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Abstract 

Microelectronics integration continuously follows the trend of miniaturisation for 

which the technologies enabling fine pitch interconnection are in high demand. The 

recent advancement in the assembly of Hybrid Pixel Detectors, a high resolution 

detecting and imaging device, is an example of where novel materials and processes 

can be applied for ultra-fine pitch interconnections. For this application, indium is 

often used for the fine pitch bump bonding process due to its unique properties that 

make it especially suitable, in particular in a cryogenic environment where some types 

of detector have to serve. Indium bumps are typically fabricated through vacuum 

evaporation at the wafer level; however, this thesis investigates an alternative low cost 

manufacturing process at the wafer scale for the deposition of indium micro-bumps 

through electroplating. The work has placed its emphasis on the requirements of 

future technologies which will enable a low temperature (<150
o
C), high density 

interconnection (> 40,000 IOs/cm
2
) with a high throughput and high production yield.  

 

This research is a systematic investigation of the wafer-scale indium bumping process 

through electrodeposition using indium sulphamate solution. An intensive 

experimental study of micro-bump formation has been carried out to elaborate the 

effects of two of the main electroplating factors that can significantly influence the 

quality of bumps in the course of electrodeposition, namely the current distribution 

and mass transport. To adjust the current density distribution, various waveforms of 

current input, including direct current (DC), unipolar pulse current and bipolar pulse 

reverse current, were employed in the experiments. To assist mass transportation prior 

to or during electroplating, acoustic agitation including ultrasonic agitation at 30 kHz 

frequency as well as megasonic agitation at 1 MHz, were utilised.  

 

The electrochemical properties of the indium sulphamate solution were first 

investigated using non-patterned plain substrates prior to indium bumping trials. This 

provided understanding of the microstructural characteristics of indium deposits 

produced by electroplating and, through cathodic polarisation measurements, the 

highest current density suitable for electrodeposition was achieved as approximately 

30 mA/cm
2
 when electroplating was carried out at room temperature and with no 

agitation applied. The typical surface morphology of DC electroplated indium 

contained a granular structure with a surface feature size as large as 10 µm. Pulse and 

pulse reverse electroplating significantly altered the surface morphology of the 



 

II 

 

deposits and the surface became much smoother. By introducing acoustic agitation, 

the current density range suitable for electrodeposition could be significantly 

expanded due to the greater mass transfer, which led to a higher speed of deposition 

with high current efficiency.  

 

Wafer-scale indium bumping (15 m to 25 m diameter) at a minimum pitch size of 

25 µm was successfully developed through electroplating trials with 3 inch test wafers 

and subsequently applied onto the standard 4 inch wafers. The results demonstrate the 

capability of electroplating to generate high quality indium bumps with ultrafine pitch 

at a high consistency and yield. To maximise the yield, pre-wetting of the ultrafine 

pitch photoresist patterns by both ultrasonic or megasonic agitation is essential 

leading to a bumping yield up to 99.9% on the wafer scale. The bump profiles and 

their uniformity at both the wafer and pattern scale were measured and the effects of 

electrodeposition regimes on the bump formation evaluated. The bump uniformity 

and microstructure at the feature scale were also investigated by cross-sectioning the 

electroplated bumps from different locations on the wafers. The growth mechanism of 

indium bumps were proposed on the basis of experimental observation. It was found 

that the use of a conductive current thief ring can homogenise the directional bump 

uniformity when the electrical contact is made asymmetrically, and improve the 

overall uniformity when the electrical contact is made symmetrically around the 

periphery of the wafer. Both unipolar pulse electroplating and bipolar pulse reverse 

electroplating improved the uniformity of the bump height at the wafer scale and 

pattern scale, and the feature scale uniformity could be significantly improved by 

pulse reverse electroplating. The best uniformity of 13.6% for a 4 inch wafer was 

achieved by using pulse reverse electroplating. The effect of ultrasonic agitation on 

the process was examined, but found to cause damage to the photoresist patterns if 

used for extended periods and therefore not suitable for use throughout indium 

bumping. Megasonic agitation enabled high speed bumping without sacrifice of 

current efficiency and with little damage to the photoresist patterns. However, 

megasonic agitation tended to degrade some aspects of wafer scale uniformity and 

should therefore be properly coupled with other electroplating parameters to assist the 

electroplating process.  

 

Key Words: Ultrafine pitch bumping; Indium bump bonding; Electrodeposition / 

Electroplating; Direct current; Pulse electroplating; Pulse reverse electroplating; 

Bump uniformity; Bumping yield; Ultrasonic agitation; Megasonic agitation; 

Wafer/Pattern/Feature scale.   
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Chapter 1  Background and Introduction 

 

 

 

1.1 Background to Wafer Level Interconnection  

Microelectronic packaging is the science of integrating individual electrical 

components, such as transistors, resistors, capacitors and diodes, into functional 

circuits through effective and reliable interconnections [1, 2]. Figure 1-1 demonstrates 

the typical hierarchy of microelectronic packaging on different levels. The zero level 

packaging involves in chip metallisation and provisions for chip package 

interconnections, which is also called wafer level packaging. The first level packaging 

is to establish interconnections between the micro-chip and a substrate which can 

form either single or multiple chip modules. Then, assembly of chip modules and 

other components on printed circuit board (PCB) is referred as the second level 

packaging. The third level packaging includes several PCBs plugged into a 

motherboard forming a sophisticated device, e.g. a computer.  

 

Figure 1-1 Typical hierarchy of microelectronic packaging levels [1]. (Reproduced with 

permission from Ref. 1)
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For the wafer level packaging, the mainstream interconnection technologies 

currently employed in semiconductor industry include wire bonding, tape automated 

bonding (TAB) and flip chip solder bonding. Wire bonding is performed by attaching 

a fine wire between the I/Os around the perimeter of the chip and the associated 

packaging pins while TAB involves in additional bumping on the chip and substrate. 

Flip chip utilises area arrayed solder bumps on the entire chip area corresponding to 

the I/Os to match the connection pins on the substrate. The term flip chip is derived 

from the joining process that the chip carrying solder bumps needs to be faced-down 

to the substrate. Flip chip can offer distinct advantages including higher packaging 

density, shorter interconnect leading to faster signal response and uniform power and 

heat distribution [2]. Although the chip market is currently dominated by wire 

bonding and TAB, flip chip has been recognised as the development trend of wafer 

level interconnection technique for next generation electronics products (Figure 1-2) 

[3].  

 

 

Figure 1-2 Development of wafer level interconnection technologies. 

 

1.2 Indium Bump Bonding Used in Pixel Detectors 

The demand for miniaturisation in microelectronic packaging continuously drives the 

pitch size of interconnections to shrink to that of the bump pitch. For area array flip 

chip on board, this is projected to decrease to 80 µm by 2015 according to the 

International Technology Roadmap for Semiconductors (ITRS) 2005 [3]. The 

emerging wafer level packaging application is able to achieve ultrafine pitch 

interconnection beyond the current industrial standard by virtue of the advantages of 
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the rigid substrate. In particular, assembly of Hybrid Pixel Detectors used for imaging 

devices (e.g. X-ray or infrared radiation detection) demonstrates the leading-edge 

ultrafine pitch interconnection technology to which indium bump bonding has been 

successfully applied.  

1.2.1 Background to Pixel Detector Applications 

The development of Hybrid Pixel Detectors in imaging applications in recent years 

has widely stretched the interconnection technologies. It was originally motivated by 

the demands from high energy physics research which are to simultaneously fulfil the 

requirements of investigating short-lived particles and coping with continuously 

increasing energy level and interaction rate of modern devices. In order to track the 

decay processes of the particles, sometimes even in the picosecond range, the so-

called Hybrid Pixel Detector needs to have a fast enough response speed to 

distinguish different types of particles passing through the decay point. The pixel 

stands for the smallest sensing element which is able to grab information and deliver 

it to the readout circuitry. The pixel detector also needs to have enough sensing 

elements available to achieve the high accuracy necessary for analysis. The 

requirement of accuracy necessitates a very small size for each individual pixel and 

therefore, large numbers must be arrayed to cover the area of interest [4]. Moreover, 

pixel detectors have provided support in many applications other than high energy 

physics, for example, X-Ray detection and infrared imaging. As shown in Figure 1-3, 

the assembly of a pixel detector requires direct connection between the sensor chip 

and readout circuit chips which is an ASIC (Application Specific Integrated Circuit). 

A hybrid pixel detector typically consists of millions of sensor elements and readout 

circuit chips which are fabricated separately and then assembled together. Both the 

sensor chips and readout ASICs are processed at the wafer level. The idea can be 

traced back to 1985 when it was pointed out by Gaalame that a large array of photon 

detectors could be realised by connecting sensor chips to silicon readout integrated 

circuits through bump bonding techniques [5]. However, the integrated circuit and 

packaging technology were not mature enough to fabricate large area array detectors 

for high energy physics usage at that time. The first pixel detector was realised 

through 38 µm diameter solder bump connections, by the Omega project launched by 
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CERN (European Laboratory for Particle Physics) in the early 1990s [6], and the 

encouraging testing results stimulated investigators to explore this method further.  

 

                    

Figure 1-3 Structure of typical pixel detector unit. 

 

The evolution of pixel detectors has been reinforced by the advancement in 

integrated circuit technology and miniaturisation of electronic packaging. To achieve 

a high manufacturing efficiency and high yield, the hybrid integration method has 

been employed. Relatively small detector assemblies, which are called modules, are 

fabricated independently on the wafer level and then arranged in a „mosaic‟ to fit into 

the sensitive area defined by the experiments.  

Given the huge number of interconnections within each module and high level 

of integration, bump bonding is the only available technique to meet the requirements. 

For example, the current state-of-the-art ATLAS pixel detectors used in CERN have 

approximately 2000 modules and for each of the modules, 16 readout chips have to be 

bonded onto a single sensor unit. The pixel in the module is 50 × 400 µm
2
 in size and 

the connection density is about 5,000 cm
-2

. Each of the sensors is approximately 2 × 6 

cm
2
 in area and is subdivided into about 50,000 pixels. Thus, the total pixels in the 

whole detector exceed 10
8 

and each of the pixels are bonded through solder bumps 

with a 25 µm diameter and a minimum pitch size of 50 µm [7-9]. Such high density 

interconnection is beyond the limit of current main stream industrial standards and 

can only be realised through precisely controlled wafer level bump bonding. 

Furthermore, the next generation application is moving to a less than 50 µm pitch 
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interconnection and this result in more than 40,000 I/Os per cm
2
, which poses extreme 

challenges to bump bonding technology.  

In addition to the requirement of very high interconnection density, the 

bumping process must have a very high yield to ensure the productivity of the large 

number of modules. Bearing the numerous quantities of bumps in mind, even a very 

small percentage of failed bumps will cause the pixel detector to malfunction. 

Moreover, reliability issues need to be considered at the design stage to avoid failure 

of module assemblies. Currently, the most popular pixel detectors are based on silicon 

processing technology, i.e. the ASIC circuit chip and sensor chip are fabricated based 

on silicon wafers. Because the sensor and ASIC chips are fabricated separately, other 

semiconductor materials rather than silicon could be employed as the substrate for the 

sensor chip. For example, pixel detectors based on GaAs and CdTe have been 

developed to fulfil new demands in X-Ray, γ-ray and infrared detection applications 

[10-13]. However, mismatch of the CTE (Coefficient of Thermal Expansion) between 

these different materials will be a noticeable reliability issue during the assembly 

process and the product life. For some types of device which need to perform under 

cryogenic environments, such as liquid nitrogen, the bump bonding process is crucial 

to achieve a successful assembly.  

Several advantages make indium bump bonding the primary solution for pixel 

detector assemblies. Firstly, it allows a low temperature process. The melting point of 

indium is 156.6 °C which is lower than most of the tin-based lead-free solders (e.g. 

SnAg3.0Cu0.5 220 ºC, SnCu0.7 227 ºC). Robust bonding could be easily achieved at 

room temperature or, in the occasion of reflowed indium bumps, the package will still 

bear less thermal impact than using most of the lead-free solders. Secondly, indium 

can stay ductile at very low, even liquid helium temperatures, thus, indium bump 

bonded devices could still perform well in cryogenic environments and feature high 

reliability. This makes indium bump bonding the only choice for devices needed to be 

used in cryogenic conditions. Thirdly, indium bump bonding is capable of fabrication 

at an ultra-fine pitch with high yield: a comparison investigation was conducted by 

the Fermi National Accelerator Laboratory and the current achievable minimum size 

of indium bump through evaporation is 12 m diameter, height of 8-10 m at 18 m 

pitch [14]. Moreover, for X-Ray diffraction, spectroscopy, microscopy and low 

energy experiments, the pixel detectors require low signal to noise level within the 4 
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keV to 20 keV energy band. Indium does not have Kα(1,2), K, Lα(1,2), L(1-2), Mα1 

emission lines within the detected energy band, which indicates a low „noise‟ level of 

detectors.  

1.2.2 Wafer Bumping Techniques 

The crucial step for bump bonding technology is how to effectively deliver a uniform 

quantity of material onto the desired areas of the wafer, i.e. the wafer bumping 

process. The cost, efficiency and yield need to be considered when choosing the 

bumping technique. So far, the three most mature techniques are evaporation, stencil 

printing and electroplating. The technical features, advantages and disadvantages are 

discussed in the following section.  

1.2.2.1 Evaporation 

Evaporation wafer bumping has matured through over around 50 year‟s industrial 

experience and was invented by IBM in the 1960s. The process is based on vacuum 

physical vapour deposition and is also named as the C4 (Controlled Collapse Chip 

Connection) process by IBM [15-17]. Initially, a metal mask made of molybdenum is 

necessary to define the area for the solder bumps during the deposition. Molybdenum 

is used because of its excellent dimensional stability at high temperature. However, to 

maintain the desired stability, the bump dimensions and pitch sizes are limited 

depending on the size and thickness of the molybdenum mask. To achieve a finer 

pitch size, a photoresist pattern has been utilised to replace the metal mask [18]. Dry 

film or liquid photoresist is laminated or spin coated on the wafer and exposed under 

UV light to create patterns with a reusable photomask for which the resolution is 

much better than the molybdenum mask. The exposed area is removed or retained 

depending on whether the photoresist is „negative‟ or „positive‟. The metal is then 

deposited by evaporation covering all areas of the wafer and resist. After evaporation, 

the photoresist pattern is removed by solvent, lifting off the unwanted material so that 

the metal remains on the bond pads. Finally, the solder bumps are reflowed to form 

the truncated sphere ball shape.  

 



Chapter 1 Background and Introduction 

7 

 

 

 

Figure 1-4 Schematic of the principle of the stencil printing bumping process. 

 

1.2.2.2 Stencil Printing  

Stencil printing for wafer bumping is derived from its application for surface mount 

assembly. To start the process, a stencil with apertures, which may be made of metal 

or polymeric materials, is placed on the printer frame. The apertures in the stencil 

correspond to the bumping area. A wafer needs to be placed underneath and aligned 

with the stencil. The solder bump materials are deposited in a paste which is evenly 

applied on the stencil. A metal squeegee travels along the stencil surface with 

controlled speed and angle, and extrudes the solder paste through the apertures onto 

the wafer surface (Figure 1-4). After the wafer is released from the stencil, the bumps 

need to be reflowed to form spheres. This method has been widely used in wafer level 

packaging, but the pitch size is limited at around 100 µm [19-23].   

1.2.2.3 Electroplating  

Electroplating has been playing a significant role in the increasing development of 

microelectronics manufacturing since the 1960s and has mainly featured as the 

through mask electroplating of magnetic heads, through mask electroplating of solder 

bumps, dual-damascene copper electroplating for advanced chips and through hole 

filling for 3-D interconnection [24-29].  

Unlike the previous two „dry‟ wafer bumping processes, electroplating 

involves a „wet‟ electrochemical step to deposit the solder bumps. After the necessary 

preparation, a blanket layer of metal is deposited on the wafer acting as „seed layer‟ 

for bump growth. The seed layer needs to be very thin and to cover all the area of the 
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wafer. After that, the wafer is covered with a patterned photoresist through a carefully 

controlled lithography process. The photoresist pattern acts as a mask to selectively 

expose the conductive area to the electrolyte. Then, the wafer is immersed into an 

appropriate electrolyte and acts as the cathode. A soluble or insoluble anode is utilised 

to complete the circuitry. Normally, electrical connection is made through the edge of 

the wafer. After the bump deposition is complete, the photoresist pattern is removed 

and the seed layer needs to be etched away. Once the solder bump is finally isolated, a 

reflow step is performed to form a spherical solder ball [27, 30-32].  

1.2.2.4 Comparison of Current Techniques 

Evaporation is justified as a low efficiency, costly and limited method due to the 

following reasons. Firstly, only 5% of material is deposited on the usable sites and 95% 

of materials end up on the evaporator wall and masks. The cost of the raw materials 

and cleaning of the waste make this method expensive. Secondly, the issues of CTE 

mismatch between the metal mask and wafer deteriorates when the pitch size 

decreases and wafer size increases. The photoresist mask is the only option for fine 

pitch bumping. Thirdly, because of the relatively low vapour pressure of tin, the 

evaporation rate of tin is much slower than other solder materials, such as lead, copper 

and silver. The evaporation method is usually applied for high lead content solder 

bumps, such as 95Pb5Sn and 97Pb3Sn. It is not suitable for tin-rich solder bumps as it 

is unaffordable and time-consuming [1, 18].  

Stencil printing offers a low-cost, automated, highly flexible and re-workable 

solution for wafer bumping. However, manufacturing of high resolution stencils 

becomes difficult when the pitch size decreases. Currently, the pitch size of the stencil 

is limited to around 120 µm, and some specific applications can achieve 100 µm [21, 

22]. Another reason which stops stencil printing from being applied to high density 

interconnection applications is the relatively poor yield. Rework often becomes 

necessary when the pitch size in the stencil hits the limit [21].  

The main advantage of electroplating exists in the capability of depositing 

ultra-fine pitch solder bumps through a simple lithography process and electroforming. 

Electroplating has been identified as a cost-effective, reliable, and scalable method to 

generate ultra-fine pitch solder bumps with very high yield. Removal of the seed layer 
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after electroplating may pose difficulties in some applications and the bump 

uniformity will be the main problematic issue when the wafer size is enlarged [32]. 

1.2.3 Bump Bonding Techniques Used in Pixel Detectors 

Currently, two types of bump bonding techniques are being employed in pixel 

detector assemblies, which are electroplated eutectic tin-lead solder bumps (e.g. 

Sn63Pb37) and indium bumps deposited by evaporation.  

1.2.3.1 Eutectic Sn-Pb Solder Bump Bonding 

Eutectic tin-lead solder bumping was an ideal candidate for microelectronics and has 

been largely utilised in SMT (Surface Mounting Technology), BGA (Ball Grid Array) 

on board level packaging and bump bonding on wafer level packaging. As mentioned 

above, eutectic Sn-Pb solder deposited through evaporation is not cost-effective, and 

stencil printing struggles with the ultra-fine pitch bumping. Electroplating becomes 

the only technique to apply eutectic Sn-Pb solder bumps for assemblies of pixel 

detectors. However, under the impact of RoHS (Restriction of Hazardous Substances), 

not all of the pixel detectors are excluded from the regulations and for long-term 

development, Pb content solder bumps will not be tolerated. Moreover, reflow of the 

solder bumps at over 250 ºC is necessary to form smooth truncated spheres and 

another reflow is needed to form the joint with other parts. Thus, reliability becomes a 

serious issue because of the thermal shock during the reflow processes, especially in 

the case of different materials used for the sensor and readout chips [8].  

1.2.3.2 Indium Bump Bonding 

Indium is a crystalline, silvery white metal, which is very soft (Hardness 0.9 HB, 

softer than lead), ductile and diamagnetic. It is most frequently associated with zinc 

and is commercially recovered from sphalerite residue. It has low melting point 

(156.6 °C), high boiling point (2072 °C) and thus a low vapour pressure. The molten 

indium metal wets clean glass, glazed ceramics, metals and certain metal oxides. 

Indium has a low coefficient of friction and antiseizure properties which allow its 

wide application in thin-films to form lubricated layers such as coated bearings in 

high performance aircraft [33]. With the development of the electronics industry, 

indium has been commonly used as a p-type doping agent in semiconductors. Its 
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current primary application is to form transparent electrodes from indium tin oxide 

(ITO) in liquid crystal displays (LCD) [34]. 

Indium bump bonding has been developed on the basis of evaporation to 

achieve a low temperature, high density contact, ultra-fine pitch and robust 

interconnection for pixel detectors [7, 14, 35-37]. A typical indium bump bonding 

process is shown in Figure 1-5. Two photolithography steps are used to create the 

mask for evaporation and an indium bump needs to be deposited on both of the sensor 

and ASIC readout chip sides. Cr as the under bump metallisation (UBM) is 

evaporated onto the bond pads in the same vacuum cycle. The opening for indium 

deposition can be as low as 30 µm, but the thickness of indium is restricted to less 

than 10 µm, because thicker indium will pose difficulties in the following lift-off step. 

Steps a) to e) are repeated exactly on both of the sensor and readout chips. Then, 

indium-to-indium bonding is formed by compression at room temperature leaving a 

10 µm gap between the chips. Although it has been tested that the best bonding can be 

achieved at 100 ºC, which means none of the parts in the whole package will be 

exposed to temperature over 100 ºC, room temperature bonding is also robust enough 

for reliable interconnection [35]. This room temperature bonding process was initially 

developed for applications which are very sensitive to thermal impact, e.g. infrared 

detectors.  

Another indium bump bonding process involving reflow has also been 

developed for applications which are not sensitive to moderate thermal exposure and 

to increase the distance between the sensor and readout chips after bonding. The 

process features two lithography steps for the UBM sputtering and indium 

evaporation respectively. The majority of indium is deposited onto the sensor chip 

side, while only a thin indium layer (1~2 µm) is evaporated onto the readout chip to 

improve the adhesion. The opening of the photoresist mask for indium evaporation 

needs to be enlarged to deposit enough material at the limited thickness so that when 

it is reflowed the requested ball diameter is achieved. Afterwards, the sensor chip 

carrying indium bumps is reflowed at about 180 ºC to form smooth spherical indium 

bumps. Finally, flip chip attachment is conducted at ~200 ºC while the bumps are 

melted. Another advantage of this process is the self-alignment between the two chips 

during the final bonding driven by surface tension [36-38].  
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(a)  

(b)  

 

(c)  

 

(d)  

 

(e)  

 

(f)  

Figure 1-5 Schematic of typical indium bump bonding process. 
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However, the multiple evaporation and lithography steps make the process 

complicated and expensive while only special applications justify using this 

technology. Material cost is noticeable because indium is a noble metal and the 

majority of material is wasted in the evaporation process. Sputtering and evaporation 

necessitate vacuum operation conditions requiring high capital investment in facilities 

in the early stage, which is not flexible and efficient. As for the removal of photoresist, 

because the lift-off resist is not soluble in acetone and the dimension of the deposited 

metal is quite small, the removal process commonly needs many hours to complete. 

Moreover, indium deposited on the unwanted photoresist area can possibly re-deposit 

on the wafer which will seriously deteriorate the yield. So, the evaporation based 

indium bump bonding is not attractive to industry from the point of view of scaling up 

the production. Although it has been successfully applied to fabricate pixel detectors, 

e.g. the ATLAS detector in CERN, it is still worthy to explore alternative processes 

which could be more flexible, productive and economical.  

1.3 Aims and Objectives of the Research 

The research presented is dedicated to investigate an alternative manufacturing 

method for the deposition of indium bumps at the wafer level based on the use of 

electroplating. This research is based on a collaboration with Rutherford Appleton 

Laboratory (RAL) in the UK and is projected to fabricate indium bumps for the 

assembly of a type of X-ray detector. Electroplating is promising as it may offer 

lower-cost, the capability of ultra-fine pitch bumping and high yield. As shown in 

Figure 1-6, the proposed electroplating procedure only requires one simple 

photolithography step. A blanket thin seed layer is deposited first onto the wafer after 

cleaning and passivation. Once the seed layer is deposited, a thick photoresist is spun 

and developed to form the required pattern. Next, indium bumps are electroplated 

onto the seed layer through the pattern sequentially. Then the photoresist is removed 

with a solvent and the seed layer is stripped except for the portion under the bumps. 

Finally, the wafer is reflowed to form the truncated spherical indium bumps ready for 

flip chip assembly. This process can be applied for bumping on both of the sensor and 

ASIC chips which are bonded at room temperature.  

Electroplating of indium bumps has been pioneered by a few researchers. 

Merken and John et al [36, 39] conducted a serial experimental study of electroplating 
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indium bumps through InCl3:H2O aqueous solution on 3 inch wafers for hybrid 

integration of infrared sensitive detectors. Electroplated indium bumps with 13 µm 

diameter and 25 µm pitch were successfully assembled in a 256 × 256 pixel array 

module. Another study conducted by Jiang et al [38] was also used for the fabrication 

of infrared focal plane arrays (FPA). In that work, indium electroplating was 

performed in indium sulphamate solution at room temperature and the minimum size 

of bump was 11 µm on 25 µm pitch with a stack of Ti/Pt/Au UBM was deposited by 

e-beam evaporation first.  

Although the electroplating approach for indium bumping on the wafer level 

has been successfully demonstrated, fundamental studies of the electroplated indium 

bumping process are still missing in the literature. It has been pointed out that the 

main challenge of the electroplating bumping process is the uniformity and 

consistency of the distributed deposits, which will determine the bumping yield and 

consequently the ensuing flip chip assembly and joint reliability. The uniformity and 

consistency of the bumps obtained may be defined in terms of their features including 

the material density, bump height, volume and profile after reflow. The uniformity of 

the electrodeposited bumps is crucial to achieve highly reliable joints since non-

uniformly deposited bumps could not meet functional and dimensional requirements. 

For example, large variations in height and volume between bumps could result in 

electrical open circuits for small bumps and shorts for large bumps. This need of 

precision and rigidity becomes more significant for pixel detectors since they require 

very small bump size at ultra-fine pitch size with high yield.  
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a) Clean and passivation 
 

b) Sputtering seed layer 

  

c) Spinning and develop photoresist 

 

 

d) Electroplating UBM 

 

 

e) Electroplating indium bumps 

 

 

f) Remove photoresist 

 

 

g) Strip seed layer 

 

 

h) Reflow 

 

Figure 1-6  Schematic diagram of electroplated indium bumping procedure 

 

The factors that could affect the bump uniformity and consistency may be 

complex, but it has been fundamentally understood that ultimately the current density 

and current density distribution across the cathode wafer during the electrodeposition 

process will determine the course of the electroplating and consequent deposit 
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formation across whole electroplating areas. In practice, normally the electric contact 

to the wafer will be through the edges of the wafer, and a very thin seed layer is 

deposited onto the wafer to serve as the current path, as shown in Figure 1-6. For the 

sake of cost and efficiency, the thickness of the seed layer is normally below 1 m, 

thus the resistance of the seed layer should not be neglected in the calculation of the 

actual electroplating current. A potential drop from the edges to the centre area of the 

wafer caused by the seed layer resistance will result in an uneven current density 

across the wafer, which is known as the terminal effect. Consequently, the deposition 

rate will be different from the edge area to the centre of a wafer to be electroplated 

and thus the bump height will also be uneven. Moreover, the bump growth 

mechanism may differ from the expected course under different current density and 

the quality of the deposit will vary as well.  

Another decisive factor of the uniformity is the mass transport condition. The 

electrode reaction is influenced by mass transport and the rate of mass transfer is 

spatially nonuniform over the wafer surface. As a result, the deposition rate, 

morphology and microstructure of deposits could also vary due to the localised 

discharge characteristics. During the electroplating process, especially for a very large 

area, the metal ions will be consumed at different rate across the electrode surface due 

to the various current densities. If the ion diffusion could not replenish thoroughly, for 

instance an electroplating bath without any agitation, the solution concentration 

difference will in turn give rise to non-uniform current distribution. As discussed 

above, the uneven current density distribution can deteriorate the bump uniformity. 

Further, the mass transport condition can also play a significant role in determining 

the bumping yield. As the feature size defined by the photoresist is very small, the 

interface at which the deposition reactions take place, e.g. between the electroplating 

solution in contact with the substrate (defined as numerous tiny apertures by the resist) 

will become a dominant issue to be carefully dealt with during the electroplating 

process. When the wafer cathode with millions of apertures is dipped into the solution, 

even some tiny air bubbles inside the apertures can potentially keep the solution 

isolated from the substrate. If the electrolyte could not wet the substrate at the bottom 

of these tiny wells sufficiently, as a consequence there may be no metal deposited in 

these areas. Therefore, full coverage or immersion of the electroplated areas across 

the whole wafer needs to be addressed in order to control the process for optimised 
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high consistency and uniformity. Also, when the electroplating parameters and 

variables become unstable in some local areas due to the uneven potential field, 

hydrogen gas bubbles may occur near the cathode surface. In addition, due to the 

nature of the surface in terms of its chemistry or contamination, degassing may occur 

which will also disturb the deposition process leading to a condition of difficult 

control for optimisation. There are therefore many factors which must be considered.  

In this research, all the aspects which can affect the indium bumping process 

are taken into account during comprehensive experimental work. The research work 

focuses on the fundamental studies regarding the two main factors for the 

electroplating bumping process, which are current density and mass transport. The 

experiments include the following sections:  

 Characterisation of the indium deposited through DC, unipolar pulse and 

bipolar pulse reverse electroplating using sulphamate solution. This is to 

build up a knowledge of indium deposition using sulphamate solution, 

which is lacking in the literature.  

 Investigate indium electroplated bumping at various current densities and 

current waveforms. Both the direct current (DC) and pulsating current 

waveforms are employed in the electroplating processes.  

 Study the influences of a novel agitation method on the mass transport 

condition during electroplating. Acoustic agitation up to megahertz range 

has been used to enhance the mass transfer and hence to affect the 

electroplating process.  

1.4 Structure of This Thesis 

In total there are 7 chapters in this thesis. The first chapter is to introduce the 

background information of ultrafine pitch interconnection which is used in the 

leading-edge pixel detector applications and indium bump bonding technology. The 

motivation of this research and the technical challenges are also discussed. Finally, 

aims and objectives are pointed out at the end of this chapter.  

In this thesis, instead of an independent chapter, a literature review on a 

specific issue is given at the beginning of certain chapters. Chapter 2 and 3 explore 

the proper electrodeposition parameter window using DC, unipolar pulse 

electroplating and bipolar pulse reverse electroplating for indium bumping and 
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evaluate how the various current waveforms affect the bump deposition, respectively. 

The parameters suitable for DC, pulse and pulse reverse electroplating are optimised 

based on the results. Then, in chapter 4, the electroplating of indium at the wafer level 

to form indium bumps is described. The bump uniformity and yield are evaluated and 

the fundamentals of indium bump growth under various parameters are investigated. 

Chapters 2 to 4 mainly focus on the issues related to current density during the 

bumping process.  

Chapter 5 investigates the influences of acoustic agitation on the mass transfer 

condition, and its effects on the indium bumping process. Low frequency ultrasonic 

agitation and 1 megahertz megasonic agitation are introduced into the electroplating 

bath. The experiments are conducted both on non-patterned substrates and at the 

patterned wafer level. The effects of acoustic agitation on the indium bump growth 

and microstructure are studied. Also, the influences of acoustic agitation on 

uniformity and yield of indium bumping through electroplating are investigated. In 

Chapter 6, a general discussion about the indium deposition and indium bumping 

using sulphamate solution is provided by integrating the experimental results and 

relevant studies in the literature. There will be only a limited discussion of the results 

in Chapters 2 to 5 while a complete discussion is given in Chapter 6. Finally, the 

conclusions from this research and suggestions for future works are given in Chapter 

7.  
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Chapter 2 Indium Electrodeposition through 

Direct Current 

 

 

 

2.1 Introduction 

This chapter illustrates the experimental results of indium deposition from indium 

sulphamate solution under direct current (DC). The aim of this chapter is to identify 

the proper operation window for this bath for applications in the later experimental 

work. The basic principles of electrodeposition are introduced prior to the 

experimental details.  

