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ABSTRACT 
Composite materials are in use in several applications, for example, aircraft structural 
components, because of their light weight and high strength. However the delamination 
which is one of the serious defects often develops and propagates due to vibration 
during the service of the structure. The presence of this defect warrants the design life of 
the structure and the safety. Hence the presence of such defect has to be detected in time 
to plan the remedial action well in advance. There are a number of methods in the 
literature for damage detection. They are either “baseline free/reference free method” or 
using the data from the healthy structure for damage detection. However very limited 
vibration-based methods are available in the literature for delamination detection in 
composite structures. Many of these methods are just simulated studies without 
experimental validation.  

Grossly 2 kinds of the approaches have been suggested in the literature, one related to 
low frequency methods and other high frequency methods. In low frequency 
approaches, the change in the modal parameters, curvatures, etc. is compared with the 
healthy structure as the reference, however in the high frequency approaches, excitation 
of structures at higher modes of the order of few kHz or more needed with distributed 
sensors to map the deflection for identification of delamination. Use of high frequency 
methods imposes the limitations on the use of the conventional electromagnetic shaker 
and vibration sensors, whereas the low frequency methods may not be feasible for 
practical purpose because it often requires data from the healthy state which may not be 
available for old structures.  

Hence the objective of this research is to develop a novel reference-free method which 
can just use the vibration responses at a few lower modes using a conventional shaker 
and vibration sensors (accelerometers/laser vibrometers). It is believed that the 
delaminated layers will interact nonlinearly when excited externally. Hence this 
mechanism has been utilised in the numerical simulations and the experiments on the 
healthy and delaminated composite plates. Two methods have been developed here – 
first method can quickly identify the presence of the delamination when excited at just 
few lower modes and other method identify the location once the presence of the 
delamination is confirmed. In the first approach an averaged normalised RMS has been 
suggested and experimentally validated for this purpose. Latter the vibration data have 
then been analysed further to identify the location of delamination and its size. Initially, 
the measured acceleration responses from the composite plates have been differentiated 
twice to amplify the nonlinear interaction clearly in case of delaminated plate and then 
kurtosis was calculated at each measured location to identify the delamination location. 
The method has further been simplified by just using the harmonics in the measured 
responses to identify the location. The thesis presents the process of the development of 
the novel methods, details of analysis, observations and results.  
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CHAPTER 1                                                         

INTRODUCTION 

 

1.1 Overview 

 

Internal damage in composite structures can cause abrupt failure during its operation 

and this in turn can lead to catastrophic consequences. Importance of the delamination 

detection and localization can be accessed from the practical incidents occurred in the 

past. American Airlines Flight 587 crashed in to the streets of Belle Harbor on 

November 12, 2001. Aviation experts declared that the major cause of the accident was 

the failure of the laminate bond that keeps the tails structure intact [1].  

 

      

Figure 1.1 (a-b) Rudder failure of Air Transat Airbus A310-308 [2] 

(a) 

(b) 
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Air Transat Flight 961, had an accident of its rudder, as shown in Figure 1.1, fallen in 

the ocean during the flight on March 06, 2005 [2]. Canadian Transportation Safety 

Board  believe that the failure was caused by the laminate debonding that occurred 

during the flight [1]. Massive hull failures in Bertram Yachts can be seen in Figure 1.2 

[3] 

 

      

 

Figure 1.2 (a-b) shows the composite delamination failure [3] 

 

Figures 1.1 and 1.2 show excellent examples of composite failures due to de-bonds in 

the structure.  

Composite laminates are lighter and stronger and hence these are used in aircrafts 

interiors and fuselage.  Although composite laminates are believed to be lightweight and 

stronger and has greater strength to weight ratio, it has the intrinsic problem of 

(b) 
(a) 

(b) 
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delamination development due to various reasons. Once the delamination, which is by 

definition the internal debonding of the adjoining layers, onsets it grows unnoticed till 

there is a great fall of performance in the structure. Figures 1.1 and 1.2 are excellent 

examples of the damage caused by internal delaminations in engineering structures. 

Hence there is need for the early diagnosis of the delamination. Once the delamination 

onset is detected measures can be taken to stop the further growth of the delamination. 

These limitations provided inspiration for developing new techniques based on the 

excitation of the first few modes and using advanced signal processing and statistical 

techniques. 

1.2 Objectives 

The main aim of this research is to develop delamination detection technique based on 

the first few modes of vibration. In the proposed technique nonlinear interaction due to 

delamination has been used to detect and measure the presence of fault (delamination) 

in the composite structure under study.  

Objective 1: 

The finite element (FE) modelling of the sample composite plates with and without 

delaminations (of different sizes and at different locations) using FE code (ABAQUS) 

to understand the dynamics of the delaminated and healthy composite plates 

Objective 2: 

Experimental verifications of the objective 1 

Objective 3: 
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Detection of the presence of delamination in the composite plates, using vibration 

response data, by exciting the plate in several modes without the use of the vibration 

data from the healthy composite plate (“baseline-free damage detection” or “referenced-

free damage detection” method) 

Objective 4: 

Explore the possibility to locate the delamination in much simplified approach initially 

on simulations and then by experiments on composite plates. 

1.3 Thesis structure 

The present Chapter 1 highlights the overview of this research work, the major 

objectives and the structure of the thesis break-up. 

 Chapter 2 is dedicated to the literature review. This chapter provides, in detail, 

major research work so far accomplished in the non-destructive testing and 

structural health monitoring related to the title of this research. 

 Chapter 3 summarises the experimental set-ups and layouts used in this research 

work.  

 Chapter 4 is on the delamination detection (Objective 1) using nonlinear 

interaction between the delaminated layers. In this chapter numerical 

experiments on carbon fibre composite plate have been discussed. The results 

have been compared with previous research studies. Experiments have been 

performed on Aluminium plates to verify part of the results. 
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 Chapter 5 presents the dynamic analysis of composite plate by experiment and 

Finite Element Analysis in detail. The performance of the different types of 

elements from the ABAQUS Explicit library generally used in literature for the 

composite plate modelling have been compared with the experimental responses 

(Objective 2).  

 Chapter 6 presents the statistical parameters study on the vibration responses for 

delamination detection (Objectives 1 & 2) in composite plates. 

 Chapter 7 gives in detail the research work on the localisation of the 

delamination (Objective 3). In this chapter vibration response data (acceleration) 

has been differentiated twice and then the statistical parameter, kurtosis of the 

double differentiated plotted for the measurement grid of the delaminated plate. 

The plots clearly show the delaminated location. 

 Chapter 8 presents further study to develop a new simpler method (Objective 4) 

based on the harmonics of the modes at which the plate is excited.  The method 

is superior to the one developed in chapter 7 as this method can work with 

velocity measurements which are easier to do as compared to acceleration 

measurements. 

 Chapter 9 is the summary of the results and new techniques developed in this 

research study. The chapter also mentions how the work can be further extended 

(future work).  
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CHAPTER 2                                                            

LITERATURE REVIEW 

 

This chapter covers an overview of the structural health monitoring and different 

techniques, used so far, to diagnose, locate, and find the extent of the damage in the 

form of cracks and delaminations in composite structures. Various techniques have been 

developed and practised, depending on various factors like feasibility, cost, and ease of 

use. Techniques like ultrasonic, fibre optic, laser, thermography etc. are generally 

reviewed but mainly vibration based techniques have been discussed in the following 

sections. 

2.1 Overview of Structural Health Monitoring 

 

All dynamic structures degrade with the passage of time due to various reasons like 

environmental conditions, operational variations, accidental events, and probably 

imperfect design. Whatever is the reason for degradation, there is need to assess the 

useful remaining life of the structure. Visual inspection of structural parts has been the 

first and most common procedure. Depending on the type of the structure, its cost of 

maintenance, and the cost of changing worn-out parts various methods have been 

adopted over time. Non-destructive testing at specified intervals has been common 

practice for damage detection in power plants. Structural health monitoring is an 

advanced type of continuous online inspection of the complicated structure. Figure 2.1 

is the idea of a central nervous system installed in a modern commercial airline [4]. 

Figure 2.1 shows the concept of online structural health monitoring system. Mufti [5] 

has given a layout of the structural health monitoring system of the Taylor Bridge  as 
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explained in Figure 2.2. Balageas et al. [6] have given a comprehensive schematic 

presentation of the structural health monitoring as shown in Figure 2.3. Conventional 

health monitoring is often termed as non-destructive testing (NDT) and is usually done 

offline. NDT include dye penetrant testing, radiography, ultrasonic testing, infrared 

thermography, eddy current and X-ray tomography [7]. Structural health monitoring 

(SHM) is generally implemented online while the structure is in operation. Together the 

two (NDT and SHM) are often called non-destructive evaluation (NDE). Adams [8] has 

explained comparison between NDT and SHM in Figure 2.4. 

 

 

Figure 2.1 Structural health monitoring ‘nervous’ system [4] 
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Figure 2.2 Layout of SHM systems in a bridge [5] 
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Figure 2.3 Principle and organization of a SHM system [6] 
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Figure 2.4 Comparison of NDT and health monitoring technologies [8] 

 

2.2 Non Destructive Testing (NDT) Techniques 

All composite structures are inspected for the presence of defects mostly caused by the 

continuous operation of these structures. The easiest and most commonly used method 

of inspection is visual. Radiography is generally used to analyze bond-line defects. 
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Shearography and thermography are the other common NDT techniques for damage 

diagnosis of fibre discontinuities, honeycomb core defects and adhesive voids. 

Ultrasonic techniques are used to attenuate the sound wave energy to detect damage in 

the composite structures. Acoustic emissions are another type of common NDT used for 

the damage detection of thin structures. Comparison of the common NDT techniques is 

presented in Table 2.1 [9]. 

Table 2.1 NDT capability matrix [9] 

 

 

2.2.1 Thermal NDT 

 

 According to Dutton [10] thermography can be used for condition monitoring of the 

composite structures. Dutton [10] used infrared thermography with external source of 

radiation to excite temperature differences at the surface of the sample composite plates 

for the detection of air-filled voids  and foreign bodies as shown in Figure 2.5. Genest et 

al. [11] used pulse thermography (PT) and thermographic signal processing (TSR) with 
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derivative processing for the detection of disbands in composite bonded repairs. 

Avdelidis et al. [12] used transient thermal NDT for the damage assessment of aircraft 

composite structures. They applied the techniques to various types of damages in 

composite specimens. The method has been shown to be effective in large structures. 

The method has limitation of a certain amount of depth and size of damage below it 

fails to diagnose the defect. So it is not suitable for small delaminations in small 

structures. Meola et al. [13] used optical lock-in thermography to disclose the artificial 

damages created in the carbon fibre reinforced polymer specimens. Figure 2.6 shows the 

lock-in thermography set-up used in the experiments in this research work. 

Thermographic techniques can be harmful for the sensitive surface being tested and are 

not well suited for online structure health monitoring.  

 

Figure 2.5 Experimental sketch for thermography [10] 
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Figure 2.6 Lock-in thermography setup [13] 

 

2.2.2 Tomography and C-scanning Methods 

Hocheng et al. [14] developed a method to effectively use computerised tomography for 

the delamination evaluation caused by drilling operations on composite materials. They 

compared the results with the results from the well established C-scan method of 

damage detection. Figure 2.7 shows the schematics of computerised tomography and 

ultrasonic C-scans used in the experiments. Shin et al. [15] inserted a 100 micron 

triangular-shaped artificial plate in a silicon carbide (SiC) composite plate and applied 

ultrasonic test (UT) method based on computerized tomography to examine the 

sensitivity limit of the  UT method. They used frequencies in the range of 50 MHz to 80 

MHz. The layout of the C-scan is shown in Figure 2.8. The method used is not suitable 

for online structural health monitoring and is dedicated for drilling-induced 

delamination detection only.  
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Figure 2.7 Layout of X-ray tomography [14] 

 

 

Figure 2.8 Layout of ultrasonic C-scan [15] 
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2.2.3 Radiography 

Albuquerque et al. [16] studied radiographic images of the composite plates subjected to 

drilling which have created delamination in these plates. They have used four drill 

geometries with different combinations of feed rates. The research involved relationship 

between delamination size and various option of drill geometry and feed rate. In fact 

they have proposed a novel method of image analysis based on neural networks to 

detect and quantize the damage. The study can be useful for drilling practices causing 

minimum delamination. The technique is restricted to drilling based delamination 

detection and quantification and requires lengthy procedure. Concept layout of their 

experimental work is shown in Figure 2.9 below. 

 

Figure 2.9 Block diagram of the experimental work [16] 

 

2.2.4 Electrical Resistance Methods  

Ueda et al. [17] used two-staged electrical potential change method (EPCM) to locate 

and quantify the delaminations in the damaged beam structure. The method is 

complicated and needs lots of experiments. Todoroki [18] used a modified electrical 

resistance change method (ERCM) to diagnose the delamination in the Carbon Fibre 

Reinforced Polymer (CFRP) laminates. The method has the merit of not requiring 

expensive equipments. Lots of electrodes need to be mounted in the experiment using 
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electrical resistance change method.  In the present work a modified technique has been 

developed based on ERCM and the author has termed it as Multi-Probe Electrical 

Method (MPEM). The new method does not require lots of electrodes to be mounted 

during experiment for the delamination detection.  

2.2.5 Acoustic Emissions 

Hatta et al. [19] studied Acoustic Emissions (AE) using Electronic Speckle Pattern 

Interferometry (ESPI) (as shown in Figure 2.10), and Super Conducting Quantum 

Interference Device (SQUID) (as shown in Figure 2.11) current mapping to examine the 

damage process of carbon/carbon (C/C) composites subjected to compact tension and 

having notches. They found that AE technique was successful in indentifying the 

fracture steps; ESPI was able to diagnose delamination, whereas ESPI proved useful to 

detect fibre failure. Figure 2.12 shows the application of acoustic emission in a 

composite structure [4]. These methods are generally not suitable for online structural 

health monitoring.  
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Figure 2.10 Schematics of 3D ESPI system [19] 

 

Figure 2.11 Composite structure with acoustic emission sensors [4] 
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Figure 2.12 Schematics of SQUID NDE system [19] 

 

2.2.6 Other Non-vibration-based Methods 

Visual inspection is the most common and first type of NDT step [20]. Using 

magnifying glasses and fibre optic cameras visual inspection can be very useful to 

detection the surface cracks of larger sizes. Another method named as eddy currents 

technique is also used for damage detection. In this method electricity is passed through 

the structure under investigation and the differences in the flow of current in the 

structure, are measured [21]. Chattopadhay et al. [22] analysed dynamic strain for smart 
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composite plates with and without delamination and worked out a new approach for 

delamination detection using root mean square (RMS) values of the plates. They 

calculated the RMS values of the nodal displacements after applying 127 volts to the 

piezo-actuators to both the healthy and through-width delaminated plates. They found 

that RMS values of the nodal displacements are higher for delaminated plate as 

compared to healthy plate. The method is based on comparison of the healthy and 

damaged structures and the work is purely numerical and has not been verified by 

experiments.  

Tan et al. [23] developed a mathematical model for magnetostrictive layer (ML) 

attached to the beam with internal delamination. They used integrated ML (IML) and 

distributed ML (DML) for their numerical experiment. They found from their numerical 

results that the concept can detect, localize, and quantify the internal damage in a 

composite beam. The concept of DML is shown in Figure 2.13. The method is not 

experimentally verified so far. 

 

Figure 2.13 Layout of delaminated composite beam bonded with DML [23] 
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Comparative vacuum monitoring (CVM) systems and sensors are other types of health 

monitoring techniques that can be utilised to monitor damage in metallic and composite 

structures. Applications range from simple systems used to improve the efficiency of 

QA/QC testing of automotive components through to complicated installations for the 

aerospace industry. The operating principle is simple, requiring small sensor pockets to 

be created in a region where damage is expected. When damage develops in the 

structure, a leakage path is formed between the vacuum and ambient pockets creating a 

measurable vacuum change [24]. The method is mainly suited for cracks in joints and 

void pockets in the structures. 

2.3 Vibration Based Methods 

2.3.1 Laser Techniques 

Cheong et al. [25] used laser techniques to indentify damage in composite structures. 

They used ESPI and shearographics system to detect damages in delaminated 

composites, debonded honeycomb structures and adhesive joints. Shang et al. [26] used 

a scanning laser vibrometer, a lead zirconate titanate (PZT) and a polyvinylidene 

fluoride (PVDF) to conduct experimental  modal testing as shown in Figure 2.14.  They 

used higher order finite element model and Mindlin plate theory while interlaminar 

delamination has been modelled using continuum damage mechanics (CDM) 

formulation. Exciting frequency of 1 to 1000 Hz (swept sine) has been used to excite 

the plate through PZT actuator. They found that the subset selection analysis using 

modal parameters was capable to detect and localise the damage/multiple damages in 

the composite plate. Higher excitation frequency range is required for the experiment to 

achieve required results. 
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Higher excitation frequency range is required for the experiment to achieve required 

results. 

 

Figure 2.14 Test set-up for experimental modal testing using SLV and PZT-PVDF 

system [26] 

2.3.2 Statistical-Based Methods 

Hadjileontiadis and Douka [27] have developed a statistical method (kurtosis) using 

first few modes of vibration for a thin isotropic rectangular plate with crack parallel to 

one of its edges. The kurtosis analysis has been able to diagnose, locate and quantify the 

crack in the rectangular plate. The method worked in the presence of the added noise as 

well. The method has not been verified by experiments yet and is limited to cracks 

evaluations only. Yang et al. [28] used cross correlation function of the measured 

vibration signatures to develop a new technique of inner product vector (IPV) which has 

been successful to locate the damage in the composite beam. The IPV is a weighted 

summation of the modal parameters in terms of the vibration response (displacements). 

Detection of the damage is based on the difference between the normalised IPVs of 

healthy and damaged (DIPV) beams. In fact the double differentiation of the DIPV gives 

the location of the damage in the composite beam. The method requires vibration 

responses from random excitation and the sensors should be closely located to the 
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damage. The method has yet to be verified by experiments. Wang et al. [29] extended 

the IPV technique to be valid for general structures as well. They have checked the 

application of the method for shear frame structures, honeycomb sandwich beam, and 

stiffened panel structure and found it useful for the damage detection and location in all 

the three cases. The method still needs experimental verification and has the common 

drawback for the healthy structure data.  

