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Abstract

In this thesis, the structural identifiability analyses of established and novel

glucose-insulin models was performed, to determine whether the models are

globally structurally identifiable with the observations available. Structural

identifiability analysis is an essential step in the modelling process and a key

prerequisite to experimental design and parameter estimation. Analyses were

performed assuming observations of both glucose and insulin concentrations

on two versions of the well-cited Minimal Model (MM), the Original Minimal

Model (OMM) and Extended Minimal Model (EMM) for the modelling of the

responses to an Intravenous Glucose Tolerance Test (IVGTT); a Euglycemic

Hyperinsulinemic Clamp model and two novel modified versions of the MM,

a Closed-Loop Minimal Model (CLMM) and a Double-Pole in Closed-Loop

Minimal Model (DPCLMM), when the models describe a complete course of

glucose-insulin dynamics during an IVGTT. The CLMM proved to be unidenti-

fiable so a reparameterisation procedure was performed on this model, yielding

a globally structurally identifiable reparameterised model. Parameter estima-

tion using these models was also performed for sets of IVGTT and glucose

clamp data. The results of the parameter estimation demonstrated that global

structural identifiability does not as always guarantee numerical identifiability,

or vice versa. A structural indistinguishability analysis was also performed to

compare the MM and the CLMM, given the same observations, where it was

shown that both models are distinguishable over both pre- and post- insulin

switching phases. This is the first time that all such analyses have been per-

formed on these specific model structures. The generic and numerical results

obtained demonstrate issues that may arise in practice when attempting to

calculate insulin sensitivity when using such models.
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Chapter 1

Introduction

Diabetes is a disease affecting many thousands of individuals worldwide. The

population of diabetes sufferers is rising and will continue to rise rapidly in

the future [WHO and IDF, 2006; Zimmet et al., 2001]. Much clinical research

has been carried out to help improve, manage and control the condition of

diabetes sufferers, to prevent the disease, to slow down the number of affected

individuals by the disease [Boutayeb and Chetouani, 2006].

Today, mathematical modelling has been applied widely and has become

inseparable from medical and clinical settings. Modellers are constantly finding

new ideas and developments to incrementally improve and effectively manage,

control and improve the condition of diabetes sufferers and even to prevent

the number of sufferers worldwide [Boutayeb and Chetouani, 2006; Carson

and Cobelli, 2001].

The basic idea of modelling is to transform a process into a mathe-

matical set of equations, when any appropriate validated model can then be

used to describe a real physiological system, for example the process of a clin-

ical treatment. The development of a robust, valid and verified model allows

its users to further understand, describe, explain and observe a physiological

1



Chapter 1. Introduction 2

system, e.g. test hypotheses and measure inference, estimating parameters,

determine the sensitivity of a system, simulate and model both simple and

complex experimental design [Cobelli and Carson, 2001].

The difficulty in modelling lies with the complexity of the physiological

system under analysis. As physiological systems normally consist of a series of

connectivities through the existence of nonlinear, stochastic and time-varying

effects, involving different levels of the hierarchy of molecules, cells, organs

and organisms and in most cases, the measurements obtained generally do not

directly give information on the targeted subject. However, a valid model will

allow life scientists to estimate the best time to perform blood sampling for

optimal results [Cobelli and Carson, 2001]. Thus with the aid of modelling,

the need for and level of experimentation on life subjects can potentially be

reduced.

Over the years, different models have been designed and developed for

various purpose and practices for treating and controlling diabetes. For exam-

ple, there are models developed for the purpose of diabetes prevention, under-

standing glucose-insulin dynamics and kinetics, managing and controlling dia-

betes, managing complications caused by diabetes, cost-effectiveness of dealing

with diabetes, and estimating populations of diabetes sufferers [Boutayeb and

Chetouani, 2006].

Glucose-insulin dynamics models have been popularly used for the study

of a better understanding of diabetes and glucose-insulin dynamics and kinet-

ics. A valid and verified model may provide useful information on individuals

or groups of subjects through appropriate clinical scenarios or experiments,

for example the rate of glucose disappearance, insulin sensitivity, glucose sen-

sitivity and missing or unobtainable information from clinical experiments

[Bergman et al., 1979; Bergman and Bowden, 1981; Bergman et al., 1981; Pic-

chini et al., 2005]. All of these models include unknown parameters that are
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normally estimated from patient data.

Structural identifiability analysis is pre-requisite for mathematical mod-

els, to determine if all the unknown parameters within a model can be uniquely

determined through noise-free input-output knowledge of the system. A struc-

tural indistinguishability analysis is performed to find out if two candidate

models for the same process are distinguishable from one another given identi-

cal experimental output. These analyses are important and should essentially

be performed on models prior to any fitting to experimental data.

This thesis focuses on the structural identifiability analyses of a selection

of well known and new models for glucose-insulin dynamics. These glucose-

insulin models play an important role for a better understanding of glucose-

insulin metabolism through appropriate experiments, e.g. an Intravenous Glu-

cose Tolerance Test (IVGTT), or Euglycemic Hyperinsulinemic Clamp (EIC)

and glucose clamp experiment. The parameters in glucose-insulin dynamics

models are commonly estimated using IVGTT and glucose clamp data sets.

Chapter 2 includes a brief background and literature review of dia-

betes and introduces the glucose-insulin dynamics models studied in this the-

sis. These models include the well-cited glucose-insulin dynamics model and

so called Minimal Model (MM) [Bergman et al., 1979; Bergman and Bow-

den, 1981]; an Euglycemic Hyperinsulinemic Clamp (EIC) model [Picchini

et al., 2005, 2006]; two modified versions of the Minimal Model, a Closed-loop

Minimal Model (CLMM) and a Double-Pole in Closed-Loop Minimal Model

(DPCLMM) [Arundel et al., 2010].

Chapter 3 includes the background theory and different approaches that

can be used for structural identifiability analysis, i.e. the Taylor Series ap-

proach [Pohjanpalo, 1978], the Similarity Transformation approach and a re-

cent variant [Vajda et al., 1989; Evans et al., 2002, 2005]; and a reparameteri-

sation procedure [Chappell and Gunn, 1998] for an unidentified model (model
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with parameters which is not uniquely identifiable from available input-output

information). An introduction to parameter estimation and the computational

packages used is also included in this chapter. Lastly, Chapter 3 includes an

approach for performing a structural indistinguishability analysis of two non-

linear models given identical experimental output.

Chapter 4 provides the structural identifiability analyses for the MM.

Due to the complexity of the model structure, the structural identifiability of

the MM is carried out in 3 parts: the original version of the MM and the

extended version of the MM (EMM) over two phases, before and after glucose

concentration reaches a glucose threshold. This chapter will then demonstrate

parameter estimates obtained from one of the versions of the MM using certain

sets of IVGTT data made available for this research project.

Chapter 5 provides similar analyses for the EIC model; Chapter 6 for

the CLMM; and Chapter 7 for the DPCLMM. For some of the models, the

structural identifiability analyses are performed using more than one approach

as no conclusive result can be drawn from certain of the approaches applied.

A reparameterisation procedure is also applied to one of the glucose-insulin

models as the model is shown to be structurally unidentifiable, where the

reparameterised model has a reduced number of parameters and is at least

locally identifiable (in fact shown to be uniquely identifiable).

Chapter 8 shows the structural indistinguishability analysis of the MM

and the CLMM as the CLMM is a modified version of MM and therefore these

two models have similar model structure. The analysis is to determine whether

these two models can be distinguished from each other through the same ob-

servations, i.e. through the observation of glucose and insulin concentrations.

The main objective of this thesis is to determine the structural identi-

fiability of different glucose-insulin dynamics models, i.e. two versions of the

MM, the EIC model, the CLMM and the DPCLMM. The structural identifia-
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bility analyses for these glucose-insulin models (including the MM which was

first introduced in 1979), as far as the author is aware, have never been pub-

lished before. As the structural identifiability analysis is a pre-requisite to any

numerical analysis in the modelling process, therefore it is essential to carry

out such an analysis in order to establish any ‘missing’ information on the

system parameters and structure of these models. This analysis is particularly

important for the MM, as it is widely referenced and used in practice to obtain

information on parameters such as insulin sensitivity through a single IVGTT

experiment. However, if any parameters prove to be unidentifiable through

the structural identifiability analysis (i.e. it is not possible to determine the

uniqueness of any parameter through the available input-output information

under a perfect, noise free environment), then any subsequent numerical anal-

ysis or parameter estimation following that could be meaningless.



Chapter 2

Literature Background:

Diabetes and Glucose-Insulin

Models

2.1 Introduction

Diabetes is a disease caused by high blood sugar levels. When blood glucose in-

creases, insulin is released almost instantly by the pancreas to maintain normal

glucose levels. The cause of the high blood sugar levels is usually insufficient

or no production of insulin, and in some cases the body does not respond to

insulin production adequately, this is also known as insulin resistance. There

are two main types of diabetes: Type 1 and Type 2 [Ekoé and Zimmet, 2001b;

Harris and Zimmet, 1997].

Type 1 diabetes is caused by a disorder of the autoimmune system

resulting in the damaging of pancreatic cells that produce insulin, leading to

a dramatic reduction or loss of insulin production. It can affect individuals

at any age and it often occurs in children [Ekoé and Zimmet, 2001b; Harris

and Zimmet, 1997]. Some research has reported that, in recent years, the

6
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prevalence of Type 1 diabetes has increased among young children and the

age group of those affected is decreasing in years; this may be due to modern

lifestyles, for example environmental and genetic changes, heavier birth weight,

diet and nutritional factors, higher body mass index etc. [IDF, 2006]. Type

1 diabetes is also known as Insulin Dependent Diabetes Mellitus as it is not

only maintained with a balanced diet and active physical exercise, but patients

require daily insulin administration for survival, to avoid the development of

ketoacidosis, coma and death [Ekoé and Zimmet, 2001b; IDF, 2006].

Type 2 diabetes affects 90% of the diabetes population around the

world. Type 2 patients usually either have insufficient production of insulin in

their body or suffer from insulin resistance. Type 2 diabetes is usually found

in individuals older than 40 years [Ekoé and Zimmet, 2001b; Harris and Zim-

met, 1997]. However, it is now also seen in children. Obesity is one of the

highest risk factors for the development of Type 2 diabetes, however, it does

not imply that all obese individuals are diabetic or will be diabetic. Other

causes and factors of Type 2 diabetes include genetically triggered, ethnicity,

being overweight, high blood pressure, cardiovascular conditions, polycystic

ovary syndrome or gestational diabetes in women, inactive physical lifestyles,

excessive diet, alcohol and smoking. Sufferers are required to monitor and con-

trol their blood sugar level with a lifestyle of healthy diet and regular physical

activity, and in some cases, medication and/or insulin are also used to help

maintain low blood glucose levels. In very few cases, some Type 2 patients

require insulin for survival, therefore, Type 2 is also known as Non-insulin

Dependent Diabetes Mellitus [Ekoé and Zimmet, 2001b; IDF, 2006; Sincree

et al., 2010].

Diabetes can be diagnosed and confirmed with a relatively simple and

inexpensive blood test and with the existence of symptoms, e.g. thirst, fre-

quent urination, weight loss etc. In many cases, patients are diagnosed with
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pre-diabetes conditions, where blood glucose is higher than normal but lower

than diabetic levels. Approximately 70% of pre-diabetes patients develop Type

2 diabetes later in life. However, patients can delay the onset of diabetes or

regain normal blood glucose levels through appropriate lifestyle and careful

monitoring of the condition. Pre-diabetes is also known as borderline dia-

betes, impaired glucose tolerance (IGT) and impaired fasting glucose (IFG)

[Ekoé and Zimmet, 2001b; IDF, 2006].

For diabetes sufferers, regular tests are required for controlling blood

glucose, foot problems, blood lipid and screening for retinopathy and kidney

disease. Further tests are often required to obtain more accurate information

such as insulin sensitivity, e.g. Oral Glucose Tolerance Test (OGTT), Intra-

venous Glucose Tolerance Test (IVGTT) and Euglycemic Hyperinsulinemic

Clamp (EIC). Currently, there is no cure for diabetes. Patients are advised

to make lifestyle changes and closely monitor their blood glucose levels and

take appropriate medication accordingly, to reduce symptoms and prevent or

delay the onset of other complications. Intensive insulin therapy is, however,

required for Type 1 patients for survival [Ekoé and Zimmet, 2001b; IDF, 2006].

Diabetes is a serious condition and currently more than 285 million and

344 million individuals in the world are known to suffer from diabetes and

pre-diabetes, respectively, and this figure is expected to rise up to 439 million

for diabetes and 472 million for pre-diabetes by 2030 [Sincree et al., 2010].

The population of diabetes sufferers is now also increasing, even in developing

countries, and it is also found in younger children. These phenomena would be

preventable if the public was more aware of the risk factors of the disease and

by simply altering their lifestyle to reduce the chances of developing diabetes.

Diabetes often leads to serious complications such as cardiovascular disease,

stroke, renal failure, neuropathy, foot ulcers, blindness, retinopathy, polyneu-

ropathy, increased risk of infection and death, etc., even if treated [Clausen
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et al., 1996; IDF, 2006; Sincree et al., 2010; WHO and IDF, 2006].

The study of diabetes, pre-diabetes, glucose-insulin pathology and re-

lated subjects has therefore become increasingly important within the fields

of medicine, biology and pharmaceutics to find better solutions to improve

and control the condition of diabetes and pre-diabetes patients, as well as to

reduce the numbers suffering from this preventable situation.

2.2 Insulin Sensitivity

Insulin sensitivity is one of the key parameters for diabetes patients as it

determines how well glucose disappears and glucose production is suppressed

after insulin is released, or the level of insulin resistance in patients. It can be

used to study and compare outcomes among groups of different individuals,

ethnicity, species and between genders [Bergman, 2007].

A simple blood test is used to determine the blood glucose level of an

individual and whether they are non-diabetic, pre-diabetic or diabetic. It does

not directly provide insulin sensitivity information for patients. Therefore,

further tests such as an OGTT, IVGTT and EIC are often used to obtain

further, more comprehensive information [WHO, 1999; WHO and IDF, 2006].

In brief, an OGTT involves taking a dose of glucose and blood sampling

is performed following this dose to determine the glucose disappearance from

the system. However, the test occasionally fails due to variations in gastric

emptying time and intestinal absorption. The problems could be avoided by

applying an IVGTT [Lozner et al., 1941; WHO, 1999].

An IVGTT involves a bolus injection of glucose to raise the glycemic

level of an individual followed by frequent blood sampling to provide informa-

tion on the glucose disappearance in the blood hence providing the ability to

observe the glucose clearance within the system [Caumo et al., 2001].



Chapter 2. Literature Background:
Diabetes and Glucose-Insulin Models 10

Figure 2.1: Insulin is produced and required for cells to use blood sugar and to
lower blood glucose when it is raised. Diabetic patients suffer from insufficient
or no production of insulin, or insulin resistance. [IDF, 2006]
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Diabetes
Fasting plasma glucose ≥ 7.0 mmol/l (126mg/dl)

or
2h plasma glucose* ≥ 11.1 mmol/l (200mg/dl)

Impaired glucose tolerance (IGT)
Fasting plasma glucose < 7.0mmol/l (126mg/dl)

and
2h plasma glucose* ≥ 7.8 and <11.1 mmol/l

(140mg/dl and 200mg/dl)

Impaired fasting glucose (IFG)
Fasting glucose glucose 6.1 - 6.9 mmol/l (110 - 125mg/dl)

and (if measured)
2h plasma glucose* <7.8 mmol/l (140mg/dl)

*Venous plasma glucose 2h after ingestion of 75g oral glucose load
*If 2h plasma glucose is not measured, status is uncertain as diabetes
or IGT cannot be excluded

Table 2.1: Recommended diagnostic criteria for diabetes and pre-diabetes
[WHO and IDF, 2006]

The EIC was first introduced by DeFronzo et al. [1979] and it has since

been widely applied and considered as the “gold standard” for measuring in-

sulin sensitivity in humans and animals. This test involves infusing a variable

dose of glucose to maintain a certain level of raised blood glucose during a

course of insulin infusion. Through the observation of glucose uptake, this

technique quantifies the whole-body tissue sensitivity to insulin under near

steady state conditions for both glucose and insulin levels [DeFronzo et al.,

1979; Vogel et al., 2006].

Table 2.1 shows the recommended values for diagnosis of diabetes and

pre-diabetes (impaired glucose tolerance and impaired fasting glucose) using

OGTT [WHO and IDF, 2006]. If an individual has a glucose concentration

over 7.0mmol/l after fasting; or over 11.1mmol/l after 2 hours of ingestion of

75g of glucose load, there is a high possibility that they are suffering from

diabetes. It is recommended by the International Diabetes Federation to take
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two blood samples, i.e. at fasting and 2 hours after glucose load, to distinguish

whether the individual is suffering from diabetes or pre-diabetes.

2.3 Mathematical Modelling

The common factor for all types of diabetes is hyperglycemia or high blood

sugar [Ekoé and Zimmet, 2001a]. Blood sugar regulation is a complex system.

When blood sugar levels increase, beta cells in the body are triggered for in-

sulin production, and after certain enzyme-mediated chemical reactions, the

blood sugar level is lowered to the normal level, see Figure 2.1, i.e. demon-

strating the characterisation of a negative feedback control system [Cobelli and

Carson, 2001]. However, glucose-insulin dynamics demonstrate the existence

of a proportional and also derivative control system; insulin production takes

place when glucose is raised, but also when the rate of glucose is increased

[Carson et al., 2001].

The widely accepted glucose-insulin dynamics model, the Minimal Model

(MM) was developed for predicting an insulin sensitivity index through OGTT

or IVGTT while the subject is at rest [Bergman et al., 1979; Bergman and

Bowden, 1981], Derouich and Boutayeb [2002] developed versions of a modi-

fied MM to predict and observe glucose-insulin levels during physical exercise,

Picchini et al. [2005] have also developed models, and theirs are used to pre-

dict and describe glucose-insulin dynamics during EIC tests. However, the

glucose-insulin pathology is very complex and there has not yet been a single

model developed that can comprehensively and accurately describe and predict

the complete glucose-insulin behaviour for an individual subject to multiple

different scenarios.

The modelling of glucose-insulin dynamics began a few decades ago.

The first published model was by Himsworth and Kerr [1939] to measure in-
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sulin concentration in vivo. A simple model with two ordinary differential

equations was then introduced by Bolie [1961] to estimate glucose disappear-

ance and to study glucose-insulin dynamics. However, the real beginning of

the modelling of glucose-insulin dynamics started after the introduction of the

most cited model, the MM by Bergman et al. [Bergman et al., 1979]. The

authors initially proposed seven different models, linear and nonlinear, each of

them able to provide certain levels of information through data obtained from

IVGTT. The best model (out of the seven models) was chosen and referred

to as “The Minimal Model” because it satisfied the authors’ requirements, to

describe the glucose disappearance during the time course of an IVGTT and

insulin sensitivity. As an extension of the original Minimal Model developed in

1979, Bergman and Bowden [1981] introduced an additional insulin equation

to describe insulin behaviour.

Both versions of the MM, the original and extended versions, have since

become the most cited and referenced in the literature for glucose-insulin dy-

namics. There are around 900 references to the MM over a cursory search

[Bergman, 2007]. The MM has been a real inspiration for mathematical mod-

ellers in glucose-insulin dynamics as many models have been developed based

on the principles of the MM, and also modified versions of the MM were de-

veloped for other clinical scenarios, for example Derouich and Boutayeb [2002]

introduced a glucose-insulin dynamics model for physical exercise based on the

MM; Caumo and Cobelli [1993] developed the New Minimal Model (NMM),

which consists of two glucose compartments, in order to provide a better in-

sight into the glucose dynamics.

There are numerous models available for OGTT and IVGTT with dif-

ferent variations. However, glucose-insulin dynamics models for clamp-related

experiments are limited. Picchini and colleagues introduced possibly the first

verified model to describe glucose-insulin dynamics during the time course
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of an EIC experiment in 2005 [Picchini et al., 2005]. The model consists of

two versions, deterministic and stochastic. Picchini and co-authors [Picchini

et al., 2005] are among the pioneers in terms of stochastic modelling and have

successfully demonstrated the advantages of stochastic modelling for clamp

experiment data [Picchini et al., 2005, 2006, 2008].

Most models published so far have received not only good reviews, but

also criticism [Boutayeb and Chetouani, 2006]. The extended Minimal Model

is reported to function in two steps, i.e. it is not a fully integrated system.

De Gaetano and Arino [2000a,b] then introduced an improved Minimal Model

which overcomes the common problem, i.e. that the MM is physiologically

unrealistic and that the system is unstable. However, De Gaetano and Arino’s

model was reported to consist of an unrealistic specific term by [Li et al., 2000]

and the authors therefore introduced another model with slight modification

which overcomes this issue.

There are many more models for diabetes covering different aspects,

some of them need further improvement and some not. The most important

thing is that a model is valid and verified in term of structurally (a priori)

and numerically (posteriori) identifiability before it is used for practical appli-

cation.

The two most classic forms of MM will be studied and analysed in

this thesis as they are the most-cited mathematical models in almost 900

publications. [Bergman, 2007]. In addition, a model developed to describe the

EIC experiment [Picchini et al., 2006] is also studied, tested and analysed as

it is, as far as the author is aware, the first glucose-insulin dynamics model

developed to cater primarily for clamp experiments. Lastly, modified versions

of the MM, a Closed-Loop Minimal Model and a Double-Poled Closed-Loop

Minimal Model developed by Arundel et al. [2010] are studied as these models

appear to have the ability to provide representation of the glucose-insulin
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pathology over a complete IVGTT experiment and also describe both glucose-

insulin dynamics for an IVGTT simultaneously.

2.4 The Minimal Model

The Minimal Model (MM) [Bergman et al., 1979; Bergman and Bowden, 1981]

is one of the most referenced glucose-insulin dynamics model. It was first pub-

lished by Bergman and colleagues in 1979 [Bergman et al., 1979] and it marked

the real beginning of the mathematical modelling of glucose-insulin dynamics.

Professor Bergman was awarded the Banting Medal by the American Diabetes

Association in year 2006 for his achievement in diabetes research [Bergman,

2007].

Bergman and colleagues [Bergman et al., 1979] published a paper propos-

ing seven mathematical models to simulate the glucose disappearance during

the time course of an IVGTT aiming that one of the models proposed would

provide a clearer understanding of glucose-insulin dynamics, glucose disap-

pearance and be able to estimate the insulin sensitivity of a targeted subject,

e.g. a diabetes patient or a healthy individual. Of all these models, model

VI was ultimately considered as most appropriate and has since been referred

to as the “Minimal Model” by the authors, and by many other researchers

[Bergman et al., 1979]. The model will be referred to as the “Original Mini-

mal Model” (OMM) in this text for the ease of comparison with different forms

of Minimal Model which will be introduced later in this chapter.

The authors [Bergman et al., 1979] stated that the model predicts the

glucose disappearance after the injection of glucose throughout the process

of the IVGTT, and that the four parameters within the model are estab-

lishable and with similar parameter values for a subject, the model could be

used in simulation to predict experimental outcomes. The OMM also provides
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information about the quantitative insulin sensitivity index which can be de-

termined from the ratio of two model parameters and this information can be

obtained simply from a single glucose injection [Bergman et al., 1979]. Table

2.2 shows the parameter values emerged from the OMM for different groups

of individuals, i.e. normal individuals, IGT patients and Type 2 Diabetes

patients.

The diagrammatic version of the OMM is shown in Figure 2.2 and

the system equations for the OMM are commonly seen in the following form

[Bergman et al., 1979]:

Ġ(t) = −(p1 +X(t))G(t) + p1Gb (2.1)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (2.2)

and the initial conditions are given by

G(0) =G0 (2.3)

X(0) =0 (2.4)

I(0) =I0 = Ib + p7 (2.5)

where

G(t) (mmol/L) denotes the glucose concentration

X(t) (min-1) denotes the concentration of remote plasma insulin

I(t) (mU/L) denotes the time course of plasma insulin

Gb (mmol/L) denotes the basal level of glucose concentration

Ib (mU/L) denotes the basal level of insulin concentration

p1 (min-1) denotes rate constant of glucose “mass action”

p2 (min-1) denotes the rate constant which explains the ability of

spontaneous decrease of tissue glucose uptake
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Type 2
Parameter Normal IGT Diabetes

SG 0.021 ± 0.008 0.016 ±0.007 0.015 ± 0.001
SI 2.62 ± 2.21 1.27 ± 1.20 0.57 ± 0.82

SG (min-1) represents glucose effectiveness
SI (×10−4 min-1 per µU/ml) represents the insulin sensitivity

Table 2.2: Physiological parameters emerging from the Minimal Model
[Haffner et al., 1996, 1997; Bergman, 2007]

p3 (min-2 (mU/L)-1) denotes the ability of the insulin-dependent

increase in tissue glucose uptake,

p7 (mU/L) denotes the plasma insulin concentration at time t = 0

One of the reasons this particular model structure is chosen is because

this model is closer to the physiological system than the six other models pro-

posed in the paper, and that it includes the insulin inhibition of hepatic glucose

balance, therefore providing useful information such as a precise formulated

description of the insulin sensitivity index SI [Bergman et al., 1979]. Moreover,

unknown parameters can be numerically estimated under precision indicated

by the authors, and the values estimated for the parameters are realistic in

physiological terms, and most importantly, the model is able to simulate the

glucose-insulin dynamics with the minimum number of parameters.

In addition this model is able to predict the glucose-insulin kinetics

after the application of a bolus glucose injection, via an IVGTT. The model

is also able to provide information on glucose effectiveness. Bergman et al.

[1979] defined the insulin sensitivity index based on the following definitions:

The glucose effectiveness of an individual can be described as the quan-

titative enhancement of glucose disappearance in response to the rise in plasma

glucose concentration and insulin sensitivity at steady state is the quantita-

tive influence of insulin to increase the enhancement of glucose disappearance

[Bergman et al., 1979]. This is based on the basic definition of glucose ef-
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fectiveness and insulin sensitivity and therefore yields the insulin sensitivity

index (SI) given by [Bergman et al., 1979]:

SI =
p3

p2

. (2.6)

The units of SI are expressed in min-1/(µU/ml) (fractional glucose disap-

pearance per insulin concentration unit), and this is the ratio of two of the

system parameters. This index represents the sensitivity of the periphery to

insulin and also the sensitivity of the liver to inhibit hepatic glucose produc-

tion [Bergman et al., 1979]. Bergman et al. [1979] also provides for further

information on how the insulin sensitivity index can be determined.

The sensitivity index for the OMM varies according to subjects, and

relies on the glucose disappearance as a function of insulin in plasma, but the

plasma glucose concentration allows the users to compare subjects of different

body size, weight and composition [Bergman et al., 1979].

This model was claimed to be identifiable, i.e. all the unknown pa-

rameters are identifiable [Bergman et al., 1979]. However, many researchers

might have misunderstood what type of identifiability [Bergman et al., 1979]

addressed. The OMM was in fact numerically tested and based on the idea of

the fractional standard deviation of the fitted data as Bergman et al. [1979]

stated that “We considered a parameter to be nonidentifiable if the fractional

standard deviation of the parameter estimates (when fitting a single exper-

iment) exceeded 100%.”. Therefore, the authors only published results on

numerical identifiability of the OMM in [Bergman et al., 1979], and did not

test structurally identifiability of the model.

The OMM has been modified and extended with an additional equation

to describe insulin concentration during the course of an IVGTT experiment
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X = (k4 + k6) I'
p1 = − (k1 + k5)
p2 = − k3

p3 = k2 (k4+k6)

Figure 2.2: The diagrammatic version of the OMM; referred to as Model VI.
[Bergman et al., 1979]
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Figure 2.3: The EMM captures the second-phase glucose-insulin kinetics where
the initial conditions of the EMM are when glucose and insulin concentrations
are at their peak.

[Bergman and Bowden, 1981]:

İ(t) = p4t[G(t)− p5]− p6[I(t)− Ib], G(t) > p5, (2.7)

İ(t) = −p6[I(t)− Ib], G(t) < p5. (2.8)

These insulin equations are developed to describe the second-phase insulin

kinetics, as shown in Fig. 2.3. Combining with the OMM, the system equa-

tions of the Extended Minimal Model (EMM) in their now commonly consid-

ered standard form are given by Bergman and Bowden [1981]; Boutayeb and

Chetouani [2006]; De Gaetano and Arino [2000a] as the following:

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb (2.9)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] (2.10)

İ(t) = p4t[G(t)− p5]− p6[I(t)− Ib], G(t) > p5, (2.11a)

İ(t) = −p6[I(t)− Ib], G(t) < p5, (2.11b)
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and the initial conditions are given by

G(0) = G0 (2.12)

X(0) = 0 (2.13)

I(0) = I0 = p7 + Ib (2.14)

where

G(t) (mmol/L) denotes the plasma glucose concentration

I(t) (mU/L) denotes the plasma insulin concentration

X(t) (min-1) is a function describing the insulin excitable tissues

responding to glucose uptake

Gb (mmol/L) denotes the plasma glucose concentration at basal

level

Ib (mU/L) denotes the plasma insulin concentration at basal

level

p1 (min-1) denotes the rate constant of glucose “mass action”

p2 (min-1) denotes the rate constant which explain the ability of

spontaneous decrease of tissue glucose uptake

p3 (min-2 (mU/L)-1) denotes the ability of the insulin-dependent

increase in tissue glucose uptake

p4 ((mU/L)(mmol/L)-1 min-1) denotes the second phase release

of insulin, which also describes the pancreatic sensitivity

p5 (mmol/L) denotes the threshold of plasma glucose

concentration which the second-phase insulin secretion is

stimulated by glucose

p6 (min-1) denotes the rate constant of insulin disappearance

p7 (mU/L) denotes the plasma insulin concentration at time t = 0
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This form of the MM is possibly one of the most referenced glucose-

insulin models. Like the OMM, it is commonly used to measure glucose disap-

pearance effectiveness and insulin sensitivity from plasma glucose and insulin

through the glucose disappearance from an experiment IVGTT. As shown

previously, the OMM consists of only two equations, Eqns. (2.1) and (2.2).

Therefore, the OMM is a subset of the EMM.

The insulin differential equation consists of two parts, and describes

two different insulin behaviours based on the value of glucose concentration.

Eqn. (2.11a) describes the pre-switching phase, when insulin is due to glucose

above a threshold level p5, e.g. after a meal or instantly after a bolus injection

of glucose for an IVGTT. The value of the glucose threshold, parameter p5, is

close to the glucose basal level. The term p4t(G(t)−p5) in Eqn. (2.11a), given

enough time, grows linearly with time and will eventually lead to instability of

the system. Toffolo et al. [1980] explained that the multiplication by the time

term (t) in Eqn. (2.11a) defines the rate of insulin secretion by the pancreas

and the rate of insulin clearance in response to hyperglycemic distribution

within the system [Toffolo et al., 1980]. Arundel et al. [2010] commented that

a term like p4t(G(t)− p5) can require replacement by a decaying exponential

term to ensure system stability.

The post-switching phase Eqn. (2.11b) describes the decay of insulin in

the body after the insulin action has successfully decreased the blood glucose

below the threshold level (i.e. G(t) < p5) [Bergman et al., 1979; Bergman and

Bowden, 1981], when the time term is “switched-off”. It is believed that this

quite rare and interesting mathematical structure has limited the application

of the MM to certain tests (i.e. it is not normally applicable to clamp experi-

ments). The term p4t(G(t)−p5) in Eqn.(2.11a) creates a switch or discontinuity

(i.e. the system equation is piecewise continuous) and, due to its structure,

also provides a possible reason for its lack of universal application. It has been



Chapter 2. Literature Background:
Diabetes and Glucose-Insulin Models 23

reported that the OMM and EMM are limited to estimating OGTT and/or

IVGTT data [Boutayeb and Chetouani, 2006], and glucose clamp data have

seldom, if ever, been used successfully in association with this model form.

De Gaetano and Arino [2000a] carried out a formal study of the qual-

itative behaviour of the EMM, including the steady state of the model, and

reported that when the basal glucose level is above the pancreatic target glu-

cose level, ‘the model equations give rise to unbounded solutions’, and when

basal glucose level is below the pancreatic target glucose level, ‘no equilib-

rium solution can be obtained’, causing the insulin action concentration to

rise without bounds infinitely [De Gaetano and Arino, 2000a].

The structural identifiability analysis, a prerequisite analysis essential

for all system modelling prior to any parameter fitting, has not been carried

out for both OMM and EMM when the models were introduced (as far as the

author is aware).

