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Abstract 

In the present research, a novel method, namely sol-gel/laser-induced technique 

(SGLIT), has been developed to generate nano-structured TiO2-based films. The 

TiO2 films based on unloaded (pure) TiO2, Ce-TiO2, W-TiO2 and Ag-TiO2, have 

been investigated in attempt to stabilise the formation of anatase and consequently of 

enhancing photo-catalytic and anti-bacterial activities. The TiO2 precursor loaded 

with Ce2+, W6+ and Ag2+ ions (Ce-TiO2, W-TiO2 and Ag-TiO2) were separately 

prepared by sol-gel method and spin-coated on microscopic glass slides. A pulsed 

KrF excimer laser with a wavelength of 248 nm and pulse width of 13-20 ns was 

employed to irradiate on the sol-gel prepared films at various operating parameters, 

in terms of laser fluence, number of laser pulses and repetition rate.  

The work has been focussed on microstructural characterisation of various films 

prepared by both SGLIT and furnace, in the consideration of crystallographic 

structure, phase transformation, crystallite sizes, surface morphology, film thickness 

and optical properties, by means of Raman spectroscopy, XRD, FEG-SEM/EDX, 

TEM/HR-TEM/EDX, AFM and UV-Vis spectroscopy etc. The results showed that 

nano-crystallisation of the films after laser irradiation has been achieved, with 

controllable amount of anatase formation. These coatings presented a unique feature 

of surface morphology with meso-porosity and much enlarged surface areas, 

compared with the films prepared by furnace sintering technique. The addition of Ce 

and Ag, stabilized the anatase structure during the laser irradiations, whereas the 

addition of W destabilized the anatase structure. The Ce-TiO2 films prepared by 

SGLIT exhibited anatase structure which was stable up to 500 laser pulses at 35 mJ 

cm-2 fluence. The anatase was formed after 10 laser pulses only at 65-75 mJ cm-2 

fluence in the W-TiO2 films. When a higher number of laser pulses, fluence or higher 

W6+ loading were chosen, rutile structure started to form.  

On the other hand, the Ag-TiO2 nano-composite films prepared by SGLIT presented 

the anatase up to 200 laser pulses at 85 mJ cm-2 fluence. On average, anatase 

crystallite size of about 38 nm was achieved from both the W-TiO2 and Ag-TiO2 

films prepared by SGLIT. In contrast, the furnace-sintered W-TiO2 and Ag-TiO2 

films produced anatase crystallite size of 49.4 nm and 29.8 nm respectively.  
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Another achievement of the present research is the development of a single-step laser 

irradiation technique to generate an Ag-TiO2 nano-composite film on the glass 

substrate. A pulsed laser beam produced hexagonal Ag nanoparticles along with the 

crystallization of anatase-based nano-structured TiO2 film which was accomplished 

in 1 µs only.    

The films prepared by SGLIT displayed a higher photo-absorption compared to their 

furnace-sintered counterparts due to the unique surface features with a higher surface 

roughness. Overall, an enhanced bactericidal activity against E. coli cells was 

demonstrated under UV light by each of the W-TiO2 films compared to furnace-

sintered films except the 1W-TiO2. The E. coli cells did not survive on the W-TiO2 

films prepared by SGLIT, after 80 minutes under UV (365 nm) light. In contrast, E. 

coli cells still survived on the surface of furnace-sintered W-TiO2 films under the 

same conditions. Ag-TiO2 nano-composite films prepared by SGLIT, demonstrated 

an enhanced anti-bacterial activity against E. coli compared to the conventionally- 

made Ag-TiO2 films. No bacteria survived on the Ag-TiO2 films prepared by 50 

laser pulses at 85 mJ cm-2 fluence, whereas E. coli colonies always survived on the 

furnace-sintered Ag-TiO2 films under the UV, natural light and the dark room 

conditions.  
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NOMENCLATURE 
A  Absorbance 
Ao  Absorptivity 
ACAC  Acetyl Acetone 
HAC  Acetic Acid  
CB  Conduction band 
CFU  Colony Forming Units 
cp  Specific heat/heat capacity    J g-1 K-1 
CV  Valance Band 
CVD  Chemical Vapour Deposition 
CW  Continuous Wave  
D  Unfocussed Beam Diameter     cm 
DSC  Differential Scanning Calorimetery 
Dt  Thermal Diffusivity     cm2 s-1 
dhkl  Interplanar Spacing, d-spacing 
E2  Energy of the Excited State    eV  
E1  Energy of the Ground State    eV 
E. Coli  Escherichia Coli 
EDX  Energy Dispersive X-rays  
Eg  Bandgap Energy     eV 
eV  Electron Volts 
FEG-SEM Field Emission Gun-Scanning Electron     
  Microscopy 
FIB  Focussed Ion Beam 
FWHM Full Width at Half Maximum 
f  Focal Length      cm 
fs  Femto-second 
I0  Incident laser intensity/fluence   W cm-2 
JCPDS  Joint Committee on Powder Diffraction Standards 
k  Extinction coefficient  
kc  Thermal conductivity     W cm-1 K-1 
LASER Light Amplification by stimulated Emission    
  of Radiation 
m  Molar Mass      g 
M  Molarity 
ms  Milli-Second 
NHE  Normal Hydrogen Electrode 
nm  Nano-meter  
ns  Nano-second 
PCA  Photo-Catalytic Activity 
PLD  Pulse Laser Deposition  
PRR  Pulse Repetition Rate 
ps  Pico-Second      10-12 sec 
PVD  Physical Vapour Deposition  
R  Reflectivity      % 
REDOX Reduction-Oxidation 
ROS  Reactive Oxygen Species  
SAED  Selected Area Electron Diffraction  
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SGLIT  Sol-Gel/Laser-induced Technique 
STEM  Scanning Transmission Electron Microscopy 
T  Temperature      K , °C 
TG  Thermo-Gravimetery 
t  Time       min ,  s 
tp  Laser Pulse Width     ns , ms 
TnBT  Tetra-n-butyl Titanate, Titanium (IV) n-butoxide 
TiPT  Tetra-iso-propyl Titanate, Titanium (IV) iso-Propoxide,  
UV  Ultraviolet 
XRD  X-Ray Diffraction 
ρ  Density      g cm-3 
α   Absorption Coefficient     cm-1 
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Chapter 1 Introduction 

 

 

1.1 Research Motivation and Rationale 

The media often announce reports on various types of infectious diseases and the 

damage that are caused by bacteria in the medical and food areas. Most of those 

problems could be prevented if clean environments were maintained. Hygienic 

conditions are always emphasized in living areas and hospitals in order to maintain 

environmental cleanliness and ensure healthy living. However, in spite of 

innovations in research methods, a battle with the bugs is still continuing against 

their developed biological resistance to some antibiotics. Following the principle of 

prevention is better than cure, it is required to develop non toxic, self cleaning anti-

bacterial materials, which can minimize the ill effects of various pathogenic bacteria 

and sustain their anti-bacterial action throughout the day and night and TiO2 is 

considered as one of the potential candidates. 

Although, there are numerous strategies to deposit anti-bacterial coatings consisting 

of TiO2 films, most of these present troubles in fabricating these films on lower 

melting substrates, such as glass and polymers. In addition, longer heating and 

cooling cycles required in the furnace may deteriorate the quality of the films and the 

interface.  In recent years, a rapid growth has been witnessed in the laser processing 

of materials, associated with the great demand for rapid and localized manufacturing 

applications. Surface patterning and rapid prototyping of structures have enabled 

fully automated laser systems with flexibility of parameters to achieve the desired 

properties in much shorter time spans. Although, the laser surface engineering 

methods has been widely applied to process metals, alloys, semiconductors and 
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polymers etc., its potential role in generating nano-crystalline semiconductor thin 

films from a sol-gel origin has not been explored as much.  

 

1.2 Aims and Objectives of the Research 

The main aim set for this research is to develop a robust sol-gel/laser-induced 

technique (SGLIT) to prepare nanocrystalline anatase-based TiO2 thin films on glass 

and to compare their anti-bacterial performance against the conventionally prepared 

furnace sintered TiO2-based films..    

The objectives are as follows; 

The initial work on crystallization of the as-dried TiO2 films by excimer laser 

irradiation was quite challenging to achieve the meta-stable anatase phase, in a 

single-step process. Therefore, one of the primary objectives is to enhance the 

stability regime of the anatase in TiO2 films by introducing cerium (Ce2+) and 

tungsten (W6+) ions. Both of these additives were selected based on their reported 

effects on stabilizing the anatase up to high temperatures.  

Although, laser prepared anatase-based TiO2 films by two-step process have been 

reported before, a detailed account of the micro-structural, optical, and photo-

catalytic properties is not available. In this research, films dominant in anatase were 

prepared by SGLIT and furnace sintering techniques. A detailed characterization was 

undertaken in terms of crystal structure, surface morphology, and optical properties 

of both Ce-TiO2 and W-TiO2 films. However, the Ce-TiO2 films were only 

investigated to study the effect of laser parameters on anatase crystallization as well 

as to establish the technique. The research was more focussed on the investigation of 

anti-bacterial properties of the W-TiO2 films. 

The conventional sintering techniques to prepare Ag-TiO2 nano-composites on glass 

is a two-step process involving longer heating cycles in the furnace, followed by UV 

lamp irradiation. The furnace heating leads to undesired interfacial defects due to the 

heating of the substrate and the film simultaneously, Shortening of the processing 

time for Ag-TiO2 nano-composite films is therefore crucial to overcome the defects 

for their better performance compared to the conventional furnace sintering and 
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subsequent UV irradiation methods. Ag-TiO2 films can be prepared in a single-step 

approach by SGLIT leading to reduction of the Ag2+ ions with an in-situ anatase 

crystallization.  

In recent years, the importance of bactericidal coatings has increased tremendously 

because of the need for clean drinking water and healthy living. The focus of the 

research is therefore on developing new techniques and materials, which are 

economically viable as well as self sustaining. TiO2-based coatings are among these 

materials because of their non-toxicity and non-corrosive nature, contributing to their 

long-term use as a photo-catalyst. However, conventional film deposition techniques 

are time consuming due to longer furnace heating cycles and present serious 

difficulties in coating these films on lower melting substrates, e.g. glass and 

polymers. The purpose of the use of a laser as a heating source is to overcome this 

bottleneck and it is expected that a laser can be an equally efficient alternate to the 

conventional heating sources to crystallize amorphous films. Films loaded with 

silver ions (Ag-TiO2) could be an effective anti-bacterial agent.  

 

1.3 Thesis Outline 

The present thesis comprises nine Chapters in total, accompanied by one Appendix.  

Chapter 2 reviews the existing literature related to the properties, mechanisms and 

applications of TiO2 photo-catalytic films. The conventional techniques used to 

prepare TiO2 thin films are also covered with their merits and demerits. The sol-gel 

process is specially highlighted as the main technique used to prepare TiO2 sol-gel 

coatings on glass substrate.  

Chapter 3 reviews the laser processing of materials, while highlighting the 

properties, types and applications of various lasers. It is followed by the sol-gel/laser 

technique (SGLIT), with focus on oxide films.  

Chapter 4 gives details of the experimental procedures adopted for the present work.  

It includes the materials used for sol-gel processing, laser setups used and their 

modifications and the various characterization and techniques used to investigate the 
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TiO2 films before and after preparation by the SGLIT and furnace sintering method 

respectively.     

Chapter 5 contains the results obtained from Ce-TiO2 films prepared by the SGLIT. 

The effect of various laser processing parameters has been thoroughly investigated 

by Raman spectroscopy. The change in the surface roughness and morphology 

before and after laser irradiation is also incorporated.    

Chapter 6 presents the results obtained from the W-TiO2 films before and after 

preparation by the SGLIT and furnace sintering technique. The crystallographic, 

micro-structural and optical properties are discussed with respect the concentration 

of W6+ ions in TiO2 films.   

Chapter 7 is devoted to the further application of SGLIT to prepare Ag-TiO2 nano-

composite thin films by a simple single-step process. The films prepared by the 

SGLIT and furnace sintering technique were investigated by various analytical tools 

and the results are discussed in detail. 

Chapter 8 presents the drop test results obtained from the W-TiO2 and Ag-TiO2 films 

against E. coli strains under various ambient conditions. The results are compared 

with the furnace-sintered films and a possible mechanism of the killing of bacteria 

by TiO2 films is also included.  

Chapter 9 summarises the research results and draws the conclusions from the main 

findings of each experiment carried out. It also presents an outlook and 

recommendations for future work in the light of obtained results.  

Appendix A summarises the standard XRD crystallographic JCPDS cards of the 

anatase, rutile and silver structures as a cross-reference for comparing with the XRD 

and SAED results.    
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Chapter 2 Photo-Catalysis and TiO2 

2.1 Introduction 

The present Chapter incorporates the theory of photo-catalysis, mechanism and its 

application. The second part of this Chapter highlights the photo-catalytic and anti-

bacterial properties of TiO2 material. Apart from this, various techniques used to 

synthesize and prepare TiO2 films are incorporated, while highlighting the pros and 

cons of each technique. In the end, the sol-gel processing has been discussed in detail 

as the main technique used to prepare TiO2 films in this research. 

 

2.2 Photo-Catalysis 

The term photo-catalysis is defined as “the acceleration of a photo-reaction (reaction 

induced by photons) in the presence of a catalyst”. The photo-catalytic activity 

(PCA) is a measure of the efficiency of a photo-catalyst depending on its ability to 

create electron-hole pairs. These electron-holes pairs in turn generate free radicals 

(hydroxyl ‘ )( OH• ’ and superoxide anions ‘ )( 2
−•O ’ from the surface adsorbed water 

and oxygen molecules under the influence of the external excitation from the sun or 

other source. The ultimate result is the decomposition of various types of organic 

pollutants and contaminants into simple gaseous products after coming in contact 

with the photo-catalyst [1].  

In order to work efficiently, the photo-catalytic materials should have low bandgap 

energy so that they can be easily excited by the incident solar photons. The bandgap 

energy is associated with the position of a conduction and valance band inside a 

semiconductor material. The larger the gap between these bands, the more difficult it 

would be for the electrons to jump into the conduction band to initiate the photo-



Chapter 2                                                                                Photo-catalysis and TiO2 

 
30 

catalytic reactions. A plethora of research has been conducted on various types of  

photo-catalyst materials. Some of them naturally exist, while a few of them are 

synthetically developed. A list of the most common types of photo-catalysts, with 

their energy bandgap, is shown in Table 2-1. 

 

Table 2-1: List of common photo-catalysts with their bandgap energies at 0 K [1] 

Semiconductors Bandgap energy, Eg 
(eV) 

Drawbacks 

TiO2 3.03 Active in UV 
ZnO 3.2 Unstable, corrodes, 

poisoning 
ZnS 3.6 - 
α-Fe2O3 2.8 - 
WO3 2.8 Expensive, 

production problems 
SrTiO3 3.2 - 
CdS 2.42 Expensive, 

corrosion 
CdSe 1.7 -  
Si 1.17 - 
Ge 0.74 Expensive 

 

Although, some of these materials possess a low bandgap energy making them active 

to absorb photons in the visible range, they pose problems in their long-term usage 

because of corrosion, instability and cost issues.  

 

2.2.1 Applications of Photo-catalysis 

The photo-catalysts have found abundant applications in diverse fields, ranging from 

engineering to biomedical science, due to their unique properties. For example, self 

cleaning surfaces are an important requirement in our homes, including kitchen 

utensils, toilet surfaces, car windscreen mirrors, and high rise buildings to name a 

few [2]. Likewise, water purification and disinfection has become an issue of global 

interest today. Large amounts of industrial waste generated and its detoxification 

have raised a serious concern. On the other hand, numerous studies have been 

undertaken to develop efficient catalysts to destroy the micro-organisms (fungi, 

algae, bacteria etc.) to make water safe for drinking [3]. This area of research holds a 
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numerous applications due to the massive number of consumers and the large 

number of industries involved.   

Novel photo-catalysts have been applied electrochemically in water splitting to 

produce hydrogen, which may be used as a clean fuel source. This has emerged as an 

exciting area of research where renewable energy sources are being sought [4]. 

However, due to the limitations with the existing materials, as mentioned in Table 2-

1, there is a need for an efficient, nontoxic, low cost photo-catalyst which may 

flexibly be applied to address these issues and functions for long-term use. 

Excitingly, most of these criteria are matched with TiO2, which is discussed in detail 

in the next section. 

  

2.2.2 Selection Criteria of a Semiconductor Photo-catalyst 

Although there are several oxide and sulfide semiconductors available (Table 2-1) 

with sufficient bandgap energies for initiating and promoting a wide range of photo-

chemical reactions, most of them are associated with low quantum yield or chemical 

and photo-degradation with time [5]. In addition, the primary criteria for good 

semiconductor photo-catalysts for decomposition of organics are that the redox 

potential of the )8.2,(/ 02 VEeOHOHOHOH −=+→ −•−•  couple lies within the 

bandgap domain of the semiconductor and that they remain stable over longer 

periods. 

The metal sulfide semiconductors are unstable as they readily undergo photo-anodic 

corrosion e.g. ZnS. Similarly, ZnO is unsuitable with respect to incongruous 

dissolution to produce Zn(OH)2 at the surface, leading to its inactivation over time. 

In this scenario, there is a requirement for such a material, which is chemically stable 

over a long time and easily available.  

 

2.2.3 TiO2 as a Photo-catalyst 

TiO2 has been used in heterogeneous catalysis for a long time and is considered as 

one of the most interesting photo-catalytic material due to its low cost, chemical and 
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biological inertness, ultraviolet stability, non toxicity, reusability etc. Moreover, the 

position of its energy band induces a strong oxidizing and reducing (redox) power to 

reduce water and oxidise oxygen molecules respectively when excited by ultraviolet 

radiation as shown schematically in Figure 2-1.  

 

 

Figure 2-1: Schematic diagram of TiO2 energy band levels vs the normal hydrogen 

electrode (NHE)  

TiO2 was first used as a white colour pigment in paint or as food dye (E171, added in 

toothpaste) as shown in Figure 2-2. Later, its refractive index was used to make 

dielectric mirrors. Absorption of TiO2 in the UV region was utilized as a filter 

against harmful UV rays from the sun [1]. A major breakthrough in photo-catalysis 

research came when it was discovered by Fujishima et. al. that under UV 

illumination, water was dissociated at a TiO2 electrode without any external voltage 

[6]. It was the first time that the potential of TiO2 in water-splitting applications was 

explored. This attracted scientists and engineers around the world to a new paradigm 

of photo-catalytic research [4]. The optical properties of TiO2 have been exploited 

for use in solar cell applications. However, its low quantum yield led to a new class 

of dye sensitized solar cells (DSSC) which is one of the rapidly growing areas of 

research in the renewable energy sector [7].   

 

Ultraviolet 
light 
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Figure 2-2: TiO2 powder used as a white pigment in paints 

 

2.2.4 Crystallographic Structure of TiO2 

The photo-catalytic properties of TiO2 are closely linked with its crystalline 

structure. It naturally occurs in several polymorphs known as rutile, anatase and 

brookite. The anatase and brookite phases are meta-stable and are converted to rutile 

at temperatures above 500°C depending on the particle size, ambient pressure and 

other parameters etc. [8]. The rutile is thermodynamically a more stable phase as the 

anatase to rutile phase transformation is irreversible. The anatase and rutile both 

occur in a tetragonal crystallographic form and find most of the applications. In 

contrast, brookite possesses a rhombohedral structure and its photo-catalytic 

properties are unknown.  

 

Table 2-2: The physical properties of various polymorphs of TiO2 [9] 

Lattice constants, nm Structure 
a b c 

c/a Ratio System 

Anatase 0.3733 - 0.937 2.51 Tetragonal 
Rutile 0.4584 - 0.2953 0.644 Tetragonal 
Brookite 0.5436 0.9166 0.5135 0.944 Rhombohedral

Table 2-2 shows the difference in structural arrangement among various TiO2 

phases. It is interesting to note that anatase structure keeps the highest ‘ c ’ coordinate 

and therefore the c/a ratio of its unit cell is almost three times greater than rutile.  

Structure of the unit cell of anatase and rutile is shown in Figure 2-3. It has been 

observed that anatase keeps the highest PCA compared to other phases of TiO2. It is 
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attributed to the oxygen octahedral shape which is more displaced in anatase than in 

rutile phase.   

 
 

 
 

Figure 2-3: TiO2 Crystalline polymorphs; anatase and rutile 

 

2.2.5 Energy Band Structure of TiO2 

The electronic structure of a semiconductor is a key factor in photo-catalysis. Unlike 

a conductor, a semiconductor consists of a valance band (VB) and a conduction band 

(CB) respectively. The energy difference between these two levels is known as the 

bandgap (Eg). It can be considered like a wall that electrons must jump over in order 

to become free. The electrons and holes remain in the VB as long as there is no 

excitation from any source. However, when semiconductors are excited by photons 

with energy hv  ≥  Eg, some of the electrons are promoted to CB level if the energy 

gain is higher than the bandgap energy level. It is schematically shown in Figure 2-4.  
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Figure 2-4: Energy band diagram of anatase under UV excitation from sun light 

Anatase has a bandgap energy of 3.2 eV, which is equivalent to an excitation 

wavelength of 387 nm, making it to absorb in the near UV range. On the other hand, 

rutile has a bandgap energy of 3.0 eV (410 nm) enabling it to absorb visible light. 

Apparently, rutile should be a better photo-catalyst than anatase, but it is the opposite 

infact. The higher efficiency of anatase is attributed to its higher reduction potential 

of photo-generated electrons than rutile, since the bottom of conduction band of 

anatase being located 0.1 V more negative than that of rutile [10]. Another possible 

reason could be the lower density and higher surface area of anatase (3.83 g.cm-3) 

compared to rutile (4.24 g.cm-3).  

 

2.2.6 Mechanism of Photo-catalysis in TiO2 Anatase 

When a TiO2 film or powder consisting of anatase is illuminated with UV light of 

wavelength ≤  387 nm, electron and holes are produced as per the following reaction, 

 

ee TiOTiO
Ehv gTiO +−≥ +⎯⎯ →⎯

22
2       (~fs [11])                                 Eq.  2-1 

These electrons and holes recombine in the bulk (volumetric) or on the surface 

(surface recombination) of the TiO2 within a short time of few nanoseconds, 

releasing energy in the form of heat or photons. However, the remaining electrons 

and holes that could migrate to the surface without recombination can take part in the 

redox reaction with surface adsorbates (H2O and O2). It is shown with the help of a 

graphical model in Figure 2-5.  

The reduction reactions occur at the conduction band, where electrons are available 

after migration. Oxygen (accepter) from the air is reduced after accepting an electron 

Conduction Band

Valence Band

ΔEg  hv  ≥  Eg  
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Figure 2-5: Mechanism of photo-catalytic reactions at a TiO2 (anatase) particle surface  

from the conduction band as follows,  
 

)()(

)(

22

22

adHOHadO

adOOe hv

•+−

−−

→+

⎯→⎯+
     Eq. 2-1  

On the other hand, the positive holes remain in the valance band and donate or 

transfer their positive charge to the surface adsorbed water molecules (donor) as 

follows,   
 

•−+

•−+

+•+

→+

→+

+⎯→⎯+

OHOHh

adOadOh

HadHOOHh hv

)(2)(

)(

2

2

     Eq. 2-2 

 

The water molecules are subsequently oxidized into highly oxidising hydroxy 

radicals ( •HO ). These powerful redox radicals ( •HO , −
2O ) produced at the TiO2 

particle surface can undergo further reaction with the organic contaminants deposited 

on the TiO2 surface and, through a series of reactions, decompose them into simple 

gaseous products, e.g. H2O2, H2O and CO2 etc.     

Table 2-3 list the oxidation potentials of common oxidants. The higher the oxidation 

potential, the greater is the decomposing capacity of the material. 



Chapter 2                                                                                Photo-catalysis and TiO2 

 
37 

Table 2-3: Oxidation potentials of various oxidants 

Oxidant Oxidation Potential, V 

Fl (Fluorine) 3.0 

OH (hydroxy radical) 2.80 

O3 (ozone) 2.07 
H2O2 (hydrogen peroxide) 1.77 
KMnO4 (potassium 
permanganate) 

1.7 

ClO2 (chlorine dioxide) 1.49 
Cl (chlorine) 1.36 

 

2.2.7 General Applications of TiO2 

TiO2 is an excellent photo-catalyst in UV light and possesses a great domain of 

applications in dye-sensitized, thin film solar cells, water splitting for clean 

production of hydrogen, anti-bacterial and antiviral coatings, water purification, gas 

sensors, anti-corrosion resistant coatings and as a white pigment in paints to name a 

few [9]. Excitingly, most of these applications are associated with the anatase form 

of TiO2. They are graphically represented in Figure 2-6.   

 
 
 

 

 

Figure 2-6: Applications spectrum of TiO2 
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2.2.8 Anti-bacterial Applications of TiO2 

Extensive research has been published on the biomedical applications of TiO2 

against the decomposition of various harmful pathogens, including bacteria, viruses 

and fungi [12, 13] etc. Although there are several theories of killing of the bacteria 

by TiO2, it is mostly linked with the toxic effect of highly oxidising ( •HO ) radicals 

produced by the photo-catalytic reduction of water molecules by the TiO2 [14, 15], 

as mentioned earlier. However, there remain some further investigations about the 

actual agents killing the bacteria because several reactive oxygen species (ROS) 

other than ( •HO ) are also generated by photo-catalytic reactions, e.g. superoxide 

anions ( −
2O ), perhydroxyl radical ( •HOO ) and hydrogen peroxide ( 22OH ) and these 

species are known for their active role in biological reactions [16, 17].  

Naturally, most of these ROS are generated by the anatase during the photo-catalysis 

making TiO2 as one of the favourites for anti-bacterial applications, such as medical 

devices, self cleaning/sterilizing surfaces, food preparation surfaces, air-conditioning 

filters, water filtration sanitary ware, etc. A detailed mechanism for the killing of 

bacteria cells by the TiO2-generated radicals is discussed in detail in Chapter 8. 

However, a referenced schematic diagram of the photo-killing of a typical bacterial 

cell by the ROS produced by TiO2 is shown in Figure 2-7.      

 

 

Figure 2-7: A schematic diagram of the E. coli photo-killing by TiO2 generated reactive 

radicals [18] 
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2.3 Doping and Synthesis of TiO2 Nanoparticles, Thin Films 

It is well documented that the photo-catalytic properties of TiO2 are strongly 

dependent on its synthesis methods, experimental conditions, anatase/rutile 

proportion, crystallite shape and size etc. [19]. The photo-catalytic properties are 

dependent on the anatase therefore, it is necessary to achieve a high proportion of 

anatase in TiO2 films/powders. However, anatase being a meta-stable structure, it is 

required to ensure its stability as well as to improve its optical response in visible 

region. For this purpose, dopants or additives are introduced in TiO2 structure during 

synthesis.  

The selection of a specific dopant is associated with its ionic size/radius compared to 

the parent ions of titanium (Ti4+). The dopant ion should be of the same size as the 

parent ions in order to substitute the later. A variety of transition metal cations 

including W addition into TiO2 and their effects on photo-absorption have been 

studied by Kemp et. al. [20]. Anionic doping such as C and N has also been studied 

to improve the photo-catalytic response of TiO2 in visible light [21, 22]. On the other 

hand, PCA can also be affected by the anatase crystallite size in TiO2.  

Although, TiO2 is synthesized in various forms, e.g. nano-particles, thick/thin films 

etc. depending on the required applications. Thin films are of special interest because 

of the great demand of anti-bacterial and self-cleaning coatings on various types of 

surfaces. A number of methods have been developed to synthesize nano-crystalline 

anatase-based TiO2 thin films. Some of these are based on solid-state methods, while 

others are wet chemistry techniques. They include physical vapour deposition, 

pulsed laser deposition, magnetron sputtering, ion-assisted electron beam 

evaporation, chemical vapor deposition, sol-gel and flame spray pyrolysis, to name a 

few. Figure 2-8 shows the classification, typical features and the limitations from 

each of these methods. 
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Figure 2-8: Schematic flow chart of various synthesis techniques to prepare TiO2 films 

 

2.3.1 Chemical Vapour Deposition 

Chemical vapour deposition (CVD) is a wet chemical deposition technique in which 

materials in a vapour state are condensed to form a solid phase material. This 

technique has been widely applied to prepare TiO2 nanoparticles and thin films [23-

25]. A typical CVD process usually takes place within a vacuum chamber. The 

chemical precursors of the required composition are heated and the resulting vapours 

are driven into a coating chamber to start the deposition onto a substrate. Thick 

crystalline TiO2 films with grain sizes below 30 nm, as well as TiO2 nanoparticles 

with sizes below 10 nm, can be prepared by pyrolysis of titanium (IV) tetra iso-

propoxide (TiPT) in a mixed helium/oxygen atmosphere, using liquid precursor 

delivery [26]. A typical CVD reactor used by Ahmad et. al. [27] for the deposition of 

TiO2 precursor films is shown in Figure 2-9.  

It consists of a precursor delivery unit, which is a carrier gas flow system, a hot wall 

reaction zone, which is a tube furnace, a collector unit and a pumping system. The 

setup is complicated and there are many parameters (temperature, pressure, and flow 

rate) involved, making the desired product shape, chemical composition and 

structure difficult to achieve. In addition, the setup requires a high vacuum apparatus 

and heating furnaces to collect and crystallize the vapours of TiO2 into a crystalline 

material. There have been modifications of conventional CVD, including microwave 

plasma enhanced CVD (PECVD), metal organic CVD (MOCVD) and laser CVD 

[28, 29].  
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Figure 2-9: A typical CVD reactor used to deposit TiO2 films [27] 

SEM images obtained from TiO2 films at low temperatures (400°C) by CVD 

exhibited a smooth columnar structure in cross-section (Figure 2-10a), whereas a 

rough and dendritic microstructure was achieved at a reaction zone temperature of 

1000°C (Figure 2-10b). The average crystallite size of TiO2 was 25 nm [26]. 

However, the photo-catalytic properties of these films were not reported.  

 

  
 

Figure 2-10: SEM of a cross-section of a TiO2 film deposited by CVD on a Si substrate 

at 400°C a) and 1000°C b)   

 

2.3.2 Physical Vapour Deposition 

Physical vapour deposition (PVD) was introduced after CVD to use bulk materials of 

required composition for their subsequent deposition on various types of substrates. 

It is a versatile synthesis method and capable of preparing thin films in various 

TiO2 film

Si substrate

a) b)
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morphologies, with structural control at the nanometre scale by optimizing the 

process parameters. Due to a rapid progress in PVD recently, new methods e.g. 

thermal deposition, ion plating/implantation, sputtering, electron beam evaporation, 

pulsed laser ablation/deposition etc. have been evolved, primarily from the PVD 

process. Some of these are explained as follows.  

