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ABSTRACT 

The University of Manchester 

Abdellatef E. O. Badri 

PhD Mechanical Engineering 

Performance Improvement of MEMS Accelerometers in Vibration Based Diagnosis 

2011 

 

Vibration measurement and analysis has been an accepted method since decades to meet 
a number of objectives - machinery condition monitoring, dynamic qualification of any 
designed structural components, prediction of faults and structural aging-related 
problems, and several other structural dynamics studies and diagnosis. However, the 
requirement of the vibration measurement at number of locations in structures, 
machines and/or equipments makes the vibration measurement exorbitant if 
conventional piezoelectric accelerometers are used. Hence, there is a need for cheaper 
and reliable alternative for the conventional accelerometers. The Micro-Electro-
Mechanical Systems (MEMS) accelerometers are one such cheap alternative. However, 
a significant deviation in the performance of the MEMS accelerometers has been 
observed in earlier research studies and also confirmed by this presented study when 
compared with well known conventional accelerometer. Therefore, two methods have 
been suggested to improve the performance of the existing MEMS accelerometers; one 
for correction in time domain and other in frequency domain. Both methods are based 
on the generation of a characteristic function (CF) for the MEMS accelerometer using 
well known reference accelerometer in laboratory tests. The procedures of both methods 
have been discussed and validations of these methods have been presented through 
experimental examples. In addition, a Finite Element (FE) model of a typical MEMS 
accelerometer has been developed and modal analysis has been carried out to 
understand the dynamics of capacitive type MEMS accelerometer and to identify the 
source of errors. It has been observed that the moving fingers behave like a cantilever 
beam while the fixed fingers showed rigid body motion. This cantilever type of motion 
seems to be causing non-parallel plates effect in the formed capacitors between moving 
and fixed fingers which results in errors in the vibration measurement. Hence, design 
modifications on finger shape have been suggested to remove the cantilever motion and 
results showed remarkable improvement. Moreover, the effect of using synchronous 
amplitude modulation and demodulation in the readout circuit has been studied. The 
experimental study showed that this circuit also introduces errors in amplitude and 
phase of the output signal compared with the input signal.  Thus, in the new design of 
MEMS accelerometers, improvements in both mechanical design and electronic circuit 
are required. 
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CHAPTER 1                                                         

INTRODUCTION 

 

1.1 Overview 

Vibration measurement and analysis has been the accepted method to meet a number of 

objectives; it plays a significant role in machine condition monitoring [1-9], dynamic 

qualification of newly designed structural components [10-13], prediction of faults and 

structural aging-related problems [14–15], and several other structural dynamics studies 

and diagnoses [16–18]. One reason for its wide usage is its capability to monitor 

vibrating machines without interrupting normal operations. In addition, the vibrating 

mechanisms of most machinery and structures are fundamentally well-known, giving 

rise to the possibility of detecting many faults in accordance with the characteristics of 

the vibration responses. Furthermore, the progress of vibration signal processing 

techniques, computing capabilities and reliable performance of vibration 

instrumentation such as wide band transducers and portable analysers has caused this 

technique to be extensively used around the world. 

 

In condition monitoring of machines, as an example, accelerometers are often used to 

measure the acceleration responses of the vibrating components to obtain vibration 

waveforms, which may lead to detection of incipient fault conditions of machines by 

analysing the vibration signals. These waveforms are interpreted and processed in a 

variety of ways such as the root mean square (RMS) and variance of the signal in the 

time domain, and power spectrum analysis in the frequency domain. Wavelet and higher 
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order spectral analyses are recent signal analysis techniques used to examine vibration 

waveforms and then decide on machine condition [19]. 

 

Vibration has traditionally been sensed using piezoelectric accelerometers or ICP type 

accelerometers. These accelerometers are referred a conventional accelerometers. They 

are accurate and reliable, but have two inherent problems: they are difficult to mass-

produce and they have high source impedance, which means that their signals must be 

very carefully amplified as close as possible to the sensor itself. Moreover, the use of 

the traditional piezoelectric accelerometers for simultaneous multiple data collection 

points was considered to be impractical; this is mainly because of their cost and the 

price of the associated electronic signal conditioning units. Other types such as 

piezoresistive accelerometers have limited resolution and can be used only for low and 

medium frequencies; this is also a disadvantage of the electrodynamic type. The 

capacitive type has low resolution and fragile. Commercially, several types of 

accelerometers manufactured by many well-known manufacturers are available all over 

the world.  

 

Obviously, the quality of the vibration-based diagnosis mainly depends on the measured 

responses using accelerometers. Therefore, good performance and reliability of the 

commercially available accelerometers is very important. In addition, the use of 

conventional accelerometers for multiple data collection points may increase the 

complexity of monitoring system because of the associated electronic units that 

externally connect to the accelerometers. Consequently, the need for cheaper and 

reliable devices was recognized. 
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Researchers over the years have developed micro-fabricated systems for measuring 

temperature, pressure, force, position, torque, flow, magnetic field, humidity, gas 

composition, biological gas/liquid molecular concentration and acceleration [20]. The 

use of Micro-Electro-Mechanical Systems (MEMS) accelerometers is one of the 

available options that came to light because of their low cost and small size. MEMS 

accelerometers are produced using the same process as integrated circuit manufacturing; 

this allows the sensor, actuator, and the signal conditioning electronic circuits to be 

integrated into a single chip.  

 

MEMS can generally be characterized as miniature systems involving one or more 

micro-machined components or structures. The inherently small size of MEMS enables 

high level functions by virtue of the large-scale integration process. This permits 

multiple functions or capabilities integrated on the same silicon chip or package for 

greater utility. However, the use of MEMS accelerometers is still limited in the field of 

condition monitoring, although there had been some research going on in their use in 

structural monitoring. The main reason is that the performance of most devices is not 

ready to penetrate this market as they are designed and manufactured for other 

application such as automotive, consumer electronics, and biomedical area where they 

are only used to detect the event of impact or motion. The stability, sensitivity, lifetime, 

mechanical strength, ease of operation and installation, are not attractive enough for 

using them in machine condition monitoring, also there are  some concerns about the 

effect of noise and temperature on their accuracy. A few earlier researches have 

compared the performance of MEMS and conventional accelerometers, mainly related 

to the frequency content in the spectrum of the measured signals [21-24]. It has been 
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observed that the frequency content in the spectrum of the measured signal from the 

MEMS accelerometer is the same as in the spectrum obtained from the conventional 

accelerometer if measured at the same location by both accelerometers. However a 

significant deviation has been noticed in the amplitude and phase. In practice, many 

vibration based diagnoses for machines and structures have been utilizing the frequency 

domain data for the system and fault identifications. However, one of the complicated 

issues in machinery diagnostics is the fact that two very different waveforms can yield 

similar spectra as their phase relationships are ignored when viewed in the frequency 

domain. Hence, the phase relationships between the frequency at the running speed of 

the machine and its harmonics in the time domain may be acceptable when considering 

factors of lost production, and the unnecessary costs replacing machine parts that may 

not have been defective in the first place. 

 

1.2 Objectives 

The aim of this research is initially to understand the behaviour of MEMS 

accelerometers and then explore the possibility of improving the performance of MEMS 

accelerometers to meet the requirements needed for vibration measurements. Hence the 

objectives are: 

1. Compare MEMS accelerometer performance with conventional accelerometer. 

2. Improve the measured response in time domain by designing a new filter to 

correct the phase and amplitude linearity for the existing MEMS accelerometer. 
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3. Other approach -Improve the measured response in frequency domain for the 

existing MEMS accelerometer. 

4. Explore the possibility of design modification in the present MEMS 

accelerometer in order to improve its performance. 

 

1.3 Research Review 

As previously mentioned, the aims of the present research are to improve the 

performance of MEMS accelerometers for vibration-based diagnosis applications by 

correcting the responses of the existing MEMS accelerometers both in time and 

frequency domains, and study the dynamics of these accelerometers to identify the 

possible sources of errors in order to propose suitable solutions. In the present work, the 

performance of capacitive type MEMS accelerometers has been compared with 

reference conventional accelerometer. The comparison is based on the computation of 

the Frequency Response Function (FRF) with the measured signals by the reference 

accelerometer used as the input and by the MEMS accelerometer as the output. It has 

been observed that MEMS accelerometers show some deviation, both in amplitude and 

phase of the FRF, for all types of vibration signals.  

Vibration signal analysis in the time domain can prevent a misdiagnosis of a rotating 

machinery problem. Therefore, a method to improve responses of the MEMS 

accelerometers in the time domain has been developed. The method is based on the use 

of especially designed filter which its Characteristics Function (CF) matching the CF of 

the MEMS accelerometer that is generated by comparing the response of the MEMS 
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accelerometer with the reference accelerometer. The novel method can correct the 

deviation in both amplitude and phase as it is examined by the FRF before and after 

correction.  

 

MEMS accelerometers also showed significant deviation of amplitude and phase even 

in the frequency domain when compared with a reference accelerometer. Hence, a 

method for correcting the measured MEMS accelerometer signals in the frequency 

domain has been presented and validated through experimental application on a rotating 

test rig. The method provided significant improvement in MEMS measured signals 

when comparing its amplitude and phase with the amplitude and phase of the reference 

accelerometer in response to different types of controlled vibration signals. The method 

also can be used to extend the frequency bandwidth of any accelerometer.  

 

To investigate the source of the observed errors, a dynamic study of the capacitive type 

MEMS accelerometer has been presented. The study included a fine mesh FE model (3-

D model) with two moving fingers and three fixed fingers considering the fingers shape 

design used in the existing accelerometers. It has been observed that the moving fingers 

behave like a cantilever beam which leads to non-parallel plate effect. Hence, a simple 

FE model; with a spring, a moving mass, and two moving fingers; has been developed 

in order to modify the design of the fingers. A few modifications on finger shape design 

have been suggested which showed remarkable improvement. Also, the effect of using 

synchronous amplitude modulation and demodulation in the readout circuit has been 

studied. The experimental study showed that this circuit introduces errors in amplitude 

and phase of the output signal compared with the input signal.  
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1.4 Outline of the Thesis  

This thesis is not presented in the classical format of PhD thesis. Rather, it is presented 

in the alternative format with its core context provided in the form of 

published/submitted papers. However, it should be noted that as in the classical format, 

the alternative format requires that all the references at the end of each paper be 

collected together and grouped under “References” at the end of the thesis. 

Chapter Two: presents the concepts and working principles of conventional and MEMS 

accelerometers, and the earlier research studies on the applications of MEMS 

accelerometers in the filed of condition monitoring.  

Chapter Three: provides a summary of the papers included in this thesis.  

Chapter Four: provides a detailed description of the test set up and lists the test 

equipments and tools used in data collection and processing.  

The following four chapters, Chapter 5 to Chapter 8, are constituted of eight published 

or submitted papers that report the candidate’s own work.   

Chapter Five: presents the performance evaluation of MEMS accelerometers compared 

with a well known conventional accelerometer.  

Chapter Six: presents a correction method of the MEMS accelerometer measured 

signals in time domain by design of a typical filter.  

Chapter Seven: presents the proposed method to correct the MEMS accelerometer 

responses in frequency domain and how this method can be used to extend the 

frequency bandwidth of any accelerometer. 



Chapter 1 

                                                        29 

Chapter Eight: presents the possible improvements in the mechanical design of the 

MEMS accelerometer using finite element analysis.  

Chapter Nine: concludes the thesis with summary and suggestions for further work. 
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CHAPTER 2                                                             

LITERATURE REVIEW 
 

This chapter presents the concepts of conventional accelerometers that are currently 

used in machine and structure condition monitoring. Basic principles of capacitive type 

MEMS accelerometers, review of other types of MEMS accelerometers, and fabrication 

processes are also discussed. The chapter also provides review of the previous reported 

research studies regarding the performance improvement of MEMS accelerometers 

used for general applications, and in the field of vibration-based condition monitoring.   

 

2.1 Accelerometers 

Acceleration sensors or accelerometers are used to measure acceleration, vibration and 

mechanical shock. Acceleration is the first derivative of velocity and second derivative 

of displacement. The relationships between velocity and displacement for transitional 

and rotational system can be expressed as: 
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Although it is possible to compute the acceleration of an object from the output of a 

displacement or velocity, most accelerometers use a sensing method in which a proof 
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mass displacement with respect to the accelerometer housing is detected [25]. The basic 

sensing arrangement of an accelerometer is shown Figure 2.1. 

 

 

 

 

 

 

 

 

 

Figure  2.1 General layout of an accelerometer 

 

The accelerometer is essentially a mass-spring –damper system in which the loading 

force inxm &&−  drives a second order damped harmonic oscillator. The equation of motion 

of this system can be expressed as: 

inoutmoutmout xmxkxbxm &&&&& −=++       (2.3) 

 

Where, xout is the displacement of the proof mass (m) relative to the rigid frame. Under 

constant acceleration conditions, the displacement xout is directly proportional to the 

input acceleration inx&&  where [26], 
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The behaviour of this dynamic system is determined by two parameters; the natural 

frequency ωo and the damping factor ζ where, 
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There are different types of accelerometers and each has unique characteristics, 

advantages and disadvantages. The accelerometers can be classified according to the 

physical effect used in the sensing mechanism such as piezoelectric accelerometers, 

piezoresistive accelerometers, and strain gage accelerometers. These types can also be 

classified based on their operating mode such as compression mode, shear mode, and 

flexural mode.  

 

2.1.1 Piezoelectric Accelerometers 

Description 

Accelerometers are sensing transducers that produce an electrical output signal 

proportional to the acceleration aspect of motion, vibration and shock. Most 
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accelerometers generate an electrical output signal that is proportional to an induced 

force. Piezoelectric accelerometers rely on the self-generating piezoelectric effect of 

either ceramic or quartz crystals to produce an electrical output proportional to 

acceleration. Some of them contain built-in conditioning circuitry and are known as 

Integrated Circuit Piezoelectric (ICP) while those that do not contain any additional 

circuit are called the charge mode or high impedance type. They are capable of 

measuring very high acceleration transients such as those encountered in machinery 

vibration and high frequency shock measurements. 

Principle of Operation 

A typical design of a conventional piezoelectric accelerometer is shown in Figure 2.2. It 

consists of a small mass, a spring made of piezoelectric crystal and a damping of around 

0.7. For this configuration, if the natural frequency of the accelerometer is nf   then the 

linear frequency range of measurement is approximately 20% of the natural frequency, 

fn. The input acceleration of a vibrating object causes the vibration of the accelerometer 

mass, m  which results in the relative motion, )(tx∆ , between the mass and the object in 

the piezoelectric spring generates the proportional electric charge, )(tQ∆ . 

 

 

 

 

Figure  2.2 The conventional piezoelectric accelerometer 
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Mathematically it can be written as         

)(
)(

)(
2

tQ
ta

tx
n

∆∝≈∆
ω

         (2.7) 

where, nn fπω 2=  . Hence the charge, )(tQ∆ , is proportional to the acceleration of the 

vibrating object which is then converted into a voltage as the output for the 

accelerometer. 

Charge mode accelerometers 

Charge mode accelerometers output a high-impedance, electrical charge signal that is 

generated directly by the sensing element. A charge amplifier is needed to condition this 

high-impedance to a low-impedance voltage before it can be input into a readout or 

recording device. The use of a special low noise cable is employed to reduce the 

influence of cable noise and other environmental influences. Charge mode 

accelerometers are used in areas where expected temperatures are very high [27].  

Integrated Circuit Piezoelectric (ICP) Accelerometers 

These accelerometers incorporate built in signal conditioning electronics that have the 

function of converting the high-impedance charge signal generated by the piezoelectric 

sensing element into a usable low impedance voltage signal that can be easily 

transmitted over ordinary two-wire or coaxial cables, to any voltage read-out or 

recording device. The low impedance signal can be transmitted over long cable 

distances with little degradation. The simplicity of use, high accuracy, and broad 

frequency range make them the recommended type for use in most condition 

monitoring applications. A major disadvantage however lies in the fact that the 
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maximum operating temperature is limited to what is permissible for the built in 

circuitry [27]. 

 

2.1.2 Capacitive type Accelerometers 

The simplest capacitor or condenser consists of two parallel metal plates separated by a 

dielectric or insulating material as shown in Figure2.3. The capacitance of this parallel 

capacitor is given by: 

d

A
C Oεε

=           (2.8) 

 

Where, Oε  is the permittivity of free space (vacuum) of magnitude 8.85 (pf m�¹), ε is 

the relative permittivity or dielectric constant of the insulating material, A (m²) is the 

area of overlap of the plates, and d (m) is their separation [28]. Consequently, any 

phenomenon that changes area, the dielectric constant, or the separation of the capacitor 

plates will cause a change in the capacitance δC.  This variation can be defined by the 

total differential formula: 
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From Equations (2.8) and (2.9) C can be changed by changing either A, ε, or d; for 

example, the mechanical displacement of one plate relative to the other could cause the 
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separation between the two plates to change by δd resulting in change in the capacitance 

C . This principle is exploited in a variety of capacitive type micro sensors [26].  Figure 

2.3 shows the basic arrangements for capacitive sensor using each of these methods. In 

the variable area type, the displacement x causes the overlap area to decrease by 

∆A=wx, where w is the width of the plates, giving: 
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Figure  2.3 Capacitive sensing methods 

In the variable dielectric type, the displacement x changes the amount of dielectric 

material ε2 (ε2> ε1) inserted between the plates. The total capacitance of the sensor is 
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the sum of two capacitances, one with area A1, dielectric constant ε1, and one with area 

A2, dielectric constant ε2; 
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Since A1=wx, A2=w(l-x), when w is the width of the plates, 
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If the displacement x causes the plate separation to increase to d+x, the capacitance of 

the sensor is: 
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This is a variable separation displacement sensor which has the disadvantage of being 

non-linear. This problem is overcome by using three-plate differential or push-pull 

displacement sensor as shown in Figure 2.4. This sensor consists of a plate M moving 

between two fixed plates P1 and P2; if x is the displacement of M from the centre line 

AB, then the capacitances C1 and C2 formed by MP1 and MP2 respectively, are: 
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Figure  2.4 Differential or Push-pull displacement sensor 

 

2.2 MEMS Accelerometers 

The successful application of a sensor is determined by its performance, cost and 

reliability. Nevertheless a large sensor may have excellent operating characteristics but 

its marketability is severely limited simply by its size. A reduction in the size of a 

sensor often leads to an increase in the applicability through less weight (greater 

portability), lower manufacturing cost (less materials), and wider range of applications. 

 

The cost of a sensor is often the single most important factor. Clearly, less material is 

needed to manufacture a small sensor but the cost of materials’ processing is often a 
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more significant factor. Silicon technology has facilitated the production of small, 

reliable processors in the form of Integrated Circuits (ICs) using the microelectronic 

technology. The micromechanical components are fabricated using compatible 

"micromachining" processes that selectively etch away parts of the silicon wafer or add 

new structural layers to form the mechanical and electromechanical devices. Using 

silicon-based microelectronics with micromachining technology, micro sensors, micro 

actuators and signal conditioning electronic circuits can be integrated in one single chip 

and the acronym MEMS which stands for Micro-Electro-Mechanical Systems is used 

for the resulting device [29].  

 

2.2.1 Sensing Mechanisms in MEMS Accelerometers 

Many physical effects have been used for acceleration sensing in MEMS 

accelerometers. The first micromachined accelerometer commercialized by NovaSensor 

was piezoresistive [30]. The main advantages of piezoresistive accelerometers are the 

simplicity of their structures and fabrication processes as well as the read-out circuits. 