2.3.3 Optical-Fibre Techniques 

Mackenzie et al. [30] used an array of fibre Bragg grating strain sensors (FBG) to 

monitor crack propagation and delamination under a bonded repair. They used a 500 kN 

MTS uni-axial hydraulic testing machine to conduct the tests. The damage was 

measured using a portable Zetec eddy-current instrument, with a 50–500 kHz 

differential probe. They verified the experimental observations by thermo-elastic scan 

of the patch and finite element analysis as well. Takeda et al. [31] found relationship 

between the spectrum, obtained from the data processed from the FBG sensors, and the 

delamination size of the delaminated CFRP laminate. The set up of the experiment is 

shown in Figure 2.15. Amplified spontaneous emission (ASE) light source (Ando 

Electric Co. Ltd, AQ-4310) of more than 40 nm wavelength range was used to 

illuminate the optical fibre. Takeda et al. [32] used fibre Bragg grating strain sensors for 

the delamination detection of the carbon fibre reinforced plastic laminates under cyclic 

loading. They found that the spectrum obtained from the processing of the FBG data 

changes with the size and location of the edge delamination. Figure 2.17 shows how a 

small diameter FBG sensor was embedded into a CFRP quasi-isotropic laminate. Cyclic 

load of 0 to 440 MPa was applied to the specimen at a frequency of 5 Hz in the 

experiment. The problem with the technique is that the sensor has to be near the 
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delamination location. Also the fabrication of the laminate with embedded FBG 

becomes challenging. 

 

Figure 2.15 CFRP specimen with FBG sensor embedded [31] 

Grouve et al. [33] showed that fibre Bragg grating sensors can be used to get the 

resonant frequencies of a vibrating anisotropic beam structure. In their research work on 

the subject, they introduced delaminations in the laminated plate by placing a 16 micron 

foil of polyimide between two plies prior to consolidation. During the fabrication they 

also inserted two FBG strips. They observed that the modal parameters have direct 

relationship with delamination and conversely delamination can be detected by the 

changes in the modal parameters. Xu et al. [34] used fibre-optic interferometric 

arrangement to compare the integral strain versus load position curve for both healthy 

and damaged beams to find the delamination presence and location. They have verified 

their numerical results through experiments. Ihn et al. [35] presented two active sensing 

methods which the authors have termed as pitch-catch methods. The first one is a 

damage index method, using a pair of actuator-sensor, which can quantify damage at a 

known location and the second one, is imaging method using multiple pairs of 

actuators-sensors and lamb waves can detect location and size of the damage. All the 
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fibre optic techniques so far mentioned need FBG embedded inside the structure which 

is not a welcome feature in online structure health monitoring technique.  

2.3.4 Lamb-Wave Based Techniques 

Wavelet analysis is used for processing the dynamic signals in damage detection of 

composite structures. Mal et al. [36] combined vibration (modal) and wave propagation 

(lamb waves) data in their technique that require minimum user intervention.  The 

damage index they calculated from the modal data was used for delamination detection 

whereas the broadband excitation (0.1-2.5MHz) has been employed for the location and 

size of the delamination. They used two types of delaminations in their samples viz., 

internal delamination caused by impact and delamination caused by drilling holes in the 

plates. Quaegebeur et al. [37] have used lamb waves to develop a technique for 

delamination detection in composite structure. They studied first low frequency 

behaviour (<300 kHz) both numerically and experimentally and then high frequency 

behaviour (>300 kHz). They found that detection was more successful at higher 

excitation frequency and independent of the piezoceramic equipment spacing and other 

characteristics. They concluded that excitation at higher frequency level is more suited 

for interlaminar delamination detection. Su and Ye [38] studied the propagation 

characteristics of the lamb waves in the delaminated composite plate. They used PZT 

actuators and applied 0.1MHz to 1.5MHz as sweep frequency and collected the data 

with PZT sensors at a step of 50 Hz in their experiments. They also developed an active 

online diagnosis system based on their work as shown in Figure 2.16. 
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Figure 2.16 Configuration of diagnosis system using piezoelectric network [38] 

Balasubramaniam et al. [39] worked on three techniques viz., multi-transmitter-multi 

receiver (MTMR) combined with tomographic technique for data processing, single-

transmitter-multi-receiver (STMR), and the third one a linear array of sensors installed 

across a stiffener for the damage detection. They generated ultrasonic lamb waves (with 

central frequency of 500 kHz) to explore their structural health monitoring techniques. 

Using tomography with lamb waves complicates the experiment. 

 Kudela and Ostachowicz [40] developed beam and plate spectral elements with 

delamination. They have performed study on the relationship between the size and 

location of the delamination and the reflected waves. The work is only numerical and 

has not been verified by experiments. Hu et al. [41] have studied the influence of the 

excitation frequencies (10kHz to 120kHz) of Lamb waves on the power of the reflected 

waves from a delaminated composite plate. They have found that the optimal excitation 
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frequencies are close to the natural frequencies of the local delaminated regions 

corresponding to the pure bending modes. Pohl and Mook [42] have investigated the 

utility of impedance spectroscopy and lamb wave (in the range of 10kHz) techniques for 

delamination detection on carbon fibre reinforced polymers. They found that impedance 

spectroscopy is useful for self monitoring and its surrounding while lamb waves are 

suited for large areas. Wang et al. [43] found that the correlation-based algorithm in 

combination with virtual sensing paths (VSPs) proved to be a good tool for diagnosis of 

damage in the v-notched aluminium plate. They used central frequencies of excitation to 

vary from 250 kHz to 350 kHz and sampling rate of 20.48 MHz for data collection. 

Okabe et al. [44] worked out an ultrasonic propagation system using actuator made of 

macro fibre composite (MFC) and sensors made of fibre Bragg grating. The new 

technique of delamination detection and localization is based on the change in the 

dispersion characteristics of the lamb waves. Although the above mentioned actuators 

and sensors are smaller in size and effective but it needs expensive hardware and 

broadband excitation to work effectively.  

Wandowski et al. [45] used pulse-echo method to excite the structure with guided 

waves and receive it using a circular array of sensors as shown in Figure 2.17 installed 

on the structure. Rathod and Mahapatra [46] used circular array of sensors similar to the 

one used by Wandowski et al. [45] for localisation of damage. Both of these research 

works has the limitation of number of sensors, due to the finite size of the sensor itself, 

for small structures. An et al. [47] developed a technique to normalise the data from the 

guided wave signals such that the effect of ambient variations like temperature are 

avoided. 
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Figure 2.17 Principles of damage localisation algorithm in a composite plate [45] 

 

They validated their work by experiments. The technique is still under development but 

can be useful where temperature variations are quite large. Bhalla et al. [48] have used 

array of surface bonded piezoceramics (PZT) to diagnose and locate the damage in 

structures by wave-propagation based method. They used frequency range of 100-150 

kHz to invoke high sensitivity. The experimental structure is shown in Figure 2.18. All 

the work so far mentioned in this section uses broadband signals to localize the damage 

whether the guided waves are used directly or indirectly. Khodei and Aliabadi [49] used 

piezoelectric patches as both sensors and actuators to identify damage in the aluminium 

plate. The excitation frequency of 350 kHz has been applied for the usage of Lamb 

waves in the numerical experiment.  
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Figure 2.18 Experimental structure showing actuator and sensors [48] 

2.3.5 Frequency-based damage detection  

Changes in natural frequencies and mode shapes due to delaminations in composite 

structures were the first indicators which researchers have used for the detection of 

debonding damages. Paolozzi and Peroni [50] observed frequency shifts against the 

order of the mode when the damage percentage was increased. They noticed increasing 

shift with increasing damage percentage concluding that both delamination detection 

and its extent can be seen from the frequency variations in composite plate. The method 

depends on the natural frequencies and both the delaminated and healthy structures and 

gives only qualitative assessment of the damage. 

 Salawu [51] reviewed the investigations on the  relationship between changes in natural 

frequencies and artificial damages in structure. The author concluded that changes in 

natural frequencies could characterize damage in the structure. Zhu et al. [52] used 

neural networks and sensivity analysis for the detection of damages in structures based 
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on natural frequency variations. They verified their work by experiments. The 

techniques require both healthy and damaged data to be compared for damage detection. 

Cerri and Vestroni [53] studied a beam with a diffuse crack for possibility of crack 

detection based on frequency changes due to damage in the beam. They compared 

numerical results with the corresponding experimental results and analysed the error 

between the two sets of data. The method needs data from the healthy beam. 

 Kim [54] developed a technique to process the frequency response functions (FRF) of 

the damaged and intact composite structures such the residual FRF provides information 

of the damage presence in the delaminated structure. The reconstructed FRFs not only 

provide information regarding damage presence but these also give the location and size 

of the delamination as well. Figure 2.19 shows the experimental setup of the Kim et al. 

experiment for FRF measurements. Gorl and Link [55] applied modal updating 

technique to the modal parameters for damage localisation and size approximation. A 

steel frame structure was used for the analysis and the work is purely numerical. Kim 

and Ywang [56] observed the extent of the delamination can be identified in terms of 

the natural frequencies and damping ratios of the de-bonded beams. They verified their 

theoretical models by experiments. The method is not a direct technique for 

delamination detection and localisation.  

Yam et al. [57] found that using measured modal damping change and computed modal 

strain energy the location of the internal delamination can be estimated in multilayer 

composite plate. The work is based on the comparison of healthy and delaminated 

plates. Yam et al. [58] found that changes in natural frequencies of the damaged plates, 

as compared to healthy plate, increase with increase of delamination sizes and vary with 

mode numbers. They verified their numerical results through experiments on 
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honeycomb sandwich plates as well as multilayer composite plates with internal 

delaminations. 

 

 

Figure 2.19 Experimental set-up for vibration testing [54] 

2.3.6 Mode shape-based damage detection  

 Abdo and Hori [59] employed variations in mode shapes by rotations to indentify the 

damage in the structure. They showed that the technique was able enough to detect, 

locate, and quantify the damage size in the structures. The work done was numerically 

verified and no experiments were done.  

Hamey et al. [60] used smart piezoelectric materials (sensors) to map the curvature 

mode shapes of a structure. The method used the data from healthy and damaged plates. 

They calculated Absolute Difference Method, Curvature Damage Factor, Damage 

Index, and FRF Curvature Method all depending on the curvature mode shapes of 
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healthy and damaged plates. The method is dependent on the data from healthy plate. 

Santos et al.[61] used double pulse TV holography and acoustic excitation to acquire 

mode shape data of the composite plates with delamination. The method is based on 

mode shape curvature. The method is expensive hardware dependent and also 

dependent on the accuracy of the modes.  

Yoon et al. [62] used the Operating Deflection Shape (ODS) obtained from experiments 

to detect and localise the damage in beams and plates. The method employs the global 

fitting method (GFM) to get the Curvature Operation Shapes (COS). The Curvature 

Operation Shapes are then numerically processed to calculate the Structural Irregularity 

Index (SII) for each mode. These Structural Irregularity Indices are further processed to 

locate the damage. The method does not need data from healthy beam/plate. The 

method uses FRF data to calculate the above mentioned indices and is presently 

restricted to 1D and 2D structures.  

Minak et al. [63] used the first six natural frequencies by pattern recognition technique 

to detect, localise and find the extent of the delamination in composite beam. The 

method has been used for a beam type structure and need the data from healthy beam to 

detect the damage. Yan et al. [64] summarised damaged detection techniques based on 

vibration. They have categorised the techniques to traditional type damage detection 

methods (TTDD) and modern-type damage detection methods. Qiao et al. [65] used a 

combined static/dynamic technique for the diagnosis of the damage in the composite 

structure. A preset static compressive force help the dynamic measurements of mode 

shape data to result in an easy and smooth way to detect damage. In fact the presence of 

static force magnifies the effect of the presence of damage. Uniform load surface (ULS) 

equations are used to process the first three modes and provide inputs for the Simplified 
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Gapped Smoothing (GSM) and Generalised Fractal Dimension (GFD) to further process 

the data for damage localisation. Gherlone et al. [66] have used the higher mode shapes 

to identify, localise, and quantify delamination in the delaminated composite plates. 

They computed mode shapes from mode 1 to mode 50 and used modes 31 to 50 to find 

the delamination location and extent in the composite plate. The benefit of the higher 

modes gave an edge over the conventional mode shape methods that the delamination 

localisation did not require data from the healthy plates. The disadvantage is that it’s not 

practically feasible to measure higher modes. The work is purely numerical and has not 

been verified by experiments. Qiao et al. [67] utilized simplified gapped smoothing 

method (GSM), generalized fractal dimension (GFD), and strain energy method (SEM) 

to diagnose, locate, and quantify the delamination present in the composite plate using 

the experimental and numerical curvature mode shape data and uniform load surface 

(ULS) curvatures. They used three consecutive mode curvatures (modes 3–5) to 

compute the three damage detection techniques viz., GSM, GFD and SEM. Akhtar et al. 

[68] have employed  pulsed Electronic Speckle Pattern Interferometry (Pulsed-ESPI) on 

a carbon fibre reinforced plastic (CFRP) laminate plates with different types and sizes 

of delaminations at the centre of the specimen, based on mode shape characteristics. A 

plate structure with delamination sizes are shown in Figure 2.22.  Figure 2.23 shows the 

setup used for experiment. Ghoshal et al. [69] used Vibration Deflection shapes (VDS) 

to detect and locate the damage in the composite material structures. Vibration 

Deflection shapes are in fact the vibration patterns of the composite structure under 

study subject to steady state vibrations. They used Scanning Laser Doppler Vibrometer 

(SLDV) to measure the vibration response and piezoelectric actuators in their 

experiments. They found the VDS method can detect and localise the damage in large 

composite structure. All the work so far mentioned in this section need modal analysis 
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and or mode shape data of the damaged and or healthy structures. Mode shape data is 

very sensitive to changes and can result in wrong results. 

Amraoui and Lieven [70] used multilayer perception neural networks with SLDV as a 

sensor and piezoceramics patches as actuators to identify and locate multiple 

delaminations in glass/epoxy composite structures. They found the superficial 

delaminations are easily and successfully located by using the compressed data of the 

measured FRFs but failed to locate the deep delaminations in the experiment. Choi et al. 

[71] investigated the relationship between the changes in the natural frequencies and 

mode shapes due to the simulated faults in the structure. 

 

 

Figure 2.20 CFRP specimen with various sizes of artificial defects [68] 
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Figure 2.21 The layout of experimental set-up [68] 

In fact they derived a new damage index. The methodology was based on changes in 

modal strain energy and natural frequencies and was capable to find damage locations 

and sizes in the damaged plate structure. The work was purely numerical and requires 

data from both healthy and damaged structures. 

2.4 Summary 

 Overview of different NDT and SHM methods for damage detection has been 

discussed. 

 Different SHM techniques used for composite structures have also been 

discussed in this review of literature chapter. 

 Conventional NDT is time consuming and not suitable for online structural 

health monitoring. 
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 Vibration-based methods can identify the delamination quickly as compared to 

conventional NDT. 

 However most of the conventional vibration-based methods require healthy data 

(baseline based method) and some require excitation at very high frequency. 

This limits the use of conventional electromagnetic shaker and accelerometers 

for practical applications. 

 Hence in the present research methods using lower vibration modes have been 

attempted for delamination detection and location. 
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CHAPTER 3                                                    

EXPERIMENTAL SETUP 
 

3.1 Overview 

In this research study two different types of plates have been used. One is composite 

Aluminium plates and the other type is glass fibre composite plates. Details of the 

Aluminium plates are given in Section 3.2 while the detail of glass fibre plates is 

explained in Section 3.3. An ISI-SYS Piezo-shaker was used to apply a harmonic 

excitation load, set of accelerometers (PCB) were used to measure data, National 

Instruments (NI) data acquisition card was used to convert the data received from 

accelerometers to computer, and the Labview based data collection software, Vibration 

Monitor was used to capture the data . For the modal analysis a PCB instrumented 

hammer was also used in addition to the Piezo-shaker. 

3.2 Experimental Setup for Aluminium Plates 

Experimental setup for the Aluminium plates is shown in Figure 3.1. The plate in the 

experiment is fixed on one edge as shown in Figure 3.1(a). Figure 3.1(b) shows the 

photograph of the experimental setup. 

   

Figure 3.1 Schematic of Experiments, (a) Plate with shaker and accelerometer, (b) 

Experimental setup 

(b) 

(a)



Chapter 3 

                                                        58 

3.2.1 Aluminium Plates 

Two Aluminium plates of sizes 190 mm x 190 mm x 1.15 mm and 190 mm x 190 mm x 

3.15 mm glued together leaving a square pocket of 50 mm x 50 mm in the centre have 

are prepared to simulate the delamination condition so that the effect of the nonlinear 

interaction between the layers during the vibration experiment can be observed. The 

two-piece Aluminium plate with a piezo-shaker, accelerometer and a fixed end are 

shown in Figure 3.2. Another set of identical Aluminium plates were glued together 

without leaving a square pocket (healthy set) to compare the response of the 

delaminated set with healthy set. Glued mass of the Aluminium plates was 419 grams. 

 

Figure 3.2 Composite Aluminium plate 190 mm x 190 mm x 4.3 mm 

 

3.2.2 Shaker & Amplifier 

 A piezo-electric shaker (Model PS-X03, M/s ISI-SYS) and a dual channel bipolar 

amplifier, as shown in Figure 3.2, have been used to excite the plate. Weight of the 

piezoelectric shaker is 234 grams. Amplifier shown in Figure 3.2(b) provides a suction 

force to keep the shaker in place while the latter is in operation to apply the excitation 

load to the composite plate under testing. 
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Figure 3.3 (a) Piezo-shaker, (b) Dual channel bipolar amplifier 

 

 The ISI-SYS Piezo-shakers are specifically developed for very low to high frequencies 

(frequency range 0- 50 kHz) broadband excitation.  

 

3.2.3 PCB Hammer 

The instrumental hammer used for modal analysis is shown in Figure 3.4. The 

sensitivity of the instrumented hammer, used in the experiments, is 2.25mV/N at room 

temperature. Its mass is 160 grams and its length is 216 mm. it is connected with data 

acquisition card via power amplifier through standard BNC jack connector.  

 

 
 

Figure 3.4 M/s PCB hammer used in the experiments 

(a) (b) 
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3.2.4 Data Acquisition 

The data were recorded on the Laptop using 16-bit 8-channel data acquisition Analogue 

to Digital card. The data acquisition card is shown in Figure 3.5. It is called NI USB 

6221BNC and is 16-Bit, 250 kS/s M Series.  

 

 

Figure 3.5  Data acquisition card used in the experiments 
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3.2.5 PCB Accelerometer 

Accelerometers (Model 352C22, M/s PCB) as shown in Figure 3.6 are used to measure 

the vibration response in terms of acceleration. Model 352C22 accelerometers are 

lightweight (0.5 grams) and is capable of measuring frequencies in the range of 1 to 

10000 Hz. It has sensitivity of 10mV/g.  

 

 

Figure 3.6  Accelerometer Model 352C22  

 

 

3.2.6 Data collection 

All the data collected in the experiments are done using the Labview-based Vibration 

Monitor software developed by Austin Consultants (UK). A vibration monitor is 

designed to collect the data through the data acquisition card. Figure 3.7 shows snapshot 

of online data collection by the Vibration Monitor during the experiment. The software 

allows selection of sampling rate and voltage limits for each channel in use. 
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Figure 3.7 Vibrator Monitor Interface and Data acquisition 

 

3.3 Experimental Set-up for glass fibre plates 

Experimental setup for the glass fibre composite plates is shown in Figure 3.8 (a-b). 