 

2.3.2.1 Pulsed Laser Deposition  

In pulsed laser ablation/deposition (PLD), atoms are removed from the target by high 

energy photons from a laser beam. The vapour phase species generated by the laser 

from the target, experience collisions and are condensed onto a nearby substrate 

followed by nucleation and growth of the condensed species. There are several 

reports on the PLD of TiO2 films. For example, a typical laser setup used by 

Terashima et. al. [30]  for PLD of TiO2 is shown in Figure 2-11a. The Nd:YAG laser 

beam (λ=266 nm, frequency quadrupled) was focused onto the TiO2 target (99.9%) 

through the focusing lens. A laser pulse repetition frequency of 30 Hz and a fluence 

of 6.5 J.cm-2 were used. The laser-ablated film was subsequently deposited onto a Si 

(100) substrate placed in front of the target. The chamber was evacuated thoroughly 

and oxygen (99.999%) was introduced into the deposition chamber and the pressure 

was changed from 75 to 200 mTorr. The substrate temperature during the deposition 

was varied from room temperature to 350°C by controlling the current in the silicon 

substrate. An SEM image of the as-deposited crystalline TiO2 film is shown in 

Figure 2-11b. However, the photo-catalytic properties obtained from these films 

were unavailable. 
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Figure 2-11: Schematic diagram of a laser deposition/ablation unit a) and SEM image 

of the as-deposited TiO2 film (125 mTorr oxygen pressure and a substrate temperature 

of 300°C for 6 h), [30] b)  

Laser ablation has several advantages e.g. speedy process, convenient, contamination 

from apparatus is minimized, no need to use hygroscopic metal alkoxide, a material 

target of the required composition only, size and production rate can be controlled by 

varying laser parameters, less agglomeration of particles as compared to other 

methods. However there are several disadvantages of laser ablation, which includes 

the slow production rate, expensive setup required and the need for subsequent high 

temperature heat treatment to anneal/crystallize the nanoparticles which could induce 

structural changes and growth of nanoparticles. Moreover, a narrow size distribution 

is difficult to achieve with laser-ablated particles.  

 

2.3.2.2 Reactive Magnetron Sputtering  

In reactive magnetron sputtering (RMS), a magnetic field parallel to the target 

surface is superimposed on the applied electric field so that the secondary electrons 

(emitted by the target during its bombardment) are trapped near the target surface. 

This leads to a large plasma ionization rate at the target surface and a significant 

increase of the deposition rate (10 mm h-1). Although, RMS produces dense and 

adherent coatings, the main drawback is the non-uniform erosion of the target by this 

technique, which decreases the deposition rate with time.  

a) 
b)
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A typical setup used for RMS is shown in Figure 2-12.  

 

Figure 2-12: The principle of reactive magnetron sputtering process 

Photo-catalytic TiO2 films deposited by magnetron sputtering have been reported by 

Yamagishi et. al. [31]. The deposited films obtained at 0.3 and 1 Pa chamber 

pressure exhibited the anatase structure as shown by XRD in Figure 2-13a, the 

corresponding SEM micrographs is shown in 2-13b. The photo-catalytic degradation 

of acetaldehyde and methylene blue under UV light was best from films deposited at 

3.0 Pa, as shown in Figure 2-13c.  
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Figure 2-13: XRD structures a), SEM micrographs b), and the change in concentration 

of acetaldehyde as a function of UV illumination time c) for TiO2 films sputtered at 

various chamber pressures [31] 

a)

b)
c)
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2.3.3 Flame/Thermal Spray Technology 

Thermal spray or flame spray pyrolysis (FSP) is a versatile technique for producing 

ceramic materials on the industrial scale, with a wide variety of particle morphology, 

size and composition [32]. During FSP, the solution is atomized into a series of 

reactors, where the aerosol droplets undergo evaporation and solute condensation 

within the droplet. The precipitate particles are then dried at higher temperature to 

form a micro-porous particle. Finally, sintering of the micro-porous particle leads to 

a dense powder or film. The FSP technique takes advantage of solution chemistries 

and provides a control over the particle environment by solution distribution into 

small droplets. This technique has been successfully used to prepare oxide and non-

oxide ceramic, metal, and composite particles [33].  

Titanium oxide nanoparticles have been synthesized by a flame spray hydrolysis 

process by Teleki et. al. [34]  for sensor applications, as shown in Figure 2-14. A 

distinctive feature of these sprayed powders is the homogeneous distribution of 

constituents throughout all of the particles because all of the constituents are formed 

from a solution. 

 

Figure 2-14: As-prepared 10 atomic % Nb/TiO2 (a and c) and 10 at.% Cu/TiO2 (b and 

d) nanoparticles [34] 
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2.3.4 Sol-Gel Synthesis 

Sol-gel is a wet chemical process in which a solution of metal-organic compounds is 

subjected to hydrolysis and condensation reactions leading to a MOM −−  gel 

structure (M=metal, O=oxygen). If the chemical reactions are controlled properly, 

the solution will become a structured liquid containing a matrix of metal-organic 

chains. When this solution is coated onto a surface, the evaporation of solvents leads 

to an amorphous structure called a gel, which is formed by the cross-linking of 

metal-organic groups altogether [35]. In order to eliminate the organic species, the 

film is heated between 300-500°C to evaporate and decompose the organic ligands 

and redundant solvents. This step is often referred as the drying stage. The as-dried 

film still remains in amorphous state so it is sintered at higher temperature to convert 

the amorphous layer into a nano-crystalline metal oxide structure. The sintering 

temperature may vary between 500-900°C depending on the nature of metal ions, the 

desired phase, porosity and particle size. A general sol-gel process is graphically 

presented in Figure 2-15.  

Sol-gel has distinct advantages over other synthesis techniques, such as PVD and 

CVD. The basic advantage is the simple setup consisting of moderate cost chemicals 

and glass items to react the chemicals. There are no high vacuum requirements 

compared to CVD and PVD as mentioned earlier. In addition, the chemical 

homogeneity of the product is comparable to that of other techniques or even better. 

Recently, this method has been expanded and merged with other processing 

techniques, such as laser processing. This novel strategy of synthesis combines the 

benefits of the chemical homogeneity of sol-gel derived films and the laser beam as 

an energy manipulation and patterning source. However, it is different from laser 

ablation as no material vaporization takes place and a low laser energy, sufficient to 

transform the material and induce a phase transformation, is employed. The use of 

high temperature sources (furnace), which have been used in conventional 

techniques, is therefore omitted. However, before discussing this process in detail, it 

is necessary to describe the sol-gel science first. 
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Figure 2-15: A schematic diagram of sol-gel processing of thin films and powders [36] 

 

2.4 Sol-Gel Processing of Thin Film Materials 

It is said to be the “Century of Nanotechnology”, which is leading the world to an 

industrial revolution by miniaturization of goods from different walks of life. It may 

not be wrong to say that novel synthesis and fabrication methods, particularly sol-gel 

process, have an important contribution for these nano-structured materials and 

devices. This section will present a brief overview of the sol-gel mechanism as well 

as its applications to prepare various materials into various shapes and morphologies.  

 

2.4.1 Sol-Gel Mechanism 

A sol-gel is a colloidal solution of metal-organic [ 1)( −nORM ] or metal-organic-

oxygen-metal-organic [ 11 )()( −− −− nn ORMOMOR ] molecules which are linked into 
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a MOM −−  polymeric network. The solution is formed by controlled hydrolysis 

and condensation reactions of metal alkoxides. As follows, 

 

ROHORMHOOHORM nn +−→+ −12 )()(      Eq. 2-3  

ROHORMOMORORMHOORMOR nnnn +−−→−+− −−−− 1111 )()()()(         Eq. 2-4                                     

OHORMOMORORMHOORMHO nnnn 21111 )()()()( +−−→−+− −−−−   Eq. 2-5 

where M can be any metal such as Ti or Si etc., and R denotes an alkyl radical, such 

as methyl (CH3), ethyl (CH2CH3) or others. The eq. 2-3 stands for hydrolysis, 

whereas eq. 2-4 and 2-5 stands for condensation reactions. The hydrolysis consists of 

replacing one OR group of alkoxide with a hydroxyl ion (OH), releasing an alcohol 

molecule in the process. Condensation is the reaction between two partially 

hydrolyzed molecules [ 1)( −− nORMHO ] or one partially hydrolyzed molecule and 

one alkoxide molecule [ nORM )( ] to form a MOM −−  molecule with a [ 1)( −nOR ] 

attached to each metal atom. By definition, condensation liberates either an alcohol 

or a water molecule, depending on the initial compounds [35].  

The hydrolysis and condensation reactions are reversible. The speed of reaction 

depends on the concentration of the initial compounds and can be altered by other 

reactants which inhibit the gelation process. If the hydrolysis/condensation reaction 

reaches equilibrium with its reverse reaction, the solution will never gel in a sealed 

container. Such a solution is called a stable sol-gel. By varying the amount of 

water/alcohol, it is possible to control the speed of each reaction and shift the 

equilibrium in either direction. If one were to remove alcohol from a stable sol-gel, 

this would decrease the speed of the reverse reactions, and would shift the 

equilibrium toward hydrolysis and condensation. If enough alcohol is removed from 

the solution, it will eventually gel. This is actually desired for the fabrication of thin 

films. When the solution is spread out over a surface (either by dip coating or 

spinning), the solvent evaporates and the solution gels, making a thin film that is 

rigid enough for handling [37].  

Chelating compounds can also modify the gelation. These include β-diketones, such 

as acetylacetone (ACAC) and carboxylic acids, such as acetic acid (HAC) [38]. 

Moreover, the solution pH and ambient temperature also play important roles in the 
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final film properties. S. Doeuff et. al. has published a comprehensive study of the 

various process variables and their effect on the TiO2 chemical structure [39].  The 

various process parameters associated with the sol-gel preparation of TiO2 precursor 

materials are detailed in the following section.  

 

2.4.2 Selection of Reactants in Sol-gel 

The choice of sol-gel precursors is influenced by several factors, e.g. metallic yield, 

availability, cost, reactivity, pyrolysis temperature and high solubility in the solvent 

medium. The reactivity and metal content are interrelated, and the proper choice in 

accordance with high metal contents and low reactivity is desirable. Precursors with 

high metal content are usually much more reactive and it may be difficult to form a 

stable solution. For alkoxide with different alkyl groups, the reactivity increases in 

the order as follows [35],  

 
Methyl > Ethyl > Propyl > Butyl > Higher order alkyl groups 
 

2.4.3 Selection of Solvent 

The selection of solvent is relatively straightforward. Alcohols are generally used as 

solvents. In order to avoid hydrolysis, the parent alcohol of the particular metal 

alkoxide may be used as follows. 

 
M(OR)n + xR’OH   ↔  M(OR)n-x + (OR’)x + xROH   

where ‘R’ is the alkyl or the functional group attached to hydroxyl in carboxylic 

acids [40].  

 

2.4.4 Chemical Modification 

Niobium alkoxides, which are used in the preparation of niobium-doped 

ferroelectrics, are very reactive to water. Precipitation starts to occur within a few 

minutes if they are exposed to moisture in the ambient condition. However, Doeuff 

et al. [39] have shown that precipitation never occurs when acetic acid is added to 

the alkoxide prior to water, even in small amounts. This result indicates that acetic 
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acid can be used to slow the hydrolysis of the alkoxides and subsequently result in a 

more homogenous microstructures. The chemical modification results in a new type 

of ligand structure and makes the alkoxide less sensitive to hydrolysis reactions.  

 

2.4.5 Aging, Deposition and Drying  

Apart from the nature of solvents, alkoxides and chemical stabilizers/modifiers, there 

are other processing variables which may affect the quality and properties of final 

product. They include aging treatments of the precursor sol to form a uniform gel, 

solution pH, coating/deposition parameters, drying conditions, calcinations and 

annealing temperatures and ambient atmospheres, such as argon, nitrogen, oxygen or 

air etc. Each of these parameters should be optimized to produce films with the 

required structure, crystallite size, porosity, optical and photo-catalytic properties 

etc. 

Aging is required to stabilize the sol or to convert it into gel after a certain time, 

varying from days up to months. However, gelling behaviour can be accelerated by 

drying sols at lower temperature, dip or spin-coating of films, or under medium 

vacuum of approximately 10 mbar or lower. During spin-coating, as the solvent dries 

out, the precursor polymeric network establishes and grows until all the free and 

entrapped volatile matter is removed. The gel may become a bit hard during this time 

and is ready for calcination. Often, drying and calcination are termed collectively as 

pyrolysis.  

 

2.5 Sol-gel Processing of TiO2 and Dip/Spin-Coating 

TiO2-based materials formed by sol-gel processing are widely reported owing to 

their distinct advantages, the simple processing by sol-gel and the exciting properties 

of the TiO2 films, nanoparticles and their photo-catalytic functions [41, 42]. The 

spin-coating and calcination of TiO2 sol-gel films is carried out at 300-400°C 

depending upon the nature of organic compounds and their decomposition/pyrolysis 

temperatures. During pyrolysis, oxides of parent metals are formed that react with 

each other according to the reaction kinetics and a new oxide compound is 
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crystallized. On the other hand, dip-coating involves the immersion of a clean 

substrate into a sol-gel solution and then withdrawing at a certain rate. In this way, 

the substrate a layer of solution is coated on the substrate which dries out as the 

excess solution drips down. The various stages of dip-coating and spin-coating 

process are schematically shown in Figure 2-16. 

 

 

 

 

Figure 2-16: Dip-coating a) and spin-coating b) of sol-gel solutions 

 

 
 
 
 
 
 

(a) 

(b) 
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Chapter 3 Laser Processing of Materials 

 

3.1 Introduction 

This Chapter provides a detailed description of the lasers and their application in 

materials processing especially stressing on oxide-based thin films. The first section 

presents the background of the laser physics, properties and applications. This is 

further divided into the interaction of the laser beam with engineering materials and 

the mechanism involved in the laser beam interaction with material during 

manufacturing. The last section includes the previous work done on the laser-

induced processing of TiO2-based thin films on various substrates.    . 

 

3.2 What is Laser? 

The acronym “LASER” stands for “light amplification by stimulated emission of 

radiation”. The laser is a device which produces a monochromatic, coherent beam of 

photons with high energy, which is capable of heating, melting and even vaporizing 

most of the materials at room temperatures. The discovery of the laser was laid down 

by Dr Theodore Maiman, while working at Bell Laboratories in 1970 [43].  

 

3.3 Laser Principle and Working 

The atoms inside materials are in constant state of motion. They continuously 

vibrate, move and rotate in all directions randomly. The atoms can be in different 

states of excitation or in different levels of energy. Two states exist, namely the 
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ground and the excited state. Normally, an atom finds itself in the ground state, 

which is the lowest energy state for the atom to be stable.  

The light wavelength ‘λ ’ and frequency ‘ν ’ are reciprocal parameters being 

connected by the following equation, 
 

λ
cv =      Eq.  3-1 

If a photon of sufficient energy interacts with an atom such that input energy is equal 

to the energy difference between the excited state and the ground state, the 

absorption of the photon takes place as, 

 
λ/12 hchvEE ==−      Eq.  3-2 

where, ‘ h ’is Plancks’s constant (6.6260755 ×10−34 J s), ‘ v ’ is the frequency of the 

light radiation (Hz), ‘λ ’ is the wavelength of the light (nm), ‘ c ’ the speed of the 

light (2.99×108 m s-1), ‘ 2E ’ and ‘ 1E ’ are the energy levels of the excited and ground 

states respectively. 

A laser is a device that controls the way that energized atoms release photons. It 

produces an essentially coherent, convergent and monochromatic beam of 

electromagnetic radiation with wavelength somewhere between ultra-violet to 

infrared. A laser can deliver very low (mW) to extremely high (1-100 kW) focused 

power, with a precise spot size and interaction/pulse time (10-3 to 10-15 s), on any 

kind of substrate through any medium [43]. A typical electromagnetic radiation 

spectrum is displayed in Figure 3-1.  

Many types of lasers are available today, but they essentially rely on the same basic 

features. Inside a laser, the lasing medium is “pumped” to get the atoms into an 

excited state. Typically, very intense flashes of light or electrical discharges pump 

the lasing medium and create a large collection of excited-state atoms (atoms with 

higher-energy electrons) as shown in Figure 3-2. In order to work efficiently, it is 

necessary for the laser to have a sufficient number of atoms in the excited state. In 

general, the atoms are excited to a level that is two or three levels above the ground 
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state. This increases the degree of population inversion. The population inversion is 

the number of atoms in the excited state versus the number in ground state.  

 

 

Figure 3-1: Electromagnetic spectrum of various energy radiations 

 

 

Figure 3-2: A schematic representation of the laser pumping and stimulated emission 
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Once the lasing medium is pumped, it contains a collection of atoms with some 

electrons sitting in excited levels. The excited electrons have energies greater than 

the more relaxed electrons. Thermodynamically, it is favourable for the excited 

electrons to lose some energy and come to a lower energy state following the free 

energy principle. The electron therefore jumps back to a lower energy state to relax, 

and in turn releases some energy. This energy is emitted in the form of photons of a 

specific wavelength depending on the state of electron's energy when the photon is 

released [44]. 

 

3.4 Applications of Lasers 

The laser radiation is distinguished from other electromagnetic radiation mainly in 

terms of its intensity, coherence, spectral purity and ability to be focussed into small 

size. To-date, lasers have been applied in numerous fields to undertake diverse tasks 

as shown in Figure 3-3.  

 

 

Figure 3-3: Chart showing the spectrum of laser applications [43] 
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3.5 Classification of Lasers  

Lasers for materials processing may be classified in a number of ways: 

active medium (liquid, gas or solid);  

output power (mW, W or kW);  

wavelength (infrared, visible and ultraviolet);  

operating mode (CW, pulsed or both)  

applications (micromachining and micro-patterning etc.) 

The primary classification, however, is made by the state of the active medium, as 

shown in Figure 3-4. Some lasers have also been classified by their average power 

and wavelength as shown in Figure 3-5. 

 

 

Figure 3-4: Laser classification by active medium [43] 

 



Chapter 3                                                                         Laser Processing of Materials 

 
58 

 

Figure 3-5: Laser classification by wavelength and average power [43] 

 

3.6 Laser Beam Parameters 

Although each class of laser has its own merits and applications, these lasers possess 

several common characteristics associated with their beam output. These are 

described briefly in the following section. 

 

3.6.1 Wavelength 

The wavelength of the laser is the shortest distance in the direction of propagation 

between two field vectors. It can be represented in the form of the following 

expression; 
 

cf =λ      Eq.  3-3 
     

where ‘λ ’ is the laser wavelength (nm), ‘ f ’ is the frequency (Hz) and ‘ c ’ is the 

speed of light (m s-1). The wavelength of the laser beam is dependant on the energy 

level transitions by stimulated emission, the lasing material and the resonant 

wavelengths in the optical cavity. 
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3.6.2 Peak Power Density 

For pulsed lasers, peak power density is achieved at the middle of the pulse width. It 

is expressed as ‘P’ and measured in the units of W cm-2 units.  
 

pA
EP
τ.

=      Eq.  3-4  

where ‘ pτ ’ is the laser pulse width, ‘ E ’ is the energy per pulse and ‘ A ’ is the laser 

spot or beam area on the sample.  

 

3.6.3 Intensity 

Intensity or irradiance is defined as the average power of the laser divided by the unit 

area of the beam. It is also known as irradiance or power density of the laser and 

expressed as W cm-2. 

 

3.6.4 Fluence 

Laser fluence ‘ F ’ is usually associated with the pulsed lasers and is calculated as 

the energy of the laser pulse per unit area. It is also referred to as the energy density 

and is usually expressed as J cm-2. 

.A
EF =      Eq.  3-5 

 

3.6.5 Focussed Spot Size 

The focusing diameter is measured between the points where the intensity has fallen 

to 1/e2 of the central peak value. For a rectangular beam with a plane wave front, the 

diffraction limited beam diameter, which is the smallest focal diameter, is given by:  

D
fd λ

=min      Eq.  3-6  

For a circular beam, the equation is: 
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D
fd λ×

=
44.2

min      Eq.  3-7  

where ‘ f ’ is the focal length of the focusing optic and ‘ D ’ is the unfocused beam 

diameter and ‘λ ’ is the wavelength of laser beam. The focused spot size is also 

inversely proportional to the numerical aperture of the objective lens [43]. 

 

3.6.6 Beam Waist  

When a Gaussian beam is focused with a lens, the size of the beam becomes lowest 

at the focal plane of the lens. This minimum size of the laser beam is termed the 

beam waist and expressed as ‘ βd ’ (mm). 

 

3.6.7 Divergence    

The divergence ‘θ ’ is tendency of beam to spread as it propagates through the laser. 

The Gaussian beam has lowest beam divergence. The focused spot size is smaller for 

a low divergence beam and has a great depth of focus. The divergence of a Gaussian 

beam once it has passed through the beam waist ‘ βd ’ is given by, 

 

βπ
λθ

d
2

=      Eq.  3-8  

 
 

3.6.8 Depth of Focus 

The laser beam tends to focus at the focal length with minimum beam diameter or 

spot size and then diverges again, as shown in Figure 3-6. The depth of focus (DOF) 

is the distance over which the focused beam has about the same intensity or the 

distance over which the focal spot size changes by ~ ±5% [45]. 
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Figure 3-6: Laser beam focusing and the depth of focus [45] 

 

DOF can be expressed by the equation, 

 
2

44.2 ⎟
⎠
⎞

⎜
⎝
⎛=

D
fDOF λ      Eq.  3-9  

where ‘ f ’ is the focal length of the lens and ‘ D ’ is the unfocused beam diameter 

and ‘λ ’ is the laser wavelength.  

 

 

3.7 Laser Beam Characteristics 

3.7.1 Continuous Versus Pulsed Laser Beams  

In terms of the nature of output beam, a laser may be classified into continuous wave 

(CW) and pulsed wave respectively. In a CW laser, the output power (W) of the laser 

has constant amplitude with time. The heat input during the material processing is 

the power divided by the processing speed (m s) and is expressed as J m.  

On the other hand, in a pulsed laser the output laser energy is expressed in J. A 

pulsed laser may have a short pulse length and high peak power at relatively low 

average energy. For example, in laser pulsed welding, a series of overlapping pulses 

is used to form the weld. The laser pulse energy determines the amount of melting 

per pulse. Thus it is possible that the material may not heat up as much when 

processing with a pulsed laser as opposed to a CW laser [46].  The pulse 

width/duration may vary in different lasers normally from ms (10-3 seconds), ps (10-

12 seconds) to fs (10-15 seconds). Typical output beams from a CW and a pulsed laser 

are shown in Figure 3-7.  
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Figure 3-7: A graphical presentation of a CW and a pulsed laser beam output   

 

3.7.2 Gaussian Versus Top-hat Beam Profile  

The laser beam profiles are used to represent the spatial intensity distribution across 

the laser beam at a certain distance. The laser beam propagating in any direction has 

a transverse mode which determines the profile quality of the beam. It is known as 

the electromagnetic mode, and expressed as ‘TEMab’. The TEM mode for a Gaussian 

distribution of the laser beam is denoted as TEM00. A Gaussian laser beam generates 

a circular profile with maximum intensity concentrated at the centre of the beam 

spot. Most of the commercial lasers operate with a Gaussian or near Gaussian profile 

e.g. CO2, Nd-YAG, diode lasers etc. However, the Gaussian beams can easily be 

transformed into a flat top-hat profile by using suitable optics. 

On the other hand, a top-hat profile is used for a square shape of the laser beam, 

generating a flat distribution of intensity in the transverse and lateral directions 

considering the laser beam cross-section to be uniform, which in most of the cases is 

not feasible. Excimer lasers normally are described with a flat top-hat or near quasi-

Gaussian profile. The transverse profiles from a Gaussian and flat-top laser beams 

are graphically plotted in Figure 3-8.  
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Figure 3-8: Transverse Intensity profiles from Gaussian a) and flat-top b) laser beams   

 

3.8 Material Properties Associated with Laser Processing  

Material properties play a dominant role in determining the type of interaction with 

the laser beam and the possible mechanisms of laser-induced heating, melting or 

vapourization. However, due to the nonlinearity of a certain process, some properties 

experience a significant change during laser interaction, which may pose problems in 

modelling unless considered. The physical properties of the engineering materials 

affected by the lasers are discussed in the following section.  

 

3.8.1 Absorption Coefficient  

In absorbing materials, the light intensity ‘I’ decreases along a distance from z = 0 to 

z according to the Beer-Lambert law, which is given as; 

 

eII z

z

α−= 0
     Eq.  3-10

  

where ‘α ’ is the absorption coefficient which is a function of the vacuum 

wavelength ‘λ0’ and the extinction coefficient ‘ k ’ and is calculated as; 

 

  
0

4
λ
πα k

=      Eq.  3-11 
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Absorption therefore takes place in a very shallow region, with a depth only a 

fraction of the wavelength of the incident radiation. The distance after which the 

intensity is reduced by a factor of 1/e is called the absorption length or optical 

penetration depth ‘ I α
’ which is the reciprocal value of the absorption coefficient α; 

αα

1
=I      Eq.  3-12 

 
 

3.8.2 Absorptivity  

In a typical laser-induced process, the laser energy will not be coupled completely 

into the material or work piece, rather it is split up by the material into various parts 

(Figure 3-9) due to the following factors, 

 
• Reflection from the surface  

• Absorption within the bulk 

• Scattering by the various species 

• Transmission through a thin area 

These fractions can be described by the reflectivity ‘R’, the absorptivity ‘A’, the 

scattered fraction ‘S’ and the transmissivity ‘T’ respectively. Following the law of 

conservation of energy, these parameters have to fulfil the relationship [47],   
 

1=+++ TSRA      Eq.  3-13
  

The starting value ‘I0’ for Beer’s law (eq. 3-9) is given by the intensity, which 

actually enters the work piece, i.e. (1−R)I. The absorbed intensity A.I will contribute 

to the heating of the material and will have a direct impact on the process. As the 

temperature of a material changes, the absorptivity can increase or decrease, 

depending on its optical properties and modifications to the surface, e.g. oxidation 

reactions or phase transformations etc. Absorptivity also varies with surface 

roughness. A rough surface presents a greater surface area to the laser beam and 

causes light to be reflected several times, thereby increasing the total absorptivity. 

Figure 3-10 presents the absorptivity at various laser wavelengths for various 

engineering materials.  
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Figure 3-9: A schematic drawing of laser surface treatment [48] 

 

 

Figure 3-10: Absorptivity of various materials at various laser wavelengths [43] 

 

3.8.3 Reflectivity 

If the thickness of the material is much larger than the optical penetration depth, ‘Iα’, 

the transmission can be neglected such that A=(1-R). In the case of perpendicular 

incidence on the surface, the laser beam propagating from an optically thin medium 
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(e.g. air with n≅ 1) into a material with a complex index of refraction, the reflectivity 

‘R’ can be computed by the equation, 

 

22

22

)1(
)1(

kn
knR

++
+−

=      Eq.  3-14 

The absorbed portion of the laser light may lead to heating of the work piece in the 

absorption layer and to deeper layers through heat conduction. The absorption and 

heat conduction may depend upon several parameters e.g. the laser beam intensity, 

interaction time, surface condition, physical and thermal properties of the work piece 

etc.  

3.8.4 Thermal Conductivity 

Thermal conductivity is defined as the rate of heat flow through a material. Thermal 

conductivity is directly proportional to the amount of energy present (the volumetric 

heat capacity), the number and velocity of energy carriers (electrons and phonons), 

and the amount of energy dissipation (the amount of scattering or the attenuation 

distance of lattice waves, i.e. the mean free path) [43].  

Metals and alloys keep a higher thermal conductivity because of free carrier 

electrons in their structure, which can move freely. As the temperature rises, the 

amount of energy dissipated increases by collisions, and thermal conductivity 

decreases. The main carriers in ceramics and glasses are phonons which can be 

imagined as lattice vibrations that occur on discrete energy levels or quanta. Their 

electrons are restrained in ionic and covalent bonds and cannot participate in thermal 

conduction at low temperatures. The mean free path in ordered ceramics is inversely 

proportional to temperature, and so thermal conductivity decreases as temperature 

increases.  

Thermal conductivity is highest in materials that have an orderly structure 

comprising single elements, or elements of similar atomic weight. Differences in 

atomic size result in greater lattice scattering. Glasses are amorphous, and so have a 

relatively short mean free path that does not change significantly with temperature. 

The increase in heat capacity with temperature is the mechanism responsible for the 
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increase in thermal conductivity with temperature in glasses. Most polymers have 

low values of thermal conductivity because electrons are bound in covalent bonds, 

molecular sizes are large, and the degree of crystallinity is small [43]. 

 

3.8.5 Specific Heat Capacity 

Specific heat capacity, specific heat or heat capacity is the measure of energy 

required to raise the temperature of a material through a degree Celsius at constant 

pressure. It is expressed in units of J kg-1 K-1 or as a volumetric quantity as J m-3 K-1. 

The term ‘heat capacity’ is normally used for molar quantities and expressed in units 

of J mol-1 K-1.  

Heat capacity ‘Cp’ is given by the expression; 

 

ΔΤ
=

m
QCp      Eq.  3-15 

where ‘Q’ is input energy, ‘m’ is the molar mass and ‘ΔT’ denotes change in 

temperature. The heat capacity of metals and alloys increases with temperature until 

it reaches a limiting value of 25 J mol-1 K-1. For ceramics and glasses, the heat 

capacity increases with temperature to about 1000°C, above which it remains nearly 

constant. In polymers, it increases steadily until the glass transition temperature is 

reached [43]. 

 

3.8.6 Density 

The density ‘ d ’ is defined as the unit mass of a substance ‘ m ’ per unit volume ‘V ’ 

and is mathematically expressed as; 

 

V
md =      Eq.  3-16 

The units are expressed as g cm-3 or kg m-3. Close packing of atoms results in a high 

density and a high melting temperature. This accounts for high values in metals and 

alloys, and low values in polymers. 
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3.8.7 Thermal Diffusivity 

Thermal diffusivity is the ratio of energy transmitted by conduction to the energy 

stored in unit volume of material and is given by; 

 

p

c
t c

k
D

ρ
=      Eq.  3-17 

where ‘ ck ’ is the thermal conductivity,  ‘ pc ’ is the heat capacity and ‘ ρ ’ denotes 

the density of material. It is often referred to as the diffusion coefficient for heat and 

is expressed as cm2 s-1. Thermal diffusivity determines how rapidly a material will 

accept and conduct thermal energy. This may result from pulsed laser treatment, or a 

moving heat source. It is associated with the thermal penetration in a material, and 

therefore, is particularly important in laser-induced heating processes. The vertical 

distance ‘z’ over which heat diffuses during the laser pulse duration ‘tp’ is given by  

)2( pttDz =      Eq.  3-18 

or by replacing tD  by eq. 3-17,  

).( tkz =      Eq.  3-19 

The diffusivity of alloys is generally lower than that of the pure metals in the alloy; 

stainless steel is particularly low in comparison with plain carbon steels. 

 
 

3.9 Laser–Material Interaction  

3.9.1 Photo-thermal Processing: Lattice Heating 

The primary stage in all laser processing applications involves the coupling of laser 

radiation to the electrons within the material. The absorption of photons from 

incident laser beam, promotes the electrons to higher energy states. These excited 

electrons can divest their excess energy in a variety of ways. For example, if the 

photon energy is large enough, the excited electrons can be removed entirely from 

metal. This is called the “photo-electric effect” and usually requires photon energies 

greater than several electron volts. Most laser processing applications, however, 

utilize lasers emitting photons with relatively low energy. The energy of CO2 laser 
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photons is up to 0.12 eV while the Nd:YAG laser photons have an energy of 1-2 eV. 

Hence, electrons excited by absorption of CO2 or Nd:YAG laser radiation do not 

have enough energy to be ejected from the material surface. Nevertheless, such 

electrons must lose energy to return to an equilibrium state. This occurs when 

excited electrons are scattered by lattice defects e.g. non-crystalline regions such as 

dislocations and grain boundaries etc. In either case, the overall effect is to convert 

electronic energy derived from the beam of incident photons into heat, which is 

useful in most of the surface treatment applications [49].  

