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2.1 SDEs and Itô calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 SDEs and Wiener process . . . . . . . . . . . . . . . . . . . . 26
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possible effects of an additive noise on the firing properties of stochastic neural mod-
els, and the related first exit time problems. The research is divided into three main
investigations. First, using SDELab, mathematical software for solving stochastic
differential equations within MATLAB, we examine the influence of an additive noise
on the output spike trains for the space-clamped Hodgkin Huxley (HH) model and
the spatially-extended FitzHugh Nagumo (FHN) system. We find that a suitable
amount of additive noise can enhance the regularity of the repetitive spiking of the
space-clamped HH model. Meanwhile, we find the FHN system to be sensitive to
noise, requiring that very small values of noise are chosen, in order to produce regular
spikes. Second, under additive noise, we use fixed and exponential time-stepping Eu-
ler algorithms, with boundary tests, to calculate the mean first exit times (MFET) for
one-dimensional neural diffusion models, represented by a stochastic space-clamped
FHN system and the Ornstein-Uhlenbeck (OU) model. The strategies and theory
behind these numerical methods and their convergence rates in the MFET are also
considered. We find that, for different values of noise, these methods with boundary
tests can improve the rate of convergence from order one half to order one, which
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resented by the Barkley system with additive noise that is white in time and cor-
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Chapter 1

Introduction

1.1 Overview

Understanding the mechanism by which information is transmitted between the

body’s nerve cells has received vigorous interest during the last several years. A

nerve cell, or a neuron, which is a basic unit of the nervous system, is responsible for

conveying the information via an electrical signal known as a spike or action potential.

In simple terms, the neuron produces an action potential when its membrane potential

exceeds a firing threshold in response to a strong stimulus (suprathreshold), that is

distinguishable from background noise. A neuron that is capable of producing an

action potential is said to be excitable. The excitable neuron, in fact, is characterized

by three states: the quiescent or rest state, the excited state and the refractory or

recovery state [95]. Thus, under a sufficiently strong stimulus, the excitable neuron

switches from the quiescent state to the excited state; a short time later it falls

into the refractory state, before returning to its quiescent state. The neuron then

requires a certain amount of recovery time before it is capable of producing another

spike. When the input stimulus is weak (subthreshold), however, the neuron remains

quiescent and no spike is generated.
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The first landmark model for the generation and propagation of neural spikes was

the Hodgkin-Huxley (HH) model, which forms the basis for all models of excitable

membrane behaviour, although it was originally developed to describe the spike be-

haviour in the long giant axon. Alan Hodgkin and Andrew Huxley [38] were awarded

the Nobel Prize in Physiology or Medicine in 1963, for this outstanding achievement.

FitzHugh [20, 19] later studied the model and reduced it to a two-variable (excitable

and recovery) model in order to apply phase plane analysis. Later, Nagumo [68]

constructed a circuit using tunnel diodes for the nonlinear channels modeled by the

FitzHugh equations, and thus these equations have become known as the FitzHugh-

Nagumo (FHN) model.

Many sources of noise can be modeled with these systems [63]. For instance, the

noise may come from randomness in the opening and closing times of ionic channels.

It may also come from synaptic events in the form of additive noisy synaptic current,

which we use for the models in our work.

The aim of our thesis is to study, using numerical simulations, the effects of an

additive noise combined with these neural models, both space-clamped models and

spatially-extended systems, on the spiking activity of a single neuron and the related

first exit time problems.

A noisy neural model is a system of stochastic differential equations (SDEs), whose

solution, which represents the membrane potential of a single neuron, can often be

approximated by a diffusion process. Unfortunately, being able to solve an SDE

explicitly is rare, so accurate numerical solutions play a crucial role. The main ap-

proaches to finding a numerical solution are based on discrete-time approximations,

and either strong or weak numerical schemes [48]. Strong approximations involve

computing individual sample paths, while weak ones involve computing approxima-

tions to the probability distribution of the solution or, in general, a functional of the
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solution, such as the first or second moment.

Using SDELab, a package for producing strong numerical solutions for SDEs within

MATLAB, we begin by examining and analyzing the effects of additive noise on the

spiking dynamics of the stochastic space-clamped HH model [86] and the spatially-

extended FHN system with space-time white noise. This is described in Chapter

2. The SDELab software was created by Hagen Gilsing and Tony Shardlow [29],

with the aim of making the analysis and manipulation of SDEs easily approachable.

The software provides different explicit and implicit solvers for Itô and Stratonovich

SDEs.

Specifically, we wish, first of all, to explore the firing properties of the space-

clamped HH model, in response to the application of a suprathreshold, constant

current, and to examine the influence of additive noise on the output spike trains.

Repetitive firing in the HH model has been studied and analyzed extensively, partic-

ularly in the noiseless case; see, for example [36, 75, 33, 84, 50]. Adding a suitable

amount of noise to the HH model may enhance the regularity of the repetitive spiking

of the neuron, and this noise-induced phenomenon is known as the coherence reso-

nance [56]. We will hence examine this beneficial effect of noise on the output spike

trains of the HH model, using SDELab.

Furthermore, we will regard a FHN system with additive space-time white noise

as a parabolic stochastic partial differential equation (SPDE) that can be formulated

as an evolution SDE equation in infinite-dimensional space. Based on the theory

presented in [70], the existence and uniqueness of the solution of an SDE equation

in infinite-dimensional space will be discussed briefly. Following [81], a parabolic

SPDE can be discretized spatially, to obtain a system of SDEs, which can be solved

numerically using SDELab. We will implement this technique for the FHN system

with additive space-time white noise, and evaluate the influence of a small additive
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noise on the regularity of output spikes.

Mainly, these neuronal models are modeled and approximated by diffusion pro-

cesses, due to the well-developed theory on stochastic processes, which enables us to

evaluate the firing probabilities of the spiking activity of a single neuron, including

the functionals of the so-called first exit time (FET)[46]. There has been significant

interest in studying the FET of the membrane potential through a constant firing

threshold, since the time to the first spike is believed to hold significant information

about the stimulus properties [90, 91]. In Chapter 3, we will study the FET prob-

lem, using numerical simulations, for a one-dimensional diffusion, where, in this case,

the basic characteristics of such problems, including the distribution of the FET and

the boundary behaviour properties, can be calculated explicitly. This has created a

strong motivation for research into the first exit phenomenon and the literature on

the topic is extensive, for example [46, 40, 3].

We wish to evaluate the effects of additive noise on the systematic errors in the

mean FET for the stochastic version of the space-clamped FHN system studied by

Tuckwell et al. [89] and for the Ornstein-Uhlenbeck (OU) model studied by Lansky

and Lanska [52]. The OU process is the simplest stochastic leaky integrate-and-fire

(LIF) model for describing nerve membrane behaviour [51]. It is used to approximate

the subthreshold membrane potential of a nerve cell receiving random synaptic in-

puts, ”resulting from the stochastic dendritic currents that are caused by the action

potentials of other neurons or by external stimulation in sensory neurons” [53, 54].

The spiking activity of the OU model is identified by the FET of the membrane

potential through a constant boundary, which is described completely by its den-

sity probability function. Unfortunately, no closed form solution, in general, can

be obtained for this density and so numerical techniques and simulation procedures

are needed [54]. It is also of interest to evaluate the moments of the FET of the

model, in particular the first moment or mean FET (MFET), which can be obtained

18



analytically using Siegert theory [81]. Indeed, several numerical and simulation tech-

niques for obtaining the distributions of the FET of the OU model and its moments

have been discussed in the literature. See, for example, [52, 11, 30, 31, 74] and the

references quoted therein.

We restrict our simulation of the MFET of the OU model to the cases studied

in [52]. Lansky and Lanska [52] used a fixed time step simulation method (Heun’s

method), which was found, as is the case with other fixed time step simulation tech-

niques, to overestimate the actual values of the MFET. Decreasing the time step of

the simulation can make this overestimation smaller, but the price paid for this is long

run-times. Therefore, Lansky and Lanska proposed an adaptive time step algorithm

to speed up the simulation and make this overestimation smaller.

Tuckwell et al. [89] used the theory of diffusion processes to obtain partial dif-

ferential equations for the mean and variance of the FET of a FHN system with

Gaussian additive noise. During the elementary stages of the interspike interval, the

recovery variable in the FHN system is practically unaffected, and therefore these

partial differential equations can be reduced to one-dimensional equations that can

easily be solved analytically. Tuckwell et al. compared the results obtained through

this analytical framework to computer simulation results obtained using the fixed

time-stepping Euler (Euler-Maruyama) method.

However, the error in the mean FET, Hb say, of the one-dimensional diffusion

process, X(t), through a constant threshold boundary, b, produced using the Euler

method, with fixed time step ∆t is found to be proportional to ∆t
1
2 [43, 32]. The Euler

simulation of the FET for X(t) overestimates the real values, because, under Euler

simulation, the continuous sample paths of the Wiener process are approximated by

discrete random walks, giving values only at the beginning and end of each time step,

and therefore we have no information about the behaviour of the continuous process
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during the time step [9]. Thus, we have the possibility that the process reaches the

threshold boundary during the time step, but then returns inside the boundary before

the time step ends, so that it is within the boundary at the beginning and the end

of the time step, and appears not to have crossed the boundary [43, 59, 32]

Mannella [59] dealt with this situation by applying a simple boundary test after

each time step using a Brownian bridge, pinned between the beginning and the end

of the time step. Later, Gobet [32] proved that this test, when combined with the

fixed time-stepping Euler algorithm, could improve the weak order of convergence

from O(∆t
1
2 ) to O(∆t) in the evaluation of the functional F of X(t) conditioned on

t < Hb, with support or regularity conditions on F [32, 8]. Jansons and Lythe [43]

(see also Figure 2 in [8]), suggested, on the basis of their own numerical experiments

using the fixed time-stepping Euler method with Mannella’s boundary test, that this

first-order convergence can also be obtained for the case of the exit time. We expect

that our numerical experiments for the stochastic FHN system and the OU model

will support this observation for different values of noise. Moreover, we will examine

the effects of additive noise on the errors in the mean FET for these neural models,

both in the presence of the boundary test and without it.

When the time step is a random variable with an exponential distribution, the

probability that the boundary has been hit during the time step can also be taken

into account using the simple efficient boundary test [43, 42]. Analogously to the fixed

time-stepping algorithm, the boundary test for the exponential time-stepping Euler

method improves the rate of convergence of the mean FET from O(∆t
1
2 ) to O(∆t),

which coincides with our numerical observations for the stochastic FHN system and

the OU model.

20



The final part of our thesis is devoted to examining, using numerical simulations,

the effects of additive noise on the spiking activity of one-dimensional spatially-

extended neural systems (or, in general, excitable systems) representing the prop-

agation of traveling waves along nerve fiber [80, 95]. In an excitable system, it is

possible for waves to be produced through strong changes in the rest state, caused

by local nonlinearity and diffusion [61, 95]. Therefore, a generic excitable medium

can be represented simply by a two-variable system of reaction-diffusion equations,

such as the FHN system or its modification, known as the Barkley model [2].

Here, we are concerned with the Barkley model under the influence of additive noise

that is white in time and correlated in space, with homogeneous initial conditions

and periodic boundary conditions [82]. In this sub-excitable regime, the system can

produce waves when appropriate amounts of noise are added, and consequently no

structure can be nucleated under purely deterministic conditions [26]. Specifically,

we are interested in exploring the influence of additive noise on the mean lifetime

of the traveling waves of the Barkley model, and on their nucleation times, which

can be formulated mathematically as FET problems. To this end, we will use the

efficient numerical technique presented in [83], where a Wiener process that is white

in time and correlated in space, with exponential decay in the spatial correlation, is

generated using a fast Fourier transform (FFT), and the Laplacian is approximated

using the spectral method. We further apply the exponential Euler method, which is

a linearization-preserving integrator, to preserve the eigenvalues of the Laplacian.

The nucleation and dynamics of solitary structures in spatially-extended systems

have been studied extensively, in particular for the φ4- equation associated with

additive space-time white noise [7]. Such structures are known as kinks, in one-

dimensional equations, and their nucleation, propagation and eventual annihilation

are worth studying. A kink is defined, for the model in our work, as a boundary with

a region close to 0 to its left and a region close to 1 to its right; the opposite case
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is called an antikink [58]. In our work, the left (right) sides of front waves and the

right (left) sides of back waves are examples of kink (antikink) structures (see Figure

4.1 in Chapter 4). The kinks and antikinks are nucleated at random times and in

random positions. They diffuse independently and are annihilated in collision [35].

Habib and Lythe [58, 35] studied a one-space dimensional φ4- equation with space-

time white noise, using high resolution numerical simulations, and then introduced a

reduced model of kink dynamics that has the ability to predict the rate of nucleation

and other physical quantities, such as time and length scales, which led to further

understanding of the lifetimes of kinks.

In our work, we also introduce a reduced model of the dynamic behaviour of the

stochastic Barkley model, which allows us to calculate the mean lifetimes of the

generated traveling waves, even for a large space domain and for interacting waves.

This is necessary because, in this case, using the numerical simulation of the Barkley

model to calculate the mean lifetime of the interacting waves directly becomes com-

putationally impractical. Under the reduced model, we calculate the mean lifetime

of each kink and antikink of each wave, individually. This motivates us to explore

the full dynamics of the kinks and antikinks, in particular over longer time periods.

One application of the reduced model is to compute the mean number of kinks at

a specific time and use this to obtain the probability that a given part of the phase

space of the stochastic Barkley system is excited.

1.2 Outline of the thesis

Following this introductory chapter, the rest of the thesis is divided into four chapters

and three appendices as follows.

Chapter 2 is devoted to studying the spiking activity of the space-clamped HH

model with additive noise and the FHN system with space-time white noise, using
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the SDELab package. We begin by introducing the integrators used in SDELab and

then explain in detail how the SDEs and SPDEs represented by these neural models

can be simulated using the SDELab software. The effects of an additive noise on the

output spike trains are also considered.

In Chapter 3, we examine the effects of an additive noise on the FET, for the

stochastic version of the space-clamped FHN system and for the OU model, using the

fixed time-stepping Euler method with boundary correction and the exponential time-

stepping algorithm with boundary test. First of all, we provide a detailed exposition

of the strategies behind these methods and the analytical frameworks of relevant

functionals of the FETs of the diffusion processes. Finally, we study the effects of

the additive noise on the systematic errors in MFETs produced by these simulation

techniques.

In Chapter 4, using efficient numerical simulations, we study the mean lifetimes

and nucleation times, which can be formulated mathematically as FET problems,

of the traveling waves generated under a non-linear spatially-extended system (the

Barkley system) with additive noise that is white in time and correlated in space.

Furthermore, we introduce a simple model of the dynamics of the underlying model,

in order to calculate the mean lifetime efficiently, in particular for interacting waves.

Chapter 5 contains our conclusions and some ideas for future work. In Appendix

A, we provide a brief exposition of some commonly-used concepts and foundations

for the probability theory and theory of stochastic processes needed throughout the

thesis. In Appendix B, we look briefly at Hilbert spaces and some theory that is

strongly connected to PDEs, such as linear operator theory. In Appendix C, we

include the computer simulation codes used to produce our results.
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Chapter 2

Simulation of SDEs and SPDEs

from neural systems using

SDELab [1]

Various software packages can be used to solve and analyze SDEs. For instance,

MATLAB provides an ideal environment for numerical computation. Some exam-

ples can be found in [37]. There is also a Maple package which for the symbolic

manipulation and numerical analysis of SDEs [79].

Recently, Hagen Gilsing and Tony Shardlow [29] created SDELab, a package for

producing strong numerical solutions for SDEs within MATLAB. The software pro-

vides different explicit and implicit solvers for Itô and Stratonovich SDEs. The cur-

rent version of SDELab offers several numerical standard methods for computing

strong solutions of SDEs (2.1)–(2.2) and generates configurable plots and subplots

on demand [29].

SDELab can also be used to solve and analyze some SPDEs, such as the FitzHugh

Nagumo (FHN) model with additive space-time white noise. In practice, many kinds
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of dynamics that are stochastic in nature can be modeled by SPDEs and the state

spaces of their solutions are necessarily infinite dimensional.

A rich body of theoretical work has been developed for SPDEs (see [70, 71]). Nev-

ertheless, few of these equations have analytic solutions, so there is growing inter-

est in producing numerical solutions. For instance, Shardlow [81, 83], Gains [23],

Gyongy [34] and Davie and Gains [15] study parabolic SPDEs that are discretized

spatially, to obtain a system of SDEs which can be solved by numerical methods.

This approach will be implemented here for stochastic FHN equations.

The main aim of the present chapter is to illustrate using the Hodgkin-Huxley

(HH) and FitzHugh-Nagumo (FHN) models, how SDEs and SPDEs can be solved

numerically, and to give the reader tools to solve their own SDEs and SPDEs in

SDELab. Moreover, the influence of the additive noise associated with these neuronal

models on the spiking activity is considered.

The chapter is arranged as follows. In Section 2.1, we provide a mathematical

description of SDEs and a brief exposition of Itô calculus. We also discuss without

proof the existence and uniqueness of strong solutions of SDEs.

In Section 2.2, we introduce discrete-time approximations (integrators) used in the

SDELab package and explain in detail how SDELab works. Furthermore, we consider

the stochastic HH model with space-clamped technique and study some of the effects

of additive noise on output spike trains using the SDELab package.

An evolution SPDE, say a parabolic SPDE can be considered as an evolution SDE

in infinite dimensional spaces such as Hilbert spaces. Therefore in Section 2.3, some

properties of the Wiener process with values in Hilbert space are briefly sketched.

The existence and uniqueness of the solution of an evolution SDE in Hilbert space

is also discussed. Moreover, we consider an SPDE system represented by the FHN
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model with additive space-time white noise and discuss how we can simulate this

system using the SDELab package. The effectiveness of small noise algorithms is also

stated. Finally, some of the material in the present chapter has been published in

the chapter 12 of the book: Stochastic methods in neuroscience [1].

2.1 SDEs and Itô calculus

Itô calculus is an extension of deterministic calculus and is thus a tool for studying

stochastic processes such as the Wiener process. The central result of such a calculus

is Itô’s formula which is a stochastic counterpart of the chain rule of the deterministic

calculus, useful for evaluating the Itô integral. Itô’s formula is applied to derive the

Itô-Taylor expansion that is used to construct discrete-time approximations of an Itô

process. All of these notions will be studied in this section.

2.1.1 SDEs and Wiener process

Wiener process

The standard one-dimensional Wiener process β = {β(t), t ≥ 0} is defined as a

Gaussian process with continuous sample paths, satisfying

β(0) = 0 w.p.1, E(β(t)) = 0, Cov(β(t), β(s)) = min{t, s},

for all 0 ≤ s ≤ t, and where E and Cov represent mathematical expectation and

covariance, respectively. Furthermore, the increments β(t) − β(s), for all 0 ≤ s ≤ t,

are normally distributed random variables, with mean 0 and variance t−s. Moreover,

for 0 ≤ s < t < u < v, the increments β(t)− β(s) and β(v)− β(u) are independent.

The process w(t) = (β1(t), β2(t), · · · , βp(t)), which appears in SDEs (2.1) and (2.2)

below, is defined as an Rp-valued Wiener process with components βj, j = 1, 2, · · · , p,

which are standard Wiener processes and pairwise independent. The Wiener process
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is a mathematical description of Brownian motion. Therefore, it is also called a

Brownian motion.

Mathematical formulation of SDEs

Mathematically, the Itô SDE is an object of the following type:

dX(t) = f(t,X(t))dt + g(t,X(t))dw(t), X(t0) = X0 (2.1)

while the corresponding Stratonovich SDE can be written as

dX(t) = f(t,X(t))dt + g(t,X(t)) ◦ dw(t), X(t0) = X0, (2.2)

where the notation ”◦” in (2.2) denotes the use of Stratonovich calculus. f, f :

R×Rd → Rd are drift functions and g : R×Rd → Rd×p is a diffusion function. w(t)

is an Rp-valued Wiener process. The initial condition X(t0) = X0 is deterministic.

The solution X(t) of the above SDEs is a stochastic process satisfying

X(t) = X(t0) +

∫ t

0

f(s,X(s))ds +

∫ t

0

g(s,X(s))dw(s) (2.3)

and

X(t) = X(t0) +

∫ t

0

f(s,X(s))ds +

∫ t

0

g(s,X(s)) ◦ dw(s), (2.4)

in the Itô and Stratonovich senses, respectively. Next, the difference between the

Itô and Stratonovich calculi will be discussed further and the definition of stochastic

integrals will be given.

The stochastic integral

The second integrals in (2.3) and (2.4) cannot be interpreted as Riemann or

Lebesgue integrals because w(t) is nowhere differentiable in the ordinary sense [49].
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Therefore, these integrals need to be defined in some way. Itô overcame this prob-

lem by defining stochastic integrals using mean-square convergence. Thus, the Itô

integral
∫ T

0
gdw is defined as the mean-square limit of the sum [49]

Sn =
n∑

j=0

g(τj){w(tj+1)− w(tj)}

with evaluation points τj = tj for partitions 0 = t0 < t1 < · · · < tn+1 = T . In the

limit δ = max0≤j≤n(tj+1− tj) → 0 and n →∞. In general, the evaluation point τj is

τj = (1− λ)tj + λtj+1, 0 ≤ λ ≤ 1.

When λ = 0 this leads to the Itô integral, while the Stratonovich integral
∫ T

0
g◦dw as

in (2.4) is obtained by setting λ = 1
2

[49]. To understand more about the differences

between the two calculi, we set g = w in the sum Sn, yielding [49]

∫ T

0

w(t)dw(t) =
1

2
w(T )2 + (λ− 1

2
)T.

Thus, in the Itô case (λ = 0), we have
∫ T

0
w(t)dw(t) = 1

2
w(T )2 − 1

2
T , which contains

an additional term (−1
2
T ) not present in classical calculus. In contrast, Stratonovich

calculus (λ = 1
2
) gives the same result as classical calculus:

∫ T

0
w(t)◦dw(t) = 1

2
w(T )2.

This property of obeying the transformation rules of classical calculus is the main

reason for using Stratonovich calculus in many applications, for which white noise

is used as an idealization of a real noise process [49]. Meanwhile, Itô calculus is

convenient for modeling the external noise arising in many biological and physical

systems, in which the noise is independent of the current state [49].

However, it is possible to move between Itô and Stratonovich calculus using a

simple transformation, since the solution of the Itô equation (2.1) can be written

as the solution of the Stratonovich equation (2.2) with the modified drift function
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defined component-wise by [49]

f i = f i − 1

2

d∑
j=1

p∑

k=1

gjk
∂gik

∂xj

i = 1, 2, · · · , d.

In the case of additive noise, f = f and the Itô and Stratonovich SDEs have the same

solutions [49, 47].

Since the problems we shall deal with in this chapter, both SDE and SPDE, are

modeled with additive noise, we concentrate on Itô calculus in the subsequent sec-

tions.

2.1.2 Itô’s formula

For each t ≥ t0, define a stochastic process

Y (t) = U(t,X(t)),

where U(t,X) has continuous second order partial derivatives and X(t) is given by [49]

dX(t) = f(t)dt + g(t)dw(t), X(t0) = X0. (2.5)

For simplicity, we write equation (2.5) as

dX = fdt + gdw,

and consider

dY (t) = U(t + dt,X(t) + dX(t))− U(t,X(t)).

Using the Taylor expansion for U yields

dY (t) = (
∂U

∂t
dt +

∂U

∂X
dX) +

1

2
(
∂2U

∂t2
dt2 + 2

∂2U

∂t∂X
dtdX +

∂2U

∂X2
dX2) + · · · ,

29



that is

dY (t) = {∂U

∂t
dt+

∂U

∂X
(fdt+gdw)}+1

2
{∂2U

∂t2
dt2+2

∂2U

∂t∂X
dt(fdt+gdw)+

∂2U

∂X2
(fdt+gdw)2}.

Consequently, we have

dY (t) = {∂U

∂t
dt + f

∂U

∂X
dt + g

∂U

∂X
dw}+

1

2
{∂2U

∂t2
dt2 + 2f

∂2U

∂t∂X
dt2

+2g
∂2U

∂t∂X
dtdw + f 2 ∂2U

∂X2
dt2 + 2fg

∂2U

∂X2
dtdw + g2 ∂2U

∂X2
dw2}.

Since E(dw2) = dt, E(dtdw) = 0 and by considering E(dt2) = 0, we obtain the

stochastic version of the chain rule:

dY (t) = {∂U

∂t
+ f

∂U

∂X
+

1

2
g2 ∂2U

∂X2
}dt + g

∂U

∂X
dw, (2.6)

which is known as Itô’s formula [49].

Itô’s formula can be generalized to higher dimensional functions. Thus, if we

consider

dX(t) = f(t)dt + g(t)dw(t), (2.7)

where f : [0, T ] → Rd, g : [0, T ] → Rd×p and w(t) is an Rp-valued Wiener process.

In addition, U : [0, T ]× Rd → R has continuous partial derivatives ∂U
∂t

, ∂U
∂Xk

, ∂2U
∂Xk∂Xi

,

where k, i = 1, 2, · · · , d. Now, define a stochastic process

Y (t) = U(t,X(t)),

where X(t) is an Rd-valued stochastic process satisfying equation (2.7). Then Itô’s

formula can be written as [49]

dY (t) = {∂U

∂t
+

d∑

k=1

fk
∂U

∂Xk

+
1

2

p∑
j=1

d∑

i,k=1

gijgkj
∂2U

∂Xi∂Xk

}dt+

p∑
j=1

d∑
i=1

gij
∂U

∂Xi

dwj. (2.8)

30



2.1.3 Stochastic Taylor expansion

The stochastic Taylor expansion is the stochastic version of the deterministic Taylor

expansion and is used to construct numerical methods, as will be shown in Section 2.2.

The stochastic Taylor expansion we consider here is called the Itô-Taylor expansion

and depends on the repeated use of Itô’s formula (2.6). Consider the Itô process X

which is the solution of the following one-dimensional Itô SDE in integral form:

X(t) = X(t0) +

∫ t

t0

f(X(s))ds +

∫ t

t0

g(X(s))dw(s), (2.9)

for all t ∈ [t0, T ], where f and g are sufficiently smooth real valued functions, satis-

fying the linear growth bound (see Assumption 3 in Theorem 2.1.1, for the definition

of the linear growth bound).

Let h : R → R be a twice continuously differentiable function. If we apply Itô’s

formula (2.6) to h, we get [49]

h(X(t)) = h(X(t0)) +

∫ t

t0

(f(X(s))
∂

∂X
h(X(s)) +

1

2
g2(X(s))

∂2

∂X2
h(X(s)))ds

+

∫ t

t0

g(X(s))
∂

∂X
h(X(s))dw(s). (2.10)

For simplicity of notation, we consider the following operators:

L0 = f
∂

∂X
+

1

2
g2 ∂2

∂X2
, L1 = g

∂

∂X
.

Consequently, equation (2.10) becomes [49]

h(X(t)) = h(X(t0)) +

∫ t

t0

L0h(X(s))ds +

∫ t

t0

L1h(X(s))dw(s). (2.11)

The original Itô equation (2.9) can be obtained from (2.11) by setting h(X) = X.

Hence, L0h(X) = f(X) and L1h(X) = g(X).
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To derive the Itô-Taylor expansion, we first apply Itô’s formula (2.6) to the func-

tions h = f and h = g in (2.9), which yields [49]

X(t) = X(t0) +

∫ t

t0

{f(X(t0)) +

∫ s

t0

L0f(X(z))dz +

∫ s

t0

L1f(X(z))dw(z)}ds

+

∫ t

t0

{g(X(t0)) +

∫ s

t0

L0g(X(z))dz +

∫ s

t0

L1g(X(z))dw(z)}dw(s). (2.12)

It follows that

X(t) = X(t0) + f(X(t0))

∫ t

t0

ds + g(X(t0))

∫ t

t0

dw(s) + R, (2.13)

where

R =

∫ t

t0

∫ s

t0

L0f(X(z))dzds +

∫ t

t0

∫ s

t0

L1f(X(z))dw(z)ds

+

∫ t

t0

∫ s

t0

L0g(X(z))dzdw(s) +

∫ t

t0

∫ s

t0

L1g(X(z))dw(z)dw(s).

Equation (2.13) is the simplest Itô-Taylor expansion and we can continue in this

fashion to obtain more terms in the expansion. For instance, we can apply Itô’s

formula (2.6) to h = L1g in equation (2.12) which gives [49]

X(t) = X(t0)+f(X(t0))

∫ t

t0

ds+g(X(t0))

∫ t

t0

dw(s)+L1g(X(t0))

∫ t

t0

∫ s

t0

dw(z)dw(s)+R

(2.14)

where

R =

∫ t

t0

∫ s

t0

L0f(X(z))dzds +

∫ t

t0

∫ s

t0

L1f(X(z))dw(z)ds +

∫ t

t0

∫ s

t0

L0g(X(z))dzdw(s))

+

∫ t

t0

∫ s

t0

∫ z

t0

L0L1g(X(u))dudw(z)dw(s) +

∫ t

t0

∫ s

t0

∫ z

t0

L1L1g(X(u))dw(u)dw(z)dw(s).

Similar expansion can be obtained for higher-dimensional Itô processes (see more in

[49]). Roughly speaking, ”the Itô-Taylor expansion of a sufficiently smooth function

of an Itô process is considered to be the sum of a finite number of multiple Itô
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integrals, with constant integrands and a remainder term involving a finite number

of other multiple integrals with non-constant integrands. The expansion is used to

construct discrete-time approximations of Itô processes” [49].

