
PREDICTION-BASED FAILURE
MANAGEMENT FOR
SUPERCOMPUTERS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

2011

By
Wuxiang Ge

School of Computer Science

Contents

Abstract 12

Declaration 13

Copyright 14

Acknowledgements 15

1 Introduction 16
1.1 Background . 17

1.1.1 Faults, errors and failures . 18
1.2 Motivation and problem domain . 21
1.3 Supercomputers and the IBM BlueGene/L 22

1.3.1 Supercomputer overview . 23
1.3.2 BlueGene/L analysis . 24
1.3.3 Key features . 25

1.4 Main contributions . 26
1.5 Thesis outline . 27

2 Failure management framework 28
2.1 Framework introduction . 28

2.1.1 Architecture overview . 29
2.1.2 Failure detection . 31
2.1.3 Recovery approaches . 33
2.1.4 Related issues in fault tolerance 34

2.2 Checkpoint based failure recovery 35
2.2.1 Checkpoint definition . 35
2.2.2 Taxonomy of checkpointing algorithms 38

2

2.2.3 Related work on coordinated checkpoint 40
2.3 Summary . 41

3 Failure prediction methods review 43
3.1 Failure prediction statement . 43
3.2 Survey of failure prediction methods 45

3.2.1 Failure prediction methods taxonomy 45
3.2.2 Failure prediction for the IBM BlueGene/L 53

3.3 CRF model for failure prediction . 58
3.3.1 Model introduction . 58
3.3.2 Applications of CRFs . 61
3.3.3 Analysis and comparison . 63

3.4 Summary . 64

4 Proactive failure recovery mechanism 66
4.1 Proactive failure recovery . 66

4.1.1 Introduction . 67
4.1.2 Traditional failure recovery approach 67
4.1.3 Proactive failure recovery mechanism 69
4.1.4 Summary . 71

4.2 Prediction-based checkpoint model 72
4.2.1 The coordinated checkpoint model 72
4.2.2 Overhead analysis . 77
4.2.3 Effects on checkpoint interval 81
4.2.4 Analysis on further performance improvement 83
4.2.5 Assumptions of the model 84

4.3 Summary . 85

5 Failure prediction model for the IBM BlueGene/L 88
5.1 Prediction process . 88
5.2 The IBM BlueGene/L Log . 91
5.3 Log pre-processing . 93

5.3.1 Categorization . 93
5.3.2 Filtering . 96
5.3.3 Sequence extraction . 99

5.4 The prediction model . 100

3

5.4.1 Prediction strategy . 100
5.4.2 Inference . 102
5.4.3 Model training . 106

5.5 Summary . 111

6 Experimental results 114
6.1 Data preprocessing . 114

6.1.1 Categorization . 114
6.1.2 Filtering . 117
6.1.3 Sequence extraction . 119

6.2 Failure characteristics . 120
6.2.1 Distribution of normal events 120
6.2.2 Distribution of alert events 121
6.2.3 Correlation between normal events and alert events 123

6.3 Training semi-Markov CRF . 125
6.4 Failure prediction . 126

6.4.1 Evaluation metrics . 127
6.4.2 Prediction quality . 129
6.4.3 Comparison . 132

6.5 Summary . 134

7 Conclusion 136
7.1 Summary . 136
7.2 Contributions . 139
7.3 Future work . 139

Bibliography 142

A Experiments on prediction model 2 155
A.1 Parameter space and prediction results 155
A.2 Dependency analysis . 156

4

List of Tables

1.1 Socket numbers and maximum performance of the best computers in
Top500 from 2005 to 2008, 1PF means 1Peta FLoating point OPera-
tions per Second (FLOPS). 23

2.1 Comparison of system-level, application-level and cooperative check-
point mechanisms based on several key features (taken from [81]). . . 39

3.1 Taxonomies of failure prediction. 46
3.2 Failure prediction approaches for the IBM BlueGene/L. 54
3.3 Comparison between different probability models. 64

4.1 Confusion matrix. 75
4.2 Case number and time penalty of different prediction scenarios, where

(a), (b), (c) and (d) represent the scenario of an accurate prediction of
failure, an inaccurate prediction of failure, an accurate prediction of
normal behaviour, and an inaccurate prediction of normal behaviour,
respectively. 76

4.3 Comparison between original checkpoint mechanism and prediction-
based mechanism in terms of wasted time for each of the four scenarios
introduced in Figure 4.9. 77

5.1 An event example from the IBM BlueGene/L RAS logs. 91
5.2 Summary of the collected IBM BlueGene/L RAS logs. 93
5.3 Redundant information in the description field. 95
5.4 Number of keyword terms detected. 95
5.5 Summary of extracted sequences. 99
5.6 Comparison of different algorithms in terms of computational com-

plexity. 103

5

6.1 Summary of log filtering. 119
6.2 Configuration for prediction model 1. 127
6.3 Prediction accuracy and its variance of prediction model 1 according

to the default parameter settings. 129
6.4 Comparison of prediction results for various failure prediction approaches

on the IBM BlueGene/L. 133

A.1 Configurations of the prediction model 2. 155
A.2 Prediction accuracy and its variance for prediction model 2 according

to the default parameter settings. 156

6

List of Figures

1.1 Relationships among faults, errors and failures. 18
1.2 Failure classification (taken from [58]). 19
1.3 Time between failures. 20
1.4 BlueGene/L overview (taken from [105]). 25

2.1 General architecture (taken from [28]). 29
2.2 General failure management framework. 30
2.3 Execution without checkpoint. 35
2.4 Execution without failures. 35
2.5 Different parameters in a checkpoint model, where each checkpoint

overhead ts and recovery time tr are assumed to be constant, and tc is
the checkpoint interval, tb is wasted computing time. 36

3.1 Temporal concepts in the failure prediction process ordered by time t,
where m > k > j, ∆td is data window, ∆tl is lead-time window, ∆tw

is warning time window, ∆tp is prediction period, and di, li, and pi are
events that occurred in the various windows. 44

3.2 A Hidden Markov Model. 51
3.3 The failure window for the Eventset mechanism. 54
3.4 Demonstration of nearest neighbour failure predictor. 56
3.5 The dynamic meta-learning framework for failure prediction. 57
3.6 Chain-structured CRFs. 59
3.7 Semi-Markov CRF model. 60

4.1 Result of expected execution time from Equations 2.2 and 2.1. 68
4.2 The architecture of the proposed failure recovery mechanism. 69
4.3 The most common checkpoint approach without failure prediction. . . 70
4.4 The proposed checkpoint approach with failure prediction. 70
4.5 Two failure detection models: push and pull. 71

7

4.6 An execution with K checkpoints in the absence of failures. 73
4.7 An execution with K checkpoints in the presence of failures. 73
4.8 An execution using prediction-based checkpoint. 74
4.9 Four scenarios in a prediction-based checkpoint mechanism. Figure

4.9(a) describes an accurate prediction when one failure occurs, and
an extra checkpoint will be made; Figure 4.9(b) shows an inaccurate
prediction when a real failure occurs, and the system does nothing; Fig-
ure 4.9(c) presents an accurate prediction of normal behaviour; Figure
4.9(d) expresses the situation of normal behaviour when a failure is
forecast and hence an extra checkpoint is constructed. 75

4.10 Comparison between traditional checkpoint mechanism and prediction-
based checkpoint mechanism according to various application lengths
when recall is 100%. The curve of the proactive checkpoint with
higher accuracy (P = 100%) shows the effects when precision meets
the condition P > ts/(tb − t

′

b), whereas the curve of the proactive
checkpoint with lower accuracy (P = 10%) shows the results of the
formulae when P < ts/(tb− t

′

b). Other parameters are configured that
λ = 0.1, ts = 0.2, tc = 1.6, tb = 0.8, and tr = 0.2 79

4.11 The effects of Equation 4.14 with varying prediction precision — the
horizontal line in the chart denotes the application execution time of
the traditional checkpoint mechanism. Other parameters are config-
ured that R = 100%, λ = 0.1, ts = 0.2, tc = 1.6, tb = 0.8, and tr =
0.2 . 79

4.12 The effects of Equation 4.14 according to varying prediction recall; the
running time using the traditional coordinated checkpoint approach has
also been plotted. Other parameters are configured that P = 100%, λ
= 0.1, ts = 0.2, tc = 1.6, tb = 0.8, and tr = 0.2 80

4.13 The relationship between expected execution time, precision accuracy
and recall accuracy of the proactive failure recovery mechanism. 5-
days failure free running time is chosen and other parameters are con-
figured that λ = 0.1, F = 5 days, ts = 0.2, and tr = 0.2 81

4.14 The choice of optimum checkpoint interval tc−opt according to various
prediction accuracy: precision P and recall R. 82

4.15 The choice of optimum checkpoint number for an application with fail-
ure free running time of 5 days in terms of different recall accuracy. . 83

8

4.16 The relationship between expected execution time, precision and recall
of the improved proactive failure recovery mechanism using revised
checkpoint interval. 5-days failure free running time is chosen and
other parameters are configured that λ = 0.1, F = 5 days, ts = 0.2, and
tr = 0.2 . 85

5.1 Training process. 89
5.2 Preprocess steps. 90
5.3 An overview of the process flow. 91
5.4 Event logging mechanism (taken from [44]). A fault can result in var-

ious misbehaviours, some of which can be detected once or several
times as errors, while others are not detected. Similarly, some errors
will be recorded as messages and others not. 96

5.5 Plotting event numbers using different time length ε. 98
5.6 Sequence extraction from event logs: failure sequences, which lead to

failures, are extracted from a fixed time window ∆td before the lead-
window ∆tl, such as FS1 and FS2; non-failure sequences are event
sequences between failures with a marginal time window ∆tm either
side, such as NF1. 99

5.7 Sequence prediction using two different models: Model 1 forecasts
whether a failure will occur and Model 2 anticipates the specific failure
type if a failure is predicted by Model 1. 101

6.1 Facility based log statistics. 115
6.2 Severity based log statistics. 115
6.3 An example of a raw event and the corresponding processed event. . . 116
6.4 An example of event patterns. 116
6.5 Hierarchical structure of the categories. 117
6.6 Event filtering on various categories using the temporal filtering mech-

anism. 6.6(a) plots the curve of MMCS alert events, while 6.6(b),
6.6(c) and 6.6(d) present the curves of system normal events, kernel
alert events and application alert events respectively. 118

9

6.7 Normal event distributions and delays (interval arrival time). Figure
6.7(a) shows the number of normal events broken down into 24 hour
slots each day, Figure 6.7(b) presents the daily normal event distri-
bution, Figure 6.7(c) demonstrates a histogram of normal event fre-
quency, whilst Figure 6.7(d) shows the corresponding event density. . 121

6.8 Alert event distributions and Time Between Failures (TBF). Figure
6.8(a) and Figure 6.8(b) presents the daily and hourly alert event dis-
tribution, Figure 6.8(c) shows the histogram of TBF frequency and
Figure 6.8(d) shows the distribution of TBF density. 122

6.9 QQ-diagram of TBF using Poisson distribution. 123
6.10 QQ-diagram of TBF. QQ-plots plots the distribution of TBF observed

in the sample dataset versus several parametric distributions: normal,
exponential, lognormal and weibull, which are shown in Figures 6.10(a),
6.10(b), 6.10(c) and 6.10(d) respectively. 124

6.11 Effects of the size of training dataset on the prediction of model 1.
Figure 6.11(a) plots the effects of the training dataset on the precision
of model 1 with error bars, similarly, Figure 6.11(b) plots the effects
on the F0.5 with error bars. 130

6.12 Effects of the length of data window ∆td on the prediction of model 1.
Figure 6.12(a) shows the effects of ∆td on the precision of model 1, in
contrast, Figure 6.12(b) presents the effects of ∆td on the F-measure
F0.5. 131

6.13 Effects of the length of lead time ∆tl on the prediction of model 1.
Figure 6.13(a) shows the effects of ∆tl on precision and Figure 6.13(b)
plots the changes of the F0.5 according to ∆tl. 132

6.14 Summary of prediction results and the corresponding optimum execu-
tion times calculated by Equation 4.21. 134

A.1 Effects of the size of the training dataset on the prediction of model 2.
Figure A.1(a) plots the effects of training dataset on the precision of
model 2 with error bars, whilst Figure A.1(b) presents the effects on
the F0.5. 157

A.2 Effects of the length of data window ∆td on the prediction of model
2. Figure A.2(a) demonstrates the changes of the precision over three
values of ∆td, whilst, Figure A.2(b) presents the effects of ∆td on the
F0.5. 157

10

A.3 Effects of the length of lead time ∆tl on the prediction of model 2. Fig-
ure A.3(a) presents the relationship between precision and ∆tl, whilst,
Figure A.3(b) shows the effects on F0.5. 158

11

Abstract

The growing requirements of a diversity of applications necessitate the deployment of
large and powerful computing systems and failures in these systems may cause severe
damage in every aspect from loss of human lives to world economy. However, current
fault tolerance techniques cannot meet the increasing requirements for reliability. Thus
new solutions are urgently needed and research on proactive schemes is one of the
directions that may offer better efficiency. This thesis proposes a novel proactive failure
management framework. Its goal is to reduce the failure penalties and improve fault
tolerance efficiency in supercomputers when running complex applications.

The proposed proactive scheme builds on two core components: failure prediction
and proactive failure recovery. More specifically, the failure prediction component is
based on the assessment of system events and employs semi-Markov models to capture
the dependencies between failures and other events for the forecasting of forthcoming
failures. Furthermore, a two-level failure prediction strategy is described that not only
estimates the future failure occurrence but also identifies the specific failure categories.
Based on the accurate failure forecasting, a prediction-based coordinated checkpoint
mechanism is designed to construct extra checkpoints just before each predicted fail-
ure occurrence so that the wasted computational time can be significantly reduced.
Moreover, a theoretical model has been developed to assess the proactive scheme that
enables calculation of the overall wasted computational time.

The prediction component has been applied to industrial data from the IBM Blue-
Gene/L system. Results of the failure prediction component show a great improve-
ment of the prediction accuracy in comparison with three other well-known prediction
approaches, and also demonstrate that the semi-Markov based predictor, which has
achieved the precision of 87.41% and the recall of 77.95%, performs better than other
predictors.

12

Declaration

No portion of the work referred to in this thesis has been
submitted in support of an application for another degree or
qualification of this or any other university or other institute
of learning.

13

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the University
IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487),
in any relevant Thesis restriction declarations deposited in the University Li-
brary, The University Library’s regulations (see http://www.manchester.ac.uk/libr
ary/aboutus/regulations) and in The University’s policy on Presentation of The-
sis.

14

Acknowledgements

I would like to express my sincere gratitude for my supervisor John R. Gurd and joint
supervisor John A. Keane for their kindly guidance, invaluable advice and personal
support; they have led me to the true essence of academic research and repeatedly help
me to review, rethink, and revise my ideas. I am also very grateful to my advisor Steve
Furber for his support during my studies.

I would like to acknowledge the effort of Dr. Len Freeman organizing seminars
in our group for stimulating scientific exchange, and of Paul Slavin who provided
warmhearted help on thesis proof reading.

This work was also greatly improved by fruitful discussions with my colleagues in
Software Systems Research Group. In particular, I would like to thank Keping Chen,
Qiwei Zhu, Chenchen Xi, Chanwit Kaewkasi, Mohamed Khamiss Hussein, Zixu Song
and Fu Chen for their help.

I am very grateful to my family for their dedication, supports and continuous en-
couragement.

Last but not least, I gratefully acknowledge the China Government and UK Gov-
ernment for their financial supports.

15

Chapter 1

Introduction

Computer science has been developing rapidly for many years and computer systems
have been used to improve productivity in multiple disciplines, such as numerical anal-
ysis, physics, chemistry, bioinformatics, etc. Furthermore, the growing requirements
of a diversity of applications necessitate large and powerful computational and stor-
age capabilities that not only meet the performance demands but are also available
when needed. With the dramatic increase of computer systems in scope, complexity
and pervasiveness, dependability,1 which denotes the ability to deliver service that can
justifiably be trusted, is a crucial issue.

However, as the correct functioning of large-scale high performance computing
systems is becoming increasingly dependent on physically distributed heterogeneous
parallel computing and storage resources, interaction of thousands of multiple software
components and hardware processors, different levels of human involvement, etc.; the
occurrence of failures is inevitable. More specifically, these failures may occur in hard-
ware, software or the network, caused by faulty hardware components, poor software
development, incorrect specification of system requirements, inadequate user training,
etc. In spite of the unavoidable occurrence of failures, the time to repair the system
must be minimized so that system dependability can be improved from another per-
spective. However, the system complexity has reached a level that it is impossible for
human-beings to know all enough details so as to complete the diagnosis, location and
repair of failures in a sufficiently short time. An alternative solution, termed proactive

failure management, is to perform preventive actions before the actual failures occur.
This mechanism starts with prediction of future failures according to an assessment

1System dependability is measured through its attributes, such as reliability, availability, confiden-
tiality and integrity.

16

CHAPTER 1. INTRODUCTION 17

of the current system status, followed by proactive approaches that try to reduce the
effects of future failures.

This thesis develops a proactive failure management framework for large-scale su-
percomputers, which consists of two parts: proactive failure recovery and failure pre-
diction. The following sections provide a brief description of the background and
examine the motivation for, and contributions of, the research.

1.1 Background

The issues presented in this thesis include both proactive failure recovery and failure
prediction, belonging to the area known as fault tolerance, the history of which dates
back to the late 1940’s when electronic computers were first developed [95]. The ap-
proaches developed at that early stage mainly concerned the unreliable hardware com-
ponents. As the capability and reliability of hardware have increased, a vast amount of
complex software has been developed and deployed in multiple domains, and software
failures have been attracting more and more attention so that software fault tolerance
techniques, such as recovery blocks [48], retry blocks [5], N-Version programming
[18], etc. have experienced a rapid development since the 1970s.

However, these software fault tolerance techniques are reactive in that they take re-
covery actions after a failure occurs, being triggered by failure events. It was not until
the 1990s that the ideas of proactive fault tolerance techniques were introduced. Huang
et al. first established the concept of software rejuvenation, which is a technique that
makes periodic preemptive rollback of continuously running applications to prevent
failures in the future [49]. The technique has been shown to be successful to handle
software aging [82] problems, such as memory leaks. Anticipating that the software
complexity crisis that is itself caused by applications and environments consisting of
millions of lines of code might threaten to halt progress in computing, in 2001, an
IBM manifesto introduced the concept of autonomic computing [55]. The main idea
of this is to build up self-management computing systems which contain four aspects:
self-configuration, self-optimization, self-healing and self-protection [54]. Thus re-
search efforts have been made in proactive fault tolerance to solve a number of related
problems.

Failure prediction is the task of forecasting a future failure occurrence according
to the recent history of system states. In order to define the problem, some funda-
mental concepts, such as faults, errors and failures, must be clearly described. Precise

CHAPTER 1. INTRODUCTION 18

Physical fault

Fault

Design fault

Interaction fault

Error

Latent error

Detected error

...

Failure

Crash failure

Omission failure

Timing failure

...

Figure 1.1: Relationships among faults, errors and failures.

definitions of all related terms are provided in Section 1.1.1.

1.1.1 Faults, errors and failures

There exist a wide range of misbehaviours in computer systems; in order to discuss
failure prediction issues, the terms of fault, error and failure must be clarified.

Failures in a general sense are common events in computer systems. A failure

is defined as a delivered service that deviates from the correct service, which has a
specified description of expected functions or behaviours. Similar explanations can be
found in [7, 6, 58]. A failure occurs because the system does not behave as specified.
An important feature is that these misbehaviours must reach the service interface layer
so that they can be observed by the final users or monitoring components.

An error is a part of a system state that may lead to a subsequent failure; an error
turns into a failure once it reaches the service interface.

A fault is the root cause of an error; however, there may be undetected faults in
the system, and only those that manifest themselves as errors are considered as faults.
Likewise, an error that does not actually lead to a failure is denoted a latent error. A
key point to note here is that faults are unobserved defective states, errors are observed
incorrect internal states, and failures are misbehaviours captured at the interface. Fig-
ure 1.1 summarizes these relationship.

Faults

Faults have diverse sources and they fall into three categories: physical faults, design
faults and interaction faults [6]. Physical faults are induced by adverse hardware phe-
nomena, such as faulty logic, short circuits, temperature, etc. Design faults may come

CHAPTER 1. INTRODUCTION 19

Fail-stop Fail-silent

Crash-failure

Omission

Timing

Byzantine

Figure 1.2: Failure classification (taken from [58]).

from either hardware or software, during various processes, such as implementation
or maintenance. Interaction faults are mainly due to incorrect engagement by human
beings.

Errors

An error is a defective system state that is caused by one or more faults, and each error,
which may potentially lead to a failure, can partly be detected by system monitoring
mechanisms. Generally, an error will propagate either in a standalone component or
among multiple components with interactions. Not all errors will lead to failures,
depending on the structure and behaviour of the system, especially whether the system
has fault tolerance algorithms or redundancy design.

Failures

Various taxonomies of failures have been published, one of which classifies failures
into four categories: crash failures, omission failures, timing failures and byzantine
failures [58] (see Figure 1.2).

A crash failure occurs when a system stops responding immediately, usually with
loss of internal state and information. Two different behaviours in this class of
failure include fail-silent and fail-stop. The main difference between these is that
the fail-stop behaviour is easily detectable when it occurs.

An omission failure occurs when a system stops responding to a request when it is
expected to do so. This has some effect on the resources or services in that the
system will only respond to particular requests or input; it either provides correct
services or gives no response.

CHAPTER 1. INTRODUCTION 20

TTFTTR

One failure One failure One failure

TBF

Figure 1.3: Time between failures.

A timing failure causes a response at an unexpected time, either too early or too late.
Late timing failures are sometimes called performance failures.

A byzantine failure will cause a system to behave arbitrarily [46].

Fundamental concepts

From a system’s perspective, Time Between Failures (TBF), as the name suggests,
denotes the time between two failures (see Figure 1.3). Similarly, Time To Failure
(TTF) measures the time a piece of software is expected to operate properly before a
failure occurs, and Time To Repair (TTR) shows the degree of difficulty involved to
repair the software after a failure occurs.

Mean Time Between Failures (MTBF), which is defined as the average time be-
tween failures in a system, is an important measure of software reliability. MTBF can
be expressed in terms of Mean Time To Failure (MTTF) and Mean Time To Repair
(MTTR), as in Equation 1.1.

MTBF = MTTF +MTTR (1.1)

Analysis

The relationship between faults, errors and failures is not a simple mapping. Some
faults will result in errors under certain conditions, whereas others will not; on the
other hand, several faults may lead to one single error or one fault may result in several
errors. From the viewpoint of severity, a system may still continue execution even with
some alert or warning faults; however, sometimes a single design fault may terminate
the system. More importantly, some faults will cause failures (errors at the interface
layer) directly, but others will remain inactive during the entire system lifetime. A
similar relationship holds between errors and failures. Some errors may have no impact

CHAPTER 1. INTRODUCTION 21

on the final result, while some errors may change the output. The purpose of fault
diagnosis is to locate the root cause of failures, however, the fact that not all errors may
be detected makes fault diagnosis even more difficult. Compared with fault diagnosis,
failure prediction tries to estimate the impact of the current state on the expected output
in a system.

1.2 Motivation and problem domain

With the increased complexity of computing systems, especially for large-scale su-
percomputers, new challenges emerge in fault tolerance research. Existing techniques
have often been unable to meet future demands. For example, next generation super-
computers may have an SMTTI2 of 1 hour in 2013-2015 according to the analysis in
[15], which means these supercomputers can only have continuous execution for an
hour using current fault tolerance techniques. Thus new solutions for fault tolerance
are urgently needed and research on proactive fault tolerance techniques is one of the
directions that may offer better efficiency. Proactive fault tolerance tries to perform
preventive actions before actual failures occur with the help of prediction techniques.

The ultimate goal of this thesis is to design, implement and evaluate a proactive
failure management framework for next generation supercomputers. The main objec-
tive is to reduce the wasted computational time used for failure penalties and improve
fault tolerance efficiency in large-scale supercomputers when running large and com-
plex applications. The methodology used in the thesis to achieve these aims is to use a
present generation supercomputer as an experimental platform, and add the capability
of failure prediction to the current failure management framework, so that the system is
able to take preventive actions before failures occur and the wasted computational time
is reduced. Specifically, the IBM BlueGene/L is used for tests because it is capable of
yielding the most advanced data available for this generation, and the architecture of
this system is presented in Section 1.3.

Two issues are considered in the proposed framework; firstly, what is the function-
ality of the prediction model; secondly, how can the prediction model be integrated in
the failure management framework so that the traditional failure recovery mechanism
can take advantage of the prediction results.

2SMTTI denotes System Mean Time To Interrupt, sometimes it is replaced by MTTF, which means
Mean Time To Failure.

CHAPTER 1. INTRODUCTION 22

In order to specify the failure prediction model, the new failure management frame-
work needs to be established by consideration of the core issue of proactive failure
recovery. Specifically, the coordinated checkpoint mechanism is the normal failure
recovery approach used on supercomputers. In order to further improve the recovery
performance, a prediction-based failure recovery method has been developed in this
thesis based on the following process: problem statement, which analyses the current
problems; theoretical model design, which builds a theoretical approach as the solu-
tion; then model implementation and evaluation, the target of which is to assess the
model.

Having generated a theoretical model for a failure recovery approach which de-
pends on failure prediction accuracy, the search is thus on for good prediction mecha-
nisms. For the issue of failure prediction in supercomputers, several papers have been
published and a common method for performing the prediction tasks is that of em-
ploying a Hidden Markov Model (HMM)3 or one of its extended forms [88, 91, 92].
These approaches mainly conduct estimations of future status based on system mea-
surements, such as system log files, etc. Specifically, conditional probabilities are used
in the new prediction model to improve failure prediction accuracy.

As identified in the literature analysis, the task of failure prediction has been ex-
plored in terms of the following stages: firstly, characteristics of the system have been
analysed based on the system logs, so that the key features can be observed and the
prediction problem can be specified so that the aim is to predict future failure occur-
rences based on historical system events. Secondly, a methodology has been developed
to model the prediction problem using conditional probabilities. Finally, the method-
ology has been implemented, tested and evaluated using real data from the IBM Blue-
Gene/L.

1.3 Supercomputers and the IBM BlueGene/L

This section summarizes the main features of the world’s top supercomputers in terms
of processing speed and socket numbers. More specifically, for the IBM BlueGene/L,
its key properties and, of specific relevance, the reliability aspects of its design are
introduced.

3HMM is a form of generative model, which represents probabilistic models that are based on joint
probability distributions.

CHAPTER 1. INTRODUCTION 23

1.3.1 Supercomputer overview

Petascale systems have emerged as the predominant solution for complex and chal-
lenging problems like weather forecasting, which can be clearly demonstrated by ob-
serving the Top500 (top 500 world’s fastest computers) [2]. Much attention has been
given to improving overall performance such that the number of sockets in these ma-
chines and the maximum performance has nearly doubled every year from 2005 to
2008, as presented in Table 1.1.

Systems Year Maximum performance Number of sockets
RoadRunner 2008 1 PF 20,000
LANL Jaguar 2008 1/4 PF 8,000
Tacc Ranger 2007 1/2 PF 16,000
NMCAC (SGI) 2007 1/8 PF 3,500
NSCA Red Storm 2006 1/10 PF 13,000
ASCI Purple 2006 1/10 PF 12,000
UPC MareNostrum 2006 1/20 PF 5,000
Columbia 2005 1/20 PF 5,000

Table 1.1: Socket numbers and maximum performance of the best computers in
Top500 from 2005 to 2008, 1PF means 1Peta FLoating point OPerations per Second
(FLOPS).

Fault tolerance remains a challenging issue in supercomputers [15]. It has been
estimated that Mean Time To Interrupt (MTTI) is less than 10 hours for systems
having 32,000 to 256,000 sockets [97]. If this trend continues, the MTTI of top su-
percomputers would be approximately 1 hour by 2013-2015 [15]. In contrast, from
failure statistics provided by several supercomputer centers including Los Alamos Na-
tional Laboratory (LANL), National Energy Research Scientific Computing Center
(NERSC), Pacific Northwest National Laboratory, Sandia National Laboratory (SNL)
and Lawrence Livermore National Labs (LLNL), it can be clearly seen that the number
of failures per processor in the different systems has remained stable in the period from
1996 to 2004 [15]. The failure statistics also suggest that even currently these systems
may have as many as three failures per day, which means there is little chance for long
running applications needing more than 8 hours continuous computing time to finish
successfully.

Given their specialised nature, an effective fault tolerant mechanism for these su-
percomputers must be system-specific so that the particular system features have to be
considered during algorithm design. The IBM BlueGene/L, which was at the time one

CHAPTER 1. INTRODUCTION 24

of the world’s top 10 fastest computers, is taken as the platform for the research in this
thesis. Its architecture and key features are briefly introduced in the following section.

1.3.2 BlueGene/L analysis

The BlueGene/L of specific focus in this thesis is installed at Lawrence Livermore
National Labs (LLNL) in Livermore, California. Several challenges have been ad-
dressed in its design: the networks were designed with hardware support for extreme
scaling and collective operation; another design issue has been reliability, availability,
and serviceability (RAS) support. Furthermore, it was designed at the application-
specific integrated circuit (ASIC) level, and targeted for applications such as physical
phenomena simulation, real-time data processing and offline data analysis. At the pro-
gramming level, Message Passing Interface (MPI) support was designed for efficient
distributed memory usage. Another core issue is low-power design [34].

The supercomputer has 128K PowerPC 440 700MHz processors, and they are de-
ployed into 64 racks, each rack consisting of 2 midplanes. A midplane has 1024 pro-
cessors, which means that the maximum number of processors assigned to a single
parallel job is 216 = 65, 536. System-on-chip technology is used to deliver a target
peak processing power of 360 TeraFLOPS (trillion floating-point operations per sec-
ond). The system is configured as a 64× 32× 32 three-dimensional torus to have the
highest aggregate bandwidth in this context. Each node can support up to 2GB local
memory and contains a second PowerPC 440 processor which is primarily for handling
message passing operations. Each processor has a 2 KB L2 cache and a 4MB L3 cache
(made from embedded DRAM), with a fast SRAM array for communication between
two adjacent processors [105], see Figure 1.4.

Reliability is a critical factor in architecture design. In the case of the BlueGene/L,
overall system availability is achieved through both hardware and software level de-
sign. In hardware, redundancy techniques are utilized at system-level, node-level and
network control components, such as power supplies, cooling fans, cables, network
connection, etc. In addition, fault tolerant strategies are built into the system. The
RAS scheme is applied to isolate and replace any failing node while restarting the
failed job from the latest checkpoint, and a fault isolation scheme is used to locate and
isolate failed components. Another important reliability factor is the simplicity in de-
ployment due to the fact that homogeneous components are utilized in the system to a
high degree.

