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We consider a subset of the set of solutions to the n-body problem, termed chore-
ographies, which involve a motion of particles where each follows the same path in
space with a fixed time delay. Focusing on planar choreographies, we use the action
of symmetry groups on the spatial and temporal motion of such systems to restrict
a space of loops and study the topology of the resulting manifolds.

As well as providing a framework of notation and terminology for the study of
such systems, we prove various useful properties which allow us to classify the possible
groups of symmetries, and discuss which are likely to be realisable as that of a motion
of bodies.
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Chapter 1

Introduction

The n-body problem is that of determining, given the initial positions and velocities
of n bodies moving in space, the path which they will take. The particles will interact
by gravitational attraction. Solutions to the n-body problem will be curves which
describe a valid motion of the particles, given a set of masses and a formula for
gravitational potential.

The study of n-body problems has deep roots in the history of mathematics, and
was originally motivated by the motion of the planets and stars. Such mathematics
may also be applied to the study of molecular particles, and also to point vortices in
fluid dynamics [6]. Many different approaches have been taken to try to understand
such systems.

In particular, my study focuses on a subset of n-body solutions termed chore-
ographies. These are motions where each of the particles follows the same path
but with a fixed time delay. Leading figures in the study of choreographies include
Chenciner and Montgomery, who discovered the figure eight choreography [12], which
we will use extensively as an example in this thesis; and Gerver, whose ‘super-eight’
choreography is also useful in studying a particular class of examples which we find
interesting. These three have worked together with Simé in [11], where they prove

some fundamental results about the nature of choreographical solutions.

14



CHAPTER 1. INTRODUCTION 15

Conventionally, the existence of solutions has been proven using variational meth-
ods. The existence of planar n-body choreographies may be proved using computer-
assistance. Simd’s [29] numerical calculations have proven the existence of many
choreographical motions, and he has also produced beautiful animations of many
such examples. Kapela and Zgliczynski ([18], [16]) have done similar work employ-
ing interval arithmetic. Many of the examples in this thesis have been proven to
exist in this way. There also exist computer assisted proofs [17] of the existence of
non-symmetrical planar choreographies.

The work of Ferrario and Terracini [14] involves using the inherent spatial and
temporal symmetries implied by the definiton of a choreography to restrict the space
of loops being considered. This topological approach considers the effect of the action
of the symmetry group on the spaces of loops in the configuration space of n particles.
Ferrario and Terracini also provide conditions to ensure the success of variational
methods, which guarantee the solutions will exist and be without collisions.

In this thesis, we attempt to apply techniques from algebraic topology and the
study of loop spaces on manifolds to the behaviour of bodies in a dynamical system.
In particular, we will be considering the action of symmetry groups on systems of
particles, and using the symmetries to consider a restricted set of motions, following
the methods proposed by Ferrario and Terracini.

In Chapter 2, we describe our aim to study spaces of loops possessing symmetries.
We begin by considering relative loops. These are not closed loops, but paths which
run from a point to its image under some automorphism of the space on which they
are defined. We also define a system of notation, and a set of maps between such
spaces of loops. We will also introduce some key motivating examples, namely those
of n-body problems and k-centre problems.

The particular subset of paths we will be considering is that of choreographies.
In Chapter 3, the concept of a choreography will be defined and explored in detail,
determining what effect such a restriction has on the space of loops being considered.

We introduce a system of representations for the group of symmetries, which al-

lows us to interpret the effect of each symmetry on the space and time in which the
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particles move. In Chapter 4 we attempt to classify the different types of symmetry
group possible, using these representations, and define certain special types of sym-
metry depending on how they act on the passage of time. We will also discuss how
each symmetry group leads to multiple connected components of the loop space, each
of which possesses the same group of symmetries but is in a different homotopy class
of loops.

Many examples will be considered and studied in detail to build up a picture of
how different groups of symmetries give different types of orbit, and how each system
may be specified. We also prove several useful results regarding the different types
of symmetries which exist, and how this affects the choreographies.

In Chapter 5, and in the Appendix, we discuss several classes of examples and ex-
plore their relationship with each other and the way they may be realised as subspaces
of the space of relative loops.

It is also possible, using minimisation of the energy of the system, to determine
when certain homotopy classes of paths will be realisable as a motion of particles. In
Chapter 6 we will discuss some approaches which have been made in this area, and
highlight in particular what this means for the choreographies we have been studying,
in terms of whether they will be realisable.

Chapter 7 deals with other considerations which may lead on to further study,
some of which have been touched on earlier in the thesis, and others which would

possibly be interesting to investigate further.



Chapter 2

Preliminaries

This chapter is devoted to introducing some of the notation, structures, maps and
definitions which will be relied on during this work. We will start by considering
spaces of loops, and then introducing the concept of relative loops. We will define
several different spaces of loops and relative loops on a given manifold, with respect
to the action of a group, and a set of maps between the different spaces which behave
in a sensible way. We also consider some key motivating examples, and how they fit

into this framework.

2.1 Introductory concepts

In this work, we will be studying group actions on manifolds and their effect on the
spaces of loops defined on those manifolds. Groups will usually be denoted G, group
elements ¢, and manifolds, which we assume to be connected unless otherwise stated,
will be denoted M. In general, groups will be discrete, and manifolds will normally
be the configuration space of a physical system.

We will use the standard notation for the fundamental group 71 (M, x), the based
loop space (M, z) and free loop space A(M), given a topological space M and base
point z € M.

When discussing dihedral groups, we will use D,, to denote the group of symme-

tries of the regular n-gon, which will be a group of order 2n.

17
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We will also be considering the relative loop spaces - which are defined as

follows, with the compact-open topology. Let GG be a group acting on a manifold M.

Definition 2.1.1. We define the based relative loop space of a manifold M, with
respect to an automorphism ¢ of the manifold and a basepoint © € M, to be the
space of continuous maps of the interval [0, 1] into M such that 0 is mapped to z,
and 1 is mapped to gz, the image of x under g. Alternatively, this can be thought of
as the space of all paths which run from the point x € M to the point gxr. We denote
this space

QY(M,x) ={y:[0,1] = M | v(0) = z,7(1) = gz}.

