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Debris �ows, avalanches and other geophysical mass �ows pose a signi�-
cant hazard to settlements in or near mountainous regions. Understanding
the physical processes that govern these �ows is an essential part of hazard
assessment and mitigation strategies. �is thesis addresses two aspects of
geophysical mass �ows: �ow self-channelisation due to the formation of
lateral levees, and granular shocks, which occur when a rapidly-moving de-
bris �ow or avalanche collides with an obstacle. We present the results of
large-scale debris �ow experiments in which the �ow is channelised by coarse-
particle levees that form at the �ow margins. �e �ow surface velocities
are measured with high speed overhead photography, and the deposits both
sampled to obtain the grain size distribution and excavated to recover the
deposited locations of tracer pebbles that were introduced in to the �ow. We
propose a model, supported by evidence from the large-scale experiments,
that describes in detail the size segregation and kinematic transport processes
responsible for the deposition of lateral levees. �e second problem addressed
in the thesis concerns granular shocks, or jumps, which are rapid changes in
the depth and velocity of granular avalanches. We investigate these through
experiments in which a falling jet of granular material impacts on an inclined
plane, generating a steady granular jump, which is either teardrop-shaped or
‘blunted’. Numerical solutions of a depth-averaged �ow model agree quan-
titatively with many of the observed �ow features. We use this model show
that the transition between the teardrop-shaped and blunted jump regimes
corresponds to a transition between two shock re�ection structures, known as
a regular and a Mach shock re�ection. On planes inclined at a shallow angle,
we demonstrate a wide variety of unsteady and channelised �ows, which
occur due to the complex interaction between �owing and stationary regions
of granular material.
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1. Introduction

In regions of steep terrain, geophysical mass �ows are a common occurrence. �is term

encompasses a wide range of �ows including lahars, snow avalanches, pyroclastic density

currents and debris �ows, all of which involve the rapid downslope transport of rock, debris

and water. Such �ows comprise a �owing solid granular phase, which is frequently coupled

to a �ow of the surrounding �uid, either water, air or volcanic gas. Geophysical mass �ows

are distinguished from the broader class of downslope mass movement processes (which

includes soil creep, landslides and rockfalls) by their �uid-like behaviour. �is behaviour

is achieved when the granular component of a mass movement is su�ciently dense and

rapidly-moving that it �ows as a coherent �uidised mass.

Geophysical mass �ows vary widely: in composition, from entirely water-saturated

stream�ows to dry rock avalanches; in size, from ∼102 m3 to ∼109 m3; and in speed, from

less than one metre per day for earth �ows (Hungr et al., 2001) to over 100ms−1 for the

fastest pyroclastic density currents (Branney & Kokelaar, 2002). �eir ability to �ow as

a �uid means that they may travel several tens of kilometres before coming to rest: such

�ows can be highly destructive, and pose considerable risk to life and property. �is risk

is heightened by the unpredictable initiation of geophysical mass �ows: they may occur

spontaneously when rainfall or meltwater destabilises slopes, or be triggered by volcanic

eruptions or earthquakes. �roughout the long history of observation and modelling of

geophysical mass �ows (Lord Bishop of Clogher, 1712), a great deal of research has been

motivated by the need to predict and understand large-scale �ows for the practical purposes

of hazard assessment and mitigation.

�e coherent, �uid-like behaviour of geophysical mass �ows motivates a continuum

approach to modelling. However, the wide range of frictional, collisional, viscous and
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cohesive forces that act upon each grain makes the problem of �nding a universal granular

rheology extremely challenging. In certain regimes, such as in quasi-static deformations,

gas-like collisional �ows (e.g.Campbell, 1990) and, more recently, dense granular �ows (GDR

MiDi, 2004; Jop et al., 2006), there has been considerable success in rheological modelling. In

geophysical mass �ows the presence of a broad particle size distribution makes the prediction

of rheology more complex; modelling is further complicated by particle size segregation,

which renders �ows and their rheologies spatially heterogeneous.

From a practical standpoint, the need for a rheology when modelling geophysical mass

�ows is partially mitigated by the observation that such �ows are typically shallow, in the

sense that their depth is much smaller than their horizontal length. �is separation of scales

allows a depth-averaged modelling approach, �rst derived by Savage & Hutter (1989), in

which the �ow is modelled by an incompressible �uid with a hydrostatic pressure. For a one-

dimensional �ow on a slope inclined at angle ζ from the horizontal, Savage & Hutter (1989)

show that the Navier-Stokes equations governing the �ow are reduced to depth-integrated

mass and momentum equations,

∂h
∂t
+

∂
∂x
(hū) = 0 , (1.1)

∂
∂t
(hū) +

∂
∂x
(hu2) + Kg cos ζ

∂
∂x
(
h2

2
) = hg cos ζ (tan ζ − µ sgn ū) , (1.2)

where x is the downslope coordinate, t is time, h is the �ow depth, ū is the depth-averaged

downslope �ow velocity and g is the acceleration due to gravity. Depth-averaging the system

of equations encompasses the e�ects of the rheology into two functions, the basal friction µ

and earth-pressure coe�cient K (the ratio of downslope to slope-normal tangential stress

within the �ow), for which Savage & Hutter use a constant Coulomb basal friction and

an earth-pressure coe�cient derived from a Mohr-Coulomb yield criterion. More recent

extensions to the depth-integrated model include two-dimensional �ow over arbitrary to-

pography, pore-pressure e�ects (Iverson & Denlinger, 2001) and more sophisticated basal

friction models (Pouliquen, 1999).

�e equations of the Savage-Hutter model (1.1, 1.2) are hyperbolic and form shocks, which

are analogous to the hydraulic jumps seen in shallow water �ows. �ese discontinuities in

�ow height and velocity can occur in supercritical �ows (those where the Froude number
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∣ū∣ /
√

gh is greater than unity), either as one-dimensional bores or as two-dimensional

oblique shocks (Hákonardóttir & Hogg, 2005; Cui et al., 2007). Shocks are especially relevant

to geophysical mass �ows in the context of interactions between the �ow and obstacles, such

as protective structures and dams (Gray et al., 2003). Protective structures are an important

part of geophysical mass �ow mitigation, and are designed to halt �ows or divert them away

from buildings and inhabited areas. �e modelling of shocks is of practical importance

in the design of protective structures for snow avalanches (Jóhannesson et al., 2009) and

debris-�ows (Takahashi, 2007).

1.1 Structure of the thesis

�is alternative format thesis is presented in the form of two papers, both on the modelling

of uncon�ned free-surface granular �ows.

In�e kinematics of levee formation in geophysical mass �ows (chapter 2), we describe

large-scale experiments performed at the US Geological Survey debris �ow �ume, and

present a theory to explain the formation of coarse-particle-rich lateral levees. �e large-

scale experiments involve the �ow of ∼10m3 of water-saturated sand and gravel down a

∼ 100m �ume. We make detailed measurements of the surface velocity �eld of these �ows

and carefully excavate the deposit, sampling the particle size distribution and recording the

deposited locations of coarse tracer stones that are introduced into the �ow. �e surface

velocity �eld measurements allow us to infer constraints on the vertical velocity pro�le and

deduce the structure of the three-dimensional velocity �eld in the �ow head. We couple this

velocity �eld to a model for particle size segregation, which allows us to predict the transport

and accumulation of coarse particles within the �ow. �ese predictions are supported by the

experimentally observed distribution of coarse particles within the deposit.

Contributions to this paper was as follows: cgj designed and implemented the procedure

for acquiring surface velocity �elds, analysed the experimental data and wrote the paper, with

editorial comments from jmntg, bpk and rmi. Additionally, bpk and rmi contributed text

to the paper introduction. Measurement and control systems at the USGS debris �ow �ume

were designed and implemented by ml and rgl. All the authors took part in the large-scale
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experiments.

Chapter 3 consists of the paper Granular jets and hydraulic jumps on an inclined plane,

which has been accepted for publication by the Journal of Fluid Mechanics. In this paper,

we describe laboratory experiments and numerical solutions of the �ow generated when

a falling jet of granular material impacts upon an inclined plane. �e jet impact produces

a region of thin, rapidly-�owing radial �ow on the plane, which transitions to a thicker,

more slowly-moving downslope avalanche through a closed granular shock. We show that

this shock can take one of two steady forms, either teardrop-shaped or ‘blunted’, and use a

depth-integrated �ow model to show that the these regimes correspond respectively to either

a regular or a Mach shock re�ection. Outside the regime of steady closed granular jumps,

the interaction between �owing and stationary material on the plane leads to a variety of

complex unsteady and asymmetric �ows. �e paper was written by cgj, who also performed

the experiments and wrote the numerical code. jmntg initially suggested the problem, and

provided editorial comments on the manuscript.

Both papers draw on the results of experimental �ows which, although ‘large-scale’ in

one case, are considerably smaller than natural avalanches and debris �ows. �e relevance

of these experiments to full-scale �ows depends on the extent to which �ows are governed

by scale-invariant physical processes. A di�culty in the modelling of geophysical mass

�ows is that �ow rheology may be dependent on a number of mechanisms that do not scale:

(Iverson et al., 2010) demonstrates that pore-pressure e�ects become increasingly signi�cant

as the �ow scale is increased, whereas �ow yield strength and viscosity become decreasingly

important. �e rheology of small-scale experiments may therefore di�er entirely from that

of natural geophysical mass �ows.

�e modelling employed in this thesis centres on kinematics in an incompressible �ow,

in chapter 2, and granular shocks, in chapter 3. �ese features of the experimental �ows

are dependent on the incompressibility and shallow aspect ratio of the �ows, which are

independent of scale. While the rheology of experimental �ows, especially of the small-scale

experiments in chapter 3, may not be representative of full-scale geophysical mass �ows, the

modelling of kinematics and shock phenomena may be extended to large-scale �ows.
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An example of such scaling behaviour is illustrated in �gure 1.1, which shows a small-

scale bidisperse dry grain �ow (a), alongside a debris-�ow experiment ∼ 70 times larger

(b). Despite the considerable di�erence in rheology and dynamics between the two �ows,

both are near-incompressible and have qualitatively similar velocity �elds, meaning that

the kinematic process of coarse-particle-rich levee formation described in chapter 2 applies

equally to both.

(a)

(b)

Figure 1.1: Two levee-channelised grain �ows di�ering in scale by a factor of ∼70. Despite di�erent
rheologies, both �ows have a similar height and velocity �elds (up to scaling factors).
Typical �ow properties are:

(a) (b)
Grains Glass beads Water-saturated debris

300–400 µm, red (37.5% by mass) up to 32 mm diameter
75–150 µm, white, (62.5% by mass)

Width 25 mm 2m
Depth 3 mm 0.2 m
Slope angle 27.5○ 2○

Flow speed 5 cms−1 4 ms−1

Froude number 0.3 3
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2. The kinematics of levee formation in geophysical

mass flows

Publication 1:�e kinematics of levee formation in geophysical mass �ows
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Abstract. Particle size-segregation can influence bulk flow properties and

hence the rate and distance of runout of diverse geophysical flows, includ-

ing debris flows, pyroclastic currents and snow avalanches. Runout enhance-

ment can occur through the spontaneous formation of coarse-particle-rich

lateral levees which channelise the subsequent flow. We report the results of

large-scale debris-flow experiments and analyse these results using a kine-

matic model of particle size segregation and transport within the debris-flow

head. The experimental flows travel ∼80 m down a flume before forming an

elongated deposit ∼10 m long on a runout pad. During formation of the de-

posit, we measured the surface velocity field using high-speed overhead pho-

tography, and we assessed the contemporaneous internal segregation of coarse

particles by placing tracers particles ahead of the flow on the runout pad,

which were incorporated into the flow. We determined the deposit granulo-

metric architecture and the deposited location of the tracer particles by de-

tailed transect sampling and systematic excavation. We found that coarse-

rich levees formed by rapid progressive streamwise accretion approximately

3.5 m behind the flow front. Coarse particles migrated vertically at up to ∼6–

7.5 cm s−1 in experimental debris-flows with a mean channel-flow velocity of

∼4 m s−1 and frontal advance rate of ∼2 m s−1. Formation of coarse-enriched

levees resulted from the development of a recirculating region of coarse ma-

terial in the debris-flow head. Coarse particles within this region followed spi-

ral trajectories outwards into the progressively-accreting levees, whereas small

particles migrated to the base of the flow and deposited in the channel be-
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tween the levees. Although there was clear evidence for inverse grading oc-

curring within the flow, the resulting leveed-channel deposit was strongly lat-

erally graded, with only weak vertical grading.
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1. Introduction

Debris flows, pyroclastic flows, snow avalanches and rockfalls transport particles that

can have wide ranges of size, shape and density. Particle segregation can cause formation

of relatively coarse-grained, frictionally resistive flow fronts that progressively build lateral

levees, which in turn channelise the flows. The spontaneous channelisation restricts lateral

spreading and thus can increase the travel distance, or runout.

This paper describes large-scale flume experiments and mathematical modelling of the

interrelations between flow kinematics, granular segregation and levee deposition during

the emplacement of debris flow deposits. We find a continuous process of granular flow

and segregation that leads to the progressive, streamwise accretion of coarse-enriched

levees a short distance behind the flow front. Whereas previous authors [e.g. Sharp and

Nobles , 1953; Branney and Kokelaar , 2002; Iverson et al., 2010] have simply described

the channelised flow as ‘shouldering aside’ the coarse-grained flow front to form the levees,

we investigate in detail a continuous process of granular flow and segregation that leads

to progressive, streamwise levee formation.

It has long been known that, during flow of dry granular mixtures down a rough inclined

plane, large and small particles unmix and tend to develop an inversely graded (coarsening

upwards) particle-size distribution. The segregation occurs as small particles preferentially

percolate downwards through spaces that open in the shearing, somewhat dilated mixture,

and large particles consequently are forced towards the top of the flow [Bagnold , 1954;

Middleton, 1970; Middleton and Hampton, 1976; Savage and Lun, 1988]. In geophysical

mass flows, several mechanisms may drive and modulate segregation. Interstitial fluids can
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hinder segregation by reducing the density difference between particles and fluid [Vallance

and Savage, 2000; Thornton et al., 2006]. In pyroclastic flows that transport low-density

pumice, large fragments may rise to the flow surface for the additional reason that they

are positively buoyant within the shearing dispersion [Branney and Kokelaar , 2002].

A coarse-particle-rich region at the flow surface, moving faster than the relatively fine

material beneath due to vertical shear in the flow, preferentially advects the coarse ma-

terial to the flow front, where it tends to accumulate. The higher pore-fluid diffusivity of

the coarse-particle front allows the high pore pressures generated in large-scale flows to

dissipate [Iverson, 1997] and results in the frontal accumulation being frictionally more

resistant to flow than the shearing dispersion behind it [Major and Iverson, 1999]. This

increased resistance causes a flow-front instability [Pouliquen et al., 1997; Pouliquen and

Vallance, 1999], the most obvious manifestation of which is the production of lobe-and-

cleft form deposits. The coarse material may either become over-run and circulated within

the head region before lateral expulsion, or advected directly into levees. Coarse-grained

levees form behind the flow front on both sides, and each may amalgamate with an ad-

jacent levee to obliterate the initial inter-lobe cleft [Major , 1997; Pouliquen et al., 1997;

Pouliquen and Vallance, 1999].

The segregation of coarse particles to the top of a flow and their resulting enhanced

mobility due to vertical shear has been modelled by Gray and Ancey [2009]. In laboratory

experiments of two-dimensional bidisperse granular avalanches, Gray and Ancey [2009]

show that coarse particles transported to the flow front are deposited at the base of the

flow, forming a deposit that has coarse particles at the base and at the surface, with

fine particles in between. Gray and Ancey [2009] model the segregation and transport
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processes in this flow using the particle size segregation model of Gray and Thornton

[2005], and show that a recirculating region of coarse particles exists at the flow front.

Gray and Kokelaar [2010] derive a one-dimensional depth-integrated form of the Gray

and Thornton [2005] particle size segregation model and show that this reduced model

correctly predicts the transport of coarse particles to a flow front, while being in a form

suitable for augmenting existing depth-averaged flow models [e.g. Iverson and Denlinger ,

2001].

While the accumulation of coarse particles at the flow front is understood in two di-

mensions, the resulting segregation mobility feedback, which causes transverse flow-front

instabilities and the formation of leveed channels, is less clear. For example, we do not

know the mechanism that defines the characteristic lengthscale of lobe-and-cleft form de-

posits, nor what controls the relationship between width and height of a leveed-channel

flows. Félix and Thomas [2004] suggest relationships between the geometry of the deposit

and the flow-front height and velocity of the parent flow based on laboratory experiments,

but deeper understanding of the flow mechanisms is needed to be able to anticipate large-

scale flow behaviour.

Scientific documentation of depositional levees bordering the paths of debris flows and

avalanches dates back more than a century [e.g. Stiny , 1910; Heim, 1932], and mod-

ern work adds quantitative rigour to such documentation [Conway et al., 2010, e.g.].

Early eye-witness accounts of the levee-formation process include that of Sharp and No-

bles [1953], who noted that levees formed as resistive, coarse-grained debris-flow snouts

were shouldered aside by advancing finer-grained debris. Thus, scientific observers have

long recognised the important role of heterogeneous debris-flow architecture during levee
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formation: high-friction, coarse-grained snouts are displaced laterally by low-friction, fine-

grained tails. Implicitly, this view also recognises the importance of grain-size segregation,

which contributes to the heterogeneous flow architecture.

Pioneering quantitative work on debris-flow mechanics and levee formation, especially

that by Johnson [1965, 1970]; Johnson and Rodine [1984], acknowledged the heteroge-

neous character of debris flows but sought to simplify the phenomenon to make it more

amenable to analysis. Thus, Johnson adopted a homogeneous Bingham model as a substi-

tute for a more complicated “Coulomb-viscous” model of debris-flow rheology. Whereas

Johnson himself remained keenly aware of the limitations imposed by the Bingham ide-

alisation, other investigators predicated their interpretations on its veracity. Even today,

some researchers base their interpretations of debris-flow levee formation on the Bingham

idealisation [e.g. Mangold et al., 2010]. Such interpretations assume that levees form as a

consequence of inherent material yield strength, independent of influences of internal flow

dynamics or heterogeneous flow architecture.