2.1.1 Basic Principles of Electrodeposition [40, 41]  

It is known that the conduction of electric current in conductors could be electronic or 

ionic which depends on the movement of electrons and ions respectively. Electronic 

conduction is found in all metals while ionic conduction is found in electrolytes. In 

general, any ionic solid could be imagined as a unit cell in which many cations are 

surrounded by a number of anions, and the anions are also surrounded by a number of 

cations. According to the energy band theory, the band of levels corresponding to the 

merger of bonding electron orbits is known as the valence band which is usually 

completely filled, and the level corresponding to the non bonding electron orbits is 

named the conduction band which is usually only partially filled. Different materials‟ 

conduction bands have different Fermi energy levels. Thus, when two metals are 

contacted together, electrons will flow from the one with the higher Fermi level to the 

one with the lower Fermi level until the Fermi levels become equal in energy. By 

analogy, when a metal is immersed into a solution of ions, a similar situation will
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occur to form a potential difference between them. Taking an example of copper and 

aqueous copper sulphate solution, when copper is immersed into copper sulphate 

solution, an electric potential difference is developed between the metal and the 

solution. Some of the copper ions will deposit onto the copper surface by accepting 

electrons from the metal conduction band thereby leaving the metal with a small 

positive charge (Equation 2-1). Meanwhile, the solution will gain a small amount of 

negative charge. This process is named the reduction process.  

Cu
2+

 + 2e → Cu     (2-1) 

When it comes to more active metals such as zinc, some zinc atoms will leave 

the metal surface as ions and spontaneously give the solution a small positive charge 

(Equation 2-2). This process is named the oxidation process.  

Zn → Zn
2+

 + 2e                                                          (2-2) 

If the two parts of the cell are combined together via a salt bridge, which is 

referred to as the Daniell cell or zinc-copper couple, the reduction and oxidation 

processes will occur in separated places simultaneously. Conventionally, the electrode 

at which oxidation occurs is called the anode while the electrode at which reduction 

occurs is named the cathode. The copper atoms deposit on the cathode by 

withdrawing electrons from the zinc anode via an external lead. The overall cell 

reaction is given by Equation 2-3.  

Cu
2+

 + Zn → Cu + Zn
2+

     (2-3) 

For the Daniell cell, the cell potential is given by the Nernst equation 

(Equation 2-4). 

2

2

[ ]
ln

[ ]

RT Cu
E E

nF Zn





       (2-4) 

where E
Θ
 is the standard cell potential, related to the standard Gibbs free energy, R is 

the gas constant, T is the temperature, n is the number of electrons transferred during 

the process, F is the Faraday constant (96485 C/mol), [Cu
2+

] and [Zn
2+

] are the 

concentrations of copper and zinc ions respectively.  

When an external potential, which is more than the cell potential calculated by 

the Nernst equation, is intentionally applied so as to make the zinc cathode and the 

copper anode, then the current flow could be reversed so that the zinc ions will 
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attempt to be deposited. If the external potential exactly balances the cell potential 

calculated by the Nernst equation, even though no apparent current will flow from the 

anode to cathode, there will still be current flows at each electrode, but they are equal. 

This current is named as the exchange current. A system with a high exchange current 

density has fast reaction kinetics and could respond to a potential change rapidly. 

Thus, electrodeposition is realised.  

According to Faraday‟s law in electrochemistry, the total amount of chemical 

change on an electrode surface is proportional to the quantity of electrical charge 

passing through the circuit. However, only the reactions for depositing the desired 

metals are of interest while the other side-reactions are considered as waste. So, an 

index called the cathodic current efficiency (CCE) is adopted to describe how 

effectively the electroplating bath performs. The current efficiency is defined as the 

ratio of the desired chemical change to the overall chemical change. In theory, the 

mass of electroplated metal is determined by:  

 
Q M It M

m
F z F z

     
      
     

  (2-5) 

where m is the mass of the substance altered at an electrode, Q is the total electrical 

charge, F=96485 C/mol is the Faraday constant, M is the molar mass of the metal, z is 

the valence number of the reaction ions, I is the total current flowing through the 

electrolyte, and t is the electroplating time. In practice, a high current efficiency is 

demanded for a cost-effective electroplating process.  
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Figure 2-1 Schematic of the diffusion layer close to the electrode surface in DC electroplating. 

 

When an electrode is immersed into the solution, a concentration gradient of 

the reacting species is established near the solid surface. As demonstrated in Figure 

2-1, the concentration of the reactants gradually decrease from the bulk solution (CB) 

to the electrode surface (C0). A Nernst Diffusion Layer (δ) is often used to replace the 

true gradient close to the electrode so that the concentration deceases linearly to the 

surface. Thus, the current density can be derived as:  

  0

0

B

x

C CC
i zFD zFD

x 

 
  

 
    (2-6) 

where D is the diffusion coefficient of the reactants. When the C0 becomes zero, i.e. 

the reactants on the cathode surface are completely consumed, the value 

corresponding to the maximum gradient is called the limiting current density (iL) 

which can be derived as:  

 B
L

C
i zFD


  (2-7) 

When the electrodeposition is conducted at the limiting current density, the reacting 

species will be reduced as soon as it reaches the cathode surface, and the reaction is 

therefore controlled by the diffusion.  

During the electroplating process, the electrode potential will differ from the 

equilibrium value and thereafter an overpotential is formed:  



Chapter 2 Indium Electrodeposition Through Direct Current 

22 

 

 ( ) ( )E I E eq    (2-8) 

where the E(I) is the potential when current is flowing and E(eq) is the equilibrium 

potential. For any reduction reaction to take place, the overpotential is essential to 

overcome the kinetic barrier which the reactants must possess. The overpotential 

required to start the reaction is called the activation overpotential or charge-transfer 

overpotential for which the reaction is controlled by charge transfer. More often, 

during the deposition process, the consumed ions cannot be replenished as fast as they 

are deposited, then a concentration gradient of the reactants is established resulting in 

a concentration overpotential, hence the mass transfer plays a role in deposition.  

The relation between current density and charge-transfer overpotential is 

determined by Butler-Volmer equation:  

 
 

0

1
exp exp

zF zF
i i

RT RT

       
            

   (2-9) 

where the i0 is the exchanging current density, α is the charge transfer coefficient, R is 

the gas constant, T is the temperature and F is the Faraday constant. It can be seen that 

the overpotential increases with current density.  

Linear sweep voltammetry is usually employed to investigate the relationship 

between the electrode potential and current density. Figure 2-2 plots an idealised 

polarisation curve for electrodeposition. When the current density is relative low, the 

reaction is mainly controlled by charge transfer and the deposits are likely to be 

deposited as ridges and blocks. When the current density moves towards the limiting 

value, the influences of mass transfer become more important and the morphology of 

the deposit tends to be nodular or even powdery.  

The current distribution is often noteworthy because it can affect the 

uniformity of the deposits. The current distribution is usually categorised as primary, 

secondary and tertiary. The primary current distribution is determined by the 

geometrical configuration of the electroplating system, e.g. the size of the electrodes 

and the distance between them. The secondary current distribution prevails when the 

activation overpotential is taken into account while the tertiary current distribution 

prevails when the concentration overpotential is concerned. Moreover, a concept of 

throwing power is usually used to describe the ability of an electrolyte to give rise to a 

uniform deposit despite the geometrical irregularities on the cathode surface.  
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Figure 2-2 Idealised steady state current density versus electrode potential curve for metal 

deposition: a) Showing the various regions of kinetic control; b) Indicating the regions of various 

growth morphologies [42]. (From F. C. Walsh, and M. E. Herron, “Electrocrystallization and 

electrochemical control of crystal growth: fundamental considerations and electrodeposition of 

metals,” Journal of Physics D: Applied Physics, vol. 24, no. 2, pp. 217-225, 1991. © 1991 IOP 

Publishing Ltd. Reproduced with permission)  

 

Organic additives are usually added into the electrolyte in small quantities, but 

can significantly affect the deposition process. The potential benefits of organic 

additives include grain refinement, increase of the electroplating parameter window, 

levelling of the deposit, increase in the current efficiency, brightening of the deposits, 

change in the mechanical properties of deposits, and reduction of the tendency for 

dendrite growth [43, 44].  
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2.1.2 Background to Indium Electroplating  

2.1.2.1 Chemical Properties of Indium  

Indium reacts directly with arsenic, antimony, the halogens, oxygen, phosphorus, 

sulphur, selenium and tellurium when heated. Metallic indium is not oxidized by 

oxygen at room temperature, but it reacts with oxygen at higher temperature to form 

indium trioxide (In2O3). It dissolves very slowly in cold dilute mineral acids and more 

actively in hot dilute or concentrated acids. Alkalis and hot water do not attack the 

bulk metal, but, finely divided indium reacts with water to form the hydroxide.  

The only stable indium ion in aqueous solution is the In(III) ion and the 

standard electrode potential (E
Θ
) of indium relative to the standard hydrogen electrode 

is [33, 45]:  

In
3+

(aq) + 3e = In (m),        E
Θ
 = -0.34 V.    (2-10) 

2.1.2.2 Indium Electroplating Solutions  

Indium has been successfully electroplated onto a number of metals, such as lead, 

zinc, copper, cadmium, nickel, tin, precious metals and iron. Both acid and alkaline 

solutions can be used for indium electrodeposition. The acid solutions include 

sulphate, sulphamate, fluoborate, chloride and perchloride. The alkaline solutions 

usually contain many chemicals including cyanide and tartrate [46-49]. In general, the 

acid baths are easily prepared and stable and offer higher cathode current efficiencies 

while the alkaline solutions feature superior throwing power. Currently, cyanide, 

sulphate, sulphamate and fluoborate solutions have been more widely used, while 

other solutions, such as indium chloride, do not appear to have been used much in 

industrial applications. A review of the operation details of the former four types of 

solutions will be demonstrated below.  

Cyanide Solutions: Indium is the only trivalent metal that could be readily 

electrodeposited from a cyanide solution. The first commercial indium electroplating 

bath was a cyanide formulation developed to plate bearing surfaces in the late 1930‟s. 

To make up the cyanide solution, indium hydroxide (In(OH)3) was firstly precipitated 

by dropping ammonium hydroxide or sodium hydroxide into indium chloride (InCl3). 

After purification, the dried In(OH)3 was then dissolved in an alkaline cyanide 
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solution and stabilised by a sugar such as D-glucose, dextrose or sorbitol. The cyanide 

solution is used in applications requiring extremely high throwing power and 

adhesion. Since the cyanide is a high pH bath, insoluble anodes are required and it is 

necessary to replenish the indium metal by adding indium cyanide frequently. The 

cathode efficiency is initially about 90%, but it decreases to about 50-75% as the bath 

ages rapidly. The disadvantages of cyanide based solutions also include the 

difficulties of preparation of the hydroxide feedstock and the serious toxicity during 

the electrodeposition process and resultant disposal [47, 50].  

Sulphate Solutions: Acid sulphate solutions have been extensively studied 

and widely used because of their relative simplicity. Normally, the electrolyte just 

consists of In2(SO4)3 without addition agents. Generally, soluble anodes, i.e. pure 

indium metal, are utilised at about 100% anode efficiency; however, the cathode 

efficiency is usually within 60-80%, so, the indium concentration will slightly 

increase during the electroplating process. Hence, either a combination of soluble and 

insoluble anodes, e.g. a split In-Pt anode with area ratio of 70 to 30, is required, or the 

electrolyte must be diluted with water or removed periodically to keep the 

composition stable [46, 51].  

Sulphamate Solutions: Indium sulphamate solution was developed to 

overcome several disadvantages of the cyanide bath. Soluble anodes are normally 

employed and possess a relatively constant cathode efficiency of 90% which remains 

stable during the life of the bath. Sulphamate baths are very stable compared to others 

and are considered as one of the easiest baths to control and operate. The preferred pH 

value is between 1.5 to 2.0. When the pH rises to more than 3.5, a milky white 

precipitate of indium hydroxide occurs as a „built-in‟ pH indicator. Moreover, the 

indium sulphamate baths possess a throwing power only slightly less than the cyanide 

bath and the deposit are normally uniform and bright matte in appearance. At the end 

of electroplating, indium is easily recovered as indium hydroxide by adjusting the pH 

to more than 5.0 with sodium hydroxide. The sulphamate electroplating bath is 

commercially said to be the „best‟ one for indium electroplating [52].  

Fluoborate Solutions: The fluoborate bath features the promising ability to 

obtain very fine-grained deposits. Meanwhile, the fluoborate solution has the 

advantages of simple formulation from a stable concentration, and low fluctuations in 

bath composition. The bath employs pure indium anodes at hundred percent anode 

efficiency and the pH is controlled by additions of fluoboric acid to the range of 0.5 to 
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1.5. The main shortcoming of this bath is the low cathode efficiency usually of 40-

75%. Hence, like the sulphate solution, a split cathode system, indium and platinum, 

is usually employed to balance the difference between anode and cathode efficiencies 

[50].  

Table 2-1 Characteristics of cyanide, sulphate, sulphamate and fluoborate indium solutions [50]. 

Types 
Operation 

temperature 

Cathode 

efficiency 

Throwing 

power 
Anode Wettability Toxicity Maintenance 

Indium 

Cyanide 

Room 

temperature 
50-75% Excellent Steel Easy 

Very 

high 
Difficult 

Indium 

Sulphate 

Room 

temperature 
30-70% Poor In-Pt Difficult Modest Normal 

Indium 

Sulphamate 

Room 

temperature 
90% Excellent 

Pure 

Indium 
Easy Modest Easy 

Indium 

Fluoborate 
21-32 ºC 40-75% Good In-Pt Difficult Modest Easy 

 

Table 2-1 lists the characteristics of these four types of indium electroplating 

solutions. Cyanide solution should normally be avoided due to the cyanide toxicity 

problems, although it offers very good quality of deposit. The sulphate electrolyte is 

the simplest one; however, it necessitates the split anode system which will increase 

the control complexity for a wafer bumping process. Also, the fluoborate based 

solution is less attractive for the electroplating bumping process due to the low 

cathode efficiency. In contrast, indium sulphamate solution offers high deposition 

efficiency, easy maintenance, and long operation life. So, considering all the aspects, 

sulphamate solution is the most suitable one for indium electrodeposition and was 

employed in this research.  

2.2 Experimental Details 

The electrodeposition of indium was conducted using an indium sulphamate based 

solution, which was supplied by the Indium Corporation of America
®
. The ready-to-

use solution is stable, easy to maintain and operate and has an excellent throwing 

power and a wide latitude of operational parameters. The electroplating operates at 

room temperature. Table 2-2 summarises the formulation and other features of the 

electrolyte. A pure indium (99.99%) plate with 2 × 2.5 cm
2
 in area was employed as 

the anode, having 100% anodic current efficiency [50], whilst 2 × 2 cm
2
 copper sheet 
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acted as the cathode substrate. Preparation of the substrates consisted of two separate 

steps, cleaning and activation. The substrate was first alkaline soaked to remove oils, 

grease and other soils from the surface by using a solution consists of NaOH, Na2CO3 

and Na3PO4. Then it was acid activated by immersion into 10% sulphuric acid 

(volume percent, specific gravity of 1.83, supplied by Fisher Scientific) at room 

temperature for 5 minutes followed by deionised water rinse. After that, the base 

metal was immersed into 5 wt% sulphamic acid solution for 1-3 minutes. This was to 

protect the indium sulphamate electroplating bath from drag-in of the etching 

chemicals from the previous step. The anode and cathode were perpendicularly 

dipped into the bath facing each other (Figure 2-3a). No extra agitation was applied. 

The primary experiments were conducted in a beaker containing about 250 mL 

solution. The current was generated by a Potentiostat (PARSTAT 2273, Ametek). All 

of the electroplating trials were carried out at room temperature as the indium 

sulphamate solution had the risk to decompose at high temperature as informed by the 

supplier. Figure 2-3b shows the actual set-up for indium electroplating experiments.  

 

Table 2-2 Composition and features of indium sulphamate solution supplied by Indium 

Corporation of America [53] 

Indium sulphamate 105.36 g/L 

Sodium sulphamate 150 g/L 

Sulphamic acid 26.4 g/L 

Sodium chloride 45.84 g/L 

Dextrose 8.0 g/L 

Triethanolamine 2.29 g/L 

Temperature Room temperature 

pH 1.0-3.5 (1.5-2.0 preferred) 

Colour of solution Clear 

 

Due to protection of commercial interests, very little information about indium 

electroplating using a sulphamate solution can be found in the literature. To 

understand how the solution performs during the electroplating process, a cathodic 

potentiodynamic polarisation was conducted in the potential range between the open 
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circuit and about -2.0 V vs. standard calomel electrode (SCE). The potential was 

scanned at a rate of 0.5 mV/s and the corresponding current density was recorded. 

Then a proper electroplating parameter range was established on the basis of the 

cathodic polarisation curve. The process was established in the 250 mL bath scale and 

a series of indium electrodeposition trials were then carried out under various 

parameters.  

 

 

 

Figure 2-3 Configuration of indium electroplating bath: (a) schematic structure; (b) the actual 

experimental set-up.  

 

The surface morphology of electroplated indium were characterised by 

Scanning Electron Microscopy (SEM). The surface roughness of electrodeposited 

indium was measured by a Talysurf CLI 2000 non-contact surface profiler (from 

Taylor Hobson, see Figure 2-4a). The surface undulation was obtained through the 

optical interference pattern produced by the scanning unit. A 200 µm × 200 µm area 

was selected on each sample and scanned following the format shown in Figure 2-4b. 

The step spaces were 0.5 µm in the X direction and 20 µm in the Y direction, therefore 

there were overall 11 line scan in the area. The measurement accuracy was ±0.01 µm 

and an averaged surface profile was generated afterwards on the basis of the 11 line 

profiles. The Total Height of Profile (Pt) stands for the height difference between the 

highest peak and lowest valley within a specific line profile. The Average Roughness 

(Ra) is the arithmetic average value of the absolute vertical deviation from the mean 
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line within a specific line profile. Pt and Ra were investigated as the two main 

parameters regarding to the surface roughness.  

 

  

Figure 2-4 (a) Set-up of the Talysurf CLI 2000 surface profiler; (b) Scanning format of the 

electroplated indium surface profile. 

 

2.3 Electrochemistry of Indium Sulphamate Solution 

To understand how the indium sulphamate solution performs during the electroplating 

process, a cathodic polarisation was conducted at a small volume scale 

(approximately 200 mL). The configuration of the electrochemical circuit is shown in 

Figure 2-5. A saturated calomel electrode (SCE) was employed as reference while the 

external potential was scanned from the open circuit to -2.0 V (vs. SCE) at a speed of 

0.5 mV/s. The SCE reference electrode has a potential of +0.241 V against the 

standard hydrogen electrode (SHE). Because of the distance between the reference 

electrode and cathode was kept within 1~2 cm, the potential drop within the 

electrolyte could be ignored. Moreover, because the solution is very sensitive to 

cupric ions, the polarisation was only investigated in the minus potential range to 

avoid any copper being dissolved into the solution.  
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Figure 2-5 Configuration of the measurement circuit during the potentiodynamic cathodic 

polarisation process in the indium sulphamate system with indium anode and copper cathode. 

 

Figure 2-6 plots the relative cathodic potential against the current density. 

When the external potential was applied, indium deposition on the cathode face did 

not start immediately. A so-called activation overpotential needs to be built-up to 

begin the reduction of metal ions. According to Figure 2-6, indium deposition started 

when the cathodic potential was over approximately -650 mV. The current density 

dramatically increased with the potential until it reached about 30 mA/cm
2
 when the 

cathodic potential was about -1000 mV. Then the current density dropped although the 

potential kept rising. As the current density decreased with the increasing potential, 

hydrogen bubbles were observed on the cathode surface. After that, indium deposition 

accompanied with hydrogen evolution occurred and the current-potential curve 

became unstable. Therefore, it can be seen that the highest current density can be 

reached before hydrogen evolution occurs is 30 mA/cm
2
.  
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Figure 2-6 Cathodic polarisation curve obtained in indium sulphamate solution using indium 

anode and copper cathode at room temperature without agitation (by scanning from open circuit 

to -2.0 V against SCE at scanning rate of 0.5 mV/s).   

 

2.4 Results of Indium Deposition Through DC 

Electroplating  

On the basis of the cathodic polarisation, a proper indium electroplating current 

density operation range can be worked out.  Considering the intended application, it is 

undesirable to deposit indium accompanied by hydrogen evolution. On the one hand, 

the current efficiency is compromised by hydrogen evolution so that the reaction 

status is not stable which can cause the electroplating process to be less-controlled. 

On the other hand, in the application of ultra-fine pitch indium bumping, the presence 

of any gas bubble may interrupt the coverage of the solution into micro-scale patterns, 

obstruct the deposition into deep apertures, increase the possibility of defects, and 

finally reduce the yield. So, to find out the influence of current density on the 

electroplated indium microstructure, a series of galvanic indium electroplating trials 

were conducted below and above 30 mA/cm
2
 as previously indicated in the cathodic 

polarisation curve. Table 2-3 summarises the experimental parameters used in these 

trials of indium electrodeposition. All the electroplating experiments were conducted 

without the presence of any type of agitation at room temperature. Moreover, all of 
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the electroplating trials were conducted through the same Coulomb of electron charge, 

i.e. 10 mA/cm
2
 for 60 minutes and 20 mA/cm

2
 for 30 minutes etc.  

Table 2-3 Parameters of DC electrodeposition of indium onto copper substrate using sulphamate 

solution and indium anode at room temperature without additional agitation 

 Expt. No. Current Density 

1 5 mA/cm
2
 

2 10 mA/cm
2
 

3 15 mA/cm
2
 

4 20 mA/cm
2
 

5 25 mA/cm
2
 

6 30 mA/cm
2
 

7 35 mA/cm
2
 

8 100 mA/cm
2
 

 

 

As mentioned above, the anodic current efficiency is treated as 100% because 

of the usage of a pure indium anode. To determine the cathodic current efficiency 

(CCE), the samples were weighed before and after electroplating by using a Mettler 

Toledo XS205 DualRange analytical balance with accuracy up to 0.01 mg. Thus, the 

CCE was calculated by:  

 100%
actual weight

CCE
theoretical weight


 


     (2-11) 

The theoretical weight was calculated by Equation 2-5. The cathodic current 

efficiencies corresponding to various current densities are illustrated in Figure 2-7. 

The cathodic current efficiencies were over 90% when the current density increased 

from 5 mA/cm
2
 to 20 mA/cm

2
. When the current density was 25 mA/cm

2
, the cathodic 

CCE decreased to 80%. Further, when the current density reached 30 mA/cm
2
, the 

current efficiency deteriorated to below 40% and continuing hydrogen bubble 

evolution was observed at the cathode surface. After that, the current efficiency 

continuously decreased while the current density increased. Moreover, by measuring 

the weight change after electroplating, it was calculated that the deposition rate was 

about 0.3 µm per minute, when the current density was 10 mA/cm
2
.  



Chapter 2 Indium Electrodeposition Through Direct Current 

33 

 

 

 

Figure 2-7 Cathodic current efficiencies corresponding to various current densities for the DC 

electroplating of indium onto copper substrate using sulphamate solution at room temperature 

without additional agitation. 

 

To the naked eye, the overview of the electroplated indium appeared neither 

smooth nor shiny, and had noticeable roughness with a frosted or matt-like finish. 

Figure 2-8 shows the SEM images of surface morphology of the DC electroplated 

indium deposited under various parameters. It can be seen that granular growth is 

dominant when the current density is below the limiting value. When the current 

density falls into the 5 – 20 mA/cm
2
 range, the deposits tend to grow rather than create 

new nuclei and grains with as large as 10 µm surface feature size can be easily 

identified. With the increase of the current density over 25 mA/cm
2
, more pinholes can 

be found in the deposit which is further evidence of the hydrogen evolution (indicated 

by the arrows in Figure 2-8e). Further, in the case of the current density of 35 mA/cm
2
, 

the deposit loses the crystalline feature and contains many defects corresponding to 

very low cathodic current efficiency (Figure 2-7). In the extreme condition, a 

dendritic structure was obtained at 100 mA/cm
2
 while the current efficiency was only 

about 14%.  
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(a) i = 5 mA/cm
2
 (b) i = 10 mA/cm

2
 

  

(c) i = 15 mA/cm
2
 (d) i = 20 mA/cm

2
 

  

(e) i = 25 mA/cm
2
 (f) i = 30 mA/cm

2
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(g) i = 35 mA/cm
2
 (h) i = 100 mA/cm

2
 

Figure 2-8 Surface morphology of DC electroplated indium on copper substrate at various 

current densities using sulphamate solution at room temperature without additional agitation. 

 

Figure 2-9 illustrates the surface uniformity of indium through DC 

electroplating at 10, 15 and 20 mA/cm
2
 current densities as measured using the 

Talysurf CLI 2000. The contour map illustrates the distribution of data of the total 11 

line profiles collected from the surface (Figure 2-9a). The measured maximum Total 

Height of Profile (Pt) was about 24 µm, 40.7 µm, and 34.3 µm respectively. 

Meanwhile, the measured Average Roughness (Ra) values were about 2.89 µm, 2.68 

µm, and 3.88 µm respectively for the three current densities. The large value of Pt 

reflects noticeable non-uniformity on the electroplated indium surface.  
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(a) Contour map of surface profile, DC 10 mA/cm
2
. 

 

(b) DC, 10 mA/cm
2
, maximum Pt = 24 µm, Ra = 1.92 µm. 

 

(c) DC, 15 mA/cm
2
, maximum Pt = 40.7 µm, Ra = 2.24 µm. 

 

(d) DC, 20 mA/cm
2
, maximum Pt = 34.3 µm, Ra = 2.69 µm. 

 

Figure 2-9 Surface roughness measurement of DC electrodeposited indium in sulphamate 

solution at current densities of 10, 15 and 20 mA/cm
2
.  
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2.5 Summary 

Primary experiments of indium electrodeposition through application of direct current 

were conducted at the lab-scale. The normal electroplating parameter range was 

worked out via the potentiodynamic cathodic polarisation results. A highest current 

density of 30 mA/cm
2
 was identified. Electroplating trials were carried out to 

investigate the morphology and microstructure of the deposits. On the basis of the 

results, to obtain indium deposits at high cathodic current efficiency, it is suggested to 

operate the electroplating with the current density ranging from 5 to 20 mA/cm
2
 in the 

future. Moreover, the deposition rate was measured as 0.3 µm per minute when the 

current density was 10 mA/cm
2
. 
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Chapter 3 Indium Electrodeposition Through 

Pulsating Current Waveforms 

 

 

 

3.1 Introduction 

Following the earlier results on DC electroplating, this chapter describes an 

investigation of the influences of pulsating current on indium electrodeposition. In 

order to take advantage of the pulsating current waveforms, various unipolar pulse 

and bipolar pulse reverse current waveforms with constant average current were 

applied to alter the deposition process and its influence on the microstructure, surface 

morphology and surface uniformity. The basic fundamentals of pulse electroplating 

are introduced prior to demonstrating the experimental details and results.  

3.1.1 Background to Pulse Electroplating 

Pulse electroplating is defined as the deposition of metals by a periodic variation of 

current or voltage. In general, pulse electroplating is divided into ordinary pulsed 

current electroplating and periodic reversal current electroplating, or unipolar 

waveforms and bipolar waveforms, and the electrodeposition can be either 

galvanostatic or potentiostatic. Pulse electroplating makes use of an almost unlimited 

number of waveforms constructed by a number of independent combinations of 

anodic/cathodic current and duration of pulses compared to DC electroplating for 

which the current density represents the only independent parameter. The pulse 

electroplating technology has the highest degree of freedom to utilise special 

conditions during electrodeposition. Figure 3-1 illustrates a few examples of pulsating 

current waveforms. However, the large range freedom of pulse electroplating 

parameters induces a high degree of complexity to implement the pulsating current for 
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an application. The main features of typical pulse current and pulse reverse 

waveforms are shown in Figure 3-2. In the case of the unipolar pulse current (Figure 

3-2a), ip is the peak current density which is an important factor in pulse 

electroplating. ton represents the duration of the peak current and toff stands for the 

period that there is no current applied. The average current density can be calculated 

by:  

on
avg p

on off

t
i i

t t
 


      (3-1) 

The duty cycle (φ) is defined as φ = [(ton/(ton+ toff))×100%]. In the case of 

bipolar pulse reverse electroplating (Figure 3-2b), the average current density is 

defined by:  

 
( ) ( ) ( ) ( )

( ) ( )

( ) ( )p c on c p a on a

avg

on c on a off

i t i t
i

t t t

  


 
  (3-2) 

where ip(c) and ip(a) are the peak current densities of the cathodic and anodic cycles 

respectively; ton(c) and ton(a) are the pulse-on time of the cathodic and anodic cycles 

respectively. In this case, the duty cycle is defined as [(ton(c)/(ton(c) + ton(a) + toff)) × 

100%]. Although the waveform varies with the peak current density and the pulse 

duration, the actual deposition rate is determined by the average current density 

according to Faraday‟s law.  

 

 

 

Figure 3-1 Schematic diagrams of various pulsating current waveforms [54].  
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Figure 3-2 Features of typical unipolar pulse current and bipolar pulse reverse waveforms. 

 

It is known that an electrical double layer will be formed at the electrode-

electrolyte interface, which features two parallel layers of charge in the immediate 

vicinity of the interface. The electric double layer could be approximated to a plate 

capacitor with a resistance within a distance of a few angstroms and therefore with a 

high capacitance. Based on the theoretical calculation and approximation, the 

charging and discharging time would be in the order of microseconds [55]. For the 

DC electroplating condition, the charging time can be ignored compared with the long 

lasting constant current application time. During the pulse electroplating process, it is 

crucial to formulate the waveforms with consideration of the charging and 

discharging of this electric double layer, when the pulse is generated. In general, for 

practical applications, the charging time should be much shorter than the pulse 

duration, and the discharging time should also be much shorter than the off-time 

between two current pulses. Otherwise, the current waveform will be strongly 

distorted due to the capacitance effect.  

Another issue concerns mass transport, which plays a significant role in terms 

of the deposit quality, microstructure and productivity. In pulse electroplating with 

shorter pulse durations compared to DC electroplating, two distinct cathodic diffusion 

layers will be established instead of only one as in DC (Figure 3-3). During the pulse 

electroplating process, the concentration of the metal ions near the vicinity of the 

cathode decreases during the pulse on-time and relaxes during the off-time 

corresponding to the pulsating current frequency. When the duration of the pulse is 
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short, the pulsating diffusion layer does not have chance to extend very far into the 

bulk solution and, in particular, it is unable to extend to the region under the control of 

convection. During the off-time, metal cations will be supplied towards the cathode 

through the outer stationary diffusion layer, and this allows the relaxation of the 

pulsating diffusion layer. In the pulsating diffusion layer, the depletion of the metal 

ions limits the pulse peak current density, while the depletion of the metal cations in 

the stationary diffusion layer limits the average current density. Since the 

concentration gradient in the pulsating layer could be very high, the pulse current 

density is able to reach extremely high values with shorter pulse duration. When a 

pulsed current is applied, the pulse could last until the concentration of the reacting 

species reaches zero, and this duration is called the transition time. This transition 

time manifests itself experimentally by a sudden increase of the electrode potential 

which leads to an additional cathodic reaction such as hydrogen evolution. Once the 

pulse duration exceeds the transition time, mass transfer becomes the dominant factor 

of the metal deposition. If the current efficiency is of concern, the pulse duration 

should not exceed the transition time. Given the electrolyte composition, temperature, 

agitation condition, pulse on- and off-times, the value of the transition time relies on 

the applied pulse current density.  