CHAPTER 1. INTRODUCTION 25

 17

2.8/5.6 GF/s
4 MB

Chip
(2 processors)

Node Board
(32 chips, 4x4x2)

16 Compute Cards

Cabinet
(32 Node boards,

8x8x16)

90/180 GF/s
8 GB DDR

2.9/5.7 TF/s
256 GB DDR

System
(64 cabinets, 64x32x32)

180/360 TF/s
16 TB DDR

440 core

440 core

EDRAM

I/O

Compute Card
(2 chips,
1x2x1)

5.6/11.2 GF/s
0.5 GB DDR

Figure 1: BlueGene/L packaging. Figure 1.4: BlueGene/L overview (taken from [105]).

1.3.3 Key features

The prediction mechanism proposed in this thesis is built on key features and properties
extracted via the analysis of both the IBM BlueGene/L system architecture and its
output RAS log records. These features are described below.

• A large number of event records are available. The RAS logs are used for
monitoring and prediction purposes, and the interval of the mechanism gener-
ating these log items is less than 1 millisecond. According to actual logs from
the IBM BlueGene/L, the maximum event numbers each day reaches 381,827,
which means there are 15,909 log records per hour on average. In one minute,
the average number of events is 265.

• Failures are rare events compared to normal events. The RAS log files suggest
that the failure events in total take up less than 10% of the whole data volume.

• Tasks run in parallel. Multiple tasks may have errors at the same time and call the
RAS logging action simultaneously, which will cause the items to be recorded
in a potential chaotic fashion during a short time scale. Similarly, multiple com-
ponents may report the same failure event, so that large numbers of redundant
items are recorded, which can be seen in the actual logs.

• The complexity of the BlueGene/L makes the prediction task more difficult. Uti-
lization of homogeneous components can only reduce the complexity to a limited

CHAPTER 1. INTRODUCTION 26

degree, and failure prediction is a challenging task even in a single machine. In
such a supercomputer, the parallelism style, network connection, memory sys-
tem, control mechanism and hardware configuration all increase the difficulty of
log analysis and failure prediction.

1.4 Main contributions

The main contribution of this thesis is the development of a prediction-based failure
management framework including two main parts: failure prediction and failure recov-
ery. In terms of the proactive failure recovery approach, a theoretical model is created
to express the expected execution time, analytical results demonstrate better recovery
performance in comparison with the normal checkpoint mechanism. For the failure
prediction mechanism derived by the proactive failure recovery model, experiments on
industrial data from the IBM BlueGene/L show superior prediction accuracy compared
with the other three published algorithms conducted on the same data. The following
are contributions corresponding to each phase.

1. To the author’s knowledge the first theoretical model is demonstrated in the the-
sis to express the performance of a prediction-based checkpoint mechanism.
Theoretical analysis is conducted to investigate the relationship between over-
head and prediction accuracy.

2. Following the literature analysis, two taxonomies of failure prediction meth-
ods are introduced according to two different aspects: (1) based on prediction
methodology and (2) based on prediction algorithm. The first comparison of the
most common probability models in terms of their independence assumptions is
then provided in this thesis. Furthermore, a survey of the prediction approaches
on the target platform: the IBM BlueGene/L is presented.

3. A mechanism for two-level failure prediction using a semi-Markov CRF model
is demonstrated that not only predicts whether there is a future failure, but also
identifies the specific failure category. To the author’s knowledge, both CRF and
semi-Markov CRF are for the first time here being applied to solve the problem
of failure prediction.

CHAPTER 1. INTRODUCTION 27

1.5 Thesis outline

The remaining chapters of the thesis are organized as follows.
Chapter 2 discusses the traditional failure management framework and its core

components, including failure detection and failure recovery. This chapter then gives
an formal definition of the checkpoint mechanism technique and reviews the checkpoint-
based failure recovery algorithms.

Chapter 3 introduces the failure prediction problem, followed by a survey of fail-
ure prediction methods. In order to have an insight of these methods, the survey is
performed in terms of two aspects: methodology and algorithm; furthermore, three
published failure prediction approaches on supercomputers are described in detail. It
can be seen that the selection of probability model is important for prediction accuracy;
the chapter then defines a number of common probability models, and compares these
models in terms of their independence assumptions.

Chapter 4 starts by introducing the proactive failure management framework and
the core components: prediction-based recovery approach. This chapter then develops
a theoretical model to evaluate the performance of the proactive failure recovery ap-
proach, which is analysed according to four basic scenarios. Finally, the chapter finds
the conditions under which prediction-based approaches perform better than normal
approaches.

Chapter 5 describes the prediction process using the selected probability model
applied to the key features of next generation supercomputers. Preprocessing is then
discussed, including Categorization, Filtering and Sequence extraction. Next, the two-
level failure prediction mechanism using the selected probability model is demon-
strated. The next part of the chapter explains how the probability model solves the
two basic prediction problems. Finally, the chapter reviews the training algorithms for
the prediction model.

Chapter 6 provides the results of each step in the whole process. Specifically, this
chapter starts by evaluating the data preprocessing process. Further, characteristics of
the target platform are analysed in terms of normal event distribution and alert event
distribution. Later, the training process and the parameter space are introduced, and
the failure prediction mechanism is evaluated according to different parameters.

Chapter 7 concludes the thesis. It reviews the main contributions, then gives sug-
gestions for future work.

Chapter 2

Failure management framework

Failure management involves a wide range of issues, such as failure detection, failure
recovery, fault diagnosis, availability analysis, etc. In the case of real world systems,
several of these issues are considered together and combined into a single failure man-
agement framework. However, different characteristics and requirements of these sys-
tems may diversify the frameworks. This chapter introduces a general framework for
failure management and discusses its fundamental components in Section 2.1. Specif-
ically, several failure detection and recovery techniques are also presented in Section
2.1.2 and Section 2.1.3, respectively. Checkpointing is a popular technique that has
been successfully applied in various systems. A formal definition of this mechanism is
given in Section 2.2.1 and a taxonomy of the main current checkpointing mechanisms
is developed in Section 2.2.2. In the case of supercomputers, a coordinated checkpoint-
ing mechanism is a common choice for failure recovery, and related work is referenced
in Section 2.2.3. The chapter is summarised in Section 2.3.

2.1 Framework introduction

Failure management is a challenging task in large-scale computing systems, and there
exist a vast number of successful frameworks that can effectively handle runtime fail-
ures. These frameworks are different from each other in terms of functionality, plat-
forms, structure, etc. However, they all have similar fundamental components of fail-
ure detection and failure recovery. This section presents an overview of a general
failure management framework and describes in detail its basic services: failure de-
tection mechanisms in Section 2.1.2 and recovery approaches (including Checkpoint,

Retry, Replication and Alternation) in Section 2.1.3; it then discusses related issues,

28

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 29

the content and sequence of message exchanges used to
request remote operations, have emerged as an important
and essential means of achieving the interoperability that
Grid systems depend on. Also essential are standard appli-
cation programming interfaces (APIs), which define stan-
dard interfaces to code libraries and facilitate the con-
struction of Grid components by allowing code components
to be reused.

As figure 2 shows schematically, protocols and APIs
can be categorized according to the role they play in a Grid
system. At the lowest level, the fabric, we have the physi-
cal devices or resources that Grid users want to share and
access, including computers, storage systems, catalogs,
networks, and various forms of sensors.

Above the fabric are the connectivity and resource lay-
ers. The protocols in these layers must be implemented
everywhere and, therefore, must be relatively small in
number. The connectivity layer contains the core commu-
nication and authentication protocols required for Grid-
specific network transactions. Communication protocols
enable the exchange of data between resources, whereas
authentication protocols build on communication services
to provide cryptographically secure mechanisms for veri-
fying the identity of users and resources.

The resource layer contains protocols that exploit com-
munication and authentication protocols to enable the
secure initiation, monitoring, and control of
resource-sharing operations. Running the
same program on different computer sys-
tems depends on resource-layer protocols.
The Globus Toolkit (which is described in box
2 above) is a commonly used source of con-
nectivity and resource protocols and APIs.

The collective layer contains protocols,
services, and APIs that implement interac-
tions across collections of resources. Because

they combine and exploit components from the relatively
narrower resource and connectivity layers, the compo-
nents of the collective layer can implement a wide variety
of tasks without requiring new resource-layer components.
Examples of collective services include directory and bro-
kering services for resource discovery and allocation; mon-
itoring and diagnostic services; data replication services;
and membership and policy services for keeping track of
who in a community is allowed to access resources.

At the top of any Grid system are the user applica-
tions, which are constructed in terms of, and call on, the
components in any other layer. For example, a high-energy
physics analysis application that needs to execute several
thousands of independent tasks, each taking as input some
set of files containing events, might proceed by
� obtaining necessary authentication credentials (con-
nectivity layer protocols)
� querying an information system and replica catalog to
determine availability of computers, storage systems, and
networks, and the location of required input files (collec-
tive services)
� submitting requests to appropriate computers, stor-
age systems, and networks to initiate computations, move
data, and so forth (resource protocols) and
� monitoring the progress of the various computations
and data transfers, notifying the user when all are com-
pleted, and detecting and responding to failure conditions
(resource protocols).

Many of these functions can be carried out by tools
that automate the more complex tasks. The University of
Wisconsin’s Condor-G system (http://www.cs.wisc.edu/ con-
dor) is an example of a powerful, full-featured task broker.

Authentication, authorization, and policy
Authentication, authorization, and policy are among the
most challenging issues in Grids. Traditional security
technologies are concerned primarily with securing the
interactions between clients and servers. In such interac-
tions, a client (that is, a user) and a server need to mutu-
ally authenticate (that is, verify) each other’s identity,
while the server needs to determine whether to authorize
requests issued by the client. Sophisticated technologies
have been developed for performing these basic operations
and for guarding against and detecting various forms of
attack. We use the technologies whenever we visit e-com-
merce Web sites such as Amazon to buy products online.

In Grid environments, the situation is more complex.
The distinction between client and server tends to disap-
pear, because an individual resource can act as a server

http://www.physicstoday.org FEBRUARY 2002 PHYSICS TODAY 45

Box 2. The Globus Toolkit

The Globus Toolkit (http://www.globus.org) is a commu-
nity-based, open-architecture, open-source set of services

and software libraries that supports Grids and Grid applica-
tions. The Toolkit includes software for security, information
infrastructure, resource management, data management, com-
munication, fault detection, and portability. It is packaged as a
set of components that can be used either independently or
together to develop applications.

For each component, the Toolkit both defines protocols and
application programming interfaces (APIs) and provides open-
source reference implementations in C and (for client-side APIs)
Java. A tremendous variety of higher-level services, tools, and
applications have been implemented in terms of these basic com-
ponents. Some of these services and tools are distributed as part
of the Toolkit, while others are available from other sources.
The NSF-funded GRIDS Center (http://www.grids-center.org)
maintains a repository of components.

Globus Project and Globus Toolkit are trademarks of the
University of Chicago and University of Southern California.

Diverse resources
such as

computers, storage media,
networks, and sensors

Secure
access

to resources
and services

Directory brokering,
diagnostics and

monitoring

Tools and applications USER APPLICATIONS

COLLECTIVE SERVICES

FABRIC

RESOURCE AND
CONNECTIVITY PROTOCOLS

FIGURE 2. GRID ARCHITECTURE

can be thought of a series of layers of different
widths. At the center are the resource and con-

nectivity layers, which contain a relatively small
number of key protocols and application pro-

gramming interfaces that must be implemented
everywhere. The surrounding layers can, in prin-

ciple, contain any number of components.

Figure 2.1: General architecture (taken from [28]).

such as fault diagnosis and availability analysis in Section 2.1.4.

2.1.1 Architecture overview

The growing requirements of a diversity of applications necessitate large and powerful
computational and storage capabilities. Parallelism in both computation and storage,
involving many thousands of processors, is widely accepted as a method to meet these
requirements. With the advancement and development of various technologies, the
problems that need to be solved become more complex in computation and larger in
size. Development teams focused on technical products, such as semiconductors, are
using powerful computing capability to achieve higher throughput. Likewise, the busi-
ness community is beginning to recognize the importance of distributed systems in
applications such as data mining and economic modelling. Nowadays more and more
domains try to use grid technology to solve their specific problems, such as the areas
of genomics, bioinformatics, chemical engineering, geophysics, astronomy, etc.

These powerful systems must provide mechanisms for sharing and coordinating
the use of diverse resources and thus enable the creation of different virtual comput-
ing systems that are sufficiently integrated to deliver desired qualities of service [27].
There are several such kinds of architectures in both industry and academia according
to different focuses and applications, but they all have common system components
and functions of resource sharing, authentication and resources access. As an exam-
ple, a general architecture in grid computing [28] is presented in Figure 2.1 and these
modules can be partitioned into four basic layers: fabric, resource and connectivity

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 30

User Requirements Applications

Global Information Service Failure Notification

Failure Detecting Fault Diagnosis

Failure Recovery

Processor NetworkI/O Memory

USER

GIS

Failure
Detector

Failure
Recovery

Computing
Resource

Figure 2.2: General failure management framework.

protocols, collective services and user applications. The fabric layer implements local
resource operations that occur on specific resources. It needs coordination between op-
erating systems, hardware and software. The resource and connectivity layer contains
basic components, standard communication and authentication protocols. The col-
lective service layer provides advanced functionalities such as resource management,
performance steering, monitoring and so on. The application layer consists of compu-
tationally intensive, data intensive or communication intensive applications in specific
areas; applications are constructed in terms of, and by calling on, services defined by
the other layers.

There are lots of fault tolerance challenges in such large-scale systems. Even in
a single desktop machine, failures and errors are common events. Large-scale com-
puting systems increase the complexity by using thousands of cores, multiple storage
devices, complex communication and cooperation control management, parallelism,
and so on. Potential failures may occur in hardware or software. In some situations,
it is impossible to trace the root cause of a failure because of the high-level of com-
plexity. Such failures strongly impact system resource usage and overall performance,
especially for long running and complex applications.

Failure management is a key issue in such systems and much work has been pub-
lished on this topic. Figure 2.2 shows the components contained in a general failure
management framework. There are three steps included in a failure management pro-
cess: failure detection, fault diagnosis and failure recovery. Failure detection detects
abnormal system behaviour and notifies the controller; the focus of diagnosis is to find
the root cause of the failure; and a failure recovery approach is necessary to recover a
system from failure status.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 31

Taxonomy for architectures

Previous work on failure management can be classified into two groups: reactive ap-
proaches that take recovery actions after a failure occurs, and proactive approaches
that take preventive actions before a failure occurs. Reactive approaches do not have
any preventive cost but incur significant failure penalty. Many existing mechanisms
follow this approach, such as Retry [31, 38, 16] and Replication [17, 14]. Proactive
approaches offer better fault tolerance and integrate a failure prediction module to fore-
cast future failure occurrence, based on which suitable actions can be taken before a
true failure happens, such as turning on adaptive checkpointing.

2.1.2 Failure detection

Failure detection is a basic component in fault management that tries to locate failures
during execution. The detection mechanisms are closely related to applications and
platforms. Furthermore, large-scale computing platforms can be used for diverse appli-
cations and, based on the taxonomy given in [30, 29], these applications can be divided
into five categories: distributed supercomputing applications, high-throughput appli-
cations, on-demand applications, data intensive applications and collaborative appli-
cations. Failure characteristics of different applications may be distinct; for example,
it is easier for high-throughput applications to have input and output failures, whereas
data intensive applications may have more disk and memory failures. These failures
have many possible causes, such as memory leaks, network failures, etc. According
to the classification stated in Chapter 1, there are four types of failure: crash failures,
omission failures, timing failures and byzantine failures. In order to make applications
behave robustly in the presence of failures at runtime, these failures must be detected
and handled automatically. However, the detection mechanism varies from failure to
failure. A special case is crash failure, during which a component enters a perma-
nent erroneous state that can be detected by other components. More complex failure
cases are also possible, such as Byzantine failures, where a component fails by not
functioning correctly and may operate in a potentially malicious fashion. The problem
of detecting crash failures is considered in this thesis, and many solutions have been
published [4, 10, 31, 45, 51, 57, 106, 111].

Pinpoint [57] tries to aggregate low-level behaviours over a large collection of re-
quests to establish a baseline for “normal” operation and then detect anomalies with
respect to that baseline. Kiciman et al. [57] model a set of path shapes as a probabilistic

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 32

context-free grammar (PCFG), which is a structure used in natural language processing
to calculate the probabilities of different parses of a sentence. Combined with decision
tree learning, the paper analyses component interactions to yield information about
transient faults in an application. There are some limitations in the mechanism: the
approach is only suitable for request/reply online applications and it only works for
components with Multi-Modal behaviours (a component exhibits multiple modes of
behaviour depending on its physical location); furthermore, it can only detect transient
errors which change a component’s interactions.

Soonwook et al. propose a generic failure detection service in [51]. The detection
architecture comprises two components: a set of notification generators located on
each node, generating notification messages submitted to the listener nodes, and a
notification listener receiving generic events, “heartbeat” messages and task specific
event notification messages. The framework mainly focuses on task-level failures and
detects errors through continuous sending of “heartbeat” messages between nodes.

Condor-G [31] adopts ad hoc failure detection mechanisms because the underlying
protocol ignores fault tolerance issues. It uses “periodic polling of the generic server”
to detect certain types of failure such as host and network crash failures. However, it
cannot detect task crash failures.

Alter [111] is another failure detection service organized in a hierarchical structure,
which incorporates the techniques of unreliable failure detection service and the idea
of relational grid monitoring architecture (R-GMA). The architecture works through
periodically sending messages to failure detectors.

Youhei et al. propose a failure detection and recovery mechanism using a transac-
tional agent model [104, 103]. A transactional agent can move to another operational
computer if the target computer is faulty. The service focuses on system level failures
in the client/server model; however, it cannot deal with real-time failures.

The Globus Heartbeat Monitor (HBM) [100] provides a generic failure detection
service designed to be incorporated into distributed systems, tools or applications. It
enables applications to detect both host/network failures, by recognition of missing
heartbeat messages and task crash failures following receipt of notification messages
from the HBM local monitor. However, in the context of [100], it is impossible for
grid applications to detect failures other than fail-stop failures (shown in Figure 1.2).

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 33

2.1.3 Recovery approaches

Another key component in failure management is failure recovery, which recovers a
system from an erroneous state to the normal state. Different types of failures should
be able to be recovered from in a variety of ways depending on both the running ap-
plication and the platform. For example, in the case of a short task, if not completed
within an expected execution time, terminate the task, retry it on the same machine or
restart it on a new machine; for a long running task, an appropriate recovery strategy is
to generate checkpoints periodically and recover the task from the last good state when
failure occurs. Several mechanisms have been published and the resulting approaches
can be divided into four categories: retry, alternation, checkpoint and replication [114],
which are described below.

Retry

Retry is a common way to deal with failures, especially in environments with an
unstable nature, such as high-throughput computing or desktop grid platform. It
restarts the task on the same resource once the task fails to finish; however, in
some hardware failure cases, this approach cannot effectively recover the failure.
Several systems apply this approach as it is relatively simply and has high effi-
ciency [31, 38, 16]. For example, in the case of independent and short-running
tasks, this approach can achieve good efficiency as it needs neither additional
stable dedicated storage devices nor extra network bandwidth.

Alternation

The alternation approach is like Retry, but selects another candidate node1 to
which the failed tasks are submitted; this incurs the increased overhead of choos-
ing an alternative node and transferring instructions, data and resource, etc. In
terms of hardware failures, this mechanism should have good recovery perfor-
mance [56].

Checkpoint

Checkpoint approach is a widely accepted way of recovering failures. It restarts
the failed tasks transparently from the latest checkpoint, so that the task can
continue its execution from the last known position before the point of failure.

1Node means a component or a computational resource here.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 34

Replication

Replication is another common approach which will make several copies of the
task and run these on different nodes simultaneously to try to ensure that at
least one of the replicas completes successfully. The advantage of this approach
is that it tries to ensure successful completion of the task, because if one of
the task replicas fails during execution, there are other identical ones doing the
same processing. However, in order to improve the success ratio, it will incur
computing and network resources wastage. This approach has been studied in
[17, 14].

2.1.4 Related issues in fault tolerance

Apart from failure detection and failure recovery, there are many other topics in fault
tolerance, such as availability analysis, fault diagnosis, failure prediction (discussed in
Chapter 3), etc. Availability analysis is concerned with long term system assessment
based on its architectural properties or the number of bugs that have been fixed. Fault
diagnosis is to identify the root cause of a problem [75]. It plays an important role
in quality assessment and system maintenance. However, fault diagnosis is a chal-
lenging task in a complex environment. In order to analyse the problem, one would
have to know both what is happening and what should be happening. This informa-
tion can partly be obtained from system logs and monitoring schemes. However, two
other problems arise: the first is that not all the errors and intermediate results can be
captured; secondly, some results are a composite effect of several other events, which
makes the diagnosis more difficult. Several mechanisms have been explored for fault
diagnosis. Automated tests, which are similar to functional tests,2 are used for fault
diagnosis and recovery in [24, 75]. However, test units must be implemented for every
software component in the system. Another issue is that this mechanism cannot detect
certain errors, such as transient errors and Heisenbugs. 3

2Functional tests are programs or scripts configured to test that packages (groups of clusters of
classes) meet external requirements and achieve goals, such as performance. They include screen-
driving programs that test GUIs from without.

3A bug named after the Heisenberg Uncertainty Principle that disappears or alters its behaviour when
one attempts to probe or isolate it.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 35

Start

Time
......

ith Failure
Recover
tr

Finish
ER

Recover
tr

Failure

F

Figure 2.3: Execution without checkpoint.

Start

Time

Finish time with failures
F

Finish

Figure 2.4: Execution without failures.

2.2 Checkpoint based failure recovery

Checkpointing is the most common failure recovery technique that can be applied in
different systems. A large amount of work has been published on this topic and there
are lots of diverse checkpoint mechanisms that suit different environments. This sec-
tion gives a formal definition of a checkpoint mechanism, introduces its main param-
eters and shows equations to calculate the expected application running time under a
traditional checkpoint mechanism. Two different taxonomies of checkpoint are devel-
oped, in terms of creator and coordinator,4 respectively. In the case of supercomputers,
a coordinated checkpoint mechanism is the most widely accepted technique and related
work is presented in Section 2.2.3.

2.2.1 Checkpoint definition

Providing a checkpoint mechanism is an important step towards fault tolerance. It
provides applications the capability to take a snapshot of the current executing state
periodically or on command. The checkpoint data can be used to restore the application
to its previous running state after a failure. However, constructing a checkpoint also
increases system overhead in the form of additional network and storage load, and
execution overhead in terms of periodically generating a checkpoint.

4Creator and coordinator are explained in detail in Section 2.2.2.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 36

ts

Start

Time
......

ith Failuretc ts

tb

Recover
tr

Finish
EC

Figure 2.5: Different parameters in a checkpoint model, where each checkpoint over-
head ts and recovery time tr are assumed to be constant, and tc is the checkpoint
interval, tb is wasted computing time.

Checkpointing methods have been successfully applied for failure recovery in a
wide range of systems. As stated in Section 2.1.2, there are a variety of applications
and even members of the same category of application may have diverse requirements
for failure recovery. More importantly, the checkpoint mechanisms implemented in
various systems are differentiated according to their specific demands. In order to
express a checkpoint mechanism precisely, several parameters must be defined. Figure
2.3 shows the execution of a program during which there are no checkpoints, and the
program will be restarted from the beginning once a failure occurs; Figure 2.4 presents
a scenario where there are no checkpoints or failures during the entire running; Figure
2.5 demonstrates the checkpoint model, where

ts = Average checkpoint overhead, that is the time required to generate a
checkpoint;

tc = Uninterrupted task execution time between two consecutive
checkpoints;

tb = Wasted computing time when a failure occurs, which denotes the
time to rollback to the last checkpoint;

tr = The combination of down time, during which the normal operation
of the system is reestablished, plus the time to reinstate the
checkpoint or original task;

EC = Expected running time in the presence of both checkpoints and
failures;

ER = Expected execution time without checkpoints;

F = Running time without either failures or checkpoints.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 37

According to Duda [25], if failure occurrence during an execution follows a Pois-
son distribution, and the failure rate is λ, the value of ER is given by Equation 2.1
where e is the base of natural logarithm. The execution scenario is illustrated in Fig-
ure 2.3 and a successful execution requires a time F of uninterrupted operation of the
system. The following assumptions are adopted.

1. The occurrences of failures form a Poisson process of parameter λ.

2. Failures do not occur when the system is recovering from a failure.

3. The instants of the detection of the failures are considered as the instants of their
occurrence.

4. λ and F are constant during the execution.

5. tr is ignored in this case because no checkpoints are restored and tr denotes the
time to restart the program.

ER =
eλF − 1

λ
(2.1)

The value of EC is given in Equation 2.2 (also from [25]) and the execution sce-
nario is illustrated in Figure 2.5. The first four assumptions of Equation 2.1 and the
following ones will be adopted.

1. Failures do not occur during the construction of a checkpoint.

2. tc is constant during the execution.

EC =
F

tc
(ts + (tr +

1

λ
)(eλtc − 1)) (2.2)

It can be concluded that the checkpoint interval tc significantly affects the overall
running time EC . If the value of tc is assumed to be constant, an approximation of
the optimal value tc−opt of tc is given in Young [113] by Equation 2.3. Following
assumptions are adopted.

1. The occurrences of failures form a Poisson process of parameter λ.

2. Failures can be observed at the occurrences.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 38

3. λ and F are constant during the execution.

tc−opt ≈
√

2ts/λ (2.3)

2.2.2 Taxonomy of checkpointing algorithms

There are a set of parameters in a checkpointing algorithm which can be adjusted to suit
different environments; a large number of algorithms have been disscussed. In order
to demonstrate the correlations and differences, two taxonomies are next presented in
terms of two distinct rules: creator and coordination.

Creator based taxonomy

Based on different creators of checkpoints, checkpoints schemes can be divided into
three categories: system-level checkpoints, application-level checkpoints and cooper-
ative checkpoints [81, 98, 99].

System-level checkpoint

A system-level checkpoint is produced automatically and transparently at oper-
ating system or middleware level, and the currently running application can be
seen as a black-box from which the complete process image of the applications
is captured.

Application-level checkpoint

An application-level checkpoint is generated by the application and extra imple-
mentations need to be embedded to get real-time process information. In this
case, checkpoint requests are inserted in the source code by programmers at ap-
propriate places.

Cooperative checkpoint

In a cooperative checkpoint mechanism, whether to make a checkpoint or not
depends on the application programmer, the compiler and the running system.
The programmer inserts checkpoint requests in the code at places where the
application state size is minimal; the compiler then evaluates the current state,
removes incorrect and extra states and optimizes the intermediate outputs; at the
runtime level, the system receives the checkpoint request and makes the final

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 39

decision of whether to construct checkpoints by checking the current status of
memory, hard disk, network traffic, I/O (input/output), etc.

The above three checkpoint mechanisms have different characteristics and are suit-
able for various environments. Table 2.1 compares them based on features, such as
semantics, state size, portable, compiler, runtime, kernel state and transparency. Se-

mantics means whether the checkpoint scheme skips useless data and stores only nec-
essary state information; state size denotes whether a checkpoint is produced at places
where the application state is minimal; portable expresses whether the checkpoint is
platform independent; compiler means whether the application is optimised when do-
ing checkpoints; runtime states whether the checkpoint decision is made at runtime;
kernel state denotes whether kernel-level information can be accessed; finally, trans-

parent describes whether user intervention is required.

Features System-level Application-level Cooperative
Semantics

√ √

State-size
√ √

Portable
√ √

Compiler
√ √

Runtime
√ √

Kernel state
√ √

Transparent
√

Table 2.1: Comparison of system-level, application-level and cooperative checkpoint
mechanisms based on several key features (taken from [81]).

Coordination based taxonomy

Based on the required coordination where an application comprises multiple con-
stituent processes, a further factor comes into play. Checkpoints can be broadly clas-
sified into four sub-categories: uncoordinated checkpoints, coordinated checkpoints,
communication-induced checkpoints and diskless checkpoints [36, 98].

Uncoordinated checkpoint

In an uncoordinated checkpoint mechanism, each process saves the state in-
dependently; when failures occur, these processes will search the saved set of
checkpoints for a consistent state copy, from which execution can be resumed.
The main advantage is that each process can save its status when necessary; in

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 40

order to reduce the space usage and checkpoint overhead, checkpoint action can
be performed when the execution snapshot is small in size. However, in terms of
recovery efficiency, an uncoordinated checkpoint may cause the problem of roll-
back propagation — the domino effect — which will make all processes restart
from the beginning, and take the risk of losing previous useful work. To solve
this problem, each processor may need to save multiple checkpoints.

Coordinated checkpoint

A coordinated checkpoint requires processes to coordinate in order to form a
consistent global state that will avoid the rollback propagation problem, and only
one checkpoint is needed during recovery, which reduces both storage space us-
age and network overhead. However, coordinated checkpoint schemes suffer
from the large latency in saving checkpoints as a consistent checkpoint needs to
be determined before it can be written to the stable hardware store. For some
iterative applications, coordinated checkpoints can be generated between itera-
tions, which can effectively reduce the time to identify the previous checkpoint
and to transport the data.

Communication-induced checkpoint

In a communication-induced checkpoint mechanism, processes can generate parts
of their checkpoints independently, and the other checkpoints are taken based on
application messages received from other processors to avoid the domino effect.
The communication-induced checkpoints must be produced before the applica-
tion messages are processed, which will increase the system’s latency.

Diskless checkpoint

The diskless checkpoint technique requires no stable store when saving check-
points, especially in a distributed environment; the checkpoint data is saved in
free memory space to improve overall system performance. However, the recov-
ery of a failed processor needs checkpoints from all other application processors
and some extra communication processors that are used for global consistency.

2.2.3 Related work on coordinated checkpoint

The most widely accepted checkpoint mechanism for supercomputers is coordinated
checkpoint because of its simplicity; it requires that all processes coordinate to form a

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 41

global state before saving individual checkpoints, and the recovery scheme just restores
the last global checkpoint when a failure occur. Many coordinated mechanisms have
been published for supercomputers, especially the IBM BlueGene/L [13, 71, 83].

Wang et al. [83] present a coordinated checkpoint mechanism for large-scale su-
percomputers considering failures during checkpoint generation and failure recovery.
Two kinds of failures are taken into account in the mechanism modelled by Möbius
[9]: error propagation problems and general crash failures. With respect to failure dis-
tribution, a hyper-exponential distribution [63] is assumed. Because all processes need
to coordinate for a global state, a timeout threshold is set to prevent indefinite waiting.

An analytical checkpoint model for large-scale supercomputers is given by Slim
et al. in [13]. The model can express expected application finish time using various
distribution laws, and the optimal checkpoint intervals using different configurations
are given with consideration of both checkpoint cost and the wasted computing time.
Similar work is presented by Liu et al. in [71].

In [81], a checkpoint mechanism is developed for the IBM BlueGene/L using real-
world trace results, from which the failure distribution model is derived. And the
checkpoint decision is made depending on the likelihood of a failure occurrence at a
future point.