       

           Figure 3.8 (a) The experimental test setup, (b) Shaker mounting 

(a)

(b) 
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The test plate made of E-glass fibre and epoxy resins has been used here. It has a total 

of 8 layers of equal thickness which are arranged as [0o /90o/0o /90o/90o /0o /90o/0o] as 

shown in Figure 3.9. The size of the test plate is 400 mm x 400 mm and total thickness 

3.5mm. Total mass of the composite plate is 664 grams. The inter-laminar delamination 

(Teflon tape of 20 microns) was introduced between 3rd and 4th layers, during the pre-

preg process, in order to create a discontinuity in strains. Healthy plate used in the 

experiments is shown in Figure 3.10 (a) whereas the plate with off-centre delamination 

is shown in Figure 3.10 (b). The delamination location is shown in Figure 3.10(b). 

 

Figure 3.9 Arrangement of 8 layers in the test plates 

 

 

Figure 3.10 Typical test plates of E-glass fibre, (a) no delamination, (b) delamination at 

coordinate location (275mm, 275mm) 

(a) (b)
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3.3.1 Shaker with Excitation positions 

Figure 3.11(a-c) show three different positions of excitations and the measurement 

locations (5 x 5 grids) used during the experiments. Three different positions of 

excitations have been used during the experiments. All the three plates mentioned in 

section 3.2 were excited at the three different positions shown in the following figures. 

     

 

Figure 3.11 Composite plate of E-glass fibre with (a) Shaker location 1(b) Shaker 

location 2(c) Shaker location 3

(c)

(b) 
(a) 
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CHAPTER 4                                                            

NONLINEAR INTERACTION BETWEEN DELAMINATION 

LAYERS IN COMPOSITE PLATES 

 

4.1 Introduction 

The dynamic behaviour of the delaminated composite plate based on the numerically 

simulated experiments has been studied in this chapter. The possibility of delamination 

detection using the nonlinear interaction feature in the delaminated region has been 

explored when excited the plate through a shaker.  A composite plate with 3 cases of the 

delamination has been considered first in the simulated examples. Initially the 

experiments on simple aluminium plates with and without delamination have also been 

carried out which confirms the existence of the nonlinear interaction between the 

delaminated layers used in the simulated studies and then the results of the simulated 

examples were also compared with the earlier published experimental results on the 

composite plates. The results and observations of the study which can be used for the 

delamination detection in the composite structures have been discussed. 

In the present approach, the structural response due to the nonlinear interaction between 

the layers in the delamination region, when the structure is excited externally, has been 

utilised. It has been believed that such nonlinear interaction response will travel all 

along the surface and can be measured at any location. The proposed concept has 

further been demonstrated on a simple cantilever beam made of steel where 

delamination has been introduced by dividing the width of beam cross-section in two 

parts of small length of the beam [72]. It has been observed that the delaminated beam 

shows number of harmonics in their acceleration responses when excited at different 
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modes [72]. Now the concept has further been extended here on a carbon fibre plate 

with delamination. The acceleration responses were estimated at 3 randomly selected 

measurement locations when excited at number of modes from 1 to mode 20. The 

proposed analysis has been applied to a composite plate with 3 cases of the 

delamination in the numerically simulated examples. These are the cases where a small 

size delamination has been assumed which resulted in insignificant change in the 

natural frequencies at low modes but the nonlinear interaction between the delaminated 

layers shows promising results to detect the delamination at early stage. The 

observations have been summarised here which shows the possibility of the 

delamination detection in much economical way.  Simple experiments have also been 

carried out on aluminium plates with and without delamination which confirms the 

existence of the nonlinear interaction between the delaminated layers used in the 

simulated studies and then the results of the simulated examples have further been 

compared with the earlier published experimental results on the composite plates[73]. 

The results and observations of the study which can be used for the delamination 

detection in the composite structures have been discussed in this chapter.  

 

4.2 Example of a Composite Plate 

A composite plate of multi-layer carbon fibre-reinforced epoxy material has been 

chosen for the present study. The plate is made of 8 lamina layers and 225.5mm  x 

225.5mm square plate with 2.05mm overall thickness. The composite plate ply 

orientations are 0 0 0 0[0 / 90 / 0 / 90 ]s  and the material properties for the lamina are; 

Density,  =1813.9 kg/m3, the elasticity constants, 78.371 E GPa, 9.1032  EE GPa, 



Chapter 4  

                                                        67 

91.41312 GG GPa, 838.323 G GPa, and the Poisson ratios, 33.01312   ,

42.023   

Three cases have been considered, Case A – healthy plate (no delamination) and 

however the other two cases named B, and C have delaminations with area 60 mm x 60 

mm (Figure 4.1), and 30 mm x 30 mm (Figure 4.2) respectively. The delamination has 

been introduced between the 3rd layer from top and 5th layer from bottom and the centre 

of the delamination region i.e., the location (165.37mm x 165.37mm) is shown in 

Figure 4.1. The mathematical model of the plate has been modelled using eight-node 

rectangular solid elements (C3D8I) in the Finite element (FE) code ABAQUS. The FE 

model for the plate without delamination (Case A) is shown in Figure 4.1. A total of 

900 elements of size 7.51667mm x 7.51667mm x 0.25625mm were used for each layer. 

Delamination in the composite plate was also introduced in the FE model for other two 

Cases B and C with delamination of 60mm x 60mm and 30mm x 30mm (Figure 4.2) 

respectively. The upper and lower layers in the delamination region have also been 

modelled using 8-noded rectangular solid elements (C3D8I). The nodes on the upper 

and lower layers have been created such that they have same x and y location in the 

delaminated region but not connected to each other. In Figure 4.3, the node 5705 (also 

marked as circle in Figure 4.1) is the node at the centre of the delamination on the top 

layer of the composite plate and the node 15705 is the node (not shown) that is exactly 

at the same location as 5705 but on the bottom layer. Figure 4.3 also shows the 

measurement locations (Accelerometers) and the location of the external excitation 

which has been used latter in Section 2.1 on the simulated experiments.  
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Figure 4.1 A typical FE model of the Composite plate without delamination (Case A), 

centre (165.37mm x 165.37mm) of assumed delamination for Cases B and C shown as a 

Node with circle. 

 

            

Figure 4.2 (a) FE mesh of the Composite plate for Case B (delamination size 60mm x 

60mm), (b) Cases C (delamination size 30mm x30mm) 

 

x 

y 
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Figure 4.3 Composite plate showing the shaker and accelerometer locations used in the 

simulated experiments 

 

The modal analysis has been carried out for the FE models for all the 3 cases to estimate 

the natural frequencies and the mode shapes. The free boundary condition has been 

assumed for all the 4 edges in all the three cases and then the forty modes have been 

computed. The comparisons of the calculated natural frequencies up to 40 modes for the 

Cases A, B and C are shown in Figure 4.4. From Figure 4.4, it can be seen that at lower 

modes there is no significant change in the Eigen-values for the three cases until mode 

15. After mode 15 the changes are visible for the larger delamination area (Case B) and 

there is very little change in the frequencies between laminated plate (Case A) and the 

delaminated plate with smaller delamination region (Case C). It is also important to note 

that the estimated natural frequencies for Cases B and C assumed the upper and lower 

layers in the delamination region are completely separate, however in practice the 
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resonance frequencies are expected to nearly same or slightly higher depending on the 

level of excitation which results in the nonlinear interaction (open and close behaviour) 

between the delaminated layers during the vibration. The open behaviour means that both 

delaminated layers move independently and move together during the closed behaviour. 

Few typical computed mode shapes and their natural frequencies are also shown in 

Figure 4.5 for Case B during the open condition. The separation between the 

delamination nodes 5705 and 15705 at Modes 1 and 2 is not clearly visible from their 

mode shapes shown in Figure 4.5, however higher modes like modes 21 and 26 do show 

a good separation between top and bottom layers in the delamination region in their 

mode shapes. This separation is clearly visible in their mode shapes when the wireframe 

diagram of the plate is used which are shown in Figure 4.6 where the pair of nodes 7505 

and 15705 shows separation. The separation between the centre of nodes 5705 and 15705 

at each mode up to 40 modes in their mode shapes along the thickness of the plate for the 

Cases B and C is shown in Figure 4.7. Case B with larger delamination area of 60mm 

x60mm shows good separation after mode 6, however nearly negligible separation 

observed for the Case C with small delamination area 30mm x 30mm.  

 

Figure 4.4 Natural frequencies with mode number for Cases A, B and C of the 

composite plate   
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Mode 13: 719.68 Hz                                                    Mode 16: 873.04 Hz 

    

Mode 21: 1193.6 Hz                                                    Mode 26: 1415.9 Hz 

Figure 4.5 Few typical mode shape plots of the delaminated plate for Case B  

  

Mode 21: 1193.6 Hz                                                      Mode 26: 1415.9 Hz 

 Figure 4.6 Mode shape using wireframe plots for the delaminated plate for Case B 

Delamination 

Delamination 
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Figure 4.7 Mode shape deflection for the nodes 5705 and 15705 (pair of nodes at 
delamination centre) along the z- direction with the mode number for the delaminated 

plates, (a) Case B and (b) Case C. 

 

4.3 Simulated Experiments 

The composite structure with delamination is expected to show nonlinear interaction in 

the delamination region when excited externally. Such responses may get amplified 

when excited at the natural frequencies. Hence the acceleration responses have been 

computed at the randomly assumed measurement locations shown in Figure 4.3 when 

the linear chirp-sine excitation was applied at each mode up to 20 modes. The assumed 

measurement locations and the shaker location for the simulated study are shown in 

(a) 

(b) 
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Figure 4.3. The linear chirp-sine excitation was given in the frequency band of 10rf

Hz with the chirp rate of 4 Hz/s for all the modes, where rf  is the rth natural frequency 

(Hz). The banded frequency excitation was given to account for the change in the 

natural frequency for the delaminated plate due to the nonlinear interaction between the 

delaminated layers during the vibration of the delaminated plate.  The time step for the 

response computation was kept equal to 1 s .  It was difficult to simulate the nonlinear 

interaction between the pair of nodes in the delamination region in the ABAQUS FE 

code, hence the mode-superposition method was slightly modified to allow the 

nonlinear interaction and then responses were estimated separately in a Matlab code 

developed for this analysis which has been explained here. 

In the Mode-superposition method, the dynamic equation in the modal domain in 

Equation (4.1) has been used to estimate the modal responses. 

 

2( ) 2 ( ) ( ) ( )T
r r r r r r rt t t t    p p p φ F  , ……………………………………………..(4.1) 

 

where r = rf2 , r  is damping ratio at rth mode, rφ is the vectors of the rth mode 

shape, ( )r tp is the modal responses at rth mode and ( )tF is applied force. The responses 

(displacement, velocity and acceleration) have then been estimated as ( ) ( )t tx φp , 

( ) ( )t tv φp  and ( ) ( )t ta φp respectively, where φ  is the mode shape matrix which is 

equal to  nφφφ 21  and the modal response vectors, 

 1 2 3( ) ( ) ( ) ( ) ( )
T

nt t t t tp p p p p  for the 1st to nth mode respectively. However 
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for the present study the modal parameters – the natural frequencies, nf

 Tnr ffff 21  and   the corresponding mode shape vectors, φ  would 

not be constant with time due to the nonlinear interaction. Hence the 2 sets of modal 

parameters, Set (1) ( _n df  and dφ ) for the delamination case and Set (2) ( _n ndf  and ndφ ) 

for the perfectly laminated (no delamination) case, computed from the FE models 

developed in the ABAQUS (version 6.6) have been used for this purpose. The set (1) 

data were used in Equation (4.1) and the responses estimated when the nodal 

displacement, )()( twtw ji   in the z-direction of thickness of the plate and the set (2) 

when )()( twtw ji  , where   i  denotes a set of nodes in the upper delamination region 

and j  denotes a set of nodes in the lower delamination region that were paired with the 

corresponding i nodes. It is because the later condition is more like the plate without 

delamination. The impact energy between the delaminated layers during the nonlinear 

interaction was assumed to be small for the small size delamination considered here and 

hence this affect has been neglected in the response estimation. Figure 4.8 explains a 

simple understanding of the nonlinear interaction adopted in the response computation. 

Hence a computational programme has been developed based on the proposed scheme 

in the Matlab software code to estimate the responses using the 2 sets of the modal data 

from the FE model (with and without delamination) developed in the ABAQUS code. 
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Figure 4.8 The scheme adopted for the nonlinear interaction between the delaminated 

layers 

The Newmark-  method was used for solving Equation (4.1). It is also important to 

note that if the excitation is at the rth mode, rf , generally the rth modal response is 

computed in Equation (4.1) to the estimate nodal responses based on the assumption 

that the response from other modes may be negligible due to the orthogonality 

condition. However, the composite structure is generally non-isotropic material due to 

the direction dependent material properties for each lamina in the composite structure 

and it is very much expected that the some modes may be coupled to each-other. Hence 

a total of 20 modes have been used in the response estimation so the influence of the 

other modes in the response can be observed even when excited at a mode. The 

computed measured acceleration responses and the displacement responses at the pair of 
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nodes were then down sampled by 10 and low-pass filtered at 49 kHz to remove the 

high frequencies noise components likely to occur due to the time step used in the 

computation. Few typical displacement responses for the nodes 5705 and 15705 in the 

z-direction are shown in Figure 4.9 for Case B delaminated plate.  The displacement 

responses clearly show the nonlinear interaction in the delamination region even at the 

lower modes where the separation between the nodes 5705 and 15705 is clearly visible 

in the mode shape (Figure 4.7). It is also encouraging to observe a similar behaviour for 

Case C where delamination area is just one fourth of Case B and the change in natural 

frequencies when compared with the plate without delamination (Case A) nearly 

negligible for several lower modes (Figure 4.4). Few typical displacement responses for 

Case C at the nodes 5705 and 15705 at Modes 10 and 18 are also shown in Figure 4.9 

which do not show the nonlinear interaction clearly, however the difference of the 

displacement between these 2 nodes clearly indicates the presence of the nonlinear 

interaction which is shown in Figure 4.11. 
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Figure 4.9 The displacement responses along the z-direction of nodes 5705(solid line) 

and 15705 (dashed line) for Case B (a) Mode 5:218 Hz, (b) Mode 10: 508 Hz, (c) Mode 

16:874 Hz   

 

2.498 2.499 2.5 2.501 2.502

-0.5

0

0.5

1

Time, s

D
is

p
la

ce
m

en
t,

 m
ic

ro
ns

2.498 2.499 2.5 2.501 2.502

-0.05

0.05

0.15

0.25

Time, s

D
is

pl
ac

em
en

t,
 m

ic
ro

n
s

2.498 2.499 2.5 2.501 2.502

-1

0

1

Time, s

D
is

p
la

ce
m

e
nt

, 
m

ic
ro

n
s

(c) 

(b) 

(a) 



Chapter 4  

                                                        78 

 

 

 

Figure 4.10 (a) & (c) are the displacement responses along the z-direction of nodes 

5705(solid line) and 15705 (dashed line) for Case C , Modes 10 & 18; (b) &(d) are the 

difference of displacements respectively. 
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4.4 Data Analysis and Results 

Since the simulated experimental responses were initially computed at the time step of 1

s and then down sampled the response data by 10 so that the sampling frequency (

samplingf ) becomes equal to 100 ksamples/s for the responses. The averaged spectra have 

been estimated for all the simulated measured acceleration responses data keeping the 

frequency resolution, f = 3.052 Hz by using the number data points, N= 32768 for the 

sampling frequency ( samplingf ) with data overlap of 40%. No window was used for this 

analysis. Since the excitation frequency band for each mode was the linear chirp-sine 

excitation, hence ordered spectra were estimated for averaging and the order axis was 

then converted to the frequency axis by multiplying the order 1 by the excited natural 

frequency. Total 5s data around the resonance response were used for this calculation. 

The results are summarised in Table 4.1 and few typical acceleration amplitude spectra 

in Figures 4.11-4.13 for Case C of the delaminated plate where delamination area is 

small. 

Table 4.1 Summary of the observations for the delaminated plate for Case C 

Excitation Mode Observation made at the measured locations Figures 

1-3, 8-10, 12,17-
18, 20 

Excited mode and its higher harmonics Figure 4.11 

4, 5, 14 Excited mode, higher harmonics and  sub-
harmonics 

Figure 4.12 

6, 7, 11, 13, 15, 
16, 19 

Excited mode with side bands and their 
harmonics.  

Figure 4.13 
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Figure 4.11 Amplitude acceleration spectra at the measurement location 1 for Case C, 

(a) Mode 1: 70 Hz (b) Mode 8: 427 Hz (c) Mode 10: 509 Hz (d) Mode 20: 1143 Hz 

     

Figure 4.12 Amplitude response spectra at the measurement location 1 for Case C, (a) 

Mode 4: 196 Hz (b) Mode 14: 775 Hz  
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Figure 4.13 Amplitude response spectra at the measurement location 1 for Case C, (a) 

Mode 6: 359 Hz (b) Mode 7: 375 Hz (c) Mode 13: 733 Hz (d) Mode 16: 903 Hz 
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210.50Hz (3x). However the number of other modes shows the appearance of the sub-

harmonics and harmonics (0.5x, 1x, 1.5x, 2x, 2.5x, etc.) of the exciting frequency as 

shown in Figure 4.12. For example, when the plate was excited at Mode 4, the response 

contain the frequency peaks at 97.97Hz (0.5x), 195.9Hz (the exciting frequency 1x), 

294.3Hz (1.5x), 391.9Hz (2x), etc. in Figure 4.12(a). In addition, the 3rd category of the 

responses has also been observed when excited at some other modes and few typical 

examples are shown in Figure 4.13. In this category, the appearance of the exciting 

mode (1x) and its higher harmonics (2x, 3x, etc.) together with the multiple side band 

frequencies at 1x, 2x, etc. showing modulation with other natural frequency of the 

delaminated plate. For example, in Figure 4.13(a), the presence of the peak at the 

exciting Mode 6: 359.4Hz (1x) along with its higher harmonics at the frequencies 

718.9Hz (2x), 1078Hz (3x), etc. have been observed together with side band frequencies 

of 239.4Hz and 479.5Hz at 1x. This indicates the side band frequencies are 

approximately at equidistant of the frequency120Hz on either side of the frequency peak 

at 359Hz. The frequency of 120Hz is close to Mode 2 which confirms that the Mode 2 

gets modulated with Mode 6 when the delaminated plate has been excited at the Mode 6 

due to the nonlinear interaction. All the 3 kinds of the responses have also been 

observed for the Case B as well. Often the isotropic material shows the appearance of 

the higher harmonics of the exciting frequency is very common if there is some of kind 

of nonlinearity exists in the system, e.g., the breathing of a crack in a steel beam [74]. 