Compare this with the space of ordinary closed based loops, which is usually given
by
QM,z) = {7 :[0,1] = M [7(0) = 7(1) = x}.

Definition 2.1.2. We define the free relative loop space of M to be the space of
all paths in M which run from any point to its image under g. This can be thought

of as the union of all the based loop spaces over x € M. We denote this space

AI(M) ={y:[0,1] = M [ (1) = g7(0)}.

Again, compare with the free loop space

AM) = {y:[0,1] = M | (1) =~(0)}

or equivalently, A(M) = C(S!, M), the space of continuous maps of S! into M.
If we consider the quotient of the based loop space up to homotopy, in the case

of ordinary closed loops, we obtain the fundamental group:
QM,z)/ . =m (M, )

In the case of relative loops, taking the quotient with respect to homotopy does not
result in a group, but a torsor which we call the relative fundamental torsor of

M with respect to the basepoint z, denoted 77 (M, x).

V(M )/~ =mi (M, x)
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Remark 2.1.3. A torsor, sometimes also called a principal homogeneous space
for a group G, is a set X on which the group G acts both freely and transitively, so
that for any z, y in X there exists a unique g € G such that g -x = y. A familiar
example is the way in which an affine space is related to a vector space - here, the

affine space corresponds to the torsor and the vector space to the group.

The fundamental group m(M,z) acts on 7j(M,z) by composition, with v €
m1(M, x) taking a homotopy class of paths from z to gz to a different class of paths,
given by passing along + first, then the path to gx. This action is free, since the action
is defined up to homotopy and two homotopic paths will be given by the action of
homotopic loops. It is transitive, since m; is the set of all possible homotopy classes,
and 7§ all paths, and any path may be mapped to any other path by the action of
composition with some loop.

The relative fundamental torsor consists of homotopy classes of paths running
from x to gx. It does not have a group structure like the usual fundamental group,
since paths do not return to the same point, so there is no natural way to compose
two paths. It can be given a group structure by choosing a path 7, which runs from
x to gx. Then, by travelling along a path which is an element of ] and returning via
T., we have an element of 7. Hence, the choice of 7, gives us an identification of the
torsor with the underlying fundamental group, where 7, corresponds to the identity
element. This allows us to multiply two elements of 7] together, by mapping both
to the fundamental group and composing the two elements under the multiplication
there, before mapping back to the torsor. The result of this operation depends on
the choice of 7,. The structure of 7] and more concrete notation for these maps is
outlined in Section 2.3.1.

These spaces consist of paths which are not closed loops but run between two
distinct points. We will later find it useful to denote such a space in generality by
P(Y,Y1,Ys) where Y] and Y, are subspaces of Y. This denotes the space of paths in
Y which start at a point in Y] and end at a point in Y5.

Next, we will set out some notation which will be of use.
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2.2 Paths and loops

In general, the letters v, 9, 0, A will be used to denote loops and paths as necessary.
Additionally, we have specific notation for certain useful paths, namely w and 7.,
described below.

A path from z to an alternative basepoint y € M will be called w, and we
will use the notation w : = ~~ y to mean w runs from z to y, or more strictly
w: ([0,1],0,1) — (M, z,y). In order to reduce the number of elements which must
be chosen, we must choose such a path w : x ~» z for each z in M, and then we can
select a path between any two points in M, by travelling via the point x. We will,
when it is necessary to specify the start and endpoints, denote a path from y to z by
Wy

The reverse of any loop or path v will be denoted 7, and means the same path
traversed in the opposite direction. The reverse of a path is the inverse of the path
as an element of the fundamental group or relative fundamental torsor, in the sense
that composition of the path with its inverse is homotopic to the trivial path.

The composition of two paths ~,d will be denoted ~ * ¢, which means travelling
along ~ then along §.

1

e (1) = ~(2t) t€l0,3]

5(2t — 1) teli 1]
A path from z to its image gz will be denoted 7, so we may write 7, : x ~» gr. We
may also make use of 7, : y ~» gy, which may be defined in terms of 7, in order to
simplify the maps. Given w : x ~ y, we set 7, = W * 7, * gw, which runs from y to gy
via z and gz. In this way, a single choice of 7, gives a canonical choice of path from
any point to its image, given our already chosen path w from x to that point. This

can be seen in Figure 2.1.

This method of choosing paths then allows us to find 7, in terms of 7., by 7, =

Wy * T, * gwy, provided our path w,, from y to z is that which travels via z, as

discussed previously.
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°
y ~— < _J/.Z
o Vg <

Figure 2.1: Finding 7, and 7, given 7,

Indeed, let w be a path from z to y, and w’ a path from z to z. Then 7, = W7, *gw,
then we can rearrange to obtain 7, = w * 7, * gw. Substituting into 7, = W’ * 7, * gu’,
we obtain 7, = W’ * w * T, * g * gw', which is equal to (@ * ') * 7, * g(@ * w'). Here,
(W*w') is a path from y to z, and hence is our w,, above. This is also easily seen in

Figure 2.1.

2.3 Maps of the fundamental group

2.3.1 Some standard maps

All of the following maps may be defined on spaces of paths which run from one point
to another - although they are described here as maps between relative fundamen-
tal torsors, since they induce maps which send homotopy classes of paths to other
homotopy classes of paths.

Given a path w : [0, 1] — M which runs from z € M toy € M, and an appropriate
loop or path v : [0,1] — M for which (1) = x, we define w,(y) = v * w - that is,
we travel along the path v and then along w. We may replace w with its reverse,
giving the map w, () = 7 *w, for which we need (1) = y in order for the path to be
well-defined. We will also define &,(y) = w * v, where the path w is travelled along

first, in which case we require 4(0) = y, and similarly @, () = @ % v when (0) = x.

Remark 2.3.1. The maps @, and 5* are the inverses of the maps w, and w,. While
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strictly W, o w, # id, the loop resulting from applying these two maps will be homo-
topic to the original loop. The same holds for W, ow.. The maps can be thought
of as inverses when they induce maps on 7{ (M, x), since @ * w is homotopic to the

constant loop.