However, piezoresistive devices have some critical drawbacks such as low sensitivity 

and large temperature dependence. Complex temperature compensation circuits are 

often needed and a very large proof mass is essential for an acceptable sensitivity.  

 

The capacitive sensing mechanism is dominant in MEMS accelerometers for several 

reasons. Both surface and bulk micromachining can be used to fabricate a variety of 

capacitive accelerometers with performance ranging from the low-end automotive 

application grade to the high-precision inertial navigation grade. Compared to 
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piezoresistive accelerometers, capacitive accelerometers have high sensitivity, low 

power consumption, low noise level, stable DC characteristics and less temperature 

dependence. Their simple structures and fabrication processes make the integration of 

conditioning circuits with sensing elements more straightforward.  

 

While capacitive and piezoresistive sensing are two of the most common sensing 

mechanisms, other physical mechanisms such as resonant frequency shift, thermal 

transfer and quantum electron tunnelling have also been exploited acceleration and 

motion sensing. A micromachined vibrating beam accelerometer and a vacuum 

packaged resonant accelerometer have been reported for acceleration and motion 

sensing respectively [31, 32]. In both resonant accelerometers, the force generated by 

the external acceleration on the specially designed proof mass changes its resonant 

frequency. Therefore, the acceleration is measured in terms of a shifted resonant 

frequency of the resonant device. The apparent advantage of the resonant accelerometer 

is its direct digital output. Thermal accelerometers have also been developed based on 

the principle of convection heat transfer [33, 34]. Since there are no movable elements 

in this thermal accelerometer and the manufacturing variations do not influence the 

thermal performance of the device, these thermal accelerometers demonstrate very good 

robustness and good batch reproducibility. To achieve high sensitivity, current 

tunnelling effects have also been exploited for sensing acceleration [35-37]. These 

accelerometers measure the displacement operating on the principle of quantum electron 

tunnelling, which has very high position sensitivity. A resolution of 20 ng / √Hz has 

been accomplished by the reported micromachined tunnelling accelerometer [38]. This 

particular accelerometer requires very specific technological processes. The complexity 
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of the fabrication and strict conditioning circuit design make it very difficult for this 

tunnelling accelerometer to be commercialized. Other accelerometers using optical, 

piezoelectric and electromagnetic sensing mechanisms have been demonstrated [39-42]. 

However, the integration of these accelerometers with CMOS technology is a challenge. 

 

2.2.2 Capacitive Micro-accelerometer 

The deflection of the proof mass can be measured by change in capacitance. Figure 2.5 

shows a cross sectional diagram of a capacitive micro-accelerometer where the entire 

sensor is micromachined from silicon and the proof mass is sandwiched between metal 

plates. The plates form two capacitors, so that the differential method which is 

mentioned previously can be employed. 

 

 

 

 

Figure  2.5 Capacitive Micro-accelerometer with differential capacitor 

 

As the displacement xout is proportional to acceleration (Equation 2.4), the inverse 

capacitance of each capacitor is proportional to the acceleration, 
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And the ratio of capacitances is, 
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For a small displacement of xout, d1=d1-xout, and d2=d2+xout, and the ratio of capacitances 

can be expressed as: 
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As the two capacitors are identical, d1=d2 we can rewrite equation (2.18) as: 
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And it can be approximated as [26]: 
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From Equation (2.20), the ratio of capacitances is independent from the dielectric 

constant and plate area, so it can be stated that measuring the ratio of the capacitances 

eliminates the temperature dependence of the dielectric constant and area. 

 

In other configuration which is called lateral comb capacitance, the change of the 

capacitance is formed by change of the overlap area [43]. The moving plates translate 

along the long axis of plates as shown in Figure 2.6. 
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Figure  2.6 Lateral comb configurations: (a) before and (b) after movement 

 

The total capacitance (Ctotal) of this configuration is, 
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Where, t is the plate thickness, and Cf  is the fringe capacitance. 

 

Generally, the capacitive type MEMS accelerometer consists of a spring and a mass 

both made of a material commonly poly-silicon. Numbers of plates (fingers) are 

attached to the mass which are generally called as the “Moving fingers” and number of 

fingers attached to the fixed frame of the accelerometer, called “Fixed fingers”. The 

arrangement is such that a pair the fixed and moving fingers constitutes a parallel 

capacitor. 

 

2.2.3 Design Parameters for Capacitive MEMS Accelerometers 

The most common MEMS accelerometer design parameters; or sometimes called 

performance parameters; are resolution, sensitivity (scale-factor), bandwidth, 
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nonlinearity, acquisition time, and bias drift [44]. The process limitations directly affect 

the performance of the accelerometer. Moreover, some parameters like nonlinearity, 

bias drift and scale factor asymmetry cannot be estimated theoretically, because they are 

almost totally process dependent. Hence, the choice of the process is an important 

design issue. After choosing the process, the performance of the accelerometer can be 

optimized with a proper mechanical design and with using a proper readout circuit. 

 

The performance parameters are directly affected by variables called design variables, 

these variables are varied during design to obtain optimal solution. The main design 

variables for accelerometer layout synthesis are: length and width of the central plate-

mass, sizes and number of beams used in the serpentine spring, number of the fixed 

fingers, the gap between the fixed and moving fingers, and the length and width of the 

moving fingers. The sensing mass MS of the accelerometer, which includes the seismic 

mass and all the movable fingers attached to it, can be expressed as: 

 

)( fffmmS LWNLWhM += ρ         (2.22) 

 

Where, ρ is the density of ploy-silicon material, h is the device thickness, Wm is mass 

width, Lm is mass length, Nf is the number of moving fingers, Wf is the width of moving 

finger, and Lf is its length. 

The displacement of this sensing mass due to the applied acceleration can be expressed 

as [45]:  
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Where, E is the Young’s modulus of poly-Silicon, and k is the mechanical spring 

constant which is defined (for one beam) as: 
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Where, Lb and Wb are the beam length and width respectively. 

 

Sensitivity is defined as the ratio of a change in the output to a change in the input 

intended to be measured [46, 47]. The sensitivity of a capacitive type accelerometer is 

determined by its capacitive sensitivity (pF /µm) and mechanical sensitivity (µm/ g). 
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The unit of the sensitivity is V/g if mechanical part and readout circuitry is considered 

together. In order to obtain a high sensitivity and low mechanical noise, the proof mass 

should be as large as possible, reducing the air gap between the sensing electrodes and 

increasing the overlap area between the electrode fingers [46, 47]. Large proof mass can 

be achieved by increasing the thickness and/or increasing the surface area which will 

increase the capacitance value. However, the thickness of the proof mass can only be 

increased up to the limitation of the capability of the fabrication equipments. Therefore, 
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the design of the accelerometer needs to be optimized to achieve high sensitivity and 

minimum mechanical noise based on the allowable fabrication process parameters. The 

voltage sensitivity is not an indicator of the performance of the accelerometer because 

with external amplifiers this sensitivity value can be arranged to any value. However, 

the capacitance sensitivity mainly shows the performance of the accelerometer 

mechanical part. 

 

Spring constants play an important role in determining the performances of the 

accelerometer. The performance is related with the easiness in the movement of the 

proof mass in certain directions and also with the difficulty in the movement of the 

proof mass in some other directions. For the parallel plate configuration, the total spring 

constant is the sum of electrical spring constant and mechanical spring constant [48]. 
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This electrical spring, which known as a non-linear electrostatic force, acts as 

mechanical spring with negative spring constant. Hence, this spring constant may cause 

electromechanical instability (Pull-in) if it is greater than the mechanical spring 

constant. Analyses show that pull-in occurs when the distance of the two electrodes 

become 2/3 of the original distance (x=d/3). The voltage difference applied to the 

electrodes that causes pull-in is called pull-in voltage and can be calculated as [49]: 
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This voltage is important as for the voltage biased accelerometer the device becomes 

unstable if the bias voltage exceeds Vpull-in. 

 

The resolution is defined as the smallest signal change that needs to be detected; and it 

is governed by the sensitivity, i.e. the magnitude of the response for a given input and 

the noise. It can be improved by either increasing sensitivity, or by lowering the noise 

[50]. Resolution can be defined as the noise floor of the accelerometer system. The 

sources of noise in accelerometer system come from both mechanical and electrical 

parts of the system. The mechanical noise source is the vibration of the polysilicon 

springs while the electrical noise source is the signal conditioning circuitry [51].In 

today’s accelerometers, due to high proof mass values, the mechanical noise floor is 

nearly neglected compared to electrical noise, but with a proper electrical circuitry 

design, electrical noise floor can be reduced significantly [51].  

 

Bandwidth is the length of the frequency range that input signal frequency can vary. 

While calculating the bandwidth of the accelerometer 3dB concept may not be used. 

Instead, the maximum accelerometer response deviation with input acceleration 

frequency change defines the bandwidth of the system. The bandwidth values are 

directly related to resonance frequency of the accelerometer. 
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Nonlinearity of the accelerometer is defined as the deviation of the accelerometer 

response from the best fit curve for different magnitudes of acceleration signal in its 

working range. Although the capacitive sensing topology may introduce nonlinearity, 

especially parallel plate configuration, this nonlinearity is almost insignificant compared 

to nonlinearity due to fabrication. The fabrication of the sense capacitances does not 

yield perfectly matched capacitances and this mismatch causes nonlinearity. 

Bias drift is defined as the maximum deviation of the accelerometer system output with 

time for a fixed input acceleration signal. The exact reasons of bias drift are believed to 

be the fabrication mismatches, the hysterical behaviours of the springs, the change of 

the mechanical properties of the material with different environment conditions, cross-

axis effects, and the change of the performance of the readout circuit with different 

environment conditions [52]. 

 

Other design parameters, which also affect the performance of the accelerometers, are 

temperature dependence of some parameters, axis misalignment, and cross-axis 

nonlinearities.  However, there are some variables which do not affect the device 

performance directly, like the width of fixed fingers. They are always chosen by the 

optimisation to have some constant value in order to maximize performance; these 

variables are called style variables.  

 

Considering the design parameters, the fabrication process is one of the main issues for 

high performance accelerometers. A proper fabrication will significantly reduce 

undesired nonlinearities. Next important issue is the readout circuitry because readout 
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circuit plays an important role in the overall performance of the accelerometer as it 

converts the detected acceleration into voltage signal.  

 

2.3 MEMS Fabrication Technology 

MEMS fabrication technologies are classified into three categories; bulk 

micromachining, surface micromachining and LIGA technologies [53]. 

 

2.3.1 Bulk Micromachining 

In this fabrication process, the complete wafer is etched to create the masses and spring 

suspensions. As a result, the formed mass-spring system is usually has high quality 

factor which needs to be damped. Therefore, the device is encapsulated and gas or 

sometimes liquid is used between mass and the encapsulation to provide damping [54]. 

This technique also protects the mass from break-out by providing an over range 

protection [53, 54].  

 

2.3.2 Surface Micromachining 

Selective etching of sacrificial layers, which have a thickness of typically several 

microns, forms the masses and spring suspension. The main advantage of this approach 

is the low cost in case of high-volume fabrication. The basic steps of the surface 

micromachining are [53]: 
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• Lithography; 

• Deposition of thin films and materials (electroplating, chemical vapour 

deposition, plasma enhanced chemical vapour deposition, evaporation, etc.); 

• Removal of materials (pattering) by wet or dry techniques; 

• Etching (plasma etching, reactive ion etching, laser etching, etc.); 

• Doping; 

• Bonding (fusion, anodic, and other); 

• Planarisation. 

 

2.3.3 LIGA 

The LIGA process, which denotes Lithography-Galvanoforming-Molding (in German 

Lithografie Galvanik Abformung) is used to fabricate micro structures with high aspect 

ratios and high precision  [53, 55]. Etching of a sacrificial layer is carried out by 

synchrotron x-ray radiation through a mask which partly covered with a strong X-ray 

absorbing material. This forms a mould that electroplating fills and then the remaining 

resist can be etched leaving the electroplated parts attached to the substrate. This 

process is expensive and not well suited to mass production.  

 

2.4 MEMS Packing 

Packaging operations may consist of some post fabrication processes required for a 

device to function properly as well as assembly of the MEMS device into a next level 
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assembly or final product that provides a function for the end user. The package 

containing the MEMS device needs to provide the following functions: 

• Mechanical support: The package must mechanically support or contain the MEMS 

device so that it can function alone or within another system. The package will 

physically protect the MEMS device. 

• Interconnection: The package must provide for communication between the 

microscale connection of a MEMS device and the macroscale connection that will be 

used to function or interface with the device. The connections may encompass a variety 

of physical phenomena such as electrical, optical, fluidic, biologic, etc. 

 

• Environment control: The package must control the environment necessary for the 

MEMS device to function properly throughout its lifetime. The necessary 

environmental controls may include thermal management, particulate contamination, or 

ambient atmosphere control (i.e., humidity, atmosphere, and atmospheric pressure).  

 

2.5 Previous Works 

The existing MEMS accelerometers are generally less accurate than conventional 

accelerometers but they represent a low-cost, small size, and less weight solution with 

potential advantages in many applications. Therefore, various works on the 

improvement of these accelerometers have been reported in literature and research 

studies which also present more detail of the measurement principles, construction, and 

fabrication processes of MEMS accelerometers [56-78]. However, very few research 
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studies have been reported concerning the application of these accelerometers in the 

field of vibration based condition monitoring. The following sections present some of 

these research studies on the performance evaluation and improvement for general 

applications and condition monitoring respectively.  

 

2.5.1 General Applications 

Bell et al [79] compared the performance of MEMS sensors and actuators as a function 

of operating principles. The performance of MEMS sharing common operating 

principles is compared with each other and with equivalent macroscopic devices. It is 

stated that the performance of MEMS sensors is superior to macro sensors in terms of 

resolution and maximum frequency. The comparison was based on data obtained from 

the literature for the mechanical performance characteristics of actuators, force sensors 

and displacement sensors. Yasin et al [51] stated that there are three primary noise 

sources in typical MEMS accelerometer measurement that influence the performance of 

the accelerometer especially when operating at lower g conditions. They [51] presented 

design and built of a measurement system to measure noise characteristics of MEMS 

accelerometers. The system was used to measure the noise characteristics of three 

MEMS accelerometers operating at 0 g, +1g and -1g. The results showed that MEMS 

accelerometers noise sources have 1/f –type noise characteristics at low frequencies and 

white Gaussian noise at higher frequencies. The magnitude of the noise power spectral 

density is acceleration dependant. The results also showed spectral peaks originating 

from the oscillators inside the accelerometers.     
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Pereira et al [80] presented a solution to improve the performance of MEMS 

accelerometer exploring oversampling and sensor fusion techniques. The proposed 

solution seems to be sufficient for any measurement application that requires sensor 

fusion of two quantities, acceleration and temperature where two different waveform 

parameters: duty-cycle and period are provided by a single MEMS integrated circuit. 

However, this work was carried out to improve the performance of the measurement by 

multiplexing both measurements in a single signal rather than improving the MEMS 

accelerometer measurement. Alsaleem et al [81] presented a theoretical and 

experimental investigation into the effect of the motion of a printed circuit board (PCB) 

on the response of MEMS devices to shock loading. It was found that neglecting the 

PCB effect on the modelling of a microstructure of a MEMS device could 

underestimate the microstructure motion. For MEMS devices actuated electrostatically, 

it is found that a poor design of the PCB can lead to an early dynamic instability 

(dynamic pull-in) under shock load which is shown by comparing the relative mass 

deflection with and without PCB as shown in Figure 2.7.  

 

 

Figure  2.7 Transient response of the proof mass with and without PCB when subject to 
a mechanical shock [81] 
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Trusov and Shkel [82] reported a capacitive detection method, called sideband-ratio 

(SBR) detection. The approach constructively utilizes the inherent nonlinearity of 

parallel-plate sense capacitors in order to measure only the amplitude of sinusoidal 

motion. Kajita et al [83] proposed third-order noise-shaping accelerometer interface 

circuit to enhance the signal-to-noise ratio. The presented interface circuit is separately 

implemented; hence a fully-differential cross-coupled integrator with cross-coupled 

correlated double sampling is proposed to solve the problems arising from stray 

capacitance due to the wiring between sensors and circuits. 

 

Liu et al [84] presented a CMOS closed-loop readout circuit which can be integrated 

with micro-machined accelerometer to improve the bandwidth, linearity and dynamic 

range. The performance of the mathematical model, which uses electrostatic force as a 

negative feedback, was compared with an open loop accelerometer. Also, the result of 

the circuit simulation (using Hspice) showed good sensitivity and low power 

consumption, and the circuit structure was optimised to reduce the noise effect. Liu et al 

[85] also performed system damping ratio analysis and optimization of a capacitive 

MEMS accelerometer. The results indicate that when the accelerometer works without 

damping it is easily damaged because of resonance. However, when it works with 

damping, its dynamics characteristics will be improved and its bandwidth will be 

widened. Analysis of harmonic response to a sinusoidal load is performed to verify the 

results using the FEM software ANSYS. A damping coefficient formula is used to 

optimize the system dynamic characteristics by adjusting system-damping ratio to 0.678 

through changing the parameters of the proof mass. Zhu et al [86] addressed the MEMS 

accelerometer two modelling errors; fringing field effect and deformations, which may 
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lead to performance degradation. Hence, they presented a modelling approach to handle 

such errors. They showed, by FEM-based simulations, that these errors can be 

compensated by a variable serial capacitor. 

 

2.5.2 MEMS Accelerometers in Condition Monitoring 

The use of the MEMS accelerometers in machine condition monitoring is still limited to 

literature or testing stage in the laboratory experiments. For example, Marinov et al [87] 

proposed a combination of MEMS accelerometers and microcontrollers to form an 

intelligent system for remote vibration-based machine condition monitoring. The 

measurement system shown in Figure 2.8 is based on Labview software which checks 

the accelerometers , in case they are not calibrated, the system goes into calibrating 

mode, and then starts the vibration measurement. The measured values are then sent 

through a parallel port, either to a memory for storing or to a personal computer.   

 

Figure  2.8 Functional layout of the measurement system [87] 
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Pandiyan et al [88] presented over all design of an industrial vibration transmitter using 

MEMS capacitive accelerometer. The output of the acceleration sensing transmitter is a 

current signal (4-20mA) which is proportional to input acceleration (0-10g RMS). The 

block diagram of this transmitter is shown in Figure 2.9. The accelerometer sensor 

interfacing circuit, RMS-to-DC converter and voltage to current loop converter circuit 

design, calibration procedure and mounting methods have been discussed. However, the 

testing and calibration procedure was only carried out for the interfacing circuit. Similar 

work has been carried out by Abd. Rahim et al [89] as they used MEMS accelerometer 

to develop a vibration measuring unit for machine condition monitoring. The MEMS 

accelerometer was used as a detection sensor for the measuring unit which also included 

an interface circuit, an RMS-to-DC circuit and alarming circuit. The experimental tests 

were carried out to measure the output DC voltage for applied acceleration with range 

of up to 5g at only one frequency of 100 Hz. 

 

 

Figure  2.9 Block diagram of acceleration sensor transmitter [88] 
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Ratclif et al [90] investigated the possibility of changing the data acquisition for non 

destructive inspection test from a roving hammer method, to a procedure that employs 

an array of capacitive type MEMS accelerometers. The roving hammer and MEMS 

array methods are compared by testing a composite vertical stabilizer from an airbus 

A320 aircraft. The quality of data which was monitored using coherence functions 

showed average coherence more than 98% for ICP type accelerometer while the 

coherence for MEMS accelerometers showed a slight degradation as shown in Figure 

2.10. 