 

 

Figure 3-3 Concentration profiles in the diffusion layer near to the electrode surface during pulse 

electroplating [54]. 

 

The current distribution during pulse electroplating differs from the case of the 

DC condition. The current distribution in an electrochemical system can be 
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distinguished as primary, secondary and tertiary current distribution which depends 

on different factors. During pulse electroplating, the primary current distribution 

should not be affected by the pulsating current since it is only influenced by the 

geometry of the electrodeposition system rather than the variation of current density. 

The secondary current distribution is established when the activation overpotential is 

taken into account. A dimensionless index called the Wagner number is defined as:  

 
a

k d
W

L di

 
  

 
  (3-3) 

where k is the conductivity of the electrolyte, η is the overpotential, i is the current 

density, and L is a characteristic length of the electrodeposition system. The larger the 

numerical value of the Wa, the more uniform is the current distribution. When the Wa 

becomes zero, only the primary current distribution is considered. In the absence of 

significant mass transport effects, the Wagner number, which governs the secondary 

current density distribution, depends on the pulse peak current density instead of the 

average current density. Since the peak current density is always higher than the 

average current density, the Wagner number will be smaller in pulse electroplating 

than in DC electrodeposition, thus the secondary current density distribution is less 

uniform for pulse electroplating. However, in the presence of significant mass 

transport, the current distribution may be more uniform than in DC electroplating. The 

pulse limiting current density ipL is defined as the value of ip for which the 

concentration of the reactants decreases to zero just at the end of the pulse duration 

[54]. When the pulse duration is of the order of, or exceeds, the transition time, or the 

pulse current density overcomes the limiting pulse current density, the deposition 

becomes partially controlled by the mass transport and the concentration overpotential 

needs to be taken into account. Due to the high instantaneous current densities applied 

in pulse electroplating, the reaction rate in the pulse-on duration may become limited 

by the non-steady state mass transport. Then a tertiary current distribution may 

therefore prevail in pulse electroplating under certain conditions, which will result in 

a more uniform current distribution.  

As the pulse duration can be very short, e.g. in the order of milliseconds, it 

becomes possible to use very high pulse current density which is beyond the limiting 

current density in the DC condition and achieve a good quality of deposits in the same 

deposition time. Then, a relatively higher overpotential usually occurs near the 
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cathode surface resulting in an increased nucleation rate of the crystallisation, as such 

obtaining a finer grain size of deposit. Further, the pulse-off time provides the 

solution an interval to replenish the reactants consumed during the pulse-on time 

before the next iteration of the pulse. This unique feature of the unipolar current 

waveform offers many advantages compared with direct current.  

With the additional anodic cycle, the bipolar pulse reverse electroplating has 

the potential to obtain a more uniform current distribution compared with DC 

electroplating with the same average current density. As shown in Figure 3-2b, in a 

typical pulse reverse current waveform, an anodic cycle is applied following the 

cathodic deposition cycle to dissolve part of the deposit. Because the deposit acts as 

the anode during the reverse cycle, it will be preferentially dissolved on the protruding 

sites resulting in a levelling effect. Also, the metal dissolved into the solution can be 

seen as an assistance to the diffusion and reduce the concentration gradient caused by 

the depletion during the cathodic deposition cycle. To ensure the deposition moves 

forward, the parameters of the pulse reverse current need to be so configured that the 

quantity of the electrical charge in the cathodic cycle should be considerably greater 

than the quantity in the anodic cycle. The relevant features discussed above, such as 

the transition time, are still applicable in pulse reverse electroplating.  

3.1.2 Applications of Pulse Electroplating and Pulse Reverse 

Electroplating  

By using pulse electroplating, small grained, even nanocrystalline structured deposits 

can be obtained under certain conditions which thereafter result in an improvement in 

mechanical properties of the coatings. Submicron sized or even nanoscale copper was 

achieved through various current waveforms and the microstructure, e.g. twinning, 

also relied on the pulse current parameters [56]. Similarly, nickel films having an 

average grain size of 25 nm were produced with a pulse current which could 

significantly improve wear resistance and micro-hardness of the deposits [57]. 

Another study conducted by Qu et al [58] also demonstrated that it was possible to 

obtain a microstructure with ultrafine grains ranging from 50 nm to 200 nm, 

depending on the pulse current densities, when the pulse duration was 10 µs, using a 

nickel sulphamate bath without any additives. The grain refinement effect through 

pulse electroplating was also observed in alloy deposition. Nakanishi et al [59] 
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obtained less than 10 nm sized CoNiFe alloy crystals by adjusting the duty cycle to 50% 

while the pulse peak current density was kept at 10 mA/cm
2
. It was reported that 

nanocrystalline Cu-Co heterogeneous alloys were obtained through pulse 

electroplating and the surface was smoother than that under the DC condition [60]. 

Moreover, pulse reverse electroplating was treated as an alternative to using complex 

additives in the electrodeposition of pure nickel and nickel alloy thin films used in 

MEMS devices. By pulse reverse electroplating, smoother deposits with low residual 

internal stress have been obtained through various bath compositions without complex 

additives [61].  

With the advantages illustrated above, pulse current and periodic pulse reverse 

current were employed as efficient tools for electrodeposition through lithographic 

photoresist masks [25, 32, 62-64]. Pulse electroplating and pulse reverse 

electroplating showed an improvement in surface finish, uniformity, elimination of 

defects during the deposition of solder bumps, filling of trenches and MEMS 

fabrication [65-68]. Another important application is through-hole or via 

electroplating which is crucial for next generation high density electronic packaging 

technologies. Pulse reverse electroplating is considered as a promising method to get 

more uniform deposits as it frequently provides greater improvements in throwing 

power than simple pulse electroplating [69, 70]. Uniform, defect-free deposits in high 

aspect ratio through-holes formed by a so-called bottom-up filling process can be 

obtained by adjusted pulse reverse electroplating, even without any additives [29, 71-

74].  

3.1.3 Aim of This Chapter 

The aim of utilising pulsating current waveforms over DC electroplating for indium 

deposition was to exploit the potential advantages of pulsating current on the 

refinement of grain size, microstructure, current distribution and surface morphology. 

However, a very limited number of papers about indium electrodeposition using 

pulsating current can be found in the literature. Most of the applications of indium 

electrodeposition fall into areas with security sensitivity or with core commercial 

interests, for example, the defence department and crucial components manufactured 

in the automotive industry [46-48, 51]. For the indium sulphamate solution employed 

in this research, there is also limited information regarding its performance during 
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pulse electroplating, even from the supplier. This chapter reports an investigation of 

the indium deposition process through pulse electroplating and pulse reverse 

electroplating on non-patterned substrates prior to the indium bumping studies. 

Various pulsating current waveforms are employed and the results are compared with 

the DC electroplating.  

3.2 Experimental Details 

Indium electroplating was conducted using the same indium sulphamate solution 

supplied by Indium Corporation of America, which has been described in Chapter 2. 

Pure copper sheet with 4 cm
2
 area was utilised as the cathode substrate. After alkaline 

degreasing using the solution described before, the sample was acid activated by 

immersion into 10% sulphuric acid (volume percent, specific gravity of 1.83, supplied 

by Fisher Scientific) at room temperature for 5 minutes followed by a rinse with 

deionised water. Then, the copper substrate was immersed into 5 wt% sulphamic acid 

solution for 1-3 minutes activation. The same configured electroplating bath described 

in Chapter 2 was employed for the pulse electroplating trials. All the electroplating 

trials were conducted at room temperature for 30 minutes, as the average current 

densities were kept at 10 mA/cm
2
. No additional agitation was applied for all the 

experiments. The pulsating current was generated by the Potentiostat (PARSTAT 

2273, Ametek) to carry out unipolar pulse electroplating and pulse reverse 

electroplating. In this chapter and thereafter, for the sake of convenience, the term 

„pulse electroplating‟ is used to present the electrodeposition through „unipolar pulse 

current‟.  

3.2.1 Pulse Electroplating 

In pulse electroplating trials, the average current density was chosen and remained 

constant at 10 mA/cm
2
 while the cycle duration and peak current density was varied to 

form different waveforms. Thus, the results were comparable with the DC 

electroplating which had the same current density value. In order to take the 

advantages of pulse electroplating, the desired pulse current density should exceed the 

highest current density value in the DC condition, as indicated by the cathodic 

polarisation curve (Figure 2-6, page 31). Therefore, the parameters were selected in 

such a way that the minimum pulse current density was 30 mA/cm
2
.  
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To investigate the effect of pulsed peak current density, the pulse duration 

time was set as 1 ms but the pulse off-time increased from 2 ms up to 99 ms while the 

average current density was kept at 10 mA/cm
2
. Thus, the peak current density 

increased from 30 mA/cm
2
 to 1000 mA/cm

2
. Figure 3-4 demonstrates the 

representative current waveform with 1 ms pulse-on time and 4 ms pulse-off time. 

Table 3-1 lists the parameters of pulsating current waveforms used for the indium 

electroplating. To determine the cathodic current efficiency, the samples were 

weighed before and after electroplating by using a Mettler Toledo XS205 Dual Range 

analytical balance with accuracy up to 0.01 mg, and the current efficiencies 

corresponding to various parameters calculated using Equation 2-11 (page 32). All of 

the current efficiency data corresponding to certain electroplating parameters was 

averaged from two electroplating trials.  

 

 

Figure 3-4 The representative pulse current waveform with 1 ms : 4 ms cycle ratio. 
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Table 3-1 Parameters of unipolar pulse current waveforms for indium electrodeposition in 

sulphamate solution.  

No. ton  (ms) 
ip 

(mA/cm
2
) 

toff  (ms) 
Frequency 

(Hz) 

Duty cycle 

(%) 

iavg 

(mA/cm
2
) 

1 1 30 2 333 33.3 10 

2 1 40 3 250 25 10 

3 1 50 4 200 20 10 

4 1 60 5 166 16.7 10 

5 1 80 7 125 12.5 10 

6 1 100 9 100 10 10 

7 1 120 11 83 8.3 10 

8 1 160 15 62.5 6.25 10 

9 1 200 19 50 5 10 

10 1 300 29 33 3.3 10 

11 1 500 49 20 2 10 

12 1 1000 99 10 1 10 

 

3.2.2 Pulse Reverse Electroplating 

Similar to pulse electroplating through the parameters explained above, the pulse 

reverse current waveforms were formed by adding anodic cycles to the 200 Hz and 

100 Hz frequency waveforms shown in Table 3-1. To investigate the effects of anodic 

cycles on the indium electroplating, the average current density of pulse reverse 

electroplating was also kept at 10 mA/cm
2
. Table 3-2 shows the parameters for pulse 

reverse electroplating, according to the features of the waveform in Figure 3-2b. 

Because the indium sulphamate solution is sensitive to copper ion contamination, the 

sample was pre-electroplated with indium for 2 minutes at 10 mA/cm
2
 DC, which was 

to prevent the copper substrate from being dissolved into the solution during the 

anodic cycles. The current efficiencies were also derived as described above.  
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Table 3-2 Parameters of bipolar pulse reverse current waveforms for indium electrodeposition in 

sulphamate solution.  

No. 
ip(c) 

(mA/cm
2
) 

ton(c) 

(ms) 

ip(a)  

(mA/cm
2
) 

ton(a) 

(ms) 

toff 

(ms) 

Frequency 

(Hz) 

iavg 

(mA/cm
2
) 

13 50 1.5 50 0.5 3 200 10 

14 100 1.5 100 0.5 8 100 10 

15 100 1.5 50 1 7.5 100 10 

 

3.2.3 Characterisation  

Electrodeposition through the pulsating current waveform was expected to give grain 

refinement and therefore surface smoothing, which has been observed in several 

practical applications. Accordingly, the influences of pulse electroplating and pulse 

reverse electroplating on the uniformity of indium deposition should be reflected 

through the surface profile of the electroplated indium. The surface profile of the 

deposited indium was measured by using the Talysurf CLI 2000 surface profiler 

following the route demonstrated in Figure 2-4 (page 29). Moreover, the surface 

morphology and microstructure were also characterized by Scanning Electron 

Microscopy (SEM) and Focused Ion Beam assisted SEM (FIBSEM).  

3.3 Results of Indium Deposited Through Pulsating Current 

3.3.1 Pulse Electroplating  

The surface morphologies of indium electroplated using pulse current waveforms are 

shown in Figure 3-5. With the decrease of duty cycle ratio, the peak current density 

increased as the average current density remained constant. It can be clearly seen that 

the morphologies of deposits were significantly changed by utilising pulse current 

compared to DC. Generally speaking, surface feature refinement can be observed in 

all of the pulse electroplating conditions. In the case of waveform No. 1 shown in 

Table 3-1, the pulse peak current density was 30 mA/cm
2
, and relatively large features 

and the crystal growth facet can still be observed. However, once the pulse peak 

current density overcame 30 mA/cm
2
, the typical large sized surface features were no 

longer present. Instead of the granular morphology seen in DC electroplating, the 
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indium grains preferentially grew as cones in pulse electroplating when the pulse 

current density was between 40 and 300 mA/cm
2
.  

Moreover, it was found that no hydrogen bubbles were visible during the 

electroplating process when the peak current density was below 160 mA/cm
2
. In the 

case of waveform No. 8, i.e. a peak current density of 160 mA/cm
2
, hydrogen bubbles 

were observed all through the pulse electroplating process covering the whole surface, 

but the hydrogen evolution did not affect the surface morphology. When the peak 

current density reached 300 mA/cm
2
, massive hydrogen bubbles were observed 

throughout the electroplating process and indium was deposited accompanied with 

hydrogen evolution. When the peak current density was 300 mA/cm
2
 or above, the so 

called „pitting‟ effect could be observed causing significant non-uniformity on the 

surface. Figure 3-6 shows the „pitting‟ effect caused by the hydrogen bubble evolution 

when the peak current density was 300 mA/cm
2
.  

 

  

(a) 1 ms : 2 ms, 333 Hz (b) 1 ms : 3 ms, 250 Hz 
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(c) 1 ms : 4 ms, 200 Hz (d) 1 ms : 5 ms, 166 Hz 

  

(e) 1 ms : 7 ms, 125 Hz (f) 1 ms : 9 ms, 100 Hz 

  

(g) 1 ms : 11 ms, 83 Hz (h) 1 ms : 15 ms, 62.5 Hz 

  

(i) 1 ms : 19 ms, 50 Hz (j) 1 ms : 29 ms, 33 Hz 
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(k) 1 ms : 49 ms, 20 Hz (l) 1 ms : 99 ms, 10 Hz 

 

Figure 3-5 Surface morphologies of electroplated indium using various unipolar pulse current 

waveforms with constant pulse duration (1 ms) and average current density (10 mA/cm
2
).  

 

 

Figure 3-6 „Pitting‟ effect observed on the surface of electroplated indium caused by the 

hydrogen bubble evolution when the peak current density ip = 300 mA/cm
2
.  

 

The hydrogen evolution was reflected in the loss of the cathodic current 

efficiency. By measuring the weight change after electroplating, the current 

efficiencies corresponding to various current waveforms were calculated according to 

Equation 2-11 and the results are given in Table 3-3. It can be seen that more than 90% 

current efficiency can still be achieved when the peak current density was below or 
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equal to 100 mA/cm
2
. When the pulse current density was greater than 100 mA/cm

2 
but 

smaller than 160 mA/cm
2
, although no visible hydrogen bubbles were observed on the 

surface, the decrease of the current efficiency indicated the existence of the side 

reaction. The side reaction could be decomposition of water that might not be able to 

form visible gas bubbles in the solution, or decomposition of other components in the 

solution such as organic additives. Therefore, when the pulse current density was 

greater than 100 mA/cm
2
, the cathodic current efficiencies were decreased with the 

peak current densities.  

 

  

(a) ip = 50 mA/cm
2
 (b) ip = 500 mA/cm

2
 

Figure 3-7 Cross section analysis of pulse electroplated indium with various peak current 

densities produced using FIBSEM.  

 

The decrease of current efficiency can also be demonstrated through the 

change of thickness of indium. Figure 3-7 compares the cross sectional views 

(prepared by FIB) of pulse electroplated indium with 50 and 500 mA/cm
2 

peak current 

densities. A layer of platinum was deposited on the top of the area of interest to 

prevent any damage to the surface caused by the ion beam during the preparation 

process. The boundary lines between In/Pt and In/Cu were added manually. For both 

of the cases, the electroplating trials were conducted for 45 minutes. It was measured 

that when the peak current density was 50 mA/cm
2
, the thickness of deposit was about 

13.65 µm, while it was only about 3.77 µm in the case of ip = 500 mA/cm
2
. Also, the 

deposit appeared highly porous in the latter case.  
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Figure 3-8 shows the surface roughness measurement of the electroplated 

indium for the peak current density of 50 mA/cm
2
. The upper contour map illustrates 

the distribution of data collected from the surface, and the lower chart shows the total 

11 line profiles. From this, the maximum Total Height of Profile (Pt) 6.05 µm from 

the averaged base line, and the Average Roughness (Ra) 0.58 µm were obtained. 

Table 3-3 also shows the values of Pt and Ra of pulse electroplated indium for other 

pulse electroplating conditions. It should be noted that, because of the „pitting‟ effect 

caused by the hydrogen bubble evolution when the peak current density exceeded 300 

mA/cm
2
, the surface profile measurement was not applicable for waveforms Nos. 10, 

11 and 12.  

 

Table 3-3 Cathodic current efficiencies (CCE), maximum Total Height of Profile (Pt) and 

Average Roughness (Ra) for indium electrodeposits produced using various pulse electroplating 

parameters. 

No. 
ton  

(ms) 

ip 

(mA/cm
2
) 

toff  

(ms) 

iavg 

(mA/cm
2
) 

CCE (%) 
 Max. Pt  

(µm) 
Ra (µm) 

1 1 30 2 10 91.63  7.36 0.66 

2 1 40 3 10 91.42  5.26 0.7 

3 1 50 4 10 92.08  6.05 0.59 

4 1 60 5 10 91.84  6.27 0.67 

5 1 80 7 10 90.90  6.08 0.64 

6 1 100 9 10 90.57  8.36 0.73 

7 1 120 11 10 81.57  7.98 0.76 

8 1 160 15 10 65.70  8.76 0.91 

9 1 200 19 10 48.40  7.31 0.86 

10 1 300 29 10 37.16  n/a n/a 

11 1 500 49 10 25.59  n/a n/a 

12 1 1000 99 10 22.36  n/a n/a 
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Figure 3-8 Surface roughness measurement of pulse electroplated indium (ip = 50 mA/cm
2
). 

 

3.3.2 Pulse Reverse Electroplating  

The surface morphologies of electroplated indium produced using the three types of 

pulse reverse current waveforms are shown in Figure 3-9. In all of the three pulse 

reverse electroplating conditions, surface feature refinement can be observed in 

comparison to DC electroplating. Interestingly, the surface morphology obtained from 

the three pulse reverse electroplating waveforms is significantly different compared to 

conventional pulse electroplating. The conical growth preference observed in pulse 

electroplating is not found in pulse reverse electrodeposition, instead, the 

electrodeposited indium presents a refined surface feature.  

Because both of the cathodic and anodic pulse current densities were set lower 

than or equal to 100 mA/cm
2
, there were no visible hydrogen bubbles during the 

electrodeposition processes. The overall cathodic current efficiencies are shown in 

Table 3-4. It can be seen that the overall cathodic current efficiencies were as high as 

90% in all of the three pulse electroplating conditions. Figure 3-10 shows the surface 

roughness measurement results of the electroplated indium through the waveform No. 
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13 giving an average roughness (Ra) of 0.6 µm. The measurement results for 

waveforms Nos. 14 and 15 are also included in Table 3-4.  

 

  

(a) ip(c) = 50 mA/cm
2
, ton(c) = 1.5 ms; 

ip(a) = 50 mA/cm
2
, ton(a) = 0.5 ms; 

toff = 3 ms. 

(b) ip(c) = 100 mA/cm
2
, ton(c) = 1.5 ms; 

ip(a) = 100 mA/cm
2
, ton(a) = 0.5 ms; 

toff = 8 ms. 

 

(c) ip(c) = 100 mA/cm
2
, ton(c) = 1.5 ms; ip(a) = 50 mA/cm

2
, ton(a) = 1 ms; toff = 7.5 ms. 

Figure 3-9 Surface morphology of electrodeposited indium through various pulse reverse current 

waveforms with a constant average current density of 10 mA/cm
2
.  
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Table 3-4 Cathodic current efficiencies (CCE), maximum Total Height of Profile (Pt) and 

Average Roughness (Ra) of electrodeposited indium through various pulse reverse current 

waveforms.  

No. 
ip(c) 

(mA/cm
2
) 

ton(c) 

(ms) 

ip(a)  

(mA/cm
2
) 

ton(a) 

(ms) 

toff 

(ms) 

CCE 

(%) 

Max. Pt 

(µm) 

Ra 

(µm) 

13 50 1.5 50 0.5 3 90.4 6.24 0.6 

14 100 1.5 100 0.5 8 89.83 6.19 0.71 

15 100 1.5 50 1 7.5 91.05 7.56 0.83 

 

 

 

 

Figure 3-10 Surface roughness measurement of indium obtained using pulse reverse 

electroplating (waveform No. 13, ip(c) = 50 mA/cm
2
, ton(c) = 1.5 ms; ip(a) = 50 mA/cm

2
, ton(a) = 0.5 ms; 

toff = 3 ms). 

3.4 Summary  

In this chapter, experiments utilising unipolar pulse electroplating and bipolar pulse 

reverse electroplating of indium were conducted using the same indium sulphamate 

solution at room temperature without any additional agitation. The surface 

morphology, surface uniformity and electroplating efficiency were analysed using 
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SEM, FIBSEM, surface profilometry and high accuracy analytical balance. The 

following conclusions can be drawn on the basis of the data demonstrated above.  

 The surface feature size of electrodeposited indium was significantly 

reduced compared to DC electroplating by using both unipolar and 

bipolar pulsating current waveforms;  

 The surface morphology of electroplated indium through pulse 

electroplating was dominated by conical structures while a refined 

microstructure prevailed in the pulse reverse electroplating situation;  

 The surface roughness of electrodeposited indium was significantly 

improved through pulse electroplating and pulse reverse electroplating 

compared to DC electroplating, while little difference was found 

between using the unipolar and bipolar pulsating current waveforms; 

 In order to take the advantage of pulse electroplating and ensure a high 

electroplating efficiency, it is recommended that, for the 1 ms pulse 

duration, the pulse current density should be in a range between 40 and 

100 mA/cm
2
.  
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Chapter 4 Wafer Level Indium Bumping by 

Electrodeposition 

 

 

 

4.1 Introduction 

This chapter presents the results of indium bump deposition through DC, unipolar 

pulse and bipolar pulse reverse electroplating. The background of the electroplating 

bumping method is introduced, and a literature review of the uniformity issue is 

discussed afterwards. The experiments mainly focus on the influences of various 

current waveforms on the indium bumping process regarding the bump morphology, 

microstructure and uniformity.  

4.1.1 Development of the Electroplating Bumping Method 

Electroplating as a method for bumping was introduced in the early 1970s in the 

applications of die packaging through Tape Automated Bonding (TAB) [75]. Then, 

with the evolutionary development of electrochemical fabrication techniques, 

electrodeposition of solder bumps for flip chip interconnection was developed as an 

alternative to the vacuum evaporation method and has been widely adopted [27, 30]. 

The larger sized wafer processing introduced in recent years imposed extreme 

challenges for the evaporation method to overcome the thermal mismatch between 

metal mask and wafers [76, 77]. In addition, the evaporation process is not suitable to 

deposit tin-rich alloys because the relatively low vapour pressure of tin restrains its 

evaporation rate and the evaporation process may need an unrealistic  long time which 

is unacceptable for industrial production [2]. A successful example of electroplated 

solder bumping was the eutectic tin-lead alloy solder bump fabricated through
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electrodeposition which has been commonly applied for microelectronic packaging 

interconnections. However, due to the health and environment concerns and RoHS 

legislative requirements, the most commonly electroplated Pb-containing solder 

materials have been banned in most microelectronic products [3]. Tremendous efforts 

have been made in the development of lead-free solder materials. Various solder 

materials have been investigated for flip chip bumping such as copper, tin-silver, tin-

copper, tin-indium, tin-bismuth and tin-silver-copper alloys [32, 78-84].  

Unlike the traditional electroplating system, which usually consists of several 

tanks containing electroplating electrolytes and pre-/post-treatment chemicals, the 

electroplating systems employed in microelectronic packaging for solder bumping 

require different types of electroplating chamber sequenced in a highly automated 

processing system. Considering the tiny dimension of solder bumps (~100 µm or less) 

and enormous quantity of production, yield and uniformity are of special importance 

for manufacturing. Thus, the electroplating system is required to be designed with 

consideration of every detail and the electroplating process should be repeatable with 

reasonable tolerance. Moreover, comprehensive understanding of the yield and 

uniformity issues is essential for the electroplating bumping process to succeed.  

4.1.2 Bumping Yield and Uniformity 

In this research, the bumping yield concerns the number of bumps that are missed 

after electroplating. In other words, the bumping yield is defined as that whether the 

bump is present or not, and such definition also has been widely adopted by other 

investigators [1, 39, 76]. To ensure a high yield, the electroplating process must be 

carefully controlled with attention to every detail. For example, in the industrial mass 

production, plasma descum process is usually applied prior to electrodeposition to 

ensure that no residual photoresist is left in the bottom of the bumping pattern 

openings. Very often, more than one metal needs to be deposited sequentially within 

an electroplating unit, such as multilayered tin-based binary or tertiary alloys. So, 

sufficient cleaning of the wafer between the two steps is necessary to achieve a high 

yield. Also, in the case of fine pitch bumping, an additional wetting step is needed to 

ensure the substrate has good contact with the electrolyte.  

The uniformity of the deposited bumps is one of the problems which the 

electroplating bumping approach suffers from and it deteriorates when ultrafine pitch 
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patterns and large diameter wafer are employed. The uniformity defines variations of 

height, shape, volume and composition of deposited bumps, which can be categorised 

into within wafer uniformity and wafer-to-wafer uniformity. Within a wafer, the 

uniformity mainly depends on the current density distribution and diffusion boundary 

layer distribution across the entire wafer. As to wafer-to-wafer uniformity within a 

single production batch or multiple batches, it is mainly affected by the reliable 

control of the electroplating parameters, such as temperature and composition of the 

electrolyte and the method utilised to define the accurate ending point of the process 

[2]. It is also very important to ensure the same specifications of the wafers to be 

processed prior to bumping, for instance, the thickness of seed layers between wafers. 

However, most packaging applications request good bump uniformity within an 

individual die, which is likely to affect the functions and reliability of electronic 

packages. Therefore, this research concentrates on the bump uniformity within a 

wafer by electroplating.  

4.1.3 Current Density Distribution  

The miniaturisation of microelectronics systems requires higher density 

interconnections at ever smaller pitch size and has led to electrodeposition to produce 

solder bumps of some tens of microns in diameter becoming a crucial enabling 

technique. In many applications, the thickness of the substrate for electroplating is 

continuously reduced, thus the resistance of the substrate can no longer be neglected 

and can substantially affect the electroplating process during wafer bumping. As the 

resistance of substrate can result in a noticeable potential drop at the electroplating 

interface between electrolyte and substrate, the location of the electrical contact with 

the electrode,  e.g. through the periphery of the substrate (e.g. wafer), is important and 

can lead to a phenomenon known as the „terminal effect‟ [85]. Figure 4-1 illustrates 

schematically the two-dimensional current flow in the electrolyte above a cathodic 

resistive substrate during electrodeposition which is a qualitative model obtained by 

using COMSOL. It clearly shows that the current densities (the radiant lines in the 

figure) are distorted along the cathode surface leading to uneven current distribution.  
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Figure 4-1 Schematic of 2-D distribution of current flow in an electrolyte during electroplating 

onto a resistive substrate. 

 

For the electroplating bumping process, a very thin layer of metal acting as the 

cathode is needed and its resistance is not negligible. This thin metal film is normally 

deposited prior to bumping and known as the seed layer. In electroplating, the wafer is 

peripherally contacted to provide the current flow and enable high productivity. Thus, 

due to the terminal effect, the varied potentials induce different current densities 

across the wafer leading to a different electroplating rate at different locations across 

the wafer. The bumps near the edge of wafer normally grow faster, hence taller than 

those at the centre of the wafer due to the existence of a potential gradient. The 

variation of bump height imposes a non-uniformity issue to the electroplating 

bumping process.  

The terminal effect of electroplating for a blanket (un-patterned) resistive 

substrate has been extensively studied through theoretical calculation and 

experimental validation. Tobias and Wijsman [85] as the pioneers of electroplating 

onto resistive substrates have, based on a plane parallel electrode system, concluded 

that the current density distribution along resistive electrodes is dependent on the 

magnitudes of certain dimensionless parameters which are determined by the 

geometrical features of the electroplating system, the resistance of the electrodes and 

the conductivity of the electrolyte. This model uses the potential theory such that the 
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current density can be determined by the local gradient of the electric potential which 

obeys a Laplace relation in the electrolyte and the potential in the resistive substrate 

can be calculated from Ohm‟s law. The potential distribution in the electrolyte and 

metal substrate are then connected at the electrode-electrolyte interface through an 

electrochemical kinetic relation, i.e. the Butler-Volmer equation. Tobias‟ model is 

described as a „steady-state‟ process so that the thickness of the substrate may be 

ignored and the resistance of the substrate remains constant during the deposition 

process. This steady-state model found limited use in the prediction of deposit 

thickness distribution on a printed circuit board [86-88]. Matlosz et al [89, 90] 

extended Tobias‟ model to simulate electrodeposition of thin films on printed circuit 

boards, which also considered the phenomena that the resistance of the electrical path 

through the substrate would be reduced by the additional conductance contributed by 

the metal that has been deposited. The terminal effect is most profound at the 

beginning of electrodeposition, thereafter the electrodeposits can become conductive 

enough to provide uniform current density distribution as the deposition progresses.  

In the case of electroplating using a photoresist mask or pattern, which is 

commonly applied in wafer bumping, the influences of pattern or mask need also to 

be taken into account. Dukovic [91] suggested the current density distribution through 

the mask during electrodeposition should be investigated by considering a hierarchy 

of size scales:  

1. Workpiece scale ― characteristic of the whole object to be 

electrodeposited, for example, an entire wafer. 

2. Pattern scale ― characteristic of patterns or regions on the workpiece. 

3. Feature scale ― characteristic of individual features such as bonding pads 

or through holes and their size and geometry.  

4. Roughness scale ― characteristic of microscopic roughness of surfaces. 

Usually, the workpiece, e.g. a wafer, contains many different patterns, each are 

composed of many small features and, each small feature acts as the part of a 

separated electrode. Figure 4-2 illustrates a wafer with certain patterns (i.e. chips) and 

feature scales. From the point of view of the workpiece scale, the current density 

distribution at each square pattern is of great interest; thus an individual region may 

correspond, for instance, to an ASIC chip for pixel detectors. From the view of the 

pattern scale, it is important how the current within each square is distributed 

compared to the separated circular features. At the feature scale, the current density 
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distribution refers to the electrodeposition rate at each individual aperture. These three 

length scales for determining the current distributions could be simultaneously solved 

on the basis of  the potential theory model proposed above, while the effect at the 

roughness scale is under the control of bath chemistry and additives in the solution 

[92]. Therefore, the geometric complexity of electroplating via a mask can be reduced 

by using the hierarchical length scales model [93, 94].  