A structural identifiability analysis was performed on a model close in

form to the OMM, the “New Minimal Model” (NMM) [Caumo and Cobelli,

1993]. The model consists two glucose compartments and a remote insulin

compartment. The structural identifiability analysis of the NMM is carried

out using the Taylor Series expansion approach of Pohjanpalo [Pohjanpalo,

1978] and the result shows that the model is globally identifiable (i.e. all the

parameters are uniquely determinable) under certain physiological conditions

that, at steady state, the insulin-independent glucose disposal is three times

insulin-dependent glucose disposal [Caumo and Cobelli, 1993; Saccomani et al.,

2001b; Caumo et al., 2001]. The diagramamatic version of the NMM is shown

in Figure 2.4 and the system equations for the NMM are given by [Caumo and
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Cobelli, 1993]

q̇∗1(t) = −
(
kp +

F01

V1g(t)
+ k21

)
q∗1(t) + k12q

∗
2(t) q1(0) = D (2.15)

q̇∗2(t) = −(k02 + x∗(t) + k12)q∗2(t) + k21q
∗
1(t) q∗2(0) = 0 (2.16)

ẋ∗(t) = −kbx∗(t) + ka(i(t)− ib) x∗(0) = 0 (2.17)

g(t) =
q∗1(t)

V1

(2.18)

where q∗1 and q∗2 are the tracer masses in the two glucose compartments; V1 is

the volume of the accessible compartment, kp, k12, k21 and k02 are constant rate

parameters and ka and kb describe insulin action with the same meaning as p2

and p3 in the OMM, and variables g(t), x∗(t) and i(t) are equivalent to G(t),

X(t) and I(t) respectively in the OMM . The function i(t) represents insulin as

a forcing term or input to the model. The NMM does not include a differential

equations for insulin (Eqn. (2.11a) and Eqn. (2.11b)), like the OMM. After

substituting parameters ka = p2 and kb = p3 and variables equivalent to the

OMM, and rearranging yield

Ġ(t) = − 1

V1

(
kp +

F01

V1G(t)
+ k21

)
q∗1(t) + k12q

∗
2(t)/V1 q1(0) = D (2.19)

q̇∗2(t) = −(k02 +X(t) + k12)q∗2(t) + k21q
∗
1(t) q∗2(0) = 0 (2.20)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) X(0) = 0 (2.21)

Comparing the mathematical structure of the NMM, Eqns. (2.19) - (2.21) to

the OMM, it is clear that the two models have different mathematical struc-

tures. Therefore, the structural identifiability of the NMM does not necessarily

imply that the OMM and the EMM are also identifiable.
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Figure 2.4: Diagrammatic version of the NMM. The model consists of two
glucose compartments [Caumo and Cobelli, 1993].
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2.5 Euglycemic Hyperinsulinemic Clamp

Model

As the name suggests, this model was developed to study the glucose-insulin

reactions to a Euglycemic Hyperinsulinemic Clamp (EIC). It expresses the

oscillations generated due to the response to glucose and insulin infusions at

different (constant) rates. The model can be used to determine the insulin

resistance behaviour analytically. The application of the EIC model allows its

users to recover further information from clamp data, allowing the comparison

of insulin resistance between different subject groups, e.g. obese and non-

obese individuals. The unknown parameters within the model are estimated

with respect to typically available clamp data, and the model is known to be

numerically identifiable [Picchini et al., 2005, 2006].

The diagrammatic version of the EIC model is given in Figure 2.5 and

the system equations for this model are given by the following [Picchini et al.,

2005, 2006]:

Ġ(t) =
Tgx(t− τg) + Tgh(t)

Vg
− TxgG(t)

0.1 +G(t)
−KxgIG(t)I(t) (2.22)

İ(t) =
TiGG(t) + Tix(t)

Vi
−KxiI(t) (2.23)

where

Tgh(t) = Tghmax exp(−λG(t)I(t)) (2.24)
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Figure 2.5: Diagrammatic version of the EIC Model. [Picchini et al., 2005]

and the initial conditions are given by

Tgh(0) = Tghb = Tghmax exp−λGbIb (2.25)

G(0) = Gb (2.26)

I(0) = Ib (2.27)

where

Tgx(t) (mmol/min/kg) denotes the glucose infusion rate at time t

Tix(t) (pmol/min/kg) denotes the insulin infusion rate at time t

Tgh(t) (mmol/min/kg) denotes the concentration of Hepatic

Glucose Output at time t

Tghmax (mmol/min/kg) denotes the maximal Hepatic Glucose

Output at zero glucose and insulin concentration



Chapter 2. Literature Background:
Diabetes and Glucose-Insulin Models 28

Gb (mM) denotes the basal glycemia

Ib (pM) denotes the basal insulinemia

τg (min) denotes the time delay in glycemia due to glucose

infusion

Vg (L/kg) denotes the volume distribution of glucose

Vi (L/kg) denotes the volume distribution of insulin

Txg (mM/min) denotes the rate constanat of the maximal

insulin-independent for glucose tissue uptake

KxgI (min-1/pM) denotes the insulin-dependent apparent first-

order rate constant for glucose tissue uptake at insulinemia

I(t)

Kxi (min-1) denotes the rate constant of first order and insulin

removal from plasma

TiG (mU/min/mM) denotes the apparent zero-order net insulin

synthesis rate at unit glycemia

Tghb (mmol/min/kg) denotes the basal level of Tgh

λ (mM-1pM-1) denotes the rate constant for Hepatic Glucose

Output decrease with increase of glycemia and insulinemia.

A EIC is the key experiment for determining the insulin sensitivity of

a subject or an individual and is also referred to as the “gold standard” for

measuring insulin sensitivity [DeFronzo et al., 1979; Vogel et al., 2006]. The

experiment is however more complex and expensive to perform compared to an

OGTT or IVGTT. The EIC model allows its users to study the glucose-insulin

dynamics and behaviour during the course of a clamp experiment. Therefore,

a structural identifiability analysis is important for such a model. Based on

the observations of the parameter estimations for EIC model in [Picchini et al.,

2005], the typical glucose-insulin dynamics for EIC are shown in Figure 2.6.
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Figure 2.6: A typical glucose-insulin dynamics for EIC.

2.6 Closed-Loop Minimal Model

A modified version of EMM, Closed-Loop Minimal Model (CLMM), intro-

duced by Arundel et al. [2010] is also considered in this thesis as it is believed

to overcome the instability issue of the system equation for insulin concen-

tration within the EMM. Besides, the CLMM also includes first phase insulin

behaviour (as shown in Figure 2.7) within the system and the time term (t)

from the EMM is now replaced by an exponential term, allowing the system

parameters to be estimated simultaneously, with no switch involved, and still

remains a good representation of the glucose-insulin pathology compared to

the EMM. The system equations for the CLMM are given by

Ġ(t) = −(p1 + k6IR(t))G(t) + p1Gb (2.28)

İR(t) = k2(I(t)− Ib)− p2IR(t) (2.29)

İ(t) = M1(G(t)− h)e−λt + γ(G(t)− h)− pexitI(t) (2.30)

where

G(t) (mg/L) denotes the glucose concentration at time t

I(t) (mU/L) denotes the insulin concentration at time t

IR(t) (min -1) denotes the new remote insulin ‘action’ at time t
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Figure 2.7: The CLMM and DPCLMM capture the first-phase of glucose-
insulin kinetics, where at time t = 0, glucose and insulin concentrations are
at G0 and I0, and first phase kinetics are generated with a single impulsive
glucose input. Glucose and insulin concentrations are at their peak at t1

p1 (min-1) denotes the rate constant of glucose “mass action”

p2 (min-1) denotes the rate constant which explain the ability of

spontaneous decrease of tissue glucose uptake

γ (mU mmol-1 min-2) denotes the second phase release of

insulin, which also describes the pancreatic sensitivity

h (mmol/L) denotes the threshold plasma glucose concentration

which the second-phase insulin secretion is stimulated by

glucose

pexit (min-1) denotes the rate constant of insulin disappearance

M1 denotes a rate constant

λ denotes a rate constant of the exponential term

The remote insulin action X(t) of the OMM and EMM is now replaced by IR(t)

which is used to control glucose kinetics directly whereby [Arundel et al., 2010]

X(t) = k6I(t). (2.31)

Figure 2.8 shows the diagrammatic version of the CLMM. The diagram shows
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Figure 2.8: Diagrammatic version of the CLMM [Arundel et al., 2010]

the compartment IR(t) as the ‘remote’ aspect of the insulin action X(t) [Arun-

del et al., 2010]. Arundel et al. [2010] report that the model has produced

an improved fit to a set of IVGTT data originally published in Pacini and

Bergman [1986].

2.7 Double-Pole in Closed-Loop Minimal

Model

The Double-Pole Closed-Loop Minimal Model (DPCLMM) is a modified ver-

sion of CLMM introduced by Arundel et al. [2010]. The DPCLMM is slightly

different in terms of structure compared to the CLMM; the diagrammatic ver-

sion of the DPCLMM is given in Figure 2.9. The model has an additional

double-pole for the second-phase glucose-controller path. The model consid-

ers a two-compartment catenary system, and includes a double-pole term of
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the form te−p1t which provides a delay in the glucose-insulin dynamics with

the inclusion of a possible ‘remote’ glucose pool. The differential equation for

insulin includes two decaying exponentials to ensure stability of the system

[Arundel et al., 2010].

The DPCLMM is a modified version of the EMM, with a reproduction

of the glucose-insulin plasma concentration profiles, along with the remote

insulin profile, and a double-pole added to the second-phase glucose-controller

path in a closed-loop form [Arundel et al., 2010]. The DPCLMM has the

ability to simulate periods of sustained insulin concentration during the time

course of insulin, stably falling back to a basal insulin level, and it also explains

the ‘time’ factor incorporated in the EMM in an alternative and mathematical

smooth manner, without losing physiological realism. In addition, the model is

claimed to provide better fit to a set of IVGTT experimental data (published

in Pacini and Bergman [1986]) compared to the EMM and CLMM [Arundel

et al., 2010]. Like the CLMM, the DPCLMM is able to generate the first phase

glucose-insulin dynamics of IVGTT experiments as shown in Figure 2.7.

The system equations of the DPCLMM is given by

Ġ(t) =− (p1 + k6IR(t))G(t) + p1Gb (2.32)

İR(t) = k2(I(t)− Ib)− p2IR(t) (2.33)

İ(t) =M1(G(t)− h)e−λt + γ(G(t)− h)te−p1t − pexitI(t) (2.34)

where

G(t) (mg/L) denotes the glucose concentration at time t

I(t) (mU/L) denotes the insulin concentration at time t

IR(t) (min -1) denotes the new remote insulin ‘action’ at time t
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p1 (min-1) denotes the rate constant of glucose “mass action”

p2 (min-1) denotes the rate constant which explain the ability of

spontaneous decrease of tissue glucose uptake

γ (mU mmol-1 min-2) denotes the second phase release of insulin,

which also describes the pancreatic sensitivity

h (mmol/L) denotes the threshold plasma glucose concentration

which the second-phase insulin secretion is stimulated by

glucose

pexit (min-1) denotes the rate constant of insulin disappearance

M1 denotes a rate constant

λ denotes a rate constant of the exponential term

γ denotes a scaling parameter.

The DPCLMM has only recently been introduced and published in

Arundel et al. [2010]; the structural identifiability of this model has not pre-

viously been considered.
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Figure 2.9: Diagrammatic version of the DPCLMM [Arundel et al., 2010]



Chapter 3

Background Theory:

Identifiability of Models

3.1 Structural Identifiability Analysis

A mathematical model usually includes parameters, some known, some un-

known which need to be identified from appropriate experimental data. It is

extremely important that modellers are confident that they are able to identify

and determine all the unknown parameters within a model through the exper-

imental data available, such as data collected from blood sampling, for any

subsequent predictions to be meaningful. The question of whether a model is

well-presented, correctly describing the real system is determined by whether

modellers are able to use the data available to obtain and estimate a unique

set of solutions for the unknown parameters [Cobelli and DiStefano, 1980;

Jacquez, 1999; Saccomani et al., 2001b].

Structural identifiability arises from the inverse problem of inferring

from the known, or assumed, properties of a system of suitable model struc-

ture and estimates for the corresponding rate constants and other parameters.

Structural identifiability analysis considers the uniqueness of the unknown

35
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model parameters from the input-output structure corresponding to proposed

experiments to collect data for parameter estimation, under an assumption

of the availability of perfect, noise-free data. The existence of noise-free data

is assumed for a priori (non-numerical) structural identifiability analysis pur-

poses.

If any of the parameters are unidentifiable, the model is also structurally

unidentifiable and to solve this problem, additional data or information is re-

quired. If no further information can be obtained then the complexity of the

model must be reduced in some appropriate way, or the input-output struc-

ture of the system must be redesigned. The redesign of an unidentifiable

model involves changing the function of input and/or output in order to pro-

vide a globally or locally identifiable model [Evans et al., 2002]. Evans and

Chappell [2000] show a method to generate a local identifiability of a system

from unidentified system with the method of reparameterisation [Evans and

Chappell, 2000].

However, modellers must be clear that a structurally globally identifi-

able model does not guarantee good parameter estimation from experimentally

obtained data; and in many cases an a priori identifiability analysis could be

difficult or tedious to perform, especially for complex models. These are how-

ever, not reasons for not performing the analysis [Saccomani et al., 2001b].

This is why a structural identifiability analysis is a required pre-requisite

to any experimental design, numerical parameter estimation or system identi-

fication even and it must be carried out prior to any numerical identification,

particularly in biological and physiological systems where unknown parame-

ters have physical significance. A model cannot be assumed to be structurally

globally identifiable if all of the unknown parameters can be estimated numer-

ically through computer software almost unconditionally; modellers often tend

to neglect a priori analysis due to the use of modern computer software for
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fitting [Jacquez, 1999; Saccomani et al., 2001b].

Besides that, structural identifiability analysis plays an important role

in establishing the superiority of the model, whether the input-output infor-

mation is sufficient to enable unique estimation for the parameters [Saccomani

et al., 2001b]. The analysis helps modellers to decide which models are worth

working with, and those that not worth wasting time on and simply cannot

produce any reasonably useful outcome [Saccomani et al., 2001b].

In actual fact, the most important objective of performing structural

identifiability analysis is to find out whether any unknown parameters present

within the postulated model are unidentifiable from the observations available

on the system. This is particularly important for those parameters or combina-

tions of parameters that have practical significance. Under such circumstances

if any parameters are unidentifiable, under perfect, noise free conditions, then

any subsequent estimation of these parameters from data with the presence

of noise would prove meaningless. Moreover, an analysis of an error-free or

noise-free model is purely structural [Cobelli and DiStefano, 1980; Jacquez,

1999].

Structural identifiability analysis is therefore an important, but often

overlooked, theoretical prerequisite to experimental design, system identifica-

tion and parameter estimation. If parameters estimated are to be used to

inform about intervention or inhibition strategies, or other critical decisions,

then it is essential that all parameters be uniquely identifiable.

The methods most commonly applied that are available for structural

identifiability analysis for linear systems include the Laplace transform/transfer

function approach, the Taylor series approach and the Similarity Transforma-

tion (exhaustive modelling) approach; and for nonlinear systems include the

Taylor series approach, the differential algebra approach, the Similarity Trans-

formation approach and variations [Cobelli and DiStefano, 1980; Evans et al.,
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2002; Godfrey and DiStefano, 1987; Margaria et al., 2001; Pohjanpalo, 1978;

Saccomani et al., 2001a,b; Vajda et al., 1989].

It is difficult to predict which approach or method requires the least

effort for a particular model and therefore it is worth trying more than one ap-

proach for satisfactory results [Godfrey and DiStefano, 1987]. In many cases,

the aid of symbolic computational tools is necessary, especially for complex

models, as analysis by hand even for a linear but complex system could be dif-

ficult [Chappell et al., 1990]. Mathematical modellers, with minimum knowl-

edge on performing a priori analysis, may prefer using a computer software

tool, such as DAISY (Differential Algebra for Identifiability of System), to test

for parameter identifiability using differential algebra algorithms and these are

suitable for testing for both linear and nonlinear systems with polynomial or

rational state space equations [Bellu et al., 2007].

3.1.1 General Methods and Definitions

The idea of general structural identifiability analysis considers a system with

the following structure [Vajda et al., 1989]:

ẋ(t,p) = f(x(t,p),p) + u(t)g(x(t,p),p) (3.1)

x(0,p) = x0(p)

y(t,p) = h(x(t,p),p)

where x(t,p) ∈ Rn denotes the state vector of model variables; y(t,p) ∈ Rm

denotes the state vector of system output; vector x0 is the initial condition

vector for the state variables; vector u(t) ∈ U [0, t1] is the set of bounded and

measureable inputs on the time interval 0 ≤ t ≤ t1; p ∈ Ω is the (q dimen-

sional) vector of unknown parameters, where Ω denotes the set of possible

parameter values, Ω ⊂ Rm is the feasible parameter space and q denotes the
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number of parameters; vector y is the output vector. The smooth functions

f(·, ·) and h(·, ·) are nonlinear in the state variables x ∈ Rn, the input u(t)

and parameter vectors p ∈ Ω.

For any generic parameter vector p ∈ Ω then each parameter pi is said

to be locally identifiable if there exists a neighbourhood of vectors around p,

denoted by N(p), such that if p̄ ∈ N(p) ⊆ Ω and for every input u(t) for

t ≥ 0,

y(·,p) = y(·, p̄) (3.2)

implies p̄i = pi (i.e. there are a countable number of possible solutions of Eqn.

(3.2) for the unknown parameter pi).

The parameter pi is globally/uniquely identifiable if, N(p) = Ω (i.e. each

parameter has only a unique solution from Eqn. (3.2)) and pi is unidentifiable

if it is not locally identifiable (i.e. there is no such neighbourhood N(p) and

there are an infinite number of solutions for each parameter from Eqn. (3.2))

[Chappell et al., 1990; Evans et al., 2002].

The model (3.1) is said to be structurally globally/uniquely identifiable if

all of its unknown parameters pi are globally/uniquely identifiable, structurally

locally identifiable if all of its unknown parameters pi are locally identifiable

and at least one of its parameters is not globally identifiable and unidentifiable

if at least one of its unknown parameters pi is unidentifiable [Chappell et al.,

1990; Evans et al., 2002].

In a practical sense, the existence of perfect, noise-free data is unreal-

istic. Real experimental data can include both system and/or observational

noise and may cause a uniquely identifiable model in the structural sense to

become numerically unidentifiable. In particular, and in general, when data

contain a high noise component, then less information can be obtained from

them. When observational noise is added to the system, the output, (3.2)
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becomes

y(t,p) = h(x(t,p),p) + ε(t) (3.3)

where ε(t) represents the noise, h(x(t,p),p) represents the perfect output.

The noisy system is now considered as non-unique [Cobelli and DiStefano,

1980; Hengl et al., 2007]. The analysis of the model including noise, is therefore

a posteriori.

A parameter is practically identifiable if the parameter is uniquely iden-

tifiable with a small standard deviation [Hengl et al., 2007]. A posteriori

(non-structural or numerical) identifiability analysis usually follows the a pri-

ori stage and involves fitting the mathematical model to a set (or sets) of

experimental data in order to numerically determine a unique value for each

unknown parameter with a high degree of confidence.

3.1.2 Taylor Series Approach

The Taylor Series Approach [Pohjanpalo, 1978] is commonly used for experi-

ments involving an impulsive input, where u is a single input. The output of

the models and their time derivatives are evaluated in terms of the parameters

p at a known time point, very often at the initial conditions t = 0+. Since

the coefficients of the Taylor Series are unique, the identifiability problem is

therefore reduced to determining the number of solutions in a set of nonlinear

algebraic equations in the parameters [Evans and Chappell, 2000; Vajda et al.,

1989]. The Taylor Series expansion of the observation y(t,p) is given by

y(t,p) = y(0+,p) +y(1)(0+,p)t+y(2)(0+,p)
t2

2
+ ...+y(i)(0+,p)

ti

i!
+ ..., (3.4)
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where

y(i)(0+,p) ≡ diy

dti
(τ,p), i = 0, 1, 2, ... (3.5)

Using this approach for nonlinear systems may be difficult, as it is not yet

possible to determine a strict/tight upper bound on the number of equa-

tions/coefficients required for a particular system. For a nonlinear system,

the analysis approach includes [Pohjanpalo, 1978; Chappell et al., 1990]:

1. Successive differentiation of y(t,p).

2. Evaluation of y(i)(0+,p) by substitution of quantities already known

from y(0+,p) and lower derivatives (< i).

3. A test on the independence of the equations in the successive deriva-

tives and on what parameters, if any can be identified at each stage of

differentiation.

Therefore, for a nonlinear system, this approach can only determine if a

parameter is uniquely identifiable if the solution is unique and that the model

is globally identifiable if all the parameters are uniquely identifiable. If not all

the parameters are uniquely identifiable it does not imply that the model is

not globally identifiable (the approach is necessary, but not sufficient).

3.1.3 Similarity Transformation Approach

The Similarity Transformation approach or exhaustive modelling approach for

nonlinear system is introduced by Vajda et al. [1989] and is based on the local

state isomorphism theorem [Hermann and Krener, 1977; Isidori, 1985; Vajda

and Rabitz, 1989].

The system (3.1) is considered. Let M represent a connected open

subset of Rn such that x ∈ M ; it is assumed that f(·,p) and g(·,p) are real

analytic on M for all p ∈ Ω, where Ω represents the set of possible parameter
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values, that is, a connected open set in Rq, where q represents the number of

parameters.

The controllability and observability of the models must also be estab-

lished for the nonlinear model before the structural identifiability analysis can

take place [Vajda et al., 1989]. To establish the Controllability Rank Criterion

(CRC), let X(M) represent the set of all C∞ vector fields defined on M and

that the element of X(M) is the n-dimensional column vector-valued functions

of x ∈M . Therefore, X(M) is a vector space and also a Lie algebra, with Lie

bracket operation given by [Vajda et al., 1989]

[ϕ1,ϕ2](x) ,
∂ϕ2

∂x
ϕ1(x)− ∂ϕ1

∂x
(x)ϕ2(x) (3.6)

where ϕ1, ϕ2 and [ϕ1,ϕ2] ∈ X(M).

The vector field ϕi(x) is given by

ϕi(x) , f(x) + uig(x). (3.7)

where ui is a piecewise constant control.

Then ϕi ∈ X(M). An element of F (x) has the following form [Vajda et al.,

1989]: [
ϕ1,
[
ϕ2, [· · · , [ϕi−1, ϕi], · · · ]

]]
(3.8)

whereby F 0 is a subset of X(M) and is closed under the multiplication of the

Lie bracket. System (3.1) is said to satisfy the Controllability Rank Criterion

(CRC) at x0 if F 0 has dimension equal to n [Hermann and Krener, 1977; Vajda

et al., 1989].

To establish the Observability Rank Criterion (ORC) of a nonlinear

system (3.1), let h represent the output function and hj the jth-component of

h. Then h ∈ C∞, where C∞(M) is the real vector space. The Lie derivative
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of hj along the vector field ϕi ∈ X(M) is given by [Vajda et al., 1989]

Lϕi(h)(x) ≡ ∂h(x)

∂x
ϕi(x) (3.9)

where the gradient is given by

dh =
∂h

∂x
(3.10)

and

dh(x) =

[
∂h(x)

∂x1

, · · · , ∂h(x)

∂xn

]
. (3.11)

The Lie derivative, after rearranging, is given by

Lϕi(hj)(x) ,
∂hj
∂x

(x)ϕi(x). (3.12)

Let G0 be the subset of C∞(M) consisting of and h1, h2, ..., hm where G is the

smallest linear subspace of C∞(M) containing G0 that is closed with respect

to Lie differentiation along the elements of F0. An element of G therefore has

the following structure

Lϕ1

(
...
(
Lϕi(hj)

)
...
)

(3.13)

and it is verified that G is closed under Lie differentiation along the elements

of F . Thefore, dG has the form of

d

(
Lϕ1

(
Lϕi−1

(
...,
(
Lϕi

(
h(x)

))
, ...

)))
. (3.14)

Let dG(x) represent the space of vectors determined by evaluating the element

of dG at x ∈M . If the dimension of dG is n, then system (3.1) is said to have

fulfilled the Observability Rank Criterion (ORC) at x0 [Hermann and Krener,

1977; Vajda et al., 1989] .
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The system (3.1) is said to be locally reduced at x0 ∈M if it satisfies both the

CRC and ORC at x0 [Vajda et al., 1989].

Theorem 3.1.1. Assume that the model of (3.1) is locally reduced at x0(p)

for all p ∈ Ω. Consider the parameter values p, p̃ ∈ Ω, an open neighbourhood

V of x0(p̃) in M , and any analytical mapping λ : V → Rn defined on V ⊂ Rn

such that

Rank
∂λ(x̃)

∂x̃
= n for all x̃ ∈ V (3.15)

λ(x0(p̃)) = x0(p) (3.16)

f(λ(x̃,p) =
∂λ(x̃)

∂x̃
f(x̃, p̃) (3.17a)

g(λ(x̃,p) =
∂λ(x̃)

∂x̃
g(x̃, p̃) (3.17b)

h(λ(x̃,p) = h(x̃, p̃) (3.17c)

for all x̃ ∈ V . Then there exists t1 > 0 such that (3.1) is globally identifiable

at p in the experiment (x0(p), U [0, t1]) if and only if conditions (3.15) - (3.17c)

imply p̃ = p.

3.1.4 Structural Identifiability Analysis for Autonomous

Systems

When it comes to the analysis of an uncontrolled (autonomous) nonlinear sys-

tem, an approach developed by Evans et al [Evans et al., 2002] motivated by

the principle of the Similarity Transformation Approach is considered. This

is based on the idea of testing the identifiability of rational system at p ∈ Ω.

This approach uses the existence of a smooth mapping that connects the state

trajectories of local-time indistinguishable parameter vectors. It also compares

the existence of a state-isomorphism between locally reduced systems with in-

distinguishable input-output behaviour [Evans et al., 2002]. The uncontrolled
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system consists of a similar form to model (3.1), except it has no input u(t)

and the following form is considered [Evans et al., 2002]:

ẋ(t,p) = f(x(t,p),p)

x(0,p) = x0(p) (3.18)

y(t,p) = h(x(t,p),p)

where p ∈ Ω, an open subset of Rq is a constant parameter vector. It is

assumed that f(·, ·) and h(·, ·) are rational functions (i.e., fractions of polyno-

mials) in both x and p. For all p ∈ Ω, denote by M(p) the largest connected

open subset of Rn containing x0(p) such that both f(·,p) and h(·,p) are well-

defined on M(p), the largest connected open subset of Rn containing x0(p)

such that both f(·,p) and h(·,p) are well-defined on M(p). Let τ(p) be the

supremum of the set of all τ > 0 such that x(t,p) ∈M(p) for 0 ≤ t ≤ τ . The

output y(t,p) ∈ Rr, and it is assumed that the initial condition vector x0(·)

is a rational function in p.

Definition 3.1.2. Parameter vectors p, p̄ ∈ Ω are said to be local-time indis-

tinguishable, written p ∼ p̄, if there exists a τ > 0 such that y(t,p) = y(t, p̄)

for all t ∈ [0, τ) [Evans et al., 2002].

Definition 3.1.3. A model for form (3.18) is said to be globally identifiable

at p ∈ Ω if p̄ ∈ Ω and p ∼ p̄ imply that p̄ = p. If this is true on some

neighbourhood of p then the model is locally identifiable at p ∈ Ω [Evans

et al., 2002].

Definition 3.1.4. If Eqn. (3.18) is globally (locally) identifiable at p for all

p ∈ Ω, except for a subset of a closed set of (Lebesgue) measure zero, then it is

said to be structurally globally (locally) identifiable. The model is said to be

unidentifiable. The model is said to be unidentifiable if it is not structurally
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locally identifiable [Evans et al., 2002].

Theorem 3.1.5. For p ∈ Ω, let µ1, ..., µn be smooth functions for which Eqn.

(3.18) satisfies the ORC at x0(p) and H the corresponding function defined as

H : (x,p) 7→ (µ1(x,p), ..., µn(x,p))T . If p̄ ∈ Ω, then p ∼ p̄ if and only if there

exists a neighbourhood Vp̄ of x0(p̄), a τ > 0 and a C∞ map λ : Vp̄ → M(p)

such that [Evans et al., 2002]

Hp(λ(x)) = Hp̄(x) (3.19)

For all x ∈ Vp̄ and

λ(x0(p̄)) = x0(p) (3.20)

f(λ(x(t, p̄)),p) =
∂λ

∂x
(x(t, p̄))f(x(t, p̄)) (3.21)

h(λ(x(t, p̄)),p) = h(x(t, p̄), p̄) (3.22)

For all t ∈ [0, τ), where x(t, p̄) is the solution of the system (3.18) for parameter

vector p̄.

3.1.5 Confirmation of an Unidentifiable System

The method is a straightforward version of the Similarity Transformation ap-

proach for structural identifiability analysis by Evans et al. [2002] (see Section

3.1.4). It can be applied to prove and confirm that a model is indeed struc-

turally unidentifiable. This method determines the parameters that are not

unique for a given output. It does not completely characterise the equivalence

classes of parameter vectors that are indistinguishable from the model output.

However, a partition of these equivalence classes is generated which can en-

able the determination of some, or all, or any unidentifiable parameters [Evans

et al., 2005].
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Theorem 3.1.6. Suppose that the system (3.18) satisfies the ORC at x0(p)

for some p ∈ Ω, and let H(·, ·) denote the corresponding function defined

via H(x,p) = (θ1(x,p), ..., θn(x,p))T . If p̄ ∈ Ω, then p̄ ∼ p if and only if

there exists an open neighbourhood Vp̄ of x0(p̄), a τ > 0, and a smooth map

φ : Vp̄ →M(p) such that [Evans et al., 2005]

Hp(φ(x)) = Hp̄(x) (3.23)

for all x ∈ Vp̄ and

φ(x0(p̄)) = x0(p) (3.24)

f(φ(x(t, p̄)),p) =
∂φ

∂x
(x(t, p̄))f(x(t, p̄), p̄) (3.25)

h(φ(x(t, p̄)),p) = h(x(t, p̄), p̄) (3.26)

For all t ∈ [0, τ) where x(t, p̄) is the solution of the system (3.18) for the

parameter vector p̄.

It is assumed that the system (3.18) satisfies the Observability Rank

Criterion at x0(p) such that p ∈ Ω. Let F (p) represent the subset of p ∈ Ω,

of all possible parameter vectors p̄ such that φ, defined in (3.23) satisfies Eqns.

(3.24) - (3.25). The set F (p) consists of precisely those parameter vectors that

are indistinguishable from p. If this set consists of p only, then the system

(3.18) is globally identifiable at p. The system is locally identifiable at p if

there exists a neighbourhood N(p) of p such that F (p)∩N(p) = {p}. These

results are structural if they remain true for all parameter vectors p except

possibly where the components of p satisfy some a priori algebraic equation(s)

[Evans et al., 2005].

Remark 3.1.7. Considering only the sufficiency condition in Theorem 3.1.6:

In the proof [Evans et al., 2005] the ORC is only used to construct a smooth
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function φ when p̄ ∼ p. Similarly, the particular form for φ given by (3.23)

is only required when constructing φ in such a case. This gives rise to the

following corollary of Theorem 3.1.6.

Corollary 3.1.8. Given a system of (3.18) and parameter vectors p, p̄ ∈ Ω,

suppose that there exists an open neighbourhood Vp̄ of x0(p̄), and a smooth

map φ : Vp̄ →M(p) such that [Evans et al., 2005]

φ(x0(p̄)) = x0(p) (3.27)

f(φ(x),p) =
∂φ

∂x
f(x, p̄) (3.28)

h(φ(x),p) = h(x, p̄) (3.29)

For all x ∈ Vp̄, then p̄ ∼ p.

3.2 Reparameterisation

A reparameterisation procedure may be considered if a system is found to be

structurally unidentifiable by using appropriate methods such as the Similarity

Transformation approach [Vajda et al., 1989]. The procedure may allow the

user to generate a slightly modified version of the original model through

reparameterisation of the original system that is at least locally structurally

identifiable in the new parameters.

The reparameterisation process may not be entirely appropriate for cer-

tain cases and the original model may be a more suitable model. Nevertheless,

the reparameterised model may provide additional insight on certain combined

parameters, especially if they have any particular physical significance [Evans

and Chappell, 2000].

The model (3.1) is considered and it is assumed that the system has

been shown to be structurally unidentifiable after analysis by an appropri-
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ate method. The reparameterisation methodology using the Taylor Series

approach is described in detail in Evans and Chappell [2000] and with the

Similarity Transformation approach by Chappell and Gunn [1998].