 

3.9.2 Laser Beam Spatial Energy Distribution 

The spatial profile of deposited energy from a laser beam is illustrated in Figure 3-

11. For laser irradiation, the beam intensity ‘I’ at a depth ‘z’ for the normally 

incident beam of initial intensity ‘ oI ’ (W m-2) is given by [50], 

 
)()1)((),( z

o eRtItzI α−−=      Eq.  3-20 

where ‘ oI ’ is the incident laser intensity,‘t’ is time of laser interaction with material, 

‘R’ is the reflectivity. 

 

Figure 3-11: Spatial profile of deposited energy following irradiation of solid matter by 

laser beam [51]  
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3.9.3 Heating Due to Laser Irradiation 

The energy deposited by the laser irradiation is converted into heat on a time scale 

shorter than the pulse duration or laser interaction time [50]. The temperature rise 

induced by the laser irradiation depends on the deposited energy profile and the 

thermal diffusion rate during laser irradiation. Thermal diffusivity ‘D’ of the material 

can be calculated by the eq. 3-17  

The vertical distance ‘z’ (over which the heat energy diffuses in to the material) in 

comparison to α-1 (absorption coefficient) determines the temperature profile. The 

condition of α-1 << z is applicable typically for laser irradiation of metals. Under the 

one dimensional heat flow condition, the heat balance equation may be expressed as 

follows [51],  

 

z
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z
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T
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∂
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∂
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∂

∂ ),(),(),(ρ      Eq.  3-21

  

where, ‘T’ and ‘Q’ are the temperature and energy density at a given vertical depth 

‘z’ and time ‘t’ respectively. Heat balance eq. 3-21 may be solved analytically if the 

coupling parameters (α, R) and materials parameters (ρ,  ck  and Cp) are not 

temperature and phase dependent. However, nonlinear processes are normally 

associated with phase changes. Thus, the heat balance equation is solved by 

numerical techniques like finite difference/element methods.  

The laser irradiated material may undergo heating, melting or vaporization 

depending on the temperature profile. For surface melting and subsequent re-

solidification, the solid-liquid interface initially moves away from and then travels 

back to the surface with a velocity as high as 1–30 m s-1. The interface velocity is 

related to temperature by the following expression,  
 

)( im TTv −∝      Eq.  3-22 

where ‘ mT ’ and ‘ iT ’ are the melting and interface temperatures, respectively [50]. 

The details on mathematical modelling of heat transfer in laser material processing 

may be found elsewhere [52, 53]. 
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3.10 Excimer Laser-induced Processing  

3.10.1 Basic Principle 

Excimer lasers are notable for their ability to produce high-power radiation in the 

ultraviolet portion of the spectrum. Operation in the ultraviolet means that the 

diffraction limited focal spot can be very small, smaller than for other high-power 

lasers. In addition, the short wavelength generally means that there will be good 

coupling of the energy to a work piece. The term "excimer" is derived from the word 

"dimer," meaning a diatomic molecule formed by the union of two atoms. If the 

molecule is in an excited state, it is referred to as an excited dimer or excimer [54].  

Excimer lasers utilize molecules containing the noble gases, which do not form 

chemical compounds under normal conditions. However, the noble gases may form 

compounds that have no stable ground state, but short lived excited states. An 

example is krypton fluoride. A gas mixture containing krypton and fluorine is 

excited in a pulsed electrical discharge. In a chain of complex processes, the 

metastable excited state KrF* is produced. The excited state is bound for a short time 

and then dissociates according to the reaction  

 
hvFKrKrF ++→*      Eq.  3-23 

where ‘ hv ’ represents the photon energy corresponding to a wavelength of 248 nm. 

The asterisk denotes the excited state of the molecule. The population inversion for 

laser operation is easily obtained as there is no stable ground state. Excimer lasers 

are necessarily pulsed devices, with pulse duration in the nanosecond regime. 

 

3.10.2 Advantages of Excimer Lasers 

The short wavelength, pulsed ultraviolet light from excimer laser, provides the 

following advantages for materials processing.  

High absorption by most of the engineering materials (metals, ceramics and 

polymers and composites) 
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High spatial resolution (intricate details, micromachining) 

High photon energy (photo-chemical processing) 

Focusability to small spot size with a higher accuracy (diffraction limited) 

Short pulse width and high peak power (reduction of the heat affected zone in most 

metallic materials)  

 

3.10.3 Construction and Working 

The active medium in laser consists of a mixture of 0.05% to 0.5% halogen 

component for halogen excimer lasers, 3% to 10% inert gas component, and the 

buffer gas (helium or neon) at a pressure of 1.5 × 105 Pa to 6 × 105 Pa. This high 

pressure makes a continuous gas discharge virtually impossible. After some ten 

nanoseconds streamers start to develop and the initial glow discharge degrades into 

an arc or spark discharge, which is not suitable for the excitation process and will 

damage the electrodes. Therefore, most industrial excimer lasers utilize short 

excitation pulses, which terminate the discharge prior to the onset of streamer and 

arc formation. This leads to the typical short laser pulses of 10 ns to 30 ns ns. The 

technique to produce and control a homogeneous gas discharge is crucial for the 

performance of an excimer laser [54]. Figure 3-12, schematically shows the gas 

discharge section of a typical transversely excited excimer laser tube.  

The discharge unit of laser is integrated into the laser tube, which is designed as a 

high-pressure gas vessel. Excimer lasers utilize two main methods of excitation, 

 
by pulsed electric discharges  

by high-energy electron beams 

Excimer lasers based on electric discharge mechanism may be much smaller and less 

expensive. They have found applications in industry for semiconductor fabrication, 

remote sensing, photo-chemistry, and material processing. Typical commercial 

models possesses a pulse energy up to a few joules per pulse and repetition rates of 

tens to hundreds of hertz, with average power in the range of 100 W. Table 3-1 lists 
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types and the corresponding wavelengths of commercially available excimer lasers. 

For a given device, the output is generally higher when krypton fluoride (KrF) is 

used as the active medium. An overview of commonly used excimer systems and 

their typical characteristics is given in Table 3-2.  

 

 

Figure 3-12: A schematic diagram of the excimer laser structure [54] 

Table 3-1: Excimer laser types and wavelengths 

Excimer Wavelength (nm) 

F2 157 

ArF 193 

KrCl 222 

KrF 248 

XeCl 308 

XeF 351 

 

Table 3-2: Characteristics of commercial excimer lasers 

Pulse energy 0.1-2 J 
Pulse repetition rate 10-500 Hz 
Average power 150 W 
Pulse duration 10-30 ns 
Beam size:  10 x 30 mm 
Beam divergence 1-3 mrad 
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3.10.4 Output and Beam Profile  

The wall plug efficiency of a typical excimer laser lies within 1-2.5%. Its running 

cost is also higher compared to solid state and CO2 lasers. Nevertheless, these lasers 

are now extensively used in corrective eye surgery, microlithography, 

micromachining, marking, annealing, doping, vapor deposition, and other surface 

modification techniques with a wide range of metals, ceramics and polymers. The 

output beam profile of an excimer laser covers a generally wide rectangular area 

with aspect ratios of (2-3):1, and is characterized by a “flat topped” or “top-hat” 

profile in the long axis and a Gaussian profile in the short axis. The spectral 

properties of commonly used excimer lasers are shown in Figure 3-13. 

 

 

Figure 3-13: Spectral properties of excimer lasers (ArF, KrF and XeCl) showing the 

fluorescence spectrum and lasing spectrum (narrow black line) [54]  

 

It can be seen that the excimer laser beam is not perfectly uniform in intensity over 

its whole extent. Both the horizontal and vertical cross sections experience 

considerable changes in parts of the beam. However, by masking and using beam 

homogenizers, an inhomogeneous beam can be converted into a rather uniformly 

homogenized output for materials processing.  
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3.11 Photo-chemical Processing by UV light 

3.11.1 Chemical Bond Energies of Organic Materials 

Organic materials, like polymers, absorb radiation through resonant vibration of 

molecular bonds. Absorptivity of far infrared radiation (e.g. a CO2 laser beam) is 

high in most organic materials. Energy is absorbed at the surface, and transmitted 

through the polymer by classical conduction. Radiation from Nd:YAG and diode  

laser wavelengths is transmitted, unless the polymer contains an absorbing pigments 

or dye. However, the photon energy of ultraviolet radiation produced by the shorter 

wavelength excimer lasers is higher than, or similar to, the bond energy from many 

organic materials (Table 3-3). Chemical bonds may be broken, without generation of 

heat, providing a means of athermal/photo-chemical processing. This interaction 

forms the basis of a large number of laser micromachining techniques [43]. 

 

Table 3-3: Bond Energies of various materials 

Nature Type Energy (J×10-19) 
Metallic - 5 
Ionic - 3 
Covalent C-C 5.76 
 C-O 5.92 
 C-H 6.88 
 O-H 7.68 
 C=C 10.24 
Van der Waals - 0.03 

 

Nevertheless, electrons in ceramics and glasses are bound. The energy of photons is 

principally absorbed by the resonance of bound electrons through coupling to high 

frequency optical phonons. Phonons may be assumed as lattice vibrations, which 

take discrete values in the same way as electrons. Crystalline solids have strong 

phonon absorption bands in the infrared region of the spectrum, and CO2 laser 

radiation is absorbed well. Absorption is weak over intermediate wavelengths, but 

increases rapidly in the ultraviolet region because electronic energy transitions are 

available [43]. 

A photon of short-wavelength laser has energy ranging from 4 to 10 eV, which 

covers the bond energy of most organic/polymeric materials. For instance, a photon 
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of KrF (248 nm) excimer laser has an energy of 5 eV, which is strong enough to 

break most covalent bonds including C-C, O-O, H-H, C-H, O-H and N-H. It is 

therefore plausible that photo-chemical breakdown of the bonds dominantly accounts 

for polymer ablation using a short-wavelength laser. Figure 3-14 presents the photon 

energies associated with different laser radiations and the dissociation energies of 

various molecular bonds. 

 

 

Figure 3-14: Dissociation energies of some molecular bonds and photon energies of 

some common lasers  

On the other hand, by precisely controlling the laser energy, it may be possible to 

remove volatiles species from a sol-gel coating while leaving the substrate 

unaffected. Nevertheless, the photons absorbed in to a very thin surface layer of the 

coating may induce photo-chemical reactions, leading to the crystallization of oxide, 

nitride or carbide, depending on the composition of the coating and the ambient 

atmosphere.         

 

3.11.2 Sol-gel/Laser-induced Processing 

In recent years, the laser processing of materials has been greatly expanded from 

metallic materials and alloys to semiconductors, polymers and composites etc due to 

certain advantages of the laser over the conventional techniques. One of those 

advantages is the ability of the laser to transform, pattern or modify films or 

nanoparticles over various types of substrates, thus overcoming the undesired 
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interactions at the film/substrate interface. Thin film formation techniques by using 

pulsed laser deposition have been explored widely to deposit various materials on the 

substrates. However, the process is costly due to the need of sophisticated high 

vacuum apparatus and the control of films structure is difficult to achieve. It is 

required to seek alternate low cost routes to deposit thin films and develop structures 

with desired results.  

Sol-gel processing of thin films have been widely studied and is being used in  a 

diverse range of applications due to the inherent advantages of this technology. 

However, the conventional routes involve extensive heating and cooling cycles of 

these films by using a furnace to heat the film and substrate simultaneously, leading 

to undesired reaction at the film/substrate interface. The process time is rather slower 

itself, which makes the mass productions of thin films a challenge. There has been  

limited research on the integration of laser processing with the sol-gel derived films, 

which raises questions about the applications and feasibility of this novel technique.         

The sol-gel method combined with laser processing can be generally denoted by the 

term “sol-gel/laser-induced technique” (SGLIT), herewith used for brevity. The very 

first report on the technology related to SGLIT was reported by Fabes et. al. and 

Taylor et. al. [55, 56]. Sol-gel coatings based on SiO2, SiO2-TiO2, and TaO2 were 

processed by an Nd:YAG laser (1.06 µm). However, the coatings were covered by 

thin metal films to absorb the laser wavelength, as shown in Figure 3-15. This 

technique was used for direct laser writing and micromachining applications. 

Therefore, the structural data was not reported. Soon after that, Exarhos et. al. 

reported on the CW laser irradiation of TiO2 films on Si substrate by a focused beam 

of an argon ion (514 nm) laser [57]. The amorphous TiO2 sol-gel films were 

transformed to anatase after laser irradiation between 1-2 MW cm-2 fluence for 10 

minutes.  
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Figure 3-15: A metal coated sol-gel/laser coating using a Nd:YAG  laser [55] 

The application of SGLIT to prepare crystalline oxide films was first reported by 

Imai et. al. [58]. They used various excimer lasers with UV wavelength to crystallize 

various oxide compositions, including Nb2O5 and TiO2. However, rutile was quoted 

to be formed after irradiation by KrF laser at 50 mJ cm-2 fluence. Another study by 

Tsuchiya et. al. on the laser photolysis of various oxide films, including TiO2, 

reported a two step method to generate anatase-based TiO2 films on a quartz single 

crystal [59]. There was another report by Kaliteevskaya et. al. on the phase transition 

of TiO2 films by excimer laser [60]. The effect of TiO2 film thickness on the 

crystallization was investigated, as shown in Figure 3-16.  

 

 

Figure 3-16: Raman spectra of three TiO2 films of various thicknesses [60] 
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On the other hand, Yordanova et. al. prepared sol-gel derived TiO2 films on glass by 

using a KrF excimer laser at various parameters [61]. The anatase was formed by 1-5 

laser pulses at 300 mJ cm-2 fluence. SEM micrographs from these films are shown in 

Figure 3-17. 

 

Figure 3-17: SEM images of 300 nm thick TiO2 thin film: (a) virgin, (b) after single 

shot, (c) two pulses and (d) five pulses irradiation at 300 mJ cm-2 fluence 

In addition to the photo-chemical processing of films by pulsed excimer lasers, there 

are a few reports on use of a CO2 laser used to prepare TiO2 sol-gel films. Castro et. 

al. used a pulsed CO2 laser [62] to generate TiO2-multiwall carbon nanotubes 

(MWCNT) nano-composite. The films irradiated at 12.8 W m-2 for 39 seconds at a 

laser scanning velocity of 8.5 mm s-1 exhibited an anatase structure. The TEM image 

from this film is shown in Figure 3-18. The photo-catalytic behaviour of 

TiO2/MWCNT nano-composite against the decomposition of stearic acid was also 

studied under the UV light at 18.8 mW cm-2 and a maximum reduction of 53% was 

achieved after 1 hour under UV.  

Various laser parameters quoted by all of the papers related to laser/sol-gel 

processing of TiO2 are summarised in Table 3-4. After going through these papers, it 

has been realized that apart from the formation of anatase, most of these did not 
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report on the photo-catalytic aspects of TiO2 films in order to establish and validate 

the significance of laser/sol-gel process. 

 

Figure 3-18: TEM image of TiO2/MWNT coatings irradiated with 17 W m−2 irradiance 

by CO2 laser [62] 

  

Therefore, it is required to investigate the structural and photo-catalytic properties of 

TiO2 films in depth to realise the potential of this technique. The current project has 

been aimed to establish a novel process, termed as SGLIT to prepare photo-catalytic 

and anti-bacterial anatase films on various substrates. It is for the first time that anti-

bacterial anatase-based films have been developed by this technique. The films have 

been loaded with Ce2+ and W6+ ions to improve properties of interest. Moreover, the 

addition of Ag2+ ions in TiO2 has been carried out to develop an Ag-TiO2 nano-

composite structure in a single-step approach.  
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Table 3-4: The published work on sol-gel/laser combined technique for TiO2 films 

processing with their parameters 

Material 
system 

Drying 
temperature, 
°C 

Laser Fluence 
mJ cm-2 

Pulses Phase References

TiO2 on Si 
wafer and glass 

100°C KrF, 
XeCl 

50, 150 100 Rutile [58] 

TiO2 on Quartz 
and STO (001) 

150°C ArF, 
XeCl 

10-50 3000 Rutile, 
Anatase 

[59] 

TiO2 on pyrex 
glass 

- ArF 45 64-256 Anatase [63] 

TiO2 on glass  350°C KrF 300 1, 2, 5 Anatase [61] 

TiO2 + CNT on 
glass 

300°C  Pulsed 
CO2 

12.5 W 
m-2 

8.5 
mm/se
c, 39 
sec 

Anatase [62] 
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Chapter 4 Experimental Procedures and 

Characterization Techniques 

This Chapter contains a detailed account of the raw materials and the experimental 

procedures adopted to prepare TiO2-based films by SGLIT. The experimental setups 

used for sol-gel processing, spin-coating and laser material processing are also 

included. In addition, this Chapter contains a detailed description of the equipment 

involved in characterization of the sol-gel derived films, chemical and structural 

analysis, and other analysis techniques used at various stages.  

 

 

4.1 Sol-Gel Processing of TiO2 Films 

4.1.1 Raw Materials 

The sol-gel route was adopted to prepare various TiO2-based sol-gel solutions. The 

list of various chemical precursors used for this propose with their specifications are 

listed in Table 4-1. The metal alkoxides were refrigerated (4-6°C) for their prolonged 

use because of their highly reactive nature.    
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Table 4-1: The chemical precursors and solvents used for TiO2 sol-gel 

Chemicals Formula Concentration/Manufacturer 
Titanium (IV) n-butoxide Ti(OiC4H9)4 97% pure, Aldrich 
Acetic acid glacial (HAC) CH3COOH >99%, Merck 
n-butanol CH3CHOHCH3 >99%, VWR 
Deionised water H2O 99.99% min. (in house) 
Cerium nitrate hexahydrate Ce(NO3)2.6H2O 99%, BDH 
Tungsten (VI) propoxide  97%, Alfa Aesar 
Silver nitrate AgNO3 99.9, VWR 
Hydrochloric acid HCl 0.2M, VWR 

 

4.1.2 Apparatus for Sol-Gel Processing 

The sol-gel solutions were prepared by using the following apparatus.  
 
1. Pyrex 2-neck flask (500 ml) 

2. Pyrex weighing beaker (50-100 ml) 

3. Water chiller and circulator  

4. Argon cylinder 

5. Liebig reflux condenser 

6. Magnetic stirrer hot plate 

7. Gloves box (optional) 

8. Pipette (10 ml) 

9. Digital weighing balance 

10. Fume hood 

 

4.1.3 Preparation of TiO2 Precursor by Sol-gel 

A typical experimental setup used for sol-gel refluxing of the TiO2-based solutions is 

shown in Figure 4-1. A cleaned 2-neck round bottom flask was used as the reaction 

vessel. A Liebig condenser was attached to it through a glass quick fit. The 

condenser was connected to a cool water circulator through hoses to maintain a 

refluxing mechanism. Argon gas was continuously purged through the system to 

ensure an inert atmosphere for the reactants and to avoid any undesired reaction with 

moisture. The argon gas was bubbled into a water container through the other end of 

the condenser (Figure 4-1).  
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Figure 4-1: Sol-gel reflux setup used for TiO2 precursor solution 

The chemicals were taken in required volumes by using clean syringes (1-10 ml) in 

order to minimize their interaction with the air. These were then injected into the 

flask, which was already filled with n-butanol solvent. The reactants were added 

stepwise to attain a homogenous and transparent TiO2 precursor solution.  

 

4.1.4 Loading of TiO2 with Ce2+ Ions 

In order to prepare 5% by weight cerium loaded titanium dioxide (Ce-TiO2) 

precursor solution, titanium (IV) n-butoxide (TnBT), cerium nitrate, acetic acid 

glacial (HAC), n-butanol and deionised (DI) water were added in required amounts 

step wise, as shown by the flow chart in Figure 4-2. The molar ratio of Ti:HAC:H2O 

was fixed at 1:2:2. The DI water was added for hydrolysis and to aid cerium nitrate 

dissolution in the organic solution. The same recipe was followed to prepare the 

unloaded TiO2 except for the addition of cerium nitrate. The chemicals were 

magnetically stirred overnight leading to 0.37-0.4 M titanium precursor solution at 

room temperature. Both of the as-prepared solutions were sealed in bottles and aged 

for 24 hours before use as shown in Figure 4-3. 

condenser

2-neck flask

Fume hood

Water for 
argon bubbling 

Magnetic stirrer 
hot plate 
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Figure 4-2: Flow chart diagram of sol-gel processing of TiO2 loaded with Ce2+ ions 

 

 

Figure 4-3: The as-prepared sol-gel precursor TiO2 and Ce-TiO2 after 24 hours aging 

 

4.1.5 Loading of TiO2 with W6+ Ions 

The tungsten loaded titanium dioxide (W-TiO2) precursor solutions were prepared in 

four different concentrations as listed in Table 4-2. Each composition has been 

associated with a specific batch name, used for brevity hereafter. The recipe used to 

prepare various W-TiO2 precursor solutions was modified compared to the Ce-TiO2. 

The tungsten iso-propoxide (TiP) solution was added as the tungsten additive into 

TiO2 
Ce-TiO2 
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the parent TnBT solution. Moreover, HCl (2 M, 0.5 ml) was used instead of n-

butanol as the solvent. A schematic flow diagram to prepare W-TiO2 sol-gel 

precursor is shown in Figure 4-4. 

 

Table 4-2: Compositions of various W-TiO2 sol-gel solutions 

% Amount of Batch name 
W Ti 

Resultant Formula 

Unloaded TiO2 0  TiO2 
1W-TiO2 1.1  W0.005 Ti0.995O2 
2W-TiO2 2.2  W0.01 Ti0.99O2 
3W-TiO2 3  W0.014 Ti0.986O2 
4W-TiO2 4  W0.018 Ti0.982O2 

 

 

Figure 4-4: Flow chart diagram of sol-gel processing of TiO2 loaded with W6+ ions 

The reactants were refluxed and magnetically stirred under argon atmosphere at 

room temperature overnight leading to a 0.4 M W-TiO2 precursor sol which were 

aged for 24 hours before use as shown in Figure 4-5.  
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Figure 4-5: As-prepared various W-TiO2 precursor solutions after 24 hours aging 

 

4.2 Spin-Coating and Drying  

The TiO2-based sol-gel solutions were spin-coated on to Pt(Si) and microscope glass 

slides after 24 hours of aging. The Pt(Si) substrate in the as-received condition was 

used to spin-coat the unloaded TiO2 and Ce-TiO2 films at 500 RPM for 10 seconds 

and then at 3500 RPM for 40 seconds respectively. The substrates were coated up to 

five times repeatedly and each coating was dried at 150-200°C for 2 minutes on a 

preheated hotplate. The spin-coating setup used for these experiments is shown in 

Figure 4-6.  

W-TiO2 sol-gel solutions were deposited on to the microscopic glass slides. The 

glass slides were ultrasonically cleaned with acetone, absolute ethanol and dried 

before spin-coating. The spin-coating cycle selected for W-TiO2 films was the same 

as used for the Ce-TiO2. However, the glass substrate was coated with up to four 

layers only and each layer was dried at 250-300°C for 2 minutes on a preheated 

hotplate. A schematic diagram of a typical spin-coating procedure to coat TiO2 films 

on glass is shown in Figure 4-7.  

 

1W-TiO2 
2W-TiO2 

3W-TiO2 
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Figure 4-6: Spin-coating setup used for various TiO2-based sol-gel solutions 

 
 
 

 
 

Figure 4-7: A schematic diagram of spin-coating of TiO2 sol-gel films on glass 

 

4.3 Laser Irradiation of as-dried TiO2 Films 

4.3.1 Laser Setup and Beam Profile  

A KrF excimer laser (GSI Lumonics Pulse Master, PM-840) with an output 

ultraviolet wavelength of 248 nm was used to irradiate the films (Figure 4-8). This 

laser possessed a full width at half maximum (FWHM) pulse duration of 13-20 ns, a 

maximum repetition rate of 200 Hz and maximum pulse energy of 450 mJ. The 

Spin coater 
Hot plate 
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output laser beam was non-polarized and had a rectangular intensity profile, as 

shown in Figure 4-9. The lateral intensity is shown in a 2-dimensional image and 

exhibited three distinct intensity regions, as labelled in the Figure 4-9a.  The central 

part of the beam (labelled as 3) was used to irradiate the various TiO2 films. 

 

 

Figure 4-8: The KrF excimer laser used to irradiate various spin-coated and as-dried 

TiO2 films on glass 

Figure 4-9: The KrF excimer laser beam intensity distribution in 2-dimensions a) and 

3-dimensions b) 
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The sample and laser setup used for SGLIT is shown in Figure 4-10. The laser 

irradiations of the samples were conducted at a room temperature of 20°C. Each 

sample was mounted on an X-Y table at 90 degrees to the direction of laser beam. 

The X-Y table was attached to a motion controller to move the sample in both axes 

and cover an area of up to 2.5×2.5 cm2. The laser beam was masked (0.5×0.5 cm2) at 

the centre and was used in de-focused condition on the sample through a plano-

convex quartz lens (f=20 cm). It is noteworthy to mention that the focusing lens 

arrangement was only used to prepare Ce-TiO2 films by SGLIT, whereas W-TiO2 

and Ag-TiO2 films were directly irradiated by the masked laser beam without using 

any lens. 

  

4.3.2 Sample Coverage by Laser Beam and Overlap   

Ce-TiO2 films were prepared by irradiating with the laser beam at a single spot on 

the as dried film. It was done in order to speed up the analysis by Raman 

spectroscopy from each individual laser irradiated spot on the Ce-TiO2 film. On the 

other hand, W-TiO2 and Ag-TiO2 films were prepared by irradiating the required 

number of pulses (10-800) at each spot on the film step by step (0.5×0.5 cm-2) until 

whole surface was covered. It was done to obtain a larger surface to facilitate anti-

bacterial and other tests and to ensure that each spot consisted of a uniform and 

similar structure compared to its neighbouring spots. There was also a 0.1 mm (2%) 

overlap used for each of the TiO2 film prepared by SGLIT. 
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Figure 4-10: Photograph of a typical laser setup used to prepare various TiO2-based 

films by SGLIT 

 

4.3.3 Laser Parameters and Spot Size Calculations 

A broad range of laser operating parameters was used to achieve the optimized 

conditions for anatase crystallization in TiO2 films by SGLIT. These are listed in 

Table 4-3.  

Table 4-3: Range of laser parameters used to prepare various films by SGLIT 

 

The experimental setup used to prepare W-TiO2 and Ag-TiO2 films by SGLIT is 

schematically shown in Figure 4-11. The laser pulse energy, repetition rate and 

number of pulses were adjusted by using the input control pad. Under a fresh gas fill, 

Films Rep. Rate, Hz Fluence,  
mJ cm-2 

No. of laser 
pulses 

TiO2, 5-15 25-60 10-500 
Ce-TiO2 5-15 25-60  10-800  
W-TiO2 15 65-85 10-50 
Ag-TiO2 15 85-100 50-200 
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the laser delivered a maximum energy of up to 450 mJ per pulse at 36 kV. However, 

the voltage of the laser had to be dropped to 28-30 kV to achieve the required energy 

(21-22 mJ) per pulse, i.e. laser fluence of up to 85 mJ cm-2. The laser energy against 

the desired fluence was measured by using a calibrated energy meter. The fluence 

was calculated by directly measuring the visible spot area, which was immediately 

formed during the laser irradiation of a sample. The sample was mounted on the X-Y 

stage, which was controlled by an ESP motion controller device that was connected 

by a serial port to the PC. The X-Y programs were written in notepad files and 

directly run through the hyper terminal program of the PC.   

 

 

Figure 4-11: Laser image projection setup used for W-TiO2 and Ag-TiO2 films 

In order to assess the thermal changes induced in TiO2-based films by the laser-

irradiation, analytical simulation was carried out by using Mathermatica (version 6) 

software. The standard heat diffusion equation (eq. 3-21) in one-dimension (depth, 

z=0) was solved to calculate the temperature rise during interaction of a single laser 

pulse with the surface of the film.     

  

4.4 Furnace Sintering of TiO2-based Films 

In addition to the SGLIT, the sol-gel prepared unloaded TiO2, Ce-TiO2 and W-TiO2 

films on glass slides were subjected to furnace sintering for 60 minutes between 650-

700°C in air atmosphere. The heating cycles were selected to obtain the desired 
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anatase dominant photo-catalytic films for comparative studies with the laser 

irradiated films. It was also ensured that the sintering temperature did not melt and/or 

deform the glass substrate after the cycle. A typical heating and cooling cycle and 

the corresponding furnace used are shown in Figure 4-12.   

 

 

Figure 4-12: The sintering cycle used for the unloaded TiO2, Ce-TiO2 and W-TiO2 films 

and the Carbolite programmable furnace used for sintering 

  

4.5 Characterization Techniques 

4.5.1 Raman Spectroscopy  

Raman spectroscopy is a materials analysis technique used to identify if the material 

is amorphous or crystalline. It works on the principle of inelastic scattering of light 

from a laser source. During inelastic scattering of monochromatic light, the 

frequency of incoming photons experiences a change during interaction with a 

sample. Some of the laser photons are absorbed by the sample and then reemitted. 

The frequency of these reemitted photons is shifted (±) compared to the initial 

frequency, that is known as the “Raman Effect”. This shift provides useful 

information about vibration, rotation and other low frequency transitions in the 

molecules. Raman spectroscopy is applied to study solid, liquid and gaseous 

samples. A schematic diagram in Figure 4-13 shows the schematic setup to collect 

the Raman signal from the sample. 
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Figure 4-13: A schematic diagram showing the principle of Raman spectroscopy  

In order to determine the crystalline or amorphous state of the unloaded TiO2 and 

Ce-TiO2 films, argon ion laser Raman spectroscopy (Renishaw green marker, 21 

mW, λ = 512 nm) was used. A typical layout of the machine is shown in Figure 4-14. 

The laser beam was focussed (2 µm) through the objective lens (50 X) of an optical 

microscope on to the clean surface of the film. Raman signals generated from the 

sample were detected by the spectrometer attached to the instrument. The Raman 

spectra were recorded in the range from 100 to 1000 cm-1 frequency for 20 seconds 

accumulation time respectively. The machine was calibrated with respect to a pure Si 

standard (520.2-520.4 cm-1) before taking measurements on each sample.   

 

 

Figure 4-14: Setup of Raman Spectroscopy 
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The data collected from each sample was plotted in the machine software to identify 

the peak positions and were matched with the standard Raman frequencies 

associated with anatase and rutile structures of TiO2 as listed in Table 4-4.   

 

Table 4-4: Raman frequencies of various allotropes of TiO2 [64, 65] 

Structure Standard Raman frequency modes, cm-1 
Anatase 144 197 399 513 639 
Rutile 144 446 612 827 - 
Brookite - - - - - 

 
 

4.5.2 X-ray Diffraction 

X-ray diffraction (XRD) is well-known technique used to identify the 

crystallographic structure of a material. The XRD can also be used to gather the 

crystallographic information from thin films on various types of substrates. In a 

crystalline material, the incident X-ray beam that diffracts from the various planes of 

atoms at a certain angle (2θ) can interfere constructively resulting in increased 

intensity of the reflected beam. This intensity is displayed by a peak in the XRD plot, 

which is associated with d-spacing values of the corresponding structure. In order to 

diffract constructively the X-rays should satisfy Bragg’s law as follows; 

 

θλ sin2 hkld=      Eq.  4-1  

where ‘θ ’ is the angle between plane of incidence and the incident beam, ‘ hkld ’ is 

the spacing between hkl crystal planes and ‘λ ’ is the wavelength of incident X-rays. 