Evidence contradicting the Bingham model of levee formation comes not only from

field observations but also from reproducible large-scale experiments involving flows of

∼10 m3 of heterogeneous, water-laden debris [i.e. Iverson, 1997; Major , 1997; Major and

Iverson, 1999; Iverson et al., 2010]. In these experiments coarse grains (i.e., gravel) became

concentrated at flow fronts as a result of size segregation, and levee formation appeared

to involve the same shouldering aside of coarse snout debris noted by Sharp and Nobles

[1953]. A key aspect of the process, well-documented with sensor data, was the persistence

of a nearly liquefied, low-strength state of fine-grained debris in the core of flows core.

This mobile core material advected some of its downstream momentum into the resistive,
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coarse-grained snouts, thereby providing motive force to drive the snouts forward and

produce the “shouldering” effect. However, some features of deposition became obscured

because trailing watery debris tended to overtop the snout and levees that were emplaced

by the head of the flows. The experiments also lacked high-resolution particle tracking

during the levee formation process, thereby leaving many unanswered questions about the

internal flow dynamics that result in characteristic depositional patterns.

2. Methodology

We used the flume of Iverson et al. [2010] to study the effect of particle size segregation

on the flow propagation and deposit. The USGS debris-flow flume consists of a straight

concrete channel 95 m long, 2 m wide and 1.2 m deep, inclined at 31◦ to the horizontal

(figures 1 and 2). In the lowest 8.5 m the slope transitions smoothly to 4◦, before the

flume opens onto a concrete runout pad, 25 m long and inclined at ∼2.4◦. At 12.5 m

from the top of the flume, two 2 m-high vertical doors form gates of a hopper that allows

water-saturated sediment to be held and released. The flume walls and the runout area

are smooth, but most of the length of the flume bed, between 6 m downslope of the

hopper and 3.5 m upslope from the flume mouth, is roughened with bumps 16 mm high

and spaced 50 mm apart. We report the results of two experiments, run on 25th and 27th

August 2009, using initial charges of 10 m3 of water-saturated sand (0.0625–2 mm; 33%)

and gravel (2–32 mm; 66%) with a trace of mud (< 0.0625 mm), called ‘SG’ by Iverson

et al. [2010]. Iverson et al. [2010] give full details of the experimental set up and ‘SG’

properties, and show that these experiments are reproducible.

When the flume hopper gates open, the wet sediment behind them collapses and accel-

erates down-slope, reaching the flume mouth in ∼10 s (figure 3). As the sediment mixture
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travels down the flume, it develops a gravel-enriched snout followed by finer and wetter

material; some coarse particles bounce far ahead of the snout. The debris then discharges

onto the runout pad, forming an elongated deposit. Movie 1, in the dynamic content

accompanying this paper, shows a debris-flow in progress at the USGS flume. In previous

experiments [Iverson, 1997; Major , 1997; Major and Iverson, 1999; Iverson et al., 2010],

after the debris flow had extended onto the runout area and deposited a well-formed lev-

eed mound, there was a tendency for a succession of water-rich roll-waves in the latter

part of the flow to override and so erode and partly bury the initial deposit, making it

difficult to sample and interpret.

To focus on the initial runout and deposition in our experiments, we truncated the flow

shortly after the head discharged from the flume mouth and diverted much, but not all,

of the watery flow tail. To do this a reinforced plywood barrier attached to the backhoe

of a tractor was forcefully and rapidly dropped obliquely across the flume mouth as the

discharge began to wane, ∼5 s after the flow had first reached the runout pad (figures 1

and 2). The diverted flow was then partly channelled by concrete barriers away from the

runout pad and partly backed up, depositing material between the flume sidewalls. The

diversion of the watery tail meant that the last material to pass under the diverter before

the flow-head truncation was of a similar grain-size distribution and water content to the

initial charge. In the minutes after the diverter had been deployed, only a small quantity

of water and fine particles leaked into the proximal part of the initial deposit, insufficient

to erode the deposited levees.

During passage of the debris flows down the flume, continuous measurements of flow

thickness, bed-normal stress and bed pore-fluid pressure were made 32 m, 66 m and 80 m
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downslope from the hopper gates (figure 3). The speed of propagation of the flow front,

and the flow thickness and stresses at 32 m and 66 m, are nearly identical for the two

experiments, and they are very close to the mean behaviour measured in previous ex-

periments with similar experimental conditions [Iverson et al., 2010, figure 12]. At 80 m

below the gates (2.5 m upslope from the flume exit), the initial peaks in flow thickness and

stresses, ∼14 s after gate opening, are larger in the experiment of 27th August, indicating

a more substantial flow head at this location in this experiment. The relative increases in

all quantities late in the 27th August flow merely reflect the backing-up of the tail of the

flow against the flow diverter, which was emplaced 16–18 s after gate opening.

2.1. Particle tracking and surface velocity calculation

To investigate the kinematics of the flow and deposition during the debris-flow runout,

the surface velocity field and the evolution of the boundary between flow and deposit at the

surface were measured from high speed overhead photographs. To assist in this process,

the debris flows were marked by adding coloured tracers onto their surface. Approximately

1600 painted wooden cubes, of side length 2 cm, were placed close-packed in rows on a

board over the flume near the exit (figure 2) and were dropped onto the flow surface

steadily over a period of 3 s as flows discharged from the flume mouth. The cubes were

painted one of four colours, which were dropped in sequence. As well as providing markers

to indicate velocity fields, the positions of the cubes in the deposits, whether on the surface

or in the interior, provided information about the deposition order and processes. Movie

2 shows an overhead view of the runout of the 25th August experiment, in which the

seeding of tracer cubes onto the flow surface and the operation of the flow diverter can be

seen.
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Measurements of the surface velocity field were made from sequences of 105 images

taken during the 2.5 s period when the flow front was between ∼5 m and 10 m beyond the

flume mouth. Two sequentially triggered Casio EX-F1 cameras were used, mounted above

the runout area on an overhead cable and triggered remotely. The temporal resolution was

60 frames per second for 1 s and 30 frames per second for the subsequent 1.5 s; the spatial

resolution was approximately 3.5 mm per pixel. Calibration of the cameras was achieved

by painting a 1-metre grid of markers on the runout area. The markers were identified in

the experimental image sequences and used to calculate a least-squares fit of the camera

position and orientation (which varied slightly throughout the image sequences because

the camera mount was freely suspended) and the radial distortion function of the lenses.

The mean calibration error was typically ≤ 6 mm.

Surface flow velocities were calculated using Particle Tracking Velocimetry (PTV). Ap-

proximately 1000 coloured tracer particles and natural gravel particles were identified in

each image, and the location of each was tracked over ∼25 adjacent frames by custom PTV

software. Each particle track was checked manually and was discarded if a particle had

been incorrectly identified between images, or if the motion of a tracer particle on the flow

surface did not reflect the velocity of the flow around it. The latter occurrence was almost

entirely confined to the first 1–2 m of runout, where tracers that had just been seeded

were liable to roll across the flow surface briefly before becoming stably incorporated into

the flow. Particle velocities were then calculated using a centred finite-difference time

derivative of the particle positions, and the velocity field interpolated linearly on a Delau-

nay triangle mesh of the particle positions. The precision of the velocity measurements

was 8.9 mm s−1, or approximately 0.5% of a typical flow velocity. Positional accuracy of
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the velocity estimates was limited by the distance travelled by a particle between two

adjacent frames, and by the size of the comparison ‘window’ used to determine particle

positions. Both of these were ∼7 cm for the data presented in this paper.

3. Description of the flow runout and deposition

After discharging from the flume, the debris flows of 25th and 27th August continued

onto the runout pad, respectively, for 12 m and 9.5 m before complete deposition occurred.

These runout distances differ little from those observed in similar experiments in which

flows were not beheaded by the flow diverter [Iverson et al., 2010, figure 17]. During the

runout, both flows deposited continuously as material near the front of the flow slowed in a

flow ‘head’ region, and was deposited in levees that defined a flow channel of near-constant

width (figure 4a).

The time-evolution of the channelised flow through to eventual complete deposition in

the experiment of 25th August is shown in figure 4(b), in which the downstream location

of the flow head and extent of the levees is plotted. Most of the runout distance is attained

in the first 5 s after the flow exits the flume, during which both the flow front and head

propagate downstream at a near-steady velocity of 2.0 m s−1. The levees form approxi-

mately 3.5 m behind the front. Towards the end of the flow, as the flux of material at

the flume exit wanes, the levee formation slows dramatically, practically stopping stream-

wise levee accretion. At this time, ∼5–8 seconds after the flow reaches the runout pad,

propagation of the flow front slows while material in the centre of the channel remains in

motion, causing the flow head to widen slightly to form a bulbous snout.

The majority of the deposit is formed between ∼1.5 and 5 s after the flow exits the

flume, when the debris flow head advances and levees accrete downstream quite steadily.
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Although the volume of sediment used in the experiments is limited by practical consid-

erations, we infer that in natural flows of longer duration, this near-steady regime of flow

and deposition may be responsible for the majority of the organisation of deposits. Thus

the interactions between flow kinematics, granular segregation and levee deposition in this

regime, especially in the flow head, are of great interest.

The experimental deposit of 25th August is shown in figure 4(c), with the time when

each part of the surface of the flow became stationary indicated by colouring, showing the

spatial order of surface deposition. The main process in the runout, the steadily advancing

flow front and downstream-accretion of levees, is illustrated in this figure. Until the flow

is diverted at t ≈ 5 s, figure 4(c) shows that the levees form only through streamwise

accretion, with no progressive widening of the levees once they have been deposited.

After the deployment of the flow diverter, the abrupt cessation of flow from the flume

changes the runout substantially, and two further processes occur. At around 6–6.5 s,

the height of flow in the channel drops rapidly, and leads to a widening of the levees

inwards behind the head region. Immediately afterwards, material in the leveed channel

and most of the head stops near-simultaneously at ∼6.5–7.5 s and slight lateral bulging of

the head is evident. While these later processes influence the experimental flow deposits

described later, they are not as relevant to natural debris flows as the process of steady

front-propagation and streamwise levee accretion that occurs during most of the runout.

Figure 4(c) shows the time of deposition at the surface; it is possible that underlying

material may have deposited somewhat sooner than that on the surface, due to vertical

progressive aggradation [c.f. Major , 1997]. At the margins of the flow, the flow head

reaches a downstream location only 1.5 s before deposition of the levee occurs at the
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surface; this is therefore the longest period over which vertical progressive aggradation

could occur in the levees. It is probable that vertical aggradation in the levees occurs much

more rapidly than this: image sequences taken from ground level looking perpendicular

to the accreting levee wall show that at the surface, the boundary separating flowing from

deposited material is inclined at approximately 45◦ to the horizontal (and propagates

downstream with the flow head at 2.0 m s−1). Material at the highest point on the levee

therefore deposits only ∼0.1 s after that at ground level (at the same downstream location)

indicating a rapid vertical aggradation. By contrast, in the central channel, vertical

progressive aggradation is quite possible, and is a likely cause of the near-simultaneous

stopping of surface material after the flow tail is diverted.

Figure 5 shows a sequence of side-on views of the 25th August debris flow, taken at 0.2 s

increments, from which the near-steady propagation of the debris flow front is evident.

The extent of the progressively growing levees is indicated by arrows, upstream of which

the leveed channel is of uniform height. The flow head raises above the height of the

channel, and exhibits the steep front and thin precursory flow seen in natural single-

surge debris flows [Sharp and Nobles , 1953; Pierson, 1986]. During the experiments

we observed approximately two travelling waves behind the resistive flow front, which

progress downstream at approximately the front propagation speed. The amplitude and

the position of these waves (with respect to the flow front) evolve slowly with time, which

causes a temporal variation in flow head height that can be seen in figure 5. Additionally,

there is a component of repeated front steepening and collapse which affects the size of

the thin precursory surge ahead of the flow. However, both these unsteady phenomena
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are minor in comparison to the overall steady propagation of the flow front, as evidenced

by the highly uniform width and height of the deposited levees.

4. Particle Paths

The incremental formation of levees is demonstrated in figure 6 by tracing the path of

two sequences of five particles, each of which enters the runout area at the same transverse

location. An animation of this figure is shown in movie 3. Before deposition, the particle

sequences form two parallel lines in the central flowing channel, with particle 1 furthest

downstream. This is the case in figure 6(a), where only particles 1 and 2 have entered

the field of view. In figure 6(b), particles 3–5 have moved into view, following the same

parallel paths. Particles marked 1 and 2 have reached the flow head region and have been

transported laterally outwards; particles marked 1 have deposited on the levee surface.

In figure 6(c), particles 1–3 have deposited in the levee, and particle 4 is being advected

towards the edge of the flow. In figure 6(d), all particles have deposited in the levees, with

the location of deposition reversed from that which originally existed in the flow: particles

marked 5 are now the furthest downstream. This reversal of longitudinal position is also

evident from the colour of the tracer cubes deposited in the levees. The cubes were seeded

onto the flow surface in four colours in sequence (shown in movie 2): pink first, followed

by green, then yellow, then orange. Figure 7 shows a photograph of the deposited levee,

pink tracers are located in the proximal part of the levee, with green, yellow and orange

found progressively farther downstream.

Only about half of the tracer cubes that were placed on the flow surface remained on the

surface of the final deposit; the remainder were found buried within the deposit interior.

Figure 8 shows the trajectories of a set of particles that at t = 2 s lie in a transverse line
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across the flow, ∼1.5 m beyond the flume exit. At t = 3.2 s particles that were near the

edge of the flow, marked with circles, remain on the surface after being advected into the

levees in the same manner as the particles in figure 6. In contrast, particles that were near

the centre of the channel, marked with crosses, reached and passed over the advancing flow

front, and were then buried by material which followed. Particles on the flow surface can

therefore be divided into two distinct sets: those near the flow margins which remain on

the surface and are advected onto the levee surface, and those nearer the flow centreline,

which are transported to the flow front and buried by subsequent material.

Figure 9 shows the surface velocity field of the flow of August 25th at t = 3.5 s, the

same time as is shown in figure 4(a). The surface velocity is indicated by arrows, with

deposited material (defined as having surface velocity ≤ 20 mm s−1) denoted by dark

shading. At their full development, the levees occupy approximately half the flow width

and the channelised flow between them is directed entirely down-slope, with a rounded

velocity profile. The maximum downstream surface velocity at t = 3.5 s is 6.1 m s−1, with

a variation of less than ±2% along the leveed section from x = 1.5 m to x = 4.5 m. The

velocity profile and the levee width similarly exhibit only small streamwise variation. The

levees and flow upstream of the head are therefore largely independent of the downstream

coordinate x. The rounded Poiseuille-like velocity profile in the leveed channel is observed

also in some natural debris-flows [Pierson, 1986]. Transverse and vertical shear rates are

both of order 20 s−1 in the leveed channel, indicating that horizontal stresses – commonly

neglected in depth-integrated flow models – may play an important role in the dynamics

of levee-channelled debris-flows.
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Within the flow head, material across the entire width of the flow is in motion, with

the surface velocity close to the flow front almost uniformly 3 m s−1, about 50% faster

than the propagation speed of the front. Away from the flow axis a transverse velocity

component in the flow head, typically ∼0.75 m s−1, advects particles away from the axis

and towards the flow margins. An animation of the surface speed of the runout from

t = 3.2–4.6 s is shown in movie 4. The characteristics of the channelised flow behind vary

only slightly throughout that period, indicating that the velocities shown in figure 9 are

typical of those in the regime of steady front propagation and levee formation.

4.1. Flow and deposition in a moving reference frame

The constant speed of propagation of the flow head and streamwise accretion of levees

(figure 4c), together with the constant width and similarity of flow velocity profiles of the

levee-channelled flow behind the head (figure 9a) indicate that the flow is best understood

in a frame moving with the flow front, at the constant propagation speed of 2.0 m s−1.

Figure 9(b) shows the surface velocity field at t = 3.5 s, in the frame moving at the speed

of the front. In this reference frame, the velocity field is steady and the flow margins

stationary, which implies that particle paths, such as those in figures 6d and 8b, coincide

exactly with flow streamlines. In the moving frame, material moving downstream more

slowly than the flow front, such as that in the levees and in the slowly moving outer parts

of the leveed channel, appears to move ‘backwards’ away from the flow front, whereas

material moving faster than the flow front, such as that in the channel centre, moves

‘forwards’ towards it. Movie 5 shows an overhead view of the runout in the frame moving

with the flow front, in which the steady nature of the flow and the transport of material

towards and away from the flow front can be seen. We emphasise that, as indicated in
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figure 9(a), no material moves upstream in a stationary frame. The apparent movement of

material ‘backwards’ in the moving frame simply reflects that slowly-moving or stationary

material is left behind by the advancing flow front.

The correspondence of particle paths with streamlines in the moving frame means that

the particles highlighted in figure 6, which each start at the same transverse distance from

the flow axis, all follow the same streamline through the flow head. Accordingly, they are

transported through the flow in the same manner, but are reversed in order as they

migrate from the central channel (in which the flow is faster than the front propagation,

or ‘forwards’ in figure 9b) to the levees (in which the flow is ‘backwards’ in figure 9b).

In figure 9b, streamlines originating close to the central flow axis follow a path through

the head and intersect the flow boundary. Streamlines originating farther from the flow

axis curve back on themselves (corresponding to the flow being slowed to below the prop-

agation speed of the front) and connect to a levee. These two surface flow patterns are

demarcated by a white dashed line, and correspond to the two behaviours identified in

figure 8, where particles either reach the flow boundary and are overpassed by subsequent

material, or remain on the surface as they are advected into the levees.