 

 

Figure  2.10 Average coherence for all data acquired during the tests [90] 

 

Tjiu et al [91] presented the design and demonstration of tire condition monitoring 

system which include three MEMS sensors; pressure sensor, temperature sensor and 

accelerometer. The accelerometer is a capacitive type MEMS accelerometer used for 

measuring the vibration of the tires while traversing, especially on rough road surface. 

The characteristics of the accelerometer were only examined by recording its output 

voltage when applying certain motion. Thanagasundram and Schlindwein [21] have 

used the MEMS accelerometer together with a conventional accelerometer for 
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measuring the vibration of a pump during its normal operation. They [21] found that the 

frequency content from both sensors were in agreement.  

 

Peiner [92] investigated the application of piezoresistive type MEMS accelerometer 

designed for low-frequency resonant operation. The accelerometer used for vibration 

monitoring of to detect incipient fatigue damage on the cups of axle box bearings. The 

accelerometer can be only used for this application as it is designed with a resonance 

frequency close to the frequency of this fault. Another piezoresistive type MEMS 

accelerometer shown in Figure 2.11 has been developed by Vogl et al [93]. The 

accelerometer is intended for wireless vibration measurements on AC motors for 

condition monitoring. However, the frequency response tests show some changes in the 

sensitivity with frequency. Moreover, the accelerometer has no built in signal 

conditioning circuit as external circuits have been used in the testing. 

 

  

 

Figure  2.11 Sensor device mounted on a shaker for frequency testing [93] 



Chapter 2 

                                                        59 

Wright et al [94] studied the overall potential of wireless sensor nodes and networking 

in manufacturing environments. In the experimental work, a wireless sensor platform 

which includes MEMS accelerometer was used to monitor the vibration of a 3-axis 

milling machine. The case study’s focus is not on vibration analysis itself. Rather, 

experiments have been carried out to show the capability of wireless sensor networks, to 

provide new tools for research in predictive maintenance and condition-based 

monitoring. Also, Huang et al [95] evaluated a wireless sensor node-based MEMS 

accelerometer for condition monitoring of milling machine as shown in Figure 2.12. 

However, only the statistical results of time domain data processing such as RMS and 

peak values are transferred to the server.  

 

 

Figure  2.12 Wireless sensor node for vibration monitoring [95] 
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As mentioned in Chapter 1, the accelerometers are intended to measure the different 

kinds of signals; sinusoidal, random, and impulsive signals and from the review carried 

out it can be concluded that only few works done on performance evaluation and these 

works did not consider all these kinds of signals. Moreover, most of works on MEMS 

accelerometers were focused on presenting the possibility of using these accelerometers 

in different fields of applications. However, Albarbar et al [22] have investigated all 

these requirements on a laboratory experiments. They found that the frequencies in the 

acceleration responses measured by both MEMS and a conventional accelerometer were 

same but their amplitudes and phases were generally different.  

 

2.6 Summary 

MEMS accelerometers are currently designed and used to detect the event of vibration 

or impact in many applications and not particularly for conventional vibration 

measurement. Several sensing mechanisms have been used for acceleration sensing in 

these accelerometers but the change in capacitance is the most widely used. The 

performance parameters of these accelerometers are affected by design variables and 

manufacturing process. Many research studies have been presented regarding the 

performance improvement of these accelerometers. However, the performance of these 

accelerometers in the field of vibration-based condition monitoring is not yet well 

evaluated.   
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CHAPTER 3                                                                

TEST SETUP 

 

This chapter describes the experimental set up that has been used to carry out different 

tests, mainly to make the comparison between the responses of MEMS accelerometers 

and a reference accelerometer. Test equipments that have been used will be listed and 

briefly described and the testing methodology will also be explained. The MEMS 

accelerometers, their specifications, theory of operation and electrical connections are 

also described.   

 

3.1 Introduction 

In this section, general accelerometer specifications and calibration procedures have 

been briefly discussed.  

 

3.1.1 Accelerometer Specifications 

The following technical specifications are usually considered for selecting the 

accelerometer for any application; 

(a) Sensitivity which relates the electrical signal to the amplitude of vibration in 

acceleration.  

(b) Frequency range in which vibration measurement is useful. 



Chapter 3  

                                                        62 

(c) Amplitude limit that specifies the maximum range of acceleration that can be 

measured accurately. 

(d) Shock limit is maximum level of acceleration that the accelerometer can withstand 

without any damage. 

(e) Linearity is the accuracy of the measured acceleration amplitude in the measuring 

Frequency range. 

(f) Natural frequency which is indirectly indicative of the measuring Frequency range. 

Higher the natural frequency of an accelerometer, larger the measuring frequency range 

in general. 

(d) Phase linearity which is the direct proportionality of phase shift to frequency over 

the frequency range of interest. Perfect accelerometer expected to give zero degree 

phase shift over its entire operating frequency range.   

 

3.1.2 Calibration Procedures 

The International code ISO 5347-0 [96] gave the guidelines for the calibration of 

vibration pickups, which is generally followed by the manufacturers. The calibration 

procedure adopted generally uses the sinusoidal vibration generator (shaker) with 

varying frequency and amplitude to characterise the accelerometer to be calibrated by 

comparing its measured responses with other well-calibrated accelerometer. Accuracy 

in sinusoidal response measurement satisfies the calibration procedure adopted. 

However, accelerometers are in general used for following types of signal 

measurements: 
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(a) Periodic signal—Sinusoidal or/and swept-sine, 

(b) Random, 

(c) Impulsive. 

It has been observed that the performance of such calibrated accelerometer may not be 

useful for measuring the random and impulsive behaviour of structures [97]. Hence the 

random and the impulsive loading test should also be included in the calibration along 

with the standard calibration procedure for the accelerometer. Hence the accuracy of all 

above measurements is important.  

 

3.2 Test Setup  

The test setup shown in Figure 3.1 was used to carry out the comparison between 

MEMS accelerometers and a calibrated conventional accelerometer (Reference 

accelerometer). The test setup consists of the following equipments:  

1. Electro-dynamic shaker, 

2. Power amplifier for the shaker, 

3. Signal generator, which is able to generate sine, sweep-sine, and random signals, 

4. Sensor signal conditioner, 

5. NI 6009 Data acquisition card,  

6. A computer with Labview and Matlab softwares in it, 

7. DC power supply for the MEMS accelerometers.  

8. Reference accelerometer. 

 

 



Chapter 3  

                                                        64 

 

Figure  3.1 Test Setup 

 

The Electro-dynamic shaker, model V406, has a wide frequency band of operation from 

5 Hz – 9 KHz, velocity sine peak of 1.78 m/s and maximum acceleration sine peak of 

981 m/s2. Its peak to peak displacement is 17.6 mm. The Power amplifier PA30VA is a 

linear amplifier used to drive the electro-dynamic shaker. It accepts any type of input 

wave shape and is able to oscillate over a frequency range of 0.2 Hz – 20 KHz in 5 

selectable decades with frequency indication provided by a graduated scale. It exhibits 

low distortion over its frequency range and operates with a wide variety of load 

impedances. Dual channel FFT analyzer model CF-350 has been used as the signal 

generator. Different output waveforms can be generated using this equipment such as 

sine wave, sweep-sine, random, and impulse.  
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The sensor signal conditioner, Model 442B104, is Four-Channel ICP amplifier with x1, 

x10 and x100 gain, its excitation voltage is 25.5VDC and frequency response from 0.05 

to 100 KHz with output range ±10Volt. 

 

The data acquisition module (USB-6221 BNC) from The National Instruments is a USB 

high-performance M Series multifunction data acquisition module optimized for 

superior accuracy at fast sampling rates. The module is ideal for applications such as 

data-logging and bench top sensor measurements. It provides 8 analogue inputs, 2 

analogue outputs, 8 DIO and 2 user defined BNC terminals, and includes a certified 

power supply. The National Instruments USB-6221 BNC is designed specifically for 

mobile or space-constrained applications. Plug-and-play installation minimizes 

configuration and setup time; while direct screw-terminal connectivity helps keep costs 

down and simplifies signal connections.  

  

3.2.1 Test Rig Configuration 

The test setup configuration is illustrated in Figure 3.2; which shows how the 

equipments are connected. The selected excitation type which is generated by the signal 

generator is fed into the power amplifier where it is amplified and applied on the shaker. 

The shaker will vibrate according to the selected excitation.  The accelerometers were 

mounted back to back on the especially designed shaker armature using petro wax. The 

outputs from MEMS accelerometers are connected directly to the data acquisition card 

while the output from the standard accelerometer is connected through the signal 

conditioning unit where the accelerometer output is amplified. Finally, the voltage 
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signals from the accelerometers were processed through a data acquisition card. Then 

the generation of the time domain and the frequency domain of the signals were 

processed in a personal computer with a Labview and MATLAB signal processing 

packages installed in it.  

 

 

 

 

 

 

Figure  3.2 Test rig Configuration 

 

3.2.2 Methodology of Testing 

The methodology is based on applying the same input excitation to the MEMS 

accelerometer and the reference accelerometer so that they experience identical motion 

on the shaker. The input vibration is simulated by sinusoidal, sweep-sine, random, and 

impulsive excitations. Sinusoidal excitation for example, was given to the shaker 

through a power amplifier at different frequencies and different amplitudes. The 

response was measured from both of the accelerometers and the signal from the 

standard accelerometer was used as a reference for frequency and amplitude levels. The 

analogue voltage output of the accelerometers is converted into digital signals by the 
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data acquisition card which is connected into the PC where the acquired signals are 

displayed using data acquisition programme created in Labview software. Figure 3.3 (a) 

shows the connections diagram of this programme and its front panel. The programme 

is also used to convert the vibration signals from time domain to frequency domain 

using Fast Fourier Transformation (FFT) technique, so the acquired signals are 

displayed on the front panel in time domain and frequency domain as shown in Figure 

3.3 (b). 

 

(a) 

 

(b) 

Figure  3.3 (a) Diagram connections of data acquisition programme, (b) Display front 
panel 
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3.3 The MEMS Accelerometers 

Number of MEMS accelerometers has been used in the experimental work but due to 

similarity of the results, only three MEMS accelerometers of different specifications 

will be presented.  

 

3.3.1 MEMS 1 Accelerometer 

MEMS 1 is a complete dual-axis accelerometer with signal conditioned voltage outputs, 

all on a single monolithic integrated circuit. It can measure both dynamic acceleration 

(e.g., vibration) and static acceleration (e.g., gravity) with a full-scale range of ±2 g. The 

outputs are analogue voltages proportional to acceleration. The sensor is a surface 

micromachined polysilicon structure built on top of the silicon wafer. Polysilicon 

springs suspend the structure over the surface of the wafer and provide a resistance 

against acceleration-induced forces. Deflection of the structure is measured with a 

differential capacitor structure that consists of two independent fixed plates and a 

central plate attached to the moving mass. A 180° out-of-phase square wave drives the 

fixed plates. An acceleration causing the beam to deflect will unbalance the differential 

capacitor resulting in an output square wave whose amplitude is proportional to 

acceleration. Phase sensitive demodulation techniques are then used to rectify the signal 

and determine the direction of the acceleration. The output of the demodulator is 

amplified and brought off-chip through a built-in 32 kΩ resistor. To improve the 

measurement resolution and prevent aliasing, the user can set the signal bandwidth of 

the device by adding capacitors CX and CY at XFILT and YFILT  output pins. Bandwidths 
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of 1 Hz to 2 kHz may be selected to suit the application. The equation for the 3 dB 

bandwidth is: 

 

),(
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F
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π

        (3.1) 

 

A minimum capacitance of 1000 pF for CX and CY is required in all cases. Another 

capacitor of 0.1 µF is suggested to decouple the accelerometer from noise on the power 

supply. Some of technical specifications of this accelerometer are presented in Table 

3.1, and picture for this accelerometer with its wiring is shown in Figure 3.4. 

Table  3.1 MEMS 1 Specifications 

Accelerometer property  Value 

 Acceleration Range  ±2g 

Frequency range  0- 2 kHz 

Sensitivity   170 mV/g 

Temperature range  0-70 °C  

 

Figure  3.4 MEMS 1 accelerometer 
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3.3.2 MEMS 2 Accelerometer 

MEMS 2 accelerometer is a single axis capacitive type and similar to MEMS 1 

accelerometer in the theory of operation, but its specifications such as sensitivity, 

resonance frequency, and measurement range are different. The sensitivity is 250mv/g, 

the frequency range is 1.5 kHz, measurement range is ±1.7g, and the operating 

temperature range is -55 to 125°C.  

 

3.3.3 MEMS 3 Accelerometer 

MEMS 3 accelerometer, is also a complete single axis acceleration measurement system 

on a single integrated chip. The theory of operation of this accelerometer is similar to 

MEMS 1, but has different architecture for the built in electronic circuit. Moreover, this 

accelerometer features an on-board temperature sensor with an output of 8mV/°C for 

optional temperature compensation of offset vs. temperature for high accuracy 

application. The main specifications for this accelerometer are listed in Table 3.2. 

Table  3.2 MEMS 3 Specifications 

Accelerometer property  Value 

Acceleration Range  ±5g 

Frequency range  0- 10 kHz 

Sensitivity   250 mV/g 

Temperature range  -40-85 °C  
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3.3.3.1 Packing MEMS 3 Accelerometer  

In order to prepare the MEMS accelerometer it should be connected to other electrical 

parts such as power supply, capacitor and resistors which is suggested by the 

manufacturer. The accelerometer was firstly connected to a special printed circuit board 

and then all the other parts were added. Much care was taken when soldering the 

accelerometer chip and also it was essential to make the design as small as possible. 

Figure 3.5 shows a picture of the accelerometer with all parts attached. 

 

 

Figure  3.5 MEMS 3 accelerometer 

 

It was impractical to mount the accelerometer with its PCB and all the components 

attached to it, therefore it was decided to pack the accelerometer in a metal case filled 

with an epoxy potting compound. The packing structure and final packing of MEMS 3 

accelerometer are shown in Figure 3.6. 
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            (a)           (b) 

Figure  3.6 (a) MEMS 3 packing structure, (b) final packing 

 

3.4 The Reference Accelerometer 

It is calibrated ICP type conventional accelerometer which structured with a ceramic 

crystal sensing element operating in flexural mode, and a built-in microelectronic 

charge-to-voltage convertor housed in a lightweight composite-structured housing. 

Some important specifications of this accelerometer are summarised in Table 3.3. 

Table  3.3 Reference accelerometer Specifications  

Accelerometer property PCB  

Acceleration Range  ± 50g 

Sensitivity  100 mV/g 

Frequency Range 1-2000 Hz  

Temperature range -40 – 120 °C 
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CHAPTER 4                                                              

PERFORMANCE EVALUATION OF MEMS 

ACCELEROMETERS 

 

Reformatted version of the following papers: 

1. Performance evaluation of MEMS accelerometers 

Authors: A. Albarbar, A. Badri, Jyoti K. Sinha and A. Starr 

Published in: Measurement, Volume 42, Issue 5, June 2009, Pages 790-795 

2. Improvement in measured signals of MEMS accelerometer 

Authors: Abdellatef Badri and Jyoti K. Sinha 

Published in: The third International Conference on Integrity, Reliability and Failure, 

Porto/Portugal, 20-24 July 2009, Paper Ref: S1146_P0507. 

Abstract 

Researchers have been looking for alternatives of expensive conventional 

accelerometers in vibration measurements. Micro-ElectroMechanical Systems (MEMS) 

accelerometer is one of the available options. Here the performance of one of these 

MEMS accelerometers compared with that of a well known commercial accelerometer. 

 

4.1  Introduction 

Condition based monitoring is now accepted practice for critical machines and 

structures for Industries to enhance availability, low maintenance costs and plant safety. 

Often, the decisions regarding the repair or replacement of a machine part, overhauls, 
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and standard maintenance are made on the basis of the measured condition of the 

machine. One such monitoring technique is vibration based condition monitoring. 

Measuring vibration is very essential in detecting and diagnosing any deviation from 

normal conditions. The use of conventional piezoelectric accelerometers in vibration 

measurements is well known and accepted, but is high cost, especially if simultaneous 

multiple data collection points are required; this is mainly because of their cost and the 

price of the associated electronic signal conditioning circuits. 

 

The recent advances in embedded system technologies such as Micro-Electro-

Mechanical Systems (MEMS) sensors hold a great promise for the future of vibration 

measurement based condition monitoring, which is a much cheaper alternative. It has 

built-in signal conditioning unit as well. The cost of a MEMS accelerometer may be just 

10% or less compared to the commercially available cheapest conventional 

accelerometer together with the signal condition unit. There are number of research 

studies in the literature [32, 56-61, 98] about the MEMS accelerometers construction 

and the measurement principle. The use of the MEMS accelerometers is still limited to 

testing stage in the laboratory experiments. Thanagasundram and Schlindwein [21] have 

used the MEMS accelerometer together with a conventional accelerometer for 

measuring the vibration of a pump during its normal operation. They [21] found the 

frequency content from both sensors were in agreement. However no rigorous 

investigation has been done to compare the performance of this MEMS accelerometer 

which is required to measure the different kinds of signals – sinusoidal, random, and 

impulsive signals [97]. Hence the performance of one of these MEMS accelerometers 

compared with a well known and calibrated commercial accelerometer.  
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4.2 MEMS Accelerometers 

MEMS accelerometers are divided into two main types: piezoresistive and capacitive 

based accelerometers [61]. The conventional piezoelectric accelerometers generally 

consist of a single-degree of freedom system of a mass suspended by a spring. Here in 

piezoresistive MEMS accelerometer also, it has a cantilever beam having a proof mass 

at the beam tip and a piezoresistive patch on the beam web. The schematic of a 

piezoresistive MEMS accelerometer is shown in Figure 4.1(a). The movement of the 

proof mass when subjected to vibration changes the resistance of the embedded 

piezoresistor. The electric signal generated from the piezoresistive patch due to change 

in resistance is proportional to the acceleration of the vibrating object. The capacitive 

based MEMS accelerometers measure changes of the capacitance between a proof mass 

and a fixed conductive electrode separated by a narrow gap [61]. The schematic of a 

capacitive MEMS accelerometer is shown in Figure 4.1(b). The papers [32, 56-61, 98] 

gave the details of the working principle and so not discussed here. 

 

Figure  4.1 A typical MEMS accelerometer construction: (a) piezoresistive using 
cantilever design, (b) capacitive based on membrane design [61] 

 

4.3 Test Setup 

A schematic of the Test setup is shown in Figure 4.2. The setup consists of a small 

shaker (M/s GW make) together with a shaker power amplifier, signal generator and a 
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PC based data acquisition for data collection and storage for further signal processing in 

MatLab. Two accelerometers (one PCB accelerometer and other capacitive type MEMS 

accelerometer) were attached back to back on the armature attached to the shaker as 

shown in Figure 4.2. The PCB accelerometer used for this experiment is an ICP 

(Integrated Circuit Piezoelectric) type with the technical specifications – 100 mV/g, 

linear frequency range up to 2 kHz, 50 g level. This type of accelerometer has been 

calibrated as per the ISO/IEC 17025 standard and they are well accepted in practice 

because of their performance. A typical MEMS accelerometer of technical 

specifications – 250 mV/g, frequency range 10 kHz, 5 g level is used for comparison 

[99] which is relatively new technology for the accelerometer. 