The basic XRD principle is schematically shown in Figure 4-15. 
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Figure 4-15: A schematic representation of the Bragg’s law and the grazing incidence 

angle XRD machine used for structure analysis of TiO2 films 

A Philips X’pert-APD grazing incidence angle XRD machine (Figure 4-15) was 

used to determine and analyse the structure of various TiO2 films prepared by SGLIT 

and furnace sintering method. There was no sample preparation required therefore 

the TiO2 films used for XRD were in the as-prepared condition. CuKα radiation and 

nickel filter was used as the X-ray source. A scanning angle (2θ) in the range of 20 

to 80 degrees was selected at a step size of 0.05° and scan speed of 6 seconds per 

step respectively. The XRD patterns obtained by the machine were identified by 

searching and matching in the X’pert analysis software. The identification was 

carried out by comparing the d-spacings obtained from the TiO2 samples with the 

JCPDS standard database. The standard JCPDS files used for this purpose are 

attached in Appendix-A.  

 

4.5.3 Simultaneous Thermal Analysis  

The simultaneous thermal analysis provides important information regarding the 

chemical nature of the materials with rise in temperature. It is usually run in two 

modes at the same time i.e. thermo-gravimetery (TG) and the differential scanning 

calorimetery (DSC). In TG analysis, the percent weight loss of a test sample is 

recorded while the sample is being heated at a uniform rate in an appropriate 

environment. The loss in weight occurred over specific temperature ranges provides 

an indication of the composition of the sample, including volatiles and inert filler, as 
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well as indications of thermal stability. A selected weight of the specimen (10-15 

mg) is put inside a clean alumina crucible and calibrated with respect to an empty 

alumina crucible as a reference. Both crucibles are then heated with a specific 

heating cycle depending on the nature of material and a plot of percent weight loss 

versus temperature is obtained at the end of the test.  

DSC on the other hand is a thermo-physical technique in which the difference in the 

amount of heat required to increase the temperature of a sample and reference are 

measured as a function of temperature. The sample and reference are maintained at 

nearly the same temperature throughout the experiment. The basic principle of this 

technique is that, when the sample undergoes a physical transformation such as 

phase transitions, more (or less) heat will need to flow to it than the reference to 

maintain both at the same temperature. The more or less heat flowing to the sample 

depends on whether the process is exothermic or endothermic. For example, as a 

solid sample melts to a liquid it will require more heat flowing to the sample to 

increase its temperature at the same rate as the reference. It will be shown in the 

form of an endothermic peak on the DSC plot. Similarly, as the sample undergoes 

crystallization, less heat is required to raise the sample temperature. Therefore, it 

appears by an exothermic peak [66]. A typical DSC curve and its features are shown 

in Figure 4-16.  

 

 

 

 

 

 

 

Figure 4-16: A schematic DSC curve showing several common features  
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Thermal analysis was used to determine volatile organic content in the TiO2 sol-gel 

precursor films. It also helped to identify and compare the endothermic and 

exothermic reaction occurring in various TiO2 batches. The instrument used for this 

purpose was a Netzsch 409 machine in a static air mode, with a heating rate of 5°C 

min-1. The samples were heated up to 1000°C and then slowly cooled down to room 

temperature.  

 
 

4.5.4 X-ray Photoelectron Spectroscopy 

The X-ray photoelectron spectroscopy (XPS) is a surface analysis technique used for 

the qualitative and quantitative chemical analysis of metallic and non-metallic 

ingredients of an alloy or compound. It is accomplished by irradiating a sample with 

monochromatic soft x-rays and precisely analyzing the energy of electrons emitted. 

Mg Kα x-rays (1253.6 eV) or AI Kα X-rays (1486.6 eV) are ordinarily used as the 

excitation source. These incident X-ray photons have limited penetrating power in a 

solid, of the order of 1-10 μm. They interact with atoms in this surface region by the 

photoelectric effect, causing electrons to be emitted [67]. The emitted electrons have 

kinetic energies given by, 

 

sBEhKE φυ −−=      Eq.  4-2 

where ‘ υh ’ is the energy of the emitted photons, ‘ BE ’ is the binding energy of the 

atomic orbital from which the electron originate and ‘ sφ ’ is the machine work 

function.  

The electrons leaving the sample are detected by an electron spectrometer according 

to their kinetic energy. The analyzer normally is operated as an energy "window", 

accepting only those electrons having energy within the range of this fixed window, 

referred to as the pass energy. Scanning for different energies is accomplished by 

applying a variable electrostatic field, before the analyzer is reached. This retardation 

voltage may be varied from zero up to the photon energy. Electrons are detected as 

discrete events, and the number of electrons for a given detection time and energy is 

stored digitally or recorded using analogue circuitry [67]. 
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Figure 4-17: Kratos Axis Ultra XPS machine used for W-TiO2 and Ag-TiO2 films 

The surface atomic composition and chemical state of the W-TiO2 and Ag-TiO2 

films were characterized by using a Kratos Axis Ultra XPS machine (Figure 4-17). It 

was equipped with a monochromatic Al Kα X-ray (hν=1486.6 eV) source and a 

delay line detector, with dead time of 480 ns corrected by the acquisition software. 

The instrument was operated with a base pressure of 2.0×10−9 Torr. The binding 

energy values associated with various elements were calibrated against the carbon (C 

1s) peak at 285.0 eV. The data fitting and quantification were carried out in CASA 

XPS software (2.3.15 PreRelease5).  

 

4.5.5 Atomic Force Microscopy 

The atomic force microscope (AFM) is a type of scanning probe microscope, with a 

resolution of fractions of a nanometer, which is more than 1000 times better than the 

optical diffraction limit. The information is gathered by scanning the surface with a 

mechanical probe or "tip" placed very close to the sample. The small probe-sample 

separation (on the order of the instrument's resolution) makes it possible to take 

measurements over a small area. Unlike the traditional microscopes, AFM’s do not 

use lenses to collect the image. It is the size of the probe (tip) rather than diffraction 

that generally affects their resolution. 
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Modern AFM’s use a laser beam deflection system, introduced by Meyer et. al. [68], 

where a laser is reflected from the back of the reflective AFM lever and onto a 

position-sensitive detector (Figure 4-18). AFM tips and cantilevers are micro-

fabricated from Si or Si3N4. Typical tip radius is from about few tens of nm.  

 

 

Figure 4-18: The beam deflection system using a laser and photo-detector to measure 

the beam position in AFM 

 

The TiO2-based films prepared by various methods were characterized for their 

topography, features size distribution and 3-d height profile by using a Veeco CP2 

AFM in contact mode. An area of 100 and 25 square μm was selected to be scanned 

by the tip across the sample to generate a surface profile. The AFM resolution was 

limited by the size of the tip to 0.5 μm only. Therefore features below 100 nm were 

not resolved.  

 

4.5.6 Field Emission Gun-scanning Electron Microscopy 

The scanning electron microscope (SEM) is an efficient tool for topographical and 

micro-structural investigation of various types of materials at greater depth of focus. 

SEM coupled with the field-emission gun (FEG-SEM) is a powerful tool which 

delivers an image resolution at nano-metric scales. This instrument is mostly used to 

capture a good contrast images at higher magnification from the surface, interface or 

corss section of films and bulk materials. In addition, FEG-SEM is also equipped 
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with an energy dispersive x-ray (EDX) spectrometer, which is used to analyze 

chemical composition at small localized areas of the sample such as grain boundries, 

precipitates and second phase particles etc. Other features including line scan 

imaging and chemical analysis are used to identify and verify the chemical nature of 

nanoparticles.     

FEG-SEM is also used to determine the particle size, grain size, micro-structural 

distribution, particles/powders morphology and the size distribution at higher 

resolutions.  A Philips XL-30, FEG-SEM was used for imaging and EDX chemical 

analysis of TiO2 films prepared by SGLIT and the furnace sintering method. It was 

operated at 15-20 kV and could resolve features as small as 3.5 nm. 

 

4.5.6.1 Sample Preparation for FEG-SEM      

The samples were coated with a conducting film before subjecting to the FEG-SEM 

imaging due to their oxide nature. The coating was carried out by using the gold 

sputtering unit (model Edwards sputter coater S150B), as shown in Figure 4-19.  

 

 

Figure 4-19: A gold sputtering unit used for the conductive coating of the TiO2 films 
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4.5.7 Scanning Transmission Electron Microscopy 

The scanning transmission electron microscope (STEM) is an advanced and versatile 

electron microscope, which is used to analyze nano-structured materials that are too 

small to be resolved by the FEG-SEM. In addition to the imaging of materials at 

nano-metric scales, it can also determine crystallographic structure and chemical 

analysis down to sub-micrometric scales by selective area electron diffraction 

(SAED) and EDX analysis respectively. Moreover, operating at 300 kV, the high 

resolution TEM (HRTEM) can resolve up to atomic scales (sub-nanometric) and 

produce a lattice image of the specimen. It can work in dark field and bright field 

modes, which facilitates the identification of various phases inside the material. The 

STEM is also equipped with selected area electron diffraction (SAED) function, 

which enables the instrument to take electron diffraction patterns of crystalline 

materials for their easy identification [69]. 

 

 

Figure 4-20: Tecnai F30 STEM used to investigate various TiO2 films 

A Tecnai F30 STEM, operating at 300 kV, (Figure 4-20) was used to examine the 

unloaded TiO2, W-TiO2 and Ag-TiO2 films prepared by SGLIT and other methods. 

Each sample was characterized to determine the crystallite size of anatase, WO3 

nanoparticles, and Ag nanoparticles in TiO2 matrix. The structure and composition 

of Ag nanoparticles and TiO2 matrix were investigated by SAED and EDX analysis. 
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In addition, EDX line scan profiles were generated by STEM to verify the 

composition of Ag-TiO2 films. In addition, HRTEM images were captured on Ag 

nanoparticles and the lattice images were solved by fast Fourier transform (FFT) by 

using the digital micrograph software (version 3.6.5).    

 

4.5.7.1 SAED Structural Analysis 

The SAED patterns obtained from the STEM were directly processed by the digital 

micrograph software (version 3.6.5). The diameter of each ring formed by the 

concentric diffraction spots was measured by on screen tools and the corresponding 

d-spacing was calculated as follows.   

 

 
1)

102
( −

×
=

Ddhkl                        Eq.  4-3      

                                          

 

where ‘ hkld ’ is the lattice spacing of a certain hkl plane in nm and ‘ D ’ is the 

diameter of each diffraction ring on the SAED pattern. The calculated d-spacings 

were matched against the standard JCPDS cards from XRD as give in Appendix-A.   

 

4.5.7.2 High Resolution TEM 

The high resolution images of lattice fringes obtained from STEM in the HRTEM 

mode provided in-depth information about the crystalline state of isolated 

nanoparticles, which is not possible to obtain by other techniques. Lattice images are 

interference patterns between the direct beam and diffracted beam viewed in real 

space and obtained in HRTEM mode [70]. The HRTEM lattice images were 

identified by using the FFT technique by the Digital Micrograph software. 

 

D

SAED ring 
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4.5.7.3 Sample Preparation for STEM 

Cross-sections of the W-TiO2 and Ag-TiO2 films for STEM analysis were prepared 

by the focused ion beam (FIB) milling technique. The FIB was integrated with a 

FEG-SEM for the in-situ manipulation and control of the milling process. The FIB-

SEM model used for this study is shown in Figure 4-21a.   

 

 

Figure 4-21: FIB/FEG-SEM setup used to prepare STEM samples a) A tilted FEG-

SEM image of the as-prepared W-TiO2 and Ag-TiO2 film cross-section b) by FIB 

The images obtained during the preparation of various TiO2 film cross-sections are 

shown in Figure 4-21b and 4-21c.  

 

b) c) 

a) 
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4.5.8 UV-Visible Spectroscopy 

UV-visible spectroscopy is one of the most widely used techniques to determine the 

optical properties of various types of materials (liquid solutions, solids) in various 

forms (colloids, nanoparticles, thin films, bulk materials). Figure 4-22 schematically 

shows the setup of a UV-visible spectrometer conventionally used for transmitting 

materials.   

 

 
 

Figure 4-22: A schematic representation of a spectrophotometer to determine the 

transmitting properties of solutions  

However, modern designs of the spectrophotometer are available which can 

determine the optical properties of the materials more precisely and produce noise 

free data. They use the technology of an integrating sphere, as shown in Figure 4-23.  

 

Figure 4-23: Integrating sphere design for transmitting samples  

The transmission and the absorbance of various materials is calculated by the 

instrument itself, using the following formulas, 
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0I
IT =      Eq.  4-4 

 
TA log−=      Eq.  4-5 

where ‘T ’ and A  stands for the transmittance and absorbance, ‘ I ’ and 0I  are the 

input and output intensities of the incident light respectively. The transmittance is 

usually multiplied by 100 to get the % transmittance, whereas the absorbance is 

calculated by the machine software arbitrarily as a factor out of 3 (the maximum). 

However, the absorbance shown by the machine holds valid if the material has zero 

reflection. However, for the reflecting materials, the true absorbance can be 

calculated mathematically by the following formula, 

 

 )(1 RTA +−=      Eq.  4-6 

where ‘ R ’ stands for the reflectance of the sample, which can be measured by using 

the integrating sphere assembly in another orientation.  

The transmittance and absorbance of various TiO2-based films on the glass substrate 

(before and after preparation by SGLIT and furnace sintering) were determined by 

using a Specord-250 spectrophotometer in 300-800 nm wavelength range. The data 

below 300 nm range was rather erratic and produced noise, therefore only values 

after 300 nm are valid. The resolution of the machine was preset at 1 nm. Each 

measurement was carried out by setting the clean glass slide without any coating as a 

reference material. The machine software automatically subtracted the glass slide 

data from the TiO2 film plot.  

 

4.5.9 Anti-bacterial Drop Tests 

The anti-bacterial properties of the TiO2 films prepared by SGLIT and the furnace 

sintering methods, were examined by following the standard drop test procedure. 

Escherichia coli (E. coli) clinical strains (BL21 (DE3), Agilent Technologies UK 

Ltd.) were cultured in 15 ml sterilized Luria-Bertani (LB) broth with constant 

shaking (225 rpm) overnight in a sterilized conical tube. The suspended bacteria 

were agglomerated by centrifuging at 4000 RPM for 10 minutes. The cell pellet was 
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re-suspended in sterilized deionised (DI) water and diluted to obtain 1.0 O.D. 

concentration, which gave approximately 8×108 colony forming unit (CFUml-1) of E. 

coli. by colony counting. After a certain dilution, 2×104 CFUml-1 of E. coli were 

applied (100 μl each) on to various types of the TiO2 coated glass slides (2.5×2.5 

cm2) kept in a dark room. A UV (365 nm) lamp continuously illuminated the 

samples at 600 μWcm-2 intensity, within a 3 inches distance, for up to 90 minutes. 

The cells were collected at regular intervals, i.e. at 30, 60 and 90 minutes 

respectively by pipetting (100 μl + 100 μl washing). A 20 μl volume was uniformly 

spread on the agar plates in sterilized ambient conditions. The plates were then 

incubated at 37°C overnight and the surviving colonies were counted after 24 hours. 

The Ag-TiO2 nano-composite films were subjected to the same drop test set up. 

However, the tests were carried out in a dark room and under normal daylight 

conditions in addition to the UV light. After a certain dilution, 2×104 CFU.ml-1 of E. 

coli were applied (100 μl each) on to various types of the TiO2 coated glass (2.5×2.5 

cm2) in triplicate. Each sample was sealed in a sterilized transparent plastic chamber 

which was humidified from the inside to avoid the premature drying of the E. coli 

suspension. The cells were collected at regular intervals, i.e. at 0, 60 and 120 minutes 

respectively by pipetting (100 μl + 100 μl washing). A 20 μl volume was uniformly 

spread on the agar plates in sterilized ambient conditions. The plates were then 

incubated at 37°C overnight and the surviving colonies were counted after 24 hours. 

The CFU counted from each sample was plotted against time to observe the anti-

bacterial efficiency of Ag-TiO2 films. Photographs captured during the drop test in 

sun light from the TiO2 samples are shown in Figure 4-24. 



Chapter 4                                            Experimental Procedures and Characterizations 

 
109 

 

 

Figure 4-24: Drop test of various TiO2-based samples contained in a plastic dish in 

direct sun a) and UV (365 nm) light b) 
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Chapter 5 Preparation of Ce-TiO2 by SGLIT 

and Characterization  

 

5.1 Introduction 

This Chapter presents the initial developments of SGLIT to crystallize amorphous 

TiO2 films loaded with 5 weight % cerium (Ce2+) ions. TiO2 was selected because it 

is a readily available material, non-toxic and finds numerous applications in photo-

catalysis. However, because of the high peak energy density of the excimer laser, 

Ce2+ ions were loaded in order to stabilize the desired anatase phase. This Chapter 

includes very initial results to establish SGLIT before preparing other compositions 

of interest. Therefore, Ce-TiO2 was selected as a prototype composition to prove the 

feasibility of this technique to prepare anatase-based films. In addition to the effect 

of Ce2+ ions, various laser processing parameters were applied to investigate the best 

conditions for an optimum content of anatase, in addition, Ce-TiO2 films prepared by 

the furnace sintering method are also discussed and compared.  

 

5.2 Laser Irradiation of Ce-TiO2 Films 

SGLIT may be regarded as a photo-thermal as well as a photochemical phenomenon, 

depending on the type of laser radiation and the corresponding wavelength. The 

pulsed excimer laser functions in a different manner compared to conventional 

heating sources.  The laser beam is capable of localized heating of a single 

component/phase, or a mixture, as per requirements, which is not possible by a 

flame, hot plate, or furnace etc. The earlier results reported on excimer laser-induced 
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crystallization of various oxide materials, including TiO2, have proved that a laser is 

an efficient source to produce a desired structure with modified surface morphology 

[58, 59, 71, 72].  

Typical experimental setup to prepare a crystalline TiO2 and Ce-TiO2 films by 

SGLIT was similar to the one shown in Figure 4-11 in Chapter 4. However, laser 

beam was used in defocused condition through a plano-convex lens (f = 20 cm) 

which was placed between the mask and the sample. Raw excimer laser beam 

exhibited a significant inhomogeneity when operated at lower output energy. A 2-

dimensional laser energy distribution obtained at a voltage of 36 kV from the raw 

laser beam is shown in Figure 5-1. It was obvious that the beam output was non-

uniform which is ascribed to its quasi Gaussian nature, whereas a smooth top-hat 

profile is desirable for most of the materials processing applications. Therefore, for 

the purpose of present study, laser beam with a homogenous energy density was used 

by masking the inhomogeneous portion. This was achieved by allowing the middle 

part of the raw laser beam to pass through a steel mask of 0.5×0.5 cm2 size.  

 
 

 

Figure 5-1: Raw laser beam 2-dimensional intensity distribution at 36 kV 
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5.2.1 Laser Beam Size  

The size of laser beam on the sample surface was selected by hit and trial method 

and then observing the best quality of spot formed as a result of laser irradiation on 

the sample surface. The various paramters used for this purpose are listed below. 

 
distance between lens and mask = 20 cm,  
distance between lens and sample = 30 cm 

laser beam size obtained on the sample = 0.4 cm 

In order to optimize the laser operating parameters, Ce-TiO2 films were prepared at 

varying number of laser pulses, fluences and the repetition rates. The range of laser 

parameters applied during these experiments is shown in Table 5-1.  

 

Table 5-1: Laser operating parameters used for laser processing of Ce-TiO2 films 

Films Laser fluence 
mJ cm-2 

No. of pulses Repetition 
rate, Hz 

TiO2 30-55 10-200 5-25  

Ce-TiO2 35  10-500 5-25  

For brevity, laser irradiated TiO2 films are denoted as TiO2-(L), whereas furnace-

sintered TiO2 films are denoted as TiO2-(F), hereafter. 

 

5.3 DSC/TG Thermal Analysis of Sol-Gel Derived Solutions 

5.3.1 Effects of Temperature on TiO2 Precursor 

Simultaneous thermal analysis of TiO2 and Ce-TiO2 sol was undertaken to 

investigate the transformation behaviour of the sols with temperature rise. This test 

helped to simulate the transformation characteristics of TiO2 films prepared by 

SGLIT. The results obtained from unloaded TiO2 sol-gel precursor are plotted in 

Figure 5-2.  
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DSC curve exhibited four main peaks of an endothermic nature. However, only one 

weight loss event associated with these events was observed. The first sharp 

endothermic peak occurred at 107°C, followed by a broad endothermic region 

between 180-220°C. The first major endothermic and weight loss event corresponds 

to the elimination/vaporization of n-butanol and DI water from TiO2 sol. As the 

 

 

 
 

Figure 5-2: DSC/TG analysis of the unloaded TiO2 sol-gel precursor solution 

 (0.37 M) TiO2 solution was diluted with a large amount of alcohol (>90 %), a 

corresponding weight loss was observed by TG curve which confirmed that 98 % 

weight of the sol-gel solution was lost up to 110°C (Figure 5-2). 

 The endothermic events at 180-220°C can be attributed to the absorption of heat by 

Ti alkoxide and acetic acid in the solution. There was a small weight loss observed 

after 180°C, which became stable after 400°C, and thereafter, no further change in 

weight was observed. A weak exothermic peak at 350°C was associated with the 

combustion reactions associated with acetic acid and butanol ligands linked with 

titanium complexes. Combustion reaction of acetic acid can be represented by the 

following equation. 

107°C

405°C220°C

760°C

350°C
600°C

915°C

DSC

TG
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CH3COOH (l) +2O2 (g) = 2CO2 (g)+ 2H2O (g) + Δ    Eq.  5-1 

A small exothermic shoulder at 405°C was associated with the crystallization of 

anatase phase, whereas another very small exothermic shoulder at 600°C was 

attributed to rutile formation.  Hereafter, DSC curve displayed an endothermic shift 

in DSC curve after 760°C, leading to a strong endothermic peak at 915°C. This peak 

can be associated with the sintering and densification of rutile particles [73, 74].   

The amount of energy released by eq. 5-1, is -209.5 kcal mole-1 of acetic acid [75]. 

Similarly other organics and ligands attached to titanium were also burned and 

produced gases e.g. CO2, CO and H2O along with the release of excess energy. That 

is why the DSC curve produced an exothermic peak with the combustion of the 

organics in the sol-gel solution. However, the exothermic peak associated with the 

formation of anatase/rutile is due to the free energy change after a 

disordered/amorphous material was transformed into an ordered/crystalline structure. 

This can be explained with the help of the 2nd law of thermodynamics, which states 

that free energy change is always favoured to the negative direction. An amorphous 

material crystallizes at higher temperature because its crystalline state possesses a 

lower free energy compared to its amorphous counterpart.  

 

5.3.2 Effect of Temperature on Ce-TiO2 Precursor 

DCS/TG results obtained from Ce-TiO2 sol-gel precursor solution (5 wt. % Ce2+) are 

shown in Figure 5-3. The results were nearly similar to the pure TiO2 except that 

there are some shifts of the transformation temperatures. The endothermic events 

taking place up to 200°C were identical as explained in the earlier section.  

The sharp DSC peak occurring from 260°C up to 385°C may be attributed to the 

decomposition reactions from cerium nitrate [76], acetic acid and organic ligands 

linked with titanium alkoxide. A small and broad exothermic event occurring at 

600°C was due to the anatase crystallization. Hereafter, DSC curve did not display 

any significant change until 850°C, where another endothermic event was observed. 

There was no clear peak observed for rutile. However, a weak peak was observed at 

820°C that may be ascribed to rutile formation. It was followed by sharp 
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endothermic peak at 850°C, which can be associated with the sintering of rutile 

crystallites, and it continued until 975°C.  

 

 

Figure 5-3: DSC/TG analysis of Ce-TiO2 (5wt.% Ce) sol-gel precursor solution 

In comparison of both films, it is inferred that with 5 wt. % cerium addition, anatase 

to rutile transformation temperature was increased up to 600°C compared to 

unloaded TiO2 sol-gel. This is in agreement with earlier results reported by Periyat 

et. al. [77]. The typical thermal data obtained from the DSC/TG of both films is 

summarised in Table 5-2. This information was used to confine the various laser 

operating parameters and set the experimental conditions in order to obtain the 

desired crystallographic structure. It was also helpful to compare and understand the 

effect of equilibrium and non-equilibrium heating induced by furnace sintering and 

the SGLIT respectively.    

 

Table 5-2: Data obtained from thermal analysis of various sol-gel films 

Batch Total weight 
loss, % 

Temperature range 
for anatase, °C 

Temperature range 
for rutile, °C 

TiO2 98% 405-750 750-800 
Ce-TiO2 97% 600-850 850-900 

107°C

260°C

385°C

820°C 

600°C

975°C 

850°C 

TG

DSC
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5.4 Structural Analysis by Raman Spectroscopy 

5.4.1 Laser Irradiation of Unloaded TiO2 Film 

Figure 5-4 displays the Raman spectra obtained from the as-dried and unloaded TiO2 

before and after preparation by SGLIT. There were no Raman peaks detected from 

the as-dried TiO2 film. This is due to the long range disorder and/or amorphous 

nature of the films after drying at 200°C. However, after irradiation with 100 laser 

pulses from at 35 mJ cm-2 laser fluence, the film exhibited weak Raman signals 

occurring at 438, 520 and 612 cm-1 respectively, as indicated in Figure 5-4. These 

peaks were matched with the rutile structure of TiO2 [78]. However, a strong peak 

occurring at 520 cm-1 was associated with the silicon substrate. The film prepared by 

SGLIT at 45 mJ cm-2, displayed higher intensity peaks at 439 and 608 cm-1. These 

peaks were again associated with the rutile phase of TiO2.  

  

Figure 5-4: Raman spectra obtained from TiO2 film prepared by SGLIT before and 

after 100 laser pulses and varying laser fluences 

Raman spectroscopic results revealed that unloaded TiO2 films were crystallized into 

rutile structure after irradiation with 100 laser pulses only. There was no anatase 

formed after irradiation with 100 laser pulses at 35-45 mJ cm-2 laser fluence. This is 
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ascribed to the higher temperature induced by interaction of the excimer laser pulse 

of high peak energy density with unloaded TiO2 film. Anatase is a meta-stable phase 

and transforms to its polymorph rutile which is more stable at higher temperatures. It 

can be inferred that the temperatures induced by laser beam were above 500°C 

which led to the formation of rutile as predicted by DSC results from the unloaded 

TiO2 earlier. These findings are in agreement with Imai et. al. [58] on the 

crystallization rutile-based TiO2 film after a single laser pulse at 50 mJ cm-2 fluence.   

 

5.4.2 Laser Irradiation of Ce-TiO2 Film 

5.4.2.1 Effect of Laser Pulses 

Raman spectroscopic data obtained from Ce-TiO2 (5 wt. % Ce) films before and 

after subjecting to SGLIT are shown in Figure 5-5. In order to analyse the effect of 

laser pulses on the crystallographic structure, these films were irradiated with 

varying number of pulses, while keeping the fluence and the repetition rate constant. 

As-dried Ce-TiO2 (200°C) did not exhibit Raman signals (black line). This was 

attributed to the amorphous nature of the as-dried state. On the other hand, films 

prepared by 100 laser pulses, at an average fluence of 35 mJ cm-2, displayed several 

Raman bands located at 394, 513 and 634 cm-1 respectively, as observed in Figure 5-

7 (green line). These peaks were closely matched with anatase phase of TiO2 [79]. It 

is evident from these results that the Ce-TiO2 transformed to anatase and not to rutile, 

which is contrary to the unloaded TiO2 films as discussed in previous section. It is 

due to the effect of Ce2+ ions in shifting the stability regime of the meta-stable 

anatase further up in the temperature scale.  

The results obtained after 100 laser pulses confirmed that anatase-based TiO2 films 

could be synthesized by SGLIT with the addition of Ce2+ ions under these 

conditions. Further results were collected after subjecting the films to a higher 

number of laser pulses. Raman spectra obtained after 500 laser pulses @ 35 mJ cm-2 

exhibited an additional peak occurring at 441 cm-1 (pink line). This band was 

associated with the rutile phase. The width of anatase peak at 634 cm-1 was also 

increased due to mixing and overlapping of the rutile band at 611 cm-1. However, 

these new Raman bands were clearly split up in the film irradiated by 800 laser 
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pulses. The new peaks were obtained at 441 and 611 cm-1 (blue line) and these were 

closely matched with rutile structure. It indicates that anatase was no more fully 

stablizied by Ce2+ ions after 500 laser pulses. It may be ascribed to the higher 

temperatures induced during the interaction of the film with laser pulses above 500.   

Intensity of the peaks from anatase was increased up to 500 laser pulses indicating an 

increase in the amount of the anatase formation under these conditions. A significant 

amount of the anatase was still retained after irradiation with 500 and 800 laser 

pulses by SGLIT, which was not possible with unloaded TiO2 film.  

 

 

Figure 5-5: Raman spectra obtained from Ce-TiO2 films prepared by SGLIT at 

varying number of laser pulses and 35 mJ cm-2 fluence 

It was inferred that the temperature induced in the Ce-TiO2 films was directly linked 

with the laser pulses applied to these films.  After 500 laser pulses, rutile formation 

was more favored due to its stability at higher temperatures. Therefore, 100 laser 

pulses was an optimum value to generate a dominant anatase structure into the Ce-

TiO2 films under the present experimental conditions.  

  

R 
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5.4.2.2 Effect of Laser Fluence 

In addition to the number of laser pulses, the laser fluence was another important 

factor which affected the transformation of Ce-TiO2 films during the laser 

irradiations. Raman spectra obtained from various films prepared by 100 laser pulses 

at a range of laser fluences are shown in Figure 5-6. As-dried Ce-TiO2 films were 

amorphous before the laser irradiation (black line), as discussed earlier. The films 

subjected to 100 laser pulses at 35 mJ cm-2 fluence, exhibited multiple bands in their 

Raman spectra. The peaks located at 394, 513 and 634 cm-1 respectively (pink line), 

were closely matched with the anatase structure of TiO2.  

On the other hand, Raman spectra obtained from the film (green line) irradiated at a 

laser fluence of 45 mJ cm-2, exhibited two main peaks located at 440 and 610 cm-1. 

These peaks were closely matched with the rutile phase of TiO2 [80]. The optical 

images captured from the corresponding films during the Raman spectroscopic 

analysis are also shown in the background in Figure 5-6. Both phases revealed a 

clear contrast in their appearance, the anatase appeared pinkish violet while the rutile 

appeared in greyish shade. The difference in their appearance is due to the different 

energy bandgap associated with each phase. The anatase energy bandgap lies within 

the ultraviolet range near 386 nm, whereas rutile absorbs around 400 nm.  The 

appearance of anatase and rutile in the visible region is associated with the effect of 

Ce2+ ions, which shifted the energy band structure of pure TiO2 into the visible range 

[81].  

Raman spectrum obtained from the Ce-TiO2 film prepared by 100 laser pulses at 35 

mJ cm-2 suggested that anatase, as a dominant phase, could be easily formed by 

SGLIT under these conditions. Therefore, these parameters provided an optimum 

laser operating window to transform the amorphous Ce-TiO2 films into the desired 

anatase structure. These results were also helpful to generate anatase and rutile 

mixed phases in various proportions depending on the applied laser conditions. The 

crystallization of anatase/rutile from an amorphous film was driven by the laser  
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Figure 5-6: Raman spectra of Ce-TiO2 films prepared by 100 laser pulses at varying 

fluences  

pulses and fluence. This, in turn, is related to the temperature rise and the interaction 

of the laser pulse with the film, considering the thermal conductivity of TiO2 and 

glass substrate. As the number of pulses was increased, the total duration of laser 

pulse interaction with the film was also increased, which subsequently raised the 

temperature inside the films. That is why the anatase eventually transformed to rutile 

after irradiation by 800 laser pulses.   