2.3 Summary

This chapter has introduced the concept of a failure management framework for large-
scale computing systems, and has analyzed its fundamental components: failure detec-
tion and failure recovery. Diverse failures tend to have different root causes and thus
are handled in various ways. A brief survey of failure detection mechanisms has been
discussed. In terms of failure recovery, there are four basic approaches: Retry, Check-

point, Replication and Alternation. Apart from failure detection and failure recovery,
there are several other issues, such as availability analysis, fault diagnosis, failure pre-
diction, etc., that can assist in reducing adverse effects on runtime of failures.

The second goal of this chapter was to present related work on the most common
failure recovery technique — the checkpoint. A definition and a comprehensive survey
of checkpoint algorithms have been given. Coordinated checkpoint, which is widely
accepted as the failure recovery approach in supercomputers, have been referenced and
discussed.

CHAPTER 2. FAILURE MANAGEMENT FRAMEWORK 42

Contributions of this chapter

This chapter has provided an review of the general framework for failure management
in large-scale computing systems. Secondly, this chapter presents comprehensive tax-
onomies in terms of two distinct rules: creator and coordination.

Relation to other chapters

This chapter has presented background related to failure management, then introduced
checkpoint-based failure recovery approaches, based on which the proposed proactive
recovery mechanism is developed in Chapter 4.

Chapter 3

Failure prediction methods review

The challenges of real-time failure prediction are addressed in this chapter, and the
problem definitions are presented in Section 3.1. A vast amount of work has been
published in the area of failure prediction, for example, for the specific problem of real-
time failure prediction on the IBM BlueGene/L, there exist a variety of approaches. In
Section 3.2, a survey of general failure prediction methods and prediction algorithms
specifically designed for the IBM BlueGene/L are presented. For the problem of failure
prediction, CRF models are considered later in this thesis. Section 3.3 introduces the
definitions of both the standard CRF model and the semi-Markov CRF model, presents
some of their applications, and then compares them with other models.

3.1 Failure prediction statement

Failure prediction is a common term in the field of dependable computing either to
assess the future reliability of a system according to its specification or to make main-
tenance adjustments based on historical events analysis [110, 73]. The term is used in
a wide range of domains from software to hardware. In this thesis, the term is used
specifically to denote real-time forecasting of failure occurrence at a future point using
a specific range of historical system states or events.

Diverse failures have various root causes, and the same failure may have differ-
ent sources. More importantly, failure prediction methods may differ among multiple
systems according to their unique architectural design, data flows and component de-
pendencies. This means that an effective failure prediction method is system-oriented
and must take into account the specific characteristics of the system. This is particular

43

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 44

time
ti ti+j

d1 d2 d3 d4 ...
∆td

ti+k

l1 l2 l3 l4 ...
∆tl

∆tw
p1 p2 p3 p4 ...

∆tp

ti+m

Figure 3.1: Temporal concepts in the failure prediction process ordered by time t,
where m > k > j, ∆td is data window, ∆tl is lead-time window, ∆tw is warning
time window, ∆tp is prediction period, and di, li, and pi are events that occurred in the
various windows.

true with high performance systems which usually make use of customised and system-
specific components. In dependable computing, failure prediction can be grouped into
two classes from the perspective of time scale: real-time failure prediction (online fail-
ure prediction) and long-term failure prediction (reliability analysis). Real-time failure
prediction forecasts for a short time period, such as ten minutes ahead. Four different
time parameters are defined for the purpose of analysis, as shown in Figure 3.1.

∆td defines the time length of the data window used for failure prediction. Not all
prediction algorithms use the same method: some approaches, such as Markov
Process-based mechanisms, use only the current system status, while others take
into account the system status during a short time period just before the current
time. However, some totally different measurement might be applied, for exam-
ple, some algorithms do not use a time window but rather use a fixed number
of messages or events. ∆td therefore has a different meaning according to the
various mechanisms.

∆tl defines the time span from the current time to the future point at which a failure
may occur. The value of ∆tl must be carefully selected in online failure predic-
tion mechanisms: if it is too short, administrators may not have enough time to
recover or solve the potential problems; whereas, a long lead-time may affect the
prediction accuracy.

∆tw is termed the warning time window, which defines a minimum value for ∆tl.

∆tp defines the time window during which a predicted failure is expected to occur.
The shorter the length of the prediction window, the lower the accuracy of the
result is likely to be. A longer ∆tp may increase the precision of forecasting
where it is unclear exactly when a future failure will occur, but it is unlikely to
be of use in real-time.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 45

Formalization

Each event has an associated occurrence time — this association is described as an
attribute-value pair. Given E as a set of event types, an event can be depicted as (e, t),
where e ∈ E is an event type and t is the occurrence time. More generally, the event
type e can contain multiple attributes or features. However, sometimes we need to
consider a sequence of events, termed an event sequence, that are ordered by time
occurring in a fixed period. There are three aspects needed in order to specify an event
sequence: event type e, start time tb and end time te, so that an event sequence s, as
shown in Equation 3.1, can be represented as a triple (ei, tb, te), where ei ∈ E.

s = 〈(e1, t1), (e2, t2), · · · , (en, tn)〉 for ei ∈ E, ti ≤ ti+1, tb ≤ ti ≤ te (3.1)

For example, in Figure 3.1 event sequence sd in data window ∆td can be written
as:

sd = 〈(d1, ti+1), (d2, ti+2), (d3, ti+3), · · · 〉

and event sequence sl in lead-time window ∆tl can be written as:

sl = 〈(l1, ti+j+1), (l2, ti+j+2), (l3, ti+j+3), · · · 〉

3.2 Survey of failure prediction methods

This section discusses previous research on failure prediction. In order to demon-
strate the differences between various methods, two types of taxonomy are provided:
a taxonomy of general prediction methods and a taxonomy of specific prediction ap-
proaches designed for RAS data from the IBM BlueGene/L. Section 3.2.1 explains the
general prediction methods in terms of two aspects: algorithm and technique. Three
prediction approaches for the IBM BlueGene/L data are analyzed in detail in Section
3.2.2.

3.2.1 Failure prediction methods taxonomy

Much work has been done in the area of real-time failure prediction. As mentioned
in Section 3.1, the efficiency of failure prediction methods depends on several aspects,
such as system infrastructure, application characteristics, component dependencies,

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 46

etc. Various systems, such as telecommunication systems, computer clusters, elec-
tronic systems, etc., have their specific characteristics; even the same system running
diverse applications may have different requirements for failure prediction approaches.
These approaches differ from each other in two aspects: methodology and algorithm.
From the viewpoint of algorithms, taxonomies are based mainly on theoretical models.
Different taxonomies have been published based on different criteria [112, 93, 107].
This section presents taxonomies for both methodology and algorithms, as shown in
Table 3.1.

Criteria Taxonomy

Methodology
Observation based approaches
Symptom measurement oriented approahces
Error detection approaches

Algorithms
Time series
Markov models
Bayesian classifiers
Rule-based models
Instance-based methods
Others

Table 3.1: Taxonomies of failure prediction.

Methodology taxonomy

Depending on whether the current system state is evaluated and whether system event
logs are assessed, failure prediction approaches can be divided into three main cat-
egories: observation based approaches, symptom measurement oriented approaches,

and error detection approaches.

Observation based approaches

Failure prediction approaches that fall into this category normally have two pro-
cess steps. The first step is to find some kinds of regularities in failures, such
as failure distribution. The distribution function can then be fitted using histor-
ical data. There is risk that it is easy to reach a false conclusion because of the
limited data volume. Empirical studies in [96, 78, 90] show that MTTR and
Failure Rate vary across systems, and that MTTF is modelled better with a
Weibull distribution than an exponential distribution, which has previously been
widely accepted as the distribution function. Another feature needing consider-
ation in parallel systems and clusters is concurrency. It can be seen from the raw

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 47

system reports that failures are either repetitive in nature or occur close together
in time or in space, which can be used to exploit dependencies among failures
for future occurrence prediction [64].

Secondly, the current system state will be measured to predict the next failure
occurrence time using the established distribution model.

In order to improve scheduling performance, Rood and Lewis [89] present a
multi-state available model to predict host failures in Condor [20], a large-scale
grid environment. The model monitors real-time CPU usage and divides host
states into five categories: user present, available (to grid), CPU threshold ex-

ceeded, job shutdown, and unavailable. The prediction algorithm takes as input a
resource’s historical availability data and combines two approaches of analysing
the resource’s behaviour to determine the most probable next state. The first
approach makes predictions based on the percentage of time a resource spent in
each state during the analysis period; the second approach calculates the proba-
bilities of the next state by counting the number of transitions from the available

state to each of the other states.

Symptom measurement oriented approaches

Due to the cooperation of multiple components in a single structure, some faults
will affect the system gradually before a failure is detected. An infinite loop
will cause CPU usage to become especially high, and may even make the sys-
tem unresponsive; a protocol problem in telecommunication systems is likely to
increase network traffic, and may flood the network if the problem continues;
other problems may gradually increase memory usage, and a memory exception
will be caught later when there remains no free memory. All these symptoms are
caused by faults in the system, which lead to failures becoming apparent some
time later, but not immediately. Prediction approaches in this category attempt
to make use of these side effects before they become a failure, and monitoring
any such unusual changes may help forecast future failure occurrence.

Jiman et al. [47] describe an approach to choose the optimal checkpoint interval,
based on the memory usage profile predicted by an adaptive time series model.
The traditional recursive algorithm applied in their model is presented in Equa-
tion 3.2, where Θ̂(t) is the parameter value at time t, y(t) is the output value,
ŷ(t) is the expected output value, and K(t) is a coefficient.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 48

Θ̂(t) = Θ̂(t− 1) +K(t)(y(t)− ŷ(t)) (3.2)

Hamerly and Elkan [43] describe two Bayesian-based methods to forecast disk
drive failures using SMART (Self-Monitoring and Reporting Technology) values
from Quantum Inc. disk drives. The first method, named NBEM, is a mixture
of naive Bayesian models trained by the expectation-maximization (EM) algo-
rithm. For a data pointX with the assumption of independency in each model, its
probability is estimated by Equation 3.3, where every P (n) is a naive Bayesian
submodel and the calculation takes into account all submodels. Secondly, a stan-
dard naive Bayes classifier is explored using the same data set. Based on exper-
imental results, they conclude that both models perform better than the failure
prediction algorithm proposed in [50].1

P (X) =
∑
n

P (X|n)P (n) (3.3)

Error detection approaches

These kinds of approach make use of error events recorded in log files, which
is the output of a system monitor mechanism. These error events are discrete
items with well defined fields that can be classified into certain categories. In
contrast, symptom measurement is normally represented by continuous values
or observations, and they do not necessarily use log files. The key notion of
log-based failure prediction has been described in Section 3.1. Event logs can
reflect system internal actions to a certain degree and are sufficient for building
up the prediction model. Furthermore, root failure causes may be diagnosed by
analysis of failure items.

Several analysis methods can be used on event logs for the purpose of failure
prediction. A straightforward analysis is to calculate the failure occurrence fre-
quency. A widely accepted assumption in failure prediction methods is that
there are more possibilities to have errors before a failure occurs. Prediction
approaches can rely on frequency changes to perform forecasting. Several meth-
ods have been published based on this assumption [64, 61]. Another purpose of
analysis is to identify rules that lead to failures, and these rules are represented

1The publication date of [50] was later than that of [43], but the former paper was originally submit-
ted in 2000.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 49

as events that occurred ahead of failures; more specifically, in the case of stand-
alone failures, this method does not work. In order to improve the accuracy and
efficiency, enough rules must be generated from the training data set to capture
true failures. The approach presented in [108] falls into this category. Deci-
sion tree learning is another way of building failure prediction approaches. It
is a common method used for decision support and the goal is to predict target
events preceded by several conditions. Through decision tree analysis on event
logs, a failure tree can be generated in which leaf nodes are failures and parent
nodes are conditions under which failures will occur. Gu et al. [40] describe a de-
cision tree, generated by the C4.5 algorithm, for failure prediction in distributed
stream processing systems. They focus on latent software failures by monitoring
both the component and host metrics, such as component input, output, average
processing time, etc.

Stochastic models, such as Markov and Bayesian models, etc. can also be applied
to event logs for failure prediction. These models differ from each other with
regard to their dependency assumptions over observations, and the details are
discussed in the next part of this section.

Algorithm taxonomy

Failure prediction can be conducted in various ways using different approaches. Sev-
eral models have been applied in failure prediction, and they can be broadly classified
into five categories: Time series models, Markov models, Bayesian classifier, Rule-

based models and Statistical methods.

Time series models

Time series data is measured at successive times spaced at uniform intervals.
These data have a natural feature of time ordering, which makes time series
analysis distinct from other techniques. For example, continuous time series
models are generally based on the fact that close observations in time will be
more related than those further apart. Specifically, there are two types: linear
time series models and non-linear time series models, of which linear models
have been successfully used in the area of failure prediction. Several models
have been explored in [90], such as Autoregressive Model (AR), Moving Aver-
age Model (MA) and Autoregressive Moving Average Model (ARMA), shown
in Equations 3.4, 3.5 and 3.6, respectively, where c is a constant value, ϕi and

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 50

θi are model parameters, X̂t is the expected value of Xt, and εt denotes white
noise.

Xt = c+
n∑
i=1

ϕiXt−i + εt (3.4)

Xt = X̂t +
m∑
i=1

θiεt−i + εt (3.5)

Xt = εt + c+
n∑
i=1

ϕiXt−i +
m∑
i=1

θiεt−i (3.6)

Markov models

A Markov model is a random process with the property that future states of the
process depend only on the present state and the past does not affect the future
(the Markov property). This property is an important assumption for stochastic
processes and has been successfully used for forecasting in finance, economics,
and computer science. In the area of failure prediction, three extended forms
of the Markov model have been used successfully: the Discrete Time Markov
Chain (DTMC), described in [92]; the Hidden Markov Model (HMM), presented
in [91]; and the Semi-Markov Model (SMM), introduced in [88].

In a DTMC for failure prediction, each state represents an event category, and
the transition possibility from one state to another state is calculated for future
failure occurrence forecasting. DTMC is defined in a discrete data space Ω =

{vi, i = 1, · · · , n}, where each vi represents a state and Ψ(vj|vi) represents the
transition probability from state vi to vj , denoted by Equation 3.8. Matrix Ψ is
stochastic in that, for each vi, every row {pij, vj ∈ Ω} is a probability distribution
and sums to one, as shown in Equation 3.7.

∀i :
n∑
j=1

pij = 1 (3.7)

Ψ(vj|vi) = {pij, vi, vj ∈ Ω} (3.8)

A DTMC process starts from an initial state S0 = v0, then transits from the
current state Si = vi to state Si+1 = vi+1 based on the transition matrix Ψ; the

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 51

Si-1

Oi-1

Si

Oi

Si+1

Oi+1

... ...

Hidden states

Visible observations

Figure 3.2: A Hidden Markov Model.

process (Ω,Ψ) can be expressed by Equation 3.9.

Ψ(Si+1|S0, · · · , Si) = Ψ(Si+1|Si) = Ψ(vi+1|vi) = pi,i+1 (3.9)

In a HMM, every state Si which is not directly visible has a corresponding ob-
servation Oi, and the observation is reachable. Both states and observations are
drawn from finite spaces, Ω and O respectively, and each state has a probability
distribution over its observations. Figure 3.2 shows a HMM. The sequence of
observations reflect the sequence of states under two independency assumptions.
Firstly, it is assumed that the state sequence follows the Markov property, which
means that the current state only depends on its previous state. Secondly, it is as-
sumed that each observation Oi depends only on the current state Si. In order to
formally express the model, the initial state of the instance needs to be defined.
More specifically, two extra distributions are required: the first is an initial dis-
tribution Ψ(Si) = p(Si) = pi over states Ω, and the second is an observation
distribution over its state Ψ(Oi|Si), where Si ∈ Ω and Oi ∈ O. Then the joint
probability of a sequence of states S1,··· ,n = {S0, · · · , Sn} over an observation
sequence O1,··· ,n = {O0, · · · , On} is defined by Equation 3.10.

Ψ(S1,··· ,n|O1,··· ,n) =
n∏
i=1

Ψ(Si|Si−1)Ψ(Oi|Si) (3.10)

A semi-Markov Model extends DTMC models to time-dependent stochastic be-
haviours. In addition to the notion in DTMC, dij(t) is defined in Equation 3.11
to denote a probability distribution for the duration of a transition from state vi
to state vj . Then the transition probability gij(t) in a SMM can be defined by pij
and dij(t) in Equation 3.12. A SMM process starts from an initial state S0 = v0,
then transits from the current state Si = vi to state Si+1 = vi+1 based on the

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 52

transition matrix Ψ
′ and time duration matrix T ; the process (Ω,Ψ

′
, T) can be

expressed by Equation 3.13.

dij(t) = P (T < t|Si = vi, Si+1 = vj) (3.11)

gij(t) = pijdij(t) (3.12)

Ψ
′
(Si+1|S0, · · · , Si) = Ψ

′
(Si+1|Si) = Ψ

′
(vi+1|vi) = gi,i+1 (3.13)

Bayesian classifier

Classifiers are always trained by pairwise data sets represented as< data, label >

to identify the category of a target data, and the prediction is a supervised learn-
ing process. As an example, failure prediction can be achieved via classifying
system variables directly as failure-prone or normal. For learning purposes, the
training data set must be labeled with expert knowledge or experience. Bayesian
classifiers, which are based on a joint probability model, have been exploited for
failure prediction in [43].

Rule-based models

Rule-based approaches combine rule mining and classification techniques to
capture rules (failure patterns) during which target events (failures) are preceded
by conditions [90, 112]. These rules directly express the dependencies between
conditions and failures, and the conditions here denote events that frequently
precede a failure. More specifically, the condition of a unique failure type is not
a single event, and may contain a sequence of events. Formalizing these con-
ditions has a core role in prediction, during which the strategy contains three
main steps: the first step is to identify event types that frequently precede target
events within a fixed window; the second step is to validate that these event types
uniquely characterize target events; and the final step is to combine the validated
event types to set up a rule-based system for prediction. Vilalta et al. study a
rule-based failure prediction mechanism on the IBM BlueGene/L data in [108].

Instance-based methods

Instance-based methods have been successfully used in large-scale distributed

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 53

computing platforms to model host or CPU availability [52]; these methods
also work for problems with statistical properties, such as failure occurrence
frequency, event space features and event time features.

The approach in [50] is an example of using statistical methods for hardware
failure prediction. Javadi et al. [52] model the CPU availability in a large-scale
distributed system (SETI@home [3]) using statistical methods: CPU traces from
around 230,000 computers have been collected and nearly 51% of the traces
are found to follow a Gamma distribution. In the case of software failures, a
statistics-based method is presented in [35]. In terms of local data collection, a
framework based on the Simple Network Management Protocol (SNMP) is built
up, and an agent tree module is designed. Robust locally weighted regression
[19] and the seasonal Kendall test [37] are used to smooth the observed data for
trend detection and estimation.

3.2.2 Failure prediction for the IBM BlueGene/L

The IBM BlueGene/L, which is one of the world’s top ten fastest supercomputers, is
known for its powerful computing capability, high degree of parallelism, self-healing
design and high availability. Furthermore, several aspects have been considered in the
infrastructure to improve system reliability, these include hardware redundancy, net-
work fault tolerant control, system monitoring strategy, etc. However, the increasing
number of CPU cores has a significant influence on system reliability, and fault tol-
erance problems are increasingly becoming a bottleneck in such systems. Apart from
the existing fault tolerance mechanisms designed in the multiple hardware layers, re-
liability can also be improved on the software side. Several mechanisms have been
applied to RAS logs from the IBM BlueGene/L to predict future failure occurrence.
From the experiments and results that have been published, it can be easily concluded
that these proactive strategies can significantly reduce system maintenance cost and
improve system availability.

Table 3.2 summarises the RAS log based failure prediction approaches conducted
for the IBM BlueGene/L during the past 10 years, in which diverse techniques have
been applied: rule-based techniques, statistics-oriented prediction and mixed predic-
tion frameworks. The corresponding approaches are described in detail below.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 54

Approach Technique Year
Eventset Rule-based prediction 2002
Nearest neighbour predictor Instance-based prediction 2007
Meta-learning based predictor Mixed techniques 2008

Table 3.2: Failure prediction approaches for the IBM BlueGene/L.

time
e1 e2 en... ...Fi

td

Failure window

e1 e2 em...
td

Failure window

Fi

Figure 3.3: The failure window for the Eventset mechanism.

Eventset approach

The Eventset approach (reported in [108]) to forecast failures in the IBM BlueGene/L
uses a rule-based method. An event sequence is denoted as s =< d1, d2, · · · , dn >
where di = (ei, ti); and failures are expressed as target events etarget. Figure 3.3 shows
a failure window to depict the event sequence sdi in a fixed time length td preceding
failure event Fi. More specifically, the Eventset approach attempts to identify a series
of event sequences {sdi} that can capture as many failures as possible, and misidentify
as few normal events as failures as possible.

The approach assumes that both events and failure window event sequences are
from a finite space. Three steps are included in the mechanism, described below:

• Frequent event sequence identification: the first step is to find all the frequent
failure window sequences sdi for each failure Fi. In order to remove rare se-
quences srare in the sequence space of SFi

of failure Fi, support of each sequence
sdi has been defined as shown in Equation 3.14, and sequences with support be-
low a threshold will be removed from the space.

support(sdi) =
number of sdi in SFi

total number of sequences in SFi

(3.14)

• Confident event sequence identification: once the frequent event sequences are
available, there remains a risk that may reduce prediction accuracy. For example,
if sequence sd0 occurs ten times in the whole sequence space SF for all failures,
one occurrence causes failure F0, and the other nine sequences lead to failure

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 55

F1, it is easy to conclude that the probability of having failure F1 is 90% once
sd0 occurs. In the sequence space SF0 of failure F0, sequence sd0 needs to be
removed. For this purpose, the confidence associated with sequence sdi is as de-
fined in Equation 3.15, and sequences with a confidence smaller than a threshold
will be deleted.

confidence(sdi) =
number of sdi in SFi

total number of sdi in the whole space
(3.15)

• Rule building: in the remaining sequence space SFi
of failure Fi, after the

above processes, there may be redundant sequences. For example, let SF0 =

{sd0, sd1, sd2, sd3}; if sd0 ∈ sd1 and sd3 ∈ sd2, then sd0 and sd3 are redundant se-
quences that need to be removed. This task is termed the rule building process.

Nearest neighbour predictor

Liang et al. [65, 68, 115] present a customized nearest neighbour approach, a statisti-
cal method, for failure prediction in the IBM BlueGene/L, and achieve higher precision
compared to two other classifiers: RIPPER and Support Vector Machine (SVM). Fig-
ure 3.4 presents the methodology of the nearest neighbour predictor, which forecasts
fatal event occurrence in a future window of duration td. The historical events in an-
other two windows are evaluated: the current window, defined as the window with
duration td preceding the prediction window; and the observation window, which de-
notes the window with a duration 4 ∗ td preceding the prediction window.

Several features need to be processed before prediction:

• Identify the event occurrence numbers according to different severity levels in
the current window. The events are classified into 6 categories: INFO, WARN-

ING, SEVERE, FATAL, ERROR and FAILURE.

• Count various event occurrences in an observation window based on these sever-
ity levels.

• Generate the distribution of different event categories over the observation win-
dow. The whole observation period (4 ∗ td) is divided into n uniform time in-
tervals and each short time interval has a duration of 4∗td

n
. Then count the event

occurrences in every time interval.

• Calculate the value of MTBF (see the definition in Section 1.1.1).

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 56

Observation Window: 4*td

td tdtd td td

Prediction
Window

Current
Window

Time

Figure 3.4: Demonstration of nearest neighbour failure predictor.

• Count the occurrence of keywords in the current window.

For the purpose of feature preprocessing, the numerical feature values need to be
normalized as shown in Equation 3.16. Another parameter, the “Significance Major”
SIM(V), is defined in Equation 3.17.

Normalized value v
′
=

feature value−mean value
standard deviation of the feature value

(3.16)

SIM(V) =

∣∣∣∣mean of failure feature−mean of non-failure feature
standard deviation of the feature value

∣∣∣∣ (3.17)

The failure prediction is conducted as follows: the whole feature data is divided
into three parts, termed anchor data, training data and testing data. Anchor data is
used to calculate the failure event intervals and normalized feature values; the nearest
failure feature distances can then be computed between the training data and the anchor
data; and the identified failure distances can be applied to forecast failures in the testing
data.

Meta-learning based failure prediction

Lan et al. [39, 41, 62] present a dynamic meta-learning framework for failure predic-
tion that combines the benefits of multiple prediction techniques, such as statistics-
based methods and association rules. Another key element is that a dynamic approach
is embedded in the framework to capture failure patterns while forecasting, and pre-
diction rules are revised and added to the knowledge repository so that the accuracy
can be gradually improved.

Figure 3.5 shows the framework with four main components. The first component
does the task of data preprocessing. The analysis in [39, 41, 62] shows that, in the
raw log files from the IBM BlueGene/L, large numbers of the same events, which are

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 57

Raw data

Data preprocess

Meta-learner

Knowledge
repository Reviser

Predictor

Figure 3.5: The dynamic meta-learning framework for failure prediction.

caused by a single error, are recorded in a short time interval. Much redundant in-
formation, such as numbers, hardware addresses, operators, etc., is recorded in each
item. This noisy data must be removed before analysis and preprocessing can gen-
erate clean logs for meta-learning. Multiple prediction techniques are involved for
training, and learned rules are stored in a knowledge repository. The next component,
termed “predictor”, does real-time failure forecasting according to the rules stored in
the knowledge repository. The last key component, termed “reviser”, monitors the sys-
tem actively and does online evaluation of prediction results, so that it can check each
rule in the repository, keep the most effective ones and revise or discard less effective
ones.

Discussion

The above three published failure prediction approaches were designed for the IBM
BlueGene/L platform and they applied mainly statistical or rule-based techniques which
means that only straightforward dependencies between normal events and failure events
were used for failure prediction; long dependencies and internal dependencies among
events were not considered. Conditional Random Field models (CRFs) can express
arbitrary relationships in events and these models are used for failure prediction in this
thesis. Some related work is introduced in the following section.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 58

3.3 CRF model for failure prediction

Conditional Random Fields (CRFs) were introduced by Lafferty et al. in 2001 [60] and
have been used successfully for pattern recognition and hidden relationship mining,
such as applications in natural language processing and image processing. Compared
to other models, such as the Hidden Markov Model (HMM), the Maximum Entropy
Model (ME) and the Bayesian Model, an important aspect about CRFs is that they
relax the independence assumptions on observations, and they have the capability to
describe arbitrary relationships, which exactly complies with the demands for relation-
ship mining in the RAS logs, in which the records may have various kinds of depen-
dencies. CRFs also overcome the label bias problems in Maxent [70] because they are
probabilistic models based on conditional distributions and the state sequence is opti-
mised over the entire observation sequence. Because of these reasons, CRFs have been
chosen as the learning model here and they are applied in the area of failure prediction
for what is believed to be the first time. Standard CRFs describe a discrete state-space,
but failure patterns, represented as event sequences in the RAS logs, are events over
continuous time. In order to make the model explicitly express such a scenario, an ex-
tension has been made to the standard CRF model to support continuous time, leading
to the semi-Markov CRF Model, which is applied in this thesis.

Section 3.3.1 introduces the standard CRF model and the semi-Markov CRF model.
Some applications of CRFs in different areas are then provided in Section 3.3.2. In
Section 3.3.3, an overview of the probability framework is given, and probability mod-
els are classified into two categories: generative models and discriminative models. In
order to differentiate various models, a comparison in terms of independence assump-
tions inside each model is performed.

3.3.1 Model introduction

CRF model

A CRF can be viewed as an undirected graphical model G = (V,E), during which
the states S are globally conditioned on O, the observation sequences, where V =

S ∪ O, and each random variable vi ∈ V either represents a state Si or an obser-
vation Oi. Define O∗ = {O1, O2, · · · , On} as the whole observation sequence and
S∗ = {S0, S1, · · · , Sn} as the corresponding state sequence in general; for a spe-
cific observation sequence and the corresponding state sequence, they are defined as

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 59

Si-1 Si

O*

Si+1... ...
States

Observations

Figure 3.6: Chain-structured CRFs.

O(i) = {O(i)
1 , O

(i)
2 , · · · , O(i)

n } and S(i) = {S(i)
0 , · · · , S(i)

n }.2 G is a bipartite graph,
whose vertex space V can be divided into two parts S and O. Each state sequence,
S(i), is globally conditioned on the observation sequence O(i). If the states S follow
the Markov property, G is called a CRF model. Theoretically speaking, the struc-
ture of graph G may be arbitrary if it represents the conditional dependencies among
states. However, in most real world problems, the states form a chain structure and the
corresponding CRF model is called a chain-structured CRF model (shown in Figure
3.6).

According to the introduction in [60], two real-valued sets of functions are neces-
sary to specify dependencies among global observations and correlation among differ-
ent states:

• {Hm(Si, O∗)}Mm=1, real-valued state feature functions to demonstrate dependen-
cies between the entire observation O∗ and state Si.

• {Gn(Si, Sj, O∗)}Nn=1, transition feature functions of the entire observation se-
quence O∗, the state Si at position i and state Sj at position j.

The CRF model can be defined as Φ(H,G) on variables O and S, then the predic-
tion result P (S|O; Φ) is shown in Equation 3.18, where Z(O) is a global normalization
factor, and βm and µn are parameters that need to be estimated from training data.

P (S|O; Φ) =
1

Z(O)
exp

(∑
i

M∑
m=1

βmHm(Si, O) +
∑
i,j

N∑
n=1

µnGn(Si, Sj, O)

)
(3.18)

Equations 3.19 and 3.20 show the Markov property of chain-structured CRFs.
If feature functions H and G are combined into a single set of feature functions

2In this thesis, O and S are used to represent the whole sequence of observation and state, respec-
tively, for simplification.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 60

ri

Observation (O)

...

Arbitrary length

...

Arbitrary length

...

Arbitrary length

O*

ri+1ri-1

Figure 3.7: Semi-Markov CRF model.

{Fk(Si, Si−1, O∗)}Kk=1, then Fk is either a state function or a transition function. The
probability of the prediction result P (S|O; Φ) over the whole observation sequence
can be written as Equation 3.21, Equation 3.22 shows the global normalization factor.

Hm(Si, O) = Hm(Si, Si−1, O) (3.19)

Gn(Si, Sj, O) = Gn(Si, Si−1, O) (3.20)

P (S|O; Φ) =
1

Z(O)
exp

(∑
i

K∑
k=1

λkFk(Si, Si−1, O)

)
(3.21)

Z(O) =
∑
S

exp

(∑
i

K∑
k=1

λkFk(Si, Si−1, O)

)
(3.22)

Semi-Markov CRFs

Traditional CRFs can only model discrete events or messages; they do not work well
for continuous situations, which means they cannot analyze the time duration for which
each state persists. Given that most real-world problems are best represented in terms
of continuous features, this representation issue is a fundamental problem with CRFs.
Clearly, a model that supports this feature is necessary and it must have a correspond-
ing data representation. One way to satisfy the continuous time demand is to use a
continuous segmentation rj = (sj, ej, Sj) over an arbitrary length of input sequences
from start position sj to end position ej , rather than a normal segmentation over a unit
length of input.