2.1.4 Discrete-time approximations and the concept of strong

and weak convergence

Only in limited cases of SDEs can we obtain an explicit solution and thus efficient

numerical methods play a crucial role in the remainder. The most efficient numerical

approach to solving SDEs is based on discrete-time approximations and either strong

or weak numerical schemes. To measure the accuracy of discrete-time approximations,

and to assess the usefulness of their schemes, we need certain criteria, such as strong

and weak convergence criteria.

Strong convergence criterion

A good pathwise approximation is required in many physical problems, such as

direct simulations. The absolute error criterion is suitable in these cases. Let

ξ = E(||X(T )− Y (T )||),

where X(T ) is the Itô stochastic process at time T and Y (T ) is the approximation

process obtained from the numerical scheme at time T . In fact, the pathwise closeness

at T on the time interval [0, T ] can be measured by this value. Moreover, it can be

said that ”a discrete-time approximation Y with maximum step size δ converges

strongly to X at time T” [49] if

ξ = E(||X(T )− Y (T )||) → 0 as δ → 0.
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In Section 2.2, discrete-time approximations such as the Euler-Maruyama method

and the Milstein method will be used as integrators in SDELab. To compare the

methods, their rates of convergence will be used. To be more precise, ”a discrete-

time approximation Y , with maximum step size δ, converges strongly to X with order

γ at time T if there exist a constant C > 0, which does not depend on δ, and a δ0

such that” [49]

ξ(δ) = E(||X(T )− Y (T )||) ≤ Cδγ, for each δ ∈ (0, δ0).

Weak convergence criterion

In some applications, we may be interested in computing approximations to the

probability distribution of the solution or an average of a functional of the solution

rather than the pathwise approximation. Therefore, the weak convergence criterion

is appropriate. Thus, we say that ”a discrete-time approximation Y , with maximum

step size δ, converges weakly to X at time T with respect to a class C of test functions

ϕ if

ξ = E(||ϕ(X(T ))− ϕ(Y (T ))||) → 0 as δ → 0,

for all ϕ ∈ C” [49]. In the same manner as in the strong case, we use the rate of

convergence in order to compare different discrete-time approximations. In this way,

”a discrete-time method is said to have weak order of convergence equal to β if there

exist a constant C > 0, which does not depend on δ, and a finite δ0, such that, for

all test functions ϕ in some class C, we have” [49]

ξ(δ) = E(||ϕ(X(T ))− ϕ(Y (T ))||) ≤ Cδβ, for each δ ∈ (0, δ0).

In the next section, an example of an SDE from the field of neuroscience will be

solved numerically using SDELab. The current version of the software offers strong

solutions of SDEs only. Therefore, we discuss the existence and uniqueness of a strong
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solution of an Itô SDE (2.1) through the following Theorem 2.1.1( for more details,

see [49, 71]).

Theorem 2.1.1. [49]

Consider the following assumptions:

1. f(t,X) and g(t,X) are jointly measurable in (t,X) ∈ [t0, T ]× Rd.

2. (Lipschitz condition). There exists a constant K > 0 such that

||f(t, X)− f(t, Y )|| ≤ K||X − Y ||

and

||g(t,X)− g(t, Y )|| ≤ K||X − Y ||,

for all t0 ≤ t ≤ T and X, Y ∈ Rd.

3. (Linear growth bound). There exists a constant K > 0 such that

||f(t,X)||2 ≤ K2(1 + ||X||2)

and

||g(t,X)||2 ≤ K2(1 + ||X||2),

for all t0 ≤ t ≤ T and X ∈ Rd.

4. X(t0) is At0-measurable with E(||X(t0)||2) < ∞.

Under these assumptions, the SDE of the form (2.1) has a pathwise unique strong

solution X(t) on [t0, T ] with

sup
t0≤t≤T

E(||X(t)||2) < ∞.

Proof. The proof of this theorem can be found in [49].
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2.2 How to simulate SDEs using SDELab

2.2.1 SDELab: Introduction

SDELab is a mathematical package, created by Hagen Gilsing and Tony Shard-

low [29] to make SDEs as easily accessible. The package provides different explicit

and implicit solvers for Itô and Stratonovich SDEs. The current version of SDELab

offers several standard numerical methods for the computation of strong solutions to

(2.1)–(2.2) and generates configurable plots and subplots as required [29]. Here, we

introduce the usage and application of the SDELab package. More details, including

usage instructions, can be found at either

www.ma.ac.uk/∼sdelab

or www.mathematik.hu-berlin.de/∼gilsing/sdelab.

SDELab offers three strong numerical methods for solving the Itô SDEs and two

strong methods for solving Stratonovich SDEs as follows:

1. Itô SDE methods:

• α-methods or Euler methods with parameter α.

• Itô Milstein method.

• The second-order backward differentiation formula or Itô BDF2 method.

2. Stratonovich SDE methods:

• The Euler-Heun method.

• Stratonovich Milstein method.

In the next subsection, we will look more closely at these integrators. However,

the problems we will deal with in this chapter are additive noise problems, so we will

be concerned more with the Itô Euler methods and BDF2 method and will give only

a brief exposition of the others. For further details, see [29].
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2.2.2 Integrators used in SDELab

Itô SDE methods

One important class of methods is Euler methods with parameter α; see (2.15)

below. When α = 0 we obtain the Euler-Maruyama method; when α = 1/2 we

obtain the trapezium rule; when α = 1 we obtain the implicit Euler-Maruyama

method. In SDELab, we refer to this class of methods as the Strong Itô Euler method

with parameter α. Mathematically, the Euler approximation to the Itô process X

satisfying (2.1) is defined as the sequence Yn given by the iterative scheme

Yn+1 = Yn + [(1− α)f(tn, Yn) + αf(tn+1, Yn+1)]∆t + g(tn, Yn)∆wn, (2.15)

where 0 ≤ α ≤ 1, tn = t0 + n∆t, and n = 0, 1, · · · , N − 1, where N ∈ N. ∆t is the

time step and ∆wn = w(tn+1) − w(tn) are increments in the Wiener process, which

are normally distributed. Y0 = X0.

Theorem 2.2.1. [49]

Suppose that

1.

E(||X0||2) < ∞,

where X0 is independent of w(t),

2.

E(||X0 − Y0||2)1/2 ≤ k1∆t1/2,

3.

||f(t,X1)− f(t,X2)||+ ||g(t,X1)− g(t,X2)|| ≤ k2||X1 −X2||,

4.

||f(t,X)||+ ||g(t, X)|| ≤ k3(1 + ||X||),
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and

5.

||f(s,X)− f(t,X)||+ ||g(s,X)− g(t,X)|| ≤ k4(1 + ||X||)||s− t||1/2,

for all s, t ∈ [t0, T ] and X, X1, X2 ∈ Rd, where the constants k1,k2,k3 and k4 do

not depend on ∆t.

Then

E(||X(T )− Y (T )||) ≤ k5∆t1/2,

where Y (T ) is the Euler approximation to the Itô process X(T ) at time T and k5 is

a constant that does not depend on ∆t.

Proof. The proof of this theorem can be found in [49].

It follows immediately from the above Theorem 2.2.1 that if the drift function f

and the diffusion function g are well behaved, then the solution Yn of (2.15) converges

strongly to the solution X of (2.1) at time tn with order 1/2, which means that

(E[‖X(tn)− Yn‖2])1/2 = O(∆t1/2), ∀t0 ≤ tn ≤ T,

where E[.] denotes expectation with respect to the law of the Wiener process. The

Euler scheme is obtained by considering the first three terms of the Itô-Taylor expan-

sion, which was discussed above in Section 2.1.3.

The Euler method represents the simplest strong Taylor approximation. More ac-

curate strong Taylor schemes can be obtained by including further multiple stochas-

tic integrals from the Itô-Taylor expansion into the Euler scheme [49]. The Milstein

method is the basic example and is implemented in SDELab as the Strong Itô Milstein
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method with parameter α [29]

Yn+1 = Yn + [(1− α)f(tn, Yn) + αf(tn+1, Yn+1)]∆t + g(tn, Yn)∆wn

+

p∑
j=1

∂

∂Y
gj(tn, Yn)(g(tn, Yn)ξj), Y0 = X0, (2.16)

where gj(t, Y ) is the j th column of g(t, Y ), ξj = (I1j,n, · · · , Ipj,n)T and

Iij,n =

∫ tn+1

tn

∫ r

tn

dwi(s)dwj(r).

To derive this method, one more term is added to the Euler scheme, which raises the

strong convergence order to 1 under regularity on f and g [49, 37]. More information

about implementing this method and approximating ξj can be found in [29].

SDELab also provides an efficient method for small noise problems, called the

second order Backward Differentiation Formula, referred to as Strong Itô BDF2 in

SDELab:

Yn+1 =
4

3
Yn − 1

3
Yn−1 +

2

3
f(tn+1, Yn+1)∆t

+g(tn, Yn)∆wn − 1

3
g(tn−1, Yn−1)∆wn−1, (2.17)

for n ≥ 2 and with initial values given by

Y1 = Y0 +

[
1

2
f(t0, Y0) +

1

2
f(t1, Y1)

]
∆t + g(t0, Y0)∆w0, Y0 = X0.

Thus, if we consider (2.1) with diffusion function σg(t,X)dw, where σ is a small

parameter, then its solution Yn, obtained from the Euler method with α = 0.5 and

the BDF2 method, satisfies

(E[‖X(tn)− Yn‖2])1/2 = O(∆t2 + σ∆t + σ2∆t1/2), ∀t0 ≤ tn ≤ T.
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So if the noise σ ¿ ∆t then the error is of order O(∆t2 + σ∆t), where O(σ2∆t1/2)

becomes negligible [29].

Stratonovich SDE methods

Two Stratonovich integrators are implemented in SDELab: the Euler-Heun method

and the Stratonovich Milstein method. The former is referred to as the strong

Stratonovich Euler-Heun method with parameter α in SDELab and takes the fol-

lowing form: [29]

Yn+1 = Yn + [(1− α)f(tn, Yn) + αf(tn+1, Yn+1)]∆t

+
1

2
[g(tn, Yn) + g(tn, Y

aux
n )]∆wn Y0 = X0 (2.18)

with predicted value Y aux
n = Yn + g(tn, Yn)∆wn.

The second method is the strong Stratonovich Milstein method with parameter

α: [29]

Yn+1 = Yn + [(1− α)f(tn, Yn) + αf(tn+1, Yn+1)]∆t + g(tn, Yn)∆wn

+

p∑
j=1

∂

∂Y
gj(tn, Yn)(g(tn, Yn)ξj), Y0 = X0, (2.19)

where ξj = (J1j,n, · · · , Jpj,n)T for the iterated Stratonovich integral

Jij,n =

∫ tn+1

tn

∫ r

tn

dwi(s) ◦ dwj(r).

Since our problems in this chapter are modeled with additive noise, we will re-

strict our attention to Itô SDE methods, in particular Itô Euler methods and the Itô

BDF2 method. For this reason, we touched only a few aspects of Stratonovich SDEs

methods; for deeper discussion, we recommend references [29].
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2.2.3 Stochastic HH model with space-clamped technique

The HH model is a mathematical description of electrical excitation and prop-

agation along a nerve axon. In response to a stimulus, the cell membrane elicits

an action potential (spike), which propagates along the nerve axon. The current

flow across the cell membrane depends on the capacitance of the membrane and the

conductance of the ion channels, in particular the voltage-dependent conductances

(sodium and potassium) and leakage conductance. The voltage and the current flow

are assumed to obey Ohm’s law. In this section, we consider the HH model without

the extra complication of spatial variation in the membrane potential (known as the

space-clamped technique) and with additive Gaussian noise input current. In the

literature, there has been interest in the stochastic activity of neurons in generating

spikes with regards to understanding neuronal information processing [86]. Several

works have been studied the effects of noise on the HH model. See, for example,

[87, 90, 88, 39, 69, 94, 77]. Here, we consider the following stochastic version of the

HH model [86]:

Cmdv = (gkn
4(vk − v) + gNa

m3h(vNa − v) + gl(vl − v) + µ)dt + σdw(t)

dn

dt
= αn(v)(1− n)− βn(v)n

dm

dt
= αm(v)(1−m)− βm(v)m (2.20)

dh

dt
= αh(v)(1− h)− βh(v)h,

where µ and σ are constants representing the input current and the noise intensity

respectively, and {w(t), t ≥ 0} is an R-valued Wiener process.

The fractions of potassium channel activation, sodium channel activation and sodium

channel inactivation are represented by n(t), m(t) and h(t) respectively (see Fig-

ure 2.1). The values of these conductance variables are between 0 and 1. Cm is the

membrane capacitance in µF/cm2 and v(t) is the membrane potential in mV . gk,

gNa
and gl represent the maximal values of the membrane conductance constants for
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potassium, sodium and leakage ions respectively. vk, vNa and vl are the corresponding

reversal potentials. The α and β functions are given by [38]

αn(v) =
10− v

100(e(10−v)/10 − 1)
, βn(v) =

1

8
e−v/80,

αm(v) =
25− v

10(e(25−v)/10 − 1)
, βm(v) = 4e−v/18,

αh(v) =
7

100
e−v/20, βh(v) =

1

e(30−v)/10 + 1
.

Following [38], we set the parameters of this model to Cm = 1µF/cm2, gk =

36mS/cm2, gNa
= 120mS/cm2, gl = 0.3mS/cm2, vk = −12mV , vNa = 115mV

and vl = 10.613mV , and hence the resting potential is 0mV .

To solve the HH system using SDELab, we rewrite the model in the form (2.1),
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Figure 2.1: The conductance variables n(t), m(t) and h(t) for the HH model with
µ = 4 and (a) σ = 0, and (b) σ = 2.
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where p = 1 and d = 4:

dX(t) = f(t,X(t))dt + g(t,X(t))dw, (2.21)

where X = [v, n, m, h]T , the drift function is

f(t,X) =




C1n
4(vk − v) + C2m

3h(vNa − v) + C3(vl − v) + µ/Cm

αn(v)(1− n)− βn(v)n

αm(v)(1−m)− βm(v)m

αh(v)(1− h)− βh(v)h




and the diffusion function is g(t,X) = [σ/Cm, 0, 0, 0]T . We use the initial condition

X0 = [v0, n0,m0, h0]
T , where v0 = 0,

n0 =
αn(v0)

αn(v0) + βn(v0)
,

m0 =
αm(v0)

αm(v0) + βm(v0)

and

h0 =
αh(v0)

αh(v0) + βh(v0)
.

The constants are C1 = gk/Cm, C2 = gNa
/Cm and C3 = gl/Cm.

Note that the noise intensity σ in the HH model is often large [87, 90], and that

the system is stiff, so the appropriate integrators are semi implicit (α = 1/2) or fully

implicit (α = 1) methods. Since we have chosen additive noise, the order of strong

convergence of the Euler Scheme is 1 under appropriate smoothness assumptions on

the drift function [49]. Moreover, the Milstein scheme in case of additive noise is

reduced to the Euler scheme which involves no multiple stochastic integrals. Hence,

in this case, the Euler method should be selected.
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Solving the HH system using SDELab

The codes used in SDELab for the HH model (Code 2.1), its drift (Code 2.2) and its

diffusion functions (Code 2.3) are shown below. For simplicity, a and b are used in

these codes instead of α and β.

To start using SDELab within MATLAB, type

sdelab_init.

To find approximate paths (strong approximations) of (2.1) and (2.2), the following

function can be used:

[t,Y]= sdesolve_strong_solutions (fcn,tspan,Y0,p,opt,params),

which requires basic information (arguments) in order to solve SDEs appropriately

and returns values in [t, Y ]. In the following SDELab codes for the HH model, we

describe the functions and their arguments; more detail can be found in [29].

Code 2.1, for the HH model, can be described as follows:

1. The first step involves setting up the problem dimension, time interval and

initial data

d = 4; %dimension of Y

p = 1; % dimension of w(t)

tspan = [0,40]; % time interval

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% compute initial data Y0

a0_n=0.1/(exp(1)-1); b0_n=0.125; a0_m=2.5/(exp(2.5)-1); b0_m=4;

a0_h=0.07; b0_h=1/(exp(3)+1);

Y0=[0;a0_n/(a0_n+b0_n);a0_m/(a0_m+b0_m);a0_h/(a0_h+b0_h)]

The above information is used later in the function
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sdesolve_strong_solutions(fcn,tspan,Y0,p,opt,params),

where the time interval, initial value Y0 and the dimension p of w(t) are repre-

sented by the second, third and fourth arguments respectively.

2. The second step involves defining the drift f and diffusion g functions, which

are specified by the single structure fcn. These coefficient functions can be

specified using two different styles in SDELab: MATLAB-style functions and

Dynamic Library (DL)-style functions. Here, we concentrate on MATLAB-style

functions, which can be passed as the first argument to

sdesolve strong solutions (fcn,tspan,y0,p,opt,params), by setting

fcn.drift=’HH_drift’ and fcn.diff_noise=’HH_diff_noise’,

where HH drift and HH diff noise are the names of the m-files of the drift

and diffusion functions of the HH model (see Codes 2.2 and 2.3 below).

3. Define the parameters of the drift and diffusion functions, which are the last

argument of sdesolve strong solutions and are specified as params.

params.Mu=2.5; params.sigma=0.

4. The fifth argument is opt, which is a MATLAB structure whose fields set the

SDELab options. In our code, we set

opt.IntegrationMethod=’StrongItoEuler’,

opt.StrongItoEuler.Alpha=0.5, opt.MaxStepSize=1e-3 and

opt.MSIGenRNG.SeedZig = 23,

where the first option sets the integration method and the second sets the

parameter α of the Euler method. In SDELab, the default integration method

is StrongItoEuler and the options are [29]
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StrongItoMilstein, StrongItoBDF2, StrongStratoEulerHeun,

and StrongStratoMilstein.

The parameter α in the Euler and Milstein methods for the Itô and the Stratonovich

equations is controlled by

StrongItoEuler.Alpha, StrongItoMilstein.Alpha,

StrongStratoEulerHeun.Alpha, StrongStratoMilstein.Alpha.

The third option (MaxStepSize) represents the maximum value of the time

step ∆t, which in our code is equal to 10−3. If it is not specified, the default

value ((T − t0)/100) is used.

The last option used in our code is the seed for the random number generator.

In fact, there are many other options which can be used to control the nonlinear

solver and its output and plot behaviour. For further information, see [29].

5. Finally, we find the strong numerical solutions using the solver function sde-

solve strong solutions with the above arguments. As mentioned above, it

returns values in [t, Y ]. t represents the time points and Y is a matrix of state

vectors obtained as follows:

[t,Y]= sdesolve_strong_solutions (fcn,tspan,Y0,m,opt,params).

Moreover, if [t, Y ] is omitted, the MATLAB figure appears and the approximate

paths are plotted as they are computed. The output plot of these results can be

produced using a set of configurable options which are passed using an option

structure as an argument to the calling SDELab function. For instance, the

plot types can be controlled using the following options: [29]

opt.OutputPlotType=’sdesolve_plot_path’ %path plot (default)
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opt.OutputPlotType=’sdesolve_plot_phase’ %phase plot

opt.OutputPlotType=’sdesolve_plot_time_phase’%time-phase plot

opt.OutputPlotType=’sdesolve_plot_phase3’ %phase3 plot.

Code2.2: m-file of the drift function of the HH model:

function z=HH_drift(t,Y,varargin)

Mu=varargin{2}.Mu; % Extract parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% conductance variables of potassium,sodium and leakage

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

g_k=36;g_Na=120;g_L=0.3;

C_m=1; % the membrane capacitance

C1=g_k/C_m;C2=g_Na/C_m;C3=g_L/C_m;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constants of resting potential of such ions

v_k=-12;v_Na=115; v_L=10.613;

a_n=(10-Y(1))/(100*(exp((10-Y(1))/10)-1)); b_n=exp(-Y(1)/80)/8;

a_m=(25-Y(1))/(10*(exp((25-Y(1))/10)-1)); b_m=4*exp(-Y(1)/18);

a_h=(7*exp(-Y(1)/20))/100; b_h=1/(exp((30-Y(1))/10)+1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute drift function of HH model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

z1=(C1*(v_k-Y(1))*(Y(2)^4))+(C2*(v_Na-Y(1))*(Y(3)^3)*Y(4))

+(C3*(v_L-Y(1)))+ Mu/C_m;

z2=a_n*(1-Y(2))-b_n*Y(2); z3=a_m*(1-Y(3))-b_m*Y(3);

z4=a_h*(1-Y(4))-b_h*Y(4);
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z=[z1;z2;z3;z4]; %Return values of the drift function

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The MATLAB-style function describing the drift function of the HH model satisfies

the call syntax

function z=HH_drift(t,Y,varargin)

whose arguments are the time value t, a real vector Y of length d representing the

current state value, and a list of optional arguments varargin. The returned value

z is a real vector of length d which represents the value of f at (t, Y ) [29]. The

solution of a stiff system with a nonlinear drift requires a nonlinear equation solver

as we are using an implicit method. SDELab uses the freeware package MinPack-1.3,

which provides software for solving nonlinear equations [29]. To speed up the solver

MinPack-1.3, the user may provide spatial derivatives of the drift function, which can

be utilized in SDELab as the function drift dY, which returns the Jacobian matrix

of f with entries ∂fi(t, Y )/∂Yj for i, j = 1, 2, · · · , d [29]. The MATLAB-style function

describing the spatial derivatives of the drift f satisfies the call syntax

function z=HH_drift_dY(t,Y,varargin)

and can be passed as an argument to sdesolve strong solutions by setting

fcn.drift dY=’HH drift dY’, where HH drift dY is the name of the m-file of

the spatial drift of the HH model. However, drift dY is optional, so if no spatial

derivatives of f are passed, the algorithm uses forward-difference approximations of

the spatial derivative [29].

Code2.3: m-file for the diffusion function of the HH model

function z=HH_diff_noise(t,Y,dw,flag,varargin)

sigma=varargin{2}.sigma; %extract parameters

B=[sigma;0;0;0]; % comput the diffusion
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if(flag)

z=B;

else z=B*dw; end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

The MATLAB-style function describing the diffusion function of the HH model sat-

isfies the call syntax

function z=HH_diff_noise(t,Y,dw,flag,varargin)

whose arguments are the time value t, a real vector Y of length d representing the

current state value, a real vector of length p representing the Wiener increment values,

a flag indicator, and a list of optional arguments varargin. The returned value z

is either a real vector of length d if flag=0, representing the value of gdw (which

is beneficial for sparse diffusion matrices), or if the flag is not zero, it is the same

size as the matrix g. More details on implementation for both Itô and Stratonovich

integrators can be found in [29].

2.2.4 The effectiveness of noise at generating spikes

Repetitive firing in the space-clamped HH model, in response to an applied current,

has been studied and analyzed in the literature, particularly in the noiseless case;

see, for example [36, 75, 33, 84, 50]. Here, we present a numerical simulation in this

context, for the standard HH model. Our results can be summarized as follows:

1. In the absence of noise(σ = 0):

The minimal current required to fire at least one spike is µ = 2.5µA/cm2,

while the threshold current required to elicit an infinite train of spikes is I0 =

6.25µA/cm2. See Figure 2.2.
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According to [36, 75, 33, 84], over a range of constantly applied current µ,

the HH equations have limit cycle solutions when I0 < µ < I2, where I2 =

154µA/cm2 [36]. If µ < I0, no limit cycle solutions occur and the initial

conditions go to a fixed point (see Figure 2.3a for µ = 3 < I0). When µ is

increased to greater than I0, the HH equations start to generate an infinite

train of spikes. I0 is considered a critical current at which the firing frequency

jumps sharply from zero to over 50 spikes/s [84], as shown in Figure 2.5.

Between I0 and I1, where I1
∼= 9.8 < I2 [36], the solutions either decay to

the stable fixed point or grow to a stable limit cycle, depending on the initial

conditions. This coexistence of stability may demand the existence of a surface

containing unstable limit cycles which separate the domains of attractions of

these two stable states. See [36, 75] for further details. If µ is increased towards

I1, the domain of attraction of the fixed point becomes smaller and decreases

to zero when µ reaches I1, as shown in Figure 2.3b and Figure 2.3c. Therefore,

the system has only periodic solutions for the current range I1 < µ < I2 [75].

See Figure 2.3c and Figure 2.4a, for the example where µ = 20.

As µ is increased above I1, the spiking frequency also increases, as shown

in Figure 2.5. However, there is a limited range of frequencies, of 53 − 138

spikes/s [50]. Thus, if µ is further increased towards I2, the frequency begins

to decrease and, when µ passes I2, the nerve becomes blocked after a few

spikes [84]. This behavior is due to the high injected current in the axon,

which causes the membrane to fail to repolarize sufficiently, between spikes,

to relieve sodium inactivation. The membrane shows oscillatory behavior but

no true action potentials [50], as shown in Figure 2.4b. The system has a

stable fixed point. See Figure 2.3d. For further details about the dynamic

behavior of solutions to the HH equations, and an analysis of the stability near

the parameter Ik, k = 0, 1, 2, see [36, 41].
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2. To investigate the influence of noise on the firing frequency of the HH model,

different values of µ are chosen relative to the critical values I0, I1 and I2, with

different levels of noise σ. For µ < I0, we take µ = 0, 3, 5 and 6; for µ between I0

and I1, we choose µ = 6.5 and 8; for I1 < µ < I2, we choose µ = 10, 12 and 15,

all of which are close to I1 in order to avoid the decrease in frequency when µ

is very high. The results of our simulation are summarized in Figure 2.5, where

the mean of the firing frequency is plotted against the current µ for different

values of noise intensity σ = 0, 2, 5, 10 and 15. The results are obtained from

25 trials for each value of µ over an interval of time [0, 250].

In the absence of noise, no limit cycles are generated when µ < I0, and if

µ is increased above I0, the firing frequency jumps from 0 to over 50 spikes/s.

This discontinuity in the firing frequency (the dashed line in Figure 2.5 for the

curve where σ = 0) is eliminated when suitable noise is added, as shown by the

curves in Figure 2.5 for other values of σ = 2, 5, 10 and 15. Thus, with noise,

the input is strong enough to generate spikes with non-zero average frequency,

even when µ < I0 [50, 77], as shown in Figure 2.6. Furthermore, it is clear

that additive noise also increases the frequency for values of µ above I0 (see

Figure 2.5).

2.3 Simulating SPDEs using SDELab

SPDEs are PDEs modeled with a noise term. The analysis and study of SPDEs

has strong connections with probability theory, functional analysis and PDE theory.

Thus, if SPDE is an evolution equation, such as a parabolic or hyperbolic equation,

then it can be formulated as an evolution SDE equation in infinite dimensional spaces,

Hilbert space, for example. Some preliminaries and relevant material on Hilbert space

and Fourier analysis are presented in Appendix B; see [73, 5] for more detail. Given

this, we first expose briefly some properties of the Wiener process with values in
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Hilbert space.

2.3.1 Hilbert-space-valued Wiener process

Definition 2.3.1. [70] Let H be a separable Hilbert space with inner product (., .)H .

Then the linear operator, denoted by f ⊗ g, for f, g ∈ H, is defined as

[f ⊗ g]h := f(g, h)H , for h ∈ H.

Definition 2.3.2. [70][Covariance operator]

Let (Ω,A,P) be a probability space, and consider X,Y ∈ L2(Ω,A,P; H), where H

is a separable Hilbert space. Then the covariance operator of X and the correlation

operator of (X, Y ) are defined by

Cov(X) = E[(X − E[X])⊗ (X − E[X])]

and

Cor(X, Y ) = E[(X − E[X])⊗ (Y − E[Y ])]

respectively, where E[X] =
∫
Ω

X(ω)P(dω) denotes the expectation.

Cov(X) is a symmetric, non-negative and nuclear operator with [70]

trCov(X) = E[|X − E[X]|2],

where tr represents trace of the operator (see Appendix B). Thus, if {ej, j ∈ N} is a

complete orthonormal basis in H and E[X] = 0, then [70]

trCov(X) =
∞∑

j=1

(Cov(X)ej, ej)

=
∞∑

j=1

∫

Ω

|(X(ω), ej)|2P(dω) = E[|X|2].
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Now, if we suppose Q ∈ L(H) is a non-negative and symmetric operator with trQ <

∞, then there exists a complete orthonormal system {ej, j ∈ N} in H and a bounded

sequence of non-negative real numbers λj, such that [70]

Qej = λjej, j = 1, 2, · · · .

The λj, where j = 1, 2, · · · , represent the eigenvalues of Q. The ej, where j = 1, 2, · · · ,
are the corresponding eigenfunctions [70, 71].

Definition 2.3.3. [70][Q-Wiener process]

An H-valued stochastic process w(t), t ≥ 0 is said to be a Q-Wiener process if

1. w(0) = 0,

2. w has continuous trajectories,

3. w has independent increments and

4. w(t)− w(s) ∼ N (0, (t− s)Q), t ≥ s ≥ 0.

The following proposition is very important, stating that the Hilbert-space-valued

Wiener process is a Gaussian process and can also be represented in terms of a real-

valued Wiener process.

Proposition 2.3.1. [70, 71] Let w be a Q-Wiener process, with trQ < ∞. Then,

we have the following:

1. w is a Gaussian process on H with

E(w(t)) = 0 and Cov(w(t)) = tQ, for t ≥ 0.

2. For arbitrary t, w has the expansion

w(t) =
∞∑

j=1

√
λjβj(t)ej, (2.22)
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where

βj(t) =
1√
λj

(w(t), ej), j = 1, 2, · · · ,

are real valued Wiener processes, mutually independent on (Ω,A,P), and the

series (2.22) is convergent in L2(Ω,A,P).

Proof. See [70, 71] for the proof of this proposition.