However, the other kinds of the responses seen in the delaminated composite plate 

could be due to the non-isotropic material properties of the composite structure. 

The responses were also estimated for the plate without delamination (Case A).  Few 

typical acceleration spectra for the composite plate without delamination are shown in 
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Figure 4.14 which shows the response at the excited mode only. It can be seen that there 

is no harmonic, sub-harmonic or side band when there is no delamination in the 

composite plate as compared to the delaminated plates. 

 

 

 
 
 
 

 
 

Figure 4.14 Amplitude spectra at the measurement location 1 for Case A (a) Mode 1: 70 

Hz, (b) Mode 4: 196 Hz, (c) Mode 6: 359 Hz, (d) Mode 8: 425 Hz,  
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4.5 Delamination at the centre of the plate 

 

In this case the effect of delamination position has been studied. Here the delamination 

has been induced at the centre of the composite plate. The delamination layer in the z-

direction was assumed same as before (3rd layer from top and 5th layer from bottom). 

This example has been referred as Case D. Here the pair of nodes at the delamination 

centre are 5481 and 15481. The delamination area has been kept as 30mm x 30mm 

similar to plate C. The comparison of the computed natural frequencies of the Case D 

with Case A (Healthy condition) is shown in Figure 4.15. No significant change in the 

natural frequencies has been observed.   

 

Figure 4.15 Natural frequencies with mode number for Cases A and D of the composite 

plate 
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excitation and measurement locations and the computational parameters. The results are 

summarised in Table 4.2 and few typical acceleration amplitude spectra in Figures 4.16-

18. 

Table 4.2 Summary of the observations for Case D (delamination at the centre) 

 

Excitation Mode Observation made at the measured 

locations 

Figures 

1-7,9-10, 14-19 Excited mode and its higher harmonics Figure 16 

8,  12 Excited mode, higher harmonics and  sub-

harmonics 

Figure 17 

11,13, 20 Excited mode with side bands and their 

harmonics.  

Figure 18 
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Figure 4.16 Amplitude spectra at the measurement location 1 for Case D, (a) Mode 4: 

196 Hz, (b) Mode 6: 359 Hz, (c) Mode 14: 785 Hz, (d) Mode 18: 945 Hz 

  

Figure 4.17 Amplitude spectra at the measurement location 1 for Case D (a) Mode 8: 

427 Hz, (b) Mode 12: 643 Hz 

   

  

Figure 4.18 Amplitude spectra at the measurement location 1 for Case D, (a) Mode 11: 

594 Hz, (b) Mode13: 732 Hz 
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4.7 Discussion 

It has been observed that there is no significant change in natural frequencies for small 

delamination area as in Cases of C and D irrespective of their delamination position in 

the plate. However the acceleration responses at all the measured locations show nearly 

common features like harmonics, sub-harmonics and/or modulation at the excited mode 

for all delaminated Cases –B to D. These observations are summarised in Table 4.3. 

Hence these 3 kinds of features in the measured responses can be used to detect the 

presence of the delamination in the composite structure. 

Table 4.3 Summary of the observations for all Cases of the composite plate  

 

Measured 

Acceleration 

Responses 

Excited Modes 

Case A Case B Case C Case D 

Harmonics 

only 
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nl
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1-7, 9-11, 13, 

14, 18, 19 

1-3, 8-10, 

12,17-18, 20 

1-7,9-10, 14-19 

Sub-harmonics 

and harmonics 

20 4, 5, 14 8,  12 

Side Bands at 

excited mode 

and their 

harmonics 

8, 12, 17 6, 7, 11, 13, 15, 

16, 19 

11,13, 20 
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4.8 Experimental Example 

In the absence of composite plates with delamination, a very simple experiment has 

been conducted on Aluminium plates with and without delamination to confirm and 

understand the existence of the nonlinear interaction between delaminated layers that 

was assumed in the simulated examples. Experimental setup is shown in Figure 3.1. 

Figure 3.1 shows the Aluminium sample (glued plate) is fixed on one edge. The data 

were analysed online using a 2-channel FFT analyser and also recorded on a Laptop 

computer using a 16-bit, 8-channel data acquisition Analogy-to-Digital card. The data 

were recorded at a sampling frequency of 100ksamples/s. In the initial experiments, the 

impulse-response modal test [28] was carried out using an instrumented hammer 

(Model 086C03, M/s PCB) to find the natural frequencies. Then sine excitation was 

applied at the few experimentally identified modes. A few typical acceleration 

amplitude spectra are shown in Figure 4.19 for the delaminated plate. The higher 

harmonics of the excited modes can be seen in the acceleration amplitude spectra. 

However, no harmonic components can be observed in the acceleration spectra for the 

plate without delamination (Figure 4.20). This observation confirms the presence of the 

nonlinear interaction in the delaminated region in the delaminated plate. The 

experimental observations made here are same as the authors’ earlier study using a 

simple simulated example of a cantilever beam made of steel with a small delamination, 

in which the presence of the exciting frequency and its higher harmonics were observed 

[72]. However, the other two phenomena revealed in this study, namely the presence of 

the sub-harmonic components and the modulation, must be related to the anisotropic 

material properties of the composite structure. These are further investigated in Section 

4.9. 
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Figure 4.19 Typical measured acceleration amplitude spectra of the delaminated 
aluminium plate when excited at (a) 480 Hz, (b) 960 Hz, (c) 1118 Hz, (d) 2180 Hz 

 

Figure 4.20 Typical measured acceleration amplitude spectra of the healthy aluminium 

plate when excited at (a) 480 Hz, (b) 960 Hz 
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4.9 Comparison with the earlier published results 

 

Section 4.8 confirms the presence of the nonlinear interaction between the delaminated 

layers, but could not produce all the 3 features, presence of (a) higher harmonics, (b) 

harmonics and (c) modulated response for the delaminated plate, as observed in the 

simulated examples. However the experimental results on the delaminated composite 

plates by Polimeno et al. [75], Meo et al. [76], and Solodov et al. [77] shows the 

presence of all these features which are shown in Figures 4.21-4.23. Figure 22 [75] 

shows the presence of higher harmonics, the presence of the modulated response in 

Figure 23 . [76] for the delaminated carbon/epoxy plate and the presence of 

subharmonic component in Figure 24 [77] for the delaminated C/C-SiC composite plate 

with increasing amplitude of vibration during the experiments. Hence, the experimental 

observations shown in Figures 4.21-4.23 validate the observation made on the simulated 

examples on the delaminated plates. 

 

Figure 4.21 Typical experimental spectrum for the delaminated plate showing presence 

of higher harmonics [75] 
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Figure 4.22 Typical experimental spectra for the composite plate, (a) the healthy plate, 

(b) delaminated plate showing presence of modulated response [76] 

 

 

Figure 4.23 Typical experimental spectrum for the delaminated plate showing presence 

of sub-harmonic component [77] 

(a) 
(b) 
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4.10 Summary 

 

The dynamics of the composite plate with 3 different cases of the delamination have 

been discussed. FE models of the chosen carbon fibre composite plate with different 

size and location of delaminations have been developed and then the responses were 

estimated when excited at the number of modes using the mode-superposition method. 

The mode-superposition method was slightly modified to realise the nonlinear 

interaction between the delaminated layers. The 3 different features have been observed 

in their acceleration responses when excited at the number of modes. These features are 

the presence of the harmonics of the excited modes, the presence of the sub-harmonic 

and higher harmonics of the excited modes and the modulated response of the exiting 

modes with the other mode and their higher harmonics. In fact, the appearance of these 

3 features is irrespective of the delamination size and location. Hence, these 3 features 

can be used to detect the presence of the delamination in the composite plate. A simple 

test on a composite plate made of aluminium with delamination have also confirmed the 

existence of the nonlinear interaction between the delaminated layers which resulted in 

the presence of higher harmonics when excited at number of modes. But the presence of 

the side bands or sub-harmonics has not been observed in the present experiments 

probably due to the fact that the isotropic material has been used in the experiment. 

Hence this needs further tests on the delaminated composite plates which are under 

preparation. The detection of the delamination location will also be explored when the 

experiment on the composite plate will be conducted. 
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CHAPTER 5                                                            

EVALUATING PERFORMANCE OF EIGHT TYPES OF FINITE 

ELEMENTS USING EXPERIMENTAL RESULTS 

 

5.1  Introduction 

 

To simulate nonlinear interaction between the delaminated layers explicit dynamic 

analysis is the best and fastest option due to very small time step [78] needed to solve 

the problem, as compared to implicit dynamic analysis. In chapter 4 the ABAQUS 

element C3D8I was used for modal analysis and the ABAQUS version used was 6.6. 

Element C3D8I was not available in ABAQUS Explicit library [78] and hence it was 

not possible to simulate the dynamics of composite plates using ABAQUS Explicit 

library. Modified mode superposition method was used in Matlab to simulate the 

nonlinear interaction. The method lacks in considering impact energy transfer which can 

occur due to the excitation of the composite plate. The element C3D8I was introduced 

into the ABAQUS Explicit library for the first time in ABAQUS 6.7 [78]. In this 

chapter dynamics of composite plates has been compared between the experimental 

results and the prediction by the finite element (FE) models using different element 

types in the ABAQUS FE code (version 6.9).  Looking at the literature review of the 

ABAQUS finite elements used for the dynamic analysis of thin composite plates with 

and without delamination it was found that different researchers used different elements 

available in ABAQUS element library [79]. No proper guidelines were found in any 

research paper to date about a specific element used. This inspired the author of this 

thesis to work on all the elements, available so far in the ASBAQUS explicit element 
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library and examine the results, and dedicate this chapter to the discussion on different 

element usage and performance.  

5.2 Finite Element Selection 

There are a number of elements available in high performance FE (finite element) code 

ABAQUS for the dynamic analysis for thin composite plates. In the recent years a total 

of 8 different element types in the ABAQUS code have been used by the researchers to 

develop the FE model of composite structures in their studies. These elements are the 

3D planar shell elements (S4R, S8R and S8R5), the 3D continuum shell (SC8R) and the 

solid elements (C3D8I, C3D8R, C3D20R, C3D8R). The details of the each element are 

listed in Table 5.1. It is important to note that the quadratic elements S8R, S8R5 and 

C3D20R and the linear S4R5 elements are not supported by the ABAQUS Explicit 

module; hence these 4 elements are only useful for the computation of natural 

frequencies. The advantage of the elements S4R and SC8R is that they have control 

over the numerical difficulty of hour-glassing, however the element C3D8I (added to 

ABAQUS Explicit recently) completely overcome this problem.  In the earlier studies, 

these 8 elements have been used for the FE modelling for the composite structures and 

very limited studies compared the calculated natural frequencies with the 

experimentally identified modes. However the calculated dynamic responses by the FE 

models have not been compared with the experimentally measured responses in most of 

the earlier studies. Hence, in the present study, a total of 8 FE models have been 

developed and their predications have been compared with the experimental 

observations so the usefulness of the each FE model can be assessed. 
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Table 5.1 ABAQUS Element’s details  

Element 

Type 

Description Type/Behaviour Explicit 

S4R 4-node shell, reduced 

integration 

Linear, hourglass control, finite 

membrane strains 

Yes 

S4R5 4-node shell, reduced 

integration 

Linear, hourglass control, finite 

membrane strains 

No 

S8R 8-node shell, reduced 

integration 

Quadratic, doubly curved thick No 

S8R5 8-node shell, reduced 

integration 

Quadratic, doubly curved thin No 

SC8R 8-node quadrilateral in-

plane general-purpose 

continuum shell 

Linear, reduced integration with 

hourglass control, finite 

membrane strains. 

Yes 

C3D8I 8-node solid brick 

 

Linear, incompatible modes Yes 

C3D8R 8-node solid brick, 

reduced integration 

Linear, hourglass control Yes 

C3D20R 20-node solid brick, 

reduced integration 

Quadratic, hourglass control No 

 

Initially the calculated natural frequencies and the acceleration responses when excited 

at first 4 modes by the FE models were compared the experimental results for a healthy 

composite plate (without delamination) and then for a composite plate with a small 

delamination. The paper presents the observations made on the 8 FE models.  
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5.3 Modal Testing 

The modal tests were conducted for the composite plate using the sweep-sine excitation 

in the frequency band of 0 to 500 Hz initially and then the impulse-response modal test 

has been carried out using the instrumented hammer (Model 086C03, M/s PCB) to find 

out the natural frequencies. The measured data for both the tests were collected to the 

computer through an 8-channels 16-bit data acquisition card for the further analysis. 

The natural frequencies were then identified using the frequency response functions 

(FRFs) computed from the measured force and acceleration data. Typical impact force 

and the measured responses and their FRF plot are shown in Figures 5.1 and 5.2. The 

experimentally identified modes are listed in Table 5.2 and Table 5.3.  

 

 

Figure 5.1 Typical applied impulsive load (a) and the measured acceleration response 

(b) during Impulse-Response Tests 
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5.4 Finite Element (FE) Models 

The number of the FE models for the test composite plate has been constructed in the 

ABAQUS 6.10 FE code using the different elements used earlier in the literature for the 

modelling of the composite structures. This has been done to carry out the comparative 

study for all FE models with the experimental results. The different elements used are 

listed in Tables 5.2 and 5.3. An element size of 10 mm x 10 mm has been used for each 

layers resulting in 1600 elements in the case of 3D planar shell elements (S4R, S8R, and 

S8R5) and 12800 elements in case of 3D continuum shell (SC8R) or solid (C3D8I, 

C3D8R, C3D20R, C3D8R) for a plate. Hence, altogether 8 FE models have been 

constructed. A typical modelling mesh for all the FE models is shown in Figure 5.4. The 

boundary condition has been assumed to be free-free on all edges. The distribution of 

the mass of the portable shaker shown in Figure 3.2(a) has also been added to the 

appropriate nodes to each FE model so that the FE analysis can be directly compared 

with the experimental results.  

The modal analysis for the FE models has been carried out. The calculated frequencies 

are also listed in Table 5.2 and compared with the experimental values. It can be seen 

that the calculated natural frequencies are nearly close to the experimental values 

except. First six mode shapes for the composite plate using most commonly used 3D 

planar shell element S4R are shown in Figure 5.3.  

It has been observed that the pattern of mode shapes is similar using all elements except 

solid element C3D8R (for the same mesh size) which gives higher values due to hour-

glass effect.  
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Figure 5.2 Typical FRF plot (a) FRF amplitude, (b) FRF phase 

 

Table 5.2 Comparison of Natural Frequencies of FE models using different 3D planar 

shell elements with experimental values 

Mode  Experimental 

Element Type (using ABAQUS) 

S4R S4R5 S8R S8R5 

1 58.03Hz 47.24Hz 47.33Hz 47.16Hz 47.24Hz 

2 94.54 100.796 100.797 100.704 100.717 

3 130.27 133.974 133.976 133.849 133.863 

4 141.44 143.118 143.318 142.867 143.045 

5 160.27 166.673 166.844 166.43 166.589 

6 211.12 219.878 220.073 219.405 219.418 

7 263.55 265.968 266.477 265.367 265.85 
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Table 5.3 Comparison of Natural Frequencies of FE models using different 3D 

solid/continuum shell elements with experimental values 

Mode  Experimental 

Element Type(using ABAQUS) 

C3D8R C3D20R SC8R C3D8I 

1 58.03 Hz 98.11 Hz 47.16 Hz 47.40 Hz 45.88 Hz 

2 94.54 127.038 100.692 99.9688 99.35 

3 130.27 188.616 133.826 130.693 127.74 

4 137.44 258.641 142.855 142.539 142.52 

5 153.27 316.63 166.426 161.741 158.97 

6 211.12 404.19 219.019 241.233 220.40 

7 263.55 451.947 265.404 264.923 265.51 
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Mode 1                                                 Mode 2 

                   

Mode 3                                             Mode 4 

                     

Mode 5                                         Mode 6 

 

Figure 5.3 Numerical mode shapes of the few modes of the composite plate 
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Figure 5.4 An FE model of the test composite sample E-glass fibre 

 

Experimental mode shapes for few modes were also calculated from the acceleration 

response data of the 25 measuring points. Few typical experimental mode shapes are 

shown in Figure 5.5. It can be seen in both Table 5.2 and Table 5.3 that the computed 

natural frequencies by the FE model using C3D8R elements missed number of modes, 

however remaining 7 FE models produced nearly same natural frequencies as observed 

experimentally. 

x 

y 
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Mode 1                                                                       Mode 2 

 

Mode 3                                                                       Mode 4 

    

Mode 5                                                                   Mode 6 

 

Figure 5.5 Experimental mode shapes of the few modes of the composite plate 
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The small difference between the computed natural frequencies and the experimental 

values except for the first mode may be either related to small manufacturing problem 

of the test sample especially prepared for this test or little error in the distribution of the 

shaker mass into the FE models. The relatively large error in the first mode seems to be 

consistent with the earlier observation made by [80]. They confirmed in their study that 

the free-free test may not fully realised the ideal free-free condition which results in 

slightly higher 1st first natural frequency in the experiment compared to the computed 

one. Hence, it can be concluded that the remaining 7 FE models (except C3D8R FE 

model) can compute the accurate natural frequencies for the composite structures. 

5.5 Comparison of the Measured and Computed Responses 

The remaining 7 FE models were further examined by comparing the computed 

responses with the experimentally measured responses to understand which FE models 

are useful for the dynamic response estimation. 

5.5.1 Response Measurement 

In the experimental phase, the composite plate was excited through the piezo-electric 

shaker (Model PS-X03, M/s ISI-SYS) shown in Figure 2 at each mode. The steady state 

acceleration responses were then measured at the 25 locations of the composite plate as 

shown in Figure 3.10. The data were collected to the PC through the 16-bit 8-channels 

data acquisition device at the sampling frequency of 20 kHz. The data have then been 

analyzed to compute the amplitude spectra. Few typical measured acceleration 

amplitude spectra at the modes 1, 2 and 3 are shown in Figure 5.6. It has been observed 

that the number of modes appear in the spectra even when excited at a mode. For 
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example, Figure 5.6(a) shows the response at the Modes 3, 4, 7 and possible higher 

modes when excited only at the mode 1.  

