher degree polynomial enclo-

sures can improve the overall performance of a bisection search algorithm, at least when

compared to naive arithmetic using constant and low degree enclosures.

8.3.5 erf counterexample discovery

To evaluate how the prover performs at counterexample discovery, the postcondition

was changed in a way modelling what was felt as a reasonable implementation mistake,

135

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

 10

 100

 1000

 4 6 8 10 12 14 16

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

enclosure degree

incorrect erf proved false

depth 0

depth 1

depth 2

depth 3

(a) Solving time as function of maximum enclosure degree.

 10

 100

 1000

 4 6 8 10 12 14 16

c
o

m
p

u
te

d
 s

u
b

-p
ro

b
le

m
s

enclosure degree

incorrect erf proved false

depth 0

depth 1

depth 2

depth 3

(b) The number of computed Erf sub-problems as function of maximum enclosure degree.

Figure 8.6: Solving the false Erf functional correctness VC until counterexample discov-

ery, for integration depths 0 to 3.

136

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

namely the reversal of signs in a formula. The resulting false version of the functional

correctness VC (8.34) is shown below.

2
√
π

∫
t∈[0,x]

e−t2 + 0.00005 ≤ 1.0 	 exp(−x ~ x) ~ S ≤ 2
√
π

∫
t∈[0,x]

e−t2 − 0.00005 (8.35)

The solving results for (8.35) are presented in Figure 8.6 on the preceding page. Fig-

ure 8.6a and Figure 8.6b show solving time and the number of computed sub-problems,

respectively, as functions of enclosure degree. The solving time graphs in Figure 8.6a are

similar to the ones in Figure 8.5a but shifted towards lower degrees. This is to be expected,

since a counterexample can be identified anywhere, while proving requires searching the

entire domain. Since the integral is initially near constant it should follow that lower de-

gree enclosures suffice to approximate the integral closely enough.

The shapes of the graphs are again roughly convex, reflecting the characteristics of the

prover algorithm as described in the discussion of the proof of the correct erf functional

correctness VC above.

Graphs of the number of computed sub-problems until counterexample identification are

presented in Figure 8.6b. Since the number of generated sub-problems depends on the

approximation precision, we can interpret the graphs as showing the initial benefit of in-

creasing approximation effort and with it precision. As approximation effort is increased

further, there is a decrease in the improvement, seemingly tending asymptotically to zero.

At this point added approximation effort yields little or no improvement and the additional

effort translates to computational overhead.

8.3.6 square root correctness theorem

The proof obligations below were derived from the correctness theorem on page 80, with

the variable x ranging over the interval [0,1] and the variable r ranging over F:

x , 0→ x > 0 (8.36)

x = 0→ x ∈ (1 + 4εrel)
√

x + εabs (8.37)

r > 0→ x � r ∈ F (8.38)

r > 0→ r ⊕ (x � r) ∈ F (8.39)

r > 0→ 0.5 ~
(
r ⊕ (x � r)

)
∈ F (8.40)

137

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

r > 0 ∧ 0.5 ~
(
r ⊕ (x � r)

)
, r → 0.5 ~

(
r ⊕ (x � r)

)
> 0 (8.41)

r > 0 ∧ 0.5 ~
(
r ⊕ (x � r)

)
= r → 0.5 ~

(
r ⊕ (x � r)

)
∈ (1 + 4εrel)

√
x + εabs (8.42)

Note that the boundedness checks appearing as conclusions for the exception freedom

VCs in (8.38)–(8.40) also appear as hypotheses in each following VC in conjunction with

the hypothesis r > 0 of (8.38). We therefore omit these checks from the hypotheses of the

VCs in (8.39)–(8.42) to improve readability.

8.3.7 Revised square root program

The VCs obtained for the square root example program can not all be proved using the

current prover. In fact, they are not even all true. The exception freedom VC in (8.38)

states that the result of dividing an x between 0 and 1 by any positive floating point num-

ber r results in a number bounded by Fmax. We have however not included any concrete

lower bound and we can e.g. assume x = 1 and r < 1/Fmax, from which it follows that

x/r > Fmax.

To obtain a correct program it is necessary to change the code in Figure 5.3 on page 78 so

that the resulting VCs are true. Furthermore, we wish to produce VCs that are provable

using the approximate and sound techniques employed in the prototype prover.