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 61

Semi Conditional Random Fields (Semi-CRFs) are a formalism to extend tradi-
tional CRFs with a continuous nature introduced recently by Sarawagi and Cohen
[94], as shown in Figure 3.7. In a semi-CRF, R = {r1, r2, · · · , rn} denotes all the
prediction results, where each ri represents a single result over an arbitrary length of
observation Oei

si
. The real-valued feature functions F = {F1, F2, · · · , FK} map the

triple (i, R,O) to a measurement. According to the new segmentation representation,
the feature functions can be written as Equation 3.23.

Fk(i, R,O) = F
′

k(Si, O, si, ei) (3.23)

In real world problems, most failures have life cycles and a system will not be
affected by a problem that occurred a long time ago, which means that long-range
dependency is not appropriate for this scenario and the current state is only dependent
on the previous state. With consideration of the Markov property, the feature function
Fk can be rewritten as Equation 3.24.

Fk(i, R,O) = F
′

k(Si, Si−1, O, si, ei) (3.24)

The resulting Semi-Markov CRF is shown in Equation 3.25, and this is the model
that is applied later in the thesis.

P (R|O; Φ) =
1

Z(O)
exp

(∑
i

K∑
k=1

λkFk(ri, O)

)

=
1

Z(O)
exp

(∑
i

K∑
k=1

λkFk(Si, O, si, ei)

)

=
1

Z(O)
exp

(∑
i

K∑
k=1

λkF
′

k(Si, Si−1, O, si, ei)

)
(3.25)

3.3.2 Applications of CRFs

Various forms of CRFs, such as general CRF, semi-Markov CRF and Hidden CRF,
have been successfully applied in a variety of domains, including gene prediction,
natural language processing, image processing, bioinformatics, global ranking, and

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 62

others. Different applications are briefly presented in this section.

Gene prediction

In gene prediction, CRFs have been shown to outperform HMMs in most cases. Matthew
et al. use a semi-Markov CRF for gene prediction and compare the results with a gen-
eralized HMM on the same data set; the semi-Markov CRF is found to outperform the
HMM in cross-validation of two different gene structures [23]. Similar work has been
done to identify genes and proteins in biological texts using a general CRF because
of its capability of naturally incorporating arbitrary, non-independent features of the
input without making extra assumptions [22, 53].

Natural language processing

A traditional CRF used for Chinese word segmentation achieved the highest F measure
in four tracks of an international competition [116]. For the problem of Chinese lexical
analysis, a Hidden semi-CRF has been applied to further improve prediction accuracy
[101]. A similar experiment has been conducted using a semi-CRF in [94, 79]. In
another framework, designed for sentence boundary detection, a CRF achieves a lower
error rate when compared with a HMM and Maxent [70].

Image processing

CRFs have also been widely applied in image processing. A successful case has been
to match laser scans generated by car navigating equipment, by considering arbitrary
shape and appearance features [86]. In [109], Hidden CRFs are used for gesture se-
quence recognition, as they relax the limitations of conditional independency among
observations in HMMs.

Others

There are many other applications using CRFs, such as the global ranking problem in
information retrieval [84], phone classification [42], and object recognition [85].

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 63

3.3.3 Analysis and comparison

Section 3.2 presented the main techniques used for failure prediction in various do-
mains. The techniques can be classified into two categories: generative models, in-
cluding naive Bayes and the HMM model, and discriminative models, including logis-
tic regression and the CRF model.

Generative models are based on a joint distribution P (S,O) while discriminative
models are based on a conditional distribution P (S|O), which can be used to predict
S from O, where O and S are both random variables. In order to define a P (S,O), the
distribution P (O) must be identified by enumerating all possible observations on O.
However, it is difficult to model P (O) for most real-world problems. The first difficulty
comes from the fact that it is impossible to observe all possible O or values of O, and
only an approximate distribution P (O) can be established. Secondly, the observations
often contain highly dependent features which mean that the observation value in any
given instance may only directly depend on state S at that time. More precisely, most
real-world problems are best represented in terms of complex dependencies.

CRFs are a probabilistic framework for predicting states over a series of observa-
tions. Apart from the differences described above, the comparison with other models
can be conducted in terms of various assumptions on dependencies (presented in Table
3.3). The Naive Bayes classifier is a basic generative model, in which both states S
and observations O are assumed to be independent. One step further than the Bayes
classifier, logistic regression assumes that the logarithm function of each state over the
whole observation logP (Si|O) is a linear function of O, which will maximize the dis-
tribution of each state Si over the whole sequence O. In the case of the HMM model,
as stated in Equation 3.10, two dependency assumptions can be derived that the states
S follow the Markov property, and the observations O depend only on the correspond-
ing states. However, there is a mismatch problem in a HMM between the learning
objective function and the prediction objective function; a HMM learns a joint distri-
bution P (S,O), whereas a conditioned distribution P (S|O) is used in the prediction
task. Furthermore, the training of a HMM requires more computation due to the mis-
match between learning and prediction, and the target conditional distribution is not
maximized. The Maximum Entropy Markov Model (MEMM) [74], an enhancement
to HMM, explicitly models dependency between each state and the full observation
and saves the effort of modelling P (x). However, a label bias problem will arise in
some instances, which can be addressed by the CRF model because of the application
of a global normaliser Z(O); thus CRFs should model data like RAS logs from the

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 64

IBM BlueGene/L more accurately and improve prediction precision.

Category Model Assumptions

Generative Naive Bayes
S is independent
O is independent

HMM
O is independent
S depends only on neighbour states
O depends only on corresponding S

Discriminative Logistic regression
S is independent
S depends on entire O
Global normaliser Z is used

MEMM
S depends only on neighbour states
S depends on entire O

Chain-structured CRF
S depends only on neighbour states
S depends on entire O
Global normaliser Z is used

Table 3.3: Comparison between different probability models.

3.4 Summary

This chapter has defined the problem of real-time failure prediction in terms of different
time windows, provided a survey of failure prediction methods for large-scale comput-
ing systems, and introduced taxonomies based on two different aspects: methodology
and algorithm. Three different existing failure prediction approaches conducted on the
IBM BlueGene/L have been described in detail: eventset approach, nearest neighbour
predictor and meta-learning based predictor.

The chapter has also introduced the CRF model that is used for prediction in this
thesis. Based on the overview of probability frameworks, which can be grouped into
generative and discriminative models, the main advantages of CRFs over other models,
such as Bayesian classifier, logistic regression, HMM, MEMM, have been outlined:
the independency assumption among observations is relaxed and the model is based on
a conditional probability distribution. In order to support continuous time, the extended
form — Semi-Markov CRFs — are used later in this thesis.

Contributions of this chapter

This chapter introduces the problem of failure prediction and a comparison among dif-
ferent probability models is performed in terms of various independency assumptions

CHAPTER 3. FAILURE PREDICTION METHODS REVIEW 65

for the first time. Secondly, the CRF model is considered for handling the failure pre-
diction problem, and an extension, Semi-Markov CRF, is used to improve prediction
accuracy. This appears to be the first application of both CRF and Semi-Markov CRF
in the area of real-time failure prediction.

Relation to other chapters

Chapter 2 covers related theoretical work in proactive failure management. An overview
of the prediction approach is also presented in this chapter, and the detailed prediction
mechanism, including preprocessing and prediction algorithm design, is described in
Chapter 5. More specifically, the introduction of related work and the CRF model
in this chapter is the theoretical foundation of the prediction mechanism presented in
Chapter 5.

Chapter 4

Proactive failure recovery mechanism

The main idea of a proactive failure recovery mechanism is that a real-time prediction
of failure occurrence is used to help construct checkpoints at appropriate times, so that
wasted computational time can be significantly reduced. This chapter systematically
addresses the area of failure management and identifies several components within
the process, including failure detection and failure recovery. In Section 4.1, the over-
all framework is presented in order to demonstrate how the failure detection module
interacts with the prediction-based failure recovery module, which is the core compo-
nent of the framework. Section 4.2 further discusses the prediction-based checkpoint
model and identifies four different scenarios in which failure prediction can influence
checkpoint placement. Section 4.3 summarises the chapter.

4.1 Proactive failure recovery

The two fundamental issues in a failure management framework are failure detection

and failure recovery. Failure detection monitors and identifies system misbehaviours
and failure recovery adopts appropriate approaches to handle these misbehaviours.
Following an introduction in Section 4.1.1, this section introduces basic failure recov-
ery approaches and presents a comparison in Section 4.1.2. Following this, the archi-
tecture and the main components, including the prediction-based checkpoint module
and the failure detection module, are described in Section 4.1.3. Finally, the overall
failure recovery mechanism is discussed in Section 4.1.4.

66

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 67

4.1.1 Introduction

Fault tolerant system behaviour is increasingly important in supercomputing. As de-
scribed in Chapter 2, there exist many fault tolerant approaches. A traditional way of
achieving fault tolerance is checkpointing; a dump of the system state is taken at fixed
intervals and, if a failure is detected during execution, the latest dump is reinstated
and the computation restarted from that point. Under certain assumptions, the overall
resulting run-time of each job is given by Equation 2.2, and the overhead compared
with an error-free job running is given by Equation 4.1.

Overhead =
F

tc
(ts + (tr +

1

λ
)(eλtc − 1))− F (4.1)

Minimising the associated overhead is as important as achieving reliable behaviour.
A possible means of decreasing the overhead is to add a failure prediction mechanism
that activates the dump “just-in-time” before a predicted failure. Such prediction usu-
ally entails some form of machine learning being applied to data produced by the sys-
tem during run-time. This can be done combined with the periodic dump. The overall
resulting run-time (and overhead) for each job now depends on the accuracy (precision
and recall) of the prediction mechanism (details are given in Section 4.2).

4.1.2 Traditional failure recovery approach

Failure recovery is a core issue in fault tolerance, especially in a supercomputer envi-
ronment which runs large-scale complex computational tasks of strategic importance.
As discussed in Chapter 2, there are four fundamental categories of failure recovery
approaches: Retry, Alternation, Checkpoint and Replication, which are appropriate in
various situations. Thus for our target platform—the IBM BlueGene/L, a straightfor-
ward question arises:

Which failure recovery approach (or approaches) is the most appropriate?

In order to answer this question, for each recovery approach, two dimensions are
considered: computational resource usage and application execution time. The op-
timum approach should complete the application in the shortest time using the least
computational resource. However, each recovery approach has its advantages and dis-
advantages. For example, alternation can easily overcome hardware failures. Further-
more, various applications have different requirements, such as time synchronization
systems that require some modules to complete their tasks simultaneously. Due to

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 68

0 5 10 15 20 25
0

5

10

15

20

25

30

35

40

45

50

Failure free running time (Min.)

E
xp

ec
te

d
ex

ec
ut

io
n

tim
e

(M
in

.)

Retry
Checkpoint

Failure rate λ = 0.1
Checkpoint interval tc = 3 Min.
Checkpoint overhead ts = 0.5 Min.
Down time tr = 1 Min.

Figure 4.1: Result of expected execution time from Equations 2.2 and 2.1.

the characteristics of different recovery approaches and the varying requirements of
applications, it is impossible to conduct a comparison that adequately addresses all
cases. For the IBM BlueGene/L, in order to assess the performance of different recov-
ery approaches, the following assumptions are made with regard to the most common
scenarios:

1. Synchronized applications are not included in the comparison.

2. Computational resource usage is considered prior to application execution time
because the resources are costly for supercomputers.

3. Permanent hardware failures are not taken into account.

By definition, replication makes several runs of a single task which implies sig-
nificant waste of computational resources, while alternation requires more available
resources but yields approximately the same completion time as retry assuming ho-
mogeneity. For checkpoint and retry, analytic expressions for the expected application
execution time are shown in Equation 2.2 (page 37) and Equation 2.1 (page 37), re-
spectively. Figure 4.1 illustrates the effect of these formulae on expected execution
times using selected parameters under the retry and checkpoint failure recovery ap-
proaches for tasks of different size. It can be seen that short-running tasks favour use
of retry, while long-running tasks benefit from use of checkpoint. In the middle ground,
there is a crossover point, at which the balance of favour shifts from one scheme to the
other. The value of execution time at the crossover is less than 10 minutes, given the

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 69

Checkpoint module

Failure detection

Failure recovery

Failure prediction

Prediction based checkpoint

Figure 4.2: The architecture of the proposed failure recovery mechanism.

prevailing failure rate and parameters for the recovery schemes. For the IBM Blue-
Gene/L, which is designed for large-scale applications, most executions last for days.
Evidently, checkpoint is the most appropriate failure recovery approach here.

4.1.3 Proactive failure recovery mechanism

Figure 2.2 on page 30 shows the general failure management framework and itemises
several fundamental components, some of which are essential, such as failure detection
and failure recovery. In the proactive failure recovery mechanism for the IBM Blue-
Gene/L, a failure prediction module is integrated into the framework to offer better
fault tolerance, as shown in Figure 4.2. Three modules are involved in the framework:
a prediction-based checkpoint module, a failure detection module and a failure recov-
ery module.

The most common reactive checkpoint approach for supercomputers is described
in [13, 71, 83] and the main idea can be summarized as follows:

For a particular platform, analyse the output logs and identify the failure
distribution that gives the best overall fit among the data, from which an
optimal checkpoint interval value tc−opt can be calculated. Then the estab-
lished checkpoint model with this static interval value will be applied in
the real-world platform.

Figure 4.3 demonstrates the above checkpoint approach. When a failure occurs, the
last good checkpoint will be restored, and the computation between the restore point
and the failure occurrence will essentially be discarded. In the proactive mechanism,
a further improvement is made to the approach in that a failure prediction module is

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 70

Start

Time
......

Failure

FinishExecution time

tc-opt

Restore point

tc-opt

Figure 4.3: The most common checkpoint approach without failure prediction.

Start

Time
......

Failure

FinishExecution time

tc-opt

Restore point

Extra checkpoint

Figure 4.4: The proposed checkpoint approach with failure prediction.

integrated to reduce wasted computing, as presented in Figure 4.4. Once a failure
is predicted, an extra checkpoint will be generated just before the predicted failure
occurrence thus, ideally, significantly reducing wasted computation. The details of
this approach will be discussed in Section 4.2.

Failure detection is a fundamental service that checks the system status periodi-
cally and locates failure occurrences. According to the way that detectors monitor and
interact with components, there are two failure detection models, as shown in Figure
4.5, namely the push and the pull models [26].

In the push model, the component periodically sends heartbeat messages to the
detector hence evidencing its healthy status; on the detector side, once the message is
received, a timeout threshold is set that triggers a suspicion of failure if the next receipt
of a live message from the same component occurs after this threshold. However,
if there are a large number of components in the system sending heartbeat messages
simultaneously, the potential for network congestion needs to be handled. In contrast,
in the pull model, the detectors are active while the components are passive. The
detector sends periodic live requests to the component and, in response, the component
should send a reply to the detector. If the detector does not receive a reply before the
end of a timeout threshold period, the component is suspected of having failed. The
pull model can reduce the network load to a certain degree, depending on the number
of request messages sent by the detector. The pull model is adopted in the framework
for failure detection.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 71

I am alive I am alive I am alive

Timeout
Suspect P

Detector

Component: P

Failure

Yes

Are you
alive?

Timeout
Suspect P

Detector

Component: P

Failure

Yes

Are you
alive?

Are you
alive?

Push Model Pull Model

Figure 4.5: Two failure detection models: push and pull.

4.1.4 Summary

The proactive failure recovery mechanism implemented for supercomputers like the
IBM BlueGene/L adapts a checkpoint approach by integrating a failure prediction
module, because a checkpoint approach can efficiently offer fault tolerance capabil-
ity while retaining past useful work.

The choice of an appropriate checkpoint interval is a core issue in the design of a
checkpoint mechanism: too short an interval for generating checkpoints may cost the
system much computational time; in contrast, too large an interval may result in a sig-
nificant waste of useful computation. More specifically, the interval selection is closely
related to the failure distribution; the lower the failure rate, the longer the interval, and
vice versa. In terms of supercomputers, especially for a particular platform, a common
way of choosing the optimum checkpoint interval is to fit the system historical failure
data using a popular distribution model. However, the commonly used distributions
can only capture and characterise the dynamism within the failure data to a certain
degree due to the uncertainty of the failure occurrence. Furthermore, platforms differ
one from another, and they have distinct failure distributions. Evidently, two problems
may arise for the traditional coordinated checkpoint mechanisms:

1. The chosen distribution model can only approximately express the failure occur-
rence in real-world systems.

2. The optimum checkpoint interval varies from system to system which would
require a pre-analysis of failure characteristics before the checkpoint mechanism
is established.

Thus a prediction-based checkpoint mechanism is derived to offer better fault tol-
erance. The optimum checkpoint interval produced from the pre-analysis is adopted to
generate checkpoints periodically. For improvement, a real-time prediction of future

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 72

failure occurrence is conducted, and extra checkpoints will be made once failures are
predicted. The system can then restore from the latest valid checkpoint once failures
occur. This way, wasted computation can be further reduced. However, to what degree
the prediction model will help improve the efficiency of the checkpoint mechanism de-
pends mostly on the accuracy of forecasting. Relatively low prediction accuracy will
lead to a consequent generation of a relatively large number of extra checkpoints, and
thus incur even more computational waste. As a consequence, determination of what
is an acceptable level of accuracy becomes a core issue, as will be discussed in the next
section.

4.2 Prediction-based checkpoint model

The checkpoint mechanism proposed here is different to others in that a failure predic-
tion module is integrated with the original coordinated checkpoint approach and the
checkpoint placement takes advantage of the prediction results. Section 4.2.1 intro-
duces the original checkpoint mechanism and demonstrates how a failure prediction
module can influence checkpoint placement in terms of four distinct scenarios. An
analysis of the mechanism in terms of time penalties is given in Section 4.2.2.

4.2.1 The coordinated checkpoint model

The growing requirements of complicated applications in industry and research de-
mand powerful computational capability, which in turn has driven the development of
highly parallel supercomputers, such as the IBM BlueGene/L. The resulting paral-
lelism in execution, which may require cooperation between thousands of processors,
is widely accepted as an important method to meet these requirements. For fault tol-
erance purposes, coordinated checkpoint methods, which require that all processes
coordinate with each other during checkpointing to capture the global state in a consis-
tent manner, are adopted in such systems. When failures occur, each processor will be
restored from the last checkpoint. As there are no time differences for each individual
processor when generating checkpoints in a coordinated checkpoint mechanism, all
processes can be regarded as a single process for simplicity.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 73

Start

Time
......

FinishExecution time

tc-optts

C1 C2 CK-1 CK

Figure 4.6: An execution with K checkpoints in the absence of failures.

ts

Start

Time
......

ith Failuretc-opt

tb

Recover
tr

Finish

C1 C2 CK-1 CK

Execution time

tc-opt

Figure 4.7: An execution with K checkpoints in the presence of failures.

Execution without failures

Given availability of the historical failure logs of a system, the optimum checkpoint
interval tc−opt can be worked out via a series of analyses, and an execution with K
checkpoints in the absence of failures can be expressed by Figure 4.6, where check-
points are represented as Ci (1 ≤ i ≤ K).

If the time taken to generate each checkpoint is assumed to be constant, then the
overall computational time wasted due to the construction of K checkpoints IK can be
calculated by Equation 4.2.

IK = K ∗ ts (4.2)

Execution with failures

If there are N failures during execution, the occurrence of each failure will lead to a
further two segments of wasted time: tb, which denotes the wasted computational time
from the current point back to the last checkpoint, from which repeated computation
is necessary, and tr, the time used to restore from the last checkpoint, as shown in
Figure 4.7. It is assumed that the time to restore from a checkpoint is constant and,
if tbi (1 ≤ i ≤ N) represents the wasted computational time during the ith failure,
then the overall wasted time WN can be expressed as shown in Equation 4.3. If tb is
assumed to be the mean value of tbi (1 ≤ i ≤ N), then Equation 4.3 translates to
Equation 4.4.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 74

Start

Time
......

Failure

FinishExecution time

tc-opt
Extra checkpointts

C1 C2 CK-1 CK

Recover
trtb'

Figure 4.8: An execution using prediction-based checkpoint.

WN = IK +
N∑
i=1

tbi +N ∗ tr (4.3)

WN = IK +N ∗ tb +N ∗ tr (4.4)

Checkpoint with prediction

Figure 4.8 demonstrates the proposed checkpoint mechanism integrating a failure pre-
diction module by which a future failure occurrence can be forecast and an extra check-
point will be constructed just before a correctly predicted failure occurrence. Similarly
to the standard checkpoint mechanism, there are also two time penalties when a correct
prediction is made: t′b describes the time cost between the failure occurrence point and
the extra checkpoint, and tr denotes the cost for recovery from the checkpoint.

Compared with the checkpoint mechanism presented in Figure 4.7, the proposed
mechanism will reduce the wasted computational time from tb to t′b when a prediction
proves to be accurate. However, extra time penalties will be incurred in the case of an
inaccurate prediction. More specifically, there are four prediction scenarios, as shown
in Figure 4.9:

• True positive, denotes an accurate prediction of failure. There are three com-
ponents of wasted time: t′b, tr and ts (the time used for the construction of a
checkpoint).

• False negative, denotes an inaccurate prediction of failure. Two extra costs have
been considered in this case: tb and tr.

• True negative, denotes an accurate prediction of normal behaviour, where no
extra cost has been added to the overall execution time (other than the overhead
of monitoring and prediction but this can be ameliorated by accurate prediction
and recovery).

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 75

......

NormalDo nothing

CK-1 CK

......

(c) true negative

......

NormalExtra checkpoint

CK-1 CK

......

(d) false positive

......

FailureExtra checkpoint

CK-1 CK

Recover
trtb'

(a) true positive

......

FailureDo nothing

CK-1 CK

Recover
trtb

(b) false negative

Figure 4.9: Four scenarios in a prediction-based checkpoint mechanism. Figure 4.9(a)
describes an accurate prediction when one failure occurs, and an extra checkpoint will
be made; Figure 4.9(b) shows an inaccurate prediction when a real failure occurs,
and the system does nothing; Figure 4.9(c) presents an accurate prediction of normal
behaviour; Figure 4.9(d) expresses the situation of normal behaviour when a failure is
forecast and hence an extra checkpoint is constructed.

• False positive, denotes an inaccurate prediction of normal behaviour, where an
extra checkpoint will be constructed leading to an extra time cost of ts.

As presented in Table 4.1, each prediction is assigned to one of the four cases and
the prediction accuracy depends on the number of occurrences of each case.

Prediction results
Failure Non-failure

True failure True Positive (TP) False Negative (FN)
True non-failure False Positive (FP) True Negative (TN)

Table 4.1: Confusion matrix.

If the precision1 P and the recall2 R of the failure prediction module, the total
number of failuresN are represented by Equations 4.5, 4.6 and 4.7, respectively, where
NTP represents the total number of true positives, NFP denotes the total number of
false positives, while NFN is the total number of false negatives. Thus NTP , NFP and
NFN can be represented by P , R and N in Equations 4.8, 4.9 and 4.10, respectively.

1Precision gives the ratio of correctly identified failures compared with the total number of failure
predictions

2Recall defines the ratio of correctly predicted failures compared with the total number of failures.
The detailed content is further discussed in Chapter 6

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 76

P =
NTP

NTP +NFP

(4.5)

R =
NTP

NTP +NFN

(4.6)

N = NTP +NFN (4.7)

NTP = N ∗R (4.8)

NFP = (
1

P
− 1) ∗N ∗R (4.9)

NFN = N ∗ (1−R) (4.10)

For each scenario, the occurrence numbers and the corresponding time penalty
can be expressed analytically as shown in Table 4.2, where NTN denotes an accurate
prediction of normal behaviour. Thus the overall wasted computational time W ′

N can
be expressed as shown in Equation 4.11.

W
′

N = IK + (ts + t
′

b + tr) ∗NTP + (tb + tr) ∗NFN + 0 ∗NTN

+ts ∗NFP

= WN + (ts/P + t
′

b − tb) ∗N ∗R (4.11)

Scenarios Case numbers Time penalty per case Overall wasted time

(a) NTP ts + t
′

b + tr (ts + t
′

b + tr) ∗NTP

(b) NFN tb + tr (tb + tr) ∗NFN

(c) NTN 0 0
(d) NFP ts ts ∗NFP

Table 4.2: Case number and time penalty of different prediction scenarios, where (a),
(b), (c) and (d) represent the scenario of an accurate prediction of failure, an inaccurate
prediction of failure, an accurate prediction of normal behaviour, and an inaccurate
prediction of normal behaviour, respectively.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 77

4.2.2 Overhead analysis

The proposed checkpoint mechanism differs from the original checkpoint mechanism
in terms of when to construct checkpoints according to the four scenarios given in
Figure 4.9. Evidently, an accurate prediction algorithm can help the system to establish
checkpoints at appropriate times, however, inaccurate prediction leads to time wasted
on constructing extra checkpoints. Compared with the original checkpoint mechanism,
the time penalties of the prediction-based mechanism are listed in Table 4.3 in terms
of the four scenarios. It can be concluded that the prediction module may reduce the
time cost for scenario (a) while it results in extra wasted time in scenario (d).

Scenarios Original time waste New time penalties Difference

(a) tb + tr ts + t
′

b + tr tb − ts − t
′

b

(b) tb + tr tb + tr 0
(c) 0 0 0
(d) 0 ts −ts

Table 4.3: Comparison between original checkpoint mechanism and prediction-based
mechanism in terms of wasted time for each of the four scenarios introduced in Figure
4.9.

W
′

N −WN = (ts/P + t
′

b − tb) ∗R ∗N (4.12)

W
′

N −WN < 0

⇒ (ts/P + t
′

b − tb) ∗R ∗N < 0

⇒ ts/P + t
′

b − tb < 0

⇒ P > ts/(tb − t
′

b) (4.13)

In order to analyse the improvement made by the prediction-based checkpoint
mechanism, Equation 4.12 is derived from Equations 4.4 and 4.11. Obviously, the
prediction module must meet the condition that W ′

N − WN < 0, and the derivation
process is shown in Equation 4.13. This leads to the conclusion that the prediction
module must meet the necessary condition that P > ts/(tb − t

′

b) if it is to offer im-
proved fault tolerance; in terms of the recall R, the more precise the prediction made,
the more computational time the system saves. In terms of tb and t′b, they have dif-
ferent values in various systems and several analytical solutions have been published

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 78

in [13, 71]. In this thesis, tb is estimated as tc/2 approximately, and t′b is ignored for
simplicity purposes.

Comparison with traditional checkpoint model

The expected running time of applications when using traditional checkpoint mecha-
nism is given in Equation 2.2. As analysed above, the overhead difference between
traditional checkpoint mechanism and the prediction-based checkpoint mechanism
is W ′

N − WN , hence the expected execution time of applications when using the
prediction-based checkpoint mechanism (E ′C) can be expressed as Equation 4.14. It
can be seen that the overhead of the proactive failure recovery approach now depends
on the failure prediction accuracy (precision and recall). In order to investigate how
execution time varies with relevant independent variables, especially in terms of pre-
diction accuracy, Figure 4.10 shows the results of the formulae with three different
sets of parameter settings. It can be concluded that the proactive checkpoint mech-
anism with better prediction accuracy will decrease the overhead compared with the
traditional mechanism, however, a lower accuracy will add on an extra overhead.

E
′

C = EC + (W
′

N −WN)

=
F

tc
(ts + (tr +

1

λ
)(eλtc − 1)) + (ts/P + t

′

b − tb) ∗R ∗N (4.14)

Dependence on precision

Figure 4.10 shows the effects of accuracy (precision and recall) on the prediction-based
checkpoint mechanism. In order to investigate how the execution time varies with pre-
cision, recall is set at 100% for comparison. Figure 4.11 demonstrates the effects of the
formulae with precision varying from 0% to 100%. It can be seen that when precision
equals 28%, the prediction-based checkpoint mechanism has the same overhead as the
traditional checkpoint mechanism, which means P = ts/(tb − t

′

b). When precision
accuracy increases (P > ts/(tb − t

′

b)), the curve declines and the prediction-based
checkpoint mechanism performs better. Similarly, the traditional checkpoint mecha-
nism is better when precision is lower than 28%.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 79

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

7

Failure free running time (days)

E
xp

ec
te

d
ex

ec
ut

io
n

tim
e

(d
ay

s)

Traditional checkpoint
Proactive checkpoint with higher accuracy
Proactive checkpoint with lower accuracy

Figure 4.10: Comparison between traditional checkpoint mechanism and prediction-
based checkpoint mechanism according to various application lengths when recall is
100%. The curve of the proactive checkpoint with higher accuracy (P = 100%) shows
the effects when precision meets the condition P > ts/(tb − t

′

b), whereas the curve
of the proactive checkpoint with lower accuracy (P = 10%) shows the results of the
formulae when P < ts/(tb − t

′

b). Other parameters are configured that λ = 0.1, ts =
0.2, tc = 1.6, tb = 0.8, and tr = 0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.5

6

6.5

7

7.5

8

Precision

A
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e
(d

ay
s)

Figure 4.11: The effects of Equation 4.14 with varying prediction precision — the
horizontal line in the chart denotes the application execution time of the traditional
checkpoint mechanism. Other parameters are configured that R = 100%, λ = 0.1, ts =
0.2, tc = 1.6, tb = 0.8, and tr = 0.2

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 80

Dependence on recall

Equation 4.13 shows that the accuracy of precision determines whether the prediction-
based checkpoint mechanism performs better, and Equation 4.14 shows that the amount
of saved overhead is determined by the accuracy of recall. In order to show the effects
of Equation 4.14 with various recall values, parameters are set to ensure that condition
4.13 is met. Figure 4.12 shows the results. It can be seen that the total amount of saved
overhead has a linear relationship with recall, the higher the accuracy of recall, the
greater the saved overhead from prediction-based checkpoint mechanism will be.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

6.8

7

Recall

A
pp

lic
at

io
n

ex
ec

ut
io

n
tim

e
(d

ay
s)

Figure 4.12: The effects of Equation 4.14 according to varying prediction recall; the
running time using the traditional coordinated checkpoint approach has also been plot-
ted. Other parameters are configured that P = 100%, λ = 0.1, ts = 0.2, tc = 1.6, tb =
0.8, and tr = 0.2

Dependence on precision and recall

It can be seen that the proactive checkpoint mechanism performs better when the preci-
sion accuracy meets the condition shown in Equation 4.13, while Equation 4.14 shows
that both precision and recall can affect the execution time. Figure 4.13 shows the
execution of an application with varying precision and recall. It can be seen that in-
creasing precision and recall can both reduce the overall execution time (except at low
precision).