4.2. Three-dimensional flow model

Particle tracking directly yields only the surface velocity field. To understand the three-

dimensional structure of the flow, we model the flow field mathematically and consider

the effect of an assumed vertical velocity profile. Such profiles are difficult to measure

experimentally, but some inferences about the internal velocity profile can be made from

observations of the surface velocity field.



JOHNSON ET AL.: LEVEE FORMATION IN GEOPHYSICAL MASS FLOWS 19

To make such inferences, a model is constructed in which the shape and velocity field of

the flow are prescribed functions, which are chosen to closely match the observed debris-

flows. Motivated by the experiments, the flow is assumed to be steady in the frame

moving at the constant front speed uF . We also assume that the compressibility of the

debris-flow is negligible. This assumption is motivated by the near-incompressibility of

both water and particle constituents of the debris-flows, and by the observation that the

debris remains substantially water-saturated throughout the duration of the flow.

We use the coordinate system (x, y, z, t) (illustrated in figure 2) in the stationary frame,

and (ξ, y, z) in a frame moving with the flow front, where x is the down-stream coordinate

in the stationary frame, y is the cross-stream coordinate, z the slope-normal coordinate,

t is time and ξ = x − uF t is the down-stream coordinate in the moving frame. The lack

of a time coordinate in the frame moving with the flow front reflects the steady nature of

the flow in this frame.

Denoting the flow velocity in the stationary frame by u(x, y, z, t) = (u, v, w) , the as-

sumption of incompressible flow implies that u is divergence-free

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 , (1)

which places a strong restriction on the possible velocity fields.

In the stationary frame, the depth-averaged flow velocity ū = (ū, v̄) is defined by

ū =
1

h

∫ h

0

u dz, v̄ =
1

h

∫ h

0

v dz . (2)

The depth-averaged velocity is linked to the flow height by the depth-averaged mass

balance equation

∂h

∂t
+

∂

∂x
(hū) +

∂

∂y
(hv̄) = 0 , (3)
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obtained by integrating (1) in z and applying kinematic boundary conditions at the surface

and base of the flow. This depth-averaged mass balance equation is a key part of shallow-

layer avalanche and debris-flow models [Savage and Hutter , 1989; Gray et al., 1999; Iverson

and Denlinger , 2001; Gray et al., 2003]. In the moving frame, the flow is steady and (3)

reduces to

∂

∂ξ
(h (ū− uF )) +

∂

∂y
(hv̄) = 0 , (4)

or, in the moving-frame depth-averaged velocities ū′ = ū− uF , v̄′ = v̄,

∂

∂ξ
(hū′) +

∂

∂y
(hv̄′) = 0 . (5)

This divergence-free form allows a streamfunction ψ to be defined [e.g. Batchelor , 1967],

which satisfies

∂ψ

∂y
= hū′,

∂ψ

∂x
= −hv̄′ . (6)

We now construct empirical functions that approximate the flow’s shape and velocity

field. In plan-view, the flow boundary is described by y = ±y0(ξ) (for ξ ≤ 0), where

y0(ξ) = W

√
tanh

(
− ξ

W

)
, (7)

is a function that represents the rounded front and constant width channel. The half-

width of the debris flow is given by the constant W , here set to 1 m to match the width

of experimental flows. The flow depth is similarly modelled by the function

h(ξ, y) =
H

W

(
y2n

0 − y2n

y2n−1
0

)
, (8)

where H is the maximum debris-flow depth of 25 cm and n = 4 is a constant which reflects

the observed height profile of the experimental debris-flows. The flow outline y0 and depth

h are illustrated in figure 10(a).
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The depth-integrated flow velocity is constructed through (6) using an empirical stream-

function

ψ(ξ, y) =
HU

W 2

(
kyy2

0 −
k

2n+ 1

y2n+1

y2n−2
0

− 1

2m+ 1

y2m+1

y2m−2
0

+
1

2n+ 2m+ 1

y2n+2m+1

y2n+2m−2
0

)
, (9)

where the constant m = 2 reflects the observed velocity field in the debris-flow head, and

k = (2n+1)/((2m+1)(2n+2m+1)) . The constant U scales the flow velocity, and is here

set to 2.321 m s−1 in order to reproduce the experimentally observed front propagation

speed of 2.0 m s−1. Contours of ψ, which are streamlines of the depth-integrated velocity

field, are illustrated in figure 10(b).

To determine a three-dimensional velocity field u from the depth-integrated velocities ū,

the vertical velocity profile is required. We consider a single-parameter family of velocity

profiles,

(u, v) = ū
(
α+ 2(1− α)

z

h

)
, (10)

which are consistent with (2). The parameter α controls the amount of shear within the

bulk of the flow compared to the amount of slip at the base. For physically realistic

velocity profiles, 0 ≤ α ≤ 1: when α = 1, (u, v) = ū, and a plug-flow profile is produced;

when α = 0, (u, v) = 2ūẑ/h and there is linear shear with depth throughout the flow, and

no basal slip.

The flow velocity in the frame moving with the flow front, denoted by u′(ξ, y, z) =

(u′, v′, w′), is defined by u′ = u− (uF , 0, 0) . The horizontal components of the velocity in
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the moving frame are then

u′ = −uF + (ū′ + uF )
(
α+ 2(1− α)

z

h

)
, (11)

v′ = v̄′
(
α+ 2(1− α)

z

h

)
. (12)

The vertical component of velocity is obtained by integrating the mass conservation equa-

tion in the moving frame with respect to z,

w′(ξ, y, z) =

∫ z

0

∂u′

∂ξ
+
∂v′

∂y
dz′ , (13)

which evaluates to

w′ = uF (1− α)
z2

h2

∂h

∂ξ
− (∇ · ū′)

(
α+ 2(1− α)

z

h

)
z . (14)

The motion of a particle through this velocity field is given by

drx

dt
= u ,

dry

dt
= v ,

drz

dt
= w , (15)

where r = (rx, ry, rz) is the particle location. As before, in the frame moving with the

flow front, these particle paths coincide with streamlines of the three-dimensional flow.

Figure 11 shows streamlines of the model debris flow for three different vertical velocity

profiles that satisfy (10), varying from plug-flow (α = 1) to uniform simple shear (α = 0).

The three rows of plots show the assumed vertical velocity profiles, the surface velocities

in the stationary frame and surface streamlines (particle paths) in the frame moving with

the flow front. The surface velocities shown in the second and third columns are directly

comparable with the experimentally measured surface velocities shown in figure 9(a) and

9(b), respectively.

The simplest velocity profile is that of uniform plug-flow, shown in figure 11(a, b, c),

in which the flow moves entirely by basal slip. In this case, the flow in the x–y plane is
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equal to the depth-averaged flow velocity everywhere. As a result, the surface streamlines

in 11(c) coincide with those in figure 10(a) and do not intersect the frontal boundary of

the flow. No surface material is transported to the front and overpassed, and the surface

velocity at the flow front is identical to the rate of flow propagation. This is qualitatively

unlike the experimental surface velocity field shown in figure 9(b).

Another possible flow profile is uniform simple shear, illustrated in figure 11(d, e, f ).

In this case the flow has a linear velocity gradient with no basal slip. Almost all the

surface streamlines in this case intersect the frontal boundary of the flow, corresponding to

almost all the surface material dropping over the front and being buried, rather than being

advected into the levee surfaces. Again, this behaviour is unlike that in the experimental

debris flows.

Figure 11(g, h, i) shows a velocity profile for α = 0.5 that exhibits shear as well as

some basal slip. The value of α is chosen to match the experimental observation that the

surface velocity at the flow front is 50% faster than the front propagation rate. The surface

streamlines in this case (figure 11i) closely resemble those observed in the experimental

flow; surface streamlines near the centre of the channel reach the front, but towards the

edges of the channel surface streamlines remain on the surface and are returned into

the levees. We conclude that vertical shear is present in the experimental debris flows,

combined with some component of basal slip or a rapidly-shearing boundary layer at the

flow base, leading to a velocity profile similar to that depicted in figure 11(b). Direct

evidence of shear in the flow is provided also by video recordings of the advancing flow

front, which show particles and tracer cubes on the flow surface being advected over the

flow front and buried by the subsequent flow.
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The effect of the vertical velocity profile on the three-dimensional transport of material

through the flow head is shown in figure 12. The green shaded areas indicate the regions

at the back of the flow head where material moves more slowly than the flow front (that is,

where u′ is negative). In the moving frame, this condition corresponds to the regions where

material leaves the flow head. Conversely, the area shaded pink represents the region where

material enters the flow head. The curved lines show solutions of the transport equation

(15), which are the paths taken by particles that enter the head in the region shaded

pink, flow through it, and leave it in the region shaded green. The incompressible and

steady nature of the flow in the moving frame implies that the mass flux entering the head

exactly matches the mass flux leaving it. This mass balance has important consequences

for the particle size-distribution in the flow head, and is discussed further in section 7.1.

In figure 12a and in movie 6, the three-dimensional particle paths are shown for the

case of uniform plug flow. Material enters the head along the central axis of the flow, is

advected outwards, and leaves along the flow margins. It can be shown from (14) and

(15) that when there is no vertical shear, the relative height of a particle in the flow rz/h

remains constant.

In the case of simple shear, shown in figure 12b and in movie 7, material enters the head

largely along the surface of the flow and leaves it in a layer at the base. There is very

little transverse transport of particles, but instead they are advected over the flow front

and to the base of the flow in a ‘caterpillar-track’ motion. The thick black line indicates

the boundary between surface material which passes over the flow front and that which

remains on the surface; in the case of plug flow (a), all particles initially on the surface

remain there, and there is no overpassing of material.
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Figure 12c and movie 8 show a combination of shear and basal slip, as inferred from the

debris-flow experiments. The particle paths reflect a combination of transverse motion

away from the flow centreline and vertical transport of particles from near the surface of

the flow to near the base, through passing over the flow front. Material leaves the flow

head predominantly in two lateral levees, but also in a thin layer at the base of the flow.

In the stationary frame this material leaving the head is the slowest-moving in the flow,

indicating that it may deposit readily.

5. Deposit Granulometry

Grain-size distributions were sampled from initial charges and along four transects in the

August 25th and August 27th deposits (figures 13, 14 and 15). Three transverse transects

and one axial transect each comprised three to six sample sites. At each sample site, a

thin-walled steel tube 19 cm in diameter was inserted into the deposit and the material

within it carefully excavated either from the top and bottom halves of the deposit (in

the August 25th deposit), or from the top, middle and bottom thirds (in that of August

27th).

Sieve analyses yielded measures of dry mass in nine one-φ bins (each containing grains

with effective diameters varying over a factor of two) between 0.0625 mm (1/16 mm)

and 32 mm, and in one bin for particles smaller than 0.0625 mm. In order to highlight

the evolved grain-size distributions that result from granular segregation, we normalise

the deposit granulometric results against the granulometry of the initial charge in the

hopper. For each experiment, the grain-size distribution of the initial charge is taken to

be the unweighted mean of the grain-size distributions of the four samples taken in the

hopper. To normalise a sample, the proportion of dry mass in each size bin is divided
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by the corresponding proportion in the mean initial charge grain-size distribution. Figure

13 depicts the mean initial charge histograms for both experiments (a and b), and the

relative abundance plot showing the grain-size distribution of the August 27th initial

charge normalised against that of the August 25th experiment (c). The range of the

vertical scale is from 0 (complete depletion) to 2.5 times enrichment relative to the initial

charge. The initial charges of both experiments are bimodal, with peaks at ∼0.3 mm

and ∼12 mm corresponding to the constituent sand and gravel components respectively.

The initial charges from the two experiments are generally similar (that is, the relative

abundances are close to unity), although the 4–8 mm particles are roughly doubled in

abundance in the August 27th charge (∼12% as opposed to ∼6%).

In addition to using the initial charge grain-size distribution as a base for the normalisa-

tion, the mean grain-size distribution shown by [Iverson et al., 2010, figure 5a], calculated

from 20 samples of the same sand and gravel mixture, was also used as a normalisation

base. This mean distribution is close to the bimodal distribution of the initial charges

in our experiments, though it has a somewhat smaller proportion of the largest clasts

(16–32 mm). Similar relative enrichment and depletion patterns are found if samples are

normalised against this alternative particle-size distribution.

The relative abundance plots in figures 14 and 15 show that in general there is coher-

ence across a range of neighbouring size bins, such that it seems justified to discuss three

general classes of grains. We distinguish: coarse particles, from 8–32 mm; fine particles,

from 0.0625–8 mm; and very fine particles, < 0.0625 mm. The coarse and fine fractions

correspond generally, but not exactly, to the two peaks of the bimodal particle-size distri-

bution of the initial charge (figure 13); the smallest gravel particles (of diameter 2–8 mm)
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segregate in the same manner as the sand and so are classified as fine. The very fine

particles comprise less than 2% of the initial charge, so we concentrate on the relative

abundances of the coarse and fine classes. The settling velocity of the very fine particles

is ≤ 3.2 mm s−1. We infer that this very fine fraction is strongly coupled with, and ad-

vected by, the water and that it does not play a significant role in the granular segregation

that is marked within the flume and continues in the runout reach. The same inference

was made by Iverson [1997]. In our experiments we diverted most of the trailing watery

flow. Water laden with very fine particles may, however, have influenced flow mobility via

elevated basal pore-fluid pressure just behind the head of the flow in the flume [Iverson

et al., 2010]. Video of the debris flow deposition viewed from above shows a late appear-

ance of a watery surface layer (visible as light brown sediment in movie 2), which at least

in part relates to pore-water expulsion. We infer that some of the relative enrichment

in very fine sediment in uppermost layers (for example in figure 14, sample sites 13–15)

results from its elutriation upwards with expelled pore-water [Kim and Lowe, 2004].

The August 25th deposit (figure 14), in the proximal transect at x = 3 m, exhibits a

strongly enriched concentration of coarse material and depletion of fine, to approximately

half of its initial concentration, throughout the outer parts of the levees (sample sites

1 and 4). At the centre of the leveed channel (site 3), the size distribution is closer to

that of the source material, with a consistent relative depletion of the largest particles

(d > 16 mm); no overall size grading is evident. At site 2, the basal enrichment of

coarse and depletion of fine is taken to reflect the inner low flank of the levee. These

relationships are evident in the medial transect, at x = 7 m, although the enrichment of

coarse material in the levees (sites 5, 6, 9 and 10) is less marked than in the proximal
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transect. The samples from the centre of the channel (sites 7 and 8) show slight coarse

material depletion but otherwise little deviation from the source material composition.

In the transect at x = 10 m, the levees (sites 11, 12, 16 and 17) are again distinguished

by some relative enrichment of coarse and depletion of fine throughout, but in the centre

(sites 13–15) there is also some depletion of fines, as there is in the longitudinal transect

to the front (sites 18–21). Overall, the August 25th deposit shows a proximal to distal

progressive loss of the coarsest particles (16–32 mm).

The August 27th deposit was sampled at three levels at each site, but only at the centre

and along transects through one levee (figure 15). The levee samples (sites 22, 25 and

28) exhibit strong relative enrichment of coarse particles and corresponding depletion of

fine ones. These also show a vertical organisation in which the relative enrichment of

the coarsest particles is most marked at the top and bottom, with less enrichment in

the middle. Samples nearer the deposit axis at x = 2 m and x = 6.5 m (sites 23 and

26) intersect levee material in the lower two thirds and at both of these sites the overall

vertical organisation is normal (coarse-tail) grading. At the centre of the leveed channel in

these transects, the deposits (sites 24 and 27) show slight coarse depletion but otherwise

no strong or consistent departures from the source material concentrations of coarse and

fine particles.

6. Coarse Tracer Pebbles

In the August 27th experiment, ∼600 pebbles with average diameter of ∼20 mm, typical

of the largest particles in the initial charge, were painted white and placed in a rectangular

patch no more than one particle thick on the runout area, 2 m from the exit of the flume,

shown in figure 2. The objective of this part of the experiment was to illustrate the fate



JOHNSON ET AL.: LEVEE FORMATION IN GEOPHYSICAL MASS FLOWS 29

of the coarse particles that pass over the flow front and become buried as it advances. As

the debris-flow front advanced over the tracer pebbles, they were incorporated into the

buried material, and thereafter reflected the paths of those large particles which reached

the flow front and were overpassed at x ≈ 2 m. The deposit was gradually removed by

trowel, so as to reveal the plan-view position and (in some cases) height of the pebbles,

which were recorded (figure 16).

The tracer pebbles occupied a wishbone shaped region in the deposit, becoming pro-

gressively elevated and dispersed throughout the deposit down-stream. Within 3 m of the

pick-up area (the blue rectangle in figure 16) pebbles were clustered in two parallel bands

along the inner sides of the levees, with numerous pebbles ≥ 5 cm above the deposit base

∼2 m from source and with a complete absence of pebbles in the centre of the channel.

Beyond ∼3 m from source many pebbles were elevated ≤ 12 cm above the deposit base,

mainly in a broad zone centred on the flow axis, with few pebbles within 0.5 m of the

deposit margin. The height attained by the tracer pebbles shows a clear increase with

downstream distance, most marked between 3.5 m and 5 m downstream from the flume

exit (1.5–3 m from the pick-up area), where particles are positioned up to 15 cm above

the base. This positioning reflects a maximum rise of 15 cm in ∼2.7 m of transport, or a

streamwise climb angle of ∼3◦.

The increase in elevation provides evidence for size-segregation during runout of the

debris flow. The possibility that the stones reached a pre-existing deposited region, and

were then raised above the runout pad through ‘ramping’ (rolling up the inclined surface of

a deposited region), is not consistent with the path of the tracer pebbles through the flow

head, from their introduction at the flow front to deposition in the progressively accreting
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levees. The typical rise velocity of the segregating pebbles can only be estimated, since

the time of deposition of particles in the interior of the flow is not known. However, there

is evidence (in section 3) that deposition of levees occurs rapidly throughout the flow

depth, and so the deposition time of particles in the levees is close to the stopping time

of the surface material at that point. The tracer pebbles were over-run between t = 1.1 s

and t = 1.5 s, and the deposition of the levee surface at x = 5 m, where particles reached

15 cm above the base, occurred at t = 3.5 s. This indicates a maximum rise rate of 6.3–

7.5 cm s−1. Tracer pebbles in the levee near x = 5 m were distributed quite uniformly

between ground level and 15 cm above the runout pad; a typical rise rate is therefore half

this, ∼3.5 cm s−1.