In our case we have chosen to change the range for x in the precondition in order to

eliminate the troublesome cases for x near 0. This is perfectly reasonable, since any

call to square root may be preceded with a conditioning step where the values in the

original range for x are multiplied with an appropriate power of 4, resulting in a call to

square root with 22kx rather than x, for some integer k. The result will then lie near

2k √x, which is multiplied with 2−k to obtain the sought approximation of
√

x. Note that

when using floating point arithmetic in base b multiplication and division with powers of

b is exact, given that no overflow or underflow occurs. Therefore the conditioning and

normalisation steps introduce the least possible error.

Changing the input range for the program eliminates potential denormalised values for x,

which makes it possible to tighten the postcondition slightly to r ∈ (1 + 4εrel)
√

x.

In order to propagate the positivity property for r through successive iterations of the loop

we need to provide a loop invariant encoding this information. As a first idea we may

change r > 0 for r ∈ [x, 1]. Doing this we would however introduce a less obvious prob-

138

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER� �
proc square_root(in x ∈ F; out r ∈ F)

pre x ∈ [0.5, 2]

post r ∈ (1 + 4εrel)
√

x

is ...

s ∈ F

begin

s := x;

r := 0.5 ~ x ⊕ 0.5;

while r , s assert r ∈ [− x2

4 + x, x2

4 + 1] do

s := r;

r := 0.5 ~
(
s ⊕ (x � s)

)
od

end� �
Figure 8.7: Revised implementation of the square root function in PEA specified using

the new precondition and loop invariant.

lem, namely that of placing the fixpoint of the loop body given by x = 1 and r = 1 on

the boundary of the loop invariant. The problem with this is that VCs for the path around

the loop require us to show that states satisfying the loop invariant are mapped to states

that satisfy the loop invariant. To prove this for a fixpoint it would require using exact

reasoning, which we have traded for automation by employing approximate techniques.

The solution is to use a loop invariant that has no fixpoints on its boundary. A sufficient

condition is that the support of the invariant is mapped properly into itself by the loop

body. One such region is given by r that are bounded from above by x2

4 + 1 and from

below by − x2

4 + x, yielding the loop invariant r ∈ [− x2

4 + x, x2

4 + 1].

Our final concern is to make the initial values of r and s validate the post condition when-

ever they do the loop exit condition and that they otherwise validate the loop invariant.

The solution is to change the initial value of s to x and that of r to 0.5~ x⊕0.5, effectively

unrolling the loop one iteration. The revised PEA program is shown in Figure 8.7 and the

resulting proof obligations are presented below:

0.5 ~ x ⊕ 0.5 , x→ 0.5 ~ x ⊕ 0.5 ∈ [−
x2

4
+ x,

x2

4
+ 1] (8.43)

0.5 ~ x ⊕ 0.5 = x→ 0.5 ~ x ⊕ 0.5 ∈ (1 + 4εrel)
√

x (8.44)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ x � r ∈ F (8.45)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ r ⊕ (x � r) ∈ F (8.46)

139

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

r ∈ [−
x2

4
+ x,

x2

4
+ 1]→ 0.5 ~

(
r ⊕ (x � r)

)
∈ F (8.47)

r ∈ [−
x2

4
+ x,

x2

4
+1]∧0.5~

(
r⊕(x�r)

)
, r → 0.5~

(
r⊕(x�r)

)
∈ [−

x2

4
+ x,

x2

4
+1] (8.48)

r ∈ [−
x2

4
+ x,

x2

4
+ 1]∧ 0.5~

(
r⊕ (x� r)

)
= r → 0.5~

(
r⊕ (x� r)

)
∈ (1 + 4εrel)

√
x (8.49)

Note that boundedness checks appearing as conclusions for the exception freedom VCs

in (8.45)–(8.47) also appear as hypotheses in each following VC in conjunction with the

hypothesis r ∈ [− x2

4 + x, x2

4 + 1] of (8.45). We therefore omit these checks from the

hypotheses of the VCs in (8.46)–(8.49) to improve readability.

8.3.8 Revised square root proving results

All proofs were performed for values of x in [0.5, 2] and values of r in [0, 3]. The prover

successfully discharged each VC in (8.43)–(8.48) in well under a second using degree 0

enclosures. Using higher degree enclosures decided the VC in (8.43), for the path from

start into the loop, without performing splitting and slightly outperforming the constant

enclosures. Affine enclosures did show consistently lower solving times for the exception

freedom VCs in (8.45)–(8.47), however the difference was within measurement error.

With the exception of the VC in (8.49), the remaining cases showed higher degrees lead-

ing to monotonically increasing solving times, which was expected as our revision of the

program eliminated the values for which information loss may have been important.