 

 

 

Figure 4-2 Schematic diagram of multiple length scales regarding current distribution for wafer 

bumping using a photoresist mask. 

 

The current density distribution at the workpiece scale mainly depends on the 

geometrical configuration of the electroplating system. Because of the terminal effect, 

electrical connections and contact with the cathode (i.e. wafer) can physically govern 

the potential field and distribution on the wafer scale. Normally, symmetrical 

connection to the cathode is preferred to form an evenly distributed potential field, 

therefore resulting in a more even current density distribution. Electric shielding was 

also investigated as a useful approach to modify the primary current distribution at the 

workpiece scale within an electroplating bath by inserting a non-conductive shield 

between anode and cathode. This non-conductive shield is usually made with certain 

geometries corresponding to the shape of a cathode. Figure 4-3a shows the schematic 
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configuration of a typical wafer electroplating system with an electric shield having a 

circular hole in the middle. Non-conducting elements can be either positioned close to 

the cathode or the anode surface to shape the potential field distribution within the 

electrolyte. Both of the theoretical and experimental studies illustrated that the 

uniformity at the workpiece scale of current density distribution can be effectively 

improved by using the electric shielding as per the specific application [95-98].  

 

  

(a) electric shield (b) current thief 

Figure 4-3 Schematic configuration of electroplating system with: (a) electric shield, and (b) 

current thief. 

 

Another method for adjusting the current distribution at the workpiece scale 

can be achieved by using auxiliary electrodes. As mentioned above, the edge of the 

cathode normally draws a higher current density due to the terminal effect. Therefore, 

an additional conductor can be connected from the edge, e.g. along the periphery of 

wafer so that undesirable high current crowding can be redirected to this additional 

conductor, to leverage the current flow across the wafer area [99-105]. This method is 

therefore called current thieving based on the fact that high current is stolen by the 

additional conductor introduced. In the case of wafer electroplating, a metal ring 

acting as an additonal conductor is usually applied surrounding the edge of wafer for 

„current thieving‟, thereby it is also called a current thief ring, as shown in Figure 

4-3b. The current thief ring can be controlled using the same or separate power supply 

depending on actual applications.  

The influence of photoresist patterns on the electrodeposition process has been 

recognised as an important factor which may change the current density distribution 
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on the pattern and feature scale, thus the bump shape and uniformity. Mehdizadeh et 

al [106, 107] found that the deposition rate of copper onto a patterned substrate had a 

certain relation with pattern density and proposed a factor called „active-area density‟, 

which was the ratio between the actual electroplating area and the superficial area, in 

order to predict the current distribution at the workpiece and pattern scale. Unevenly 

distributed patterns induce non-uniform current distribution leading to a non-uniform 

deposition rate, which can be described as a pattern density effect. In general, the 

regions having smaller features tend to draw higher current density [106-109].  

The current distribution at a pattern scale can be improved by carefully 

designing electroplating patterns and conditions. On the one hand, the effect of pattern 

density could be compromised by choosing a relatively lower electroplating rate and 

selecting more evenly populated photoresist patterns [106]. On the other hand, the 

conditions for mass transport play another important role in determining the 

uniformity of current density distribution at the pattern scale [25].  

The current distribution at a feature scale primarily defines the shape of 

growth front of bumps and homogeneity of the aperture filling [110]. In general, 

current crowding occurs near the entrance of apertures due to the existence of the 

photoresist, as shown in Figure 4-4. Thus, the current distribution perpendicular to 

current lines becomes non-uniform. The edge of bumps normally attract a higher 

current density leading to a faster deposit growth and the deposited bumps may 

appear with a „rabbit ear‟ shape [111]. Moreover, the geometric appearance of the 

photoresist pattern also plays an important role in current distribution at a feature 

scale. The angle of side walls of photoresist apertures can affect the current crowding 

near the opening of apertures, therefore influencing the shape of resultant deposits 

[112].  Coincidently, the crowded current also induces an increased flow of reacting 

species which would affect the non-uniformity at the feature scale. By using the 

hierarchical model, Dukovic [93] calculated current distribution at the feature scale 

and concluded that smaller features can normally attract higher current density. As 

mentioned above, the current distribution at the roughness scale is likely to be 

determined by the chemical composition of the electrolyte and organic additives, for a 

given electrochemical system, and is not considered further here.  

On the feature scale, current distribution relies on potential and concentration 

gradient of reactant ions within an aperture. Additives acting as levelling agents are 

usually employed to achieve an even deposition rate at the feature scale [2]. The 
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levelling agent performs as an inhibitor of the electrodeposition reaction and its 

activity is dependent on the mass transport. The peak sites are more easily accessible 

for the additives than the recesses of the surface profile, therefore the deposition on 

the peak sites are more strongly hindered. In addition, the hydrodynamic conditions 

also affect the bump growth within apertures. It has been found that the evolution of 

the deposited bump shape and levelling effectiveness of the additives can be strongly 

influenced by diffusion conditions when electroplating is conducted close to the 

limiting current density [112].  

 

 

Figure 4-4 Schematic of current crowding effect near the entrance of the photoresist feature. 

 

4.1.4 Mass Transport  

Mass transport determines the limiting current density thus the maximum 

electrodeposition rate which is usually treated as a decisive factor for productivity. In 

the application of electroplating using a mask, mass transport often plays an important 

role in the evolution of  the shape and microstructure of deposits [110]. During a 

bumping process, the mass transport condition at various scales across a wafer, i.e. at 

workpiece, pattern and feature scales, is of particular interest to be associated with 

bumping uniformity, which is also referred to as diffusion boundary layer distribution. 

The thickness of the diffusion boundary layer is dependent on the hydrodynamic field 

in the electroplating system. Therefore, a uniform distribution of the hydrodynamic 

field at the wafer scale is desired to achieve an even distribution of the diffusion 

boundary layer, which is usually governed by the fluid dynamics of an electroplating 

system.  
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4.1.5 Aim of This Chapter  

This chapter considers the development of an indium bumping process by 

electroplating, through a thorough investigation of the influences of current 

distribution using both DC and pulsating current waveforms. As discussed above, 

electroplating bumping processes need to be carefully controlled to ensure an 

acceptable yield and uniformity of bumps. There are several technical approaches to 

adjust the current distribution at various scales; however, an optimum cannot be 

achieved without a fundamental understanding of the characteristics of 

electrodeposited indium bumps. For this reason, this chapter focuses on the formation 

of indium bumps under direct current electroplating, unipolar pulse electroplating and 

bipolar pulse reverse electroplating, whilst the influence of mass transport will be 

dealt with in Chapter 5. In this chapter, the parameters used for electroplating are 

based on the results from the electroplating onto non-patterned substrates 

demonstrated in the previous two chapters. In order to obtain more homogenous 

deposits, both pulse and pulse reverse electroplating are employed as compared to DC 

electroplating.  

The electroplated indium bumps are characterised in terms of their 

morphology, shape, microstructure and uniformity at different length scales. 

Considering different scales of current distribution, the bumping uniformity is 

quantified at wafer, pattern and feature scale. As the indium sulphamate solution from 

a commercial supply is used and stable in its chemical composition, uniformity on the 

roughness scale is not considered. Therefore, bump uniformity, i.e. the variation of 

bump height, is measured at wafer, pattern and feature scale, and treated as the main 

index for the overall bumping uniformity.  

4.2 Experimental Details 

Indium bumping by electroplating was first conducted on 3 inch glass test wafers for 

the sake of cost reduction and easy handling in the preliminary investigation. Both DC 

and pulse current electroplating were carried out and the deposited bumps and their 

morphology, microstructure, growth characteristics and uniformity were examined. 

Because this research was also targeting the fabrication of a real pixel detector in 
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collaboration with RAL, the indium bumping process was subsequently extended onto 

4 inch wafers.  

4.2.1 Sample Preparation   

As mentioned above, two sets of wafer samples were prepared for the experiments. 

Dummy glass wafers (3 inch) were used for the primary experiments at a lower cost 

compared to commercial 4 inch silicon wafers. Glass wafers were firstly cleaned 

using acetone assisted by an ultrasonic bath. Then, a thin Ti/Cu seed layer was 

evaporated onto their surfaces by using an electron-beam evaporator, which consists 

of about 100 nm Ti and 100 nm Cu. Ti was used as an interlayer to improve the 

adhesion of the copper film onto the glass. It should be noted that copper is not 

normally utilised as an appropriate UBM for indium bump bonding. Copper is used as 

a part of seed layer in this research due to its excellent electrical conductivity and 

convenience of preparation. Once the seed layer was deposited, a thick photoresist 

was spun and developed to form the required patterns which were pre-defined using a 

mask. A positive photoresist AZ 9260, was chosen as it was easy to be removed after 

electroplating. Table 4-1 lists the parameters for the patterning process for 3 inch 

glass wafers to produce a photoresist layer about 20 µm thick. Between baking and 

exposure, the photoresist needed to be left in air at least two hours for rehydration and 

stabilisation before being exposed under ultraviolet (UV) light. Such developed 

photoresist patterns were evaluated using a Zygo NewView 5000 white light 

interferometer. Figure 4-5 shows a three dimensional view and profile of one type of 

photoresist pattern developed through the given parameters. It was found that the 

sidewall of apertures was more than 85º indicating that the patterning process was 

reliable and capable of ultrafine pitch indium bumping.   
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Table 4-1 Parameters for AZ 9260 photoresist patterning process for 3 inch glass wafers. 

Procedures Parameters 

Dispensing cycle 70 rpm, 20 s. 

Spread cycle 400 rpm, 20 s. 

Final cycle 1000 rpm, 30 s. 

Soft baking 80 ºC, 60 s. 

Hard baking 110 ºC, 240 s. 

Exposure (UV) 1800 J/cm
2
. 

Development (AZ 400K 1:4 in H2O) 260 s. 

 

 

(a) 3D view of the photoresist pattern on 3 inch glass wafers 

 

 

(b) Cross-section profile of the photoresist pattern at the centre of feature. 

Figure 4-5 Three dimensional view and cross-section profile of photoresist pattern produced 

using Zygo white light interferometer. 
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4 inch silicon wafer samples were purchased from Compart Technology Ltd, 

UK, and a similar procedure for patterning was utilised as described above for glass, 

except that the duration of the spread cycle and final cycle were increased. In this case, 

a large amount of photoresist was needed to achieve 20 µm thickness due to a larger 

area of coverage.  

4.2.2 Electroplating Indium Bumping Procedure 

The electroplating bumping process flow can be illustrated as in Figure 4-6. Followed 

by wafer patterning steps, indium bumps were electroplated onto the seed layer 

through apertures in the photoresist patterns. The photoresist was then dissolved in 

acetone to reveal the indium bumps on the wafer. Next, the seed layer was etched 

away to isolate electroplated bumps and wafers were then reflowed to form truncated 

spherical indium bumps.  

 

(a)  Seed layer deposition                 

(b) Photoresist spun on                  

(c) Exposure and development      

(d) Indium electroplating               

(e) Strip photoresist                       

(f) Seed layer etching                    

(g) Reflow                                     

Figure 4-6 Schematic of the electroplating indium bumping process using indium sulphamate 

solution on patterned wafer. 
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4.2.3 Configuration of the Electroplating Systems  

For electroplating with 3 inch wafers, a 500 mL electroplating bath was used as 

illustrated in Figure 4-7 and was placed in an ultrasonic bath (30 kHz) so that the 

pattern could be pre-wetted prior to the deposition. The pre-wetting step by ultrasonic 

agitation is essential for ultrafine pitch bumping by electroplating according to the 

preliminary experiments. Prior to electroplating of indium, the ultrasonic bath was 

switched on for 5 seconds to allow an effective penetration of the electroplating 

solution into the apertures. As soon as the ultrasonic power was switched off, the 

electroplating process was started. Ultrasonic agitation and its effects on the bumping 

process will be discussed later in Chapter 5. The anode used for electroplating was an 

8 cm × 8 cm 99.99% pure indium plate. Similar to the previous electroplating trials, 

the anode plate and test wafers were vertically placed in the electroplating bath facing 

each other. No agitation was provided during the electroplating processes.  

 

 

Figure 4-7 Configuration of electroplating bumping bath for 3 inch samples using indium 

sulphamate solution with ultrasonic bath (for pre-wetting of photoresist patterns). 

 

An electroplating tank was commercially designed and supplied capable of 

electroplating 8 inch silicon wafer samples, as demonstrated in Figure 4-8. A 35 × 35 

× 35 cm
3
 tank of approximately 42 L capacity was filled with indium sulphamate 

solution. The electroplating tank was fitted with a circulation system using a pump 
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and two cartridge filters designed for 10 µm and 0.5 µm filtration, respectively. A coil 

heater and thermometer were built into the tank enabling temperature monitoring 

during the electroplating process. The anode used in this tank was an indium plate 

(99.99% indium purity) with a diameter of 10 cm.  

During electroplating, electrical power was delivered to the 3 and 4 inch wafer 

samples through different configurations, respectively. For 3 inch wafers, two metal 

wires were soldered to the seed layer near the edge of the wafers, diametrically 

opposite to each other, to provide electrical contact (Figure 4-9a). For 4 inch wafers, 

the electrical contact was made through 6 gold plated tips evenly distributed along the 

periphery (Figure 4-9b) which was expected to provide more uniform current 

distribution. With the intention to set-up for electroplating 4 inch wafer samples as a 

viable industrial-scale bumping process, a wafer holder was designed to enable an 

evenly distributed electrical current across the wafer and to protect the wafer edge and 

back from corrosive electrolyte. The materials for making this wafer holder were 

required to have no chemical/electrochemical reaction with the electroplating solution 

and not lead to contamination of the electrolyte.  

 

  

  

(a) Configuration of the electroplating tank (b) Electroplating tank set-up 

Figure 4-8 Electroplating plant for indium bumping on 4 inch wafer: (a) configuration of the 

electroplating plant; (b) the actual set-up of the plant. 
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(a) 3 inch wafer (b) 4 inch wafer 

Figure 4-9 Electrical contact configurations for: (a) 3 inch glass wafer; (b) 4 inch wafer. 

 

Figure 4-10 provides a drawing of the assembled holder with a view of some 

details. Rigid polyurethane was utilised for making the non-conductive parts as this 

material has an excellent chemical resistance and machining properties. As can be 

seen in Figure 4-10, a wafer sample coated with a copper seed layer and photoresist 

pattern rested on a pedestal, which was sealed by O-rings 1 and 2 to ensure the wafer 

edge was isolated from the solution when the whole device was immersed into an 

electrolyte. Electrical contact was realised through six gold-plated pins (supplied by 

Connector Solutions Ltd.) loaded with springs in order to connect to a stainless steel 

ring. This ring was connected to the power supply through a tunnel in the handle. A 

circular cover was then placed and screwed onto the pedestal to expose the central 

circular area when the patterned wafer was located in the electroplating solution. 

Dimensional details of each part of the assembly can be found in Appendix 1, and an 

image of the actual device is shown in Figure 4-11.   
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Figure 4-10 Assembly of wafer holder for electroplating on 4 inch silicon wafer samples. 

 

 

 

 

Figure 4-11 Actual wafer holder made from rigid polyurethane. 
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4.2.4 Photoresist Pattern Layout  

Several types of pattern were designed for different sized wafer samples from which 

photomasks were prepared for the lithography process. Because the AZ 9260 was a 

„positive‟ photoresist, the corresponding photomask was made as a „negative‟ (dark 

field). In other words, the photoresist exposed to the UV light was damaged and 

removed by the AZ 400K developer (see Figure 4-12). A current thief ring design was 

taken into account for both 3 inch and 4 inch photomasks which was a blanket 

circular area surrounding the patterns (Figure 4-13). For the 3 inch wafers, 6 types of 

patterns with various diameters and pitch sizes were included in one wafer sample to 

investigate the details of the patterns‟ effects on the capability of indium bumping by 

electroplating. For 4 inch wafers, 5 different photomasks containing various patterns 

were also produced to allow a systematic evaluation of the bumping process at 

different scales. The details of these photomasks are listed in Table 4-2 and the 

geometrical configuration can be found in Appendix 2. The photomasks were made 

on Agfa 180 µm high resolution polyester film.  

 

 

 

 

Figure 4-12 Schematic of process of AZ 9260 photoresist development. 
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Figure 4-13 Configuration of photoresist patterns and electrical contact on 3 inch wafer samples. 

 

Table 4-2 Details of photomasks for 3 inch and 4 inch wafer patterning. 

Type 
Thief Ring 

(Y/N) 

Contain Features  

(bump diameter / pitch size, µm ) 

3 inch 
No 25 / 50 ; 20 / 50 ; 20 / 35 ; 18 / 35; 15/30; 15/25. 

Yes 25 / 50 ; 20 / 50 ; 20 / 35 ; 18 / 35. 

4 inch 

No. 1 No 20 / 50. 

No. 2 Yes 25 / 50 ; 20 / 40 ; 18 / 36 ; 15 / 30. 

No. 3 Yes 25 / 50 ; 20 / 40 ; 18 / 36 ; 15 / 30. 

No. 4 Yes 20 / 36 ; 20 / 60 ; 20 / 120 ; 20 / 220 . 

No. 5 Yes 20 / 50. 

 

4.2.5 Electroplating Parameters 

Based on the preliminary results presented in the previous chapters, the electroplating 

parameters used in bumping are listed in Table 4-3. For DC electroplating, indium 
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bumps obtained through different current density were compared. Three pulse current 

waveforms were employed and the average current densities for pulse electroplating 

and pulse reverse electroplating were kept at 10 mA/cm
2
. All of the electroplating 

trials were carried out at room temperature. To deposit indium bumps through pulse 

reverse electroplating, the patterned wafer samples were pre-electroplated using 

current waveform No. 3 in Table 4-3 for 5 minutes to prevent Cu seed layers from 

being dissolved into the indium sulphamate electrolyte. The electroplated samples 

were then continuously electroplated for 55 minutes through the two pulse reverse 

current waveforms. The DC electrodeposition at 20 mA/cm
2
 was conducted for 30 

minutes while the rest of the electroplating trials were carried out for 60 minutes. 

Power supply and various current waveforms were provided by the Potentiostat 

(PARSTAT 2273 Ametek). As stated earlier, all the wafer samples to be electroplated 

were pre-wetted using the ultrasonic bath, but the rest of the electroplating was carried 

out without any agitation.  

Table 4-3 Parameters of DC, pulse and pulse reverse electroplating for indium bumping using 

sulphamate solution. 

 Type I: DC Electroplating 

No. iavg (mA/cm
2
) 

1 10 

2 20 

 Type II: Pulse Electroplating 

No. ton  (ms) 
ip 

(mA/cm
2
) 

toff  (ms) 
Frequency 

(Hz) 

Duty cycle 

(%) 

iavg 

(mA/cm
2
) 

3 1 50 4 200 20 10 

4 2 50 8 100 20 10 

5 1 100 9 100 10 10 

 Type III: Pulse Reverse Electroplating 

No. 
ip(c) 

(mA/cm
2
) 

ton(c) 

(ms) 

ip(a)  

(mA/cm
2
) 

ton(a) 

(ms) 

toff 

(ms) 

Frequency 

(Hz) 

iavg 

(mA/cm
2
) 

6 50 1.5 50 0.5 3 200 10 

7 100 1.5 100 0.5 8 100 10 
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4.2.6 Seed Layer Etching and Reflow  

After completing the electrodeposition step, it was crucial to strip the photoresist 

patterns and remove the seed layer to reveal the isolated indium bumps. It should be 

noted that liquid indium metal as a special solder material is able to wet glass and 

ceramics. Therefore, unlike the Sn-based solders, which do not wet passivated Si, i.e. 

Si3N4 [39], the reflow of electroplated indium bumps is more challenging. However, it 

was found that pure titanium which forms an interlayer of the UBM as part of the seed 

layer can act as the non-wettable base for reflowing indium bumps. Therefore, if the 

copper layer could be removed prior to the reflow step, it was possible to form indium 

bumps by reflowing.  

Two approaches were investigated to remove the copper seed layer: argon 

plasma and wet chemical etching, the results of which are described in more details in 

section 4.3.5. A Plasmalab 80 Plus (Oxford Instruments) was utilised to generate the 

argon plasma and removed the copper seed layer and a thin layer of exposed indium 

at the same time. Because the seed layer was very thin, this was not expected to 

significantly reduce the height of the indium bumps on the wafer after etching. 

Alternatively, etching in an acidic solution was used which is relatively easy to 

operate. As has been mentioned, the standard potential of In
3+

 is -0.34 V (relative to 

standard hydrogen electrode), which means indium is active in aqueous acidic 

solutions. Therefore, chemical etching will inevitably affect indium in the reactions 

depending on the chemistry of the solution to be used. For a similar reason, it is 

acceptable if only small amounts of indium are removed due to the reactions.  

Once the copper seed layer was removed, the indium bumps were reflowed. 

Figure 4-14 shows temperature profile for reflowing indium bumps. The state-of-the-

art indium bump bonding process utilises formic acid vapour to fill the oven to 

eliminate possible oxidation, but this was not available. Hydro X/20 water washable 

flux was applied with small amount on the wafer. The samples were heated up to 200 

ºC in the air and held for 2 minutes to allow liquid indium to form a spherical shape 

by surface tension. After that, the residual flux was cleaned with deionised water at 

60~70 ºC.  
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Figure 4-14 Reflow temperature profile for indium bumps after seed layer etching. 

 

4.2.7 Characterisation  

Surface morphology and geometric shape of the electroplated indium bumps were 

observed by Scanning Electron Microscopy (SEM). Because indium is very soft 

(Hardness 0.9 HB [33]), it is extremely difficult to perform traditional mechanical 

polishing to obtain a smooth surface or cross-section for metallographic analysis, as 

the indium can be easily contaminated and embedded by the abrasive particles. Thus, 

Focused Ion Beam (FIB) was utilised to assist the preparation of the cross-sectional 

view for microstructure analysis. Also, the ion beam secondary electron image is able 

to show the grain orientation contrast which can provide detailed information in terms 

of grain boundaries, grain size and preferential orientations. In addition, the 

composition at the interface was identified by Energy Dispersive X-ray Spectroscopy 

(EDX). The yield of the electroplated bumps was observed through SEM by counting 

the missing bumps within a certain area.  

A Zygo NewView 5000 white light interferometer was also employed to 

observe the profile and the height of the electroplated bumps. The uniformity of the 

electroplated bumps was determined at the wafer scale, pattern scale and feature scale. 

Thus, the uniformity of the electroplated bumps could be defined as:  
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. .
100%

2

Max Bump Height Min Bump Height
Uniformity

Average Bump Height

    
 

  
   (4-1) 

The details of the measurement are illustrated later in this chapter.  

4.3 Indium Bumping Process Development  

In this section, indium bumping through DC, unipolar pulse current and bipolar pulse 

reverse current electroplating were developed using 3 inch glass test wafers. The 

purpose of this section were to gain a knowledge base of the indium bumping 

technique in terms of bump morphology, microstructure, bump height uniformity, and 

the influences of photoresist patterns, current thief ring and seed layer removal on the  

reflow and bump formation process. In this section, bump height uniformity is only 

evaluated at the wafer scale for 3 inch wafer samples.  

4.3.1 Indium Bumping Through DC Electroplating  

Electroplating indium bumps using direct current was conducted at 10 and 20 mA/cm
2 

respectively. A pre-wetting step by ultrasonic agitation was used for the fine-pitch 

bumping to achieve a higher yield. Figure 4-15 shows the incompletely electroplated 

patterns obtained mainly because of insufficient wetting prior to electroplating. It can 

be seen that the silver areas marked by a black arrow were electroplated with indium 

whilst the rest of the patterns were not or partially electroplated.  

 

 

Figure 4-15 Poor wetting induced incompletely electroplated patterns. 
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When the current density was set at 10 mA/cm
2
, the morphology of indium 

bumps near the centre of patterns with various diameters and pitch sizes was as shown 

in Figure 4-16. Bump sizes decreased from 25 µm to 15 µm while the pitch sizes 

shrunk from 50 µm to 25 µm. Assisted by ultrasonic pre-wetting, a bumping yield of 

more than 99.9% could be achieved indicating the capability of electrodeposition to 

generate high density indium bumps with high yield. Figure 4-17 shows the high 

magnification images of as-electroplated indium bumps with various diameters and 

pitch sizes. It can be seen that the as-electroplated bump has very coarse grains and 

uneven or irregular surface finish, where the edge of the bumps is higher than the 

central area. Typical large sized deposit‟s features similar to those shown in Figure 

2-8 (page 35) are also found in the electroplated bumps, with an average size reaching 

~10 µm. Such a large deposit‟s feature size can be seen to influence the overall bump 

uniformity when their size is 20 µm or less.  

In the case of electroplating at 20 mA/cm
2
, no noticeable difference in the 

bump morphology, as shown in Figure 4-18, can be seen. Electroplated bumps also 

had an uneven bump top finish and a large deposit feature size. In both cases, bump 

edges were obviously higher than the central area, indicating current crowding near 

the edge of wafers, as shown in Figure 4-19.  
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(a) 25 µm diameter, 50 µm pitch (b) 20 µm diameter, 50 µm pitch 

  

(c) 20 µm diameter, 35 µm pitch (d) 18 µm diameter, 35 µm pitch 

  

(e) 15 µm diameter, 30 µm pitch (f) 15 µm diameter, 25 µm pitch 

Figure 4-16 Overview of as-electroplated indium bumps (DC, 10 mA/cm
2
) using indium 

sulphamate solution. 
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(a) 25 µm in diameter, 50 µm pitch (b) 20 µm diameter, 50 µm pitch 

  

(c) 20 µm diameter, 35 µm pitch (d) 18 µm diameter, 35 µm pitch 

  

(e) 15 µm diameter, 30 µm pitch (f) 15 µm diameter, 25 µm pitch 

Figure 4-17 High magnification view of as-electroplated indium bumps using indium sulphamate 

solution through DC at 10 mA/cm
2
. 
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(a) 25 µm in diameter, 50 µm pitch (b) 20 µm diameter, 50 µm pitch 

  

(c) 20 µm diameter, 35 µm pitch (d) 18 µm diameter, 35 µm pitch 

  

(e) 15 µm diameter, 30 µm pitch (f) 15 µm diameter, 25 µm pitch 

Figure 4-18 High magnification view of electroplated indium bumps using sulphamate solution 

through DC at 20 mA/cm
2
. 
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Figure 4-19 Profile of indium bump obtained by Zygo white light interferometer : electroplated 

at DC 10 mA/cm
2
. 

 

 

(a) Zygo image of bump height analysis 

 

(b) Bump height measurement through cross section profile 

Figure 4-20 Bump height measurement methodology using Zygo white light interferometer 

(indium bumps were electroplated through DC 10 mA/cm
2
 using sulphamate solution). 
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The bump height uniformity was measured using the Zygo white light 

interferometer at different areas across the wafer. As shown in Figure 4-13, the 

measurement of bump height was mainly carried out on the shaded patterns along X 

and Y directions respectively. The bump height at a certain area was obtained by 

averaging the height of adjacent ones. For example, as shown in Figure 4-20, the 

bump height (h) for the selected area was determined as an average value of 9 

individual bumps within the view. A line profile for each bump was taken across the 

centre, e.g. the line shown in Figure 4-20a, and the height was determined by 

averaging the line (mean value) at feature scale (Figure 4-20b).  

 

-30 -20 -10 0 10 20 30

10

12

14

16

18

20

22

24
(a)

 DC electroplating at 10 mA/cm
2
, without thief ring

A
v
e
ra

g
e

 B
u
m

p
 H

e
ig

h
t 
(

m
)

X Position (mm) 

 

-30 -20 -10 0 10 20 30

10

12

14

16

18

20

22

24 (b)

A
v
e

ra
g

e
 B

u
m

p
 H

e
ig

h
t 
(

m
)

Y Position (mm)

 DC electroplating at 10 mA/cm
2
, without thief ring

 

Figure 4-21 Bump height measurement of DC electroplated indium bumps on 3 inch wafer (10 

mA/cm
2
, without thief ring) through: (a) X direction, and (b) Y direction.  
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In the case of electroplating with 3 inch wafers without a thief ring design, at 

both 10 and 20 mA/cm
2
 current densities, the bump heights along X and Y directions 

are shown in Figure 4-21 and Figure 4-22, respectively. The zero point on the X and Y 

axes as a reference stands for the central point of the wafer. When the current density 

was 10 mA/cm
2
, the height uniformity across the X and Y direction was measured as 

21.43% and 13.5% respectively. When the current density was 20 mA/cm
2
, the 

uniformity was 25.07% and 17.46%, respectively. The error bar presents the standard 

deviation of the bump height in a certain area. It can be seen that the bump height 

uniformity deteriorated more along the X direction for both cases compared with the 

value along the Y direction. Also, the uniformity deteriorated with increase of current 

density indicating that the bumping process should be carried out at a lower current 

density for an improved uniformity. 

In both cases, the highest bumps were found in the area A shown in Figure 

4-13 which has the shortest distance from the electrical contact point. The points 

along the X direction were a relatively short distance away from the contact points 

compared to those along the Y direction. Due to the terminal effect, the average bump 

height along the X direction was higher than that along the Y direction. However, 

although the area B shown in Figure 4-13 was further away from the electrical contact 

points compared with the central area, the bumps in the area B were still higher than 

those in the central area due to current crowding near the wafer edge, which was 

caused by the current crowding induced by the geometric configuration of the 

electroplating system, e.g. difference in the size of the anode and cathode.  
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Figure 4-22 Bump height measurement of DC electroplated indium bumps on 3 inch wafer (20 

mA/cm
2
, without thief ring) through: (a) X direction, and (b) Y direction. 

 

As predicted, the uniformity can be significantly improved when a thief ring is 

added to the pattern layout, as shown by the dashed circles in Figure 4-13. In Figure 

4-23 and Figure 4-24, for the current density of 10 mA/cm
2
, the uniformity was 16.15% 

and 15.84% along X and Y directions, respectively, and for 20 mA/cm
2
, it was 19.05% 

and 18.22%, respectively. A higher current can still induce higher non-uniformity 

with the presence of a current thief. Interestingly, however, the highest bumps were 

now found in the area C shown in Figure 4-13.  
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Figure 4-23 Bump height measurement of DC electroplated indium bumps on 3 inch wafer (10 

mA/cm
2
, with thief ring) through: (a) X direction, and (b) Y direction. 
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Figure 4-24 Bump height measurement of DC (20 mA/cm
2
) electroplated indium bumps on 3 inch 

wafer (with thief ring) through: (a) X direction, and (b) Y direction. 

 

It is apparent that the uniformity along the X direction was improved for both 

10 and 20 mA/cm
2
 due to the placement of current thief rings. However, no 

improvement was seen across the Y direction due to the thief ring, in fact, the 

uniformity through the Y direction deteriorated in the presence of the current thief 

ring. Moreover, little difference in bump height distribution was seen between X and 

Y direction despite the different distances to the connection points. This behaviour can 

also be attributed to the presence of the current thief ring. At the beginning of the 

electroplating process, the thickness of the seed layer on the ring was very thin and 

the current distribution across the wafer would be strongly affected by the terminal 
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effect. However, once indium was deposited onto the ring, the thickness of the 

metallic coatings including indium increased, so did the electrical conductivity, 

thereby providing a continuous electrical contact around the circumference of the 

wafer. This compromised the directional effects caused by the two individual contact 

points such that the deposition along X and Y directions had no significant difference. 