Under this notation, we may note that, given a path 7, : * ~ gz, 7., and its
inverse 7., induce maps between (M, z) and 7f(M,z), and hence these are the
maps which define the structure on 7{(M, ) relative to the ordinary group structure

on 7 (M, x). Indeed, for v, d in 7{(M, ), we can write their composition as:

T ® 0 = Tou(Tan(7) * T (9))

Here 7., (7), Tzx(0) are elements of 7 (M, ) and can be composed as ordinary group
elements, and then the whole thing is mapped back into 7¢(M, z) by applying 7,..

In order to clarify in the following the difference between composition of paths and
composition of elements of the relative fundamental torsor, we will use the symbol
® as above to denote this operation. This is the binary operation analagous to
composition of group elements, and determines a group structure on 7j. Again, the
definition of this group structure depends on a choice of 7,.

We may verify the group structure on 7(M,z). For example, ® is associative.

For 7, § and o in 7} (M, x), we have:

(Y®0)®0 = Tou(Tan(Tan (Tax (7) # T (0))) # T (0))

— Tm*(m(v*r_x*é*ﬁ)*Tx)*(g*q——m))

= Y kT kO Kk Tk flpk Jrpkox Fpx fy

= YkTo kO kT k Ty % Ty x O
And also:
YR ®0) = Tou(Ton(Y) * Ton(Tur(Tam (8) * Tam (0))))

= Tuu((V*Ty) % Tou (0 % Ty % (0 % Ty) % 7))

= Y kT, kO k Ty k Ty k Ty k Ok Jipx frox Jipgk fu

= VAT kO KTy X Ty % Ty %O
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These are equal, since we may cancel 7, with 7, up to homotopy, and hence we have
associativity.

It is also worth noting that while these maps are defined here in the language of
specific paths running from one point to another, they induce maps on the spaces of
homotopy classes of such paths. When referring to ‘an element « of 7;’, we will often
denote by ~ the homotopy class of paths containing ~. In cases where ambiguity
arises, the homotopy class may be denoted [y] and the specific path 7.

Given a choice of w (which specifies the two maps w, and @,), we can define
another map, denoted ®, : m (M, x) — m(M,y), which acts by ®,(7) = @ * v * w,
and similarly ®;(v) = w*y*w. This map gives a change of basepoint, for w : z ~ y,
from 71 (M, z) to (M, y). Note that &, = o, ow,, and @5 = W, ow,. Here o denotes
composition of maps.

All of the maps given above between the fundamental groups and relative funda-
mental torsors at different basepoints are isomorphisms. Given these maps, and two

basepoints x,y € M, with M path connected, we may construct the diagram seen in

Figure 2.2.
Lo
7TI<M7‘I) F 7T1(M7y>
Trx Txx* 7y* Ty
@
(M, z) ——=m{(M,y)

Figure 2.2: The maps between the fundamental groups and relative fundamental
torsors based at x and y

Here, the map ®9 is a modification of ®, where we map v to @ * v * gw, and this
gives a map between the two relative fundamental torsors. It may be noted also that
®I = @, 0 wd, where w? is the map given by v — v * gw.

For different choices of w, we obtain different isomorphisms ®,, between m (M, )

and 71 (M, y). We also have:

Proposition 2.3.2. If (M) is an abelian group, for M path connected, then the
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map P, is independent of the choice of w.

Proof. Let M be such that m (M, x) is abelian, and let w, w’ be paths from z € M
to y € M. Here ~ denotes homotopy equivalence. Then, for an equivalence class ~y

in m (M, ),

P,o0d(y) ~ Wk (Wky*rw)*kw
~ @xW) (W xw)

~ ([@xW)* (W kw)*y

(since 71 (M, z) is abelian, and (@ * w'), (' * w) are elements of w1 (M, x))

Hence, ®, and $,, are equal. O]
We may now prove the following:

Proposition 2.3.3. The diagram given in Figure 2.2 above, using a choice of 7,

defined in terms of T, and w as described earlier, commutes.

Proof. Let us take an element « of w1 (M, x), a homotopy class of loops, and take its

image under each of the maps around the diagram, until we return to (M, z).

v € m(M,z)
(V) = vx7 €7{(M, 1)
OY(1er(7)) = PL(y 7)) =W (v 72) x gw € 7 (M, y)
Ty PL(1ex (7)) = W (y#7) x guw Ty € m(M,y)
O (Tyu (P (Ten (7)) = wxWk (Y5 7y) % gw*Ty xw € m (M, x)

= V*Tx*gw*Ty*w
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Now, given that 7, = W * 7, * gw, we have

= Yk Tk gwk (0 * Ty % W) * W
= VAT kgwk (W0 * Ty *w) *xW
= Yk Tpx Jwx G0k Tok ok o
= VAT xTy

=7

And hence the diagram commutes. ]

2.3.2 Loops based at gx

The map ¢, will act as a change of base point map from 7 (M, x) to m (M, gx). In
this case, we have a similar diagram to that above, seen in Figure 2.3, and again we

assume M is path connected.

w1 (M, x) m (M, gx)

Trx Txx Tgxx Tgx*

®9,
(M, ) (M, gz)

q)g
TT

Figure 2.3: The maps between the fundamental groups and relative fundamental
torsors based at x and gx

This diagram also now incorporates the map 7,,. and its inverse, which are defined
in terms of a path 7,4, which runs from gz to its image g*z. If g is a transformation
of order greater than two, this will, in general, be distinct from z. The logical choice
of 7., in order to simplify calculations and ensure this diagram commutes, is g(7;),
the image of the path 7, we have already chosen under the map g. This ensures that

the map ®¢ is equal to Ty 0 Tgus, SINCE T4y © Tyus(7Y) 1S given by 7, % 7y % 7,,, which is

the same as 7; * 7 * g(7,), which is how ®¢ is defined.