The remaining VC, for the path from the loop invariant to the postcondition, shown in

(8.49), is the one requiring the most from the approximations used in the prover. It states

that on exit from the loop, i. e. when the loop action makes a negligible change to the

value of r, the value is very near
√

x. This statement is formalised in the postcondition

constraint and we expect its proof to show the most benefits of using higher enclosure

degrees.

Initial experiments using degree 0 enclosures either timed out after several hours, or given

24 hour timeouts ran out of memory. To obtain data for analysis we simulated lower pre-

cision floating point types by increasing the floating point epsilon to reflect a smaller

mantissa bit size than the 23 bits of single precision IEEE-754 floating point numbers.

Proofs were attempted for precisions 6 to 23 and enclosure degrees 0 to 8 and the results

are summarised in Figure 8.8 on the next page. The missing data points in the graphs

140

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

 1

 10

 100

 1000

 10000

 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

s
o

lv
in

g
 t

im
e

 (
s
e

c
o

n
d

s
)

mantissa bitsize

sqrt proved true

degree 0

degree 1

degree 2

degree 3

degree 4

degree 5

degree 6

degree 7

degree 8

optimal

(a) Solving time, as function of mantissa bit size, for maximum enclosure degree 0 to 8.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 1 2 3 4 5 6 7 8

c
o

m
p

u
te

d
 s

u
b

-p
ro

b
le

m
s

enclosure degree

sqrt proved true

precision 6
precision 7
precision 8
precision 9

precision 10
precision 11
precision 12
precision 13
precision 14
precision 16
precision 18
precision 20
precision 22
precision 23

(b) The number of computed sub-problems as function of maximum enclosure degree.

Figure 8.8: Proving the revised square root functional correctness VC for floating point

types with precision 6 to 23.

141

Chapter 8 AUTOMATED NUMERICAL THEOREM PROVER

denote that the proof was terminated prematurely as subdivision had generated a domain

box with intervals whose endpoints are double precision floating point neighbours.

Figure 8.8a shows the graphs of solving time, as a function of floating point type preci-

sion, for each degree. The final graph, labelled optimal, chooses the minimum solving

time for the given precision. Clearly, it is possible to choose a positive degree for each

precision for which the prover performs better than when using constant intervals. This

validates our expectations that the VC in (8.49) requires very precise approximation and

that higher degree enclosures give an overall benefit to the prover algorithm. The im-

provement in solving time is due to the ability of higher degree enclosures to decide the

VC over larger sub-domains, leading to less splitting and thus less computation. Since the

additional cost of computing with higher degree polynomials is lesser than the exponen-

tial cost of splitting, the overall performance was improved.

Figure 8.8b shows the number of computed sub-problems for each precision, as a func-

tion of enclosure degree. Since this number is proportional to the space complexity of

the proof the graph gives a picture of the asymptotic cost of precision and the ability of

higher degree enclosures to mitigate it. We see that, for each precision, using higher de-

grees leads to significantly smaller numbers of sub-problems, with improvements ranging

between one and three orders of magnitude. As precision is increased, higher degrees are

required for successful completion of the proof, with the full 23 bit precision proof only

succeeding when using degree 8 enclosures.

142

9 Conclusions and further

work

CONTENTS
9.1 Summary . 144

9.2 Contributions . 144

9.2.1 Defining referential transparency for statement languages 144

9.2.2 Automated generation of floating point proof obligations 145

9.2.3 Introduction of the integration operator 145

9.2.4 Introduction of interval expressions 145

9.2.5 Reduction of information loss in subdivision search algorithms . 146

9.3 Further work . 146

9.3.1 Referential transparency for statement languages 146

9.3.2 Generation of proof obligations 147

9.3.3 Integration operator . 147

9.3.4 Reduction of information loss 148

143

Chapter 9 CONCLUSIONS AND FURTHER WORK

9.1 Summary

The work presented in the previous chapters was aimed at investigating the automation of

correctness proofs for floating point programs. Many high integrity applications, such as

systems in the avionics, railway and military sectors, rely on floating point computation

for the implementation of real number algorithms. Since the values computed by such

implementations necessarily diverge from the sought real number values it becomes im-

perative to quantify these deviations in order to show that the behaviour of the resulting

system conforms with the expectations of its users.

The analyses involved with such quantification typically require a great amount of effort

due to the size and complexity of said systems. Thus, it is desirable to provide tool sup-

port that automates parts of such analyses. In our case specification is left as a manual

task, but the remaining process is automated, as far as possible.