 

5.4.2.3 Effect of the Pulse Repetition Rate 

Figure 5-7 presents Raman spectra obtained from the Ce-TiO2 films which were 

prepared by SGLIT at various pulse repetition rates (PRR). The films were subjected 

to 100 laser pulses at 35 mJ cm-2 laser fluence. Raman spectrum obtained from the 

film prepared at 15 Hz, produced several Raman signals at 394, 513 and 634 cm-1 

(black line). These peaks were matched with the anatase structure.  

Similarly, the film irradiated at 25 Hz, exhibited an additional Raman peak located at 

441 cm-1 (pink line). This new peak corresponded with the rutile structure of TiO2. In 
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contrary, Raman spectrum obtained from the film prepared at 35 Hz displayed a 

distorted shape of the spectrum due to the overlapping from new Raman bands 

located at 397, 446, 612 and 635 cm-1 respectively (green line). The Raman peak at 

397 and 635 cm-1 were associated with the anatase structure as observed from the 

earlier film. The additional peaks located at 446 and 612 cm-1 were generated from 

the rutile structure.  

 

  

Figure 5-7: Raman spectra of Ce-TiO2 films after irradiation with 100 laser pulses at 

35 mJ cm-2 and a varying PRR 

In comparison, Raman spectroscopic results confirmed that the number of laser 

pulses, laser fluence and the pulse repetition rate influenced the phase transformation 

within the Ce-TiO2 films. In order to crystallize TiO2 films with anatase, rutile or a 

combination of these two phases, it was necessary to optimize these parameters 

within a close range. Under the present laser operating conditions, the optimized 

parameters for anatase and rutile are summarised in Table 5-3.  
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Table 5-3. Optimized laser parameters to produce various TiO2 films by SGLIT 

Laser parameters Films Desired 
phase Fluence, mJ 

cm-2 
No. of pulses PRR, Hz 

Anatase -    - Unloaded 
TiO2 Rutile ≥  45 100 10 

Anatase 35 100 15  Ce-TiO2 
Rutile ≥  45 100 15 

 
 

5.5 FEG-SEM Imaging and EDX Analysis 

5.5.1 Unloaded TiO2-(L) Film 

FEG-SEM images obtained from the unloaded TiO2 films are shown 5-8. As-dried 

film before the laser irradiation, is displayed in Figure 5-8a. The surface of the film 

appeared smooth and featureless. It consisted of pores and voids through out its 

surface. These pores were formed during the drying step due to the evaporation of 

volatile ingredients and gaseous products e.g. (CO2, CO, H2O) formed after 

decomposition of organic compounds in the film. On the other hand, the same film 

prepared with 100 laser pulses at 35-40 mJ cm-2 fluence, exhibited a modified 

morphology, as shown in Figure 5-8b. The surface of the film appeared in the form 

of irregularly shaped bumps with pores inside. The crystallographic structure of the 

film was consisted of rutile, as confirmed by Raman spectra earlier. 
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Figure 5-8: FEG-SEM images of the unloaded TiO2 film in the as-dried state a) and 

after laser irradiation at 35-40 mJ cm-2 with 100 pulses b) 

 

5.5.2 Ce-TiO2-(L) Film 

FEG-SEM images obtained from the laser irradiated Ce-TiO2-(L) film are shown in 

Figure 5-9. The surface of the as-dried film obtained was quite similar to the 

unloaded TiO2 and appeared flat with defects in the form of pores and voids (not 

displayed). On the other hand, the same surface was drastically modified into a 

rougher, porous and bumpy nature after 100 laser pulses at 35 mJ cm-2, as shown in 

Figure 5-9a. The size of the features formed after the laser irradiation was between 

200-300 nm, whereas the size of pores was roughly 30-50 nm. Interesting aspect 

observed in the laser irradiated film was the generation of meso-porosity, which was 

more obvious than the as-dried film. The meso-pores may be a result of the 

decomposition of residual organics and carbonaceous residue, which may be present 

in the as-dired films. The crystallographic data obtained from this film, confirmed 

the formation of anatase, as discussed earlier. It is inferred that anatase was 

crystallized with a bumpy rough surface and meso-porous morphology.   

 In addition, the FEG-SEM image obtained from the film irradiated by 100 laser 

pulses at 45-50 mJ cm-2 fluence is displayed in Figure 5-9b. The surface appeared 

rougher and size of the features was enlarged compared to the previous film prepared 

at 35 mJ cm-2 laser fluence by SGLIT. It was the combined effect of temperature and 
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structure induced by the laser beam, which led to a larger feature size. Moreover, the 

pore size of the film was also slightly increased, as shown in Figure 5-9b compared 

to Figure 5-9a. 

  

 

 

Figure 5-9: FEG-SEM image captured from the Ce-TiO2-(L) film surface prepared 

with 100 pulses at 35 mJ cm-2 a) and 45-50 mJ cm-2 b) fluence by SGLIT 

Figure 5-10 displays a high resolution image corresponding to Figure 5-9a in order 

to clarify its meso-porous morphology. The pores were regular in shape and 
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uniformly distributed across the film. In addition, the pores were interconnected at a 

few locations. The pores may serve an important purpose of increasing the surface 

area of the film, which is desirable for photo-catalysis. These also increase the 

absorption of light by providing more area to the incoming photons through the 

pores. 

 

 

Figure 5-10: A high magnification FEG-SEM image of Ce-TiO2-(L) film after 

irradiation with 100 pulses at 35 mJ cm-2  

 

5.6 Atomic Force Microscopic Analysis 

5.6.1 Ce-TiO2-(L) Film 

AFM surface profiles obtained from the Ce-TiO2-(L) film are displayed in Figure 5-

11. The film was prepared by 100 laser pulses at 35 mJ cm-2 fluence. The image 

exhibited a uniform rough structure with a round morphology, as shown in Figure 5-

11a. The round features were uniformly distributed all over the film. Figure 5-11b 

displays the corresponding histogram obtained from the image. The surface features 

of the films were uniformly distributed and an average feature size of 140 nm was 

observed.  
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In addition, the average surface roughness of as-dried film was 9 nm. However, it 

exceeded 32 nm after 100 laser pulses at 35 mJ cm-2 fluence. The change in surface 

roughness was attributed to the effect of laser-induced transformation leading to 

anatase/rutile structures within the sol-gel Ce-TiO2 film. A 3-dimensional profile 

generated from the AFM image is shown in Figure 5-11c. It revealed a uniform 

growth and distribution of surface features due to the localized laser-induced heating 

effect on the Ce-TiO2 film. The mean height obtained from the film was 97 nm in the 

Z axis.  

 

 

(b) 
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Figure 5-11: AFM image profile of Ce-TiO2-(L) film a) corresponding histogram of the 

image b) and 3-dimensional surface profile c) after 100 laser pulses at 35 mJ cm-2 

fluence 

 

5.6.2 Ce-TiO2-(F) Film 

Figure 5-12, displays the AFM image profile obtained from the furnace-sintered Ce-

TiO2 film (650°C for 3 hours). The surface morphology of the film was rather 

difficult to examine because of very fine features, as shown in Figure 5-12a. The 

height of features was determined to be 10 nm by AFM image. A corresponding 

histogram obtained from the film is shown in Figure 5-12b. The surface features 

were randomly distributed across the film, ranging in size of 50-200 nm. The 3-

dimensional surface profile generated from the AFM image is shown in Figure 5-

12c. A dense microstructure was revealed by the film due to the longer 

heating/cooling cycle of the furnace-sintered film compared to SGLIT. The 3-

dimensional features of this film exhibited an irregular morphology in contrast to the 

film prepared by SGLIT. An average feature size was determined to be 60 nm in the 

Z direction (mean height). 

In comparison, the laser irradiated Ce-TiO2 films exhibited uniformly distributed 

features of anatase structure after laser irradiation. The roughness of the films was 

greater (97 nm) compared to the furnace-sintered films (60 nm) implying that the 

furnace-sintered films possessed a significantly lower surface area. The higher 
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surface area of Ce-TiO2 films prepared by SGLIT may be beneficial for enhancing 

the photo-catalytic response of TiO2.  

 

 
 

 
 
 

(b) 
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Figure 5-12: AFM image of Ce-TiO2-(F) film prepared by furnace sintering at 650-

700°C for 3 hours in air  a) A corresponding histogram of the film surface b) and 3-

dimensional profile c) 

 

5.7 Conclusions 

In summary, SGLIT was developed and successfully applied to produce 

nanocrystalline Ce-TiO2 films on Pt(Si) substrate. The films were transformed into 

anatase and rutile phase under the excimer laser irradiation. However, the final 

crystallized structure was dependent on the applied laser parameters during the laser 

irradiation of the films. Meso-porous, anatase-based Ce-TiO2 films were formed at 

35 mJ cm-2 laser fluence and remained in anatase form up to 500 laser pulses. On the 

other hand, the films were transformed into rutile at 45-50 mJ cm-2 laser fluence after 

100 laser pulses only. The addition of Ce2+ stabilized the anatase phase up 500 laser 

pulses at 35 mJ cm-2 fluence compared to the unloaded TiO2 film which exhibited 

rutile after 100 laser pulses at the same fluence.      

A bumpy rough surface with a meso-porous morphology was obtained after the laser 

irradiation, which is the typical advantage of SGLIT. The films were crystallized 

with a dominant anatase structure and exhibited fine features and pore size compared 

to the rutile based films. The formation of bumps and pores was attributed to the 

organics and volatile material remaining within the films which was evaporated with 
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pressure as a result of the high temperatures induced by the laser beam. Therefore, 

the use of surfactants and co-block polymer templates may not be necessary to 

produce meso-porous TiO2 films, hence saving the cost of this process. Nevertheless, 

porosity may be also tailored by controlling the amount of moisture and organic 

residue in the films by preheating those in an oven. In addition, the crystallographic 

structure can be flexibly modified by tailoring the laser fluence, pulse repetition rate 

and number of pulses respectively.  
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Chapter 6 Preparation of W-TiO2 Films by 

SGLIT and Characterization   

 

6.1 Introduction 

Chapter 5 discussed the results of the initial work carried out to prepare the anatase 

in Ce-TiO2 films by laser irradiation as well as to develop the methodology. The 

present Chapter discusses the effect of W6+ ions on the stability of anatase. Tungsten 

(W6+) ions were added to TiO2 (W-TiO2), because they are known to stabilize 

anatase structure and possess a lower bandgap energy (2.7 eV) and a closer ionic 

radius (0.60Å) compared to Ti4+ (0.68Å). Various concentrations of W6+ ions used to 

prepare W-TiO2 by SGLIT and their effect on anatase structures are discussed in 

detail. In addition, the characterization and properties of W-TiO2 films prepared by 

furnace-sintering technique are also included. 

 

6.2  Sol-gel Chemistry of W-TiO2 Films 

This section includes the sol-gel chemistry of various batches of W-TiO2 prepared by 

SGLIT and some necessary alterations made in the experimental procedure. The sol-

gel precursor solutions prepared from the pure and W-TiO2 were spin-coated on soda 

lime glass substrates. The glass substrate was chosen because of its easier 

availability and lower cost. In order to identify the best photo-catalyst, several W-

TiO2 batches were prepared by varying W6+ ions concentration (1 to 4% by weight) 

into TiO2, as shown in Table 6-1. 
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Table 6-1: Various W-TiO2 precursor solutions prepared by sol-gel 

Batch W6+, weight % Possible Formula  
1W-TiO2 1.1 W0.005 Ti0.995O2 
2W-TiO2 2.2 W0.01 Ti0.99O2 
3W-TiO2 3.0 W0.014 Ti0.986O2 
4W-TiO2 4.0 W0.018 Ti0.982O2 

 

Each batch prepared was aged for 24 hours before spin-coating on to the glass slides. 

The films were coated up to 4 times in order to get a 500 nm thick green sol-gel film. 

Each coated layer was dried at 250°C for up to 2 minutes in order to evaporate the 

solvents (alcohol, water), and to burn and remove the excess organics (acetic acid, 

organic ligands with W6+ and Ti4+ precursors). In this way, the sol-gel films in the 

as-dried state can be stored at room temperature for a longer time without any 

degradation.   

 

 

6.3  Preparation of W-TiO2 Films by SGLIT 

The experimental arrangement used to prepare the TiO2 and W-TiO2 films by SGLIT 

is shown in Figure 6-1. It should be noted that there was no focusing lens used in this 

case. The raw excimer laser beam was masked through its centre by using a square 

aperture of 0.5×0.5 cm2 in size. The masking of the laser beam was necessary to 

homogenize and improve the quality of the beam on the sample surface. The work 

piece was mounted on the X-Y table and the laser beam was irradiated while the 

sample was moved step by step to cover the entire area of 2.5×2.5 cm2. A schematic 

diagram showing the SGLIT arrangement used for these experiments is displayed in 

Figure 6-1.  

The laser energy was measured by using an energy meter in order to achieve the 

required fluence or energy density of the sample. For the sake of brevity, the 

unloaded TiO2 and W-TiO2 films prepared by SGLIT are expressed as TiO2-(L), W-

TiO2-(L), whereas the furnace-sintered films are denoted as TiO2-(F) and W-TiO2-

(F) hereafter respectively.    
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Figure 6-1: Schematic diagram showing the setup to prepare W-TiO2 films by SGLIT 

 

6.4 DSC/TG Thermal Analysis  

6.4.1 TiO2 Sol-gel Precursor 

Simultaneous thermal analysis of the as-dried unloaded TiO2 film was carried out to 

investigate their transformation characteristics against the temperature. This test may 

help to design the furnace sintering cycle and simulate the transformation behaviour 

likely to occur during laser irradiation. DSC/TG curve obtained from the unloaded 

TiO2 sol-gel precursor film (dried at 300°C for 2 minutes) is shown in Figure 6-2. In 

order to interpret the results, the physical properties of various constituents in the 

sol-gel were obtained and displayed in Table 6-2.  

 

Table 6-2: Physical properties of various compounds used in sol-gel process  

DSC curve of unloaded TiO2 film (blue line) exhibited various exothermic peaks 

located at 262, 332, 406 and 525°C respectively. The exothermic events occurring at 

262, 332°C were associated with the decomposition of acetic acid and organic 

Compounds Formula Mol. weight, 
g 

Decomposition/vapori
zing temperature,  ºC 

Acetic acid CH3COOH 60.1 118 
n-butanol C4H10O 74.1 117.6 

Water H2O 18 100 
TnBT TiC16H36O4 340.3 200-300 
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ligands attached to TnBT, which could not be completely removed after the initial 

drying at 300°C for 2 minutes.   

   

 

Figure 6-2: DSC/TG data analysis of unloaded TiO2 precursor film in the as-dried state  

The exothermic peaks were accompanied by a major weight loss occurring in this 

region, as shown by the TG curve (green line) in Figure 6-2. The sharp loss of 

weight resulted from the combustion reactions of various organic constituents and 

the residual carbon generated as a result of the organics decomposition.  

Another major exothermic peak was obtained at 406°C, without any significant 

weight loss. This peak was associated with crystallization of the anatase structure 

from an amorphous matrix of TiO2 [73]. The weight loss, however, became less 

steep from this stage onwards as the amount of the remaining organic components 

was significantly reduced in the previous stages. Another major exothermic peak 

observed at 525°C may be associated with the decomposition of any remaining 

organics or carbonaceous residue on the films. The corresponding loss in the weight 

DSC 

TG 
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of material validates this assumption. There was no significant change after this 

event until 850°C which occurred with a small exothermic shoulder. This exotherm 

was associated with the transformation of anatase into rutile structure. The thermal 

analysis of unloaded TiO2 suggested that the film has to be heated below 850ºC to 

generate the anatase dominant structure, which is desired for photo-catalytic 

properties.   

 

6.4.2 1W-TiO2 Sol-gel Precursor 

The DSC/TG plot obtained from 1W-TiO2 precursor film is shown in Figure 6-3. 

The DSC curve exhibited three major exothermic peaks located at 265, 389 and 

472.5°C respectively. These peaks were accompanied by significant weight loss 

events as displayed by the TG curve. The events occurring at 265 and 389°C were 

ascribed to the major decomposition and combustion reactions from organic species 

leading to the liberation of CO2, CO, H2O etc. and exothermic heat. It can be verified 

by the simultaneous weight loss which occurred during these reactions. A sharp 

exothermic peak located at 472.5°C is ascribed to the crystallization of the anatase 

from an amorphous TiO2 matrix. There was no weight loss observed during this 

event which confirmed that this exothermic peak was not related to any combustion 

reaction or decomposition reaction. There was no further weight loss observed as 

most of the organics were released from the films. However, an endothermic peak 

was obtained at 816.7°C, which was followed by an exothermic broad peak at 

870°C. This endothermic peak may be associated with sintering TiO2 and WO3 in the 

film. The exothermic peak located at 870°C may be ascribed to formation of the 

rutile. A total weight loss of 29% was obtained from the TG curve. 

By comparison with the unloaded TiO2, it was inferred that there was no drastic 

difference in thermal changes by both of the films. Although, the formation of 

anatase and the rutile was slightly delayed (472°C, 870°C) in the case of W-TiO2, 

both films exhibited a similar trend in their thermal events. This data enabled to 

design a suitable sintering cycle for pure TiO2 and W-TiO2 films to form anatase- 

based TiO2 films for comparative studies. Therefore, a sintering temperature between 

650-700°C would be suitable to generate an anatase structure in both films.   
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Figure 6-3: DSC/TG data analysis of 1W-TiO2 precursor film in the as-dried state 

 

6.5 Analysis by X-Ray Diffraction  

6.5.1 Unloaded TiO2-(L) Film 

6.5.1.1 Effect of Laser Pulses 

A range of optimized laser parameters used to prepare the TiO2-based films by 

SGLIT, is shown in Table 6-3. Initially, effects of the number of laser pulses on the 

films were investigated by keeping the laser fluence and PRR fixed at 65 mJ cm-2and 

10 Hz respectively. Figure 6-4 displays the XRD spectra obtained from various 

unloaded TiO2 films prepared by SGLIT. All of the spectra were obtained in a  shape 

of hump, which was due to the amorphous substrate. There were no peaks observed 

from the XRD scan of the as-dried film confirming its amorphous character. This is 

in agreement with the DSC results. However, XRD results obtained from the film 

DSC 
TG 

870°C 
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after 10 laser pulses revealed several crystallographic peaks. These peaks were 

closely matched with the XRD card of the anatase (JCPDS-00-021-1272).  

 

Table 6-3: Laser operating parameters used to prepare various TiO2-based films by 

SGLIT 

Films Laser fluence, 
mJ cm-2 

No. of pulses PRR, Hz 

TiO2 65-95  10-200 10  

W-TiO2 65-95 10-100 10  
                       
 
 
 

 

Figure 6-4: XRD spectra of  the unloaded TiO2 films prepared with varying number of 

laser pulses at  65 mJ cm-2 fluence and PRR of 10 Hz  

The XRD data obtained after 50 laser pulses on the TiO2, exhibited a new peak 

located at 27.5 degrees. This peak was matched with the XRD card of the rutile 

structure (JCPDS-00-021-1276) indicating that the anatase structure started to 

transform into rutile after 50 laser pulses at 65 mJ cm-2 fluence. This trend became 

more pronounced after 100 and 200 laser pulses, when the rutile peak intensity was 
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increased further at the expense of the anatase peak. It was obvious from the results 

that the transformation of anatase into rutile was driven by the laser pulses applied. It 

is shown with the help of a simple schematic diagram in Figure 6-5. It was inferred 

that 10-50 laser pulses would be the optimum range to generate the dominant anatase 

structure in the unloaded TiO2 film. Nevertheless, it may also be possible to generate 

a crystalline structure with a customized ratio of anatase and rutile by SGLIT. 

  

Figure 6-5: Schematic diagram showing effects of the laser pulses on the structure of 

unloaded TiO2 films 

 

6.5.1.2 Crystallite Size of Anatase 

The crystallite size of the anatase was calculated by Scherrer’s method from each 

unloaded TiO2 film and the results are plotted in Figure 6-6. The anatase size was 

increased up to 50 laser pulses and then started to decrease after 100 laser pulses. It 

is attributed to the crystallization of the rutile after 50 laser pulses formed by 

coalescence of the larger anatase crystallites. As a result, anatase crystallites with a 

size below a critical radius still remained in the film up to 200 laser pulses.    
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Figure 6-6: Graph showing the effect of number of laser pulses at 65 mJ cm-2 fluence 

versus the anatase crystallite size in the unloaded TiO2 films 

  

6.5.1.3 Effects of Laser Fluence  

Having optimized the number of laser pulses to generate anatase and rutile 

structures, it was then required to investigate the effects of laser fluence in order to 

find the best laser operating window for these films. It might also improve the 

amount of crystallized anatase. The XRD results obtained from the unloaded TiO2 

films after 10 laser pulses at varying range of laser fluence are shown in Figure 6-7. 

Each of the film prepared with 10 laser pulses at 65, 75, 85 and 95 mJ cm-2 fluences, 

exhibited anatase as the dominant structure. It led to a conclusion that the laser 

fluence did not drastically affect on the transformation behaviour of the TiO2 film 

after 10 laser pulses. However, the anatase (101) peak intensity was found to be 

slightly increased up to 75 mJ cm-2, and then started to decline at the higher fluence, 

as observed in Figure 6-7. It was revealed from these findings that the optimum laser 

fluence was within the range of 75-80 mJ cm-2 with 10 laser pulses.  

In previous studies, it has been reported that achieving an anatase-dominant film by 

excimer laser irradiation in a single-step approach was not possible [58, 59]. 

However, in the present research, it has been demonstrated that SGLIT can 

successfully produce anatase-based TiO2 films in a simple single-step approach.  
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Figure 6-7: XRD spectra of the unloaded TiO2 films prepared by SGLIT at varying 

laser fluence  

 

6.5.2 W-TiO2-(L) Film 

6.5.2.1 Effects of Laser Pulses  

XRD results obtained from the W-TiO2 films before and after preparation by SGLIT 

at 65 mJ cm-2 laser fluence are shown in Figure 6-8. The as-dried films did not 

exhibit any diffraction peaks, hence were in an amorphous state. In contrast, several 

crystallographic peaks were obtained from the unloaded TiO2 and W-TiO2 films 

after 10 laser pulses as displayed in Figure 6-8a. The films with different 

concentrations fo W6+ ions, exhibited anatase as the dominant structure.    
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Figure 6-8: XRD spectra obtained from the unloaded TiO2 and W-TiO2 films  prepared 

by SGLIT with 10 a), 50 b ) and 100 c) number of laser pulses @ 65 mJ cm-2 fluence 

However, a minor mixing from the rutile phase was observed from the W-TiO2 films 

which weas observed to be increased with increase in W6+ ions content of the films. 

Nevertheless, unloaded TiO2 films revealed a single anatase phase without any 

mixing from rutile at the same laser operating conditions. Therefore, these results 

reflected that the addition of W6+ in TiO2 was responsible for more rutile formation 

compared to the unloaded films. Surprisingly, the results clearly contradicted with Li 

et. al. findings on stabilization of the anatase phase with the addition of tungsten ions 

compared to the unloaded TiO2 [82]. The possible reason for this contradiction may 

be associated with the methodology adopted in each work. The heating and 

transformation induced by SGLIT was rather different from the conventional heating 

and sintering by using a furnace. It is plausible that the W6+ ions were leading to an 

increased absorption of the laser beam into the TiO2 matrix resulting in better 

utilization of the laser energy applied. This ultimately resulted in increasing the 

transformation rate of TiO2 from amorphous to the anatase and rutile respectively.   
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Figure 6-8b and 6-8c display the XRD spectra obtained from the unloaded TiO2 and 

W-TiO2 films after 50 and 100 laser pulses at 65 mJ cm-2 fluence respectively. The 

XRD spectra exhibited various diffraction peaks from the corresponding 

crystallographic planes of rutile. The W-TiO2 films exhibited a more significant 

transformation from anatase into rutile after 50 and 100 laser pulses respectively. It 

was indicated that the number of laser pulses was directly related to the phase 

transformation within the films, therefore the desired structure can be tailored by 

controlling the laser parameters. 

In order to analyse the change in anatase structure, a narrow range XRD spectra was 

extracted from the unloaded TiO2 and W-TiO2 films as shown in Figure 6-9. The 

standard anatase (101) occurs at 25.28° with a d-spacing of 3.52Å according to its 

XRD standard JCPDS (00-021-1272). The position of anatase (101) peak obtained 

from the unloaded TiO2 and various W-TiO2 films is shown in Figure 6-9. The 

unloaded TiO2 film exhibited the largest shift (0.04°), whereas W-TiO2 films 

revealed a lower shift of 0.03, 0.02 and 0 for 1-3% W6+ concentration in W-TiO2 

respectively. However, 4% loaded W-TiO2 film revealed a negative shift of 0.04°. 

The positive and negative shifts pointed to a distorted tetragonal anatase lattice 

formed by SGLIT, which can also alter the lattice parameters. It may also be 

attributed to under-crystallization of the anatase due to the lower absorption of the 

laser beam in the unloaded TiO2 and W-TiO2 with lower W6+ ions concentration. For 

the 3% W6+ loaded film, the anatase peak was obtained at its standard 2 theta 

position of 25.28°. It may be assigned to a better crystallization of anatase due to a 

higher absorption of the laser beam by W6+ ions.  
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Figure 6-9: Narrow-range XRD spectra of the anatase (101) region obtained from 

TiO2-based films prepared with 10 laser pulses at 65 mJ cm-2 fluence by SGLIT 

 

6.5.2.2 Effects of Laser Fluence 

Figure 6-10 displays the XRD spectra obtained from the unloaded TiO2 and W-TiO2 

films prepared with 10 laser pulses at varying laser fluence by SGLIT. The laser 

pulses were fixed at 10 for each film after optimization from earlier results to 

generate the anatase dominant structure. The XRD spectra obtained from various 

films prepared by SGLIT at 65 mJ cm-2 laser fluence are shown in Figure 6-10a. The 

unloaded TiO2 exhibited the highest anatase compared to the W-TiO2 films as 

reflected by the anatase (101) peak intensity. There was no rutile phase formed in the 

unloaded TiO2 film. On the other hand, W-TiO2 films exhibited anatase mixed with 

rutile. It was revealed that the rutile proportion was significantly increased with 

higher concentration of W6+ in the W-TiO2 films. It was associated with the W6+ 

effect on the laser absorption of TiO2, as discussed in the earlier section.      
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Figure 6-10: XRD spectra from the unloaded TiO2 and W-TiO2 films  prepared by 

SGLIT with 10 laser pulses at 65 a), 75 b), 85 c) and 95 d) mJ cm-2 laser fluence  
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XRD spectra obtained from various TiO2-based films prepared at 75 mJ cm-2 are 

displayed in Figure 6-10b. In this case, the results were not significantly affected by 

increasing the laser fluence. However, the intensity of the rutile (110) peak was 

increased further in each W-TiO2 film, which indicated that higher laser fluence 

favoured the formation of rutile.  

XRD results collected from TiO2-based films prepared at 85 and 95 mJ cm-2 laser 

fluence are shown in Figure 6-10c and 6-10d respectively. The anatase peak intensity 

from the unloaded TiO2 film was reduced slightly, whereas it was drastically reduced 

in the W-TiO2 films. Once again, the films with a higher W6+ concentration exhibited 

a higher rutile proportion compared to the anatase. It was observed that the higher 

laser fluence above 75 mJ cm-2 was not suitable to generate the desired anatase 

dominant structure in the films. Moreover, it was verified that the addition of 

tungsten ions into the titanium dioxide failed to stabilize the anatase structure under 

the present laser processing conditions. Therefore, the films prepared at 65-70 mJ 

cm-2 fluence with 10 laser pulses by SGLIT can only be used for their photo-catalytic 

investigations. Therefore, it may be inferred that the laser fluence can be optimized 

at 65-70 mJ cm-2 for each composition.  

 

6.5.2.3 Crystallite Size of Anatase 

The crystallite size of anatase structure obtained from XRD spectrum of each film 

was calculated by Scherrer method. The results obtained from the W-TiO2 films 

prepared with 10 laser pulses at 65 mJ cm-2 fluence are plotted in Figure 6-11. The 

results reflected that the anatase crystallite size was proportionally increased up to 

3% loading (3W-TiO2) but reduced thereafter. The smallest anatase crystallite size of 

approximately 25 nm was obtained from 1W-TiO2 film.   

The increase in crystallite size may be attributed to the subsequent nucleation and 

growth of rutile structure with W6+ as verified by XRD results. It has been reported 

that during the heating of TiO2, the anatase is formed initially, which starts growing 

further in size with temperature and transforms into the rutile structure [83]. 

Therefore, if a sample contains more rutile than anatase, the crystallite size 

corresponding to the anatase would be smaller compared to the rutile. That is why 
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the anatase crystallite size from 4W-TiO2 was reduced due to a higher rutile content 

compared to the anatase as shown in Figure 6-10d.  

 

 

 

Figure 6-11: Variation of the anatase crystallite size against the W6+ content in W-TiO2 

films  

 

6.5.3 Unloaded TiO2-(F) and W-TiO2-(F) Films 

XRD data obtained from the unloaded TiO2 and W-TiO2 films sintered in furnace at 

700°C for 1 hour are displayed in Figure 6-12. There were strong crystallographic 

peaks obtained from the films.  Unloaded TiO2 films revealed anatase. The anatase 

(101) peak intensity was increased after adding W6+ ions into the TiO2 films. As the 

amount of W6+ ions was increased above 3% by weight, the anatase crystallization 

was notably reduced and rutile was formed. In addition, new peaks were obtained, 

but it is assumed that these peaks emerged due to the formation of secondary phases 

by the reaction of W-TiO2 with the glass substrate. Although the furnace sintering 

improved the crystallization of anatase phase, it was not applicable for all of the 

films. 
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Figure 6-12: XRD results obtained from the furnace-sintered W-TiO2 films 

 

In comparison of the laser and furnace-sintered films, it may be inferred that the 

anatase was crystallized with a higher intensity in the case of furnace sintering, 

whereas laser produced a lower amount of anatase in the films. Nevertheless, the 

laser irradiated films did not reveal the undesired secondary phases as a result of the 

reactions with the glass substrate. The difference in structural features from both 

methods is due to the nature of the thermal mechanisms involved. During furnace 

sintering, a sufficient time was available for TiO2 nucleation and growth and the 

process was driven by thermal effects only. On the other hand, the crystallization by 

the laser-induced method was rapid, with a much higher concentrated energy. High 

photon energy of the excimer laser (~5 eV) was also responsible for causing 

photochemical interaction with films in addition to the thermal processes [84].  
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Figure 6-13: Variation of the anatase crystallite size with W6+ content of W-TiO2 films 
 

6.6 Imaging by FEG-SEM and EDX Analysis 

6.6.1 TiO2-(L) Film 

The images captured by FEG-SEM from the unloaded TiO2-(L) films before and 

after preparation by SGLIT are shown in Figure 6-14. As-dried film (250°C for 2 

minutes) before the laser irradiation revealed a smooth surface without any definite 

features (Figure 6-14a). On the other hand, the texture obtained from the film 

prepared with 10 laser pulses at 65 mJ cm-2 fluence by SGLIT, exhibited a 

completely modified morphology (Figure 6-14b). The film exhibited a bumpy 

surface with a porous morphology. The pore size as determined from the image scale 

was between 40-50 nm, confirming a meso-porous nature of the TiO2 prepared by 

SGLIT. Moreover, a uniform distribution of the surface features was revealed by the 

film. The generation of a bumpy surface is attributed to the carbonaceous residue or 

moisture present within the films which was released with high pressure during the 

laser interaction. This release of gaseous products resulted in the formation of small 

pores in the film.     
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Figure 6-14: FEG-SEM images captured from the unloaded TiO2 before a) and after b) 

10 laser pulses at 65 mJ cm-2 fluence by SGLIT  

 

6.6.2 W-TiO2-(L) Films 

The FEG-SEM images captured from various W-TiO2-(L) films before and after 

subjecting to the laser irradiations are shown in Figure 6-15. The films were prepared 

with 10 laser pulses at 65 mJ cm-2 fluence by SGLIT. The as-dried 1W-TiO2 film 

exhibited a flat topography without any definite features, similar to the unloaded 

TiO2. It implied that the loaded W6+ ions were uniformly mixed and attached with 

(a) 

(b) 

5 µm 
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TiO2 and there was no precipitation observed as shown in Figure 6-15a. On the other 

hand, the same film after 10 laser pulses at 65 mJ cm-2 fluence, exhibited a 

drastically modified morphology, as shown in Figure 6-15b. The surface appeared 

meso-porous with bumpy features. However, the porosity of this film was found to 

be higher compared to the unloaded TiO2. It was due to the combustion of organic 

ligands attached to the tungsten precursor in addition to the TiO2 which increased the 

porosity during the laser irradiation.   