 

 

 

 

 

 

 

 

 

Figure  4.2 Test setup 
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4.4 Testing and Results 

As it is well known that the accelerometers are used for measuring the periodic 

(sinusoidal, step-sine, multi-sine, etc.), random and impulsive signals [97], hence these 

tests were carried out on the Test setup and results were compared. 

 

4.4.1 Periodic Excitation 

Sinusoidal signals were given to the shaker at two frequencies - 66 Hz and 157 Hz 

deliberately away from the line frequency of 50 Hz and its harmonics. A number of 

experiments were performed at these two frequencies with different amplitude levels of 

shaker excitation and simultaneously responses were measured from the accelerometers. 

 

A few typical measured responses both in time and frequency domain are shown in 

Figures 4.3 to 4.5. No distortion is seen in the measured responses by the MEMS 

accelerometer as well. However there are significant shift in phase and sensitivity 

compared to the reference accelerometer. In fact the estimated sensitivity based on the 

reference accelerometer seems to be varying from 38 mV/g to 69 mV/g and phase shift 

is also not constant with respect to the reference accelerometer responses, which are 

clearly seen in the time response plots in Figures 4.3 to 4.5. 
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Figure  4.3 Measured acceleration responses by MEMS 3 accelerometer and the 
reference (PCB) accelerometer at 66Hz for the excitation level 0.3g 
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Figure  4.4 Measured acceleration responses by MEMS 3 accelerometer and the 
reference (PCB) accelerometer at 66Hz for the excitation level 0.75g 
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Figure  4.5 Measured acceleration responses by MEMS 3 accelerometer and the 
reference (PCB) accelerometer at 157Hz for the excitation level 0.65g 
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4.4.2 Random Excitation 

Similar to the sinusoidal tests; the shaker was excited with random excitation in a 

frequency band from 10 Hz to 1.5 kHz with different amplitudes. Typical responses of 

both accelerometers in time and frequency domains are shown in Figure 4.6. Both 

accelerometers responses look to be identical in time and frequency domains, but here 

again the estimated sensitivity found to be 225 mV/g though it is close to the design 

value of the sensitivity for this MEMS accelerometer but much different than the 

estimated sensitivity during the sinusoidal tests. To determine the linearity in the 

measurement over the frequency band of excitation and phase shift, the frequency 

response function (FRF-the transfer function in frequency domain) has also been 

calculated assuming the responses of the MEMS accelerometer as the output and the 

reference accelerometer responses as the input. Both the amplitude and phase FRF plots 

are shown in Figure 4.7. The response spectra shown in Figure 4.6 look to be identical, 

but the amplitude deviation between two accelerometers is found to be up to 

approximately 20 dB at some frequencies and the phase shift of 180 degrees up to 

around 100 Hz and then the shift is approximately linear from 180 degrees at 100 Hz to 

0 degree at 1.5 kHz. 
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Figure  4.6 Measured acceleration responses by MEMS 3 accelerometer and the 
reference (PCB) accelerometer at 157Hz for random excitation 
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Figure  4.7 A typical measured FRF for the random excitation 

 

4.4.3 Impulse Excitation 

In the same experimental setup, the impact excitation was given at the centre of the 

armature using a soft tip hammer within the frequency band of excitation up to 400–500 

Hz. Typical time domain responses of both accelerometers are shown in Figure 4.8. The 

measured responses are typically decay type responses as expected for the impact 

excitation by both accelerometers with maximum amplitude level of 0.6 g. However the 

estimated sensitivity was found to be 155.9 mV/g, which is different than earlier 

estimated value and the fast decay in the response seen in the MEMS accelerometer 

compared to the reference accelerometer. To understand this typical behaviour of the 

MEMS accelerometer, the averaged spectra of the 3 decay responses were computed for 

both accelerometers and compared which is shown in Figure 4.8. The presence of the 

frequency peaks is consistent in both responses; however the peaks amplitudes are 

much different. Since the MEMS accelerometer introduces the phase shift known from 
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previous tests, so these phase shift at different frequencies might be resulted into the fast 

decay in the measured responses compared to the reference accelerometer. 
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Figure  4.8 A comparison of measured responses by MEMS 3 accelerometer and the 
PCB accelerometer when the shaker armature excited by impacts from a hammer 

 

4.4.4 Further Analysis 

In vibration analysis, the ordinary coherence between two vibration signals is defined as 

[100]: 
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where Sxx(x) and Syy(x) are the power spectral densities of two signals, x(t) and y(t), and 

Sxy(x) is their cross-power spectrum at an angular frequency )(ω . The coherence 

between two signals indicates the degree to which two signals are linearly correlated at 

a given frequency. A coherence (Coh) close to unity means the signal x(t) is linearly 

correlated to the signal y(t). Reduction in the coherence from 1 indicates that the two 

signals are either noisy or having nonlinear relation. Hence the coherence was computed 
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between two responses measured by the MEMS and the reference accelerometers. 

Figure 5.9 shows the coherence plots for the random and impact tests. Generally 

coherences are above 0.8 at many frequencies indicating good relation between two 

signals, but also low at several other frequencies. Hence this indicates the measurements 

by the MEMS accelerometer used in the present study deviate compared to the 

reference accelerometer. 

 

0 200 400 600 800 1000 1200 1400 1600
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, Hz

C
o
h

e
re

n
c
e

 

 

MEMS/PCB Accelerometer

 
0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency, Hz

C
o
h

e
re

n
c
e

 

 

MEMS/PCB Accelerometer

 

Figure  4.9 Coherence plots between the measured responses by MEMS 3 accelerometer 
and the reference accelerometer (a) Random test; (b) Impact test 

 

4.5 Comments 

The performance tests of a typical capacitive type MEMS accelerometer are carried out 

for different excitations – sinusoidal, random and impulse. The measured responses of 

the MEMS accelerometer were compared with a well accepted ICP type accelerometer. 

All tests were conducted well within the technical specifications of both accelerometers. 

The MEMS accelerometer seems to be performing well for the sinusoidal measurements 

though shift in phase is observed and sensitivity changes with the excitation level. This 

can be related to the packing, which presented in the previous chapter, as the 
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accelerometer is not directly mounted. However, a significant deviation has been 

observed in the MEMS responses to random and impact excitations though the 

frequency peaks content is also found to be same in comparison with the conventional 

accelerometer for the impact excitation. Therefore, lots of improvement needed before 

use in practice. It is being planed to carry out more investigation with several numbers 

of the MEMS accelerometers without packing to understand the future direction for 

improvements. The following sections present the test results for MEMS 1 and MEMS 

2 accelerometers. 

 

4.6 MEMS 1 Accelerometer 

The performance of this MEMS accelerometer is compared with the reference 

accelerometer when they are simultaneously excited by sinusoidal, sweep-sine and 

random signals.  The comparison for sinusoidal excitation will be presented at only two 

frequencies (145Hz and 376Hz). 

 

4.6.1 MEMS 1 Sinusoidal Excitation 

The frequency domain for measured responses by both accelerometers when excited at 

145 is shown in Figure 4.10. The amplitude of MEMS 1 accelerometer spectrum is 

much lower than the amplitude of the reference accelerometer spectrum. This can be 

seen in the FRF plot shown in Figure 4.11 where the amplitude is approximately 0.16 

and phase difference is about -7 degrees.   
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Figure  4.10 MEMS 1 spectrum at 145Hz 
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Figure  4.11 FRF for MEMS 1 at 145 Hz 

 

Measured responses in frequency domain for excitation at 376 Hz are shown in Figure 

4.12 and FRF plots are shown in Figure 4.13. Again, MEMS 1 response is deviated in 

both amplitude and phase as the FRF amplitude at this excitation frequency is 

approximately 0.1355 and phase is 8.5 degrees.  
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Figure  4.12 MEMS 1 spectrum at 375Hz 
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Figure  4.13 MEMS 1 FRF at 375Hz 

 

4.6.2 MEMS 1 Random Excitation 

Typical measured responses of MEMS 1 and reference accelerometers in time domain 

and frequency domain for the random excitation in a frequency band of 10 Hz to 1.5 

KHz are shown in Figure 4.14. The amplitude of MEMS 1 accelerometer output is very 

low compared with the reference accelerometer also there is a significant phase shift 
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between the two accelerometers and this shift is changing with frequency as shown in 

FRF plots of Figure 4.15.  
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(a) Time domain 
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(b) Spectra   

Figure  4.14 MEMS 1 time domain signals and their spectra for random excitation 
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Figure  4.15 MEMS 1 FRF for random excitation 

 

4.6.3 MEMS 1 Sweep-sine Excitation 

Typical measured responses of the MEMS 1 and reference accelerometer in time 

domain are shown in Figure 4.16 for sweep-sine excitation. This figure shows that the 

response of the reference accelerometer follow the sweep-sine pattern of the input 

excitation given to the shaker from 0 to 1 kHz, but the measurement by the MEMS 1 

accelerometer is much different and noisy. The measured time domain signal itself 

indicates the MEMS 1 performance is not good enough. Both spectra and FRF quantify 

the error in the measurement by MEMS 1 accelerometer. It is because the amplitude at 

each frequency of excitation for MEMS 1 is significantly different from the reference 

accelerometer. In fact, the FRF plot shown in Figure 4.17 indicates the amplitude ratio 

and phase between the MEMS 1 and the reference accelerometer is not just a constant 

value over the frequency range of excitation but is different at each frequency. 
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(a) Time domain 
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(b) Spectra  

Figure  4.16 MEMS 1 time domain signals and their spectra for the sweep-sine 
excitation 
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Figure  4.17 MEMS 1 FRF for sweep-sine excitation 

 

4.7 MEMS 2 Accelerometer 

The performance of this MEMS accelerometer is also compared with the reference 

accelerometer when they are simultaneously excited by sinusoidal, sweep-sine and 

random signals.  The comparison for sinusoidal excitation will be presented at only two 

frequencies (237Hz and 376Hz). 

 

4.7.1 MEMS 2 Sinusoidal Excitation 

The frequency domain for measured responses by both accelerometers when excited at 

237 Hz is shown in Figure 4.18. The amplitude of MEMS 2 accelerometer spectrum is 

approximately half of the amplitude of the reference accelerometer spectrum. This can 

be seen in the FRF plot shown in Figure 4.19 where the amplitude ratio is 

approximately 0.5 and MEMS 2 response has phase shift of 107 degree from the 

response of the reference accelerometer.  The measured responses and the FRF for the 
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other excitation at 377.5 Hz are shown in Figures 4.20 and 4.21 respectively which 

again indicate deviation in MEMS 2 accelerometer response compared with the 

reference accelerometer.  
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Figure  4.18 MEMS 2 spectrum at 237Hz 
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Figure  4.19 MEMS 2 FRF at 237Hz 
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Figure  4.20 MEMS 2 spectrum at 377.5Hz 
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Figure  4.21 MEMS 2 FRF at 377.5Hz 

 

4.7.2 MEMS 2 Random Excitation 

Typical measured responses of both accelerometers in the time domain and the 

frequency domain for the random excitation in a frequency band of 10 Hz to 1.5 KHz 

are shown in Figure 4.22. Both accelerometers responses look to be identical in the time 

domain as MEMS 2 accelerometer generally follows the pattern of applied excitation. 

However, its amplitude is very low compared with the reference accelerometer. This 
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can be seen in the FRF amplitude which shows very low amplitude ratios at all 

frequencies. Moreover, FRF for phase shows that there is a phase shift at every 

frequency starting from about -57 degree at 10 Hz and then changing from negative to 

positive values till frequency of about 400 Hz. Thereafter phase is changing only in 

negative values as show in Figure 4.23. Therefore, it can be stated that this 

accelerometer also shows significant deviation in both amplitude and phase compared 

with the reference accelerometer.  
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(a) Time domain 
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(b) Spectra   

Figure  4.22 MEMS 2 time domain signals and their spectra for the random excitation 
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Figure  4.23 MEMS 2 FRF for random excitation 

 

4.7.3 MEMS 2 Sweep-sine Excitation 

Typical measured responses of the MEMS 2 and reference accelerometers in time 

domain and frequency domain for sweep-sine excitation are shown in Figure 4.24. This 

figure shows that the response of the MEMS 2 accelerometer does not follow the 

sweep-sine pattern of the input excitation given to the shaker from 0 to 1 kHz, also the 

measurement by the MEMS 2 accelerometer is much different and noisy. The measured 

time domain signal itself indicates the MEMS 2 performance is not good enough. In 

addition, FRF plots shown in Figure 4.25 show significant deviation in both amplitude 

and phase responses of this accelerometer compared with the reference accelerometer. 
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(a) Time domain 
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(b) Spectra   

Figure  4.24 MEMS 2 time domain signals and their spectra for the sweep-sine 
excitation 
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Figure  4.25 MEMS 2 FRF for sweep-sine excitation 
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4.8 Comparison between Random and Sweep-sine 

Measurements 

As previously presented, all MEMS accelerometers were tested to measure sine, random 

and sweep-sine excitations. The responses of MEMS 1 and MEMS 2 accelerometers to 

random and sweep sine excitations were compared. It has been observed that the FRF 

between these accelerometers and the reference accelerometer for the random excitation 

was significantly different when compared with the FRF for the sweep-sine excitation. 

Typical FRF plots comparing the two kinds of tests for MEMS 1 are shown in Figure 

4.26. They are significantly different. This simply indicates that the random vibration 

measurement by the MEMS accelerometers may not be useful for the practical purpose 

which needs further investigation.  
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Figure  4.26 Comparison of the FRF plots between MEMS 1 accelerometer and the 
reference accelerometer due to sweep-sine and random excitations 
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The FRF between each MEMS accelerometer and the reference accelerometer for sine 

excitations were also compared with the FRF for the sweep-sine excitation. The results 

for these comparisons will be presented in Chapter 6. 

 

4.9 Conclusion 

The performance tests of typical capacitive type MEMS accelerometers are carried out 

for different excitations – sinusoidal, sweep-sine, random and impulse. All tests were 

conducted well within the technical specifications of the accelerometers. The measured 

responses of the MEMS accelerometers were compared with a calibrated ICP type 

accelerometer. The tests performed here clearly show lots of improvement needed 

before their use in practice. It is being planned to carry out more investigation with 

several numbers of MEMS accelerometers to understand the future direction for 

improvements.    
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CHAPTER 5                                                             

CORRECTION IN TIME DOMAIN 

 

Reformatted version of paper: 

A Typical Filter Design to Improve the Measured Signals from MEMS Accelerometer 

Authors: Abdellatef  Badri, Jyoti K. Sinha and A. Albarbar 

Paper published in Measurement 43 (2010) 1425-1430 

 

Abstract  

The MEMS type accelerometers have been receiving attention due to their low cost and 

small size. But the accurate vibration measurements of both amplitude and phase at all 

frequencies in the measurement frequency range are important for the reliable vibration 

analysis for any type of accelerometers. However, it has been observed that such 

accelerometers show some deviation, both in amplitude and phase, based on the 

controlled vibration measurements in the Laboratory using a number of the MEMS 

accelerometers. Hence, a characteristic function (CF) of a typical MEMS accelerometer 

has been generated by the laboratory experiments when compared with a reference 

accelerometer and then a new filter has been designed matching the CF (both amplitude 

and phase). This filter has then been used to correct the measured signals from the 

MEMS accelerometer.  

Keywords: MEMS Accelerometer; Vibration test, Characteristic Function. 
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5.1 Introduction 

Vibration measurement and analysis has traditionally been used to provide condition 

monitoring of machinery, dynamic qualification in design of novel components, fault 

prediction, defects within aging structures and the diagnosis of structural dynamic 

effects. Recently Sinha [101] gave an overview of the vibration measurement and 

analysis in different roles. Using several piezoelectric and/or ICP (integrated circuit 

piezoelectric) accelerometers in a particular application/structure is expensive, and it 

would be advantageous to replace these by low cost and small size MEMS 

accelerometers. MEMS accelerometers are a new integrated circuit technology; and 

confidence in their performance needs to be established, particularly in comparison to 

conventional accelerometers. The main comparison between MEMS and conventional 

accelerometers has been in their signal frequencies, and it appears that their frequency 

content have similar spectrums [56–58]. However, comparison of their amplitudes 

shows significant deviation. Albarbar et al. [22] have recently compared the 

performance of three different types of these MEMS accelerometers and used them for 

vibration based machinery condition monitoring. Two of the used MEMS 

accelerometers were found reliable in measuring a CNC machine vibration signals. 

Amplitude correction, either in the frequency or time domain, would allow the reliable 

use of the MEMS accelerometer. Vibration based diagnosis of machines and structures 

have generally used the frequency domain data, this is presented earlier in the literature 

[21, 99]. However a significant deviation has been noticed in the amplitude and phase 

[23]. This need to be corrected for the reliable vibration based diagnosis using the 

MEMS accelerometers. This can be done either in frequency domain or in time domain. 

In practice, many vibration based diagnosis for machines and structures have been 
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utilizing the frequency domain data for the system and fault identifications. Hence a 

correction method for signals in the frequency domain has been presented earlier in the 

literature [24, 102]. This study attempts to correct the raw MEMS signal in the time 

domain, and this paper describes the proposed method and its results. 

 

5.2 The Experiment Arrangement 

The arrangement consists of a small size payload shaker (M/s GW make), a shaker 

power amplifier, signal generator and a PC based data acquisition system. A schematic 

of the arrangement is shown in Figure 4.2. The MEMS and reference accelerometers are 

attached back to back on the shaker’s armature; this to ensure that the accelerometers 

are subjected to identical vibrations. The reference accelerometer is a conventional and 

well known ICP type conventional accelerometer having a specification of 100 mV/g, 

linear frequency range up to 2 kHz, 50 g level. The MEMS accelerometer is 250 mV/g, 

frequency range 1.5 kHz, ±2 g level. In the experiment, the shaker’s armature was 

randomly energized producing vibration frequencies up to 1.5 kHz, and the data was 

collected at the sampling rate of 5000 samples/s. 