9.2 Contributions

In the following sections we outline the contributions made and the conclusions drawn

from the results of our investigation.

9.2.1 Defining referential transparency for statement languages

Referential transparency was first defined formally by Søndergaard and Sestoft in [70] for

purely applicative languages, i. e. for expressions without side-effects. The problem of

defining referential transparency in the context of imperative languages was considered

by Daniels in unpublished work [28]. He gave the notion for an expression language

where functions are defined imperatively, i. e. using statements including assignments

and procedures. In Section 3.6 the notion is generalised to procedural languages, by treat-

ing statements as generalised expressions and lifting the standard definition accordingly.

Through this generalisation we make formal the intuition that SPARK Ada shares an es-

sential property of pure languages, which explains why the particular restrictions imposed

on the Ada subset facilitate formal analysis.

144

Chapter 9 CONCLUSIONS AND FURTHER WORK

9.2.2 Automated generation of floating point proof obligations

The problem this thesis has addressed is that of automation of correctness proofs for im-

perative floating point programs in general and SPARK Ada floating point programs in

particular. The approach taken was by automated generation of correctness theorems fol-

lowed by automated theorem proving. Part one dealt with the task of generating proof

obligations for exception freedom and functional properties, achieved by presenting, in

Chapter 3, a logical semantics which translates a program-specification pair into a cor-

rectness theorem. The process was proved sound in Theorem 3.5.1, where it was shown

that the generated correctness theorem implies the correctness theorem derived using a

structural operational semantics, closely modelling an intuitive notion of correctness. The

novelty with this work has been the simplification of the usual operational semantics made

possible due to the referential transparency of the modelled language which eliminates

the need for a top level environment that is usually introduced for bookkeeping of global

variables.

9.2.3 Introduction of the integration operator

The addition of the integration operator to the expression sublanguage made the speci-

fication language more expressive. Given in Section 5.4.1, the extension allowed us to

implement the error function in Section 5.4.2 with a specification using the exact integral

that defines the computed function.

9.2.4 Introduction of interval expressions

The extension of the specification language with interval expressions and relations was

described in Section 5.4.3. The extension allowed us to give an implementation of a

widely used algorithm for the square root function with a specification that is composable,

making it easier to reason about the program when treated as a “black box”.

To our knowledge these extensions are novel in the context of specification languages for

floating point programs and they have been documented in [36].

145

Chapter 9 CONCLUSIONS AND FURTHER WORK

9.2.5 Reduction of information loss in subdivision search algorithms

A novel approach to information loss in subdivision search algorithms presented in Chap-

ter 8. The use of polynomial interval arithmetic was intended to mitigate the so called

wrapping effects and dependency problem of traditional interval arithmetic that limit the

size and complexity of numerical theorems that standard techniques can tackle. We pro-

posed in [37], for the first time, the use of function interval arithmetic to tackle such

information loss effects in numerical theorem provers. We described the implementation

of a prototype prover in Chapter 8. We showed in Section 8.3 that we managed to achieve

full automation of the correctness theorems for our two example programs, proving very

tight functional properties, as well as floating point exception freedom. The experiments

showed that using polynomial intervals gives significantly improved performance of the

bisections search algorithm implemented in the prototype prover. Most encouraging was

the finding that both time and space complexity of the algorithm can be improved by sev-

eral orders of magnitude, confirming the hypothesis that polynomial intervals can extend

the set of floating point correctness theorems that are amenable to current automated tech-

niques.

The main contribution in this part of the work has been the fully automated functional

verification of two non-trivial floating-point programs. To our knowledge it is the first

time that such a proof has been successfully conducted for a floating point program im-

plementing a fixpoint algorithm.

9.3 Further work

9.3.1 Referential transparency for statement languages

The generalisation given in this thesis used the idea of generalised operators and ex-

pressions. this notion deserves a thoroughly formal treatment, in particular the use of

the model language PROC, rather than a abstract expression language is unsatisfactory.

Future work should address this problem, by defining an abstract syntax scheme which

supports the definition of referential transparency and state transformer semantics, but

without resorting to a concrete syntax.

A related direction is the investigation of the strength order on equivalences. There are

146

Chapter 9 CONCLUSIONS AND FURTHER WORK

various data and information flow analyses that can support stronger notions of referen-

tial transparency, but it is not clear how to include them without referring to concrete

constructs. If W-equivalence indeed yields the strongest notion possible to define for a

fully abstract syntax, then this statement should be properly formalised and proven.