This observation is supported by the fact that the largest bump height was found in the 

area C shown in Figure 4-13, which was not close to the connection points, but very 

close to the thief ring. A summary of the uniformities through different directions 

under various circumstances is illustrated in Table 4-4.  

 

Table 4-4 Summary of the wafer scale DC electroplated bump height uniformity on 3 inch 

samples. 

Current Density 

(mA/cm
2
) 

Thief Ring 

(Y/N) 

Bump Height Uniformity (%) 

X Direction Y Direction 

10 
No 21.43 13.5 

Yes 16.15 15.84 

20 
No 25.07 17.46 

Yes 19.05 18.22 

 

4.3.2 Indium Bumping Through Pulse Electroplating 

Based on the above results, the average current density of pulse electroplating was 

selected as 10 mA/cm
2
, and 3 inch wafers for pulse electroplating experiments 

contained a current thief ring. Figure 4-25 shows indium bumps deposited using the 

three pulse electroplating current waveforms listed in Table 4-3. The morphology of 

these bumps changed so that the conical morphology was observed which may be 

attributed to the increase of current density during the pulses. In general, the edge of 

the bumps was still higher than the centre of bumps indicating that the current 

crowding effect near the photoresist pattern opening still existed, as shown in Figure 

4-26 (a typical Zygo bump profile), however, the pulse electroplating seemed to 

slightly reduce the difference on the feature scale compared with DC electroplating. 

As has been found in pulse electroplating with non-patterned substrates, neither pulse 
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current density, frequency, nor duty cycle had any noticeable influence on bump 

morphology in pulse electroplating.  

 

  

(a) 25 µm, 50 µm pitch, through 

waveform No. 3. 

(b) 25 µm, 50 µm pitch, through 

waveform No. 4. 

 

(c) 25 µm, 50 µm pitch, through waveform No. 5. 

Figure 4-25 Overview of indium bumps deposited using different pulse electroplating waveforms: 

(a) waveform No. 3; (b) waveform No. 4; and (c) waveform No. 5. 
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Figure 4-26  Profile of an indium bump deposited using pulse electroplating waveform No. 3. 

 

Height measurement of the bumps obtained from pulse electroplating are 

presented in Figure 4-27, Figure 4-28 and Figure 4-29. As an average current density 

of 10 mA/cm
2
 was used, the results should be comparable with DC electroplating 

bumping at the same current density. The bump height uniformity was 10.41 % and 

10.09% along X and Y directions respectively if using current waveform No.3; it was 

12.37% and 12.99% for waveform No. 4, and 12.58% and 13.16% for No. 5. These 

results showed that the uniformity of indium bumps deposited by pulse electroplating 

was improved in comparison to DC electroplating at the same current density, i.e. 10 

mA/cm
2
. Also, similar to DC electroplating, because of the use of a current thief ring, 

the bump height uniformity along X and Y directions had no significant difference. 

However, among three waveforms used, the current waveform No. 3 gave the best 

uniformity. Table 4-5 summaries the evaluation of uniformity of indium bumps 

deposited using the three types of pulse electroplating waveforms.  
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Figure 4-27 Height measurement of indium bumps obtained using pulse electroplating waveform 

No. 3 on 3 inch wafer through: (a) X direction, and (b) Y direction.  
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Figure 4-28 Height measurement of indium bumps obtained using pulse electroplating waveform 

No. 4 on 3 inch wafer through: (a) X direction, and (b) Y direction.  
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Figure 4-29 Height measurement of indium bumps obtained using pulse electroplating waveform 

No. 5 on 3 inch wafer through: (a) X direction, and (b) Y direction. 

 

Table 4-5 Uniformity of indium bumps deposited through various pulse electroplating waveforms 

on 3 inch wafers.  

Waveform No. 
Bump Height Uniformity (%) 

X Direction Y Direction 

3 10.41 10.09 

4 12.37 12.99 

5 12.58 13.16 
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4.3.3 Indium Bumping Through Pulse Reverse Electroplating  

Pulse reverse electroplating on 3 inch wafers with a thief ring design was also carried 

out. As mentioned before, pulse electroplating waveform No. 3 was performed for 5 

minutes prior to the pulse reverse electroplating to avoid the contamination of the bath 

with copper ions. Thus, the pulse reverse  electroplating bumping process was the 

combination of both waveforms. Indium bumps deposited through the pulse reverse 

electroplating waveforms are shown in Figure 4-30. From this, the edges of bumps do 

not appear noticeably higher than the centre in most cases. Instead, some of the bumps 

have an asymmetric flat top finish (see the arrows A in Figure 4-30), while some 

others even have a slightly protruding centre (see the arrows B in Figure 4-30). This 

obvious change of bump profile was confirmed by Zygo bump profiling shown in 

Figure 4-31. This may be explained as a result of the introduction of the anodic 

reverse cycle. As has been observed already, indium bumps deposited through DC 

and unipolar pulse current usually had concave bump finish which was caused by 

current crowding around the opening of the apertures where photoresist material 

played a part. However, in pulse reverse electroplating, the bump edge, i.e. the 

protruding sites at the feature scale, attracted a higher current density during the 

reverse anodic cycles resulting in a „levelling‟ effect. Thus, the bump edge could not 

grow as high as in DC and unipolar pulse electroplating and the flattened bump top 

was observed. On the other hand, the current crowding effect may occur during the 

anodic cycles. Therefore, the bump edge was preferentially and heavily dissolved so 

that the bump centre was left higher than the edge.  
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(a) 20 µm, 50 µm pitch, through 

waveform No. 6. 

(b) 20 µm, 50 µm pitch, through 

waveform No. 7. 

Figure 4-30 Indium bumps electrodeposited using pulse reverse current waveforms Nos. 6 and 7. 

 

 

Figure 4-31 Profile of indium bumps electrodeposited using pulse reverse current waveform No. 

7. 

 

The bump height uniformity for waveform No. 6 and No. 7 are presented in 

Figure 4-32 and Figure 4-33, respectively. For waveform No.6, the height uniformity 

along the X direction was measured as 10.60% and the value along the Y direction was 

11.26%. For waveform No. 7, the uniformity was measured as 11.82% and 11.35% 

along the X and Y directions respectively. It could be seen that the uniformity was not 

significantly changed by the bipolar pulse reverse current waveform in comparison 

with the unipolar pulse electroplating. However, a noticeable improvement was 

apparent compared with DC electroplating. A summary of the bump height uniformity 

measurements for pulse reverse electroplating is given in Table 4-6.  
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Figure 4-32 Height measurement of indium bumps obtained using pulse reverse electroplating 

waveform No. 6 on 3 inch wafer through: (a) X direction, and (b) Y direction. 
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Figure 4-33 Height measurement of indium bumps obtained using pulse reverse electroplating 

waveform No. 7 on 3 inch wafer through: (a) X direction, and (b) Y direction. 

 

Table 4-6 Uniformity of indium bumps deposited through various pulse reverse electroplating 

waveforms on 3 inch wafers. 

Waveform No. 
Bump Height Uniformity (%) 

X Direction Y Direction 

6 10.6 11.26 

7 11.82 11.35 
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4.3.4 Microstructure Study  

Cross-sectional views of electrodeposited indium bumps were prepared using Focused 

Ion Beam assisted SEM to analyse their microstructure. For DC electroplating at 10 

mA/cm
2
, as seen in Figure 4-34a, indium was continuously deposited on the exposed 

seed layer defined by the photoresist apertures and the main body of the indium 

bumps contained no defects. However, as commonly observed, there was a thin layer 

of material with a different morphology between the copper seed layer and indium 

bump (see the boxed area in Figure 4-34a). An EDX spectrum from this thin layer 

indicated that it only consists of indium (Figure 4-34b). It is therefore believed that 

this layer was formed at the beginning of indium deposition, and the formation of this 

layer will be discussed in Chapter 6. Grain size and orientation can also be studied by 

FIB as indicated in the contrast in the images between grains. Accordingly, it can be 

seen from the grains outlined by the dashed line, the grain size in the bump reached 

approximately 10 µm, which agrees with the earlier investigation of DC indium 

electroplating with a non-patterned substrate. The concave shape of the bump top 

profile is also seen from this cross-sectional view which is consistent with the profile 

shown in Figure 4-19.  

Cross-sectional views of indium bumps deposited by pulse electroplating are 

also presented in Figure 4-35. In the FIB sample preparation process, a layer of 

platinum is usually deposited on the top of the bumps to protect the surface from 

damage caused by the applied ion beam, as indicated by the red line in this figure. The 

dotted lines were added to highlight the boundaries between different grain 

orientations. Although the top surface of pulse electroplated indium bumps had a 

conical morphology, which is similar to the results demonstrated in Chapter 3, only a 

small amount of grain refinement was observed from this cross-sectional view. Figure 

4-36 shows the cross-section of an indium bump obtained through pulse reverse 

electroplating (waveform No. 6). In this case, the grain refinement is more obvious. In 

addition, the protruded bump centre is also observed due to the „levelling‟ effect of 

the anodic cycle. However, it should be noted that not all of the bumps had this type 

of profile from pulse reverse electroplating.  
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(a) Cross-sectional view of indium bump electroplated with 10 mA/cm
2
 DC. 

 

(b) EDX spectrum collected from the initial thin layer at the interface. 

Figure 4-34 Cross-sectional view of indium bump deposited with 10 mA/cm
2
 DC electroplating 

and EDX analysis of the interlayer. 
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Figure 4-35 Cross-sectional view of indium bumps deposited using pulse electroplating 

waveforms: (a) waveform No. 3; (b) waveform No. 5. 

 

 

Figure 4-36 Cross-sectional view of indium bump deposited using pulse reverse current 

waveform No. 6. 

 

4.3.5 Seed Layer Removal and Indium Bump Reflow 

After electroplating, it is necessary to remove the seed layer and isolate the indium 

bumps for subsequent reflow to form spherical truncated bumps. As mentioned before, 

in this study, the copper seed layer was etched away, leaving the titanium layer as it 

was non-wettable during the bump reflow. For an actual application, the process 

needs to be re-designed and the titanium layer also needs to be removed before flip 
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chip assembly. Two methods were investigated for the removal of the copper seed 

layer: argon plasma and chemical etching.  

Argon plasma etching was carried out using an Oxford Plasmalab 80 Plus 

etcher. A 300 W RF forward power was chosen and argon pressure was set at 0.05 

Torr. As seen in Figure 4-37a, when the argon plasma was applied for 5 minutes, the 

copper layer was still present, but a large amount of indium from the bumps had been 

etched away. To completely remove the copper layer, the etching time was extended 

to 10 minutes. However, it was observed that indium bumps were damaged by the 

argon plasma (Figure 4-37b). Most of the indium was lost which was not desirable.  

 

  

(a) 5 minutes etching (b) 10 minutes etching 

Figure 4-37 Indium bumps damaged by argon plasma etching. 

 

Thereafter, several chemical etching solutions were investigated to remove the 

copper seed layer in the presence of indium. According to the literature, cupric 

chloride based solution is commonly used for copper etching in PCB manufacturing, 

and an ammonium persulfate based solution has been successfully applied for copper 

etching with the presence of tin-lead solder bumps [2]. However, it was found that 

these two types of solution preferentially attacked the indium bumps which make 

them unsuitable for this application. Based on the electrochemical kinetics, indium 

will be attacked by most of the mineral acidic solutions, as such the successful etchant 

must be able to avoid preferential reaction with indium in order to retain an acceptable 

volume of the indium bump material after etching. Have modified several potential 

solutions, a solution of 23% nitric acid was found to be effective in removal of the 

copper seed layer without a significant loss from the indium bumps. Figure 4-38 



Chapter 4 Wafer Level Indium Bumping by Electrodeposition 

105 

 

shows an indium bump after the copper seed layer was completely removed, with an 

acceptable undercut observed.  

 

 

Figure 4-38 Indium bump before (a) and after (b) chemical etching of the copper seed layer. 

 

After the copper seed layer was removed, indium bumps were then reflowed 

through a temperature profile shown in Figure 4-14. The water soluble flux Hydrox-

20 supplied by Henkel Technologies was employed and applied to protect the bumps 

from oxidation. Figure 4-39 demonstrates the spherical indium bumps obtained after 

reflow, which were formed due to the surface tension of liquid indium during the 

reflow process. The yield of indium bumps after reflow was strongly affected by the 

previous etching process. The reflow temperature profile and cleaning step could also 

influence the final yield. For this reason, the bump height uniformity was evaluated 

after electroplating rather than after reflow to avoid the influences of the immature 

seed layer etching process. In order to achieve a high yield, chemical etching, reflow 

and cleaning all needed to be carefully monitored. When using Hydrox-20 flux, a 

cleaning in water at 60~70 ºC after reflow should be carried out immediately, 

otherwise, the residual contaminants left behind become very difficult to remove. As 

expected, the titanium layer performed very well as the non-wettable material during 

the reflow to enable the final formation of indium bumps.  
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(a) Indium bumps with 20 µm diameter, 

35 µm pitch. 

(b) Indium bumps with 20 µm diameter, 

50 µm pitch. 

  

(c) Indium bumps with 20 µm diameter, 

35 µm pitch (higher magnification). 

(d) Indium bumps with 20 µm diameter, 

50 µm pitch (higher magnification). 

Figure 4-39 Spherical indium bumps formed on titanium substrate after reflowed in the air with 

assistance of Hydrox-20 flux. 

 

4.4 Evaluation of Indium Bump Uniformity Using 4 Inch 

Wafers 

As demonstrated above, ultra-fine pitch indium bumping through electrodeposition 

has been successfully developed on 3 inch test wafers. The results showed that the 

electroplating method was capable of generating high quality indium bumps with a 

high yield. However, to consider the application to larger size of wafers, the 
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feasibility study of such a bumping process at a larger scale, using an electroplating 

system (see Figure 4-8 and Figure 4-11) for evaluation of bump uniformity using 

standard 4 inch silicon wafer samples, was carried out. The uniformities at wafer and 

pattern scales were inspected under various electroplating current waveforms.  

Using the wafer holder shown in Figure 4-11, the electrical contact was 

symmetrically arranged along the periphery of the wafer to be bumped (see Figure 

4-9b). As such, the wafer scale bumping uniformity was evaluated in a different 

manner to that used for 3 inch wafers, i.e. according to the distance of patterns from 

the centre of the wafer (Figure 4-40a). The black triangles marked in Figure 4-40a 

indicate the measuring area and the bump heights obtained from patterns with same 

radius from the wafer centre were averaged. The uniformity within each pattern was 

measured according to the distance from the centre of the pattern. The uniformity 

within different patterns at different distances from the wafer centre was also 

compared. Because the wafer was circularly symmetric, the uniformity at the pattern 

scale was measured based on the same quarter of each wafer, with the patterns 

indexed as shown in Figure 4-40b. It should be noted that, when the uniformity at 

wafer scale is demonstrated, the uniformity at pattern scale has to be ignored. In other 

words, the non-uniformity at the pattern scale will not be considered in the evaluation 

of the uniformity at wafer scale.  

 

  

(a) Wafer scale (b) Pattern scale 

Figure 4-40 Methodology of evaluation of indium bump uniformity on 4 inch wafer at: (a) wafer 

scale; (b) pattern scale. 
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 4.4.1 Bump Uniformity by DC Electroplating  

Based on the results of bump evaluation with 3 inch glass wafers, the electroplating 

bumping should be carried out at a lower current density in order to achieve a higher 

uniformity of electroplated bumps. Therefore, to ensure a high indium bumping 

uniformity on 4 inch wafer samples, the DC electroplating was only conducted at 10 

mA/cm
2
. In order to evaluate the influences of the current thief ring, the DC 

electroplating was performed using 4 inch wafers with and without the thief ring 

design for which the layout of patterns were defined by masks No. 1 and No. 5 in 

Table 4-2 (also see Appendix 2).  

0 5 10 15 20 25 30 35 40

10

15

20

25

30

(a)

 DC 10 mA/cm
2
  electroplating on mask No. 1 

A
v
e
ra

g
e

 b
u

m
p
 h

e
ig

h
t 
(

m
) 

Distance from the wafer centre (mm) 

 

0 5 10 15 20 25 30 35 40

10

15

20

25

30

(b)

 DC 10 mA/cm
2
 electroplating on mask No. 5 

A
v
e

ra
g

e
 b

u
m

p
 h

e
ig

h
t 
(

m
) 

Distance from the wafer centre (mm) 

 

Figure 4-41 Height uniformity of indium bumps at 4 inch wafer scale with different patterns 

electroplated through DC 10 mA/cm
2
 using sulphamate solution: (a) photomask No. 1 without 

thief ring design; (b) photomask No. 5 with thief ring design. 
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In the case of DC electroplating without a thief ring, the bump uniformity at 

the 4 inch wafer scale was measured as 28.29%, as shown in Figure 4-41a. The 

electroplated indium bumps also appeared non-uniform at the pattern scale. The 

measured uniformity within the pattern P11 (see Figure 4-40) was 18.12%, as shown 

in Figure 4-42a, which shows the averaged bump height versus distance to the pattern 

corner by plotting the data across the diagonal line, i.e. the longest distance within the 

pattern. Figure 4-42b demonstrates the uniformity at the pattern scale from a quarter 

of test wafer. From the results, it appears that the closer the pattern is to the electrical 

contact points, the worse the uniformity is.  It was noticed that the pattern centre had 

the lowest bump height while the highest ones were located at the corner. As shown in 

Figure 4-43, the bumps near the corner of the pattern were usually over-electroplated 

in morphology like a „mushroom‟ while the bumps at the centre still maintained a 

column shape. The worst case occurred at the corner of patterns which had the 

shortest distance to the electrical contact.  

In comparison, as shown in Figure 4-41b, with the presence of a current thief 

ring, the uniformity at the wafer scale was reduced to 19.65%. The bump height 

distribution at the pattern scale did not appear to show any changes compared to 

Figure 4-42a, i.e. the corner of the pattern also attracted a high current density and 

therefore had taller bumps. However, due to the „levelling‟ effect caused by the 

current thief, the overall uniformity at the pattern scale was improved, as shown in 

Figure 4-44.  
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Figure 4-42  The pattern scale uniformity of indium bumps electroplated through DC at 10 

mA/cm
2
 on 4 inch wafer without thief ring: (a) bump uniformity within pattern P11; (b) pattern 

scale uniformities distribution in a quarter of wafer. 

 

 

Figure 4-43  Morphology change of DC (10 mA/cm
2
) electroplated indium bumps from different 

patterns selected from a quarter of the 4 inch wafer pattern without thief ring design. 
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Figure 4-44 Pattern scale uniformity distribution of DC(10 mA/cm
2
) electroplated indium bumps 

on a quarter of the 4 inch wafer pattern with a thief ring design.  

 

4.4.2 Influences of Feature and Pitch Size on Indium Bump 

Uniformity at the Pattern Scale 

In order to investigate the influences of feature size on the uniformity at the pattern 

scale, a series of experiments were carried out using the patterns designed with 

various feature and pitch sizes. As can be seen in Appendix 2, the feature size in the 

patterns defined by mask No. 2 increased from 15 µm (near the edge of the pattern) to 

25 µm (near the centre of the pattern) while the pitch size was double of the 

corresponding feature size. The patterns defined by mask No. 3 had inverse layout, i.e. 

the centre of the pattern was populated with the smallest features.  
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Figure 4-45  The uniformity of DC (10 mA/cm
2
) electroplated indium bumps at the pattern scale 

measured on 4 inch wafers for the patterns defined by: (a) masks No. 2 and (b) No. 3. 

 

It was found that the uniformity within the pattern P11 defined by mask No. 2 

was 26.32% (see Figure 4-45a) which deteriorated in comparison with the DC 

electroplating using mask No. 5. In contrast, the uniformity within the pattern P11 

defined by  mask No. 3 was 16.2% , but in reverse profile (Figure 4-45b). Using mask 

No.2, the smallest bumps were located along the periphery of the pattern having the 

largest bump height, and the non-uniformity was increased by using such an 

arrangement. With mask No. 3, the highest bumps were located at the centre of the 

patterns despite the fact that the current crowding was expected near the edge of the 

pattern. This phenomenon indicated that the smaller feature can induce a higher 

current density and therefore resulting in a higher bump no matter where it is located. 

This finding can guide an industrial practice in arranging different sized features 

within a pattern, for instance, smaller features should not be too close to the pattern 

boundary.  
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Figure 4-46 Non-uniformity of the DC (10 mA/cm
2
) electroplated indium bumps within pattern 

P11 in mask No. 4 caused by the bump vacancy rate. 

 

In the patterns defined by mask No. 4, all the features had the same diameter 

but different pitch size. The distances between two features were designed as 0.8, 2, 5 

and 10 times the feature diameter. This was used to investigate how the pattern 

density affects the bumping uniformity. Here, for the convenience of expression, a 

factor of pattern vacancy rate (Vp) is defined as:  

 p

Distance between two features
V

Feature diameter

  



 (4-2) 

When Vp is 0, this represents an electroplating onto a non-pattern substrate. Figure 

4-46 plots the average height of indium bumps having different pitch sizes within 

pattern P11 defined by mask No. 4, for which the uniformity was measured as 27.62%. 

The uniformity also deteriorated when the pattern was located near the edge of wafer. 

Thus, significant change of pitch size within a pattern can be an adverse factor in 

determining the uniformity on the pattern scale.  

4.4.3 Uniformity of Pulse Electroplated Indium Bumps  

The influences of pulse electroplating on bumping uniformity were also evaluated 

using current waveform No. 3, 4 and 5 in Table 4-3. All the wafer samples were 

prepared using mask No. 5, i.e. a homogenous pattern with thief ring. The uniformity 
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at the wafer scale and pattern scale corresponding to the three types of pulse 

electroplating current waveforms are plotted in Figure 4-47. The uniformity at the 

wafer scale for current waveforms No. 3, 4 and 5 were 14.3%, 15.2% and 14.96% 

respectively, which were considerably improved in comparison with DC 

electroplating. It was also found that the uniformity within the inner patterns (shaded 

patterns in Figure 4-40) was significantly improved by using unipolar pulse current, 

indicating the influence of pulse electroplating on uniformity at the pattern scale is 

more pronounced than that on uniformity at the wafer scale.  

4.4.4 Uniformity of Pulse Reverse Electroplated Indium Bumps  

Pulse reverse electroplating on 4 inch wafers was also carried out following a short 

period of unipolar pulse electroplating to minimise the risk of prior contamination to 

the solution. As can be seen in Figure 4-48, the uniformity at the wafer scale for the 

pulse reverse current waveforms No. 6 and No. 7 were measured as 13.6% and 14.07% 

respectively. Figure 4-48 also shows the uniformity at the pattern scale on the 4 inch 

wafer. By using pulse reverse electroplating, the uniformity at the wafer scale and 

pattern scale were much improved in comparison to DC electroplating. However, 

little difference was found between the unipolar pulse electroplating and bipolar pulse 

reverse electroplating in terms of the bumping uniformity at different scales.  
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Figure 4-47 Uniformity measurement of pulse electroplated indium bumps on 4 inch wafers at 

wafer and pattern scale under the various pulse electroplating waveforms: (a) pulse current 

waveform No. 3, wafer scale; (b) pulse current waveform No. 3, pattern scale uniformity 

distribution in a quarter of wafer; (c) pulse current waveform No. 4, wafer scale; (d) pulse 

current waveform No. 4, pattern scale uniformity distribution in a quarter of wafer; (e) pulse 

current waveform No. 5, wafer scale; and (f) pulse current waveform No. 5, pattern scale 

uniformity distribution in a quarter of wafer. 
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Figure 4-48 Uniformity measurement of pulse reverse electroplated indium bumps on 4 inch 

wafers at wafer and pattern scale of various current waveforms: (a) pulse reverse current 

waveform No. 6, wafer scale; (b) pulse reverse current waveform No. 6, pattern scale uniformity 

distribution in a quarter of wafer; (c) pulse reverse current waveform No. 7, wafer scale; and (d) 

pulse current waveform No. 7, pattern scale uniformity distribution in a quarter of wafer. 

 

4.5 Summary  

As illustrated above, ultrafine pitch indium bumping through electrodeposition has 

been successfully established. Indium bump deposition through DC electroplating, 

unipolar pulse electroplating and bipolar pulse reverse electroplating has been carried 

out. The influences of pulsating current waveforms on indium bump morphology, 

microstructure and bump height uniformity have been investigated through extensive 
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experiments. Based on the experimental results, the following conclusions can be 

drawn at this stage.  

 The experimental results have shown that the electroplating approach 

is capable of realising ultrafine pitch indium bumping with high yield.  

 The pre-wetting step is essential to achieve a high yield for which 

ultrasonic agitation has been proved as an effective way to fulfil the 

requirement.  

 The methodology of the electrical contact can significantly affect the 

bump uniformity across the wafer. An asymmetrically distributed 

electrical contact can induce directional non-uniformity.  

 The current thief ring design has been proved as an effective way to 

improve the bump height uniformity. Especially, it can provide an 

electrical path around the patterns and is able to homogenise the 

directional non-uniformity in the case of electroplating onto a 3 inch 

test wafer when the electrical contact is made asymmetrically.  

 The results from DC electroplating indicated that the wafer and pattern 

scale bump height uniformities deteriorated when the current density 

increased.   

 By using unipolar pulse electroplating, the indium bump uniformity on 

both wafer and pattern scales can be significantly improved. The best 

uniformity on a 4 inch wafer through pulse electroplating was 14.3%.  

 Pulse reverse electroplating can also significantly improve the bump 

uniformity on both the wafer and pattern scale in comparison to DC 

electroplating, but at the equivalent level with pulse electroplating. The 

best uniformity obtained through pulse reverse electroplating on a 4 

inch wafer was 13.6%.  

 In the case of DC electroplating, the indium bumps have a concave 

shape where the bump edge is much higher than the centre. The growth 

front of the indium bumps is more even in the case of pulse 

electroplating in comparison to DC electroplating. By using the pulse 

reverse electroplating, the feature scale uniformity can be significantly 

improved that it is able to obtain indium bump with protruded centre. 
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 The microstructure studies showed that there were no defects in the 

main body of indium bumps through all of the electroplating 

conditions. In the case of pulse and pulse reverse electroplating 

bumping, grain refinement was observed to some extent in comparison 

to DC electroplating, which is in agreement with the earlier results of 

indium deposition onto non-patterned substrates.  
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Chapter 5 Effects of Acoustic Agitation on 

Indium Bump Formation 

 

 

 

5.1 Introduction  

This chapter presents the results of an evaluation of the use of acoustic agitation to 

improve mass transport during the electrodeposition of indium bumps. Acoustic 

agitation with different frequency and power were employed in indium electroplating 

onto both plain and patterned substrates and the influences of the configuration of the 

electroplating system, acoustic frequency and power were investigated.  

5.1.1 Agitation Methods Used in Electroplating Bumping Processes  

As mentioned before, mass transport plays a significant role during electroplating. On 

the one hand, mass transport determines the limiting current density for a given 

electrolyte and therefore the electrodeposition rate and efficiency which are 

sometimes crucial to the manufacturing output and investment cost. On the other hand, 

the mass transport condition often affects the microscopic characteristics of the 

deposits. In the electroplating bumping process, mass transport determines the bump 

shape, microstructure and when an alloy deposit is demanded, composition. More 

importantly, the uniformity of the mass transport condition across the wafer, i.e. the 

homogeneity of the diffusion boundary layer on the wafer scale, can strongly affect 

the bump uniformity. Therefore, to achieve the desired mass transport condition, 

additional agitation is usually taken into account in designing the electroplating 

system. 
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Currently, two types of electroplating system with different agitation methods 

are popularly employed for microelectronic fabrication: paddle electroplating bath 

and fountain electroplating cell. The paddle electroplating bath was initially 

developed for electroplating of thin film recording heads [113]. The typical structure 

of the paddle electroplating cell is shown in Figure 5-1a. Both the anode and cathode 

(wafer) can be positioned horizontally or vertically. Typically, the paddle consists of 

two triangle bars facing against each other with a small gap between them. The paddle 

is normally positioned very close to the cathode surface and travels back and forth in 

front of the cathode to reduce the gradient of reactant species in the diffusion 

boundary layer during the electrodeposition process. This type of electroplating cell 

has been widely adopted in the fabrication of oriented magnetic heads [114-118] and 

the paddle electroplating cell has also been employed in Pb/Sn and lead-free solder 

bump deposition for flip chip assembly [27, 76].  

The schematic structure of the fountain type electroplating cell is shown in 

Figure 5-1b. The anode is usually immersed into the bottom of the tank while the 

wafer is held by a fixture facing down over the electrolyte. The electrolyte is pumped 

from the bottom of the tank resulting in the flow of the liquid through a distributor 

impinging on the cathode surface to improve the mass transport and sufficiently 

replenish the reactant species. The cathode is usually rotated at high speed at the same 

time to make the diffusion boundary layer more evenly distributed across the wafer.  

 

  

(a) Paddle electroplating cell (b) Fountain electroplating cell 

Figure 5-1 Schematic configuration of the paddle and fountain electroplating cells. 
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The paddle agitation process has been matured for many years and is cost-

effective to incorporate into the electroplating system. However, the paddle can only 

oscillate at low frequency (typically around 10 Hz) due to the limit of the mechanical 

movement. Thus, the diffusion boundary layer can only be reduced to a relatively 

small extent. In a study conducted by Wu [119], in a simple copper sulphate 

electroplating bath with commercial paddle, the diffusion boundary layer across a 

blanket wafer was reduced from ~60 µm to ~10 µm when the paddle was oscillating at 

10 Hz. Moreover, the efficiency of the paddle agitation is compromised by the 

photoresist pattern. According to Wu‟s study, the diffusion boundary layer was 

limited at ~20 µm when the wafer was covered by a photoresist pattern with 50 µm 

thickness and 130 µm diameter opening. Therefore, with paddle agitation, the 

diffusion boundary layer would be expected to be of the same order as the pattern size 

in this research.  

The fountain electroplating cell has been extensively employed in wafer 

metallisation such as Damascene electroplating and solder bump deposition [120-123]. 

Such a electroplating cell can be integrated into a high level automated processing 

line. The diffusion boundary layer and therefore limiting current density are related to 

the local velocity of the solution on the wafer surface. In the case of a blanket wafer, 

e.g. copper Damascene electroplating for wiring, a uniform diffusion boundary layer 

across the wafer can be achieved through high speed rotation. However, in the case of 

electroplating through the mask, e.g. solder bump deposition, the local diffusion 

boundary layer varies from the centre to the edge of the wafer because of the presence 

of the photoresist [2].  

As discussed above, the conventional paddle and fountain agitation 

approaches are restricted by their indigenous drawbacks, especially in the case of 

electroplating through ultrafine pitch photoresist patterns. Therefore, development of 

a new method is still desirable to fulfil the demand of high uniformity of ultrafine 

pitch bumping.  

5.1.2 Fundamentals of Acoustic Agitation  

Conventionally, sound waves having frequency beyond human hearing (> 20 kHz) are 

called ultrasound. Those below 100 kHz are called power ultrasound which has been 

commonly employed in welding, surface treatment, cleaning, cutting, drilling, non-
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destructive detection, synthesis and electrochemical fabrication [124]. Sonochemistry 

has been derived as a division of chemistry representing the chemical applications 

assisted by ultrasound. In recent years, with the development of the very high 

frequency acoustic apparatus for the cleaning of semiconductor components and 

diagnostic equipment for medical use, the term megasound representing the sound 

waves in the megahertz (MHz) range has been widely adopted [125-130].  