Proposition 2.3.4. The diagram in Figure 2.3 also commutes, given a choice of T,.
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Proof. Since we have already proved that the outer ring of the diagram commutes
for a change of basepoint from x to y, y = gz is just a special case of this. Hence, it
suffices to prove the maps running diagonally in this second diagram commute with

those on the outer ring. Consider an element v € 7 (M, ).

vy e m (M, )
O, (v) = Toxy*1 €m(M,gr)
Tor(Pr (7)) = ToulTox 7% 7o) = o % (To ¥ 7 % 72) € m(M, g)
= yx71, €7 (M, x)
Tor(Y*Ta) = Y7o *Ty €m(M, )

= 7

Hence we are back to our original element. Since all the maps are isomorphisms and

the square outer ring commutes, the whole diagram commutes. ]

The maps 7y, and 7, are maps between 7f(M, z) and 7, (M, gz), which work in
an analogous way to the maps 7., and 7, except instead of interpreting composition
of paths from x to gx by considering loops based at x, we instead consider loops based
at gx, the other end of the path. This allows us, in a similar way to that defined
using loops at z, to impose another kind of group structure on 7{(M,x) given the

existing group structure on (M, gz).

Proposition 2.3.5. The group structure induced on 7 (M, x) from m (M, x) via the

Maps Tpe and Toy is the same as that drawn from (M, gx) via the maps Tp. and Toe

Proof. 'This follows from Proposition 2.3.4, and that @, is an isomorphism between
m (M, z) and 7 (M, gx) - if the composition of two elements from 7¢(M, ) is mapped
to a particular element in 7 (M, x), then under the isomorphism it will be the same
as that mapped to in 71 (M, gx). Similarly, the identity of 7{(M,x) will be 7, under

either structure. O
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2.4 Equivariant fundamental group

Let M be a manifold, and let G be a finite group acting on M. Let us define

(M x) ={([7],9) | v:[0,1] = M st 4(0) =z, 4(1) = gz, g € G}

Here [v] denotes a homotopy class of paths running from x to gz. This construction
is called the equivariant fundamental group of M with respect to the group G.

It is indeed a group, with structure as follows:

e The identity element of 7 (M, ) is a pair ([e],id) where e denotes the trivial

loop based at x, and ¢d the identity transformation.

e The operation in the equivariant fundamental group is given by, for paths =, §

and g,h € G-
(71, 9) - ([6], k) = ([ * gd], gh)

Here v : 2 ~ gz, 6 : x ~» hx and 7 * g0 : © ~ ghx, as seen in Figure 2.4.

go ghx
gx
Y
5 hx
X

Figure 2.4: The operation in the equivariant fundamental group

e The inverse of an element is given by

Then we have

(.9) - (g A9 = (v x99~ 7], 997") = ([e], id)
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We may note that there exists a homomorphism 3 : (M, z) — G given by

B9y
In this case, ker 3 = 7 (M, x) since this is the subgroup of 7 corresponding to g = id.
We then have that the following sequence is exact:

1 — m(M,z) — 7% (M, x) Loa—1

Remark 2.4.1. The equivariant fundamental group can also be defined for G an infinite
group. However, not all of the following results will still hold. Since all of the examples

we will be considering use a finite G, assume G is always finite.

Remark 2.4.2. In the field of equivariant homotopy, there exists a construction called
the equivariant fundamental group, which is the first homotopy group of the so-called
Borel space for the action of G on M, usually denoted M. In fact, in the case where
(G is a discrete group, it is the same as our equivariant fundamental group, and hence

we will use this name without confusion.

Depending on how G acts on M, we have the following results.
Proposition 2.4.3. Let G be a finite group acting on a manifold M.

1. If G acts freely on M, then 7&(M,z) ~ 71(M/G, ), where T is the orbit of x

under the action of G

2. If G fizes some x € M, that is, gx = x for every g € G, then
79 (M, z) ~ 7 (M, z) x G
where the G-action is given by
pg - T (M, 2) = m(M,x),  pg: 7] g(l7])

3. If K <G and K acts freely on M, then n{ (M, x) ~ 7r1G/K(M/K, T), where T is

the orbit of x under the action of K.
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Proof. 1. Consider M as a covering space for M/G. The point x € M, as well as
the points gx for ¢ € G, will sit above Z in the covering and be mapped to &

under the projection map p.

Since we have a covering, the map p is a local homeomorphism, and so we have
by the path lifting property (see [15], p.60) that loops based at Z in M/G may
be lifted to paths running between two of the gz for g € G, and these lifts may
always be found, since the action of G on M is free. That is, for a path in M /G
based at Z, it may be lifted to a path in M, and this path will be continuous

as the action has no fixed points.

The free action also ensures that under the assumption that we lift the start of
the path to x € M, this lift may be chosen uniquely, and the lifted paths will
end at gx, for some g € G. Since the action is free, g is uniquely determined

by the path.

We also know that by the homotopy lifting property, there exist homomor-

phisms

projection p
2 LA

7T1G(M,$) m(M/G, )

lifting ¢
which are well defined on homotopy classes of paths and loops.
The compositions po ¢ and ¢ o p both exist and are equal to the identity map in
their respective domains. A uniquely chosen lift will project down to the same
original loop, and the image of a path may always be lifted to the original path.

Hence, 7% (M, z) ~ 71 (M /G, %) since we have isomorphism.

2. First, note that elements of 7 (M, x) will be a pair ([7], g) where [] € m (M, ),
since z is fixed by G, so [7] : x ~ gz is actually [y] : x ~ x. So we have that

7% (M, z) has the elements of 71 (M, x) x G.

We may also note that G acts on w1 (M, z) by automorphism, where, as stated

earlier,

pg = ag(W]), pg:m(M,z) — m(M, )
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It takes elements of w1 (M, x) to elements of 71 (M, z), since in this case x is a

fixed point of the action and so gr = x and ¢’z = gz = x for all g.

The product in 7¥(M, z) is given by

(715 9) - (18], R) = ([ * 3], gh)

Since p, () = g9, this means the product is exactly ([y * py(9)], gh), and hence

we have a semidirect product.