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 81

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

5.5

6

6.5

7

RecallPrecision

E
xp

ec
te

d
ex

ec
ut

io
n

tim
e

Figure 4.13: The relationship between expected execution time, precision accuracy
and recall accuracy of the proactive failure recovery mechanism. 5-days failure free
running time is chosen and other parameters are configured that λ = 0.1, F = 5 days,
ts = 0.2, and tr = 0.2

4.2.3 Effects on checkpoint interval

The proactive checkpoint mechanism can improve the traditional coordinated check-
point mechanism by using an extra failure prediction model when the prediction ac-
curacy meets the condition shown in Equation 4.13, and a fixed value of tc−opt has
been chosen in the above analysis. However, a predictor with specific accuracy (pre-
cision and recall) will influence the choice of the optimum checkpoint interval tc−opt,
and the proactive checkpoint mechanism can be further improved by choosing a new
checkpoint interval t′c−opt.

Figure 4.11 shows that when precision is lower than the threshold derived from
Equation 4.13, it is better not to use the failure prediction scheme; otherwise progres-
sive gains can be obtained from both precision and recall (see Figure 4.12), which lead
to better choices for checkpoint interval. In the proactive checkpoint mechanism, a
predictor with specific precision P and recall R will correctly predict R ∗ N failures,
where N denotes the total failure numbers; thus there remain (1 − R) ∗ N failures
that will incur actual performance penalties. The system can then be approximately
modelled with a new failure rate λ′ , shown in Equation 4.15. Equation 4.16, which is
derived from Equation 2.3, gives the new optimum checkpoint interval t′c−opt.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 82

λ
′ ≈ (1−R) ∗ λ (4.15)

t
′

c−opt ≈
√

2ts/λ
′

=
tc−opt√
1−R

(4.16)

Figure 4.14 shows how the optimum checkpoint interval varies according to predic-
tion accuracy. When P < ts/(tb− t

′

b), the traditional checkpoint mechanism performs
better and the choice of optimum checkpoint interval is a fixed value tc−opt, which can
be seen from the first part of the curve. When P > ts/(tb − t

′

b), the proactive check-
point mechanism can have a better choice of checkpoint interval t′c−opt, which is shown
in the second part of the curve. The value of t′c−opt increases with the improvement of
recall and when R = 100%, t′c−opt tends to infinity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

Recall

C
he

ck
po

in
t i

nt
er

va
l t

c−
op

t

P<ts/(tb−tb
’) P>ts/(tb−tb

’)

Figure 4.14: The choice of optimum checkpoint interval tc−opt according to various
prediction accuracy: precision P and recall R.

The above analytical results demonstrate the future trends of checkpoint interval
when the accuracy of recall increases. In order to obtain the optimum checkpoint in-
terval under specific parameter settings, Equation 4.17 that is developed in [13] is used
to estimate the optimum checkpoint number, where L denotes the Lambert function
[21]. The optimum checkpoint interval can then be obtained by Equation 4.18. Figure
4.15 shows the relationship between checkpoint number and recall accuracy. It can be
seen that when recall approaches 100%, the optimum checkpoint number is close to 0,

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 83

which demonstrates the equivalent results in Figure 4.14.

k̂ =
F ∗ λ

1 + L(−e−1−λ(ts+tr))
(4.17)

t
′

c−opt = F/k̂ (4.18)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

Recall

O
pt

im
um

 c
he

ck
po

in
t n

um
be

r

Failure free running time = 5 days
Failure rate = 0.5

Figure 4.15: The choice of optimum checkpoint number for an application with failure
free running time of 5 days in terms of different recall accuracy.

4.2.4 Analysis on further performance improvement

The above analysis has shown that different prediction accuracy will influence the
choice of optimum checkpoint interval that is used by the proactive checkpoint mech-
anism, however, the mechanism described in Section 4.2.1 has chosen a fixed check-
point interval for all instances. Accordingly, the overall execution time can be further
reduced by choosing an optimum checkpoint interval in terms of the prediction accu-
racy.

It can be seen that the proactive checkpoint mechanism performs better when the
precision accuracy meets the condition shown in Equation 4.13, and the checkpoint in-
terval needs to be adaptively changed to achieve better performance (see Figure 4.14).
Specifically, the execution time in a system using the proactive checkpoint mechanism
can be divided into two parts for analytical purposes. Firstly, with consideration of
correct predictions, the new failure rate λ′ can be approximately derived by Equation

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 84

4.15 and the new execution time can be calculated by Equation 4.19, which is derived
by Equation 2.2. Secondly, the system would generate extra checkpoints taking into
account incorrect predictions, and the additional computational time that is added to
the execution can be calculated by Equation 4.20, where N denotes the total number
of failures.. Thus, the new overall execution time can be expressed by Equation 4.21.

EC1 =
F

t
′
c−opt

(ts + (tr +
1

λ′
)(eλ

′
t
′
c−opt − 1)) (4.19)

EC2 = R ∗N ∗ ts/P (4.20)

E
′

C = EC1 + EC2

=
F

t
′
c−opt

(ts + (tr +
1

λ′
)(eλ

′
t
′
c−opt − 1)) +R ∗N ∗ ts/P

= k̂ ∗ (ts + (tr +
1

λ′
)(eFλ

′
/k̂ − 1)) +R ∗N ∗ ts/P (4.21)

Figure 4.16 shows the execution of an application with varying precision and recall.
It can be seen a similar trend as Figure 4.13, however, a fixed change in recall will
reduce the execution time faster than the same fixed change of precision. When the
accuracy of both precision and recall approach 100%, there will be no penalty cost and
the execution time will be close to 5, which is equivalent to the failure free running
time.

4.2.5 Assumptions of the model

This section has demonstrated the prediction-based checkpoint model (shown in Equa-
tions 4.13 and 4.14), which adds prediction facility to the traditional checkpoint model
to reduce performance penalties; and the improved model (shown in Equation 4.21),
which chooses an appropriate checkpoint interval according to the prediction accuracy.

Different equations have various assumptions. Specifically, Equations 4.13 and
4.14 are derived from Equation 2.2 and the figures of Equation 4.14 shown in this
section are generated based on the assumptions of 2.2 (described in Section 2.2.1) and
the following assumptions.

1. The optimum checkpoint interval tc is used in 4.14.

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 85

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

5

5.5

6

6.5

RecallPrecision

E
xp

ec
te

d
ex

ec
ut

io
n

tim
e

Figure 4.16: The relationship between expected execution time, precision and recall of
the improved proactive failure recovery mechanism using revised checkpoint interval.
5-days failure free running time is chosen and other parameters are configured that λ
= 0.1, F = 5 days, ts = 0.2, and tr = 0.2

2. The value of tb is considered as tc/2.

3. The instants of true positive predictions are considered as the instants just before
the failure occurrence.

4. t′b is ignored becase the previous assumption.

In terms of Equation 4.21, it uses Equation 4.17 to calculate the new optimum
checkpoint interval and the related figures are produced based on the above assump-
tions and the following assumptions.

1. The occurrences of failures follow Poisson process.

2. ts and tr are constant during the execution.

4.3 Summary

This chapter has described the proactive failure management framework that includes
two fundamental components: a prediction-based coordinated checkpoint module and

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 86

a failure detection module. In the case of failure recovery, a checkpoint based approach
is adopted for the IBM BlueGene/L due to its high efficiency in reducing wasted com-
putational time whilst using no extra hardware resources. For failure detection, the
pull model is utilised in the framework as it is likely to reduce network traffic.

Current coordinated checkpoint mechanisms for supercomputers tend to use static
distribution models to express failure distributions in these systems. However, these
models cannot describe exactly the dynamic failure characteristics, which motivates
the design of a prediction-based checkpoint mechanism in which failure prediction
is used to choose an appropriate time for taking checkpoints. However, inaccurate
predictions will result in wasted time in the construction of extra checkpoints. More
specifically, prediction will reflect the checkpoint placement in four scenarios: (a) cor-
rect prediction of failure, (b) incorrect prediction of failure, (c) correct prediction of
normal behaviour and (d) incorrect prediction of normal behaviour. The prediction
module can reduce time cost in scenario (a), while incurring extra wasted time in sce-
nario (d). Obviously, a prediction module will be considered favourably for integration
into a failure recovery approach if and only if it satisfies the condition that the wasted
timeW ′

N is less than the amount that occurs in the original checkpoint mechanismWN .
Thus an analytical model has been derived to evaluate the efficiency of the prediction
module, for which two aspects are considered: Precision and Recall. According to the
analytical model, a prediction module must satisfy the condition P > ts/(tb − t

′

b) in
order to improve failure recovery efficiency.

In order to investigate the efficiency of the prediction-based checkpoint approach,
a formula to describe the expected execution time of the new model is given in Equa-
tion 4.14 based on overhead analysis, and the formula shows that the overhead of the
new model depends on prediction accuracy. Different accuracy settings have been
configured to demonstrate the effect of prediction accuracy. Specifically, there are five
scenarios simulated by the theoretical model: comparison with traditional checkpoint
model using various prediction accuracy, dependence on precision, dependence on re-
call, dependence on both precision and recall, and effect of prediction on optimum
checkpoint interval.

Contributions of this chapter

This chapter has presented the proactive failure recovery mechanism which can take
advantage of the prediction of failure occurrence by placing checkpoints just before
the occurrence of predicted failure so that wasted time can be significantly reduced. A

CHAPTER 4. PROACTIVE FAILURE RECOVERY MECHANISM 87

theoretical model has been derived to investigate the effects of failure prediction on the
efficiency of failure recovery, and several analytical results have been given, the model
is believed to be innovative. Next, further improvement of the model has been obtained
by having better choices of checkpoint interval, and an equation has been developed to
express the relationship between prediction accuracy and optimum checkpoint interval.
This appears to be the first work to address this problem.

Relation to other chapters

This chapter has described a proactive failure recovery approach, and introduced an
analytical model to investigate the relationship between prediction accuracy and over-
head, which derives the search for good prediction mechanisms. The design of new
failure prediction mechanisms on the target platform — the IBM BlueGene/L — is
considered in the next chapter.

Chapter 5

Failure prediction model for the IBM
BlueGene/L

The performance and efficiency of a prediction algorithm are closely related to the
infrastructure and key features of target systems. The platform which the research is
conducted is the IBM BlueGene/L, which has system log data available for experimen-
tation. Section 5.1 presents the prediction process on the target system. The overall
approach to real-time failure prediction consists of two main parts: data preprocessing
and prediction. Some preknowledge of the IBM BlueGene/L logs is required before the
prediction approach is introduced. In Section 5.2, key properties about the collected
logs, including their format and the overall log volume, are described. The three steps
of data preprocessing — categorization, filtering and sequence extraction, are then
introduced, in Section 5.3. Section 5.4 describes the essence of the proposed failure
prediction approach, the semi-Markov CRF model, including how the model is ap-
plied in the framework, the inference process, and how to estimate model parameters.
Section 5.5 summarises the chapter.

5.1 Prediction process

From statistical studies of the IBM BlueGene/L RAS logs [80] given in Section 5.2,
the data volume is too large to be handled by human beings. Further, it is clear that
there are certain relationships and correlations among the events: for example, ap-
proximately 80% percent of failure events in the RAS logs have preceding non-failure
events. Due to the huge amount of data and the complexity of the system structure,
it is impossible to explicitly describe and encode all relationships manually. From the

88

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 89

Figure 5.1: Training process.

viewpoint of autonomic computing [55, 54], the system environments and hardware
configurations change over time, so an automated approach, that can adapt to these
changes and reduce redesign cost, needs to be established. Due to these reasons, a
machine learning method has been chosen to meet the demands.

There are two steps in the approach: training and testing. During the training pro-
cess, a target function (the model) will be produced from a data set so that the param-
eters of the function are adjusted to fit the training data (Figure 5.1). There are many
training algorithms based on different principles, and Maximum Likelihood Estima-
tion (MLE) [76] is applied in our approach. Secondly, the model needs to be tested.
Real-time testing on the production system cannot be conducted because we do not
direct access to the supercomputer. Instead a static data set representing input/output
(I/O), months of RAS log between the field dates that is publicly available is used [80].
The normal approach in machine learning in such circumstances is to divide the data
set into two parts, one for testing, the other for training.

The basic idea of the approach is to make use of dependencies among the records.
Except for stand-alone failures, that are caused by unexpected conditions or human
beings, the other failures are preceded by non-failure events. These kinds of relation-
ships are called failure patterns. This scenario can be seen in current computing sys-
tems where multiple components in a single infrastructure cooperate with each other
and finish one or several tasks together; this kind of internal dependency will result in
certain relationships in the output. In the case of the IBM BlueGene/L, the output is
an RAS log and the main target of the learning approach is to find the failure patterns
and utilise these during failure forecasting.

Machine learning is a complicated process and it has several aspects apart from
the learning model itself, such as data volume, data quality, training algorithm, testing
data set, etc. Each of these factors may impact the final result. For failure prediction in
the IBM BlueGene/L, these problems are briefly discussed in the following sections:
Training and Prediction.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 90

Figure 5.2: Preprocess steps.

Training

The main purpose of the training process is to analyse correlations among events in the
RAS logs and adjust the parameters of the Semi-Markov CRF to best represent these
correlations. Failure patterns, represented as failure sequences, are the final data set
used for machine learning. The model is trained and evaluated with these sequences.
It can be seen that there exist multiple categories of failures, and each category cor-
responds to a failure pattern. Categorising failure patterns is a key problem in data
pre-processing (see details in Section 5.3). Each item in the raw RAS log files contains
diverse information about a single event, and this redundant data will increase the diffi-
culty of analysis. As was mentioned in Section 1.3, failure items are rare events in this
large data space, taking up approximately 10% of the entire data volume. However,
there are multiple failure patterns, and for each pattern, the quantity is even smaller.
Predicting a specific failure pattern is a more challenging task than the forecasting of
general failures. Another aspect to be noted is that the parallel supercomputer may
generate multiple items for a single event so that the resulting noisy records in RAS
logs may lead us to incorrect conclusions. Removing noisy records is another problem
that needs to be considered. All these problems are tackled in the preprocess stage,
shown in Figure 5.2, which includes three steps: Clustering, Filtering and Sequence
Extraction. The detail of these processes is discussed in Section 5.3.

Prediction

After the model has been trained and optimised, it is used for forecasting future failure
occurrences. Two things can be forecast by the model: firstly, whether a failure will
occur after a period of lead-time ∆tl (see detail in Chapter 3); secondly, if a failure is
predicted, the failure category can be determined. The prediction can be viewed as a
mapping process that matches the two sequences with the highest similarity. Different
models have distinct approaches to determine similarities, with Semi-Markov CRF,
both the event occurrences and their internal dependencies are considered. Further, the
model needs to be validated and tested before being used for real prediction. The qual-
ity of both the training and testing data set (prediction data set) needs to be assessed,

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 91

Figure 5.3: An overview of the process flow.

and cross-validation techniques have been used for this purpose. An overview of the
procedure for failure prediction is depicted in Figure 5.3.

5.2 The IBM BlueGene/L Log

RAS log format

The RAS event logs are generated through the Machine Monitoring and Control Sys-
tem (MMCS) and are stored in a database, with a logging granularity of less than
1 millisecond. MMCS records target events when the machine is running and these
events include information from processors, network components, memory, software,
operating system, etc. However, events about scheduled maintenance, reboot and re-
pair are not recorded. Events are the key items that are found in the RAS logs in the
form of messages. Table 5.1 presents an event example from the logs. Each event has
a fixed format, which contains seven well defined fields, as follows:

Event ID Event Time Event
Type

Facility Severity Event Loca-
tion

Description

1123346974 2005-08-06-
09.49.34.522591

RAS KERNEL FATAL
Error

R00-M1-NC-
I:J18-U01

unable to mount
file system

Table 5.1: An event example from the IBM BlueGene/L RAS logs.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 92

• EventID denotes the sequence number, which is a unique ID for the event and
has automatic increment for each new log entry.

• EventTime is the timestamp of the event, which includes date and time to a
precision level of 1 microsecond.

• EventType denotes the logging mechanisms that generate these log events. In
the IBM BlueGene/L most of the events are created by the RAS.

• Facility shows the component that has generated the event. In the logs, the
main components include Application, Kernel, Network Link-Card, Hardware,
Monitor, Control Unit, Networks, and Unknown components.

• Severity is the field that describes the basic nature of the event: INFO, WARN-
ING, SEVERE, ERROR, FATAL or FAILURE. INFO events show the inter-
mediate output or status from applications and the operating system; the main
purpose is to enable understanding of internal actions and processes. WARNING
events report unusual actions in nodes, node cards and link cards; these are often
transient events and may cause SEVERE or ERROR events. SEVERE events
may cause problems on processors or network control cards. ERROR events de-
note common problems or report problems from non-critical components. Both
SEVERE and ERROR events may terminate the current running applications
and lead to FATAL or FAILURE events. FATAL and FAILURE events indicate
severe problems that usually lead to system or application crashes, which must
be fixed by the administrator.

• EventLocation gives detailed addresses where the event occurred.

• Description gives a short description of the event, and sometimes provides sim-
ple analysis of its root cause.

Severity is effectively the most important field, based on which the system status
at a certain point can be decided. FATAL and FAILURE events, referred to as alert

events in the following, are likely to have significant impact on system performance
and resource utility, and hence are the focus in this thesis. In contrast, the other events
can be collectively termed general events, in that they are common events providing
information or reporting problems with little impact on the system, and which may be
resolved by the system itself.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 93

Log collection

RAS logs have been collected from LLNL covering 215 days from June 3, 2005. They
are managed by MMCS and collected via a polling frequency of around one millisec-
ond; they are then stored in the local DB2 database. Nearly all possible errors from
software and hardware are included in the RAS logs [80]. The collected RAS logs are
summarized in Table 5.2.

Owner LLNL
Start date 2005-06-03
End date 2006-01-04
Total no. of events 4,747,963
No. of alert events 348,460
Size 1.207 GB

Table 5.2: Summary of the collected IBM BlueGene/L RAS logs.

5.3 Log pre-processing

The information in the RAS logs enables understanding of the internal execution of
the IBM BlueGene/L. However, for several reasons, they need to be appropriately pre-
processed before being used for prediction [117]. Firstly, event items are not recorded
in a uniform format, as some are human readable events whereas others are intermedi-
ate outputs. Secondly, redundant events, which may greatly affect the analysis, occupy
a significant part of the original log files. For example, the same event may be recorded
multiple times in a single log file and many general events are saved that do not lead
to failure. Finally, event sequences, derived from raw log items in the pre-processing
stage, are used for the purpose of training and testing of the CRF model, and the raw
log cannot be processed by the model. For the IBM BlueGene/L logs, preprocessing in-
volves three steps: Categorisation, which categorises events, Filtering, which removes
redundant events and Sequence extraction, which identifies significant sequences of
events.

5.3.1 Categorization

Generally, event logs are recorded to a certain degree in natural language and they
are commonly analysed by operators to quickly identify problems. A difficulty in

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 94

categorising events (grouping them into coherent sub-sets) is that event logs are not
designed for automatic processing.

For the IBM BlueGene/L logs, consideration of the events fields severity or facility

can give us high-level categories. For example, based on severity, there are six cate-
gories: info, warning, sever, error, fatal and failure. However, these are not enough
for the purpose of failure prediction and further categorisation needs to be performed;
for example, with a fatal event, it needs to be further analysed to determine whether
it is a memory or a network event. Work has been published categorising the IBM
BlueGene/L logs; for example, in [66], alert events are categorised according to the fa-

cility field: memory failures, node card failures, network failures, service card failures
and midplane switch failures. However, in order to establish the dependency between
different events, several fields need to be considered together in this process of cate-
gorisation to form sub-categories, such as those identified in [41].

The main task here is to analyse the differences between alert events and gen-

eral events, and to then distinguish them into various identified categories. More
specifically, alert events that result in application crashes are the real causes of perfor-
mance penalty, and hence they need to be further sub-categorised. However, in order
to identify the correlation between alert events and other events, and diagnose their
root causes, general events also need to be considered. In the collected log files, there
are 348,460 alert events and 4,399,503 general events. In our categorisation approach,
the fields—facility, severity, eventlocation — combined with the description recorded
in natural language, are taken into account to include as much information as possible.
In order to simplify the analysis of such a large volume of events, the key terms in the
description field have been counted. Based on these key terms, a semi-supervised hi-
erarchical mechanism has been designed for categorization and 62 sub-categories have
been generated. Detailed process steps are described below:

• Redundant information removal

The Description field contains human readable language or intermediate ma-
chine results, and there is much redundant information as shown in Table 5.3.
This information must be removed to simplify the classification.

• Keyword detection

This step identifies the most frequent words in the logs. For this purpose, LogHound
[1] is applied and the 10 most active terms are shown in Table 5.4.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 95

Punctuation = , ’ , ”
Articles a, an, the
Verbs be, being, been, is , are, do, · · ·
Prepositions of, at, in, on, · · ·
Hardware address 8DigitHex or 2DigitHex
Operators +, -, *, ÷
Numbers 0, · · · , 9
Directory path such as ’/home/bin’
Date such as 2005-08-06

Table 5.3: Redundant information in the description field.

Term Count
RAS 507,103
FATAL 507,103
KERNEL 342,412
program 168,508
APP 164,691
ciod 120,437
ERROR 168,508
loading 115,120
invalid 113,951
missing 112,584

Table 5.4: Number of keyword terms detected.

• Pattern mining

The main target is to mine frequent event patterns (event types) from raw event
logs. The patterns can be derived from event descriptions, for example, the three
messages:

Connection to 192.168.1.50 down
Connection to 10.2.8.96 down
Connection to 138.1.15.98 down

represent the event type Connection Down and the corresponding pattern can be
written as:

Connection to * down

• Pattern regularization

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 96

Figure 5.4: Event logging mechanism (taken from [44]). A fault can result in various
misbehaviours, some of which can be detected once or several times as errors, while
others are not detected. Similarly, some errors will be recorded as messages and others
not.

The pattern mining process generates a detailed list of all possible patterns, from
which two problems may arise. Firstly, there may be overlap between different
patterns. Secondly, for some extremely rare events, the corresponding patterns
have few matches. To solve the first problem, these overlapped patterns must be
combined into a single pattern; and for the second problem, a threshold value has
to be set so that only the patterns with more matched events than the threshold
value are accepted.

5.3.2 Filtering

In a computer system, it is clear that a failure may affect various components across
different levels; in turn, many devices may detect and report alerts in the same category.
This phenomenon can clearly be seen throughout the logs where the alert messages are
found in bursts over a very short interval in the same location or across multiple com-
ponents. This ensures that every message can be captured; however, the corresponding
logging mechanism, shown in Figure 5.4, may lead to two types of redundant mes-
sages: temporal redundancy and spatial redundancy. To improve efficiency, these re-
dundant messages should be reduced as much as possible while retaining any useful
information. Several algorithms have been published that filter the IBM BlueGene/L
logs with consideration of both temporal and spatial redundancy [32, 66, 67, 117].

Temporal filtering

Temporal filtering is used to reduce failure instances in the time domain, because mul-
tiple failures may occur in a short time period. After investigating the RAS logs, this
temporal feature is found to be due to two possible reasons:

1. Some faults may result in several error or failure instances.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 97

2. A single failure event may appear several times referring to the same location.

According to the above two causes, there are two approaches to filter logs in the
temporal domain:

1. Different kinds of errors that have a time interval less than ε′ are grouped as a
single event.

2. All errors of the same type having an inter-arrival time less than a threshold ε are
reduced to a single error.

Two main problems may arise from filtering:

1. Collision, where log messages referring to several categories may be combined.

2. Truncation, where the entire span of a single category of event is large and mul-
tiple records of the same category remain after filtering.

To simplify, ε′ is set equal to ε. A formula (Equation 5.1) for the probability of
collision is given in [44] to analyse this problem. The formula shows that collision and
truncation are closely related to ε; if ε is large, the possibility of collision is greater
than truncation, and vice versa.

P Collision(ε) = 1− e−λF ε(
∑

pje
λF lj) (5.1)

where

P Collision ≡ the probability of collision;

ε ≡ the time window threshold for filtering;

e ≡ the mathematical constant that denotes the base of the natural
logarithm;

λF ≡ the fault rate;

lj ≡ the time span of a message estimated from the logs;

pj ≡ the probability that the length is lj .

The mechanism presented here derives from the observation that messages of the
same category in a short time window ε can be represented as a single message. As can
be seen from the formula, a different time window length would impact significantly
on both collision and truncation.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 98

A method to select the most appropriate ε is as follows: plot the number of events
over different ε. When ε is close to 0, the event number after filtering is equal to
the original event number. As ε is increased, the number of events should decrease
sharply at the beginning and then gradually to the lowest point. This decrease is an
L-shaped curve and the work in [44] suggests that the value of ε chosen should be
slightly greater than the value at the vertex of the L-shaped curve. For reasons of
simplicity in calculation, the value at the turning point is used in this thesis. For the
IBM BlueGene/L logs, the total number of events after filtering with different ε values
is plotted in Figure 5.5, from which the optimal value of ε is approximately set to 430
milliseconds in our mechanism. The final results after filtering can be seen in Table
6.1.

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 5e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 to

ta
l e

ve
nt

s
(lo

ga
rit

hm
ic

 s
ca

le
)

Filtering time window ε (milliseconds)

Log filtering based on different time window

ch
os

en
 va

lue
 fo

r ε

Figure 5.5: Plotting event numbers using different time length ε.

Spatial filtering

Spatial filtering is used to remove similar events occurring at different locations be-
cause failure events are correlated in the spatial domain [33]. Spatial redundancy is
caused by several reasons, such as component dependency and parallel running appli-
cations, and there are two common cases described below:

1. A failure or error may happen at multiple locations more-or-less simultaneously.

2. A single failure may cause other failures in different components.

A corresponding approach can be derived to remove redundant events so that all
errors across multiple locations that have an inter-arrival time less than ε are grouped,

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L 99

time
d1 d2 d3

∆td ∆tl

Failure

e1 e2 e3

∆td ∆tl

Failure

n1 n2 n3

∆td ∆tm∆tm
FS1 FS2NF1

Figure 5.6: Sequence extraction from event logs: failure sequences, which lead to
failures, are extracted from a fixed time window ∆td before the lead-window ∆tl,
such as FS1 and FS2; non-failure sequences are event sequences between failures with
a marginal time window ∆tm either side, such as NF1.

and the value of ε can be identified using the same method described in temporal fil-
tering.

5.3.3 Sequence extraction

CRF models are trained using both failure sequences and non-failure sequences. A
failure sequence is an event sequence (defined in Section 3.1) preceding a failure, and
the time duration of a failure sequence depends on the time window ∆td (defined in
Section 3.1). A non-failure sequence is the event sequence between two failures. A
marginal time window ∆tm is defined to separate system normal status from failure
status, and a valid non-failure sequence is one with no failures occurring in time win-
dow ∆tm before and after the time window ∆td. Figure 5.6 shows examples of both
failure sequences and non-failure sequences. ∆tl denotes the time length from the
current time to the future failure occurrence point. The resulting sequences are sum-
marized in Table 5.5.

Parameters Values
The data window ∆td 5Min.
The lead-window ∆tl 5Min.
The margin time window ∆tm 5Min.
Total no. of failure sequences 770
Total no. of non-failure sequences 82,118

Table 5.5: Summary of extracted sequences.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L100

5.4 The prediction model

In a machine learning process, the target model is first trained, using a training data
set to adjust the model parameters, then the model is applied to testing data. For the
problem of failure prediction in the IBM BlueGene/L, this procedure involves two
steps: estimating model parameters, as described in Section 5.4.3, and system future
behaviour prediction. More specifically, there are two aspects included in the forecast-
ing: the prediction strategy, presented in Section 5.4.1, which introduces the process
flow and various models from a high-level perspective, and the inference process, pre-
sented in Section 5.4.2, which describes the background algorithms and mathematical
proof, including the forward, the backward and the Viterbi algorithms, respectively.

5.4.1 Prediction strategy

Sequence prediction, the second step in real-time failure prediction, processes event
sequences extracted from pre-processed data. The main target is to estimate the fu-
ture behaviour of the system from a temporal sequence. More precisely, two different
prediction models are combined in a single mechanism, and the overall procedure is
presented in Figure 5.7.

Prediction procedure

For failure prediction on the IBM BlueGene/L, two prediction models are applied for
different estimation purposes. Given a sequence, as much further extrapolation as
possible needs to be assessed so that appropriate actions can be launched to prevent
future misbehaviour. More precisely, two different prediction models are required to
answer the following questions:

1. Whether failure will occur within some time duration?

2. If a failure is forecast, which type of failure is it most likely to be?

As shown in Figure 5.7, an event sequence is initially processed by model 1 to
forecast whether there will be a future failure, the same sequence is then passed to
model 2 for further analysis if a failure is estimated by model 1. It can be concluded
that, in order to answer the first question, model 1 conducts high-level prediction and
determines whether the system is failure-prone. For the solution to the next question,
model 2 is established to further forecast the particular failure type once a failure has

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L101

Figure 5.7: Sequence prediction using two different models: Model 1 forecasts
whether a failure will occur and Model 2 anticipates the specific failure type if a failure
is predicted by Model 1.

been estimated. Although the output from model 2 is not used by the failure recovery
mechanism described in Chapter 4, it may be pertinent to some future mechanism
which is capable of taking advantage of knowing the type of failure that is about to
occur. More specifically, the two models can be distinguished in terms of the following
three aspects:

1. Event patterns: Model 1 divides the entire event sequences into two patterns:
failure sequences and non-failure sequences, while model 2 further categorizes
failure sequences into various sub-patterns, each of which indicates a particular
failure category.

2. Training: model 1 is trained using both failure sequences and non-failure se-
quences. In contrast, model 2 is trained using only failure sequences.

3. Output: the output of model 1 is a binary classification, while the result of model
2 is classified into multiple values.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L102

5.4.2 Inference

Given a chain-structured CRF model1 and an event sequence, different predictions can
be made. Furthermore, two inference problems can be solved:

1. Given any observation sequence O = {O1, O2, · · · , ON} and a corresponding
state sequence S = {S0, S1, · · · , SN}, in terms of the model Φ, the issue is how
to efficiently compute P (S|O; Φ).

2. Given an observation sequence O = {O1, O2, · · · , ON} and the model Φ, the
issue is how to predict the optimal state sequence S = {S0, S1, · · · , SN}, which
has the maximum likelihood.

For both tasks, all possible state sequences S need to be taken into account and
efficient algorithms are required for calculation without enumerating all possible state
sequences. In a chain-structured CRF, algorithm design can take advantage of the
fact that a state depends only on its adjacent states, and both inference tasks can be
performed efficiently by variants of the HMM algorithms.

In this section, the forward and backward algorithms that are used in HMM are
applied to solve the first problem; similarly, the Viterbi algorithm is applied to address
problem 2.

Inference for problem 1

The chain-structured CRF is shown in Equation 3.21 and 3.22, and the difficulty of
computing P (S|O; Φ) transfers to the task of calculating Z(O), which needs to enu-
merate all possible state sequences S. In order to formalize the solutions, the states
are assumed to be in a space of size M and the state transition function is defined as
Ψi(Si, Sj, O), shown in Equation 5.2.