3.2.1 The Reparameterisation Procedure

Assumption. Theorem 3.1.1 (Similarity Transformation Approach) has been

applied to the system (3.1) and that the analytical mapping, λ : V → Rn of

Theorem 3.1.1 has been completely determined as a function of p, p̃ and x̃.

Suppose that by applying Eqns. (3.15) - (3.17c) it is not possible to show that

p̃ = p. The system is thereby unidentifiable for the experiment considered

[Chappell and Gunn, 1998].

Step 1. Suppose that system (3.1) is proven to be structurally unidenti-

fiable, a reparameterised version of the original model (3.1) can be generated.

Apply Eqn. (3.17a) - (3.17c) to determine the solution set for the parameter

vector p. Then expand Eqns. (3.17a) - (3.17c) to yield the following [Chappell

and Gunn, 1998]:

Fi(x̃,p, p̃) = 0, i = 1, ..., n, (3.30a)

Gi(x̃,p, p̃) = 0, i = 1, ..., n, (3.30b)

Hi(x̃,p, p̃) = 0, i = 1, ...,m. (3.30c)

where Fi, Gi and Hi are polynomial functions in x̃; with coefficients relying

on the vectors p and p̃.

Then, factorise the Taylor Series coefficient of Eqns. (3.30a) - (3.30c), so

that the non-zero factors are extracted or eliminated. These non-zero factors

are the uniquely identifiable parameters shown in the structural identifiability

analysis using the similarity transformation approach. The solution set for

the unknown parameter is reduced so is now determined from the following
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[Chappell and Gunn, 1998]:

F̂i(x̃,p, p̃) = 0, i = 1, ..., n, (3.31a)

Ĝi(x̃,p, p̃) = 0, i = 1, ..., n, (3.31b)

Ĥi(x̃,p, p̃) = 0, i = 1, ...,m, . (3.31c)

Step 2. Once the Taylor Series expansions of Eqns. (3.30a) - (3.30c) or

Eqns. (3.31a) - (3.31c) are determined, apply the jacobian rank test of Poh-

janpalo [Pohjanpalo, 1982; Pohjanpalo and Wahlstrom, 1982] with the results

of Rothenburg [Rothenburg, 1971]; the (possibly infinite) jacobian matrix of

partial derivatives J(p) is defined by [Chappell and Gunn, 1998]:

J(p) =



∂F̂
(0)
1

∂p1
(p, p̃)

∂F̂
(0)
1

∂p2
(p, p̃) · · · ∂F̂

(0)
1

∂pp
(p, p̃)

∂F̂
(1)
1

∂p1
(p, p̃)

∂F̂
(1)
1

∂p2
(p, p̃) · · · ∂F̂

(1)
1

∂pp
(p, p̃)

...
...

...

∂Ĝ
(0)
1

∂p1
(p, p̃)

∂Ĝ
(0)
1

∂p2
(p, p̃) · · · ∂Ĝ

(0)
1

∂pp
(p, p̃)

∂Ĝ
(1)
1

∂p1
(p, p̃)

∂Ĝ
(1)
1

∂p2
(p, p̃) · · · ∂Ĝ

(1)
1

∂pp
(p, p̃)

...
...

...

∂Ĥ
(0)
1

∂p1
(p, p̃)

∂Ĥ
(0)
1

∂p2
(p, p̃) · · · ∂Ĥ

(0)
1

∂pp
(p, p̃)

∂Ĥ
(1)
1

∂p1
(p, p̃)

∂Ĥ
(0)
1

∂p2
(p, p̃) · · · ∂Ĥ

(1)
1

∂pp
(p, p̃)

...
...

...



(3.32)

where F
(j)
i (p, p̃), G

(j)
i (p, p̃) and H

(j)
i (p, p̃), j = 0, 1, ... are the ascending

sequences of coefficient functions in the Taylor Series expansions of Eqns.

(3.31a)-(3.31c), respectively.

Step 3. Using the generated jacobian matrix, together with and any

further information regarding each of the individual parameters, for some i(1 6

i 6 p), then apply the following result:

Theorem 3.2.1. For system (3.1) yielding the infinite jacobian matrix Eqn.
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(3.32), suppose that rank J(p) = s for some s < p for all p in a neighbourhood

of p0 ∈ Ω. Then there exist (p−s) redundant parameters for the system (3.1),

and, locally, a reparameterisation of system (3.1) in terms of s parameters

which is at least locally identifiable for the experiment considered [Chappell

and Gunn, 1998; Cobelli and Toffolo, 1987].

Proof of the theorem is shown in Appendix A in Chappell and Gunn [1998].

Step 4. The problem can be reduced to generating a reparameterisation

if the rank of Eqn. (3.32) can be (and is) determined; then Theorem 3.2.1

is used to demonstrate the existence of a locally identifiable reparameterised

system.

An approach for a system reparameterisation includes grouping the lo-

cally identifiable parameters, followed by determining a state space transforma-

tion, therefore forming a system that includes only these parameter groupings.

The locally identifiable parameter combinations can be established through ex-

amination of the null space of an appropriate rank s, s × p submatrix of the

jacobian matrix J(p) (Eqn. 3.32).

For instance, if a system has p = 3 and s = 2(= p − 1), then the rank

deficiency of the jacobian matrix (3.32) is p − s = 1. With these conditions,

a curve in parameter space will be mapped back from the solution set for the

parameters coefficients established from Eqn. (3.31a) - (3.31c) [Chappell and

Gunn, 1998].

The nullspace of the jacobian matrix, which is now spanned by n ∈ R3,

consists of these vector n, and satisfy

J(p) · n = 0. (3.33)

As the nullspace is orthogonal to the parameter axis, the corresponding param-

eter is said to be locally identifiable if the nullspace includes any zero entries
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[Chappell and Gunn, 1998].

For a system with p = 3 and s = 2(= p − 1), consider a function of

φ(p1, p2, p3) where φ : Ω ⊂ R3 → R such that φ(p) is a parameter combination

which is locally identifiable. Any φ will consist of partial derivatives orthogonal

to the nullspace, therefore [Chappell and Gunn, 1998]

n · ∇φ = 0, (3.34)

where∇φ represents the gradient of φ and · represents the standard Euclidean

inner product. For instance, when p = 3, Eqn. (3.34) is given by [Chappell

and Gunn, 1998] (
n1
∂φ

∂p1

+ n2
∂φ

∂p2

+ n3
∂φ

∂p3

)
= 0 (3.35)

where φ is the solution of the partial differential equation [Chappell and Gunn,

1998].

The newly established parameter obtained for φ(p) is said to be lo-

cally identifiable, given that the parameter satisfies Eqn. (3.35), nevertheless,

there are usually several possible solutions for φ(p) that satisfy Eqn. (3.35)

[Chappell and Gunn, 1998].

Therefore, for any nullspace of dimension p − s, the concept extends

and yields the following [Chappell and Gunn, 1998]:

Theorem 3.2.2. Let J(p) be the jacobian matrix defined by Eqn. (3.32) with

rank J(p) = s and p ∈ Ω. Let N = {n1, n2, ..., np−s} span the nullspace of

J(p). Consider any function φ : Ω ⊂ Rp → R which satisfies the orthogonality

conditions

n1 · ∇φ = 0, i = 1, 2, ..., p− s. (3.36)

Then the solution φ(p) of Eqn. (3.36) is a locally identifiable parameter for
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the system (3.1) and

φ(p1, ..., pp) = (φ1, ..., φs) (3.37)

is a locally identifiable reparameterisation of Eqn. (3.1) in terms of the s

parameters {φ1, ...φs}.

For the proof and further detail of the analysis, see [Chappell and Gunn, 1998].

The reparameterisation of a system of Eqn. (3.1) involves finding the

possible solution set of locally identifiable parameter combinations φ(p) which

satisfy Eqn. (3.36), then, establishing a parameter space transformation which

only involves s of the locally identifiable parameter groupings to re-model the

original system equations. However, this transformation process is not required

if a noticeable reparameterisation is identified directly from the state equation

(3.1). The at least locally identifiable reparameterised system is formed by the

new parameter groupings [Chappell and Gunn, 1998].

3.3 Structural Indistinguishability of Models

If a pair of nonlinear models of the same system, but with different math-

ematical structure, are indistinguishable, then they yield the same response

from a particular observation of the system. An indistinguishability analysis is

performed by finding and comparing the local, diffeomorphic transformations

that relate the model variables for the different pairwise candidates considered

[Chapman et al., 1994; Evans et al., 2004]. An indistinguishability analysis can

be treated as a generalisation of the identifiability problem, therefore modified

versions of strctural identifiability approaches can be applied, e.g. a modified

Taylor Series approach [Hattersley et al., 2010].
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Consider a pair of models of the same system:

Σ(p)


ẋ(t,p) = f(x(t,p),p) + u(t)g(x(t,p),p)

y(t,p) = h(x(t,p),p)

x(0,p) = x0(p)

(3.38)

Σ̃(p̃)


˙̃x(t, p̃) = f̃(x̃(t,p), p̃) + u(t)g̃(x̃(t, p̃), p̃)

ỹ(t, p̃) = h̃(x̃(t, p̃), p̃)

x̃(0, p̃) = x̃0(p̃)

(3.39)

where x(t,p) ∈ Rn and x̃(t, p̃) ∈ Rn denote the state variables and y(t,p) ∈

Rm and ỹ(t, p̃) ∈ Rm denote the state outputs. The functions f , f̃ , g, g̃, h

and h̃ are assumed to be analytic. Both models (3.38) and (3.39) have the

same number of output variables.

By definition, the systems Σ(p) and Σ̃(p̃), given that p ∈ Ω and p̃ ∈ Ω̃,

are said to be output indistinguishable (denoted by Σ(p) ∼ Σ̃(p̃)), if y(t,p) =

ỹ(t, p̃) for all t. Similarly Σ(p) and Σ̃(p̃) are structurally indistinguishable if,

for generic p ∈ Ω there exists a p̃ ∈ Ω s.t. Σ(p) ∼ Σ̃(p̃).

Approaches exist for determining the structural indistinguishability of

candidate nonlinear models and these are based upon the Similarity Transfor-

mation approach also used for identifiability analysis [Chapman et al., 1994;

Evans et al., 2004]. However, since the analysis is fundamentally based upon

comparison of the observations, an approach using Taylor Series expansions

[Pohjanpalo, 1978; Hattersley et al., 2010] of the relative system observations

can also be applied.
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3.4 Parameter Estimation

Parameter estimation is an a posteriori procedure. Besides the uniqueness of

the parameters or system, the a priori analysis does not provide information

such as actual parameter values. Therefore, a structurally identifiable model is

usually tested with an a posteriori analysis after a satisfying an a priori test.

Usually, the model is fitted to a set (or sets) of observation data to obtain a set

of estimated values for the system parameters. Nevertheless, a set of observed

data is not perfect or noise free, i.e. it is a set of observation with experimen-

tal/measurement/system or noise errors. Therefore, a structurally globally

identifiable model does not guarantee good parameter estimation [Jacquez,

1999].

Many software packages available allow their users to estimate the

model’s unknown parameters. These packages are generally numerically ro-

bust and are widely used by modellers to perform parameter fitting, especially

those with complex mathematical structures. However, many software pack-

ages also fit the model to any data unconditionally, therefore giving a false

impression that the model is numerically identifiable; these problems can be

overcome by judging the quality of the parameters estimated by the variances

and covariances (or covariance matrix), and these are usually also provided in

many packages. [Jacquez, 1999].

In this thesis, FACSIMILE (MCPA Software, UK) is used for the param-

eter estimation. FACSIMILE is a robust modelling computer package designed

to solve differential equations of the kinetics of physical and chemical system

models. It contains a different variety of differential equation solvers and can

handle very stiff systems with its robust numerical integrator [AEA Technol-

ogy, 1995]. For parameter fitting, it uses a Newton iterative method which

provides a predictor-corrector technique applied to the differential equations
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and is able to solve differential equations simultaneously [AEA Technology,

1995; Cheung et al., 2008].

FACSIMILE consists of a feature that allows its users to statistically

study the quality of the parameter values fitted to the data and model, i.e.

the goodness of fit. This feature includes information such as the Residual

Sum of Squares (RSS), whereby

RSS =
r∑
i=1

n∑
j=1

(
yobs,i(j)− ysim,i(tj)

σi

)2

(3.40)

where ysim,i(tj) represents the ith output of the model at the jth sampling

time (tj); yobs,i(j) denotes the corresponding experimental data point; and

σi denotes the estimation of the standard error for the ith output and Ri

represents the range for ysim,i(tj) [AEA Technology, 1995; Cheung et al., 2008].

The statistical analysis within FACSIMILE also provides the confidence

levels of the parameters fitted to the model and data which allow users to

study how well the parameters are determined. However, if a parameter is not

well-determined, it will not be defined within the required ‘confidence levels’.

The statistics show the standard deviation of the natural logarithm (SDLN)

of all of the well-determined parameters, which is obtained from the variance-

covariance matrix and the estimated correlation between well-determined pa-

rameters [AEA Technology, 1995; Cheung et al., 2008].

3.4.1 Data

In this thesis two types of experimental data are considered, the intravenous

glucose tolerance test (IVGTT) and glycemic clamp data. All data used within

this thesis were provided by Professor Leon Aarons, School of Pharmacy and

Pharmaceutical Sciences, Manchester University [Mills, 2007]. Data sets in-

clude IVGTT and glycemic clamp data collected from 28 subjects.
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Subject Duration (min) NODP Subject Duration (min) NODP
1 241 16 15 241 16
2 241 16 16 41 11
3 241 15 17 81 12
4 241 16 18 81 13
5 240 15 19 241 14
6 121 14 20 60 11
7 241 16 21 239 15
8 120 13 22 240 15
9 121 12 23 180 13
10 241 15 24 241 15
11 181 14 25 80 12
12 181 13 26 121 13
13 121 13 27 241 15
14 246 15 28 110 13

NODP represents number of data point

Table 3.1: IVGTT data sets of all subjects.

For the IVGTT data, the subjects were given a single injection of a dose

of 300mg glucose follow by frequent blood sampling to measure the glucose

and insulin concentrations in blood. These data sets include IVGTTs that

lasted approximately, 40, 60, 80, 120, 180 and 240 minutes where the majority

of IVGTTs lasted 240 minutes (See Table 3.1). For a typical IVGTT, The

blood samplings usually began straight after the glucose injection at intervals

of 1-2 minutes for the first 7 minutes, followed by intervals of 5 - 10 minutes

for approximately 50 minutes and then at 1, 1.5, 2, 3, and 4 hours [Mills,

2007]. Figure 3.1 shows the typical glucose-insulin response of a 240 minute-

long IVGTT and the data set is given in Table 3.2 (See Appendix C for more

IVGTT data sets).

For a glycemic clamp, an initial blood sample is usually measured to

determine the basal levels of glucose and insulin concentration. Glucose con-

centration for these subjects is raised to a target level and is maintained at

this level with adapted glucose infusion for 8 hours. The glucose and insulin

concentration levels are monitored every 10 to 30 minutes. Figure 3.2 shows
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the typical glucose-insulin response during a glycemic clamp and Table 3.3

shows the data set for the clamp [Mills, 2007].

Time Glucose Insulin
(min) (mmol/L) (mU/L)

0 5.1 9.0
1 5.5 9.0
3 19.3 81.9
5 17.9 127.6
7 16.1 101.9
12 14.2 63.8
16 13.4 60.1
21 12.6 47.2
26 11.6 39.1
31 10.6 32.6
41 9.5 32.4
61 7.6 25.3
81 6.2 17.7
121 4.8 7.7
181 4.7 6.8
241 5.1 8.3

Table 3.2: A typical set of IVGTT data with a duration of approximately 240
minutes.

3.5 Conclusion

In this thesis, structural identifiability analysis will be performed on various

glucose-insulin dynamic models including different forms of the well-referenced

Minimal Model. Although some of these models have been around for many

years, unfortunately no structural identifiability analyses has seemingly been

performed/published on these particular forms of the models. Since some of

these models are well-referenced, and used in the medical setting, it is impor-

tant that the structural identifiability of these glucose-insulin dynamics models

is established. For the structural identifiability analyses, glucose and insulin

are assumed observable and measurable through blood sampling. Therefore,

the system observation is given by
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Figure 3.1: Example of glucose-insulin dynamics during an IVGTT.
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Figure 3.2: Example of glucose and insulin dynamics during a glycemic clamp
experiment.
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Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 4.7 18.17 180 4.6 59.33
15 5.3 39.50 210 4.8 59.33
30 5.0 45.00 240 5.4 69.83
45 4.8 53.55 270 4.9 70.67
60 5.1 59.33 300 5.1 56.17
70 4.5 51.33 330 4.8 57.00
80 4.9 57.00 370 5.0 44.00
90 4.8 56.33 390 5.6 49.33
100 5.5 57.00 420 4.7 30.50
110 4.7 55.67 480 5.2 25.17
150 6.2 99.33

Table 3.3: An example of a set of glycemic clamp data.

y(t) =

y1(t)

y2(t)

 =

G(t)

I(t)

 (3.41)

where G(t) represents glucose concentration and I(t) represents insulin concen-

tration. All of the analyses are performed under the assumption of a perfect,

noise-free environment. The structural identifiability analyses are performed

on glucose-insulin dynamics using the Taylor Series approach (See Section

3.1.2), the Similarity Transformation approach (See Section 3.1.3) and its

forms (See Section 3.1.4) for autonomous nonlinear systems.

This thesis demonstrates that more than one approach is required for

the structural identifiability of some glucose-insulin models due to the com-

plexity of the structure of the models. However, if the structural identifiability

for a glucose-insulin model is proven to be challenging, i.e. without conclusive

results using various approaches, a simple and direct approach can be used

to determine whether the model is actually unidentifiable (see Section 3.1.5).

However, this approach does not provide sufficient information regarding to

the structure of the unknown parameters within the system.

One of the glucose-insulin models proves to be structural unidentifiable.
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Therefore, a reparameterisation is performed on this model to yield an, at least,

locally identifiable model using the process and Theorem given in Section 3.2.

A structural indistinguishability analysis (See Section 3.3) is applied to

compare the CLMM to the EMM, to determine if these models with differ-

ent model structure are distinguishable for standard observations available or

experiments performed.



Chapter 4

Structural Identifiability of The

Minimal Model

4.1 Structural Identifiability Analysis

The Original Minimal Model (OMM) and Extended Minimal Model (EMM)

are the most widely used versions of the Minimal Model (MM), and also can

conceivably be considered as the most widely used of all glucose-insulin dy-

namics models. However, despite their universal application, as far as this

author is aware, structural identifiability analysis for these two specific forms

of the MM has never been published.

The structural identifiability analysis of a modified version of OMM, the

New Minimal Model (NMM) shows that the NMM is structurally identifiable

with known conditions. However, the structural uniqueness of the NMM does

not infer that the OMM and EMM are also globally structurally identifiable,

since these three models have different mathematical structures.

The two forms of MM that are analysed in this thesis are the OMM

63
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and EMM. The system equations for the OMM are given by

Ġ(t) = −
[
p1 +X(t)

]
G(t) + p1Gb, G(0) = G0 (4.1)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib], I(0) = I0 = p7 + Ib (4.2)

and the system equations for the EMM are given by

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb G(0) = G0 (4.3)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] X(0) = 0 (4.4)

İ(t) = p4t[G(t)− p5]− p6[I(t)− Ib], G(t) > p5, I(0) = p7 + Ib (4.5a)

İ(t) = −p6[I(t)− Ib] G(t) < p5 (4.5b)

where G(t) represents the glucose concentration at time t, I(t) the insulin

concentration at time t and X(t) the insulin action at time t. Parameters Gb

and Ib are the basal levels of glucose and insulin concentration respectively

(See Chapter 2 , Section 2.4).

To truly analyse the structural identifiability of the EMM and OMM,

several different analyses have been carried out incorporating the use of a sym-

bolic computational tool, Mathematica [Wolfram, 1996]. For robust parameter

estimation it is important to establish the uniqueness or otherwise of the un-

known model parameters when both the OMM, and the EMM are used at

both of the pre- and post-switching phases, where the pre-switching phase is

represented by Eqns. (4.3), (4.4) and (4.5a) and the post-switching phase by

Eqns. (4.3), (4.4) and (4.5b). We assume that the observations of the system

are both glucose and insulin concentrations. The observations of the model
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are therefore given by

y1(t) = G(t)

y2(t) = I(t).

4.2 Structural Identifiability of the OMM

The OMM is considered as one of the most known forms of the MM as it is

widely used to determine insulin sensitivity index of different individuals or

subject or animal groups through oral and intravenous glucose tolerance tests.

Therefore, it is essential to determine whether this particular form of the MM

is indeed a priori identifiable.

For the OMM , the Taylor Series approach of Pohjanpalo is used [Poh-

janpalo, 1978]. The system equations of the OMM are given by

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb

Ẋ(t) = −p2X(t) + p3[I(t)− Ib]

with observations

y1(t) =G(t) (4.6)

y2(t) =I(t) (4.7)

and the initial conditions are given by

G(0) = G0

X(0) = 0

I(0) = I0.
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The vector of unknown parameters is given by

p = [p1, p2, p3, Gb, Ib].

The first coefficient of the Taylor Series expansion for y1(t) gives

y1(t) = G(t)

thus

y1(0) = G0

Thus G0 is uniquely identifiable.

The second coefficient of the Taylor Series expansion, evaluated at t = 0 gives

ẏ1(t) = −[p1 +X(t)]G(t) + p1Gb

thus

ẏ1(0) = −p1G0 + p1Gb

whereby

p1 =
ẏ1(0)

(−G0 +Gb)
. (4.8)

This implies that the parameter p1 is uniquely identifiable if Gb is known.

Since Gb, the glucose basal level is usually measurable, we can assume that Gb

is known and therefore the parameter p1 is uniquely identifiable.

The third coefficient of the Taylor Series expansion and evaluation at t = 0

give

ÿ1(0) = −p1[−p1G0 + p1Gb]− p3G0[I0 − Ib]

whereby

p3 =
−ÿ1(0)− p1[−p1G0 + p1Gb]

G0[I0 − Ib]
(4.9)
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and after substituting for parameter p1 from (4.8) this gives

p3 =
ẏ2

1(0)−G0ÿ1(0) +Gbÿ1(0)

G0(G0 −Gb)(I0 − Ib)
. (4.10)

This implies that the parameter p3 is identifiable if Gb and Ib are known.

Since the basal level for insulin Ib is normally measurable (therefore known)

at steady state, therefore the parameter p3 is also uniquely identifiable.

The fourth coefficient of the Taylor Series expansion at t = 0 is given by

...
y 1(0) = −p1ÿ1(0)− 2ẏ1(0)p3[I0 − Ib]−G0(−p2p3(I0 − Ib) + p3İ(0)).

whereby

p2 =
−

...
y 1(0)− p1ÿ1(0)− 2ẏ1(0)p3[I0 − Ib]

G0p3(I0 − Ib)
− İ(0)

I0 − Ib

and substituting for p1 from (4.8) and p3 from (4.10) gives

p2 =
1

(G0(I0 − Ib)(−ẏ2
1(0) + (G0 −Gb)ÿ1(0)

(4.11)

×
(
Ib(2ẏ

3
1(0) + ẏ1(0)(−3G0ÿ1(0) + 2Gbÿ1(0))

+G0(G0 −Gb)
...
y 1(0)) + I0(−2ẏ3

1(0) + (3G0 − 2Gb)ẏ1(0)ÿ1(0)

+G0(−G0 +Gb)
...
y 1(0) +G0(−ẏ2

1(0) + (G0 −Gb)ÿ1)İ(0)
)
.

This implies that parameter the p2 can only be determined if İ(0) is known.

This analysis shows that only parameters p1 and p3 are uniquely iden-

tifiable under the condition that the basal levels of glucose and insulin are

known. It is evident from this expression that, without further information

regarding the insulin time course via incorporation of Eqn. (4.5a) or (4.5b),

the parameter p2 cannot be uniquely identified, nor from higher order Taylor

Series coefficients due to the fact that higher derivatives of the insulin variable
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also enter into these coefficients. Thus not all of the model parameters can

be uniquely identified for the OMM, Eqns. (4.1) and (4.2) for observation of

glucose alone using this approach.

This could lead to problems at the a posteriori, numerical identifiability

stage when parameter estimations are sought. For example, Pillonetto et al

[Pillonetto et al., 2003] have commented that the parameters p2 and p3 are at

risk of being numerically non-identifiable. This could lead to a major problem,

as the unidentifiable parameter p2 is one of the key parameters required in

order to determine the insulin sensitivity index,

SI =
p3

p2

.

4.3 Structural Identifiability of the EMM Over

the Post-Switching Phase

The post-switching phase of the EMM describes the decay of the insulin con-

centration in blood after the glucose level has lowered below the threshold level

p5. For the post-switching state (when G(t) < p5), the Taylor Series approach

of Pohjanpalo is used for the structural identifiability analysis [Pohjanpalo,

1978] with the following system equations

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb

Ẋ(t) = −p2X(t) + p3[I(t)− Ib]

İ(t) = −p6[I(t)− Ib].
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The initial conditions are given by

G(0) = G0

X(0) = 0

I(0) = I0 = Ib + p7

with observations

y1(t) =G(t) (4.12)

y2(t) =I(t). (4.13)

The vector of unknown parameters for the EMM at the post-switching phase

is given by

p = [p1, p2, p3, p6, p7, Gb, Ib, G0].

The first coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

y1(t) = G(t)

y1(0) = G0 (4.14)

y2(t) = I(t)

y2(0) = I0. (4.15)

Thus G0 and I0 are uniquely identifiable.

The second coefficients of the Taylor Series expansion and their evaluations at
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t = 0 are given by

ẏ1(t) = −[p1 +X(t)]G(t) + p1Gb

ẏ1(0) = −p1G0 + p1Gb

ẏ2(t) = −p6[I(t)− Ib]

ẏ2(0) = −p6[I0 − Ib]

whereby

p1 =
ẏ1(0)

Gb − y1(0)
(4.16)

and

p6 =
ẏ2(0)

Ib − y2(0)
. (4.17)

These imply that the parameter p1 is uniquely identifiable if Gb is known; and

p6 is uniquely identifiable if Ib is known.

The third coefficient of the Taylor Series expansions and their evaluations at

t = 0 are given by

ÿ1(t) = −y1(t)(−p2X(t) + p3(−Ib + y2(t))) + (−p1 −X(t))ẏ1(t)

ÿ1(0) = −p1ẏ1(0)− p3y1(0)(y2(0)− Ib)

ÿ2(t) = p2
6(y2(t)− Ib)

ÿ2(0) = p2
6(y2(0)− Ib)

whereby

p3 =
−ẏ2

1(0)− ÿ1(0)Gb + ÿ1(0)y1(0)

y1(0)(−Gb + y1(0))(Ib − y2(0))
(4.18)

and

Ib =
−ẏ2

2(0) + ÿ2(0)y2(0)

ÿ2(0)
. (4.19)

These imply that the parameter Ib is uniquely identifiable and the parameter
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p3 is uniquely identifiable if Gb is known. Therefore, the parameters p6 and p7

are also uniquely identifiable from (4.15) and (4.17) respectively.

The fourth coefficients of the Taylor Series expansions and their evalu-

ations at t = 0 (noting that the additional derivatives of y2 yield no further

information) are given by:

...
y 1(t) =2ẏ1(t)(p3Ib + p2X(t)− p3y2(t))

− y1(t)(p2
2X(t) + p3(p2Ib − p2y2(t) + ẏ2(t)))− ÿ1(t)(−p1 +X(t))

...
y 1(0) =2p3(Ib − y2(0))ẏ1(0)− p3y1(0)(p2(Ib − ẏ2(0))− p1ÿ1(0)

whereby

p2 =
2ẏ3

1(0)ẏ2(0) + ÿ1(0)ẏ1(0)ẏ2(0)(2Gb − 3y1(0)) + ÿ2(0)y1(0)

ẏ2(0)(ẏ2
1(0) + ÿ1(0)(Gb − y1(0)))y1(0)

(4.20)

+
(ÿ1(0)ÿ2(0)−

...
y 1(0)ẏ2(0))(Gb − y1(0)) + y1(0)

ẏ2(0)(ẏ2
1(0) + ÿ1(0)(Gb − y1(0)))y1(0)

.

This implies that the parameter p2 is uniquely identifiable if Gb is known.

The fifth coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

y
(4)
1 (t) =− 3ẏ1(t)(p2

2X(t) + p3(p2Ib − p2y2(t) + ẏ2(t)))

+ 3ÿ1(t)(p2X(t) + p3(Ib − y2(t)))

+ y1(t)(p3
2X(t) + p3(p2

2Ib − p2
2y2(t) + p2ẏ2(t)− ÿ2(t)))

−
...
y 1(t)(p1 +X(t))

y
(4)
1 (0) =− 3p3ẏ1(0)(p2(Ib − y2(0)) + ẏ2(0)) + 3p3ÿ1(0)(Ib − y2(0))

+ p3y1(0)(p2
2(Ib − y2(0)) + p2ẏ2(0)− ÿ2(0))− p1

...
y 1(0),
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whereby,

Gb = ±
(
− 4ẏ4

1(0)ẏ2
2(0)ÿ1(0) +G0ẏ

3
1(0)ẏ2(0)(4ÿ1(0)ÿ2(0)− ẏ2(0)

...
y 1(0))

−G0ẏ
2
1(0)(−2G0ÿ1(0)ÿ2

2(0) +G0ẏ2(0)ÿ2(0)
...
y 1(0) + ẏ2

2(0)(−9ÿ2
1(0)

+G0y
(4)
1 (0))) + 2G2

0(−G0ÿ
2
1(0)ÿ2

2(0) +G0ẏ2(0)ÿ1(0)ÿ2(0)
...
y 1(0)

+ ẏ2
2(0)(−3ÿ3

1(0)−G0

...
y 2

1(0) +G0ÿ1(0)y
(4)
1 )) +G0ẏ1(0)ẏ2(0)(G0ÿ1(0)

×(−5ÿ1(0)ÿ2(0) + 3ẏ2(0)y
(3)
1 (0)) +

√(
9ẏ4

1(0)ẏ2
2(0)

...
y 2

1(0)

−2ẏ3
1(0)ẏ2(0)

...
y 1(0)(3G0ÿ2(0)

...
y 1(0) + ẏ2(0)(9ÿ2

1(0)−G0y
(4)
1 (0)))

−2G0ẏ1(0)(−3G0ÿ
2
1(0)

...
y 1(0) + ẏ2(0)ÿ1(0)ÿ2(0)(3ÿ3

1(0) +G0

...
y 2

1(0)

+G0ÿ1(0)y
(4)
1 (0)) + ẏ2

2(0)
...
y 1(0)(−13ÿ3

1(0)− 2G0

...
y 2

1(0)

+ 3G0ÿ1(0)y
(4)
1 (0))) +G0ÿ

2
1(0)(−3G0ÿ

2
1(0) + 2G0ẏ2(0)ÿ1(0)ÿ2(0)

...
y 1(0)

+ ẏ2
2(0)(−12ÿ3

1(0)− 3G0

...
y 2

1(0) + 4G0ÿ1(0)y
(4)
1 )) + ẏ2

1(0)(−3G2
0ÿ

2
2(0)ÿ2

1(0)

+2G0ẏ2(0)ÿ2(0)
...
y 1(0)(6ÿ2

1(0) +G0y
(4)
1 (0)) + ẏ2

2(0)(9ÿ2(0)

−14G0ÿ1(0)
...
y 2

1(0)− 2G0ÿ
2
1(0)y

(4)
1 (0) +G2

0(y
(4)
1 (0))2))))

))/
(

2(2ẏ2
1(0)ẏ2

2(0)ÿ2
1(0) +G0ẏ1(0)ẏ2(0)ÿ1(0)(−2ÿ1(0)ÿ2(0) + ẏ2(0)

...
y 1(0))

+G0(−G0ÿ
2
1(0)ÿ2

2(0) +G0ẏ2(0)ÿ1(0)ÿ2(0)
...
y 1(0) + ẏ2

2(0)(−3ÿ3
1(0)

−G0

...
y 2

1(0) +G0ÿ1(0)y
(4)
1 (0))))

)
.

This implies that there are at least two solutions for the parameter Gb,

and the parameter may not be uniquely identifiable (if not previously known).

Calculation of higher order coefficients does not permit further inference on

the solutions for this parameter. The result shows that the parameters p1, p2,
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p3, p6, p7 and Ib are uniquely identifiable only if the parameter Gb is known

or measurable. This shows that the model is structurally globally identifiable

given that the basal level of glucose (Gb) is known.