Between 5 m and 8.8 m downstream, where the most distal tracer pebble was located,

the pebbles were distributed approximately uniformly in height within the bottom two-

thirds of the deposit, ≤ 17 cm above the base. No tracers occurred in the uppermost

5 cm of the deposit and very few within 10 cm of the top surface. This distribution is

illustrated in figure 17, which shows the deposit of the 27th August experiment, with

∼5 cm of material excavated from a sector of the flow. Two white tracer pebbles, the

closest to the surface in this section of the deposit, are visible on the surface of the

excavation. To the left of the photograph, a transect through the deposit at x = 7 m

shows a scattered distribution of tracer pebbles in the lower part of the flow, as illustrated

in figure 16.

7. Segregation and Recirculation

The combined occurrence during the runout of particle size-segregation, vertical shear

and overpassing of material at the flow front leads to a net transport of coarse and fine
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particles to different locations in the flow and deposit. We now combine the velocity field

of the flume runout inferred in section 4.2 with a simple model for bidisperse particle seg-

regation proposed by Gray and Thornton [2005] to predict the distribution of large and

small particles throughout the flow. We relate this distribution to observed grain-size dis-

tributions sampled from the deposit. While the bidisperse model describes the segregation

of only two species of particle, the experimental debris-flows contain a continuous range

of particle sizes. However, the bimodal distribution of the initial charge and the coher-

ence of enrichment or depletion across neighbouring size bins suggests that this bidisperse

segregation model may be applied to the flume runout, with coarse (8–32 mm) and fine

(0.0125–8 mm) volume fractions corresponding to large and small fractions respectively.

The particle segregation and transport model of Gray and Thornton [2005] describes

the time-evolution of the small-particle volume fraction φs in an incompressible bidisperse

granular flow. The model equation can be written as

∂φs

∂t
+

∂

∂x
(φsu) +

∂

∂y
(φsv) +

∂

∂z
(φs [w − q(1− φs)]) = 0 , (16)

where u = (u, v, w) is the prescribed bulk flow velocity field, q is the (positive) segregation

speed and k the unit normal vector in the positive z-direction. The bracketed term

w − q(1 − φs) corresponds to the vertical velocity of small particles. When q = 0 this

term reduces to the bulk vertical velocity and the equation reduces to the tracer equation.

In the case φs = 0 the vertical velocity is simply w − q, representing a small particle

descending through a bulk flow of pure large particles at a speed q. In this bidisperse

model the large-particle volume fraction is simply equal to φl = 1 − φs, and (16) can be
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rewritten in terms of this variable as

∂φl

∂t
+

∂

∂x

(
φlu
)

+
∂

∂y

(
φlv
)

+
∂

∂z

(
φl
[
w + q(1− φl)

])
= 0 . (17)

The corresponding vertical velocity of large particles w + q(1 − φl) is equal to the bulk

vertical velocity if q = 0. The case φl = 0 represents a large particle rising through the

bulk flow of pure small particles at speed q.

Gray and Thornton [2005] show that this model predicts that the rise of large particles

eventually leads to a surface layer of pure large particles, separated from pure small

particles beneath by a sharp interface (a hyperbolic shock in particle number density).

When combined with a shearing flow in which material at the surface moves faster than

that at the base, this layered structure leads to enhanced transport of large material

towards the front of the flow. Gray and Ancey [2009] consider the implications of this

transport on the distribution of large and small particles in a two-dimensional granular

avalanche. They show that the segregation model of predicts an accumulation of large

particles at the flow front, which is separated from the flow behind by a lens-shaped region

of mixed large and small particles known as a breaking size-segregation wave [Thornton

and Gray , 2008]. The segregation occurring within the breaking size-segregation wave

causes a recirculating region of large particles in the flow head, while small particles

segregate downwards and are transported away from the front.

In real granular flows, large and small particles are rarely separated by a sharp interface

owing to diffusive remixing, which acts to smooth the interface. This effect was added

to the segregation model by Gray and Chugunov [2006]. While for simplicity we present

the results below without diffusive remixing, the qualitative results are unchanged by the

addition of small amounts of diffusion.
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To close the model, the bulk velocity field and segregation rate within the flume runout

are required; the bulk velocity field u, with a vertical velocity profile corresponding to

α = 0.5, and a typical segregation rate of 0.035 m s−1 are inferred in sections 4.2 and 6

respectively.

We consider in particular the solution in the centre plane y = 0, indicated by black

particle paths in figure 12. On this plane the transverse velocity v is zero, which means

that y-derivatives of φ no longer appear in (16). The solution for φ on y = 0 therefore

uncouples from the solution for y 6= 0, and (16) reduces to an equation in two spatial

variables:

∂φ

∂t
+

∂

∂ξ
(uφ) +

∂

∂z
(φ [w − q(1− φ)]) = −φ∂v

∂y
. (18)

where u, w, q and ∂v/∂y are prescribed by the velocity field. The term on the right-

hand side represents the flux of particles away from the flow centreline by the transverse

velocity strain ∂v/∂y. At the flow surface z = h and base z = 0, the boundary condition

on φ is that no flux of particles occurs across the flow boundary, which when no diffusive

remixing occurs, implies that φ = 0 or φ = 1 [Gray and Chugunov , 2006, equation 2.24].

Far upstream of the front we assume that particles in the flow have segregated to form a

layer of coarse material (taken to be 5 cm thick) on top of a layer of fine material.

Figure 18 shows the steady solution of the segregation equation (16) on the centre plane

of the debris flow. In figure 18(a) the concentration φs is shown, with coarse-particle-

enriched regions indicated by dark shading. The model predicts a pure coarse-particle

layer on the surface of the runout, which ‘wraps around’ the advancing flow front and

creates a coarse-particle region at the base of the flow which extends ∼0.8 m behind

the front. In the interior of the flow, a roughly elliptical region of mixed coarse and
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fine particles—a breaking size-segregation wave—extends from 0.3 m to 3.7 m behind the

front. The coarse-rich front and surface layer, and breaking size-segregation wave resemble

those found by Gray and Ancey [2009] for a two-dimensional avalanche.

Figure 18(b) shows the model particle paths, which provide an explanation for the

distribution of coarse and fine particles observed in the experiments. As in section 4.2,

vertical shear means that material near the base of the flow moves more slowly than

the advancing front, and so moves backwards in the moving frame. Correspondingly,

material near the surface moves faster than the front and so is transported forwards.

Coarse particles (indicated by black lines) at the flow surface are transported forwards

and descend the rounded front of the flow to reach the base. Here they are overpassed

and are transported back away from the front, forming the coarse-particle layer at the

flow base. As these coarse particles begin to re-segregate up through the flow, material

at the flow base transitions from coarse-enriched near the front to coarse-depleted farther

upstream. As the rising coarse particles reach the upper part of the flow, they are again

transported towards the flow front, but their segregation is stopped before they reach the

flow surface by the coarse layer of particles occupying the top ∼5 cm of the flow. The

coarse-enriched surface layer effectively acts as a lid, preventing further particles from

segregating.

We consider the particle size-distributions measured on the centre plane of the August

27th deposit, and compare these to the coarse and fine particle concentrations predicted

by the model and shown in figure 18(a). A direct comparison between these predictions

and the observed deposit cannot be made, since the model predicts particle concentrations

not in the deposit but in the steady-state flow regime. The particle-size distribution in
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the deposit will correspond to that in the flow only if the flow ceased motion everywhere

instantaneously, ‘freezing’ the size distribution into the deposit. In the central channel,

deposition at the flow surface occurred rapidly across the streamwise length of the runout

(figure 4c), but it is quite possible that progressive vertical aggradation occurred along

the centreline in the latter stages of the runout. As a consequence, features near the flow

base that were deposited before the runout ceased will be observed farther upstream in

the deposit than in the steady-state flow prediction.

Figure 19 shows the relative particle abundance plots for sites along the central axis of

the deposit. At sites 31 and 32, 1.25 m and 0.55 m upstream of the deposit termination,

coarse material is enriched both at the surface and base of the deposit, with no evidence

of such enrichment at samples taken from the middle of the deposit. This pattern is con-

sistent with the surface and basal layers of coarse enrichment predicted by the segregation

model at ξ = −0.55 m and ξ = −1.25 m (figure 18a). At site 32, 0.55 m upstream from

the deposit termination, there is a strong contrast between coarse-enriched top and bot-

tom samples and the middle sample which shows no such enrichment, despite the deposit

thickness being only 15 cm. This evidence implies that the thickness of the coarse-enriched

layer is no larger than 5 cm, or approximately three coarse-particle diameters.

In contrast to the surface samples at sites 31 and 32 (≤ 1.25 m upstream of the deposit

termination), the surface samples at sites 24, 27 and 30 (8–2.5 m from the termination)

indicate lesser or no coarse enrichment. After the flow diverter was brought down, the final

surface particles to pass under it reached x = 7.5 m on the deposit axis, approximately

2.5 m upstream of the deposit termination. The coarse-depleted material at the deposit

surface upstream of this at locations 24, 27 and 30 therefore represents a combination of
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material beneath the flow surface which was revealed when the flow continued to shear

down-stream following the deployment of the flow diverter, and of debris which encroached

under the diverter itself. The top samples at sites 31 and 32 indicate the composition of

the flow surface prior to the application of the diverter, and their strong coarse enrichment

is consistent with a coarse layer covering the flow surface during the runout.

At the base of the deposit, coarse particles are enriched at samples 31–32, within

2.5 m from the deposit termination, and coarse-depleted farther upstream. The most

strongly enriched base sample is the farthest-downstream at site 32, which reflects the

re-segregation of the basal coarse-particle layer up through the flow as material at the

base travels away from the front. By 4 m upstream of the front, at site 27, segregation

lifted coarse particles completely out of the basal layer, which is not coarse-enriched.

The path of the coarse particles forming a basal layer at the front of the flow was

measured directly in the experimental debris flows with the large tracer pebbles, which

were representative coarse particles introduced into the flow at the base of the flow front.

The observed rise of these pebbles to a maximum height of 5–10 cm below the deposit

surface is consistent with the upward movement of coarse particles in figure 18(b), with

the halting of segregation by the overlying coarse-particle layer approximately 5 cm below

the flow surface.

7.1. Discussion: coarse-particle mass balance

In the three-dimensional debris-flow velocity field calculated in section 4.2, the mass

fluxes entering and leaving the flow head were equal, due to the flow being incompressible

and steady in the moving frame. The segregation model captures an important additional

characteristic of the debris-flow runout: that the fluxes of both coarse or fine particles
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entering a region must each be balanced by a corresponding flux of coarse or fine particles

leaving that region. Figure 18(b) shows that along the centre-plane, upstream of the

flow head, the flow has three distinct layers: at the surface, coarse particles are advected

towards the flow front; beneath these, fine particles are advected towards the flow front;

and at the flow base, fine particles are advected away from the flow front. In the centre-

plane the fluxes in these three layers result in a net flux of material towards the flow front,

which is removed from the centre-plane by the transverse flux −φ∂v/∂y. These fluxes can

be calculated from the solution of the segregation equations plotted in figure 18. Of the

fine material transported towards the front in the middle of the flow centre-plane, 68%

descends to the base of the flow and flows away from the head, following the dashed white

lines in figure 18(b). The remainder of the fine material, and all of the coarse surface

material transported to the flow front are removed from the centre-plane by transverse

strain of the flow velocity field. The composition of material leaving the centre-plane

through transverse shear is 78% coarse. This percentage represents a substantial coarse

enrichment from the inflow flux, which is 28% coarse. In summary, the model shows that

of the material transported into the flow head, fine particles mostly leave the head at

the base of the central channel, whereas coarse particles are transported outwards in a

transverse direction.

If the particle fluxes into and out of a flow region do not balance, a steady solution to

the segregation equation cannot exist, and the volume fraction of coarse and fine material

within the flow evolves with time. This unsteady state occurs if the inflow flux of particles

is sufficiently coarse-enriched that the flux of coarse particles entering the flow head is

greater than that which can leave the head through transverse motion. In this situation,
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the segregation equation predicts that the flow head is composed of pure coarse particles,

with the downstream length of the coarse-particle head growing in time. This solution

neglects the feedback of such a coarse-particle-enriched head on the bulk velocity field; in

natural debris flows, the growing resistance to flow of the coarse-enriched head is likely to

slow and block the flow behind [Iverson, 1997; Major and Iverson, 1999]. This blockage

is likely to either halt the flow, or to cause a breakout of the channelised flow through

existing emplaced levees, or the splitting of a single leveed channel into two. The formation

of fingered deposits with a lobe-and-cleft morphology, as compared to elongated leveed

channel deposits, may therefore indicate a greater flux of coarse levee-forming clasts to

the flow front.

The formation of either a steady or a growing coarse-particle head has also been observed

in solutions of the segregation model in two-dimensional avalanches [Gray and Ancey ,

2009]. The avalanches studied by Gray and Ancey are similar to those considered here in

that they have a rounded flow front, are steady in a frame moving with the propagation

speed of the front, and have vertical shear which leads to the enhanced transport of a

coarse surface-layer towards the flow front. However in a two-dimensional avalanche,

the flow considered by [Gray and Ancey , 2009] is uniform in the transverse direction,

implying that there is no transverse flux of material out of the flow head (that is, that

∂v/∂y = 0). Gray and Ancey [2009] find that the enhanced transport of coarse material

in the surface-layer to the flow front, without a corresponding flux of coarse particles

away from the front, results in a growing coarse-particle head at the flow front. This

mechanism for the formation of coarse-particle fronts is purely kinematic, and is captured

by the depth-integrated size segregation model of Gray and Kokelaar [2010].
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In the small-scale two-dimensional avalanche experiments of Gray and Ancey [2009], a

coarse-particle layer is deposited at the flow base. Motivated by this, Gray and Ancey

added deposition to the model and demonstrated that the resulting flux of (deposited)

coarse particles out of the head at the base of the flow allows a steady solution to be

found, analogous to the way in which the transverse flux of coarse material out of the

head allows a steady solution in a three-dimensional avalanche. The large-scale debris-

flow experiments described in this paper indicate that in an unconfined debris-flow, the

primary deposition of coarse particles is in lateral levees, rather than at the flow base.

The solutions to the segregation equation in a shearing granular avalanche, both in the

two-dimensional depositing flow of Gray and Ancey [2009] and in the centre-plane of the

three-dimensional solution presented here, contain a breaking size-segregation wave close

to the flow front. Gray and Ancey [2009] show that in two dimensions, large particles

recirculate within this breaking size-segregation wave, following closed streamlines. In the

three-dimensional velocity field, figure 18(b) indicates that the coarse particles instead

spiral inwards to a stagnation point within the breaking size-segregation wave where

coarse particles on the centreline become stationary in the moving frame. In this region,

the outward-directed transverse velocity components advect material which is not exactly

on the flow centre-plane out towards the flow margins.

8. Conclusion

Coarse-particle-rich levees formed in our debris-flow experiments by rapid progressive

streamwise accretion. A model for their formation includes both upward segregation

of coarse particles and shear within the flow, which cause enhanced transport of coarse
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material to the flow front. A diverging transverse velocity field in the head then transports

this coarse material to the flow margins, where it deposits as a levee.

Each stage in the levee-formation process was directly observed in our experiments.

Size-segregation was measured using coarse tracer particles, which rise at a typical rate

of 3.5 cm s−1, about 1% of the typical speed of the channelised flow, ∼4 m s−1. This

segregation rate is sufficient, even within the short duration of the experimental flows,

to result in a substantial coarse enrichment of the upper part of the flow. Vertical shear

within the flow was inferred from measurements of the surface velocity field and front

propagation rate, and supported by direct observations of surface particles being advected

to the advancing flow margin and transferred to the base of the flow. The surface velocity

field (figure 9) demonstrates that the lateral transport of material from the central channel

into the levees occurs entirely within the flow head.

Figure 20 shows a sketch of a typical trajectory of a coarse particle through the flow,

summarising the mechanisms present in the formation of coarse-particle-rich levees. Parti-

cle size-segregation causes a coarse particle in the channel to rise to near the flow surface,

where vertical shear transports it to the flow head. If the particle is sufficiently close

to the flow axis (as shown in figure 8) it reaches the flow front, where it is transported

to the base of the flow and overpassed. The particle again segregates upwards until it

reaches the coarse-enriched layer covering the flow surface, then recirculates within the

flow head. During recirculation, material is advected away from the flow centre-plane by

the transverse component of the velocity. In the moving frame, coarse particles therefore

follow helical spiral trajectories within the flow head and move progressively farther to-

wards the flow margins; this path is sketched in figure 20. Near the flow margins, particles
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throughout the depth of the flow move more slowly than the flow front (as indicated by

the green shading in figure 12). When a coarse particle is advected into this region, it

ceases recirculation and is transported back away from the flow front. As it moves out

of the flow head, the particle reaches the deposition surface of the progressively-accreting

levee and comes to rest.