   

   

   

Figure 5.6 Measured acceleration spectra at coordinates (50mm, 50mm)  and (150mm, 

275mm), (a)-(b) for Mode 1, (c)-(d) for Mode 2 and (e)-(f) for Mode 3 
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5.5.2 Response Estimation by the FE Models 

Similar to the experiment, the acceleration responses were computed from the FE 

models when sinusoidal input excitation was given to the shaker location at each mode. 

However it important to note that the out of the 7 remaining FE models, the 3 FE 

models using the quadratic elements S8R, S8R5 and C3D20R and the 1 FE model using 

the linear S4R5 elements don’t support the explicit dynamic analysis as discussed in 

Table 5.1. Hence, the remaining 3 FE models using S4R, SC8R and C3D8I elements 

have further been examined by comparing the computed responses with the 

experimentally measured responses. The best fit proportional damping coefficients were 

calculated from the experimentally obtained damping values for each mode in the 

ABAQUS code for the computation of the responses. Table 5.4 compares initial step 

time used by ABAQUS and the computed time for 0.1 s response data and the element 

C3D8I relatively took more time due to the small stable time step used in the 

computation. All computation has been carried out on a 4x Intel Itanium2 Montecito 

Dual Core 1.6GHz/8MB cache (i.e. 8 cores per node) and 16GB RAM. The amplitude 

spectra for the computed acceleration responses from the 3 FE models have then been 

computed. Few Typical acceleration spectra are shown in Figures 5.7-5.9.  

Table 5.4 Step time and CPU time for explicit analysis (0.1 second response) 

Element Type S4R SC8R C3D8I 

Initial Step time (s) 1.229E-06 1.172E-07 5.789E-08 

Computational time 

(Hours)  
0.42 26.92 47.66 



Chapter 5  

                                                        106 

5.6 Comparison of Results 

It has been observed that the laminated plates show the appearance of different modes 

even when excited at a mode similar to the experimental observations shown in Figure 

5.6. However, the computed acceleration spectra by the FE models using SC8R and 

C3D8I elements match closely to the experiments compared to the FE model using S4R 

elements. This study confirms that the 2 FE models, one using SC8R elements and other 

C3D8I elements, are good for both the modal analysis and the dynamic analysis for the 

composite structures. Further study has also been carried to understand the use of these 

2 FE models when a composite structure with delamination. 
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Figure 5.7 Estimated acceleration response spectra at mode 1 at coordinates (50mm, 

50mm)  and (150mm, 275mm), (a)-(b) S4R, (c)-(d) SC8R and (e)-(f) C3D8I  

 

  

  

 

0 100 200 300 400 500
0

0.5

1

1.5 X: 48.83

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

X: 48.83

0 100 200 300 400 500
0

1

2

3

4

5

X: 102.5

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

0 100 200 300 400

0.2

0.4

0.6

0.8

1

X: 102.5

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

0 100 200 300 400 500
0

1

2

3

4

5

X: 97.66

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

X: 97.66

Frequency, Hz

A
c
c
e
le

ra
ti

o
n

, 
m

/
s

2

(e) (f) 

(a) 
(b) 

(c) (d) 



Chapter 5  

                                                        108 

  

Figure 5.8 Estimated acceleration response spectra at mode 2 at coordinates (50mm, 

50mm)  and (150mm, 275mm), (a)-(b) S4R, (c)-(d) SC8R and (e)-(f) C3D8I  
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Figure 5.9 Estimated acceleration response spectra at mode 3 at coordinates (50mm, 

50mm)  and (150mm, 275mm), (a)-(b) S4R, (c)-(d) SC8R and (e)-(f) C3D8I 
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at the delamination interface such that the coinciding nodes in the delaminated region 

have separate identity. The computed natural frequencies by both the FE models were 

observed to be closely matching with the experimentally identified modes. The dynamic 

responses were also computed when excited at each mode. However, during the 

response computation, the nonlinear between the delaminated layers was also included 

using the ABAQUS function explicit dynamic analysis together with the general contact 

analysis [11].  Figures 5.11 and 5.12 show the acceleration spectra of the estimated 

responses by both FE models at the measurement locations of coordinates (50mm, 

50mm) and (150mm, 275mm)  for the direct comparison with measured spectra in 

Figure 13. It can be observed that although the element C3D8I is computationally a bit 

more expensive than the element SC8R, the results from the former are more nearer to 

the measured ones. 

 

Figure 5.10 Measured acceleration spectra at Mode 3 at coordinates (a) (50mm, 50mm), 

(b) (150mm, 275mm)  
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Figure 5.11 Estimated acceleration spectra at Mode 3  at coordinates (a) (50mm, 
50mm), (b) (150mm, 275mm) using element SC8R 

  

Figure 5.12 Estimated acceleration spectra at Mode 3  at  coordinates (a) (50mm, 

50mm), (b) (150mm, 275mm) using element C3D8I 

 

5.8 Summary 

A total of 8 FE models using the 8 different element types in the FE ABAQUS have 

models were then evaluated with the experimental results. Out of 8 models, 7 models 

found to be useful for the modal analysis except the FE model using element C3D8R. 

Of the remaining 7 FE models, only 2 FE models using the elements SC8R and C3D8I 

show good agreement with the experimentally measured responses for the healthy 

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

1.2

1.4

X: 128.7

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2

0 100 200 300 400 500

0.5

1

1.5

2

2.5

X: 126.1

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1

1.2

1.4
X: 127.4

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2

0 100 200 300 400 500

0.5

1

1.5

2

2.5

X: 127.4

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2



Chapter 5  

                                                        112 

composite plate. Further investigation on a composite plate with a small delamination 

confirms that the FE model using the element C3D8I is possibly an appropriate model 

for the simulation of the non-linear interaction between the delaminated layers and to 

predict the responses close to the experiments. Hence the FE model using the element 

type C3D8I seems to be suitable for modelling the thin composite structure with and 

without delamination for different dynamic analysis based on the observations from the 

present study. 
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CHAPTER 6                                                            

USE OF STATISTICAL PARAMETERS FOR DELAMINATION 

DETECTION IN COMPOSITE PLATES 

 

6.1 Introduction 

This chapter discusses the observations made on the measured vibration responses from 

both healthy and delaminated plates and the possibility of delamination detection from 

the use of statistical parameters obtained from the values of the experimental vibration 

data. Statistical parameters like kurtosis, crest factor, and root mean square (RMS) have 

been computed for the composite plates (healthy, off-centre, and in-centre delaminated 

plate) using vibration response (acceleration) data when excited at a few lower modes. 

The observations have also been compared for three different shaker locations (Figure 

3.10) used for the excitation. It has been observed that the averaged normalised RMS 

provides a very good indicator for the delamination detection irrespective of the 

excitation location.  

However it is important to note that the acceleration responses using accelerometer at 

large number of locations for any real structure may not be practically feasible, hence 

the method has further been tested on the measured velocity responses. It is because the 

laser vibrometer can be used to scan the large surface of any structure quickly which 

can remove the limitation of vibration measurement at number of locations using 

accelerometers. Hence the measured acceleration responses were converted to velocity 

response data and then the proposed method of the RMS has been applied. It has been 

observed that the results are once again consistent with the earlier observations made of 
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the acceleration data. The method has then been verified on the numerical simulations 

of both healthy and delaminated plates. The test plate made of E-glass fibre and epoxy 

resins has been used here. A piezo-electric shaker has been used to excite the plate and 

the acceleration responses were measured using the number of accelerometers (Figure 

3.8). The chapter presents the methods, experimental results [79] and theoretical 

validation.   

6.2 Modal Testing 

The modal tests were conducted for all the plates (healthy & faulty). The natural 

frequencies were then identified using the frequency response functions (FRFs) 

computed from the measured force and acceleration data. The experimentally identified 

modes with shaker locations, shown in Figure 3.10(a-c), are listed in Tables 6.1-6.3  

Table 6.1 Comparison of the experimental natural frequencies at shaker location 1 

Mode Healthy Plate 
Faulty Plate 

(in-centre delamination) 

Faulty Plate 

(off- centre delamination) 

1 58.03 Hz 55.56 Hz 57.46 Hz 

2 92.85 Hz 94.05 Hz 92.45 Hz 

3 130.27 Hz 130.65 Hz 133.22 Hz 

4 137.44 Hz 138.11 Hz 140.40 Hz 

5 153.27 Hz 156.77 Hz 155.01 Hz 

6 211.12 Hz 204.34 Hz 211.25 Hz 
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Table 6.2 Comparison of the experimental natural frequencies at shaker location 2 

 

Table 6.3 Comparison of the experimental natural frequencies at shaker location 3 

Modes Healthy Plate 
Faulty Plate 

(in-centre delamination) 

Faulty Plate 

(off- centre delamination) 

1 54.89Hz 55.56 Hz 52.91 Hz 

2 95.21 Hz 87.66 Hz 86.87 Hz 

7 263.55 Hz 266.06 Hz 262.37 Hz 

8 344.89 Hz 362.45 Hz 354.21 Hz 

Mode Healthy Plate 
Faulty Plate 

(in-centre delamination) 

Faulty Plate 

(off- centre delamination) 

1 56.21 Hz 54.27 Hz 53.89 Hz 

2 88.59 Hz 91.22 Hz 87.91 Hz 

3 130.50 Hz 128.25 Hz 127.59 Hz 

4 136.85 Hz 132.52 Hz 133.34 Hz 

5 162.36 Hz 155.88 Hz 156.55 Hz 

6 224.65 Hz 212.62 Hz 209.43 Hz 

7 267.23 Hz 262.06 Hz 261.87 Hz 

8 341.89 Hz 336.45 Hz 351.57 Hz 
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3 127.66 Hz 130.65 Hz 126.49 Hz 

4 138.32 Hz 135.11 Hz 133.55 Hz 

5 157.26 Hz 156.77 Hz 152.54 Hz 

6 218.06 Hz 204.34 Hz 207.77 Hz 

7 265.11 Hz 262.06 Hz 260.44 Hz 

 

6.3 Response Estimation  

The steady state acceleration responses were collected from 25 locations. The data were 

collected to the PC through the 16-bit 8-channels data acquisition device at the sampling 

frequency of 20 kHz. The data have then been analyzed to compute the amplitude 

spectra.  The amplitude spectra for the estimated acceleration responses when sinusoidal 

excitation was used for the first 8 modes have been computed and compared between 

the healthy and the delaminated plates. Several Typical acceleration spectra are shown 

in Figure 6.1. It has been observed that both healthy and delaminated plates show the 

appearance of different modes even when excited at one mode; however amplitude of 

vibration at the other modes when excited at the mode observed to be generally higher 

for the delaminated plate compared to the healthy plate. 
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Mode 1 at the location (200mm, 200mm)    

      

Mode 2 at the location (125mm, 200mm) 

    

Mode 3 at the location (50mm, 275mm) 

Figure 6.1 Typical measured acceleration amplitude spectra at first 3 modes, (a) to (c) 

for Healthy plate, (d) to (f) for Delaminated plate  
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6.4 Statistical Parameters 

In an attempt to develop a method of delamination detection the acceleration response 

data were used to perform statistical analysis. The section is dedicated to some 

introduction to the different statistical parameters used in this research study. The non-

dimensional statistical parameters like Kurtosis (ku), Crest Factor (CF), etc. and the 

root-mean square (RMS) value of any vibration signal have generally been used to 

detect the presence of impulsive nature in the signal [81]. The nonlinear interaction 

between the delaminated layers of the composite structures is also expected to show 

such signal in their responses when excited externally. Hence these parameters have 

been computed to explore the early detection of delamination. A brief description of 

these parameters and how these have used in the present study have been discussed 

here. 

 Kurtosis: Let’s assume that the measured vibration response at the location, i 

when excited at mode, p is )(, tx pi . Kurtosis can then be calculated as  

 22
,

4
,

,

pi

pi
pi

M

M
ku                                                                                         (6.1) 

 where 2
, piM and 4

, piM are the 2nd and 4th moment of the signal, )(, tx pi . The qth 

moment of the signal, )(, tx pi is defined as 

 
qN

r
pirpi

q
pi xtx

N
M 
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,,, )(
1

                                                                  (6.2) 
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where pix ,  is the mean of the signal, )(, tx pi  and )(, rpi tx is the amplitude of the 

signal at time, rt , where r= 1, 2, 3…., N. Let’s assume that m is the total number of 

measurement locations, and then averaged kurtosis for the plate when excited at the 

pth mode is calculated as  

      



m

i
pip ku

m
aku

1
,

1
                                                                                        (6.3) 

 Crest Factor: Crest Factor is the ratio of the peak value in the response data and 

RMS. Averaged normalised Crest Factor (aCFp) is calculated by the following 

equation. 

              aCFp
1
m
∑ ,
m
i 1   (6.4)

where CFi,p is expressed as 

             ,
,

,
  (6.5)

 

 Root Mean Square: Similar to kurtosis the averaged normalised RMS 

(anRMSp) for the plate when excited at the pth mode is calculated as 

              anRMSp
1
m
∑ ,
m
i 1  

 
(6.6)

where the normalised RMS at location, i when excited at pth mode (nRMSi,p) is 

expressed as 

   ,
1 ∑ ,

,

2
 (6.7)
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It is important to note that the Kurtosis and CF are the non-dimensional parameters so 

they can be directly compared between the healthy and delaminated plate, however the 

RMS value is a dimensional parameter so it may becomes difficult to compare between 

two sets, hence amplitude of the all the measured responses has been converted into +/- 

unit value then RMS has been computed. This is named as the normalised RMS 

(Equation 6.7) and average of the normalised RMS for all measurement locations as 

“Averaged normalised RMS” (Equation 6.6).   

6.5 Delamination Detection 

Having observed the difference in the spectra between the healthy and delaminated 

plates (Figure 6.1), the vibration response data has been analyzed further so that the 

delamination detection process becomes simple. Initially the statistical parameters Crest 

Factor and Kurtosis discussed in Section 6.4 have been studies on the measured 

responses; however it was difficult to observe any good indicator for the delamination 

detection. It can be seen in Tables 6.4-6.5 for shaker location 1. The cumulative average 

for the CF and Kurtosis upto 8 modes for the 3 plates with 3 different shaker location 

positions are also shown graphically in Figures 6.2-6.3 respectively. 

Table 6.4 Averaged Kurtosis values for acceleration responses at Shaker Locations 1 

Mode Healthy Plate 
Faulty Plate 

(in-centre delamination) 

Faulty Plate 

(off- centre delamination) 

1 2.680 2.632 2.656 
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2 2.483 2.504 2.491 

3 2.070 2.128 2.080 

4 2.471 2.402 2.436 

5 2.609 2.579 2.595 

6 2.580 2.504 2.542 

7 1.909 2.118 2.014 

8 2.049 2.211 2.132 

Average 2.356 2.385 2.3705 

 

Table 6.5 Averaged Crest Factor values for acceleration responses at Shaker Locations 1 

Mode  Healthy 
Faulty Plate 

(off-centre delamination) 
Faulty Plate 

(in- centre delamination) 

1 1.3469 1.4978 1.463 

2 1.4878 1.1102 1.345 

3 1.6326 1.3125 1.478 

4 1.6479 1.3014 1.461 

5 1.4789 1.4013 1.447 
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6 1.4581 1.3998 1.392 

7 1.3978 1.3210 1.391 

8 1.5301 1.3987 1.398 

Average 1.498 1.343 1.422 

 

Figure 6.2 Average Kurtosis values for the 3 plates with 3 Shaker Locations (SL) 
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Figure 6.3 Average CF values for the 3 plates with 3 Shaker Locations (SL) 

 

 

The RMS (root mean square) value for the measured responses was also computed and 

encouraging observations have been made, hence this parameter has further been 

investigated. The measured acceleration responses generally have different overall 

amplitude (peak to peak) at different locations which make it difficult to compare the 

RMS values at different locations. Hence to unify the computation of the RMS at 

different measured locations, all the measured acceleration responses were normalised 

to ±1 amplitude and then the normalised RMS for the 25 measured locations of each 

plate at each mode of excitation have been computed first and then their average RMS 

value for each mode as per Equation 6.6). Table 6.6 gives the averaged normalised 

RMS values for 25 locations at each mode for one healthy and two faulty plates. Hence 

to unify the computation of the RMS at different measured locations, all the measured 

acceleration responses were normalised to ±1 amplitude and then the normalised RMS 
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for the 25 measured locations of each plate at each mode of excitation have been 

computed first and then their average RMS value for each mode as per Equation 6.6). 

Table 6.6 gives the averaged normalised RMS values for 25 locations at each mode for 

one healthy and two faulty plates. It has been observed that the averaged normalised 

RMS value at each mode for the healthy plates up to mode 8 shows small increase, 

however the increase in the averaged normalised RMS value for the acceleration 

responses observed to be more for the delaminated plates. Hence this parameter is good 

health indicator for the delamination detection. 

Since it is not always practical to measure the acceleration response at the number of 

points on the large structure using accelerometers, the laser vibrometer is preferred 

option since this can easily and quickly scan the complete area at the desired number of 

points. Hence the acceleration data has been converted to velocity data and then again 

the averaged normalised RMS has been computed for each mode. Hence to unify the 

computation of the RMS at different measured locations, all the measured velocity 

responses were normalised to ±1 amplitude and then the normalised RMS for the 25 

measured locations of each plate at each mode of excitation have been computed first 

and then their average RMS value for each mode. Tables 6.7 to Table 6.9 give the 

average normalised RMS (anRMS) values for 25 locations at each mode for one healthy 

and two faulty plates at three different excitation positions. 

Table 6.6 Averaged normalised RMS (anRMS) values for the measured acceleration 

responses for Shaker Location 1 

Mode # Healthy Faulty(Off centre) Faulty (In centre) 

1 0.2473 0.2442 0.2169 
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It has been observed that the averaged normalised RMS value at each mode for the 

healthy plates up to mode 8 shows small increase, however the increase in the averaged 

normalised RMS value for the acceleration responses observed to be more for the 

delaminated plates. The cumulative average for the normalised RMS upto 8 modes for 

the 3 plates with 3 different shaker location positions are also shown graphically in 

Figures 6.4. Hence this parameter is good health indicator for the delamination 

detection. 