3. The proof of this follows largely as the proof of part (1), but now our covering
is given by M — M/K, where K acts freely on M. Since K < G, the action
of G on M induces an action of G/K on M/K by sending Kz to Kgr = gK.
The point z € M, as well as the points kx for £ € K, will sit above T = Kx in

the covering and be mapped to Kz under the projection map p.

Since the map p is a local homeomorphism, we have by the path lifting property
that paths from z ~~ h(Z), for some h € G/K, may be lifted to paths running
from z ~» g(z) for some g € G for which g € Kh, and these lifts may always
be found, since the action of K on M is free. The free action also ensures that
under the assumption that we lift the start of the path to x € M, this lift may
be chosen uniquely, and the lifted paths will end at khx, for a unique k£ € K.

Since the action is free, k is uniquely determined by the path.

We also know that by the homotopy lifting property, there exist homomor-

phisms

projection p
=z N

78(M, z) (MK, z)

lifting £
which are well defined on homotopy classes of paths and loops.
The compositions po ¢ and ¢op both exist and are equal to the identity map in
their respective domains. A uniquely chosen lift will project down to the same
original path, and the image of a path may always be lifted to the original path.

Hence, 7% (M, z) ~ 7T{VI/G(M/K, z) since we have isomorphism.
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The following examples illustrate the use of Proposition 2.4.3.

Example 2.4.4. 1. Let M = R?\ {a,b}, the twice punctured plane (considered
again in Section 2.6.2, Key examples).

kiko

O

- ; i

Figure 2.5: The twice punctured plane, with symmetries

Let G = Zs x Zs be the group acting on the space, generated by the reflections
k1 and kg, as shown in Figure 2.5. Without loss of generality, we may consider
the two removed points to be arranged as shown. Then, k; fixes a and b, and

ko and the rotation kqiko both swap a and b over.
The centre of the plane, x( is a fixed point of the action of G, and so by
Proposition 2.4.3(2), we have

m (M, xo) ~ m (M, 20) x G

Here m(M,zy) = Fy, the free group on two generators, which is generated
by the loops a, and a3, as shown in Figure 2.5. This means 7(M, o) ~

FQ X (ZQ X Zg)

The action of Zy X Zs on Fy is given as follows: k; sends «, and ay to their
inverses, the rotation kiks swaps the two generators, and ks sends «, to the

inverse of oy and vice versa.

2. Now let M = R?\ {a,b,c}, the thrice punctured plane, and let the three

punctures be arranged so as to be collinear, as shown in Figure 2.6(a).
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Figure 2.6: (a) The thrice punctured plane, with symmetries (b) The quotient space
by ZQ
Again we consider the action of G =< k1, ko > Zy X Zs on this space, but in

this case the action has no fixed points, since the point b is removed.

Now consider the group G = (K1, ke) = {id, k1, ko, K1Ko} and in particular
consider the subgroup K = (kik2). This is a normal subgroup of G, since G is
abelian. The quotient space M/K, shown in Figure 2.6(b), is the quotient of
R?\ {a,b, c} under the rotation by 7 given by 1k,. This means that points a
and c are identified, and b remains in place. The base point xq is replaced by
To, also denoted Kz, which is a pair of points opposite each other either side
of b. The action of K on this M/K is free, since its only fixed point is again b
which is removed. The cosets k1 K and koK are equal, and the two reflections

are equivalent in this quotient space.

Then, by Proposition 2.4.3(1), we have that
7 (M, z0) ~ ny"" (M/ K, 7)

That is,

wZ2XTe (N o) ~ 72 P21 P2 (€N 7, )

The quotient space M /K is the twice punctured plane. If we choose our base-
point Ty to be a point on the horizontal axis between b and ¢, it is fixed under
the action of G/K =~ Z, (acting by ki reflection), and so we can then use

Proposition 2.4.3(2) to find

WIZQXZQ/ZQ(M/Z%ZE_O) ~ Wl(M/ZQ,IL'O) X G/K
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So we have

’7TIG(M,ZL'0) ~ 7T1<]R2 \ {b,C},J]()) X ZQ = FQ X ZQ

where the action of Zs on the free group is by x; reflection, which sends each

of the generators to its inverse.

This gives us the short exact sequence:
1 — m(M,z) — 7% (M, x) La—1
1 — Fy — Fy X Zy 2 Ty X Ty — 1
We can understand the maps involved in this sequence by considering the way

in which the generators of each group are acted on.

Here Fy x Zs is generated by a loop around b and a loop around ¢, each based
at xg. The Zy part indicates whether the loop goes from x( to itself, or from

To to its image under k1, which is the same point.

The F3 is generated by three loops, based at zy and each passing around only
one of the three punctures. This is mapped into Fy by the way the rotation
k1Ko quotients the plane. We find the loop around ¢ goes to itself, b goes to b?
(since to go around b in the full plane, we go from z( to a point which is the
image of xy under k; and then back to zy) and a goes to beb™'. These three

elements of Fy generate a copy of F5 as a normal subgroup.

The map 3 takes an element ([7], g) of 7¥(M, x) to the element g in Zo X Zs.

2.5 Reidemeister conjugacy

In the case of ordinary loop spaces, we have the following.

Lemma 2.5.1. Conjugacy classes in the usual fundamental group m (M, z) corre-

spond to connected components of the free loop space A(M).

Proof. If we have a pair of homotopy classes of loops based at x, called o, €

m1 (M, x), then the element « * 3 @ will be conjugate to 3 in 7;. This element can
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be seen to be in the same connected component of A(M) as a loop representing (3,
since we need simply move the basepoint x along the loop «, which we may do in the

space of free loops, to obtain a path to (. O

In the case of relative loops, we may consider a ‘twisted’ conjugacy, which we call

Reidemeister conjugacy.

Definition 2.5.2. For a group H, if we consider a map ¢ : H — H which is an
automorphism, then we can construct a ‘twisted’ conjugacy by, for h,h' € H, h ~
h' < there exists j € H such that h = j*h/* ¢(j)~'. The equivalence classes under
such a type of conjugacy are called Reidemeister conjugacy classes (with respect
to the automorphism ¢). In the case where ¢ is the identity map, this is just usual

conjugacy.