The structural identifiability analysis for the EMM at the post-switching

phase can only provide information on a subset of the unknown parameters

since p4 and p5 are not present in the differential equations for insulin, due to

the elimination of the time term at the post-switching phase. However, the

analysis over the post-switching phase can still be used in conjunction with

the results obtained over the pre-switching phase. Due to the large number

of coefficients generated by the Taylor Series expansion, part of the analy-

sis was performed with the aid of Mathematica [Wolfram, 1996], a symbolic

computational software tool.

4.4 Structural Identifiability of the EMM Over

the Pre-Switching Phase

A structural identifiability analysis of the EMM over the pre-switching phase

when G(t) > p5 was also performed using the Taylor Series approach. The

system equations for the EMM over the pre-switching phase are given by:

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb

Ẋ(t) = −p2X(t) + p3[I(t)− Ib]

İ(t) = p4t[G(t)− p5]− p6[I(t)− Ib].



Chapter 4. Structural Identifiability of The Minimal Model 74

with observations

y1(t) = G(t) (4.21)

y2(t) = I(t). (4.22)

The initial conditions here are given by

G(0) = G0

X(0) = 0

I(0) = I0 = Ib + p7.

The vector of unknown parameters for EMM at pre-switching phase is given

by

p = [p1, p2, p3, p4, p5, p6, p7, Ib, Gb].

The first coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

y1(t) = G(t)

y1(0) = G0 (4.23)

y2(t) = I(t)

y2(0) = I0. (4.24)

Thus G0 and I0 are uniquely identifiable as before.

The second coefficients of the Taylor Series expansions and their evaluations
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at t = 0 are given by

ẏ1(t) = −(p1 +X(t))G(t) + p1Gb

ẏ1(0) = −p1G0 + p1Gb

ẏ2(t) = −p6(I(t)− Ib)

ẏ2(0) = −p6(I0 − Ib)

whereby

p1 =
ẏ1(0)

Gb − y1(0)
(4.25)

and

p6 =
ẏ2(0)

Ib − y2(0)
. (4.26)

Thus Eqn. (4.25) implies that parameter p1 is uniquely identifiable if Gb is

known and Eqn. (4.26) implies that parameter p6 is uniquely identifiable if Ib

is also known.

The third coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

ÿ1(t) =(Gbp1 +G(t)(−p1 −X(t)))(−p1 −X(t))

−G(t)(p3(−Ib + I(t))− p2X(t))

ÿ1(0) =− p1(−G0p1 +Gbp1)−G0p3(I0 − Ib)

ÿ2(t) =− p4p5 − p2
6Ib + p2

6I(t) +Gbp1p4t+ p4p5p6t

− p4G(t)(−1 + t(p1 + p6 +X(t)))

ÿ2(0) =p4(G0 − p5) + p2
6(I0 − Ib)

whereby

p3 =
ẏ2

1(0) + ÿ1(0)(Gb − y1(0))

(Gb − y1(0))(Ib − y2(0))y1(0)
(4.27)



Chapter 4. Structural Identifiability of The Minimal Model 76

and

p4 = − ẏ
2
2(0) + ÿ2(0)(Ib − y2(0))

(p5 − y1(0))(Ib − y2(0))
. (4.28)

Thus Eqn. (4.27) implies that the parameter p3 is uniquely identifiable if Gb

and Ib are known and Eqn. (4.28) implies that the parameter p4 is uniquely

identifiable if the parameters p5 and Ib are known.

The fourth coefficients of the Taylor Series expansions and their evaluations

at t = 0 are given by

...
y 1(0) =Gbp1(p2

1 + 2p3(−I0 + Ib))−G0(p3
1 − p3(p2 + p6)(I0 − Ib)

+ 3p1p3(−I0 + Ib))

...
y 2(0) =2(−G0p1 +Gbp1)p4 − p6(p4(G0 − p5) + p2

6(I0 − Ib))

whereby

p2 =
−ẏ2

1(0)ẏ2(0)G0 −G0ÿ1(0)ẏ2(0)(Gb −G0)

ẏ2
1(0) + ẏ1(0)(Gb −G0)G0(Ib − I0)

(4.29)

+

...
y 1(0)(Ib − I0 + 2ẏ3

1(0)(Ib − I0) + ÿ1(0)(2Gb − 3G0)(Ib − I0)

ẏ2
1(0) + ẏ1(0)(Gb −G0)G0(Ib − I0)

and

p5 =
G0(ÿ2(0)ẏ2(0) +

...
y 2(0)(Ib − I0 − 2ẏ1(0)ẏ2(0)(Ib − I0)))

ÿ2(0)ẏ2(0) +
...
y 2(0)(Ib − I0)

. (4.30)

Thus Eqn. (4.29) implies that parameter p2 is uniquely identifiable if Ib and Gb

are known and Eqn. (4.30) implies that parameter p5 is uniquely identifiable

if Ib is known.

The fifth coefficients of the Taylor Series expansions and their evaluations at
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t = 0 are given by

y
(4)
1 (0) =−G2

0p3p4 −Gbp1(p3
1 − 3p3(p2 + p6)I0 − Ib) (4.31)

+ 2p1p3(−I0 + Ib)) +G0(p4
1 − 4p1p3(p2 + p6)(I0 + Ib)

+ 6p2
1p3(I0 + Ib) + p3(p4p5 − (I0 − Ib)(p2

2 + p2p6

+ p2
6 − 3p3I0 + 3p3Ib)))

and

y
(4)
2 (0) =− p6(2(−G0p1 +Gbp1)p4 − p6(p4(G0 − p5) + p2

6(I0 − Ib)))

+ 3p4(−p1(−G0p1 +Gbp1)−G0p3(I0 − Ib)

whereby

Ib =
ÿ2(0)ẏ2(0)(3ÿ1(0) + 2ẏ1(0))− 3

...
y 2(0)ÿ1(0)y2(0) + 2y

(4)
2 (0)ẏ1(0)y2(0)

−3
...
y 2(0)ÿ1(0) + 2y

(4)
2 (0)ẏ1(0)

.

(4.32)

By using the Solve command within Mathematica [Wolfram, 1996],

two sets of solutions can be obtained from Eqn. (4.31) for the parameter Gb,

therefore no conclusive result on the identifiability of Gb can be drawn. The

evaluations for Gb are relatively large and are not included in this text for

brevity. However, Eqn. (4.32) implies that parameter Ib is uniquely identifi-

able.

As the initial condition for insulin is given by

I0 = p7 + Ib ,

therefore, if Ib (Eqn. (4.32)) and I0 (Eqn. (4.24)) are identifiable then, the

parameter p7 is also identifiable. Therefore the parameters p4, p5 and p6 are

uniquely identifiable without any constraint or a priori knowledge. Higher
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order coefficients do not permit further information or solutions for Gb. How-

ever, it is clear that, if the parameter Gb is known, then the EMM over the

pre-switching phase is structurally globally identifiable.

Subsequent to this analysis which showed that a priori knowledge was

required in order to establish global identifiability of the remaining parame-

ters, application of the Similarity Transformation approach was considered to

establish whether additional information could be obtained.

4.5 Structural Identifiability of the EMM Over

the Pre-Switching Phase Using the Simi-

larity Transformation Approach

A structural identifiability analysis of the EMM over the pre-switching phase

is tested using the Similarity Transformation approach [Vajda et al., 1989;

Evans et al., 2002] as results obtained with the Taylor Series approach were

not totally conclusive.

From a structural identifiability analysis perspective, the Similarity

Transformation approach is not immediately applicable because of the time

term in the insulin differential equation; the system is not strictly in the stan-

dard state space form required. In order to perform a structural identifiability

analysis for the EMM using this approach, a new state variable is introduced to

represent the time term, thus generating an augmented model, but one in the

required form. This is achieved by setting the additional “dummy” variable

as:

R(t) = t

whereby

Ṙ(t) = 1.
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This augments the number of state space variables by one, adding an addi-

tional differential equation to the state space model, but the augmented system

is now in the state space form required for application of the Similarity Trans-

formation approach [Vajda et al., 1989]. However, this augmented system is

not controllable, and so the version of the Similarity Transformation approach

for uncontrolled nonlinear systems is therefore applied [Evans et al., 2002].

This approach was developed by Evans et al. [2002] and applied under the

constraint that the impulsive Intravenous Glucose Tolerance Test (IVGTT)

input is alternatively considered as a non-zero initial condition for the system.

Therefore, the system equations for the augmented version of the EMM

are given by:

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb (4.33)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] (4.34)

İ(t) = p4R[G(t)− p5]− p6[I(t)− Ib] (4.35)

Ṙ(t) = 1 (4.36)

with observations

y1(t) = G(t) (4.37)

y2(t) = I(t) (4.38)

and initial conditions given by

G(0) =G0 (4.39)

X(0) =0 (4.40)

I(0) =I0 (4.41)

R(0) =0. (4.42)
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The analysis is then carried out using Theorem 3.1.5 [Evans et al., 2002].

The observability rank criterion (ORC) for the model is analysed initially.

First, consider

µ1(x) = G(t)

then choose

µ2(x) = Lfpµ1(x)

= −[p1 +X(t)]G(t) + p1Gb.

Then consider

µ3(x) = I(t)

and choose

µ4(x) = Lfpµ3(x)

= p4R[G(t)− p5]− p6[I(t)− Ib].

Suppose that

H(x,p) = [µ1(x,p), µ2(x,p), µ3(x,p), µ4(x,p)]T

then

∂Hp(x)

∂x
=



1 0 0 0

p1 G0 0 0

0 0 1 0

p4R 0 −p6 p4(G0 − p5)


.

The four (row) vectors in this matrix are (generically) linearly independent,

therefore, the ORC is satisfied.

Next, the structural identifiability analysis is performed.
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Let Vp̄ = W , where p̄ = (p̄1, ..., p̄6)T , and τ > 0 be such that x(t, p̄) ∈ W for

all t ∈ [0, τ). For λ to satisfy Eqn. (3.22), it is necessary that

[
1 0 1 0

]


λ1(x)

λ2(x)

λ3(x)

λ4(x)


=

[
1 0 1 0

]


G

X

I

R


.

Therefore,

λ1(x) = G

and

λ3(x) = I,

hence

∂λ1(x)

∂G
=
∂λ3(x)

∂I
= 1

and

∂λ1(x)

∂X
=
∂λ1(x)

∂I
=
∂λ1(x)

∂R
=
∂λ3(x)

∂G
=
∂λ3(x)

∂X
=
∂λ3(x)

∂R
= 0.

After rearrangement Eqn. (3.21) is then given by

f(λ(x(t, p̄)),p) =



1 0 0 0

∂λ2
∂G

∂λ2
∂X

∂λ2
∂I

∂λ2
∂R

0 0 1 0

∂λ4
∂G

∂λ4
∂X

∂λ4
∂I

∂λ4
∂R
.


f(x(t, p̄), p̄). (4.43)
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The first component of Eqn. (4.43) is given by

f 1(λ(x(t, p̄)),p) = µ2(λ(x(t, p̄)),p)

= f 1(x(t, p̄), p̄) = µ2(x(t, p̄), p̄).

Then

−(p1 + λ2)G+ p1Gb = −(p̄1 +X)G+ p̄1Ḡb

which after rearranging yields

λ2 = −p1 + p̄1 +X +
p̄1Ḡb − p1Gb

G
. (4.44)

Differentiation of Eqn. (4.44) with respect to the arguments gives

∂λ2

∂G
=
p̄1Ḡb − p1Gb

G2

∂λ2

∂X
= 1

and

∂λ2

∂I
=
∂λ2

∂R
= 0.

The second component of Eqn. (4.43) is satisfied if and only if

f 2(λ(x(t, p̄)),p)− ∂λ2

∂G
f 1(x(t, p̄), p̄)− ∂λ2

∂X
f 2(x(t, p̄), p̄) = 0 (4.45)

whereby

G(−Gbp1p2 + Ḡbp̄1p2 +G(p1p2 + p̄1p2 + p3I − p3Ib − p2X))

−Ḡbp̄1(−Gbp1 + Ḡbp̄1)−G(Gbp1 − Ḡbp̄1)(p̄1 +X)

−G2(p̄3(I − Īb)− p̄2X) = 0
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which satisfes Eqn. (4.45) and can be written in the form

q0(p, p̄) + q1(p, p̄)G(t, p̄) + q2(p, p̄)G(t, p̄)X(t, p̄)

+q3(p, p̄)G(t, p̄)2 + q4(p, p̄)G(t, p̄)2I(t, p̄)

+q5(p, p̄)G(t, p̄)2X(t, p̄) = 0

for all t ∈ [0, τ), where

q0(p, p̄) = −GbḠbp1p̄1 + Ḡ2
b p̄

2
1

q1(p, p̄) = −Gbp1p̄1 + Ḡbp̄
2
1 −Gbp1p2 + Ḡbp̄1p2

q2(p, p̄) = −Gbp1 + Ḡbp̄1

q3(p, p̄) = Ībp̄3 + p1p2 − p̄1p2 − Ibp3

q4(p, p̄) = −p̄3 + p3

q5(p, p̄) = p̄2 − p2.

This polynomial must be identically zero. Therefore each of its coefficient

must be zero for all (t ∈ [0, τ)) hence

q0(p, p̄) = q1(p, p̄) = q2(p, p̄) = q3(p, p̄) = q4(p, p̄) = q5(p, p̄) = 0.

Solving this system of algebraic equations, it can be concluded that

p2 = p̄2 (4.46)

p3 = p̄3 (4.47)

Gbp1 = Ḡbp̄1 (4.48)

p1p2 − p̄1p2 = p3Ib − p̄3Īb. (4.49)
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The third component of Eqn. (4.43) gives

f 3(λ(x(t, p̄)),p) = µ4(λ(x(t, p̄)), p̄) (4.50)

= f 3(x(t, p̄), p̄) = µ4(x(t, p̄), p̄)

which gives

p4λ4(G− p5)− p6(I − Ib) = p̄4R(G− p̄5)− p̄6(I − Īb)

and after rearranging this yields

λ4 =
p̄4R(G− p̄5)− p̄6(I − Īb) + p6(I − Ib)

p4(G− p5)
. (4.51)

Differentiating Eqn. (4.51) with respect to the arguments gives

∂λ4

∂G
=
p̄4R(p5 − p̄5)− p̄6(I − Īb) + p6(I − Ib)

p4(G− p5)2

∂λ4

∂X
= 0

∂λ4

∂I
=

p6 − p̄6

p4(G− p5)

and

∂λ4

∂R
=
p̄4(Gb − p̄5)

p4(G− p5)
.

The fourth component of Eqn. (4.43) is satisfied if and only if

f 4(λ(x(t, p̄)), p)− ∂λ4

∂G
f 1(x(t, p̄), p̄)− λ4

∂I
f 3(x(t, p̄), p̄) (4.52)

− λ4

∂R
f 4(x(t, p̄), p̄) = 0.
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Therefore, it can be written in the form

w0(t, p̄) + w1(t, p̄)G(p, p̄) + w2(t, p̄)I(p, p̄) + w3(t, p̄)R(p, p̄)

+w4(t, p̄)G(p, p̄)X(p, p̄) + w5(t, p̄)G(p, p̄)I(p, p̄)

+w6(t, p̄)G(p, p̄)R(p, p̄) + w7(t, p̄)G(p, p̄)X(p, p̄)I(p, p̄)

+w8(t, p̄)G(p, p̄)R(p, p̄)X(p, p̄)

+w9(t, p̄)G(p, p̄)2 + w10(t, p̄)G(p, p̄)2R(p, p̄) = 0.

for all t ∈ [0, τ) where

w0(p, p̄) = p4p
2
4 − p̄4p5p̄5 + Ḡbp̄1p̄6Īb + p5p6p̄6Īb − Ḡbp̄1p6Ib − p5p̄

2
6Īb

w1(p, p̄) = −2p4p5 + p̄4p5 + p̄4p̄5 + p̄1p6Ib − p̄1p̄6Īb − p6p̄6Īb + p̄2
6Īb

w2(p, p̄) = −p5p6p̄6 + p5p̄
2
6 + Ḡbp̄1p6 − Ḡbp̄1p̄6

w3(p, p̄) = −p̄4p5p̄5p6 + p̄4p5p̄5p̄6 + Ḡbp̄1p̄4p5 − Ḡbp̄1p̄4p̄5

w4(p, p̄) = Ibp6 − Ībp̄6

w5(p, p̄) = p6p̄6 − p̄2
6 − p̄1p6 + p̄1p̄6

w6(p, p̄) = −p̄1p̄4p5 + p̄1p̄4p̄5 − p̄4p5p̄6 + p̄4p5p6 + p̄4p̄5p6 − p̄4p̄5p̄6

w7(p, p̄) = −p6 + p̄6

w8(p, p̄) = −p̄4p5 + p̄4p̄5

w9(p, p̄) = p4 − p̄4

w10(p, p̄) = −p̄4p6 + p̄4p̄6.

The polynomial must be identically zero. Therefore each of its coefficients

must be zero for all (t ∈ [0, τ)) hence

w0(p, p̄) = w1(p, p̄) = w2(p, p̄) = w3(p, p̄) = w4(p, p̄) = w5(p, p̄)

= w6(p, p̄) = w7(p, p̄) = w8(p, p̄) = w9(p, p̄) = w10(p, p̄) = 0.
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Solving this system of algebraic equations, it can be concluded that

Ib = Īb (4.53)

p̄4 = p4 (4.54)

p5 = p̄5 (4.55)

p6 = p̄6. (4.56)

Substituting (4.53) into (4.49) gives

p1 = p̄1. (4.57)

Substituting (4.57) into (4.48) gives

Gb = Ḡb. (4.58)

This analysis shows that all parameters (including the basal levels) Gb and Ib

are uniquely identifiable and therefore the EMM in this form is structurally

globally identifiable for observations of glucose and insulin.

This implies that the generation of further Taylor Series coefficients for

this same experiment may also yield the glucose basal level (Gb) as a uniquely

identifiable parameter, but computational complexity of these coefficients hin-

ders such analysis. =

4.6 Parameter Estimation

Parameter estimation was performed with greater confidence for the EMM

as it has been shown to be structurally globally identifiable. The parameter

estimation for the EMM is usually carried out in two stages. The first stage

involves the use of two of the system equations Eqns. (4.3) and (4.4), with
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plasma insulin concentrations acting as a forcing function; the second stage of

the fitting process involves Eqns. (4.5a) and (4.5b) with glucose concentrations

acting as the forcing function [Bergman et al., 1979; Bergman and Bowden,

1981].

Parameter estimation was subsequently carried out using available ex-

perimental data for IVGTT experiments provided by Professor Leon Aarons,

School of Pharmacy and Pharmaceutical Sciences, Manchester University,

United Kingdom [Mills, 2007]. In total 28 sets of IVGTT data were made

available, where the majority of the data sets lasted for approximately 240

minutes, these are Subjects 1-5, 7, 10, 14, 15, 19, 21-22, 24 and 27; 3 data sets

lasted approximately 180 minutes and these are Subjects 11-12, 23; 6 data sets

lasted approximately 120 minutes and these are Subjects 6, 8-9, 13, 26, 28; 3

data sets lasted approximately 80 minutes (Subjects 17-18 and 25), one set of

data lasted 41 minutes (Subject 16) and one lasted 60 minutes (Subject 20).

Table 4.1 shows the data sets for all subjects, the total duration lasted and

the total number of data points collected. On average, each data set contains

14 data points where glucose and insulin concentrations are both individually

measured.

The data sets were provided without any in-depth information regard-

ing the subjects and it is not possible to conclude if any of the individuals

was healthy, diabetic or suffering from any other health issues. Some of the

IVGTT data sets were clearly not suitable for fitting, as these data sets con-

tain missing data, i.e. only glucose or insulin concentrations (not both) are

recorded at certain times, (see the examples in Figures 4.1 and 4.2); there are

incomplete data set (see for example Figure 4.2) as the IVGTT is consider-

ably shorter compared to the other IVGTTs and the glucose-insulin responses

were still high even when the IVGTT has finished; some had unusual glucose-

insulin responses and therefore were not suitable for the purpose of parameter
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Figure 4.1: The IVGTT data set for Subject 23 contains missing data for
insulin concentrations at the beginning of the IVGTT. Both glucose and insulin
concentrations show non-typical IVGTT behaviour.

estimation (see for example Figures 4.1 and 4.3).

Parameter fitting was performed simultaneously for the full three-state

EMM in one single step. This was performed by combining the insulin dif-

ferential equations using appropriate sign functions. With this modification,

the model will automatically switch from the pre-switching phase to the post-

switching phase, and vice versa. The system equations are given by

Ġ(t) = −(p1 +X(t))G(t) + p1Gb (4.59)

Ẋ(t) = −p2X(t) + p3(I(t)− Ib) (4.60)

İ(t) = p4t(G(t)− p5) ∗ sgn(sgn(G(t)− p5) + 1)− p6(I(t)− Ib) (4.61)
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Figure 4.2: The IVGTT data set for Subject 16 contains missing data for in-
sulin concentrations. This particular data set is also relatively short compared
to the 27 other subjects.
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Figure 4.3: The IVGTT data set for Subject 10. The insulin dynamics show
multiple irregular peaks and these are not typical of insulin dynamics for an
IVGTT.
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Subject Duration (min) NODP Subject Duration (min) NODP
1 241 16 15 241 16
2 241 16 16 41 11
3 241 15 17 81 12
4 241 16 18 81 13
5 240 15 19 241 14
6 121 14 20 60 11
7 241 16 21 239 15
8 120 13 22 240 15
9 121 12 23 180 13
10 241 15 24 241 15
11 181 14 25 80 12
12 181 13 26 121 13
13 121 13 27 241 15
14 246 15 28 110 13

NODP represents number of data point

Table 4.1: Subjects and the duration of the corresponding IVGTT

and the initial conditions are given by

G(0) =G0 (4.62)

X(t) =0 (4.63)

I(0) =I0 (4.64)

and the parameters Gb and Ib are measurable with known values. These are

usually the initial and/or final measurements of the glucose and insulin con-

centrations (Gb ≈ 5.0 mmol/L and Ib ≈ 4.5 mU/L), when glucose and in-

sulin concentrations return to steady state. Therefore, only the parameters

p1, p2, p3, p4, p5 and p6 are to be estimated.

The IVGTT data for Subjects 3, 8 and 17 are used for the parameter

fitting. The data set for Subject 3 has a duration of 240 minutes and contains

16 data points for both glucose and insulin concentrations. The data set for

Subject 8 is 120 minute IVGTT and contains 13 data points for both glucose

and insulin concentrations. The data set for Subject 17 has a duration of 80
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minutes and contains 12 data points for both glucose and insulin concentra-

tions. All 3 sets of data show typical glucose-insulin responses to an IVGTT

and therefore were considered suitable for the purpose of parameter estimation

using the EMM.

Typical glucose-insulin dynamics behaviour for IVGTT is shown in Fig-

ure 2.7 where the glucose and insulin concentrations rise to peaks (first phase

glucose-insulin action) after an input of glucose. The EMM only captures the

decay of glucose-insulin concentrations after the peaks are reached (second

phase glucose-insulin action) as shown in Figure 2.3. Therefore, the original

data sets are altered for the purpose of the fitting. Table 4.2 show the aug-

mented data sets where the data at the initial time t = 0 is when glucose and

insulin concentrations are at their peak. Therefore, the altered data set for

Subject 3 contains 13 data points; Subject 8 contains only 11 data points and

for Subject 17 contains only 10 data points. The original data sets are shown

in Appendix C.

Parameter estimation was carried out in FACSIMILE [AEA Technology,

1995], using the IVGTT data shown in Table 4.2. Table 4.3 shows a list of

fits obtained, along with the data set used and the residual sum of squares

(RSS) obtained within FACSIMILE . Fits 1-3 are performed using the data set

for Subject 3, Fits 4-6 are performed using the data set for Subject 8 and Fits

7-9 are performed using the data set for Subject 17.

The parameter estimation performed shows that the determination of

the parameters p2 and p3 proves challenging. The SDLN (the Standard De-

viation for the Log-Normal distribution, used within FACSIMILE to guarantee

non-negativity of parameter estimates) values for the parameters p2 and p3

in Fit 2 are 0.7182 and 1.2946; in Fit 3 are 0.9052 and 1.3405; in Fit 5 are

2.2899 and 1.5058 and in Fit 7 are 0.5688 and 0.8546. Fit 6 shows that the

parameters p2 and p3 are undeterminable (no SDLN values generated as the
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Subject 3
Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 18.3 79.0 28 9.4 14.2
2 17.3 71.2 38 7.7 10.9
4 15.9 50.3 58 5.8 4.7
8 14.6 34.0 78 5.1 3.0
13 12.7 25.9 178 5.4 3.0
18 11.3 20.4 238 5.7 4.3
23 10.0 16.8

Subject 8
Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 15.2 49.3 26 10.7 14.0
2 14.7 42.1 36 9.2 14.5
6 13.7 26.9 56 7.4 11.2
11 12.6 20.4 76 5.9 6.6
16 11.9 18.4 116 4.5 3.2
21 11.3 16.9

Subject 17
Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 14.8 42.1 21 10.7 13.0
2 14.4 31.8 26 10.0 12.6
6 14.1 18.6 36 8.8 12.4
11 12.8 14.5 56 6.6 7.2
16 11.8 13.2 76 5.6 4.6

Table 4.2: The IVGTT data for Subjects 3, 8 and 17.
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Fit Subject RSS Parameters determined
1 3 6.3258 p1, p2, p3, p4, p5, p6

2 3 1.2285 · 10 p1, p2, p3, p4, p5, p6

3 3 6.0248 p1, p2, p3, p4, p5, p6

4 8 3.3173 p1, p2, p3, p4, p5, p6

5 8 3.2186 p1, p2, p3, p4, p5, p6

6 8 3.7108 p1, p4, p5, p6

7 17 1.3691 p1, p2, p3, p4, p5, p6

8 17 1.6247 p1, p3, p4, p5, p6

9 17 0.8354 p1, p2, p3, p4, p5, p6

RSS represents the Residual Sum of Squares

Table 4.3: List of Fits (1-9) for Subjects 3, 8 and 17 using the EMM and
statistical information obtained within FACSMILE for each fits, i.e. the RSS
(Residual Sum of Squares) and well determined parameters.

parameters are not well determined in FACSMILE) , and Fit 9 shows that the

parameter p2 is undeterminable, however, both sets produce reasonably good

fits visually. This implies that determination of the insulin sensitivity index

is difficult and unsatisfactory, as the key parameters needed to determine the

insulin sensitivity index are p2 and p3.

From observations of the plots produced within FACSIMILE, or any other

computational fitting packages, it is not possible to distinguish whether the fit

was actually a “reasonable” fit, for example Fit 2 (see Figure A.2, Appendix

A) produces visually plots that demonstrate a good fit to the glucose and

insulin data with a relatively high residual sum of squares and Fits 6 and 8

(see Figures A.4 and A.6, Appendix A) do not have all of the parameters well

determined. This demonstrates that parameter estimation must be carried out

with careful analysis of the statistical information on the fit obtained within

the tool used.

The parameter estimation also demonstrates that the establishment of

the unique structural identifiability of a system does not guarantee a good

fit to experimental data or a good fit with a unique vector of parameter val-

ues. There are several explanations as to why certain parameters are not
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well determined; this could be due to the quality of the data, sampling, or

other numerical identifiability issues, as well as the possible unsuitability of

the structure of the EMM for such (typical) data sets.

It has proved challenging to improve the quality of the parameter es-

timates to achieve closer/tighter fits to the data used. Such difficulties have

also been met by other researchers who have tried to improve numerical es-

timates of unknown parameters for IVGTT data by employing a variety of

mathematical/statistical techniques, including Bayesian and Maximum Like-

lihood approaches [Pillonetto et al., 2003; Wilinska et al., 2005; Plank et al.,

2006]. Alternatively, parameters in the models considered with lesser impor-

tance have been ‘replaced’ with constraints or externally estimated values in

order to overcome numerical unidentifiability. However, there is the possibility

that this could be avoided if sufficient information can be obtained at the a

priori stage, possibly also permitting appropriate model reparameterisation

via the structural analysis performed.

The best fit for Subjects 3, 8 and 17 are Fits 3, 5 and 9 respectively as

the statistical information shows that these fits have the lowest RSS and that

all the parameters were well determined with reasonable SDLN values. The

SDLNs values for Fits 3, 8 and 17 are shown in Tables 4.4 and the Correlation

Matrix of well-determined parameters are shown in Tables 4.5. The plots

obtained from the parameter estimates for Fits 3, 5 and 9 are shown in Figures

4.4, 4.5 and 4.6 respectively. However, tighter fits with lower RSS and SDLNs

for all the parameters would be more desirable.

The results for other fits, including Figures and Tables for SDLNs and

Correlation Matrices are shown in Appendix A
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Fit 3 (Subject 3) Fit 5 (Subject 8) Fit 9 (Subject 17)
Parameter Value [SDLN] Value [SDLN] Value [SDLN]

p1 3.148 · 10−2 [0.443] 1.998 · 10−2 [0.203] 9.000 · 10−3 [0.825]
p2 6.814 · 10−2 [0.905] 1.443 · 10−2 [2.209] 4.925 · 10−2 [0.473]
p3 3.276 · 10−5 [1.341] 7.168 · 10−6 [1.506] 7.785 · 10−5 [0.589]
p4 1.350 · 10−2 [0.365] 8.348 · 10−3 [0.153] 1.477 · 10−2 [0.073]
p5 6.438 [0.135] 5.595 [0.060] 6.323 [0.029]
p6 1.178 · 10−1 [0.067] 1.023 · 10−1 [0.049] 1.718 · 10−1 [0.029]

RSS = 6.0248 RSS =3.2187 RSS = 0.83538

Table 4.4: The SDLN values for Fit 3 (Subject 3), Fit 5 (Subject 8) and Fit 9
(Subject 17).

Fit 3 (Subject 3)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 -0.774 -0.966 0.017 0.124 -0.066
p2 -0.774 1.000 0.899 0.101 -0.028 0.097
p3 -0.966 0.899 1.000 0.031 -0.114 0.097
p4 0.017 0.101 0.031 1.000 0.762 0.744
p5 0.124 -0.028 -0.114 0.762 1.000 0.331
p6 -0.066 0.097 0.097 0.744 0.331 1.000

Fit 5 (Subject 8)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 -0.863 -0.959 0.257 0.432 -0.002
p2 -0.873 1.000 0.954 -0.098 -0.348 0.064
p3 -0.959 0.954 1.000 -0.201 -0.473 0.041
p4 0.257 -0.098 -0.201 1.000 0.620 0.716
p5 0.432 -0.348 -0.473 0.620 1.000 0.161
p6 -0.002 0.064 0.041 0.716 0.161 1.000

Fit 9 (Subject 17)
Row/column p1 p2 p3 p4 p5 p6

p1 1.000 -0.955 -0.990 0.190 0.406 -0.075
p2 -0.955 1.000 0.984 -0.055 -0.362 0.137
p3 -0.990 0.984 1.000 -0.137 -0.412 0.118
p4 0.190 -0.055 -0.137 1.000 0.575 0.629
p5 0.406 -0.362 -0.412 0.575 1.000 0.028
p6 -0.075 0.137 0.118 0.629 0.028 1.000

Table 4.5: The correlation matrix for the parameter estimates for Fit 3 (Sub-
ject 3), Fit 5 (Subject 8) and Fit 9 (Subject 17).
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Figure 4.4: The parameter fitting of the EMM to the IVGTT glucose and
insulin data for Fit 3 (Subject 3).
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Figure 4.5: The parameter fitting of the EMM to the IVGTT glucose and
insulin data for Fit 5 (Subject 8).
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Figure 4.6: The parameter fitting of the EMM to the IVGTT glucose and
insulin data for Fit 9 (Subject 17).



Chapter 5

Structural Identifiability of The

Euglycemic Hyperinsulinemic

Clamp Model

5.1 Structural Identifiability Analysis

The Euglycemic Hyperinsulinemic Clamp (EIC) is known as the “gold stan-

dard” for identifiying insulin sensitivity for an individual [DeFronzo et al.,

1979; Vogel et al., 2006]. Picchini et al. [2005] developed a model that de-

scribes the oscillating behaviour of glucose-insulin dynamics during the course

of the clamp. The model is believed to be the first published model for EIC

and such a model is an important contribution to the study of glucose-insulin

dynamics and insulin sensitivity of different groups of individuals, diabetes

sufferers and animals. A structural identifiability analysis is an essential step

to determine whether the parameters in the EIC model are structurally iden-

tifiable.