The FEG-SEM images obtained from the 2W-TiO2, 3W-TiO2 and 4W-TiO2 films 

prepared at the same laser operating conditions by SGLIT are shown in Figure 6-15b 

to 6-15e respectively. It was observed that the surface features became coarser and 

rougher with an increase in the W6+ content in the films. It could be attributed to an 

exaggerated effect of the laser-induced transformation in these films with a higher 

W6+ ions concentration. A higher amount of the W6+ loading could also enhance the 

absorption of laser beam into the W-TiO2 films. 

 

 

 

(a) 
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(b) 

(c) 
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Figure 6-15: FEG-SEM images captured before a) and after 10 laser pulses at 65 mJ 

cm-2 fluence from the 1W-TiO2 b), 2W-TiO2 c), 3W-TiO2 d) and 4W-TiO2 e) films 

prepared by SGLIT   

6.6.2.1 Effect of Laser-overlap    

The structure of an overlap region from 1W-TiO2 film prepared by 50 laser pulses at 

65 mJ cm-2 fluence is shown in Figure 6-16. The area exhibited a rather non-uniform 

structure, porosity and initiation of cracks. The non-uniform morphology of the 

(d) 

(e) 
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structure is attributed to the non-uniformity of the laser beam. The laser energy was 

lower at the edges of the beam than at the centre as predicted by the laser energy 

profile in Figure 4-9. This resulted in the non-uniform heating induced by the laser 

beam in those areas resulting in a non-uniform structure.  

 

Figure 6-16: FEG-SEM image of 1W-TiO2 film prepared with 2% laser overlap after 

50 laser pulses at 65 mJ cm-2 fluence  

  

6.6.3 EDX Analysis  

In order to verify the chemical composition of the unloaded TiO2 and W-TiO2, EDX 

analysis was performed on each film. Figure 6-17a shows the area selected for the 

EDX analysis of the unloaded TiO2 film prepared by 10 laser pulses at 65 mJ cm-2 

fluence. The corresponding EDX spectrum generated from this area is shown in 

Figure 6-17b. It exhibited energy peaks from Ti and O which originated from the 

film, whereas Si, Ca, Mg, Na etc. were detected from the soda lime glass substrate 

beneath the film.  

 



Chapter 6                                                                 W-TiO2 Films Prepared by SGLIT 
 

    
157 

 
 

 

Figure 6-17: FEG-SEM image a) and the corresponding EDX spectrum b) of the 

unloaded TiO2 film prepared with 10 laser pulses at 65 mJ cm-2 fluence 

 

On the other hand, an EDX line scan was performed on the W-TiO2 prepared by 

SGLIT to detect any secondary tungsten compounds/precipitates. The line profiles 

obtained from the 2W-TiO2 film are displayed in Figure 6-18. The area selected for 

line profile is shown in Figure 6-18a, with an arrow indicating the direction of line 

scan. The corresponding line scan profile and the EDX obtained are shown in Figure 

 

(a) 

(b) 
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Figure 6-18: FEG-SEM image a), the line scan profile b) and the corresponding EDX 

spectrum of the 2W-TiO2 film prepared with 10 laser pulses at 65 mJ cm-2 fluence  

6-18b and 6-18c respectively. There was no clear evidence obtained for the presence 

of the tungsten particles on the surface of 2W-TiO2 film, which suggested that the 

tungsten ions were not precipitated during the preparation by SGLIT. The white 

particles lying on the surface were associated with gold, which was deposited during 

gold coating.  

 

6.6.4 Unloaded TiO2-(F) and W-TiO2-(F) Films 

The films prepared by the furnace sintering at 700°C for 1 hour in air were subjected 

to structural examination by FEG-SEM. The images collected from the unloaded 

TiO2 and the W-TiO2 film are shown in Figure 6-19. A uniform and well defined 

surface features were obtained from each film. The furnace-sintered unloaded TiO2 

film exhibited well-defined round features and a denser microstructure compared to 

the SGLIT (Figure 6-14b). It was attributed to the longer heating and cooling cycles 

during the furnace sintering which provided sufficient time for the anatase 

crystallites to grow in size and densify during the furnace heating cycle. There was 

no meso-porosity observed from the unloaded TiO2 film, but there were irregular 

voids and empty spaces between the adjacent features.  

 

(c) 
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Figure 6-19: FEG-SEM images captured from the unloaded TiO2 a), 1W-TiO2 b), 2W-

TiO2 c), 3W-TiO2 d) and 4W-TiO2 e) films after furnace sintering at 700°C for 1 hour    

 

6.7 UV-Visible Spectroscopic Analysis 

6.7.1 Unloaded TiO2-(L) Film 

Optical transmission spectra obtained from various unloaded TiO2 films prepared 

with 10 laser pulses by varying the laser fluence are shown in Figure 6-12a. The as-

dried films were transparent and exhibited high transmission. There was a significant 

reduction in the transmission of the films after the laser irradiations. It was attributed 

to the crystallization of anatase and the change in the surface roughness of the films. 

As the number of laser pulses was increased from 10-200, the photo-transmission of 

the films was reduced subsequently in the visible region.  

On the other hand, the optical transmission results obtained from the TiO2 films 

prepared by 10 laser pulses at a range of the laser fluence are shown in Figure 6-20b.   

The transmission behaviour of the films was not considerably affected by varying the 

laser fluence. Each film exhibited approximately 60% transmission at 400 nm 

wavelength of the visible light. It is attributed to the rough texture of the laser-

irradiated film as observed from FEG-SEM images. The rough texture was resulted 

(e) 
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Figure 6-20: UV-visible spectra of the unloaded TiO2 prepared at varying the number 

of laser pulses a) and the laser fluence b) at 15 Hz PRR by SGLIT 

in the scattering of the incoming light leading to a lower photo-transmission. The 

remaining 40% of the light was either absorbed and/or reflected depending on the 

surface roughness and the crystalline phase of the films. If the surface is rougher 

more light will be scattered and reflected. The anatase is less absorbing compared to 
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the rutile in the visible region (400-700 nm).  Therefore, with an increase in the 

number of laser pulses more rutile was formed and the photo-transmission of the 

unloaded TiO2 films was therefore reduced.  

 

6.7.2 W-TiO2-(L) Films 

The effects of the laser pulses on optical transmission of various W-TiO2 films are 

shown in Figure 6-21. It was observed that each film exhibited a decrease in the 

photo-transmission with increase in the number of laser pulses. The unloaded TiO2 

film prepared with 10 laser pulses exhibited higher transmission which is attributed 

to the anatase structure (Figure 6-21a). The anatase possesses higher bandgap energy 

and only absorbs up to 386 nm wavelength. On the other hand, the W-TiO2 films 

prepared under the same conditions exhibited less transmission compared to the 

unloaded film. It was ascribed to the mixed structure of anatase and rutile, as verified 

by XRD results earlier. In addition, it may also be associated with the W6+ ions 

resulting in a reduction of the TiO2 energy bandgap [85].   

There was a considerable decrease in the transmission from the films prepared with 

50 laser pulses (Figure 6-21b). It was due to the change in surface roughness of the 

films prepared by a higher number of laser pulses. The surface of the films scattered 

more light leading to a lower photo-transmission.  This behaviour was more 

consistently presented for 1-3% W6+ loaded TiO2 films. However, at 4% W6+ loading 

(4W-TiO2), the film exhibited the lowest photo-transmission after 10 and 50 laser 

pulses respectively. It was partly ascribed to the highest rutile content formed in this 

film compared to the others. In addition, these films appeared dark after preparation 

by SGLIT. It has been reported that the excimer laser irradiation leads to the oxygen 

ion vacancies and darkening of the films. Therefore, the dark colour of these films 

can be attributed to the oxygen ion vacancies induced by the excimer laser 

irradiation [86, 87].   
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Figure 6-21: UV-Visible spectra obtained from the unloaded TiO2 and W-TiO2 films 

prepared with 10 a) and 50 laser pulses b) at 65 mJ cm-2 fluence by SGLIT  

The effects of the laser fluence on the photo-transmission of the unloaded TiO2 and 

W-TiO2 films prepared by SGLIT are shown in Figure 6-22.   
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Figure 6-22: UV-visible spectra obtained from the unloaded TiO2 and W-TiO2 films 

prepared at 75 a), 85 b) and 95 mJ cm-2 fluence c) by SGLIT 

W-TiO2 films prepared at higher fluences exhibited lower transmission compared to 

the unloaded TiO2 film. The trend observed in the optical properties with increasing 

the laser fluence was similar to the laser pulses discussed earlier. In short, these 

parameters resulted in increasing the surface roughness of the films and therefore the 

films scattered more light. The 4W-TiO2 film demonstrated the lowest transmission 

due to its darker appearance, greater rutile content and the increased surface 

roughness compared to the others.  

 

6.8 Imaging by STEM and EDX Analysis 

A typical cross-sectional STEM image of 2W-TiO2 film prepared with 10 laser 

pulses at 65 mJ cm-2 fluence by SGLIT is shown in Figure 6-23. The bright top layer 

was from the platinum coating deposited during the sample preparation by FIB. A 

thin gold layer was also deposited beneath the platinum layer, as labelled. The film 

exhibited a uniform interface with the glass substrate. The film cross-section 

displayed bumpy features, which are in agreement with FEG-SEM results discussed 
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earlier. There were some voids and pores lying near the top surface of the film. 

These pores were generated as result of the laser irradiation due to the forceful 

expulsion of gaseous products in the sol-gel derived film.  

 
 

 

Figure 6-23: Cross-sectional TEM image obtained from the 2W-TiO2 film prepared 

with 10 laser pulses at 65 mJ cm2 fluence by SGLIT  

 

6.8.1 Structural Analysis by SAED 

In order to determine the crystalline structure of the laser irradiated film, a higher 

magnification image was captured and the corresponding SAED’s were obtained as 

displayed in Figure 6-24. Two different areas of the film were selected to obtain 

these SAED’s. The image captured from the top bumpy area designated as 1, 

produced several diffraction spots and indicated a crystalline phase. In contrast, the 

SAED obtained from rather smooth bottom part of the film designated as 2, did not 

2W-TiO2 film 

Gold

Platinum

Glass substrate 
Glass-film interface 

Pores



Chapter 6                                                                 W-TiO2 Films Prepared by SGLIT 
 

    
169 

reveal any diffraction spots. It was the indication of an amorphous structure lying 

just below the laser irradiated top surface of the film.  

 

 

Figure 6-24: TEM image of the cross-section of 2W-TiO2 film prepared with 10 laser 

pulses at 65 mJ cm-2 fluence and the corresponding SAED 
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The polycrystalline SAED pattern obtained from Area 1 of the 2W-TiO2 was solved 

to obtain the corresponding d-spacing values. The calculated d-spacings matched 

with the standard anatase structure (JCPDS: 00-021-1272). However, a few 

diffraction spots were also found that matched with the standard rutile structure 

((JCPDS: 00-021-1276), as marked in Figure 6-24 (area 1). The mixing of rutile 

phase with the anatase from 2W-TiO2 was in agreement with the XRD results. A 

high resolution image was captured from the Area 1 to determine the anatase 

crystallite size as displayed in Figure 6-25. The crystallite size of the anatase directly 

determined from the TEM image was up to 30 nm, which is in close agreement with 

the XRD results. 

 
 

 

Figure 6-25: A high magnification TEM image from Area 1 of 2W-TiO2 film prepared 

with 10 laser pulses at 65 mJ cm-2 fluence 

 

6.8.2 Line Scan and EDX Analysis 

The EDX line scan was performed across the cross-section of the 2W-TiO2 film as 

shown in Figure 6-26a. The results indicated a uniform distribution of Ti and O in 

the film as displayed in Figure 6-26b. The line scan profile also confirmed the 

Anatase crystallites 

Amorphous 2W-TiO2 
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thickness of 2W-TiO2 film, which was approximately 400 nm. The corresponding 

EDX analysis generated during the line scan is shown in Figure 6-26c. Several 

signals obtained were originating from Au, Pt, Ga, Ti, O and C etc. The Au, Pt and 

Ga species were deposited during the film preparation by FIB. However, there was 

no clear peak from W. It may be due to the Au and Pt layers, which covered most of 

the film top surface and possibly blocked the EDX signals of W. However, FEG-

SEM confirmed the existence of W element from the same sample by EDX analysis 

in earlier section.  

 

 
 

 
 

(a) 

(b) 
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Figure 6-26: TEM image showing the line scan area a), line scan profile b) and the 

corresponding EDX analysis c) of the 2W-TiO2 film prepared with 10 laser pulses at 65 

mJ cm-2 fluence 

 

6.9 Conclusions 

The Chapter draws several interesting conclusions related to the properties of W6+ 

loaded TiO2 films prepared by SGLIT. The laser irradiations successfully generated 

nano-crystalline TiO2 and W-TiO2 films without using any focusing lens. The films 

dominant in anatase were produced on a larger area (2.5×2.5 cm2) on the glass 

substrate. Intermixing of the anatase and rutile in TiO2 films was readily customized 

by subtle variation in the laser operating parameters. This technique was less time 

consuming and simpler compared to the pulsed laser ablation and the conventional 

sintering in furnace. Laser irradiation crystallized and modified the unloaded TiO2 

and W-TiO2 films into a higher surface area meso-porous structure, with appreciable 

anatase content. The films prepared by SGLIT were rougher with a greater surface 

area compared to the furnace-sintered films. The excimer laser crystallized a partial 

thickness, approximately 100 nm deep, in the total film thickness of 400 nm. 

Stability of the anatase was lowered and more rutile was formed with an increase in 

the W6+ content of TiO2 films prepared by SGLIT. A similar trend was observed in 

the furnace-sintered W-TiO2 films as well.  

(c) 
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Chapter 7 Preparation of Ag-TiO2 Films by 

SGLIT and Characterization 

 

7.1 Introduction 

The previous Chapters have discussed the initial progress with the SGLIT to develop 

anatase-based Ce-TiO2 and W-TiO2 thin films. The present Chapter discusses the 

development of a silver loaded titanium dioxide (Ag-TiO2) anti-bacterial material by 

SGLIT. It contains a slightly modified experimental setup, results, discussion and 

conclusions extracted from the studies. The effects of laser operating parameters on 

various properties of the films were investigated including nano-crystallisation, 

surface morphology and optical properties. For the purpose of comparison, a few 

films were fabricated by sintering TiO2 films in a furnace and silver ions were 

adsorbed in a similar fashion before exposing to UV light. 

 

7.2 Experimental Arrangement 

7.2.1 Preparation of TiO2 Sol-gel Film 

In order to prepare an Ag-TiO2 nano-composite thin film, a TiO2 precursor solution 

was first prepared by the recipe described in Section 4.1.4. However, HCl was not 

added in this case. The solutions were coated on cleaned glass slides to coat up to 

four consecutive layers. After deposition, the coatings were dried at 350°C for 30 

minutes on a hotplate to decompose the organics. The sol-gel process adopted for 

this purpose is shown in Figure 7-1.  
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Figure 7-1: Process diagram (recipe) to prepare unloaded TiO2 precursor sol-gel films 

 

7.2.2 Silver Ions Adsorption 

A 0.01M silver nitrate (AgNO3) aqueous solution was prepared by dissolving 0.42 g 

of the AgNO3 salt in 250 ml of de-ionized (DI) water. The salt solution was 

continuously stirred at 700 RPM and TiO2 films were immersed by hanging with the 

help of a nylon thread, as shown in Figure 7-2. As-dried and furnace-sintered films 

were immersed in the solution for about 15 minutes to adsorb silver ions. The 

concept of silver ions adsorption was inspired from the work published by Tatsuma 

et. al. [88, 89]. The experiment was conducted within an opaque enclosure to avoid 

contact of light with silver ions and to avoid their premature reduction. The films 

were removed from the solution after 15 minutes by using tweezers, rinsed 

thoroughly with DI water and dried at room temperature and stored in a dark place. 

The as-prepared films were then subjected to the excimer laser irradiation at various 

operating parameters.  
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Figure 7-2: Schematic diagram of silver ions adsorption from 0.01 M AgNO3 solution 

on TiO2 coated glass slides 

 

7.3 Phase Identification and Analysis 

7.3.1 Effect of Laser Irradiation on Ag-TiO2 

XRD crystallographic data obtained from the Ag-TiO2 films before and after laser 

irradiation are plotted in Figure 7-3. The as-dried TiO2 (350°C, 30 minutes) films 

exhibited no diffraction peaks as shown in Figure 7-3a. This showed that the films 

were amorphous in the as-dried state. However, the same film exhibited new 

crystallographic peaks after irradiation with 10 laser pulses. The d-spacing obtained 

from various peaks in the spectrum, matched with the anatase crystalline structure 

(JCPDS-00-021-1272).  

It was desired to generate anatase in Ag-TiO2 for photo-catalytic properties so the 

films were irradiated at varying number of laser pulses, while keeping the laser 

fluence fixed at 85 mJ cm-2 and a pulse repetition at 15 Hz respectively. Phase 

analysis results obtained by XRD revealed that anatase was crystallized after 

applying 10 laser pulses. As the number of laser pulses were increased from 50 to  

TiO2 coated glass 

0.01 M AgNO3 
solution while stirring 
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Figure 7-3: XRD spectra showing the effect of laser pulses on Ag-TiO2-(L) film 

prepared by SGLIT at 85 mJ cm-2 fluence and 15 Hz PRR   

200, the anatase phase increased in amount which was determined by the increase in 

the anatase (101) peak intensity. The film irradiated by 200 laser pulses exhibited 

additional peaks in the XRD data. The d-spacing obtained from these peaks were 

matched with rutile structure (JCPDS-00-021-1272).  

 

7.3.2 Laser Interaction with Ag-TiO2  

7.3.2.1 Interaction Time 

It was observed that the phase transformation in Ag-TiO2 films was driven by the 

laser pulses. If the laser pulses are considered as the input energy, each pulse coming 

out of the laser would transfer that energy after impact with the target material i.e. 

Ag-TiO2 film. The laser has a pulse width of up to 20 ns i.e. each laser pulse can 

deliver the laser energy for 20 ns only and the laser takes it lowest or zero energy 

state before generating the next pulse. This phenomenon is continued until the 

required number of laser pulses is fired by the laser e.g. 50 laser pulses are expired.  
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The delay time between two consecutive laser pulses depended on the pulse 

repetition rate. In the present case, delay time was only 133 ms at a pulse repetition 

rate of 15 Hz, as shown in Figure 7-4. The total laser pulse interaction time with the 

Ag-TiO2 film may be calculated as follows; 

 
Number of laser pulses =n= 50 
Laser pulse width = tp= 20 ns 
Total laser interaction time Tl = tp ×n= 50×20=1000 ns  
For, n=200 
Tl = 200×20= 4000 ns 

 

 

 
 
 
 
 

 

 

 

Figure 7-4: Pulse shape of the excimer laser 

Although the time scales involved in the laser irradiation of Ag-TiO2 films are small 

i.e. nanoseconds, they drastically effected the crystallization and phase 

transformation of the films. It implies that the high peak energy density delivered by 

each laser pulse was driving the anatase and rutile crystallization in this case.     
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7.3.2.2 Laser-induced Temperature Calculation in TiO2 Film  

The interaction of the laser pulse can be considered as the main driving mechanism 

in raising the temperature of TiO2 film, which resulted in the crystallization of 

anatase and rutile. The temperature distribution in the film ( )tzyxTT TiO ,,,3002 +=  

after a single laser pulse can be calculated by one-dimensional heat flow equation 

[90, 91] as follows; 

 

[ ] ( ) z
cp etyxIATgraddivTc αακρ −+= ,,0

&      Eq.  7-1 

00, === =∞±=∞= tyxz TTT      Eq.  7-2 

The spatial profile of the laser pulse is considered a top hat from the excimer laser. 

The smooth pulse shape ),,( tyxI  can be described by; 

]exp[)(),,( 20
ll t
t

t
FttItyxI −==      Eq.  7-3 

where ‘ )(0 tI ’ is the incident laser intensity or power density as a function of time 

‘ t ’, ‘ F ’ is the laser fluence incident on the sample and ‘ lt ’ is the laser pulse width, 

which is 20 ns. In the case of a top-hat profile, the solution of the linear equation can 

be expressed by the equation, 
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where ‘α ’ is the absorption coefficient and ‘ 0A ’ is the absorptivity of the film and 

‘ z ’ is the depth below the surface of the film. The F function is defined as; 
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where ‘ ρκ pc cD /= ’ is the thermal diffusivity of the film. The film was in 

amorphous condition before coming in contact with the laser beam, therefore thermal 
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properties of the film may be approximated for the anatase to ease the calculations. 

The thermo-physical data used for the temperature TiO2 film is given in Table 7-1. 

Table 7-1: Thermo-physical data for TiO2 [92, 93] 

Properties Temperature Value 
Density, ‘ ρ ’ 298 K 3.0 g cm-3  
Thermal 
conductivity, ‘ ck ’ 

298 K  0.035 W cm-1 K-1 

Specific heat, ‘ pc ’ 298 K  0.69 J g-1 K-1 

Absorptivity, ‘ 0A ’ 298 K 0.59 
Absorption 
Coefficient, ‘α ’ 

 
298 K 

 
7.1×105 cm-1 

 

Theoretical density of the bulk anatase is 3.89 g cm-3 with minimum or no porosity. 

However, in this research, a porous anatase film was produced by SGLIT, therefore a 

density of 3.0 g cm-3 has been assumed. The analytical model was written, compiled 

and run in Mathematica software (version 6).  The results for the temperature rise 

against the laser interaction time are plotted in the graph in Figure 7-5. The peak 

temperature attained during 20 ns laser pulse was approximately 743, 854 and 967 

°C for TiO2 films after interaction with a single laser pulse at 65, 75 and 85 mJ cm-2 

fluence. The analytical thermal modelling of the SGLIT revealed that the 

temperature induced by the incident laser pulse could only lead to the heating of the 

films without melting (2143 K).   
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Figure 7-5: Analytical simulation of the single laser pulse induced temperature 

variations with respect to the incident laser fluences 

The vertical distance ‘z’ over which the heat diffuses during the pulse duration 

(tp=20 ns) can be calculated as [46],  
 

)(2 pDtz =      Eq.  7-6 

where ‘Dt’ stands for thermal diffusivity which is given as; 

p

c
t c

k
D

ρ
=      Eq.  7-7 

where ‘kc’ stands for thermal conductivity, ‘ρ’ the density and ‘cp’ the specific heat 

of TiO2 film respectively. 

After solving the eq. 7-6,  

nmz 360=  

A single excimer laser pulse could induce temperature and subsequent thermal 

diffusion of up to 360 nm deep into the TiO2 film.  
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7.3.3 Effect of Furnace Sintering on Ag-TiO2 Film 

The Ag-TiO2-(F) films were prepared by immersing the crystalline anatase TiO2 

films into the AgNO3 solution for 15 minutes. The adsorbed Ag2+ ions were then 

reduced to the metallic state by a conventional method using a UV lamp which 

illuminated the films for 4-5 hours in a dark enclosure. XRD results were obtained 

from these films in order to confirm their phase and compared with laser irradiated 

films, as shown in Figure 7-6. There was no silver peak obtained in the XRD spectra 

of furnace-sintered films. This may be attributed to a very small amount of silver 

nanoparticles, which were below the threshold limit of the X-Ray detector.  

 

 

Figure 7-6: XRD spectra of various TiO2 films before and after laser and furnace 

sintering respectively                                 

(TiO2-L= 50 laser pulses at 85 mJ cm-2, 15 Hz PRR, Ag-TiO2-L= 50 laser pulses at 
85 mJ cm-2, 15 Hz PRR, Ag-TiO2-F= furnace-sintered at 700°C for 1 hour with 
subsequent adsorption of Ag2+ ions and photo-reduction by UV lamp for 4-5 hours)  
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7.3.4 Effect of Silver Nanoparticles on TiO2 Films 

It was interesting to discover the retention of anatase in silver loaded films, even 

after irradiation with 200 laser pulses at considerably higher laser fluence of 85 mJ 

cm-2 compared to W-TiO2 under similar conditions as described in Chapter 5. 

Therefore, the crystalline stability of anatase after laser irradiation is due to the 

addition of silver nanoparticles. In order to find the mechanism of this phenomenon, 

it is necessary to consider the laser interaction with silver nanoparticles, which is 

discussed in section 7.8. Briefly, this stability effect was induced by the absorption 

of a significant amount of the laser energy for their photochemical reduction. The 

laser beam in contact with the TiO2 films induced sufficient heating of the TiO2 film, 

which favoured the formation of anatase.  

Nevertheless, earlier findings reported by Wu et. al. [94] and Ahmad et. al. [95] have 

concluded that the rutile formation was favoured after the addition of Ag in TiO2 

films by a sol-gel synthesis route. In their process, the obtained gel was calcined in a 

furnace. The crystallization behaviour in the case of laser-induced synthesis of Ag-

TiO2 was rather different. It was observed that Ag2+ ions helped to crystallize anatase 

with their in-situ reduction into metallic Ag° form. However, from the XRD results, 

it was also observed that the anatase crystallization and stability was limited by the 

number of laser pulses as small proportion of rutile appeared after irradiation with 

200 at 85 mJ cm-2 (Figure 7-3).  

 

7.3.5 Crystallite Size of Anatase 

Table 7-2 shows the crystallite size of anatase in Ag-TiO2-(L) and Ag-TiO2-(F) 

films, which was calculated from XRD by the Scherrer formula. An anatase 

crystallite size of 43.1 nm was obtained from the unloaded TiO2 film prepared by 50 

pulses of excimer laser irradiations at 85 mJ cm-2 fluence. However, with Ag 

addition, the same film (Ag-TiO2-L) exhibited a crystallite size of 38.4 nm, which 

was lower compared to unloaded TiO2. The difference in crystallite size is due to the 

addition of silver nanoparticles to the unloaded TiO2 film and also connected with 

the anatase phase stability as discussed earlier. It has been well documented that 
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addition of nanoparticles affects the nucleation and/or transformation of a crystalline 

phase by pinning the grain boundaries, eventually reducing the grain size [96].  

The particle size calculated from the XRD spectra of TiO2-(F) and Ag-TiO2-(F) were 

nearly similar as both of the films were sintered at the same temperature. The 

illumination by UV light could not change the size of the particles to a significant 

extent in this case possibly due to lower intensity (600 μW cm-2) of the UV lamp 

compared to the laser (85 mJ cm-2). To sum up, the laser-irradiated films possess a 

larger crystallite size compared to the furnace-sintered film. The crystallite size of 

silver could not be measured by XRD as there were no crystallographic peaks 

observed in XRD spectrum. This is attributed to a low concentration of Ag in TiO2 

films. Therefore, the Ag size was measured directly from SEM and TEM imaging, 

which is discussed in later sections. 

Table 7-2: Crystallographic data obtained from various TiO2 films by XRD 

Films Measured 
peak Anatase 
(h k l) 

Crystallite 
size, nm 

TiO2-(F) (101) 28.8 
TiO2-(L) (101) 43.1 
Ag-TiO2-(F) (101) 29.8 
Ag-TiO2-(L) (101) 38.4 

(F) Made by Furnace sintering of TiO2 at 700°C for 1hr followed by UV exposure for 4-5 hours 
(L) Made by after 50 laser pulses @ 85mJ cm-2 fluence 

 
 

7.4 XPS Analysis 

7.4.1 Effect of Laser Irradiation on Ag Oxidation State 

Full scale and high resolution Ag3d confined XPS scans obtained from Ag-TiO2-(L) 

after 50 laser pulses at 85 mJ cm-2 are shown in Figure 7-7a and 7-7b respectively. 