9.3.2 Generation of proof obligations

A possible direction for future research is to extend the model language and logical se-

mantics to a more realistic language, possibly including more basic constructs, such as

loops with multiple exits and a fully formal treatment of exceptional behaviour.

Another direction is the addition of arrays to the language. Anecdotal evidence sug-

gests that while loops, with floating point expressions in the exit condition, are rare while

for-loops, iterating over arrays of floating point values, seem to occur often in practical

applications. The difficulty is that currently each element of an array would have to be

treated as a separate variable, making our approach feasible only for very small arrays.

As the arrays found in practice tend to be of the order of thousands of elements, it remains

an open question how to extend the techniques described in this work to handle industrial

code with arrays.

Yet another direction could investigate the potential advantages that referential trans-

parency brings to whole program optimisation for imperative languages. Recent advances

in automated parallelisation, such as the implementation of nested data parallelism in

Haskell [51, 52], have been attributed to similar properties of the language.

9.3.3 Integration operator

While the current implementation only supports integration of a single variable, it can

easily be modified to handle nested integrals. Another limitation of the current imple-

mentation is that the primitive function of the integrand needs to be nondecreasing over

the problem domain. It is an interesting question how to extend the capabilities of the

arithmetic and prover to enable arbitrary integrands while retaining the quality of the ap-

proximation.

147

Chapter 9 CONCLUSIONS AND FURTHER WORK

9.3.4 Reduction of information loss

Future work should investigate how the additional information encoded in the computed

functions can be harnessed to further improve such algorithms. One possibly fruitful

direction is the subdivision variable selection algorithm, which in optimal cases can de-

crease the base of the exponential cost of subdivision.

Another direction of potential investigations is the optimal setting of the various param-

eters of the prover and arithmetic. The precision of the basic numeric type used, the

enclosure degree and term number, the integration depth parameter and the various effort

indicators of the elementary function approximations used by the arithmetic, all affect

the performance of the prover. It is clear that no optimal setting can exist for a general

theorem, therefore it is an important question how to set these parameters on a per-sub-

problem basis, making the bisection search an adaptive algorithm.

An important direction is the investigation of which of the numerous developments of

interval evaluation in subdivision search algorithms, see e.g. [11, 12], could easily be

carried over to the case of PFE evaluation based subdivision search. It seems that most

implementations of interval-based subdivision search [45, 66] use some degree of sym-

bolic pre-processing. In many cases serious over-estimations and following information

loss can be eliminated by application of suitable rewriting rules. It is expected that signif-

icant improvements in the average performance of our prover could be achieved with the

integration of an initial symbolic pre-processing phase.

A final direction of future research could investigate the possible benefits of employing

function interval arithmetic in other decision procedures for the reals. One example is

the Metitarski [4, 5, 6] system, where polynomial bounds are also derived for expressions

involving elementary functions, but where a symbolic procedure called QEPCAD B [20]

based on cylindrical algebraic decomposition is used to decide the inequalities. Also,

the arithmetic used to derive polynomial intervals for expressions in our prover could

potentially be used to improve the approximation of real predicates in SMT systems in

general, where the prototype prover could be used as a T-solver for inequalities involving

elementary transcendental functions and integrals. The integration of interval evaluation

with a SAT solver has been described in [40]. The benefits that function intervals bring

to automated reasoning systems should carry over to interactive provers as well. Re-

cent work [29] in PVS [61, 62] on proving real number theorems involving elementary

148

Chapter 9 CONCLUSIONS AND FURTHER WORK

functions also uses polynomial bounds to improve the approximation of ranges for ex-

pressions. The arithmetic used in the prototype prover could further improve such range

estimations.

149

Bibliography

[1] Ada Reference Manual, ISO/IEC 8652:2007(E) Ed. 3. Ada Europe, 2007.

[2] Milton Abramowitz and Irene A. Stegun. Handbook of Mathematical Functions

with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover

printing, tenth gpo printing edition, 1964.

[3] Rev R. Acad, Cien Serie, A. Mat, Matt Kaufmann, and J Strother Moore. Ciencias

de la computacin / computational sciences some key research problems in automated

theorem proving for hardware and software verification, 2004.

[4] Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic prover for

the elementary functions. In AISC/MKM/Calculemus, pages 217–231, 2008.

[5] Behzad Akbarpour and Lawrence C. Paulson. Applications of metitarski in the

verification of control and hybrid systems. In HSCC, pages 1–15, 2009.

[6] Behzad Akbarpour and Lawrence C. Paulson. Metitarski: An automatic theorem

prover for real-valued special functions. J. Autom. Reasoning, 44(3):175–205, 2010.