The mechanisms governing this motion of the coarse particles through the flow head

to form coarse-enriched levees have been demonstrated in debris flow experiments, but

are generic to a wide variety of geophysical and grain flows. The kinematic nature of the

model presented here means that it depends only on particle size-segregation and the flow

velocity field. It therefore has the potential to describe the formation of coarse-particle

levees in debris flows, pyroclastic density currents [Branney and Kokelaar , 2002; Félix

and Thomas , 2004] and snow avalanches [Gray and Kokelaar , 2010], despite the wide

variety of mechanisms that govern the complex and spatially-varying rheology of these

flows [Iverson and Vallance, 2001].
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Figure 1. The USGS debris-flow flume, near Blue River,
Oregon. This photo shows a debris flow ∼ 14 s after it
has been released from the hopper (top centre). The head
of the debris-flow has reached the runout pad at the bot-
tom of the flume, and has coloured tracers on its surface
which were dropped onto it as the flow exited the flume
mouth. A wooden barricade, held above the flume mouth
with the back-hoe of a tractor, allows the initial stages
of the debris flow runout to pass beneath it unimpeded.
The barricade is dropped across the flume mouth once
the bulk of the flow has passed, diverting the watery flow
‘tail’.
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Figure 2. Longitudinal profile of the USGS debris-flow flume and runout pad, showing the location of
the flow height, normal stress and pore pressure sensors, 32 m, 66 m and 80 m below the headgates. The
left inset shows the shape of the initial 10 m3 charge of sediment. The right inset is a photograph of the
flume mouth area, showing the orientation of the xyz coordinate system. The origin O is located at on
the surface of the runout pad, at the centre of the flume mouth.
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Figure 3. Flow depth, basal normal stress and basal pore pressure measurements for the experiments
of 25th August (black) and 27th August (red). Measurements are taken at three locations: 32 m, 66 m
and 80 m downslope of the headgates.
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Figure 4. (a) Overhead view of the 25th August debris-flow runout, 3.5 s after it first reached the flume
mouth. The main features are the flow head, which forms the distal 3.5 m of the flow, and a channelised
flow bounded by stationary levees that extend back to the flume. The flow head propagates at a steady
velocity of ∼ 2.0 m s−1, progressively extending the levees and the length of the channelised flow. (b)
Downstream location of the flow front (solid line) and maximum downstream extents of left and right
levees (dashed and dot-dashed lines respectively), as functions of time. (c) Timing of surface deposition,
indicated by colour. Contours show deposit thickness, with 5 cm spacing.
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indicates the maximum downstream extent of the deposited stationary levee. The vertical scale of each
photograph covers ∼ 60 cm.
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Figure 6. Overhead views of surface trajectories of particles in the August 25th experiment. Between
each frame (a–d), the flow advances by 2 m. Moving particles are marked with open circles, and deposited
particles with filled circles. In (a), particles marked 1 are farthest downstream in the flow, followed by
particles 2–5 in sequence (3–5 out of frame). As the flow progresses, those particles closest to the flow
front are advected outwards and deposited (b–c). The sequence of particles when deposited (d), is
reversed from that in the flow, with particles marked 5 farthest downstream. An animated version of
this figure is shown in movie 3.



JOHNSON ET AL.: LEVEE FORMATION IN GEOPHYSICAL MASS FLOWS 52

Figure 7. Oblique ground-level photograph of the Au-
gust 25th experimental deposit, looking upslope from the
deposit termination. Tracer cubes deposited on the sur-
face lie on or near the levee walls at the flow margins,
rather than in the central channel. The tracer cubes
are deposited in coloured bands, from orange cubes near
the deposit termination (foreground), then yellow, then
green, then pink cubes near the flume mouth. This pat-
tern represents a reversal of the order in which the cubes
were seeded onto the flow surface; the last cubes to be
seeded onto the flow (orange), were deposited furthest
from the flume mouth.
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Figure 8. Surface and burial trajectories of particles in
the August 25th experiment. Particles close to the flow
axis, marked with crosses (a), are advected over the flow
front and become buried (b). Particles farther away from
the flow axis, marked with dots, remain on the surface
and are deposited on the surface of the levees.
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Figure 9. Surface velocities in the experiment of August 25th, 3.5 s after the flow reached the flume
mouth (corresponding to the snapshot shown in figure 4a). In (a) the surface velocity field is shown in
a stationary frame. In (b) the same velocity field is shown, but in a frame moving at the speed of the
head, at 2.0 m s−1. In this frame the velocity field is steady. Material that is effectively stationary, taken
to be that moving at less than 4 cm s−1, is indicated with darker shading in (a) and with red arrows in
(b). The white dashed line in (b) demarcates particles near the centre of the flow which reach the flow
boundary and are buried from those which remain on the surface and are advected onto the surface of
the levees.
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Figure 11. Velocity profiles and resulting surface velocity fields in the debris-flow head, with the flow
velocity field given by (11) and (14). The vertical velocity profiles (a,d,g), surface velocity fields in the
stationary frame (b,e,h) and streamlines in a frame moving with the flow front (c,f,i) are each shown
for three different velocity profiles. The top row (a,b,c) shows plug-flow (α = 1), the middle row (d,e,f )
simple shear (α = 0), and the bottom row (g,h,i) shows a combination of shear and basal slip that is
inferred from the debris-flow experiments, where α = 0.5. The surface velocities in the stationary frame
are identical for all vertical velocity profiles, up to a scaling factor. The surface streamlines in the moving
frame that reach the front of the flow are shaded red; the proportion of material on the flow surface that
reaches the flow front and is overpassed is strongly dependent on the extent of internal shear.
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Figure 12. Three-dimensional particle paths within the flow head, with the flow velocity field given
by (11) and (14). Pink shading indicates the regions at the back of the head where material is moving
downstream more quickly than (and therefore towards) the flow front. Green shading indicates material
is moving downstream more slowly than (and therefore away from) the flow front. In plug-flow (a),
all streamlines coincide with the depth-integrated streamlines, and material in the head is transported
laterally from the central channel to the flow margins. In the case of simple-shear (b), material from the
top half of the flow, which is moving faster than the rate of propagation of the flow head, is transferred to
the base of the flow as it passes over the flow front, with very little transverse motion. At the intermediate
velocity profile of α = 0.5 present in the flume flow (c), material travelling through the flow head is both
transported laterally within the flow head, and to the base of the flow as it passes over the flow front.
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Figure 13. (a) Mean grain-size distribution of initial
charge used in the August 25th experiment. (b) Mean
grain-size distribution of initial charge used in the Au-
gust 27th experiment. (c) Relative abundance plot show-
ing the grain-size distribution of the August 27th initial
charge normalised against that of the August 25th exper-
iment. The axes for this histogram are the same as those
used in the miniature plots in Figures 14 and 15, where
histogram bars indicate enrichment (values > 1) and de-
pletion (values < 1) of material in each grain-size class
relative to the particle-size distribution of the relevant
initial charge.
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Figure 14. Relative abundance plots of deposit granulometry in the 25th August experiment. Axes for
the plots are as for figure 13(c): coarse material is to the right and fine material to the left. Contours
show deposit thickness, with 5 cm spacing; the thicker line indicates the deposit margin.
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Figure 15. Relative abundance plots of deposit granulometry in the 27th August experiment. Axes for
the plots are as for figure 13(c): coarse material is to the right and fine material to the left. Contours
show deposit thickness, with 5 cm spacing; the thicker line indicates the deposit margin.
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Figure 16. Positions of tracer pebbles in the August 27th deposit. Pebbles were initially distributed
uniformly in a rectangular area (shaded blue) 2 m downstream of the flume exit. Pebbles are coloured
according to their height in the deposit; no heights were recorded for stones plotted in black. In the
overhead view (top), contours of deposit thickness are every 2 cm, with heavy-line contours every 10 cm.
The flow centreline is indicated by the dot-dashed line. In the side view (bottom), the depth of the
deposit along the centreline is indicated by the solid line. Note the 4.6× vertical exaggeration.
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Figure 17. Photograph of the 27th August deposit termination. Approximately 5 cm of surface material
has been removed from a sector of the deposit, uncovering two white tracer stones. The surface material
removed, like that visible behind the excavated sector, is strongly coarse-enriched. White lines on the
undisturbed deposit surface are topographic contours, determined by laser leveling and applied with
paste.
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Figure 18. Solution of the segregation equation (16) in a velocity field resembling the central plane
of the debris-flow runout. (a) shows small-particle concentration φ; (b) shows paths of coarse particles
(black lines) and fine particles (dashed white lines).
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termination at x = 9.7 m. Axes for the plots are as for figure 13(c).
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Figure 20. A cutaway sketch showing a moving-frame view of the coarse-enriched regions and the three-
dimensional path of a segregating coarse particle through the debris-flow head. Coarse particles with
light shading are those moving downstream faster than (and therefore towards) the flow front. Coarse
particles with darker shading are stationary or moving slower than the flow front; these include those
in the levees and at near the base of the flow. The path of a typical coarse particle in the surface layer
near the centre of the flow is shown. The particle is transported into the flow head and is overpassed
when it reaches the flow boundary. Now at the base of the flow, it moves more slowly than the advancing
flow front, and begins to segregate upwards as part of a breaking size-segregation wave. The particle
may recirculate a number of times within the flow head, but is continually advected away from the flow
centreline, towards the sides of the flow. The particle deposits when it becomes part of the progressively
accreting levees.
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A jet of granular material impinging on an inclined plane produces a diverse range of

flows, from steady hydraulic jumps to periodic avalanches, self-channelised flows and pile

collapse behaviour. We describe the various flow regimes and study in detail a steady-

state flow, in which the jet generates a closed teardrop-shaped hydraulic jump on the

plane, enclosing a region of fast-moving radial flow. On shallower slopes, a second steady

regime exists in which the shock is not teardrop-shaped, but exhibits a more complex

‘blunted’ shape with a steadily breaking wave. We explain these regimes by consideration

of the supercritical or subcritical nature of the flow surrounding the shock. A model is

developed in which the impact of the jet on the inclined plane is treated as an inviscid

flow, which is then coupled to a depth-integrated model for the resulting thin granular

avalanche on the inclined plane. Numerical simulations produce a flow regime diagram

strikingly similar to that obtained in experiments, with the model correctly reproducing

the regimes and their dependence on the jet velocity and slope angle. The size and shape

of the steady experimental shocks and the location of sub- and super-critical flow regions

are also both accurately predicted. We find that the physics underlying the rapid flow

inside the shock is dominated by depth-averaged mass and momentum transport, with

granular friction, pressure gradients and three-dimensional aspects of the flow having
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comparatively little effect. Further downstream the flow is governed by a friction-gravity

balance, and some flow features, such as a persistent indentation in the free surface, are

not reproduced in the numerical solutions. On planes inclined at a shallow angle, the effect

of stationary granular material becomes important in the flow evolution, and oscillatory

and more general time-dependent flows are observed. The hysteretic transition between

static and dynamic friction leads to two phenomena observed in the flows: unsteady

avalanching behaviour, and the feedback from static grains on the flowing region, leading

to leveed, self-channelised flows.

1. Introduction

It is a familiar observation that a jet of fluid impinging normally on a horizontal plane

generates a thin, circular region of rapid radial flow surrounded by a stationary hydraulic

jump, beyond which lies a thicker, slower moving fluid layer. The first analysis of this

situation, in the case of inviscid fluid, is due to Lord Rayleigh (1914). The problem has

since been extensively studied, and has been generalised to cover various fluid-dynamical

phenomena such as viscosity (Watson 1964), internal interfaces (Thorpe & Kavcic 2008),

non-Newtonian rheology (Zhao & Khayat 2008) and surface tension (Bush & Aristoff

2003). We examine in this paper the related situation of a vertical jet of granular ma-

terial impinging on an inclined plane, shown schematically in figure 1. There are three

key differences from Rayleigh’s analysis: the flow of grains rather than of fluid, the im-

pingement of the jet at an oblique angle, and the effect of gravity on the flow down the

inclined plane.

Several related problems of jet impingement and subsequent flow have previously been

considered. The oblique impact of a fluid jet on a horizontal surface is described by
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Figure 1. Diagram of the experimental apparatus. The granular jet impinges on the inclined
plane, spreading into a region of thin, fast flow (A). The granular material then passes through
a jump, becoming thicker and slower (B), and flows down the plane, which is inclined at an
angle ζ to the horizontal.

Kate, Das & Chakraborty (2007), who observe the circular hydraulic jump of Rayleigh

in flows generated by a vertical fluid jet, and an elliptical hydraulic jump for jets with

impingement angles within 65◦ from normal. For angles greater than this, when the

jet impinges near-tangentially, closed hydraulic jumps with sharp corners are observed.

These are attributed to two phenomena: the interaction of the jet with the hydraulic

jump and, by analogy with compression shocks of gas dynamics, the presence of Mach

stems. Edwards et al. (2008) consider theoretically the normal impingement of a fluid

jet on a plane inclined at an angle. In this situation, the predicted hydraulic jump is
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not closed, but instead forms an open curve resembling a parabola. The flow is similar

to the sheet of flow generated by two symmetric impinging jets (Taylor 1960; Bush &

Hasha 2004), in that the more slowly-moving fluid outside of the shock forms a tube-like

structure, which is small in width compared to the size of the enclosed thin film. This

separation of scales is exploited to model the outer region as a ‘mass tube’, a line initially

of unknown position, which carries mass and momentum fluxes. Coupling this to analytic

solutions of a shallow-water model for the inner fast-moving region allows the location of

the shock to be calculated. In the granular case, the problem of a jet of sand impinging

normally on a horizontal plane is examined experimentally by Boudet et al. (2007). The

behaviour found is similar to that in the fluid case, in that the granular jet transitions to

a thin, fast, radial flow on impact with the plane, which is bounded by a annular jump

in the layer thickness. In contrast to the fluid behaviour, the basal friction between the

granular material and the horizontal plane slows the radial flow, and leads to the material

outside the jump becoming stationary. The jump then propagates inwards, towards the

point of jet impact.

Interest in the granular problem, and in granular flows in general, stems from the

widespread use of granular materials, and the considerable problems encountered in un-

derstanding their behaviour. The flow of granular materials is central to the modelling

of debris-flows (Iverson 1997) and snow avalanches (Gruber & Bartelt 2007; Cui, Gray

& Jóhannesson 2007) in geophysics, to problems of transport, mixing and crushing of

grains and powders in industry, and to problems of soil stability and mechanics (Mitchell

& Soga 2005) in civil engineering. Granular materials exhibit a wide range of behaviour,

including solid-like, liquid-like and gas-like states, depending on factors such as grain

density, granular temperature and shear stress (Rajchenbach 2000; Liu & Nagel 1998).
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2. Governing equations of shallow granular flows

Granular flows of small aspect ratio (those in which the flow depth is much less than

its horizontal extent) are common in free-surface flows on an inclined surface, whether

at laboratory or geophysical scales. Such flows have been successfully modelled using

shallow-layer models (Grigoryan et al. 1967; Eglit 1983; Savage & Hutter 1989; Gray,

Wieland & Hutter 1999). A major difference between these depth-averaged models and

fluid hydraulic or shallow-water systems is in the form of friction present at the base of

the granular flow, either a Coulomb friction for smooth slopes (Savage & Hutter 1989)

or a more complex friction model (that of Pouliquen & Forterre 2002, for example) for

dry granular flows on rough slopes. Such friction laws, in contrast to viscous or turbulent

friction modelling in shallow fluid layers, have the ability to hold a pile of material

stationary on an inclined surface.

In common with the fluid-dynamical case, the hyperbolic equations of shallow-layer

granular flow predict the formation of shocks, which correspond to granular jumps, the

granular analogue of hydraulic jumps. These have been observed and studied in dense

granular avalanches in chutes (Savage 1979; Brennen, Sieck & Paslaski 1983) and in

flowing surface layers (Gray & Hutter 1997). More recently, two-dimensional oblique

shocks have been observed in granular avalanches (Gray, Tai & Noelle 2003), which

are quantitatively predicted by a similar analysis to that of hydraulic theory (Rouse

1949; Hákonardóttir & Hogg 2005; Gray & Cui 2007; Vreman et al. 2007). Density, or

compression shocks have also been observed in granular materials, both in the regime of

a granular gas (Rericha et al. 2002), where they are analogous to the shocks observed

in compressible gas dynamics, and in dense avalanche flows (Eglit, Kulibaba & Naaim

2007).

In a shallow-avalanche model, the flow is assumed to be incompressible, and is repre-
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sented in terms of its depth-averaged velocity u, and height h. The governing equations

are those of conservation of mass and momentum. Our coordinate system is defined

such that the x-axis is oriented in the down-slope direction, the y-axis in the cross-

slope direction and the z-axis is the upward pointing normal to the plane, completing a

right-handed Cartesian coordinate system (figure 1) with the origin at the point of jet

impingement. The components of the velocity u in the x and y directions are denoted u

and v respectively.

We present the equations in the non-dimensional form of Savage & Hutter (1989). Di-

mensional variables, denoted by a tilde, are related to their non-dimensional counterparts

by the equations

h̃ = Hh, (x̃, ỹ) = L(x, y), (ũ, ṽ) =
√
Lg (u, v), t̃ =

√
L/g t , (2.1)

where H and L are typical length-scales of the flow thickness and horizontal extent

respectively. Defining the small aspect ratio ε = H/L, the non-dimensional equations for

conservation of mass, and momentum in the x and y directions are then (Gray et al.

2003)

∂h

∂t
+

∂

∂x
(hu) +

∂

∂y
(hv) = 0 , (2.2)

∂

∂t
(hu) +

∂

∂x
(hu2) +

∂

∂y
(huv) +

∂

∂x

(
1
2
εh2 cos ζ

)
= hsx , (2.3)

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y
(hv2) +

∂

∂y

(
1
2
εh2 cos ζ

)
= hsy . (2.4)

The source terms

sx = −µ u

|u| cos ζ + sin ζ , (2.5)

sy = −µ v

|u| cos ζ , (2.6)
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encompass both the effects of friction between the material and the inclined plane

(through the basal friction coefficient µ), and the component of gravity in the x-direction.

Note that if we define ĥ = εh then (2.2)–(2.6) can be rewritten in terms of the vari-

ables (ĥ,u) in a form that is completely independent of ε. The parameter ε may therefore

be chosen arbitrarily. Here however we use the scalings (2.1) and retain ε in the equa-

tions to emphasise that the dominant balance in the avalanche equations is between the

acceleration and source terms.

A Froude number

Fr =
|u|√
hε cos ζ

(2.7)

is defined as the ratio of flow speed to the speed of inertia-gravity waves. In steady flows,

the Froude number relates directly to the way information is propagated by these waves.