2.3.2 Existence and uniqueness of the solutions of SDEs in

infinite dimensional space

Definition 2.3.4. [73][C0-semigroup]

A family S(t), t ≥ 0 of bounded linear operators on a separable Hilbert space H

(or, in general, a Banach space) is said to be a C0-semigroup or strongly continuous

semigroup of bounded linear operators, if the following statements hold:

• S(0) = I, where I is the identity operator on H.

• S(s + t) = S(s)S(t) for all s, t ≥ 0.

• For all u ∈ H, the H-valued function t 7→ S(t)u, t ≥ 0, is continuous. In fact,

it is enough to hold the continuity at t = 0 (i.e. for all u ∈ H, ||S(t)u− u|| → 0

as t → 0) and use the uniform boundedness principle to show that S(.) is

continuous at t ≥ 0.

Definition 2.3.5. [73][infinitesimal generator]

Let S(t), t ≥ 0, be a C0-semigroup of bounded linear operators on a separable Hilbert

space H. Then, the infinitesimal generator of the semigroup S(t) is the operator A

(linear and usually unbounded), defined as follows:

Au = lim
h→0+

S(h)u− u

h
for all u ∈ D(A),

where D(A) = {u ∈ H : there exists limh→0+
S(h)u−u

h
}.
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Now consider the following nonlinear additive noise SDE on a time interval [0, T ]:

du(t) = (Au(t) + f(u(t)))dt + σdw

u(0) = u0, (2.23)

where A : D(A) ⊂ H → H is the infinitesimal generator of C0-semigroup S(t) =

eAt, 0 ≤ t ≤ T , u0 is an A0-measurable H-valued random variable, σ is the noise

intensity and f : H → H satisfies the Lipschitz and linear growth conditions. Thus,

∀u, v ∈ H, ∃C > 0 such that

||f(u)− f(v)|| ≤ C||u− v|| (2.24)

and

||f(u)||2 ≤ C2(1 + ||u||2), (2.25)

where ||.|| is the norm on H.

To make sense of this nonlinear case, we need to work with a mild solution defined

as follows.

Definition 2.3.6. [70][mild solution]

A predictable H-valued process u(t), t ∈ [0, T ], (see Definition A.0.5 of the predictable

process), is called a mild solution of (2.23) if

P (

∫ T

0

||u(s)||2ds < ∞) = 1

and, for 0 < t < T ,

u(t) = S(t)u0 +

∫ t

0

S(t− s)f(u(s))ds +

∫ t

0

S(t− s)σdw(s). (2.26)

Theorem 2.3.2. [70]

Let u0 be an A0-measurable H-valued random variable and
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f : H → H satisfies conditions (2.24) and (2.25). Then

1. there exists a unique mild solution to (2.23) in the form of (2.26) and it has a

continuous modification (see Definition A.0.3) and

2. for any p ≥ 2 there exists Cp > 0 such that

sup
0≤t≤T

E||u(t)||p ≤ Cp(1 + E||u0||p).

Proof. The proof of this theorem can be found in [70].

2.3.3 The FHN model with additive space-time white noise

Consider the FHN model with additive space-time noise

du = (D∆u + F (u, v) + µ)dt + σdw(t, x)

dv = G(u, v)dt (2.27)

and with boundary conditions u(t, 0) = u(t, 1) = 0, initial values u(0, x) = u0 and

v(0, x) = v0 and F, G : R×R→ R. µ and σ are real numbers. The Laplacian ∆ = ∂2

∂x2 ,

and D∆u represents the propagation of the potential u at a rate determined by

diffusion coefficient D. w(t, x) is a Wiener process with covariance Q. To understand

this, consider {ej =
√

2 sin(jπx), j = 1, 2, . . .}, a complete orthonormal system for

L2(0, 1) as shown in Theorem B.0.9. Then, the Wiener process w(t, x) with covariance

Q can be written in terms of its Fourier series. If Q has eigenvalues αj > 0 and

corresponding eigenfunctions sin(jπx), then

w(t, x) =
∞∑

j=1

(
√

2
√

αj sin(jπx)βj(t)),

where βj(t) is a sequence of independent real valued Wiener processes. For our work,

we consider a space-time white noise, so Q = I, where I is the identity operator, and
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thus αj = 1, ∀j = 1, 2, . . . Thus

w(t, x) =
∞∑

j=1

(
√

2 sin(jπx)βj(t)).

Following [20], the function F (u, v) is a cubic function that can be written as

F (u, v) = u(1 − u)(u − a) − v, where 0 < a < 1, and G(u, v) = b(u − γv), where

b, γ ∈ R [86]. To obtain a suitable suprathreshold response, the parameter a should

be less than 1/2 [88]. The variable u represents the fast (voltage-like) variable and

v represents the slow or recovery variable (potassium gating variable). The initial

values are chosen to be the resting value of u (u0 = 0) and the equilibrium state of v

(v0 = n0).

To discuss the existence and uniqueness of the solution of the system (2.27), we

regard the system as an evolution equation of form (2.23) in a separable Hilbert space

H and apply Theorem 2.3.2. However, F in system (2.27) is a nonlinear polynomial,

an as a result does not satisfy the global Lipschitz condition. To deal with this

situation, we consider equation(2.23) on a smaller state space, E, on which F is well

defined (locally Lipschitz continuous). E is a Banach space that is continuously,

densely and, as a Borel subset, embedded in H. To guarantee the existence and

uniqueness of a mild solution to equation (2.23) in this case, some assumptions need

to be satisfied; see Theorem 7.10 and assumptions 7.35, 7.36 and 7.37 in [70, pp 197-

198]. In our example, we take H = L2(0, 1) and E = C([0, 1]), similarly to Example

7.11 in [70]. For further details of the general case, see chapter 7 and Appendices A

and D in [70].

We now discuss how to discretize the FitzHugh-Nagumo model spatially, to get a

system of SDEs which can be solved by SDELab. To do this, consider a time step

∆t and a grid size ∆x = 1
d+1

, where d ∈ N. The Wiener process w(t, x) can be

approximated by truncating its Fourier expansion after d terms [81], so we consider
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the Rd-valued process w̃(t), with components

w̃i(t) =
d∑

j=1

(
√

2 sin jπxiβj(t)),

where xi = i∆x, i = 1, 2, · · · , d, is the spatial grid. Moreover, the standard three-

point finite difference approximation A is used to approximate the Laplacian ∆, where

A is a tridiagonal matrix ∈ Rd × Rd and Aii = −2, Ai+1,i = 1 for 1 ≤ i ≤ d− 1 and

Ai−1,i = 1 for 2 ≤ i ≤ d. This leads to the following spatial discretization scheme:

dũ = [D
1

(∆x)2
Aũ + F (ũ, ṽ) + µ]dt + σdw̃(t)

dṽ = G(ũ, ṽ)dt, (2.28)

where ũ ∈ Rd with components ũi = u(t, i∆x) and ṽ ∈ Rd with components ṽi =

v(t, i∆x). F (ũ, ṽ) and G(ũ, ṽ) : Rd × Rd → Rd with components

Fi = (ũi(1− ũi)(ũi − a)− ṽi)

and

Gi = b(ũi − γṽi),

where i = 1, 2, · · · , d. dw̃(t) = Qdβ(t) where Q ∈ Rd × Rd with components

Qij =
√

2 sin(ijπ∆x),

and dβ(t) is Rd-valued Wiener process since dβ(n) = [dβ1(t), dβ2(t), · · · , dβd(t)]
T .
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Numerical simulation of SPDEs of FHN model using SDELab

Spatially discretizing the system (2.27) of SPDEs for the FHN model yields the system

(2.28) of SDEs, which can be solved by SDELab. Firstly, we rewrite these as

dY = f(t, Y )dt + g(t, Y )dβ(t), (2.29)

where Y = [ũ1, ũ2, . . . , ũd, ṽ1, ṽ2, . . . , ṽd]
T ∈ R2d, the drift function

f(t, Y ) =




D 1
(∆x)2

Aũ + F (ũ, ṽ) + µ

G(ũ, ṽ)


 ,

where F (ũ, ṽ) and G(ũ, ṽ) are interpreted as vectors with entries F (ũ1, ṽ1), F (ũ2, ṽ2),

etc. and g =




σQ

0


 is a diffusion function, with initial condition

Y0 =




u0

v0


 ∈ R2d since u0 =




0

0

...

0



∈ Rd and v0 =




n0

n0

...

n0



∈ Rd.

The codes for the FHN equations and their drift and diffusion functions are shown

in Appendix C as codes C.1.1, C.1.2 and C.1.3 respectively. The parameters of the

model are specified as D = 0.01, a = 0.05, µ = 0.5, γ = 0.5 and b = 0.008 with time

step ∆t = 0.01 and spatial grid ∆x = 0.1.

To avoid problems with stability and to deal efficiently with a small intensity of

noise for the FHN model where σ ¿ 1, either the Euler method with α = 1/2 or the

BDF2 method would be suitable.
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Trajectories

To investigate the influence of the additive noise intensity σ on the trajectories of the

fast variable u using our SDELab codes, different values are chosen for σ, holding the

other parameters fixed. The results of the numerical simulations can be summarized

as follows:

• When σ is very small, as shown in Figure 2.8 for σ = 0.001, the paths are close

to the deterministic case (shown in Figure 2.7).

• If the noise parameter is increased to σ = 0.01, for example, spikes can be

realized, although the paths are erratic, as illustrated in Figure 2.9.

• When the noise is further increased to σ = 0.1, the irregularity in paths is also

increased. This is shown in Figure 2.10, where the paths are very erratic and

it is difficult to recognize the spikes.

The above numerical experiments provide evidence of the sensitivity of this type of

model to noise. Therefore, the noise should be very small, σ ¿ 1, in order to produce

regular spikes.
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(a)     The HH with µ=2.5, σ=0
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Figure 2.2: In absence of noise: (a) shows the current needed to fire a spike (µ = 2.5)
and (b) shows the current required to produce an infinite train of spikes must be
greater than I0 = 6.25. In the figure: µ = 6.26 is just above I0.
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Figure 2.3: Examples for the dynamic behavior that the solutions of the HH equations
can display: (a) µ = 3 < I0 (b) I0 < µ = 8 < I1 (c) I1 < µ = 20 < I2 and (d)
µ = 170 > I2 .
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Figure 2.4: (a) Periodic solutions that the system has when I1 < µ < I2. (b) The
case when µ > I2 where the system shows oscillatory behavior but no true spikes due
to the blocking of nerve after few spikes.
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Figure 2.5: The mean firing frequency versus the current µ for different values of
noise σ.
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Figure 2.6: Trajectories of voltage variable v of the HH system when µ = 5 (less than
the critical value I0) with (a) σ = 0 (c) σ = 2, and (b) and (d): the projection v vs
n for the corresponding cases, respectively.
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Figure 2.7: An illustration of the spikes generated by numerical simulation of SPDEs
for the FHN system using the Euler method (α = 0.5) with ∆t = 0.01, ∆x = 0.1 and
σ = 0. The fast variable u(i∆x, t) where i = 1, 2, · · · , d = 9 is represented by sold
lines and the recovery variable v(i∆x, t) where i = 1, 2, · · · , d by dashed lines.
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Figure 2.8: Numerical simulation of the FHN model when σ = 0.001 ¿ 1, for
which the trajectories are very close to the deterministic case. The figure shows the
trajectories of the fast variable: (a) when using the Euler method with α = 0.5. (b)
when using the BDF2 method.
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Figure 2.9: Trajectories of the fast variable u when σ = 0.01. (a) Using the Euler
method with α = 0.5 and (b) using the BDF2 method. The spikes can be recognized
despite of irregularity in their paths.
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Figure 2.10: Erratic paths of the fast variable u when σ = 0.1:(a) Using the Euler
method ( α = 0.5). (b) Using BDF2 method. The noise is dominant so it is difficult
to recognize the spikes.
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Chapter 3

Simulation of first exit time

problems of one-dimensional

neural diffusion models

There is no doubt that the first exit time (FET) or the first passage time (FPT) of

one-dimensional diffusion through a constant threshold is one of the classical problems

in probability theory with important applications in many scientific areas such as

physics and neurobiology. The basic characteristics of such problems, including the

first passage probabilities and the boundary behavior properties, can be calculated

explicitly and thus have created a strong motivation for the extensive studies of the

theory of first exit phenomena in the literature, for example [46, 40, 3].

In neurobiology, for instance, there has been significant interest in studying the

aspect of neuronal spiking activity, in particular the first exit time of the membrane

potential through a fixed threshold. In fact, the time to the first spike, for example

in cortical neurons, is implicated as coding much of the information about stimulus

properties [90]. For more detail, see [91] and the references therein. Therefore, this

problem has received a lot of attention in the literature, in particular for the basic
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diffusion neuronal models such as [52] for the Ornstein Uhlenbeck (OU) process, [90]

for the Hodgkin Huxley (HH) model and [89] for the FitzHugh Nagumo (FHN) model.

However, finding the analytical results for the first exit time problems, in general,

is a hard task and success can be limited, although closed forms can be obtained in

some cases. Therefore, numerical and particularly simulation approaches are often

used in this context. For more information, see [89, 90, 52, 67] and the references

given there. The simulation of the FET through threshold boundary using the fixed

time step Euler method overestimates the actual values due to the possibility that

the threshold boundary is reached during the time step. Decreasing the time step

of the simulation can make this overestimation smaller. However, the price paid is

the long run time [67]. Mannella [59] treated this situation by applying a simple test

after each time step to calculate the probability of the boundary being hit during the

time step.

When the time step is a random variable with an exponential distribution, the

probability that the boundary has been hit during the time step can also be taken

into account using the simple boundary test [43, 42]. In the present chapter, both

the fixed time step Euler algorithm and the exponential time-stepping Euler method,

with boundary tests, are used to simulate the FET of the FHN equation presented

in [89] and the OU process studied in [52].

The chapter is organized as follows. In Section 3.1, we briefly sketch the main prop-

erties of diffusion processes that are needed in the subsequent sections. Section 3.2

presents some facts and theory of the FET of the one-dimensional diffusion through

constant boundaries referring to [46, 76] for a more thorough treatment. In Section

3.3, we look more closely at the exponential and the fixed time-stepping methods,

with boundary tests and the relevant theory. Thus in Section 3.3.1, we recall the

fixed time-stepping Euler method introduced in Chapter 2 and use it to simulate the
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FET of one-dimensional diffusion. Moreover, the main idea of the boundary test of

Mannella associated with the Euler algorithm is clarified and analyzed. In Section

3.3.2, following [43], we provide a detailed exposition of the strategy of the expo-

nential timestepping algorithm with boundary test and an analytical framework of

relevant functionals of the FET of the diffusion processes. In last section, we include

numerical experiments concerning the FHN equation and the OU model, to compare

the properties of the exponential time-stepping Euler method with those of the fixed

time-stepping algorithm.
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3.1 Diffusion processes

First of all, we present some basic definitions related to continuous time Markov

processes with continuous state space, before defining a diffusion process.

Definition 3.1.1. [49][Markov property, Markov process, transition proba-

bility, transition density]

Let X(t), t ≥ 0 be a continuous time process with continuous state space I ⊆ R. The

Markov property of the process X(t) is defined as

P(X(t + h) ∈ B|X(t) = x,X(t1) = x1, ..., X(tn) = xn) = P(X(t + h) ∈ B|X(t) = x),

where 0 < t1 < t2 < · · · < tn < t, h > 0, x1, x2, · · · , xn, x ∈ I and B ⊆ I is a

Borel subset of R. A process X(t) with this property is called a Markov process with

transition probabilities given by

P (B, t + h|x, t) = P(X(t + h) ∈ B|X(t) = x), (3.1)

and with transition densities p(·, t + h|x, t)(if they exist) defined by

P (B, t + h|x, t) =

∫

B

p(y, t + h|x, t)dy. (3.2)

Definition 3.1.2. [65][stopping time]

Consider a stochastic process X(t) defined on the filtered probability space (Ω,F ,Ft,P).

The stopping time (or Markov time) of the process X(t) is a random variable τ : Ω →
[0,∞] for which the event {τ ≤ t} ∈ Ft for all t ≥ 0. The first passage time or first

exit time

Hb = inf{t ≥ 0 : X(t) = b},

which will be discussed in the next section, is an example of a stopping time.

Definition 3.1.3. [65][strong Markov property]
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The strong Markov property is a generalization of the Markov property defined above,

in which t is replaced by a stopping time τ .

We clarify this concept using the case of the Wiener process. The Wiener process

starts afresh at each deterministic time instance meaning that it satisfies the Markov

property [65, Theorem 2.3]. Moreover, the Wiener process is called a strong Markov

process since it obeys the Markov property for a class of random times called stopping

times. Mathematically, if w(t), t ≥ 0 is a standard Wiener process, then for all finite

stopping times τ (w.p.1), the process w(τ + t)−w(τ), for all t ≥ 0 is also a standard

Wiener process independent of w(t) (see [65, Theorem 2.16]). Clearly, the strong

Markov property implies the Markov property, but not vice versa. One important

application of the strong Markov property is the reflection principle as stated in the

following theorem:

Theorem 3.1.1. Reflection principle If τ is a stopping time and w(t), t ≥ 0 is a

standard Wiener process then the process

w∗(t) =





w(t), if t ≤ τ,

2w(τ)− w(t) if t > τ,
(3.3)

is also a standard Wiener process. In other words, the Wiener process reflected at

some stopping time τ is still a Wiener process.

Proof. The proof of this theorem can be found in [65].

Lemma 3.1.2. Suppose w(t), t ≥ 0 is a standard Wiener process and Hb = inf{t :

w(t) = b} is a stopping time of w(t) at a constant boundary b. Then

P(Hb < t) = 2P(w(t) > b).

Proof. For the proof, we follow [18]. First, if w(t) > b then by the continuity of the
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path of the Wiener process, we get Hb < t. It follows that

P(w(t) > b) = P(w(t) > b, Hb < t).

By the strong Markov property and since Hb is a stopping time, w(t+Hb)−w(Hb), t ≥
0 is also a standard Wiener process, independent of w(t). Then the symmetry for the

Wiener process yields

P(w(t)− w(Hb) > 0|Hb < t) = P(w(t) > b|Hb < t) =
1

2
.

Now, we have

P(w(t) > b) = P(w(t) > b,Hb < t),

= P(w(t) > b|Hb < t)P(Hb < t),

=
1

2
P(Hb < t).

We now turn to the case of diffusion processes. Basically, the diffusion process

is defined as a continuous time Markov process with continuous sample paths. To

be more precise, we present the mathematical description of the diffusion process as

follows:

Definition 3.1.4. [49, 46, 3, 28][diffusion process]

Consider a Markov process X(t), t ≥ 0 defined on the state I = [l, r] ⊆ R with

−∞ ≤ l < r ≤ ∞. Then the process X(t) is said to be a diffusion process if the

following limits exist:

1. limh↓0 1
h
P(|X(t + h)−X(t)| > ξ|X(t) = x) = 0, for any ξ > 0,

2. limh↓0 1
h
E[X(t + h)−X(t)|X(t) = x] = µ(x, t),

3. limh↓0 1
h
E[(X(t + h)−X(t))2|X(t) = x] = σ2(x, t),
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where µ and σ are Lipschitz functions.

By condition (1), the diffusion process X(t) avoids any instantaneous jumps and

consequently X(t) has continuous sample paths [49, 46]. The functions µ(x, t) and

σ2(x, t) represent the drift and diffusion parameters of the diffusion process X(t),

respectively, and they are, generally, continuous in t and x [46].

Definition 3.1.5. [46][homogeneous diffusion process]

A diffusion process X(t), t ≥ 0 is said to be homogeneous if

P(X(t + h) ∈ B|X(t) = x) = P(X(h) ∈ B|X(0) = x), (3.4)

for all Borel subsets B ∈ I, x ∈ I and h, t ≥ 0.

In this case the process depends only on the increment of time rather than the

specific time t, and the drift µ(x, t) and diffusion σ2(x, t) are time independent. Thus,

µ(x, t) = µ(x) = lim
h↓0

1

h
E[X(h)− x|X(0) = x], (3.5)

and

σ2(x, t) = σ2(x) = lim
h↓0

1

h
E[(X(h)− x)2|X(0) = x]. (3.6)

Definition 3.1.6. [46, 76][regular diffusion process]

Let X(t), t ≥ 0 be a diffusion process defined on state space I = [l, r], where −∞ ≤
l < r ≤ ∞. Then X(t) is called regular if, for all x ∈ (l, r) and b ∈ I, we have

P(Hb < ∞|X(0) = x) > 0. (3.7)

The behavior of the regular time homogeneous diffusion process X(t) defined on

the state space I = [l, r] is expressed by its infinitesimal generator, given by [46, 3]

Lf(x) = µ(x)
df(x)

dx
+

1

2
σ2(x)

d2f(x)

dx2
, (3.8)
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where f(x) is a twice continuously differentiable on I, l < x < r, and

L = µ(x)
d

dx
+

1

2
σ2(x)

d2

dx2

is a differentiable operator. From now on, we shall consider a regular homogeneous

diffusion process, unless otherwise stated.

Definition 3.1.7. [46, 76][scale density, scale function]

Let s(x) : R→ R be a function given by

s(x) = exp(−
∫ x

l

2µ(ξ)σ−2(ξ)dξ), l < x < r, (3.9)

where the state space is as defined above, and with the assumption that σ2(x) > 0.

Then s(x) is said to be a scale density of the process X(t). Furthermore, a scale

function of the process X(t) is a continuous strictly increasing C2-function S(x) on

R defined by

S(x) =

∫ x

l

s(η)dη, l < x < r. (3.10)

Definition 3.1.8. [46, 76][speed density]

A function m(x) : R→ R given by

m(x) =
2

σ2(x)s(x)
, l < x < r, (3.11)

is known as the speed density of the process X(t).

One efficient technique for solving (3.8) is to express the differential operator L

as consecutive differentiations with respect to s(x) and m(x). We have

s′(x)

s(x)
= −2µ(x)

σ2(x)
,
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and consequently equation (3.8) can be written as

Lf(x) =
( 1

m(x)

) d

dx

[
1

s(x)

df(x)

dx

]
. (3.12)

Now, we have dS(x) = s(x)dx and dM(x) = m(x)dx, where M is called the speed

measure. Substituting these quantities into equation (3.12) yields

Lf(x) =
d

dM

[
df(x)

dS

]
, (3.13)

which is known as the canonical representation of the differential operator associated

with diffusion process X(t) [46].

The properties related to the diffusion process and to its infinitesimal generator,

presented in this section, will be used to study the FET problem of one-dimensional

diffusion in the following sections.
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3.2 First exit time problem of one-dimensional dif-

fusion

The first time for reaching a point or exiting a region plays a crucial role in the

study of one-dimensional diffusion processes. First, let X(t), t ≥ 0 be a regular time

homogeneous diffusion process, defined on the state space I = [l, r] where −∞ ≤ l <

r ≤ ∞, and define the first exit time for X(t) through a fixed point b ∈ I given by

Hb(x) = inf{t ≥ 0 : X(t) = b|X(0) = x}.

In addition, denote by

H = Ha ∧Hb = min(Ha, Hb)

the first time X(t) reaches either a or b where l ≤ a < b ≤ r. We here restrict

our attention to the problems of mean first exit for X(t) of constant boundaries,

beginning with the following general problem.

Lemma 3.2.1. Suppose

U(x) = E[f(

∫ H

0

g(X(s))ds)|X(0) = x] = Ex[f(

∫ H

0

g(X(s))ds)], a < x < b,

(3.14)

where H = Ha ∧Hb, f ∈ C2[a, b] and g is a piecewise smooth function assumed to be

bounded and continuous. Then, U(x) satisfies the boundary value problem

LU(x) + g(x)V (x) = 0, U(a) = U(b) = f(0), (3.15)

where V (x) = Ex[f
′(
∫ H

0
g(X(s))ds)] and LU(x) = µ(x)U ′(x) + 1

2
σ2(x)U ′′(x).

Proof. We follow [46] to prove this lemma. First, verification of the boundary condi-

tions is straightforward from the definition of H. Given 0 < h < H, and assuming
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h → 0, the Taylor expansion implies

U(x) = Ex[f(

∫ h

0

g(X(s))ds +

∫ H

h

g(X(s))ds)]

= Ex[f(

∫ H

h

g(X(s))ds) + f ′(
∫ H

h

g(X(s))ds)

∫ h

0

g(X(s))ds] + O(h2).

As g is continuous at x, we have

U(x) = Ex[f(

∫ H

h

g(X(s))ds) + hg(x)f ′(
∫ H

h

g(X(s))ds)] + o(h), (3.16)

where o(h) is of smaller order than h. Using the property of the conditional expec-

tation (A.14) and the Markov property, we obtain

Ex[f(

∫ H

h

g(X(s))ds) + hg(x)f ′(
∫ H

h

g(X(s))ds)]

= Ex[EX(h)[f(

∫ H

h

g(X(s))ds)]

+ hg(x)EX(h)[f
′(
∫ H

h

g(X(s))ds)]]

= Ex[U(X(h))] + hg(x)Ex[V (X(h))].

Consequently (3.16) is rewritten as

U(x) = Ex[U(X(h))] + hg(x)Ex[V (X(h))] + o(h). (3.17)

By the continuity of the sample paths of the diffusion process X, as h → 0, X(h) →
X(0) = x. Expanding then about x yields

Ex[U(X(h))] = U(x) + U ′(x)Ex[X(h)− x] +
1

2
U ′′(x)Ex[(X(h)− x)2] + o(h), (3.18)

and

Ex[V (X(h))] = V (x) + o(h). (3.19)
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Substituting from (3.18) and (3.19) into (3.17) gives

U(x) = U(x)+U ′(x)Ex[X(h)−x]+
1

2
U ′′(x)Ex[(X(h)−x)2]+hg(x)V (x)+o(h), (3.20)

which means

0 = U ′(x)Ex[X(h)− x] +
1

2
U ′′(x)Ex[(X(h)− x)2] + hg(x)V (x) + o(h). (3.21)

The result then follows from dividing (3.21) by h, letting h tends to zero and substi-

tuting µ and σ2 into equation (3.21) from the infinitesimal equations

µ(x) = lim
h↓0

1

h
Ex[X(h)− x]

and

σ2(x) = lim
h↓0

1

h
Ex[(X(h)− x)2].

We restrict ourselves here to discussing two important special cases of the problem

introduced by Lemma 3.2.1. The first is when f(x) = xn, so f ′(x) = nxn−1, and

consequently the nth moment of
∫ H

0
g(X(s))ds is given by

Un(x) = Ex[(

∫ H

0

g(X(s))ds)n],

which satisfies

µ(x)U ′
n(x) +

1

2
σ2(x)U ′′

n(x) + ng(x)Un−1(x) = 0, U(a) = U(b) = 0. (3.22)

77



The first moment or the mean of the first time the diffusion reaches either a or b is

thus obtained by setting n = 1 and g(x) ≡ 1 giving

T (x) = U1(x) = Ex[Ha,b], a < x < b,

which satisfies the associated boundary value problem

LT (x) = −1, a < x < b, T (a) = T (b) = 0. (3.23)

The second important special case, which arises in many applications, is f(x) =

exp(−λx), λ > 0 and g(x) ≡ 1. Obviously, f ′(x) = −λf(x). Here, we are interested

in the problem of the first time the diffusion reaches a single barrier, b say. Thus

we will concentrate on the problem of the mean FET from the region (−∞, b) with

X(0) = x. As a result, from Lemma 3.2.1, the mean or the Laplace transformation

of the first exit time Hb,

ϕ(x) = Ex[exp(−λHb)], (3.24)

is the solution of the following differential equation:

Lϕ(x)− λϕ(x) = µ(x)ϕ′(x) +
1

2
σ2(x)ϕ′′(x)− λϕ(x) = 0, ϕ(b) = 1. (3.25)

For a deeper discussion of this case, see for example [46, 76, 40]; here, however, we

touch on a few aspects of the theory related to this problem. First, we remark that a

one-dimensional diffusion process, starting at state a, say, and reaching state b, must

visit all intermediate points. Using this and the strong Markov property implies the

following important lemma [46].

Lemma 3.2.2. For l < a < c < b < r and for each λ > 0, we have

1.

Ea[exp(−λHb)] = Ea[exp(−λHc)]Ec[exp(−λHb)], (3.26)
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and

2.

Eb[exp(−λHa)] = Eb[exp(−λHc)]Ec[exp(−λHa)], (3.27)

Proof. We refer to [46] for the proof of this lemma.

Now, for each λ > 0, define the functions [76]

ψ↑(x): [l, r) → (0,∞) and ψ↓(x): (l, r] → (0,∞) by

ψ↑(x) ≡





Ex[exp(−λHc)], x ≤ c, x ∈ (l, r)

1

Ec[exp(−λHx)]
, x ≥ c, x ∈ (l, r)

and

ψ↓(x) ≡





Ex[exp(−λHc)], x ≥ c, x ∈ (l, r)

1

Ec[exp(−λHx)]
, x ≤ c, x ∈ (l, r)

where c ∈ (l, r) and ψ↑(l) = ψ↓(r) = 0. The functions ψ↑(x) and ψ↓(x) are well

defined due to the regularity of the homogeneous diffusion process X(t) which means

that Ec[exp(−λHx)] > 0.

Lemma 3.2.3. 1. For b > x,

Ex[exp(−λHb)] =
ψ↑(x)

ψ↑(b)
, (3.28)

and

2. for b < x,

Ex[exp(−λHb)] =
ψ↓(x)

ψ↓(b)
. (3.29)

Moreover, ψ↑(x) and ψ↓(x) are strictly increasing and strictly decreasing functions
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of x respectively, and also satisfy

Lψ(x) = λψ(x), ψ(b) = 1. (3.30)

Proof. We first prove statement(1), and statement (2) follows similarly. From Lemma

3.2.2, we have for x < c < b,

Ex[exp(−λHb)] = Ex[exp(−λHc)]Ec[exp(−λHb)]. (3.31)

The definitions of ψ↑(x) and ψ↓(x) imply that

Ex[exp(−λHc)] = ψ↑(x), where x < c,

and

Ec[exp(−λHb)] =
1

ψ↑(b)
, where b > c.