After data fitting, two major peaks can be observed at binding energies of 367.88 and 

373.88 eV as shown in Figure 7-7b. These peaks were associated with Ag (3d5/2) and 

Ag (3d3/2) energy levels [97, 98]. The separation between the 3d doublet of Ag was 

exactly 6.0 eV, which indicates the formation of metallic silver (Ago) on TiO2 layer, 

as reported elsewhere [99]. These findings confirmed that the pulsed excimer laser 

could effectively convert the adsorbed Ag ions into the Ag metallic state within a 

short interaction time of 13-20 ns only. There was no evidence found for oxidized 
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silver (AgO, Ag2O etc.) on the film surface after 50 laser pulses irradiation at 85 mJ 

cm-2 fluence. However, the effect of a higher number of laser pulses was investigated 

on a few films keeping the fluence constant at the same magnitude. 
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Figure 7-7: XPS spectra of Ag-TiO2-(L) film after 50 laser pulses at 85 mJ cm-2 fluence, 

full scale spectrum a) and the corresponding high resolution Ag3d region b)   

 

The XPS spectra obtained from the Ag-TiO2 films irradiated by 200 laser pulses at 

85 mJ cm-2 fluence, are shown in Figure 7-8a and 7-8b. The peaks from Ag (3d5/2) 

and Ag (3d3/2) were displayed at 368.03 and 374.05 respectively (Figure 7-8b). The 

separation of the peaks was found to be exactly equal to 6.02 eV, which again 

verified the presence of metallic silver nanoparticles. However, two additional weak 

peaks were found at 368.32 and 374.5 eV. The separation of these peaks was 

increased to 6.18 eV. Both of these energy states were also associated with the 

presence of silver (Ago) nanoparticles of different sizes [100]. No peaks were found 

at 367 and 373 eV which are associated with oxidised silver (AgO, Ag2O etc.) 

particles in the laser irradiated films. These results confirmed the effect of laser 

pulses on the oxidation state of silver nanoparticles. The ultraviolet laser effectively 

reduced the as-adsorbed silver ions into Ag nanoparticles.    
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Figure 7-8: XPS spectra of Ag-TiO2-(L) film prepared by 200 laser pulses at 85 mJ cm-2 

fluence, a full scale spectrum a) and the corresponding high resolution Ag3d region b)   
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7.4.2 Effect of UV (365 nm) Light on TiO2-F with Ag2+ Ions 

Full scale and high resolution Ag3d XPS spectra obtained from the Ag-TiO2-(F) film 

are shown in Figure 7-9a and 7-9b. The film was prepared by adsorbing Ag ions on 

TiO2-(F) and subsequent UV lamp illumination for 4-5 hours continuously in dark 

conditions. This information was crucial before conducting further tests on these 

films to compare their photo-catalytic performance. The peaks from Ag (3d5/2) and 

Ag (3d3/2) states were displayed at 367.53 and 373.53 respectively. These peaks were 

separated by a difference of 6.0 eV which confirmed the presence of metallic silver 

nanoparticles. Although silver is regarded as a noble metal in bulk form, it can exist 

in 1+ or 2+ oxidation states depending on its particle size with expected anomalous 

shifts to lower binding energies by the XPS. The results revealed that the Ag-TiO2 

films prepared by SGLIT and furnace heating methods were consisting of metallic 

silver nanoparticles on the anatase matrix.   
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Figure 7-9: XPS spectra (full scale) of Ag-TiO2 film prepared by furnace sintering TiO2 

at 700°C for 1 hour followed by Ag2+ adsorption and UV exposure for 4-5 hours a) and 

the corresponding high resolution Ag3d region b)   

 

7.5 FEG-SEM Imaging 

7.5.1 Morphology of Unloaded TiO2-(L) and TiO2-(F) Films 

FEG-SEM Images captured from the unloaded TiO2 film prepared by SGLIT and 

furnace sintering are shown in Figure 7-10. The as-dried film (350°C for 30 minutes) 

before the laser irradiation is shown in Figure 7-10a. It exhibited a fine topography 

in the form of round-shaped grains. These features were uniformly distributed all 

over the surface, which is the advantage of sol-gel processing. The surface of TiO2 

films before laser irradiation was rather uniform and homogenous. There was no 

crystalline structure observed from this sample by XRD earlier.  
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Figure 7-10: FEG-SEM Images of the as-dried TiO2 a) TiO2-(L) films after 50 laser 

pulses  at 85 mJ cm-2 fluence b) and TiO2-(F) films after sintering in furnace at 700°C 

for 1 hour c), d) 

FEG-SEM image obtained from the TiO2-(L) film prepared with 50 laser pulses at 

85 mJ cm-2 fluence is displayed in Figure 7-10b. It revealed a significantly modified 

morphology compared to the one before laser irradiation. An uneven, bumpy and 

rough surface was formed as a result of 50 laser pulses. The size of bumpy regions as 

determined from the image was roughly 300 nm by considering each bump as a 

separate feature, as outlined in Figure 7-10b. Another interesting feature was the 

formation of pores with variable size in the range of 30-50 nm, which also lies within 

the meso-porous category of materials.  

An SEM image captured from a TiO2-(F) film, which was sintered in furnace at 

700°C for 1 hour in air, is shown in Figure 7-10c. It exhibited a uniform 

morphology, with densely-packed anatase microstructure. The individual anatase 

crystallites were agglomerated together as shown by the high resolution SEM image 

in Figure 7-10d. The images also revealed some voids and empty spaces between the 

grains as marked by arrows in Figure 7-10c.  

By comparing the laser irradiated and the furnace-sintered film it was observed that 

the laser irradiated film exhibited a higher surface roughness, meso-porosity and a 

bumpy surface texture. The furnace-sintered films were rather dense with a lower 

surface roughness which is normally observed from the furnace-sintered films.    

(d) 
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7.5.2 Morphology of Ag-TiO2-(L) and Ag-TiO2-(F) Films 

FEG-SEM images obtained from the Ag-TiO2-(L) and Ag-TiO2-(F) films are 

displayed in Figure 7-11. The unloaded TiO2 film prepared after drying at 350°C for 

30 minutes and subsequent silver ions adsorption (0.01M AgNO3) is shown in Figure 

7-11a. A corresponding high magnification image was also captured to observe the 

adsorbed Ag2+ on the film (Figure 7-11b). The surface consisted of small round 

grains with empty spaces between them. There were no Ag ions observed by FEG-

SEM image on the surface of the film. It may be due to fact that silver ions adsorbed 

in TiO2 were too small to be resolved by SEM. This is further discussed with 

evidence in the EDX analysis section later on.   

The same films after irradiation, with 50 laser pulses at 85 mJ cm-2 fluence, revealed 

a significantly different microstructure, as displayed in Figure 7-11c. The film 

changed into a porous and rough surface with larger bumpy features compared to the 

unloaded TiO2-(L) film. However, the TiO2 structure appeared combined with 

another nano-phase in the form of nanoparticles uniformly dispersed on its surface. 

This phase was analysed by EDX and confirmed as silver nanoparticles, which is 

discussed in the later section.   

By comparison with the unloaded TiO2-(L) film, the pore size was not significantly 

varied after silver addition and laser irradiation, however, the features size was 

increased up to 1 µm as determined by SEM earlier. It may be attributed to an 

improved distribution and conduction of the laser beam energy because of the higher 

thermal conductivity of silver (~327 W m-1 K-1) compared to unloaded TiO2 (~6.69 

W m-1 K-1) at 100°C [101]. In addition to thermal events, the UV laser beam may 

induce photochemical reactions between TiO2 and Ag ions. The Ag and TiO2 absorb 

in the UV wavelength (248 nm) of the excimer laser, which may lead to the photo-

reduction of silver ions into the silver nanoparticles. This photo-reduction is 

accompanied by an in-situ crystallographic transformation of the amorphous TiO2 

matrix into the nanocrystalline anatase structure. This led to the formation of Ag-

TiO2 nano-composite thin films with a meso-porous morphology (Figure 7-11c) after 

50 laser pulses at 85 mJ cm-2 fluence. 
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Figure 7-11: FEG-SEM Images of the as-dried Ag-TiO2 films before laser irradiation a) 

and b) Ag-TiO2-(L) after 50 pulses at 85 mJ cm-2 fluence c) and Ag-TiO2-(F) furnace-

sintered at 700°C and after Ag adsorption and UV light reduction for 4-5 hours d) 

The FEG-SEM image obtained from a Ag-TiO2-(F) film is shown in Figure 7-11d. It 

divulged a dense matrix which was composed of titanium dioxide with bright white 

particles dispersed over it, as marked in the Figure 7-11d. These particles were 

analysed and recognized to be from silver after EDX analysis as discussed later. By 

comparison with Figure 7-11a, it was observed that these silver nanoparticles 

crystallized from the titanium dioxide matrix after exposure to UV light of the lamp. 

The silver particles distribution was less uniform compared to the laser irradiated 

films by observation from the SEM images. The silver particles on furnace-sintered 

TiO2 films were larger and appeared in agglomerated form. Porosity and empty 

spaces between adjacent titanium dioxide grains can also be observed in Figure 7-

11d. This porosity was generated due to the densification and shrinkage of film 

during sintering at 700°C, which is normally observed in ceramics.  

 

7.5.3 Ag Particle Size 

The average silver nano-particle size from Ag-TiO2-(F) and Ag-TiO2-(L) films was 

measured by high resolution images obtained by FEG-SEM. The size of silver 

nanoparticles measured from various films is presented in Table 7-3. It is evident 

that the silver nanoparticles generated by SGLIT are smaller in size than those  

Ag particles

(d) 

TiO2 matrix
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produced from the non-laser technique. The smaller size of silver nanoparticles 

obtained by SGLIT may be attributed to the very low interaction time (13-20 ns) of 

laser beam and a process time of up to 3.33 seconds only during the irradiation of 

film, which restricted the agglomeration of ultrafine silver nanoparticles. On the 

other hand, it has been reported that the excimer laser beam could induce break-up of 

the large particles during the interaction of the high peak energy density laser pulse, 

as mentioned elsewhere [102].  

 

Table 7-3: Average particle size of Ag measured from FEG-SEM images 

Film Process parameters Ag size, nm 
Ag-TiO2-(F) 600 μW cm-2, 4-5 hours 58.4 
Ag-TiO2-(L) 85 mJ cm-2, 50 pulses, 15 Hz 28.2 

 

A tilted (45°) FEG-SEM image obtained from the Ag-TiO2 film before and after the 

laser irradiation is shown in Figure 7-12a and 7-12b respectively. The as-dried film 

after silver ions adsorption consisted of small features of amorphous TiO2 as 

observed by XRD earlier. The image did not reveal any Ag particles, which is 

attributed to the ionic state of silver that could not be resolved by FEG-SEM. On the 

other hand, the same film after irradiated with 50 laser pulses revealed a quite 

different morphology. Figure 7-12b displays a uniform distribution of Ag 

nanoparticles within the TiO2 matrix in the laser irradiated films. The FEG-SEM 

results indicate that laser radiation of 248 nm wavelength was strongly absorbed by 

photosensitive Ag2+ ions leading to photochemical reactions and subsequent 

reduction of silver ions into metallic silver nanoparticles. 
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Figure 7-12: A 45° tilted FEG-SEM image of Ag-TiO2-(L) film before laser-irradiation 

a) and after 50 laser pulses @ 85 mJ cm-2 fluence  
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7.5.4 Chemical Analysis by EDX   

7.5.4.1 As-dried Ag-TiO2 and Ag-TiO2-(F) Films 

The qualitative results obtained from EDX analysis and line scans on the as-dried 

Ag-TiO2 film are shown in Figure 7-13. The areas selected for EDX analysis have 

been marked as 1 and 2, in Figure 7-13a. The corresponding EDX analysis produced 

X-ray energy peaks from various constituents including Ti and O are displayed in 

Figure 7-13b and 7-13c. Both spectra revealed clear silver peaks around 3 keV. This 

confirmed that the silver ions were adsorbed in the TiO2 films. A gold (Au) peak was 

also obtained, which was associated with the conductive coating applied on top of 

the films. Additional energy peaks including Si, Ca, Al, Mg, Na etc. were also 

detected, which are attributed to the soda lime glass substrate.    

 

 

(a) 

Au clusters  

2

1
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Figure 7-13: FEG SEM image for EDX analysis from as-dried Ag-TiO2 film surface a) 

EDX analysis from area 1 b) and area 2 c)  

On the other hand, EDX line scans obtained from the Ag-TiO2-(F) film are shown in 

Figure 7-14. The line scan was conducted across a bright white particle as shown in 

Figure 7-14a. The Ag particles were clearly identified from the line scan profile on 

the TiO2 surface. The corresponding EDX analysis produced energy peaks from 

various constituents, including Ti, O, Ag and Au, as displayed in Figure 7-14b.  

(b) 

(c) 
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This confirmed that the silver nanoparticles were present on the TiO2 surface after 

the UV lamp irradiation. The gold (Au) peak was assigned to the conductive layer at 

the top of the film. Additional peaks including Si, Ca, Al, Mg, Na etc. were 

attributed to the soda lime glass substrate. As the silver ions were adsorbed from 

AgNO3 aqueous solution, it was reasonable to detect nitrates in the film. However, 

the line scan results did not display any peak from nitrogen, which confirmed the 

absence of nitrates within Ag-TiO2-(F) films. Moreover, no peak from oxygen was 

detected around the silver particles in the line scan, which confirmed that the silver 

particles were not oxidised during UV lamp illumination. A detailed analysis by 

STEM is covered in later sections.  

 

 
 

(a) 
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Figure 7-14: EDX analysis of Ag-TiO2-(F) film surface a) and line scan on silver 

particle b)  

 

7.5.4.2 Ag-TiO2-(L) Film 

The EDX analysis results obtained from the Ag-TiO2-(L) film are shown in Figure 7-

15. The EDX line scan was performed across isolated particles as shown in Figure 7-

15a. The line scan results generated EDX signals in the form of peaks over the white 

particles, which were detected as silver by the EDX analyser. However, the line scan 

results are required to be verified and confirmed because of a larger interaction 

volume of electron beam by FEG-SEM (2×2 µm2), whereas silver nanoparticles 

appearing in Figure 7-15a were less than 50 nm in size. It is, therefore investigated 

further by high resolution STEM, which is described in the next section.  

The EDX spectrum generated by the scan results clearly shows a silver peak, which 

confirmed the white particles as silver nanoparticles. Additional peaks, including Au, 

Ca, Si, Mg, Na etc., were associated with the conducting layer on the top surface and 

the underlying glass substrate respectively.  

 

(b)
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Figure 7-15: FEG-SEM image of the Ag-TiO2-(L) film prepared by 50 laser pulses at 85 

mJ cm-2 fluence a), a line scan profile b) and the corresponding EDX analysis c) 

 

7.6 Nano-Structural Imaging and EDX Analysis by STEM  

7.6.1 Ag-TiO2-(L) Film  

TEM images captured from a cross-section of the Ag-TiO2-(L) film irradiated by 50 

laser pulses at 85 mJ cm-2 fluence are shown in Figure 7-16. The top edge of the film 

consisted of gold and platinum coatings applied during film preparation by FIB, as 

shown in Figure 7-16a. The Ag-TiO2 film lay below the gold coating and displayed 

irregular and bumpy features. An average thickness of the Ag-TiO2 film as-observed 

from TEM image was approximately 300 nm. The depth of the crystallized region 

was about 150 nm. The partial depth of the crystallized region is due to the short 

pulse width of the laser (20 ns), as reported elsewhere [103]. This is quite consistent 

with previous results on W-TiO2 discussed in Chapter 6, which exhibited partial 

crystallization across the thickness of the film.  

 
 

(c) 
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Figure 7-16: TEM image of a Ag-TiO2 film cross-section after 50 laser pulses at 85 mJ 

cm-2 fluence a) and a magnified area from a crystallized region of the film b) 

In order to verify the chemical composition of constituents in the film, a higher 

magnification image was captured from the crystallized region (square mark) of the 

film as shown in Figure 7-16b. The image revealed nano-metric size particles 

dispersed across the film thickness. EDX analysis was conducted on the Area 1 and 

Area 2 as labelled in Figure 7-16b to determine the chemical composition in these 

areas. The results obtained by EDX analysis are displayed in Figure 7-17 and 

(a) 

(b) 

Area 2, Ag 

Ag-TiO2 film 

Au Coating 

Pt Coating 

Glass substrate 

Pores 

Area 1, TiO2 
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indicated that the nanoparticles appearing in white were Ag nanoparticles, whereas 

the darker matrix was composed of TiO2.  

  

 

 

Figure 7-17: EDX spectra obtained from area 1 a) and area 2 b) of a Ag-TiO2 film as 

labelled in Figure 7-15b 

Additional EDX signals from C and Si were ascribed to the TEM grid, which 

supported an amorphous thin carbon film to hold the sample.  

 

7.6.1.1 Line Scan and Quantitative Analysis: 

In order to verify the earlier results of EDX analysis, a line scan profile was obtained 

across the TiO2 matrix (Area 1) and silver nanoparticles (Area 2), as shown in Figure 

7-18a. The results obtained are plotted in Figure 7-18b, which corresponds to Line 1. 

(a) 

(b) 
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Signals detected from white particles were assigned to silver, whereas titanium and 

oxygen were detected from the matrix.  

 

 

 

Figure 7-18: TEM line scan image of Ag-TiO2-(L) film prepared by 50 laser pulses at 

85 mJ cm-2 fluence a) and the corresponding line scan profile b) 

Quantitative analysis was conducted in Area 1 and Area 2 along the line scan 

analysis and the results are presented in Table 7-4. The Area 1 results were collected 

from the TiO2 matrix and exhibited the atomic percentage ratio of titanium and 

oxygen elements approaching the theoretical ratios of TiO2. The quantitative analysis 

(b) 

(a) Area 2 

Area 1 
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results verified the formation of crystalline TiO2 by laser irradiation of 50 laser 

pulses at 85 mJ cm-2 fluence. On the other hand, Area 2 which was located adjacent 

to the silver nanoparticles, detected signals from Ag. The quantitative analysis 

results obtained from Area 2 revealed up to 2.4 atomic percentage of Ag.       

 

Table 7-4: STEM Quantitative analysis of Ag-TiO2 film after 50 laser pulses at            

85 mJ cm-2 fluence 

Elements Weight 
% 

Atomic % Uncertainty, 
% 

Theoretical 
atomic % 
in TiO2  

Remarks 

O 42.7 69 2 66.7 Area 1 
Ti 57.3 31 1.2 33.3  
Ag 0 0 100 -  
O 38 66.6 2.4 66.7 Area 2 
Ti 52.6 30.8 2.1 33.3  
Ag 9.4 2.46 1.3   

 

7.6.1.2 HR Imaging of TiO2 Matrix and SAED Structural Analysis  

Selected area electron diffraction (SAED) pattern obtained from the cross-section of 

the Ag-TiO2 film after 50 laser pulses at 85 mJ cm-2 fluence is shown in Figure 7-19. 

The area for diffraction was selected away from the conducting surface layer of Pt 

and Au. Various spots were obtained in the SAED, which were solved to identify the 

resultant crystalline structure of the film. The d-spacing values obtained after the 

calculations are shown in Table 7-5 and indexed in the corresponding SAED pattern 

(half) as displayed in Figure 7-20. The d-spacings corresponding to various 

diffraction spots in the pattern were matched with the anatase structure (JCPDS: 00-

21-1272) of TiO2.  
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Figure 7-19: TEM image and corresponding SAED of Ag-TiO2-(L) film surface region 

after 50 laser pulses at 85 mJ cm-2 fluence 

 

Figure 7-20: SAED pattern obtained from the Ag-TiO2-(L) film after 50 laser pulses at 

85 mJ cm-2 fluence  

 

TiO2 Film 

Pt, Au coating 
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Table 7-5: Calculated d-spacing from SAED patterns of Ag-TiO2-(L) films and 

corresponding XRD JCPDS standards for anatase and rutile 

Anatase 
JCPDS: 00-21-1272* 

Rutile 
JCPDS: 00-21-1276* 

Calculated   
d-spacing (Å) 

d (h k l) Intensity d (h k l) Intensity 

3.52 3.52 (1 0 1) 100 -- -- 
3.26 -- -- 3.25 (1 1 0) 100 
2.36 2.36 (0 0 4) 10 2.49 (1 0 1) 50 
1.9 1.89 (2 0 0) 35 -- -- 

1.69 1.67 (2 1 1) 20 1.69 (2 1 1) 60 
1.48 1.48 (2 0 4) 14 --  

*[Appendix A] 
 
 

7.6.1.3 HR Imaging of Silver Nanoparticles and Structure Analysis  

High resolution images captured from silver nanoparticles (labelled 1 and 2) on a 

TiO2 film are shown in Figure 7-21a. Fast Fourier transform (FFT) measurements 

were performed on these particles to identify their crystallographic structure and the 

results are displayed in Figure 7-21b and 7-2c. The d-spacings calculated from these 

FFT patterns were matched with the d-spacing of XRD card (JCPDS No. 01-0071-

5025) corresponding to hexagonal silver. In addition, HRTEM image obtained from 

another silver nano-particle and the corresponding FFT are displayed in Figure 7-22a 

and 7-22b respectively. The d-spacing calculated from the FFT was matched with 

XRD card (JCPDS No. 01-0071-4613) corresponding to the cubic symmetry of 

silver. The data obtained from the FFT patterns of Ag nanoparticles are compared in 

Table 7-6.  

On average, the hexagonal symmetry was found in dominance compared to the cubic 

form of silver from the FFT results. It was observed that the 50 laser pulses at 85 mJ 

cm-2 fluence, produced anatase as the dominant structure along with the formation of 

silver nanoparticles. However, it is unclear why silver nanoparticles were dominant 

in the hexagonal structure instead of the cubic form, which is commonly associated 

with Ag-TiO2 nano-composites [104]. Thermodynamically, it may be attributed to 

the non-equilibrium photo-chemical interaction of the laser beam with the silver 

ions, which lasted for few ns only. On the other hand, more time is available to attain 

equilibrium during conventional UV light induced photo-reduction of silver ions for 

up to several hours. TEM results also verified that the silver nanoparticles were not 

oxidised (AgO, Ag2O) after interaction with the pulsed laser beam. HR images  
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Figure 7-21: HR images of ultra fine silver nanoparticles formed on a Ag-TiO2 film 

after 50 laser pulses at 85 mJ cm-2 fluence a) and their corresponding FFT b)-c) 

 obtained from silver nanoparticles (Figure 7-21a, 7-22a) did not reveal any oxide 

layer around the nanoparticles.    

1

1 2Hexagonal silver Hexagonal silver

b c

a
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Figure 7-22: HRTEM images from cubic silver nanoparticles on a Ag-TiO2-(L) film a) 

and the corresponding FFT b) after 50 laser pulses at 85 mJ cm-2 fluence  

 

Cubic silver

b

a
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Table 7-6: Calculated d-spacing from FFT patterns of Ag nanoparticles and 

corresponding XRD JCPDS standards 

Silver Hexagonal 
JCPDS: 01-071-5025* 

Silver Cubic 
JCPDS: 01-071-4613* 

Calculated 
d-spacing (Å) 

d (h k l) Intensity d (h k l) Intensity 

2.53 2.54 (1 0 0) 25 -- -- 
2.39 2.39 (002) 28 -- -- 
2.35 -- -- 2.36 (111) 100 
2.04 -- -- 2.04 (2 0 0) 45 
2.22 2.24 (1 0 1) 100 -- -- 
1.74 1.74 (1 0 2) 13 -- -- 
1.46 -- -- 1.45 (220) 22 

 

7.6.2 Ag-TiO2-(F) Film 

TEM images obtained from a cross-section of the Ag-TiO2-(F) film are shown in 

Figure 7-23. The cross-section revealed a uniform and dense TiO2 structure, which is 

attributed to the furnace sintering mechanism and longer heating and cooling cycles 

during sintering process. The corresponding SAED pattern is also shown in Figure 7-

23a, which confirmed a crystalline nature of the film. The thickness of the films was 

around 100 nm only, although the original thickness of the as-dried film was around 

300 nm. The decrease in film thickness is due to the shrinkage of the film during the 

sintering and densification of anatase. The nanocrystalline structure exhibited in the 

image was due to the anatase with a crystallite size in the range of 30-40 nm. This 

agrees with the crystallite size (38.4 nm) obtained from the XRD calculations.  

The film exhibited a dense morphology and no pores were observed. In contrast, 

laser irradiated films displayed a significant porosity in the crystallized region. The 

silver nanoparticles could not be revealed in the furnace-sintered film. This may be 

due to the covering of the silver nanoparticles by Pt and Au coating, which possibly 

hide their appearance. A higher magnification image obtained near the film/substrate 

interface revealed inter-diffusion of TiO2 crystallites into the glass substrate as 

shown in Figure  7-23b. This phenomenon was commonly observed with furnace-

sintered TiO2 films on the glass substrate. The furnace sintering resulted in heating 

of the substrate and the film simultaneously resulting in the chemical species from 

the TiO2 film to diffuse into the glass substrate.  
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Figure 7-23: Cross-sectional TEM image of a Ag-TO2-(F) film prepared by furnace 

sintering TiO2 at 700°C for 1 hour followed by Ag2+ adsorption and UV exposure for 4-

5 hours a) and a corresponding high magnification image b)  

 

TiO2 film 

Substrate

Au and Pt

interface 

(a) 

(b) 
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7.6.2.1 Line Scan and Quantitative Analysis: 

Figure 7-24 was captured from a cross-sectional area of the Ag-TiO2-(F) film to 

obtain the EDX line profile across the film. The EDX scan was run across Area 1 

line starting just above the top edge of the film to the glass substrate, as shown in 

Figure 7-24a. The corresponding line profile is shown in Figure 7-24b.    

The line scans produced peaks from various elements, including Pt, Ti, Au and O 

etc., as displayed in Figure 7-24c. However, weak signals were detected from silver. 

Additional peaks were detected from Ga, Pt and Au species which were associated 

with the coating during FIB sample preparation. The EDX signals from Si and Ca 

were ascribed to the glass substrate. The C peak was generated from the carbon-

coated TEM grid.  

 

 
 
 

(a) 

Area 1 



Chapter 7                                                                Ag-TiO2 Films Prepared by SGLIT 
 

    
213 

 
 

 

Figure 7-24: TEM line scan image of Ag-TiO2-(F) film a) and the corresponding line 

scan profile b) 

The results obtained from quantitative analysis are displayed in Table 7-7. The 

theoretical ratios of Ti and O in TiO2 were also compared with the experimental 

values from TEM results. A close match was observed by the Ti and O from furnace-

sintered film with their theoretical values considering the uncertainty factor. 

Nevertheless, silver nanoparticles can not be quantified because of the threshold 

intensity limit of the spectrometer. This is due to the fact that silver particles were 

lying on the surface of titanium dioxide film and the Pt, Au coating covered most of 

the particles and decreased their EDX signals, as discussed earlier. Secondly, it may 

(b)

(c) 



Chapter 7                                                                Ag-TiO2 Films Prepared by SGLIT 
 

    
214 

be due to a non-uniform dispersion of silver nanoparticles on the furnace-sintered 

TiO2 film.     

 

Table 7-7: Quantitative analysis of Ag-TiO2-(F) film cross-section by STEM 

Elements Weight 
% 

Atomic 
% 

Uncertainty, 
% 

Theoretical 
Wt. %  

Remarks 

O 35.5 62.2 2.7 40.06 Area 1 
Ti 64.5 37.8 2.6 59.94  
Ag 0 0 100 -  

 
 

7.6.2.2 HR Imaging and SAED Structural Analysis 

A high resolution image obtained from the Ag-TiO2-(F) cross-section and the 

corresponding SAED pattern are shown in Figure 7-25a and 7-25b respectively. 

Crystallographic calculations on the diffraction spots were undertaken to determine 

the d-spacing. The results were closely matched with the anatase phase of TiO2 as 

shown in Table 7-8. There was no clear diffraction peaks obtained from Ag 

nanoparticles though. It may be due to the fact that the particles were lying on the 

surface of the sintered TiO2 films, as observed from FEG-SEM images earlier. The 

gold and platinum coating during FIB film preparation might interfere with the EDX 

analysis of silver nanoparticles.  

The high resolution STEM imaging and analysis revealed that Ag-TiO2-(F) films 

prepared by furnace sintering method consisted of nanocrystalline anatase. However, 

it was rather difficult to find the silver nanoparticles and their crystalline structure 

(cubic or hexagonal) because of the limitation of film preparation by FIB.     
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Figure 7-25: High resolution TEM image from a Ag-TiO2-(F) film a) and 

corresponding SAED pattern b) 

(a) 

(b) 
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Table 7-8: Calculated d-spacing from SAED patterns of Ag-TiO2-(F) film with 

corresponding XRD JCPDS standards for anatase and rutile 

Anatase 
JCPDS: 21-1272* 

Rutile 
JCPDS: 21-1276* 

Calculated   
d-spacing (Å) 

d (h k l) Intensity d (h k l) Intensity 

3.53 3.52 (1 0 1) 100 -- -- 
3.26 -- -- 3.25 (1 1 0) 100 
2.38 2.36 (0 0 4) 10 2.49 (1 0 1) 50 
1.9 1.89 (2 0 0) 35 -- -- 

1.69 1.67 (2 1 1) 20 1.69 (2 1 1) 60 
1.49 1.48 (2 0 4) 14 --  

*[Appendix A] 
 
 

7.7 UV-visible Spectroscopic Analysis 

7.7.1 Absorbance of Ag-TiO2-(F) Film 

The optical absorbance spectrum obtained from the Ag-TiO2-(F) film is plotted in 

Figure 7-26. No significant absorbance in the visible (400-700 nm) range was 

observed by the as-dried Ag-TiO2 before the UV irradiation. It is attributed to the 

ionic state of the silver nanoparticles and the crystallized anatase structure. However, 

the optical absorbance of this film was significantly improved after UV irradiation 

for 4-5 hours. A peak was obtained at 410 nm, which corresponds to an excitation 

energy of 3.01 eV. The energy bandgap of the rutile structure is also 3.01 eV. 

However, the XRD results confirmed that there was no rutile phase existing in the 

furnace-sintered films. Therefore, the peak at 410 nm was believed to be associated 

with the surface plasmon (SP) resonance of silver nanoparticles [105]. These silver 

nanoparticles were formed by the UV lamp-induced photo-reduction of Ag2+ ions 

[106] as follows, 

 

 
03652 2 AgeAg nmuv ⎯⎯⎯ →⎯+ −−+

     Eq. 7-1 
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Figure 7-26: UV-visible spectra obtained from the as-prepared Ag-TiO2-(F) film before 

and after the UV (365 nm) lamp irradiation for 4-5 hours 

 

7.7.2 Absorbance of Ag-TiO2-(L) Film 

The optical absorbance results obtained from the as-dried Ag-TiO2 and Ag-TiO2-(L) 

films are plotted in Figure 7-27a. The as-dried film exhibited a low absorbance in the 

visible range, which is attributed to the amorphous nature of the film and ionic state 

of silver. The same film after laser irradiation of 50 pulses at 85 mJ cm-2 fluence, 

exhibited a broad peak near 515 nm. This peak was associated with the SP resonance 

of crystalline silver nanoparticles formed as a result of the laser irradiation as 

verified by XPS results. The UV laser beam was absorbed by the silver ions and 

initiated the photo-reduction of silver ions into hexagonal silver nanoparticles as 

verified by STEM results earlier. The peak position at 518 nm wavelength 

corresponded to an energy bandgap value of 2.41 eV. In addition, the film prepared 

at 200 laser pulses at 85 mJ cm-2 fluence exhibited a drop in the absorbance curve 

(Figure 7-27). This can be associated with the oxidation of the silver nanoparticles 

by the higher number of laser pulses.  The combined results from both films are 

potted in Figure 7-27b.  
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Figure 7-27: UV-visible spectra obtained from various Ag-TiO2-(L) film before and 

after laser processing a) and combined results from Ag-TiO2-(L) and Ag-TiO2-(F) films  
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The Ag-TiO2 films prepared by SGLIT were transformed into violet appearance from 

a colourless state, whereas the furnace-sintered Ag-TiO2 films appeared of a light 

yellow colour, as displayed in Figure 7-28. The results indicated that the films 

prepared by SGLIT were more absorbing in the visible range compared to the 

furnace-sintered Ag-TiO2 films.  

 

 

Figure 7-28: Digital camera photo of as-prepared Ag-TiO2-(L) and Ag-TiO2-(F) films 

 

7.7.3 Optical Transmittance of the Films  

The transmittance spectra obtained from the Ag-TiO2-(F) and Ag-TiO2-(L) films are 

plotted in Figure 7-29 with their corresponding micrographs. The as-dried Ag-TiO2 

films with the as-adsorbed silver ions displayed a higher transmission. However, 

after UV lamp irradiation for 4-5 hours these films exhibited lower transmission in 

the visible range. The transmission peak at 550 nm may be associated with the 

reduced silver nanoparticles. On the other hand, the Ag-TiO2-(L) film, prepared by 

50 laser pulses at 85 mJ cm-2 fluence exhibited a strong peak near 518 nm. 

W. Xu et. al. has reported on the synthesis of hexagonal silver nanoparticles and 

discovered that they exhibited a strong peak at 509 nm in their resultant UV-Vis 

spectrum [107]. The FFT patterns obtained from the silver nanoparticles in STEM 

section also confirmed this. In addition, no peak was found between 400-420 nm 

Ag-TiO2-(F) Ag-TiO2-(L) 
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from the laser-irradiated films, which was normally associated with the SP resonance 

of cubic silver nanoparticles. The wavelength corresponding to SP bands of silver 

nanoparticles is also affected by their size as per Mie theory [108].  