Information, in the form of small disturbances, is able to propagate in all directions in

subcritical regions, where Fr < 1. In supercritical regions, where Fr > 1, information is

unable to propagate against the direction of the flow (Courant & Hilbert 1962; Weiyan

1992). In supercritical flows the hyperbolic structure of the equations allows for disconti-

nuities in the solution, or shocks, at which the assumption of smoothness implicit in the

formulation of (2.2–2.4) is invalid. A relationship between the solution values on either

side of the shock is instead given by the jump conditions

Jh(u · n− vn)K = 0 , (2.8)

Jhu(u · n− vn) + 1
2εh

2 cos ζnK = 0 , (2.9)

derived from the mass and momentum conservation equations in integral form. The jump

bracket J·K denotes the change in continuum variables over a shock, n is a vector normal

to the shock and vn is the shock speed.
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3. Experimental observations

Our experimental setup is shown in figure 1. A funnel with a circular mouth of diameter

D, in the range 8–15 mm, is held at a distance Hf above an inclined plane. Granular

material flowing from the funnel impinges on the inclined plane and generates a thin free-

surface flow, or avalanche, on the plane. The surface of the plane is made of untreated

hardboard, which is rough at scales below approximately 100 µm. The funnel is fed from

another hopper with larger flow rate to prevent variations in the supplied mass flux

caused by a varying level of material in the lower funnel. The variation in mass flux

delivered by the funnels, measured across 0.6 s samples, is less than 1.6%. We observe

no long-term variability in the flow (caused, for example, by changing environmental

conditions) in this setup.

The granular material used in the experiments presented in this paper is soft masonry

sand, sieved to a diameter d 6 600 µm. The experiments were also performed with glass

‘deco’ beads of two sizes, 75 6 d 6 150 µm and 500 6 d 6 750 µm, and with nonpareil

sugar grains with d ≈ 1000 µm. The flow on the plane is qualitatively independent of the

type of granular material, exhibiting the same regimes of flow for all the materials tried.

The flow in the region where the jet impacts the plane, however, is sensitive to particle

properties. A small proportion of the granular material falling from the funnel does not

transition to flow over the inclined plane at the point of impingement, but instead bounces

off the plane, forming a sparse cloud of fast-moving grains. This proportion increases with

funnel height (a behaviour attributable to the decreasing density of the jet as it falls)

and becomes the dominant behaviour of the flow for sufficiently large Hf . For glass beads

and sugar grains, a substantial proportion of the jet becomes airborne when Hf & 15

cm (for D = 15 mm), a sufficiently low height that flows can be observed only in a very

restricted parameter space. The corresponding maximum Hf for sand is much higher,
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approximately 50 cm. Results are therefore presented only for sand in this paper. The

maximum funnel height is also limited by a clustering instability in falling granular jets,

resembling that of the Rayleigh-Plateau instability for fluids (Royer et al. 2009). The

instability has its onset at a distance greater than 50 cm from the funnel for D > 8 mm,

and is therefore not a significant source of mass flux variation in the current experiment.

For the range of funnel widths used, the requirement that the flow transitions smoothly

to a flow over the inclined plane restricts the maximum Hf to a lower level than that

enforced by the onset of the jet instability.

We consider primarily the flow after its impact with the plane. Depending on the slope

angle, funnel height and funnel width, this flow exhibits a wide range of behaviours,

resulting from the interaction between the momentum imparted to the flow by the falling

granular material, friction between the plane and the granular material, and gravity.

3.1. Steady teardrop-shaped granular jumps

In the first flow regime, the falling jet generates a region of thin, fast-moving flow, which

meets slower-moving material surrounding it at a granular jump. Boudet et al. (2007)

demonstrated that on a horizontal plane, material behind this shock is stationary and the

shock propagates inwards toward the point of impingement. However, for planes inclined

at a sufficiently steep angle, the material flows on both sides of the granular jump, leading

to a stationary granular jump surrounded by a steady flow.

Such a steady-state flow, for ζ = 26.7◦, Hf = 30 cm is shown in figure 2. In the region

of fast, thin supercritical flow within the shock, the flow velocity is predominantly radial,

away from the point of impingement. Across the closed granular jump surrounding this

region, the flow height rapidly increases and flow velocity normal to the shock rapidly

decreases. In the region surrounding and downstream of the shock, grains flow more

slowly, and largely in the downslope direction. In the flow shown in figure 2 the hydraulic
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Figure 2. A teardrop-shaped shock in sand for ζ = 26.7◦, Hf = 30 cm, D = 15mm. Grid
squares are at 2 cm intervals, in this and subsequent figures. The shutter speed is 1/80 s.
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jump is teardrop-shaped, with the shock displaying a single vertex directly downslope of

the point of impingement.

The motion blur in still photographs of the experiment taken over a range of shutter

speeds allows an estimation of surface flow velocities to be made, with an accuracy of

about ±10%. The thin radial flow surrounding the point of impingement has a speed

of approximately 0.99 ms−1. Substantial velocity variations exist in the thicker flow sur-

rounding the jump, with the fastest velocities, approximately 0.4 ms−1 being observed

close to the jump, where the flow is almost parallel to the line of the shock. This forms

two fast-moving streams of material in the thicker flow, which meet at the vertex of the

teardrop-shaped shock. At this oblique collision of the two streams, material is forced

upwards into a narrow ‘spout’ normal to the inclined plane; this transfer of momen-

tum to an orthogonal plane resembles that observed in the fluid chains generated by

impinging fluid jets (Bush & Hasha 2004) or to the jets observed in shallow fluid flows

at high Froude number (Edwards et al. 2008). A stream of fast-moving flow continues

downstream of this, along the centreline of the flow. Far downstream, the centreline flow

speed is approximately 0.11 ms−1.

The thickness of the flow is of order 1 mm inside the shock, and 1 cm outside of it. This

leads to Froude numbers of approximately 10 inside the shock, 1.4 in the fast-moving

streams outside the shock, and 0.3 in the surrounding flow; the flow is therefore super-

critical in a region including the shock, and transitions to subcritical flow downstream.

Figure 3 shows a time-sequence of the formation of the teardrop-shaped shock. The

first material to strike the plane spreads into a thin radially-flowing layer (figure 3a,b).

This layer is slowed by friction, and, upslope of the point of impingement, by gravity.

The upslope flow becomes stationary approximately 0.25 s after the jet impact (figure

3c); this forms a shock in flow height that propagates inwards and wraps around the
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Figure 3. Time sequence of the formation of a teardrop-shaped shock, for ζ = 26.7◦,
Hf = 30 cm, D = 15 mm. Times after jet impact are: (a) 0.02 s, (b) 0.1 s (c) 0.26 s (d) 0.50 s
(e) 1.0 s (f ) 1.5 s (g) 2.0 s (h) steady-state. A movie showing the time-dependent evolution of
this flow is available with the online version of this paper.

point of impingement (figure 3d–f ) as the amount of granular material outside the shock

increases. Unlike the case of impingement on a horizontal plane, material on both sides

of the shock is flowing. The inward movement of the shocks causes them to collide after

approximately 1.5 seconds, forming a closed shock. The slower material outside the shock

forms a down-slope flow (figure 3g), which reaches a steady state (figure 3h).

In the initial stages of the flow, before the steady state is reached, a thin layer of

stationary grains is deposited on the inclined plane outside the flowing region. These

particles, labelled in figure 2, have no effect on the flowing region: they can be brushed

away without affecting the flow. The interface between flowing and stationary grains
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exhibits small stick-slip fluctuations in all flows. However, in the flows described up to

section 6, these fluctuations have a negligible effect on the steady flow. Observation of

the steady flows for 30 minutes showed continued small fluctuations, but no long-term

evolution of the flowing region.

3.2. Steady blunted jumps

For shallower slope inclination angles, a second steady-state regime exists that displays

the same radial flow inside a closed granular jump as before, but in which the shock is

blunted, as shown in figure 4. The sharp vertex of the teardrop-shaped shock is replaced

by a normal shock which lies across the slope. When the two streams of flow in the

thicker layer of material adjoining the shock reach this normal shock, they are in part

directed toward each other, following the line of the closed shock, and in part detach

from the shock and decelerate rapidly to form part of the down-slope flow. The speed of

flow downstream of the shock is about 0.07 ms−1.

In the centre of the cross-slope jump, a complex three-dimensional interaction between

three flow streams is observed: the material from the inner region, flowing directly down-

stream, encounters both a normal shock and the components of the two streams that

have been diverted toward one another. The flow at the shock overturns, and resembles

a static continuously breaking wave. The overturning of the flow at the shock has some

resemblance to the recirculation observed in two-dimensional propagating granular bores

by Gray et al. (2003). As a result of this interaction between the streams, the downstream

flow is thickest in two broad regions either side of a thin trench along the axis of sym-

metry, a configuration which persists in the flow downstream. For smaller ζ and greater

Hf , the region enclosed by the hydraulic jump becomes wider in the y-direction, and

shorter in the x-direction; in this case, two parallel trenches can be generated, forming a
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Figure 4. A blunted shock in sand, ζ = 25.4◦, Hf = 30 cm, D = 15 mm. The shutter speed is
1/80 s.
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w -shaped indentation in the downslope flow. A movie, available with the online version

of this paper, shows the complex flow in this region.

A phase diagram of the flow regimes for D = 50 mm is shown in figure 5. Teardrop-

shaped shocks (denoted by ×) are observed in all flows where Hf > 10 cm and ζ > 26.5◦;

blunted shocks (denoted by ◦) are observed in a more limited range of slope angles,

24.5◦ . ζ . 26.5◦ and only for Hf > 9 cm. We attribute the different behaviour in the

two regimes to whether the Froude number is greater or less than unity in the material im-

mediately downstream of the radial flow region. This was determined experimentally by

introducing a small disturbance onto the flow, for example with the point of a pin; if the

flow is subcritical, the disturbance propagates in all directions, whereas for supercritical

flow, the disturbance is limited to a wedge downstream of the pin. For teardrop-shaped

shocks, the flow on the downstream side of the shock vertex is supercritical. Here, in-

formation can propagate only downstream, which explains the lack of visible influence

of the shock interaction on the upstream flow, and the consequent sharp vertex. For

blunted shocks, the material becomes subcritical as it passes through the cross-slope sec-

tion of shock. In this subcritical flow, the effect of the collision between the shocks can

propagate upstream, leading to the curved shock observed in experiments. The corre-

spondence of Froude number with the flow regime is consistent with the observation that

teardrop shocks occur at steeper slope inclinations, where the flow on the plane is faster

and thinner (and thus of higher Froude number) than at lower inclinations. The decrease

with increasingHf of the critical slope inclination angle separating teardrop-shaped from

blunted shocks (figure 5) is also consistent with this hypothesis, since the velocity of the

flow at the inflow increases with Hf .
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3.3. Other steady regimes

In addition to the blunted and teardrop-shaped shocks, two further regimes of steady-

state flow exist in which a shock is not present. In the first of these, observed when

Hf . 10 cm, the flow velocity in the region surrounding the impingement point is

still supercritical, but the shocks become sufficiently diffuse (that is, the variation in

flow occurs over a sufficiently large region) that they are indistinguishable from the

surrounding flow. This is consistent with the observation of Gray & Cui (2007) that

shocks in granular materials become diffuse at low supercritical Froude numbers. The

second regime occurs in the range of inclination angles 23◦ . ζ . 24.5◦, when the flow is

sufficiently deep that it is subcritical everywhere. Since supercritical flow is required for

a hyperbolic shock to exist, this flow also displays no shocks. These steady flows without

shocks are denoted by + signs in figure 5. Unsteady flows, observed for ζ . 23◦ and

denoted by �, exhibit a wide range of complex behaviour which is discussed in section

6.

In addition to the hardboard surface of the inclined plane, the experiments were tried

with two other surface types: a smooth perspex sheet, and a sheet of hardboard roughened

by gluing a layer of sand to it. The teardrop-shaped shocks, as well as the steady and

unsteady flows without shocks were observed on all surface types. On the roughened

surface, blunted shocks were observed, with the transition between teardrop and blunted

shock regimes occurring at ζ ≈ 35◦ and unsteady flows observed below approximately

30◦. The increased friction on the roughened slope is responsible for the increase in

slope angle required to balance friction in the steady flow downstream. On the perspex

surface, the transition between teardrop-shaped shocks and unsteady flows occurs over

a narrow range of slope angles close to 22◦, with blunted shocks occurring only in this
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Figure 5. Experimental phase diagram, showing the dependence of flow regime on Hf and
ζ, for D = 15 mm. Teardrop-shaped shocks are indicated by crosses (×), blunted shocks by
circles (◦), and steady flows with no shock by plus signs (+). Unstable time-dependent flows are
represented by squares (�). All flows for ζ & 23◦ are steady.

small region of parameter space. This transition is consistent with a constant Coulomb

friction coefficient for the flow over a smooth surface.

4. Friction law and impingement condition

4.1. Friction law

We seek to model the experimental flows using the shallow-layer avalanche model of (2.2–

2.6). The use of this model is motivated by the shallowness of the flows in question, in

which the aspect ratio of the flow is approximately 1/30. To close the system of equations,

an expression for the basal friction coefficient µ is required. The basal friction was taken

to be a constant by Savage & Hutter (1989) for Coulomb-frictional flows over smooth

surfaces. For such a friction law, steady flows of uniform thickness are possible only

at a single slope angle, when ζ = tan−1 µ. More recently, Pouliquen (1999) performed
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laboratory-scale experiments of flows of glass beads over a roughened bed, and observed

steady uniform flows over a range of slope angles. They demonstrated a minimum height

h̃stop(ζ) at which a steady flowing layer can exist on a slope inclined at an angle ζ,

and found an empirical dependence of the ratio of flow height h̃ to h̃stop on the Froude

number,

Fr =
|u|√
hε cos ζ

= β
h̃

h̃stop(ζ)
, (4.1)

where β = 0.136 is a measured constant for glass beads. In one-dimensional steady

uniform flows, the cross-slope velocity v = 0 and the downslope source term sx = 0,

leading to the relation between the friction coefficient and slope angle

µ = tan ζ . (4.2)

Denoting the inverse of h̃stop(ζ) by ζstop(h̃), the function

µstop(h̃) = tan
(
ζstop(h̃)

)
, (4.3)

leads, through the scaling law (4.1), to an equation for the friction coefficient

µ = tan ζ = µstop(h̃stop(ζ)) = µstop

(
h̃β

Fr

)
. (4.4)

The form of the function µstop is a fit to the experimental measurements of h̃stop(ζ), and

takes the form of a transition between two friction angles ζ1 and ζ2, either

µstop(h′) = tan ζ1 + (tan ζ2 − tan ζ1)
1

1 + h′/L , (4.5)

as in Pouliquen & Forterre (2002), or in the Pouliquen (1999) form,

µstop(h′) = tan ζ1 + (tan ζ2 − tan ζ1) exp(−h′/L) . (4.6)
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The friction angles used here are those measured by Pouliquen & Forterre (2002), ζ1 =

21◦, ζ2 = 30.7◦, ζ3 = 22.2◦. The parameterL, which has the dimensions of length, depends

on the granular material and surface properties of the plane and characterises the depth

of flow over which a transition between the two friction angles ζ1 and ζ2 occurs. The

friction law (4.4) is valid for flows in the steady regime where h̃ > h̃stop, that is, for flows

in which Fr > β.

For stationary material, the basal friction balances the lithostatic pressure and gravi-

tational forces exactly, up to a maximum value corresponding to the coefficient of static

friction µ = µstart(h̃). This is calculated, through (4.2), by measuring the maximum in-

clination angle at which a uniform layer of stationary material starts to move, and takes

the form

µstart(h′) = tan ζ3 + (tan ζ2 − tan ζ1)
1

1 + h′/L . (4.7)

For flows of 0 < Fr < β, we follow the method of Pouliquen & Forterre (2002) in

interpolating between the static and steady-flow friction coefficients with a power function

µ =
(

Fr
β

)γ

(µstop(h̃)− µstart(h̃)) + µstart(h̃) , (4.8)

where γ = 10−3. The parameter L provides a convenient length-scale with which to non-

dimensionalise the depth of the flow. We take L = 10 mm, and non-dimensionalise the

flow depth by setting H = L in the scalings (2.1). The horizontal length-scale L is chosen

to be 0.5 m (a typical length of the closed granular jump and associated rapidly-flowing

streams), giving ε = 1/50.

The choice of a Pouliquen-type friction law rather than a Coulomb one is motivated by

our observation of both steady uniform flows over a range of slope angles and a critical

flow depth, dependent on slope angle, below which steady flow is not observed. In our
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simulations of the experiment only small differences are found between results obtained

with the friction law for glass beads, defined in (4.6) and (4.8) and a modified version

for sand (Forterre & Pouliquen 2003, equation 4.17).

Close-up photographs of the fast radially flowing region inside the shock show that

the flow is only a few grains thick. This is consistent with the observations of Boudet

et al. (2007), for the impingement of a jet onto a horizontal plane, where the flow is

approximately four grain diameters deep. The flow in this region appears less dense

than that in the more slowly flowing regions outside the shock, and than the material

at the point of impingement itself. In the region of thin flow, many particles are not

in contact with any others: the assumption of an incompressible continuum is therefore

invalid, and neither a lithostatic pressure nor a Pouliquen-type friction law would be

expected here. These discrepancies are minimised by the small effect of internal pressure

and basal friction in this region; the transport terms of (2.3–2.4) become large compared

to the pressure gradient and frictional source terms. The exact choice of pressure and

frictional models therefore has little effect in this region. Furthermore, the assumption

of incompressibility can be relaxed by considering h not as the flow height, but as a

measure of the amount of mass at a given point, as is possible when surface-gradient

generated pressures are negligible. While we might not expect h to accurately represent

the flow height in this region of sparse flow (indeed, a flow height may not even be

clearly defined), the mass and momentum fluxes are predicted correctly. Since these are

the quantities which determine the shock relations, the use of the shallow avalanche

model in the fast-moving region is acceptable for predictions of the shock position.