 

5.3 The Experimental Results  

The MEMS and reference accelerometer responses are significantly different, when 

subjected to the same vibrations; graphs of their responses are shown below in Figure 

5.1a and 5.1b. The graphs show that, above a shaker frequency of approximately 400 

Hz, their signal amplitudes decrease; this is owing to the randomness of the shaker 

frequencies. 
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The frequency response function (FRF) between the MEMS and reference 

accelerometers is shown in Figure 5.2; the MEMS accelerometer is used as the output 

and the reference accelerometer as the input. The graphs show significant deviations in 

the amplitude ratio and phase relation of the accelerometers; ideally within the 

frequency range, the amplitude ratio should be unity and the phase difference should be 

zero. Analysis of the data indicates that, without correction, the output of the MEMS 

accelerometer is unreliable for vibration measurement as a means of vibration 

measuring. 
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(a) Time domain 
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 (b): Frequency domain 

Figure  5.1 Measured responses of the MEMS and reference accelerometers 
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Figure  5.2 FRF plot between MEMS and reference accelerometers, (a) Amplitude, (b) 
Phase 

 

It is expected that the MEMS accelerometer will show same deviation at different 

frequencies when used at the plant site. Hence the measured signals need to be corrected 

such that the corrected time domain MEMS signals should produce a FRF plot with 

amplitude and phase equal to 1 and 0 degree respectively. Therefore, it is required to 

design a special filter that filters amplitude and phase which must be the inverse of the 

FRF shown in Figure 5.2 so that the signal can be corrected for both amplitude and 

phase at all frequencies in the measured frequency band. The inverse of the FRF, which 

is computed as, )(/1 ωFRF  is shown in Figure 5.3. The curve of the measured inverse 

FRF plot was not smooth, so it was smoothen by curve fitting. The amplitude and phase 

are fitted separately to the frequency range using polynomial curve fitting. To achieve 

the best fitting, different orders have been tested and the best fitted curves are also 

shown in Figure 5.3 for comparison. The fitted curves shown in Figure 5.4 have now 
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been referred to as the Filter Characteristic Function (FCF) of the MEMS 

accelerometer. 
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Figure  5.3 Inverse FRF (the FCF curve) plot- Comparison of original and fitted curves, 
Line with dots - Original, solid line- Fitted 

 

5.4 Proposed Correction Method 

Generally, digital and analogue filters have a specified frequency range over which they 

operate. The filters may be low pass, high pass or band pass and the appropriate 

frequencies are attenuated or removed [103, 104]. Most filters exclusively modify either 

the amplitude or phase of a particular signal, however, the MEMS response requires 

both amplitude and phase modification as indicated in Figure 5.3. The transfer function 

(TF) of a linear time-invariant discrete- time filter is defined as [103] 
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( )
( )

( )

Y z
H

X z
ω =           (5.1) 

where Y(z) and X(z)  are the z transform of the filter output signal y(n) and the input 

signal x(n) respectively, and  z = ejω, where ω is angular frequency (rad/s) and n is the 

function of time, dtnnt )1()( −= , n=1, 2, 3,…, n and dt is the time interval between two 

samples. Here, the signals, x(n),  are the MEMS accelerometer measured signals (input 

signals) and  the output signals, y(n), are the corrected MEMS signals. 

 

This transfer function (TF) can further be written as,  
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where 0b , 1b , ........., 
N

b  and 1a , 2a , ........., 
M

a  are the polynomial coefficients.  N and M 

denote the orders of these polynomials. 

The amplitude and phase data of the CF (the fitted curves in Figure 5.3) have been 

converted into the transfer function (TF), )(ωH ,  using Equation (5.3) and then 

coefficients for the filter transfer function in Equation (5.2) have been obtained. 

 

( )( ) ( ) CFj

CF
H A e

θ ωω ω=                                                      (5.3) 
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where ( )
CF

A ω is the amplitude and ( )
CF

θ ω  is the phase angle at the angular frequency 

ω , for the CF shown in Figure 5.3. The coefficients, a  and b , have then been 

calculated using the discrete filter least squares fit to the TF, )(ωH ,  function in the 

MatLab code [105].  Once the coefficients have been computed the corrected signals for 

the MEMS accelerometer can be computed as:  

 )()1()()1()()( 11 NnyanyaMnxbnxbnxbny NMo −−⋅⋅⋅⋅⋅⋅−−−−+⋅⋅⋅⋅⋅+−+=  

)()( 10 jnyainxb i

N

ji

M

i −∑−−∑= ==        (5.4) 

 

It is important to note that the coefficients, a  and b , related to the TF, )(ωH ,  must be 

stored for the MEMS accelerometer so that the correction in the measured signals can 

be done using Equation (5.4).  

 

5.5 Application of the Proposed Method 

Initially different number of coefficients orders, N and M, in Equation (5.2) have been 

attempted to obtain the best fit and stable filter. The stability of the filter can be 

evaluated by pole-zero Maps for the filter TF. The filter stability for each fitting order 

was checked. Figure 5.4 shows the poles and zeros of the filter transfer function when 

the fitting order 21== MN  was used. As the radius of all poles (measured from the 

origin) has been observed as less than unity they denote a stable filter [106].  The 

designed filter TF has also been computed from the stable filter coefficients to confirm 

whether this is close to the required CF curves (the inverse of FRF) shown in Figure 
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5.3. This is shown in Figure 5.5 which is definitely same as Figure 5.3 except in the 

lower frequency range. Hence the designed filter can be considered as acceptable. 

 

 

Figure  5.4 Poles and Zeros Map 
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Figure  5.5 The designed filter transfer function (TF) for phase and amplitude (dash line) 
and comparison with the CF (solid line with dots) 
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Once the stable filter coefficients are known, the input signals were corrected using 

Equation (5.4). The output of the filter delays the response which depends on the 

number of coefficients. Hence, the delay error has been removed. The filtered MEMS 

accelerometer signals compare reasonably well with the reference accelerometer 

signals. A typical signal is shown in Figure 5.6.  
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Figure  5.6 The corrected MEMS measured response (line with dots) compared with the 
reference accelerometer (solid line) 

 

The spectrum of the corrected MEMS response compared with the reference 

accelerometer is shown in Figure 5.7. Both spectra are nearly identical. The FRF 

between the corrected MEMS and the reference accelerometer signals has also been 

computed and shown in Figure 5.8.  Both amplitude and phase show improvement 

compared to Figure 5.2 before correction because they are close 1 and 0 degree 

respectively, however the correction in the phase seems more promising compared to 

the amplitude. Hence the proposed method is able to correct measured signals.  
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Figure  5.7 Amplitude spectrum of corrected MEMS response (line with dots) compared 
with reference accelerometer (solid line) 
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Figure  5.8 FRF plot of the MEMS accelerometer (after correction) with respect to the 
reference accelerometer, (a) Amplitude, (b) Phase 

 
 

5.6 Conclusion 

The measured signals from a typical MEMS accelerometer show significant deviation in 

both amplitude and phase when compared with a well known conventional signal. A 

correction method has been proposed by developing a filter based on the Characteristic 

Function (CF) obtained experimentally in the Laboratory experiments. This proposed 

technique appears to be a successful, in the time domain, in correcting the measured 
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signal of an MEMS accelerometer. An appropriate filter, tuned during calibration, could 

be incorporated in a practical accelerometer unit, for applications where reliable and 

practical signals are required. 
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CHAPTER 6                                                                                 

CORRECTION IN FREQUENCY DOMAIN 

 

Reformatted version of papers:  

1. Correcting Amplitude and Phase measurement of accelerometer in Frequency Domain. 

Authors: Abdellatef Badri and Jyoti K. Sinha 

The Fifth International Conference on Condition Monitoring & Machinery Failure 

Prevention Technologies, Heriot-Watt University, Edinburgh, July 2008, pp. 94-100 

2. Enhancing the Frequency Range of Measurement for an Accelerometer. 

Authors:  

Abdellatef Badri, Jyoti K. Sinha and A. Albarbar 

Paper published in: Noise & Vibration Worldwide, Volume 40, Number 6 / June 2009 

3. Improvement in measured signals of MEMS accelerometer. 

Authors:  

Abdellatef Badri and Jyoti K. Sinha 

Paper published in: The third International Conference on Integrity, Reliability and Failure, 

Porto/Portugal, 20-24 July 2009, Paper Ref: S1146_P0507. 

4. A Method to Calibrate the Measured Responses by MEMS Accelerometers. 

Authors:  
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Abdellatef Badri, Jyoti K. Sinha, and A. Albarbar 

Paper published in: Strain Journal, DOI: 10.1111/j.1475-1305.2010.00764.x 

Keywords: MEMS Accelerometer; Vibration Measurement; Spectrum; Frequency 

Response Function; Characteristic Function. 

 

Abstract:  

MEMS (Micro Electro-Mechanical System) accelerometers have been receiving attention 

due to their low cost and small size. Accurate vibration measurements of both amplitude 

and phase at all frequencies in the measurement frequency range are important for the 

reliable vibration analysis. However, it has been observed that such accelerometers show 

some deviation. Hence, a simple calibration method in the frequency domain has been used 

for correcting both amplitude and phase for the measured signals by the MEMS 

accelerometers. The paper presents the calibration procedure and results of the present 

study applied on two different types of the MEMS accelerometers.  

 

6.1 Introduction 

Vibration measurement and analysis is one of the accepted methods in machinery condition 

monitoring techniques; it plays a significant role in the dynamic qualification of newly 

designed structural components, prediction of faults and structural aging-related problems, 

and several other structural dynamics studies and diagnosis [101]. However, multiple data 
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collection points are generally required in most of the condition monitoring systems which 

makes the system costly if conventional accelerometers are used. Hence, there is a need for 

a cheaper and reliable alternative to conventional accelerometers. The MEMS 

accelerometers are one such options recently receiving attention due to their low cost and 

small size [90]. It is a new technology for an accelerometer and produced in a similar 

fashion as an integrated circuit manufacturing [88]. However, the use of MEMS 

accelerometers is still limited in the field of condition monitoring because of lack of 

confidence level in their performance. A few earlier researches gave comparison of the 

performance between the MEMS and conventional accelerometers, mainly related to the 

frequency content in the spectrum of the measured signals.  

 

It has been observed that the frequencies content in the spectrum of the measured signal 

from the MEMS accelerometer are same as the spectrum obtained from the conventional 

accelerometer; however the significant deviation has been noticed in the amplitude and 

phase [23]. This need to be corrected for the reliable vibration based diagnosis using the 

MEMS accelerometers. This can be done either in frequency domain or in time domain. In 

practice, many vibration based diagnosis for machines and structures have been utilising 

the frequency domain data for the system and fault identifications, hence this chapter 

presents a correction method for MEMS accelerometer response in the frequency domain. 

6.2 The Proposed Correction Method 

The accuracy of the measured signals by the MEMS accelerometers can be improved by 



Chapter 6 

 112 

either modifying the MEMS accelerometer design or by a simple calibration of the 

measured signals of the existing MEMS accelerometers by comparing with a well-accepted 

reference accelerometer. However, the modification in the MEMS accelerometer design 

needs extensive effort so the later option has been used to correct the measured signals by 

the MEMS accelerometers. For this purpose a Characteristic Function (CF) for a MEMS 

accelerometer has been generated and stored for the MEMS accelerometer which has then 

been used for the correction of the measured signals by this MEMS accelerometer. The 

procedure for generation of the CF and then correction in measurements has been discussed 

here. 

 

6.2.1 Generation of Characteristic Function (CF) 

A schematic of the test setup is shown in Figure 6.1. The test setup consists of a small size 

shaker together with a shaker power amplifier, signal generator and a PC based data 

acquisition for data collection and storage for further signal processing. Two 

accelerometers (one reference accelerometer and the other the test MEMS accelerometer) 

were attached back to back on the armature of the shaker. 
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    (a)       (b) 

Figure  6.1 Test setup (a) picture, (b) schematic 

The linear sweep-sine excitation up to the frequency measurement range for the test MEMS 

accelerometer has been used to drive the shaker for the vibration test. The measured signals 

from both the accelerometers have then been processed to compute the Frequency 

Response Function (FRF) using the test MEMS accelerometer as output and the reference 

accelerometer as input. The FRF, ( )CFH f has been computed as: 

 

( )
( )

( )

xy

CF

xx

S f
H f

S f
=    (6.1) 

 

where Sxy(f)is the cross spectral density and Sxx(f) is the Power Spectral Density (PSD) at 

frequency (f). y(t) is the test MEMS accelerometer signal and x(t) is the reference 

accelerometer signal. The functions Sxy(f) and   Sxx (f) have been computed as: 
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where, ( )
r

X f is the Fourier Transformation  (FT) at the frequency, f, of the rth segment of 

x(t), )( fX r

∗
is its complex conjugate,  ( )rY f  is the FT of the rth segment of y(t),  ( )rY f∗ is 

its complex conjugate, and ( ).Ε indicates the simple arithmetic mean operator. Since the 

sweep-sine excitation was used here so the total time for any segment used for the FT was 

kept equal to one complete cycle of the chirp excitation to ensure all exciting frequency 

components must be available in each segment and to reduce the affect of the non-

stationary signals in the FT. It was averaged over a few sweep cycles to get a good 

representative FRF plot for the experiments. Otherwise use step-sine excitation to compute 

the FRF data at each frequency.     

 

This FRF gives both the amplitude ratio and phase relation between two signals. Ideally the 

amplitude ratio should be 1 (or 0dB) and phase to be 0 degree at all frequencies between 

the two accelerometers. However, it may deviates if the MEMS accelerometer is not good 

enough. Hence, this FRF, ( )CFH f , has been referred as the CF for the test MEMS 

accelerometer. 
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6.2.2 Correction in Frequency Domain 

Now it has been assumed that the test MEMS accelerometer has been used in the field, the 

measured data is ym(t) which has been divided into  ‘n’ number of segment for the FT 

calculation.  Let Ym,r(ω) be the FT for the rth segment of ym(t), this Ym,r(f) will have error in 

both amplitude and phase. Hence, the corrected FT, )(, fY
c

rm , for rth segment can be 

calculated as:  
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where, ( )
CFH

A f  and 
,
( )

m rYB f are the amplitude of the ( )CFH f  and , ( )
m r

Y f respectively and 

their associated phase angles are ( )
CFH fθ and 

,
( )

m rY fθ  at the frequency, f. Finally the 

corrected PSD of the test MEMS accelerometer data can be computed as: 
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It is also important to note that the use of the suggested method in Equation (6.4) allows the 

correction, both in amplitude and phase, so that it can be reliably used with other signals 

measured by other vibration sensors to compute a number of parameters used in vibration 
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analysis, for example, FRF, Cross-power spectrum, coherences, etc.   

6.3 Test Examples 

Here a PCB accelerometer has been used as a Reference Accelerometer. The PCB 

accelerometer is an ICP type with the technical specifications – Sensitivity 100mV/g, 

Linear frequency range 2kHz, 50 g level, amplitude linearity within +/-5% and phase 

deviation within +/- 05 . Although the amplitude linearity and phase are slightly high for the 

Reference Accelerometer used for the calibration purpose but it has been considered to be 

acceptable for the present purpose to illustrate the calibration procedure for the existing 

MEMS Accelerometers. In the present study two typical MEMS Accelerometers, namely 

MEMS 1 and MEMS 2, were used. The technical specifications for MEMS 1 and MEMS 2 

are given in section 3.3 of chapter 3. The experiments were conducted using the chirp-sine 

excitation up to 1 kHz with linear chip rate of 2.5 kHz/s to drive the shaker shown in Figure 

6.1. Hence the time period for 1 cycle of the chirp sine excitation from 0 to 1kHz was 0.4s 

and the data were collected at 10240 Samples/s for 4s using the 16 bit Analogue to Digital, 

8 channels data acquisition card into the computer for further signal processing. The CFs 

were then estimated for both the MEMS Accelerometers using Equation (6.1) when 0.4s 

(4096 FFT points) segment size was used to reduce the affect of the non-stationary signals 

in the FT. A total 10 averages in FRF computation without overlap were used to get a good 

representative CF with the frequency resolution of 2.5Hz for the MEMS 1 and MEMS 2 

respectively. Now, the application and usefulness of this CF in the calibration/correction of 

the measured signals by the MEMS 1 and MEMS 2 Accelerometers has been discussed 
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here.   

6.3.1 Case I: MEMS 1 Accelerometer 

Typical measured responses of the MEMS 1 and reference accelerometers in time domain 

are shown Figure 6.2. This figure shows that the response of the MEMS 1 accelerometer is 

different from the response of the reference accelerometer and hence the measurement of 

this MEMS 1 accelerometer needs to be corrected for the reliable measurement and 

vibration analysis. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-0.5

0

0.5

Time, s

A
c
c
e

le
ra

ti
o

n
, 
g

 

 

MEMS 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
-10

-5

0

5

10

Time, s

A
c
c
e

le
ra

ti
o

n
, 
g

 

 

Reference Accelerometer

 

Figure  6.2 Measured acceleration responses of the MEMS 1 and reference accelerometer 

 

The spectra and the FRF of the measured acceleration responses are shown in Figure 6.3. 

Both the spectrum and the FRF of the MEMS 1 are observed to be significantly different 

then the reference accelerometer. It has also been seen the deviation in the amplitude and 

phase of the MEMS 1 compared to the reference accelerometer are changing with 
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the frequency as shown in Figure 6.3(b). The experiments were also conducted using the 

sinusoidal excitation at the number of frequencies with different amplitudes. The amplitude 

and phase of the FRF between the MEMS 1 and the reference accelerometer for the sweep-

sine excitation and the single sine excitation at number of frequencies are listed in Table 6.1 

and shown graphically in Figure 6.4.  
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Figure  6.3 Acceleration responses in frequency domain for the MEMS 1 and reference 
accelerometer, (a) Amplitude Spectra, (b) FRF Amplitude and Phase 
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Table  6.1 Comparison of the FRF Amplitude and Phase for MEMS 1 due to Sine and 
Sweep-sine excitations with respect to the reference accelerometer 

 Sweep-Sine Excitation Single Sine Excitation 

Frequency 

(Hz) 

Amplitude 

(ratio) 

Phase 

(degree) 

Amplitude 

(ratio) 

Phase 

(degree) 

20 0.11 1 0.10 1 

95 0.183 2 0.19 -1 

145 0.153 -5 0.157 -7 

185 0.133 -26 0.142 -30 

240  0.084 -6 0.098 -8 

310 0.165 11 0.172 8 

375 0.135 14 0.14 9 

420 0.118 15 0.125 7 

570 0.104 110 0.18 -43 

690 0.112 107 0.25 -46 

825 0.11 103 0.346 -95 

 

It has been observed from Table 6.1 and Figure 6.4, that the behaviour of the MEMS 1 to 

the sweep-sine excitation approximately matches when compared with the single sine 

excitation up to the frequency of 400 Hz, but beyond this frequency it deviates 

significantly. It could be due to an acceleration level higher than 2g during sweep-sine 

excitation. Hence the frequency up to 400Hz can be considered here for further analysis. 

The amplitude and phase of the MEMS accelerometer with respect to the reference 

accelerometer at a frequency of the sine excitation remain unchanged with amplitude of the 

excitation up to 400Hz. Hence the FRF plot shown in Figure 6.3(b) up to 400 Hz has been 
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stored as the CF for the MEMS1 accelerometer which is shown in Figure 6.5. The CF 

function has now been used to correct the MEMS 1 measured signals in the frequency 

domain.  
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Figure  6.4 Comparison of the MEMS 1 responses due to Sine (line with dot) and Chirp-sine 
(line with circle) excitations, (a) FRF Amplitude, (b) FRF Phase 
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Figure  6.5 The CF in the frequency range (0-400 Hz) for the MEMS 1 accelerometer with 
respect to the reference accelerometer 

 

6.3.1.1 The Sweep-sine Signal 

The amplitude spectrum before correction of the MEMS 1 measured responses up to 400Hz 

is shown in Figure 6.6. The amplitude spectrum of the reference accelerometer is also 

shown in Figure 6.6 for comparison when shaker in Figure 6.1 subjected to the linear chirp-

sine excitation. Now, the correction has been applied to the measured signals by the MEMS 

1 accelerometer 1. The correction method discussed in Section 6.2.2 has been used. The 

corrected amplitude spectrum for the MEMS 1 accelerometer is shown in Figure 6.7, and it 

is also compared with the amplitude spectrum of the reference accelerometer. The FRF 

between the MEMS 1 accelerometer and the reference accelerometer after correction has 

also been computed which is shown in Figure 6.8. The amplitude ratio is now 1 with 0 

degrees phase at all frequencies. The small scatter seen in the phase angle at different 
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frequencies in Figure 6.8 is almost negligible error. Hence, this example shows the 

advantages of the proposed method. 