 

 

Figure 7-29: Optical transmittance of various Ag-TiO2 films prepared by SGLIT and 

furnace sintering methods 

 

7.8 Proposed Mechanism of Laser-Interaction with Ag-TiO2 

The ultraviolet excimer laser beam generated an Ag–TiO2 nano-composite after an 

interaction of 1 µs only with the amorphous film as discussed in section 7.3.2.1. The 

laser-induced technique differs from the rapid thermal annealing which involves 

extensive heating and cooling cycles inside a tube furnace or any other similar 

equipment. The silver nanoparticles are exposed to UV light for a certain time 

depending on the light intensity (300–400 nm, 1-2 mW cm-2) in order to reduce the 

silver ions into metallic silver particles [104, 109, 110]. On the other hand, the laser 
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process does not require heating by a furnace to crystallize TiO2 films and reduce the 

Ag2+ ions. The SGLIT can crystallize as well as reduce the silver ions in-situ during 

the laser irradiation.  

Previous research reported on Ag-TiO2 sol-gel films prepared by furnace sintering 

technique has revealed that the silver addition within TiO2 reduced the stability of 

anatase against the temperature and favoured the rutile formation [94]. It was 

ascribed to the lattice distortion created by silver ions which have a significantly 

larger atomic radius (1.26 Å) compared to titanium (0.68 Å) [111]. In their case, 

processing of Ag-TiO2 films by furnace sintering is driven by a thermal mechanism. 

The heat energy absorbed from the furnace reduced the silver ions into metallic 

silver. However, in the present study, Ag-TiO2 films prepared by SGLIT revealed 

that Ag2+ assisted in the crystallization of anatase and stabilized it up to 200 laser 

pulses. It implies that the crystallization of Ag-TiO2 by SGLIT was not driven by a 

thermal mechanism, as in the case of heating by furnace. A photo-chemical 

mechanism can be involved in this case between the pulsed UV laser beam and the 

Ag-TiO2 film. It is schematically presented in Figure 7-30.  

 

 

Figure 7-30: Schematic diagram showing the pulsed excimer laser interaction with the 

Ag-TiO2 films 

The excimer laser-induced a temperature of up to 967 °C at 85 mJ cm-2 fluence 

within TiO2 film, as calculated in section 7.3.2.2. It is well below the melting point 

of TiO2 (1870 °C). It indicates that the formation of bulbous or bumpy features by 

the laser irradiation were associated with the effect of laser-induced phase 

transformation and the rising of features in z-direction was associated with the 

x

z
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forceful release of water vapours, gases from organics combustion etc. during the 

laser beam interaction. This is also in agreement with the formation of pores in the 

laser-irradiated films.      

The TiO2 film and the as-adsorbed Ag2+ ions on its surface were both absorbing to 

the UV wavelength of the excimer laser. As the material came in contact with the 

laser beam, the photons reduced the Ag2+ ions photo-chemically into the metallic Ag 

as per the following reaction,  
 

02 AghvAg UVlaser⎯⎯ →⎯++
     Eq. 7-2 

 

The laser energy absorbed by the TiO2 matrix led to the anatase crystallization. In 

addition, the crystallized anatase can absorb the UV wavelength of the laser beam 

due to it bandgap energy (3.2 eV), which lies within the photon energy of the laser 

beam (5.0 eV). This resulted in the generation of electrons and holes which may be 

absorbed by unreduced Ag2+ ions leading to their possible charge neutralization and 

conversion into to the Ag nanoparticles. This may partly explain the reason of silver 

nanoparticles being attached to the anatase matrix as seen in FEG-SEM images 

earlier. The surface of TiO2 film was modified by the laser irradiation into a meso-

porous bumpy morphology. The film exhibited a bumpy rough surface and the silver 

nanoparticles remained attached to it.  

 

7.9 Conclusions 

In summary, anti-bacterial Ag-TiO2 nano-composite thin films were successfully 

synthesized by SGLIT. The TiO2 films were crystallized into a dominant anatase 

structure with laser irradiation and in-situ silver ions reduction was achieved at room 

temperature. The effect of various laser parameters, e.g. fluence and the number of 

pulses, was investigated to produce the dominant anatase structure. The addition of 

silver stabilized the anatase phase up to 200 laser pulses at 85 mJ cm-2 fluence, 

which was a novel finding with laser processing of Ag-TiO2. The silver 

nanoparticles were attached to the bumpy rough surface of the anatase matrix 

forming a meso-porous nano-composite structure by SGLIT. A crystallite size of 38 
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nm was obtained from the anatase with 10 nm sized hexagonal silver nanoparticles 

uniformly distributed over it. The photo-absorbance of the laser irradiated films was 

higher compared to the films prepared by conventional furnace sintering and UV 

irradiation methods. Moreover, the size of silver nanoparticles produced by SGLIT 

was lower compared to the conventionally prepared films. The Ag-TiO2 nano-

composite films may be an efficient photo-catalyst again the decomposition of 

organic contaminants and the disinfection of water from pathogenic bacteria. 
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Chapter 8 Investigation of Anti-bacterial 

Properties  

 

8.1 Introduction 

This Chapter contains a detailed account of the photo-catalytic and anti-bacterial 

properties of TiO2-based films prepared by SGLIT and furnace sintering methods. 

The unloaded TiO2 was used as a reference material to compare the anti-bacterial 

properties of W-TiO2 and Ag-TiO2 films prepared by SGLIT and furnace sintering. 

In addition, the drop tests results obtained against the gram negative strain i.e. E. coli 

under UV light, normal daylight and dark room conditions are discussed in detail. 

Moreover, a possible mechanism of the disinfection of E. coli by the TiO2 produced 

reactive oxygen species (ROS) has also been included.    

 

8.2 Anti-bacterial Properties of TiO2, W-TiO2 

Drop test results obtained from various films (TiO2, W-TiO2) against the E. coli cells 

under the influence of UV excitation are plotted in Figure 8-1. The data obtained 

from the furnace-sintered W-TiO2 films (700ºC for 1 hour) is plotted in Figure 8a. 

The furnace-sintered films selected for this study were dominant in anatase content 

as verified by the XRD results. There was a gradual reduction in the number of 

bacteria colonies observed on the control slides after 80 minutes, which was due to 

the effect of UV light itself. The unloaded TiO2-(F) film eliminated all of the cells 

after 80 minutes under the UV light (Figure 8a). It was attributed to the photo-

catalytic effect of the TiO2, which generated reactive radicals from air that 
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penetrated the cell walls of the bacteria ultimately leading to their inactivation. The 

1W-TiO2-(F) film on the other hand, demonstrated a rapid reduction in the number 

of colonies after 80 minutes under the same conditions. There were no colonies 

survived on the surface of 1W-TiO2 film after 80 minutes under the UV light 

irradiation, whereas other W-TiO2 films still had surviving colonies remaining on 

their surfaces.   

The best anti-bacterial function was demonstrated by 1W-TiO2-(F) film by these 

results. The improved activity of this film against the E. coli can be ascribed to a red 

shift in the optical absorption due to W6+ loading. The addition of W6+ ions could 

replace and take up Ti4+ sites in the tetragonal lattice of TiO2 because of a similar 

ionic size of both of these elements, as discussed in the Chapter 6. This can lead to a 

novel photo-catalyst with a better ability to overcome electrons/holes recombination 

compared to the unloaded TiO2, as reported by Fernandez-Garcia et. al. [112].  

On the other hand, drop test results obtained from the W-TiO2-(L) films are plotted 

in Figure 8b. The films selected for this test were also dominant in anatase and 

prepared by 10 laser pulses at 85 mJ cm-2 fluence in order to compare with the 

furnace-sintered films. Each film exhibited a consistent photo-killing ability to E. 

coli cells. No bacteria were survived on the film prepared by SGLIT after 80 minutes 

of UV exposure. Moreover, W-TiO2 films prepared by SGLIT displayed a more 

consistent photo-killing effect compared to the furnace-sintered films under the UV 

light irradiation. It can be ascribed to a higher surface area and meso-porosity of the 

films which enhanced the photo-catalysis by generating more electrons/holes. The 

detailed mechanism is discussed in the next section. The photographs captured from 

the agar plates of various unloaded TiO2 and W-TiO2 films after 24 hours of aging 

are shown in Figure 8-2.    
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Figure 8-1: E. coli drop test results obtained from the W-TiO2 film prepared by 

furnace sintering at 700ºC for 1 hour a) and by SGLIT  b) under the UV (365 nm) light  
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Control-60 

 

TiO2-(F) 

 

TiO2-(L) 

 
a) UV light-60 min. 1W-TiO2-(F) 

 

1W-TiO2-(L) 

 
b) UV light-60 min. 2W-TiO2-(F) 

 

2W-TiO2-(L) 

 
c) UV light-60 min. 3W-TiO2-(F) 

 

3W-TiO2-(L) 

 
d) UV light-60 min.  4W-TiO2-(F) 

 

4W-TiO2-(L) 

 

Figure 8-2: Agar plates containing E. coli colonies collected from various films after 60 

minutes in UV (365 nm) irradiation   
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8.2.1 Mechanism of Disinfection of E. coli by TiO2 

The proposed mechanism of E. coli disinfection by TiO2 under the UV excitation is 

via photo-oxidation of water (H2O) and dissolved oxygen (O2). This presumably 

results in the generation of ROS, such as superoxide anion ( −•
2O ), hydroxyl radicals 

( OH• ) and hydrogen peroxide (H2O2) etc. [16, 113]. These ROS can interact with 

the cell wall components and amino acids (e.g. l-alanine, d-glutamine) and can also 

result in lipid peroxidation and formation of malondialdehyde (MDA). The MDA 

can bind to and inactivate cellular protein and DNA ultimately leading to the 

inactivation and cell death [114].  

 The following reactions are initiated by the conduction band electrons leading to the 

generation of super oxygen −•
2O  radical [115].  

 
−•− +⎯→⎯+ 2222 )( OTiOOeTiO hv      Eq.  8-1  

22222 2)( OHTiOHOeTiO hv +⎯→⎯++ +−•−      Eq.  8-2  
−•− ++⎯→⎯+ OHOHTiOOHeTiO hv

2222 )(      Eq.  8-3 
−•−• ++⎯→⎯+ OHOHOOHO hv

2222      Eq.  8-4 
    

The reactions initiated by the positive holes at the valance band of the TiO2 are given 

as follows [115],  
+•+ ++⎯→⎯+ HOHTiOOHhTiO hv

ads 222 )(      Eq.  8-5 
++ ++⎯→⎯+ HOHTiOOHhTiO hv

ads 22)( 22222      Eq.  8-6 

ads
hv OHTiOOHhTiO •−+ +⎯→⎯+ 22 )(      Eq.  8-7 

   

The hydroxy OH•  radicals produced at the valance band are powerful reducing 

agents towards the decomposition of the organic compounds. The oxidising super 

oxygen −•
2O  and strongly reducing hydroxy OH•  radicals play their part together in 

the decomposition of microbes through their cell wall leading to their death. It is 

schematically shown in the Figure 8-3.  
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Figure 8-3: A proposed mechanism of TiO2 anti-bacterial activity [116] 

The addition of W6+ ions resulted in promoting the formation of more reactive 

oxygen species (ROS) under UV excitation by overcoming the electrons/holes 

recombination. The generation of the ROS was initiated from conduction band 

electrons or valence band holes supplied by TiO2 through photo-excitation. By 

comparing the results of W-TiO2 prepared by furnace sintering and SGLIT it was 

found that the films prepared by SGLIT exhibited better anti-bacterial properties 

overall than the furnace-sintered except the 1W-TiO2. The consistency of the films 

prepared by SGLIT was possibly due to the meso-porosity in all of these films and 

the higher surface area which produced more electrons and holes under the UV 

excitation leading to a greater interaction with the bacteria cells. In contrast, the 

furnace-sintered films were rather dense with a smooth surface offering a limited 

area for photo-catalysis. A schematic diagram for the energy band structure in 

crystalline titanium oxide (c-TiO2) and crystalline tungsten trioxide (c-WO3) is 

shown in Figure 8-4. The valance and conduction bands of WO3 are lower in energy 

compared to the TiO2. During the excitation, the electrons lying at the TiO2 

conduction band jump to the lower conduction band of WO3 and this phenomenon 

results in the trapping of electron charges produced by TiO2 at the Ti-W interface 

leading to a lower rate of electron/hole recombination. It leads to an improved photo-

catalytic performance of the TiO2. 
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+++− +⎯→⎯+ 5
2

6
2 )( WTiOWeTiO hv

cb    Eq.  8-8 

 
 

 

Figure 8-4: Energy band interaction of crystalline TiO2 and WO3 under the influence of 

UV light   

 

8.3 Anti-bacterial Properties of Ag-TiO2 Films 

8.3.1 Dark Room Conditions without UV light 

The t-test results were compiled after conducting the drop test on various films 

against E. coli cells. The first experiment was conducted in the dark room conditions. 

The surviving colonies collected from various films were plotted against time as 

displayed in Figure 8-5. In each condition, the results were compared to the blank 

glass substrate which was used as a control.  
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Figure 8-5: Drop test results obtained from various TiO2 films against E. coli cells in 

dark room conditions without UV light 

The control slides did not exhibit any significant killing effect against the E. coli 

cells after 60 minutes. There was a slight reduction though after 120 minutes which 

can be attributed to the swelling and bursting effect of bacterial cells because of the 

hypotonic nature of DI water and the reverse osmotic stress [117, 118]. Similarly, 

there was no drastic change observed in the E. coli colonies collected from the 

unloaded TiO2 films prepared by SGLIT and furnace sintering methods. The limited 

tendency demonstrated by both types of these films was associated with the wide 

energy bandgap of TiO2 (3.3 eV), which requires an ultraviolet excitation source to 

generate electrons/holes to produce ROS from the air [119].  

On the other hand, E. coli colonies collected from the Ag-TiO2-(F) films exhibited a 

sharp reduction in their number after 60 minutes. However, after 120 minutes there 

were still some colonies remaining on the surface of these films which implies that 

furnace-sintered films were not able to kill all of the bacteria after 120 minutes. 

Meanwhile, the surviving colonies collected from the Ag-TiO2-(L) films exhibited a 

better rate of reduction of the E. coli after 60 minutes as shown in Figure 8-5. There 

were no colonies found to survive on this film after 60 minutes in the dark 
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conditions. The higher rate of reduction against E. coli can be attributed to the 

morphology of these films, whereas structure wise these films consisted of anatase as 

a dominant phase similar to the Ag-TiO2-(F) films.  

 

8.3.2 Daylight Conditions 

The anti-bacterial drop test results collected from various TiO2 films against E. coli 

cells under the normal daylight conditions are plotted in Figure 8-6. The control 

slides revealed a reduction in the number of E. coli colonies after 60 minutes which 

may be associated with the effect of DI water as discussed earlier.  

On the other hand, the survived colonies collected from the pure TiO2-(L) and TiO2-

(F) at various time points were quite significantly reduced compared to their original 

concentration. This is associated with the effect of photons from the sunlight which 

induced excitation into the TiO2 films to produce electrons/holes which initiated the 

photo-catalytic reactions. The surviving colonies collected from the surface of Ag-

TiO2-(F) film demonstrated a significantly better anti-bacterial efficiency after 60 

minutes compared to TiO2 films without silver addition. However this effect was 

slowed down after this stage and these films could not further eliminate the bacteria 

(1.4×104 CFU ml-1) after 60 minutes. This may be attributed to a lower surface area 

of the films, which offered less interaction volume with the bacteria as observed in 

the dark conditions also. A larger size of silver nanoparticles in the Ag-TiO2-(F) film 

could also contribute to its limited activity against the E. coli. In this case, a lower 

number of silver nanoparticles were available to attack/diffuse into a single E. coli 

organism. 

The rate of reduction of E. coli can easily be determined by taking the slope of the 

line from each graph. The addition of silver nanoparticles into sintered anatase-based 

titanium dioxide films, improved the rate of reduction of bacteria cells up to 

0.25×102 min-1, and 0.5×102 min-1 under dark room and daylight conditions after 60 

minutes of exposure respectively. The efficiency of films under daylight was almost 

twice as much as in the dark except for the Ag-TiO2-(L) which exhibited a similar 
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behaviour in both conditions. However, it is likely that Ag-TiO2-(F) films may take a 

longer time to destroy all of the bacteria compared to the films prepared by SGLIT.  

 

 

Figure 8-6: Drop test results obtained from various TiO2 films against E. coli cells 

under normal daylight conditions  

On the other hand, the Ag-TiO2-(L) films exhibited a significantly improved rate of 

reduction against the E. coli cells after 60 minutes under dark and light conditions. 

The addition of silver nanoparticles to the TiO2 films prepared by SGLIT, improved 

the reduction rate against the bacteria up to 1.6×102 min-1 after 60 minutes only. The 

reduction rate offered by Ag-TiO2-(L) films was therefore, 3 times as strong as 

offered by Ag-TiO2-(F) in daylight. The similar anti-bacterial functions exhibited by 

Ag-TiO2-(L) in dark and daylight may be attributed to the fact that these films were 

consistently releasing silver ions which was necessary for the inactivation of bacteria 

even in the absence of any excitation source. The mechanism of silver ions release 

and its effect on the bacteria cells leading to their destruction is a complex 

phenomenon and requires a detailed description which is out of the scope of this 

research. Briefly, it would be suffice to add that the silver ions penetrate the cell wall 

of the bacteria and initiate various reactions leading to the formation of MDA, which 
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can bind with the cellular protein and DNA leading to the cell death ultimately [120, 

121]. 

 

8.3.3 Dark Room Conditions with UV (365 nm) Light  

Recently, it has been reported that the bactericidal activity of AgNO3 can be 

enhanced by UV or visible light illumination [122]. In addition to the above test 

conditions, several Ag-TiO2 films were also tested under monochromatic UV light in 

a dark room against the E. coli cells. A UV lamp with a monochromatic wavelength 

of 365 nm, at 600 μW cm-2 output intensity was used to excite the Ag-TiO2 films. 

The number of colonies obtained at various time points is plotted in Figure 8-7.  

The control slides exhibited a limited activity to reduce the number of viable cells 

after 90 minutes under the UV light. The subsequent reduction in the number of cells 

was due to the effect of UV light which naturally acts against the bacteria. The Ag-

TiO2-(F) film exhibited a sharp reduction in the concentration of CFU initially after 

30 minutes. However, there was no further bactericidal effect after this point up to 90 

minutes. The initial sharp rate of reduction in the bacteria was due to the titanium 

dioxide photo-catalytic phenomenon generating electron and holes under the UV 

excitation. The silver nanoparticles acted as trapping sites to these photo-generated 

electrons and thus helped to overcome their recombination with holes. 

On the other hand, a drastic rate of reduction in the number of viable cells was 

observed from the data obtained from Ag-TiO2-(L) films. The CFU curve exhibited a 

sharp decrease after 30 minutes and there were no colonies survived on these films. 

This is ascribed to the natural antimicrobial tendency of silver nanoparticles, which 

increased two-fold in combination with the meso-porous morphology of Ag-TiO2-L 

film. The higher surface area may account for their better anti-bacterial activity. The 

digital photographs captured from surviving colonies of E. coli on agar plates from 

various TiO2-based films are shown in Figure 8-8.  

Overall, Ag-TiO2 nano-composite films prepared by SGLIT, demonstrated the best 

combination of anti-bacterial properties over the furnace-sintered Ag-TiO2 films.  
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Figure 8-7: The E. coli drop test results under the UV (365 nm) light obtained from 

various Ag-TiO2 films  

There are several aspects, which may be ascribed to the enhanced anti-bacterial 

activity demonstrated by Ag-TiO2-(L) films. They are discussed as follows,   

1) The higher surface area (due to high surface roughness) and uniform size 

distribution of Ag nanoparticles in laser irradiated films compared to the furnace-

sintered films.  

2) The crystalline hexagonal symmetry and optical properties of silver nanoparticles 

may be another factor affecting the anti-bacterial function. Silver nanoparticles can 

efficiently restrict the electron-hole recombination and effectively transfer the 

charges to TiO2 matrix. 

Addition of silver may also lead to narrowing of the TiO2 bandgap thus sensitizing 

the nano-crystalline TiO2 to absorb into the visible light. This was confirmed by the 

drop test results under the daylight conditions, which demonstrated a rapid rate of 

reduction of bacteria cells compared to the dark room conditions.  
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Control TiO2-(F) TiO2-(L) 

   

 Ag-TiO2-(F) Ag-TiO2-(L) 
e) Dark Room 

  

Control TiO2-(F) TiO2-(L) 

   
 Ag-TiO2-(F) Ag-TiO2-(L) 
f) Normal daylight 

  

Figure 8-8: E. Coli grown on agar plates, collected from various films after 60 minutes 

in dark a) and daylight b) conditions   

 
 
 

Ag-TiO2 
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8.4 Conclusions 

In summary, the unloaded TiO2 and W-TiO2 exhibited encouraging photo-killing 

results against the E. coli strains under the UV (365 nm) light conditions. The films 

prepared by SGLIT displayed a more consistent photo-killing effect compared to the 

furnace-sintered films. However, the anti-bacterial effect of the unloaded TiO2 and 

W-TiO2 films was limited to the excitation from a UV light source. Also, the drop 

tests should be repeated three times at each time point to verify the results of W-TiO2 

films against the killing of E. coli under UV light. On the other hand, Ag-TiO2 nano-

composite films demonstrated an excellent anti-bacterial activity under the UV and 

natural daylight after 30 and 60 minutes respectively. Moreover, Ag-TiO2 nano-

composite films were equally efficient in dark room conditions to kill the E. coli 

cells without any UV light. The higher surface roughness and mesoporosity of the 

films prepared by SGLIT, was responsible for their better anti-bacterial activity 

compared to furnace-sintered films.   
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Chapter 9 Conclusions and Future Work  

 

9.1 Introduction 

Conclusions have been drawn individually at the end of each Chapter though, these 

are combined in the present Chapter in order to organize the outcomes and compare 

them. Some of them have been listed and arranged to address the aims and objectives 

described in Section 1.2. The conclusions are followed by the recommendations for 

carrying out further research related to this area of research.      

 

9.2 Conclusions 

The research work was aimed to develop the SGLIT at an advanced level as well as 

to apply the technique to prepare efficient photo-catalytic TiO2 thin films. The aim 

was successfully achieved as presented through Chapters 5-8 of the thesis. The 

objectives set for the research as outlined in Section 1.2, were independently pursued 

and can be summarised as follows; 

 Identifying a suitable composition of TiO2 films with controlled chemical 

additions (loading) to ensure and enhance the crystallization of meta-stable 

anatase phase.  

The addition of Ce2+ and W6+ ions into TiO2 precursor successfully produced anatase 

dominant films by SGLIT. The Ce2+ ions promoted the stability of the anatase phase 

up to 500 laser pulses at 35 mJ cm-2 fluence compared to the unloaded TiO2 film, 

which exhibited rutile at the same parameters. However, the addition of W6+ ions 

could not contribute to the stability of the anatase compared to the unloaded TiO2 
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film. The highest proportion of the anatase was achieved from 1W-TiO2 (1% loading 

of W6+) after 10 laser pulses at 65 mJ cm-2 fluence.    

 Optimization of the laser processing parameters (fluence, number of laser 

pulses/shots and repetition rate) for each composition to achieve anatase 

dominant structure and to prepare the films over larger areas  

It was discovered that the Ce-TiO2 films can be processed under a defocused laser 

beam (0.4×0.4 cm2) for up to 500 laser pulses, keeping the fluence between 35-45 

mJ cm-2 at 10 Hz pulse repetition rate. Anatase dominant W-TiO2 films can be 

prepared by 10 laser pulses, 65-75 mJ cm-2 fluence at 10 Hz pulse repetition rate. 

Similarly, Ag-TiO2 films were successfully transformed into the dominant anatase 

by 50-200 laser pulses at 85 mJ cm-2 fluence and 15 Hz pulse repetition rate. Higher 

number of laser pulses, fluence or repetition rate led to the rutile formation. 

Moreover, W-TiO2 and Ag-TiO2 films were successfully prepared over a larger area 

of 2.5×2.5 cm2 on the glass substrate compared to Ce-TiO2 films and their adhesion 

was not affected by laser processing.  

 Characterization of each TiO2-based film prepared by SGLIT for its 

structural, morphological and optical properties and a qualitative comparison 

with the furnace-sintered films   

Interestingly, each of the films prepared by SGLIT exhibited a meso-porous 

morphology with anatase and rutile structures, whereas meso-porosity was not 

obtained from the furnace-sintered films. The laser irradiated films presented a 

bumpy and rougher surface with higher surface area compared to the furnace-

sintered films. As a results, the laser irradiated surface scattered more light and 

exhibited lower optical transmittance compared to the furnace-sintered films.  

On average, the crystallite size of the anatase obtained from the W-TiO2 prepared by 

SGLIT was lower compared to the furnace-sintered films. For example, 2W-TiO2-

(L) film produced anatase crystallite size of 38 nm, whereas 2W-TiO2-(F) film 

exhibited the anatase crystallite of 49.9 nm in size by XRD. On the other hand, the 

Ag-TiO2-(L) film prepared by 50 laser pulses at 85 mJ cm-2 fluence, exhibited 

anatase crystallite size of 38.4 nm and an average silver nanoparticle size of 28 nm 
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with a hexagonal structure. In contrast, the conventionally prepared Ag-TiO2-(F) 

film revealed anatase crystallite size of 29.8 nm, and silver nanoparticles size of 58 

nm with cubic structure respectively.     

 Determination of the anti-bacterial properties of W-TiO2 and Ag-TiO2 films 

under various ambient conditions  

On average, each of the W-TiO2-(L) films prepared by SGLIT demonstrated a 

consistent killing effect and there were no E. coli colonies surviving after 80 minutes 

under the UV (365 nm) lamp irradiation. On the other hand, the furnace-sintered W-

TiO2 films exhibited rather slow activity and the E. coli colonies always survived 

after 80 minutes under UV irradiation except the 1W-TiO2-F film, which produced 

the best results in all. Ag-TiO2-(L) nano-composite films prepared by SGLIT 

demonstrated an excellent anti-bacterial effect against the E. coli than their furnace-

sintered counter parts. No bacteria colonies were survived after 30 minutes under the 

UV lamp and after 60 minutes in natural light and dark room conditions on the 

surface of Ag-TiO2-(L) films. In contrats, E. coli colonies always survived on the 

Ag-TiO2-(F) films under the UV, natural light and the dark room conditions.       

 Shortening the processing time for Ag-TiO2 nano-composite films compared 

to the conventional furnace sintering and subsequent UV lamp irradiation 

methods   

The in-situ crystallization of the amorphous TiO2
 sol-gel film and the reduction of 

Ag2+ ions achieved by excimer laser irradiation paved the way to prepare various 

other nano-composites by SGLIT. Where conventional technology needs longer UV 

exposures to ensure the reduction of the ionic species into metallic nanoparticles, 

with the help of excimer laser, the crystallization and reductions were achieved 

simultaneously in a single-step approach. Therefore, the processing time was 

shortened significantly with the formation of smaller and uniform size distribution of 

nanoparticles. Moreover, the laser processing is not limited by the physical size of 

the sample in contrast to the furnace.    
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 Adhesion of the laser irradiated films with the substrate and the thickness of 

crystallized regions of the films compared to the furnace-sintered films 

Although, only top region of the films can be crystallized by the SGLIT, the Ce-TiO2 

films prepared on Pt(Si) substrate did not show any adhesion problems after the laser 

irradiation. The W-TiO2 and Ag-TiO2 prepared on the glass substrate were also 

remained attached to the substrate after preparation by SGLIT. However, the 

furnace-sintered films revealed a better adhesion due to a greater depth of thermal 

diffusion and the crystallization. In contrast, the laser irradiation was partially 

diffused and crystallized up to 100-150 nm deep into the W-TiO2 and Ag-TiO2 films.    

 

9.3 Recommendations and Future Work  

The results and conclusions obtained from various experiments opened new research 

directions to be continued for future work. These are summarised as follows; 

• Although the films prepared by SGLIT exhibited encouraging results for the 

W-TiO2 and Ag-TiO2 films, it suffered from the partial crystallized depth 

across the full thickness of films. It is recommended to further investigate the 

effect of laser processing parameters to overcome this deficiency. The 

number of laser pulses can be increased to increase the depth of thickness 

while controlling the laser fluence so as to restrict rutile formation in the 

films.  

• TiO2 films were prepared with maximum possible anatase contents by SGLIT 

to benefit its photo-catalytic properties. It has been reported that a mixture of 

anatase and rutile revealed higher photo-catalytic effect than single anatase 

[123]. It is recommended to prepare TiO2 films with the anatase and rutile 

mixtures in various proportions to investigate anti-bacterial activity of each 

combination.     

• The addition of Ag2+ ions to TiO2 matrix led to a better crystallization of the 

anatase, which was retained up to 200 laser pulses at 85 mJ cm-2. It was an 

unexpected finding with the SGLIT and contrary to the results quoted by Wu 
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et. al. [94] . On the other hand, the addition of W6+ ions favoured more rutile 

formation. It needs further experiments with advanced analytical tools to 

understand how W6+ and Ag2+ ions interact with TiO2 during the laser 

irradiation and effect the anatase and rutile formations.    

• The preparation of Ag-TiO2 nano-composite films by SGLIT is a novel 

process which opened new research areas to be pursued. It is required to 

investigate and understand the mechanism behind the formation of TiO2 films 

embedded with metallic nanoparticles. The advanced analytical and 

spectroscopic techniques could be used in-situ during the laser irradiation to 

understand this phenomenon during the laser beam interaction with TiO2 

film.      

• The strength of AgNO3 solution used for the adsorption of Ag2+ ions in this 

research was fixed at 0.01 M. This concentration can affect the final silver 

nanoparticles size and morphology as reported by Millstone et. al. [124]. 

Therefore, it is recommended to prepare the solution with variable strengths 

of AgNO3 and absorb the silver ions on TiO2 for subsequent excimer laser 

irradiations. Furthermore, surfactants can be added into AgNO3 solution to 

enhance the mono-dispersion of nanoparticles during the laser irradiation. 

The structure, shape and size of the silver nanoparticles produced from 

various strengths of solutions can be investigated by FEG-SEM, AFM and 

STEM etc. The optical and anti-bacterial properties of these novel photo-

catalysts prepared by lasers can also be examined.  

• The laser-induced crystallization of anatase with in-situ reduction of silver 

ions is a unique advantage of SGLIT. Taking this into account, TiO2 films 

containing noble metal additives e.g. Ag2+, Au3+ and Pt2+ ions, can be 

prepared by SGLIT. This idea may open a new door to the surface 

sensitization and rapid fabrication of existing solar cells and improve their 

efficiency by trapping more sunlight.    

• Analytical modelling can provide a better understanding of the 

transformation behaviour of TiO2-based films during the interaction with 

laser beam. Modelling results can predict the temperature changes and help to 
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optimise the laser parameters to achieve the desired structure, size and 

morphology in TiO2 films.   

Antibacterial properties of Ag-TiO2 nano-composite films prepared by SGLIT and 

conventional techniques can be tested against the gram positive pathogenic 

Staphylococcus Aureus bacteria. Investigations on the dead bacteria cells can be 

undertaken by TEM to understand the mechanism of the cells destruction by various 

Ag-TiO2 films. 
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9.4 Appendix A 

 
TiO2 Anatase JCPDS: 00-21-1272 
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TiO2 Rutile JCPDS: 00-21-1276 
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Ag Cubic JCPDS: 01-071-4613 
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Ag Hexagonal JCPDS: 01-071-5025 
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