Ψi(Si, Sj, O)
def

=== Ψi(Si, Si−1, O)

= exp

(∑
i

K∑
k=1

λkFk(Si, Si−1, O)

)
(5.2)

Given an observation sequence O and the corresponding state sequence S, the
global normaliser Z(O) can be written as Equation 5.3, from which it can be seen

1A chain-structured CRF is used to make inference for simplicity and generality, because the same
algorithms can be applied similarly for other CRF models.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L103

that the intermediate results are reused many times during the calculation and consid-
erable time can be saved by caching these results. This leads to two different caching
algorithms: the forward algorithm and the backward algorithm, which reduce compu-
tational complexity. Table 5.6 shows a comparison of the different algorithms in terms
of computational complexity.

Z(O) =
∑
S

exp

(∑
i

K∑
k=1

λkFk(Si, Si−1, O)

)

=
∑
S

N∏
i=1

Ψi(Si, Si−1, O)

=
∑
S

∑
SN−1

ΨN(SN , SN−1, O)
∑
SN−2

ΨN−1(SN−1, SN−2, O)
∑
SN−3

· · ·

(5.3)

Algorithms Complexity
Equation 5.3 O(N ∗MN)
Forward algorithm O(N ∗M2)
Backward algorithm O(N ∗M2)

Table 5.6: Comparison of different algorithms in terms of computational complexity.

Forward algorithm

As the name suggests, the forward algorithm is based on a set of forward vari-
ables αt(j), each of which stores one of the intermediate results denoting the
probability of sub-sequence S<0,··· ,t> = {S0 · · ·St} under the assumption that
the stochastic process is in state j at time t. The sub-sequence S<0,··· ,t−1> =

{S0 · · ·St−1} ranges over all possible assignments to each random variable Si,
where 1 ≤ i ≤ t − 1. Then αt(j) can be recursively computed using Equation
5.4.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L104

αt(j)
def

=== P (St = j|O)

==
∑

S<1,··· ,t−1>

Ψi(j, St−1, O)
t−1∏
i=1

Ψi(Si, Si−1, O)

=
∑

Ψi(j, St−1, O)αt−1(St−1) (5.4)

Let St−1 = i, i ∈ S, then Equation 5.4 translates to Equation 5.5:

αt(j) =
∑
i∈S

Ψi(j, i, O)αt−1(i) (5.5)

As αN(i) is the probability of the whole sequence that ends in state i, Z(O) can
be represented by forward vectors αt using Equation 5.6.

Z(O) =
∑
SN

αN(SN) (5.6)

Backward algorithm

Similarly, a backward variable βt(j) is defined as the probability of the sequence
S<t,··· ,N> = {j, St+1 · · ·SN} with state j at time t. Equation 5.7 gives the recur-
sive definition of the backward variable.

βt(j)
def

=== P (St = j|O)

=
∑

S<t+1,··· ,N>

N∏
i=t+1

Ψi(Si, Si−1, O)

=
∑
i∈S

Ψt+1(St+1, j, O)βt+1(St+1) (5.7)

Let St+1 = i, i ∈ S, then βt(j) can be written as Equation 5.8. Then Z(O) can
be represented by the backward vectors βt in Equation 5.9.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L105

βt(j) =
∑
i∈S

Ψt+1(i, j, O)βt+1(i) (5.8)

Z(O) = β0(S0)

=
∑
S1

Ψ1(S1, S0, O)β1(S1) (5.9)

Inference for problem 2

The second problem attempts to find the most probable sequence of states given an
observation sequence. A straightforward solution to obtain the optimal sequence Sopt
is shown in Equation 5.10, where the computational complexity is O(N ∗MN). In
order to improve efficiency, the Viterbi algorithm is introduced.

Sopt = arg max
S

P (S|O,Φ) (5.10)

The Viterbi algorithm

Similarly to the way the forward variable αt(j) was defined, δt(i) is defined in
Equation 5.11 to denote the probability of the most likely sub-sequence S<1,··· ,t−1>

= {S1, · · · , St−1} under the assumption that the process is in state i at time t. It
can also be recursively calculated, using Equation 5.12.

δt(i)
def

=== max
S<1,··· ,t−1>

P (St = i|O,Φ) (5.11)

δt+1(j) = max
i

[Ψj(j, i, O)δt(i))] (5.12)

As δN(i) represents the probability of the most probable sequence that ends in
state i, then the probability can be calculated by Equation 5.13. In order to
identify the states that contributed the most likely sequence, each state can be
established working backwards from the sequence using Equation 5.14.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L106

Popt(SN = i|O,Φ) = max
i∈S

δN(i) (5.13)

Sopt = arg max
i∈S

δN(i) (5.14)

5.4.3 Model training

As can be seen in Equation 3.21, the form of CRF is motivated by Maxent [12], which
is a model to estimate probability distributions from a training data set. The training
data set can be seen as a finite series of features or constraints, and the problem turns
into a constrained optimization problem. The principle of Maxent can help to find
an analytical solution. Log-likelihood, which is an approach to Maximum Likelihood
Estimation (MLE) [76], is calculated when estimating the parameters λ∗ = {λk} of
CRF models.

In a linear-chain CRF, the training data set is defined as D = {O(i), S(i)}Ni=1,
where each O(i) = {O1, O2, · · · , OM} is an observation sequence and each S(i) =

{S0, S1, · · · , SM} is a sequence of prediction states. It is assumed that during each
sequence there may exist arbitrary dependencies, whereas distinct sequences are inde-
pendent of each other. The CRF model (Equation 3.21) is a probability function and the
purpose of the training process is to maximise the logarithm of the likelihood function
(log-likelihood). Equation 5.15 gives the log-likelihood function and the estimation
principle is shown in Equation 5.16.

l(λ) =
N∑
1

logP (S(i)|O(i))

=
N∑
i=1

M∑
m=1

K∑
k

λkFk(S
(i)
m , S

(i)
m−1, O

(i))−
N∑
i=1

logZ(O(i)) (5.15)

λ∗ = arg max
λk

l(λ) (5.16)

In order to optimize the function l(λ), numerical optimization methods are applied
and the partial derivative function with respect to λ is given in Equation 5.17. The

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L107

second term is the expected value of Fk and a normal method of calculating λ is to
make the derivative function equal to zero, which will give a general constraint on
the model: the expectation for each feature under the model distribution is equal to
the expected value of each feature under the empirical distribution. This is also the
principle of the maximum entropy method.

∂l

∂λk
=

∑
i

∑
m

Fk(S
(i)
m , S

(i)
m−1, O

(i))−
∑
i

∑
m

∑
S,S′

Fk(S, S
′
, O(i))P (S, S

′ |O(i))

=
∑
i

∑
m

Fk(S
(i)
m , S

(i)
m−1, O

(i))−
∑
i

∑
m

Fk(S, S
′
, O(i))P̃ (S, S

′ |O(i))

(5.17)

Like logistic regression, estimation using the common log-likelihood function suf-
fers from the problem of overfitting, where the trained model may be more accurate
in fitting known data but less accurate in predicting new data. Thus a penalty is im-
posed on large parameter values (known as regularization). The most commonly used
penalty is based on the Euclidean norm and a regularization parameter 1

2σ
is assigned to

determine the strength of the penalty. The resulting penalized log-likelihood function
and its partial derivative function are shown in Equations 5.18 and 5.19, respectively.

l(λ) =
N∑
i=1

M∑
m=1

K∑
k

λkFk(S
(i)
m , S

(i)
m−1, O

(i))−
N∑
i=1

logZ(O(i))−
K∑
k=1

λ2
k

2σ
(5.18)

∂l

∂λk
=
∑
i

∑
m

Fk(S
(i)
m , S

(i)
m−1, O

(i))−
∑
i

∑
m

Fk(S, S
′
, O(i))P̃ (S, S

′ |O(i))−
K∑
k=1

λk
σ

(5.19)

In order to optimize l(λ), various methods have been considered, such as iterative
scaling [12, 11] and gradient-based [102] optimization. Newton series methods are
considered here for the purpose of parameter training because the curvature of the
likelihood is taken into account to make it converge faster. There are many expansion
forms of the Newton method. More specifically, L-BFGS (Limited Storage Quasi-
Newton Method) is applied.

Specifically, the Quasi-Newton method, an extended form of the Newton method, is

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L108

used to obtain the Hessian matrix from the first derivative of the objective function, thus
avoiding direct calculation. There are various algorithms that approximately generate
the Hessian matrix, such as DFP (Davidon-Fletcher-Powell) [77] and BFGS (Broyden-
Fletcher-Goldfarb-Shanno) [8], where BFGS is an improved form of DFP. A new
problem arises in the Quasi-Newton method in that the intermediate results of each
iteration need to be stored. For example, assume the parameter vector has a size of
N , then at least N ∗ (N + 1)/2 storage space is required, which is costly for a large
computation problem. Thus L-BFGS has been derived to decrease the intermediate
caching size.

Newton method

Given a real-valued function f(x), where x = {x1, x2, · · · , xN}, based on the Taylor

expansion, function f(x + ∆x) can be approximately written as Equation 5.20, where
∆x is the increment of x,∇f(x), defined in Equation 5.21, is the gradient2 of function
f(x), and ∇2f 2(x), the Hessian matrix, denotes the second partial derivative function
of f(x).

f(x + ∆x) ≈ f(x) +∇f(x)∆x +
1

2
∆xT∇2f 2(x)∆x (5.20)

∇f(x) = (
∂f

∂x1

, · · · , ∂f
∂xN

) (5.21)

Based on Equation 5.20, the first derivative of function f(x + ∆x) is given by
Equation 5.22. If ∆x approaches zero, let f ′(x + ∆x) = 0 and H = ∇2f(x), the
Newton update rule can be obtained as shown in Equation 5.23.

f
′
(x + ∆x) ≈ ∇f(x) +∇2f(x)∆x (5.22)

∆x = xk+1 − xk

= −[∇2f(x)]−1∇f(x)

= −H−1∇f(x) (5.23)

2The gradient of function f is defined to be the vector field whose components are the partial deriva-
tives of f .

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L109

Quasi-Newton method

In order to avoid constructing the inverse of the Hessian matrix H−1 directly, the Quasi-
Newton method tries to generate an approximate matrix H−1 from the gradient. Equa-
tion 5.24 can be derived from Equation 5.22.

∆x ≈ [∇2f(x)]−1[∇f(x + ∆x)−∇f(x)] (5.24)

Let sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk), then Equation 5.24 translates to
Equation 5.25.

sk ≈ [∇2f(xk)]−1yk (5.25)

Denoting [∇2f(xk)]
−1 by H−1

k , then sk can be defined using Equation 5.26.

sk ≈ H−1
k yk (5.26)

Thus Hk can be updated by iteration as shown in Equation 5.27.

Hk+1 = Hk + ∆Hk (5.27)

The DFP algorithm [77] gives an approximation for the iterative step in Equation
5.28, Hk+1 can then be defined in the form of Equation 5.29.

∆Hk =
sks

T
k

sT
k yk
− Hkyky

T
k Hk

yT
k Hkyk

(5.28)

Hk+1 = Hk +
sks

T
k

sT
k yk
− Hkyky

T
k Hk

yT
k Hkyk

(5.29)

Similarly to the DFP algorithm, if H−1
k is substituted by Bk+1, then the BFGS

algorithm [8] is obtained as shown in Equation 5.30.

Bk+1 = Bk + [1 +
yT
k Bkyk
sT
k yk

]
sks

T
k

sT
k yk
− sky

T
k Bk

sT
k yk

(5.30)

Limited storage Quasi-Newton method

The L-BFGS algorithm [69] can significantly reduce the storage space by only saving
a limited number (such as m) of the intermediate sums. The basic idea is as follows:

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L110

for the parameter vector with a dimension of N , in the (m + 1)th iteration when cal-
culating the Bk+1, only the intermediate results of the previous m iterations are stored,
as ∆Bk−m+1, · · · ,∆Bk, and the results of earlier iterations, like ∆B0, · · · ,∆Bk−m,
are thrown away. L-BFGS has been experimentally shown to be a practical optimiza-
tion algorithm for real world problems. If m = N , then L-BFGS is equivalent to the
standard BFGS algorithm. The inference process of L-BFGS is described below.

Let ρk = 1
yT

k sk
, then vk is a matrix of size N ∗ N , and Equation 5.30 can be re-

written as Equation 5.31, where I is the identity matrix.

Bk+1 = (I− ρkskyT
k)Bk(I− ρkyksT

k) + ρksks
T
k = vT

k Bkvk + ρksks
T
k (5.31)

Given m, if vk 6= I and ρk 6= 0, then the calculation of Bk+1 can be partitioned
into two parts depending on whether k + 1 is greater than m.

If k + 1 ≤ m, Bk+1 can be calculated by Equation 5.32.

Bk+1 = vT
k vT

k−1 · · ·B0v0 · · ·vk−1vk + vT
k · · ·vT

1 ρ0s0s
T
0 v1 · · ·vk

+vT
k · · ·vT

2 ρ1s1s
T
1 v2 · · ·vk

· · ·

+vT
k ρk−1sk−1s

T
k−1vk

+ρksks
T
k (5.32)

If k + 1 > m, the calculation of Bk+1 follows Equation 5.33.

Bk+1 = vT
k vT

k−1 · · ·vT
k−m+1B0vk−m+1 · · ·vk−1vk

+vT
k · · ·vT

k−m+2ρk−m+1sk−m+1s
T
k−m+1vk−m+2 · · ·vk

· · ·

+vT
k ρk−1sk−1s

T
k−1vk

+ρksks
T
k (5.33)

From Equation 5.32 and Equation 5.33, it can be clearly seen that the calculation
of Bk+1 only needs (2∗m+ 1) vectors: sk−m+1, · · · , sk,yk−m+1, · · · ,yk and B0. The
computational complexity is O(2 ∗m+ 1) = O(2 ∗N).

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L111

5.5 Summary

In this chapter, the key features of the target platform — the IBM BlueGene/L — have
been identified, and the proposed solution — machine learning — has been outlined.
The process of the prediction approach has been described as follows:

• Internal system dependencies will lead to failure sequences.

• Not every error will result in a failure, and a complex relationship exists between
errors and failures.

• Failure patterns need to be identified for prediction.

• RAS log files contain sufficient system trace information to reflect the depen-
dencies.

• Because of the redundant information contained in log items, pre-processing is
applied.

• Arbitrary dependencies may hold in a failure sequence; CRFs are used to model
failure patterns.

• The extended form of CRF with continuous time support has been used to rep-
resent the forecasting problem.

• The semi-Markov CRF model is trained with both failure sequences and non-
failure sequences.

• The failure category could be further specified.

• Evaluation and testing using a different data set is conducted on the established
model.

• The optimised model is used for failure prediction.

This chapter also covers the detailed content of data pre-processing, which de-
scribes the main steps that generate a set of training sequences from the raw logs.
More specifically, this process involves:

• Categorization maps natural language event logs to various category IDs in
terms of several event properties, such as severity, location, etc.

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L112

• Filtering removes redundant event logs of the same cause according to both
temporal and spatial dimensions.

• Sequence extraction generates the sequences that lead to failures from the fil-
tered logs.

For the prediction model, semi-Markov CRF is applied as a combination of a semi-
Markov process and the standard CRF model: standard CRF employs discrete time
for the stochastic process of state traversals, which is replaced by a continuous time
semi-Markov process. In terms of the prediction strategy, two different semi-Markov
models are used to achieve precise forecasting on what type of failure, if any, may
occur at a future point.

For the inference, two basic prediction problems have been solved: first, it might be
of interest what the probability of a state sequence would be given the observation se-
quence under a specific model, and second, how to generate the optimal state sequence
with maximum likelihood given an observation sequence. The forward and backward
algorithms are introduced to solve the first problem and greatly reduce computational
complexity from O(N ∗MN) to O(N ∗M2), and the Viterbi algorithm is used to work
out the most probable state sequence.

To train the target CRF model and estimate the parameter vector, a penalized log-
likelihood method is used. However, the function of the parameter vector cannot be
maximized in closed form and there are no analytic solutions, so numerical optimiza-
tion methods are used. More specifically, L-BFGS is employed. Firstly, it does not di-
rectly calculate the Hessian matrix, which is infeasible for some complex problems, but
is required by the original Newton method. Secondly, compared to the quasi-Newton
method, the storage space required can then be reduced to 2 ∗N from N ∗ (N + 1)/2,
which significantly improves computational efficiency.

Contributions of this chapter

This chapter has introduced a novel approach for categorization of raw log events in
terms of its keywords, which is also helpful for failure analysis, and a novel approach
to remove redundant events in logs with respect to both spatial and temporal character-
istics. Secondly, this chapter has described the prediction strategy using semi-Markov
CRF, where the prediction is achieved on various levels that not only can tell whether
there is a future failure, but also distinguish failure categories. The detailed prediction
result could be very useful for failure recovery and system maintenance. To the best of

CHAPTER 5. FAILURE PREDICTION MODEL FOR THE IBM BLUEGENE/L113

the author’s knowledge, this work is the first to use semi-Markov CRF for the failure
prediction problem. Finally, the semi-Markov CRF model, extended from the standard
CRF to support continuous time events, has been discussed. The model provides great
flexibility in terms of dependencies and is more appropriate for real-world problems
with dependencies than other models, such as Bayesian models, Markov models, etc.

Relation to other chapters

The previous chapter has described a proactive failure management framework, which
derives the search for good prediction mechanisms. This chapter has investigated the
failure prediction process: analyse event sequences that lead to severe failures, then
use the result model for future failure forecasting, finally the resulting output is sent to
the failure recovery module to help the system make the right decision in choosing an
appropriate recovery action. The next chapter introduces experimental scenarios and
presents results.

Chapter 6

Experimental results

The prediction-based failure management framework presented in this thesis contains
two main components: failure prediction and failure recovery. The failure prediction
approach has been applied to the real system-log data from the IBM BlueGene/L, then
a proactive failure recovery mechanism based on the prediction model has been set up
to reduce wasted computational cost. This chapter discusses the experimental approach
and analyses the associated results. This chapter is organized based on the experimen-
tal process flow: starting with the raw data preprocessing in Section 6.1; characteristics
of the data are presented in Section 6.2; the training of the semi-Markov CRFs is dis-
cussed in Section 6.3; analysis of the final failure predictor and its prediction quality is
given in Section 6.4. Section 6.5 summarises the chapter.

6.1 Data preprocessing

As described in Chapter 5, there are three steps in preprocessing: categorization, filter-
ing and sequence extraction. This section introduces the detailed process and presents
the results for each step.

6.1.1 Categorization

Understanding the raw data is a key issue and some analysis is conducted at this stage.
Log statistics based on the field facility, which is defined in the RAS log format in
Chapter 5, are shown in Figure 6.1. It can be seen that events from KERNEL are the
most frequent, with MMCS and APP as the second most active components. Figure
6.2 presents the event number statistics according to different severity levels. INFO

114

CHAPTER 6. EXPERIMENTAL RESULTS 115

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

APP
BGLM

ASTER

CARD

CM
CS

HARDW
ARE

KERNEL

LINKCARD

M
M

CS

M
ONITOR

SERV_NET

N
um

be
r

of
 r

ec
or

ds
 (

lo
ga

rit
hm

ic
)

Facility

Event number statistic based on facility

Figure 6.1: Facility based log statistics.

events make up around 80% of the total. From Figure 6.1 we can conclude that most
KERNEL events are at the INFO level. Note that Figures 6.1 and 6.2 both have their
y-axes on logarithmic scales.

The main task of categorization is to assign a category ID which reflects the key
characteristics of the event, such as severity, location and impact on the system, to each
event in the RAS logs. However, as described in Chapter 5, the RAS logs consist of
events that are recorded using various fields and they are not machine-processable. In
order to analyse these events, several steps have to be performed, including redundant

information removal, keyword detection, pattern mining and pattern regularization

(the details are given in Chapter 5).

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

INFO WARNING SEVERE ERROR FATAL FAILURE

N
um

be
r

of
 r

ec
or

ds
 (

lo
ga

rit
hm

ic
)

Severity levels

Event number statistic based on severity

Figure 6.2: Severity based log statistics.

CHAPTER 6. EXPERIMENTAL RESULTS 116

APPREAD 1117869872 2005.06.04 R23-M1-N8-I:J18-U11 2005-06-04-00.24.32.398284 R23-M1-
N8-I:J18-U11 RAS APP FATAL ciod: failed to read message prefix on control stream (CioStream
socket to 172.16.96.116:33399

C1009 20050604002432398284 R23M1N8IJ18U11

Raw event

Processed
event

Remove redundant information

Category name

Category ID Time Component ID

Figure 6.3: An example of a raw event and the corresponding processed event.

The first step is to remove redundant information (see Table 5.3) contained in the
events. Figure 6.3 presents an example of both a raw event and the corresponding pro-
cessed event. It can be seen that the raw event has been tagged with a category name by
latter steps and there are multiple fields, part of which are recorded in natural language.
The processed event includes only three fields: category ID, time and component ID.
More specifically, two issues need to be noted here. Firstly, the timestamp in the raw
event is recorded in the form of “2005-06-04-00.24.32.398284” denoting that the event
occurred at 00 am, 24 minutes and 32.398284 seconds on June 4th in 2005. In order
to calculate the time interval between two successive events, the timestamp has to be
transformed to a standard format so that it can be processed automatically. A common
solution for this problem is to adopt an Coordinated Universal Time (UTC) integer,
which counts time since January 1st, 1972. Secondly, category names are represented
as category IDs in the processed events for the purpose of automatic processing. In
order to be able to match a category ID with a unique category name, a dictionary with
entries in the form of < ID, category name > is established.

…
C1011 APP FATAL ciod.*file.*directory
C1012 APP FATAL ciod.*loading
C1013 APP FATAL ciod.*creating
C0601 RAS KERNEL INFO.*soft failures
C0602 RAS KERNEL INFO.*input interrupt
…

Figure 6.4: An example of event patterns.

After removing the redundant information, the next step is to find the most frequent
keywords, some of which are presented in Table 5.4. The target patterns in the form
of regular expressions, an example of which is shown in Figure 6.4, are then gener-
ated using these keywords. As can be seen, the first field in the patterns indicates the

CHAPTER 6. EXPERIMENTAL RESULTS 117

category ID and the remaining part is used to match the log events.
Figure 6.5 demonstrates the hierarchical structure of the final categories. Three

fields in the events have been considered in the categorization: Facility, Severity and
Description; finally, 62 subcategories have been identified.

All events

Alert events

Normal events

Application alert

Network alert

Kernel alert

Input/output alert

Memory alert

Application normal

System normal

Control information

Subcategory 1
Subcategory 2

Subcategory 1
Subcategory 2

Figure 6.5: Hierarchical structure of the categories.

6.1.2 Filtering

As described in Section 5.3.2, filtering combines several occurrences of the same event
to prevent multiple reporting of the same problem. More specifically, there are two
kinds of filtering techniques: temporal filtering, which removes temporally repeated
events (redundancy in time), and spatial filtering, which removes spatially repeated
events (redundancy in space).

To achieve temporal filtering, the optimal filtering time window ε, which is a core
issue during the process, is determined by the method shown in Figure 5.5. The optimal
value is identified graphically by plotting the number of resulting event numbers over
various ε values. It can be seen that the optimal value of ε may differ for each category
in filtering. The heuristic approach presented in Section 5.3.2 hopes to approximate
the optimal ε. Figure 6.6 shows the plots for four different categories of events: Figure
6.6(a) presents MMCS alert events and the optimal ε is set to be approximately 250
milliseconds according to the heuristic approach; similarly, the optimal ε for filtering

CHAPTER 6. EXPERIMENTAL RESULTS 118

both system normal events and kernel alert events shown in Figure 6.6(b) and Figure
6.6(c) is close to 430 milliseconds; for the plot of application alert events in Figure
6.6(d), the optimal value is around 500 milliseconds. In contrast, Figure 5.5 shows the
curve of total event numbers over various values for ε and the optimal value is set to
430 milliseconds.

Evidently, a unique value for ε in the filtering is not optimum for some categories,
for example, as shown in Figure 6.6, the usage of 430 milliseconds for the filtering time
window will remove useful MMCS alert events, while retaining redundant application
alert events. In our filtering mechanism, the optimal ε for each category is identified
for the purpose of filtering so that all 62 categories may use different values for ε to
remove redundancy to the greatest extent possible. Table 6.1 summarizes the results
after temporal filtering.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 M

M
C

S
 a

le
rt

 e
ve

nt
s

Filtering time window ε (milliseconds)

Log filtering based on different time window

(a) MMCS alert events

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 s

ys
te

m
 n

or
m

al
 e

ve
nt

s
(lo

ga
rit

hm
ic

 s
ca

le
)

Filtering time window ε (milliseconds)

Log filtering based on different time window

(b) System normal events

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 k

er
ne

l a
le

rt
 e

ve
nt

s

Filtering time window ε (milliseconds)

Log filtering based on different time window

(c) Kernel alert events

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

N
um

be
r

of
 a

pp
lic

at
io

n
al

er
t e

ve
nt

s

Filtering time window ε (milliseconds)

Log filtering based on different time window

(d) Application alert events

Figure 6.6: Event filtering on various categories using the temporal filtering mecha-
nism. 6.6(a) plots the curve of MMCS alert events, while 6.6(b), 6.6(c) and 6.6(d)
present the curves of system normal events, kernel alert events and application alert
events respectively.

CHAPTER 6. EXPERIMENTAL RESULTS 119

Spatial filtering is not considered directly in this thesis for the following. Firstly,
temporal filtering can remove spatial redundancy to a certain degree, because the oc-
currences of most spatially redundant events are close in time. Secondly, the redun-
dancy in events has been significantly reduced after temporal filtering as shown in
Table 6.1. Finally, as described in Section 5.3.2, before removal of spatial redundancy
occurs, analysis of the dependencies between events should be carried out, which is
a fundamental part of the prediction model. Thus, retaining such redundancy may
improve prediction accuracy.

BlueGene/L All categories
Original volume 4,747,963

After filtering 334,056
Compress ratio 14.2

Table 6.1: Summary of log filtering.

6.1.3 Sequence extraction

Event sequences, defined in Section 3.1, are extracted from the filtered event logs. As
explained in Section 5.4.1, sequence extraction depends on three time intervals: lead-
window ∆tl, data window ∆td and margin time window ∆tm. For lead-window ∆tl, a
value of five minutes has been used for the default configuration under the assumption
that failure management actions, such as checkpoint construction, job restart, etc. can
be performed in five minutes for most computer systems. Furthermore, failure predic-
tion using various values for ∆tl is studied in later sections. In terms of data window
∆td, a default value of five minutes is adopted. As demonstrated in Figure 5.6, margin
time window ∆tm is used when extracting non-failure sequences. The value of ∆tm

determines time intervals between healthy system states. As the time length a failure
lasts cannot be measured, a value of five minutes for ∆tm is chosen in the experiments
based on the assumption that the effects of a failure cannot last for more than five
minutes.

As presented in Figure 5.7, two ordered prediction models are established for dif-
ferent forecasting purposes. The first prediction model tells whether the system is
failure-prone, whilst the second prediction model further forecasts the particular fail-
ure type once a failure has been predicted. Obviously, the tags identified by multiple

CHAPTER 6. EXPERIMENTAL RESULTS 120

models over the same sequence are different. More specifically, model 1 marks a se-
quence as being either a failure sequence or a normal sequence; in contrast, for the
same sequence, model 2 further analyses the failure categories if it is marked failure

by model 1.

6.2 Failure characteristics

Key properties of the preprocessed data are analysed, such as distributions and delays
of both normal events and alert events (described in Section 6.2.1 and Section 6.2.2,
respectively), the correlations between normal events and alert events are presented
in Section 6.2.3. Furthermore, data analysis helps to better understand the platform
under investigation and may help other researchers to determine whether the methods
and models presented in this thesis can be transferred to other systems.

6.2.1 Distribution of normal events

The prediction model builds on the timing of failure occurrence combined with the
internal dependencies among events, then uses the trained patterns derived from the
historical logs to estimate future failures. Therefore, normal events, including common
errors, play an important role in the model.

Figure 6.7 shows two aspects of normal events: distribution and inter-arrival time
(delays). More specifically, Figure 6.7(a) shows the normal event distribution broken
down by hours in each day and demonstrates that midday is the system’s busiest time,
with night-time as its least active time. Figure 6.7(b) shows the event numbers in
terms of days and that the dataset used for analysis is comprised of 215 days; it can
be seen from the figure that the system usage declined towards the end of 2005. For
the intervals between events, Figure 6.7(c) presents the histogram of frequency over
normal events with interval ranging from 0 to 30 seconds, we can see the majority of
the intervals fall into 01 and 1 second. The dataset contains 118,111 samples, 58,683
intervals fall into category 0 and 57,917 intervals fall into category 1, however, only
1,511 intervals range from 2 to 30 seconds. Figure 6.7(d) shows that delay 1 and delay
0 have the top two highest density values.

1A delay of 0 means two events have a time difference less than 1 second in the log. Specifically,
the granularity of the IBM BlueGene/L RAS logging mechanism is less than 1 millisecond and multiple
events may well have occurred in one second.

CHAPTER 6. EXPERIMENTAL RESULTS 121

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5 10 15 20

N
um

be
r

of
 e

ve
nt

s

Hours of a day

Whole event distribution based on hours

(a) Hourly normal event distribution

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

07/01/05 08/01/05 09/01/05 10/01/05 11/01/05 12/01/05 01/01/06

N
um

be
r

of
 e

ve
nt

s

Date

Whole event distribution based on date

(b) Daily normal event distribution

Histogram of frequency

Delay of normal events (seconds)

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

00
0

60
00

0
10

00
00

(c) Histogram of frequency

0 5 10 15 20 25 30

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Histogram of density

Delay of normal events (seconds)

D
en

si
ty

(d) Density distribution

Figure 6.7: Normal event distributions and delays (interval arrival time). Figure 6.7(a)
shows the number of normal events broken down into 24 hour slots each day, Figure
6.7(b) presents the daily normal event distribution, Figure 6.7(c) demonstrates a his-
togram of normal event frequency, whilst Figure 6.7(d) shows the corresponding event
density.

6.2.2 Distribution of alert events

Analysis of alert events is a major focus in this thesis and it has been studied in several
other papers investigating the problem of failure prediction, as mentioned in Chapter
3. For example, the nearest neighbour predictor described in [65] makes use of event
frequency, especially alert events, for future failure occurrence prediction. In contrast,
other papers perform an analysis of the distribution of Time Between Failures (TBF)
and try to fit the failure occurrence using an existing distribution law [13, 71, 83].