The structural identifiability analysis for this model was carried out

using the Taylor Series approach with the aid of the symbolic computational

99
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tool, Mathematica [Wolfram, 1996] and (as in Chapter 2, Section 2.5) the

system equations are given by:

Ġ(t) =
Tgx[t− τg] + Tgh(t)

Vg
− TxgG(t)

0.1 +G(t)
−KxgIG(t)I(t) (5.1)

İ(t) =
TiGG(t) + Tix(t)

Vi
−KxiI(t) (5.2)

where

Tgh(t) = Tghmax exp(−λG(t)I(t)) (5.3)

and the initial conditions are given by

Tgh(0) = Tghb = Tghmax exp(λGbIb)

G(0) = Gb

I(0) = Ib.

The EIC model contains two observable variables, glucose and insulin plasma

concentrations, normally with two piecewise constant input functions Tgx(t)

and Tix(t). For the analysis performed (relative to the experimental data avail-

able where no inputs of insulin were provided) it was assumed that Tix(t) = 0

for all time. In addition Tgx(t) was assumed to be known and constant over

the time period considered. There is a total of eight unknown parameters to

be identified through the observations,

p = [Tgh, Tghmax, Vg, Vi, Txg, KxgI , TiG, Kxi, λ]. (5.4)

The assumptions made for this system are that the concentration of plasma

glucose and insulin are observable, or measurable, and glucose inputs to the

system are known during the analysis (i.e. piecewise constant infusions at
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known levels). The observations of the system are therefore given by

y1(t) = G(t)

and

y2(t) = I(t).

The first coefficients of the Taylor Series expansions at t = 0 give

y1(0) = Gb

and

y2(0) = Ib.

The second coefficients of the Taylor Series expansions at t = 0 give

ẏ1(0) = − GbTxg
0.1 +Gb

+
Tghmax exp(−λGbIb)

Vg
− IbGbKxgI

and

ẏ2(0) =
GbTiG
Vi

−KxiIb.

The third coefficients of the Taylor Series expansions at t = 0 give

ÿ1(0) =−KxgIGbẏ2(0)− TxgGbẏ1(0)

(0.1 +Gb)2
− Txgẏ1(0)

0.1 +Gb

+KxgIIbẏ1(0)

− λTghmax exp(−λGbIb)(Ibẏ1(0) +Gbẏ2(0))

Vg

and

ÿ2(0) = −Kxiẏ2(0) +
TiGẏ1(0)

Vi
.
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The fourth coefficients of the Taylor Series expansions at t = 0 give

...
y 1(0) = −2KxgI ẏ1(0)ẏ2(0)−KxgIGbÿ2(0)−KxgIIbÿ1(0)

−2TxgGbẏ
2
1(0)

(0.1 +Gb)3
+

2Txgẏ
2
1(0)

(0.1 +Gb)2
+
GbTxgÿ1(0)

(0.1 +Gb)2
− Txgÿ1(0)

0.1 +Gb

+
Tghmax exp(−λGbIb)(−λGbẏ2(0)− λIbẏ1(0))2

Vg

+
Tghmax exp(−λGbIb)(−2λẏ1(0)ẏ2(0)− λGbÿ2(0)− λIbÿ1(0))

Vg

and

...
y 2(0) = −Kxiÿ2(0) +

TiGÿ1(0)

Vi
.

The fifth coefficients of the Taylor Series expansions at t = 0 give

y
(4)
1 (0) = −3KxgI ẏ1(0)ÿ2(0)− 3KxgI ẏ2(0)ÿ1(0)−KxgIGb

...
y 2(0)

−KxgIIb
...
y 1(0) +

6GbTxgẏ
3
1(0)

(0.1 +Gb)4
− 6Txgẏ

3
1(0)

(0.1 +G)3
+
TxgGb

...
y 1(0)

(0.1 +Gb)2

−6TxgGbẏ1(0)ÿ1(0)

(0.1 +Gb)3
+

6Txgẏ1(0)ÿ1(0)

(0.1 +Gb)2
− Txg

...
y 1(0)

0.1 +Gb

−λTghmax exp(λGbIb)(Gbẏ2(0) + Ibẏ1(0))3

Vg

−3λTghmax exp(−λGbIb)

Vg

(
− λIbẏ1(0)−Gbλẏ2(0)

)
×
(
− 2λẏ1(0)ẏ2(0)− λIbÿ1(0)−Gbλÿ2(0)

)
+
Tghmax exp(−λGbIb)

Vg

× (−3λẏ1(0)ÿ2(0)− 3λẏ2(0)ÿ1(0)− λGb

...
y 2(0)− λIb

...
y 1(0))

and

....
y 2(0) = Kxi

...
y 2(0) +

TiG
...
y 1(0)

Vi
.
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The sixth coefficients of the Taylor Series expansions at t = 0 give

y
(5)
1 (0) = −24GbTxgẏ

4
1(0)

(0.1 +Gb)5
+

24Txgẏ
4
1(0)

(0.1 +Gb)4
+

36GbTxgẏ
2
1(0)ÿ1(0)

(0.1 +Gb)4
− 36Txgẏ

2
1(0)ÿ1(0)

(0.1 +Gb)3

+
exp(−λGbIb)Tghmax(−λIbẏ1(0)−Gbλẏ2(0))4

Vg
− 6GbTxgÿ

2
1(0)

(0.1 +Gb)3

− 6Txgÿ
2
1(0)

(0.1 +Gb)2
− 6KxgI ÿ1(0)ÿ2(0) +

8GbTxgẏ1(0)
...
y 1(0)

(0.1 +Gb)3

+
Txgẏ1(0)

...
y 3(0)

(0.1 +Gb)2
+

6 exp(−λGbIb)Tghmax
Vg

(−λIbẏ1(0)− λGbẏ2(0))2

×(−2λẏ1(0)ẏ2(0)− λIbÿ1(0)−Gbλÿ2(0))

+
3 exp(−λGbIb)Tghmax(−2λẏ1(0)ẏ2(0)− λIbÿ1(0)− λGbÿ2(0))2

Vg

−4KxgI ẏ2(0)
...
y 1(0)− 4KxgI ẏ1(0)

...
y 2(0)−KxgIIby

(4)
1 (0)

− GbTxgy
(4)
1 (0)

(0.1 +Gb)2
− Txgy

(4)(0)

(0.1 +Gb)
−GbKxgIy

(4)
2 (0) +

exp(λGbIb)Tghmax
Vg

× λ(−6ÿ1(0)ÿ2(0)− 4ẏ2(0)
...
y 1(0)− 4ẏ1(0)

...
y 2(0)− Iby(4)

1 (0)−Gby
(4)
2 (0))

+
4 exp(−λGbIb)Tghmax

Vg
(−λIbẏ1(0)− λGbẏ2(0))

×(−3λẏ2(0)ÿ1(0)− 3λẏ1(0)ÿ2(0)− λIb
...
y 1(0)− λGb

...
y 2(0))

and

y
(5)
2 (0) = Kxiy

(4)
2 (0) +

TiGy
(4)
1 (0)

Vi
.

By using the Solve command up to and including the sixth Taylor Series

coefficients within Mathematica, it can be shown that, if, for example, the

parameters Vg and Vi are known, then all other parameters can be uniquely

identified. Alternatively, if instead the parameters TiG and Tghb are considered

known then all other parameters are uniquely identifiable.

Since blood sampling gives information on glucose and insulin concen-

trations it allows us to estimate the distribution volume of glucose and insulin
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(i.e. Vg and Vi, respectively). Hence, with these parameters estimable (known)

the model is structurally globally identifiable. However, if, in practice these

two parameters cannot be well determined from the experiments performed

then this obviously creates a problem.

Picchini et al. [2005] state that parameters TiG and Tghb are deter-

minable from steady state conditions. Thus this pairing of parameters may be

more appropriate in terms of their a priori knowledge which may then permit

more robust numerical parameter estimation.

This analysis has demonstrated that the model can subsequently be

used with greater confidence for parameter estimation using glucose and in-

sulin observation data. However, the quality and/or accuracy of estimates

obtained may be limited in practice due to data quality and other numerical

identifiability issues.

5.2 Parameter Estimation

For a glycemic clamp experiment, glucose alone is first infused into each subject

at a level higher than normal blood glucose concentration. Glucose and insulin

concentrations are measured frequently throughout the experiment and the

higher glucose level is maintained by varying the glucose infusion rate. The

clamp data were provided by Professor Leon Aarons, School of Pharmacy

and Pharmaceutical Sciences, Manchester University, United Kingdom [Mills,

2007] as in Chapter 2.

Since the clinical data made available to this thesis only involve glycemic

clamp data, in order to apply the available data, a slightly modified version of

the EIC model is considered, where the insulin infusion term Tix(t) is removed

(or Tix(t) = 0), and the system equations are therefore given by
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Ġ(t) =
Tgx(t) + Tghmax exp(−λG(t)I(t))

Vg
− TxgG(t)

0.1 +G(t)
−KxgIG(t)I(t) (5.5)

İ(t) =
TiGG(t)

Vi
−KxiI(t) (5.6)

and the initial conditions are given by

G(0) = Gb (5.7)

I(0) = Ib (5.8)

The system with Eqns. (5.5) and (5.6) is structural globally identifi-

able, as the structural identifiability analysis for the EIC model assumes that

Tix(t) = 0. Therefore, the model is globally structural identifiable with glucose

infusion alone. The parameter estimation for the EIC model for the glycemic

clamp data was carried out within FACSIMILE [AEA Technology, 1995]. The

parameters Gb and Ib are assumed to be the initial or final glucose and in-

sulin concentrations of the data sets (Gb ≈ 5.0 mmol/L and Ib ≈ 4.5 mU/L),

therefore the parameter estimation for these two parameters was not required.

Data sets for Subjects 3, 8 and 17 (as shown in Table 5.1) were cho-

sen, as the IVGTT data sets for these subjects were also used previously for

the parameter estimations of the EMM. Table 5.2 shows a list of parameter

estimations carried out using the glucose clamp data for Subjects 3, 8 and 17.

Therefore, parameter estimates for the EIC model using these data, if any,

may give further information of these subjects.

The parameter estimates generated within FACSMILE show that the

EIC model is able to generate a similar glucose response occurring during

a glycemic clamp experiment. However, corresponding simulation responses

using the fitted parameters to the insulin observations do not give such good
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agreement. They produce a typical insulin dynamic for a EIC experiment as

shown in Figure 2.6.

The best set of parameter fits for Subject 3 is Fit 1 as 7 parameters are

well determined, and only one parameter is not well determined. Although Fit

3 has the lowest RSS, only 6 parameters are determined. The SDLN values and

the correlation matrix for the well determined parameters for Fit 1 are shown in

Tables 5.3 and 5.4 respectively and the corresponding glucose-insulin responses

are shown in Figure 5.1. The parameters appear to have high SDLN values;

parameter Tghmax has the lowest SDLNs value at 0.729, and the parameter TiG

at 1.110. The correlation matrix generated within Facsmile shows a moderate

correlation between the parameter estimates with, in particular, a correlation

of 0.824 between Txi and Vg, -0.717 between Vi and KxgI , 0.633 between TiG

and Kxi, 0.628 between λ and Tghmax and 0.612 between TiG and Vi. Fits 2

and 4 (Subject 3) may appear to have a visually tighter fit, however only 5

parameters are well determined and the SDLN value for the parameters are

generally higher than 1, see Figures B.1, B.2 and B.3 and Tables B.1, B.4 in

Appendix B.

The best set of parameter estimates for Subject 8 is Fit 7, where only

one of the parameters are not well determined and it has the smallest RSS

value compared to other fits using the same data set. The SDLN and the

correlation matrix of the well determined parameters are shown in Table 5.3

and 5.4 and Figure 5.2 shows the corresponding plots produced for Fit 7. The

SDLN values for the parameters are relatively high; parameter Vi at 1.400;

Tghmax at 1.317; TiG at 0.980; KxgI at 0.789 and the rest of the parameters

over 0.362. The correlation generated within the FACSIMILE shows a high

correlation between the parameters Vi and TiG at 0.970, Tghmax and Kxi at

0.924, λ and Kxi at 0.944, λ and Tghmax at 0.936 and Tghmax and Vi at -0.967.

Results for Fits 5 and 6 are shown in Appendix B.
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The best set of parameter estimates for Subject 17 is Fit 10 as only one

of all the parameters are not well determined and the RSS is lowest at 1.6829×

102. The SDLN of Fit 10 is shown in Table 5.3 and the correlation matrix of

the well determined parameters is shown in Table 5.4. Figure 5.3 shows the

glucose-insulin responses of Fit 10. Other results obtained for Subject 17, i.e.

Fits 8 and 9, are included in Appendix B.

The parameter estimates demonstrate that the parameter Txg is not de-

terminable (in all Fits performed), possibly because the EIC model is designed

to produce steady state insulin response as shown in Figure 2.6. This may also

explain the high SDLNs and RSS values obtained for the Fits and therefore the

EIC model, is not an appropriate model for the modelling of insulin responses

of the glycemic clamp data.

This again demonstrates that the establishment of unique structural

identifiability of a model does not guarantee a good fit to ‘any kind’ of ex-

perimental data. The parameter estimates demonstrate that the deterministic

EIC model does not necessarily capture the transient dynamics in the glycemic

data. Indeed none of the parameter estimates are particularly well determined

in terms of the SDLNs generated. This model was developed to describe the

oscillation of glucose-insulin dynamics during a EIC experiment and has also

been extended and applied in a stochastic format by Picchini et al. [2006] in

order to fully capture these transient dynamics. Picchini et al. [2008] have

also simplified the model and applied a Maximum Likelihood approach to

parameter estimation using clamp data.
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Subject 3

Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 4.9 5.67 180 4.8 41.33
30 4.8 27.17 210 4.9 45.67
60 4.6 40.50 241 4.8 38.67
70 4.5 41.00 270 4.8 36.83
80 4.6 40.00 300 4.8 32.33
90 4.8 37.33 330 5.1 29.67
100 5.2 51.50 360 4.6 21.50
110 4.5 42.83 390 5.3 34.17
120 4.5 44.00 420 5.3 14.33
150 5.1 42.83

Subject 8

Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 5.1 6.67 180 5.0 58.33
30 5.0 24.67 210 5.0 51.67
45 4.9 36.83 240 5.2 46.00
60 4.6 39.83 270 4.7 37.83
70 5.0 48.00 300 5.5 42.17
80 4.8 51.17 330 4.6 29.83
90 5.3 56.33 361 5.6 30.67
100 5.4 56.67 390 5.1 25.33
110 5.2 58.50 420 5.0 20.50
120 5.3 63.00 488 5.0 19.50
150 5.1 64.00

Subject 17

Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 4.9 7.17 150 4.6 39.33
15 5.3 16.00 180 5.3 42.17
30 4.9 31.33 210 5.3 42.00
45 5.6 37.5 240 5.0 36.83
60 5.0 34.00 270 4.6 34.33
70 5.3 37.33 300 5.1 36.33
80 4.9 36.17 330 5.2 28.50
92 4.7 38.00 360 5.0 25.33
100 4.9 42.50 390 5.4 21.67
111 5.2 38.17 420 4.7 16.83
120 4.7 38.33 480 4.8 13.17

Table 5.1: The EIC data for subject 17.
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Fit Subject RSS Parameters determined
1 3 2.2648 · 102 KxgI , Kxi, TiG, Tghmax, Vg, Vi, λ
2 3 2.2671 · 102 KxgI , Kxi, Tghmax, Vi, λ
3 3 2.2524 · 102 KxgI , Kxi, TiG, Tghmax, Vg, λ
4 3 2.2585 · 102 TiG, Tghmax, Vg, Vi, λ
5 8 4.0243 · 102 KxgI , Kxi, TiG, Tghmax, Vg, Vi
6 8 4.0167 · 102 KxgI , TiG, Tghmax, Vg, Vi, λ
7 8 3.9811 · 102 KxgI , Kxi, TiG, Tghmax, Vg, Vi, λ
8 17 1.6692 · 102 KxgI , Kxi, TiG, Tghmax, Vi
9 17 1.6873 · 102 KxgI , TiG, Tghmax, Vg, Vi, λ
10 17 1.6829 · 102 KxgI , Kxi, TiG, Tghmax, Vg, Vi, λ
RSS represents the Residual Sum of Squares

Table 5.2: List of Fits (1-10) for Subjects 3, 8 and 17 using the EIC model and
the statistical information obtained within FACSMILE i.e. the RSS (Residual
Sum of Square) and well determined parameters.

Fit 1 (Subject 3) Fit 7 (Subject 8) Fit 10 (Subject 17)
Parameters Value [SDLN] Value [SDLN] Value [SDLN]

Vg 1.223 · 10−1 [0.957] 4.034 · 10−5 [0.692] 1.568 · 10−2 [0.555]
Vi 1.482 · 10−1 [0.892] 2.350 · 101 [1.400] 9.073 · 10−1 [0.427]
KxgI 2.73 [1.002] 2.385 · 10−1 [0.789] 1.820 · 10−1 [0.849]
Kxi 5.151 · 10−2 [0.901] 3.368 · 10−2 [0.504] 5.836 · 10−2 [0.768]

Tghmax 3.046 · 102 [0.729] 1.549 [1.317] 2.006 · 102 [0.538]
TiG 5.827 · 102 [1.110] 6.798 [0.980] 3.480 · 10−1 [0.974]
λ 9.179 · 10−3 [0.853] 3.014 · 10−2 [0.362] 3.693 · 10−2 [0.253]

RSS = 2.2648 · 102 RSS = 3.9811 · 102 RSS = 1.6829 · 102

Table 5.3: Values and SDLN table of Fits nos. 1 (Subject 3), 7 (Subject 8)
and 10 (Subject 17).
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Fit 1 (Subject 3)

row/column Vg KxgI TiG Kxi λ Tghmax Vi
Vg 1.000 -0.387 -0.427 -0.824 -0.437 - 0.025 0.317
KxgI -0.387 1.000 -0.338 0.283 -0.518 -0.156 -0.717
TiG -0.427 -0.338 1.000 0.633 0.349 - 0.378 0.612
Kxi -0.824 0.283 0.633 1.000 0.211 -0.330 -0.222
λ -0.437 - 0.518 0.349 0.211 1.000 0.628 0.200
Tghmax -0.025 -0.516 -0.378 -0.330 0.628 1.000 -0.175
Vi 0.317 -0.717 0.612 -0.222 0.200 -0.175 1.000

Fit 7 (Subject 8)

row/column Vg KxgI TiG Kxi λ Tghmax Vi
Vg 1.000 -0.174 0.474 -0.514 -0.532 -0.504 0.529
KxgI -0.174 1.000 0.345 -0.641 -0.667 -0.574 0.458
TiG 0.474 0.345 1.000 -0.734 0.780 -0.893 0.970
Kxi -0.514 -0.641 -0.734 1.000 0.944 0.924 -0.871
λ -0.532 -0.667 -0.780 0.944 1.000 0.936 -0.887
Tghmax -0.504 -0.574 -0.893 0.924 0.936 1.000 -0.967
Vi 0.529 0.458 0.970 -0.871 -0.887 -0.967 1.000

Fit 10 (Subject 17)

row/column Vg KxgI TiG Kxi λ Tghmax Vi
Vg 1.000 0.148 0.322 0.433 -0.605 -0.483 -0.027
KxgI 0.148 1.000 -0.509 -0.397 -0.792 -0.634 -0.455
TiG 0.322 -0.509 1.000 0.913 0.086 -0.079 0.677
Kxi 0.433 -0.397 0.913 1.000 0.015 -0.047 0.322
λ -0.605 -0.792 0.086 0.015 1.000 0.876 0.174
Tghmax -0.483 -0.634 -0.079 -0.047 0.876 1.000 -0.114
Vi -0.027 -0.455 0.677 0.322 0.174 -0.114 1.000

Table 5.4: Correlation Matrix of the well determined parameters for Fit 1
(Subejct 3), Fit 7 (Subject 8) and Fit 10 (Subject 17).
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Figure 5.1: Glucose and insulin responses for the EIC model, Fit 1 (Subject
3)
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Figure 5.2: Glucose and insulin responses for the EIC model, Fit 7 (Subject
8)
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Figure 5.3: Glucose and insulin responses for the EIC model, Fit 10 (Subject
17).



Chapter 6

Structural Identifiability of The

Closed-Loop Minimal Model

6.1 Introduction

The Closed-Loop Minimal Model (CLMM) demonstrates the completed glucose-

insulin dynamics during the course of an intravenous glucose tolerance test

(IVGTT), including the first phase glucose and insulin kinetics, which were not

captured in the Extended Minimal Model (EMM). As the model has only re-

cently been introduced by Arundel et al. [2010], as far as the author is aware, a

structural identifiability analysis has not yet performed on the CLMM. There-

fore, such analysis is essential for any further experimental design or data

fitting to be performed using this model. The analysis was performed incor-

porating a symbolic computational tool, Mathematica [Wolfram, 1996].

The system equations for the CLMM (as shown in Chapter 2 Section

114
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2.6) are given by [Arundel et al., 2010]

Ġ(t) = −(p1 + k6IR(t))G(t) + p1Gb, G(0) = Gb

İR(t) = k2(I(t)− Ib)− p2IR(t), IR(0) = 0

İ(t) = M1(G(t)− h)e−λt + γ(G(t)− h)− pexitI(t), I(0) = Ib

where G(t) is the glucose concentration; I(t) the insulin concentration and

IR(t) the remote insulin action and the observations of the system are given

by

y1(t) = G(t)

and

y2(t) = I(t).

A structural identifiability of the CLMM was attempted using the Tay-

lor Series approach of [Pohjanpalo, 1978]. However, application of the ap-

proach proved difficult due to the complexity of the system structure, and the

Taylor Series coefficients generated were too large to make the analysis pos-

sible within Mathematica. Therefore, Similarity Transformation approach is

considered.

As the model includes a time dependent exponential term and the sys-

tem is not strictly in the state space form required for application of the Sim-

ilarity Transformation approach, therefore, a dummy variable is introduced

to represent the exponential term. This yields an augmented, but required

version of the model in order to perform the analysis using this approach as

for the pre-switching phase of the EMM. The dummy variable is given by:

W (t) = exp(−λt)
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whereby

Ẇ (t) = −λW (t), W (0) = 1.

The augmented version of the CLMM therefore has an additional differential

equation to the original state space model and the system equations are given

by

Ġ(t) = −(p1 + k6IR(t))G(t) + p1Gb (6.1)

İR(t) = k2(I(t)− Ib)− p2IR(t) (6.2)

İ(t) = M1(G(t)− h)W (t) + γ(G(t)− h)− pexitI(t) (6.3)

Ẇ (t) = −λW (t). (6.4)

The vector of unknown parameters is therefore given by

p = (p1, p2, pexit, k2, k6,M1, h, γ, λ,Gb, Ib)
T .

6.2 Structural Identifiability Analysis

As the augmented CLMM does not satisfy the Controllability Rank Criterion,

it is treated as an autonomous system. Therefore, the Similarity Transfor-

mation approach for autonomous systems [Evans et al., 2002] is used for the

analysis. Theorem 3.1.5 [Evans et al., 2002] is therefore applied for this anal-

ysis.

Consider

µ1(x,p) = G(t),



Chapter 6. Structural Identifiability of The Closed-Loop Minimal Model 117

then choose

µ2(x,p) = Lfpµ1(x)

= −(p1 + k6IR(t))G(t) + p1Gb.

Then consider

µ3(x,p) = I(t)

and choose

µ4(x,p) = Lfpµ3(x)

= −M1(G(t)− h)W (t)− γ(G(t)− h)− pexitI(t).

Suppose that

H(x,p) = [µ1(x,p), µ2(x,p), µ3(x,p), µ4(x,p)]T .

Then

∂Hp(x)

∂x
=



1 0 0 0

−(p1 + k6IR(t)) k6G(t) 0 0

0 0 1 0

γ +M1W (t) 0 −pexit M1(G(t)− h)


which has rank 4, i.e. has full rank. Hence the ORC is satisfied.
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Eqn. (3.21) is given by

f(λ(x(t, p̄)),p) =



∂λ1
∂G

∂λ1
∂IR

∂λ1
∂I

∂λ1
∂W

∂λ2
∂G

∂λ2
∂IR

∂λ2
∂I

∂λ2
∂W

∂λ3
∂G

∂λ3
∂IR

∂λ3
∂I

∂λ3
∂W

∂λ4
∂G

∂λ4
∂IR

∂λ4
∂I

∂λ4
∂W


f(x(t, p̄), p̄). (6.5)

The system observations, Eqn. (3.19) give the following

[
1 0 1 0

]


λ1(x)

λ2(x)

λ3(x)

λ4(x)


=

[
1 0 1 0

]


G

IR

I

W


.

whereby

λ1(x) = G

and

λ3(x) = I,

Therefore,

∂λ1(x)

∂G
= 1 (6.6)

∂λ1(x)

∂IR
=
∂λ1(x)

∂I
=
∂λ1(x)

∂W
= 0 (6.7)

and

∂λ3(x)

∂I
= 1 (6.8)

∂λ3(x)

∂G
=
∂λ3(x)

∂IR
=
∂λ3(x)

∂W
= 0. (6.9)
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Substituting Eqns. (6.6) - (6.9) into Eqn. (6.5) gives

f(λ(x(t, p̄)),p) =



1 0 0 0

∂λ2
∂G

∂λ2
∂IR

∂λ2
∂I

∂λ2
∂W

0 0 1 0

∂λ4
∂G

∂λ4
∂IR

∂λ4
∂I

∂λ4
∂W


f(x(t, p̄), p̄). (6.10)

The first component of Eqn. (6.10) is given by

f 1(λ(x(t, p̄)),p) = µ2(λ(x(t, p̄)),p)

= f 1(x(t, p̄), p̄, p̄) = µ2(x(t, p̄), p̄)

and hence

−(p1 + k6λ2(x))G+ p1Gb = −(p̄+ k̄6IR)G+ p̄1Ḡb (6.11)

which after rearranging yields

λ2(x) =
GIRk̄6 −Gp1 +Gbp1 − Ḡbp̄1 +Gp̄1

Gk6

and so

∂λ2(x)

∂G
=
−Gbp1 + Ḡbp̄1

G2k6

,

∂λ2(x)

∂IR
=
k̄6

k6

,

and

∂λ2(x)

∂I
=
∂λ2(x)

∂W
= 0.
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The second component of Eqn. (6.10) is satisfied if and only if

f 3(λ(x(t, p̄)),p)− ∂λ2

∂G
f 1(x(t, p̄), p̄)− ∂λ2

∂IR
f 2(x(t, p̄), p̄) = 0 (6.12)

whereby

k2(I − Ib)− p2λ2(x)−
(
−Gbp1 + Ḡbp̄1

G2k6

)
(−(p̄1 + k̄6IR)G+ p̄1Ḡb)

−
(
k̄6

k6

)
(k̄2(I − Īb)− p̄2IR) = 0

and

−G
(
(Gbp1 − Ḡbp̄1)p2 +G(Ibk2k6 + IRk̄6p2 − p1p2 + p̄1p2 − k2k6I)

)
−G(IRk̄6 + p̄1)(Gbp1 − Ḡbp̄1)− Ḡbp̄1(−Gbp1 + Ḡbp̄1)

+G2k̄6(Ībk̄2 + IRp̄2 − k̄2I) = 0

which satify Eqn. (6.12) as

q1(p, p̄)G2(t, p̄) + q2(p, p̄)G2(t, p̄)IR(t, p̄) + q3(p, p̄)G2(t, p̄)I(t, p̄)

+q4(p, p̄)G(t, p̄)IR(t, p̄) + q5(p, p̄)G(t, p̄) + q6(p, p̄) = 0

where

q1(p, p̄) = −Ibk2k6 + Ībk̄2k̄6 + p1p2 − p̄1p2

q2(p, p̄) = −k̄6p2 + k̄6p̄2

q3(p, p̄) = −k̄2k̄6 + k2k6

q4(p, p̄) = −Gbk̄6p1 + Ḡbk̄6p̄1

q5(p, p̄) = −Gbp1p̄1 + Ḡbp̄
2
1 −Gbp1p2 + Ḡbp̄1p2

q6(p, p̄) = −Ḡ2
b p̄

2
1 +GbḠbp1p̄1.

This polynomial must be identically zero. Therefore each of its coefficients
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must be zero for all (t ∈ [0, τ)) hence

q1(p, p̄) = q2(p, p̄) = q3(p, p̄) = q4(p, p̄) = q5(p, p̄) = q6(p, p̄) = 0.

Solving this system of algebraic equations, it can be concluded that

p2 = p̄2 (6.13)

k2k6 = k̄2k̄6 (6.14)

Gbp1 = Ḡbp̄1 (6.15)

and

−Ībk̄2k̄6 + Ibk2k6 = p1p2 − p̄1p2 (6.16)

and substituting k2k6 = k̄2k̄6 and p2 = p̄2 into Eqn. (6.16) gives

k̄2k̄6(Īb − Ib) = p2(p̄1 − p1). (6.17)

The third component of Eqn. (6.10) gives

f 3(λ(x(t, p̄)),p) = µ4(λ(x(t, p̄)), p̄)

= f 3(x(t, p̄)), p̄) = µ4(x(t, p̄), p̄)

which gives

M1(λ1(x)− h)λ4(x) + γ(λ1(x)− h)− pexitλ3(x)− M̄1(G− h̄)W

−γ̄(G− h̄) + p̄exitI = 0
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and after arranging this yields

λ4(x) =
G(−γ + γ̄) + γh− γ̄h̄+ I(pexit − p̄exit) +W (GM̄1 − h̄M̄1)

(G− h)M1

whereby

∂λ4(x)

∂G
=
γ̄(−h+ h̄)− pexitI + p̄exit − hM̄1W + h̄M̄1W

(G− h)2M1

,

∂λ4(x)

∂IR
= 0,

∂λ4(x)

∂I
=
pexit − p̄exit
(G− h)M1

,

and

∂λ4(x)

∂W
=

(G− h̄)M̄1

(G− h)M1

.

The fourth component of Eqn. (6.10) is satisfied if and only if

f 4(λ(x(t, p̄),p)− ∂λ4(x)

∂G
f 1(x(t, p̄), p̄)− ∂λ4(x)

∂I
f 3(x(t, p̄), p̄) (6.18)

−∂λ4(x)

∂W
f 4(x(t, p̄), p̄) = 0.

Therefore,

−(G− h)λ(−Gγ +Gγ̄ − γh− γ̄h̄− p̄exitI +GM̄1W − h̄M̄1W )

−(G− h)(−G+ h̄)λ̄M̄1W − (−Ḡbp̄1 +G(IRk̄6 + p̄1))(γ̄(h− h̄)

+pexitI − p̄exitI + hM̄1W − h̄M̄1W ) + (G− h)(pexit − p̄exit)(γ̄h̄

+pexitI + h̄M̄1W −G(γ̄ + M̄1W )) = 0
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which satisfy Eqn. (6.18) given by

c1(p, p̄)G2(t, p̄) + c2(p, p̄)G2(t, p̄)W (t, p̄) + c3(p, p̄)G(t, p̄)

+c4(p, p̄)G(t, p̄)IR(t, p̄) + c5(p, p̄)G(t, p̄)IR(t, p̄)I(t, p̄)

+c6(p, p̄)G(t, p̄)I(t, p̄) + c7(p, p̄)G(t, p̄)IR(t, p̄)W (t, p̄) + c11(p, p̄)

+c8(p, p̄)G(t, p̄)W (t, p̄) + c9(p, p̄)I(t, p̄) + c10(p, p̄)W (t, p̄) = 0

where

c1(p, p̄) = γλ− γ̄λ̄− γ̄pexit + γ̄p̄exit

c2(p, p̄) = −λM̄1 + λ̄M̄1 − M̄1pexit + M̄p̄exit

c3(p, p̄) = −2γhλ+ γ̄hλ+ γ̄h̄λ− γ̄hp̄1 + γ̄h̄p̄1 + γ̄hpexit + γ̄h̄pexit

+Ibλpexit + Ibp̄1pexit − γ̄hp̄exit − γ̄h̄p̄exit − Ībλp̄exit

−Ībp̄1p̄exit − Ībpexitp̄exit + Ībp̄
2
exit

c4(p, p̄) = −γ̄hk̄6 + γ̄h̄k̄6 − Ībk̄6p̄exit + Ibk̄6pexit

c5(p, p̄) = −k̄6pexit + k̄6p̄exit

c6(p, p̄) = −λpexit − p̄1pexit + λp̄exit + p̄1p̄exit + pexitp̄exit − p̄2
exit

c7(p, p̄) = −hk̄6M̄1 + h̄k̄6M̄1

c8(p, p̄) = hλM̄1 + h̄λM̄1 − hλ̄M̄1 − h̄λ̄M̄1 − hM̄1p̄1 + h̄M̄1p̄1

+hM̄1pexit + h̄M̄1pexit − hM̄1p̄exit − h̄M̄1p̄exit

c9(p, p̄) = hλpexit + Ḡbp̄1pexit − hλp̄exit − Ḡbp̄1p̄exit − hpexitp̄exit

+hp̄2
exit

c10(p, p̄) = −hh̄λM̄1 + hh̄λ̄M̄1 + ḠbhM̄1p̄1 − Ḡbh̄M̄1p̄1 − hh̄M̄1pexit

+hh̄M̄1p̄exit

c11(p, p̄) = γh2λ− γ̄hh̄λ+ γ̄Ḡbhp̄1 − γ̄Ḡbh̄p̄1 − γ̄hh̄pexit

−ḠbIbp̄1pexit + γ̄hh̄p̄exit + hĪbλp̄exit + ḠbĪbp̄1p̄exit

+hĪbpexitp̄exit − hĪbp̄2
exit − hIbλpexit.
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The polynomial must be identically zero. Therefore each of its coefficients

must be zero (t ∈ [0, τ)), hence

c1(p, p̄) = c2(p, p̄) = c3(p, p̄) = c4(p, p̄) = c5(p, p̄) = c6(p, p̄)

= c7(p, p̄) = c8(p, p̄) = c9(p, p̄) = c10(p, p̄) = c11(p, p̄) = 0.