(1) then follows immediately by substituting these quantities into (3.31). From this,

we have for, x < b,

Ex[exp(−λHb)]ψ
↑(b) = ψ↑(x),

and since 0 < Ex[exp(−λHb)] < 1, it follows that ψ↑(x) < ψ↑(b). Hence, ψ↑(x) is

a strictly increasing function of x. In the same manner, we can see that ψ↓(x) is a

strictly decreasing function of x. Now, by Lemma 3.2.1, ϕ(x) = Ex[exp(−λHb)] is

the solution of

Lϕ(x) = λϕ(x), ϕ(b) = 1, (3.32)

and from (3.28), we have

Ex[exp(−λHb)] =
ψ↑(x)

ψ↑(b)
=

ψ↑(x)

constant
.

Consequently, (3.32) is also satisfied for ψ↑(x).
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However, explicit solutions of the first exit problems of one-dimensional diffusions

are limited to a few simple cases and therefore, in general, accurate numerical solu-

tions are required. We will introduce two of these numerical approaches in the next

section.

3.3 Numerical simulations of exit time problems

We present here two numerical simulation algorithms in order to study the FET

problem of the one-dimensional diffusion process. The first technique is the standard

Euler (or Euler-Maruyama) method, introduced in Chapter 2, where the time step is

taken to be constant. The second approach is called the exponential time-stepping

Euler method, which is analogous to the standard Euler algorithm but with an ex-

ponentially distributed random time step [43]. The boundary corrections used to

improve the accuracy of the mean exit times estimated by these methods will also be

considered.

3.3.1 Standard Euler method with boundary correction

Definition 3.3.1. [3, 6][Brownian bridge]

Let w(t), t ≥ 0 be a standard Wiener process. Then the Brownian bridge or tied-

down Wiener process from 0 to 0 on [0, T ], where T > 0, is defined as the continuous

Gaussian process

Y (t) = w(t)− t

T
w(T ),

with zero mean and covariance Cov(Y (t), Y (s)) = s − st
T
, 0 ≤ s < t ≤ T. The

distribution probability of the Brownian bridge is thus the conditional probability of

the Wiener process w(t), given that w(0) = w(T ) = 0.
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A scaled stochastic integral

X(t) =

∫ t

0

T − t

T − u
dw(u), 0 ≤ t ≤ T,

that satisfies the stochastic differential equation

dX(t) =
−X(t)

T − t
dt + dw(t),

is a Gaussian process with the same mean and covariance as the Brownian bridge

Y (t), and therefore X(t) can also be said to be a Brownian bridge from 0 to 0 [6].

Generally, the Brownian bridge from x to y on [0, T ], where x, y ∈ R is defined as the

continuous Gaussian process

X(t) = x +
(y − x)t

T
+

∫ t

0

T − t

T − u
dw(u),

with mean

E[X(t)] = x +
(y − x)t

T
,

and covariance

Cov(X(t), X(s)) = s− st

T
, 0 ≤ s < t ≤ T,

and is characterized as the pathwise unique solution of the SDE

dX(t) =
y −X(t)

T − t
dt + dw(t), X(0) = x.

With these preliminaries in place, we can now proceed to describe the standard

Euler method with boundary correction. First, let X(t) be a regular homogeneous

diffusion process satisfying the SDE

dX(t) = µ(X(t))dt + σdw, X(0) = x. (3.33)
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Then the fixed time-stepping Euler method (standard Euler method) for simulating

such an equation takes the form [49]

X(tn + ∆t) = X(tn) + µ(X(tn))∆t + σ
√

∆tηn, n = 0, 1, 2, · · · (3.34)

where ∆t is the fixed time step, tn = n∆t and each ηn is an i.i.d standard Gaussian

random variable (ηn ∼ N(0, 1)). However, simulating exit time problems using this

approach may cause large errors in the calculation of the probability of the first time

the diffusion reaches a boundary point, b say, or exits a region [43]. This is due to

the possibility that the process may attain the boundary and come back, within the

time step [9]. Approximating the continuous sample paths of Brownian motion using

discrete random walks gives the values only at the beginning and the end of the time

step and so we have no information about the behavior of the continuous process

during the time step [9]. Mannella [59] dealt with this situation by applying a simple

hitting test after each time step using the distribution of the Brownian bridge from

X(0) = x to X(∆t) = y. Later, Gobet [32] proved that this test, when combined with

the fixed time-stepping Euler algorithm, can improve the weak order of convergence

from O(∆t
1
2 ) to O(∆t) in evaluation of the functional F (X(t)) conditioned on t < Hb,

with support or regularity conditions on F [9]. Jansons and Lythe [43] suggested

according to their own numerical experiments using the fixed time-stepping Euler

method with Mannella boundary test that the first order convergence also applies

to the case of the exit time, consistent with our numerical observations that will be

presented in the next section. Basically, Mannella’s boundary test associated with

the fixed time-stepping Euler method requires calculating the probability

P(Hb < ∆t|X(0) = x,X(∆t) = y),

where Hb is the first time that the process X(t) reaches the level b. To this end, we

first calculate this probability for the diffusion process with constant coefficients as
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demonstrated by the following lemma.

Lemma 3.3.1. Let B(t), t ≥ 0 be a Wiener process with constant drift defined by

B(t) = x + µt + σw(t), B(0) = x,

where µ and σ > 0 are real constants. Also let HB
b = inf{t ≥ 0 : B(t) = b} be the

first exit time of B(t) through constant boundary b, then

P(HB
b < t|B(0) = x,B(t) = y) = exp(

−2(b− x)(b− y)

σ2t
),

provided y < b.

Proof. We follow [9] to prove this lemma. The proof starts with the observation that

P(HB
b < t|B(0) = x,B(t) = y) = P( sup

0≤s≤t
B(s) ≥ b|B(0) = x,B(t) = y),

and since the process

Z(t) =
B(t)

σ
=

x

σ
+

µ

σ
t + w(t), Z(0) =

x

σ
,

is the Wiener process with constant drift µ̄ = µ
σ
, it follows that

P(HB
b < t|B(0) = x,B(t) = y) = P( sup

0≤s≤t
Z(s) ≥ b

σ
|Z(0) =

x

σ
, Z(t) =

y

σ
).

Now, for simplicity of notation, we set b̄ = b
σ
, x̄ = x

σ
and ȳ = y

σ
, giving

P(HB
b < t|B(0) = x,B(t) = y) =

P(sup0≤s≤t Z(s) ≥ b̄, Z(t) ∈ dȳ|Z(0) = x̄)

P(Z(t) ∈ dȳ|Z(0) = x̄)
,

where dȳ is a tiny interval around ȳ. Now recalling the formula [6, 2.1.0.6 p.250]

P(Z(t) ∈ dȳ|Z(0) = x̄) =
1√
2πt

exp(
−(ȳ − x̄− µ̄t)2

2t
)dȳ,
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and [6, 2.1.1.8 p.251]

P( sup
0≤s≤t

Z(s) ≥ b̄, Z(t) ∈ dȳ|Z(0) = x̄) =
1√
2πt

exp(µ̄(ȳ − x̄)− µ̄2t

2
− ((b̄− ȳ) + (b̄− x̄))2

2t
)dȳ,

we obtain

P(HB
b < t|B(0) = x,B(t) = y) =

1√
2πt

exp(µ̄(ȳ − x̄)− µ̄2t
2
− ((b̄−ȳ)+(b̄−x̄))2

2t
)dȳ

1√
2πt

exp(−(ȳ−x̄−µ̄t)2

2t
)dȳ

= exp(µ̄(ȳ − x̄)− µ̄2t

2
− (2b̄− ȳ − x̄)2

2t
+

(ȳ − x̄− µ̄t)2

2t
)

= exp(
2tµ̄(ȳ − x̄)− µ̄2t2 − (2b̄− ȳ − x̄)2 + (ȳ − x̄− µ̄t)2

2t
)

= exp(
−4b̄2 + 4b̄ȳ + 4b̄x̄− 4x̄ȳ

2t
)

= exp(
−4(b̄− x̄)(b̄− ȳ)

2t
)

= exp(
−2(b− x)(b− y)

σ2t
).

The diffusion process X(t) defined by (3.33), conditioned on X(t) = x and X(t +

∆t) = y, on the interval [t, t+∆t] where ∆t → 0, behaves like the Wiener process B(t)

with constant coefficients, and therefore, as a result of Lemma 3.3.1, the distribution

of the FET with respect to the bridge pinned at X(t) = x and X(t + ∆t) = y can be

expressed as [9, 59]

Px,b,y = P(Hb < ∆t|X(t) = x,X(t + ∆t) = y) = exp(
−2(b− x)(b− y)

σ2∆t
). (3.35)

The fixed time-stepping Euler method with boundary test is thus divided into two

main parts [32]:

• The trajectories {X(tn+1) : n = 0, 1, 2, · · · } are generated according to equation

(3.34).

• After each time step, a simple boundary test (Mannella’s boundary test) is
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performed to check the possibility that the boundary b was reached during the

time step, by generating a uniformly distributed random variable u ∼ U(0, 1)

and comparing it to the probability Px,b,y defined by (3.35). To be precise, an

excursion during the time step is deduced if

X(t + ∆t) ≥ b or u < Px,b,y. (3.36)

3.3.2 Exponential time-stepping Euler method with bound-

ary test

Under the exponential time-stepping method [43, 42], the time step δt is an expo-

nentially distributed random variable so that

P(δt > t) = exp(−λt), t ≥ 0, λ > 0. (3.37)

In our work, we consider the exponential time-stepping Euler method [43, 42] for

the regular homogeneous diffusion process X(t) defined by (3.33). The strategy of

this algorithm is based on calculating the conditional probability of a given boundary

being hit during the time step and the density of the random variable X(t+δt)−X(t).

Due to the independence of all quantities of the starting time, we assume the process

starts at t = 0, and hence we need only to compute the density of X(δt) and the

probability of the FET of X(t) through a certain boundary, b say, occurring before

δt [43].

The first task is thus to calculate the density of X(δt):

R(x, y) =
d

dy
P(X(δt) < y|X(0) = x), (3.38)
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and then to write it in terms of ψ↑(x) and ψ↓(x). To this end, consider first the

second-order ordinary differential equation:

Lu = Lu− λu = f, l < x < r, (3.39)

with homogeneous boundary conditions

u(l) = u(r) = 0, (3.40)

where L is the differential operator given by (3.25), λ > 0, and f : (l, r) → R

is a continuous function. By taking f = 0 in (3.39), we obtain the corresponding

homogeneous equation

Lu = 0 ⇔ Lu = λu. (3.41)

Definition 3.3.2. [46, 12][Green’s function]

A Green’s function G(x, y) for the homogeneous equation (3.41) is defined as satis-

fying the following conditions:

1. For fixed y, G(x, y) is continuous in x on [l, r]× [l, r], and the first and second

derivatives of G for x 6= y are also continuous.

2. For all y ∈ (l, r) and x 6= y, LG(x, y) = 0.

3. For all y ∈ (l, r), G(l, y) = G(r, y) = 0.

4. The first derivative of G has a jump discontinuity at x = y:

∂G(y+, y)

∂y
− ∂G(y−, y)

∂y
=

2

σ2(y)
, l < y < r.

Lemma 3.3.2. Suppose that the homogeneous equation (3.41) with boundary con-

ditions (3.40), admits only trivial solutions. Then (3.39) with boundary conditions
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(3.40) has a unique solution of the form

u(x) =

∫ r

l

G(x, y)f(y)dy, l < x < r, (3.42)

where G(x, y) is the Green’s function of the equation (3.41).

Proof. See [12].

Construction of Green’s function

First, by Lemma 3.2.3, the functions ψ↑(x) and ψ↓(x) are a pair of fundamental

solutions of (3.41) (i.e. nonzero and linearly independent solutions ), with initial

conditions [46]

ψ↑(l) = 0,
dψ↑(l)

dx
> 0, and ψ↓(r) = 0,

dψ↓(r)
dx

< 0.

In fact, ψ↑(x) and ψ↓(x) are linearly independent due to the assumption that the

homogeneous equation (3.41) has only trivial solutions satisfying the homogeneous

boundary conditions (3.40). We now construct the Green’s function of (3.41) by first

setting G to

G(x, y) =





Z1ψ
↑(x), l ≤ x ≤ y ≤ r,

Z2ψ
↓(x), l ≤ y ≤ x ≤ r,

where Z1 and Z2 are unknowns that need to be determined. By the first property of

a Green’s function (continuity), we have for x = y

Z1ψ
↑(y)− Z2ψ

↓(y) = 0, (3.43)

and on account of the jump condition (the fourth property), we obtain

Z1
dψ↑(y)

dy
− Z2

dψ↓(y)

dy
=

−2

σ2(y)
. (3.44)
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We thus solve the system of equations (3.43) and (3.44) with respect to Z1 and Z2.

To this end, we first calculate the determinant ∆ of this system:

∆ =

∣∣∣∣∣∣∣
ψ↑(y) −ψ↓(y)

dψ↑(y)
dy

−dψ↓(y)
dy

∣∣∣∣∣∣∣
= −W (y),

where W (y) = ψ↑(y)dψ↓(y)
dy

−ψ↓(y)dψ↑(y)
dy

is the Wronskian of the functions ψ↑(x) and

ψ↓(x).

It is easy to check that W (y) 6= 0, for all y ∈ (l, r). To do this, we suppose that

W (y) = 0, for some y ∈ (l, r). That is,

W (y) = ψ↑(y)
dψ↓(y)

dy
− ψ↓(y)

dψ↑(y)

dy
= 0.

Consequently

d

dy

ψ↑(y)

ψ↓(y)
=
−W (y)

(ψ↓(y))2
= 0,

and so

ψ↑(y)

ψ↓(y)
= c,

where c is an arbitrary constant. From this, ψ↑(y) and ψ↓(y) are linearly dependent,

which contradicts the assumption above, and hence W (y) 6= 0, for all y ∈ (l, r).

Now using Cramer’s rule to solve the system of equations (3.43) and (3.44), yields

Z1 =
−1

W (y)

∣∣∣∣∣∣∣
0 −ψ↓(y)

−2
σ2(y)

−dψ↓(y)
dy

∣∣∣∣∣∣∣
=

2ψ↓(y)

W (y)σ2(y)

and

Z2 =
−1

W (y)

∣∣∣∣∣∣∣
ψ↑(y) 0

dψ↑(y)
dy

−2
σ2(y)

∣∣∣∣∣∣∣
=

2ψ↑(y)

W (y)σ2(y)
.
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Hence, the Green’s function G(x, y) can be written as

G(x, y) =
2

W (y)σ2(y)





ψ↓(y)ψ↑(x), l ≤ x ≤ y ≤ r,

ψ↑(y)ψ↓(x), l ≤ y ≤ x ≤ r.

We next claim that

1

2
W (y)σ2(y)m(y) = C,

where C is an arbitrary constant and m(y) is the speed measure defined by (3.11).

To prove this, first, we have

W (y) = ψ↑(y)
dψ↓(y)

dy
− ψ↓(y)

dψ↑(y)

dy

and

dW (y)

dy
= ψ↑(y)

d2ψ↓(y)

dy2
− ψ↓(y)

d2ψ↑(y)

dy2
,

and since ψ↑(y) and ψ↓(y) are fundamental solutions of the equation Lu = 0, we get

1

2
σ2(y)

d

dy
W (y) + µ(y)W (y) =

1

2
σ2(y)(ψ↑(y)

d2ψ↓(y)

dy2
− ψ↓(y)

d2ψ↑(y)

dy2
)

+ µ(y)(ψ↑(y)
dψ↓(y)

dy
− ψ↓(y)

dψ↑(y)

dy
)

= ψ↑(y)(
1

2
σ2(y)

d2ψ↓(y)

dy2
+ µ(y)(

dψ↓(y)

dy
))

− ψ↓(y)(
1

2
σ2(y)

d2ψ↑(y)

dy2
+ µ(y)(

dψ↑(y)

dy
))

= ψ↑(y)(λψ↓(y))− ψ↓(y)(λψ↑(y))

= 0.

Consequently

d

dy
W (y) =

−2µ(y)

σ2(y)
W (y),

and so ∫ y

l

d
dy

W (ξ)

W (ξ)
dξ =

∫ y

l

−2µ(ξ)

σ2(ξ)
dξ.
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We thus get

ln(
W (y)

W (l)
) =

∫ y

l

−2µ(ξ)

σ2(ξ)
dξ,

and accordingly

W (y) =
1

W (l)
exp(

∫ y

l

−2µ(ξ)

σ2(ξ)
dξ) =

s(y)

W (l)
,

where s(y) is the scale density defined by (3.9). We therefore obtain

1

2
W (y)σ2(y)m(y) =

1

2

s(y)

W (l)
σ2(y)

2

σ2(y)s(y)
=

1

W (l)
= C,

and consequently

2

W (y)σ2(y)m(y)
=

1

C
.

Hence, the Green’s function can be factorized as

G(x, y) =
1

C





ψ↓(y)ψ↑(x)m(y), l ≤ x ≤ y ≤ r,

ψ↑(y)ψ↓(x)m(y), l ≤ y ≤ x ≤ r.
(3.45)

The definitions of ψ↑(x) and ψ↓(x) tell us that ψ↑(l) = ψ↓(r) = 0, and thus it

follows immediately that LG(l, y) = LG(r, y) = 0. It remains only to prove that

LG(x, y) = 0 for x 6= y in order to complete the verification that (3.45) is a Green’s

function. To this end, recall that ψ↑(y) and ψ↓(y) are fundamental solutions of the

equation Lu = 0, which yields, for x < y,

LG(x, y) =
1

C
ψ↓(y)m(y)(

1

2
σ2(x)

d2ψ↑(x)

(dx)2
+ µ(x)(

dψ↑(x)

dx
)− λψ↑(x))

=
1

C
ψ↓(y)m(y).0 = 0,

and similarly, for x > y, we have LG(x, y) = 0.

Theorem 3.3.3. The density R(x, y) defined by (3.38) can be written in terms of

the increasing function ψ↑(x) and the decreasing function ψ↓(x) as
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R(x, y) = cλψ
↑(x ∧ y)ψ↓(x ∨ y)m(y),

where cλ is a constant dependent on λ, m(y) is the speed measure, defined by

(3.11), x, y ∈ (l, r), and (x ∧ y) = min(x, y) and (x ∨ y) = max(x, y).

Proof. First, let

p(t, x, y) =
dP(X(t) ≤ y|x(0) = x)

dy

be the transition density of the diffusion process X(t) on (l, r). Let {St, t ≥ 0} be a

family of semigroup operators defined as St : C([l, r]) → C([l, r]), with

Stf(x) = Ex[f(X(t))] =

∫ r

l

p(t, x, y)f(y)dy, x ∈ (l, r),

and define the associated resolvent operators as the Laplace transforms of St with

parameter λ > 0:

Rλ(x) =

∫ ∞

0

exp(−λt)(Stf)(x)dt, x ∈ (l, r).

Thus,

Rλ(x) =

∫ ∞

0

exp(−λt)(Stf)(x)dt

=

∫ ∞

0

exp(−λt)

∫ r

l

p(t, x, y)f(y)dydt

=

∫ r

l

f(y)Gλ(x, y)dy,

where Gλ(x, y) =
∫∞

0
exp(−λt)p(t, x, y)dt is a Green’s function, which can be factor-

ized using (3.45) into

Gλ(x, y) =
1

C





ψ↓(y)ψ↑(x)m(y), l ≤ x ≤ y ≤ r,

ψ↑(y)ψ↓(x)m(y), l ≤ y ≤ x ≤ r.
(3.46)
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Now, recall that δt is an exponentially distributed random variable with parameter

λ and density function

pδt(t) = λ exp(−λt), λ > 0, t ≥ 0.

Then, the density R(x, y) = d
dy

P(X(δt) ≤ y|x(0) = x), is easily calculated by inte-

grating the transition density p(t, x, y) over the density pδt of all possible values of

δt:

R(x, y) =

∫ ∞

0

λ exp(−λt)p(t, x, y)dt = λGλ(x, y). (3.47)

From (3.46) and (3.47), it follows that

R(x, y) =
λ

C





ψ↓(y)ψ↑(x)m(y), l ≤ x ≤ y ≤ r,

ψ↑(y)ψ↓(x)m(y), l ≤ y ≤ x ≤ r.
(3.48)

and by setting cλ = λ
C

in (3.48), the proof is then complete.

In order to carry out the exponential time-stepping Euler algorithm, it remains

only to calculate the conditional probability of the boundary b being hit during the

time step.

First note that the distribution of the diffusion process at the end of the exponential

time step δt, conditional on it having hit b during the time step, is the same as if the

time step had started with X equal to b [43]. Thus,

P(X(δt) < y|Hb(x) < δt, X(0) = x) = P(X(δt) < y|X(0) = b). (3.49)

”This is a consequence of the fact that the exponential distribution of δt is considered

as corresponding to a fixed probability per unit time of the time step coming to an

end” [43].
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Lemma 3.3.4. For the process X(t) defined by (3.33), we have

P(Hb(x) < δt) = Ex[exp(−λHb)], (3.50)

where δt is an exponentially distributed random variable with rate λ.

Proof. We prove this as follows. First, on account of equation (A.10), for two real

random variables Y and Z defined on (Ω,F ,P) and with density functions fY and

fZ , we have

P(Z < Y ) =

∫ ∞

−∞
P(Z < y|Y = y)fY (y)dy =

∫ ∞

−∞
P(Y > z|Z = z)fZ(z)dz.

Now, writing Z = Hb(x) and Y = δt, with fZ = d
dt
P(Hb(x) < t) = r(t) and

fY = λ exp(−λt), yields

P(Hb(x) < δt) =

∫ ∞

0

P(δt > t|Hb(x) = t)r(t)dt, since t > 0.

As δt and Hb are independent, we obtain

P(Hb(x) < δt) =

∫ ∞

0

P(δt > t)r(t)dt,

=

∫ ∞

0

exp(−λt)r(t)dt,

= Ex[exp(−λHb)], (3.51)

which follows from the definition of the Laplace transformation of a density function

of a nonnegative random variable.

According to equations (3.28),(3.29) and (3.51), there is a pair of functions ψ↑(x)

and ψ↓(x), the former increasing and the latter decreasing, such that

P(Hb(x) < δt) =
ψ↑(x)

ψ↑(b)
, for b > x, (3.52)
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and

P(Hb(x) < δt) =
ψ↓(x)

ψ↓(b)
, for b < x. (3.53)

Lemma 3.3.5. 1. If x < b and y < b, then we have

P(Hb(x) < δt|X(δt) = y,X(0) = x) =
ψ↑(x ∨ y)ψ↓(b)
ψ↑(b)ψ↓(x ∨ y)

, and (3.54)

2. if x > b and y > b, then we obtain

P(Hb(x) < δt|X(δt) = y,X(0) = x) =
ψ↓(x ∧ y)ψ↑(b)
ψ↓(b)ψ↑(x ∧ y)

. (3.55)

Proof. We will prove (1) and note that (2) can be deduced in the same manner. First,

for simplicity of notation, write Px(.) for P(.|X(0) = x), and thus we have

Px(Hb(x) < δt|X(δt) = y) =
Px(Hb(x) < δt, X(δt) ∈ dy)

Px(X(δt) ∈ dy)

=
Px(X(δt) ∈ dy|Hb(x) < δt)Px(Hb(x) < δt)

Px(X(δt) ∈ dy)
.

Now using (3.49) yields

Px(Hb(x) < δt|X(δt) = y) =
P(X(δt) ∈ dy|X(0) = b)Px(Hb(x) < δt)

Px(X(δt) ∈ dy)
,

and hence

Px(Hb(x) < δt|X(δt) = y) = Px(Hb(x) < δt)
R(b, y)

R(x, y)
. (3.56)

Now, from Theorem 3.3.3, we obtain

R(x, y) = cλψ
↑(x ∧ y)ψ↓(x ∨ y)m(y),

and

R(b, y) = cλψ
↑(y)ψ↓(b)m(y),
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and, from (3.52), we have

Px(Hb(x) < δt) =
ψ↑(x)

ψ↑(b)
,

where x < b and y < b. Substituting these expressions into (3.56) gives (3.54).

However, in the exponential time-stepping Euler method, the process X(t) is

approximated by a Wiener process with constant drift, with parameters determined

at the current position [43]. In fact, when both µ(x) and σ(x) are constants, exact

calculations of the required quantities given by expressions (3.38), (3.54) and (3.55)

can be obtained. Therefore, we first perform the calculations for the Wiener process

with constant drift

B(t) = µt + σw(t), B(0) = 0, (3.57)

where µ and σ are constants, and we then update the exponential time-stepping Euler

method for X(t) using these calculations [43]. First, we will determine the explicit

expressions for the fundamental solutions ψ↑(x) and ψ↓(x) of the homogeneous second

order differential equation

µ
dψ(x)

dx
+

1

2
σ2d2ψ(x)

dx2
− λψ(x) = 0, (3.58)

where the general solution of which is given by

ψ(x) = c1ψ
↑(x) + c2ψ

↓(x),

where c1 and c2 are arbitrary constants. To this end, we consider the characteristic

equation of the homogeneous equation (3.58):

αφ2(x) + βφ(x) + γ = 0, (3.59)

where α = 1
2
σ2, β = µ and γ = −λ. The roots of the characteristic equation (3.59)
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are then obtained using the quadratic formula

φ1,2 =
−β ±

√
β2 − 4αγ

2α
, (3.60)

and consequently

φ1 =
−µ

σ2
+

√
(

µ

σ2
)2 +

2λ

σ2
, φ2 =

−µ

σ2
−

√
(

µ

σ2
)2 +

2λ

σ2
. (3.61)

Then, the solutions ψ↑(x) and ψ↓(x) of equation (3.58) can be written as

ψ↑(x) = exp(φ1x) , ψ↓(x) = exp(φ2x), (3.62)

and hence

ψ↑(x) = exp((N − F )x) , ψ↓(x) = exp(−(N + F )x), (3.63)

where F = µ
σ2 and N =

√
( µ

σ2 )2 + 2λ
σ2 . Now, substituting these expressions for ψ↑(x)

and ψ↓(x) into the conditional probabilities (3.54) and (3.55) yields

P(Hb(x) < δt|B(δt) = y) = exp(−2N(b− (x ∨ y))), for x < b and y < b, (3.64)

and

P(Hb(x) < δt|B(δt) = y) = exp(−2N((x ∧ y)− b)), for x > b and y > b. (3.65)

The density of the increment B(t+δt)−B(t) can be obtained either from Theorem

3.3.3 or by using ”the fact that the distance traveled by the Wiener process B(t),

starting from any fixed point, after a fixed time t, is a Gaussian random variable with

mean µt and variance σ2t” [43] and thus the density of B(t + δt)−B(t) is evaluated

by integrating the Gaussian density over the exponential density of all possible values

of δt [43].
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Lemma 3.3.6.

d

dx
P(B(t + δt)−B(t) < x) =

∫ ∞

0

λ exp(−λt)
1√

(2πσ2t)
exp(

−(x− µt)2

2σ2t
)dt

=
λ

σ2
N−1 exp(−|x|N + Fx). (3.66)

Proof. We follow [46] to verify (3.66). We first let s2 = σ2t in the integral above to

obtain

I = λ

∫ ∞

0

exp(−λ
s2

σ2
)

1√
(2π)s

exp(
−(x− µ

σ2 s
2)2

2s2
)2

s

σ2
ds

=
λ

σ2

√
2

π

∫ ∞

0

exp(−[
λ

σ2
s2 +

x2

2s2
− x

µ

σ2
+

µ2s2

2σ4
])ds

=
λ

σ2

√
2

π
exp(

µ

σ2
x)

∫ ∞

0

exp(−[(
2λ

σ2
+

µ2

σ4
)
s2

2
+

x2

2s2
])ds.

Next, we set u = s/
√

c, where c = |x|√
2λ
σ2 + µ2

σ4

, which yields

I =
λ

σ2

√
2c

π
exp(

µ

σ2
x)

∫ ∞

0

exp(−[(
2λ

σ2
+

µ2

σ4
)

|x|u2

2
√

2λ
σ2 + µ2

σ4

+
x2

√
2λ
σ2 + µ2

σ4

2u2
])du.

Now, for simplicity of notation, we set F = µ
σ2 and N =

√
( µ

σ2 )2 + 2λ
σ2 in the integral

I, which gives

I =
λ

σ2

√
2c

π
exp(xF )

∫ ∞

0

exp(−|x|N
2

(u2 +
1

u2
))du

=
λ

σ2

√
2c

π
exp(xF )

∫ ∞

0

exp(−|x|N
2

(u2 − 2 +
1

u2
)− |x|N)du

=
λ

σ2

√
2c

π
exp(xF − |x|N)

∫ ∞

0

exp(−|x|N
2

(u− 1

u
)2)du

=
λ

σ2

√
2c

π
exp(xF − |x|N)(

∫ 1

0

exp(−|x|N
2

(u− 1

u
)2)du +

∫ ∞

1

exp(−|x|N
2

(u− 1

u
)2)du).
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Now, since

∫ ∞

1

exp(−|x|N
2

(u− 1

u
)2)du =

∫ 1

0

exp(−|x|N
2

(u− 1

u
)2)

1

u2
du,

it follows that

I =
λ

σ2

√
2c

π
exp(xF − |x|N)(

∫ 1

0

exp(−|x|N
2

(u− 1

u
)2)du +

∫ 1

0

exp(−|x|N
2

(u− 1

u
)2)

1

u2
du)

=
λ

σ2

√
2c

π
exp(xF − |x|N)

∫ 1

0

exp(−|x|N
2

(u− 1

u
)2)(1 +

1

u2
)du

=
λ

σ2

√
2c

π
exp(xF − |x|N)(

∫ ∞

0

exp(−|x|N
2

(v2)dv,

where v = u− 1
u
, thus dv = (1 + 1

u2 )du, and so the boundaries of integration become

v = ∞ and v = 0 instead of u = 0 and u = 1, respectively. Now, the integral
∫∞
0

exp(− |x|N
2

(v2)dv is a Gaussian integral, and consequently,

∫ ∞

0

exp(−|x|N
2

(v2)dv =
1

2

√
2π

|x|N .