As the distribution of failures varies from system to system, and failures are not
as common as normal events, the whole dataset of 215 days has been analysed. Sim-
ilar to the analysis of normal events, Figure 6.8 provides the distributions and TBF of

CHAPTER 6. EXPERIMENTAL RESULTS 122

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 5 10 15 20

N
um

be
r

of
 e

ve
nt

s

Hours of a day

Alert event distribution based on hours

(a) Hourly alert event distribution

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

07/01/05 08/01/05 09/01/05 10/01/05 11/01/05 12/01/05 01/01/06

N
um

be
r

of
 e

ve
nt

s

Date

Alert event distribution based on date

(b) Daily alert event distribution

Histogram of frequency

TBF (seconds)

F
re

qu
en

cy

0 5 10 15 20 25 30

0
20

00
60

00
10

00
0

(c) Histogram of frequency

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

Histogram of density

TBF (seconds)

D
en

si
ty

(d) Density distribution

Figure 6.8: Alert event distributions and Time Between Failures (TBF). Figure 6.8(a)
and Figure 6.8(b) presents the daily and hourly alert event distribution, Figure 6.8(c)
shows the histogram of TBF frequency and Figure 6.8(d) shows the distribution of
TBF density.

alert events. More specifically, Figure 6.8(a) presents the hourly alert event distribu-
tion, which has the same tendency as with normal events that midday has the largest
number of alert events. In contrast, Figure 6.8(b) shows the daily number of alerts
event numbers covering 215 days. It can be seen from the figure that the frequency of
alert event occurrence changes from day to day and failure prediction-based on failure
frequency is likely to be inappropriate in this circumstance. For TBF analysis, 17,573
values have been considered. Figure 6.8(c) presents a histogram of the frequency on
TBF spanning from 0 to 30 seconds; correspondingly, Figure 6.8(d) presents the his-
togram of the density.

In order to obtain an overview of the TBF distributions, quantile-quantile plots

CHAPTER 6. EXPERIMENTAL RESULTS 123

0 5 10 15

0
5

10
15

20
25

30

Poisson distribution fit

Distribution quantiles

D
at

a
qu

an
til

es

Figure 6.9: QQ-diagram of TBF using Poisson distribution.

(QQ-plots), which plot quantiles of the observed data distribution against the paramet-
ric family of distributions, are provided in Figures 6.9 and 6.10 in order to investigate
which parametric family of distributions best fit the data. More specifically, the fit with
a Poisson distribution is present in Figure 6.9, and normal, exponential, lognormal and
Weibull distributions are considered in Figures 6.10(a), 6.10(b), 6.10(c) and 6.10(d),
respectively. Theoretically, a perfect match of quantiles is a straight line; thus it can
be easily seen from the figures that exponential and lognormal distributions fit the data
better than do the other three distributions. None have a perfect fit in this instance; how-
ever, these distributions can be used to give approximate answers to pertinent questions
as discussed in later sections.

6.2.3 Correlation between normal events and alert events

Correlation between normal events and alert events reflects the internal dependencies
in components and this correlation in RAS logs has been explored for failure predic-
tion, for example, in rule based mechanisms like Eventset [108]. However, these rules
can only describe simple and straightforward correlations in events, rather than express
complex dependencies. Thus the CRF model presented in this thesis is adopted to ad-
dress this issue. In order to correctly understand the dependencies in this context, this

CHAPTER 6. EXPERIMENTAL RESULTS 124

−4 −2 0 2 4

0
5

10
15

20
25

30

Normal distribution fit

Distribution quantiles

D
at

a
qu

an
til

es

(a) Normal distribution fit

0 2 4 6 8 10

0
5

10
15

20
25

30

Exponential distribution fit

Distribution quantiles

D
at

a
qu

an
til

es

(b) Exponential distribution fit

0 500 1000 1500 2000 2500 3000

0
5

10
15

20
25

30

Lognormal distribution fit

Distribution quantiles

D
at

a
qu

an
til

es

(c) Lognormal distribution fit

0 1 2 3

0
5

10
15

20
25

30

Weibull distribution fit

Distribution quantiles

D
at

a
qu

an
til

es

(d) Weibull distribution fit

Figure 6.10: QQ-diagram of TBF. QQ-plots plots the distribution of TBF observed in
the sample dataset versus several parametric distributions: normal, exponential, log-
normal and weibull, which are shown in Figures 6.10(a), 6.10(b), 6.10(c) and 6.10(d)
respectively.

section explores direct correlations among events.
It can be easily seen from the logs that some events2 have the same event ID, which

means there may be multiple events describing the execution progress of a single job.
Motivated by this observation, for each alert event with a valid event ID, a search for
normal events with the same event ID can help to examine whether the same job has
reported ahead of normal events. For example, among the 168 memory alert events in
the logs under investigation, there are 98 reported normal events from the correspond-
ing job. Evidently, it can be concluded that there are normal events prior to most alert
events and these correlations are captured for failure prediction.

2Events here means messages in RAS log files.

CHAPTER 6. EXPERIMENTAL RESULTS 125

6.3 Training semi-Markov CRF

Data preprocessing, which deals with the raw RAS logs, is an important prerequisite
for the failure prediction models presented in this thesis. This section introduces the
steps involved in training semi-Markov CRF for failure prediction in the IBM Blue-
Gene/L. In order to yield a more stable and reliable model, the dataset used for training
covers a large number of events.

As described in Chapter 5, the training dataset, which is composed of event se-
quences, is used to learn the parameters of the final semi-Markov models. More
specifically, the L-BFGS algorithm, which is presented in Section 5.4.3, is adopted
in the experiments to improve training efficiency while reducing memory usage. The
training task attempts to capture the following features in the training dataset.

Each event sequence in the training dataset is the basic data instance and
it is assigned a category label, which expresses the future events to which
this sequence will lead. The sequence is extracted in a particular time
window and the sequence category label depends on each event and its
position in the sequence. These long range dependencies among events
are captured in the training process by the target model.

As shown in Section 5.4.1, there are two prediction models contained in the mech-
anism. They both adopt the semi-Markov CRF model and use the L-BFGS algorithm
for model training, however, the two models are used for different prediction purposes,
thus experiments using different datasets and parameter spaces have been performed.

Parameter space

The prediction model depends on several aspects, such as dataset volume, category
numbers, internal graphical model (semi-Markov CRF here), etc. Thus many param-
eters are involved in the training process. Although some of these have already been
explained in Chapter 5, a brief introduction is provided here. Some parameters are
closely related to performance issues (referred to as performance-based parameters,
such as memory space, number of threads, etc.), while others have close links with the
prediction model itself (referred to as model-based parameters). Due to the emphasis
on model-based parameters, their possible values are explored in detail; in contrast,
reasonable values are assumed for performance-based parameters.

More specifically, the following parameters have been configured during the train-
ing of the semi-Markov CRF model.

CHAPTER 6. EXPERIMENTAL RESULTS 126

• Number of sequence category labels. As described in Chapter 5, each event se-
quence in the training dataset is assigned a category label. For different predic-
tion models, the total number of category labels may be different. More specif-
ically, for prediction model 1, according to its particular prediction target that
determines whether there is a future failure, there are only two sequence cate-
gory labels: failure or normal. In contrast, for prediction model 2, which further
forecasts the failure category, the label number depends on the failure patterns
that have been identified.

• Number of event categories. Each event sequence is comprised of multiple
events, therefore the event category number determines the complexity of an
event sequence. Furthermore, event categories in the dataset are processed in the
Categorization stage (shown in Section 5.3.1). There are 62 categories in total.
For both prediction model 1 and prediction model 2, they adopt the same event
categories.

• Number of optimization attempts. As mentioned in Chapter 5, the L-BFGS algo-
rithm, a step-based numerical optimization method, is used during the training
process. The problem is determining how many attempts should be conducted
to reach the global optimum. Evidently, this depends on various aspects such
as the volume of the dataset, the complexity of each training instance, etc. In
the experiment, a maximum value of 100 is configured for both models. If an
optimum value has been reached before the algorithm has been performed 100
times, then the later tries will be ignored.

As shown in Figure 5.7, there are two prediction models and the detailed configu-
ration of prediction model 1 are listed in Table 6.2. In terms of prediction model 2, it
is used to further identify the specific failure type if a failure has been estimated, and it
is not considered in the failure recovery scheme described in Chapter 4. However, it is
important for fault diagnosis and system maintenance, and may be of value in a future
fault recovery system. The detailed parameter configuration and experimental results
are therefore presented in Appendix A.

6.4 Failure prediction

Failure prediction modelling is one of the main aspects of the work in this thesis, with
details presented in Chapter 5. This section first introduces the evaluation metrics in

CHAPTER 6. EXPERIMENTAL RESULTS 127

Parameters Model 1
Sequence label number 2
Event category number 62
Maximum optimization tries 100
Underlying graphical model semi-Markov CRF

Table 6.2: Configuration for prediction model 1.

terms of prediction quality and prediction stability, in Section 6.4.1. Section 6.4.2
demonstrates the results of prediction accuracy and analyses its relationships with sev-
eral parameters. Finally, the results comparing this technique with four other prediction
models are given in Section 6.4.3.

6.4.1 Evaluation metrics

This section introduces the metrics used for evaluation of the failure predictor in terms
of prediction quality and prediction stability. Prediction quality depends on both the
model and the dataset, while prediction stability reflects the generalization of the model
over the target dataset.

Metrics for prediction quality

Widely accepted metrics for evaluation of such scenarios are Precision, Recall and
F-measure, which are defined by the confusion matrix. Precision gives the ratio of
correctly identified failures compared to the total number of failure predictions (Equa-
tion 6.1); Recall defines the ratio of correctly predicted failures compared with the
total number of failures (Equation 6.2). The definitions of True Positive (TP), False
Negative (FN), False Positive (FP) and True Negative (TN) are presented in Chapter 4
on page 74.

Pprecision =
TP

TP + FP
(6.1)

Rrecall =
TP

TP + FN
(6.2)

In order to integrate precision and recall into a single metric while considering
the trade-off, F-measure is used [72]. F-measure is the weighted harmonic mean of
precision and recall, defined by Equation 6.3, where α ∈ [0, 1]. A common case is F0.5

where precision and recall are equally weighted (shown in Equation 6.4).

CHAPTER 6. EXPERIMENTAL RESULTS 128

Fα =
1

α
P

+ 1−α
R

=
P ∗R

(1− α) ∗ P + α ∗R
(6.3)

F0.5 =
2 ∗ P ∗R
P +R

(6.4)

Evaluation of prediction stability

Prediction accuracy mainly depends on two aspects: the internal graphical model and
the target dataset. Semi-Markov CRF is adopted as the graphical model here; in terms
of dataset, various factors may produce an effect on the final accuracy, such as data
process, dataset volume, etc. Data process is explained in Section 5.3; this section
mainly considers the problem of data volume.

For some real-world problems the available dataset is limited, hence in order to
assess data quality and conduct experiments in an effective way, a technique named
cross-validation is applied. Cross-validation assesses how well a prediction model will
generalize to an independent data set [59]. It is an important technique to estimate
the accuracy of a prediction model in a practical case. For the problem of failure
prediction in the IBM BlueGene/L, although the log volume is very large, valuable
events remaining after preprocessing are rare and all available data should be utilized
as appropriate.

A common solution is to use m-fold cross validation, which processes the limited
data set cyclically. More precisely, in m-fold cross validation, the original dataset is
randomly partitioned into m disjoint subsets of equal size N/m, where N is the entire
data size. Of the m subsets, select one subset for training each time, this is equivalent
to using 1/m of the whole dataset as training data with the remaining subsets used
as testing data. The experiments are then repeated m times, and each time different
subsets are used for testing and training, so that all the data can be validated and the
level of fit of a model to a data set can be estimated.

Another solution is to use Monte-Carlo cross-validation [87]. The main idea is that
the dataset is randomly divided into a fraction, where α (0 < α < 1) for training and
the remainder (1− α) is for testing; the experiment is repeatedly several times and the
results are then averaged over the splits. In this thesis, Monte-Carlo cross-validation is
applied and 100 trials are used.

CHAPTER 6. EXPERIMENTAL RESULTS 129

6.4.2 Prediction quality

Precision, recall and F-measure are used here to assess prediction quality. Specifically,
100 repetitions of the experiments have been performed over each model according to
the default configurations. The parameters and results are listed in Table 6.3.

Prediction model 1

Parameters
Data window ∆td 5 min

Lead-time ∆tl 5 min
No. of states 2

Prediction
Precision 87.41%

Recall 77.95%
F0.5 82.18%

Variance
Precision 0.38%

Recall 0.69%
F0.5 0.41%

Table 6.3: Prediction accuracy and its variance of prediction model 1 according to the
default parameter settings.

It can be seen from the table that 87.41% of failures can be identified by the first
prediction model, with an overall F-measure F0.5 of 82.18%. Another issue considered
here is the prediction stability. As shown in Table 6.3, the variance of precision over
the prediction model 1 is 0.38%, which means it has stable results.

As mentioned in the previous sections, there are multiple steps and parameters in-
volved to set up a failure predictor and they have close relations to the final failure
forecasting. Among these aspects, two kinds of issues are investigated here with re-
spect to the prediction quality: data specific issues, which refer to data quality and
quantity, and preprocess issues, which refer to properties imposed by the application
domains including data window size ∆td and lead time size ∆tl.

Dependency on data specific issues

The failure prediction model described in this thesis adopts the semi-Markov CRF
model to learn unobservable relationships among the RAS dataset. This is a data-
driven machine learning approach, which means the quality and quantity of available
data will greatly influence the final prediction quality.

In order to investigate the effects of data quality on the prediction, the techniques
of cross-validation, introduced in Section 6.4.1, are used for the evaluation. However,

CHAPTER 6. EXPERIMENTAL RESULTS 130

to explore the effects of training data size, two concerns may arise: firstly, in some
application domains, the proportion of the entire dataset that is available for training
may be limited; secondly, the most appropriate size of data for training is difficult to
determine. More specifically, a basic rule in machine learning is to use as much data
as possible for training; however, in some specific application domains, the system
changes over time and old measured data may be unable to express the current system.
Thus experiments have been conducted to show these effects.

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

pe
r

ce
nt

)

Size of trainining dataset (per cent)

Effects of the size of training dataset on the precision of Model 1

Precision

(a) Data effect on precision

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
0.

5
(p

er
 c

en
t)

Size of trainining dataset (per cent)

Effects of the size of training dataset on the F0.5 of Model 1

F0.5

(b) Data effect on F0.5

Figure 6.11: Effects of the size of training dataset on the prediction of model 1. Figure
6.11(a) plots the effects of the training dataset on the precision of model 1 with error
bars, similarly, Figure 6.11(b) plots the effects on the F0.5 with error bars.

Experiments have been performed with training data sizes of 10%, 20%, 40%,
60%, 70%, 90% of the entire data, correspondingly the remaining 90%, 80%, 60%,
40%, 30%, 10% of the dataset are used for testing. Specifically, 100 iterations are
performed for each size. Figure 6.11 shows the effects of the size of the training
dataset on the prediction of model 1 and the error bars show variance. It can be seen
from Figure 6.11(a) that the precision of model 1 increases gradually as the proportion
of the training dataset is increased. In terms of variance, prediction results in the middle
part of the curve are most stable. In the case of effects on F0.5, a similar trend is found
in Figure 6.11(b).

Dependency on data window ∆td

As described in the previous sections, a general preprocess approach has been intro-
duced and several steps have been conducted on the raw RAS log before they are used
for real prediction. More precisely, multiple parameters have been involved with no

CHAPTER 6. EXPERIMENTAL RESULTS 131

relationship to specific applications, however, some parameters may significantly af-
fect prediction quality. This section discusses the effects of the data window size ∆td

on prediction accuracy.

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

P
re

ci
si

on
 (

pe
r

ce
nt

)

Data window size ∆td (Minute)

Effects of the data window size ∆td on the prediction of Model 1

Precision

(a) Effect on precision

 50

 60

 70

 80

 90

 100

 0 2 4 6 8 10 12 14

F
0.

5
(p

er
 c

en
t)

Data window size ∆td (Minute)

Effects of the data window size ∆td on the prediction of Model 1

F0.5

(b) Effect on F0.5

Figure 6.12: Effects of the length of data window ∆td on the prediction of model 1.
Figure 6.12(a) shows the effects of ∆td on the precision of model 1, in contrast, Figure
6.12(b) presents the effects of ∆td on the F-measure F0.5.

Data window size ∆td is used in the stage of sequence extraction to determine
the length of event sequences used for failure prediction. Generally, longer sequences
should produce more precise predictions. Thus experiments have been conducted to
demonstrate this rule. For the effects of ∆td, lengths of 1 minute, 5 minutes and 10
minutes over ∆td are used in the experiment, and 100 iterations are performed on each
length. Figure 6.12 shows the results. In terms of the precision and the F0.5 shown
in Figures 6.12(a) and 6.12(b), respectively, we can conclude that both have a notable
increase as ∆td increases, however, the opposite holds for the variance as the longer
the ∆td, the more stable is the prediction accuracy.

Another issue to be noted here is that increasing the data window size ∆td can
only improve the prediction accuracy to a certain degree, and the best accuracy can
be obtained using a certain value of data window size denoted as ∆td

′ , a larger data
window will contain more noise, which may cause the problem of overfitting and de-
crease the prediction accuracy. To obtain the value of ∆td

′ , experiments with varying
data window size have to be performed, and the value of ∆td when the turning point
occurs is the optimal value. Because the available dataset is limited, particular lengths
of data window size have been chosen during the experiment and only several points
have been plotted in Figure 6.12.

CHAPTER 6. EXPERIMENTAL RESULTS 132

Dependency on lead time ∆tl

Lead time ∆tl, defined in Chapter 3, denotes the time span from the current time
to a future failure occurrence point. It also determines the time duration to perform
proactive actions if a future failure is predicted. Lead time ∆tl therefore affects failure
prediction from another perspective; if a small value is chosen for ∆tl, there may be
not enough time to take actions before actual failure occurs, otherwise, a too large
value for ∆tl may fail to capture the essential dependencies among events. In order to
assess the effects of lead time, experiments with lead time ranging from 5 minutes to
40 minutes have been performed.

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
re

ci
si

on
 (

pe
r

ce
nt

)

Lead time ∆tl (Minute)

Effects of the lead time ∆tl on the prediction of Model 1

Precision

(a) Effect on precision

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

F
0.

5
(p

er
 c

en
t)

Lead time ∆tl (Minute)

Effects of the lead time ∆tl on the prediction of Model 1

F0.5

(b) Effect on F0.5

Figure 6.13: Effects of the length of lead time ∆tl on the prediction of model 1. Figure
6.13(a) shows the effects of ∆tl on precision and Figure 6.13(b) plots the changes of
the F0.5 according to ∆tl.

Figure 6.13 plots the effects of the length of ∆tl on precision and F0.5. Specifically,
lengths of 5 minutes, 30 minutes and 40 minutes are used for ∆tl. It is concluded that
both precision and F0.5 decline as ∆tl increases.

6.4.3 Comparison

The failure prediction approach has adopted semi-Markov CRFs, which extend stan-
dard CRFs in order to support continuous time features. In order to judge the prediction
results shown in the previous sections, the new approach has been compared to several
other published failure prediction approaches on the same IBM platform, as described
in Chapter 3.

The IBM BlueGene/L is a widely used supercomputer listed in the Top500 [2] and
much research has been done on failure prediction for this platform. These published

CHAPTER 6. EXPERIMENTAL RESULTS 133

approaches utilise a wide range of techniques, such as rule-based learning, statistical-
based prediction and meta-learning techniques (discussed in detail in Section 3.2.2).
Comparison to these approaches is given in this section, and prediction results using a
standard CRF are also provided.

The comparison is conducted in terms of prediction accuracy and prediction scope.
All experiments have been carried out using the RAS logs from the IBM BlueGene/L
and the mean values of the results are adopted. As discussed in previous sections,
the size of data window has great effects on the final prediction accuracy. To make
a fair comparison, two aspects have been considered: data window size and variance
of prediction accuracy. In terms of data window size, Eventset approach, Standard
CRF based predictor and Semi-Markov CRF based predictor used a data window of 5
minutes, Nearest neighbour predictor used a data window of 48 hours, Meta-learning
based predictor used a data window of 15 minutes to 1 hour. For variance, the accuracy
of Eventset approach did not change much when the data window size was smaller than
10 minutes; the precision of Nearest neighbour predictor changed from 0.2 to 0.6 with
data window varying from 4 hours to 48 hours, while recall had a range of 0.3 to
0.75; Meta-learning based predictor can reach the best recall of 0.78 when using a data
window of 1 hour, however, the precision decreased to 0.65; the variance of CRF based
predictor are shown in Section 6.4.2. The results are listed in Table 6.4.

Approaches Precision Recall F0.5

Eventset (IBM) [108] 47.45% 75% 58.06%
Nearest neighbour predictor [65] 48%% 75% 61.5%
Meta-learning based predictor [39] 76.5% 65% 70.75%
Standard CRF based predictor 72.16% 70.68% 71.36%
Semi-Markov CRF based predictor 87.41% 77.95% 82.18%

Table 6.4: Comparison of prediction results for various failure prediction approaches
on the IBM BlueGene/L.

Figure 6.14 summarizes the prediction results of the approaches listed in Table 6.4,
and also shows the optimum expected running times that are calculated by Equation
4.14. It can be concluded that the meta-learning based predictor has a longer exe-
cution time compared to other predictors, and the semi-Markov CRF based predictor
achieves the best performance. Figure 6.14 also shows that further potential gains in
performance can be achieved by improving the accuracy of precision and recall; more-
over, improvement in accuracy of recall is more significant than that of precision.

For comparison of prediction scope, the other approaches are used to forecast

CHAPTER 6. EXPERIMENTAL RESULTS 134

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
1

0

0.2

0.4

0.6

0.8

1

5

5.5

6

6.5

Recall

Eventset
Nearest neighbor

Precision

CRF
Meta−learning

Semi−Markov CRF

E
xp

ec
te

d
ex

ec
ut

io
n

tim
e

Figure 6.14: Summary of prediction results and the corresponding optimum execution
times calculated by Equation 4.21.

whether the system is failure-prone at a future point, while the approach presented
in this thesis uses a second semi-Markov CRF to further identify the specific failure
type if a failure has been predicted, which is believed to be important for fault diag-
nosis and system maintenance, and may be exploited by some future fault recovery
scheme.

6.5 Summary

In this chapter, the theory developed in previous chapters has been implemented and
evaluated using real-world data in order to investigate the improvements that have
been made in terms of accuracy and performance. The whole process can be divided
into four main stages: data preprocessing, characteristic analysis, failure prediction
modeling and proactive failure recovery.

In data preprocessing, real industrial data from the IBM BlueGene/L has been used.
In order to prepare the raw data for data analysis and failure prediction model building,
they are processed in three main steps: categorization, filtering and sequence extrac-
tion. More specifically, categorization identifies 62 subcategories, filtering reaches a

CHAPTER 6. EXPERIMENTAL RESULTS 135

compress ratio of 14.2, while sequence extraction generates both failure sequences and
non-failure sequences according to various specifications for modelling.

In analysis of the RAS logs, the distributions of normal events and alert events
have been investigated. Precisely, distributions of both normal events and alert events
using different time scales have been explored to show the time delays between events.
For alert events, TBF is an important parameter and the corresponding QQ-diagrams
have been provided to show fitting results using four different parametric distributions
over the data. Finally, the correlation between normal events and alert events has been
explored.

For failure prediction modelling, the training process and the related parameter
space are introduced. The prediction accuracy of the semi-Markov CRF used in the
prediction approach (prediction model 1) are then provided. Furthermore, the effects of
three main aspects on the prediction quality have been investigated. Finally, the failure
predictor using semi-Markov CRF model is compared with four other approaches on
the same dataset. The results show that the semi-Markov CRF based failure predictor
performs better than the others it has been compared with. The main reason for this is
believed to be that the semi-Markov CRF can more accurately express the target data.

Contributions of this chapter

There are two main contributions in this chapter. Firstly, the semi-Markov CRF based
failure predictor has been evaluated using real industrial data in terms of various pa-
rameters to show the accuracy of the new predictor and a comparison with published
approaches. Secondly, from the perspective of engineering, this chapter has shown the
process to model a real-world system and to investigate the effects of various system
specific parameters.

Relation to other chapters

This chapter describes in detail the implementation and results following from previous
chapters. The whole process of failure prediction using real dataset from the IBM
BlueGene/L has been investigated. Conclusion of the thesis is given in the next chapter.

Chapter 7

Conclusion

This thesis has presented the design and evaluation a prediction-based failure man-
agement framework aiming to improve the efficiency of failure recovery in large-scale
supercomputers. The basic idea of the process can be described as follows: analyse
system behaviours from events recorded in RAS log files, predict system future fail-
ures based on correlations derived from these events, then perform proactive failure
recovery actions according to the predictions. The results presented in Chapter 6 show
that the prediction accuracy achieved by the model described in Chapter 5 exceeds
that of the three published approaches to failure recovery on the IBM BlueGene/L,
and that prediction-based failure recovery can greatly reduce the wasted computational
time of long-running applications compared with the standard coordinated checkpoint
approach. This chapter summarizes essential aspects of the work, presents the main
contributions and discusses several possible avenues for future work.

7.1 Summary

The ultimate goal of the thesis is to improve system dependability by using a proactive
failure management framework. The objective of the framework is to perform proac-
tive actions based on prediction of system failures — prediction is itself based on the
system measurements recorded in log files. As a case study, system events stored in
the RAS log files from an industrial platform: the IBM BlueGene/L, have been used
for prediction. The content of this thesis can be divided into four phases: related work,
failure prediction, proactive failure recovery and evaluation.

The first phase: related work discusses background to proactive failure recovery
and derives a prediction-based coordinated checkpoint recovery approach (mentioned

136

CHAPTER 7. CONCLUSION 137

in Chapter 2) Following this, Chapter 2 starts with a problem statement that speci-
fies the target platform, the IBM BlueGene/L and overviews the proposed solution of
failure prediction: system event driven prediction using probabilistic models. Tax-
onomies of failure prediction methods for large-scale computing systems are given in
terms of two aspects: methodology and algorithm. Three published approaches specif-
ically designed for the target platform are discussed. Finally, the definition of the most
common failure recovery technique, checkpointing, has been given, and a review of
the published work on checkpoint mechanisms designed for supercomputers has been
provided.

The proactive failure recovery phase describes the framework and analyses the the-
oretical motivation for using a checkpoint-based mechanism on supercomputers repre-
sented by the IBM BlueGene/L. It presents a theoretical model of the proactive failure
recovery approach by deriving a formula to calculate the overall wasted computational
time. The analysis is performed in terms of four prediction scenarios and a compar-
ison of the wasted computing time between the proactive approach and the standard
approach is provided. It then gives a condition, P > ts/(tb − t

′

b), which must be met
by the prediction model to make the proactive approach perform better. Finally, a 3D
curve has been demonstrated to show the potential performance gains with varying
checkpoint intervals according to precision and recall.

The detail of failure prediction is presented in Chapter 5. The chapter introduces
the three steps that make up the raw data pre-processing:

1. Categorization identifies 62 sub-categories of events;

2. Filtering contains temporal filtering and spatial filtering, and reaches a compress
ratio of 14.2;

3. Sequence extraction generates both failure sequences and non-failure sequences
for the purpose of modelling.

The two-level failure prediction mechanism using a semi-Markov model that can
further identify the failure categories is discussed. Two basic inference problems are
described given an observation sequence: (a) how to efficiently compute the proba-
bility of a specific state sequence; (b) which state sequence has the maximum like-
lihood. For the first problem, two algorithms, (forward algorithm and backward al-

gorithm), are introduced to reduce the computation complexity from O(N ∗MN) to
O(N ∗ M2); the Viterbi algorithm is presented to solve the second problem. The

CHAPTER 7. CONCLUSION 138

problem of model training is discussed and numerical optimization algorithms includ-
ing the Newton method, the quasi-Newton method and L-BFGS are reviewed for the
training purpose — in this thesis L-BFGS is employed in the experiments. Finally,
comparison in terms of independency assumptions is conducted between Conditional
Random Field model and other models, such as Naive Bayes, HMM, logistic regres-
sion, MEMM, etc. The CRF model is believed to relax the dependency assumptions
and hence address the label bias problem.

The evaluation phase reports the experiments that have been performed and the
associated results to assess the effectiveness of the failure prediction strategy and the
proactive failure recovery mechanism. The data preprocess experiments are described:
Categorization establishes regular expressions to represent each event category and 40
alert event categories have been identified among the overall 62 categories; Filtering

discusses the temporal filtering process and the optimal ε for each category is identi-
fied to remove as much redundancy as possible; for sequence extraction, the effects of
different time windows are analysed. This phase provides analysis of failure character-
istics. For normal events, it can be concluded from the distribution charts and density
charts that midday is the busiest time and the majority of intervals between events last
between 0 and 1 second. Similarly, the majority of TBF values are approximately 4
seconds. QQ-diagrams are provided to fit the TBF distribution using well-know para-
metric distributions, it is concluded that the occurrence of failures cannot be exactly
expressed by these well-defined distributions.

Several experiments have been performed to evaluate the failure prediction strategy
using two semi-Markov CRF models on different levels. The training process is intro-
duced and three model related parameters are discussed for both models. Two aspects
of evaluation metrics are presented: a confusion matrix is used to evaluate prediction
quality, whilst cross-validation techniques are used to assess prediction stability. Pre-
diction accuracy is discussed: average precision for prediction model 1 is 87.41%, and
41.38% for model 2; in terms of variance, model 1 is more stable and the reasons
are analysed. The dependency of prediction quality on several parameters is explored,
such as data window size ∆td, lead time size ∆tl and training data volume. Finally, the
comparison between the semi-Markov CRF based predictor and four other prediction
approaches is conducted and it is concluded that the semi-Markov CRF based predic-
tor can offer better prediction accuracy than the other tested approaches on the same
dataset.

CHAPTER 7. CONCLUSION 139

7.2 Contributions

In this thesis, a novel prediction-based failure management approach has been de-
veloped that has applied the semi-Markov model to capture the internal dependen-
cies among events. The resulting prediction accuracy outperforms three published
approaches when using real industrial RAS logs from the IBM BlueGene/L; the proac-
tive failure recovery is built on the prediction module and the performance has been
shown to be better than the standard checkpointing approach. Specifically, several
contributions have been made:

• A novel model to theoretically analyse the wasted computational time of predic
tion-based coordinated checkpoint mechanisms has been introduced, then ana-
lytical results of the model have been provided to demonstrate the efficiency.
This is the first approach to integrate the identified prediction scenarios into the
model.

• A two-level failure prediction mechanism using semi-Markov CRF has been de-
signed for more detailed identification of the specific failure categories, and this
thesis is the first to apply the semi-Markov CRF model and the standard CRF
model to solve the problem of failure prediction.

• A comparison of the common probability models in terms of their assumptions
is provided, then taxonomies of failure prediction methods have been introduced
focusing to two different aspects: prediction methodology and prediction algo-
rithm. A survey of the prediction approaches on the target platform, the IBM
BlueGene/L, is also presented.

7.3 Future work

There are several directions for further investigations and improvements from the work
described in this thesis. This section will discuss some potential and promising future
work in terms of two main issues: failure prediction and proactive failure recovery.

For failure prediction, potential future work is described below.

• Failure prediction using locality

CHAPTER 7. CONCLUSION 140

As described in Chapter 2, coordinated checkpoint mechanism is the most com-
mon failure recovery technique for supercomputers. The proactive failure recov-
ery approach presented in this thesis has integrated a prediction module to im-
prove the recovery efficiency. However, the prediction is conducted on a global
scale. As can be observed, current supercomputers consist of thousands of ele-
ments: cores, multiple storage devices, distributed memory system, etc. If the
prediction can be performed in local elements, such as memory, hard disk, net-
work card, I/O component, etc, the recovery actions may in turn be able to be
conducted locally, so that the overall fault tolerance efficiency can be greatly
improved.