Solving this system of algebraic equations, it can be concluded that

h = h̄ (6.19)

pexit = p̄exit (6.20)

−λ+ λ̄ =pexit − p̄exit (6.21)

γ = γ̄ (6.22)

γλ− λ̄γ̄ = γ̄pexit − γ̄p̄exit. (6.23)

Substituting Eqn. (6.20) into Eqn. (6.21) gives

λ = λ̄. (6.24)

Substituting Eqn. (6.20) and (6.24) into (6.23) gives

γ = γ̄. (6.25)

In conclusion, the outcome for the parameters from the structural identifiabil-

ity analysis is given by

p1Gb = p̄1Ḡb

p2 = p̄2

pexit = p̄exit



Chapter 6. Structural Identifiability of The Closed-Loop Minimal Model 125

k2k6 = k̄2k̄6

h = h̄

λ = λ̄

γ = γ̄

Ib = −p2(p̄1 − p1)

k̄2k̄6

+ Īb.

Therefore, the parameters p2 = p̄2, h = h̄, pexit = p̄exit, λ = λ̄, γ = γ̄ are

uniquely identifiable without any constraints. Under the condition that the

parameter Gb is known (or measurable in the real system), then the parameters

p1 and Ib are also uniquely identifiable.

The parameters k2 and k6 are unidentifiable as these two parameters

appear only as a product thoughout. The parameter M1 is also unidentifiable,

as no further information can be obtained for it. Therefore, the system is

structurally unidentifiable for this experiment.

The CLMM in this form is structurally unidentifiable, therefore fur-

ther information is needed for the system parameters or a reparameterisation

process can be carried out in order to yield a model that is at least locally

identifiable, but with a reduced set of parameters.

6.3 Reparameterisation

The structural identifiability analysis using a version of Similarity Transforma-

tion Approach by Evans et al. [2005] (in section 6.2) shows that the augmented

version of the CLMM is structurally unidentifiable. Therefore, a reparameteri-

sation process is considered. The system equations for the CLMM Eqns. (6.1)
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- (6.4) are given by

Ġ(t) = −(p1 + k6IR(t))G(t) + p1Gb

İR(t) = k2(I(t)− Ib)− p2IR(t)

İ(t) = M1(G(t)− h)W (t) + γ(G(t)− h)− pexitI(t)

Ẇ (t) = −λW (t)

where the observations are given by

y1(t) = G(t)

and

y2(t) = I(t).

Applying Theorem 3.1.5, the first component of Eqn. (3.21) gives

−(p1 + k6λ2)G+ p1Gb = −(p̄1 + k̄6IR)G+ p̄1Ḡb. (6.26)

After rearranging, Eqn. (6.26) this gives

λ2 =
GIRk̄6 −Gp1 +Gbp1 − Ḡbp̄1 +Gp̄1

Gk6

. (6.27)

Substituting p2 = p̄2 and Gbp1 = Ḡbp̄1 from (6.13) and (6.15) respectively, the

second component of Eqn. (3.21) gives

G2(−Ibk2k6 + Ībk̄2k̄6 − p1p2 − p̄1p2 + k2k6I − k̄2k̄6I) = 0. (6.28)

Expanding Eqn. (6.28) as a Taylor Series in G(t) around G(0) = Gb and I(t)
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around I(0) = Ib give

−G2
bIbk̄2k̄6 +G2

b Ībk̄2k̄6 +G2
bp1p̄2 −G2

b p̄1p̄2 (6.29)

+(G2
bk2k6 −G2

b k̄2k̄6)(I − Ib)

+(−2GbIbk̄2k̄6 + 2GbĪbk̄2k̄6 + 2Gbp1p̄2 − 2Gbp̄1p̄2)(G−Gb)

+(2Gbk2k6 − 2Gbk̄2k̄6)(I − Ib)(G−Gb)

+(−Ibk̄2k̄6 + Ībk̄2k̄6 + p1p̄2 − p̄1p̄2)(G−Gb)
2

+(k2k6 − k̄2k̄6)(I − Ib)(G−Gb)
2 = 0

which yields the sequence of coefficients F
(i)
1 (p), i = 1, 2, ..., as

F
(1)
1 (p) = −Ibk2k6 + Ībk̄2k̄6 + p1p̄2 − p̄1p̄2 = 0 (6.30)

F
(2)
1 (p) = k2k6 − k̄2k̄6 = 0 (6.31)

...
...

Consider the partial derivates of the coefficients F
(1)
1 , F

(2)
1 with respect to

p = (k2, k6), the infinite jacobian matrix J(p) can be generated to give

J(p) =


−Ibk6 −Ibk2

k6 k2

...
...


(6.32)

which has rank 1. This matrix J(p) is rank deficient by one. According to

Theorem 3.2.1 implies that there is one redundant parameter and a reparam-

eterisation of the system consisting only 10 parameters,

φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9, φ10) (6.33)

instead of 11 parameters in the original model. The one-dimensional null space
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of (6.32) is spanned by the vector

−k2

k6

∂φ(p)

∂k2

+
∂φ(p)

∂k6

= 0 (6.34)

whereby

n =

(
−k2

k6

, 1

)
. (6.35)

The structural identifiability analysis in Section 6.2 shows that the parameter

M1 was effectively eliminated from the analysis and its identifiability cannot

be determined from the system, therefore, one obvious consideration is to

eliminate the parameter M1 from the reparameterised system. Therefore, the

total number of parameters is reduced further and is given by

φ = (φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9). (6.36)

To solve for the function φ of Theorem 3.2.1, where φ(p) provides locally iden-

tifiable combinations of the original parameters, we consider the orthogonality

condition (3.36) whereby

(
−k2

k6

, 1

)
·
(
∂φ(p)

∂k2

,
∂φ(p)

∂k6

)
= 0 (6.37)

or

−k2

k6

∂φ(p)

∂k2

+
∂φ(p)

∂k6

= 0 (6.38)

one of the possible solutions for Eqn. (6.38) are given by

φ(p) = k2k6 (6.39)

...

These possible solutions, i.e. the term on the right-hand sides of Eqn.
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(6.39) is locally identifiable parameter combinations for the tested system (6.1)

- (6.4). The system (6.1) - (6.4) may therefore be rearranged with a reduced

set of parameters (9 parameters) through groupings of the original parameter,

consider the following transformation

IR = I∗Rk2

and

W =
W ∗

M1

which, when substituted into the system equations (6.1) - (6.4) give

Ġ(t) =−
(
p1 + k6k2I

∗
R(t)

)
G(t) + p1Gb

İ∗R(t)k2 = k2

(
I(t)− Ib

)
− p2k2I

∗
R(t)

İ(t) =
(
G(t)− h

)
W ∗(t) + γ

(
G(t)− h

)
− pexitI(t)

˙W ∗(t) =− λW ∗(t)

which after rearranging gives

Ġ(t) =−
(
p1 + k2k6I

∗
R(t)

)
G(t)− p1Gb

İ∗R(t) = I(t)− Ib − p2I
∗
R(t)

İ(t) =
(
G(t)− h

)
W ∗(t) + γ

(
G(t)− h

)
− pexitI(t)

Ẇ ∗(t) =− λW ∗(t).

The reparameterised, at least locally identifiable, system of the augmented
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CLMM is then given by

Ġ(t) =−
(
φ1 + φ2I

∗
R(t)

)
G(t) + φ1φ3 (6.40)

İ∗R(t) =I(t)− φ4 − φ5I
∗
R(t) (6.41)

İ(t) =
(
G(t)− φ6

)
W ∗(t) + φ7

(
G(t)− φ6

)
− φ8I(t) (6.42)

Ẇ ∗(t) =− φ9W
∗(t). (6.43)

The reparameterised model is now given by

Ġ(t) =−
(
φ1 + φ2I

∗
R(t)

)
G(t) + φ1φ3 (6.44)

İ∗R(t) =I(t)− φ4 − φ5I
∗
R(t) (6.45)

İ(t) =
(
G(t)− φ6

)
exp(−φ9t) + φ7

(
G(t)− φ6

)
− φ8I(t) (6.46)

and the initial conditions are given by

Ġ(0) = Gb

İ∗R(0) = 0

and

İ(0) = Ib

with the new locally identifiable parameter set φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8,

φ9.
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6.4 Structural Identifiability of the Reparam-

eterised Closed-Loop Minimal Model

As the reparameterised model still consists of a time dependent exponential

term, the augmented version of the model is considered, i.e. Eqns. (6.40) -

(6.43) and are given by

Ġ(t) = −(φ1 + φ2I
∗
R(t))G(t) + φ1φ3

İ∗R(t) = I(t)− φ4 − φ5I
∗
R(t)

İ(t) = (G(t)− φ6)W ∗(t) + φ7(G(t)− φ6)− φ8I(t)

Ẇ ∗(t) = −φ9W
∗(t)

and the new unknown parameter vector is

p = [φ1, φ2, φ3, φ4, φ5, φ6, φ7, φ8, φ9]T .

The observations of the system are given by

y1(t) = G(t)

and

y2(t) = I(t).

A structural identifiability analysis is performed on the reparameterised CLMM

by applying the same method as for the original form of the model, i.e. the

Similarity Transformation approach for autonomous systems [Evans et al.,

2002]. Theorem 3.1.5 is then again applied.

Consider

µ1(x,p) = G(t)
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then choose

µ2(x,p) = Lfpµ1(x)

= −(φ1 + φ2I
∗
R(t))G(t) + φ1φ3.

Consider now

µ3(x,p) = I(t)

then choose

µ4(x,p) = Lfpµ3(x)

= (G(t)− φ6)W ∗(t) + φ7(G(t)− φ6)− φ8I(t).

Suppose that

H(x,p) = [µ1(x,p), µ2(x,p), µ3(x,p), µ4(x,p)]T

then

∂Hp(x)

∂x
=



1 0 0 0

−(φ1 + φ2I
∗
R) φ2G 0 0

0 0 1 0

(W ∗ + φ7) 0 −φ8 (G− φ6)


.

The four (row) vectors are linearly independent, so this matrix has Rank 4

(full rank). Therefore, the ORC is satisfied.

For λ(x) to satisfy Eqn. (3.22) it is necessary that

[
1 0 1 0

]


λ1(x)

λ2(x)

λ3(x)

λ4(x)


=

[
1 0 1 0

]


G(t)

I∗R(t)

I(t)

W ∗(t)


.
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Therefore,

λ1(x) = G(t) (6.47)

and

λ3(x) = I(t) (6.48)

and Eqn. (3.21) is then given by

f(λ(x(t, p̄)),p) =



1 0 0 0

∂λ2
∂G

∂λ2
∂I∗R

λ2
∂I

∂λ2
∂W ∗

0 0 1 0

∂λ4
∂G

∂λ4
∂I∗R

∂λ4
∂I

∂λ4
∂W ∗


f(x(t, p̄), p̄). (6.49)

The first component of Eqn. (6.49) is given by

f 1(λ(x(t, p̄)),p) = µ2(λ(x(t, p̄)),p)

= f 1(x(t, p̄), p̄)), p̄) = µ2(x(t, p̄), p̄)

giving

−(φ1 + φ2λ2(x))G+ φ1Gb = −(φ̄1 + φ̄2I
∗
R)G+ φ̄1Ḡb.

Therefore, λ2(x) is given by

λ2(x) =
−Gφ1 +Gφ̄1 +GI∗Rφ̄2 + φ1φ3 − φ̄1φ̄3

Gφ2

.
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and

∂λ2(x)

∂G
=
−φ1φ3 + φ̄1φ̄3

G2φ2

,

∂λ2(x)

∂IR
=
φ̄2

φ2

,

∂λ2(x)

∂I
=
∂λ2(x)

∂W ∗ = 0.

The second component of Eqn. (6.49) is satisfied if and only if

f 2(λ(x(t, p̄)),p)− ∂λ2

∂G
f 1(x(t, p̄), p̄)− ∂λ2

∂I∗R
f 2(x(t, p̄, p̄) = 0 (6.50)

whereby

−G2φ2φ4 +G2φ1φ5 −G2φ̄1φ5 +Gφ̄1φ̄3φ5 +G2φ2I

−Gφ1φ̄1φ3 −GI∗Rφ1φ̄2φ3 +Gφ̄2
1φ̄3 +GI∗Rφ̄1φ̄2φ̄3 + φ1φ̄1φ3φ̄3

+φ̄2φ̄
2
3 +G2φ̄2φ̄4 +G2I∗Rφ̄2φ̄5 −G2φ̄2I = 0

which satisfies Eqn. (6.50) and can be written in the form

q1(p, p̄)G2(t, p̄) + q2(p, p̄)G2(t, p̄)I∗R(t, p̄) + q3(p, p̄)G2(t, p̄)I(t, p̄)

+q4(p, p̄)G(t, p̄) + q5(p, p̄)G(t, p̄)I∗R(t, p̄) + q6(p, p̄) = 0

for all t ∈ [0, τ), where



Chapter 6. Structural Identifiability of The Closed-Loop Minimal Model 135

q1(p, p̄) = −φ2φ4 + φ̄2φ̄4 + φ1φ5 − φ̄1φ̄5

q2(p, p̄) = −φ̄2φ5 + φ̄2φ̄5

q3(p, p̄) = φ2 − φ̄2

q4(p, p̄) = −φ1φ̄1φ3 + φ̄2
1φ̄3 − φ1φ3φ5 + φ̄1φ̄3φ5

q5(p, p̄) = −φ1φ̄2φ3 + φ̄1φ̄2φ̄3

q6(p, p̄) = φ1φ̄1φ3φ̄3 − φ̄2
1φ̄

2
3.

This polynomial must be identically zero. Therefore each of its coefficients

must be zero for all (t ∈ [0, τ)) hence

q1(p, p̄) = q2(p, p̄) = q3(p, p̄) = q4(p, p̄) = q5(p, p̄) = q6(p, p̄) = 0.

Solving this system of algebraic equations, it can be concluded that

φ̄5 = φ5 (6.51)

φ̄2 = φ2 (6.52)

φ̄1φ̄3 = φ1φ3 (6.53)

φ1φ5 − φ̄1φ5 = φ̄2φ̄4 − φ2φ4. (6.54)

As φ3 is the basal level of glucose concentration (i.e. in Gb in the EMM and

the CLMM), this can therefore be assumed to be known or measurable. This

gives

φ̄3 = φ3 (6.55)

φ̄1 = φ1 (6.56)

φ̄4 = φ4. (6.57)
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The third component of Eqn. (6.49) gives

f 3(λ(x(t, p̄)),p) = µ4(λ(λ(x(t, p̄)), p̄)

= f 3(x(t, p̄), p̄), p̄) = µ4(x(t, p̄)

whereby

(G− φ6)λ4(x) + φ7(G− φ6)− φ8I = (G− φ̄6)W ∗ + φ̄7(G− φ̄6)− φ̄8I (6.58)

and thus

λ4 =
−Gφ8 + φ7φ8 +Gφ̄8 − φ̄7φ̄8 + φ9I − φ̄9I +Gφ̄6W

∗ − φ̄6φ̄7W
∗

φ6(G− φ7)

and

∂λ4

∂G
=

(−φ9 + φ̄9)I − φ7(φ̄8 + φ̄6W
∗) + φ̄7(φ̄8 + φ̄6W

∗)

φ6(G− φ7)2

∂λ4

∂IR
= 0

∂λ4

∂I
=
φ̄6(G− φ̄7)

φ6(G− φ7)

∂λ4

∂W ∗ =
φ̄6(G− φ̄7)

φ6(G− φ7)
.

The fourth component of Eqn. (6.49) is satisfied if and only if

f 4(λ(x(t, p̄)),p)− ∂λ4

∂G
f 1(x(t, p̄), p̄)− ∂λ4

∂I∗R
f 2(x(t, p̄), p̄) (6.59)

−∂λ4

∂I
f 3(x(t, p̄), p̄)− ∂λ4

∂W ∗f 4(x(t, p̄), p̄) = 0
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whereby,

(G− φ6)φ9(−φ6φ7 + φ̄6φ̄7 − φ8I + φ̄8I +G(φ7 − φ̄7 −W ∗) + φ̄6W
∗)

+(G− φ6)(G− φ̄6)φ̄9W
∗ − (G(φ̄1 + I∗Rφ̄2)− φ̄1φ̄3)((φ8 − φ̄8)I

+φ6(φ̄7 +W ∗)− φ̄6(φ̄7 +W ∗)) + (G− φ6)(φ8 − φ̄8)(φ̄8I −G(φ̄7 +W ∗)

+φ̄6(φ̄7 +W ∗)) = 0

which satisfies Eqn. (6.59) and can be written in the form

q1(p, p̄)G2(t, p̄) + q2(p, p̄)G2(t, p̄)W ∗(t, p̄) + q3(p, p̄)G(t, p̄) (6.60)

+q4(p, p̄)G(t, p̄)I∗R(t, p̄) + q5(p, p̄)G(t, p̄)W ∗(t, p̄)

+q6(p, p̄)G(t, p̄)I(t, p̄) + q7(p, p̄)G(t, p̄)I∗R(t, p̄)I(t, p̄)

+q8(p, p̄)G(t, p̄)I∗R(t, p̄)W ∗(t, p̄) + q9(p, p̄)I(t, p̄)

+q10(p, p̄)W ∗(t, p̄) + q11(p, p̄) = 0

for all t ∈ [0, τ) where

q1(p, p̄) = φ8φ10 − φ̄8φ̄10 − φ̄8φ9 + φ̄8φ̄9

q2(p, p̄) = −φ̄6φ10 + φ̄6φ̄10 − φ̄6φ9 + φ̄6φ̄9

q3(p, p̄) = −2φ7φ8φ10 + φ̄7φ̄8φ10 + φ̄1φ̄7φ̄8 + φ7φ̄8φ10 − φ̄1φ7φ̄8

+φ7φ̄8φ9 + φ̄7φ̄8φ9 − φ7φ̄8φ̄9 − φ̄7φ̄8φ̄9

q4(p, p̄) = −φ̄2φ7φ̄8 + φ̄2φ̄7φ̄8

q5(p, p̄) = φ̄6φ7φ10 − φ̄6φ7φ̄10 − φ̄1φ̄6φ7 + φ̄6φ̄7φ10 − φ̄6φ̄7φ̄10

+φ̄1φ̄6φ̄7 + φ̄6φ7φ9 + φ̄6φ̄7φ9 − φ̄6φ7φ̄9φ̄6φ̄7φ̄9

q6(p, p̄) = −φ9φ10 − φ̄1φ9 + φ̄9φ10 + φ̄1φ̄9 + φ9φ̄9 − φ̄2
9

q7(p, p̄) = −φ̄2φ9 + φ̄2φ̄9

q8(p, p̄) = −φ̄2φ̄6φ7 + φ̄2φ̄6φ̄7
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q9(p, p̄) = φ̄1φ̄3φ9 + φ7φ9φ10 − φ̄1φ̄3φ̄9 − φ7φ̄9φ10 − φ7φ9φ̄9 + φ7φ̄
2
9

q10(p, p̄) = φ̄1φ̄3φ̄6φ7 − φ̄1φ̄3φ̄6φ̄7 − φ̄6φ7φ̄7φ10 + φ̄6φ7φ̄7φ̄10

−φ̄6φ7φ̄7φ9 +φ̄6φ7φ̄7φ̄9

q11(p, p̄) = φ2
7φ8φ10 + φ̄1φ̄3φ7φ̄8 − φ7φ̄7φ̄8φ9 + φ7φ̄7φ̄8φ̄9 − φ̄1φ̄3φ̄7φ̄8

−φ7φ̄7φ̄8φ10.

The polynomial must be identically zero. Therefore each of its coefficients

must be zero for all (t ∈ [0, τ )) hence

q1(p, p̄) = q2(p, p̄) = q3(p, p̄) = q4(p, p̄) = q5(p, p̄) = q6(p, p̄)

q7(p, p̄) = q8(p, p̄) = q9(p, p̄) = q10(p, p̄) = q11(p, p̄) = 0.

Solving this system of algebraic equations, it can be concluded that

φ8 = φ̄8 (6.61)

φ6 = φ̄6 (6.62)

−φ9 + φ̄9 = φ8 − φ̄8 (6.63)

φ7φ9 − φ̄7φ9 = φ̄7φ8 − φ̄7φ̄8. (6.64)

Substituting φ8 = φ̄8, Eqn. (6.61) into Eqn. (6.63), gives

φ9 = φ̄9. (6.65)

Substituting φ8 = φ̄8, Eqn. (6.61) into Eqn. (6.64), gives

φ7 = φ̄7. (6.66)

In conclusion, the outcomes for the parameters from the structural identifia-
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bility analysis are given by

φ1 = φ̄1,

φ2 = φ̄2,

φ3 = φ̄3,

φ4 = φ̄4,

φ5 = φ̄5,

φ6 = φ̄6,

φ7 = φ̄7,

φ8 = φ̄8,

φ9 = φ̄9

All the parameters of the reparameterised CLMM are uniquely identi-

fiable if φ3(≡ Gb) is known, therefore the model is globally structurally iden-

tifiable.

Therefore, the reparameterised CLMM is actually globally structurally

identifiable under the condition that the basal level of glucose concentration

(Gb) is known.

6.5 Steady State

An analysis of the steady state of the reparameterised CLMM is subsequently

carried out with Eqns. (6.40) - (6.43).
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Assume, at steady state that

Ġ(t) = İ∗R(t) = İ(t) = Ẇ ∗(t) = 0

Therefore, the system at steady state is given by

0 =−
(
φ1 + φ2I

∗
RSS

)
GRSS + φ1φ3 (6.67)

0 =ISS − φ4 − φ5I
∗
RSS (6.68)

0 =
(
GSS − φ6

)
W ∗
SS + φ7

(
GSS − φ6

)
− φ8ISS (6.69)

0 =− φ9W
∗
SS (6.70)

Let GSS denote the glucose concentration at steady state; ISS denote the

insulin concentration at steady state; I∗RSS denote the insulin action at steady

state and W ∗
SS denote the dummy variable at steady state.

After rearranging, Eqn. (6.67) gives

GSS =
φ1φ3

φ1 + φ2I∗RSS
(6.71)

and Eqn. (6.68) gives

ISS = φ4 + φ5I
∗
RSS (6.72)

and Eqn. (6.70) gives

W ∗
SS = 0. (6.73)

Therefore, substituting Eqns. (6.71) and (6.72) into Eqn. (6.69) gives

φ8(φ1φ4 + φ2φ4I
∗
RSS + φ1φ5I

∗
RSS + φ2φ5I

∗2
RSS)− φ1φ3φ7 (6.74)

−φ1φ6φ7 − φ2φ6φ7I
∗
RSS = 0.
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Therefore,

γ1I
∗2
RSS + β1I

∗
RSS + α1 = 0 (6.75)

and

I∗RSS =
−β1 ±

√
β2

1 + 4α1

2γ1

(6.76)

where

γ1 = φ1φ4φ8 − φ1φ5φ7 + φ1φ6φ7

β1 = φ2φ4 + φ1φ5 + φ2φ6φ7

α1 = φ2φ5

Therefore, Eqn. (6.71) is given by

GSS =
φ1φ3

2φ1γ1 − φ2β1 ± φ2

√
β2

1 + 4α1

(6.77)

and Eqn. (6.72) is given by

ISS = φ4 + φ5

(
−β1 ±

√
β2

1 + 4α1

2γ1

)
(6.78)

Therefore, when the insulin action is not equal to zero, two non-zero

steady state conditions could possibly be reached for all variables, except for

dummy variable, these steady states and their nature being parameter depen-

dent.

However, if the insulin action is assumed to be zero, IRSS = 0. From

Eqn. (6.67), the glucose concentration at steady state gives

GSS = φ3, (6.79)
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and from Eqn. (6.69), insulin concentration at steady state gives

ISS = φ4 (6.80)

and the dummy variable, Eqn. (6.70) gives

W ∗
SS = 0 (6.81)

however this only occurs over infinite time as W (t) = e−λt → 0 as t→∞.

6.6 Parameter Estimation

Parameter estimation was performed on the reparameterised CLMM, Eqns.

(6.44) - (6.46) as it has been shown to be structurally globally identifiable under

the condition that basal level φ3 (or Gb as in the original CLMM) is known.

The IVGTT data provided by Professor Leon Aarons, School of Pharmacy

and Pharmaceutical Sciences, Manchester University, United Kingdom [Mills,

2007] are used again in this thesis section.

The CLMM is able to generate the first phase glucose-insulin dynamics

responses as described in Chapter 2, Section 2.6. Therefore, the IVGTT data

set used for the parameter estimates for CLMM includes the complete course of

IVGTT experiment, including both first and second phases of glucose-insulin

dynamics responses. The original IVGTT data can be used for the purpose of

this parameter estimation. Table 6.1 shows the IVGTT data set for Subject

8. The parameter estimation was carried out in FACSIMILE [AEA Technol-

ogy, 1995] and a list of good fits is given in Table 6.2 with RSS values and

the list of well determined parameters. The corresponding plots for glucose

and insulin responses for Fits 1, 2, 3 and 4 are shown in Figures 6.1, 6.2, 6.3

and 6.4 respectively. The basal levels of glucose concentration φ3 and insulin
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concentration φ4 are assumed to be the initial or final glucose-insulin measure-

ments. For Subject 8, basal glucose and insulin concentrations, φ3 and φ4 are

4.5 mmol/L and 3.2 mU/L respectively.

Fit 4 is considered to be the best fit for Subject 8 as the RSS value is the

lowest at 2.7368 × 102 and all the parameters φ1, φ2, φ5, φ6, φ7, φ8, φ9 are well

determined. Parameter φ6 has the lowest SDLN value at 0.078 and parameters

φ2, φ5, φ7 and φ8 have relatively low SDLN values ranging from 0.204 to 0.260.

The parameter φ1 has a rather high SDLN value at 0.794 and the parameter

φ9 has the highest SDLN value at 0.954 (see Table 6.3). The correlation

matrix generated within Facsmile shows a high correlation between parameter

estimates with, in particular, a correlation of -0.963 between φ5 and φ8, and

moderate correlation between parameters φ1 and φ9 at -0.772, parameters φ2

and φ7 at -0.789, parameters φ1 and φ2 at -0.612, parameters φ5 and φ9 at

-0.619, parameters φ2 and φ7 at -0.789 and parameters φ8 and φ9 at 0.641 (see

Table 6.4). The glucose and insulin responses fitted to the IVGTT data for

Fit 4 are shown in Figure 6.4.

In general, parameter φ9 is not easily determined or estimated, and it

is not well determined for Fits 1, 2 and 3. This may explain the high SDLN

value for the parameter φ9 in Fit 4. Fits 1 - 3 also demonstrate that the

CLMM is able to generate first phase glucose-insulin dynamics responses. The

statistical information such as SDLN values and correlation matrix for for well

determined parameters for Fits 1-3 obtained within FACSMILE is given in

Tables 6.3 and 6.4 and estimated glucose-insulin responses with the IVGTT

data for Subject 8 are shown in Figures 6.1 - 6.3.

The parameter estimates for the CLMM show that the model has the

ability to generate first phase glucose-insulin responses, especially for insulin

dynamics as shown in Figures 6.1, 6.3 and 6.4. However, further work is

required to achieve tighter fits and parameter estimates to IVGTT and more
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Subject 8
Time Glucose Insulin Time Glucose Insulin
(min) (mmol/L) (mU/L) (min) (mmol/L) (mU/L)

0 4.8 3.2 25 11.3 16.9
2 12.1 3.0 30 10.7 14.0
4 15.2 49.3 40 9.2 14.5
6 14.7 42.1 60 7.4 11.2
10 13.7 26.9 80 5.9 6.6
15 12.6 20.4 120 4.5 3.2
20 11.9 18.4

Table 6.1: The IVGTT data set (Subject 8) used for the parameter estimation
for the CLMM.

Fit RSS Parameters determined
1 2.7314 · 102 φ1, φ2, φ5, φ6, φ7, φ8

2 3.3628 · 102 φ1, φ2, φ5, φ6, φ7, φ8

3 3.122 · 102 φ1, φ2, φ5, φ6, φ7, φ8

4 2.7368 · 102 φ1, φ2, φ5, φ6, φ7, φ8, φ9

RSS represents the Residual Sum of Squares

Table 6.2: List of Fits (1-4) for Subject 8 using the CLMM and the statistical
information obtained within FACSIMILE , i.e. the RSS and well determined
parameters.

data sets would be desirable here.
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Figure 6.1: Glucose and insulin responses for the CLMM, Fit 1.
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Figure 6.2: Glucose and insulin responses for the CLMM, Fit 2.
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Figure 6.3: Glucose and insulin responses for the CLMM, Fit 3.
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Figure 6.4: Glucose and insulin responses for the CLMM, Fit 4.
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Fit 1 Fit 2
Parameter Value [SDLN] Value [SDLN]

φ1 2.993 · 10−3 [0.254] 3.735 · 10−2 [1.756]
φ2 3.227 · 10−2 [0.181] 4.027 · 10−4 [0.464]
φ5 1.66 [0.134] 8.787 · 10−3 [1.593]
φ6 1.024 · 10 [0.077] 2.671 [0.917]
φ7 1.780 · 102 [0.191] 5.345 · 102 [0.342
φ8 6.666 [0.082] 1.838 · 102 [0.506]

Fit 3 Fit 4
Value [SDLN] Value [SDLN]

φ1 6.899 · 10−2 [1.688] 6.837 · 10−2 [0.794]
φ2 1.634 · 10−3 [0.420] 2.075 · 10−2 [0.204]
φ5 1.515 · 10−1 [0.448] 1.808 [0.246]
φ6 8.283 [0.088] 1.042 · 10 [0.078]
φ7 9.406 · 102 [1.917] 2.970 · 102 [0.231]
φ8 8.184 · 10 [1.946] 7.188 [0.260]
φ9 - - 6.496 · 10−1 [0.954]

Table 6.3: Values and SDLNs for Fits 1, 2 and 3 (Subject 8).
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Fit 1
Row/column φ1 φ2 φ5 φ6 φ7 φ8

φ1 1.000 0.482 -0.407 0.205 -0.473 0.496
φ2 0.482 1.000 -0.92 -0.15 -0.955 0.374
φ5 -0.407 -0.92 1.000 0.294 0.855 -0.372
φ6 0.205 -0.15 0.294 1.000 -0.043 0.361
φ7 -0.473 -0.955 0.855 -0.043 1.000 -0.292
φ8 0.496 0.374 -0.372 0.361 -0.292 1.000

Fit 2
Row/column φ1 φ2 φ5 φ6 φ7 φ8

φ1 1.000 -0.788 -0.541 0.503 0.000 -0.434
φ2 -0.788 1.000 0.761 -0.487 0.252 0.596
φ5 -0.541 0.761 1.000 -0.401 0.263 0.460
φ6 0.503 -0.487 -0.401 1.000 -0.050 -0.675
φ7 0.000 0.252 0.263 -0.050 1.000 0.681
φ8 -0.434 0.596 0.460 -0.675 0.681 1.000

Fit 3
Row/column φ1 φ2 φ5 φ6 φ7 φ8

φ1 1.000 -0.728 0.165 0.307 0.093 -0.114
φ2 -0.728 1.000 0.367 -0.079 -0.116 0.049
φ5 0.165 0.367 1.000 0.339 -0.314 -0.343
φ6 0.307 -0.079 0.339 1.000 0.040 -0.030
φ7 0.093 -0.116 -0.314 0.040 1.000 0.975
φ8 -0.114 0.049 -0.343 -0.030 0.975 1.000

Fit 4
Row/column φ1 φ2 φ5 φ6 φ7 φ8 φ9

φ1 1.000 -0.612 0.459 0.053 0.31 -0.484 -0.772
φ2 -0.612 1.000 -0.426 0.058 -0.789 0.336 0.562
φ5 0.459 -0.426 1.000 0.433 -0.165 -0.963 -0.619
φ6 0.053 0.058 0.433 1.000 -0.487 -0.381 -0.099
φ7 0.310 -0.789 -0.165 -0.487 1.000 0.264 -0.184
φ8 -0.484 0.336 -0.963 -0.381 0.264 1.000 0.641
φ9 -0.772 0.562 -0.619 -0.099 -0.184 0.641 1.000

Table 6.4: Correlation matrixes for the well-determined parameters for Fits 1,
2, 3 and 4 (Subject 8) for the CLMM.