This gives

I =
λ

σ2

√
2|x|
Nπ

exp(xF − |x|N)
1

2

√
2π

|x|N

=
λ

σ2

1

N
exp(xF − |x|N),

which is the desired conclusion.

Lemma 3.3.7. Integrating equation (3.66) implies that

P(B(t + δt)−B(t) > 0) =
1

2
(1 +

F

N
). (3.67)

Proof. First, from Lemma 3.3.6, we have

P(B(t + δt)−B(t) < x) =

∫ x

−∞

λ

σ2N
exp(yF − |y|N)dy,
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where N =
√

U2 + F 2, U =
√

2λ
σ2 and F = µ

σ2 . Consequently,

P(B(t + δt)−B(t) < x) =
U2

2N

∫ 0

−∞
exp(yF + yN)dy +

U2

2N

∫ x

0

exp(−(yN − yF ))dy

=
U2

2N

1

F + N

∫ 0

−∞
(F + N) exp((F + N)y)dy

− U2

2N

1

N − F

∫ x

0

(−(N − F )) exp(−(N − F )y)dy

=
U2 + F 2 − F 2

2N(F + N)
[exp((F + N)y)]0−∞

− U2 + F 2 − F 2

2N(N − F )
[exp(−(N − F )y)]x0

=
N2 − F 2

2N(F + N)
− N2 − F 2

2N(N − F )
[exp(−(N − F )x)− 1]

=
1

2
(
N − F

N
+

N + F

N
)− 1

2
(
N + F

N
) exp(−(N − F )x)

= 1− 1

2
(1 +

F

N
) exp(−(N − F )x). (3.68)

Accordingly, we obtain

P(B(t + δt)−B(t) > x) = 1−P(B(t + δt)−B(t) < x)

= 1− (1− 1

2
(1 +

F

N
) exp(−(N − F )x))

=
1

2
(1 +

F

N
) exp(−(N − F )x),

and then (3.67) follows directly by setting x = 0.

Now, on account of (3.66), the density of an increment in the Wiener process B,

∆B = B(t + δt)−B(t), is

d

dx
P(∆B < x) =

λ

σ2
N−1 exp(−|x|N + Fx).
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Now, denote ∆B+ for increments in the Wiener process for x ≥ 0 and ∆B− for x < 0.

Then, the density of ∆B+ is

d

dx
P(∆B+ < x) =

λ

σ2
N−1 exp(−(N − F )x) (3.69)

and, the density of ∆B− is

d

dx
P(∆B− < x) =

λ

σ2
N−1 exp(−(−N − F )x). (3.70)

From (3.67), we also have

P(∆B > 0) =
1

2
(1 +

F

N
).

Now, define a two-points random variable s taking values +1 and −1 with probabil-

ities

P(s = 1) = P(∆B > 0) =
1

2
(1 +

F

N
),

and

P(s = −1) = P(∆B < 0) = 1− 1

2
(1 +

F

N
).

Therefore, s can be generated by a uniformly distributed random variable u on [0, 1]

as

s =





1 if 0 ≤ u ≤ 1
2
(1 + F

N
),

−1 if 1
2
(1 + F

N
) < u ≤ 1.

Thus,

s = sign(
1

2
(1 +

F

N
)− u). (3.71)

Now, from (3.69), (3.70) and (3.71), ∆B is an exponentially distributed random

variable generated by

∆B =





p
N−F

if s = 1,

−p
N+F

if s = −1.
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where p is an exponentially distributed random variable with

P(p > x) = e−x,

and can be generated using (A.20) as

p = − ln v,

where v is a uniformly distributed random variable on [0, 1] and independent of u.

Thus,

B(t + δt) = B(t) + (N − sF )−1sp. (3.72)

The exponential time-stepping Euler algorithm with boundary test for the diffusion

process X(t) defined by (3.33), is then carried out as follows [43]:

1. Given the value of X(t), we first generate the value of X(t + δ) using (3.72)

with µ = µ(X(t)). Thus,

X(t + δt) = X(t) + (Nt − sFt)
−1sp, (3.73)

where Ft = σ−2µ(X(t)), Nt =
√

(Ft)2 + 2λ
σ2 and s = sign(1

2
(1 + Ft

Nt
)− u).

2. Next, we perform a simple test using (3.64) after each time step in order to check

the possibility that the boundary b > X(t) (similar treatment for b < X(t))

was attained during the time step, where b was reached by the process X(t)

during the time step if

X(t + δt) > b or z < exp(−2Nt(b− (X(t) ∨X(t + δt)))), (3.74)

where z is a uniformly distributed random variable on [0, 1].
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3.4 Numerical experiments

We employ the simulation techniques described above to two neurobiological exam-

ples, the FitzHugh Nagumo (FHN) and the Ornstein Uhlenbeck (OU) models.

3.4.1 FitzHugh Nagumo model

Consider a space-clamped FHN system [89]

dX = (f(X(t), Y (t)) + I)dt + σdw

dY = β(X(t)− γY (t))dt, (3.75)

with initial conditions X(0) = x and Y (0) = y. X(t) represents the voltage variable

and Y (t) the recovery variable. w(t) is a standard Wiener process, σ is a noise

parameter and I is a constant input current. f is the cubic function

f(X, Y ) = kX(X − c)(1−X)− Y, 0 < c < 1.

c should be set to less than 1
2

in order to obtain suitable suprathreshold responses [89].

γ and β are positive constants. We are interested, here, in finding the mean of the

first exit time of a one-dimensional diffusion through a constant threshold b. In

fact, the recovery variable is practically unaffected during the elementary stages of

the interspike interval, and therefore the system (3.75) can be reduced to a one-

dimensional equation by considering Y (t) = y to be a constant [89]. The system then

takes the form

dX = (f(X(t), y) + I)dt + σdw, (3.76)

with initial condition X(0) = x ∈ (−∞, b). Let Hb(x) be the first time the process

X(t) attains the threshold b. Then, by equation (3.23), the mean first exit time
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T = Ex[Hb] satisfies the differential equation

LT =
σ2

2

d2T (x)

dx2
+ µ(x)

dT (x)

dx
= −1, T (−∞) = T (b) = 0, (3.77)

where µ(x) = f(x, y)+I. To find numerical solutions, we take the domain of starting

values to be finite with x ∈ (−a, b) where a > 0 [89]. As a → ∞, all exits occur at

x = b rather than at x = −a. [89]

The MATLAB function bvp 4C is used to obtain accurate numerical solutions to

(3.77). The parameters can be chosen as [89] c = 0.1, k = 0.5 and I = 1.5 with

various values of σ, such that 0.1 < σ < 5. The initial values are x = 0 and y = 1.

These solutions are used to check the simulation algorithms discussed above.

In our work, the fixed and exponential time-stepping Euler algorithms with bound-

ary tests are used to simulate the mean first exit time of the FHN equation (3.75).

The convergence properties of such algorithms are examined by comparing their sim-

ulations to numerical solutions of the boundary value problem (BVP) (3.77). The

resultant error is then analyzed and estimated.

Generally, numerical simulation of SDEs produces two main errors. The first is

known as random error or statistical error, and can be defined as the deviation of the

total error from its mean value. It appears as a result of using finite samples in the

simulation algorithms and hence can be reduced by carrying out multiple simulation

runs and taking the average of the outcomes. The other is systematic error or constant

error, and is defined as the expectated value of the overall error. Discretizing time in

simulation algorithms causes systematic error and, therefore, decreasing the size of

the fixed time step ∆t or the mean duration of the exponential time step can reduce

this error.
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Suppose now that T is the theoretical value of the mean first exit time through the

constant threshold b, which represents the solution of the BVP (3.77). Following [89],

the threshold is chosen as b = 0.6. Let TM = 1
M

∑M
j=1 Tj be the estimation of

T obtained using the two simulation algorithms discussed above. The error to be

calculated and analyzed is then the absolute value of

ε = E[TM − T ].

The total error ε occurring in the simulation algorithms could not be computed

exactly as these algorithms are subject to statistical errors. Therefore, an estimation

of the error, ε̂ say, is used to calculate the 95% confidence interval of the error ε. In

order to estimate ε, a number N of independent simulation runs are performed, and

the estimation ε̂ is taken to be the absolute value of the average of the corresponding

errors ε1, ε2, · · · , εN . The estimation of the error is decomposed into the statistical

error εstat and the systematic error εsys:

ε̂ = εstat + εsys,

and since E(εstat) = 0, we have

E(ε̂) = εsys = ε.

The 95% confidence interval of the total error ε is therefore

[ε̂− 2

√
σ2

ε

N
, ε̂ + 2

√
σ2

ε

N
],

where

σ2
ε =

1

N − 1

N∑
i=1

(εi − ε̂)2

is the unbiased estimator of the variance of ε.
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Our numerical results for the exit time of the FHN system (3.75) are as follows:

As illustrated in Figure 3.1, the number of samplings M is plotted against the error

in the mean exit time. The other parameters are specified as follows: the noise

parameter σ = 1, the number of runs N = 100, and ∆t = 1
λ

= 0.001, where 1
λ

is the

mean value of the exponential time step δt. δt is a random variable and so its precise

value is not known. Therefore, the expectation E[δt] = 1
λ

is used in the exponential

time-stepping algorithm as an equivalent to ∆t in the fixed time-stepping algorithm.

The elapsed time after N time steps is a random variable with mean N
λ
, whereas

the corresponding quantity for the fixed time-stepping algorithm is N∆t [43]. The

results obtained using the Euler methods with boundary tests, both exponential and

fixed, are shown as empty circles with error bars, and those obtained using such

Euler methods without boundary tests are shown as shaded circles with error bars.

All of these methods produce statistical errors as indicated by the error bars, which

decrease as M increases. Moreover, both Euler methods with boundary tests provide

more accurate results than those without.

Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 display the error in mean exit time as a

function of ∆t = 1
λ
, for different values of σ chosen between 0.25 and 10, in order

to demonstrate the effect of the additive noise on the systematic error produced by

the underlying simulation algorithms. To avoid any influence from the sampling

errors, M and N are chosen as 100000 and 100, respectively. In this case, the error

bars which represent the statistical errors, are smaller than the plotted symbols, and

therefore can be neglected. The figures illustrate that the systematic errors in the

mean exit times obtained using both algorithms are increasing functions of ∆t = 1
λ
.

Furthermore, when the Euler methods without boundary corrections are used, we

find a systematic error in mean exit time proportional to ∆t
1
2 ; however, when the

boundary tests are applied, the systematic error is reduced to being proportional

to ∆t = 1
λ
. As observed from these figures, for σ taking values between σ = 0.25

and σ = 10, the fixed time-stepping Euler method shows greater accuracy than the
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exponential time-stepping algorithm in spite of the similarity between their respective

rates of convergence.

Figures 3.8 and 3.9 display the error in mean exit time as a function of the noise

parameter σ, for different values of ∆t = 1
λ
. As can be observed from these figures, the

additive noise has strong effects on the convergence properties of the Euler methods

without boundary corrections, whether exponential or fixed time steps. Specifically,

as σ increases, the systematic errors increase significantly to peak at σ = 1, and then

begin to decrease slightly. In contrast, when the boundary tests are performed, these

methods produce systematic errors that are approximately independent of the choice

of noise σ, in particular for small values of ∆t = 1
λ
, although the range of σ varies

from a small value, σ = 0.25 to a large one, σ = 10.
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Figure 3.1: Error in mean exit time of the FHN system against the sampling M .
The results obtained by the fixed and exponential time-stepping Euler methods with
boundary tests are shown as empty circles with error bars, and shaded circles with
error bars represent the results obtained using the corresponding methods without
boundary tests. Statistical errors are indicated by error bars.
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Figure 3.2: Error in mean exit time of the FHN system against ∆t = 1
λ
. The results

obtained by the exponential time-stepping Euler method are shown as empty circles,
and shaded circles represent the results obtained using the fixed time-stepping Euler
method. The noise σ = 0.25.

3.4.2 Ornstein Uhlenbeck model

The simplest stochastic leaky integrate and fire (LIF) model for describing the be-

havior of nerve membrane is the Ornstein Uhlenbeck (OU) process [51]. It is used to

approximate the subthreshold membrane potential of a nerve cell receiving random

synaptic inputs and is given by the Itô-type SDE [4]

dX(t) = (−αX(t) + η)dt + σdw(t), (3.78)

X(0) = x,

where ”the constants η and σ reflect the input signal and its variability, resulting

from the stochastic dendritic currents that are caused by the action potential of other

neurons or by external stimulation in sensory neurons” [53, 54]. 1
α

= CR > 0 is the

time membrane constant governing the spontaneous decay of the membrane potential

to its resting state, where R and C are the membrane resistance and its capacitance

respectively [51]. This comes from the deterministic version of the model, which is
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Figure 3.3: Error in mean exit time of the FHN system against ∆t = 1
λ
. The noise

parameter σ is chosen as 0.5

known as an RC-circuit with a generator, a resistor and a capacitor in parallel [55].

In the OU model, the neuron emits a spike whenever the firing threshold (b > x) is

reached, and then the membrane potential is reset to its equilibrium potential, which

is conveniently set to zero [16]. Unlike more complex models such as the HH model

and the FHN model, the action potential is not a part of the OU model; only its time

generation is considered and so we have to impose the threshold condition [53, 54].

The action potential X(t) given by the OU model is a Gaussian random variable

with mean

E[X(t)] =
η

α
+ (x− η

α
)e−tα

and variance

V ar[X(t)] =
σ2

2α
(1− e−2tα),

and hence, the behavior of X(t) is described completely by these moments [54].

For t → ∞, the asymptotic mean depolarization is η
α

and thus we have two firing

regimes for the OU model. The first is called suprathreshold firing and occurs when
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Figure 3.4: Error in mean exit time of the FHN system against ∆t = 1
λ
. σ = 1 is the

noise parameter.

η
α

> b and the neuron produces spikes even in the absence of noise. The other

is called subthreshold firing and is caused only by the random fluctuations of the

depolarization when η
α

< b [51]. The neuron, therefore, never fires when σ = 0. We

are interested here in exploring the effect of noise on the spiking activity of the OU

model and so we limit ourselves to the second regime, in particular when there is an

absence of input (η = 0). The spiking activity of the OU model is identified by the

first exit time (FET) of the membrane potential through constant boundary b:

Hb(x) = inf{t ≥ 0 : X(t) ≥ b|X(0) = x < b},

which is described completely by its density probability function

g(t) =
d

dt
P(Hb ≤ t).

Unfortunately, no closed form solution, in general, can be obtained for g(t) and so

numerical techniques and simulation procedures are needed [54]. It is also of interest

to evaluate the moments of the FET of the model, in particular the first moment or
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Figure 3.5: Error in mean exit time of the FHN system against ∆t = 1
λ
. The noise

parameter σ = 3.

the mean FET (MFET)

T (x) = Ex[Hb]

which, by (3.23), satisfies the differential equation

σ2

2

d2T (x)

dx2
− αx

dT (x)

dx
= −1, T (−∞) = T (b) = 0. (3.79)

Using Siegert theory [81], the MFET can be given as

T (x) =

√
π

ασ2

∫ b

x

(1 + erf(
z
√

α

σ
)) exp(

zα

σ2
)dz, (3.80)

where erf(x) = 2√
π

∫ x

0
e−t2dt, is the error function. However, in addition to the Siegert

formula (3.80), several numerical and simulation techniques for obtaining the distri-

butions of the FET of the OU model and its moments have been discussed in the

literature. See for example [52, 11, 30, 31, 74] and the references quoted therein.

Here, we simulate the MFET of the OU process through constant boundary b using

the same algorithms considered for the FHN equation in the previous section, and
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Figure 3.6: Error in mean exit time of the FHN system against ∆t = 1
λ

and σ = 5.

compare the results with the theoretical values obtained using the Siegert formula

(3.80). We thus consider two cases of the OU process that were studied in [52], with

parameters α = 1, b = 2, σ =
√

2 in the first case and α = 0.2, b = 30, σ = 20 in the

second. Furthermore, the effect of noise on the spiking activity of the OU process is

investigated by taking different levels of the noise parameter σ. The results of these

experiments are summarized in the following.

To study the effects of noise on the systematic errors produced by the simu-

lation algorithms, both the standard Euler method with boundary correction and

the exponential time-stepping algorithm with boundary test are performed. Differ-

ent levels of noise parameter σ are taken, and in order to avoid any influence from

statistical errors, M and N are chosen as 50000 and 500 respectively. For the OU

process with parameters α = 1, b = 2 (case I), the noise parameter σ is chosen to

take values between
√

2 and 10, whereas for the OU process modeled with parameters

α = 0.2, b = 30 (case II), σ takes values between 20 and 100. Figures 3.10 and 3.11

illustrate that, for σ close to the threshold b, the systematic error decreases steeply

in case I and gradually in case II, in particular for the methods without boundary
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Figure 3.7: Error in mean exit time of the FHN system against ∆t = 1
λ

where σ = 10.

correction. When the noise increases further, the MFET becomes smaller, and so the

systematic error begins to stabilize. For both cases of the OU process, as shown in

Figures 3.12, 3.13, 3.14 and 3.15, the systematic errors in mean exit time using the

underlying simulation algorithms are increasing functions of ∆t = 1/λ. Moreover, we

find that the systematic errors are proportional to ∆t
1
2 when the Euler methods with-

out boundary tests are used. In contrast, the systematic errors of the Euler methods

with boundary tests are reduced to being proportional to ∆t = 1/λ. However, as can

be observed from these figures, the fixed time-stepping algorithm seems to be more

accurate than the exponential time-stepping method, although the two algorithms

have the same rate of convergence. All of these observations coincide with the results

obtained for the FHN equation discussed in the previous section.
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Figure 3.10: Error in mean exit time of the OU process against the noise parameter
σ.
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Figure 3.11: Error in mean exit time of the OU process against the noise parameter
σ.
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Figure 3.14: Error in mean exit time of the OU process against ∆t = 1
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where α = 0.2,
b = 30 and σ = 20.
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Chapter 4

Simulation of first exit time

problems of spatially extended

excitable models

The phenomenon of waves in excitable media, such as traveling pulses and spiral

waves, has received a significant amount of attention due to their occurrence in a

wide range of natural systems [92, 61]. The propagation of traveling waves along

nerve fibre [80, 95], and a chemically-active medium with the Belousov-Zhabotinsky

reaction [93], are typical examples; see [66, 95] for further examples of excitable

media. An excitable medium is a non-linear, spatially-extended system, characterized

by three states: rest state, excited state and refractory or recovery state [95]. To be

precise, under a sufficiently strong stimulus, the excitable system switches from the

rest state to the excited state and then falls into the refractory state after a short

time, before returning to the rest state. Subsequent excitation cannot be generated

until a suitable amount of time, known as refractory time, has passed. Thus, in an

excitable system, it is possible for waves to be produced, through strong changes

to the rest state, caused by local non-linearity and diffusion [61, 95]. Therefore,

a generic excitable medium can be represented simply by a two-variable system of
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reaction-diffusion equations, such as the Barkley model [2] or the FitzHugh Nagumo

system [20, 68].

Adding noise to these systems increases the production of spatio-temporal patterns,

such as spiral waves and traveling pulses [45, 44]. Noise, generally, can affect the

excitable media in various ways; see [56] for an extensive review and the references

given there. However, here we are concerned with the Barkley model influencing

space-time additive noise: [82]

du = (D∆u + f(u, v))dt + σdw(t, x)

dv = g(u, v)dt, (4.1)

with initial conditions u(0, x) = u0, v(0, x) = v0 and periodic boundary conditions

on domain [0, L]. D is a diffusion coefficient and σ > 0 is a small noise parameter.

w(t, x) is the Wiener process, white in time and correlated in space. We assume the

reaction terms take the form:

f(u, v) =
1

ε
u(1− u)(u− v + b

a
),

g(u, v) = u− v,

for a, b > 0. Following [2], we set a = 0.75, and b = 0.01. The small parameter

0 < ε ¿ 1 represents the time-scale separation of the fast variable u and the slow

variable v. Our focus is studying the influence of the small additive noise on the

formation and propagation of traveling Barkley waves in one-dimensional excitable

media, with homogeneous initial states. In this subexcitable regime, the system can

produce waves when appropriate amounts of noise are added, and consequently no

structure can be nucleated under purely deterministic conditions [26].
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Our study of the effects of a small amount of additive noise on the propagation

of a traveling wave, under the Barkley model, is divided into two parts: the effects

of the noise on the nucleation time of the wave and the effects on its mean lifetime.

The effect of the time-scale parameter ε is also considered. The nucleation time of

a traveling wave through an excitable medium can be defined as the first time the

maximum value of the fast variable passes the threshold of excitability, which we treat

as a first exit problem. The mean lifetime of such a wave is the average time between

its nucleation and its annihilation. The nucleation and dynamics of solitary structures

in spatially-extended systems have been studied extensively, in particular for the φ4-

equation associated with additive space-time white noise [7]. Such structures are

known as kinks, in one-dimensional equations, and their nucleation, propagation and

eventual annihilation are worth studying. A kink is defined here as a boundary with

a region close to 0 to its left and a region close to 1 to its right; the opposite case

is called an antikink [58]. In our work, the left(right) sides of front waves and the

right(left) sides of back waves are examples of kink(antikink) structures, as illustrated

in Figure 4.1. The kinks and antikinks are nucleated at random times and in random

positions. They diffuse independently and are annihilated in collision [35].

Following these introductory remarks, the rest of this chapter is arranged as follows.

In Section 4.1, we introduce the local dynamics of the Barkley model. Section 4.2

is devoted to approximating the Wiener process efficiently using the fast Fourier

transform (FFT). FFT is a more efficient algorithm for computing the discrete Fourier

transform, and is discussed in detail in Section 4.2.1. The noise is chosen to be white in

time and correlated in space, with periodic boundary conditions; this is demonstrated

in Section 4.2.2. In Section 4.3, the Laplacian is approximated effectively using a

spectral method. In addition, the exponential Euler method is applied to preserve the

eigenvalues of the Laplacian. Section 4.4 describes the numerical technique we use to

simulate the Barkley model (4.1) efficiently. The purpose of the computer simulation

is to compute the mean first exit time (nucleation time) of a traveling wave, as well as
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the mean of its lifetime, accurately for the model. The formulation of these problems

is discussed in Section 4.5.1. However, making the accurate calculations needed for

the numerical simulation of (4.1) requires a large amount of computer time. Moreover,

using this approach becomes computationally impractical in the case of interacting

waves. For these reasons, we propose in Section 4.5.2, a simple, reduced model for the

dynamics of the underlying SPDE that can deal with interacting waves adequately.

Our results are summarized and discussed in Section 4.5.3. We also analyze the

agreement between the results obtained by simulating the underlying SPDE and

those obtained from the reduced model. Other applications of the reduced model,

such as calculating the mean number of kinks at a specific time and the probability

of a given part of the phase space of the Barkley system being excited, are also

considered.
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(c) Illustration of kink and antikink of a wave for the Barkley model
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Figure 4.1: Nucleation of (a) front wave and (b) back wave for the Barkley model(4.1).
(c) Illustration of the kinks and antikinks of the front and back waves of the Barkley
system. The parameters used are a = 0.75, b = 0.01, ε = 0.02, D = 1 and L = 40
with noise of correlation length ξ = 2 and intensity σ = 0.09. The resolution N = 512
grid points with time step ∆t = 0.01.
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4.1 Dynamics of the Barkley model

For the deterministic Barkley model, the dynamics of the reaction kinetics (or, in

other words, the dynamics of the model in the absence of diffusion) is illustrated

in Figure 4.2, with nullclines pictures of u and v. The u-nullclines (f(u, v) = 0)

are represented by three straight lines: u = 0, u = 1, u = v+b
a

, whereas v-nullclines

(g(u, v) = 0) is the line u = v. Systems of excitable media are made up of excitation

and recovery dynamical states. Thus, by setting a small boundary, say δ, bordering

the line u = 0, a given point (u, v) is said to be excited if u > δ and recovering other-

wise. The physical parameters ε, a and b specify the details of the local dynamics. ε

is selected to be very small, so that the activator u is much faster than the inhibitor

v within the excited region. However, u ≈ 0 within the recovery region and therefore

the exponential decay of the inhibitor v affects only the local dynamics [2]. Larger a

would increase the duration of the excitation and a larger value of b
a

would raise the

threshold of the excitation [10].

The intersection of all the nullclines yields the fixed points (0, 0) and (1, 1). The

origin (0, 0) is the stable and excitable fixed point of the model, with excitation

threshold uth = v+b
a

. To be precise, when the starting point is located to the left of

the threshold uth and close to the origin (0, 0), the solution to the ordinary differential

equations (ODEs), du
dt

= 0, dv
dt

= 0, converges directly to the origin fixed point. In

contrast, when the starting point is to the right of uth , the solution moves away

initially, before finally shrinking to (0, 0) [2]. However, when the initial data is outside

the region [0, 1], the solution may diverge to infinity, see Figure 1 in [83].

Adding spatial diffusion to these reaction kinetics leads to the propagation of waves

for certain initial data. Under additive small noise, waves can be nucleated even for

zero homogeneous initial conditions. However, when simulating the model numer-

ically, care must be taken with the reaction terms to prevent the fast variable u
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from overshooting the stable branches of the u-nullclines and stimulating divergent

behavior. To this end, one can modify the reaction terms f and g as [83]

f̃(u, v) =





f(u, v), u ≤ 1,

−|f(u, v)|, u ≥ 1,

and

g̃(u, v) =





g(u, v), v ≥ 0,

|g(u, v)|, v < 0.

In this situation, the model remains well behaved and the desired dynamics are un-

changed [83]. These modified reaction terms will be used in our numerical simulation

of the SPDEs (4.1).

However, our objective is to simulate the SPDEs (4.1) numerically, using an ef-

ficient numerical approach, in order to rigorously explore the dynamic behavior of

the Barkley system (4.1). To this end, it will be necessary first to find efficient

approximations to the Laplacian and to the Wiener process w(t, x).

Due to properties of the rapid decay of the Fourier coefficient of the noise that we

will later define in (4.6), it will be appropriate to simulate the Wiener process using

the FFT as demonstrated in the following section.

4.2 Approximation of the Wiener process

4.2.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is a more efficient algorithm for computing the

Discrete Fourier Transform (DFT). The DFT of a set of complex inputs to a vector
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Figure 4.2: Illustration of local dynamics of deterministic Barkley model in absence
of diffusion (D = 0). The systems parameters are chosen as a = 0.75, b = 0.01,
ε = 0.02 with time step ∆t = 0.01. u and v nullclines are shown, and see Section 4.1
for more details. Intersection of these nullclines yields a stable fixed point O = (0, 0)
with excitation threshold u = v+b

a
. For initial conditions near O and to the left of

the threshold u = v+b
a

, the system decays directly to the fixed point O as shown
for P2 = (0.4, 0.3). However, for the initial conditions located to the right of the
excitation threshold such as P1 = (0.25, 0.15), the system undergos a large excursion
before returning to the fixed point O. The small boundary layer δ is plotted as well.

of length N is defined as [13, 85, 17, 64, 21]

Yk =
N−1∑
j=0

Xjω
jk
N , (4.2)

where k = 0, 1, · · · , N − 1, ωN = e
−2πi

N is the root of unity and i =
√−1. The inverse

DFT is then given by

Xj =
1

N

N−1∑

k=0

Ykω
−jk
N . (4.3)

Calculating the DFT (4.2) directly would require 2N2 operations: N multiplications

and N additions for each of the N components of Y . However, when FFT is applied,

the overall runtime is reduced to O(NlogN) [13].
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The most common FFT is the Cooly-Tukey algorithm [13]. It re-expresses a DFT

whose its size N can be factored into N = N1N2. By a change of variables, one can

then turn the one-dimensional sum in (4.2) in j into a two-dimensional sum in j1 and

j2 with N1 rows and N2 columns: [13, 17, 21]

j = j2N1 + j1, j1 = 0, 1, · · · , N1 − 1, j2 = 0, 1, · · · , N2 − 1,

and

k = k1N2 + k2, k1 = 0, 1, · · · , N1 − 1, k2 = 0, 1, · · · , N2 − 1.

(4.2) is rewritten then as

Yk =

N1−1∑
j1=0

N2−1∑
j2=0

Xj2N1+j1ω
(j2N1+j1)(k1N2+k2)
N ,

=

N1−1∑
j1=0

N2−1∑
j2=0

Xj2N1+j1ω
j1(k1N2+k2)
N ω

j2N1(k1N2+k2)
N .

Since ωj2N1k1N2

N = 1, ωj2k2N1

N = ωj2k2

N2
and ωj1k1N2

N = ωj1k1

N1
, we get

Yk =

N1−1∑
j1=0

ωj1k2

N (

N2−1∑
j2=0

(Xj2N1+j1)ω
j2k2

N2
)ωj1k1

N1
. (4.4)

Roughly speaking, the Cooly-Tukey algorithm is performed in three steps: [17]

1. Compute, for each j2, the inner sum:

X̃j1,k2 =

N2−1∑
j2=0

(Xj2N1+j1)ω
j2k2

N2
,

which is a DFT of size N2.