Acoustic agitation is the method of using high frequency sound waves 

(typically ranging from 20 kHz to 2 MHz) to alter the mass transport condition in 

chemical or electrochemical applications. It has been found that the mechanisms of 

how the sound waves improve the mass transport are dependent on the frequency. 

Thus, acoustic agitation can be categorised into ultrasonic agitation, for the 

application using ultrasound in the kHz range, and megasonic agitation which is for 

the application of megasound over 1 MHz frequency.  

When ultrasonic energy is applied into a solution, like any sound waves, 

ultrasound is transmitted through the liquid via a series of compression and 

rarefaction waves induced in the molecules of the solution. If the sound is powerful 

enough, the rarefaction cycle may exceed the attractive forces of the molecules of the 

liquid and thus cavitation bubbles will form. Once the bubbles are formed, the 

bubbles will be expanded in ensuing rarefaction cycles while being compressed 

during compression cycles. This process is known as rectified diffusion which 

features that a small amount of vapour or gas from the liquid enters the bubble during 

its expansion phase and is not expelled thoroughly during compression. Thus, the 

bubbles grow over successive cycles to an equilibrium size defined by the particular 

frequency and power applied. Once the size of the bubbles reach a critical value in a 

given condition, the bubbles will collapse in succeeding compression cycles and 

generate energy for chemical and mechanical effects (Figure 5-2). The collapse of the 

cavitation bubbles is a remarkable phenomenon induced by the power of ultrasound, 

for example, in aqueous systems with 20 kHz ultrasound, each cavitation bubble 

collapses with a temperature of about 5000 ºC and pressure in excess of 2000 

atmospheres [131]. 
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Figure 5-2 Generation of an acoustic bubble [131]. (Courtesy of Prof. T. J. Mason, Coventry 

University, reprinted with permission)  

If the cavitation bubbles are formed and collapse in the bulk liquid, the 

collapse of the bubbles will generate shear forces which could produce mechanical 

effects and the bubble itself will be subjected to extreme conditions of temperature 

and pressure leading to chemical effects. However, when the collapse occurs on or 

near a heterogeneous solid/liquid interface, the result will be a powerful micro liquid 

jet impinging upon the surface (Figure 5-3). This effect is the reason why ultrasound 

is used for surface cleaning and other electrochemical applications.  

 

 
 

Figure 5-3 Cavitation bubble collapse at or near a solid surface [131]. (Courtesy of Prof. T. J. 

Mason, Coventry University, reprinted with permission)  
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In general, ultrasonic cavitation effects prevail when the frequency is below 

500 kHz, while another phenomenon named acoustic streaming dominate at higher 

frequency up to the megahertz range. Because the threshold of the cavitation bubble 

formation and collapse increases exponentially with the acoustic frequency, it needs 

much higher power to maintain acoustic cavitation under higher frequency [124]. 

When it comes to the megahertz range, where the term of megasonic agitation is 

adopted, the rarefaction may not be able to overcome the molecular attractive forces 

so that the probability of forming cavitation bubbles becomes much lower than for 

ultrasonic agitation. Also, for any pre-existing air bubbles in the liquid, the 

surrounding liquid will be rapidly oscillated in a stable pattern and the pre-existing 

bubbles will be unlikely to grow over the megasound cycles. If the oscillation occurs 

on or close to an asymmetrical liquid-solid boundary, there will be shear force applied 

to the liquid molecules along the boundary rather than the powerful liquid micro-jet 

caused by the cavitation bubble collapse. Therefore, the liquid is impelled by the 

shear force following the direction of the megasonic wave propagating across the 

surface (Figure 5-4a).  

It is known that, when the liquid flows along the solid substrate, on a 

microscopic scale, the fluid friction at the surface causes a very thin boundary layer of 

solution moving more slowly than the bulk liquid. In the application of cleaning, this 

boundary layer effectively shields the substrate surface from fresh chemistry and 

shields contaminants from the removal forces of the bulk fluid. In the case of 

electrodeposition, this boundary layer effectively shields the reactive ion 

replenishment from the bulk solution. Within this layer, no matter how rigorous the 

convection in the bulk liquid is, the mass transport is controlled by the diffusion 

condition. In general, the boundary layer is represented by the so-called Nernst 

diffusion layer for which the concentration gradient is proportional to the distance 

from the solid surface.  
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(a) Acoustic streaming 

(b) Reduced boundary layer by acoustic 

agitation 

Figure 5-4 Schematic of acoustic streaming effect and reduced boundary layer by acoustic 

agitation. 

 

In theory, when acoustic agitation is applied to an electrolyte, the thickness of 

the Nernst diffusion layer near the electrode surface is estimated as: 

 
2




  (5-1) 

where ν is the viscosity of the liquid and ω depends on the acoustic frequency f as 

2 f   : the higher the frequency, the thinner the diffusion layer will be [132]. 

Combined with experimental investigation and numerical calculation, taking the water 

as the solution for example, the thickness of δ at 1 MHz is evaluated to be around 0.6 

µm, which is much smaller than in the ultrasonic condition (e.g. when f = 40 kHz, 

m 8.3 ) [132, 133]. Thus, the diffusion boundary layer near the substrate is 

significantly reduced, even down to the submicron scale (Figure 5-4b).  

5.1.3 Applications of Acoustic Agitation  

Applying ultrasonic agitation into electrochemical processes has been found to 

improve the mass transport due to the liquid micro-jet caused by the cavitation 

bubbles, decreasing the thickness of the diffusion layer and thus assisting the 

electrode reactions. Some of the particular advantages which accrue from the use of 
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ultrasound in electrochemistry include degassing at the electrode surface, disruption 

of the diffusion layer which therefore reduces depletion of electro-active species, 

improved mass transport of ions across the diffusion layer, and continuous cleaning 

and activation of the electrode surfaces [124]. In particular, for electrodeposition and 

electroless plating in the presence of ultrasound, the literature contains many articles 

demonstrating the advantages of ultrasound in electrodeposition which include 

increased hardness, increased coating thickness, increased reaction efficiency and 

deposition rates, use of less toxic electroplating solutions, greater adhesion and 

minimisation of levellers, brighteners or other additives [134-139].  

By virtue of the significantly reduced boundary layer, megasonic agitation has 

been widely utilised for cleaning in semiconductor industry applications, especially 

for removing submicron sized particles [125-129, 140]. Moreover, due to the 

significant improvement of mass transport, introducing megasonic agitation into the 

LIGA process results in faster development rate, more uniform and high aspect ratio 

microstructures, even nanostructures [133, 141].  

For electroplating applications, megasonic agitation is a relatively new 

technology for improving mass transport which became noteworthy in recent years. 

The first study of megasonic agitation assisted electroplating was for copper 

Damascene electroplating into nano-meter sized trenches. It was found that, by using 

megasonic agitation, it was possible to completely fill the trench through a simple 

copper electrolyte without complex organic additives [142, 143]. Another study 

conducted by Jensen et al [144] indicated that the distribution of deposited Ni in 

groove features was improved by using 1 MHz acoustic agitation. Kaufmann et al  

[145, 146] investigated the capability of megasonic agitation of electroplating into 

through holes with a conductive sidewall and successfully obtained high quality 

deposits with an aspect ratio over 2.1 : 1. However, to the author‟s knowledge, no 

study of the ultrafine pitch bumping through electrodeposition assisted by megasonic 

agitation has been reported so far.   

5.1.4 Aim of This Chapter  

This chapter evaluates the capability of acoustic agitation for improving mass 

transport condition during the indium electroplating bumping process considering the 

bump uniformity and consistency. As emphasised before, a uniformly distributed 



Chapter 5 Effects of Acoustic Agitation on Indium Bump Formation 

127 

 

diffusion boundary layer across the wafer is highly desirable to achieve high 

uniformity of bumps on the wafer scale. However, conventional agitation approaches 

still encounter the problem of how to sufficiently penetrate the solution into the 

ultrafine pitch apertures and maintain a homogenous diffusion boundary layer on the 

wafer scale. Considering the effects of acoustic agitation introduced above, the 

improvement of mass transport and the significant change in the diffusion boundary 

layer seem promising for the ultrafine pitch indium bump forming through 

electrodeposition.  

This chapter will describe experimental work introducing ultrasonic (30 kHz 

frequency) agitation and megasonic agitation (1 MHz frequency) into the indium 

bumping processes. The influences of acoustic agitation on the indium deposition 

onto non-patterned substrates are investigated first. Then, both ultrasonic and 

megasonic agitation are employed to assistant in generating ultrafine pitch indium 

bumps. The bump morphology, microstructure and uniformity are examined and 

compared with the results shown in the previous chapter.  

5.2 Experimental Details 

5.2.1 Acoustic Apparatus  

The ultrasonic energy was generated by a conventional cleaning bath (model: U950, 

supplied by Ultrawave Ltd, UK) with the transducer positioned horizontally beneath 

the bottom of the tank. The bath was able to produce a homogenous ultrasonic field 

within 26 × 23 cm
2
 area with fixed frequency of 30 kHz. The power was fixed at 60 W 

so that the intensity of the ultrasound was 0.1 W/cm
2
. Figure 5-5 shows the ultrasonic 

bath employed in the experiments.  
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Figure 5-5 Ultrasonic cleaning bath, 30 kHz, 60W.  

 

A 10 × 10 cm
2
 (4 inch × 4 inch) submersible megasonic transducer plate 

(supplied by SONOSYS GmbH) was utilised to produce a uniform megasonic field in 

the electrolyte. The transducer was made of piezo-ceramics and was completely 

encapsulated in PFA (Perfluoroalkoxy). The power unit could be adjusted from 0 to 

500 W resulting in the maximum output intensity of 5 W/cm
2
. However, the frequency 

was fixed at 1 MHz. The megasonic power supply and transducer are shown in Figure 

5-6.  

 

  

(a) Megasonic power supply (b) 4 inch megasonic transducer 

Figure 5-6 Megasonic apparatus (1 MHz, 500 W). 
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5.2.2 Experimental Setup  

Electrodeposition of indium was conducted on both non-patterned copper sheet and 

patterned wafer samples. The pre-treatment of the copper sheet followed the 

procedures described in Chapter 2. As for the indium bumping trials, two sets of 

wafer samples were prepared for ultrasonic and megasonic agitation respectively. The 

wafer samples were patterned with AZ 9260 photoresist following the same procedure 

shown in Table 4-1. For the ultrasonic agitation, because of the lack of flexibility in 

the cleaning bath, the electroplating trials had to be conducted in a beaker which fitted 

into the tank. Therefore, 3 inch glass wafers were employed and the electroplating 

bath was configured as shown in Figure 4-7. It should be noted that, although a small 

part of the sonic energy was reflected by the beaker when the ultrasound wave 

propagated through it, the energy attenuation did not change the frequency and the 

energy transmitted into the solution was enough to create cavitation bubbles.  

As for the indium bumping in the presence of megasonic agitation, standard 4 

inch silicon wafers were employed and the electroplating was conducted in the large 

volume electroplating tank described earlier. The configuration of the electroplating 

tank for 4 inch wafer bumping with the presence of megasonic agitation is illustrated 

in Figure 5-7. The anode and cathode were vertically immersed into the electrolyte 

with an approximate distance of 25 cm, and the megasonic transducer was placed on 

the bottom of the tank. In theory, the transducer can be positioned horizontally or 

vertically in the tank. However, considering the size of the transducer, it might 

obstruct the current flow if it was placed vertically between the electrodes, and was 

therefore used as shown.  
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Figure 5-7 Schematic of the configuration of the electroplating tank for 4 inch wafer bumping 

with the presence of megasonic agitation. 

 

It should be noted that the megasonic transducer should not be positioned 

absolutely parallel to any solid surface because the reflected sound wave may cause 

damage to the transducer surface. Therefore, in practice, a default 5º angle is normally 

set between the transducer and the tank bottom or sidewall. In this study, a 

transmission angle (β) was defined as the angle between the megasonic transducer and 

the bottom of the tank which was also the angle between the direction of megasonic 

energy propagating and the cathode surface. The transmission angle might affect the 

efficiency of the megasonic energy propagating into the photoresist apertures and was 

therefore taken into account in experimental design. The distance between the centre 

of megasonic transducer and centre of cathode was approximately 18 cm when the 

transmission angle β = 30º. The wafer holder demonstrated in Chapter 4 was also 

utilised during the electroplating process.  

5.2.3 Electroplating Parameters 

To understand how the solution performs with acoustic agitation, cathodic 

potentiodynamic polarisation was firstly conducted on non-patterned substrates by 

sweeping the potential from the open circuit to -2.0 V (relative to SCE) with a 
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scanning rate of 0.5 mV/s. Then, the limiting current densities under 30 kHz ultrasonic 

agitation and 1 MHz megasonic agitation were determined. All of the electroplating 

trials were carried out with direct current to avoid any influences from complex 

current waveforms. For all of the indium bumping trials, pre-wetting of the 

photoresist patterns were realised by switching on the acoustic apparatus for a few 

seconds prior to the actual start of the deposition. Table 5-1 lists the parameters of the 

indium electrodeposition onto various substrates. Because of the lack of flexibility of 

the ultrasonic bath, the indium deposition and bump forming with ultrasonic agitation 

were conducted at 10 mA/cm
2
 with fixed frequency and energy intensity. For the 

megasonic agitation, the energy intensity was increased from 1.25 W/cm
2
 to 5 W/cm

2
 

to investigate the influence of megasonic power while the transmission angle β varied 

between 15º to 30º. Moreover, electroplating using a very high current density was 

conducted with megasonic agitation.  

5.2.4 Characterisation  

For deposition onto a non-patterned substrate, the surface morphology of the 

deposited indium was observed by Scanning Electron Microscopy (SEM) while the 

surface profile was inspected with the Talysurf CLI 2000 profiler following the 

procedure shown in Figure 2-4. The current efficiencies under various conditions 

were obtained by measuring the weight change before and after electroplating. The 

bumping yield was also observed through SEM by counting the missed bumps in 

certain areas. The bump height was measured using the Zygo NewView 5000 white 

light interferometer and the uniformity was calculated using Equation 4-1. Also, 

cross-sectional views of the electroplated bumps were prepared by Focused Ion Beam 

(FIB).  
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Table 5-1 Parameters of indium electrodeposition and indium bumping in the presence of 

acoustic agitation. 

 Type I. Indium electrodeposition on non-patterned substrate 

No. 
Current Density 

(mA/cm
2
) 

Acoustic Intensity 

(W/cm
2
) 

Acoustic Frequency 
Transmission 

Angle (β) 

1 10 0.1 30 kHz N/A 

2 10 1.25 

1 MHz 

30º 

3 10 2.5 30º 

4 10 3.75 30º 

5 10 5 30º 

6 10 2.5 15º 

7 10 5 15º 

8 30 2.5 15º 

9 40 2.5 15º 

10 50 2.5 15º 

 Type II. Indium electrodeposition on patterned wafers 

No. 
Current Density 

(mA/cm
2
) 

Acoustic 

Intensity 

(W/cm
2
) 

Acoustic 

Frequency 

Transmission 

Angle (β) 
Sample Size 

11 10 0.1 30 kHz N/A 3 inch 

12 10 1.25 

1 MHz 

30º 

4 inch 

13 10 2.5 30º 

14 10 3.75 30º 

15 10 5 30º 

16 10 2.5 15º 

17 10 5 15º 

18 30 2.5 30º 

19 50 2.5 30º 
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5.3 Influences of Ultrasonic Agitation on Indium Deposition 

and Bumping 

5.3.1 Cathodic Polarisation with Ultrasonic Agitation  

Figure 5-8 plots the current density against the relative cathodic potential in the 

presence of ultrasonic agitation. It can be seen that, once the deposition started, the 

current density continuously increased. Compared with the polarisation without 

agitation where a clear plateau was observed at 30 mA/cm
2
, there was no such feature 

observed here to indicate the highest current density. Instead, the slope of the 

relationship gradually decreased when the current density approached 40 mA/cm
2
 

which meant the deposition was moving towards mass transfer controlled region. 

However, after this, there was a sudden increase of the slope again indicating the 

occurrence of a side-reaction. The slope changing point could be treated as an 

approximate reference to define the appropriate parameter window for indium 

electrodeposition in the presence of ultrasonic agitation. After that, the curve became 

unstable and hydrogen evolution was observed.  
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Figure 5-8 Cathodic polarisation curve with presence of 30 kHz ultrasonic agitation.  

5.3.2 Indium Deposition with Ultrasonic Agitation 

Figure 5-9 demonstrates the surface morphology of indium deposited at 10 mA/cm
2
 

DC with the assistance of ultrasonic agitation. It can be seen that the morphology was 
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significantly changed by ultrasonic agitation in comparison to the situation of only 

DC electroplating. The typical large granular surface morphology in DC 

electroplating was not observed, instead, the deposit appeared nodular. It seemed that 

the highly oriented growth was disturbed by the ultrasonic agitation. Also, surface 

feature refinement was observed to some extent. The cathodic current efficiency was 

measured as 92.3%. The change in the morphology was reflected in the surface 

profile (Figure 5-10). The measured maximum Total Height of Profile (Pt) and 

Average Roughness (Ra) were 8.36 µm and 1.09 µm respectively. Apparently, the 

surface of the electrodeposited indium was smoothed compared to DC electroplating 

by introducing the ultrasonic agitation.  

 

 

Figure 5-9 Surface morphology of DC (10 mA/cm
2
) electroplated indium with 30 kHz ultrasonic 

agitation 

 

 

Figure 5-10 Surface roughness of DC (10 mA/cm
2
) electroplated indium with 30 kHz ultrasonic 

agitation measured by Talysurf profiler.  
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5.3.3 Indium Bumping with Ultrasonic Agitation  

Indium bumps were deposited at 10 mA/cm
2
 with the presence of ultrasonic agitation. 

The ultrasonic bath was switched on from the very beginning until the end of 

electroplating so that the photoresist pattern was wetted as the electroplating started, 

and the solution was agitated throughout. As demonstrated before, a very high yield 

can be achieved by pre-wetting the wafer in the ultrasonic bath. It was observed that 

there were plenty of air bubbles sticking on the wafer surface as the wafer was dipped 

into the solution because the photoresist was hydrophobic. Once the ultrasound was 

applied, all the bubbles disappeared immediately. This can partially be explained as 

the bubbles collapsed due to the acoustic cavitation under the ultrasonic energy 

transmitted into the solution, and partially may be attributed to the photoresist surface 

modification under the activation of ultrasonic energy.  

Not only can the ultrasound induce the cavitation effect, but also it can heat 

the solution if the energy is transmitted into the solution for a long time. To maintain 

the electroplating temperature at room temperature, the water bath outside the 

electrolyte container was replaced regularly to keep the temperature constant.  

 

 

Figure 5-11 Photoresist pattern damaged by ultrasonic energy 

 

After electroplating, it was also found that part of the photoresist pattern was 

damaged by the powerful cavitation bubbles. The red arrows in Figure 5-11 point to 

the areas where the photoresist was damaged by the ultrasonic energy. This was 

caused by the very high vapour pressure and temperature when the bubble reached its 
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critical size and collapsed. The damage occurred at some point during the 

electroplating process and the locations were randomly distributed on the surface. It 

was noted that the damaged area did not develop proportionally with agitation time. In 

other words, as the agitation time increased, the damaged area did not increase 

correspondingly with it. This can be explained as the degassing effect of the ultrasonic 

cavitation. As the cavitation progressed, there was less and less air dissolved in the 

electrolyte, and the cavitation bubble decreased in the collapsing power and quantity 

[124].  

 

 

(a) Overview of electroplated indium bumps 

 

(b) Close-up of electroplated indium bump 

Figure 5-12 DC electroplated indium bumps at 10 mA/cm
2 
with the presence of ultrasonic 

agitation (20 µm diameter, 50 µm pitch).  
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Figure 5-12 shows the as-electroplated indium bumps under ultrasonic 

agitation with 20 µm diameter and 50 µm pitch in the areas where the photoresist 

pattern still survived. It was found that the indium bump had an uneven top finish and 

featured a hollow in the centre. This was caused by the current crowding effect near 

the feature opening. The uneven bump profile indicated that the improvement on the 

mass transport did not diminish the current crowding on the feature scale. The 

overview indicates a very high bumping yield in the intact pattern areas. However, the 

probability of the damage to the photoresist makes the ultrasonic agitation 

unacceptable for wafer bumping applications.  

5.4 Influences of Megasonic Agitation on Indium Deposition 

5.4.1 Polarisation with Megasonic Agitation 

In order to investigate the influences of megasonic agitation on the indium 

electroplating process, the cathodic polarisation was firstly conducted by scanning the 

potential from open circuit to -2.0 V (relative to the SCE) in the large volume tank 

with 1.25 W/cm
2
 megasonic agitation (β = 15º). Figure 5-13 plots the relative cathodic 

potential against the current density and compares with the other electroplating 

formats. With the presence of megasonic agitation, the supply of reactant ions to the 

cathode surface was strongly improved such that the current density continuously 

increased with potential. When the current density approached 80 mA/cm
2
, the slope 

of the curve decreased which indicated that mass transfer started to play an important 

role during the reaction. After that, the current density increased more rapidly again 

with potential and hydrogen bubbles were observed. It was noticeable that, in both the 

curves for acoustic agitation, the polarisation data appeared noisy at the high potential 

period. This was caused by the disturbance of hydrogen bubbles when both the 

indium reduction and hydrogen reduction reactions occurred on the cathode surface.  

Comparing the three relationships shown in Figure 5-13, it was found that, 

when the current density was high, the same current density corresponded to different 

potentials. It can be seen that the overpotential in the high potential region was 

reduced by using acoustic agitation. This can be explained by the depolarisation 

caused by the improvement of mass transfer and hydrogen bubbles detaching from the 

cathode surface. On the one hand, the acoustic agitation can effectively compress the 
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Nernst diffusion boundary layer and therefore reduce the concentration overpotential. 

On the other hand, the acoustic agitation can help in removing the reduced hydrogen 

bubble from the cathode surface. Thus, the reaction of hydrogen reduction 2H
+ 

+ 2e 

→ H2 tends to move towards the right-hand side. As a result, the hydrogen reduction 

is accelerated by acoustic agitation. Then, more electrons on the cathode are therefore 

consumed by hydrogen ions resulting in lower overpotential. Moreover, because the 

ultrasonic cavitation can induce a stronger degassing effect than megasonic streaming 

[124], the hydrogen bubbles stay a shorter time in the case of ultrasonic agitation. 

Therefore, the overpotential in the case of ultrasonic agitation is lower than the 

megasonic agitation.  

 

 

Figure 5-13 Comparison of cathodic polarisation curves for different agitation conditions in 

indium sulphamate solution with indium anode and copper cathode at room temperature. 
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5.4.2 Indium Deposition with Megasonic Agitation 

In order to investigate how the megasonic power affects the indium deposition 

process, electroplating trials on non-patterned substrates were conducted at 10 

mA/cm
2
 with megasonic intensity of 1.25 W/cm

2
, 2.5 W/cm

2
, 3.75 W/cm

2 
and 5 W/cm

2
. 

The megasonic transducer was tilted to 30º (β = 30º) against the bottom of the 

electroplating tank. Figure 5-14 shows the surface morphology of the electroplated 

indium corresponding to various megasonic intensities. It can be seen that the indium 

was dominated by nodular morphology. The change on the surface morphology was 

also reflected in the roughness. Figure 5-15 demonstrates the surface profile 

measurement of indium electroplated at a current density of 10 mA/cm
2 

with 2.5 

W/cm
2 

megasonic agitation. The measured maximum Total Height of Profile (Pt) and 

Average Roughness (Ra) were 7.5 µm and 0.81 µm respectively. The cathodic current 

efficiency was measured as 95.14% in this case. The measured surface profiles under 

other megasonic intensities are listed in Table 5-2. Compared with the DC 

electroplating without agitation, the surface was smoothed by using megasonic 

agitation while the cathodic current efficiency was slightly elevated.  
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(a) 1.25 W/cm
2 

 (b) 2.5 W/cm
2
 

  

(c) 3.75 W/cm
2
 (d) 5 W/cm

2
 

Figure 5-14 Surface morphology of indium electrodeposited through DC 10 mA/cm
2
 with various 

intensity of megasonic agitation, β = 30º. 

 

Figure 5-15 Surface roughness measurement of electrodeposited indium through DC 10 mA/cm
2
 

with 2.5 W/cm
2
 megasonic agitation (β = 30º). 
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Table 5-2 Cathodic current efficiencies, maximum Total Height of Profile (Pt) and Average 

Roughness (Ra) of deposited indium through DC electroplating with various acoustic agitation 

conditions.  

No. 

Current 

Density 

(mA/cm
2
) 

Acoustic 

Intensity 

(W/cm
2
) 

Acoustic 

Frequency 
β 

Current 

Efficiency 

(%) 

Max. Pt 

(µm) 
Ra (µm) 

1 10 0.1 30 kHz N/A 92.3 8.36 1.09 

2 10 1.25 

1 MHz 

30º 93.22 7.18 0.79 

3 10 2.5 30º 95.14 7.5 0.81 

4 10 3.75 30º 94.58 6.96 0.76 

5 10 5 30º 94.6 8.84 0.81 

6 10 2.5 15º 95.47 6.64 0.59 

7 10 5 15º 93.7 6.89 0.62 

8 30 2.5 15º 96.44 12.7 1.08 

9 40 2.5 15º 94.5 35.3 2.62 

10 50 2.5 15º 95.32 40.14 2.86 

 

It can be seen that the surface morphology was significantly changed by using 

megasonic agitation; however, the different megasonic intensities had little effect on 

the surface morphologies found, see Figure 5-14. This is reflected in the similar 

changes in cathodic potential when various megasonic intensities were applied. Figure 

5-16 illustrates the cathodic potential change when sequentially applying 1.25, 2.5, 

3.75 and 5 W/cm
2 

megasonic agitation to the electroplating process at 10 mA/cm
2
. It 

can be seen that the cathodic potential was elevated by megasonic agitation, but, the 

offset remained relatively constant while the megasonic intensity increased. It should 

be noted that the driving force of the deposition reaction is the cathodic potential 

rather than the current density. Therefore, although the megasonic intensity increased, 

indium deposition was conducted throughout at almost the same cathodic potential.  
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Figure 5-16 Cathodic potential changed by various megasonic intensity at 10 mA/cm
2
 current 

density. 

 

With β = 15º, indium electroplating at DC 10 mA/cm
2
 with 2.5 W/cm

2 
and 5 

W/cm
2 

intensity megasonic agitation were conducted to investigate the influences of 

the direction of megasonic agitation. Figure 5-17 shows the surface morphology of 

the electroplated indium when β was 15º. It can be seen that the surface of the indium 

was still dominated by nodular morphology, but the nodular protrusions were 

relatively flattened in comparison with the situation of β = 30º. The surface 

measurement indicated that the averaged roughness was slightly reduced by changing 

the megasound propagating direction, as listed in Table 5-2. Moreover, little influence 

on the cathodic efficiency was found corresponding to the change of transmission 

angle.  
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(a) 2.5 W/cm
2
 (b) 5 W/cm

2
 

Figure 5-17 Surface morphology of indium electrodeposited at DC 10 mA/cm
2
 with various 

intensity of megasonic agitation, β = 15º. 

 

To take the advantage of megasonic agitation, indium electroplating at higher 

current densities was carried out. Figure 5-18 shows the surface morphology of the 

indium electroplated through 30, 40 and 50 mA/cm
2 

current density with the presence 

of 2.5 W/cm
2
 megasonic agitation (β = 15º). Interestingly, the electroplated indium 

appeared more granular and the surface feature size increased proportionately with the 

current density. Correspondingly, the enlarged surface feature size deteriorated the 

surface flatness and the average roughness also increased proportionately to the 

current density. When the current density was 30 mA/cm
2
, the maximum Total Height 

of Profile (Pt) and Average Roughness (Ra) were 12.7 µm and 1.08 µm respectively. 

In the case of electroplating at 40 mA/cm
2
, the maximum Pt and Ra were increased to 

35.3 µm and 2.62 µm respectively, as listed in Table 5-2. Figure 5-19 demonstrates 

the surface profile measurement of the electroplated indium. Moreover, the cathodic 

efficiencies were measured as 96.44%, 94.5%, and 95.32% corresponding to the 

current densities of 30, 40 and 50 mA/cm
2
, as listed in Table 5-2.  

The influences of megasonic agitation on the cathodic potential were more 

profound as the current density increased. Figure 5-20 plots the cathodic potentials 

with and without megasonic agitation for the cases of 40 and 50 mA/cm
2
 DC 

electroplating. The cathodic potential was significantly reduced allowing the indium 

electroplating to be conducted at higher current density for which the solution could 

still supply sufficient reactant species. The current densities in this set of 
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electroplating trials were no longer beyond the limiting value with presence of 

megasonic agitation. Therefore, by using megasonic agitation, it is possible to achieve 

high speed deposition without sacrificing current efficiency.  

 

  

(a) i = 30 mA/cm
2
 (b) i = 40 mA/cm

2
 

 

(c) i = 50 mA/cm
2
 

Figure 5-18 Surface morphology of indium electrodeposited at high current densities with 2.5 

W/cm
2
 megasonic agitation, β = 15º. 
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(a) i = 30 mA/cm
2
 

 

(b) i = 40 mA/cm
2
 

Figure 5-19 Surface roughness measurement of electrodeposited indium at various current 

densities with 2.5 W/cm
2
 megasonic agitation (β = 15º). 
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Figure 5-20 Change in cathodic potential at different DC electroplating current densities by 

applying 2.5 W/cm
2
 megasonic agitation (β = 15º): (a) 40 mA/cm

2
; and (b) 50 mA/cm

2
. 

 

5.5 Indium Bumping with Megasonic Agitation  

5.5.1 Influences of Electroplating System Configuration  

Megasonic agitation was employed for pre-wetting the ultrafine pitch photoresist 

patterns prior to the indium bump deposition. It was found that the geometrical 

configuration of the electroplating tank could strongly affect the pre-wetting 
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efficiency. As shown in Figure 5-21, with the wafer holder configuration A (which 

was used in previous bumping trials), the edge of the wafer holder acted as an 

obstacle to the pathway of the megasonic energy propagating to the wafer surface. 

Because the wavelength of megasound in the solution is about 1.5 mm, it is very hard 

for megasound to bypass the object on its pathway having centimetre dimensions. The 

photoresist patterns near the lower edge of the wafer holder could not receive enough 

energy resulting in insufficient coverage by the solution, such that the yield was not 

acceptable for wafer bumping, as shown in Figure 5-21. According to the dimensions 

of the designed photomask and the wafer holder, it was calculated that the megasonic 

energy would be able to cover all of the patterns by tilting 30 º against the horizontal.  

 

 

Figure 5-21 Influences of the obstacle to megasonic energy propagation created by the wafer 

holder on the pre-wetting of the ultrafine pitch features. 

 

Although sufficient wetting of the photoresist pattern could be achieved by 

tilting the transducer to an appropriate angle, a so-called „pitting‟ effect was still 

observed on the wafer surface, when the wafer holder configuration A was adopted in 

the ensuing bumping process. Many gas bubbles were observed sticking on the wafer 

surface all through the electroplating process. As shown in Figure 5-22, the bubbles 

induced a „pitting‟ effect and left incompletely electroplated patterns. The indium 

bumps in the bubble sites had insufficient material and smaller height which can be 
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seen in the circled area in Figure 5-23. The bubbles were caused by the megasonic 

streaming effect rather than hydrogen evolution because the current efficiency was 

still very high and consistent with the situations listed in Table 5-2. Considering the 

requirement of high yield, the pitting effect is not acceptable for indium bumping.  

 

 

Figure 5-22 Pitting effect caused by the gas bubbles on the patterned wafer after DC 

electroplating at 10 mA/cm
2
 with presence of megasonic agitation using wafer holder 

configuration A. 