 

Table 6.7 Averaged normalised RMS values for the experimental velocity responses at 

each mode at shaker location 1 

2 0.2770 0.2190 0.2212 

3 0.3465 0.3943 0.2251 

4 0.2793 0.4461 0.2799 

5 0.2708 0.3009 0.3025 

6 0.2793 0.4403 0.4614 

7 0.3869 0.5239 0.3966 

8 0.3807 0.4718 0.4132 

Average 0.3085 0.3801 0.3146 

Mode  Healthy  Faulty(Off-centre) Faulty (In-centre) 

1 0.3319 0.2888 0.2972 
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Table 6.8 Averaged normalised RMS values for the experimental velocity responses at 

each mode at shaker location 2 

2 0.3421 0.3123 0.2784 

3 0.3473 0.4085 0.2654 

4 0.3128 0.4877 0.3595 

5 0.3009 0.3175 0.3369 

6 0.2962 0.4567 0.6194 

7 0.3628 0.6225 0.5720 

8 0.3836 0.6188 0.5819 

Average 0.3347 0.4391 0.4138 

Mode  Healthy Faulty(Off centre) Faulty (In centre) 

1 0.3056 0.2902 0.3004 

2 0.3247 0.3231 0.2964 

3 0.3102 0.3992 0.3013 

4 0.2897 0.4567 0.3661 

5 0.3125 0.3698 0.3623 

6 0.2964 0.4661 0.5991 
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Table 6.9 Averaged normalised RMS values for the experimental velocity responses at 
each mode at shaker location 3 

 

Mode Healthy Faulty(Off centre) Faulty (In centre) 

1 0.3114 0.2892 0.2947 

2 0.3316 0.3312 0.3012 

3 0.3217 0.3987 0.3210 

4 0.3059 0.4601 0.3552 

5 0.3213 0.3732 0.3701 

6 0.2982 0.5104 0.5857 

7 0.3514 0.5611 0.5703 

8 0.3801 0.5632 0.5976 

Average 0.3277 0.4359 0.4245 

 

7 0.3446 0.5950 0.5667 

8 0.3781 0.5770 0.5908 

Average 0.3202 0.4346 0.4229 
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Figure 6.4 Average Normalised RMS values for the Experimental Velocity responses 

for 3 plates with 3 Shaker Locations (SL) 

6.6 Numerical Validation 

Numerical vibration experiments have also been conducted on the healthy and 

delaminated composite plates shown in Figure 6.2(a) (in-centre delaminated plate not 

shown) to verify experimental results. Composite plates were excited through the shaker 

at the first 8 modes. The steady state vibration responses (velocity and acceleration) 

were then collected from 169 of locations on the plates using commercial FEA software 

ABAQUS version 6.10. The measurement locations are shown in Figure 6.2(b). The 

response data were stored at the sampling frequency of 20 kHz for further analysis in 

MATLAB. The velocity signals were then exported to MATLAB to compute the 

statistical parameters (section 6.4) for all the 3 cases (healthy, off-centre and in-centre 

delaminated plates) and for 3 different positions (Figures 3.10-3.12) of the shaker.  
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Figure 6.5 (a) An FE model of the E-glass fibre plate (also showing delamination 

region), (b) Measurement locations (marked as x) in FE simulation  

 

6.6.1 Response Estimation  

The amplitude spectra for the estimated acceleration responses when sinusoidal 

excitation was used for the first 8 modes have been computed and compared between 

the healthy and the delaminated plates. Few Typical acceleration spectra are shown in 

Figure 6.3.  

  

Mode 1 at the location (50mm, 100mm) 

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

X: 309.2

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2

X: 236

X: 154.6

X: 122.1

X: 89.52

X: 48.83

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

X: 301.1

Frequency, Hz

A
cc

e
le

ra
ti

o
n

, 
m

/
s2 X: 227.9

X: 146.5X: 154.6

X: 122.1

X: 89.52

X: 48.83

x 

y 

(a) (d) 



Chapter 6 

                                                        130 

  

Mode 2 at the location (110mm, 80mm) 

 

Mode 3 at the location (230mm, 110mm) 

Figure 6.6 Typical acceleration amplitude spectra at first 3 modes of the FE simulations, 

(a) to (c) for Healthy plate, (d) to (f) for Delaminated plate 

6.6.2 Delamination Detection  

Similar to the experimental data processing, numerical vibration responses were also 

processed. Here instead of converting the accelerations signals to velocity signals, 

velocity response was directly outputted in ABAQUS Explicit dynamic analysis. 

Averaged kurtosis, averaged CF, and averaged normalised RMS were calculated for 169 

measurement locations for all the three composite plates (healthy, off-centre, and in-

centre delaminated) and for all the three shaker excitation positions (Figure 3.10). 

Results are summarised in Tables 6.10-6.12.  
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Table 6.10 Averaged normalised RMS values for the numerical velocity responses at 

each mode at shaker location 1  

Mode  Healthy Faulty(Off centre) Faulty (In centre) 

1 0.2510 0.2663 0.2495 

2 0.2387 0.2697 0.2599 

3 0.3059 0.3881 0.3069 

4 0.2953 0.4205 0.3214 

5 0.3147 0.4108 0.3891 

6 0.3006 0.4604 0.4563 

7 0.3113 0.5096 0.5067 

8 0.3128 0.5101 0.5058 

Average 0.2913 0.4044 0.3745 

Table 6.11 Averaged normalised RMS values for the experimental velocity responses at 

each mode at shaker location 2 

Mode # Healthy Faulty(Off centre) Faulty (In centre) 

1 0.3056 0.2902 0.3004 

2 0.3247 0.3231 0.2964 
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Table 6.12 Averaged normalised RMS values for the numerical velocity responses at 

each mode at shaker location 3  

Mode # Healthy Faulty(Off centre) Faulty (In centre) 

1 0.2298 0.2442 0.2605 

2 0.2712 0.2754 0.2637 

3 0.3214 0.3781 0.2996 

4 0.3207 0.4136 0.3657 

5 0.3211 0.3905 0.3771 

3 0.3102 0.3992 0.3013 

4 0.2897 0.4567 0.3661 

5 0.3125 0.3698 0.3623 

6 0.2964 0.4661 0.5991 

7 0.3446 0.5950 0.5667 

8 0.3781 0.5770 0.5908 

Average 0.3202 0.4346 0.4229 



Chapter 6 

                                                        133 

6 0.3124 0.4312 0.4614 

7 0.331 0.4958 0.4416 

8 0.3601 0.5124 0.4996 

Average 0.3085 0.3927 0.3712 

 

The cumulative average for the normalised RMS upto 8 modes for the 3 plates with 3 

different shaker location positions are also shown graphically in Figures 6.7. It can be 

observed from comparing Tables 6.7-6.9 (experimental results) and Tables 6.10-6.12 

that both experimental and numerical results give same indication that averaged 

normalised RMS can be used for delamination detection in composite plates.  
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Figure 6.7 Average Normalised RMS values for the Numerical Velocity responses for 3 

plates with 3 Shaker Locations (SL) 

 

6.7 Summary 

 
The dynamics of the three composite plates – one healthy (no delamination) and other 

two plates having delamination at centre and off-centre have been study when excited 

experimentally at few lower modes. It has been observed that the measured acceleration 

spectra show the appearance of other modes when excited at a mode due to anisotropic 

property of the composite. In addition to this observation, the plates with delamination 

also show some higher harmonics of the excited frequency due to the non-linear 

interaction between the delaminated layers. Statistical parameters like kurtosis, crest 

factor, skewness and RMS values were calculated for all the three plates (healthy, 

delaminated at centre and off-centre) and for the three different positions of excitations 

were calculated and it was found that only normalized RMS values were able to 

diagnose the damage present in the plate. It has been observed that the normalised 

average RMS value at each mode show increasing trend for the delaminated plates 

compared to the healthy composite plate. It is also observed that the normalised average 

RMS value for the velocity responses for all the modes more than 0.37 indicates the 

presence of the delamination.  
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CHAPTER 7                                                            

SECOND DERIVATIVE OF THE ACCELERATION 

RESPONSES FOR IDENTIFICATION OF DELAMINATION 

AND ITS LOCATION IN COMPOSITE STRUCTURES 

7.1 Introduction 

 In this chapter, the measured responses when excited at a few lower modes using the 

conventional accelerometers and the shaker have been considered for the delamination 

location without the use of the data from the healthy condition. The proposed method 

has been developed initially on the finite element (FE) simulation. The nonlinear 

interaction between the delaminated layers has been considered in the FE simulation 

during the computation of the responses. It was expected that such nonlinear interaction 

between the delaminated layers may result in the impulsive kind of the response at the 

delamination location. The statistical parameter kurtosis has then been calculated for the 

acceleration responses and its higher derivatives. It has been observed that the 2nd 

derivative of the acceleration response provides a good indicator for the delamination 

location. This has further been validated through the experiments.   

7.2 Experimental Set-up and Modal Testing 

The experimental setup for conducting the vibration test on the composite plates is 

shown in Figure 3.9. The plate was hanged by the soft elastic rope from the top 2 edges 

to realise the free boundary condition for all the 4 edges of the plate as shown in Figure 

3(a). Modal testing was done as explained in Chapter 5 and 6. 
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7.3 Finite Element (FE) Modelling 

The FE models for both the plates (with and without delamination) have been 

constructed in the ABAQUS 6.9 FE code. Based on the results from Chapter 6 element 

C3D8I has been used for FE modelling. An element size of 10mm x 10mm has been 

used for each layers resulting in 12800 elements for a plate. Modal analysis was 

performed and the results are summarised in Tables 5.2-5.3 and Tables 6.1-6.3. 

7.4 Response Estimation 

The vibration responses were also estimated from the FE models when excited at a few 

lower modes to understand the dynamic behaviour. It is expected that the delaminated 

layers in the plate will interact nonlinearly when the plate is subjected to the external 

excitation. Hence, this analysis has also been considered while estimating the vibration 

responses for the delaminated plate. The average time step chosen for this analysis was 

85 e s based on the criteria in the ABAQUS code. It is also important to note that the 

response data have been stored at a step of 0.2 s for all the measurement locations 

indicated by ‘dots’ in Figure 6.1(b) for this simulated example.  This means that the 

sampling frequency is 20MHz which is often not considered very high in the vibration 

measurement, hence the data have been down sampled to the sample frequency of 

20kHz with the low pass filter to 9kHz for further signal processing. The computed 

acceleration responses at each measurement location have been polluted with noise 

(Signal to Noise ratio 20dB) to simulate the actual vibration measurements.   
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Figure 7.1(a) typically shows the out of plane displacement responses at the centre of 

the delamination for the delaminated layers at nodes 51093 (node number at the centre 

of the delamination on top of the 4th layer) and 151093 (node number at the centre of the 

delamination at the bottom of the 3th layer) for the top and bottom delaminated layers 

when excited at mode 1 (45.88Hz). In Figure 7.1(a), the displacement responses at 

nodes 51093 and 151093 are shown as the line with squares and circles respectively, 

where the displacement responses do not clearly indicates nonlinear interaction. 

However the difference of the responses shown in Figure 7.1(b) clearly shows the 

nonlinear interaction between the delaminated layers. 

 

7.5 Delamination Location 

The statistical parameter kurtosis ( uk ) seems to be useful for detection of crack [27]. In 

the present study, the nonlinear interaction between the delaminated layers is also likely 

to produce some impulsive acceleration response which can be detected by the 

Figure 7.1 (a) Displacement responses at centre of the delamination at mode 1, (b) 

Difference in the responses indicating interaction between the layers 
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parameter kurtosis. Hence the kurtosis for the following data has been computed to 

explore the possibility of identifying the location of delamination correctly. 

(a) Acceleration responses 

(b) Derivative of the acceleration responses (DA).  

(c) 2nd derivative of the acceleration responses (DDA or D2A) 

(d) 3rd derivative of the acceleration responses (DDDA or D3A) 

These derivatives have been computed as 

 

DA,
 t

tata
ta kmnkmn

kmn 


  )()(
)( ,1,

,
 
                                         (7.1) 

DDA, 2
1,,1,

, )(

)()(2)(
)(

t
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kmn 


                               (7.2) 

DDDA, 3

1,,1,2,
, )(

)()(3)(3)(
)(

t

tatatata
ta kmnkmnkmnkmn

kmn 


                   (7.3) 

 

where )(, kmn ta , )(, kmn ta  and )(, kmn ta   are the 1st, 2nd and 3rd derivatives respectively for 

the acceleration response, )(, kmn ta at the time, kt  at the measurement location, n for the 

mode, m, and t is the time step. The advantage of examining the higher derivatives of 

the acceleration is that if the impact energy between the delamination layers due to 

nonlinear interaction during vibration tests may not be sufficient to observe the 

impulsive nature in the acceleration responses, but it may get amplified in the higher 

order derivatives.  Typical kurtosis plots for the acceleration responses at mode 1 to 3 

are shown in Figure 7.2 for both the healthy and the delaminated plates. Here, the 
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calculated kurtosis values for each mode were normalised to the maximum value to 

keep the maximum value 1 in the plots. None of the modes show any indication for the 

presence and location of the delamination in the delaminated plate. The kurtosis of the 

1st derivative of acceleration (DA) responses also does not indicate the location of 

delamination in the delaminated plate. They are typically shown in Figure 7.3 where 

multi-peaks observed in the plots but related to the delamination location. However, the 

kurtosis of the 2nd derivative (DDA or D2A) and 3rd derivative (DDDA or D3A) clearly 

indicates the location of delamination which is shown in Figures 7.4-7.5. Hence the last 

two derivatives are found to be useful for the delamination detection so the DDA has 

been considered as the optimum indicator for further study. Figure 7.6 shows few 

typical kurtosis plots for healthy case where there is no indication of any delamination. 

However, further investigation has been made to understand why the kurtosis of the 

acceleration response only has not been able to detect the delamination location, but 2nd 

derivative (DDA) detects the location clearly. Hence the acceleration response and its 

derivatives at the centre of the delamination for the delaminated plate are compared 

with the healthy plate. A typical acceleration response and derivatives when excited at 

mode 1 are shown in Figure 7.7. It is evident from Figure 7.7(e) that the energy 

exchange during the nonlinear interaction between the delaminated layers was not 

sufficient to generate an impulsive nature of the acceleration response in the 

delaminated composite plate. This is reason why the kurtosis of the acceleration 

response only could not detect the delamination. But the derivatives of the acceleration 

response start amplifying such nonlinear behaviour as the impulsive signal and become 

prominent in the 2nd and 3rd derivatives in case of delaminated plate but remain absent 
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for the healthy plate as expected. This is typically seen in Figure 7.7 which produced the 

required result.  

 

 

 

Figure 7.2 The kurtosis plots for the acceleration responses, (a) to (c) for the healthy 

plate from Mode 1 to 3, (d) to (f) for the delaminated plate from Mode 1 to 3 

0
100

200
300

400

0

100

200

300

400
0.5

0.6

0.7

0.8

0.9

1

Length, mm

Width, mm

K
u o

f 
A

cc
el

er
at

io
n

0
100

200
300

400

0

200

400
0.5

0.6

0.7

0.8

0.9

1

Length, mm

Width, mm

K
u o

f 
A

cc
el

er
at

io
n

0
100

200
300

400

0

100

200

300

400
0.5

0.6

0.7

0.8

0.9

1

Length, mm
Width, mm

K
u o

f 
A

cc
el

er
at

io
n

0
100

200
300

400

0

200

400
0.5

0.6

0.7

0.8

0.9

1

Length, mm

Width, mm

K
u o

f 
A

cc
el

er
at

io
n

0
100

200
300

400

0

100

200

300

400
0.5

0.6

0.7

0.8

0.9

1

Length, mm

Width, mm

K
u o

f 
A

cc
el

er
at

io
n

0
100

200
300

400

0

200

400

0.7

0.8

0.9

1

Length, mm

Width, mm

K
u o

f 
A

cc
el

er
at

io
n

(a) 

(b) 

(d) 

(e) 

(c)
(f) 



Chapter 7 

                                                        141 

 

 

Figure 7.3 The kurtosis plots for the 1st derivative of acceleration (DA) responses for the 

delaminated plate, (a) Mode 1 to (d) Mode 4 

 

0

200

400

0

200

400
0.4

0.6

0.8

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
A

0

200

400

0

200

400

0.6

0.8

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
A

0

200

400

0

200

400
0.4

0.6

0.8

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
A

0

200

400

0

200

400

0.7

0.8

0.9

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
A

0

200

400

0

200

400

0.6

0.8

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
D

A

0

200

400

0

200

400
0.2

0.4

0.6

0.8

1

Length , mmWidth , mm

K
ut

os
is

 o
f 

D
D

A

(c) 

(d) 

(a) 
(b) 

(a) (b) 



Chapter 7 

                                                        142 

 

Figure 7.4 The kurtosis plots for the 2nd derivative of acceleration (DDA) responses for 

the delaminated plate, (a) Mode 1 to (d) Mode 4 

 

 

Figure 7.5 The kurtosis plots for the 3rd derivative of acceleration (DDDA) responses 

for the delaminated plate, (a) Mode 1 to (d) Mode 4 
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Figure 7.6 The kurtosis plots for the DDA signals for the healthy plate, (a) Mode 1 to 

(d) Mode 4 
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Figure 7.7 Acceleration response and its derivatives (DA, DDA, DDDA) at the centre of 

the delamination, (a) to (d) Healthy plate, (e) to (h) Delaminated plate 
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7.6 Multi-delaminations  

To further examine the robustness of the 2nd derivative of acceleration response (DDA) 

in delamination location detection, the same simulated example with 2 delaminations of 

size 40mm x 40mm with their centres at (270mm, 270mm) and (140mm, 140mm) has 

also been considered. Once again, the kurtosis of the DDA has successfully detected the 

locations which are shown in Figure 7.8.  

 

 

 

Figure 7.8 The kurtosis plots for the 2nd derivative of acceleration (DDA) responses for 

the plate with 2 delamination,(a) Mode 1 to (d) Mode 4 
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7.7 Experiments 

Having observed the acceleration responses at the different modes and the usefulness of 

the kurtosis of the DDA in the location detection in the simulations, the vibration 

experiments have also been conducted on the healthy and delaminated composite plates 

shown in Figure 3.9. Both plates were excited through the shaker at the first 6 modes. 

The steady state acceleration responses were then collected from 25 locations on both 

the plates. The measurement locations are shown in Figure 3.10. The data were 

collected to the PC through the 16-bit 8-channels data acquisition device at the sampling 

frequency of 20 kHz. The data have then been analyzed to compute the kurtosis of the 

DDA signals which are typically shown in Figures 7.10. Here again, the kurtosis of the 

DDA signals clearly identify the location of the delamination for Modes 3 and 4. 