2. Multiply X̃j1,k2 by the twiddle factors (the roots of unity ωj1k2

N ) as

Ŷj1,k2 = ωj1k2

N X̃j1,k2 .
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3. Compute N2 DFTs of length N1:

Yk =

N1−1∑
j1=0

Ŷj1,k2ω
j1k1

N1
.

A fairly popular form of Cooly-Tukey FFT is a Radix-2 decimation-in-time (DIT)

algorithm which is suitable for a length equal to a power of 2, (2p, p ∈ N). To

derive the algorithm, assume first that N = 2p and then, by setting N1 = 2 and

N2 = 2p−1 = N
2

in (4.4), we have

Yk1
N
2

+k2
=

N
2
−1∑

j2=0

X2j2ω
j2k2
N
2

+ ωk2
N (

N
2
−1∑

j2=0

X2j2+1ω
j2k2
N
2

)ωk1
2 .

Since k1 = 0, 1, we get ω0
2 = 1 and ω1

2 = −1 which leads to a two DTFs of length N
2

for the even and odd index terms: [17, 21]

Yk2 =

N
2
−1∑

j2=0

X2j2ω
j2k2
N
2

+ ωk2
N (

N
2
−1∑

j2=0

X2j2+1ω
j2k2
N
2

),

YN
2

+k2
=

N
2
−1∑

j2=0

X2j2ω
j2k2
N
2

− ωk2
N (

N
2
−1∑

j2=0

X2j2+1ω
j2k2
N
2

) (4.5)

This process can then be repeated multiple times to reduce the overall runtime to

O(Nlog2N). Thus, under the Radix-2 algorithm, the DFT of length N is divided

into two transforms of size N
2
, then four transforms of length N

4
, then eight of length

N
8

and so on until N transforms of length 1 are obtained. the algorithm is performed

p = log2 N times and requires N multiplications at each step, which leads to the

following level of computational complexity in the underlying algorithm: [13, 64]

O(Np) = O(Nlog2N).

The original algorithm, introduced by Cooly and Tukey in 1965 [13], is considered

the basic groundwork for FFT algorithms. Many improvements and extensions have
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been made since, increasing, among other things, its efficiency and applicability [17].

As a results of these changes, various new FFT algorithms were created, such as the

prime factor algorithm, the split-radix algorithm and the Winograd FFT. For more

details of how to use these approaches, see for instance [17] and the further references

cited in that paper.

Here, we use the built-in Matlab functions, fft and ifft, in order to calculate ef-

ficiently the DFT and its inverse, respectively. fft is based on the Fastest Fourier

Transform in the West (FFTW), released by Matteo Frigo and Steven Johnson [21].

The FFTW library is a collection of fast C codes which can be used to compute

DFTs of any length and for one or more dimensions. Through the special-purpose

compiler genfft, the fastest code is generated automatically in FFTW. For example,

genfft uses a Cooly-Tukey algorithm when N = N1N2 and Ni 6= 1, whereas a prime

factor algorithm is used when N = N1N2 and N1 and N2 are relatively prime, as is

illustrated in detail in [21, 22].

4.2.2 Simulation of the Wiener process using FFT

We consider the Wiener process w(t, x) that is white in time and correlated in space,

with exponential decay in the spatial correlation, given by [83, 25]

E(w(t, x)w(s, y)) = min{t, s}C(x− y), C(x− y) =
1

2ξ
exp(

−π(x− y)2

4ξ2
), (4.6)

where C, a function of x− y, is the covariance of w(t, x), which describes the spatial

correlation, the parameter ξ controls the length of the spatial correlation and E de-

notes mathematical expectation. This type of covariance is known as the squared ex-

ponential covariance function, and is stationary and thus invariant to translations [72].

Moreover, it is infinitely differentiable and therefore the Wiener process defined by

such covariance has smooth spatial sample functions [72]. The degree of such smooth-

ness and the correlation between nearby points is controlled by the parameter ξ. A
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large value of ξ extends the range of similarity between the distinct points and the

noise w(t, x) thus becomes an approximately constant function of the spatial input

0 ≤ x ≤ L, where L is the length of the spatial domain [72]. In contrast, as ξ

decreases, the degree of rapid variations in w(t, x) along the space increases, and

thus the correlation between the nearby points begins to decay [72]. As ξ tends to

zero, w(t, x) tends to white noise with no correlation between the distinct points [83].

However, we should choose small but non-zero values of ξ << L since, in the case of

white noise, it is hard to keep the existing deterministic dynamics of the underlying

SPDE [83].

Assume w(t, x) has the expansion [83, 82]

w(t, x) =
∞∑

j=0

αj[ej(x) + ẽj(x)]βj(t), (4.7)

for independent standard Wiener processes βj(t).

ej(x) =

√
2

L
cos(

2πjx

L
), j = 1, 2, 3, · · · , e0(x) =

√
1

L
,

and

ẽj(x) =

√
2

L
sin(

2πjx

L
), j = 0, 1, 2, 3, · · ·

are orthonormal eigenfunctions of the Laplacian on [0, L] with periodic boundary

conditions. The coefficients αj are determined as [83]

αj =
1

2
exp(

−λjξ
2

2π
), j = 1, 2, 3, · · · , for λj = (

2πj

L
)2 and α0 = 1 for λ0 = 0.

It follows that

w(t, x) = α0

√
1

L
β0(t) +

√
2

L

∞∑
j=1

αj[cos(
2πjx

L
) + sin(

2πjx

L
)]βj(t). (4.8)
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For numerical purposes, we need to calculate the approximation wn
k = w(tn+1, xk)−

w(tn, xk) at tn = n∆t, where ∆t is the time step, and at xk = kL
N

, where xk is

the spatial grid, and k = 0, 1, 2, · · · , N − 1. By substituting xk for x in (4.8) and

truncating the series, σwn
k is given by [49]

σwn
k = α0η

n
0 +

√
2

N
2∑

j=1

αj[cos(
2πjk

N
)ηn

j,1 + sin(
2πjk

N
)ηn

j,2], (4.9)

where k = 0, 1, 2, · · · , N−1, σ is the noise intensity, and ηn
0 , ηn

j,1, η
n
j,2 ∼ N(0, σ2∆t

L
) are

identical and independent normally distributed random variables. The exponential

decay in spatial correlation provides very rapid decay in the Fourier coefficient in

expansion (4.7) and therefore the Wiener process can be generated efficiently using

FFTs[83]. Expressed in terms of complex exponentials: [83]

cos(
2πjk

N
)ηn

j,1 + sin(
2πjk

N
)ηn

j,2 =
1

2
[zn

j e
2iπjk

N + z̄n
j e

−2iπjk
N ], (4.10)

where zn
j = ηn

j,1 − iηn
j,2, z̄n

j = ηn
j,1 + iηn

j,2 and i =
√−1.

To verify this:

RHS =
1

2
[zn

j e
2iπjk

N + z̄n
j e

−2iπjk
N ]

=
1

2
[(ηn

j,1 − iηn
j,2)(cos(

2πjk

N
) + i sin(

2πjk

N
))]

+
1

2
[(ηn

j,1 + iηn
j,2)(cos(

2πjk

N
)− i sin(

2πjk

N
))]

=
1

2
cos(

2πjk

N
)ηn

j,1 −
1

2
i cos(

2πjk

N
)ηn

j,2 +
1

2
i sin(

2πjk

N
)ηn

j,1 +
1

2
sin(

2πjk

N
)ηn

j,2

+
1

2
cos(

2πjk

N
)ηn

j,1 +
1

2
i cos(

2πjk

N
)ηn

j,2 −
1

2
isin(

2πjk

N
)ηn

j,1 +
1

2
sin(

2πjk

N
)ηn

j,2

= cos(
2πjk

N
)ηn

j,1 + sin(
2πjk

N
)ηn

j,2

= LHS.
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Now (4.9) becomes

σwn
k = α0η

n
0 +

√
2

2

N
2∑

j=1

αj[z
n
j e

2iπjk
N + z̄n

j e
−2iπjk

N ]. (4.11)

In order to solve (4.11) using the FFT algorithm discussed above in Section 4.2.1,

(4.11) can be rewritten as [83]

σwn
k =

N−1∑
j=0

α̂jZ
n
j e

2iπjk
N , (4.12)

where α̂0 = 1, α̂j = α̂N−j = 1√
2
αj for j = 1, 2, · · · , N/2, Zn

0 = ηn
0 and

Zn
j =





zn
j , j = 1, 2, · · · , N

2
,

z̄n
N−j, j = N

2
+ 1, N

2
+ 2, · · · , N − 1.

4.3 Approximation of the Laplacian

The spectral method is used to approximate the Laplacian, and the geometric integra-

tor is applied in order to preserve its eigenvalues. First, look at the one-dimensional

diffusion equation:

∂u

∂t
= D

∂2u

∂x2
, u(0, x) = f(x), (4.13)

on the interval [0, L] with boundary conditions u(t, 0) = u(t, L), where t ≥ 0 and

the assumption that f(x) ∈ L2[0, L]. For the Fourier expansion, an approximation of

u(t, x) can be obtained as [14]

uN(t, x) =
N−1∑

k=0

ũk(t)e
−2πikx

L . (4.14)

Since

∂uN

∂t
=

N−1∑

k=0

dũk

dt
e
−2πikx

L ,
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and

∂2uN

∂x2
=

N−1∑

k=0

(
−4π2k2

L2
)ũk(t)e

−2πikx
L ,

we have
N−1∑

k=0

dũk

dt
e
−2πikx

L =
N−1∑

k=0

D(
−4π2k2

L2
)ũk(t)e

−2πikx
L , (4.15)

which leads to the system of ODE’s:

dũk

dt
= −D(

4π2k2

L2
)ũk(t), ũk(0) = Bk, k = 0, 1, 2, · · · , N − 1, (4.16)

where Bk = 1
L

∫ L

0
f(x)e

2πikx
L dx are the Fourier coefficients of the initial function f(x).

Setting λk = (4π2k2

L2 ), yields

dũk

dt
= −Dλkũk(t), ũk(0) = Bk, k = 0, 1, 2, · · · , N − 1. (4.17)

The exact solution of this system is given by

ũk(t) = Bke
−Dλkt, t ≥ 0, k = 0, 1, 2, · · · , N − 1. (4.18)

Numerically, one can use the semi-implicit Euler method, which produces approxi-

mations ũn
k to ũk(tn), for tn = n∆t, where n = 0, 1, 2, · · · and ∆t is the time step,

using the following iterated formula

ũn+1
k = (1 + Dλk∆t)−1ũn

k , ũ0
k = Bk, k = 0, 1, 2, · · · , N − 1, n = 0, 1, 2, · · · .

(4.19)

However, to preserve the eigenvalues of the Laplacian, one can use the the exponential

Euler method

ũn+1
k = e−Dλk∆tũn

k , ũ0
k = Bk, k = 0, 1, 2, · · · , N − 1, n = 0, 1, 2, · · · (4.20)
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which gives the exact solutions to the linear system (4.17) at mesh points tn(i.e.

ũk(tn) = ũn
k) and is thus considered a linearization-preserving (geometric) integrator.

Such integrators are numerical integrators of a system of differential equations that

preserve exactly one or more of its properties, such as fixed points, eigenvalues or

many other geometric or physical properties [60]. For more details of exponential

integrators, see for instance [62], or for more on linearization-preserving methods,

see [60] and the further references given there.

4.4 Numerical technique

The task is to find efficient approximations un
k , vn

k for k = 0, 1, 2, · · · , N − 1 at time

n∆t, n = 1, 2, · · · , to u(xk), v(xk) where xk = kL
N

is the spatial grid and L is the

length of the spatial domain. To that end, we consider the algorithm constructed by

[83] as follows:

• Calculate the Fourier coefficient ûn
k , where un

k =
∑N−1

j=0 ûn
j [ej(xk) + ẽj(xk)] and

k = 0, 1, · · · , N − 1 using the fft algorithm discussed in Section 4.2.1.

• û
n+ 1

2
k = e−Dλk∆tûn

k + α̂kZ
n
k , where α̂k and Zn

k are as defined in (4.12).

• u
n+ 1

2
k = ifft(û

n+ 1
2

k ) where ifft is the inverse FFT.

• Apply the modified reaction terms:

un+1
k = u

n+ 1
2

k + ∆tf̃(u
n+ 1

2
k , vn

k )

vn+1
k = vn

k + ∆tg̃(u
n+ 1

2
k , vn

k ).

Using this numerical approach, we will calculate the mean first exit time or the

mean of nucleation time of a traveling wave and its mean lifetime, for the Barkley

system (4.1). This is described in the following sections.
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4.5 First exit time and mean lifetime

As illustrated in Figure 4.3, the system (4.21) with u0 = v0 = 0 initially lies in

its stable zero state, (u ≈ 0 and v ≈ 0). When forcing the model with suitable

amounts of small additive noise, the nucleation of the front wave occurs and the

system becomes excited, u ≈ 1. Afterwards, the system moves to its refractory state,

in which v ≈ 1, causing the nucleation of the back wave. The left and right sides of

the front wave are eventually annihilated on collision as are the left and right sides

of the back wave. However, we are interested in the nucleation of a traveling wave

for the Barkley model and thus formulate this event as an exit time problem.

4.5.1 Formulation of the problem

We use the infinity norm to formulate the problem of the first exit time by deter-

mining a threshold θ so that the nucleation of a wave occurs when the infinity norm,

or precisely, the maximum value, of the activator variable u over x as a function of

time, exceeds θ. As in the case illustrated in Figure 4.6, the threshold level is assumed

as θ = 0.275. The nucleation time of a wave is, therefore, the first time the threshold

level is exceeded. The first exit time is a random variable and therefore its mean is

of great interest.

We use the maximum value of u, denoted by um, to determine the mean lifetime

of the wave under the Barkley model. Thus, the wave is nucleated when um goes

above θ for the first time and then is annihilated when um becomes smaller than the

small boundary layer δ = 0.008. The lifetime is then the difference between the time

of nucleation and the time of annihilation. The mean lifetime is simply calculated

as the average over a sample of random lifetimes produced using the SPDE (4.1)

over the spatial interval [0, L]. This technique can be applied when L is small and

consequently a single wave is nucleated at time T as shown in Figure 4.3. However,
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in the case of large L and when many waves are nucleated at almost the same time,

this approach becomes computationally impracticable. To overcome this drawback,

we produce, in the next section, a simple model of the dynamics of the underlying

SPDE (4.1), which allows us to compute the mean lifetime of the generated waves,

even for a large domain.

4.5.2 The reduced model

We aim to simulate the dynamic behavior of the traveling waves under the Barkley

model (4.1) in order to compute their mean lifetime efficiently. For this purpose,

we first calculate their constant speed and their width. Unlike under multiplicative

noise, the characteristics of propagated waves are not affected, generally, by additive

noise [25, 24], see Figures 4.4 and 4.5. In Figures 4.4 and 4.5, the wave speed and

width obtained from simulating the SPDEs (4.1) are plotted as functions of the noise

parameter σ, for ε = 0.02. The results indicate that both remain approximately

constant over different values of σ. Since we are looking at additive noise in our

work, we only need to evaluate the speed and width via the deterministic version of

the Barkley system:

∂u

∂t
= D∆u +

1

ε
u(1− u)(u− v + b

a
)

∂v

∂t
= u− v. (4.21)

To this end, we set z = x − ct, and so u(t, x) = U(x − ct) = U(z) and v(t, x) =

V (x− ct) = V (z). Consequently, we get

ut = −c
dU

dz
= −cU ′ , uxx =

d2U

dz2
= U ′′ and vt = −cV ′.
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Substituting these into (4.21) and setting D = 1, yields

U ′′ + cU ′ +
1

ε
U(1− U)(U − V + b

a
) = 0,

cV ′ − V + U = 0,

with boundary conditions U → 0, U ′ → 0 and V → 0 as |z| → ∞. Now, supposing

ε → 0, which implies ∂v
∂t
→ 0, and consequently, V ≈ const = 0, we obtain

L(U) = U ′′ + cU ′ +
1

ε
U(1− U)(U − b

a
) = 0. (4.22)

Let us suppose that U ′ = AU(U − 1), where A is a constant that needs to be

determined [90]. It follows that

U ′′ = A2U(U − 1)(2U − 1).

Substituting these expressions for U ′ and U ′′into (4.22) gives [66]

L(U) = A2U(U − 1)(2U − 1) + cAU(U − 1) +
1

ε
U(1− U)(U − b

a
) = 0

U(1− U)[A2(1− 2U)− cA +
1

ε
(U − b

a
)] = 0

U(1− U)[(−2A2 +
1

ε
)U − cA + A2 − b

aε
] = 0.

Now, setting −2A2 + 1
ε

= 0 and −cA + A2 − b
aε

= 0 yields L(U) = 0. This gives

A = 1√
2ε

and cA = A2 − b
aε

. The wave speed can then be approximated as

c =
1√
2ε

(1− 2b

a
). (4.23)

According to [24], the width W = cTther, where Tther is the time the system (4.21)

in the excited level and c is the wave speed. As ε → 0, we have [24]

Tther =

∫ vm

0

dv

g(1, v)
=

∫ vm

0

dv

1− v
, (4.24)
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where vm represents the maximum value that the inhibitor v over x reaches before

the activator u leaves the excited level [24]. Consequently, we have

Tther =

∫ vm

0

dv

(1− v)
= [− ln(1− v)]vm

0 = − ln(1− vm) = ln(
1

1− vm

).

Hence, the width can be written as [24]

W = c ln(
1

1− vm

). (4.25)

Moreover, according to Figures 4.4 and 4.5, such theoretical values of wave speed

and width can be considered good approximations to the corresponding quantities

obtained in the simulation of the SPDEs (4.1), in particular for high resolution N

and small time step ∆t.

In order to construct the algorithm for the reduced model, it is necessary to simulate

the wave nucleation positions and times under the Barkley model(4.1). The Wiener

process w(t, x), with covariance given by (4.6) is a spatially stationary Gaussian

process, since the covariance is a function of the increment x − y not of a specific

value x or y, where 0 ≤ x < y ≤ L. The process is thus invariant to shifts in

space and, therefore, the nucleation events, which are caused by the input noise, are

independent of the position x. As a result, the nucleation positions, say xi, i = 1 to

N1 where N1 is the number of nucleated front waves (it is also the number of back

waves), are uniformly distributed on [0, L].

Furthermore, no wave can be nucleated within the boundaries of another wave, as

is observed from the dynamic behavior of the SPDE (4.1). Mathematically, for any

nucleation positions xi and xj, where i, j = 1 to N1, i 6= j, we have |xi − xj| > W

where W is the constant wave width.
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We now proceed to simulate the nucleation times of the front and back waves under

the Barkley model. Suppose Ti, i = 1 to N1 are the nucleation times of front waves.

Since the nucleation events occur with a constant probability per unit of time, the

exponential distribution with rate λ is appropriate for modeling the nucleation times.

The rate of nucleation, λ, is calculated simply as the inverse of the mean first exit

time, λ = 1
Tm

, obtained from the simulation of the SPDE (4.1). The nucleation times

of the back waves, T̄i say, are computed as:

T̄i = Ti + Tdiff ,

where Tdiff is the average difference between the nucleation time of the front wave

and that of the back wave, obtained from SPDE (4.1) by observation. To be precise,

according to the dynamics of the Barkley model shown in Figure 4.2, the maximum

value of inhibitor v can be used to determine the threshold of nucleation of the back

wave, say θb, as shown in Figure 4.9 and Figure 4.10, and T̄i is therefore the first time

that the maximum value of v exceeds θb = vm, where vm is as in (4.24). Furthermore,

the theoretical value Tther of Tdiff is also given by (4.24).

We are now in a position to simulate the spatio-temporal behavior of the front

and back waves under the Barkley model (4.1). To this end, suppose YL and YR

represent the position of front waves towards the left and right, respectively as shown

in Figure 4.11. Thus,

YL(t) = xi − c(t− Ti), t ≥ Ti,

YR(t) = xi + c(t− Ti), (4.26)
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where xi is the nucleation position of the front wave, Ti is its nucleation time, c is

the constant wave speed and t > 0 is the time variable. Similarly,

ȲL(t) = xi − c(t− T̄i), t ≥ T̄i,

ȲR(t) = xi + c(t− T̄i),

are the corresponding expressions for the back waves.

As observed from the numerical simulation of the SPDE (4.1), a kink (antikink)

at the spatial position, i say, will keep moving until it meets an antikink (kink) at

position, j say, usually from a different nucleation process. Both the kink and the

antikink then annihilate on collision. To simulate such an annihilation event using

the reduced model, we first solve the equations for the front waves (4.26) (a similar

process is then used for the back waves), in order to find all the crossing points

(xcij, tcij) for i moving right and j moving left, where i 6= j and, i, j = 1, 2, · · · , N1.

We then set the minimum value of tcij, Tni1j1 say, to be the annihilation time, and

the corresponding value of xcij, xni1j1 say, to be the annihilation position of i1 moving

to the right and j1 moving to the left. We then continue in this fashion to compute

all the annihilation points of other i right waves and j left waves, where i 6= i1 and

j 6= j1. However, as a result of the chosen finite time interval in the simulation,

a few so-called survivor particles (kinks or antikinks) will still be alive. A survivor

particle with nucleation position xk and nucleation time Tk will never meet another

particle during the finite time interval of the simulation. The particle then will move

according to (4.26) as

YL(t) = xk − c(t− Tk) t ≥ Tk,

YR(t) = xk + c(t− Tk),
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with the possibility that t can take the value infinity. However, for the purposes of

plotting the values, we assume that the particle will be killed at time Tk + Textra

where Textra is chosen to be a large value. The corresponding surviving back wave

can be treated in a similar way.

It remains only to include the periodic boundary conditions of the Barkley system

in order to complete the reduced model algorithm. To do this, we duplicate the

spatio-temporal dynamic behavior of the underlying SPDE on [−L, 0] and [L, 2L]

as reflections of its dynamics on [0, L]. This simple technique guarantees that the

periodic boundary conditions, as illustrated in Figures 4.14 and 4.15 are fulfilled. For

full details of the algorithm used for the reduced model, see codes C.3.2 and C.3.2.1

in Appendix C. Figure 4.11 describes the nucleation and annihilation events for the

traveling wave under the reduced model.

4.5.3 Numerical results: analysis and discussion

The maximum value of the activator u over x is used to determine the first exit time

as demonstrated in Figure 4.6. The first exit time, here, is defined as the nucleation

time of a wave under the Barkley model (4.1) or the first time that the maximum

value of u over x exceeds θ = 0.0275. To analyze the mean first exit time (MFET) of

the underlying SPDE, two numerical experiments are carried out using the numerical

technique presented in Section 4.4. We first plot the MFET, denoted by Tm, as a

function of the time step ∆t (Figure 4.7(a)) and as a function of the resolution

N , where the values of N are powers of 2: 128, 256, 512 and 1024, as shown in

Figure 4.7(b). The parameters used are a = 0.75,b = 0.01,ε = 0.02, D = 1, and the

averages are taken over M = 10000 realizations. The noise has a spatial correlation

of length ξ = 2 and with intensity σ = 0.09 over the domain [0, L], where L = 40.

In Figure 4.7(a), the resolution is N = 512 and in Figure 4.7(b), the time step ∆t

is 0.01. The results reveal that the MFET Tm is approximately independent of the
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value of ∆t and of the value of ∆x = L
N

, and therefore, approximately constant values

of Tm are obtained in both cases. In the second case, Tm is plotted against the small

parameter ε, in Figure 4.8(a), and the spatial correlation length ξ, that is, the range

of similarity between nearby points, in Figure 4.8(b), with other parameters as for

Figure 4.7. Figure 4.8(a) shows that just a slight increase in ε produces a dramatic

increase in the MFET. In Figure 4.8(b), meanwhile, we observe that the MFET grows

as ξ increases.

However, when the spatial domain becomes much larger, one may expect that the

MFET will be reduced considerably. To investigate this, we raise L to 400, and set

N = 1024, with other parameters remaining as they were for Figure 4.7(a). For

L = 40, the MFET is Tm1 = 22.7521, while for L = 400, it is Tm2 = 17.7819.

Although the length of the spatial domain in the second case (L = 400) is ten times

that of the first (L = 40), the ratio τ = Tm1

Tm2
between the corresponding values of

MFET is only τ = 1.2795. One possible key reason for this unexpected result is due

to the effect of spatial correlation length ξ, which is chosen as ξ = 2 in both cases. In

order to examine the effect of ξ, we calculate the ratio τ = Tm1

Tm2
for both cases (L = 40

and L = 400), for ξ = 1, 1.5, 2. To be more precise, it increases from τ = 1.2795 for

ξ = 2 to τ = 2.1574 for 1.5 to τ = 2.8020 for ξ = 1.

Two main cases are considered here in studying the mean lifetime of a wave under

the Barkley model: the mean lifetime of a single wave and the mean lifetime of

interacting waves. For a single wave, the maximum value um over x is used to calculate

its mean lifetime. Figure 4.3 shows the propagation of a single wave, beginning with

the nucleation of its front wave and ending with the annihilation of its back wave,

with the parameters a = 0.75,b = 0.01,ε = 0.02, D = 1, σ = 0.09, ξ = 2, N = 512

and L = 40. The lifetime of a single wave is then computed as the difference between

the time of nucleation of its front wave and the time of annihilation of its back wave.

The average over the lifetimes of a random sample of such waves yields the mean
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lifetime.

Figure 4.12 displays the mean lifetime of a wave, using the simulation of the SPDE

(4.1) and the reduced model discussed in Section 4.5.2, as a function of the small

noise parameter σ, for (a) ε = 0.02 and (b) ε = 0.025. The results obtained from

the simulation of the SPDE (4.1), represented by stars symbols, with parameters as

used for Figure 4.3 and using M = 200 simulations, indicate that the additive noise

does not affect the mean lifetime of the Barkley wave, and this should be taken into

account when we design the corresponding reduced model. However, a comparison

of the results from the reduced model, represented as solid lines, with those obtained

from the simulation of the SPDE, shows excellent agreement, in particular for smaller

ε. This is due to the asymptotic constant speed c used for the reduced model, as ε → 0.

Applications of the reduced model

To apply the reduced model, we first need to determine two quantities: the rate

of nucleation times λ and the difference in nucleation times Tdiff . The rate λ is

calculated as the inverse of the mean first exit time, obtained from the simulation of

the underlying SPDE, as shown in Figure 4.7. Tdiff is defined as the average difference

between the nucleation time of the front wave and the nucleation time of the back

wave, again obtained from the simulation. For example, Tdiff is estimated as 1.44,

with θb = vm ≈ 0.75, for ε = 0.02 as illustrated in Figure 4.9. The corresponding

value for ε = 0.025 is 1.7, with θb = vm ≈ 0.825, as shown in Figure 4.10. These

values are close to the analytical values of Tdiff given by (4.24), where Tther = 1.38629

for ε = 0.02 and Tther = 1.74297 for ε = 0.025.

In Figure 4.13, we plot the mean lifetime of a wave versus the small parameter ε

for (a) σ = 0.0825 and (b) σ = 0.09, where the shaded circles and red stars represent

the results obtained with the reduced model and simulation of the SPDE (4.1), re-

spectively. Both graphs indicate that the mean lifetime increases as ε increases, and
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there is close agreement between the two methods.

The second aim of the present work is to study the mean lifetime of the interacting

waves. Waves interact when a large domain is used and, as a result, many waves are

nucleated at almost the same time, as shown in Figure 4.15. The parameters used

are a = 0.75, b = 0.01, ε = 0.02, D = 1 , L = 400 and λ = 1
Tm

= 1
17.78

, where λ is

the rate of nucleation time and Tm is the mean first exit time obtained by simulating

the SPDE (4.1). The nucleation points and corresponding annihilation points are

represented by shaded circles and stars, respectively. However, the harmony shown

in Figures 4.12, 4.13 and 4.14 between the two approaches, led us to decide to use the

reduced model to study the mean lifetime of the interacting waves, since applying the

simulation of the underlying SPDE directly becomes computationally impractical in

this case.

Due to the interaction of the waves with each other, we need to calculate the mean

lifetime of each kink and antikink, individually, as demonstrated in Figure 4.16. To

be precise, Figure 4.16 shows the mean lifetime, computed using the reduced model,

of (a) the first 10 front waves and (b) the first 10 back waves, with number of trials

M = 5000 , ε = 0.02 and a total of N1 = 30 front waves nucleated during the

overall period of simulation on the space domain [0, 400], with the same number of

corresponding back waves. There are thus 2N1 = 60 kinks and 60 antikinks. In the

Figure 4.16, right-moving waves are represented by circles and left-moving waves by

stars. The results reveal that each kink has approximately the same mean lifetime

as its corresponding antikink, for a large number of trials M . Furthermore, the first

kink and antikink have the longest mean lifetimes. The lifetime falls sharply but then

remains fairly constant for the rest of the particles.

The simplicity of the reduced model encourages us to explore more about the

dynamics of kinks and antikinks under the Barkley model (4.1). For instance, the
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average number of kinks and antikinks that are still alive at a specific time, t, can

be computed easily using the reduced model, as shown in Figure 4.17(a). The figure

describes the mean number of kinks at time t, denoted by Nk, using the same pa-

rameters as used for Figure 4.16, except for the number of trials, which is M = 1000.

Firstly, we observe that no particles are nucleated at t = 0. The mean number of

kinks (antikinks) at time t then increases as t increases, until t = 30. At this time,

the mean number of kinks begins to level off, with the maximum being just above

2.3.