We may find the Reidemeister conjugacy classes of the relative fundamental torsor
7y (M, x), with a group structure donated from the fundamental group by choice of
w, with respect to the automorphism ¢ defined by the transformation ¢ € G as it

acts on paths in 7{(M, x). That is, for v a path in M,
¢ (M, z) — (M, z),o(y(t)) = g7(t)
Reidemeister conjugacy in this case is given by:
d ~ 0 < there exists v € 7] (M, z) such that 6 =y ® o ® g7,

where the operation ® is as previously defined - by mapping the paths from x ~~ gx
into the space of closed loops, then composing them, and mapping the result back.

We find that this twisted form of conjugacy is very useful in the case of relative loops.

Theorem 2.5.3. Two elements 6, o of m{(M,z), the relative fundamental torsor
of M based at x, are in the same Reidemeister conjugacy class of = (M, x), with ¢
defined as above, (that is, there exists v € wj(M,x) such that § = y® o ®g7), if and
only if 6 and o are in the same connected component of the free relative loop space,

AI(M) of paths in M whose endpoints are related by g.
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Proof. (=)
Let 6, o, «v be such that 0 = v® § ® g77. Let us calculate the result of composing

these three elements of 7¥(M, x). That is,

0 = Taou(Tau () * Tax(6) * T (7))

First we must note that while 0 and 7 are defined elements of 7¥(M, x), it is not
clear what is meant by g7, or indeed T, (g7), since it is not obviously an element of
7{(M, ). First, given v we apply g, which gives an element of 7{(M, gz). We then
need to find its inverse, so we map it into m; (M, gz) using T,.., which gives gy * 7y,
a loop based at gz. Its inverse is g7y * 7, and this is then mapped into 7 (M, z) by
®, giving the element 7, * (g7 * Tys) * T, which is our 75 (g7) as required.

We may now calculate o as given above.

0 = ToulTax(7) * Tox(0) * T (7))
= Tuu((y *Ta) % (0% Ty) 5 (Ty % (97 * Tgz) * 7))
= Yk Ty k0% Fok fpx (g % Typ)* Jizk fy

= (7*Tg) %0 (97 * Tga)

The last part of this, to the right of , is a path from gz to itself, and it is easily
seen that it is the image under g of the inverse of the path v *x 7., a loop at x. This
means that this object consists of the path ¢ from z to gz, with a loop at each end,
which are inverses up to the action of g. This is illustrated in Figure 2.7. We can
use this to construct a homotopy between this object, which from the above is equal
to o, and 9§, by taking the objects o5 in which s € [0,1] and each oy is given by the
path travelling along ¢ plus adding the sections of the loops at each end of § given
by travelling a distance of s along each. This gives a homotopy in AY, as required,
since both endpoints of such paths will always be related by g.

(<)

Let o5 be a homotopy between o and §. Then, the path o4(0) may be used in

place of v to show that the two paths are Reidemeister conjugate in (M, z). ]
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Y T

Figure 2.7: The resulting path 0 = v ® § ® g7, which is homotopy equivalent to &

Remark 2.5.4. This result is the same as Theorem 2.1 from [24], where it is expressed
in a different way, without defining Reidemeister conjugacy classes as such. For a

more detailed analysis, see Section 6.4.

2.5.1 Reidemeister conjugacy and the equivariant fundamen-

tal group

The notion of Reidemeister conjugacy is also connected with 7¢, the equivariant

fundamental group. Consider the short exact sequence:
Wl(Ma ZE) - WIG(Mv I’) ﬁ) G

The map 3 maps (v,9) € n¥(M,x) to g € G. For a given g € G, we may find
B~Yg) € 7 (M, x). This is a subset of 7§ consisting of {(v, ¢)[7(0) = z,v(1) = gz}
up to homotopy.

In fact, it is a coset of w1 (M, z) and can easily be seen to be equal to 7¥ (M, x),

where 7 = w,(m), for w: x ~ gr,w € 7.

Proposition 2.5.5. Reidemeister conjugacy in the torsor mi(M,x) ~ $7(g) is or-

dinary conjugacy in 7 (M, ), the equivariant fundamental group.
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That is, if two elements in 7 are Reidemeister conjugate, then their images in

7 under the inclusion map will be conjugate.

Proof. Let 0, o be two Reidemeister conjugate elements of 7{ (M, x), so that [§] =
[v * 0 * g7] in the relative fundamental torsor. Now consider the images of § and o
in 7¢(M, z), denoted ([d], g) and ([o], g). There exists an element in 7{'(M, z) which
conjugates these elements to each other under usual conjugacy, namely ([v], e), where

e is the identity element of G. Then

(], e)(el, o) e) = (v *ol,9)(1A) )

= ([yxo*xg7),9)

This is the element of 7(M, x) corresponding to [y * ¢ * g7y] in 7 (M, ), and since

this is equal to ([0],g) we have conjugacy in 7&(M, z), as required. ]

2.6 Key examples

2.6.1 n-body problems

An important motivating example in which we study the spaces of loops defined on
a manifold is that of n-body problems. If we consider the problem of n particles
moving in R?, and we wish to exclude any case where a collision of one or more

particles occurs, we find of interest the space
M=RHY'\A={z=(z,,...,2,) | 2; ERd,gﬁé% for all i # j}

This space then consists of all valid arrangements of n particles in R¢, and paths
in this space will describe motion of the particles. Closed loops here will be closed
orbits in which all of the particles trace out individual paths, without colliding, and
return to their original positions.

The space M is the complement of a subspace arrangement, so we remove from
(R4)™ all the linear subspaces corresponding to collisions between one or more parti-

cles.
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Remark 2.6.1. In the case d = 2, in which we will mainly be working, we will use the

notation

X = (RH"\ A

That is, X denotes M in the case where d = 2.

We may consider the space X(™ as a the complement of a complex hyperplane
arrangement. The diagonal set of collisions A is made up of complex hyperplanes
H;; € C" = (R*)" defined by the equations z; = z;, such that A = [JH,;. Such
spaces may be easier to work with. In general, we do not have the complement of a

hyperplane arrangement, since the codimension is not 1.