Chapter 7

Structural Identifiability of The

Double-Pole in Closed-Loop

Minimal Model

This chapter considers the structural identifiability analysis of the Double-Pole

Closed-Loop Minimal Model (DPCLMM) see Chapter 2 in Section 2.7. The

system equations considered for the DPCLMM are given by

Ġ(t) =− (p1 + k6IR(t))G(t) + p1Gb (7.1)

İR(t) =k2(I(t)− Ib)− p2IR(t) (7.2)

İ(t) =M1(G(t)− h)e−λt + γ(G(t)− h)te−p1t − pexitI(t) (7.3)

and the initial conditions are given by

G(0) =G0 (7.4)

IR(0) =0 (7.5)

I(0) =I0 (7.6)

151
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where G(t) is the glucose concentration, I(t) the insulin concentration and

IR(t) the remote insulin action. The observations of the system are given by

y1(t) = G(t) (7.7)

y2(t) = I(t). (7.8)

A structural identifiability analysis for this model was first carried out

using the Taylor Series approach. However, due to the complexity of the model

structure, the structural identifiability using the Taylor Series approach has

proven intractable due to the length and algebraic complexity of the coefficients

generated with the approach.

Therefore, the analysis was subsequently carried out with the similarity

transformation approach. Since the model is not strictly in a state space form,

as the system consists of two time-dependent exponential terms and a time

term, three dummy variables are required to obtain an augmented system and

these are defined by the following

W (t) = e−λt (7.9)

Z(t) = e−p1t (7.10)

R(t) = t. (7.11)

Therefore, an augmented version of DPCLMM can be generated for the struc-

tural identifiability analysis using a version of Similarity Transformation Ap-

proach for an autonomous system [Evans et al., 2005] and the system equations



Chapter 7. Structural Identifiability of The Double-Pole in Closed-Loop
Minimal Model 153

are given by

Ġ(t) =− (p1 + k6IR(t))G(t) + p1Gb (7.12)

İR(t) = k2(I(t)− Ib)− p2IR(t) (7.13)

İ(t) = M1(G(t)− h)W (t) + γ(G(t)− h)RZ(t)− pexitI(t) (7.14)

Ṙ(t) = 1 (7.15)

Ẇ (t) =− λW (t) (7.16)

Ż(t) =− p1Z(t) (7.17)

and the corresponding initial conditions are given by

G(0) = Gb (7.18)

I(0) = Ib (7.19)

IR(0) = 0 (7.20)

R(0) = 0 (7.21)

W (0) = 1 (7.22)

Z(0) = 1. (7.23)

As the augmented DPCLMM is not controllable, the approach for an au-

tonomous system [Evans et al., 2002] is considered where Theorem 3.1.5 is

applied.

The ORC is tested for initially. First, consider

µ1(x) = G(t) (7.24)
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then choose

µ2(x) =Lfpµ1(x) (7.25)

=− (p1 + k6IR(t))G(t) + p1Gb (7.26)

and

µ3(x) =Lfpµ2(x) (7.27)

=(−p1 − k6IR(t))(Gbp1 +G(t)(−p1 − k6IR(t))) (7.28)

− k6G(t)(−p2IR(t) + k2(−Ib + I(t))).

Then consider,

µ4(x,p) = I(t) (7.29)

and choose

µ5(x,p) =Lfpµ4(x) (7.30)

=−M1(G(t)− h)W (t) + γ(G(t)− h)R(t)Z(t)− pexitI(t). (7.31)

and choose

µ6(x,p) =Lfpµ5(x) (7.32)

=p2
exitI(t) +M1(Gbp1 − h(λ− pexit)−G(t)(λ+ p1 + pexit (7.33)

− k6IR(t)))W (t) + γ(−h+ (Gbp1 + h(p1 + pexit))R(t)

−G(t)(−1 + (2p1 + pexit + k6IR(t))R(t)))Z(t).

Suppose that

H(x,p) = [µ1(x,p), µ2(x,p), µ3(x,p), µ4(x,p), µ5(x,p), µ6(x,p)]T (7.34)
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then

∂Hp(x)

∂x
=



1 0 0 0 0 0

−p1 − k6IR(t) −k6G(t) 0 0 0 0

a3,1 a3,2 −k2k6G(t) 0 0 0

0 0 1 0 0 0

a5,1 0 −pexit a5,4 a5,5 a5,6

a6,1 a6,2 p2
exit a6,4 a6,5 a6,6


(7.35)

where

a3,1 =Ibk2k6 + p2
1 + k6(2p1 + p2)IR(t) + k2

6I
2
R(t)− k2k6I(t) (7.36)

a3,2 =k6(−Gbp1 +G(t)(2p1 + p2 + 2k6IR(t))) (7.37)

a5,1 =M1W (t) + γR(t)Z(t) (7.38)

a5,4 =γ(−h+G(t))Z(t) (7.39)

a5,5 =M1(−h+G(t)) (7.40)

a5,6 =γ(−h+G(t))R(t) (7.41)

a6,1 =−M1W (t)(λ+ p1 + pexit + k6IR(t)) (7.42)

− γZ(t)(−1 +R(t)(2p1 + pexit + k6IR(t)))

a6,2 =− k6M1G(t)W (t)− γk6G(t)R(t)Z(t) (7.43)

a6,4 =− γp1(G(t)− h)Z(t)− γpexit(G(t)− h)Z(t) (7.44)

+ γ(Gbp1 +G(t)(−p1 − k6IR(t)))Z(t)

a6,5 =− λM1(G(t)− h)−M1pexit(G(t)− h) (7.45)

+M1(Gbp1 +G(t)(−p1 − k6IR(t)))

a6,6 =γ(G(t)− h)− γp1(G(t)− h)R(t)− γpexit(G(t)− h)R(t) (7.46)

+ γ(Gbp1 +G(t)(−p1 − k6IR(t))R(t).
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Consider (7.35) when t = 0,

∂Hp(x)

∂x
=



1 0 0 0 0 0

−p1 −G0k6 0 0 0 0

b3,1 b3,2 b3,3 0 0 0

0 0 1 0 0 0

M1 0 −pexit b4,4 b4,5 0

b6,1 b6,2 b6,3 b6,4 b6,5 b6,6


(7.47)

b3,1 =p2
1 − k2k6(−Ib + I0) (7.48)

b3,2 =G0k6p1 − k6(−G0p1 +Gbp1) +G0k6p2 (7.49)

b3,3 =−G0k2k6 (7.50)

b4,4 =γ(G0 − h) (7.51)

b4,5 =(G0 − h)M1 (7.52)

b6,1 =γ − λM1 −M1p1 −M1pexit (7.53)

b6,2 =−G0k6M1 (7.54)

b6,3 =p2
exit (7.55)

b6,4 =− γ(G0 − h)p1 + γ(−G0p1 +Gbp1)− γ(G0 − h)pexit (7.56)

b6,5 =− (G0 − h)λM1 +M1(−G0p1 +Gbp1)− (G0 − h)M1pexit (7.57)

b6,6 =γ(G0 − h). (7.58)

By using a symbolic computational tool, Mathematica, it can be shown that

the rank of (7.35) and (7.47) are 5 (< 6). Therefore, the model is not observ-

able. Therefore, Theorem 3.1.5 cannot be applied to the DPCLMM as it does

not satisfy the ORC.

As the ORC is not satisfied, the structural identifiability using the Simi-
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larity Transformation approach cannot be proceeded. Therefore, the structural

identifiability of the model remained unsolved or unknown.



Chapter 8

Structural Indinstinguishability

Analysis

8.1 Introduction

The structural indistinguishability analyses in this chapter are performed on

the glucose-insulin dynamics models considered in this thesis with the same

observations, i.e. glucose and insulin concentrations, to find out if these models

can be distinguished from each other given the same experimental output. In

the case that the models are indistinguishable from each other, it is not possible

to tell the difference between models from their observations alone.

A structural indistinguishability analysis for the EMM and the CLMM

is considered, as the CLMM is a modified version of EMM and therefore these

two models have similar model structures. Besides that, the EMM is a widely

referenced model, it is important to determine whether the EMM and CLMM

are distinguishable with the same system observations. The analyses are car-

ried out based on the assumptions that IVGTTs are applied to the models

and that the system observations are of glucose and insulin concentrations.
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8.2 The Structural Indistinguishability Anal-

ysis of the CLMM and EMM over The

Post-Switching Phase

A structural indistinguishability analysis for the CLMM and the EMM over

the post-switching phase is performed using the Taylor Series approach. The

system equations of EMM over post-switching phase are given by

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb (8.1)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] (8.2)

İ(t) = −p6[I(t)− Ib] G(t) < p5 (8.3)

and system equations of the CLMM are given by

˙̃G(t) = −(φ̃1 + φ̃2Ĩ
∗
R(t))G̃(t) + φ̃1φ̃3 (8.4)

˙̃I∗R(t) = Ĩ − φ̃4 − φ̃5Ĩ
∗
R(t) (8.5)

˙̃I(t) = (G̃(t)− φ̃6) exp(−φ̃9t) + φ̃7(G̃(t)− φ̃6)− φ̃8Ĩ(t). (8.6)

Initial conditions for the EMM are given by

G(0) =G0 (8.7)

X(0) =0 (8.8)

I(0) =I0 (8.9)
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and initial conditions for the CLMM are given by

G̃(0) =G̃0 (8.10)

Ĩ∗R(0) =0 (8.11)

Ĩ(0) =Ĩ0. (8.12)

The observations of the systems are given by

y1(t) =G(t) (8.13)

y2(t) =I(t) (8.14)

ỹ1(t) =G̃(t) (8.15)

ỹ2(t) =Ĩ(t). (8.16)

The first Taylor Series coefficients and their evaluations at t = 0 are given by

y1(0) =G0 (8.17)

y2(0) =I0 (8.18)

ỹ1(0) =G̃0 (8.19)

ỹ2(0) =Ĩ0. (8.20)

Therefore,

G0 = G̃0 (8.21)

I0 = Ĩ0. (8.22)

The second Taylor Series coefficients and their evaluations at t = 0 are given
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by

ẏ1(0) =−G0p1 +Gbp1 (8.23)

ẏ2(0) =− p6(−Ib + I0) (8.24)

˙̃y1(0) =− G̃0φ̃1 + φ̃1φ̃3 (8.25)

˙̃y2(0) =G̃0 − φ̃6 + (G̃0 − φ̃6)φ̃7 − φ̃8Ĩ0. (8.26)

As the parameter φ3 is the basal level of glucose concentration, (Chapter 6

Section 6.4) and is assumed to be known a priori for both models therefore

φ̃3 = Gb. (8.27)

As ẏ1(0) = ˙̃y1(0), equating the RHS of (8.23) and (8.25) after substituting in

(8.21) and Gb = φ̃3 (from Chapter 6 Section 6.4), this gives

φ̃1 = p1. (8.28)

As ẏ2(0) = ˜̇y2(0), comparing the RHS of Eqns. (8.24) and (8.26), after substi-

tuting in (8.21) and (8.22) gives

−p6(−Ib + Ĩ0) = G̃0 − φ̃6 + (G̃0 − φ̃6)φ̃7 − φ̃8Ĩ0 (8.29)

whereby

φ̃7 =
G̃0 + Ibp6 + φ̃6Ĩ0 + φ̃8Ĩ0

G̃0 − φ̃6

. (8.30)
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The third Taylor Series coefficients and their evaluation at t = 0 gives:

ÿ1(0) =− p1ẏ1(0)−G0p3(−Ib + I0) (8.31)

ÿ2(0) =− p6ẏ2(0) (8.32)

¨̃y1(0) =− G̃0φ̃2(−φ̃4 + Ĩ0 − φ̃5Ĩ0)− φ̃1
˙̃y1(0) (8.33)

¨̃y2(0) = ˙̃y1(0) + ˙̃y1(0)φ̃7 − (G̃0 − φ̃6)φ̃9 − φ̃8
˙̃y2(0). (8.34)

As as ÿ1(0) = ¨̃y1(0), comparing the RHS of Eqns. (8.31) and (8.33) after

substituting in ẏ1(0) = ˙̃y1(0) and (8.21), (8.22) and (8.28) gives

φ̃2 =
p3(Ib − Ĩ0)

φ̃4 − Ĩ0 + φ̃5Ĩ0

. (8.35)

As ÿ2(0) = ¨̃y2(0), comparing (8.32) and (8.34), substituting in ẏ1(0) = ˙̃y1(0),

ẏ2(0) = ˙̃y2(0), (8.21), (8.22), (8.27), (8.30), gives

φ̃9 =
1

(G̃0 − φ̃6)2
(Ibp6

˙̃y1(0)− p6Ĩ0
˙̃y1(0) + φ̃8Ĩ0

˙̃y1(0) + G̃0p6
˙̃y2(0) (8.36)

− p6φ̃6
˙̃y2(0)− G̃0φ̃8

˙̃y2(0) + φ̃6φ̃8
˙̃y2(0)).

The fourth coefficients of Taylor Series and their evaluations at t = 0 give

...
y 1(0) =− 2p3ẏ1(0)(−Ib + Ĩ0)−G0(−p2p3(I0 − Ib) + p3ẏ2(0)) (8.37)

− φ̃1ÿ1(0)

...
y 2(0) =− p6ÿ2(0) (8.38)

...
ỹ 1(0) =− 2φ̃2

˙̃y1(0)(I0 − φ̃4 − φ̃5I0)− φ̃2G0( ˙̃y2(0)− φ̃5
˙̃y2(0)) (8.39)

− φ̃1
¨̃y1(0)

...
ỹ 2(0) =φ̃2

9(−φ̃6 + G̃0)− 2φ̃9
˙̃y1(0) + ¨̃y1(0) + φ̃7

¨̃y1(0)− φ̃8
¨̃y2(0) (8.40)



Chapter 8. Structural Indinstinguishability Analysis 163

As
...
y 1(0) =

...
ỹ 1(0), comparing the RHS of (8.37) and (8.39) after substituting

ÿ1(0) = ¨̃y1(0), ẏ1(0) = ˙̃y1(0), ẏ2(0) = ˙̃y2(0), (8.21), (8.22), (8.27), (8.28), (8.35)

gives

p3 = 0. (8.41)

Since generically p3 6= 0 this provides a contradiction, hence the outputs for

the EMM and CLMM are not consistent and the two models are therefore

distinguishable over the pre-switching phase.

8.3 The Structural Indistinguishability Anal-

ysis of the CLMM and EMM Over the

Pre-Switching Phase

A structural indistinguishability analysis of the EMM and the CLMM is per-

formed using Taylor Series approach. The system equations for the EMM over

the pre-switching phase are given by:

Ġ(t) = −[p1 +X(t)]G(t) + p1Gb (8.42)

Ẋ(t) = −p2X(t) + p3[I(t)− Ib] (8.43)

İ(t) = p4t[G(t)− p5]− p6[I(t)− Ib] (8.44)

and the system equations of the CLMM are given by:

˙̃G(t) = −(φ̃1 + φ̃2Ĩ
∗
R(t))G̃(t) + φ̃1φ̃3 (8.45)

˙̃I∗R(t) = Ĩ − φ̃4 − φ̃5Ĩ
∗
R(t) (8.46)

˙̃I(t) = (G̃(t)− φ̃6) exp(−φ̃9t) + φ̃7(G̃(t)− φ̃6)− φ̃8Ĩ(t). (8.47)
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The initial conditions of the EMM are given by

G(0) =G0 (8.48)

X(0) =0 (8.49)

I(0) =I0 (8.50)

and the initial conditions of the CLMM are given by

G̃(0) =G̃0 (8.51)

Ĩ∗R(0) =0 (8.52)

Ĩ(0) =Ĩ0. (8.53)

The observations of EMM are

y1(t) = G(t) (8.54)

y2(t) = I(t) (8.55)

and the observations of CLMM are

ỹ1(t) = G̃(t) (8.56)

ỹ2(t) = Ĩ(t). (8.57)

The first coefficients of the relative Taylor Series expansions at t = 0 are given

by

y1(0) = G0 (8.58)

y2(0) = I0 (8.59)

ỹ1(0) = G̃0 (8.60)
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ỹ2(0) = Ĩ0. (8.61)

Therefore,

G0 = G̃0 (8.62)

I0 = Ĩ0. (8.63)

The second coefficients of the Taylor Series expansions and their evaluations

at t = 0 are given by

ẏ1(0) = −p1G0 + p1Gb (8.64)

ẏ2(0) = −p6(I0 − Ib) (8.65)

˙̃y1(0) = −G̃0φ̃1 + φ̃1φ̃3 (8.66)

˙̃y2(0) = G̃0 − φ̃6 + (G̃0 − φ̃6)φ̃7 − Ĩ0φ̃8. (8.67)

Comparing the observations of the system, (8.64) and (8.66), which are as-

sumed to be equivalent gives

−p1G0 + p1Gb = −G̃0φ̃1 + φ̃1φ̃3. (8.68)

After substituting (8.27), (8.62) and (8.63) gives

p1 = φ̃1. (8.69)

Comparing the observations of the system, (8.65) and (8.67), and after sub-

stituting (8.62) and (8.63) as known parameters consistent in both models

gives

−p6(I0 − Ĩb) = G0 − φ̃6 + (G0 − φ̃6)φ̃7 − I0φ̃8. (8.70)
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whereby

p6 =
G̃0 − φ̃6 + G̃0φ̃7 − φ̃6φ̃7 − φ̃8Ĩ0

Ib − Ĩ0

(8.71)

The third coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

ÿ1(0) =− p1ẏ1(0)−G0p3(−Ib + I0) (8.72)

ÿ2(0) =p4(G0 − p5)− p6ẏ2(0) (8.73)

¨̃y1(0) =− G̃0φ̃2(−φ̃4 + Ĩ0 − φ̃5Ĩ0)− φ̃1
˙̃y1(0) (8.74)

¨̃y2(0) =− (G̃0 − φ̃6)φ̃9 + ˙̃y1(0) + φ̃7
˙̃y1(0)− φ̃8

˙̃y2(0). (8.75)

As the observations ÿ1(0) = ¨̃y1(0), equating the RHS of (8.72) and (8.74) after

substituting in (8.62), (8.63) and (8.69) gives

p3 =
φ̃2(φ̃4 − Ĩ0 + φ̃5Ĩ0)

Ib − Ĩ0

. (8.76)

As the observations ÿ2(0) = ¨̃y2(0), equating the RHS of (8.73) and (8.75) after

substituting in (8.62), (8.63) and (8.71) gives,

p4 =
1

G̃0 − p5

(
˙̃y1(0) + ˙̃y1(0)φ̃7 − (G̃0 − φ̃6)φ̃9 − φ̃8

˙̃y2(0)−
˙̃y2
2(0)

(Ib − Ĩ0)2

)
. (8.77)

The fourth coefficients of the Taylor Series expansions and their evaluations



Chapter 8. Structural Indinstinguishability Analysis 167

at t = 0 are given by

...
y 1(0) =− 2p3(−Ib + I0)ẏ1(0)−G0(−p2p3(−Ib + I0) + p3ẏ2(0)) (8.78)

− p1ÿ1(0)

...
y 2(0) =2p4ẏ1(0)− p6ÿ2(0) (8.79)

...
ỹ 1(0) =− 2φ̃2

˙̃y1(0)(−φ̃4 + Ĩ0 − φ̃5Ĩ0)− φ̃1
¨̃y1(0) (8.80)

− G̃0φ̃2
˙̃y2(0)(1− φ̃5)

...
ỹ 2(0) =− (G̃0 − φ̃6)φ̃2

9 − 2φ̃9
˙̃y1(0) + ¨̃y1(0) + φ̃7

¨̃y1(0)− φ̃8
¨̃y2(0). (8.81)

As
...
y 1(0) =

...
ỹ 1(0), equating the RHS of (8.78) and (8.80) after substituting

in (8.62), (8.63), (8.69), (8.76) and (8.77) gives

Ib =
−G̃0φ̃4(1 + φ̃7) + p2Ĩ

2
0 (φ̃5 − 1) + φ̃4(φ̃6 + φ̃6φ̃7 + p2Ĩ0 + φ̃8Ĩ0)

G̃0(φ̃5 − 1)(1 + φ̃7) + p2(φ̃4 + Ĩ0(φ̃5 − 1))− (φ̃5 − 1)(φ̃6 + φ̃6φ̃7 + φ̃8Ĩ0)
.

(8.82)

As
...
y 2(0) =

...
ỹ 2(0), equating the RHS of (8.79) and (8.81) after substituting
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(8.62), (8.63), (8.69), (8.76) and (8.77) in gives

p5 =Ḡ3
0(−1 + φ̄5)(1 + φ̄7)(φ̄1(1 + φ̄7)− (1 + φ̄7)φ̄8 − φ̄9) (8.83)

+ 2φ̄1φ̄3(φ̄2
6 + φ̄5φ̄

2
6 + 2φ̄2

6φ̄7 − 2φ̄5φ̄
2
6φ̄7 + +φ̄2

6φ̄
2
7 − φ̄5φ̄

2
6φ̄

2
7

+ φ̄4φ̄6φ̄8 + φ̄4φ̄6φ̄7φ̄8 + φ̄4φ̄6φ̄9 + φ̄6φ̄8Ī0 − φ̄5φ̄6φ̄8Ī0

+ φ̄6φ̄7φ̄8Ī0 − φ̄5φ̄6φ̄7φ̄8Ī0 + φ̄4φ̄
2
8ī0 − φ̄6φ̄9Ī0 + φ̄5φ̄6φ̄9Ī0

+ φ̄1φ̄3(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)

+ p2(φ̄4 + (−1 + φ̄5)Ī0)(φ̄6 + φ̄6φ̄7 + φ̄8Ī0)) + Ḡ2
0(−p2φ̄4φ̄8

− 2φ̄6φ̄8 + 2φ̄5φ̄6φ̄8 − p2φ̄4φ̄7φ̄8 − 4φ̄6φ̄7φ̄8 + 2φ̄5φ̄6φ̄7φ̄8

− 2φ̄6φ̄
2
7φ̄8 + 2φ̄5φ̄6φ̄

2
7φ̄8 − φ̄4φ̄

2
8 − φ̄4φ̄7φ̄

2
8 − p2φ̄4φ̄9

− 2φ̄6φ̄9 + 2φ̄5φ̄6φ̄9 − 2φ̄6φ̄7φ̄9 + 2φ̄5φ̄6φ̄7φ̄9 − φ̄4φ̄8φ̄9

+ φ̄4φ̄
2
9 + p2φ̄8Ī0 − p2φ̄5φ̄8Ī0 + p2φ̄7φ̄8Ī0 − p2φ̄5φ̄7φ̄8Ī0

− φ̄2
8Ī0 + φ̄5φ̄

2
8Ī0 − φ̄7φ̄

2
8Ī0 + φ̄6φ̄7φ̄

2
8Ī0 + p2φ̄9Ī0 − p2φ̄5φ̄9Ī0

+ φ̄2
9Ī0 − φ̄5φ̄

2
9Ī0 + φ̄2

1(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)

− φ̄2(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)2 − φ̄1(1 + φ̄7)(−3φ̄6 + 3φ̄5φ̄6

− 3φ̄6φ̄7 + 3φ̄5φ̄6φ̄7 + φ̄3(−1 + φ̄5)(1 + φ̄7)− φ̄4φ̄8 − 2φ̄8Ī0

+ 2φ̄5φ̄8Ī0 − p2(φ̄4 + (−1 + φ̄5)Ī0))) + Ḡ0(p2φ̄4φ̄6φ̄8 + φ̄2
6φ̄8

− φ̄5φ̄
2
6φ̄8 + p2φ̄4φ̄6φ̄7φ̄8 + 2φ̄2

6φ̄7φ̄8 − 2φ̄5φ̄
2
6φ̄7φ̄8 + φ̄2

6φ̄
2
7φ̄8

− φ̄5φ̄
2
6φ̄

2
7φ̄8 + φ̄4φ̄6φ̄

2
8 + φ̄4φ̄6φ̄7φ̄

2
8 + p2φ̄4φ̄6φ̄9 + φ̄2

6φ̄9

− φ̄5φ̄
2
6φ̄9 + φ̄2

6φ̄7φ̄9 − φ̄5φ̄
2
6φ̄7φ̄9 + φ̄4φ̄6φ̄8φ̄9 + φ̄4φ̄6φ̄

2
9

− p2φ̄6φ̄8Ī0 + p2φ̄5φ̄6φ̄8Ī0 − p2φ̄6φ̄7φ̄8Ī0 + p2φ̄5φ̄6φ̄7φ̄8Ī0

+ p2φ̄4φ̄
2
8Ī0 + φ̄6φ̄

2
8Ī0 − φ̄5φ̄6φ̄

2
8Ī0 + φ̄6φ̄7φ̄

2
8Ī0 − φ̄5φ̄6φ̄7φ̄

2
8Ī0
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+ φ̄4φ̄
3
8Ī0 − p2φ̄6φ̄9Ī0 + p2φ̄5φ̄6φ̄9Ī0 − φ̄6φ̄

2
9Ī0 + φ̄5φ̄6φ̄

2
9Ī0

− p2φ̄
2
8Ī0 + p2φ̄5φ̄

2
8Ī

2
0 − 3φ̄2

1φ̄3(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)

− φ̄1(−φ̄3(1 + φ̄7)(3(−1 + φ̄5)φ̄6(1 + φ̄7)− φ̄8(φ̄4

− 2(−1 + φ̄5)Ī0)) + p2(φ̄4 + (−1 + φ̄5)Ī0)(φ̄3(1 + φ̄7)

+ 2(φ̄6 + φ̄6φ̄7 + φ̄8Ī0)) + 2(−(−1 + φ̄5)φ̄2
6(1 + φ̄7)2 + φ̄4φ̄

2
8Ī0

+ φ̄6(φ̄4(φ̄8 + φ̄7φ̄8 + φ̄9)− (−1 + φ̄5)(φ̄8 + φ̄7φ̄8 − φ̄9)Ī0))))/

(p2φ̄4φ̄6φ̄8 + φ̄2
6φ̄8 − φ̄5φ̄

2
6φ̄8 + p2φ̄4φ̄6φ̄6φ̄7φ̄8 + 2φ̄2

6φ̄7φ̄8

− 2φ̄5φ̄
2
6φ̄7φ̄8 + φ̄2

6φ̄
2
7φ̄8 − φ̄5φ̄

2
6φ̄

2
7φ̄8 + φ̄4φ̄6φ̄

2
8 + φ̄4φ̄6φ̄7φ̄

2
8

+ p2φ̄4φ̄6φ̄9 + φ̄2
6φ̄9 − φ̄5φ̄

2
6φ̄9 + φ̄2

6φ̄7φ̄9 − φ̄5φ̄
2
6φ̄9 + φ̄4φ̄6φ̄8φ̄9

+ φ̄4φ̄6φ̄
2
9 − Ḡ2

0(−1 + φ̄5)(1 + φ̄7)(φ̄1 + φ̄1φ̄7 + φ̄8 + φ̄7φ̄8 + φ̄9)

− p2φ̄6φ̄8Ī0 + p2φ̄5φ̄6φ̄8Ī0 − p2φ̄6φ̄7φ̄8Ī0 + p2φ̄5φ̄6φ̄7φ̄8Ī0

+ p2φ̄4φ̄
2
8Ī0 + φ̄6φ̄

2
8Ī0 − φ̄5φ̄6φ̄

2
8 + φ̄6φ̄7φ̄

2
8Ī0 − φ̄5φ̄6φ̄7φ̄

2
8Ī0

+ φ̄4φ̄
3
8Ī0 − p2φ̄6φ̄9Ī0 + p2φ̄5φ̄6φ̄9Ī0 − φ̄6φ̄

2
9Ī0 + φ̄5φ̄6φ̄

2
9Ī0

− p2φ̄
2
8Ī

2
0 + p2φ̄5φ̄

2
8Ī

2
0 + φ̄2

1φ̄3(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)

+ φ̄1φ̄3(−(−1 + φ̄5)φ̄6(1 + φ̄7)2 + φ̄4φ̄8 + φ̄4φ̄7φ̄8

+ 2φ̄4φ̄9 − 2φ̄9Ī0 + 2φ̄5φ̄9Ī0 + p2(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0))

− Ḡ0(p2φ̄4φ̄8 + 2φ̄6φ̄8 − 2φ̄5φ̄6φ̄8 + p2φ̄4φ̄7φ̄8 + 4φ̄6φ̄7φ̄8

− 2φ̄5φ̄6φ̄7φ̄8 + 2φ̄6φ̄
2
7φ̄8 − 2φ̄5φ̄6φ̄

2
7φ̄8 + φ̄4φ̄

2
8 + φ̄4φ̄7φ̄

2
8

+ p2φ̄4φ̄9 + 2φ̄6φ̄9 − 2φ̄5φ̄6φ̄9 + 2φ̄6φ̄7φ̄9 − 2φ̄5φ̄6φ̄7φ̄9

+ φ̄4φ̄8φ̄9 + φ̄4φ̄
2
9 − p2φ̄8Ī0 + p2φ̄5φ̄8Ī0 − p2φ̄5φ̄7φ̄8Ī0
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+ φ̄2
8Ī0 − φ̄5φ̄

2
8Ī0 + φ̄7φ̄

2
8Ī0 − φ̄5φ̄7φ̄

2
8Ī0 − p2φ̄9Ī0 + p2φ̄5φ̄9Ī0

− φ̄2
9Ī0 + φ̄5φ̄

2
9Ī0 + φ̄2

1(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)

+ φ̄2(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)2 + φ̄1(φ̄6 − φ̄5φ̄6 + 2φ̄6φ̄7

− 2φ̄5φ̄6φ̄7 + φ̄6φ̄
2
7 − φ̄5φ̄6φ̄

2
7 − φ̄3(−1 + φ̄5)(1 + φ̄7)2

+ φ̄4φ̄8 + φ̄4φ̄7φ̄8 + 2φ̄4φ̄9 − 2φ̄9Ī0 + 2φ̄5φ̄9Ī0

+ p2(1 + φ̄7)(φ̄4 + (−1 + φ̄5)Ī0)))).

The fifth coefficients of the Taylor Series expansions and their evaluations at

t = 0 are given by

y
(4)
1 (0) =− 2ẏ1(0)(−p2p3(−Ib + I0) + p3ẏ2(0))− 3p3(−Ib + I0)ÿ1(0) (8.84)

−G0(−p2(−p2p3(−Ib + I0) + p3ẏ2(0)) + p3ÿ2(0))− p2

...
y 1(0)

y
(4)
2 (0) =3p4ÿ1(0)− p6

...
y 2(0) (8.85)

ỹ
(4)
1 (0) =− 3φ̃2

˙̃y1(0)( ˙̃y2(0)− φ̃5
˙̃y2(0))− 3φ̃1(−φ̃4 + Ĩ0 − φ̃5Ĩ0)¨̃y1(0) (8.86)

− G̃0φ̃2(¨̃y2(0))− φ̃5
¨̃y2(0)− φ̃1

...
ỹ 1(0)

ỹ
(4)
2 (0) =− (G̃0 − φ̃6)φ̃3

9 + 3φ̃2
9

˙̃y1(0)− 3φ̃2
9
¨̃y1(0) +

...
ỹ 1(0) + φ̃7

...
ỹ 1(0) (8.87)

− φ̃8

...
ỹ 2(0).

As y
(4)
1 (0) = ỹ

(4)
1 (0), equating RHS of (8.84) and (8.86) after substituting in

(8.62), (8.63), (8.69), (8.71), (8.76), (8.77), (8.82) and (8.83) gives

p2 = 0. (8.88)

Since generically p2 6= 0 this provides a contradiction, hence the outputs for

the EMM and CLMM are not consistent and the two models are therefore

distinguishable over the pre-switching phase.
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Therefore, the CLMM and the EMM are structural distinguishable from

each other.



Chapter 9

Conclusions

Presented in this thesis are structural identifiability analyses successfully per-

formed for the first time on an important set of glucose-insulin dynamics mod-

els, also demonstrating the importance of these analyses. The results obtained

here have generated significant information which will allow diabetes-related

research communities to gain further insight into these glucose-insulin models

and to undertake model-based studies and parameter estimation with greater

confidence.