 

 

Figure 5-23 Non-uniform indium bumps on the bubble sites after DC electroplating at 10 mA/cm
2
 

with presence of megasonic agitation using wafer holder configuration A. 
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Figure 5-24 Mechanism of particle removal in megasonic cleaning: Fa is the adhesion force; FD is 

the drag force; MR is the removal moment and Ma is the adhesion moment.   

 

 

Figure 5-25 Mechanism of the pitting effect in the wafer holder 

 

The possible reason for the pitting effect can be attributed to the wafer holder 

configuration. A rolling mechanism has been widely accepted to explain the particle 

removal in megasonic cleaning [147]. As shown in Figure 5-24, taking an individual 

particle for example, there are two main forces taking part in the removal: adhesion 

force (Fa) and drag force (FD). When the removal moment MR exceeds the adhesion 

moment Ma, the particle will be rolled away from the surface. This mechanism also 

can be applied to detach bubbles from the surface. However, in the case of wafer 

bumping, the edge of the wafer holder acted as an obstacle to the pathway of 

megasonic streaming flow along the surface. A large proportion of the longitudinal 

component of the megasonic wave along the wafer surface was reflected by the holder 

edge in front of the pathway and contributed to a reverse force (FRD), as shown in 



Chapter 5 Effects of Acoustic Agitation on Indium Bump Formation 

150 

 

Figure 5-25. Therefore, once the bubble attached to the wafer, it was hard to 

overcome the adhesion force since the drag force was compromised by the reflected 

energy.  

To overcome the pitting effect, a new design of the wafer holder was adopted 

by removing the protruding edge, as the configuration B shown in Figure 5-26. The 

wafer was kept at the same level as the holder edge such that there was no obstruction 

to the pathway of the megasonic streaming flow. Experimental results indicated that a 

high yield could be achieved with the wafer holder configuration B and no pitting 

effect was observed after electroplating with megasonic agitation (see the completely 

electroplated wafer patterns in Figure 5-26). Therefore, this wafer holder 

configuration was utilised in all of the following indium bumping trials.  

 

 

Figure 5-26 Amended design of wafer holder and completely electroplated patterns. 

 

The impacts of megasonic agitation on the photoresist pattern were also 

examined. The experimental results indicated that the high frequency megasound 

showed no effect on the fragile photoresist patterns. After immersing the patterned 

wafer into a 5 W/cm
2
 megasonic field for 60 minutes, which was the maximum output 

intensity of the power supply and longest electroplating time in all experiments, no 

damage to the photoresist pattern was observed. Therefore, megasonic agitation is 

suitable for wafer bumping applications as the yield reaches high levels. Moreover, as 
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with ultrasonic agitation, high frequency megasonic agitation could also bring heat to 

the solution. However, due to the large volume of the electroplating solution, the 

temperature elevation was less than 5 ºC under the highest megasonic intensity and 

longest electroplating time, i.e. 5 W/cm
2
 megasonic agitation for 60 minutes. So, the 

thermal effect of the megasonic agitation was ignored in this study.  

 

  

(a) 1.25 W/cm
2
 (b) 2.5 W/cm

2
 

  

(c) 3.75 W/cm
2
 (d) 5 W/cm

2
 

Figure 5-27 Indium bumps electroplated at DC 10 mA/cm
2
 with various megasonic intensity (β = 

30º). 
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5.5.2 Influences of Megasonic Agitation on Indium Bump Growth  

Indium bump deposition trials at DC 10 mA/cm
2
 with various megasonic intensities 

were investigated. All of the wafer samples were patterned using the mask No. 5. The 

overview of indium bumps electroplated at 10 mA/cm
2
 current density with various 

megasonic intensities, but fixed transmission angle (β = 30º), are shown in Figure 

5-27. It can be seen that the indium bumps still have an uneven top finish that is, the 

bump centre is lower than the bump edge. The megasonic intensity did not cause a 

noticeable change to the bump profile. However, it was found that, with an increase of 

megasonic intensity, the consistency of the bumps tended to deteriorate due to defects 

that occurred on the sidewall, as indicated by the arrows in Figure 5-27c and d.  

 

 

Figure 5-28 Cross-sectional view of indium bump electroplated at DC 10 mA/cm
2
 with 5 W/cm

2
 

megasonic intensity (β = 30º). 

 

Figure 5-28 shows the cross-section of an indium bump electroplated with 5 

W/cm
2
 megasonic agitation. It can be seen that the defects observed on the sidewall 

did not occur inside the bump. The bump material appeared consistent with other 

electroplating conditions demonstrated in previous chapters. The grain size in the 

bump could still reach the order of 10 µm. Moreover, the bump still had remarkable 

non-uniformity on the feature scale.  

 



Chapter 5 Effects of Acoustic Agitation on Indium Bump Formation 

153 

 

 

Figure 5-29 Indium bumps electroplated at DC 10 mA/cm
2
 with 5 W/cm

2
 megasonic intensity 

when β = 15º. 

 

Figure 5-29 shows the indium bumps electroplated at 10 mA/cm
2
 DC with 5 

W/cm
2
 megasonic intensity when β = 15º. It was found that the consistency and 

feature scale uniformity deteriorated when the transmission angle was reduced. The 

defects on the sidewall were thought to be attributed to micro air bubbles trapped in 

the photoresist apertures. The current efficiency in this case was measured as 93.23% 

indicating that the defects were mainly caused by air bubbles rather than hydrogen 

reduction. Therefore, it is recommended that the megasonic wave should be delivered 

through a larger transmission angle to provide more energy into the apertures.  
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(a) 1.25 W/cm
2
 megasonic intensity (b) 2.5 W/cm

2
 megasonic intensity 

  

(c) 3.75 W/cm
2
 megasonic intensity (d) 5 W/cm

2
 megasonic intensity 

Figure 5-30 Measurement of wafer scale uniformity of indium bumps electroplated at DC 10 

mA/cm
2
 with different intensities of megasonic agitation (β = 30º). 
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(a) 1.25 W/cm
2
 megasonic intensity (b) 2.5 W/cm

2
 megasonic intensity 

  

(c) 3.75 W/cm
2
 megasonic intensity (d) 5 W/cm

2
 megasonic intensity 

Figure 5-31 Measurement of pattern scale uniformity of indium bumps electroplated at DC 10 

mA/cm
2
 with presence of various intensities of megasonic agitation (β = 30º). 

 

The uniformity of the electroplated bumps was measured according to the 

methodology shown in Figure 4-40 on both the wafer and pattern scales. The wafer 

scale uniformities of electroplated bumps at 10 mA/cm
2
 current density with 1.25, 2.5, 

3.75 and 5 W/cm
2
 megasonic agitation are shown in Figure 5-30. The measured 

uniformity was 25.08%, 24.36%, 23.75% and 24.11% corresponding to the 1.25, 2.5, 

3.75 and 5 W/cm
2
 megasonic agitation. It can be seen that the wafer scale uniformity 

deteriorated slightly in comparison to the DC electroplating without agitation. It was 

also found that, when the megasonic agitation was applied and other electroplating 
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parameters remained the same, the non-uniformity was mainly caused by the large 

bumps near the wafer boundary. Also, the pattern scale uniformity deteriorated more 

rapidly from the wafer centre to the edge, as shown in Figure 5-31. The uniformity 

within the patterns close to the wafer centre was improved compared with DC 

electroplating without agitation.  

5.5.3 High Speed Indium Bumping with Megasonic Agitation  

Indium bumping trials at current densities of 30 and 50 mA/cm
2
 were conducted to 

explore the feasibility of high speed bump deposition with the presence of megasonic 

agitation. Figure 5-32 shows an overview of the indium bumps electroplated at 30 and 

50 mA/cm
2
 with 2.5 W/cm

2
 megasonic agitation (β = 30º). The bumping yield was 

more than 99.9% and the current efficiencies were measured as 94.18% and 93.89% 

corresponding to the 30 and 50 mA/cm
2
 electroplating conditions respectively. The 

high current efficiency indicated that sufficient megasonic energy was delivered into 

the photoresist apertures and there was no significant side reaction occurring. Large 

sized crystals were observed at the bump and the feature scale uniformity deteriorated 

in comparison to the situation of no-agitation.  

 

  

(a) i = 30 mA/cm
2
 (b) i = 50 mA/cm

2
 

Figure 5-32 Indium bumps electroplated at 30 and 50 mA/cm
2
 current densities with presence of 

2.5 W/cm
2
 megasonic agitation, β = 30º. 
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The uniformity of the electroplated bumps was measured on both the wafer 

scale and pattern scale. As demonstrated in Figure 5-33, the wafer scale uniformity 

was measured as 25.83% and 29.69% corresponding to the 30 and 50 mA/cm
2
 

electroplating conditions. It can be seen that the wafer scale uniformity deteriorated 

with the increase of the current density. Moreover, by applying the megasonic 

agitation, the pattern scale uniformity also became worse when the indium bumps 

were electroplated at higher current density, as shown in Figure 5-34.  
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Figure 5-33 Wafer scale uniformity of indium bumps electroplated at various current densities 

with presence of 2.5 W/cm
2
 megasonic agitation (β = 30º): (a) 30 mA/cm

2
; and (b) 50 mA/cm

2
. 
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(a) i = 30 mA/cm
2
 (b) i = 50 mA/cm

2
 

Figure 5-34 Pattern scale uniformity of indium bumps electroplated at various current densities 

with presence of 2.5 W/cm
2
 megasonic agitation, β = 30º. 

5.6 Summary  

Acoustic agitation with different frequencies was applied to indium deposition and 

bump forming processes. The influences of the surface morphology, microstructure, 

electroplating efficiency and deposit uniformity were investigated. Based on the 

experimental results, several conclusions can be drawn as following:  

 Ultrasonic agitation is a capable approach for pre-wetting the ultrafine 

pitch patterns. However, the probability of damage to the photoresist 

pattern increases with loading time which makes ultrasonic agitation 

unacceptable for wafer bumping.  

 Megasonic agitation is also able to fulfil the requirement of pre-wetting for 

high yield. In all of the experiments, no damage to the photoresist pattern 

was observed with the presence of megasonic agitation. However, the 

geometric configuration of the electroplating system can significantly 

affect the efficiency of pre-wetting.  

 To apply megasonic agitation all through the bumping process, the 

configuration of the electroplating system needs to be adjusted to form a 

clear pathway for the megasonic wave. Otherwise, the megasonic 

streaming effect will be compromised and thereafter the bumping yield 

deteriorates.  



Chapter 5 Effects of Acoustic Agitation on Indium Bump Formation 

159 

 

 At lower current densities, the wafer scale uniformity deteriorates slightly 

by introducing the megasonic agitation into the bumping process. However, 

the pattern scale uniformity can be improved.  

 The probability of defects occurring along the bump sidewall increases 

with megasonic intensity and is inversely proportional to the transmission 

angle (β) which the megasonic sound wave propagates to the wafer surface.  

 High speed bumping has been realised through higher current density with 

assistance of megasonic agitation. However, the uniformity issue becomes 

more serious at both the wafer scale and pattern scale.  
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Chapter 6  Discussion 

 

 

 

This chapter is to integrate the experimental results, which have been presented in 

previous chapters, in connection with the relevant studies from the literature, thereby 

providing an overview and discussion of this research. The characteristics of indium 

electroplated through DC, unipolar pulse electroplating and bipolar pulse reverse 

electroplating are firstly compared. Then, the influences of various electroplating 

parameters and configuration of the electroplating system on bumping uniformity are 

summarised. The mechanism of indium bump growth by DC and pulse electroplating 

are explained through an investigation of the deposition processes and the influences 

of acoustic agitation on indium deposition are discussed. Finally, issues of scaling up 

the bumping process are discussed with respect to the bumping uniformity and 

possible solutions are proposed.  

6.1 Feasibility of Indium Deposition Using Sulphamate 

Solution 

As mentioned before, very limited information about indium electroplating can be 

found in the literature while the majority of the studies were reported before the 1980s 

[45-48, 51, 148-150]. Due to the commercial interests and trade secrets, the work on 

indium electroplating using sulphamate solution is not very well documented and 

published in the public domain. On the basis of experimental results demonstrated 

above, it can be seen that it is relatively straightforward to deposit indium using a 

sulphamate solution that is commercially available. According to the electrochemistry 

of indium electroplating, indium is obtained through the reaction of In
3+

 + 3e → In 

[45]. Based on the cathodic current efficiency measurement, it is recommended that 
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the indium deposition should be carried out at no more than 20 mA/cm
2
 for which 

more than 90% current efficiency can be achieved at room temperature without the 

presence of any additional agitation.  

 

  

(a) DC electroplating, i =10 mA/cm
2
. (b) DC electroplating, i = 35 mA/cm

2
. 

  

(c) Pulse electroplating, ip = 50 mA/cm
2
, iavg = 

10 mA/cm
2
. 

(d) Pulse electroplating, ip = 100 mA/cm
2
, iavg 

= 10 mA/cm
2
. 

Figure 6-1 Comparison of surface morphology and surface feature size of indium 

electrodeposited using DC and pulse current waveforms. 

 

It has been found that, under an average current density of 10 mA/cm
2
, the 

cathodic current efficiency for pulse electroplating can still reach more than 90% in 

the case of ip ≤ 100 mA/cm
2
. The experimental results have demonstrated that the 

indium sulphamate solution is stable, easy to use and maintain during the operation of 
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the electroplating process, and such advantages make the sulphamate solution a 

primary candidate for indium electrodeposition.  

6.2 Comparison of Microstructure Characteristics of Indium 

It is known that, in most cases, the electrocrystallisation process is kinetically 

governed by the combined effects  of charge transfer and mass transfer [40]. In this 

study, indium deposits appeared to have various morphologies subject to the use of 

different electroplating parameters. As can be seen in Figure 6-1a, ridges, blocks and 

polyhedral grains were present in the electroplated indium when the current density 

was below 30 mA/cm
2
. According to the idealised polarisation curve of electroplating 

in Figure 2-2 (page 23), the formation of ridges and polyhedral grains are likely to be 

formed at a lower current density due mainly to the charge transfer control with an 

insignificant effect from mass transfer [42]. However, the presence of block deposits 

still appeared in indium electroplating even at a higher current density, which may 

also reflect the levelling effects caused by the two additives, i.e. dextrose and 

triethanolamine. In such a case, the grain growth along the direction perpendicular to 

the substrate surfaces may be hindered. Therefore, some lattice faces that are 

associated with certain crystal orientations became the facets present as 

morphological features in the final surface finish. In contrast, when the current density 

was greater than 30 mA/cm
2
, indium tended to be deposited as a number of nodules 

(Figure 6-1b), which indicates that the electroplating was governed predominately by 

mass transfer due to the applied higher current density.  

In the pulse electroplating, the pulse duration was fixed as 1 ms while the 

pulse-off time increased from 2 ms to 99 ms. This was to investigate how the solution 

performed under various peak current densities, and to understand how the pulsating 

current can affect the indium deposition process. The pulse current density in this 

work started from 30 mA/cm
2
, while the average current density remained as 10 

mA/cm
2
. With the increase of pulse peak current density, surface feature refinement 

was observed in pulse electroplating, as shown in Figure 3-5 (page 51) and also 

provided in Figure 6-1c & d for comparison.  

Pulse electroplating induced surface feature refinement has been 

systematically observed in various electrodeposition systems which can be attributed 

to the improved nucleation rate at a higher pulse peak current density [57-59]. 
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According to Puippe [54], the nucleation rate (Vn) during the electroplating is 

determined by:  

 

2
1 expn

k
V k



 
  

   (6-1) 

where k1 is a proportionality constant, k2 is related to the amount of energy required 

for nucleation and η is the overpotential. It can be seen that the nucleation rate 

increases exponentially with the overpotential. Having the same average current 

density, the pulse current densities in all of the waveforms used for indium 

electrodeposition were much higher than the DC current density so that the 

overpotential during the pulse-on duration was much higher in the pulse electroplating 

process. This explains the significant surface feature refinement due to the enhanced 

nucleation rate under the higher pulse current densities.  

When the pulse peak current density was 30 mA/cm
2
, the deposits still mainly 

appeared as granular and the lattice facets were clearly observed which showed 

similarity with the DC electroplated indium, although the surface feature refinement 

was apparent (see Figure 3-5a, page 51). When the peak current density reached 40 

mA/cm
2
, the deposit included many nodules and cones, and mainly cones under the 

higher pulse current density. However, as demonstrated in Figure 3-5c to j, it was 

hard to find differences in the surface morphologies of the electroplated indium with 

pulse current waveforms when ip varied between 50 to 300 mA/cm
2
. The 52º tilted 

view in Figure 6-2b clearly shows the conical morphology of indium when the ip = 

100 mA/cm
2
. Although the surface morphology remained the same within a large 

range of peak current densities, the cathodic current efficiency started to decrease 

rapidly when the ip was greater than 100 mA/cm
2
, as listed in Table 3-3 (page 53). The 

decrease in cathodic current efficiency also indicated the deterioration of deposit 

quality. As shown in Figure 3-7 (page 52), the cross sectional analysis conducted by 

FIB revealed a porous structure when ip = 500 mA/cm
2
, when the current efficiency 

was only about 25%. This has suggested that the pulse current density should not 

exceed 100 mA/cm
2
.  
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(a) Sample tilt 0
o
 (b) Sample tilt 52

o
 

Figure 6-2 SEM micrographs of conical morphology of deposited indium by pulse electroplating 

(ip = 100 mA/cm
2
, iavg = 10 mA/cm

2
, ton = 1ms,  toff = 9 ms) with sample surfaces tilted: a) 0

o
, b) 52

o
. 

 

The smoothness of deposited indium was significantly improved by pulse 

electroplating, and this was confirmed by the measured maximum Total Height of 

Profile (Pt) and maximum Average Roughness (Ra) (see Table 3-3, page 53). The 

improvement on surface smoothness is expected due to the significant surface feature 

refinement through pulse electroplating. As has been stated above, the much higher 

pulse peak current density can reinforce the formation of new nuclei, thereby 

continuous growth of the existing large sized features may be hindered due to the 

periodically applied pulse current, as has been reported for copper electroplating [54].  

It should be noted that, for the configuration of the pulse electroplating 

parameters used here, with the increase of pulse peak current density, the pulse-off 

time was also extended in order to sustain the constant average current density (Table 

3-1, page 47). It has been reported that the pulse-off time may play a role in the 

electrodeposition process, such as recrystallisation [151-153]. In order to avoid any 

possible such side-effect of pulse-off time, the pulse current needs to be adjusted in 

such a way that the amount of charge transmitted within the pulse-on duration 

remains constant, which can only result in a little change in the pulse-off time. As 

shown in Figure 6-3, the hatched area of current waveform 1 equals that of the shaded 

area of waveform 2 so that the increase in pulse current density does not significantly 

increase the pulse-off time. Due to the data collection limitation of the potentiostat 
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used in this research, the influence of pulse-off time on the pulse electroplating 

process could not be investigated in this work.  

 

 

Figure 6-3 Schematic of pulse current waveform configuration to avoid the influence of pulse-off 

time on the electroplating process: Waveform 1: Low pulse current density with shorter pulse-off 

time; Waveform 2: Higher pulse current density with slightly longer pulse-off time. ip1 is the 

pulse peak current density of waveform 1 and ip2 is the pulse peak current density of waveform 2.  

 

As can be seen from the results in Chapter 3, the surface morphology of 

deposited indium through pulse reverse electroplating differed from the unipolar pulse 

electroplating situation. As predicted by theory, the protruding conical top was 

preferentially dissolved during the anodic cycle of pulse reverse electroplating [54, 

154]. The typical conical morphology in pulse electroplating did not appear in pulse 

reverse electroplating. Instead, the deposited indium through pulse reverse 

electroplating was mainly polycrystalline in structure but with finer surface feature 

size. Figure 6-4 illustrates from different viewing angle the surface morphology of 

indium electroplated using waveform No. 13 (ip(c) = 50 mA/cm
2
, ton(c) = 1.5 ms; ip(a) = 

50 mA/cm
2
, ton(a) = 0.5 ms; toff = 3 ms.). 
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(a) Sample tilt 0º (b) Sample tilt 52º 

Figure 6-4 Surface morphology of pulse reverse electroplated indium viewed from different 

angles (waveform No. 13: ip(c) = 50 mA/cm
2
, ton(c) = 1.5 ms; ip(a) = 50 mA/cm

2
, ton(a) = 0.5 ms; toff = 3 

ms. ). 

 

In fact, the parameters used in pulse reverse electroplating were selected on 

the basis of the results obtained from pulse electroplating for the sake of surface 

uniformity and current efficiency. As generally recommended above, either the 

cathodic or the anodic pulse current density should not exceed 100 mA/cm
2
. 

Obviously, the surface feature size of indium through the selected pulse reverse 

electroplating was significantly reduced compared with DC electroplating (see Figure 

3-9, page 55). The reason for surface feature refinement could also be attributed to the 

improved nucleation rate caused by the very high cathodic pulse current density as 

observed in the unipolar pulse electroplating.  

Similar to pulse electroplating, any changes of electroplating parameters in the 

cathodic or anodic pulse current density did not have significant influences on the 

surface morphology for the range of values tested here. As shown in Figure 3-9 (page 

55), it was hard to quantify the difference in surface morphology between the deposits 

obtained through waveform No. 13 and No. 14, where both the cathodic and anodic 

pulse current densities increased from 50 mA/cm
2 

to 100 mA/cm
2
. In addition, 

comparing waveform No. 14 and No. 15, which reduced the anodic pulse current 

density from 100 mA/cm
2 

to 50 mA/cm
2
, very little difference could be seen between 

them except that the surface feature size was slightly increased.  
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The surface smoothness of deposited indium through pulse reverse 

electroplating was significantly improved in comparison to that obtained by DC 

electroplating (see Figure 2-9 on page 36 and Figure 3-10 on page 56). On the one 

hand, similar to pulse electroplating, the enhanced nucleation rate induced by higher 

pulse current density contributed to surface smoothing. On the other hand, the 

additional anodic cycle preferentially dissolved the peak sites of existing deposits 

which resulted in a further levelling effect. However, from the data shown in Table 

3-3 (page 53) and Table 3-4 (page 56), the surface roughness of deposited indium 

through pulse reverse electroplating was very close to that obtained by pulse 

electroplating, taking waveforms No. 3 and No. 13 for example, the Ra was 0.59 µm 

and 0.6 µm respectively. This can be explained due to the fact that the dissolution of 

the uneven sites of deposits through the additional anodic cycle was not significant as 

more metal was deposited during the cathodic cycle in the case of pulse reverse 

electrodeposition.  

6.3 Ultrafine Pitch Indium Bumping Using Sulphamate 

Solution  

6.3.1 Evaluation of Feasibility  

The indium bumping process has been successfully developed through 

electrodeposition using a sulphamate solution and the experimental results have 

demonstrated that it is able to produce high quality indium bumps with an ultrafine 

pitch (down to 15 µm diameter and 25 µm pitch size) and with a yield of over 99.9% 

based on the presence of bumps. The minimum pitch size is determined by the 

photolithography step, i.e. the pitch size can be further reduced as long as the 

photoresist pattern can be developed to precisely define the aperture openings. For 

example, Merken and John et al [36, 39] deposited indium bumps on a 3 inch wafer 

using indium chloride solution and the minimum bump size obtained was 7 µm. Due 

to the limitation of facilities available for this research, the minimum bump size 

achieved was 15 µm.  

Figure 6-5 and Figure 6-6 summarise the bump height uniformity on both the 

wafer scale and pattern scale through various electroplating parameters used in this 

research. The pattern scale uniformity in Figure 6-6 was the average value of the 
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patterns along the two radii of the wafer as indicated in the figure. The experimental 

results demonstrated that the best uniformity on the 4 inch wafer scale obtained by 

DC, pulse and pulse reverse electroplating were 19.65%, 14.3% and 13.6% 

respectively. As mentioned before, there are only two studies of ultrafine pitch indium 

bumping through electroplating reported in the literature. In the study conducted by 

Merken and John et al [36, 39], on 3 inch wafers in the presence of a current thief ring, 

a 15% bump uniformity was achieved which was equivalent to the results obtained 

from this research (see Table 4-4, page 91). Jiang et al [38] demonstrated the indium 

bumping process using sulphamate solution, however, no uniformity study was 

reported.  

 

 

Figure 6-5 Summary of average bump height uniformity on 4 inch wafer scale through various 

electroplating parameters.  
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Figure 6-6 Summary of average bump height uniformity on pattern scale through various 

electroplating parameters. 

 

To achieve a high bumping uniformity, as mentioned before, several factors 

need to be taken into account in the experiments including seed layer thickness, 

electrical contact, the presence of current thief, current shield, current density, 

geometric configuration of photoresist patterns and agitation. The experiments on 3 

inch wafers indicated that a smaller current density is favourable in obtaining a better 

uniformity. The resistance within the thin seed layer is the origin of the terminal effect 

which remains unchanged during the deposition process resulting in non-uniform 

bumps across the wafer [110]. In general, the terminal effect will be more profound 

when the seed layer becomes thinner as the Ohmic resistance of the seed layer is 

inversely proportional to the thickness [88, 89, 97, 155]. The resistance of the thin 

film is strongly dependent on the deposition process which was outside the focus of 

this research. Thus, the seed layers used in this research were prepared in the same E-

beam evaporation system using the same parameters to achieve consistent conditions 

for electroplating to commence.  
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6.3.2 Effects of Current Thief Ring Design 

The electrical contact to the wafer can also physically affect the current density 

distribution across the wafer. As demonstrated by the bumping uniformity on a 3 inch 

wafer, where the contact was made through two points on the periphery of the wafer 

(Figure 4-9a, page 73), the electroplated indium bumps showed noticeable directional 

non-uniformity. Therefore, a symmetrical contact is demanded to achieve better 

uniformity on the wafer scale, for example, through the 4 inch wafer connection type 

shown in Figure 4-9b (page 73).  

A current thief was designed into the wafer pattern configuration and showed 

improvement on both the wafer scale and pattern scale (see Figure 6-5 and Figure 6-6). 

It can be seen from the 3 inch wafer bumping experiments, a current thief ring 

surrounding the entire pattern area can homogenise the directional non-uniformity 

caused by the asymmetrical electrical contact. Both of the bumping results on the 3 

and 4 inch wafer showed that a current thief ring can reduce the current crowding 

effect induced by the geometric configuration of the electroplating system and 

therefore improve the bumping uniformity on both the wafer and pattern scale. For 

example, the bump uniformity on a 4 inch wafer scale was improved from 28.29% to 

19.65 in the case of DC electroplating, as illustrated in Figure 6-5, while the pattern 

scale uniformity was also improved to a noticeable extent (Figure 6-6). The trend of 

uniformity improvement using a current thief agrees well with the simulation studies 

conducted by other researchers [96, 100]. A current shield was not utilised in this 

research because the set-up of the megasonic transducer restricted the space available 

to adjust the configuration.  

6.3.3 Effects of Pattern Geometric Characteristics  

The geometric characteristics of the photoresist pattern play an important role in 

determining the pattern scale uniformity. As demonstrated in Figure 4-45 (page 112) 

and Figure 4-46 (page 113), it can be concluded that the decrease in feature size and 

increase in the pattern vacancy rate (Vp) can both induce an increased indium bump 

height. Simulation studies from previous researchers also demonstrated similar trends 

[106-109]. This can provide guidance in designing the photoresist patterns. On the 

one hand, the pattern design should avoid including features having large differences 
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in size. On the other hand, if the pattern has large and small features, the latter should 

not be located near the periphery of the pattern as such an arrangement can deteriorate 

the uniformity.  

6.3.4 Influences of Pulse Electroplating 

The unipolar pulse electroplating and bipolar pulse reverse electroplating have 

demonstrated the improvement in bump height uniformity on both the wafer scale and 

pattern scale (see Figure 6-5 and Figure 6-6) and the fundamentals of the uniformity 

improvement will be discussed below. On the feature scale, the uniformity can also be 

improved using pulse electroplating and pulse reverse electroplating, as shown in 

Figure 4-35 (page 103) and Figure 4-36 (page 103). The uneven bump profile 

obtained by DC electroplating indicates the limitation of the two additives on 

levelling ability. Figure 6-7 shows the profiles of Cu and Au bumps obtained through 

two commercial solutions designed for electroplating into through-holes or bumping 

which contain complex additives having a strong levelling effect. In comparison to 

Figure 4-34a (page 102), there is much room for indium sulphamate solution to 

improve the uniformity on the feature scale by adjusting the organic additives. 

Relevant studies on new additives in future work would be beneficial to achieve a 

more uniform growth front.  

 

  

(a) Cu bump (b) Au bump 

Figure 6-7 Cross-sectional view of bump profiles obtained from commercial solutions with 

complex additives having strong levelling ability: (a) Cu bump; (b) Au bump (Courtesy of Dr. 

David Flynn, Heriot-Watt University). 
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In order to understand the fundamentals of how the pulsating current 

waveforms affect the bumping process, investigation of the indium bump growth 

process was conducted through both DC electroplating (at 10 mA/cm
2
) and unipolar 

pulse electroplating (waveform No. 3, ip = 50 mA/cm
2
). Micrographs of the indium 

bumps were taken at 30 s, 120 s, 500 s and 1000 s respectively. As for the bipolar 

pulse reverse electroplating, because a short period of unipolar pulse electroplating 

was performed prior to each of the bipolar pulse reverse electroplating trials, the pure 

influences of bipolar pulse reverse waveform could not be separated from the 

combination. So, in this section, only the influences of unipolar pulse electroplating 

on the bumping process were concerned.  

 

 

Figure 6-8 Morphology of indium bumps at different stages during DC electroplating at 10 

mA/cm
2
. 
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For the bumping by DC electroplating, when the deposition was performed for 

30 s, at the centre of a pattern, only the periphery of the opening areas were covered 

by indium, as shown in Figure 6-8a, forming an indium metal ring rather than a 

conformal column. However, in the features near the pattern boundary, the whole 

opening areas were deposited with indium; as can be seen in Figure 6-8b, the indium 

started forming the column shape and growing. This phenomenon was commonly 

observed in all of the patterns across the wafer, no matter how far the pattern was 

from the electrical contact. Even after 120 s of electroplating, the indium was not 

deposited as a column shape at the centre of the pattern (see Figure 6-8c), while the 

bumps near the edge of pattern continuously grew vertically (Figure 6-8d). After 500 

s, in some of the apertures at the centre of the pattern, the aperture opening areas were 

still not fully covered by indium, as shown in the top view of the indium bumps in 

Figure 6-8e.  After 1000 s, they were completely covered by indium but the growth 

front was noticeably uneven (Figure 6-8g). Moreover, the electroplated indium bumps 

near the pattern boundary had profound non-uniformity on the feature scale as well 

(see Figure 6-8h).  

In comparison, for the case of pulse electrodeposition, it was found that the 

entire area of the aperture openings were covered with indium clusters after 30 s, as 

shown in Figure 6-9a, even at the centre of the pattern. At the edge of the pattern, 

more indium clusters were present indicating an uneven current density distribution at 

the pattern scale (Figure 6-9b). With the pulse electroplating progressing, the 

electroplated indium started to form column shape bumps, as can be seen from the top 

views of the bumps at the pattern centre and edge (Figure 6-9c & d). After 500 s and 

1000 s, as shown in different areas in Figure 6-9e, f, g and h, the bumps grew more 

uneven at the feature scale with electroplating time.  
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Figure 6-9 Morphology of indium bumps at different stages during pulse electroplating 

(waveform No. 3, ip = 50 mA/cm
2
, iavg = 10 mA/cm

2
, iavg = 10 mA/cm

2
, ton = 1ms,  toff = 4 ms). 