Probably the excitation used during experiment was not enough for Mode 1 and 2 to 

initiate the nonlinear interaction between the delaminated layers. However, the 

normalised cumulative kurtosis of the DDA signals for a few modes produced much 

better identification of the delamination location. It is typically shown in Figure 7.11 

when modes 1 to 4 were used.     
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Figure 7.9 The kurtosis plots for the DDA signals for the experimental cases, (a) to (d) 

for the healthy plate from Mode 1 to 4, (e) to (h) for the delaminated plate from Mode 1 

to 4 
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Figure 7.10 The normalised cumulative kurtosis plots for the DDA signals for the 

modes 1 to 4 for the experimental cases, (a) Healthy plate, (b) Delaminated plate  

 

7.8 Summary 

In the present study, a method of delamination location detection in the composite has 

been suggested using the kurtosis of the 2nd derivative of the acceleration responses 

when the composite structure is excited at a few lower modes. Initially the method has 
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CHAPTER 8                                                            

A NOVEL APPROACH FOR DETECTING DELAMINATION 

IN COMPOSITES 
 

 

8.1 Introduction 

 

Considering the limitations of existing delamination detection methods, a simple 

method which may be relatively easy to implement in practice and not requiring data 

from the healthy state condition is needed to meet the objective.  Hence it is assumed 

that the excitation at a few lower modes using conventional shaker is always possible 

and then scanning the complete composite surface through the laser vibrometer may not 

impose any practical limitations. With this assumption, the excitation of a composite 

plate with and without a delamination at a few lower modes and then the velocity 

responses measurements at number of points has been considered in the present study. 

Initially, the finite element (FE) model of a composite plate with and without 

delamination has been developed to simulate this experiment. In fact, it has been 

observed that the nonlinear interaction between the delaminated layers produce higher 

harmonics of the exciting frequency. These higher harmonics are then observed to be 

useful for the detection and location of the delamination without comparing the 

vibration data from the healthy state of the composite structure. This chapter presents a 

novel method based on the utilization of the higher harmonics which can successfully 

identify delamination in the composite plate with built-in delamination. 
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8.2 Finite Element (FE) Modelling 

The FE models for both the plates (with and without delamination) have been 

constructed in the ABAQUS 6.10 FE code. The element C3D8I has been used for this 

modelling. An element size of 5mm x 5mm has been used for each layers resulting in 

51200 elements for a plate.  

8.3 Response Estimation 

 
The velocity responses have been estimated using the explicitly dynamics analysis in 

the ABAQUS 6.10 FE code for both healthy and delaminated plates when excited at 

few lower modes. The non-linear interaction between the delaminated layers has also 

been simulated during the response estimation for the delaminated plates. Typical 

velocity amplitude spectra when excited at Mode 6 are shown in Figure 8.1. It has been 

observed that the modes other than the excited mode are also present in the spectra for 

both the healthy and delaminated plates, probably due to anisotropic material properties 

of the composite material. In addition, the prominent higher harmonics of the exciting 

frequency has also been observed as expected due to the nonlinear interaction between 

the delaminated layers for the delaminated plate compared to the healthy plate. The 

exciting frequency (1X) and its higher harmonics (2X, 3X, …) are marked as ‘O’ in 

Figure 8.1 for the composite plate with off-centre delamination and shaker location 1 

(shown in Figure 3.10). Similar plots have been observed for shaker location 2 (Figure 

3.11) and shaker location 3(Figure 3.12). Responses were also estimated for the three 

locations but for the composite plate with delamination in the centre and similar 

behaviour like in Figure 8.1 were observed. 
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Figure 8.1 Typical FE simulated amplitude velocity response spectra at location at 

nodes 71, 164 for the healthy (a-b) and delaminated plates (c-d) when excited at Mode 6 

respectively 
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delamination detection. The term “Normalised Summation of higher Harmonics (NSH)” 

at each mode has been defined which is computed as                      

Summation of harmonics (SH) when excited at Mode i at location j,  





h

n
nijij vSH

2

)(                                                           (8.1) 

where n is the harmonics of the exciting frequency from 2, 3,…, h, nijv )( is the velocity 

amplitude of the harmonic, n at the exciting mode, i at the measured location, j and then 

this ijSH is normalised by the maximum value from all the measured location to get the 

normalised SH (NSH). The component 1X which is the amplitude of the exciting mode 

has not been included in the equation (8.1) because the operation deflection shape 

(ODS) at 1X generally represents the mode shape of the exciting mode. However, the 

amplitude of the higher harmonics definitely related to the size and location of the 

delamination. Finally the contribution from few lower modes has been defined as 

“Cumulative NSH (CNSH)” at each measured location which has been computed as 





q

i
ijj NSHCNSH

1

                                                      (8.2) 

where q is the number of modes used for this computation. Here the first 6 modes have 

been used. The plots of the CNSH of the plate with and without delamination (off-

centre delamination and shaker location 1) are shown in Figure 8.2 which provides 

excellent indication for the location of the delamination. Figure 8.3 shows similar plots 

like Figure 8.2 but the healthy plate response is compared with the delaminated plate 

(delamination in the centre) and at shaker location 2.  
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Figure 8.2 Typical CNSH plots at shaker location 1, using Modes 1 to 6 in the FE 

simulations, (a) Healthy plate, (b) Delaminated plate (Off-centre delamination) 

 

 

  

 

Figure 8.3 Typical CNSH plots at shaker position 2, using Modes 1 to 6 in the FE 

simulations, (a) Healthy plate, (b) Delaminated plate (In-centre delamination) 
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8.5 Delamination Size Variation 

So far in this chapter delamination size (40mm x 40 mm) has been used in the 

numerical experiments. To see the effect of the delamination size on the location and 

the possibility of the measurement of the extent of the damage two different sizes 80 

mm x 80 mm (twice the original size) and 120 mm x 120 mm (triple of the original 

damage size) were also studied. Figure 8.4 shows the comparison of the CNSH plots of 

the three sizes viz., 40 mm x 40 mm, 80 mm x 80 mm, and 120 mm x 120 mm.  

       

 

 

Figure 8.4 Typical CNSH plots at shaker position 1, using Modes 1 to 6 in the FE 

simulations of the delaminated plate (off-centre delamination) with (a) 40mm x 40mm 

(b) 80mm x 80mm (c) 120mm x 120mm 
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8.6 Experiments 

The schematic of the experimental setup is shown in Figure 3.9. It consists of a 

composite plate shown in Figure 3.8 which was hanged by the soft elastic rope from the 

top 2 corners of the top edge to realise the free boundary condition for all the 4 edges of 

the plate. Modal analysis was performed, and the plates were excited at first 6 modes. 

Few typical acceleration spectra for the healthy plate and the delaminated plate (off-

centre delamination) and shaker location 1 are shown in Figure 8.3 when excited at 

mode 6 at locations 9 and 20 (marked in Figure 3.10). The ‘1X’ in the spectra indicates 

the exciting frequency and the components 2X, 3X, … represent the higher harmonics 

of the exciting frequency in the spectra. Once again, it has been observed from the 

spectra that due to anisotropic nature of the composite plate, the modes other than the 

exciting mode also contribute to the overall response. In addition to this effect, the 

nonlinear interactions between the delaminated layers in the plate with delamination 

also introduce the higher harmonics of the exciting frequency. Although the presence of 

such higher harmonics has also been observed in the healthy composite plate, probably 

again due to anisotropic property of the composite material, but the effect was not 

prominent compared to the plate with delamination. 

The plots of the CNSH of the plate with (off-centre delamination) and without 

delamination for the experimental cases are also shown in Figure 8.4 at shaker location 

1 which, once again, provides excellent indication for the location of the delamination.  

Hence the experimental observations are consistent with the FE simulated results.  

Figure 8.5 is similar plot comparison but for shaker location 2 and the delaminated plate 

with delamination in the centre case. 
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Figure 8.5 Typical measured amplitude acceleration response spectra at locations 9, 20 

for the healthy (a-b) and delaminated plates (c-d) when excited at Mode 6 respectively 

 

Figure 8.6 Typical CNSH plots at shaker position 1, using Modes 1 to 6 for the 

experimental examples, (a) Healthy plate, (b) Delaminated plate (Off-centre 

delamination) 
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Figure 8.7 Typical CNSH plots at shaker position 2, using Modes 1 to 6 for the 

experimental examples, (a) Healthy plate, (b) Delaminated plate (In-centre 

delamination) 

 

8.7 Summary 

 

The nonlinear interaction between the delaminated layers in the composite plate during 

vibration has been considered here for the delamination detection. Initially, a typical composite 

plate made E-glass epoxy with and without delamination has been used in the FE simulation for 

the development of the detection method. As expected, the nonlinear interaction between the 

delaminated layers when excited at a few lower modes produced the prominent higher 

harmonics components of the exciting frequency. Then the normalised contribution of higher 

harmonic components at each mode has been defined as the “Normalised Summation of 

Harmonics (NSH)” and then it’s cumulative for a few lower modes as CNSH. The delamination 

location has clearly been identified by the proposed CNSH method for the simulated examples. 

The method has then further been validated by the experiments conducted on the composite 

plates same as used in the FE simulations with and without delamination. Hence the proposed 
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CNSH can be deemed as a good indicator for the delamination detection. Since the development 

of method uses the velocity responses at just few lower modes so it is practically feasible for 

real structure using the conventional shaker and the laser vibrometer for this purpose.  
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CHAPTER 9                                                            

CONCLUSION AND FUTURE WORK 

 

9.1 Overview 

There are number of methods in the literature for the damage (cracks, debonds, and 

internal delaminations) detection of engineering structures. Most of these methods 

are using the data from the healthy structure for damage detection while some are 

“baseline free/reference free method” and are superior to the former methods both in 

terms of simplicity and accuracy. Composite structures are lightweight and strong 

but are more difficult to dynamically understand its behaviour as compared to linear 

materials like Steel and Aluminium. Due to its complex nature, very limited 

vibration-based methods are available in the literature for the delamination detection 

in composite structures. Many of these methods are kind of simulated studies 

without experimental validations. Conventional non-destructive techniques are not 

good enough to identify internal damage in composite. Hence vibration-based 

methods are the preferred choice for composite structures. Mainly two kinds of the 

vibration-based approaches have been suggested in the literature for the structural 

health monitoring of composite structures, one related to low frequency methods 

and other high frequency methods. In low frequency approaches, the change in the 

modal parameters (natural frequency, mode shape and damping) is compared with 

the healthy structure as the reference. It is believed that damages presented in 

composite structure cause modal parameters to change and this provides sufficient 

indication about the presence and location of the damage especially when the 
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damaged part results are compared with the identical composite part but without 

damage.  The second type of damage detection and localisation technique is the high 

frequency approaches. In this approach composite structures are excited at higher 

modes of the order of few kHz or more (MHz’s) needed with distributed sensors to 

map the deflection for identification of delamination. Use of high frequency 

methods imposes the limitations on the use of the conventional electromagnetic 

shaker and vibration sensors, whereas the low frequency methods may not be 

feasible for practical purpose because it often requires data from the healthy state 

which may not be available for old structures.   

9.2 Summary of Present Research 

The main objective of this research was to develop a novel reference-free method of 

(1) delamination detection and (2) delamination localisation, which can just use the 

vibration responses at a few lower modes using the conventional piezo-shaker and 

vibration sensor (accelerometer/laser vibrometer). It is believed that the delaminated 

layers will interact nonlinearly when excited externally by a piezo-shaker especially 

at the natural frequencies (exploiting the resonance phenomena). Hence this 

mechanism has been utilised in the numerical simulations and the number of 

experiments on the healthy and delaminated composite plates have been performed. 

In the numerical experiments different delaminated sizes and locations were used. 

Not only delaminated sizes and locations were studied but the data from the 

composite plates with multi-delaminations were also analysed. The exhaustive 

numerical work resulted in conclusions which were organised to develop two 

methods– first method (Objective 2) can quickly identify the presence of the 

delamination when excited at just few lower modes and the other method is capable 
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of identifying the location using the same method data once the presence of the 

delamination is confirmed. In the first approach (Delamination Detection) an 

averaged normalised root-mean square (RMS) has been suggested and 

experimentally validated for this purpose. In fact, in the method above normalised 

RMS are calculated for all the measurement locations and then these normalised 

RMS are simply averaged. It has been observed that the composite plate with 

internal delamination will have higher value of the averaged normalised RMS as 

compared to a composite plate with no delamination (healthy plate). This 

observation was confirmed by experiments and has been seen to be independent of 

the delamination location. The drawback of the method is it can’t indentify multi-

delaminations.  

Latter the vibration data have then been analysed further to identify the location 

(Objective 3 as of chapter 2) of delamination and its size. Initially, the measured 

acceleration responses from the composite plates have been differentiated twice to 

amplify the nonlinear interaction clearly in case of delaminated plate and then 

Kurtosis was calculated at each measured location to identify the delamination 

location. The method has been referred to as “Kurtosis of DDA technique for 

delamination localisation”. The method gave equally good results for different sizes 

of off-centre delaminations and locations. The technique also worked for multi-

delaminations. The method was experimentally verified. The method could not 

locate the in-centre delamination from the experimental results. Since the technique 

is based on acceleration measurements and its difficult to measure acceleration 

responses, with smaller spacing between the adjacent measurement locations, as 
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compared to remotely operated scanning laser vibrometer which measures velocity 

as compared to accelerations. 

To overcome the limitation mentioned above, the method has further been 

simplified (Objective 4 as of chapter 2) by just using the harmonics (velocity 

responses) in the measured responses to identify the location. To explain the method 

further, higher harmonics are first added for all the measurement locations (velocity 

data) at number of lower modes and then the results (summation of harmonics) of 

the first few modes are added together and then plotted against the grid points of the 

composite plate. A composite with delamination results in a clear peak at the 

delamination location when the above parameter (CNSH) is plotted. While Kurtosis 

of DDA techniques failed to locate delamination in the centre of the plate, the 

CNSH technique did succeed in identifying the damage in the centre of the plate. 

9.3 Future Work Recommendations 

 

 The effect of thickness of the plate on the delamination detection can also be 

seen in further research on the plates and the experiment can be performed 

on a tapered plate with internal delamination.  

 Composite plates with multi-delaminations can be studied by experiments to 

see the effectiveness of the techniques developed in this research study.   

 So far only one composite with built-in delaminations have been studied. 

The study can be extended to composite structures with joints and dis-bonds.  
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ABSTRACT  

Delamination in any composite structures generates significant local modes (coupled 

with higher modes of structure) at significantly higher frequencies in kHz depending on 

the size of the delamination pocket. The local mode is generally excited to identify the 

presence of delamination in the vibration based approaches. However detect process 

map the deformation (or mode shape) over the surface area either through laser scanner 

or optical sensor or using closely spaced embedded sensors. Hence these methods are 

costly and difficult to apply if the surface area is very large. Here again, the possibility 

of delamination detection has been examined in a much economical manner. In the 

present approach, the structure response due to the nonlinear interaction between the 

layers in the delamination area, when the structure is excited at higher modes, has been 

utilised. This nonlinear response can be picked up from just few locations of the 

structure. The proposed method has been validated on very simplified numerically 

simulation and then through a simple experimental test.  

Keyword: delamination, composite, modal 
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1.0 INTRODUCTION 

Now-a-days, composite materials have been used in several applications, for example, 

aircraft structural components, because of their light weight and high strength. However 

the delamination which is one of the serious defects often develops and propagates due 

to vibration during the service of the structure. The presence of this defect warrants the 

design life of the structure and the safety. Hence the presence of such defect has to be 

detected in time to plan the remedial action well in advance.   

Several research studies have been carried for the composite structures with 

delamination [1-20]. They are related to the modelling aspects of the delaminated 

structures [3-6] and on the vibration based detection of the delamination by both 

experiments and analysis [7-14]. Few studies suggesting the detection by change in 

natural frequencies [15-17] and few have used the effect of local modes in their 

experiments to identify the delamination either by mapping the mode shape across the 

surface of the composite structure [13-15] or by advance signal processing using 

wavelet analysis [19-20]. Often the use of such technique requires the distributed or 

embedded sensors at least over the surface of the composite structure which restricts the 

practical used in many cases.  

The present study is also on the dynamics of the delaminated composite structure. Here 

a numerically simulated example of a steel beam has been considered for the 

simplification in understanding instead of a beam made of the composite material. The 

beam has been modelled by the finite element (FE) method. A small delamination effect 

has been introduced in the FE model by dividing the flexural rigidity into parts to 

represent the delamination effect. The modal analysis has then been carried out to know 

the natural frequencies and mode shapes so that the modes with the significant 
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delamination effect in their mode shapes can be chosen for further study. These modes 

were then excited externally to compute the dynamic behaviour for the delaminated 

beam and their results were compared with the beam without delamination. The effect 

of non-linearity introduced in the delaminated area has also been simulated in the study. 

Results and the feasibility of the delamination detection based on the observation on the 

simulated example and validated on a simple experimental test have been discussed 

here.  

2.0 SIMULATED EXAMPLE 

As discussed in Section 1, a cantilever steel beam of 1 meter length and 20 mm x 20 

mm cross-section has been chosen to understand the delamination effects for the 

simulated study instead of the composite beam to ease the modelling process. The beam 

under study has been modelled using 2-node beam element (each node with 2 degrees of 

freedom-one bending deflection and other bending rotation). The beam is divided into 

100 elements of equal length. The finite element (FE) model is shown in Figure 1(a). 

For the de-lamination effect, the flexural rigidity of the beam has been divided into the 

parts at the centre of the beam. The FE model with the de-lamination effect is also 

shown in Figure 1(b). The nodes 51 and 102 in the FE model show the modelling of the 

delamination.  

 

(a) 
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Figure 1 FE models, (a) without delamination, (b) with delamination 

 

2.1 MODAL ANALYSIS 

Modal analysis has been carried out for the beam with and without delamination. The 

mode shapes of first 3 natural frequencies are shown in Figure 2. Although there is 

small difference in natural frequencies but no change in mode shapes have been noticed. 

The effect of delamination can be clearly seen in the mode shapes at the much higher 

natural frequencies from mode 18 (14.222 kHz) onwards. Few typical mode shapes at 

22, 23 and 24th modes are shown in Figure 3 for both delamination and no delamination 

cases.  

 

          No Delamination                                                Delamination 

      

Mode 1: 16.763 Hz                                            Mode 1: 16.692 Hz 

(b) 

Delamination 
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Mode 2: 105.05 Hz                                             Mode 2:  103.15 Hz 

        

         Mode 3: 294.15 Hz                                            Mode 3: 294.13 Hz           

Figure 2 Mode shapes at first 3 natural frequencies with & without delamination in the cantilever 

beam. 

 

 

No delamination                                            Delamination 

    

Mode 22: 21.754 kHz                           Mode 22: 21.489 kHz 

Delamination 
 region 
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Mode 23: 23.852 kHz                             Mode 23: 23.758 kHz 

  

Mode 24: 25.991 kHz                             Mode 24: 25.685 kHz 

Figure 3 Modes at 22, 23, and 24th natural frequencies with & without delamination in cantilever beam. 