 

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Frequency, Hz

A
c
c
e
le

ra
ti
o
n
, 
g

 

 

Reference
Accelerometer

MEMS 1

 

Figure  6.6 Amplitude spectra of the MEMS 1 (before correction) and the reference 
accelerometer for the linear sweep-sine excitation 

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Hz)

A
c
c
e

le
ra

ti
o

n
, 
g

*MEMS 1
- Reference Accelerometer

 

Figure  6.7 Comparison Amplitude spectra of the MEMS 1 (after correction, line with dot) 
and the reference accelerometer (solid line) for the linear sweep-sine excitation 
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Figure  6.8 FRF plot between the MEMS 1 (after correction) and the reference 

accelerometer for the linear sweep-sine excitation 

 

6.3.1.2 The Sinusoidal Signals 

Number of test experiments was also conducted when the sine wave excitation at a number 

of frequencies was used to drive the shaker shown in Figure 6.1. The measured responses 

by both MEMS 1 accelerometer and reference accelerometer were collected at a sampling 

frequency of 10240 samples/s and stored for further signal processing. The correction 

procedure has then been applied to the measured responses by the MEMS 1 using the CF 

shown in Figure 6.5 to calculate the PSD and the FRF between the MEMS 1 and the 

reference accelerometer signals. The results were observed to be very encouraging. A few 

typical examples at 20Hz, 145Hz and 377Hz (before and after correction) are shown in 

Figures 6.9 to 6.14. As can be observed from these Figures, the amplitude spectra show 
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significant amplitude error and phase error up to 8 degrees when compared with the 

reference accelerometer before correction. However, when the correction method has been 

applied, insignificant error has been observed in the signals measured by the MEMS 1 

accelerometer.   
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Figure  6.9 Comparison of the amplitude spectra of the MEMS 1 (line with circle) and the 
reference accelerometer (line with plus) for the sinusoidal signal at 20 Hz, (a) before 

correction, (b) after correction 
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Figure  6.10 FRF plots the MEMS 1 with respect to the reference accelerometer for the 
sinusoidal signal at 20 Hz (indicated by circle), (a) before correction, (b) after correction 
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Figure  6.11 Comparison of the amplitude spectra of the MEMS 1 (line with circle) and the 
reference accelerometer (line with plus) for the sinusoidal signal at 145 Hz, (a) before 

correction, (b) after correction 
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Figure  6.12 FRF plots the MEMS 1 with respect to the reference accelerometer for the 
sinusoidal signal at 145Hz (indicated by circle), (a) before correction, (b) after correction 
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Figure  6.13 Comparison of the amplitude spectra of the MEMS 1 (line with circle) and the 
reference accelerometer (line with plus) for the sinusoidal signal at 377Hz, (a) before 

correction, (b) after correction 
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Figure  6.14 FRF plots the MEMS 1 with respect to the reference accelerometer for the 
sinusoidal signal at 377Hz (indicated by circle), (a) before correction, (b) after correction 
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6.3.2 Case II: MEMS 2 Accelerometer 

Similar tests, both linear sweep-sine and sinusoidal, were conducted for the MEMS 2 

accelerometer. The comparison of results between these tests were listed in Table 6.2 and 

also shown graphically in Figure 6.15. Here again, the results were observed to be 

consistent up to 420Hz, however the excitation level was less than 1.7g up to 800Hz as seen 

in Figure 6.16. Hence the FRF plot of the MEMS 2 (as output) and the reference 

accelerometer (as input) up to 400Hz was considered as the CF for the MEMS 2 

accelerometer. As observed from Table 6.2 and Figure 6.17, the measured signals from the 

MEMS 2 accelerometer show significant error in both amplitude and phase, however these 

errors have been successfully reduced to negligible errors when the correction method 

discussed in Section 6.2 has been applied. Two typical examples for the sine wave 

excitation at 237.5Hz and 377Hz are shown in Figures 6.18 and 6.19 where large error in 

both amplitude and phase reduced significantly. 

 

Table  6.2 Comparison of the FRF Amplitude and Phase for MEMS 2 due to sine and 

sweep-sine excitations with respect to the reference accelerometer 

 Sweep-Sine 1KHz Single Sine 

Excitation 

Frequency 

(Hz) 

Amplitude 

(ratio) 

Phase 

(degree) 

Amplitude 

(ratio) 

Phase 

(degree) 

20 0.1 -105 0.09 -100 

95 0.016 -31 0.004 -4 

145 0.018 60 0.02 92 
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185 0.057 82 0.035 97 

240  0.062 102 0.05 107 

310 0.09 100 0.085 110 

375 0.128 97 0.12 110 

420 0.106 87 0.13 108 

570 1.03 114 0.2 105 

690 0.123 61 0.26 100 

825 0.12 56 0.32 99 
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Figure  6.15 Comparison of the MEMS 2 responses due to Sine (line with dot) and Sweep-
sine (line with circle) excitations, (a) FRF Amplitude, (b) FRF Phase 
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Figure  6.16 Amplitude spectra for the MEMS 2 and reference accelerometers for the linear 
sweep-sine excitation 
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Figure  6.17 The CF in the frequency range (0-400 Hz) for the MEMS 2 accelerometer with 
respect to the reference accelerometer



Chapter 6 

 133 

230 232 234 236 238 240 242 244 246 248 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency, Hz

A
c

c
e

le
ra

ti
o

n
, 

g

 

 

MEMS 2

PCB

230 232 234 236 238 240 242 244 246 248

0

0.2

0.4

0.6

0.8

1

1.2

Frequency, Hz

A
c
c

e
le

ra
ti
o

n
, 
g

 

 

MEMS 2

PCB

 

 

 

230 232 234 236 238 240 242 244 246 248 250
0

0.5

1

1.5

2

Frequency, Hz

F
R

F
 A

m
p

lit
u

d
e

 

 

MEMS 2/PCB Accelerometer

230 232 234 236 238 240 242 244 246 248 250
104

106

108

110

Frequency, Hz

F
R

F
 P

h
a

s
e

, 
d

e
g

.

 

 

MEMS 2/PCB Accelerometer

235 236 237 238 239 240

0.5

1

1.5

Frequency, Hz

F
R

F
 A

m
p

li
tu

d
e

 

 

MEMS 2/PCB Accelerometer

233 234 235 236 237 238 239 240

-5

0

5

10

15

Frequency, Hz

F
R

F
 P

h
a

s
e

, 
d

e
g

.

 

 

MEMS 2/PCB Accelerometer

 

 

Figure  6.18 Comparison of the amplitude spectra and FRF of the MEMS 2 (line with 
circle) and the reference accelerometer (line with star) for the sinusoidal signal at 237.5 

Hz, (a) & (b) before correction, (c) & (d) after correction 
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Figure  6.19 Comparison of the amplitude spectra and FRF of the MEMS 2 (line with 
circle) and the reference accelerometer (line with star) for the sinusoidal signal at 

377Hz, (a) & (b) before correction, (c) & (d) after correction 

 

 

6.4 Practical Application of the Correction Method 

Since this method produced good results, it has been further tested on an experimental 

rig. The picture of the rig is shown in Figure 6.20. It consists of two steel shafts 

connected by a rigid coupling and supported through four ball bearings. The shaft 

lengths are 1m and 0.5m and the diameter is 20mm. The 1m shaft is connected to an 

electric motor through a flexible coupling. There are three balance disks made of steel 

with dimensions 125mm (OD) x 15mm (thickness), 2 disks on the long shaft and 1 disk 

on the short shaft.  

 

(a) 

(d) (b) 

(c) 
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Figure  6.20 The experimental rig 

 

The measurement has been carried out at the bearing-2 pedestal in the lateral direction 

when the shaft was running at 2400RPM (40Hz). Here a capacitive type MEMS 

accelerometer with the technical specifications, 167mV/g, frequency range 2 kHz and 

the acceleration rage of +/-2g has been used. A conventional ICP type accelerometer (as 

reference) has also been mounted at the same location for comparison. Figure 6.21 

shows the mounting of both accelerometers at the bearing-2 pedestal.   

 

 

Figure  6.21 Mounting of the MEMS and the reference accelerometers at the bearing-2 
of the rig 
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The amplitude spectra of the MEMS and the reference accelerometers, and their FRF 

plot are shown in Figures 6.22 and 6.23 which show significant deviation in both 

amplitude (0.1) and phase (-42.47 deg.) at the rotating frequency of 40Hz of the rig. 

Here again, the CF for this MEMS accelerometer has been generated from the test setup 

facility shown in Figure 6.1 and then correction in the measured MEMS signals has 

been applied. The amplitude spectrum and the FRF plot with respect to the conventional 

ICP accelerometer after correction are shown in Figures 6.24 and 6.25 respectively.  

Now it can be seen from both figures that error at 40Hz reduced significantly to the 

negligible level. Hence, the proposed method seems to be useful. 
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Figure  6.22 Typical comparison of the amplitude spectrum for the MEMS 
accelerometer (a) before correction with the reference accelerometer (b) for the rig 
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Figure  6.23 FRF plot of the MEMS accelerometer before correction) with respect to the 
reference accelerometer, (a) Amplitude, (b) Phase 
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Figure  6.24 Typical comparison of the amplitude spectrum for the MEMS 
accelerometer (a) after correction with reference accelerometer (b) for the rig 
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Figure  6.25 FRF plot of the MEMS accelerometer (after correction) with respect to the 
reference accelerometer, (a) Amplitude, (b) Phase 

 

6.5 Enhancing the Frequency Range of Measurement for an 

Accelerometer 

Multiple data collection points are generally required in most of the condition 

monitoring systems and for vibration based diagnosis purpose for machines and 

structures. The different field applications demand the proper selection of 

accelerometers, for example, the frequency range of measurement. Let’s say, there is a 

requirement of simultaneous measurement at 10 locations and the 
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frequency range of interest is up to 6 kHz or more, but the available accelerometers can 

measure up to say, 4 kHz within the error of 0.6 dB as shown in Figure 6.26. This 

simply indicates that either a compromised measurements can be taken with the 

available accelerometers knowing that the measured signals will show error in phase 

and amplitude beyond 4 kHz or other alternative is to buy accelerometers meeting the 

requirements. The later option is definitely going to be costly. Hence, a viable approach 

has been suggested to enhance the working frequency range of measurement of an 

accelerometer depending upon the accelerometer resonance frequency [111]. For 

example, the frequency range can be enhanced to 8 kHz for a typical accelerometer 

whose frequency response characteristic curves shown in Figure 6.26 for two different 

mounting resonances. Here again, a CF up to 8 kHz for the accelerometer can be 

generated by conducting experiment in the lab with a reference accelerometer and then 

this CF can be used to correct the measured signals up to 8 kHz as per method 

suggested in section 6.2.2. 
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Figure  6.26 Characteristic response curves of a typical accelerometer for two different 
mounting resonance frequencies 
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6.6 Conclusion 

Repeatability between the single sinusoidal response and the sweep-sine response 

measurement by the MEMS accelerometers was observed, but the measured amplitude 

and phase deviates significantly when compared with well known Accelerometer. 

Hence, a simple method for correcting both amplitude and phase response of any 

accelerometer in frequency domain has been adopted which has been discussed in the 

chapter. The method is based on the generation of a characteristic function (CF) using 

well known reference accelerometer in Laboratory test which needs to preserved so that 

the measured signals by MEMS Accelerometer can be corrected/calibrated in the 

frequency domain using this CF. The usefulness of the present study has been 

successfully brought out through two typical case studies on two different MEMS 

accelerometers. However, the poor performance of the MEMS accelerometers, mainly 

related to the random vibration measurements needs further investigation. However, 

consistent performance has been observed for the MEMS for sinusoidal inputs, hence 

these accelerometers can be used confidently with the correction/calibration method in 

the condition monitoring of rotating machines where vibrations are generally related to 

harmonics and sub-harmonics of the rotating speed. 
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CHAPTER 7                                                             

ACCELEROMETER MODELLING 
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Abstract 

The use of the MEMS (Micro-Electro Mechanical System) concept for manufacturing 

accelerometers is relatively new technology. However earlier studies suggest that the 

measured signals by the MEMS accelerometers generally show deviation when 
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compared with the conventional accelerometer.  Hence, a simple Finite Element (FE) 

model of a MEMS accelerometer has been constructed and the modal analysis has been 

carried out. The cantilever beam mode of finger used in MEMS capacitive type 

accelerometers observed in the modal analysis highlights the possibility of errors in 

measurement. Hence, few modifications in finger design have been suggested to 

improve the performance of the MEMS accelerometer.  

 

 

7.1 Introduction 

The MEMS (Micro-Electro Mechanical System) accelerometers have been receiving 

attention in the recent years due to their low cost and small size [30, 37]. The 

micromachined accelerometer was initially introduced in 1988 by NovaSensor which 

was based on piezoresistive sensing mechanism [30]. The Wheatstone bridge principle 

was used to measure the acceleration of the vibrating objects [30, 56, 107]. Thereafter 

the concept of capacitive sensing has also been introduced in the MEMS accelerometers 

[54, 57, 73, 108-110]. A typical capacitive MEMS accelerometer is composed of 

capacitors formed between the proof mass and fixed conductive electrodes. The proof 

mass is free to move in the vibration direction. This mass movement creates unbalance 

in the differential capacitor resulting in an output which is proportional to acceleration 

of the vibrating object. The capacitance change due to acceleration is then converted 

into voltage with appropriate signal conditioning through on chip circuitry [54, 57, 73, 

108-110]. Sections 2 and 3 briefly discussed the principle of a conventional 

piezoelectric accelerometer and the capacitive type MEMS accelerometer. 

However, the performance of such accelerometers has not been rigorously 
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tested to enhance the confidence level for the industrial applications. A few earlier 

researches compared the performance of MEMS and conventional accelerometers. It 

has been observed that the measured vibration signals by the MEMS accelerometer 

often show a difference from the signals measured by the well-accepted conventional 

accelerometer [21, 23, 111]. Hence the present attempt is to understand the dynamics of 

the present design used for the MEMS accelerometer so that appropriate modification, 

either in the mechanical design or in the associated electronic circuitry, can be proposed 

to improve the performance of the MEMS accelerometer in future. In the present study 

the dynamic behaviour of the sensing element of capacitive type MEMS accelerometer 

has been studied. Hence, a simple Finite Element (FE) model of a MEMS accelerometer 

has been constructed and the modal analysis has been carried out. The cantilever beam 

mode of finger used in MEMS capacitive type accelerometers observed in the modal 

analysis highlights the possibility of errors in measurement. Hence, a few modifications 

in finger design have been suggested to improve the performance of the MEMS 

accelerometer. 

 

7.2 A conventional Piezoelectric Accelerometer 

A typical design of a conventional piezoelectric accelerometer is shown in Figure 7.1. It 

consists of a small mass, a spring made of piezoelectric crystal and a damping of around 

0.7. For this configuration, if the natural frequency of the accelerometer is nf  then the 

linearly frequency range of measurement is approximately 20% of the natural 

frequency, nf . 
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Figure  7.1 The conventional piezoelectric accelerometer 

 

The input acceleration of a vibrating object causes the vibration of the accelerometer 

mass, m  which results in the relative motion, )(tx∆ , between the mass and the object in 

the piezoelectric spring generates the proportional electric charge, )(tQ∆ . 

Mathematically it can be written as:        

)(
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tQ
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∆∝≈∆
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         (7.1) 

 

where nn fπω 2= . Hence the charge, )(tQ∆ , is proportional to the acceleration of the 

vibrating object which is then converted into the voltage as the output for the 

accelerometer. 

 

7.3 A Capacitive Type MEMS Accelerometer  

The working principle of a capacitive type MEMS accelerometer is also same as the 

 
m 
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conventional piezoelectric accelerometer. However the output of the MEMS 

accelerometer uses the change in the capacitance and not to the charge. A typical design 

configuration of a MEMS accelerometer is shown in Figure 7.2 [112]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  7.2 Typical constructional details of a capacitive type MEMS accelerometer 
[112] 

 

The MEMS accelerometer also consists of a spring and a mass both made of a material 

commonly poly-silicon. However, the concept of converting the mechanical vibration 

into electrical signal is different. Here numbers of fingers are attached to the mass 

which are generally called as the “Moving fingers” and number of fingers attached to 

the fixed frame of the accelerometer, called “Fixed fingers”. The arrangement is such 

that a pair of the fixed and moving fingers constitutes a parallel capacitor. Here again, 

the input acceleration of a vibrating object causes the vibration of the accelerometer 

mass, m  which results in the relative motion, )(tx∆ , between the moving and fixed 

fingers which generates a proportional change in the capacitance, )(tC∆ . 

Mathematically it can be written as:         
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           (7.2) 

 

where the change in the capacitance,                                    [10].  The change in 

capacitance )(tC∆  is proportional to the acceleration of the vibrating object which is 

then converted into the voltage as the output for the accelerometer. Often a number of 

the fixed and moving fingers are used to strengthen the electrical output, which means 

the sensitivity of the accelerometer.  

 

7.4 Earlier Studies on MEMS Accelerometers Performance 

Performance tests for several MEMS accelerometers have been carried out using test 

set-up shown in Figure 6.1 [23, 24, 113]. The test setup consists of a small shaker (M/s 

GW make) together with a shaker power amplifier, signal generator and a PC based data 

acquisition for data collection and storage for further signal processing. In every test, 

the MEMS accelerometer (Test accelerometer) was attached back to back with an 

Integrated Circuit Piezoelectric (ICP) conventional accelerometer (Reference 

accelerometer) on the armature of the shaker. 

 

Responses of MEMS accelerometers showed significant deviation in both amplitude 

and phase compared to the responses of the reference accelerometer and this deviation 

is changing with the frequency. A few typical examples for measured responses of 

MEMS accelerometers compared with the reference accelerometer are shown in Figures 

4.8, 5.2, and 4.19 for the impulsive, random and sinusoidal excitations respectively. 
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More details can be found in [23, 24, 113]. A typical example on a rotating rig in Figure 

6.20 also shows deviation in the MEMS measurement compared to the measurement by 

the conventional accelerometer which is shown in Figure 6.22 and Figure 6.23.   

 

It has been observed that the frequency contents in the spectra of the MEMS 

accelerometers are same as the conventional reference accelerometer; however the 

amplitude and phase at each frequency significantly different when compared with the 

conventional reference Accelerometer. A couple of methods have been suggested earlier 

[24, 113] to improve the measured signals of the MEMS accelerometers. However it is 

always good to understand the dynamics of the MEMS accelerometer to know the 

reason for such error so that the possible improvement in the design can be made.  

 

7.5 Limitations in the existing design of MEMS accelerometer 

It is important to understand the present design limitations in the MEMS accelerometer, 

hence the effect of present mechanical design and the conversion into the electrical 

signal has been studies separately and the results of these studies are discussed here. 

 

7.5.1 3-D Finite Element Model 

The typical design configuration shown in Figure 7.2 has been modelled in 3D, but only 

two moving fingers of 154 µm length and 4 µm width have been used. Three fixed 

fingers of the same moving fingers dimensions are attached to the mass which is 28µm 
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of length and 152 µm width. The gap between each moving finger and fixed finger is 

4µm.The mass is fixed to the frame through two folded beams one on the top and the 

other on the bottom. The element type used in this model is Continue 3-Dimensions 4 

node (C3D4), the material properties of polysilicon used are, density 3/3.2 cmg=ρ , 

Poisson’s ratio µ=0.22, and Young’s modulus GPaE 170= . The accelerometer model 

is shown in Figure 7.3 and the 1st mode shape in Figure 7.4. The modal analyses were 

carried out with the accelerometer base fixed. The mode shape shows that the moving 

fingers act as a beam resulting in the distance between the moving and fixed finger 

become nonlinear. As can be seen in Figure 7.5 where the mode shape is zoomed, the 

gap d1 is not equal to the gap d2. This finger motion makes the formed capacitors 

between moving and fixed fingers non parallel plate capacitors.  The non parallel plates 

have an effect on capacitance, sensitivity, electrostatic force, electrostatic spring 

constant, and the overall accelerometer operation [114, 115]. 