[7] John Anton, Eric Bush, Allen Goldberg, Klaus Havelund, Doug Smith, and Arnaud

Venet. Towards the industrial scale development of custom static analyzers. In

Elizabeth Fong, editor, Proceedings of the Static Analysis Summit, number 500-262,

pages 36–40. National Institute of Standards and Technology, 2006.

[8] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. Slam and

static driver verifier: Technology transfer of formal methods inside microsoft. In In:

IFM. (2004, pages 1–20. Springer, 2004.

[9] John Barnes. The spark way to correctness is via abstraction. Ada Lett., XX(4):69–

79, 2000.

150

Chapter 9 BIBLIOGRAPHY

[10] John Barnes. High Integrity Software: The SPARK Approach to Safety and Security.

Addison-Wesley, 2 edition, April 2003.

[11] Heikel Batnini, Claude Michel, Michel Rueher, and Université De Nice Sophia-

antipolis. Mind the gaps: A new splitting strategy for consistency techniques. In

In Proceedings of Principles and Practice of Constraint Programming (CP 2005,

pages 77–91. Springer, 2005.

[12] Frédéric Benhamou, Frédéric Goualard, Laurent Granvilliers, and Jean-François

Puget. Revising hull and box consistency. In Proceedings of the 1999 interna-

tional conference on Logic programming, pages 230–244, Cambridge, MA, USA,

1999. Massachusetts Institute of Technology.

[13] Christian Bessiere, editor. Principles and Practice of Constraint Programming -

CP 2007, 13th International Conference, CP 2007, Providence, RI, USA, Septem-

ber 23-27, 2007, Proceedings, volume 4741 of Lecture Notes in Computer Science.

Springer, 2007.

[14] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software

model checker blast: Applications to software engineering. INT. J. SOFTW. TOOLS

TECHNOL. TRANSFER, 2007.

[15] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI. ACM,

2003.

[16] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne,

Antoine Miné, David Monniaux, and Xavier Rival. Design and implementation of a

special-purpose static program analyzer for safety-critical real-time embedded soft-

ware. In The essence of computation: complexity, analysis, transformation, pages

85–108. Springer-Verlag New York, Inc., New York, NY, USA, 2002.

[17] Sylvie Boldo. Floats & Ropes: a case study for formal numerical program verifica-

tion. In 36th International Colloquium on Automata, Languages and Programming,

volume 5556 of Lecture Notes in Computer Science - ARCoSS, pages 91–102, Rho-

dos, Greece, July 2009. Springer.

151

Chapter 9 BIBLIOGRAPHY

[18] Sylvie Boldo and Jean-Christophe Filliâtre. Formal verification of floating-point

programs. In Proceedings of 18th IEEE International Symposium on Computer

Arithmetic, Montpellier, France, June 2007.

[19] Sylvie Boldo, Jean-Christophe Filliâtre, and Guillaume Melquiond. Combining coq

and gappa for certifying floating-point programs. In Calculemus ’09/MKM ’09:

Proceedings of the 16th Symposium, 8th International Conference. Held as Part of

CICM ’09 on Intelligent Computer Mathematics, pages 59–74, Berlin, Heidelberg,

2009. Springer-Verlag.

[20] Christopher W. Brown. Qepcad b: a program for computing with semi-algebraic

sets using cads. SIGSAM Bull., 37:97–108, December 2003.

[21] Bernard Carré and Jonathan Garnsworthy. Spark – an annotated ada subset for

safety-critical programming. In Proceedings of the conference on TRI-ADA ’90,

TRI-Ada ’90, pages 392–402, New York, NY, USA, 1990. ACM.

[22] Byron Cook, Daniel Kroening, and Natasha Sharygina. Cogent: Accurate theorem

proving for program verification. In Proceedings of CAV 2005, volume 3576 of

Lecture Notes in Computer Science, pages 296–300. Springer, 2005.

[23] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-

ables of a program. In Conference Record of the Fifth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 84–97, Tuc-

son, Arizona, 1978. ACM Press, New York, NY.

[24] Patrick Cousot. The verification grand challenge and abstract interpretation. In Ver-

ified Software: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3 Conference,

VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Revised Selected Papers

and Discussions, pages 189–201, Berlin, Heidelberg, 2008. Springer-Verlag.

[25] Patrick Cousot and Radhia Cousot. Modular static program analysis. In Proceedings

of Compiler Construction, pages 159–178. Springer-Verlag, 2002.