 

2.2 RESPONSE ESTIMATIONS 

Having known that the delamination effect is prominent at higher frequencies, the linear 

chirp-sine excitation from 20 kHz to 31 kHz to include five modes has been applied at 

node 17 to both the models (with and without delamination).  The linear chirp rate of 

0.11 kHz per ms has been assumed. The Newmark–β method [21] has been used for 

response computations, with time step of 1e-6 s. The non-linear interaction between the 

nodes 51 and 102 in the delamination area has also been simulated to realise the actual 

behaviour in the delamination region. The displacement responses at the nodes 51 and 

101 in the vertical direction at each time steps have been compared such that the beam 

behaves like a laminated beam when 0))()(( 10151  tyty  (i.e., both nodes moving 

together), otherwise the movement of these nodes were assumed to independent like 

delaminated case. The acceleration responses at the free end of the cantilever beam for 
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both cases are shown in Figures 4 & 5 respectively. Figures 4(a) and 5(a) show the 

linear chirp excitation together with the natural frequencies and corresponding 

acceleration responses in Figures 4(b) and 5(b). The responses also indicate the 

presence of 5 resonance peaks in the frequency band of excitation.    

 

 
Figure 4 Excitation and Acceleration Response for the beam without delamination, (a) linear chirp 

excitation from 20 kHz to 31 kHz. (b). Response at the free end of the cantilever beam. 
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Figure 5 Excitation and Acceleration Response for the beam with delamination, (a) Linear chirp 

excitation from 20 kHz to 31 kHz, (b) Response at the free end of the cantilever beam. 

 

Figure 6 shows the displacement responses at Nodes 51 and 102 near resonance peaks 

at modes 22, 23 and 24. Responses at modes 22 and 24 are high and non-linear 

interaction seems to be more compared to the 23rd mode. It is expected from the mode 

shapes shown in Figure 3. Although the mode shape at the 23 mode does not show 

significant relative deflection, however the non-linear interaction observed at this 

natural frequency is definitely an encouraging indication for detection of the de-

lamination. Similar observations have also been made at other higher odd modes.  
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Figure 6 Displacement responses at  Nodes 51 and 102 showing non-linear interaction, (a) Mode 22 – 

21.486 kHz, (b) Mode 23 -23.758 kHz, (c) Mode 24 -25.685 kHz 
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Figure 7 The waterfall plots for Acceleration spectra for the free end responses of the cantilever beam, (a) 

without delamination, (b) with delamination 

 

Further analysis of the acceleration responses measured at the free end (Figures 4(b) and 

5(b)) of the cantilever beam for both cases have been carried out in the frequency 

domain. Typical 3D waterfall plots of the short time Fourier Transformation (STFT) of 

(a) 

(b) 
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the responses for these two cases are shown in Figure 7 which show the presence of the 

resonance frequencies in the frequency band of the excitation and their harmonics with 

time for the delamination case, however the beam without delamination shows only the 

resonance frequency peaks without any harmonics.  

 

3.0 CONCLUSION 

The vibration behaviour of the delaminated structures has been discussed through a 

simple simulated and experimental study. It has been observed the excitation at the 

natural frequencies trigger the non-linear interaction between the layers in the 

delamination pocket. The acceleration response far away from the delamination location 

also seems to picking such non-linear behaviour, hence the present study show the 

possibility of delamination detection by conducting simple vibration experiments 

without using the embedded sensors or mapping the deformation over the area to detect 

the delamination. Present study has just been limited to the simple examples, however it 

is now plan to carry out the similar study on the composite structure with a small 

delamination and possibility of identifying the delamination location will also be 

explored.  
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ABSTRACT 

 

The paper is on the dynamic behaviour of a delaminated composite plate based on the 

numerically simulated experiment. The possibility of delamination detection using the 

non-linear interaction feature in the delaminated region has been explored when excited 

the plate through a shaker.   

 

INTRODUCTION 

Composite materials are in use in several applications, for example, aircraft structural 

components, because of their light weight and high strength. However the delamination 

which is one of the serious defects often develops and propagates due to vibration 
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during the service of the structure. The presence of this defect warrants the design life of 

the structure and the safety. Hence the presence of such defect has to be detected in time 

to plan the remedial action well in advance.   

Several research studies have been carried for the composite structures with 

delamination. They are related to the modelling aspects of the composite structures with 

delamination  (Kudela and Ostachowicz, 2009, Aniello et al., 2008, Alnefaie, 2009, 

Della, 2007) and few on the vibration based detection of the delamination by both 

experiments and analysis (Park et al., 2007, Takeda et al., 2005, Akira, 2002, Ying et 

al., 2003, Qiao et al. 2008). Few studies suggesting the detection by change in natural 

frequencies (Wei et al., 2004, Ackers et al., 2008, Diaz, 1999, Qiao et al., 2007) and 

few have used the effect of local modes in their experiments to identify the delamination 

either by mapping the mode shape across the surface of the composite structure 

(Roseiro et al., 2003, Takeda et al., 2005, Ying, 2003) or by advance signal processing 

using wavelet analysis (Zhonqing and Lin, 2004, Sohn et al., 2004). Often the use of 

such technique requires the distributed or embedded sensors at least over the surface of 

the composite structure or the expensive experiments (Akhter et al., 2008, Amr and El-

Dakhakhni, 2009) using the laser vibrometer and dielectrometry sensors which restricts 

the practical used in many cases. Now the effort is develop a method that can detect the 

presence of the delamination using less number of sensors. In the present approach, the 

structural response due to the non-linear interaction between the layers in the 

delamination region, when the structure is excited externally, has been utilised. It has 

been believed that such non-linear interaction response will travel all along the surface 

and can be measured at any location, hence it is expected to remove the use of the 

distributed sensors or the time consuming scanning of the surface with the laser 
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vibrometer. The proposed concept has further been demonstrated on a simple cantilever 

beam with delamination (Israr and Sinha, 2008). It has been observed that the 

delaminated beam shows number of harmonics in their acceleration responses when 

excited at higher modes (Israr and Sinha, 2008). Now the concept has further been 

extended here on a carbon fibre plate with delamination. The acceleration responses 

were estimated at 3 randomly selected measurement locations when excited at number 

of modes from 1 to mode 32. The observations have been summarised here which 

shows the possibility of the delamination detection in much economical way.  The 

initial observation made on a simple experiment has also been discussed here. 

 

FINITE ELEMENT (FE) MODELLING 

 

A carbon fibre multi-lamina layers composite plate of 280 mm square plate and 2 mm 

thickness has been chosen to understand the delamination effects in the simulated study. 

The composite plate ply orientations are [00/900/00/900/900/00/900/00] and the material 

properties for the lamina are; Density,  =1600 kg/m3, Elastic constants, 1E =1770 GPa, 

2E =14.92 GPa, Poisson ratio, 12 =0.21, and Shear modulus,  1321 GG 5.7 GPa, 

23G 5.63 GPa. 

The delamination has been introduced between the 3rd layer from top and 5th layer from 

bottom and the location is shown in Figure 1(a). The plate has been modelled using 4 

node shell (S4R) shell elements using the Finite element (FE) code ABAQUS. The FE 

model is shown in Figure 1(b). Total of 49 elements of size 40 mm x 40 mm have been 

used. A small delamination area has been introduced in the plate, such that the pair of 



Appendix 

                                                        186 

nodes 37 shown in figure 1(b) and 65 not shown is detached and their displacements on 

the upper and lower surfaces within the delamination region are not connected to each 

other.  The boundary condition has been assumed free for all the four edges.  

 

 

Fig. 1(a) Composite plate with size and location of delamination, (b) FE model showing delamination 

node, shaker location, and measurement locations used in the simulated study.  

(a) 

(b) 
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The modal analysis has been carried for this FE model to estimate the natural 

frequencies and the mode shapes. Few typical mode shapes and their natural frequencies 

are shown in Figure 2. It can be seen from Figure 2 that the modes shown do not show 

any visible separation between the delamination nodes 37 and 65. The deflection of the 

nodes 37 and 65 in the mode shapes along the thickness direction (hereafter referred to 

as z-direction) up to mode 30 as well as the deference between the two in the z-direction 

is also shown in Figure 3.  The difference in the deflection between these nodes has 

been observed after mode 10 and becomes significant after mode 18.   

  

  

 

Fig. 2 few typical mode shape plots  
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Fig. 3 Mode shape for the nodes 37 and 65 along the thickness direction with the mode number 

 

RESPONSE ESTIMATION 

The composite structure with delamination expected to show non-linear interaction in 

the delamination region when excited externally. Such responses may get amplified 

when excited at the natural frequencies. The effect is expected to be much more 

prominent for the mode 13 and above as the mode shapes for the mode 13 and above 

show significant separation in the delamination region as seen from Figure 3. Hence the 

acceleration responses have been computed at the randomly assumed measurement 

locations when the linear chirp-sine excitation were applied for the all the modes up to 

18 modes. The assumed measurement locations and the shaker location for the 

simulated study are shown in Figure 1(b). The damping was assumed to be 0.75% for 
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all the modes. The linear chirp-sine excitation was given in the frequency band of  

10nf  Hz with the chirp rate of 3.052 Hz/s for all the modes, where nf  is the nth 

natural frequency. The time step for the response computation was kept 1 s .    

It was difficult to simulate the non-linear interaction between the nodes 37 and 65 in the 

delamination region in the ABAQUS FE code, hence the mode-superposition method 

was slightly modified to allow the non-linear interaction and then responses were 

estimated separately which is explained here. 

In the Mode-superposition method, the dynamic equation in the modal domain in 

Equation (1) has been used to estimate the modal responses. 

2( ) 2 ( ) ( ) ( )T
r r r r r r rt t t t    p p p φ F                                                                             (1) 

Where r  is rth natural frequency (rad. /s), r  is damping ratio at rth mode, rφ is the 

vectors of the rth mode shape, ( )r tP is the modal responses at rth mode and ( )tF is 

applied force. The responses (displacement, velocity and acceleration) have then been 

estimated as ( ) ( )t tx φp , ( ) ( )t tv φp  and ( ) ( )t ta φp respectively, where φ  is the 

mode shape matrix and the modal response vectors

 1 2 3( ) ( ) ( ) ( ) ( )
T

nt t t t tp p p p p . However for the present study the modal 

parameters - nf  and   φ  would not be constant with time due to the non-linear 

interaction. Hence the 2 sets of modal parameters have been computed, one set ( _n df  

and dφ ) for the delamination case and another set ( _n ndf  and ndφ ) for the perfectly 

laminated (no delamination) case. The set (1) data were used in Equation (1) and the 

responses estimated when the nodal displacement, 37 65( ) ( )x t x t in the direction of 
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thickness of the plate and the set (2) when 37 65( ) ( )x t x t . It is because the later 

condition is more like the plate without delamination. Hence a computational 

programme has been developed based on the proposed scheme in the Matlab software 

code to estimate the responses using the 2 sets of the modal data from the FE model 

(with and without delamination) developed in the ABAQUS code. The rigid connection 

between the nodes 37 and 65 at all the degree of freedoms (DOFs) was assumed in the 

FE model with the delamination to realise the composite plate without delamination for 

the 2nd sets of modal data which also ensure the same number of  DOFs in both the 

models. The Newmark-   method was used for solving Equation (1). The computed 

measured acceleration responses and the displacement responses at the nodes 37 and 65 

were then down-sampled by 10 and low-pass filtered at 49 kHz to remove the high 

frequencies components likely to occur due to the time step used in the computation. 

The displacement responses for the nodes 37 and 65 in the thickness direction in Figure 

4 show the non-linear interaction in the delamination region for the modes 4, 10, 17, 

and 18. The modes 17 and 18 shows significant non-linear interaction compared to the 

modes 1 and 10 supports the observation made in Figure 3 where the modes 17 and 18 

have significant separation between the nodes 37 and 65.      
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Fig. 4 The displacement responses for Nodes 37(dotted line) and 65 (solid line) showing non-linear 

interaction (a) Mode 1:110 Hz (b) Mode 15: 1518 Hz (c) Mode 30: 3232 Hz and (d) Mode 32: 3438 Hz 

 

DATA ANALYSIS AND RESULTS 

The data have been down sampled by 10 so that the sampling frequency now becomes 

equal to 100ksamples/s. The short time Fourier Transformation (STFT) has been carried 

out for all the data keeping the frequency resolution, f = 3.052 Hz and overlap of 

40%. No window was used for this analysis. The averaged amplitude spectra were also 

plotted for all the simulated measured data. Since the excitation frequency band for each 

mode was the linear chirp-sine excitation, hence ordered spectra were estimated for 

averaging and the order axis was converted to the frequency axis by multiplying the 

order 1 by the excited natural frequency. Typical amplitude spectra have been shown in 

Figures 5-13 and the summary of the observations in Table 1. The responses were also 

estimated for the simulated example without delamination. Few typical acceleration 

spectra for the composite plate without delamination are shown in Figure 14 which 

shows the prominent at the excited mode only. 

Table 1 Summary of the observations 
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Parameter used: For response calculation: Linear Chirp rate 4Hz/s, Time step, ∆t = 1 µs , Total time = 
5sFor FFT spectrum, STFT: Sampling frequency,  f s  =10 k-samples/s, Frequency resolution, ∆f 

=3.052Hz, Overlap= 40%, No window 

Excitation Natural Frequency (Hz) Observation made at measured locations Figures 

1, 2, 8, 12,13 110, 178, 682, 1271,1271 Excited mode and its higher harmonics Figures 5 

3-5, 9,10, 20 244,  389,  389,  804,  906,

2377 

Predominant at the excited mode only 
because vibration at these modes are along 
the plane and not along the thickness 
direction 

Figure 6 

6-7 589, 589 Response at the excited mode with multi-side
bands 

Figure 7 

11 
1179 

Response at the excited mode with multi-
side bands showing modulation with 
110Hz and their harmonics. Peaks at 
Mode 6 (589Hz) and Mode 8 (682Hz) 
l

Figure 8 

14, 15,16, 19 
& 21 

1418, 1518, 1518, 2208,
2399 

Response at the excited mode and Mode 9
(804 Hz) 

Figure 9 

17-18 1936, 1986 Response at the excited mode with multi-
side bands showing modulation with the 
frequency 645Hz plus response peak at 
645Hz and its harmonics 

Figure 10 

22-25 2551, 2551, 2787, 2787 Response at the excited mode with side 
bands showing 

Figure 11 

26-27 2874, 2874 Response at the excited mode with side 
band showing modulation with the 
frequency 635Hz plus response peak at 
635Hz 

Figure 12 

28-32 
3007, 3113, 3232,3245, 

3438 

Response at the excited mode with multi-side
bands showing modulation with the frequency
approximately 

Figure 13 
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Fig. 5 Amplitude Acceleration spectra at Measurement Location 2 when excited at (a) Mode 1: 110Hz, 

(b) Mode 2: 178Hz, (c) Mode 8: 682Hz, (d) Mode 12: 1272Hz 
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Fig. 6 Amplitude spectrum at Measurement Location 2 when excited at (a) Mode 3: 244 Hz, (b) Mode 4: 

389 Hz, (c) Mode 9: 804 Hz, (d) Mode 20: 2377 Hz 

 

 
 

 
Fig. 7 Amplitude spectrum at Measurement Location 2 when excited at Mode 6: 589Hz 
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Fig. 8 Amplitude spectrum at Measurement Location 2 when excited at Mode 11: 1179Hz 

 

 
 

Fig. 9 Amplitude spectrums at Measurement Location 2 when excited at (a) Mode 14: 1418 Hz, (b) Mode 

15: 1518 Hz, (c) Mode 19: 2208 Hz, (d) Mode 21: 2399 Hz 
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Fig. 10 Amplitude spectrum at Measurement Location 2 when excited at (a) Mode 17: 1937Hz and (b) 

Mode 18: 1986 Hz 

 
Fig. 11 Amplitude spectrum at Measurement Location 2 when excited at (a) Mode 22: 2551Hz and (b) 

Mode 25: 2787 Hz 

 
 

Fig. 12 Amplitude spectrum at Measurement Location 2 when excited at Mode 27: 
2874Hz 
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Fig. 13 Amplitude spectrum at Measurement Location 2 when excited at (a) Mode 28: 3007 Hz, (b) Mode 

29:3113 Hz, (c) Mode 30: 3232 Hz, (d) Mode 31: 3245 Hz, (e) Mode 32: 3438 Hz 
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Fig. 14 Amplitude spectrum at Measurement Location 2 when excited at (a) Mode 6: 590 Hz 

(b) Mode 32: 3437 Hz 

 
EXPERIMENTAL SETUP 
 

The experimental validation of the numerical simulation has been done. Two 

Aluminium plates of sizes 190mm x 190mm x 1.15mm and 190mm x 190mm x 

3.15mm glued together leaving a square pocket of 50 mm x 50 mm in the centre have 

been prepared to simulate the delamination condition. The plate is fixed on one edge as 

shown in Figure 15(a). Figure 15(b) shows the schematic of the experimental setup. A 

piezo-electric shaker (Model PS-X03, M/s ISI-SYS) has been used to excite the plate 

and the acceleration responses were measured using the accelerometer (Model 352C22, 

M/s PCB). The data were analysed online using the 2 channel FFT analyser and also 

recorded on the Laptop using 16-bit 8-channel data acquisition Analogy to Digital card. 

The data were recorded at a sampling frequency of 100ksamples/s. In the initial 

experiments, the impulse-response modal test (Ewins, 2000) has been carried out using 

the instrumented hammer (Model 086C03, M/s PCB) to find out the natural frequencies. 

A typical measured response both in time and frequency domain is shown in Figure 16. 

Then the sine excitation was given at the few identified modes. Few typical acceleration 

amplitude spectra are shown in Figure 17. It has been observed the higher harmonics of 
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the excited modes seen in the acceleration amplitude spectra even at the lower natural 

frequency at 75Hz confirming the nonlinear interaction in the delaminated region. 

      
 

Fig. 15 Schematic of Experiments, (a) Plate with shaker and accelerometer, (b) 
Experimental setup 

 

 

Fig. 16 A typical measured Acceleration response to the impulsive excitation, (a) time wave form, (b) 

Amplitude spectrum 
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Fig. 17 Typical measured acceleration amplitude spectra when excited at modes (a) 
75Hz, (b) 300 Hz,              (c) 480 Hz, (d) 1118 Hz 

 

 

CONCLUSIONS 

The dynamics of the composite plate with delamination has been discussed. An FE 

model of a carbon fibre composite plate with a delamination has been developed and 

then the responses were estimated when excited at the number of modes using the 

mode-superposition method. The mode-superposition method was slightly modified to 

realise the nonlinear interaction between the delaminated layers. The results show the 

presence of harmonics and the frequency modulation appearing as side bands at the 

excited modes in their acceleration responses for most of the modes. Simple tests on a 

composite plate made of aluminium with delamination have also confirms the presence 

of higher harmonics when excited at number of modes. But the presence of the side 

bands has not been observed in the present experiments. It needs further tests to 

understand the nonlinear phenomena. However the presence of higher harmonics both 

in the simulation and then in the experiment definitely highlight the potential feature for 

the detection of the delamination in the composite structures in much simplified way.  
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