 

Figure 6-10 plots the bump profiles at the different electroplating stages 

during the DC and pulse electroplating processes. It is clearly seen that the indium 

grows more uniformly at the feature scale through pulse electroplating. The uneven 

growth through DC electroplating occurred from its very initial stage of deposition. 

The uniformity at both the wafer and pattern scale at different time were measured 

and the bump uniformity at both wafer and pattern scale are plotted in Figure 6-11. 

Here, the pattern scale uniformity was measured in pattern P11 (see Figure 4-40, page 

107). In the case of DC electroplating, the deposition is extremely non-uniform across 
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the wafer at the beginning stage (Figure 6-11a). The uniformity of pulse electroplated 

bumps is improved on both the wafer scale and pattern scale all through the 

electroplating process (Figure 6-11b), in comparison to DC electroplating. 

Interestingly, when the electroplating was performed for 500 s, the bumps generated 

by both DC and pulse electroplating achieved the highest uniformity at both wafer 

and pattern scale. It still remains unclear what the causes for this occurrence from 

current study are. 
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Figure 6-10 Indium bump growth process (at the centre of pattern) through: (a) DC 

electroplating at 10 mA/cm
2
; (b) pulse electroplating, ip = 50 mA/cm

2
, iavg = 10 mA/cm

2
, ton = 1ms,  

toff = 4 ms.
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Figure 6-11 Uniformity versus time of electroplated indium bumps at both wafer and pattern 

scale: (a) DC electroplating at 10 mA/cm
2
; (b) pulse electroplating, ip = 50 mA/cm

2
, iavg = 10 

mA/cm
2
, ton = 1ms,  toff = 4 ms. 
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Figure 6-12 Schematic of current density distribution at wafer, pattern and feature scales. 

 

To explain the above findings, the current distribution at the wafer, pattern and 

feature scale has been simulated by other researchers on the basis of a hierarchic 

model (see Figure 4-2, page 63). The current crowding at the geometrical periphery of 

the wafer, pattern and feature has been widely reported [65, 91-94, 106, 107, 111, 

155]. As illustrated in Figure 6-12, at the pattern scale, the current density is higher at 

the edge of the pattern but lower at the centre resulting in a higher deposition rate near 

the periphery of the pattern. Similarly, at the feature scale, the current concentrates 

along the periphery of each aperture confined by photoresist.  

The possible reason for the incomplete electroplated indium bumps in the 

pattern centre can be explained by the uneven overpotential induced due to the current 

crowding effect. At the initial stage of DC electroplating, for the apertures at the 

centre of a pattern, the current is highly concentrated along the periphery of the 

apertures due to the current crowding. This exhibited an extreme effect such that the 

nucleation at the central area of the aperture openings was prohibited due to a much 

lower local overpotential which is unable to overcome the energy required for 

nucleation, as illustrated in Figure 6-13. Consequently, this resulted in uncovered 

central areas of the apertures with  the indium significantly and preferentially 

deposited around the periphery forming a „ring‟ of deposit as seen in Figure 6-8a & c. 

Such growth phenomena as a result of preferential nucleation at the early stage of 

electroplating onto a resistive substrate has shown excellent agreement with the 

findings on copper electrodeposition reported by Willey [156], which also concluded 



Chapter 6 Discussion 

178 

 

that the non-uniform nucleation was induced by an uneven potential field. Evidence 

of this was also found in the transitional area within a pattern: as shown in Figure 

6-14, after electroplating with DC at 10 mA/cm
2
 for 30 s, between the pattern centre 

and boundary, the feature area in the transitional area was partially electroplated. Due 

to current crowding at the pattern scale, the features near the edge of the pattern 

experienced a higher overpotential and this enabled them to nucleate and electroplate 

across the entire aperture, although still showing preferential electroplating around the 

periphery of the apertures due to feature scale current crowding. This phenomenon 

has not been reported previously. 

 

 

Figure 6-13 Schematic diagram of feature scale overpotential distribution caused by the current 

crowding under DC and pulse electroplating conditions. 
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Figure 6-14 DC electroplated indium at 10 mA/cm
2
 in the transitional area within a pattern 

The nucleation and growth process for pulse electroplating shown in Figure 

6-9 (page 174) could be explained from the following two aspects. First, in 

comparison to DC electroplating, the overpotential induced by the pulse current was 

much higher, as illustrated in Figure 6-13, and the difference in the nucleation rate at 

the feature scale from the centre to edge of an aperture was therefore not so 

pronounced. In addition, according to Equation 6-1, the nucleation rate is significantly 

improved as the pulse current density is much higher than that in the DC 

electroplating, which has led to a significant refinement in the microstructure of 

deposits by pulse electroplating, as has been reported in the literature. Secondly, as 

shown in Figure 3-3 (page 41), a thinner pulsating diffusion layer is usually 

established during pulse electroplating and the mass transport within an aperture can 

therefore be significantly improved resulting in a uniform deposition across the 

aperture openings. This has agreed very well with a previous study  by Kim [65], who 

has reported that more uniform bump shape can be achieved using pulse 

electrodeposition in a Sn/Cu electroplating bath. Thus, the front of indium bump 

deposits in pulse electroplating grew more evenly compared to that in DC 

electroplating (Figure 6-10), which agrees with the surface smoothing effect as has 

been observed in the electrodeposition of indium onto a non-patterned plain substrate 

(see Figure 2-9 on page 36, Figure 3-8 on page 54 and Figure 3-10 on page 56). The 

non-uniformity at the wafer and pattern scale, i.e. higher bumps at the wafer/pattern 

edge than the centre, were still noticeable with pulse electroplating, but was much less 

pronounced.  
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The previous experimental results revealed that the grain size within the 

indium bump obtained by DC electroplating can still reach up to 10 µm, which was of 

the same order as the indium electrodeposited onto non-patterned plain substrates. 

However, using pulse electroplating and pulse reverse electroplating, the surface 

feature refinement was observed but only to a certain extent. During the bump growth 

in DC electroplating, a disruptive change of morphology occurred after a certain 

period of electroplating. As shown in Figure 6-15, after 500 s electroplating, some 

relatively large crystals of deposited indium appeared with certain preferential 

orientations, which stood out from the even base that was formed at the initial stage. 

In Figure 6-16, the cross-section view of these bumps provides the microstructural 

characteristics which can clearly reveal the bump growth process. Two distinct layers 

can be seen (see the red circles in Figure 6-16), both of which are composed of pure 

indium, as has been analysed with EDX previously (Figure 4-34b, page 102).  

 

  

Figure 6-15 Large sized grains formed at 500 s during DC electroplating bumping at 10 mA/cm
2
. 

 

The crystal lattice structure of indium is tetragonal, and copper is face-centred 

cubic (FCC) (Figure 6-17). In general, at the beginning of electroplating, the 

electrodeposited indium metal may be initiated by conforming with the crystal 

structure of the copper substrate to form the initial sets of nuclei followed by 

subsequent growth, which is usually known as epitaxial growth [41]. The 

electrodeposited indium may be distorted to follow FCC lattice structure of copper 

instead of its original state as a tetragonal crystal at the very initial stage of 
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electrochemical crystallisation (Figure 6-18). However, it was found that the thickness 

of the initial layer could reach around 0.5 µm which was beyond the normal range of 

epitaxial growth and it was unlikely to form such a thick initial layer following the 

lattice structure of copper substrate. Nevertheless, the difference in lattice constants 

between the two metals inevitably causes a noticeable internal stress within the 

deposited indium, which can initially be accumulated by the deformation of the 

indium due to its low strength. After a certain degree of deformation in the deposition, 

the strained tetragonal lattices will no longer permit any further distortion to 

accommodate the accumulated inner stresses. Therefore, the deposit fissured at certain 

stage as observed in Figure 6-16. This can be attributed to the internal stresses 

accumulated in the indium that has exceeded the limit of its strength. With the 

progress of electroplating, the electrodeposited indium can no longer form as a 

distorted tetragonal structure, and therefore starts to grow as a normal tetragonal 

crystal. The indium nucleated as a tetragonal layer can then preferentially grow up as 

it requires less energy for indium ions to incorporate into it. Considering the relatively 

small feature size (~ 20 µm), such large tetragonal crystals (see Figure 6-15) can be 

more easily accessed by the flux of reacting species from the electroplating solution, 

thereby continuous growth of the larger grains is preferred rather than the formation 

of new nuclei (Figure 6-19). Thus, an indium bump often only contains a few grains 

which can reach as large as 10 µm as revealed in the situation of electrodeposition 

onto non-patterned substrates. 
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Figure 6-16 Cross sectional views of indium bumps at different stages of deposition at DC 10 

mA/cm
2
. 
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(a) Copper, face-centred cubic (b) Indium, tetragonal 

Figure 6-17 Crystal lattice structure of: (a) copper; and (b) indium. 

 

 

Figure 6-18 Distortion of indium lattice at the initial stage of electroplating onto copper substrate. 

 

 

Figure 6-19 Preferential electrodeposition within the feature scale resulting in large grains. 

 

Cross-sectional views of the microstructure of indium bumps at different 

stages of pulse electroplating given in Figure 6-20, also consist of two layers, with 

each having different morphology similar to the DC electroplating. With the progress 
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of electroplating, the grain size under both DC and pulse electroplating conditions 

reached and finished at an equivalent order. Similar evidence for such a phenomenon 

can be found by comparing Figure 4-34 (page 102), Figure 4-35 (page 103), Figure 

6-16 and Figure 6-20. This can be attributed to recrystallisation during the 

electroplating process, as has been reported in other electroplating systems, which has 

concluded that recrystallisation occurred simultaneously during the electroplating of 

copper column bumps at room temperature [157]. Many other studies also confirmed 

this, but termed it as self-annealing of electroplated metals (e.g. copper) that can take 

place during the pulse-off period in pulse electrodeposition [56, 158, 159]. Because 

indium has a relatively low melting point (i.e.156 ºC), it is extreme likely for indium 

to undergo a recrystallisation at room temperature in the course of and after 

electroplating.  

Based on the above discussion, the bump growth mechanism in DC and pulse 

electroplating are proposed as follows. For the DC electroplating, as illustrated in 

Figure 6-21a and c, in the pattern centre, the entire aperture area cannot be completely 

covered by indium nuclei at the early stage due to the uneven potential field induced 

by the current crowding (Figure 6-13). In the pattern edge, the aperture area can be 

covered by indium and starts to build up columnar bumps (Figure 6-21b and d). The 

initial layer of indium is deposited as distorted tetragonal resulting in a disruptive 

layer in the cross section view. After a certain stage, indium starts to be deposited as 

the normal tetragonal structure leaving noticeable large grains in the aperture. For 

pulse electroplating, as illustrated in Figure 6-22a, at the beginning stage, indium 

nucleation occurs evenly across the entire aperture area due to the high pulse current 

density. The initial layer of indium is also deposited with a distorted lattice resulting 

in the disruptive layer in cross-section as well (Figure 6-20). Because the nucleation 

rate is much higher than DC electroplating, the growth front of the indium bump is 

populated by smaller nuclei which can form larger grains due to recrystallisation in 

the course of and after electroplating (Figure 6-22c and d).  
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Figure 6-20 Cross-sectional views of pulse electroplated indium bumps at different stages. 
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Figure 6-21 Schematic flow of the indium bump growth in the photoresist aperture by DC 

electroplating in different areas. 
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Figure 6-22 Schematic flow of indium bump growth in photoresist aperture during pulse 

electroplating 

 

6.3.5 Effects of Acoustic Agitation  

The influence of agitation on the electroplating process is more pronounced under 

higher current densities. As shown in Figure 6-5 and Figure 6-6, with DC 

electroplating, by using megasonic agitation, indium bumps can be electrodeposited 5 
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times faster than without agitation. However, the bump uniformity deteriorates when 

the current density increases. The results of bumping on 3 inch wafers also indicated 

that a smaller current density is favourable for better uniformity (Figure 4-21 on page 

86 and Figure 4-22 on page 88). A similar phenomenon was also found by Merken in 

the study of indium bumping using electroplating from indium chloride solution [39].  

Because of the powerful ultrasonic cavitation effect, the fragile photoresist 

patterns can be damaged by introducing the ultrasonic agitation into the electroplating 

process. The damage on the AZ 9260 photoresist was observed on the samples 

prepared following the procedures listed in Table 4-1 (page 69). However, it is likely 

to be a risk for other types of photoresist employed in microelectronics applications, 

as damage to surfaces is commonly observed in the applications of lower frequency 

ultrasonic agitation, for example, material loss has been reported on ceramic surfaces 

after exposure to 20 kHz ultrasound in DI water for 60 minutes [160]. So, it is not 

recommended to use low frequency ultrasonic agitation all through the process of 

electroplating through photoresist patterns. In the results shown in Chapter 4, a high 

yield can be achieved by pre-wetting the photoresist patterns using ultrasonic 

agitation. The photoresist can survive if the ultrasound is only applied for a very short 

period, i.e. 5 seconds in the experiments.  

Megasonic agitation was applied all through the electroplating process 

(maximum electroplating time was 60 minutes) but no damage was observed on the 

AZ 9260 photoresist. As introduced in Chapter 5, because the threshold of the 

cavitation bubble formation and collapse increases exponentially with the acoustic 

frequency, it is unlikely to form cavitation bubbles when the 1 MHz megasonic energy 

is applied into the solution [124]. Therefore, it is unlikely for the photoresist to 

experience the rigorous liquid jet and high temperature induced by the cavitation 

bubble. Megasonic agitation has little effect on the fragile photoresist in most 

applications using megasonic cleaning, the megasonic energy shows no harm to 

fragile components embedded in the wafer [129, 130]. So, to reduce the risk of 

damage to the sample, it is suggested to pre-wet the ultrafine pitch photoresist patterns 

with high frequency megasonic agitation rather than ultrasonic agitation where 

possible.  

Because the photoresist was partially damaged by the ultrasonic agitation, 

there was no need to evaluate the uniformity of the indium bumps as the yield was not 

acceptable. In the presence of megasonic agitation there were no yield issues, but the 
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electroplated bumps still remained uneven on the feature scale (Figure 5-28, page 

152). In the patterns near the central area of the wafer, i.e. the shaded patterns in 

Figure 4-40b (page 107), the bump height uniformity was significantly improved on 

the pattern scale, as shown in Figure 6-6. However, the pattern scale uniformity 

deteriorated in the periphery patterns and the largest bump height was obtained in the 

area A shown in Figure 6-23. Also, it was found that the bumps were heavily over-

electroplated and even bridged near the outer corner of the periphery patterns. On the 

wafer scale, the electroplated indium was less uniform in comparison to the DC 

electroplating without additional agitation, and the non-uniformity was mainly 

attributed to the large bumps in the periphery patterns.  

 

 

Figure 6-23 Over-electroplated indium bumps on different areas of the 4 inch wafer in the 

presence of megasonic agitation. 

 

On the one hand, because of the geometric configuration of the electroplating 

system in all of the experiments, the current crowding effect inevitably occurred along 

the boundary of periphery patterns on the wafer scale. The improved mass transport 

by megasonic agitation emphasised the importance of the primary current distribution 

on the wafer scale. As discussed above, the advantage of megasonic agitation is to 

improve the mass transport and to reduce the concentration overpotential. Thus, when 

the current density becomes larger, the influences of megasonic agitation on 
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electroplating will be more pronounced. A good demonstration can be taken from the 

reduction of cathodic potential in the case of electroplating through different current 

densities, as shown in Figure 5-20 (page 146). Due to the terminal effect, for a certain 

point on the wafer, the local potential is inversely proportional to the distance between 

the point and the wafer edge. Thus, the current density is much higher near the wafer 

edge than in the wafer centre, and the current density defined by the power supply is 

actually an averaged value across the wafer. When the megasonic agitation is applied, 

the mass transport is significantly improved and the higher potential near the wafer 

edge can induce higher current density and therefore faster deposition.  

According to Equation 5-1 (page 124), the Nernst diffusion boundary layer has 

no relation to the acoustic intensity. However, an increase in intensity can induce an 

increase in the number of bubbles in the liquid [124]. Also, the increase in intensity 

can increase the probability for the bubbles to collapse, i.e. the probability for acoustic 

cavitation effect to prevail. Therefore, the risk of damage to photoresist will also 

increase with the intensity. The defects on the bump sidewall shown in Figure 5-27 

(page 151) can be attributed to the air bubbles reinforced by the higher megasonic 

intensity. Due to the high current efficiency (> 90%), it is unlikely for the side-

reaction (e.g. hydrogen evolution) to occur. So, with the increased megasonic 

intensity, air bubbles are formed in the bulk solution and possibly pushed into the 

aperture, or formed in the aperture and stick to the inner wall leading to electroplating 

defects. Based on the experimental results, it is suggested to apply the megasonic 

agitation for wafer bumping with intensity no greater than 2.5 W/cm
2
.   

Indium deposition onto plain substrates and patterned wafers through high 

current densities, which were beyond the limiting value in the absence of agitation, 

were also conducted with the assistance of megasonic agitation in this research. 

Usually, high speed electrodeposition can be realised by increasing the ion 

concentration and adding proper additives into the solution [161-163]. This study 

demonstrates a new approach to achieve high deposition rate by using megasonic 

agitation. For the indium bumping through very high current density, because of the 

photoresist patterns, the transmission angle that the megasonic energy propagates into 

the aperture plays an important role to achieve high current efficiency and yield. 

Based on the results, it is suggested to tilt the megasonic transducer to a larger 

transmission angle against the wafer. In this research, high quality indium bumps with 

ultra-fine pitch and high yield were successfully obtained through extremely high 
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current density, i.e. the deposition rate can be 5 times faster in comparison to the DC 

electroplating at 10 mA/cm
2
. This indicated the feasibility of high speed bumping 

process by using megasonic agitation. However, the issue of bump uniformity became 

more serious under very high current density (Figure 5-33, page 157). As discussed 

above, approaches including novel current thief, current shield, pulse electroplating 

and pulse reverse electroplating may be beneficial in pursuing high speed bumping 

with a better uniformity.  

6.4 Summary and Issues for the Scaling up of the Indium 

Bumping Process  

In summary, based on the experimental results and above discussion, better bumping 

uniformity on wafer scale and pattern scale can be achieved by using a current thief 

ring, reducing current density, and using pulse electroplating or pulse reverse 

electroplating. The best bump height uniformity on the 4 inch wafer scale achieved 

was 13.6% by using pulse reverse electroplating (iavg = 10 mA/cm
2
) in a pattern that 

included a thief ring design. The feature scale uniformity can also be improved by 

using pulse electroplating and pulse reverse electroplating. Acoustic agitation is 

capable of pre-wetting the ultrafine pitch photoresist patterns leading to a very high 

bumping yield, more than 99.9% yield has been continuously achieved. When the 

current density is relatively low, megasonic agitation can improve the pattern scale 

uniformity while the wafer scale uniformity slightly deteriorates. Moreover, by using 

megasonic agitation, indium bumping can be realised at higher deposition rates 

without any other modification of the electroplating system.  
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Figure 6-24 Proposed layout of current thief surrounding each patterns. 

 

The results in this research have shown that, by using DC electroplating with a 

current thief ring, the uniformity deteriorates from about 16% to about 20% when the 

electroplating process is transferred from a 3 inch wafer to a 4 inch wafer. To scale up 

the process for industrial manufacture, e.g. electroplating bumping onto 6 or 8 inch 

wafers, the uniformity issue will be more serious. At this stage, the detailed 

relationship between uniformity and wafer size is not known and depends on several 

parameters, so it is not possible to predict accurately how this will change with 

increased wafer diameter. The terminal effect induced by the resistive seed layer will 

be more pronounced because the enlarged wafer can physically increase the Ohmic 

resistance within the seed layer leading to a larger potential drop between the edge 

and the centre of the wafer. Also, the geometric characteristics of the electroplating 

system need to be configured to adjust the primary current distribution on the wafer 

scale because the current crowding effect can play a significant role in determining 

the bumping uniformity.  

To improve the bumping uniformity in a scaled-up electroplating system, 

several approaches are proposed according to the results of this research. First, a 

current thief ring surrounding the entire pattern area, like the layout shown in 

Appendix 2, would be helpful to reduce the current crowding effect near the wafer 

edge. During the electroplating of the 3 inch wafers it was noted that the addition of a 

thief ring also helped extend the electrical contact around the periphery of the wafer, 

especially as it became thicker during electroplating. Extending this idea further, a 
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new layout of current thief is proposed as shown in Figure 6-24. In this example, each 

of the patterns is surrounded by current thief lines that will function as a more 

conductive current path when the deposit is built up. Using this approach, the terminal 

effect caused by the resistance within the seed layer and the current non-uniformity on 

both the wafer and pattern scale can potentially be improved and could assist in 

improving the quality of electroplating on larger wafers. Further investigation of this 

is needed and the extra material cost of the thief area and loss of chip area should be 

considered. A proper current shield corresponding to a specific photoresist pattern 

layout can be a good way to improve the bumping uniformity. As the megasonic 

transducer used in the electroplating bath restricted the space available, it was not 

possible to incorporate a current shield in this research, however, it has been proved 

as an effective method by other researchers [95-97]. The results in this research have 

demonstrated that pulse electroplating and pulse reverse electroplating can 

significantly improve the bumping uniformity at wafer, pattern and feature scale and 

should also be beneficial in electroplating onto larger wafers. Finally, considering the 

investment cost of the high frequency power unit, additives having a stronger 

levelling effect can be an alternative approach to improve the feature scale uniformity.  
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7.1 Thesis Conclusions  

In this thesis, electroplating of indium bumps for ultrafine pitch interconnection has 

been successfully developed through intensive experimental studies. It is the first 

systematic investigation of ultrafine pitch indium bump formation through 

electrodeposition using a sulphamate solution. Because there was very limited 

information about indium electrodeposition using sulphamate solution available in the 

literature, investigation of the electrochemical performance of the solution was carried 

out prior to the indium bump deposition. The microscopic characteristics of 

electrodeposited indium through various current waveforms, i.e. direct current, 

unipolar pulse current and bipolar pulse reverse current, were first investigated on the 

basis of plain substrates. After this, two main factors, current density distribution and 

mass transport, were examined in the indium bump deposition process regarding the 

yield, uniformity and consistency. The influences of various current waveforms on the 

morphology, microstructure and uniformity of indium bumps were investigated while 

the mass transport condition remained the same. Acoustic agitation, i.e. both 

ultrasonic (30 kHz) and megasonic (1 MHz) agitation, was then employed as a novel 

method to alter the mass transport condition during the DC electroplating process.  

The conclusions from the research work presented in this thesis are grouped 

into three parts: characteristics of indium electrodeposited using sulphamate solution, 

influences of various current waveforms on indium bump growth, and influences of 

acoustic agitation on the indium bumping process.  
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7.1.1 Characteristics of Indium Deposited Through Sulphamate 

Solution 

 Indium deposition was conducted using a sulphamate solution on non-patterned 

copper substrates. The experimental results led to the following conclusions.  

 It was shown that, without the presence of any additional agitation, the 

cathodic current efficiency remained over 90% when the current 

density did not exceed 20 mA/cm
2
, and decreased rapidly if the current 

density was beyond 25 mA/cm
2
. The DC electroplated indium appeared 

granular in morphology and the surface feature size could be as large 

as 10 µm. The surface had noticeable roughness such that the measured 

maximum Total Height of Profile (Pt) was 40.7 µm and the measured 

maximum Average Roughness (Ra) was 3.88 µm.  

 By using unipolar pulse electroplating, the indium surface morphology 

was dominated by a conical morphology and the surface features were 

significantly refined compared to DC electrodeposition. More than 90% 

current efficiency could be achieved when the pulse peak current 

density was below or equal to 100 mA/cm
2 

with an average current 

density of 10 mA/cm
2
.  The surface smoothness was also improved 

compared to DC by using pulse electroplating such that the maximum 

Pt was 8.36 µm and the maximum Ra was 0.73 µm.  

 By using bipolar pulse reverse electroplating, where the pulse peak 

current density was selected to be below or equal to 100 mA/cm
2
 with 

an average current density of 10 mA/cm
2
, the indium surface appeared 

polycrystalline in structure and surface feature refinement was 

observed in comparison to DC electroplating, equivalent to that seen 

for unipolar pulse electrodeposition. The surface roughness was 

reduced compared to DC electroplating, but at the same level as 

unipolar pulse electroplating.  
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7.1.2 Influences of Various Current Waveforms on Indium Bump 

Growth 

The indium bumping process was successfully developed on 3 inch test wafers and 

extended to standard 4 inch wafers. The electroplated bumps were characterised in 

terms of the bumping yield, bump profile, microstructure, and within-wafer bump 

height uniformity. The characteristics were compared between DC electroplating, 

unipolar pulse electroplating and bipolar pulse reverse electroplating. Based on the 

experimental results, the main conclusions to be drawn areas follows:  

 It has been demonstrated that electroplating is capable of generating 

high quality indium bumps with high yield and ultrafine pitch size. 

Using the facilities available in this research, we have successfully 

electrodeposited indium bumps of 15 µm diameter and 25 µm pitch 

with more than 99.9% yield using the criterion of the presence or 

absence of bumps.  

 Primary experiments showed that the pre-wetting step was essential to 

achieve a high bumping yield in the indium sulphamate electroplating 

system. Ultrasonic agitation has been proved as an effective approach 

to pre-wet the ultrafine pitch photoresist pattern and thereafter more 

than 99.9% yield was achieved.  

 The layout of electrical contacts can significantly affect the bump 

uniformity. Asymmetrically distributed contact terminals can induce 

directional differences of bump height uniformity across the wafer. 

Therefore, it is recommended that the electrical contact should be 

symmetrically distributed along the periphery of the wafer.  

 It has been shown that a current thief ring is able to homogenise the 

directional non-uniformity when the electrical contact is made 

asymmetrically. This is achieved by the electroplated thief ring acting 

as an additional electrode spreading the electrical contact around the 

wafer periphery. It has also been shown that the current thief ring can 

improve the bump height uniformity on the wafer scale and pattern 

scale. In the case of DC electroplating at 10 mA/cm
2
, the bump height 

uniformity on 4 inch wafer scale improved from approximately 28.29% 
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to 19.65% by adding a current thief ring design surrounding the whole 

patterned area.  

 The bumping results through DC electroplating showed that the bump 

uniformity deteriorated when the current density increased. The bump 

uniformity can be improved by using pulsating current waveforms. By 

using pulse electroplating and pulse reverse electroplating, the best 

bump uniformity of 14.3% and 13.6% was respectively obtained on the 

4 inch wafer scale. The pattern scale uniformity can also be improved 

by using pulse electroplating and pulse reverse electroplating.  

 Microstructure studies indicated that there were no defects in the main 

body of electroplated indium bumps in DC, pulse electroplating and 

pulse reverse electroplating circumstances. However, a disruptive layer 

was commonly observed near the bottom of the bump at the initial 

stage of electroplating. Indium bump growth mechanism was proposed 

and the internal stress within the initial deposited layer was thought as 

the primary cause of the discontinuous growth.  

 Grain refinement was observed only to a small extent in the pulse and 

pulse reverse electroplated indium bumps for which the 

recrystallisation might play a role in the course of or after deposition.  

 The DC electroplated indium bumps had an uneven growth front with 

the edge of the bump much higher than the centre. The profile of the 

bump top can be levelled by using pulse electroplating and the bumps 

with protruding centre could be obtained by using pulse reverse 

electroplating.  

7.1.3 Influences of Acoustic Agitation on Indium Bumping Process 

Both ultrasonic agitation (30 kHz) and megasonic agitation (1 MHz) were introduced 

into the indium electroplating and bumping processes. All of the electroplating trials 

were conducted through direct current. Based on the experimental results, the main 

conclusions to be drawn are as follows.  

 Due to the significant improvement in mass transport, the cathodic 

polarisation curves showed that the parameter operation window for 
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electrodeposition could be expanded by using both ultrasonic and 

megasonic agitation.  

 In the presence of both ultrasonic and megasonic agitation, the surface 

morphology of electroplated indium was changed from granular to 

nodular, and surface feature refinement was observed to some extent. 

Meanwhile, the surface smoothness was improved in both cases. High 

speed electrodeposition can be enabled by using megasonic agitation.  

 It was found that the risk of damage to the photoresist pattern increased 

with the time of application of ultrasonic agitation. The deteriorated 

yield made ultrasonic agitation for long periods unacceptable for the 

indium bumping process, but it could be used for short periods to pre-

wet the photoresist patterns. In contrast, megasonic agitation had little 

effect on the fragile photoresist pattern and no damage was observed 

after applying the maximum intensity (5 W/cm
2
) for 60 minutes. 

Moreover, megasonic agitation can also fulfil the requirement of pre-

wetting the ultrafine pitch photoresist patterns to obtain a high yield.  

 The configuration of the electroplating system can significantly affect 

the efficiency of megasonic agitation. Geometrical obstacles on the 

pathway of the megasonic energy propagation can compromise the 

megasonic streaming effect and therefore induce „pitting‟ effects 

resulting in deteriorated bumping yield.  

 An increase in the megasonic intensity can increase the quantity of 

micro-bubbles in the solution resulting in defects on the bump sidewall. 

In the indium sulphamate electroplating system used in this research, 

the experimental data indicated that the megasonic intensity should not 

exceed 2.5 W/cm
2
. Moreover, a decrease in the transmission angle of 

megasonic energy applied to the wafer can increase the possibility of 

defects occurring on the bump sidewall.  

 When the current density was 10 mA/cm
2
, by using megasonic 

agitation, the bump uniformity was slightly decreased on the wafer 

scale while the bump uniformity was significantly improved within the 

patterns near the central area of the wafer.  
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 High speed indium bumping was realised by using megasonic agitation 

without sacrificing the current efficiency. Indium bumping through a 

current density of 50 mA/cm
2 

was successfully conducted with 93.89% 

current efficiency. However, the uniformity deteriorated on both wafer 

scale and pattern scale.  

7.2 Suggestions for Future Work 

The findings in this research have led to the following recommendations for further 

studies:  

 The uneven profile of the indium bump growth front indicated the 

limitation of the two additives (Dextrose and Triethanolamine) on 

levelling ability. Although the bump profile can be improved by using 

pulsating current waveforms, the cost of the high specification power 

supply might be an issue for industrial users. Therefore, the 

development of new additives having a stronger levelling ability can be 

beneficial to the indium bumping in large volume production.  

 In the cross-sectional view of the indium bumps, a distinct separating 

layer was observed and the fundamental nature of its formation needs 

to be further understood. In the current pixel detector assemblies using 

indium bump bonding, copper is not included in the UBM stack. The 

most popular combination is Ti-Ni-Au which also has a surface having 

FCC crystal structure. It would therefore be constructive to study the 

crystal structure of the initial deposited layer using high resolution 

TEM to verify the growth mechanism of indium and its evolution as 

electroplating proceeds.  

 The feasibility of high speed bumping has been demonstrated by using 

megasonic agitation and DC electroplating. However, the uniformity 

issue becomes more serious as the current density increases. 

Introducing megasonic agitation into pulse electroplating and pulse 

reverse electroplating might be promising to achieve a better 

uniformity.  
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Appendix 1  

Assembly parts of wafer holder for electroplating onto 4 inch wafer.  
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Appendix 2  

Photomasks   

Note: All of the photomasks are in darkfield.  

 

 

1. 3 inch photomask without thief ring. 
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2. 3 inch photomask with thief ring. 
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3. 4 inch photomask No. 1. 
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4. 4 inch photomask No. 2. 
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5. 4 inch photomask No. 3. 
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6. 4 inch photomask No. 4. 
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7. 4 inch photomask No. 5. 
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