In this work, we will frequently be working in X, using planar configurations of
particles, rather than the more general case. The space X (™ has fundamental group
P,, the pure braid group on n strands (proven below in Proposition 2.6.2). The
pure braid group on n strands is sometimes called the coloured braid group. This
is the normal subgroup of the braid group in which each strand returns to its original
position. There exists an inclusion of P, into B,,, the full braid group on n strands,
since every element of P, already exists there, and we can also define a projection
map ¢ from B, into S, the group of permutations on n objects. Each braid in B,
is mapped to the permutation corresponding to the final arrangement of the strands
once the braid has been applied. The pure braid group will be equal to the kernel of
this map, since ¢(p) = id for all p € P,, and if ¢(p) # id then p ¢ P,.

We have a short exact sequence:
l1—P,—B,— 85, —1

2.6.1.1 Presentation of the pure braid group - the case n =3

The pure braid group on three strands can be presented as:

o —1 - -1 _ 1 -1
P = <a12, 13, Qo3 | A1y Qozlyy = Q130930735 = Q13093013003 O3 >

Here, the three generators a;; correspond to strands ¢ and j being fully twisted around

each other once and returning to their original positions. In usual braid notation,
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where o; denotes a braid passing strand i over strand (i + 1), and where * denotes

composition in the braid group, such twists can be written

A1 = 01 %01
93 = 09 * 09
_ —1
Q13 = 09 *01%01 %02

It is important to note that ay3, which is a twisting together of the first and third
strands, requires the seconds strand to be moved off to one side in order to perform
the twist. It is irrelevant whether this strand moves to the left or right, and the braid
01 % Oy % 09 % 0] s equal to a3 as a braid. However, it is significant that the middle
strand sits behind the other two - a braid which performs the same action but with

Lorits equivalent oy Loy k09 %0y

the middle strand in front, such as gy %0y x 01 ¥ 0y
is not equal to the generator a;3 (in fact such a braid is equal to ay; * a5 * a5y ).

In the notation given by these generators, the full twist, an element which com-
mutes with every element in the braid group, is written ais * aq3 * asz. This will also
commute with every pure braid.

In the general case of n strands, the set of generators of the pure braid group is
given by (from [22]):

_ 2 _—1 -1 -1 C_
Qij = 0; 10 9...0,110;0; 1 ...0, 50; 4 for 1 <i<j<n

that is, a;; wraps the ith strand around the jth strand. The group relations are given

by

4

;i fi<r<s<jorr<s<i<j
. arjaija;jl ifT<i:S<j
Qp.g aijars =
Qi as_jlar_jl iti=r<s<jy
Lot a.atal ifr<i<s<j
| @1 QsjOrj Qgj Oy Qs Oy s r<i<s<j

Proposition 2.6.2. The space X™ as defined above has fundamental group P,, the

pure braid group on n strands.
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Proof. We have X(™ = (R?)"\ A. Loops in this space will consist of motions of the
n particles in the plane which return to their original positions.

Consider the map which takes such motions to a corresponding braid, by plotting
the evolution of the two-dimensional system in three dimensions, with time on a third
axis as shown in Figure 2.8.

The starting points of the particles are regularly spaced along the z axis, and their
paths run along in the direction of the z axis. Strands may cross over and under each
other in the y dimension whenever the particles move around each other in the plane.
If we take a cross sectional slice through parallel to the xy plane, we obtain a single
position of the n points in the plane - this can be thought of as a snapshot of an
instant of motion. Looking down in the y direction, we see usual braid diagrams,
where strands pass over or under each other as they would in a braid diagram. This
defines a map between such motions and the diagrams of braids, up to homotopy.
We can map any existing braid to a motion of the particles in this way also.

Any closed motion of particles (one returning to its original configuration) will
be homotopic to some braid in the pure braid group. Hence, this is the fundamental

group of the space. ]

Figure 2.8 does not show a closed loop - it illustrates the braid denoted o?o, .

Given a motion of particles, it is possible to express this as a braid in the notation

Figure 2.8: The braid denoted o?0; *.

o afj ... by choosing and fixing a line of reference, and then numbering the particles

from left to right with respect to this baseline - by drawing perpendicular lines to this

baseline. Then, at any point during the motion if any particle passes above another
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with respect to the baseline, this counts as the relevant braid generator.

For example, if the left most particle passes above the second particle, this is
o1. The particles are renumbered from left to right after each generator. Continue
naming braid generators in this way until the end of the motion. This will give a
braid which corresponds to the motion, with respect to that baseline.

If it happens that two pairs of particles pass above or below each other at the
same time, then choose another baseline with respect to which the crossings occur at
slightly different times.

The majority of our work here will be considering the case of n particles in R¢,

and in particular the case where d = 2 - where the particles move in a plane.

2.6.2 k-centre problems

Another case to which we may apply such considerations is that commonly called
the k-centre problem. In this we consider the motion of a single particle, in a space
where k particles are fixed. The configuration space is k-times punctured Euclidean
space. We study the planar case; topologically, this means we are considering the

motion of the particle in the k-times punctured plane:

M = (R*\ {ay,as,...,a;})

Here ay,as,...,a; € R? are distinct points which are removed to form our & punc-
tures.

The k-times punctured plane R?\ {ay,...a} is a topological space homotopic to
the wedge of k circles, with fundamental group Z * Z * . .. x Z, the free group on k
generators. If we consider the possible curves traced out by a single free particle in
this space, then we are considering loops in the k-times punctured plane, and hence
elements of this fundamental group.

We may apply our study of group actions to this system as for the n-body problem
- the arrangement of the punctures will determine which symmetries of the plane need

to be considered.
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For example, if we consider the twice punctured plane (k = 2) with a single
particle moving in the space M = R? \ {a, b}, we may (without loss of generality)
assume the points sit on the horizontal axis, an equal distance either side of the
vertical axis, to make symmetries easier to define. Then the space has the symmetry
group of a rectangle, that is, the dihedral group Ds, consisting of a rotation by 7 and
two reflections, in the horizontal and vertical axes.