 

 

Figure  7.3 A 3D model for a typical MEMS accelerometer 



Chapter 7 

 148 

    

 

Figure  7.4 The 1st mode shape in vertical direction 

 

 

Figure  7.5 zoomed view 

 

 

7.5.2 Conversion of the Capacitance into Voltage 

Several types of detection circuits such as the diode-bridge, switch capacitor and 

synchronized detection circuit have been developed to detect the capacitance changes in 

capacitive type sensors and convert it into voltage signal [116]. However, the 

synchronized detection circuit is the most common concept which is used in capacitive 

MEMS accelerometers. In this circuit, amplitude modulation is used, where a carrier of 

high frequency is modulated by the change in capacitance and then synchronous 

demodulator and a low pass filter are used to extract the voltage signal which is 

proportional to the applied acceleration. 

d1 
d2 
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7.5.2.1 Modulation and Demodulation 

Let )(txc be the carrier signal generated by local oscillator and )(tm , the modulating 

signal. Linear amplitude modulation is achieved by multiplying these two signals to 

generate amplitude modulated signal )(ts . In synchronous demodulation, )(ts is 

multiplied by the same signal which is used as the carrier signal assuming that they are 

synchronised in both amplitude and phase. Figure 7.6 shows a simplified block diagram 

for synchronised detection circuit. 

  

 

 

 

 

 

Figure  7.6 Block diagram for synchronised detection circuit 

 

However, it is usually found that the oscillator output has a phase error φ  which varies 

randomly with time [117]. Therefore, the output of the demodulator, after low pass 

filtering, can be written as: 

 

)()cos(
2

1
)( tmAAtv coscO φ=         (7.3) 

where, cA and oscA  are the amplitudes of the carrier and oscillator signals 
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respectively. The phase error φ  in the local oscillator causes the demodulator output to 

vary with time by a factor equal to )cos(φ . In addition, the dc offset in analogue 

multiplier can decrease the multiplier’s gain, degrade and increase the nonlinearity and 

distortion introduced by the multiplier in the modulation or demodulation process [118]. 

In general, the amplitude modulation/demodulation process causes amplitude and phase 

shift in the modulating signal. This has been examined by experimental work carried 

out on demodulation of amplitude modulated signal using envelope detector method.  

 

7.5.2.2 Modulation and Demodulation Experiment 

Modulation and demodulation experiment has been carried out using test facilities 

shown in Figure 7.7. A carrier signal of 100 kHz has been modulated by low frequency 

signal (modulating signal) at different frequencies from 100 to 2000Hz. The amplitude 

and phase for FRF have been computed between the original signal (before modulation) 

and the output signal (after demodulation). The values of amplitude and phase for the 

FRF at each frequency are listed in Table 7.1, and their plots are shown in Figure 7.8.  

 

 

  

 

Figure  7.7 Modulation and demodulation experiment facility 
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Table  7.1 Amplitude and phase values for the FRF 

Frequency Amplitude (ratio) Phase (degree) 

100Hz 5.825 1.015 

300Hz 6.087 2.662 

500Hz 6.147 3.983 

1000Hz 6.284 7.385 

1250Hz 6.551 9.14 

1500Hz 6.558 10.95 

2000Hz 6.911 13.67 
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Figure  7.8 Amplitude of FRF (a), Phase of FRF (b) 
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7.6 Possible Improvement in Mechanical Design 

Having known that the fixed fingers have the rigid body motion, hence a simple model 

of a MEMS accelerometer has been considered here. A single spring equivalent to the 

upper and lower springs shown in Figure 7.2 has been assumed and just two moving 

fingers (one on each side of the mass) were used instead of number of fingers. The 

simplified model is shown in Figure 7.9. Table 7.2 lists the physical dimensions and 

material properties of the model parameters which are partially taken from [119].  

Table  7.2 Physical dimensions and material properties of the MEMS accelerometer 

Model parameters Dimensions 

Mass (mp) 0.42 ng 

Movable finger width (Wf) 4 µm 

Movable finger length (Lf) 160 µm 

Movable finger thickness (t) 4 µm 

Equivalent spring stiffness k 1.874 N/m 

Young’s modulus of poly-Si Pa
111070.1 ×  

Density of ploy-Si 33 /1033.2 mkg×  

 

 

 

 

 

 
 
 

Figure  7.9 Simple model  
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Figure  7.10 FE Model 

The Finite Element (FE) modelling approach has been used to model the mechanical 

parts of the accelerometer. The finger has been modelled like beam using a 2-node 

beam element divided into 6 elements; the proof mass and the equivalent linear spring 

stiffness have been added at node-4 and node-8 assumed to be fixed. The FE model is 

shown in Figure 7.10. The modal analysis of the FE model has been carried out to find 

out the natural frequencies and mode shapes. Figure 7.11 shows the first two mode 

shapes for this model.  The 1st mode natural frequency calculated at 10.631 kHz can be 

considered as the natural frequency of the MEMS accelerometer; hence, the working 

range for this accelerometer should be up to 2 kHz (often 1/5th of the natural frequency).  

 

 

 

 

 

                    Mode 1: 10.631 kHz                                   Mode 2: 217.53 kHz 

Figure  7.11 Mode shapes 

 

As can be seen, the fingers behave as the cantilever beam at mode 1 which may leads to 
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non-parallel-plates capacitor. Hence, it can be suspected as the reason of observed 

measurement errors. Therefore, modification to the original finger design has been 

carried out using trapezoidal shape of the fingers to achieve rigid body motion [120]. 

The modified finger shape is shown in Figure 7.12. Four different dimensions have been 

used for the shape thicknesses as listed in Table 7.3.   

 

 

 

 

 

Figure  7.12 Modified design 

 

Table  7.3 Dimensions of modified designs and expected improvement 

 t1 (µm) t2 (µm) Expected improvement % 

Original 4 4  

Modification 1 3 5 28.17 

Modification 2 2 6 54.93 

Modification 3 1 7 66.76 

Modification 4 0 8 67.32 

 

 

The modal analysis of the FE model for the modified finger design has been carried out. 

The natural frequencies of each mode for the modified designs are listed in Table 7.4.  

As can be seen from Table 7.4, these modifications in finger design have no affect on 

the natural frequency of the 1st mode. However, natural frequencies for modes 2 
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and 3 have been changed due to these modifications. 

 

Table  7.4 Natural frequencies for mode shapes of modified designs 

 Natural frequencies, kHz 

Mode Original Modification 

1 

Modification 

2 

Modification 

3 

Modification 

4 

1 10.631 10.631 10.631 10.631 10.631 

2 217.53 279.12 346.75 416.83 455.28 

 
 

The 1st mode shapes for the modified finger designs compared with 1st mode shape for 

the original design are shown in Figure 7.13. Modification 4 showed approximately a 

rigid body motion as its mode shape show much small deflection compared with the 

original finger design and other modified finger designs. The expected improvement in 

the MEMS accelerometer due to these modifications when compared with the original 

MEMS accelerometer design has been quantified as: 

 

Improvement 0
0100O M

O

φ φ

φ

∆ − ∆
= ×

∆
                                            (7.4) 

 

where, Oφ∆ is the difference of the mode shape between the centre and the finger tip at 

mode 1 for the original finger design and similarly Mφ∆  for the modified finger design. 

The calculated ‘Improvement’ for the different modifications proposed in Table 7.3 

shows that the Modification 4 provides 67% improvement for the present case. An 
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optimised result can be achieved by optimization of different accelerometer parameters 

listed in Table 7.1.  
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Figure  7.13 1st mode shape for the modified designs compared with original design 

 

7.7 Conclusions 

Earlier experimental studies for performance of capacitive type MEMS accelerometers 

showed deviation in their responses both in amplitude and phase. Modal analysis for a 

MEMS Accelerometer using a simple FE model has been presented. The modal analysis 

confirms that the accelerometer fingers behave as the cantilever beam which can be 

considered as one of major reasons for the error observed in the vibration 

measurements. Few modifications on finger shape design have been suggested and 

showed remarkable improvement. However, it is expected that translating the fingers 
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movement into changes in capacitance and then into output voltage will also introduce 

some errors. 
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CHAPTER 8                                                             

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

The use of conventional accelerometers in the condition monitoring is well accepted in 

practice. However, multiple data collection points are generally required in most of the 

condition monitoring systems which makes the system costly. Hence, there is a need for 

cheaper and reliable alternative for the conventional accelerometers. The use of MEMS 

accelerometers is one of the available options that came to light because of their low 

cost, and small size. However, the use of MEMS accelerometers is still limited in the 

field of vibration-based condition monitoring because of lack of confidence level in 

their performance. The stability, sensitivity, lifetime, mechanical strength, ease of 

operation and installation, are not attractive enough for the users to switch over. In 

addition, there are some concerns on the effect of noise and temperature over their 

accuracy.  

 

Performance improvement of MEMS accelerometers for general applications rather 

than machine condition monitoring is still under research. Different sensing 

mechanisms, design parameters and variables, manufacturing process, and packing 

materials have been investigated and modified to achieve better performance and 

reliability with the less possible cost. However, A few earlier researches gave 

comparison of the performance between the MEMS and conventional accelerometers in 

the field of condition monitoring, mainly related to the frequency content in spectrum of 
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the measured signals. 

8.2 Achieved Objectives 

• Objective 1: Laboratory tests were carried out to compare the response 

characteristics between capacitive type MEMS accelerometers and a reference 

accelerometer when exposed to various forms of excitation. The tests include 

sinusoidal, band limited random and impulsive excitation. All tests were 

conducted well within the technical specifications of both the MEMS 

accelerometers under test and the reference accelerometer. The observations 

were based on the amplitude and phase of the FRF assuming the response from 

MEMS accelerometer as an output and the reference accelerometer response as 

the input. A significant deviation has been noticed in the amplitude and phase 

responses of MEMS accelerometers compared with a reference accelerometer. 

Moreover, it has been observed that MEMS accelerometers give repeated 

measurement for sinusoidal input excitation only.  

 

• Objective 2: A correction method has been proposed by developing a filter 

based on the Characteristic Function (CF) obtained experimentally in the 

Laboratory experiments.  Such filter can be incorporated in the accelerometer 

design itself if deviation observed during calibration. The application of the 

proposed method showed improvement of the measure signals in time domain. 

Hence the proposed method is useful in practical applications for reliable and 

credible signals. 
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• Objective 3: A simple method for correcting both amplitude and phase response 

of any MEMS accelerometer in frequency domain has been presented. The 

method is based on the generation of a characteristic function (CF) using well 

known reference accelerometer in Lab test and then this CF has been used in 

correcting the signals in frequency domain. The method has been qualified 

through number of tests on MEMS accelerometers and further tested on an 

experimental rig.  

 

• Objective 4: A fine mesh FE model has been carried out to understand the 

dynamics of capacitive type MEMS accelerometer. It has been observed that the 

moving fingers behave like a cantilever beam while the fixed fingers showed 

rigid body motion. Based on these observations, a simple FE model; with a 

spring, a moving mass, and two moving fingers; has been developed in order to 

modify the design of the fingers. Few modifications on finger shape design have 

been suggested which showed remarkable improvement. Moreover, the effect of 

using synchronous amplitude modulation and demodulation in the readout 

circuit has been studied. The experimental study showed that this circuit 

introduces errors in amplitude and phase of the output signal compared with the 

input signal.   
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8.3 Overall Conclusion 

MEMS accelerometers showed deviation compared with conventional accelerometers. 

Two methods have been suggested, one for correction in time domain and other in 

frequency domain. Either of these two methods can be used for the exciting MEMS 

accelerometers or any accelerometer showing some error. The reason of such error in 

MEMS accelerometer has also been identified and design modification for the fingers 

has been suggested for future manufacturing.  

 

8.4 Future Work 

1. In the present research, the proposed correction methods are only tested on lab 

experiments and one typical example on test rig. However, the real application may 

be filed measurement. Hence, the methods must be further be tested and qualified 

for real application like machine condition monitoring. 

2. MEMS accelerometer has two parts, mechanical design and electronic read out 

circuit. Modification in the moving and fixed fingers has already been suggested to 

improve the performance. However, the present read out circuit also introduces error 

in measurement. Hence, improvement in readout circuit needs to be investigated.  

 

 

 



 

 162 

REFERENCES 

 

1. Liang B., Condition Monitoring and Fault Diagnosis of Induction Motors, PhD 

Thesis,   Manchester School of Engineering, Manchester, UK, 2000. 

2. Harris M., and Charles E., Shock and Vibration Handbook, McGraw-Hill Book 

Company, New York, 1987.   

3. Brűel and Kjær, Shock and Vibration Measurement, Denmark, 1998. 

4. Brűel and Kjær, Frequency Analysis, Denmark, 1992. 

5. Hargis C., Gaydon G., and Kamash K., The Detection of Rotor Defects in Induction 

Motors, In: Proc. Int. Conf. on Electrical Machines- Design and Applications, IEE, 

London, Vol.213, July 1982, pp. 216-220. 

6. Sinha J. K., Health Monitoring Techniques for Rotating Machinery, PhD Thesis, 

University of Wales Swansea, 2002. 

7. Sinha J. K., Friswell M. I., Lees A. W., The identification of the unbalance and the 

foundation model of a flexible rotating machine from a single run down, Mechanical 

Systems and Signal Processing, Vol.16, Issue 2-3, 2002,  255–271. 

8. Rama R. A., Sinha J. K., Moorthy R. I. K., Vibration problems in vertical pumps- 

need for integrated approach in design and testing, Shock and Vibration Digest, 

Vol.29, No. 2, 1997, pp.  8–15. 

9. Sinha J. K., Lees A. W., Friswell M. I., Estimating unbalance and misalignment of a 

flexible rotating machine from a single run-down, Journal of Sound and Vibration, 

Vol.272, Issue 3-5, 2004, pp. 967–989. 

10. Moorthy R. I. K., Rao A. R., Sinha J. K., Kakodkar A., Use of an unconventional 

technique for seismic qualification of equipments, Nuclear Engineering and Design, 

Vol.165, Issue 1-2, 1996, pp. 15–23. 

11. Sinha J. K., Simplified method for the seismic qualification using measured modal 

data, Nuclear Engineering and Design, Vol.224, Issue 2, 2003, pp. 125–129. 

12. Sinha J. K., Moorthy R. I. K., Combined experimental and analytical method for a 

realistic seismic qualification of equipment, Nuclear Engineering and Design, 

Vol.195, Issue 3, 2000, pp. 331–338. 

13. Moorthy R. I. K., Sinha J. K., , Dynamic qualification of complex structural 



 

 163 

components of nuclear power plants, Nuclear Engineering and Design, Vol.180, 

Issue 2, 1998, pp. 147-154 

14. Moorthy R., Sinha J., Rao A., Sinha S., Kakodkar A., Diagnostics of direct CT-PT 

contact of coolant channels of PHWRs, Nuclear Engineering and Design, Vol.155, 

Issue 3, 1995, pp. 591-596. 

15. Sinha J., Sinha S., Moorthy R., Diagnosis of the bearing failure in a Pillger Mill, 

Shock and  Vibration Digest, Vol.28, No. 2, 1996, pp. 11–14. 

16. Sinha J., Friswell M., Model updating: a tool for reliable modelling, design 

modification and diagnosis, Shock and Vibration Digest, Vol.34, No. 1, 2002, pp. 

27–35. 

17. Sinha J., Friswell M., The use of model updating for reliable finite element 

modelling and fault diagnosis of structural components used in nuclear plants, 

Nuclear Engineering and Design, Vol. 223, Issue 1, 2003, pp. 11–23. 

18. Sinha J., Rao A., Moorthy R., Significance of analytical modelling for interpretation 

of experimental modal data: a case study, Nuclear Engineering and Design 220 

(2003) 91–97. 

19. Goldman S., Vibration Spectrum Analysis: A Practical Approach, Second Edition, 

Industrial Press Inc., New York, 1999. 

20. Mehregany M., Microelectromechanical Systems, IEEE Circuits and Devices Vol. 9 

Issue 4, 1993, pp 14-22. 

21. Thanagasundram S, Schlindwein F, Comparison of integrated micro-electrical-

mechanical system and piezoelectric accelerometers for machine condition 

monitoring, IMechE Journal of Mechanical Engineering Science, Part C, 220, 2006, 

pp. 1135-1146. 

22. Albarbar H, Mekid S, Starr A, Pietruszkiewicz R, Suitability of MEMS 

Accelerometers for Condition Monitoring: An experimental study, Sensors, 8 (2), 

2008, pp. 784-799. 

23. Albarbar A, Abdellatef Badri, Sinha J. K., Starr A, Performance evaluation of 

MEMS accelerometers, Measurement, vol.42, Issue 5, Jun 2009, pp. 790-795. 

24. Abdellatef E. Badri, Jyoti K. Sinha, Correcting Amplitude and Phase Measurement 

of Accelerometer in Frequency Domain, Proceeding of The Fifth International 

Conference on Condition Monitoring & Machinery Failure Prevention 



 

 164 

Technologies, Heriot-Watt University, Edinburgh, 15-18 July, 2008, pp. 94-100. 

25. Fraden J., Handbook of Modern Sensors, Physics, Designs, and Applications, 3rd 

ed., Springer-Verlag, Inc., pp. 305. 

26. Gardner J. W., Microsensors Principles and Applications, John Wiley & Sons Ltd, 

West Sussex, England, 1994. 

27. Wilson J S, Sensor technology handbook, Elsevier Newnes. 

28. Bentley J., Principles of Measurement Systems, 3rd Edition, Longman Scientific & 

Technical, Essex, England. 

29. Reilly S., Leach R., Cuenat A., Lowe M., Overview of MEMS sensors and the 

metrology requirements for their manufacture, NMS Programme for Engineering 

Measurement 2005 – 2008, NPL Report DEPC-EM 008, October 2006. 

30. Barth P.W., Pourahmadi F., Mayer R., Poydock J., Petersen K., A monolithic silicon 

accelerometer with integral air damping and over range protection, Solid-State 

Sensor and Actuator Workshop,  Technical Digest., IEEE, 1988, pp. 35 – 38. 

31. Roszhart T. V., Jerman H., Drake J., and Cotiis C. de, An Inertial-Grade 

Micromachined Vibrating Beam Accelerometer, The 8th International Conference 

on Solid-State Sensors and Actuators, Eurosensors IX. Transducers '95. , 

Stockholm, Sweden, 1995, pp. 656-658. 

32. Seshia A. A., Palaniapan M., Roessig T. A., Howe R. T., Gooch R. W., Schimert T. 

R., and Montague S., A vacuum packaged surface micromachined resonant 

accelerometer, Journal of Microelectromechanical Systems, Vol.11, Issue 6, 2002, 

pp. 784-793. 

33. Leung A. M., Jones J., Czyzewska E., Chen J., Woods B., Micromachined 

accelerometer based on convection heat transfer, Proceedings of The Eleventh 

Annual International Workshop on Micro Electro Mechanical Systems, MEMS 98, 

pp. 627-630. 