We model the internal stresses in the granular material as an isotropic lithostatic

pressure, in contrast to the Mohr-Coulomb rheology used by Savage & Hutter (1989).

Simulations of the current problem have been compared with the earth-pressure coef-



Granular jets and hydraulic jumps on an inclined plane 21

Figure 6. Photographs of impingement region, viewing across the slope (a) and normal to it
(b). The vertically falling jet of material is converted to a thin, radial flow on impact with the
plane. Above the point of impingement, particles are held almost stationary by the dynamic
pressure of material flowing uphill from the point of impingement.

ficient firstly set to unity (e.g. Gray et al. 2003) in the isotropic case, and secondly

determined by the two-dimensional formulation of Iverson & Denlinger (2001) in the

case of a Mohr-Coulomb rheology. In the current problem, only small quantitative dif-

ferences exist between the results of the two models; for simplicity the isotropic pressure

assumption is made.

4.2. Region of impingement

The region of impingement, in which the flow transitions from a vertical jet to flow across

the inclined plane, is shown in detail in figure 6. The flow here is fully three-dimensional,

and the approximations made in the assumption of shallow-layer flow are invalid. We seek

an alternative model for the flow in this region, and match it to the shallow-layer model,

which is valid elsewhere, by applying appropriate boundary conditions on an interface

separating the two model regions.

As in the case of the normal impingement examined by Boudet et al. (2007), a smooth

transition from a falling jet of material to thin radial flow over a plane is observed,
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but details of the three-dimensional flow in the region of impingement are unknown.

In the case of normal impingement, the problem resembles the high aspect-ratio limit

of granular column collapse, a problem which has received extensive study (Lajeunesse,

Mangeney-Castelnau & Vilotte 2004; Lube et al. 2004; Doyle et al. 2007). Contact dy-

namics simulations of this problem for column aspect ratios up to 17 (Staron & Hinch

2005) predict a smooth transition from falling to thin-layer flow. This is consistent with

our experimental observations for a continuous stream. Using a transparent plane to ob-

serve the flow from underneath, a single stagnation point forms beneath the jet and is

surrounded by radial flow. For oblique impingements, the qualitative behaviour of the

flow is similar, with a stagnation point observed under the jet impact region, surrounded

by radial flow. The mass flux of the radial flow is no longer axisymmetric however, and

becomes dependent on θ, the angle of a plane polar coordinate system in the xy-plane

centred at the stagnation point.

In the absence of a granular rheology for this flow, we make the assumption that the

flow in the region of impact can be modelled as an inviscid, irrotational, incompressible

fluid. Under this assumption, the flow admits a solution which describes the transition of a

jet of fluid to a radial flow across a plane (figure 7a). Our choice of this model is motivated

by the qualitative similarity between its predictions and experimental observations. The

granular impingement is subject to frictional energy losses, which are neglected in the

ideal fluid model. An estimate of these losses in the case of normal impingement is given

by Boudet et al. (2007), who found experimentally that the velocities in the radial flow

generated by the normal impingement of a granular jet were 20–50% lower than would

be expected if energy were conserved in the region of impingement. Therefore, while the

ideal fluid model is expected to correctly predict the distribution of granular material

onto the plane, a quantitative link to the velocity of the falling jet is not attempted.
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The oblique impingement of a circular jet of inviscid fluid on a plane was first described

by Schach (1934). More recently, the analogous situation of two symmetric colliding jets

has been considered, both experimentally (Taylor 1960) and theoretically (Hasson & Peck

1964). The flow contains a stagnation point Q on the plane, connected to the incoming jet

by a separation streamline. We consider a section of the jet through a plane S, parallel to

the xy-plane and far from the impingement region (figure 7b), where the flow is parallel

to the jet axis. The jet velocity through S is denoted ujet. The jet is cylindrical and

of radius R, and thus its intersection with S is an ellipse of major axis 2R/ sin ζ in the

x-direction and minor axis 2R in the y-direction. The intersection point of the separation

streamline with S is denoted by P . Symmetry about the plane y = 0 implies that P must

lie on this plane, at a distance χ from the centre of the ellipse. The radial distance from

the origin on the inclined plane is denoted r, and the radial velocity ur.

Taylor (1966) showed that a full calculation of the three-dimensional flow in the region

of impingement is required to determine how the outflow mass and momentum fluxes

are distributed in θ. We follow Hasson & Peck (1964) in assuming that flow which enters

the impingement region in the angular segment dθ (figure 7b) remains in this segment

throughout the flow. This approximation is justified by good quantitative agreement with
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experimental results (e.g. Kate et al. 2007), and allows a solution for the outflow to be

determined using global balance arguments alone. On this basis, we equate the mass flux

through S in a segment dθ with the mass flux leaving the impingement region on the

inclined plane in the same segment, giving

q dθ
q

2
ujet cos ζ = r dθ hur, (4.9)

where q(θ), defined in figure 7(b), is related to χ by the equation for an ellipse,

(q sin θ)2 + (q cos θ − χ)2 cos2 ζ = R2. (4.10)

For radial flow far from the impingement region, the flow velocities in the z direction

are negligible. Applying Bernoulli’s equation to a surface streamline then implies that

the radial flow velocity ur is equal to the jet velocity ujet for all θ. The gravitational term

in Bernoulli’s equation can be neglected because the height of the impingement region

Hir is much smaller than the funnel height Hf ; the fractional change in velocity due to

gravity within the impingement region, which scales like Hir/Hf , is therefore small. With

velocity in the radial flow equal to ujet, (4.9) simplifies to

hr =
q2

2
cos ζ. (4.11)

The remaining unknown χ is calculated from the conservation of momentum in the

x-direction. Considering x-momentum fluxes through S and in the radial flow gives

ρπR2u2
jet sin ζ =

∫ 2π

0

hρu2
r cos θ r dθ (4.12)

which simplifies to

π tan ζ =
∫ π

0

( q
R

)2

cos θ dθ . (4.13)
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Using (4.10) to evaluate q in terms of χ, if

χ = R tan ζ (4.14)

then

q =
R cos ζ

1− sin ζ cos θ
. (4.15)

It can be shown that this expression for q satisfies (4.13), providing a solution for χ.

Through (4.10) and (4.11), the solutions for u and h at a distance r from the point of

separation are:

u = (ujet cos θ, ujet sin θ) , (4.16)

h =
R2 cos3 ζ

2r (1− sin ζ cos θ)2
. (4.17)

This solution reproduces the observed stagnation point and, qualitatively, the dependence

on θ and ζ of the radial mass flux for oblique impingement.

It remains to match the analytical solution found for the impingement region to the

flow elsewhere, modelled by the shallow-layer equations (2.2–2.4). The values for u and h

given by (4.16, 4.17) describe the solution of the inviscid jet impingement problem when

r is sufficiently large that flow velocities in the z direction are negligible. In addition,

(4.16, 4.17) are solutions of the shallow layer model in the limits of no horizontal pressure

gradients and source terms; these two limits are approached in the fast-moving flow of the

impingement region. The boundary between the analytical solution in the impingement

region and the surrounding shallow-water model is therefore chosen to be sufficiently far

from the point of impingement that flow velocities in the z direction are small, but suffi-

ciently close to the point of impingement that frictional and pressure-driven accelerations

on the flow within this region can also be neglected.
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This assumes that the flow within the impingement region is not affected by the flow

outside it. This is invalid if the flow is subcritical anywhere on the interface separating the

two modelling regions, since information can then propagate from the flow outside back

into the impingement region. The solution of the inviscid jet impingement problem (4.16,

4.17) has Froude number increasing without bound for increasing radius; the condition

of supercritical flow is therefore satisfied at sufficiently large r.

5. Numerical method and results

The system (2.2–2.4) is a set of nonlinear hyperbolic conservation laws that can be

written in vector form

∂w

∂t
+
∂f(w)
∂x

+
∂g(w)
∂y

= s , (5.1)

where w = (h, hu, hv)T is the vector of conserved variables, and s = (0, hsx, hsy)T . The

flux functions f and g are given by

f =


hu

hu2 + εh2/2

huv

 , g =


hv

huv

hv2 + εh2/2

 . (5.2)

Several techniques exist for the numerical solution of such systems of conservation laws

(LeVeque 1992). We elect to solve the equations using the finite-volume method of Jiang &

Tadmor (1998), an extension to two-dimensional Cartesian grids of the Non-Oscillatory

Central scheme of Nessyahu & Tadmor (1990). These methods are high-resolution, in

the sense that flux limiters are used to obtain second-order accuracy away from the

shocks, while remaining non-oscillatory in the region of discontinuities. For the numerical

solutions presented here, the extended ‘MinMod’ limiter (Jiang & Tadmor 1998, equation

3.1) has been used with parameter θ = 2. The choice of conserved variables in the vector



Granular jets and hydraulic jumps on an inclined plane 27

w, in conjunction with the non-oscillatory scheme, ensures that the numerical method

is shock-capturing. Such methods are required to handle correctly the discontinuity in

solution at a granular jump (Tai et al. 2001, 2002; Gray et al. 2003).

Downstream flow conditions strongly affect the formation of oblique shocks in granular

flows (Gray & Cui 2007). In this problem, there are both sub- and super-critical regions

present at the downstream boundary of the numerical domain, requiring either one or zero

boundary conditions respectively (Weiyan 1992, page 111). This numerical boundary is

treated by constructing a row of ghost cells outside the domain, with values determined

by a linear extrapolation of the two final rows of interior cells, which is appropriate

for both subcritical and supercritical outflow (LeVeque 2002, page 131). This boundary

is sufficiently far downstream that the numerical solution is independent of its exact

position. The numerical domain has sufficient extent in the y-direction that all material

leaving it does so through the downstream boundary.

In order to apply the boundary conditions at the matching interface between the solu-

tion for the impingement region given by (4.16, 4.17) and the shallow-layer model else-

where, we enforce (4.16, 4.17) in any finite volume cells which lie within a circular region

of radius Rimp, centred on the stagnation point Q. Since the impingement region solution

and shallow-layer model solutions coincide here, the numerical solutions are expected to

be insensitive to the point at which the two solutions are matched, provided that the

conditions for the matching are satisfied. These conditions are that the velocities in the

z-direction in the inviscid fluid model and horizontal pressure gradients and source terms

in the shallow-layer model are negligible, and that the flow is supercritical everywhere

on r = Rimp. The value Rimp ≈ 2R has been chosen, which satisfies these conditions for

the simulated flow parameters. As expected, our numerical results are insensitive to the

exact value of Rimp.
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5.1. Teardrop-shaped shock

Figure 8 shows a numerical solution of (2.2–2.4) exhibiting a steady teardrop-shaped

shock, comparable to that seen in the experimental flow of figure 2. The slope inclination

angle and funnel diameter are the same as those in the experimental flow, and the axes

of figure 8 cover the same region as that shown in figure 2.

The unknown energy loss in the impingement region means that the funnel heights Hf

in numerical solutions are not directly comparable to those in the experiments. Instead

the speed of the radial flow inside the shock is compared. Under the ideal fluid model for

the impingement region, (4.16) implies that the speed of flow leaving the impingement

region on the inclined plane is ujet. Experimentally, we estimate this velocity to be

approximately 0.99 ms−1 in figure 2: we therefore use ujet = 0.99 ms−1 for the numerical

solutions in figures (8–10).

Figure 8(a) shows the location of the shock as a black line, with streamlines of the flow

in grey. The region in which the flow is supercritical is shaded. The numerical solution

reproduces well the region of fast radial flow surrounding the point of impingement

(indicated by radial streamlines), the teardrop-shaped shock and the shape of the flowing

region. The shock length is 0.28 m, close to the experimental result of 0.27 m.

The shaded region of supercritical flow outside the shock shows that the two super-

critical streams on either side of the teardrop merge at the shock vertex to form a single

stream. This is consistent with the experimentally observed region of supercritical flow in

figure 2, which approximately corresponds to the region of motion blur. The streamlines

in this region, which follow the line of the shock, further resemble the experimental flow.

The structure of these streams is visible in figure 8(c), which shows the values of the flow

variables u (dashed line) and h (solid line) along a cross-section at x = 0.1 m, through

the closed shock. Inside the shock (which occurs at y = ±0.04 m), u ≈ 0.99 ms−1 as
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dashed line and flow depth h by a solid line.
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expected, and h ≈ 1.3 mm, close to the experimental estimate of h = 1 mm. Across

the shock, while h increases rapidly to about 6.5 mm, u is nearly continuous. (The peak

in u at the location of the shock is a numerical artifact caused by the non-conservative

form of u.) The continuity of u is due to the jump relation (2.9) which implies that ve-

locity tangential to the shock (which is nearly in the downslope direction at x = 0.1 m)

is continuous. It is this continuity of tangential velocity which causes the fast-moving

streams of material to exist outside the shock. A substantial shear exists in the stream,

as u decreases by an order of magnitude to approximately 0.05 ms−1 over 2.5 cm. At the

vertex of the shock, the numerical solution exhibits a pair of shock reflections, leading to

a weakening stream of shock interactions and reflections in the supercritical flow down-

stream of the shock vertex. The structure of these shocks resemble those described for

supercritical shallow-water flows by Akers & Bokhove (2008). Experimentally, the flow

in the region below the shock vertex is complicated by the formation of a spout, which is

outside the scope of the thin-layer model (Edwards et al. 2008), but some evidence of a

shock reflection, forming a triangular region downstream of the shock vertex, can be seen

in figure 2. The extended chain of shocks below this is not observed in our experimental

flows.

The flow thickness is shown by the contours in figure 8(b). The rapid increase in

flow height across the teardrop-shaped shock is evident, as is the variation in thickness

downstream of the shock vertex caused by the chain of shock interactions. The shaded

region in figure 8(b) indicates flowing material. Surrounding and upslope of the flowing

region, a region of stationary (unshaded) material is present. This is consistent with the

location of stationary material in experimentally observed flows; material above the point

of impingement is held stationary by the pressure of the upstream flow (figure 6), while
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a thin layer of stationary material with h 6 hstop surrounds the flowing region further

down the plane (figure 2).

Figure 8(d) shows a cross-section at x = 0.35 m, through the flow just downstream of

the shock. For 0.03 < |y| < 0.125 m, u varies between 0.08 ms−1 and 0.04 ms−1. These

velocities are within 20% of the velocity of a steady uniform down-slope flow of the same

thickness profile (obtained from h by solving (4.4) for u). Along the centreline of the flow,

at x = 0.35 m, the velocity is significantly larger at 0.7 ms−1, eight times faster than the

steady uniform flow speed. This is part of the supercritical region downstream of the shock

vertex in figure 8(a), and reflects the rapidly moving stream observed in experiments.

Far downstream, the numerical prediction of centreline velocity is 0.12 ms−1, close to the

experimental measurement of 0.11 ms−1.

The time-dependent flow which leads to the steady state shown in figure 8 is shown

in figure 9. The evolution to the steady solution bears a strong resemblance to the

experimentally observed transient flow in figure 3: the material upstream of the impinge-

ment point stagnates and a shock forms, separating the inner fast-moving region from

the slower flow surrounding it. The shock propagates downslope and wraps around the

radial flow region, eventually closing at the downstream vertex. This propagates back

towards the impingement point until the flow reaches a steady state. As in the experi-

mental observations, a region of stationary particles is formed outside the flowing region

in the numerical solution in the initial stages (figure 8a–c) of the flow.

5.2. Blunted shock

Figure 10 shows a numerical solution at a lower inclination angle of ζ = 24.5◦, resem-

bling the blunted shock regime observed experimentally (figure 4). In order to produce

a comparable blunted shock, the slope angle in figure 10 is 0.9◦ lower than that in figure

4; we discuss this discrepancy in section 5.3. The shock in figure 10 is not closed at a
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Figure 9. Time-sequence of the numerical solution of figure 8, with ζ=26.7◦, ujet = 0.99 ms−1,
D = 15 mm. Contours and shading have the same meaning as in figure 8(b) The times after
jet impact in each sub-figure are in the same ratio as those in figure 3: (a) 0.02, (b) 0.1, (c)
0.26, (d) 0.50, (e) 1.0, (f ) 1.26, (g) 1.76, (h) steady-state. A movie showing the time-dependent
behaviour of this solution is available with the online version of this paper.

sharp vertex, but by a curved shock lying across the slope. A transition from supercritical

to subcritical flow occurs across this cross-slope shock, indicated by the shading in fig-

ure 10(a). For the thin-layer granular avalanche equations (2.2–2.4), Gray & Cui (2007)

(p.121) show that such a transition implies that the shock is a strong shock. The strong

shock meets the pair of shocks surrounding the point of impingement at shock interaction

points. Each of these is the triple point of a Mach reflection, with the strong cross-slope

shock forming the Mach stem. Two further line discontinuities are generated at each
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Figure 10. Numerical solution for ζ=24.5◦, ujet = 0.99 ms−1, D = 15 mm. The flow has reached
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(b) respectively. A movie showing the evolution to this steady state is available with the online
version of this paper.

triple point, one a reflected shock and one a contact discontinuity. These are visible in

figure 10(a), the reflected shock as a thick black line, and the contact discontinuity as

the inner edge of the two streams of supercritical flow which continue downstream of

the strong shock. As in the case of a teardrop shock solution, a chain of weaker shock

reflections exists in these two streams, which are too weak to be indicated as shocks on

figure 10(a), but are clearly visible in the flow height contours of figure 10(b). The flow

downstream of the strong shock was measured to be 0.07 ms−1 in the experiment of fig-

ure 4. The numerical simulation is consistent with this, predicting u = 0.055 ms−1 on the
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centreline immediately downstream of the shock at x = 0.11 m, rising to u = 0.081 ms−1

at x = 0.25 m.

A feature shown clearly in figure 10(a) (and which is present, but less clear, in figure

8a) is the structure of the two streams surrounding the shock. Within the region of the

stream, the flow is supercritical (shaded in figure 10a) and streamlines are nearly parallel

to the shock. This phenomenon is caused by the effect of the shock on the flow velocity:

the rapid decrease in velocity normal to the shock as material goes through the shock,

together with the continuity of velocity tangential to the shock, results in material that

has been through the shock travelling nearly tangential to it. Outside of the supercritical

streams, the streamlines diverge sharply from being parallel to the shock, and assume

their form for the flow far downstream.