Our calculations of the mean number of kinks at time t can be used to obtain the

probability of a part of the phase space of the Barkley model being excited at (t, x),

where t > 0 and 0 ≤ x ≤ L. Precisely, this is calculated simply by multiplying the

mean number of kinks by the constant width W given in (4.25) and dividing the

result by the length of the domain L. Thus

P(a part of the phase space being excited at(t, x)) =
NK ×W

L
. (4.27)

These calculations are demonstrated as shaded circles in Figure 4.17(b). The results

provide important information about the excitability of the Barkley system (4.1).

For instance, there is an approximately 4% chance of the phase space of the system

(4.1) being excited at t = 50, whereas the chance is only around 0.8% at time t = 5.

To check the validity of our calculations, we also compute the probabilities using

the simulation of the SPDE(4.1), with parameters L = 400, ∆t = 0.01, N = 1024,

ε = 0.02, σ = 0.09 and M = 2000. The results are represented by the squares in

Figure 4.17(b), and exhibit similar behaviour to those obtained with the reduced

model shown in Figure 4.17(b). The probability obtained from the simulation of the

SPDE increases gradually until t = 30 when it begins to become stable at around 0.03.

In spite of this similarity, there are slight differences between the results. Besides the

effects of statistical errors and other errors which can arise due to the use of numerical

143



approximations, the wave speed c also affects the results. The wave speed used in the

reduced model is a symptomatic value, derived for ε → 0, whereas the corresponding

wave speed for the underlying SPDE is simulated for ε = 0.02.
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Figure 4.3: Plots of the nucleation and annihilation of a wave for the Barkley
model(4.1). The parameters of the system are a = 0.75, b = 0.01, ε = 0.02, D = 1
and L = 40 with noise of correlation length ξ = 2 and intensity σ = 0.09. The
resolution N = 512 grid points with time step ∆t = 0.01.
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(a)wave speed of BK model with N = 512, L = 40, ε = 0.02 and ∆t = 0.01
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(b) wave speed of BK model with N = 1024, L = 40, ε = 0.02 and ∆t = 0.001
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Figure 4.4: Plotting of the wave speed as a function of the noise parameter σ with
initial condition u0 = 0 except u0(1 : 5) = 1 and v0 = 0. The parameters used are
ε = 0.02, L = 40, (a) N = 512, ∆t = 0.01 and (b) N = 1024, ∆t = 0.001.
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(a)wave width of BK model with N = 512, L = 40 and ∆t = 0.01
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(b) wave width of BK model with N = 1024, L = 40 and ∆t = 0.001
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Figure 4.5: Plotting of the wave width as a function of the noise parameter σ with
initial condition u0 = 0 except u0(1 : 5) = 1 and v0 = 0. The parameters used are
ε = 0.02, L = 40, (a) N = 512, ∆t = 0.01 and (b) N = 1024, ∆t = 0.001.
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Figure 4.6: Illustration of the threshold of nucleation of waves for the Barkley model
using maximum value of activator u over x. The parameters used are as in Figure 4.3
except for ε.
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Figure 4.7: Showing of the mean first exit time (MFET) as a function of (a) ∆t and
(b) N , with parameters used are as in Figure 4.3.
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(b)MFET of BK model with M = 10000,N = 512,L = 40 and ε = 0.02.
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Figure 4.8: Showing of the mean first exit time (MFET) as a function of (a) ε and
(b) ξ, with parameters used are as in Figure 4.3.
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Figure 4.9: Nucleation of back wave for the Barkley model is illustrated in the left
plot with the same parameters of Figure 4.3. In the right one, maximum value of
inhibitor v over x is plotted against the time t in order to calculate the threshold θb

of wave back nucleation.
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Figure 4.10: Nucleation of back wave for the Barkley model is shown in the left plot
with the same parameters of Figure 4.3 except for ε = 0.025. In the right, maximum
value of inhibitor v over x is plotted versus the time t for determining the threshold
θb of back wave nucleation.
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Figure 4.11: Plots of the nucleation and annihilation of a wave for the Barkley model
(4.1) with ε = 0.02 and using the reduced model.
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Figure 4.12: Mean lifetime of a wave for the Barkley model as a function of noise
parameter σ is shown for (a)ε = 0.02 and (b)ε = 0.025. The results obtained by
simulation of SPDE (4.1) are represented by stars symbols and solid lines represent
the results obtained by the reduced model. Figures show the good agreement between
these results, in particular for ε = 0.02.
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Figure 4.13: Mean lifetime of a wave for the Barkley model is plotted versus a small
parameter ε for (a) σ = 0.0825 and (b) σ = 0.09. The results from simulation of the
underlying SPDE represented by stars symbols are compared to those obtained by
the reduced model, (shaded circles).
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Figure 4.14: (a) Space-time contour plot of dynamical behaviour of the Barkley model
(4.1) with parameters values used in Figure 4.3. (b) Simulation of the dynamical
behaviour of the Barkley model using the reduced model. N1 and N2 are nucleation
points of the front and back waves, respectively. A1 and A2 are corresponding points
of annihilation.
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space-time evolution of Barkley model with ε = 0.02 obtained by reduced model

Figure 4.15: Simulation of dynamical behaviour of the Barkley model using the
reduced model when L is large and many waves are nucleated at almost the same
time. The parameters values are a = 0.75, b = 0.01, ε = 0.02, D = 1 and L = 400.
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(b)mean lifetime of back waves for the BK model with M = 5000 and ε = 0.02.
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Figure 4.16: Shown of the mean lifetime of (a)the first 10 front waves and (b)the first
10 back waves. The parameters of the system are a = 0.75,b = 0.01,ε = 0.02, D = 1
and L = 400.
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Figure 4.17: (a) Shown of the mean number of kinks (antikinks) at time t on space
domain [0, 400] with ε = 0.02, N1 = 30 and M = 1000. (b) Illustration of the
probability that a part of the phase space is excited at (x, t) .
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Chapter 5

Conclusion and future work

5.1 Conclusion

Using SDELab, a mathematical software for solving SDEs within MATLAB, we

studied the firing properties of the space-clamped HH model, in response to the appli-

cation of a suprathreshold, constant current. Moreover, we examined the influence of

additive white noise on the output spike trains. We found that a suitable amount of

additive noise can enhance the regularity of the repetitive spiking of the model. Fur-

thermore, the SDELab package was used to simulate a system of SPDEs, represented

by the spatially-extended FHN system with additive space-time white noise. Again,

we evaluated the effects of additive noise on the regularity of the output spikes. We

found that this type of model is sensitive to noise and therefore very small values of

noise should be chosen, in order to produce regular spikes.

We further examined the effects of an additive noise on the FET for the one-

dimensional diffusion neural models represented by the stochastic space-clamped

FHN system and by the OU model, using the fixed time-stepping Euler method

with boundary correction and the exponential time-stepping Euler algorithm with

boundary test. We provide a detailed exposition of the strategies employed in these
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numerical techniques and the analytical frameworks for relevant functionals of the

FETs of the diffusion processes. We studied the effects of additive noise on the sys-

tematic errors in the MFET, produced by these simulation techniques, for the FHN

and OU models. We found that, for different values of noise, combining the boundary

tests with these numerical methods can improve the rate of convergence of the MFET

from the order of one half to first order convergence, which coincides with previous

studies [43, 59, 32, 8].

The nucleation and dynamics of traveling waves under the stochastic Barkley model

were also studied. The left (right) sides of front waves and the right (left) sides of back

waves are known as kinks (antikinks) and their nucleation, propagation and eventual

annihilation are of great interest. We studied the effect of a small additive noise and

that of the time scale of separation, on the nucleation times of such structures and

on their mean lifetimes, using an efficient numerical simulation of the Barkley model

with additive noise that is white in time and correlated in space. However, that

technique becomes computationally impractical in the case of interacting waves or

when the domain is large. We therefore introduced a simple model of the dynamics

of the underlying model, in order to calculate the mean lifetimes of the kinks and

antikinks efficiently. Moreover, the ease of use of the reduced model motivated us to

explore the full dynamics of the kinks and antikinks, in particular over long periods.

One application of the reduced model is to calculate the mean number of kinks at a

specific time t and use this to obtain the probability that the system is excitable at

time t and position x, in the given space domain.

5.2 Future work

In this section, we propose some interesting topics for future work, which have

arisen as a result of the research carried out for this thesis. In Chapter 2, the

neural models we deal with are forced by additive noise, where the noise is used to
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model the external fluctuations. However, as a further piece of work, we would like

to use SDELab to explore the possible effects of the other type of noise, so-called

multiplicative noise, on the firing properties and the output spike trains of these

systems. Multiplicative noise depends on the voltage variable and so the activity of

the neuron has a strong relationship with the amount of noise. The randomness of

the opening and closing of ionic channels is the most important source of this type of

noise, and therefore one interesting investigation would be to look at multiplicative

noise in the conductance variables of the ionic channels of the HH model.

In the additive noise case, the Euler-Maruyama method converges strongly with

order 1, which is reduced to order one half for the case of multiplicative noise [49]. To

retrieve first-order strong convergence, the Milstein method can be used, in spite of

the difficulty involved in estimating the second-order iterated integral that appears in

the final term of the integrator [49]. SDELab provides Milstein methods for the Itô

and Stratonovich SDEs, with efficient approximation of their second-order iterated

integrals. In the case of additive noise, the Itô and Stratonovich SDEs have the same

solutions, but this is not true when using multiplicative noise. One can move between

the Itô and Stratonovich calculi using a simple transformation and hence, in the case

of multiplicative noise, we can convert a Stratonovich SDE to the corresponding Itô

equation or we can solve it directly using Stratonovich calculus [49, 47, 29]. SDELab,

in fact, offers two strong solvers for the Stratonovich SDEs: the stochastic Heun

method and the Stratonovich-Milstein algorithm, as illustrated in Chapter 2 (see [29]

for more details). Briefly, we would like to exploit these benefits of the SDELab

software in order to explore the effects of multiplicative noise on the spiking activity

of the HH model and the FHN system, as a contribution to the field of computational

neuroscience.

In Chapter 3, we used the fixed and exponential time-stepping Euler methods

with boundary tests to examine the influence of additive noise on the systematic
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errors in the MFETs for one-dimensional diffusion neural models, represented by the

stochastic FHN system and the OU model. We found for the fixed time-stepping

algorithm that using Mannella’s boundary test improved the order of convergence

in the MFETs from one half to one, which coincides with previous results, such as

those in [43] and [8]. This result and the work done by Gobet [32] create a strong

motivation for trying to find a simple proof for this rate of convergence of the MFET

for the general case of a one-dimensional diffusion. Under the exponential time-

stepping algorithm, Jansons and Lythe [43] obtained a similar improvement in the

rate of convergence of the MFET for the additive noise problem with a double-well

potential, and stated their expectation that this would also hold for the general case

of one-dimensional diffusion. Indeed, our numerical results have confirmed this claim

for the stochastic FHN system and the OU model, under different values of noise.

Jansons and Lythe [43] also expected that further analysis of the solution of the (3.77)

could lead to a simple general proof of this rate of convergence. This would be an

interesting area to consider in our future work.

In Chapter 4, the dynamics of the traveling waves of the Barkley system under

the influence of additive noise that is white in time and correlated in space, were

studied using an efficient numerical technique. Moreover, we introduced a reduced

model of these dynamics in order to efficiently calculate the mean lifetime of the

traveling waves, particularly for interacting waves, where the mean lifetime of each

kink and antikink of these waves need to be calculated individually. As a future piece

of work, we plan to use our reduced model to further explore the dynamics of the

kinks of the stochastic Barkley system. Beside numerical simulation, we would like

to study these dynamics using theoretical approaches, as has been done extensively

for the φ4-equation with additive space-time white noise [7, 58, 35], for example.

On the other hand, it would be interesting to study the possible effects of multi-

plicative noise on the dynamics of the traveling waves of the Barkley system. For
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a good introductory review of the different ways that multiplicative noise can influ-

ence the dynamics of the Barkley system and those of a generic excitable system, we

recommend [56] and the references given there. We would aim, firstly, to restrict

ourselves to investigating the randomness in the activator dynamics. The multiplica-

tive noise in the activator equation of the Barkley system (4.1) will be assumed to

be [24, 56]

β(u) =
1

aε
u(1− u)w(x, t),

where w(t, x) is a wiener process that is white in time and correlated in space. The

interesting point about this type of multiplicative noise is that it does not affect the

system in the rest state (u = 0) or in the excited state (u = 1), since it vanishes at

both these points, and in this behaviour it differs from the additive noise case we have

studied in this thesis. We would like to develop our reduced model to deal with this

case. In contrast to additive noise, multiplicative noise affects the speed and width

of traveling waves [25, 24, 56], and this will need to be taken into account when we

design the reduced model of the underlying dynamics under multiplicative noise.

We could also look at fluctuations in the inhibitor equation of the Barkley system,

where sufficiently large fluctuations can lead to the backfiring phenomenon [24, 27].

This means that, for sufficiently large noise, in the middle of the wave, the transition

can be induced from the excited state to the quiescent one, causing the wave to be

broken into two halves, moving in opposite directions with the same speed.

In this section we have presented some ideas for further research, leading on from

our current work. We hope that our work can be improved and extended by inves-

tigating and developing these ideas and we also hope that further reading on the

subject will lead to new creative ideas.
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Appendix A

Miscellaneous background from

probability theory

Definition A.0.1. [49][expectation,variance,covariance,Gaussian random vari-

able]

Let X be a continuous random variable, with integrable density function fX(x), on

probability space (Ω,A, P ), then the expected value of X is given by

E[X] =

∫

Ω

XdP =

∫ ∞

−∞
xfX(x)dx, ∀x ∈ R,

and if g(X) is a function of X, then the expected value of g(X) is given by

E[g(X)] =

∫ ∞

−∞
g(x)fX(x)dx. (A.1)

Furthermore, if h is a function of continuous real valued random variables X and Y

defined on (Ω,A,P) with joint density function fXY , then the expectation of h(X,Y )

is defined by

E[h(X, Y )] =

∫ ∞

−∞

∫ ∞

−∞
h(x, y)fXY (x, y)dxdy. (A.2)
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The variance of the real valued random variable X with expected value µ = E[X] is

given by

σ2 = var(X) = E[X2 − E[X]2] = E[X2]− µ2.

For two real valued random variables X and Y with mean values E(X) and E(Y ),

respectively, the covariance of X and Y is defined by

Cov(X,Y ) = E[(X − E[X])(Y − E(Y ))].

The continuous random variable X, with density function

fX(x) =
1√
2πσ

exp(
−(x− µ)2

2σ2
),

is called a Gaussian or normally distributed random variable with mean µ and vari-

ance σ2. Moreover, if µ = 0 and σ2 = 1, it is called a standard Gaussian random

variable. For a random variable X with this distribution, we write X ∼ N (µ, σ2).

A Gaussian random variable is completely characterized by its expected value µ and

variance σ2, which are known as its first and second moments, respectively.

We now look at some properties of the expectation of a continuous random variable

X with density function fX(x):

• Given the indicator function

1(−∞,a](X) =





1, ifX ≤ a

0, otherwise
,

where a ∈ R, we would have

E[1(−∞,a](X)] =

∫ ∞

−∞
1(−∞,a](x)fX(x)dx =

∫ a

−∞
fX(x)dx = P(X ≤ a). (A.3)

• For any two random variables X and Y , with E[X] < ∞ and E[Y ] < ∞, we
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have

E[αX + βY ] = αE[X] + βE[Y ], α, β ∈ R, (A.4)

and if X and Y are independent, then

E[XY ] = E[X]E[Y ]. (A.5)

Definition A.0.2. [49][mean-square convergence]

The sequence of random variables X1, X2, · · · , Xn, · · · is said to be strongly conver-

gent to the random variable X in mean-square if

E(X2) < ∞, E(X2
n) < ∞, for n = 1, 2, · · · , and lim

n→∞
E(|Xn −X|2) = 0.

Definition A.0.3. [49][stochastic process, modification, continuous stochas-

tic process, Gaussian process]

Consider a time interval [t0, T ] and a probability space (Ω,A, P ), then X = {X(t), t0 ≤
t ≤ T} is said to be a stochastic process if

X : [t0, T ]× Ω → R, X(t) = X(t, .)

is a random variable for each t ∈ [t0, T ].

Moreover, the stochastic process Y = {Y (t), t0 ≤ t ≤ T} is called a modification or a

version of X if

P ({ω ∈ Ω : X(t, ω) 6= Y (t, ω)}) = 0, ∀t ∈ [t0, T ].

The stochastic process X is continuous if its trajectories X(., ω) are continuous almost

surely at any t ∈ [t0, T ]. Thus

P ({ω ∈ Ω : lim
s→t

|X(s, ω)−X(t, ω)| = 0}) = 1.
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The stochastic process {X(t), t0 ≤ t ≤ T} is called a Gaussian process if for any finite

set t1, t2, · · · , tn in [t0, T ], the joint distribution of the collection of random variables

X(t1), X(t2), · · · , X(tn) is a multivariate Gaussian distribution. Thus, if every finite

linear combination
∑n

i=1 αiX(ti), where αi ∈ R, has a Gaussian distribution.

Definition A.0.4. [49][filtration, adapted process]

Consider a probability space (Ω,A, P ). A family {At}t≥0 of sub-σ-algebras of A is

called a filtration if As ⊆ At, ∀s ≤ t. In addition, the stochastic process X =

{X(t), t ≥ 0} defined on (Ω,A, P ) is said to be adapted to the filtration {At}t≥0 if

X(t) is At-measurable for all t ≥ 0.

Definition A.0.5. [predictable process]

Let {At}t≥0 be a filtration. Then a stochastic process {X(t), t ≥ 0} is called

{At}t≥0−predictable if X(t) is At−−measurable for all t ≥ 0 where

At− =
⋃

s<tAs. Therefore, if the process {X(t), t ≥ 0} is At-adapted and left con-

tinuous, then it is predictable.

Definition A.0.6. [49][conditional distribution, conditional density]

Let X and Y be real-valued random variables defined on (Ω,F ,P). Then the condi-

tional distribution of X given {Y = y} is defined by

FX|Y (x|y) = P(X ≤ x|Y = y) =
P(X ≤ x, Y = y)

P(Y = y)
, (A.6)

where x, y ∈ R and P(Y = y) > 0. Moreover, if X and Y are continuous real-valued

random variables with joint density function fXY (x, y) and with marginal densities

fX(x) and fY (y), where fY (y) > 0 for all y ∈ R, then the conditional density function

of X given {Y = y} is given by

fX|Y (x|y) =
fXY (x, y)

fY (y)
. (A.7)
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Furthermore, if X and Y are independent, then

fX|Y (x|y) =
fXY (x, y)

fY (y)
=

fX(x)fY (y)

fY (y)
= fX(x), (A.8)

and

fY |X(y|x) = fY (y). (A.9)

However, the probability that {X < Y } can be calculated as

P(X < Y ) =

∫ ∞

−∞
P(X < y|Y = y)fY (y)dy. (A.10)

Further, given X and Y are independent yields

P(X < Y ) =

∫ ∞

−∞
P(X < y)fY (y)dy =

∫ ∞

−∞
FX(y)fY (y)dy. (A.11)

Definition A.0.7. [49][conditional expectation]

The conditional expectation of X given {Y = y} is defined as

E[X|Y = y] =

∫ ∞

−∞
xfX|Y (x|y)dx. (A.12)

Consider a function g of X, then we have

E[g(X)|Y = y] =

∫ ∞

−∞
g(x)fX|Y (x|y)dx. (A.13)

Lemma A.0.1. Let X and Y be real-valued random variables defined on (Ω,F ,P)

with joint density function fXY (x, y) and with marginal densities fX(x) and fY (y),

then

E[X] = E[E[X|Y ]]. (A.14)
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Proof. Obviously, E[X|Y ] is a function of random variable Y and therefore the dis-

tribution of Y will be used in calculating its expectation. Thus

E[E[X|Y ]] =

∫ ∞

−∞
E[X|Y = y]fY (y)dy =

∫ ∞

−∞

∫ ∞

−∞
xfXY (x, y)dydx

=

∫ ∞

−∞
x

∫ ∞

−∞
fXY (x, y)dydx =

∫ ∞

−∞
xfX(x)dx = E[X].

Definition A.0.8. [49][uniformly distributed random variable]

A continuous real-valued random variable X is said to be uniformly distributed over

(a, b), where a, b ∈ R if its density function is given by

fX(x) =





1
b−a

, for a < x < b

0, otherwise.
(A.15)

Consequently, its distribution function is

FX(x) =





0, x ≤ a

x−a
b−a

, a < x < b

1, x ≥ b

Definition A.0.9. [49][exponentially distributed random variable]

A continuous real-valued random variable X with a density function given by

fX(x) =





λe−λx, for x ≥ 0

0, otherwise,
(A.16)

is called exponentially distributed with parameter λ, and its distribution function is

given by

FX(x) =





1− λe−λx, for x ≥ 0

0, otherwise,
(A.17)
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The exponential distribution plays an important role in exit time problems since

it is used to model the time between random events. We therefore present some

properties of this distribution as follows:

• An important property of the exponential distribution is that it is memory-

less. Thus the conditional probability of an exponentially distributed random

variable X satisfies

P(X > x + y|X > y) = P(X > x), ∀x, y ≥ 0. (A.18)

It is a simple matter to check this property as follows

P(X > x + y|X > y) =
P(X > x + y,X > y)

P(X > y)
=

P(X > x + y)

P(X > y)
,

and consequently

P(X > x + y|X > y) =
e−λ(x+y)

e−λy
= e−λx = P(X > x).

• The expectation of an exponentially distributed random variable X is equal to

the inverse of its parameter λ. This is easily seen as follows

E[X] =

∫ ∞

0

xλe−λxdx,

and using integration by parts implies

E[X] = [−xe−λx]∞0 −
∫ ∞

0

−e−λxdx = lim
x→∞

−xe−λx − 1

λ
[e−λx]∞0 .

Hence

E[X] = 0− 1

λ
(−1) =

1

λ
. (A.19)
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• The uniform random generator can be used to generate an exponentially dis-

tributed random variable through the application of the inverse transform method:

Theorem A.0.2. (Inverse Transform Method ) Let FX be the distribution

function of a real-valued random variable X and suppose FX has an inverse

function F−1
X defined as

F−1
X (u) = inf{x : FX(x) = u}, 0 ≤ u ≤ 1.

If U is a uniformly distributed random variable on [0, 1], then F−1
X (U) has the

distribution function FX . Moreover, FX is uniformly distributed on [0, 1].

Proof. To prove this theorem, we follow [78].

First, F−1
X (U) has distribution function FX , which is easy to check as follows

P(F−1
X (U) ≤ x) = P(U ≤ FX(x))

= FX(x) since P(U ≤ v) = v.

Given 0 < u < 1, we have

P(FX(x) ≤ u) = P(X ≤ F−1
X (u))

= FX(F−1
X (u))

= u.

Hence, FX(x) follows the uniform distribution on [0, 1].

We will explain now how an exponentially distributed random variable X with

parameter λ > 0 can be generated using the uniform random generator. To

this end, recall first that the distribution function of X is

FX(x) = 1− e−λx, λ > 0, x ≥ 0.
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Then the inverse transform method (Theorem A.0.2) implies that

FX(x) = U = 1− e−λx,

is uniformly distributed on [0, 1]. Consequently

1− U = e−λx,

which yields

ln(1− U) = −λx.

Thus

− ln(1− U)

λ
= x = F−1

X (U).

Now, since U is uniformly distributed on [0, 1], so is 1− U . Therefore, we can

generate the exponentially distributed random variable X:

X = − ln(U)

λ
. (A.20)

Definition A.0.10. [57][error function]

The error function or Gauss error function is defined as

erf(x) =
2√
π

∫ x

0

e−t2dt.

Lemma A.0.3. Suppose X is a real-valued normally distributed random variable

defined on (Ω,F ,P) with mean µ and variance σ2. Then for r > 0, we have

P(|X − µ| ≤ r) = erf(
r√
2σ2

). (A.21)

Proof. Since X follows a Gaussian distribution (X ∼ N(µ, σ2), its probability density
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function is given by

p(x) =
1√

2πσ2
exp(

−(x− µ)2

2σ2
),

and consequently

P(|X − µ| ≤ r) = P(µ− r ≤ X ≤ µ + r) =
1√

2πσ2

∫ µ+r

µ−r

exp(
−(x− µ)2

2σ2
)dx.

By setting t = x−µ√
2σ2

, we get dx =
√

2σ2dt and the boundaries of the integral become

t = −r√
2σ2

and t = r√
2σ2

.

Substituting these quantities into the integral above yields

P(|X − µ| ≤ r) =
1√
π

∫ r√
2σ2

−r√
2σ2

exp(−t2)dt

=
2√
π

∫ r√
2σ2

0

exp(−t2)dt

= erf(
r√
2σ2

).

Strong law of large numbers [57] Let Xj, j = 1, · · · ,M be independent and

identically distributed (i.i.d) real-valued random variables defined on (Ω,F ,P) with

mean µ and variance σ2 and define

XM =
X1 + X2 + · · ·+ XM

M
(A.22)

as the sample mean of M independent samples X1, X2, · · · , XM of X. Then XM

converges to µ with probability one as M →∞. This law is known as the strong law

of large numbers. [57]

In many applications, the distribution of the random variable X is unknown.

Therefore, if one needs to compute one of its moments, namely β, an estimator

βM of β (βM → β as M → ∞) is used. βM is a random variable with expectation
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β and is called an unbiased estimator of β [57]. For example, XM is an estimator of

the mean µ = E[X] as obtained from the strong law of large numbers. XM is also a

random variable since it depends on the particular realizations X1, X2, · · · , XM and

so E(XM) = µ. The sample mean XM is thus an unbiased estimator of µ. More

information about the convergence of XM to µ and the rate of this convergence can

be obtained from the central limit theorem and the Berry-Esseen inequality.

Theorem A.0.4. Central limit theorem [57]

Suppose E[|xj|2] < ∞, where Xj, j = 1, 2, · · · ,M , are i.i.d. real-valued random

variables, then

X∗
M =

√
M(XM − µ),

converges in distribution to a Gaussian random variable Z with mean 0 and variance

σ2. Thus, X∗
M → Z ∼ N(0, σ2).

Theorem A.0.5. Berry-Esseen inequality [57]

Let E[|xj|2] < ∞ and E[|xj|3] < ∞, where Xj, j = 1, 2, · · · ,M , are i.i.d. real-

valued random variables and j = 1, 2, · · · ,M . Then the rate of convergence of X∗
M

to Z ∼ N(0, σ2) is O(M
−1
2 ). In particular,

sup
z
|P(X∗

M ≤ z)−P(Z ≤ z)| ≤ E[|X1 − µ|3]
σ3
√

M
.

Confidence interval

From the Berry-Esseen inequality, we have [57]

P(X∗
M ≤ z) = P(Z ≤ z) + O(M

−1
2 ).

Given r > 0, equation (A.21) yields

P(X∗
M ≤ r) = erf(

r√
2σ2

) + O(M
−1
2 ). (A.23)

167



Taking r = 2σ gives

P(X∗
M ≤ 2σ) = erf(

2σ√
2σ2

) + O(M
−1
2 ).

Thus

P(|XM − µ| ≤ 2σ√
M

) = erf(
√

2) + O(M
−1
2 ).

Since erf(
√

2) ' 0.9545, we obtain

P(XM − 2σ√
M

< µ < XM +
2σ√
M

) > 0.95 + O(M
−1
2 ). (A.24)

The interval

[XM − 2σ√
M

,XM +
2σ√
M

]

is known as a 95% confidence interval as the probability that µ is contained within

it at least 0.95. If σ is unknown, the unbiased estimator

σ2
M =

1

M − 1

M∑
j=1

(Xj −XM)2

of σ2 can be used. The 95% confidence interval is then given by

[XM − 2σM√
M

,XM +
2σM√

M
],

where σM√
M

is known as the standard error. [57]
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Appendix B

Hilbert space, operator theory and

Fourier series

Hilbert space and Fourier Series

Firstly, we present some preliminaries and some material on Hilbert space and Fourier

analysis [73, 5]:

Definition B.0.11. [73][Cauchy sequence, complete space]

Consider a normed vector space (X, || · ||). A sequence xn ∈ X, for n = 1, 2, 3, · · ·
is said to be a Cauchy sequence if for all ξ > 0, there exists N > 0 such that

||xm − xn|| < ξ for all m,n ≥ N. The space X is said to be complete if every Cauchy

sequence in X converges to a limit point in X.

Definition B.0.12. [73][Banach space]

A Banach space is a complete normed vector space.

(R, ||.||2) and (C(R,R), ||.||∞) are examples of Banach spaces.

Definition B.0.13. [73][inner product]

Let X be a vector space over R. Then the inner product is a function 〈., .〉 : X×X →
R such that
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1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0 ∀x ∈ X.

2. 〈x, y〉 = 〈y, x〉 ∀x, y ∈ X.

3. 〈λx + µy, z〉 = λ〈x, y〉+ µ〈x, z〉 ∀x, y, z ∈ X and λ, µ ∈ R.

Moreover, the inner product defines a norm,

||x|| = 〈x, x〉1/2 ∀x ∈ X.

Definition B.0.14. [73][Hilbert space]

A Hilbert space is defined as a Banach space with an inner product. For example, the

space of square integrable functions over [0, 1], denoted by L2(0, 1), with inner product

〈f, g〉 =
∫ 1

0
f(x)g(x)dx and norm ||f ||2 = 〈f, f〉1/2 = (

∫ 1

0
f(x)2dx)1/2, ∀f, g ∈ L2(0, 1),

is a Hilbert space.