This thesis demonstrates the structural identifiability of several glucose-

insulin dynamics models, including two versions of the well-cited Minimal

Model, a Euglycemic Hyperinsulinemic Clamp (EIC) model, and two mod-

ified versions of the Minimal Model: Closed-Loop Minimal Model (CLMM)

and Double-Pole in Closed-Loop Minimal Model (DPCLMM). As far as the

author is aware, this is the first time that structural identifiability (a pri-

ori) analyses of these models (with these specific model structures) has been

performed.

This thesis presents structural identifiability analyses of the original

form of the Minimal Model (OMM) and over the two phases of the Extended

Minimal Model (EMM) (pre- and post- switching phases). The analysis using

172
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the Taylor Series approach [Pohjanpalo, 1978] shows that the OMM is struc-

turally unidentifiable as the parameter p2 (the rate constant which explains the

ability of the spontaneous decrease of tissue glucose uptake) is unidentifiable,

as further information for insulin concentration (İ(t)) is required to determine

the uniqueness of the parameter p2. Therefore, using the OMM alone, and

parameter estimation commonly followed in practice using this model version,

users are at risk of calculating insulin sensitivity incorrectly or inaccurately

(since SI = p3/p2), which is one of the main purposes of application of the

OMM. Bergman et al. [1979] showed that the OMM is numerically identifiable.

However, the results obtained in this thesis demonstrate that a numerically

identifiable model is not necessarily structurally globally identifiable.

The structural identifiability analysis performed on the EMM over the

post-switching phase is performed using the Taylor Series approach [Pohjan-

palo, 1978]. The results show that the EMM over the pre-switching phase

is structurally globally identifiable, if the basal level of glucose concentration

above is known. For the structural identifiability analysis of the EMM over the

pre-switching phase, the Taylor Series approach [Pohjanpalo, 1978] was first

used and no conclusive results could be drawn from the analysis using this

approach (due to the fact that this approach is only necessary but not suffi-

cient). The analysis was subsequently carried out using a more recent form of

the Similarity Transformation approach for autonomous systems [Evans et al.,

2002] and the results showed that the model is in fact structurally globally

identifiable and that all parameters are uniquely identifiable for observation of

glucose and insulin from an IVGTT experiment.

Parameter estimation for the EMM is usually performed in two steps

(for details see Chapter 2, Section 2.4). In this thesis, the parameter estimation

is performed simultaneously by combining the pre- and post- switching phases

of the insulin system equation using appropriate sign functions (see Chapter
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4, Section 4.6). Fits were performed using IVGTT data sets from different

subjects. The statistical information obtained within FACSIMILE shows that

parameter estimates for p2 and p3 (key parameters for defining insulin sen-

sitivity) have high values of Standard Deviation for the Log-Normal (SLDN)

distribution (i.e. approximate percentage errors) generated within FACSIMILE.

Other fits performed show that the parameters p2 and p3 are not always deter-

minable. This demonstrates that the EMM may also not be wholly appropriate

for determining insulin sensitivity (SI), as the parameters p2 and p3 are at risk

of being undeterminable through parameter estimation using the EMM. This

also demonstrates that a globally identifiable model does not guarantee good

parameter fitting and numerical identifiabilility.

The Euglycemic Hyperinsulinemic Clamp (EIC) model [Picchini et al.,

2005] was the first mathematical model (as far as this author is aware) that was

developed to accurately describe an EIC experiment. This model allows users

to understand and generate more information on the EIC process, which may

or may not be obtainable during an experiment. The structural identifiability

analysis for the EIC model is performed using the Taylor Series approach. The

result shows that the EIC model is structurally globally identifiable under the

conditions that the volume parameters Vg and Vi are known; commonly in

practice values for these parameters can be determined separately.

Parameter estimation was performed using the EIC model on glucose

clamp data. The results show that the EIC model is able to generate a rea-

sonable glucose dynamics response for the glucose clamp. However, the EIC

model does not generate the corresponding insulin dynamics response well,

most probably due to the fact that the EIC model was designed to generate a

steady state insulin response for an EIC experiment.

As the EIC model does not fit the insulin dynamics response of the

glucose clamp, this may be the reason for high Residual Sum of Squares (RSS)
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values for the fits obtained. All other fits performed (see Appendix B) show

that the EIC model can only be used for more accurately fitting the glucose

dynamics response alone.

The Closed-Loop Minimal Model (CLMM) is a recent modified ver-

sion of the MM. Unlike the MM, the CLMM is able to generate a complete

course of IVGTT experiment (i.e. first and second phases of glucose and in-

sulin responses) [Arundel et al., 2010]. A structural identifiability analysis

of the CLMM was also carried out using a version of the Similarity Trans-

formation approach [Evans et al., 2002]. The results obtained show that the

CLMM is structural unidentifiable. A reparameterisation procedure was sub-

sequently carried out and through regrouping the initial system parameters

appropriately, the model parameters were reduced from 11 to 9 parameters.

The structural identifiability of the reparameterised CLMM was performed

using a more recent version of the Similarity Transformation approach [Evans

et al., 2002] and the result shows that the reparameterised CLMM is actually

structurally globally identifiable under the condition that the basal level of

glucose is known.

Parameter estimation was performed using the reparameterised CLMM

with IVGTT data containing first and second phase glucose-insulin dynamics

responses. This shows that the repameterised CLMM is able to generate a

reasonable first phase response of glucose-insulin dynamics.

A structural indistinguishability analysis was also performed and has

shown that the CLMM is distinguishable from the EMM at both pre- and

post- switching phases given the same observations of glucose and insulin con-

centrations.

The structural identifiability analysis for the DPCLMM using the Tay-

lor Series approach was not applicable due to the complex structures of the

model. A structural identifiability analysis using the Similarity Transforma-
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tion approach was then considered. However, the DPCLMM does not satisfy

the Observability Rank Criterion. Therefore, there is as yet no conclusive

result for the structural identifiability of the DPCLMM.

This thesis demonstrates the structural identifiability analyses of the

OMM and EMM for the first time, since these models were published in 1979

and 1981 respectively [Bergman et al., 1979; Bergman and Bowden, 1981] and

for the specific model structures considered. The analyses for the MM demon-

strate certain issues including the fact that the MM may not be appropriate for

calculating insulin sensitivity or modelling the glucose and insulin dynamics

for IVGTT experiments.

9.1 Suggestions for Future Work

The parameter estimation performed using the EIC model demonstrates that

this model is able to reasonably generate only the glucose dynamics response

for a glucose clamp. Therefore, the glucose clamp model needs to be devel-

oped further including slight modification of the EIC model, to also generate

appropriate transient insulin responses.

The parameter estimation for the CLMM has demonstrated that (unlike

the OMM and EMM), the model is able to generate first and second phase

responses for glucose-insulin dynamics responses. However, tighter fits are

required with much lower RSS values and lower SDLN values, where all the

parameters are well determined. The parameter estimates for IVGTT data for

other subjects is also highly desired for further study of the CLMM. This also

suggests that the CLMM may yield more appropriate and accurate ways of cal-

culating insulin sensitivity using IVGTT data than other previously published

models.

The DPCLMM is a model highly recommended by its authors Arundel
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et al. [2010]. Like the CLMM, it also captures the complete process of an

IVGTT including both the first and second phases of glucose-insulin dynamics

responses. Therefore, it is important to determine the a priori identifiabil-

ity of the DPCLMM. If the model can be proven to be structurally globally

identifiable or a necessary reparameterisation performed, then parameter es-

timation of the DPCLMM with respect to IVGTT data may also yield more

appropriate and accurate means of determining insulin sensitivity SI .
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Appendix A

Parameter Estimates for EMM

This section includes the parameter estimation results for the Extended Min-

imal Model (EMM) as outlined in Chapter 4.

Fit 1 Fit 2
Parameters Value [SDLN] Value [SDLN]

p1 2.264 · 10−2 [0.558] 3.072 · 10−2 [0.493]
p2 2.351 · 10−1 [0.780] 1.112 · 10−1 [0.718]
p3 1.060 · 10−4 [0.729] 4.518 · 10−5 [1.295]
p4 9.024 · 10−3 [1.403] 1.206 · 10−2 [0.338]
p5 8.265 [0.262] 6.395 [0.106]
p6 9.756 · 10−2 [0.121] 1.148 · 10−1 [0.065]

RSS=6.326 RSS=1.229 · 10

Table A.1: The Values and SDLNs for Fits 1 and 2 (Subject 3).
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Fit 4 Fit 6
Parameters Value [SDLN] Value [SDLN]

p1 1.728 · 10−2 [0.472] 2.349 · 10−2 [0.039]
p2 5.173 · 10−2 [1.114] - -
p3 1.817 · 10−5 [1.844] - -
p4 9.838 · 10−3 [0.144] 1.038 · 10−2 [0.138]
p5 5.946 [0.049] 6.175 [0.037]
p6 1.033 · 10−1 [0.051] 1.041 · 10−1 [0.051]

RSS=3.3173 RSS=3.7108

Table A.2: Value and SDLNs for Fits 5 and 6 (Subject 8)

Fit 7 Fit 8
Parameters Value [SDLN] Value [SDLN]

p1 1.121 · 10−2 [0.860] 2.202 · 10−2 [0.076]
p2 6.194 · 10−2 [0.569] - -
p3 7.536 · 10−5 [0.855] 1.709 · 10−5 [0.167]
p4 1.926 · 10−2 [0.087] 1.731 · 10−2 [0.118]
p5 6.803 [0.030] 6.782 [0.048]
p6 1.825 · 10−1 [0.039] 1.719 · 10−1 [0.039]

RSS= 1.3691 RSS=1.6247

Table A.3: Value and SDLNs for Fits 7 and 8 (Subject 17).

Fit 1 (Subject 3)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 -0.509 -0.941 -0.090 0 -0.095
p2 -0.509 1.000 0.758 0.169 0.116 0.062
p3 -0.941 0.758 1.000 0.139 0.021 0.112
p4 -0.090 0.169 0.139 1.000 0.657 0.744
p5 0 0.116 0.021 0.657 1.000 0.245
p6 -0.095 0.062 0.112 0.744 0.245 1.000

Fit 2 (Subject 3)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 0.348 -0.522 0.004 0.118 -0.039
p2 0.348 1.000 0.602 0.029 -0.012 -0.019
p3 -0.522 0.602 1.000 0.033 -0.126 0.047
p4 0.004 0.029 0.033 1.000 0.782 0.823
p5 0.118 -0.012 -0.126 0.782 1.000 0.421
p6 -0.039 -0.019 0.047 0.823 0.421 1.000

Table A.4: Correlation matrix of the well-determined parameters for Fits 1
and 2 (Subject 3) for the EMM.
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Fit 4 (Subject 8)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 -0.851 -0.978 0.02 0.234 -0.116
p2 -0.851 1.000 0.935 0.225 0.022 0.187
p3 -0.978 0.935 1.000 0.066 -0.188 0.154
p4 0.02 0.225 0.066 1.000 0.552 0.735
p5 0.234 0.022 -0.188 0.552 1.000 0.114
p6 -0.116 0.187 0.154 0.735 0.114 1.000

Fit 6 (Subject 8)
Row/column p1 p4 p5 p6

p1 1.000 0.059 -0.593 0.027
p4 0.059 1.000 0.117 0.767
p5 -0.593 0.117 1.000 0.454
p6 0.027 0.767 0.454 1.000

Table A.5: Correlation matrix of the well-determined parameters for Fits 4
and 6 (Subject 8) for the EMM.

Fit 7 (Subject 17)
Row/Column p1 p2 p3 p4 p5 p6

p1 1.000 -0.937 -0.988 0.247 0.46 -0.058
p2 -0.937 1.000 0.976 -0.064 -0.379 0.131
p3 -0.988 0.976 1.000 -0.179 -0.458 0.103
p4 0.247 -0.064 -0.179 1.000 0.539 0.634
p5 0.46 -0.379 -0.458 0.539 1.000 -0.012
p6 -0.058 0.131 0.103 0.634 -0.012 1.000

Fit 8 (Subject 17)
Row/column p1 p3 p4 p5 p6

p1 1.000 -0.832 0.196 -0.087 0.110
p3 -0.832 1.000 -0.238 -0.122 -0.027
p4 0.196 -0.238 1.000 0.725 0.527
p5 -0.087 -0.122 0.725 1.000 0.016
p6 0.110 -0.027 0.527 0.016 1.000

Table A.6: Correlation matrix of well-determined parameters for Fits 7 and 8
(Subject 17) for the EMM.
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Figure A.1: Glucose and insulin responses for the EMM, Fit 1 (Subject 3).
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Figure A.2: Glucose and insulin responses for the EMM, Fit 2 (Subject 3).
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Figure A.3: Glucose and insulin responses for the EMM, Fit 4 (Subject 8).
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Figure A.4: Glucose and insulin responses for the EMM, Fit 6 (Subject 8).



Appendix A. Parameter Estimates for EMM 191

0

2

4

6

8

10

12

14

16

0 20 40 60 80

Glucose

Glucose (obs)

G
lu

co
se

 c
o

n
ce

n
tr

at
io

n
 (

m
m

o
l/

L)
 

Time (min) 

IVGTT 

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80

Insulin

Insulin (obs)

In
su

lin
 c

o
n

ce
n

tr
at

io
n

 (
m

U
/L

) 

Time (min) 

IVGTT 

Figure A.5: Glucose and insulin responses for the EMM, Fit 7 (Subject 17).
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Figure A.6: Glucose and insulin responses for the EMM, Fit 8 (Subject 17).



Appendix B

Parameter Estimates for

Euglycemic Hyperinsulinemic

Clamp Model

This section includes the parameter estimation results for the EIC Model as

outlined in Chapter 5.

Fit 2 Fit 3 Fit 4
Value [SDLN] Value [SDLN] Value [SDLN]

Vg - - 1.055 · 10−3 [0.474] 4.661 · 10−3 [1.549]
Vi 1.040 · 10−1 [1.386] - - 7.301 · 10−2 [0.391]
KxgI 3.584 · 101 [1.644] 6.467 [0.352] - -
Kxi 5.406 · 10−2 [1.394] 3.826 · 10−2 [0.564] - -
Tghmax 5.406 · 10−2 [0.716] 9.619 [0.824] 5.589 · 102 [1.283]
TiG - - - - - -
λ 8.497 · 10−3 [1.139] 1.165 · 10−2 [0.540] 9.886 · 10−3 [1.167]

RSS=2.267 · 102 RSS=2.252 · 102 RSS=2.259 · 102

Table B.1: Values and SDLNs for Fits 2, 3 and 4 (Subject 3).
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Fit 5 Fit 6
Parameters Value [SDLN] Value [SDLN]

Vg 1.408 · 10−4 [0.425] 6.000 · 10−2 [0.870]
Vi 3.417 [0.459] 1.578 · 10 [0.654]
KxgI 1.107 · 102 [0.612] 1.771 · 10−1 [0.884]
Kxi 2.142 · 10−2 [0.232] - -
Tghmax 3.417 [0.459] 1.030 · 103 [1.076]
TiG 6.431 · 10−2 [0.410] 6.546 [0.650]
λ - - 2.820 · 10−2 [0.223]

RSS=4.024 · 102 RSS=4.017 · 102

Table B.2: Values and SDLNs for Fits 5 and 6 (Subject 8).

Fit 8 Fit 9
Parameters Value [SLDN] Value [SDLN]

Vg - - 4.430 · 10−2 [1.404]
Vi 3.697 · 10−1 [0.575] 2.181 · 10−1 [0.331]
KxgI 2.454 · 10−1 [0.659] 1.343 · 10−1 [0.844]
Kxi 4.841 · 10−2 [0.294] - -
Tghmax 2.191 · 102 [0.785] 1.201 · 10 [0.615]
TiG 1.181 · 10−1 [0.501] 8.685 · 10−2 [0.327]
λ 5.619 · 10−2 [0.072] 1.522 · 10−2 [0.700]

RSS=1.669 · 102 RSS=1.687 · 102

Table B.3: Values and SDLNs for Fits 8 and 9 (Subject 17).
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Fit 2 (Subject 3)
Row / Column Vi KxgI Tghmax Kxi λ

Vi 1.000 0.848 0.251 -0.999 -0.695
KxgI 0.848 1.000 0.085 -0.844 -0.906
Tghmax 0.251 0.085 1.000 -0.245 0.337
Kxi -0.999 -0.844 -0.245 1.000 0.694
λ -0.695 -0.906 0.337 0.694 1.000

Fit 3 (Subject 3)
Row/Column Vg KxgI TiG Kxi λ Tghmax

Vg 1.000 0.175 0.241 0.228 -0.832 -0.492
KxgI 0.175 1.000 -0.504 -0.511 -0.132 0.354
TiG 0.241 -0.504 1.000 0.992 -0.622 -0.938
Kxi 0.228 -0.511 0.992 1.000 -0.619 -0.947
λ -0.832 -0.132 -0.622 -0.619 1.000 0.814

Tghmax -0.492 0.354 -0.938 -0.947 0.814 1.000

Fit 4 (Subject 3)
Row/column Vg Vi TiG Tghmax λ

Vg 1.000 0.154 0.099 -0.07 -0.791
Vi 0.154 1.000 0.987 -0.774 -0.591
TiG 0.099 0.987 1.000 -0.727 -0.524

Tghmax -0.07 -0.774 -0.727 1.000 0.662
λ -0.791 -0.591 -0.524 0.662 1.000

Table B.4: Correlation matrix of the well-determined parameters for Fits 2, 3
and 4 (Subject 3) for the EIC model.
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Fit 5 (Subject 8)
row/column Vg KxgI TiG Kxi Vi Tghmax

Vg 1.00 -0.647 -0.081 -0.335 0.231 0.040
KxgI -0.647 1.000 -0.652 -0.075 -0.715 0.727
TiG -0.081 -0.652 1.000 0.381 0.762 -0.925
Kxi -0.335 -0.075 0.381 1.000 -0.226 -0.414
Vi 0.231 -0.715 0.762 -0.266 1.000 -0.723

Tghmax 0.040 0.727 -0.925 -0.414 -0.723 1.000

Fit 6 (Subject 8)
row/column Vg KxgI TiG Vi λ Tghmax

Vg 1.000 -0.817 -0.793 -0.805 0.360 0.604
KxgI -0.817 1.000 0.664 0.703 -0.749 -0.818
TiG -0.793 0.664 1.000 -0.992 -0.502 -0.730
Vi -0.805 0.703 0.992 1.000 -0.531 -0.768
λ 0.360 - 0.749 -0.502 -0.531 1.000 0.860

Tghmax 0.604 -0.818 -0.730 -0.768 0.860 1.000

Table B.5: Correlation matrix of the well-determined parameters for Fits 5
and 6 (Subject 8) for the EIC model.

Fit 8 (Subject 17)
row/column Vi KxgI TiG Kxi λ Tghmax

Vi 1 -0.485 0.879 -0.473 -0.108 -0.607
KxgI -0.485 1.000 -0.730 -0.349 -0.163 0.771
TiG 0.879 -0.730 1.000 -0.006 -0.045 -0.701
Kxi -0.473 -0.349 -0.006 1.000 0.178 -0.073
λ -0.108 -0.163 -0.045 0.178 1.000 0.272

Tghmax -0.607 0.771 -0.701 -0.073 0.272 1.000

Fit 9 (Subject 17)
row/column Vg KxgI TiG Vi λ Tghmax

Vg 1.000 -0.402 0.298 0.273 -0.911 -0.881
KxgI -0.402 1.000 -0.559 -0.591 0.028 0.533
TiG 0.298 -0.559 1.000 0.985 -0.207 -0.626
Vi 0.273 -0.591 0.985 1.000 -0.155 -0.600
λ -0.911 0.028 -0.207 -0.155 1.000 0.795

Tghmax -0.881 0.533 -0.626 -0.600 0.795 1.000

Table B.6: Correlation matrix of the well-determined parameters for Fits 8
and 9 (Subject 17) for the EIC model.
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Figure B.1: Glucose and insulin responses for the EIC model, Fit 2 (Subject
3)
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Figure B.2: Glucose and insulin responses for the EIC model, Fit 3 (Subject
3).
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Figure B.3: Glucose and insulin responses for the EIC model, Fit 4 (Subject
3).
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Figure B.4: Glucose and insulin response for the EIC model, Fit 5 (Subject 8)
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Figure B.5: Glucose and insulin responses for the EIC model, Fit 6 (Subject
8).
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Figure B.6: Glucose and insulin responses for the EIC model, Fit 8 (Subject
17).
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Figure B.7: Glucose and insulin responses fro the EIC model, Fit 9 (Subject
17).



Appendix C

IVGTT data

This Appendix includes the IVGTT data of all subjects, where G (mmol/L)
represents the glucose concentration, I (mU/L) represents the insulin concen-
tration and m represents missing data.
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Time Sub. 1 Sub. 2 Sub. 3 Sub. 4 Sub. 5
(min) G I G I G I G I G I

0 4.9 6.1 4.5 3.8 5.7 3.7 5.1 9.0 4.5 5.8
1 5.4 6.1 4.9 3.8 5.7 3.7 5.5 9.0 - -
2 - - - - - - - - 18.5 5.8
3 9.7 8.3 17.0 15.4 18.3 79.0 19.3 81.9 - -
5 14.1 78.7 15.6 83.3 17.3 71.2 17.9 127.6 17.2 100.5
6 - - - - - - - - 15.8 74.4
7 14.1 57.8 14.9 67.4 15.9 50.3 16.1 101.9 - -
10 - - - - - - - - 14.2 56.9
11 14.0 37.2 13.4 37.2 14.6 34.0 - - - -
12 - - - - - - 14.2 63.8 - -
15 - - - - - - - - 12.2 39.3
16 11.9 33.8 11.5 24.2 12.7 25.9 13.4 60.3 - -
20 - - - - - - - - 10.5 33.6
21 11.2 26.3 10.3 16.9 11.3 20.4 12.6 47.2 - -
25 - - - - - - - - 9.4 24.3
26 10.5 20.6 9.2 13.9 10.0 16.8 11.6 39.1 - -
30 - - - - - - - - 8.3 21.2
31 9.9 21.0 8.1 12.8 9.4 14.2 10.6 32.6 - -
40 - - - - - - - - 6.9 13.2
41 8.9 18.9 7.0 10.5 7.7 10.9 9.5 32.4 - -
60 - - - - - - - - 5.3 6.4
61 7.1 17.6 5.3 6.3 5.8 4.7 7.6 25.3 - -
80 - - - - - - - - 4.5 6.1
81 6.1 12.3 4.5 5.4 5.1 3.0 6.2 17.7 - -
120 - - - - - - - - 4.2 4.1
121 4.8 5.3 4.2 3.5 - - 4.8 7.7 - -
180 - - 4.6 2.6 - - - - 4.8 2.9
181 4.7 4.3 - - 5.4 3.0 4.7 6.8 - -
240 - - - - - - - - 4.5 3.5
241 4.9 3.9 4.5 3.5 5.7 4.3 5.1 8.3 - -
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Time Sub. 6 Sub. 7 Sub. 8 Sub. 9 Sub. 10
(min) G I G I G I G I G I

0 4.9 3.9 4.8 4.1 4.8 3.2 4.6 24.2 3.8 10.3
1 5.5 3.9 5.4 4.1 - - - - - -
2 - - - - 12.1 3.0 - - - -
3 19.8 42.1 15.5 43.7 - - 9.8 24.2 25.9 10.3
4 - - - - 15.2 49.3 - - - -
5 - - 15.3 50.5 - - 10.0 25.9 15.4 28.9
6 15.8 56.4 - - 14.7 42.1 - - - -
7 14.6 38.9 15.0 44.4 - - - - 14.9 19.4
8 - - - - - - 11.6 43.3 - -
10 - - - - 13.7 26.9 - - - -
11 14.0 22.1 14.5 39.3 - - - - 13.4 15.4
13 - - - - - - 6.7 23.9 - -
15 - - - - 12.6 20.4 - - - -
16 13.1 17.8 13.0 38.4 - - - - 12.8 16.1
18 - - - - - - 8.8 21.3 - -
20 - - - - 11.9 18.4 - - - -
21 11.7 14.4 12.6 33.3 - - 8.1 18.5 11.8 15.6
25 - - - - 11.3 16.9 - - - -
26 10.8 12.7 11.7 27.7 - - 7.0 12.6 11.1 15.3
30 - - - - 10.7 14.0 - - - -
31 10.0 11.1 11.5 25.6 - - 6.3 9.1 10.6 14.2
40 - - - - 9.2 14.5 - - - -
41 8.7 9.2 10.4 23.5 - - 5.6 7.6 9.6 16.0
60 - - - - 7.4 11.2 - - - -
61 6.8 7.0 8.4 17.8 - - 4.5 3.9 8.0 20.7
80 - - - - 5.9 6.6 - - - -
81 5.4 5.3 7.2 14.4 - - - - 6.3 13.5
120 - - - - 4.5 3.2 - - - -
121 4.5 3.5 5.4 7.0 - - 4.4 2.6 4.7 5.8
181 - - 4.6 3.6 - - - - 4.2 4.8
241 - - 4.8 5.0 - - - - 3.8 3.4
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Time Sub. 11 Sub. 12 Sub. 13 Sub. 14 Sub. 15
(min) G I G I G I G I G I

0 4.6 39.6 4.9 45.4 4.5 m 4.7 5.2 5.0 4.3
1 - - - - 5.0 m - - 5.0 4.3
2 - - - - - - 5.8 5.3 - -
3 14.8 39.6 16.7 45.4 13.3 10.2 - - 15.5 29.0
4 - - - - - - 13.3 94.2 - -
5 13.9 49.6 16.2 51.0 15.2 62.5 - - 14.5 113.5
6 - - - - - - 13.1 86.7 - -
7 13.3 44.2 14.8 43.2 14.7 48.1 - - 14.6 82.3
10 - - - - - - 12.7 58.1 - -
11 12.5 24.4 13.6 29.1 11.8 26.3 - - 13.1 46.7
15 - - - - - - 10.6 35.1 - -
16 11.7 17.8 13.1 21.7 8.6 16.7 - - 10.8 31.7
20 - - - - - - 10.1 30.5 - -
21 11.2 17.4 11.9 17.3 - - - - 10.1 21.6
24 - - - - 5.4 8.4 - - - -
25 - - - - - - 9.1 21.9 - -
26 10.9 15.8 10.4 14.1 6.5 6.9 - - 8.3 15.7
30 - - - - - - 7.4 18.1 - -
31 10.2 14.5 10.0 12.5 4.9 6.3 - - 8.1 13.4
40 - - - - - - 6.5 13.1 - -
41 9.4 15.1 8.7 12.2 3.0 3.6 - - 6.3 8.5
60 - - - - - - 4.8 6.5 - -
61 7.7 15.3 7.1 9.1 - - - - 5.7 3.0
80 - - - - - - 4.8 6.5 - -
81 6.7 10.6 6.0 7.1 4.9 3.1 - - 5.2 3.5
120 - - - - - - 4.8 3.5 - -
121 4.8 4.8 - - 4.8 2.6 - - - -
126 - - - - - - - - 5.1 2.9
180 - - - - - - 4.9 3.0 - -
181 3.7 5.0 6.0 3.0 - - - - 5.2 2.5
241 - - - - - - - - 5.0 2.6
246 - - - - - - 4.7 2.7 - -

m represents data missing
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Time Sub. 16 Sub. 17 Sub. 18 Sub. 19 Sub. 20
(min) G I G I G I G I G I

0 4.8 m 4.8 23.1 4.7 m 4.7 m 4.9 3.3
1 5.4 m - - 5.6 m 4.7 m - -
2 - - - - - - - - 10.3 3.3
3 22.0 m 12.6 23.1 10.2 19.0 15.5 23.1 - -
4 - - - - - - - - 13.1 14.2
5 17.1 36.0 14.8 42.1 12.1 33.1 13.3 41.3 - -
6 - - - - - - - - 13.0 10.6
7 16.2 26.2 14.4 31.8 - - 12.6 31.9 - -
8 - - - - 13.0 30.1 - - - -
10 - - - - - - - - 12.5 6.7
11 13.7 15.4 14.1 18.6 12.9 22.0 12.7 18.7 - -
15 - - - - - - - - 12.5 6.7
16 12.9 12.6 12.8 14.5 12.0 19.5 11.2 15.6 - -
20 - - - - - - - - 9.8 5.6
21 11.4 12.7 11.8 13.2 11.3 19.0 9.9 11.8 - -
25 - - - - - - - - 9.5 5.7
26 10.2 10.4 10.7 13.0 10.7 17.8 9.0 8.4 - -
30 - - - - - - - - 8.8 4.8
31 9.1 9.3 10.0 12.6 10.4 18.4 7.7 6.1 - -
40 - - - - - - - - 7.5 6.4
41 7.6 9.2 8.8 12.4 9.4 19.3 6.7 4.1 - -
60 - - - - - - - - 5.8 3.8
61 - - 6.6 7.2 7.7 19.6 5.2 3.1 - -
81 - - 6.6 4.6 6.5 9.6 - - - -
181 - - - - - - 4.5 2.8 - -
241 - - - - - - 4.7 3.5 - -

m represents data missing
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Time Sub. 21 Sub. 22 Sub. 23 Sub. 24 Sub. 25
(min) G I G I G I G I G I

0 4.8 5.8 4.8 3.8 4.7 m 4.8 10.4 5.0 m
2 20.8 5.3 19.1 5.8 12.5 22.7 - 7.0 ,
3 - - - - - - 10.1 10.4 - -
4 15.2 55.7 14.4 26.1 13.0 22.3 - - 15.7 41.8
5 - - - - - - 12.9 34.5 - -
6 15.1 40.8 14.2 23.7 12.2 16.9 - - 14.7 34.3
7 - - - - - - 13.4 38.4 - -
10 14.0 36.6 14.6 22.0 12.5 13.4 - - 13.0 22.1
11 - - - - - - 13.6 37.8 - -
15 12.7 29.1 12.2 18.6 12.5 16.8 - - 10.5 14.7
16 - - - - - - 13.0 35.6 - -
20 11.5 24.3 11.4 20.3 11.2 12.4 - - 9.0 12.1
21 - - - - - - 11.9 32.1 - -
25 11.0 24.5 10.4 20.3 10.4 15.2 - - 7.6 9.3
26 - - - - - - 11.1 32.9 - -
30 9.8 23.3 9.9 17.1 9.5 12.8 - - 4.6 9.9
31 - - - - - - 10.7 30.4 - -
40 8.3 25.6 8.4 15.3 8.1 15.9 - - 6.0 7.6
41 - - - - - - 9.2 28.3 - -
60 6.2 15.8 6.7 16.3 6.1 7.5 - - 6.7 3.2
61 - - - - - - 7.5 25.0 - -
80 4.7 11.5 5.7 6.6 5.0 4.6 - - 4.6 2.8
81 - - - - - - 6.3 22.9 - -
120 4.8 8.3 4.8 3.3 - - - - - -
121 - - - - - - 4.5 8.7 - -
180 - - 4.7 3.6 4.7 2.6 - - - -
181 5.1 4.4 - - - - 4.5 8.1 - -
239 4.8 5.8 - - - - - - - -
240 - - 4.8 3.8 - - - - - -
241 - - - - - - 4.5 6.7 - -

m represents data missing
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Time Sub. 26 Sub. 27 Sub. 28
(min) G I G I G I

0 5.0 16.8 4.6 10.0 4.6 m
2 - - - - 13.9 13.3
3 15.9 16.8 7.9 10.0 - -
4 - - - - 14.9 33.3
5 16.2 38.2 10.0 20.9 - -
6 - - - - 14.3 38.5
7 16.0 33.8 10.4 26.9 - -
10 - - - - 14.4 24.6
11 14.6 23.8 10.7 18.5 - -
15 - - - - 12.6 21.0
16 12.6 19.0 10.0 14.0 - -
20 - - - - 11.6 18.1
21 12.1 15.8 9.6 12.9 - -
25 - - - - 10.1 15.8
26 10.9 14.6 9.0 13.1 - -
30 - - - - 9.3 15.6
31 10.7 11.1 8.9 13.3 - -
40 - - - - 7.8 15.2
41 9.4 9.5 8.3 14.4 - -
50 - - - - 6.4 11.0
61 7.7 7.2 - - - -
62 - - 7.3 12.1 - -
70 - - - - 4.1 5.4
81 6.0 3.9 4.7 7.6 - -
110 - - - - 3.9 2.9
121 4.7 2.9 6.2 5.3 - -
181 - - 4.4 4.0 - -
241 - - 4.6 4.6 - -

m represents data missing