[26] Patrick Cousot and Radhia Cousot. On abstraction in software verification. In CAV

’02: Proceedings of the 14th International Conference on Computer Aided Verifica-

tion, pages 37–56, London, UK, 2002. Springer-Verlag.

152

Chapter 9 BIBLIOGRAPHY

[27] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,

David Monniaux, and Xavier Rival. The ASTREÉ analyzer. In Shmuel Sagiv, editor,

ESOP, volume 3444 of Lecture Notes in Computer Science, pages 21–30. Springer,

2005.

[28] Anthony C. Daniels and Meanings Of Programs. Referential transparency in imper-

ative languages.

[29] Marc Daumas, David Lester, and Cear Munoz. Verified real number calculations: A

library for interval arithmetic. IEEE Transactions on Computers, 58:226–237, 2009.

[30] Marc Daumas and Guillaume Melquiond. Generating formally certified bounds on

values and round-off errors. In Proceedings of 6th Conference on Real Numbers and

Computers, pages 55–70, Schloss Dagstuhl, Germany, 2004.

[31] Marc Daumas and Guillaume Melquiond. Certification of bounds on expressions

involving rounded operators. ACM Trans. Math. Softw., 37(1):1–20, 2010.

[32] Alain Deutsch. Static verification of dynamic properties. Technical report,

PolySpace Technologies, 2003. Accessed on 18th April 2010.

[33] Ellie D’hondt and Prakash Panangaden. Quantum weakest preconditions. Mathe-

matical Structures in Computer Science, 16:429–451, 2006.

[34] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of

programs. Commun. ACM, 18(8):453–457, 1975.

[35] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[36] Jan Andrzej Duracz, Amin Farjudian, and Michal Konečný. Enclosure constraints

for floating point software verification. In Proceedings of CFV 2009 in Grenoble,

2009.

[37] Jan Andrzej Duracz and Michal Konečný. Polynomial function enclosures and float-

ing point software verication. In Proceedings of CFV 2008 in Sydney, pages 56–67,

2008.

[38] Pär Emanuelsson and Ulf Nilsson. A comparative study of industrial static anal-

ysis tools. Electronic Notes in Theoretical Computer Science, 217:5 – 21, 2008.

153

Chapter 9 BIBLIOGRAPHY

Proceedings of the 3rd International Workshop on Systems Software Veri[fi]cation

(SSV 2008).

[39] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, editor, Mathe-

matical Aspects of Computer Science, volume 19 of Proceedings of Symposia in Ap-

plied Mathematics, pages 19–32, Providence, Rhode Island, 1967. American Math-

ematical Society.

[40] Martin Fränzle, Christian Herde, Tino Teige, Stefan Ratschan, and Tobias Schubert.

Efficient solving of large non-linear arithmetic constraint systems with complex

boolean structure. Journal on Satisfiability, Boolean Modeling and Computation,

1:209–236, 2007.

[41] H. H. Goldstine and J. von Neumann. Planning and coding of problems for an elec-

tronic computing instrument. In John von Neumann: Collected Works, volume 5.

Pergamon Press, 1963.

[42] Saul Gorn. Specification languages for mechanical languages and their processors

a baker’s dozen: a set of examples presented to asa x3.4 subcommittee. Commun.

ACM, 4(12):532–542, 1961.

[43] E. Goubault, M. Martel, and S. Putot. Asserting the precision of floating-point com-

putations: a simple abstract interpreter. In European Symposium on Programming,

LNCS 2305, pages 209–212. Springer Verlag, 2002.

[44] Eric Goubault. Static analyses of floating-point operations. In In SAS01, volume

2126 of LNCS, pages 259–339. Springer, 2001.

[45] L. Granvilliers and F. Benhamou. Algorithm 852: RealPaver: An interval solver

using constraint satisfaction techniques. ACM Transactions on Mathematical Soft-

ware, 32(1), 2006.

[46] D. Guaspari, C. Marceau, and W. Polak. Formal verification of ada programs. IEEE

Trans. Softw. Eng., 16(9):1058–1075, 1990.

[47] C. A. R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12(10):576–585, October 1969.

154

Chapter 9 BIBLIOGRAPHY

[48] Michael Huth. Some current topics in model checking. Int. J. Softw. Tools Technol.

Transf., 9(1):25–36, 2007.

[49] Andrew Ireland, Bill J. Ellis, Andrew Cook, Roderick Chapman, and Janet Barnes.

An integrated approach to high integrity software verification. Journal of Automated

Reasoning, 36(4):379–410, 2006.