In the case k = 3, there are different arrangements of punctures to consider -
different symmetries are present if the three points are collinear or if they sit at the
points of a triangle. Example 2.4.4 from page 31 earlier in this section considers the
2- and 3-times punctured plane.

The different possible symmetry groups will lead to different relative loop spaces,

although for a given value of k the spaces will have the same fundamental group.

2.7 Examples of Reidemeister conjugacy classes

Here we consider the example of three bodies in R?, with the transformation ¢ being
reflection in the horizontal axis, which we will denote x;. We will calculate the
Reidemeister conjugacy classes in this case.

In this case, M = R*3\ A, and the fundamental group m;(M,x) here is the
pure braid group on three strands, P3. Generators of Ps are a;o = 0%, as3 = o5 and
a3 = 0, 020, . We must first determine how x; acts on each of these generators.

When we interpret a motion of particles as a braid, we must choose an axis in the
plane to interpret as the direction of the x-axis as seen in Figure 2.8. In this case,
we choose the horizontal axis, which means any time the leftmost particle passes
above the centre particle relative to this axis, we count it as being an instance of
the braid generator o;. Hence, the braid o?, which corresponds to the leftmost two
particles passing around each other anticlockwise in a circle, is mapped to o;?, its
inverse, under the action of ;. Similarly, x1(0?) = 052 The third braid generator,

oy 'o?o, , is mapped to oy0; %0, . This is not equal to the inverse of a;3, since the

reflection k; turns each o; into its own inverse but does not change the ordering of the
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generators, whereas inverting reverses the order. We in fact have that s, (ai2) = a5,

K1(ag3) = agy, and ky(a13) = agz - ajy - agy -

This then allows us to calculate the Reidemeister conjugacy classes of pure braids.

For instance, a braid v would be Reidemeister conjugate to a braid aqs - 7y - k1(a12),

which based on our calculation above would be a5 - v - a12. We in fact have

Yo~ Qi Y c a2
Yoo~ Q23 7Y - Q23

Yo~ iz -Gy - 13- Aoy
However, we must note that x1(aj2a93) = as3ai2, not ajass. Indeed,
Y~ Qg - Gg3 Y - A3+ A12
Also,

-1
v~ a23'a13'a12'7'a12'(G23'a13'a23)'a23

~ Q23 A13 Q12 " 7Y G12 * A23 * 413

Hence, any braid is Reidemeister conjugate under the action of x; to a braid which
has the arrangements of generators as specified above, with a;5 and as3 mirroring
each other, and a3 as shown. Hence the Reidemeister classes will each contain
distinct ‘core’ braids which do not have this property, and cannot have such generators
‘cancelled’ from either end.

By Proposition 2.5.5, we have that the Reidemeister conjugacy in this case is
just ordinary conjugacy in 7le2 (X®) 2), where the map ¢ defining the Reidemeister

conjugacy classes is given by composition with 7., a path from z ~» gr = kyx.



Chapter 3

Choreographies

When considering the motivating example of n-body problems and particle dynamics,
we will mainly be considering a subset of n-body solutions which possesses a specific
kind of symmetry. These solutions are called choreographies. In this chapter we will
define a choreography, and give some examples, as well as constructing a framework
of group representations which allow us to describe the properties of such an orbit in

terms of its spatial, temporal and labeling symmetries.

3.1 Definition of a choreography

We define a choreography as follows:

Definition 3.1.1. A periodic solution of the n-body problem is said to be a chore-
ography if each of the n particles trace the same curve in space, with a fixed time

delay and without colliding.

Such orbits are visually quite attractive, and the term ‘choreography’ was coined
by Sim6 (see [30]) on noting the way the particles seem to dance around each other
in a fixed pattern.

If we denote the orbit of a system with n particles by v , we may write

V(1) = (21(1), 22(1), -, wn (1))

44
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In this notation, the condition for such a path to be a choreography can be written

o)

y(t) = (x(t),x(t+T/n),x(t+2T/n),...,x(t+ -
Here T denotes the time taken for each particle to complete one full orbit. Each
particle x;, follows the same path as the particle z;;, and particle x,, follows z;.
We proceed by giving some examples to solidify the notion of a choreography, as
well as applying symmetry constraints to systems of particles, including that imposed

by the condition of being a choreography. We also attempt a classification of all orbits

satisfying the choreography constraint.

3.2 Basic examples

The circular choreography is one of the simplest examples of a choreography, and
consists of n masses moving with constant velocity on a circle of fixed radius, centred
at the centre of mass of the system. The example of three bodies as the three points
of an equilateral triangle rotating with constant velocity on its circumscribing circle
was found by Lagrange in 1772. In the case of more than three masses, this is replaced
by a regular n-gon.

Another example of note is the figure eight, discovered by Chenciner and Mont-

gomery (see [12]), consisting of three particles moving on a figure eight shape.

Example 3.2.1 (Three particles on a figure eight). The figure eight choreography,
shown in Figure 3.1, was discovered by Chenciner and Montgomery [12] and is one of
the simplest examples of a choreographic motion. The particles visit all three‘Euler’

configurations, where the three particles are collinear, during the course of an orbit.

The figure eight curve has the symmetry group of a rectangle, which is generated
by the vertical reflection k1 and the horizontal reflection ko, and includes the rotation

by T, K1K9.

Much more complicated choreographical motions have been shown to exist, and

many have been found numerically, including long chains of loops, flowers, foils, and
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Figure 3.1: Three particles on a figure eight, at ¢ = 0

even shapes which possess no rotational or reflectional symmetries as a curve. Many

examples of such choreographies will also be studied later.

3.3 Types of choreography

The following definitions are due to Chenciner et al (see [11]).

Definition 3.3.1. A simple choreography is one as defined in Definition 3.1.1, in
which all masses move on the same curve.

A double, or multiple choreography is a choreography in which the bodies
separate into two or more groups, and the bodies of each group form a simple chore-
ography. Two bodies in the same group move on the same curve, exchanging their

position after a fixed period of time, which is the same for all groups.

Definition 3.3.2. We s