34. MEMSIC, Thermal Accelerometers Temperature Compensation, Application Note 

#. 00MX-002, http://www.memsic.com/data/pdfs/an-00mx-002.pdf. 

35. Kenny T.W., Waltman S. B., Reynolds J. K., Kaiser W. J., A micromachined silicon 

electron tunneling sensor, IEEE Proceedings of An Investigation of Micro 

Structures, Sensors, Actuators, Machines and Robots Micro Electro Mechanical 

Systems,1990,  pp. 192-196. 

 



 

 165 

36. Yeh C., Najafi K., A low-voltage tunneling-based silicon microaccelerometer, IEEE 

Transactions on Electron Devices, Vol.44, Issue 11,1997, pp. 1875-1882. 

37. Dong H., Jia Y., Hao Y., Shen S., A novel out-of-plane MEMS tunneling 

accelerometer, Sensors and Actuators A: Physical, Vol.120, 2005, pp. 360-364. 

38. Cheng-Hsien Liu, Kenny T. W., A high-precision, wide-bandwidth micromachined 

tunneling accelerometer, Journal of Microelectromechanical Systems, Vol.10, Issue 

3, 2001, pp.425-433. 

39. Uttamchandani  D., Liang  D., Culshaw  B., A micromachined silicon accelerometer 

with fibre optic interrogation, IEE Colloquium on Fibre Optics Sensor Technology, 

1992, pp. 4/1-4/4. 

40. DeVoe  D.L., Pisano  A.P., Surface micromachined piezoelectric accelerometers 

(PiXLs), Journal of Microelectromechanical Systems, Vol.10, Issue 2, 2001, pp. 

180-186. 

41. Kunz K., Enoksson P., Stemme G., Highly sensitive triaxial silicon accelerometer 

with integrated PZT thin film detectors, Sensors and Actuators A: Physical, Vol.92, 

2001, pp. 156-160. 

42. Abbaspour-Sani E., Huang Ruey-Shing, Yee Kwok Chee, A linear electromagnetic 

accelerometer, Sensors and Actuators A: Physical, Vol.44, Issue 2, 1994, pp. 103-

109. 

43. Chien Chao-Heng, Chen Shi-Hao, Fabrication comb-drive device by MEMS and 

electroplating, Proceedings of the Symposium on Design, Test, Intergation & 

Packing of MEMS/MOEMS, Cannes-Mandelieu, 5-7 May 2003. 

44. Khine Myint Mon A., Tin Thet Nwe B., Zaw Min Naing C. Dr., Yin Mon Myint D. 

Dr., Analysis on Modeling and Simulation of Low Cost MEMS Accelerometer 

ADXL202, Proceedings of World Academy of Science, Engineering and 

Technology, Vol.32, August 2008, pp. 389-601. 

45. Xingguo Xiong, Yu-Liang Wu, Wen-Ben Jone, Design and Analysis of Self-

Repairable MEMS Accelerometer, Proceedings of the 20th IEEE International 

Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05), 2005. 

46. Starr J. B., Squeeze-film damping in solid-state accelerometers”, IEEE, 1990. pp. 

44-47. 

47. Beeby S., Stuttle M., White N. M., Design and fabrication of a low cost 



 

 166 

microengineered silicon pressure sensor with linearized output, Science, 

Measurement and Technology, IEE Proceedings, Vol.147, Issue 3, May 2000, pp. 

127-130.   

48. Martin Handtmann, Robert Aigner, Andreas Meckes, Gerhard Wachutka, 

Sensitivity enhancement of MEMS inertial sensors using negative spring and active 

control, Sensors and Actuators A, 97-98, 2002, pp. 153-160. 

49. Sazzadur Chowdhury, Ahmadi M., Miller W. C., Nonlinear Effects in MEMS 

Capacitive Microphone Design, Proceeding of the International Conference on 

MEMS, NANO and Smart Systems (ICMENS’03), 2003. 

50. Xuesong Jiang, Feiyue Wang, Michael Kraft, Bernhard E. Boser, An Integrated 

Surface Micromachined Capacitive Lateral Accelerometer with 2µG/√Hz Resultion, 

Solid-State Sensor, Actuator and Microsystems Workshop Hilton Head Island, 

South Carolina, June 2-6, 2002, pp. 202-205. 

51. Yasin F., Korman C., Nagel D., Measurement of noise characteristics of MEMS 

accelerometers, Solid-State Electronics, 47, 2003, pp. 357-360. 

52. Badariah Bais, Burhanuddin Yeop Majlis, Low-g Area-changed MEMS 

Accelerometer Using Bulk Silicon Technique, American Journal of Applied 

Sciences 5 (6), 2008, pp. 626-632. 

53. Wei Tech Ang, Si Yi Khoo, Pradeep K. Khosla, Cameron N. Riviere, Physical 

Model of a MEMS Accelerometer for Low-g Motion Tracking Applications, 

Proceeding of the 2004 IEEE, International Conference on Robotics & Automation, 

New Orleans, LA, April 2004, pp. 1345-1351. 

54. Sergey Edward Lyshevski, MEMS and NEMS Systems-Devices and Structures, 

CRC PRESS, 2001. 

55. Los Santos H., Introduction to Microelectromechanical Microwave Systems, 

ARTECH HOUSE, INC. 

56. Plaza J., Collado A., Cabruja E., Esteve J., Piezoresistive accelerometers for MCM 

package, Journal of Microelectromech. Systems, Vol.11, No. 6, Dec. 2002, pp. 794–

801. 

57. Xie H., Fedder G., CMOS z-axis capacitive accelerometer with comb-finger 

sensing, Proc. IEEE Micro Electro Mechanical Systems (MEMS), 2000, pp. 496–

501. 



 

 167 

58. Biefeld V., Buhrdorf A., Binder J., Laterally driven accelerometer fabricated in 

single crystalline silicon, Sensors & Actuators A, Vol.82, No. 1, May 2000, pp. 

149–154. 

59. Yazdi N., Ayazi F., Najafi K., Micromachined inertial sensors, Proc. IEEE, Vol.86, 

No. 8, August 1998, pp. 1640–1659. 

60. Li L., Xu Y., Zhao Y., Liang C., Wei T., Yang Y., Micromachined accelerometer 

based on electron tunnelling, Proc. SPI-International. Society Optical Engineering, 

Vol.3891, 1999, pp. 121–125. 

61. Gao R., Zhang L., Micromachined microsensors for manufacturing, IEEE 

Instrumentation & Measurement Magazine, Vol.7, Issue 2, 2004, pp. 20-26. 

62. Packirisamy M., Microfabrication influence on the behaviour of capacitive type 

MEMS sensors and actuators, Sensor Review, 26/1, 2006, pp. 58-65. 

63. Wan W., Lowther D., Design and synthesis of wide tuning range variable comb 

drive MEMS capacitors, COMPEL, Vol.26, No. 3, 2007, pp. 689-699. 

64. Bogue R., MEMS sensors: past, present and future, Sensor Review, 27/1(2007) 7-

13. 

65. Felnhofer D., Khazeni K., Mignard M., Tung Y., Device physics of capacitive 

MEMS, Microelectronic Engineering, 84, 2007, pp. 2158-2164. 

66. Lee I., Yoon G., Park J., Seok S., Chun K., Lee K., Development and analysis of the 

vertical capacitive accelerometer, Sensors and Actuators A, 119, 2005, pp. 8-18. 

67. Meunier D., Desplats R., Benbrik J., Perez G., Pellet C., Etsève D., Benteo B., 

Electrical characterization and modification of a MicroElectroMechanical System 

(MEMS) for extended mechanical reliability and fatigue testing, Microelectronics 

Reliability, 38, 1998, pp. 1265-1269. 

68. Yee Y., Park M., Kim S., Chun K., Integrated Silicon Accelerometer with 

MOSFET-type Sensing Element,  Journal of the Korean Physical Society, Vol.33, 

November 1998, pp. S419-S422. 

69. Wu J., Sensing and Control Electronics for Low-Mass Low Capacitance MEMS 

Accelerometers, PhD Thesis, 2002. 

70. Sung S., Lee J., Kang T., Development and test of MEMS accelerometer with self-

sustained oscillation loop, Sensors and Actuators A, 109, 2003, pp. 1-8. 

71. HA B., OH Y., Song C., A Capacitive Silicon Microaccelrometer with Force-



 

 168 

Balanced Electrodes, Jpn. J. Appl. Phys., Vol.37, 1998, pp. 7052-7057. 

72. Xie H., Fedder G., Pan Z., Frey W., Design and Fabrication of An Integrated 

CMOS-MEMS 3-Axis Accelerometer, Nanotech, 2003, Vol.2, pp. 420-423. 

73. Coulate J., Fox C., McWilliam S., Malvern A., Application of optimal and robust 

design methods to a MEMS accelerometer, Sensors and Actuators A, 142, 2008, pp. 

88-96. 

74. Rao P., Babu P., Rani A., Reddy D., Design of Two Beam Capacitive 

Micromachined Acceleration Sensor and Its Displacement and Stress Analysis, 

Asian J. Exp. Sci., Vol.22, No. 3, 2008, pp. 351-356. 

75. Natarajan V., Bhattacharya S., Chatterjee A., Alternate Electrical Tests for 

Extracting Mechanical Parameters of MEMS Accelerometer Sensor, Proceedings of 

the 24th IEEE VLSI Test Symposium (VTS’06), 2006. 

76. Luo H., Zhang G., Carley L., Fedder G., A Post-CMOS Micromachined Lateral 

Accelerometer, Journal of Microelectromechanical Systems, Vol.11, No. 3, June 

2002. 

77. Qu H., Fang D., Xie H., A Monolithic CMOS-MEMS 3-Axis Accelerometer With a 

Low-Noise, Low-Power Dual-Chopper Amplifier, IEEE Sensors Journal, Vol.8, No. 

9, September 2008. 

78. Chattaraj D., Swamy K., Sen S., Design and Analysis of Dual Axis MEMS 

Accelerometer, International workshop on Physics of Semiconductor Devices, 2007, 

pp. 718-720. 

79. Bell D., Lu T., Fleck N., Spearing S., MEMS actuators and sensors: observation on 

their performance and selection purpose, Journal of Micromechanics and 

Microengineering, 15, 2005, pp. 153-164. 

80. Dias Pereira JM, Carlos Banha, Octavian Postolache, Silva Giraoo P., Improving 

Accelerometers Performance Using Smart Sensing Techniques, IEEE SENSORS 

2006, EXCO, Daegu, Korea / October 22-25, 2006. 

81. Fadi M. Alsaleem, Mohammad I. Younis, Mahmoud I. Ibrahim, A Study for the 

Effect of the PCB Motion on the Dynamics of MEMS Devices Under Mechanical 

Shock, Journal of Micromechanical Systems, vol.18, No. 3, June 2009.  

82. Alexander A. Trusov, Andrei M. Shkel, A Novel Capacitive Detection Scheme With 

Inherent Self-Calibration, Journal of Micromechanical Systems, Vol.16, No. 6, 

December 2007. 



 

 169 

83. Tetsuya Kajita, Un-Ku Moon, Gábor C. Temes, A Two-Chip Interface for a MEMS 

Accelerometer, IEEE Transaction on Instrumentation and Measurement, Vol.51, 

No. 4, August 2002.  

84. Xiaowei LIU, Haifeng ZHANG, Guangming LI, Weiping CHEN, Xilian WANG, 

Design of Readout Circuits Used for Micro-machined, Proceedings of the 2nd IEEE 

International Conference on Nano/Micro Engineered and Molecular Systems 

January 16 - 19, 2007, Bangkok, Thailand. 

85. Xiaowei Liu, Chen Hong, Chen Weiping, System Damping Ratio Analysis of a 

Capacitive Micromechanical Accelerometer, IEEE. 6th International Conference on 

Electronic Packaging Technology, 2005. 

86. Guchuan Zhu, Lahcen Saydy, Mehran Hosseini, Jean-François Chianetta, Yves-

Alain Peter, A Robustness Approach for Handling Modelling Errors in Parallel-

Plate Electrostatic MEMS Control, Journal of Micromechanical Systems, Vol.17, 

No. 6, December 2008. 

87. Marinov Marin, Todor Djamiykov, Ivan Topalov, Volker Zerbe, Remote Machine 

Condition Monitoring Based on Wireless Connectivity, ELECTRONICS’ 2004, 22-

24 September, Sozopol, Bulgaria. 

88. Pandiyan J., Umapathy M., Balachandar S., Arumugam M., Ramasamy S., Gajjar 

N., Design of Industrial Vibration Transmitter Using MEMS Accelerometer, Journal 

of Physics: Conference Series, 34, 2006, pp. 442-447. 

89. Inzarulfaisham Abd. Rahim, Muhamad Azman Miskam, Othman Sidek, Shahril 

Azwan Zaharudin, Mohammad Zaidi Zainol, Shukri Korakkottil Kunhi Mohd, 

Development of a Vibration Measuring Unit Using a Microelectromechanical 

System Accelerometer for Machine Condition Monitoring, European Journal of 

Scientific Research, Vol.35 No.1, 2009, pp. 150-158. 

90. Ratcliffe C., Heider D., Crane R., Krauthauser C., Yoon M., Gillespie J., 

Investigation into the use of low cost MEMS accelerometers for vibration based 

damage detection, Composite Structures , 82, 2008, pp. 61-70. 

91. Tjiu W., Ahanchian A., Majlis B., Development of Tire Condition Monitoring 

System (TCMS) Based on MEMS Sensosrs”, ICSE2004 Proc. 2004, Kuala Lumpur, 

Malaysia. 

92. Erwin Peiner, Condition monitoring with axle box bearings using resonant 



 

 170 

microelectromechanical sensors, Journal of Micromechanics and Microengineering, 

12, 2002, pp. 479–485. 

93. Vogl Andreas, Dag T. Wang, Preben Storås, Thor Bakke, Maaike M.V. Taklo, 

Allan Thomson, Lennart Balgård, Design, process and characterisation of a high-

performance vibration sensor for wireless condition monitoring, Sensors and 

Actuators A, 153, 2009 pp. 155–161. 

94. Wright Paul, David Dornfeld, Nathan Ota, Condition Monitoring in End-Milling 

using Wireless Sensor Networks (WSNs), Transactions of NAMRI/SME, Volume 

36, 2008. 

95. Huang S., Zhang D. H., Chan H. L., Goh K. M., Evaluation of WSN-based 

accelerometer for tool condition monitoring, SIMTech technical reports 

(STR_V10_N2_04_MEC), Vol.10, No. 2, Apr-Jun 2009. 

96. ISO 5347, Methods for the calibration of vibration and shock pick-ups—Part 0: 

Basic concepts, 1987. 

97. Sinha Jyoti K., On Standardisation of calibration procedure for accelerometer”, 

Journal of Sound and Vibration, 286, 2005, pp. 417-427. 

98. Liu C., Kenny T.W., A high-precision, wide-bandwidth micromachined tunneling 

accelerometer, Journal of Microelectromechanical Systems, 10, 3, 2001, pp. 425–

433. 

99. Albarbar A., Starr A., Pietruszkiewicz R., Towards the implementation of integrated 

multimeasurand wireless monitoring system, Proceedings of Second World 

Congress on Engineering and Asset Management, 2007, pp.  96–105. 

100. Suryam B.C.B.N., Meher K.K., Sinha J. K., Rao A., Coherence measurement for 

early contact detection between two components, Journal of Sound and Vibration 

290 ,2006, pp. 519–523. 

101. Sinha J. K., Vibration based diagnosis techniques used in nuclear power plants: 

an overview of experiences, Nuclear Engineering and Design, Vol.238, Issue 9, 

2008, pp. 2439–2452. 

102. Badri Abdellatef, Sinha J.K., Albarbar A., A method to calibrate the measured 

responses by MEMS accelerometers. Strain (2010), doi:10.1111/j.1475-

1305.2010.00764.x. 

103. Oppenheim A.V., Schafer R.W., Discrete-Time Signal Processing, Prentice-



 

 171 

Hall, 1989, pp. 203–5. 

104. Simon Haykin, Adaptive Filter Theory, Prentice-Hall, 1996. 

105. Mathworks, MatLab Signal Processing Toolbox. 

106. Lynn P.A., Introductory Digital Signal Processing with Computer Applications, 

John Wiley & Sons Ltd., 1999, pp. 109–110. 

107. Ferrari V., Ghisla A., Marioli D., Taroni A., MEMS Accelerometer with 

Multiaxial Response by Dynamic Reconfiguration of Peizoresistive Bridges, 

Proceedings of Eurosensors Conference, Sweden, 2006, ISBN/ISSN:97891-631-

9281-4. 

108. Boga B., Ocak I. E., Kulah H., Akin T., Modelling of a Capacitive Σ-∆ MEMS 

accelerometer system including the noise components and verification with test 

results, MEMS 2009, IEEE 22nd Int. Conf. 2009, 821-824. 

109. Sun C., Wang C., Fang W., On the sensitivity improvement of CMOS capacitive 

accelerometer, Sensors and Actuators A, 2008, 141, pp. 347-352. 

110. Acar C., Shkel A. M., Experimental evaluation and comparative analysis of 

commercial variable-capacitance MEMS accelerometers, J. Micromech. Microeng. 

2003, 13, pp. 634-645. 

111. Badri A., Sinha  J.  K., Albarbar A., Enhancing the frequency range of 

measurement for an accelerometer, Noise & Vibration Worldwide, Volume 40, 

Number 6, June 2009, pp. 33-36. 

112. ERİŞMİŞ M. A. MEMS Accelerometers and Gyroscopes for Inertial 

Measurement Units, MSc Thesis, The Graduate School of Natural and Applied 

Sciences of Middle East Technical University, 2004. 

113. Badri A. E., Sinha J. K., Improvement of Measured Signals of MEMS 

Accelerometer, 3rd International Conference on Integrity, Reliability and Failure, 

Porto/Portugal, 20-24 July 2009, Paper Ref: S1146_P0507. 

114. Tay F. E. H., Jun Xu, Liang Y. C., Logeeswaran V. J., Yufeng Yao, The effects 

of non-parallel plates in a differential capacitive microaccelerometer, J. Micromech. 

Microeng, 9, 1999, pp. 283–293. 

115. Linxi Donga, Lufeng Cheb, Lingling Suna, Yuelin Wang, Effects of non-parallel 

combs on reliable operation conditions of capacitive inertial sensor for step and 

shock signals, Sensors and Actuators A, 121, 2005, pp. 395–404. 



 

 172 

116. Asrulnizam Bin Abd Manaf, Yoshinori Matsumoto, Low voltage charge-

balanced capacitance–voltage conversion circuit for one-side-electrode-type fluid-

based inclination sensor, Solid-State Electronics, 53, 2009, pp. 63–69. 

117. Simon Haykin, Communication Systems, 4th edition, John Wiley & Sons, Inc, 

USA, 2001, pp. 90-96. 

118. Maziar Tavakoli, Rahul Sarpeshkar, An Offset-Canceling Low-Noise Lock-In 

Architecture for Capacitive Sensing, IEEE Journal of Solid-State Circuits, Vol.38, 

No. 2, February 2003. 

119. Sharma K., Macwan I. G., Zhang L., Hmurcik L., Xiong X. Design 

Optimization of MEMS  Comb  Accelerometer, 

http://www.asee.org/documents/zone1/2008/student/ASEE12008_0050_paper.pdf 

120. Badri A E., Sinha J. K., Dynamics of MEMS Accelerometer, The 17th 

International congress on sound & vibration, Cairo, Jul. 2010. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 173 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(This page is intentionally left blank) 