[50] C. B. Jones. The early search for tractable ways of reasoning about programs. IEEE

Annals of the History of Computing, 25, 2003.

[51] Simon L. Peyton Jones, Roman Leshchinskiy, Gabriele Keller, and Manuel M. T.

Chakravarty. Harnessing the multicores: Nested data parallelism in haskell. In

Ramesh Hariharan, Madhavan Mukund, and V. Vinay, editors, FSTTCS, volume 2 of

LIPIcs, pages 383–414. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2008.

[52] Gabriele Keller, Manuel M. T. Chakravarty, Roman Leshchinskiy, Simon L. Peyton

Jones, and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.

In Paul Hudak and Stephanie Weirich, editors, ICFP, pages 261–272. ACM, 2010.

[53] Leslie Lamport. win and sin: Predicate transformers for concurrency. ACM Trans-

actions on Programming Languages and Systems, 12(3):396–428, 1990.

[54] J. Mccarthy. Towards a mathematical science of computation. In Proc. Information

Processing ’62, pages 21–28. North-Holland, 1963.

[55] A. Miné. Relational abstract domains for the detection of floating-point run-time

errors. In ESOP’04, volume 2986 of LNCS, pages 3–17. Springer, 2004.

[56] David Monniaux. The pitfalls of verifying floating-point computations. ACM Trans.

Program. Lang. Syst., 30(3):1–41, 2008.

[57] R. E. Moore. Interval Analysis. Prentice-Hall, Englewood Cliffs N. J., 1966.

[58] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic predicate trans-

formers. ACM Transactions on Programming Languages and Systems, 18:325–353,

1995.

[59] P. Naur. Proof of algorithms by general snapshots. BIT, 6(4):310–316, 1966.

155

Chapter 9 BIBLIOGRAPHY

[60] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[61] S. Owre, J. M. Rushby, , and N. Shankar. PVS: A prototype verification system.

In Deepak Kapur, editor, 11th International Conference on Automated Deduction

(CADE), volume 607 of Lecture Notes in Artificial Intelligence, pages 748–752,

Saratoga, NY, jun 1992. Springer-Verlag.

[62] Sam Owre, John Rushby, N. Shankar, and David Stringer-Calvert. PVS: an experi-

ence report. In Dieter Hutter, Werner Stephan, Paolo Traverso, and Markus Ullman,

editors, Applied Formal Methods—FM-Trends 98, volume 1641 of Lecture Notes in

Computer Science, pages 338–345, Boppard, Germany, oct 1998. Springer-Verlag.

[63] G. D. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, University of Aarhus, 1981.

[64] Sylvie Putot, Eric Goubault, and Matthieu Martel. Static analysis-based validation

of floating-point computations. LNCS, 2991:306–313, 2004.

[65] B. Randell. The Origins of Digital Computers: Selected Papers (Monographs in

Computer Science). Springer-Verlag, 2nd edition, 1975.

[66] Stefan Ratschan et al. RSolver. http://rsolver.sourceforge.net, 2004. Soft-

ware Package.

[67] Sriram Sankaranarayanan, Michael Colon, Henny Sipma, and Zohar Manna. Ef-

ficient strongly relational polyhedral analysis. In E. Allen Emerson and Kedar S.

Namjoshi, editors, Verification, Model Checking, and Abstract Interpretation: 7th In-

ternational Conference, (VMCAI), volume 3855 of lncs, pages 111–125, Charleston,

SC, January 2006. Springer Verlag.

[68] IEEE Computer Society. IEEE Std 754-1985. Institute of Electrical and Electronics

Engineers, New York, 1985.

[69] IEEE Computer Society. ANSI/IEEE Std 854-1987. Institute of Electrical and Elec-

tronics Engineers, New York, 1987.

[70] Harald Sondergaard and Peter Sestoft. Referential transparency, definiteness and

unfoldability. Acta Inf., 27:505–517, January 1990.

156

Chapter 9 BIBLIOGRAPHY

[71] Alan M. Turing. Checking a large routine. In Report of a Conference on High Speed

Automatic Calculating Machines, pages 67–69, 1949.

[72] A. van Wijngaarden. Numerical analysis as an independent science. BIT, 6(1):66–

81, 1966.

[73] M. Warmus. Calculus of approximations. Bull. Acad. Polon. Sci. CL. III, IV(5):253–

259, 1956.

[74] M. Warmus. Approximations and inequalities in the calculus of approximations.

classification of approximate numbers. Bull. Acad. Polon. Sci., Ser. math. astr. et

phys., IX(4):241–245, 1961.

157