From now on, (., .) will be used to denote the inner product on a Hilbert space.

Lemma B.0.6. Cauchy-Schwartz inequality

Suppose H is a Hilbert space. Then

|(x, y)| ≤ ||x||||y|| ∀x, y ∈ H.

Proof. See [73] for a proof of this lemma.

Definition B.0.15. [73][separable Hilbert space]

A Hilbert space H is called separable if it has a countable dense subset.

Definition B.0.16. [73][orthonormal basis]

A family B = {ej}j∈N, is said to be an orthonormal basis of a separable Hilbert space

H, if the following conditions hold:

1. (ej, ek) = 0 if j 6= k and for all j, k ∈ N,

2. ||ej|| = 1 for all j ∈ N and
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3. the linear span of the orthonormal set B (i.e.x =
∑

j∈N(ej, x)ej), is dense in

H. Thus, if (x, ej) = 0 for some x ∈ H and ∀j ∈ N, then x = 0.

It can be shown that every separable Hilbert space has an orthonormal basis [73].

A Hilbert space is said to be separable if it has a countable orthonormal basis. L2(0, 1)

is an example of a separable Hilbert space(see TheoremB.0.9 below). In practice, the

solution to the SDEs in Hilbert space can be represented using countably (or finite)

elements of the space; separability is very important in such situations.

Theorem B.0.7. [73]

Let {ej}j∈N be an orthonormal set in a separable Hilbert space H. Then

1.
∑

j∈N |(ej, x)|2 ≤ ||x||2 for all x ∈ H (Bessel’s inequality) and

2.
∑

j∈N |(ej, x)|2 = ||x||2(Parseval’s equality), if and only if x =
∑

j∈N(ej, x)ej.

That is, Parseval’s equality holds if and only if the orthonormal set {ej}j∈N

forms a basis of H.

Proof. The proof of this theorem can be found in [73].

Definition B.0.17. [73][Fourier series, Fourier coefficient]

A periodic function f with period 2L has a Fourier series given by

f(x) =
a0

2
+

∞∑
j=1

aj cos
jπx

L
+

∞∑
j=1

bj sin
jπx

L
, (B.1)

where

a0 =
1

L

∫ L

−L

f(x)dx,

aj =
1

L

∫ L

−L

f(x) cos
jπx

L
dx,

and

bj =
1

L

∫ L

−L

f(x) sin
jπx

L
dx.

a0, aj and bj are called Fourier coefficients of f(x).
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In general, Fourier series may not converge, so the equality in the above series

does not always hold. In fact, the main work in the field of harmonic analysis is

concerned with discussing when this equality holds. For L2(0, 1), the convergence of

Fourier series is guaranteed as a result of TheoremB.0.9 and the following theorem

which is known as Riesz-Fisher theorem.

Theorem B.0.8. [5]

For any orthonormal set {ej, j ∈ N} in L2(0, 1) and any sequence {cj}, j ∈ N in

l2(0, 1), the series
∑∞

j=1 cjej converges in L2(0, 1).

Proof. For a proof of this theorem, see [5].

Definition B.0.18. [73][even function, odd function]

A function f : [−L,L] → R is said to be an even function if

f(−x) = f(x) ∀x ∈ [−L,L]

and an odd function if

f(−x) = −f(x) ∀x ∈ [−L, L].

It is a simple matter to show that if f(x), for all x ∈ [−L,L], is an even function,

then bj = 0 in the Fourier expansion (B.1), for all j ∈ N. The Fourier expansion of

the even function f is then given by

f(x) =
a0

2
+

∞∑
j=1

aj cos
jπx

L
,

where

a0 =
2

L

∫ L

0

f(x)dx,

and

aj =
2

L

∫ L

0

f(x) cos
jπx

L
dx.
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If f(x), for all x ∈ [−L, L], is an odd function, then aj = 0, for all j = 0, 1, 2, · · · and

therefore f has the Fourier expansion

f(x) =
∞∑

j=1

bj sin
jπx

L
,

where

bj =
2

L

∫ L

0

f(x) sin
jπx

L
dx.

Theorem B.0.9. [73]

1. The family {1, ej =
√

2 cos jπx, j ∈ N} forms an orthonormal basis of L2(0, 1).

2. The family {ej =
√

2 sin jπx, j ∈ N} also forms an orthonormal basis of

L2(0, 1).

Proof. See [73] for the proof of this theorem.

Generally speaking, any function f ∈ L2(0, 1) can be written as an expansion of

either a sine or a cosine series, depending on the boundary conditions of the problem.

An area of interest within the SPDEs field is operator theory, in particular linear

operator theory. These operators act as transformations between normed vector

spaces, thus playing an important role in the analysis and study of SPDEs. Here, we

touch on only a few aspects of the theory. For more detail, see [70, 71, 73].

Definition B.0.19. [73][bounded operator]

The linear operator T : U → H, where U and H are separable Hilbert spaces (or,

in general, Banach spaces), is said to be a bounded operator if ||Tx||H ≤ C||x||U for

all x ∈ U and some constant C. Throughout this work, we denote the norm on a

Hilbert space by ||.|| instead of ||.||H , for simplicity of notation.
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The set of all bounded linear operators from U to H, denoted by L(U,H), with the

norm ||T ||op = ||T ||L(U,H) = supx∈U,x6=0
||Tx||
||x||U , forms a Banach space [73]. Moreover,

if T ∈ L(U,H), then ||Tx|| ≤ ||T ||op.||x||U , ∀x ∈ U [73]. If U = H, we abbreviate

L(H, H) to L(H). From now on, U and H are assumed to be separable Hilbert

spaces, unless otherwise stated.

Definition B.0.20. [71][symmetric operator]

Consider T ∈ L(H). Then T is called a symmetric operator if

(Tu, v) = (u, Tv), for all u, v ∈ H.

Moreover, in this case, ||T ||op = sup||u||=1 |(Tu, u)|, for all u ∈ H.

Definition B.0.21. [71][non-negative operator]

An operator T ∈ L(H) is a non-negative operator if

(Lu, u) ≥ 0, for all u ∈ H.

Definition B.0.22. [71][adjoint, self-adjoint operator]

The adjoint of an operator T ∈ L(H), where H is a Hilbert space, is an operator

T ∗ ∈ L(H) such that

(u, Tv) = (T ∗u, v) ∀u, v ∈ H.

Morover, the definition implies that (T ∗)∗ = T and (TS)∗ = S∗T ∗. Furthermore, if

T = T ∗ then the operator T is called self-adjoint or Hermitian.

The existence and uniqueness of the adjoint operator T ∗ of T holds as a result

of the following foundation theorem of Hilbert space theory, which is known as the

Riesz representation theorem.

Theorem B.0.10. [73]

Let H be a Hilbert space and let H∗ be its dual space (i.e. H∗ is the space of all

bounded linear functionals from H to R). Then ∀ϕ ∈ H∗ there exists a unique y ∈ H
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such that

ϕ(x) = (x, y), for all x ∈ H.

Proof. The proof of this theorem can be found in [73].

Definition B.0.23. [70, 71][nuclear operator]

An operator T ∈ L(U,H) is said to be a nuclear operator if there exists a sequence

(aj)j∈N in H and a sequence (bj)j∈N in U such that

Tx =
∞∑

j=1

aj(bj, x)U , for all x ∈ U

and
∞∑

j=1

||aj||||bj||U < ∞.

The space of all nuclear operators from U to H, denoted by L1(U,H), forms a

Banach space with norm [70]

||T ||L1 = inf{
∞∑

j=1

||aj||||bj||U : Tx =
∞∑

j=1

aj(bj, x)U , x ∈ U}.

Furthermore, if U = H and T ∈ L1(H) is a non-negative and symmetric operator,

then T is called a trace class operator [70].

Definition B.0.24. [70, 71][trace of operator]

Let T ∈ L(H) and {ej, j ∈ N} be an orthonormal basis of H. Then a trace T is

defined as

trT :=
∞∑

j=1

(Tej, ej).

We now introduce two propositions about the traces of nuclear operators, the

proofs of which can be found in Appendix C in [70].

Proposition B.0.11. [70, 71]

Trace T (trT ), where T ∈ L1(H), is a well defined number, independent of the choice

of orthonormal basis {ej, j ∈ N}. Moreover, |trT | ≤ ||T ||L1 .
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Proposition B.0.12. [70]

Let T ∈ L(H) be a non-negative operator. T is then a nuclear operator if and only

if, for an orthonormal basis {ej, j ∈ N} on H, we have

trT =
∞∑

j=1

(Tej, ej) < ∞.

Also, if this is the case, trT = ||T ||L1.

Definition B.0.25. [70, 71][Hilbert-Schmidt operator]

An operator T ∈ L(U,H) is called the Hilbert-Schmidt operator if

∞∑
j=1

||Tej||2 < ∞,

where {ej, j ∈ N} is an orthonormal basis of U . L2(U,H) denotes the space of

all Hilbert-Schmidt operators from U to H. The definition of the Hilbert-Schmidt

operator and the number

||T ||L2 = (
∞∑

j=1

||Tej||2)1/2

are both independent of the choice of orthonormal basis [71].

Moreover, ||T ||L2 = ||T ∗||L2 , where T ∗ is the adjoint operator of T [71].

Proposition B.0.13. [70, 71]

1. Consider L2(U,H) and define

(S, T )L2 =
∞∑

j=1

(Sej, T ej),

where S, T ∈ U and {ej, j ∈ N} is an orthonormal basis of U . Then (L2(U,H), (., .)L2)

is a separable Hilbert space. Moreover, if {fk, k ∈ N} is an orthonormal basis

of H, then the set of operators fk ⊗ ej := fk(ej, .)U , where j, k ∈ N, is an

orthonormal basis of L2(U,H).
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2. Let (G, (., .)G) be a further separable Hilbert space. If T ∈ L2(U,H) and S ∈
L2(H, G) then ST ∈ L1(U,G) and

||ST ||L1(U,G) ≤ ||S||L2 .||T ||L2 .

Proof. See [70] for the proof of this proposition.
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Appendix C

Computer simulation codes

C.1 SDELab codes for simulating the stochastic

FHN system

Code C.1.1: The FHN model with additive space-time noise

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M-file for simulating the FHN model with additive space-time %

% white noise presented in Chapter2 using SDELab package %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

d = 9; %dimension of y

p = 9; %dimension of w

tspan = [0,200]; %time interval

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute the initial condition

a0_n=0.1/(exp(1)-1); b0_n=0.125; v0=a0_n/(a0_n+b0_n);

y0=[zeros(d,1);v0*ones(d,1)];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Define the drift and diffusion functions
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fcn.drift=’spdefh_drift’; fcn.diff_noise=’spdefh_diff_noise’;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Define the parameters of drift and diffusion functions

params.D=0.01; params.a=0.05; params.Mu=0.5; params.b=0.008;

params.gamma=0.5; params.sigma=0.005;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Choice the integration method and other options

opt.IntegrationMethod =’StrongItoEuler’; opt.MaxStepSize=1e-2;

opt.StrongItoEuler.Alpha=0.5; opt.MSIGenRNG.SeedZig = 23;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Strong numerical solutions stored in [t,y]

[t,y]= sdesolve_strong_solutions (fcn,tspan,y0,m,opt,params)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Code C.1.2: The drift function of the FHN model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M-file for the drift function of the SPDEs of the FHN model %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z=spdefh_drift(t,y,varargin)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Extract parameters

D=varargin{2}.D; Mu=varargin{2}.Mu; a=varargin{2}.a;

b=varargin{2}.b; q=varargin{2}.gamma; d=length(y)/2;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute drift function

A=-gallery(’tridiag’,d); %tridiagonal matrix A

u=y(1:d); % u fast variable

v=y(d+1:end); % v recovery variable

F=(u.*(1-u).*(u-a))-v;
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B=D*((d+1)^2)*A*u; % Approximation of Laplacian

z1=B+F+Mu; z2=b*(u-(gamma*v));

z=[z1;z2]; %Return values of drift

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Code C.1.3: The diffusion function of FHN model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% M-file for the diffusion function of SPDEs of the FHN model %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function z=spdefh_diff_noise(t,y,dw,flag,varargin)

sigma=varargin{2}.sigma; % Extract parameter

p=length(dw); d=p;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Compute Q_ij=sqrt(2)*sin(i*j*pi/(d+1)),i,j=1,2,...,d.

Q=sqrt(d+1)*gallery(’orthog’, d,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Compute the diffusion function

if(flag)

z=[sigma*Q;zeros(m)];

else

z=[sigma*(Q*dw);zeros(m,1)];

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.2 MATLAB M-files for simulation of FET of

one-dimensional neural diffusion models

Code C.2.1: The exponential time-stepping Euler method with boundary

test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The exponential time-stepping Euler method with boundary test %

% for simulating the mean first exit time of one dimensional %

% diffusion represented by the space-clamped FitzHugh Nagumo %

% system with additive noise presented in Chapter3. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Lp=100;

%Define mean, variance and standard deviation of the FET

Tm=zeros(Lp,1); Vm=zeros(Lp,1); stdev=zeros(Lp,1);

err=zeros(Lp,1); Verr=zeros(Lp,1); % Error and the variance of error

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a=0.1;b=0.6;I=1.5; y0=1;%The physical parameters of the system

exact=0.1287;%Analytical solutions of (3.77).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Delta_t=0.0005; % The mean of exponential time step delta_t

lambda=1/Delta_t; % The parameter of the exponential time step delta_t

sigma_t=5; % Noise intensity

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for nerr=1:Lp % Loop to calculate average of the error

M=100000; K=zeros(M,1); V=zeros(M,1);

for j=1:M %Loop to simulate the MFET

x0=0;

i=0;
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for i=1:Inf %Loop to calculate the FET

u=rand;v=rand;w=rand; %Uniformly distributed random variables

p=-log(v); %Exponentially distributed random variable

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The quantities required to calculate x(delta t), see Chapter3

Mu=0.5*x0*(x0-a)*(1-x0);

f_t=Mu-y0+I;

F_t=f_t/(sigma_t^2);

N_t=sqrt((2*lambda/(sigma_t^2))+(F_t^2));

s=sign(0.5*(1+(F_t/N_t))-u);

x1=x0+((1/(N_t-s*F_t))*s*p); %Generate x(delta t)

m=max(x0,x1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The probability that b was hit before the end of the time step

r=exp(-2*N_t*(b-m));

%Boundary test if b was hit during the time step

if (x1>b)||(w<r)

%if (x1>b)

K(j)=i/lambda; %Elapsed time after i time steps

break;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x0=x1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tm(nerr)=mean(K); %The mean of FET for each nerr

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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for j=1:M

V(j)=(K(j)-Tm(nerr))^2;

end

Vm(nerr)=sum(V)/(M-1); %Variance of FET for each nerr

stdev(nerr)=sqrt(Vm(nerr)/M);%Standard deviation of FET for each nerr

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

err(nerr)=(Tm(nerr)-exact); %calculate the systematic error for each nerr

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%TmC=mean(Tm); VmC=mean(Vm); stdevC=mean(stdev);

errC=abs(mean(err)) % Calculate the mean of systematic error

for i=1:Lp

Verr(i)=(err(i)-errC)^2; %Calculate the variance of systematic error

end

%The unbiased estimator of variance of error.

VerrC=sum(Verr)/(Lp-1);

%The bound of 95% confidence interval of error.

stdeverrC=sqrt(VerrC/Lp)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Code C.2.2: The fixed timestepping Euler method with boundary test

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The fixed time-stepping Euler method with boundary test %

% for simulating the mean first exit time of one dimensional %

% diffusion represented by the space-clamped FitzHugh Nagumo %

% system with additive noise defined in Chapter3. %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Lp=100;

%Define mean, variance and standard deviation of the FET
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Tm=zeros(Lp,1); Vm=zeros(Lp,1); stdev=zeros(Lp,1);

err=zeros(Lp,1); Verr=zeros(Lp,1); % Error and the variance of error

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a=0.1;b=0.6;I=1.5; y0=1;%The physical parameters of the system

exact=0.1287;%Analytical solutions of (3.77).

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Delta_t=0.0005;sigma=5; %Fixed time step and noise intensity

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for nerr=1:Lp % Loop to calculate average of the error

M=100000;

T=zeros(M,1);V=zeros(M,1);

for j=1:M %Loop to simulate the MFET

x0=0; %Initial data

for k=1:Inf %Loop to calculate the FET

n=sqrt(Delta_t)*randn; %Generate the Gaussian samples

w=rand; %Uniformly distributed random variable

f=0.5*x0*(x0-a)*(1-x0);

Mu=f-y0+I; % Calculate the drift term

x1=x0+Mu*Delta_t + (sigma*n); %Generate x1(Delta_t)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The probability that b was hit before the end of the time step

B=exp(-2*(b-x0)*(b-x1)/((sigma^2)*delta));

%Boundary test if b was hit during the time step

if (x1>=b)||(w<B)

%if (x1>b)

T(j)=k*delta; %Elapsed time after k time steps

break;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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x0=x1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Tm(nerr)=mean(T); %The mean of FET for each nerr

for j=1:M

V(j)=(T(j)-Tm(nerr))^2;

end

%The variance and standard deviation of FET for each nerr

Vm(nerr)=sum(V)/(M-1);stdev(nerr)=sqrt(Vm(nerr)/M);

err(nerr)=(Tm(nerr)-exact);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

TmC=mean(Tm);VmC=mean(Vm);stdevC=mean(stdev);

errC=mean(err)%Calculate the mean of systematic error

for i=1:Lp

Verr(i)=(err(i)-errC)^2;

end

%The unbiased estimator of variance of error.

VerrC=sum(Verr)/(Lp-1);

%The bound of 95% confidence interval of error.

stdeverrC=sqrt(VerrC/Lp)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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C.3 MATLAB M-files of the simulation of the stochas-

tic Barkley system and the reduced model

Code C.3.1: Numerical simulation of the stochastic Barkley system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Simulation of the Barkley model with additive noise, white %

%in time and correlated in space using numerical technique %

%presented in Chapter 4 (Section 4.4). %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

params=[];

M=2000; % Number of samples

N=1024;delta=0.01;L=400;sigma=0.09; %Parameters of the system

params.delta=delta; %Time step

params.sigma=sigma; %Noise intensity

params.L=L; % Length of space domain

params.xi=2; % Length of spatial correlation

b1=0.275; % Threshold of nucleation of a single wave

b2=0.008 % small boundary layer

x1=zeros(N,1); % The activator variable

Wdiff=zeros(N,1); % The noise

T=zeros(M,1); % First exit times (nucleation times)

V=zeros(M,1); %Variance of FET

Tnuc=zeros(M,1); % Nucleation times of a single wave

Tann=zeros(M,1); % Annihilation times of a single wave

Tlif=zeros(M,1); % Lifetimes of a single wave

Vlif=zeros(M,1); % Variance of lifetimes

% count=0; lambdasum=0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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for j=1:M

r3=0;r4=0;

u0=r3*ones(N,1);

v0=r4*ones(N,1);

x0=[u0;v0]; %initial condition

Maxtime=500000;

x1norm=zeros(Maxtime,1);

%lambda1=zeros(Maxtime,1);

for k=1:Maxtime

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Recall subroutine SPTBKBC (code C.3.1.1)

% to generate updates and to generate the noise

[x1,Diffw]=SPTBKBC(x0,params);

% L*norm(Diffw)^2

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Maximum values of the activator over x

%x1norm(k)=max(x1(1:N));

%u(:,k)=x1(1:N);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% To calculate the probability of the excitable part of

%the phase space of the system

%ux=x1(1:N);

%lambda1(k)=sum(ux>=0.9)/length(ux);

% lambdasum=lambdasum+lambda1(k); count=count+1;

% [k*delta,lambda1(k),lambdasum/count];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Plot the activator variable along space domain

% subplot(1,2,1);

%plot(x1); axis([0,N,0,1]); grid on
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%Plot the maximum value of u over x as a function of time

% subplot(1,2,2); plot(x1norm); grid on

% drawnow;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% The criteria of FET or the nucleation time of a traveling single wave

% if x1norm(k)>b1

% T(j)=k*delta;

% break;

%end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

x0=x1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Calculate the lifetime of a single wave

%Tannc=find(x1norm>=b1);

%Tnuc(j)=Tannc(1)*delta;

%for i=Tannc(1):Maxtime

% if x1norm(i)<b2

%Tann(j)=i*delta;

% break;

% end

%end

%Tlif(j)=Tann(j)-Tnuc(j);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the MFET or the mean nucleation time

%Tm=mean(T)

%for j=1:M

% V(j)=(T(j)-Tm)^2;
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%end

%Vm=sum(V)/(M-1)%The unbiased estimator of variance of FET

%stdev=sqrt(Vm/M) %The bound of 95% confidence interval of FET.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the mean lifetime of a single wave

%Tmlif=mean(Tlif)

%for j=1:M

% Vlif(j)=(Tlif(j)-Tmlif)^2;

%end

%Vmlif=sum(Vlif)/(M-1)%The unbiased estimator of variance of lifetime

%stlif=sqrt(Vmlif/M)%The bound of 95% confidence interval of lifetime.

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Code C.3.1.1: Subroutine of the simulation of the Barkley model

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%The subroutine SPTBKBC to generate updates %

% and to generate the noise %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [z,Diff]=SPTBKBC(y,varargin);

delta=varargin{1}.delta; %Time step

sigma=varargin{1}.sigma; %Noise intensity

L=varargin{1}.L; % The length of space domain

xi=varargin{1}.xi; % Length of spatial correlation

N=length(y)/2;

u0=y(1:N); % Activator variable

v0=y(N+1:end); % Inhibitor variable

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

a=0.75; b=0.01; eps=0.02; D=1; %The physical parameters of the system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%Generate eigenvalues of Laplacian

%using spectral method (see Chapter4,Section 4.3)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda=zeros(N,1);

for k=1:N

lambda(k)=(2*(k-1)*pi/L)^2;

end

diffus1=zeros(N,1);

for j=1:N

%Geometric integrator to preserve the eigenvalues

diffus1(j)=exp(-(D*delta)*lambda(j));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Generating the noise using FFT method: (see Chapter4, Section 4.2)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (1)Calculate alpha

alph=zeros(N,1);

alph(1)=1;

alph(N/2+1)=((1/(2*sqrt(2))))*exp((-(xi^2)*lambda(N/2+1))/2*pi);

for j=2:N/2

alph(j)=((1/(2*sqrt(2))))*exp((-(xi^2)*lambda(j))/2*pi);

alph(N-j+2)=alph(j);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% (2)Generate complex numbers with random variables parts

zcom=zeros(N,1);

zcom(1)=((sigma/sqrt(L))*sqrt(delta))*randn;

zcom(N/2+1)=((sigma/sqrt(L))*sqrt(delta))*complex(randn,-randn);

for j=2:N/2
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zcom(j)=((sigma/sqrt(L))*sqrt(delta))*complex(randn,-randn);

zcom(N-j+2)=conj(zcom(j));

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%(3)Approximate of sigma*W(t,x)

Diff=alph.*zcom;

%Diffw=ifft(Diff,’symmetric’)*length(Diff); %The approximation of noise

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Updating the activator and inhibitor variables (see Chapter4,Section 4.4)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

z0=fft(u0); %Using FFT

z3=(z0.*diffus1)+(Diff*length(Diff));

u05=ifft(z3,’symmetric’);

%Apply the modified reaction terms

f=(u05.*(1-u05).*(u05-((v0+b)/a)))/eps;

g=u05-v0;

for j=1:N

if u05(j)>=1

f(j)=-abs(f(j));

end

if v0(j)<0

g(j)=abs(g(j));

end

end

z1=u05+(f*delta); %Generate the activator

z2=v0+(g*delta); %Generate the inhibitor

z=[z1;z2];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Code C.3.2: The reduced model of the dynamics of the Barkley system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Simple, reduced model of the dynamics of the traveling waves %

% of the Barkley model %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

lambda=1/17.78;Tdiff=1.44;

%lambda=10/31.4;Tdiff=1.7;

L=400;N=30;v_m=0.75;T_fin=30;

a=0.75; b=0.01; eps=0.02; %The physical parameters of the system

c=(1-2*(b/a))/sqrt(2*eps); % The asymptotic wave speed

w=c*log(1/(1-v_m)); %The analytical value of wave width

M=1000; %The number of samples

%LLT=zeros(2*N,M);

%RLT=zeros(2*N,M);

mkink=zeros(M,1);

mantik=zeros(M,1);

Vkink=zeros(M,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:M

x=zeros(3*N,1);

x_f=zeros(6*N,1);

T=zeros(3*N,1);

T1=zeros(3*N,1);

T_f=zeros(6*N,1);

%figure(2);clf;hold on

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%simulate the exponential distributed random variable: time T

u=rand;
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T(1)=-(1/lambda)*log(u);

T1(1)=T(1)+Tdiff;

T(1+N)=T(1)+1e-10;

T1(1+N)=T1(1)+1e-12;

T(1+2*N)=T(1)+1e-11;

T1(1+2*N)=T1(1)+1e-13;

for i=2:N;

u=rand;

T(i)=T(i-1)-(1/lambda)*log(u);

T1(i)=T(i)+Tdiff;

T(i+N)=T(i)+1e-10;

T1(i+N)=T1(i)+1e-12;

T(i+2*N)=T(i)+1e-11;

T1(i+2*N)=T1(i)+1e-13;

end

for i=1:3*N

T_f(2*i-1)=T(i);

T_f(2*i)=T1(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%simulate uniformly distributed random variable: position x on [0,L]

y=L*rand(N,1);

x(1:N)= y;

x(N+1:2*N)=y-L;

x(2*N+1:3*N)=y+L;

for i=1:N-1

for j=i+1:N

r=abs(x(i)-x(j));

while(r<w)
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r=abs(x(i)-x(j));

x(j)=L*rand;

x(j+N)=x(j)-L;

x(j+2*N)=x(j)+L;

end

end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:3*N

x_f(2*i-1)=x(i);

x_f(2*i)=x(i);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

N1=6*N;

% mark all nucleation points

%plot(x_f, T_f, ’r.’,’MarkerSize’,10);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tc1=zeros(N1);

xc1=zeros(N1);

Lann=Inf(N1,1); %times of annihilation of left wave

Rann=Inf(N1,1); % times of annihilation of right wave

%axis([0 L 0 100]);

%box on

Tann=0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:2*N1

% Subroutine code3 (code C.3.2.1)

[tc1, xc1]=code3(T_f,x_f,c,N1,Tann,Lann,Rann);

% compute crossing points
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[tminrow, row_X]=min(tc1);

[T_LR,col]=min(tminrow);

row=row_X(col) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% find first crossing point and position in matrix (row,col)

if(T_LR<Inf)

Tann=T_LR;

Xann=xc1(row,col); %annihilation position

Lann(col)=Tann;

Rann(row)=Tann; % these waves are annihilated

T_L=T_f(row); X_L=x_f(row); % creation of left wave

T_R=T_f(col); X_R=x_f(col); % creation of right wave

end

%if (Tann<Inf)

% plot([X_R, Xann],[T_R, Tann]);

% plot([X_L, Xann],[T_L, Tann]);

% plot(Xann,Tann,’g*’);

%end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% plot all still alive

Textra=80;

%for i=1:N1,

% if Lann(i)==Inf

% plot([x_f(i),x_f(i)-c*(Textra)],[T_f(i),T_f(i)+Textra]);

% plot(x_f(i)-c*(Textra),T_f(i)+Textra,’y*’);

%end

% if Rann(i)==Inf

% plot([x_f(i),x_f(i)+c*(Textra)],[T_f(i),T_f(i)+Textra]);
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% plot(x_f(i)+c*(Textra),T_f(i)+Textra,’y*’);

%end

%end

%for i=1:2*N

% RLT(i,k)=Rann(i)-T_f(i);%compute lifetime of right wave

% LLT(i,k)=Lann(i)-T_f(i);%compute lifetime of left wave

%end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Calculate the number of kinks

numkink=0;

for i=1:2*N

if Rann(i)>=T_fin && T_f(i)<=T_fin

numkink=numkink+1;

end

end

numantik=0;

for i=1:2*N

if Lann(i)>=T_fin && T_f(i)<=T_fin

numantik=numantik+1;

end

end

mkink(k)=numkink;

mantik(k)=numantik;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Meankink=mean(mkink)

Meanantik=mean(mantik)

for j=1:M

Vkink(j)=(mkink(j)-Meankink)^2;
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end

Vmkink=sum(Vkink)/(M-1)

stkink=sqrt(Vmkink/M)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%MRLT=zeros(N,1);

%MLLT=zeros(N,1);

% MRLT=mean(RLT,2);

% MLLT=mean(LLT,2);

% MRLT’

%MLLT’

%hold off;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Code C.3.2.1: The subroutine of the reduced model of the dynamics of

the Barkley system

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [tc1, xc1]=code3(T,x,c,N, tcurrent, Lann, Rann)

% T nucleation times at positions given in x

% c wave speed.

% N number of particles

% tcurrent current time

% Lann, Rann are annihilation times of left,right waves.

% tc1 matrix of crossing of i moving left, j moving right

% infinity indicates no crossing after tcurrent

% xc1 position of crossing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tc1=zeros(N);

xc1=zeros(N);

for i=1:N,
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if (Rann(i) > tcurrent) % right wave allive

for j=1:N

if (Lann(j)>tcurrent)% left wave allive

tc(i,j)=(T(i)+T(j))/2-((x(i)-x(j))/(2*c));

xc(i,j)=x(i)+(c*tc(i,j))-(c*T(i));

if (tc(i,j)>T(i) && tc(i,j)>T(j))

tc1(i,j)=tc(i,j);

xc1(i,j)=xc(i,j);

end

end

end

end

end

tc1 (tc1<=tcurrent)=Inf;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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