One difference between the numerical solutions and experimental observations of fig-

ures 10 and 4 respectively is in the presence of a shock interaction point in the solution

of the model equations, where instead a strongly curved shock is observed experimen-

tally. This is likely to be due to either an effect of the granular rheology, or to the

three-dimensional breaking wave observed at the shock in experiments. A related fea-

ture in experimental flows, not present in numerical solutions, is the thin trench in the

flow which persists downstream. We attribute the formation of the trench in experi-

ments to the complex three-dimensional flow in the shock region, which is not present

in the depth-integrated model. However, even if a perturbation in height is introduced

artificially into a time-dependent numerical solution, the perturbation will dissipate in

a wave-like manner; by contrast, in experimental flows the perturbation persists and is

advected downstream. This suggests that the persistence of the trench is due to the ac-

tual rheology differing from the modelled lithostatic pressure distribution. The lack of

disturbance of the trench, and of grains on the surface of thicker experimental flows such
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Figure 11. Numerical phase diagram, showing the dependence of flow regime on ujet and ζ, for
D = 15 mm. As before, teardrop-shaped shocks are indicated by crosses (×), blunted shocks
by circles (◦), and steady flows showing no shock by plus signs (+). Time-dependent flows are
represented by squares (�). All flows for ζ & 21◦ are steady.

as that in figure 4, suggests that very little shear occurs near the surface, the shear being

concentrated instead in a thin region at the base.

5.3. Dependence on ζ and ujet

A phase diagram of flow regimes observed in the numerical solutions for D = 15 mm is

shown in figure 11, which is comparable to the experimental phase diagram in figure 5.

The four regimes of flow (unsteady flows, steady flows without a shock, steady teardrop-

shaped shocks, and steady blunted shocks) and their relative locations on the phase

diagram are all reproduced by the shallow-flow model.
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The numerical results are parameterised by ujet, the speed of flow exiting the impinge-

ment region in (4.16). In the experiments, this velocity is unknown, but is dependent on

the funnel height Hf . To aid comparison between figures 5 and 11, we plot figure 11 with

the effective funnel height Hi required to generate flow exiting the impingement region

at ujet. Assuming a freely falling jet (in which the grain acceleration is g), and no loss of

energy in the impingement region, this effective height is

Hi =
u2

jet

2g
. (5.3)

The energy loss in the impingement region causes Hi to be significantly smaller than

the corresponding experimental Hf : for a flow speed exiting the impingement region of

0.99 ms−1 as measured for the flow in figure 2, Hi ≈ 5 cm, whereas Hf = 30 cm.

The model solutions reproduce the experimental result of a single inclination angle

dividing steady and unsteady flows, and (for sufficiently large ζ) a single value of Hi

separating flows with teardrop-shaped shocks and flows with no shocks. The numerical

solutions also correctly predict that as Hi increases, blunted shocks are observed over

a shallower range of slope angles, though this effect is more pronounced in numerical

simulations than in experiments. The overestimate could be attributed to an increasing

proportion of the energy of the granular jet being dissipated in the impingement region

with increasing Hi. In general, the numerical solutions predict the occurrence of flow

regimes at lower slope angles than those measured experimentally. Such a difference is to

be expected, since our grains and the inclined plane surface roughness are not identical

to those used by Pouliquen & Forterre (2002) in the measurements of the friction law.

While the regimes of teardrop-shaped and blunted shocks are closely reproduced by

numerical solutions, the regimes of unsteady flow and of steady flow without a shock are

modelled less well. Experimentally, when Hi is sufficiently low, the flow velocity is too
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small to create a clear shock and a diffuse transition to down-slope flow is observed. In

the numerical solutions, rheological effects that would cause the shocks to become diffuse

are not modelled, and we do not observe these smooth solutions. Instead, the size of

the predicted shock continues to decrease with Hi, to the point where the shock reaches

the diameter of the impinging jet. In figure 11, we mark solutions as having no shock if

either the shock width or length is smaller than the diameter of the impinging jet. Flows

with no shock also occur experimentally when ζ is sufficiently small, in which the flow

is subcritical everywhere, including at the point of impingement. In numerical solutions

of these flows, a subcritical flow with no shocks is observed everywhere in the domain,

apart from in the impingement region, where the model of section 4.2 is applied. While

this model of the impinging jet is not appropriate for flows which are subcritical at the

impingement point, it nonetheless provides the correct mass flux to a subcritical flow.

The regimes in the numerical phase diagram are robust to changes in the parameters

of the friction law. While the values of ζ and Hi for which different regimes occur vary

with the details of the friction law, as does the size of the shock, the occurrence and

relative position in the phase diagram of the four flow regimes is insensitive to the precise

formulation. This is consistent with the experimental observation of blunted and tear-

drop-shaped shocks in a range of granular materials, particle sizes and rough surfaces.

Figure 12 shows numerical predictions and experimental measurements of the shock

length (the distance from the impingement point to the lowest point of the shock). The

experimental results are for Hf = 30 cm, and the numerical solutions at the correspond-

ing ujet = 0.99 ms−1.

An approximately linear relationship between shock length and slope angle is observed

experimentally. The numerical predictions are in quantitative agreement with experimen-

tal measurements at steeper slope angles, where the flow is well into the teardrop-shaped
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Figure 12. Experimental measurements and numerical predictions of the shock length, against
slope angle, for D = 15 mm, Hf = 30 cm (experimental), ujet = 0.99 ms−1 (numerical). Experi-
mental measurements are indicated by symbols with error bars, and numerical results are joined
by a grey line. A cross (×) indicates a teardrop-shaped shock, and a circle (◦) a blunted shock.

shock regime. At lower slope angles, the discrepancy between numerical and experimen-

tal results at lower slope angles is due, as before, to the difference between particle and

surface properties in our experimental setup, and in that used to determine the friction

law.

A notable feature of the model results is the discontinuous change in shock lengths that

occurs at the transition between teardrop-shaped and blunted shocks (ζ = 24.6◦). No

such discontinuity is evident in the experimental results. This reinforces the conclusion

that, although the primary mechanism for the formation of blunted granular jumps is

the presence of a Mach reflection, three-dimensional or rheological effects also play an

important role.
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6. Unsteady flows

The flows considered thus far have all tended quickly to a steady state after an initial

transient flow. A range of flows are observed experimentally, below a critical slope angle

ζ0, which do not tend to steady flow or which do so in a complex manner. This angle

is insensitive to Hf (figure 5), but decreases with increasing D. At sufficiently low ζ, no

steady flows are observed, for all Hf and D.

These observations are consistent with the hypothesis that unsteady flow behaviour is

related to stationary material on the plane and the stick-slip behaviour encapsulated by

the heights hstart and hstop. Static uniform layers of material can exist on the plane at

heights up to hstart. If the depth of flowing material is similar to or smaller than this, the

effect of the static layer on the location and form of the flow becomes significant. From

a steady-state flow, this situation can occur either through a decrease in mass flux (and

correspondingly in h), or through a decrease in ζ, with a corresponding increase in hstart

and hstop.

For a given mass flux, a steady uniform flow has its thickness and velocity determined

by mass conservation, and by the balance of forces

µ (h, u) = tan ζ , (6.1)

corresponding to sx = 0 in (2.3). If the mass flux is sufficiently small, or the cross-slope

width sufficiently large, the flow height h becomes less than hstop and no steady solution

exists. The flow regime entered in this case is one of unsteady avalanching.

A typical unsteady flow is shown in figure 13. Material downstream of the impingement

region is arrested by friction to form a layer of stationary material on the plane, and two

shocks propagate up toward the point of impingement (figure 13b). The two shocks con-

nect, and a closed shock resembling that of the steady teardrop-shaped shock is formed,
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Figure 13. Unsteady flow, ζ = 26.5◦, Hf = 25 cm, D = 10 mm. Material striking the plane
in (a) spreads into a thin layer, as in figure 3(a). This layer slows downstream and becomes
stationary (b), and the shock connecting the stationary to the flowing material propagates back
towards the point of impingement (b, c). When the shock reaches the impingement point, the
flow regime changes to the formation of a conical pile (d), which grows through avalanches down
its flanks. A number of such avalanches occur (e), before a collapse of the pile occurs (f ). This
reforms the region of thin, radial flow around the impingement point and surrounding shock (g).
The material downstream is arrested by friction, and the shock again propagates inwards and
towards the point of impingement (h). A movie showing the evolution of this unsteady flow is
available with the online version of this paper.

although in this case the shock continually propagates inward towards the impingement

point. The flowing region consists of the thin radial flow surrounding the shock, and

two supercritical streams of flow immediately outside the shock that were identified in

the steady-state flows. Outside this, the flow is stationary. This flowing region contrasts

with that seen in a one-dimensional propagating granular bore, in which the grains are

brought to rest rapidly by the shock (Gray et al. 2003). In the oblique shocks of 13(b),

only the flow velocity normal to the shock is brought to zero, leaving tangentially flowing

streams of material in the thicker flow outside the closed jump. The collision of these
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streams at the vertex of the shock creates a stream of moving grains downstream of the

vertex (shown in figure 13b), which deposits a ridge of stationary material (figure 13b–e).

Up to this point, the impingement region and shallow-layer flow models presented are

appropriate, and can reproduce the main features of the flow.

When the shock reaches the impingement point (figure 13c), the flow switches to a

new regime of conical pile formation (figure 13d), in which the flow is no longer shallow.

Material in the falling jet is slowed rapidly by impact with other material on the plane,

and acts simply as a mass source at the top of the conical pile. The flow is thus very

insensitive to Hf once in this regime. The pile grows through unsteady avalanching

down its flanks. Avalanches are concentrated on the downslope flank of the pile, and are

approximately periodic, with a period of the order a few seconds, though the position on

the flank and temporal length of each avalanche vary.

Unlike pile formation on a horizontal plane, where the size of the pile grows indefinitely,

a spontaneous collapse of the pile occurs on an inclined plane. Figure 13(e) shows the

pile just before this occurs. The collapse causes a large mass of material to flow down

the plane (figure 13f ), re-mobilising the existing static layer. As a consequence of this

collapse, a new region of fast radial flow surrounded by a closed shock forms around

the impingement point. Uphill and to the sides of the impingement point there remains

a deep pile of stationary material, the remnants of the conical pile. The flow from the

collapsed part of the conical pile thins as it spreads, and becomes static as h drops below

hstop. As before, this causes the shock to propagate inwards toward the impingement

point, and a new conical pile is formed. The cycle of conical pile formation, collapse, flow

stagnation and inward shock propagation may continue over several tens of cycles.

The initiation of collapse of the growing conical pile is nearly simultaneous across

the whole pile, occurring within one frame of video (1/25 second), which corresponds
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to a rate of information propagation of & 5 ms−1. This is much faster than the gravity

wave speed of 0.7 ms−1 predicted by the hyperbolic equations (2.2–2.4), indicating that

the mechanism of collapse is not captured by the depth-averaged model. The collapse

does not occur at a well-defined pile size; the onset appears to be very sensitive to the

properties of the pile, possibly to the internal micro-structure of the grains.

Small asymmetries can be seen in figure 13(d) and 13(e), which can be attributed

to variations in the height of the static material. A much greater asymmetry occurs

occasionally in the collapse of the conical pile. This asymmetric collapse is due to the

ridge of material seen in figure 13(b–e), which has the effect of supporting the central

part of the conical pile against collapse. As a result, the collapse can occur on only one

side of the pile. The resulting flow consists of an asymmetric flowing region with several

shocks. The flowing region is bounded by thick stationary material from the conical pile,

which diverts the flow near the impingement region to one side, and by a thinner layer

of static material on the inclined plane, which restricts the downslope flow to a narrow

channel. The flow is nearly steady: the restriction of the width of flowing material allows

the flowing layer downstream to have a depth greater than hstop, and thus be in steady

uniform flow. A very slow evolution of the flow is observed, caused by erosion of the

static grains, and deposition of the flowing ones, at the boundary between flowing and

static material.

The shock structure in figure 14 differs from that seen in the teardrop and blunted

cases. The shock surrounding region A is asymmetric, with a greater mass flux from

regions A to B across shock α than that from regions A to C across shock β. Beyond

the point P , the flow in region C converges with the thicker flow of region B, forming

the shock γ between the two regions. Shock δ, separating regions C and D, originates

at the point R, where the boundary between flowing and static grains is sharply curved.
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This is an oblique shock, analogous to that found in the case of a compression ramp

in supersonic gas dynamics (Courant & Friedrichs 1977) and in converging channels of

flowing granular material (Gray & Cui 2007). A second shock interaction point is formed

at Q.

7. Conclusion

The flow generated by impingement of a granular jet on an inclined plane, while having

similarities with its fluid counterpart, exhibits a range of behaviour specific to granular

materials. Two distinct steady-state flow regimes displaying closed granular jumps have

been found, one with a teardrop-shaped shock and one with a smooth, ‘blunted’ shock.

In these two regimes, the principal features of the flow, listed from the point of impinge-

ment outwards, are a fast-moving region of thin radial flow, a closed granular jump,
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rapid streams of material flowing nearly tangentially to the shock, a region of slower

downslope flow, and static material outside the flowing region. The two regimes differ

in the supercritical or subcritical nature of the thicker flow surrounding the shock; fully

supercritical flow leads to a teardrop-shaped shock, whereas subcritical flow surrounding

the downstream part of the shock leads to a blunted shock.

These flows have been modelled through a shallow-layer approximation, leading to a

system of hyperbolic equations. The concepts of sub- or super-critical flow and shock

waves which result from these equations are fundamental to an understanding of the

flow. Numerical solutions of the model equations reproduce the phase diagram of the

solution regimes, and quantitatively predict features such as flow velocity and the shock

length in the regime of steady teardrop-shaped shocks. The three-dimensional break-

ing wave observed in blunted shocks is outside the scope of the depth-averaged model,

but the overall form of flow is nonetheless correctly reproduced, displaying quantitative

agreement with the measured flow velocity.

The steady granular jumps, and the radial flow within them, are governed primarily

by conservation of mass and momentum. Outside the shock, in the slower down-slope

flow, the basal friction and gravity source terms play an important role. The balance of

these forces governs the flow far downstream, and influences the form of the granular

jump through control of the flow on the downstream side of the shock.

At sufficiently low slope angles, there is no steady balance between gravity and friction

in the down-slope flow. Instead, the hysteretic nature of the transition between flowing

and stationary material, encapsulated in the functions hstart and hstop leads to oscilla-

tory behaviour and periodic avalanching. The exact mechanism is unclear, however, for

transition between stationary and moving flow (involved in the erosion and deposition of

static material), and for the sudden collapse of the conical pile. Such regimes are known
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to exhibit complex dynamics (Pouliquen & Forterre 2002), and are likely dependent on

details of the grain micro-structure.
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4. Conclusion

�is thesis has presented experiments and modelling of two uncon�ned granular �ows. In

each case, a simple kinematic or depth-averaged model has captured the dominant �ow

processes.

In�e kinematics of levee formation in geophysical mass �ows, a detailed model of levee

formation kinematics has been proposed, which describes how coarse-particle-rich levees

result from a combination of segregation and transport processes within a debris �ow head.

While the kinematic processes have been described in detail, the dynamics involved in the

formation of levees, and the resulting self-channelised �ow, are much less well understood.

Historically, the assumptions of a uniform Bingham rheology and instantaneous, en masse

deposition for allowed interpretations about the �ow rheology to be made from the shape

and structure of deposits. Our experimental results show that the deposition process is not

simply an enmasse stopping, and are consistent with the more recent hypothesis of a spatially

heterogeneous rheology, in which coarse-rich levees are considerablymore frictional than the

interior �ow, allowing them to support the pressure of the �uidised channel �ow. However,

the lack of a detailed dynamical model for the progressive levee formation that we observe

means that it is not yet possible to infer dynamical �ow parameters, such as the velocity, mass

�ux and rheology, from measurements of leveed channel deposits. Inferences of this sort

are important in practical hazard assessment since, in most regions, the only record of past

geophysical mass �ows is through historical �ow deposits. While the modelling in this paper

does not solve the question of �ow dynamics, the experimental observation of levee formation

by streamwise accretion close to the �ow front implies that the dynamics responsible for

setting the width of levees occurs in the �ow head. �e study of dynamics within the �ow head

provides an interesting direction for future research: construction of a momentum balance
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model within the �ow head (similar to the mass balance model constructed in this thesis)

may provide information about the dynamics of large- and small-scale self-channelised �ows,

without requiring a full rheology.

In Granular jets and hydraulic jumps on an inclined plane, a depth-averaged model is

used to predict the closed teardrop-shaped and blunted granular shocks that occur when a

jet of granular material impinges on an inclined plane. Despite assumptions made about the

�ow close to the impingement point (for which an inviscid �uid model is used), quantitative

agreement between experiments and model predictions is achieved for teardrop-shaped

shocks.�is agreement demonstrates that, in this regime, the dominant physical process is the

conservation of mass and slope-tangential momentum across a granular jump, encapsulated

in the depth-averaged model. �e transition between teardrop-shaped and blunted shocks,

captured in the model by the transition from a regular to a Mach shock re�ection, is further

evidence that shock dynamics are a central part of the governing physics. Away from the

regime of teardrop-shaped shocks, there is evidence that other processes are important. For

example, the experimental blunted shock is smooth, with no evidence of the shock triple

point predicted by the depth-averaged model. �e jump conditions, which determine the

shock structure, are not dependent on the basal friction, indicating that the other e�ects

of the granular rheology such as horizontal shear stresses may be signi�cant at this point.

In the regime of unsteady �ows, the complex interaction between stationary and �owing

material on the plane re�ects another aspect of granular rheology. �ese �ows may provide

an e�ective test for current and future rheological models.
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