The prediction model 2, which further estimates the specific failure types and lo-
cates failures on a local device, has been described in Chapter 5, with prediction
results shown in Appendix A. This prediction model can be used for failure pre-
diction on a local scale. Furthermore, if hardware support of service monitoring
is available on these devices, event logs from each local device can be captured
and pre-processed by a similar process demonstrated in Chapter 5, then failure
prediction can be conduced on a local device using semi-Markov model, and the
prediction results can help design local recovery actions instead of constructing
global checkpoints.

• Improvement of recall

It can be seen from Figure 4.13 and Figure 6.14 that precision accuracy deter-
mines whether the prediction-based checkpoint approach performs better than
the traditional approach, whereas evident benefit can be obtained by increasing
recall accuracy. Thus one important future work would be to improve the accu-
racy of recall.

The approach described in this thesis has used a machine learning method, and
the dataset that has been collected is limited (for a time duration of 215 days),
obviously, a larger dataset may improve recall accuracy. Thus using more data
for training would be a future work.

• Failure prediction using varying datasets

In this thesis, the event-driven failure predictor uses the RAS logs as the input
to the semi-Markov Model. This is a machine learning process and the predic-
tion approach is a generic method, thus any event dataset can be used. Two

CHAPTER 7. CONCLUSION 141

directions can be further investigated according to this principle. Firstly, for sys-
tems without event logs, system measurements from monitoring components can
be transferred to event-based data using some process techniques, for example,
thresholds can be used to transfer electronic signals to events. Secondly, the fail-
ure predictor demonstrated in this thesis uses the data from the IBM BlueGene/L
as a case study, hence event logs from other supercomputers can be similarly
processed with appropriate preprocessing.

In the case of proactive failure recovery, potential further work is considered below.

• Moving to real supercomputers

A potential future area is evaluation of the proactive failure recovery mechanism
in a real supercomputer environment. Evidently, a prerequisite to perform proac-
tive actions is to have support for failure prediction. Thus a prediction module
must be built first in the system. Furthermore, system event logs must be avail-
able for the purpose of failure prediction.

• Mechanism improvement

The prediction-based checkpoint mechanism described in the thesis mainly de-
pends on the prediction model and there is scope for improvement. Fault diagno-

sis locates the root cause of failures and accurate location may greatly improve
the performance of proactive failure recovery. For example, if a CPU core has
been diagnosed faulty, the tasks scheduled on this core can be rescheduled to
other resources or the damaged CPU core may be replaced. However, fault di-
agnosis is a complex problem and future work on this issue is needed.

Bibliography

[1] Loghound - a tool for mining frequent patterns from event logs.
http://ristov.users.sourceforge.net/loghound/, last accessed August 1st, 2009.

[2] Top 500 supercomputers. http://www.top500.org/, last accessed August 1st,
2010.

[3] Seti@home. http://setiathome.berkeley.edu, last accessed May 1st, 2010.

[4] J. H. Abawajy. Fault detection service architecture for grid computing systems.
In Computational Science and Its Applications - ICCSA 2004, pages 107–115.
2004.

[5] Paul E. Ammann and John C. Knight. Data diversity: An approach to software
fault tolerance. IEEE Transactions on Computers, 37(4):418–425, 1988.

[6] A. Avizienis and J.-C. Laprie. Dependable computing: From concepts to design
diversity. Proceedings of the IEEE, 74(5):629 – 638, May 1986.

[7] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr. Ba-
sic concepts and taxonomy of dependable and secure computing. IEEE Trans-

actions on Dependable and Secure Computing, 1:11–33, 2004.

[8] Mordecai Avriel. Nonlinear Programming: Analysis and Methods. Dover Pub-
lishing, 2003.

[9] Mohammad Abdollahi Azgomi and Ali Movaghar. A modelling tool for hierar-
chical stochastic activity networks. Simulation Modelling Practice and Theory,
13(6):505 – 524, 2005.

[10] Adam Beguelin, Erik Seligman, and Peter Stephan. Application level fault tol-
erance in heterogeneous networks of workstations. Journal Parallel Distributed

Computing, 43(2):147–155, 1997. 263044.

142

BIBLIOGRAPHY 143

[11] Adam Berger. The improved iterative scaling algorithm: A gentle introduction,
1997. Unpublished manuscript, 1997.

[12] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A maxi-
mum entropy approach to natural language processing. Computational Linguis-

tics, 22(1):39–71, 1996.

[13] Mohamed Slim Bouguerra, Denis Trystram, Thierry Gautier, and Jean-Marc
Vincent. A new flexible Checkpoint/Restart model. Research Report RR-6751,
INRIA, 2008.

[14] James C. Browne, Madulika Yalamanchi, Kevin Kane, and Karthikeyan Sankar-
alingam. General parallel computations on desktop grid and p2p systems. In
LCR ’04: Proceedings of the 7th workshop on Workshop on languages, com-

pilers, and run-time support for scalable systems, pages 1–8, New York, NY,
USA, 2004. ACM.

[15] Franck Cappello. Fault tolerance in petascale/ exascale systems: Current knowl-
edge, challenges and research opportunities. International Journal of High Per-

formance Computing Applications, 23(3):212–226, 2009.

[16] Henri Casanova, Jack Dongarra, Chris Johnson, and Michelle Miller.
Application-specific tools. In The Grid: blueprint for a new computing infras-

tructure, pages 159–180. Morgan Kaufmann Publishers Inc., 1999. 296098.

[17] A. J. Chakravarti, G. Baumgartner, and M. Lauria. The organic grid: self-
organizing computation on a peer-to-peer network. IEEE Transactions on Sys-

tems, Man and Cybernetics, Part A,, 35(3):373–384, 2005. 1083-4427.

[18] Liming Chen and Algirdas Avizienis. N-version programming: A fault-
tolerance approach to reliability of software operation. Proceedings of the 8th

International Symposium on Fault-Tolerant Computing Systems., pages 3–9,
1974.

[19] William S. Cleveland. Robust locally weighted regression and smoothing scat-
terplots. Journal of the American Statistical Association, 74(368):829–836,
1979.

[20] The Condor project. http://www.cs.wisc.edu/condor/. last accessed May 1st,
2010.

BIBLIOGRAPHY 144

[21] Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. A sequence of series
for the lambert w function. In Proceedings of the 1997 international symposium

on Symbolic and algebraic computation, ISSAC ’97, pages 197–204, New York,
NY, USA, 1997. ACM.

[22] Aron Culotta, David Kulp, and Andrew McCallum. Gene prediction with con-
ditional random fields. Technical report, 2005.

[23] David Decaprio, Jade P. Vinson, Matthew D. Pearson, Philip Montgomery,
Matthew Doherty, and James E. Galagan. Conrad: Gene prediction using con-
ditional random fields. Genome Research, 1:1389–1398, 2007.

[24] A. Duarte, F. Brasileiro, W. Cirne, and J. A. Filho. Collaborative fault diagnosis
in grids through automated tests. In 20th International Conference on Advanced

Information Networking and Applications. AINA 2006, volume 1, page 6, 2006.

[25] Andrzej Duda. The effects of checkpointing on program execution time. Infor-

mation Processing Letters, 16(5):221–229, 1983.

[26] P. Felber, X. Defago, R. Guerraoui, and P. Oser. Failure detectors as first class
objects. In 1999. Proceedings of the International Symposium on Distributed

Objects and Applications, pages 132 –141, 1999.

[27] I. Foster. The anatomy of the Grid: enabling scalable virtual organizations.
In 2001 Proceedings of First IEEE/ACM International Symposium on Cluster

Computing and the Grid, pages 6–7, 2001.

[28] I. Foster. The Grid: A new infrastructure for 21st century science. Physics

Today, 55:42–47, 2002.

[29] Ian Foster and Carl Kesselman. The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers Inc., 2003. 996313.

[30] Ian T. Foster and Carl Kesselman. Computational grids. VECPAR, pages 3–37,
2000.

[31] James Frey, Todd Tannenbaum, Miron Livny, Ian Foster, and Steven Tuecke.
Condor-g: A computation management agent for multi-institutional grids. Clus-

ter Computing, 5(3):237–246, 2002. 10.1023/A:1015617019423.

BIBLIOGRAPHY 145

[32] Song Fu and Cheng-Zhong Xu. Quantifying temporal and spatial correlation of
failure events for proactive management. In SRDS ’07: Proceedings of the 26th

IEEE International Symposium on Reliable Distributed Systems, pages 175–
184, Washington, DC, USA, 2007. IEEE Computer Society.

[33] Song Fu and Cheng-Zhong Xu. Quantifying temporal and spatial correlation of
failure events for proactive management. In Reliable Distributed Systems, 2007.

SRDS 2007. 26th IEEE International Symposium on, pages 175 –184, 2007.

[34] A. Gara, M. A. Blumrich, D. Chen, L-T G. Chiu, P. Coteus, M. E. Giampapa,
R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch,
M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas. Overview
of the BlueGene/L system architecture. IBM Journal of Research and Develop-

ment, 49(2):195–212, March 2005.

[35] S. Garg, A. Van Moorsel, K. Vaidyanathan, and K. S. Trivedi. A methodology
for detection and estimation of software aging. In ISSRE ’98: Proceedings of the

The Ninth International Symposium on Software Reliability Engineering, page
283, Washington, DC, USA, 1998. IEEE Computer Society.

[36] Zheng Gengbin, Huang Chao, and V. Kal Laxmikant. Performance evaluation
of automatic checkpoint-based fault tolerance for ampi and charm++. SIGOPS

Operation System., 40(2):90–99, 2006. 1131340.

[37] R. O. Gilbert. Statistical methods for environmental pollution monitoring. 1987.

[38] C. Gordon, C. Cooper, C. A. Senior, H. Banks, J. M. Gregory, T. C. Johns,
J. F. B. Mitchell, and R. A. Wood. The simulation of SST, sea ice extents and
ocean heat transports in a version of the Hadley Centre coupled model without
flux adjustments. SPRINGER, 2000.

[39] Jiexing Gu, Ziming Zheng, Zhiling Lan, John White, Eva Hocks, and Byung-
Hoon Park. Dynamic meta-learning for failure prediction in large-scale systems:
A case study. In ICPP ’08: Proceedings of the 2008 37th International Con-

ference on Parallel Processing, pages 157–164, Washington, DC, USA, 2008.
IEEE Computer Society.

[40] Xiaohui Gu, S. Papadimitriou, P. S. Yu, and Shu-Ping Chang. Toward predictive
failure management for distributed stream processing systems. In Proc. 28th

BIBLIOGRAPHY 146

International Conference on Distributed Computing Systems ICDCS ’08, pages
825–832, 17–20 June 2008.

[41] Prashasta Gujrati, Yawei Li, Zhiling Lan, Rajeev Thakur, and John White. A
meta-learning failure predictor for blue gene/l systems. In ICPP ’07: Pro-

ceedings of the 2007 International Conference on Parallel Processing, page 40,
Washington, DC, USA, 2007. IEEE Computer Society.

[42] Asela Gunawardana, Milind Mahajan, Alex Acero, and John C. Platt. Hidden
conditional random fields for phone classification. In 9th European Conference

on Speech Communication and Technology, Lisbon, Portugal, September 2005.

[43] Greg Hamerly and Charles Elkan. Bayesian approaches to failure prediction for
disk drives. In ICML ’01: Proceedings of the Eighteenth International Con-

ference on Machine Learning, pages 202–209, San Francisco, CA, USA, 2001.
Morgan Kaufmann Publishers Inc.

[44] J.P. Hansen and D.P. Siewiorek. Models for time coalescence in event logs. In
Fault-Tolerant Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second

International Symposium on, pages 221–227, Jul 1992.

[45] N. Hayashibara, A. Cherif, and T. Katayama. Failure detectors for large-scale
distributed systems. In Proceedings 21st IEEE Symposium on Reliable Dis-

tributed Systems., pages 404–409, 2002.

[46] Juergen Hofer, Juergen Hofer, and Thomas Fahringer. A multi-perspective tax-
onomy for systematic classification of grid faults. In Thomas Fahringer, editor,
16th Euromicro Conference on Parallel, Distributed and Network-Based Pro-

cessing. PDP 2008., pages 126–130, 2008.

[47] Jiman Hong, Sangsu Kim, Yookun Cho, H. Y. Yeom, and Taesoon Park. On
the choice of checkpoint interval using memory usage profile and adaptive time
series analysis. In Proc. Pacific Rim International Symposium on Dependable

Computing, pages 45–48, 17–19 Dec. 2001.

[48] J. Horning, H. Lauer, P. Melliar-Smith, and B. Randell. A program structure
for error detection and recovery. In Operating Systems, pages 171–187. 1974.
10.1007/BFb0029359.

BIBLIOGRAPHY 147

[49] Yennun Huang, Chandra Kintala, Nick Kolettis, and N. Dudley Fulton. Software
rejuvenation: Analysis, module and applications. Fault-Tolerant Computing,

International Symposium on, 0:0381, 1995.

[50] G.F. Hughes, J.F. Murray, K. Kreutz-Delgado, and C. Elkan. Improved disk-
drive failure warnings. IEEE Transactions on Reliability,, 51(3):350 – 357, Sep
2002.

[51] Soonwook Hwang. A generic failure detection service for the grid, 2003. Ph.D.
thesis, University of Southern California.

[52] B. Javadi, D. Kondo, J.-M. Vincent, and D.P. Anderson. Mining for statistical
models of availability in large-scale distributed systems: An empirical study of
seti@home. In IEEE International Symposium on Modeling, Analysis Simula-

tion of Computer and Telecommunication Systems, 2009. MASCOTS ’09., pages
1 –10, sept. 2009.

[53] Feng Jiao, Shaojun Wang, Chi-Hoon Lee, Russell Greiner, and Dale Schuur-
mans. Semi-supervised conditional random fields for improved sequence seg-
mentation and labeling. In ACL-44: Proceedings of the 21st International Con-

ference on Computational Linguistics and the 44th annual meeting of the Asso-

ciation for Computational Linguistics, pages 209–216, Morristown, NJ, USA,
2006. Association for Computational Linguistics.

[54] Jeffrey O. Kephart. Research challenges of autonomic computing. In ICSE

’05: Proceedings of the 27th international conference on Software engineering,
pages 15–22, New York, NY, USA, 2005. ACM.

[55] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, 2003. 0018-9162.

[56] Kenneth R. Mayes John R. Gurd Keping Chen. Autonomous performance con-
trol of distributed applications in a heterogeneous environment. In 1st Interna-

tional Conference on Autonomics, Rome, Italy, 2007.

[57] E. Kiciman and A. Fox. Detecting application-level failures in component-based
internet services. IEEE Transactions on Neural Networks, 16(5):1027–1041,
2005. 1045-9227.

BIBLIOGRAPHY 148

[58] Jorg Kienzle. Software fault tolerance: An overview. In Reliable Software

Technologies - Ada-Europe 2003, pages 641–641. 2003. 10.1007/3-540-44947-
7 3.

[59] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In IJCAI’95: Proceedings of the 14th international

joint conference on Artificial intelligence, pages 1137–1143, San Francisco, CA,
USA, 1995. Morgan Kaufmann Publishers Inc.

[60] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilis-
tic models for segmenting and labeling sequence data. Proc. 18th International

Conf. on Machine Learning, pages 282–289, 2001.

[61] Ronjeet Lal and Gwan S. Choi. Error and failure analysis of a unix server. In
HASE ’98: The 3rd IEEE International Symposium on High-Assurance Systems

Engineering, pages 232–239, Washington, DC, USA, 1998. IEEE Computer
Society.

[62] Zhiling Lan, Jiexing Gu, Ziming Zheng, Rajeev Thakur, and Susan Coghlan.
A study of dynamic meta-learning for failure prediction in large-scale systems.
Journal of Parallel and Distributed Computing, In Press, Corrected Proof, 2010.

[63] Ziming Li and Dabin Zheng. Computation with hyperexponential functions.
SIGSAM Bull., 39(3):84–85, 2005.

[64] Y. Liang, Y. Zhang, M. Jette, Anand Sivasubramaniam, and R. Sahoo. Blue-
Gene/L failure analysis and prediction models. In International Conference

on Dependable Systems and Networks, 2006. DSN 2006., pages 425–434, June
2006.

[65] Yinglung Liang. Failure Analysis, Modeling and Prediction for BlueGene/L.
PhD thesis, The State University of New Jersey, 2007.

[66] Yinglung Liang, Anand Sivasubramaniam, and Jose Moreira. Filtering fail-
ure logs for a bluegene/l prototype. In DSN ’05: Proceedings of the 2005 In-

ternational Conference on Dependable Systems and Networks, pages 476–485,
Washington, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 149

[67] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. An adap-
tive semantic filter for blue gene/l failure log analysis. Parallel and Distributed

Processing Symposium, International, 0:445, 2007.

[68] Yinglung Liang, Yanyong Zhang, Hui Xiong, and Ramendra Sahoo. Failure
prediction in IBM BlueGene/L event logs. In ICDM ’07: Proceedings of the

2007 Seventh IEEE International Conference on Data Mining, pages 583–588,
Washington, DC, USA, 2007. IEEE Computer Society.

[69] Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for
large scale optimization. Mathematical Programming, 45:503–528, 1989.
10.1007/BF01589116.

[70] Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using con-
ditional random fields for sentence boundary detection in speech. In ACL ’05:

Proceedings of the 43rd Annual Meeting on Association for Computational Lin-

guistics, pages 451–458, Morristown, NJ, USA, 2005. Association for Compu-
tational Linguistics.

[71] Yudan Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon, M. Paun, and S.L.
Scott. An optimal checkpoint/restart model for a large scale high performance
computing system. In IPDPS 2008: IEEE International Symposium on Parallel

and Distributed Processing, 2008, pages 1 –9, 14-18 2008.

[72] John Makhoul, Francis Kubala, Richard Schwartz, and Ralph Weischedel. Per-
formance measures for information extraction. In In Proceedings of DARPA

Broadcast News Workshop, pages 249–252, 1999.

[73] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of fre-
quent episodes in event sequences. Data Min. Knowl. Discov., 1(3):259–289,
1997.

[74] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Maximum en-
tropy markov models for information extraction and segmentation. In Proceed-

ings of the Seventeenth International Conference on Machine Learning, ICML
’00, pages 591–598, San Francisco, CA, USA, 2000. Morgan Kaufmann Pub-
lishers Inc.

BIBLIOGRAPHY 150

[75] R. Medeiros, W. Cirne, F. Brasileiro, and J. Sauve. Faults in grids: why are they
so bad and what can be done about it? In Proceedings. Fourth International

Workshop on Grid Computing., pages 18–24, 2003.

[76] In Jae Myung. Tutorial on maximum likelihood estimation. Journal of Mathe-

matical Psychology, 47(1):90 – 100, 2003.

[77] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Nueva York,
EUA : Springer, 1999.

[78] Daniel Nurmi, John Brevik, and Rich Wolski. Modeling machine availability
in enterprise and wide-area distributed computing environments. In Euro-Par

2005 Parallel Processing, pages 432–441. 2005. 10.1007/11549468 50.

[79] Daisuke Okanohara, Yusuke Miyao, Yoshimasa Tsuruoka, and Jun’ichi Tsujii.
Improving the scalability of semi-markov conditional random fields for named
entity recognition. In ACL-44: Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association

for Computational Linguistics, pages 465–472, Morristown, NJ, USA, 2006.
Association for Computational Linguistics.

[80] Adam Oliner and Jon Stearley. What supercomputers say: A study of five sys-
tem logs. In DSN ’07: Proceedings of the 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 575–584, Washington,
DC, USA, 2007. IEEE Computer Society.

[81] Adam J. Oliner, Larry Rudolph, and Ramendra K. Sahoo. Cooperative check-
pointing: a robust approach to large-scale systems reliability. In ICS ’06: Pro-

ceedings of the 20th annual international conference on Supercomputing, pages
14–23, New York, NY, USA, 2006. ACM.

[82] David Lorge Parnas. Software aging. In ICSE ’94: Proceedings of the 16th in-

ternational conference on Software engineering, pages 279–287, Los Alamitos,
CA, USA, 1994. IEEE Computer Society Press.

[83] Karthik Pattabiraman, Christopher Vick, and Alan Wood. Modeling coordinated
checkpointing for large-scale supercomputers. In DSN ’05: Proceedings of the

2005 International Conference on Dependable Systems and Networks, pages
812–821, Washington, DC, USA, 2005. IEEE Computer Society.

BIBLIOGRAPHY 151

[84] Tao Qin, Tie-Yan Liu, Xu-Dong Zhang, De-Sheng Wang, and Hang Li. Global
ranking using continuous conditional random fields. In NIPS, pages 1281–1288,
2008.

[85] Ariadna Quattoni, Michael Collins, and Trevor Darrell. Conditional random
fields for object recognition. In In NIPS, pages 1097–1104. MIT Press, 2004.

[86] F. Ramos, D. Fox, and H. Durrant-Whyte. Crf-matching: Conditional random
fields for feature-based scan matching. In Proceedings of Robotics: Science and

Systems, Atlanta, GA, USA, June 2007.

[87] C. R. Rao and Y. Wu. Linear model selection by cross-validation. Journal of

Statistical Planning and Inference, 128(1):231 – 240, 2005.

[88] X. Ren, S. Lee, R. Eigenmann, and S. A. Bagchi S. Bagchi. Resource availabil-
ity prediction in fine-grained cycle sharing systems. In S. Lee, editor, 15th IEEE

International Symposium on High Performance Distributed Computing,, pages
93–104, 2006.

[89] Brent Rood and Michael J. Lewis. Resource availability prediction for improved
grid scheduling. In ESCIENCE ’08: Proceedings of the 2008 Fourth IEEE

International Conference on eScience, pages 711–718, Washington, DC, USA,
2008. IEEE Computer Society.

[90] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreira, S. Ma, R. Vilalta,
and A. Sivasubramaniam. Critical event prediction for proactive management
in large-scale computer clusters. In KDD ’03: Proceedings of the ninth ACM

SIGKDD international conference on Knowledge discovery and data mining,
pages 426–435, New York, NY, USA, 2003. ACM.

[91] F. Salfner. Predicting failures with hidden markov models. In Proceedings of the

5th European Dependable Computing Conference (EDCC-5), Student Forum,
Budapest, Hungary, April 2005.

[92] F. Salfner, M. Schieschke, and M. Malek. Predicting failures of computer sys-
tems: a case study for a telecommunication system. In Proc. 20th International

Parallel and Distributed Processing Symposium IPDPS 2006, page 8, 25–29
April 2006.

BIBLIOGRAPHY 152

[93] Felix Salfner, Maren Lenk, and Miroslaw Malek. A survey of online failure
prediction methods. ACM Computing Surveys, 42(3):1–42, 2010.

[94] Sunita Sarawagi and William W. Cohen. Semi-markov conditional random
fields for information extraction. In In Advances in Neural Information Pro-

cessing Systems 17, pages 1185–1192, 2004.

[95] D. R. Schertz. Fault-tolerant computing: An introduction. IEEE Transactions

on Computing, 23(7):649–650, 1974.

[96] B. Schroeder and G. A. Gibson. A large-scale study of failures in high-
performance computing systems. In International Conference on Dependable

Systems and Networks, 2006. DSN 2006., pages 249–258, 2006.

[97] B. Schroeder and G. A. Gibson. Understanding failures in petascale computers.
Journal of Physics Conference Series, 78(1):012022–+, July 2007.

[98] L. M. Silva and J. G. Silva. System-level versus user-defined checkpointing.
In Proceedings 17th IEEE Symposium on Reliable Distributed Systems. IEEE
Computer Society, Proceedings 17th IEEE Symposium on Reliable Distributed
Systems, 1998. 830990 68.

[99] Krishnan Sriram and D. Gannon. Checkpoint and restart for distributed compo-
nents in xcat3. In D. Gannon, editor, Proceedings Fifth IEEE/ACM International

Workshop on Grid Computing., pages 281–288, 2004.

[100] P. Stelling, I. Foster, C. Kesselman, C. Lee, and G. Von Laszewski. A fault
detection service for wide area distributed computations. In The Seventh Inter-

national Symposium on High Performance Distributed Computing, 1998. Pro-

ceedings, pages 268–278, 1998.

[101] Xiao Sun, Degen Huang, and Ren Fuji. Chinese lexical analysis based on hidden
semi-crf. In International Conference on Intelligent Computing, 2009.

[102] Charles Sutton and Andrew McCallum. Introduction to Conditional Random

Fields for Relational Learning. MIT Press, 2006.

[103] Youhei Tanaka, Naohiro Hayashibara, Tomoya Enokido, and Makoto Takizawa.
A fault-tolerant transactional agent model on distributed objects. In ISORC

’06: Proceedings of the Ninth IEEE International Symposium on Object and

BIBLIOGRAPHY 153

Component-Oriented Real-Time Distributed Computing, pages 279–286, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

[104] Youhei Tanaka, Naohiro Hayashibara, Tomoya Enokido, and Makoto Takizawa.
Fault detection and recovery in a transactional agent model. In AINA ’07: 21st

International Conference on Advanced Information Networking and Applica-

tions, pages 126–133, 2007.

[105] The BlueGene/L Team, T Domany, and et al. An overview of the BlueGene/L
supercomputer, 2002.

[106] R. Teodorescu and F. Blaabjerg. Flexible control of small wind turbines with
grid failure detection operating in stand-alone and grid-connected mode. IEEE

Transactions on Power Electronics, 19(5):1323–1332, 2004. 0885-8993.

[107] R. Vilalta, C. V. Apte, J. L. Hellerstein, S. Ma, and S. M. Weiss. Predictive
algorithms in the management of computer systems. IBM Systems Journal,
41(3):461–474, 2002.

[108] R. Vilalta and Sheng Ma. Predicting rare events in temporal domains. In ICDM

2002 Proceedings: IEEE International Conference on Data Mining, 2002.,
pages 474–481, 2002.

[109] Sy Bor Wang, Ariadna Quattoni, Louis-Philippe Morency, and David Demird-
jian. Hidden conditional random fields for gesture recognition. In CVPR ’06:

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vi-

sion and Pattern Recognition, pages 1521–1527, Washington, DC, USA, 2006.
IEEE Computer Society.

[110] Gary M. Weiss and Haym Hirsh. Learning to predict rare events in event se-
quences. In Proceedings of the Fourth International Conference on Knowledge

Discovery and Data Mining, pages 359–363, 1998.

[111] Shi Xuanhua, Jin Hai, Han Zongfen, Qiang Weizhong, Wu Song, and Zou De-
qing. Alter: adaptive failure detection services for grids. In 2005 IEEE Inter-

national Conference on Services Computing, volume 1, pages 355–358 vol.1,
2005.

[112] Zhenghua Xue, Xiaoshe Dong, Siyuan Ma, and Weiqing Dong. A survey on
failure prediction of large-scale server clusters. In Eighth ACIS International

BIBLIOGRAPHY 154

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, 2007. SNPD 2007., volume 2, pages 733–738,
Aug. 2007.

[113] John W. Young. A first order approximation to the optimum checkpoint interval.
Communications of the ACM, 17(9):530–531, 1974.

[114] Jia Yu and Rajkumar Buyya. A taxonomy of scientific workflow systems for
grid computing. SIGMOD Record., 34(3):44–49, 2005. 1084814.

[115] Yanyong Zhang and A. Sivasubramaniam. Failure prediction in ibm bluegene/l
event logs. In IEEE International Symposium on Parallel and Distributed Pro-

cessing, 2008. IPDPS 2008., pages 1–5, April 2008.

[116] Hai Zhao, Chang-Ning Huang, and Mu Li. An improved chinese word segmen-
tation system with conditional random field. In David Abramson, editor, Pro-

ceedings of Fifth SIGHAN Workshop on Chinese Language Processing, pages
162–165, 2006.

[117] Ziming Zheng, Zhiling Lan, B.H. Park, and A. Geist. System log pre-processing
to improve failure prediction. In IEEE/IFIP International Conference on De-

pendable Systems Networks, 2009. DSN ’09., pages 572 –577, june 2009.

Appendix A

Experiments on prediction model 2

A.1 Parameter space and prediction results

For the two prediction models shown in Figure 5.7, both have the same parameter
space, but use different settings. Similar experiments to those described for predic-
tion model 1 in Section 6.4.2 have been performed on prediction model 2; the detailed
configurations are listed in Table A.1. In order to assess prediction quality, 100 repeti-
tions of the experiments have been performed according to the default configurations.
Results are shown in Table A.2.

Parameters Model 2
Sequence label number 40
Event category number 62
Maximum optimization tries 100
Underlying graphical model semi-Markov CRF

Table A.1: Configurations of the prediction model 2.

It can be seen that the prediction accuracy of model 2 at 41.38% is much lower
than that for prediction model 1. There are two reasons behind this. Firstly, failures
are such rare events in the RAS logs that they take up less than 10% of the entire
events based on the statistics derived from the raw event logs mentioned in Chapter 5.
Prediction model 2 is trained using only failure sequences and the small data volume
naturally results in lower prediction accuracy. Secondly, as described above, 40 failure
patterns (categories) have been identified and they are not normally distributed. For
some failure patterns, the prediction precision will reach 90%; in contrast, in terms of
rare patterns, the accuracy may be as low as 20%. Thus the precision of model 2, which

155

APPENDIX A. EXPERIMENTS ON PREDICTION MODEL 2 156

Prediction model 2

Parameters
Data window ∆td 5 min

Lead-time ∆tl 5 min
No. of states 40

Prediction
Precision 41.38%

Recall 44.08%
F0.5 40.02%

Variance
Precision 2.16%

Recall 1.82%
F0.5 1.56%

Table A.2: Prediction accuracy and its variance for prediction model 2 according to
the default parameter settings.

is calculated as the mean precision of the overall 40 failure patterns, is approximately
40%.

With consideration of result stability, the variance of precision reaches 2.16%,
which means the prediction results have greater variance and the prediction quality
of the model depends heavily on the target dataset. This situation explains the low
precision of model 2 from another perspective.

A.2 Dependency analysis

Similarly to the analysis of prediction model 1 in Section A.2, dependency analysis
of the prediction model 2 has been performed according to three perspectives: data

specific issues, ∆td and ∆tl.

Dependency on data specific issues

To investigate the effects of data specific issues, an experiment has been conducted
that uses training data sizes of 10%, 20%, 40%, 60%, 70%, 90% of the entire data;
correspondingly, the remaining 90%, 80%, 60%, 40%, 30%, 10% of the dataset is
used for testing. Figure A.1 presents the effects on precision and F0.5 of model 2. It
can be concluded that, for both precision and F0.5, the accuracy rises sharply to 55.24%
and 53.14% respectively when the size of the training dataset reaches 90%, however,
they have great variability because of the limited size of the testing dataset.

APPENDIX A. EXPERIMENTS ON PREDICTION MODEL 2 157

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

on
 (

pe
r

ce
nt

)

Size of trianining dataset (per cent)

Effects of the size of training dataset on the precision of Model 2

Precision

(a) Data effect on precision

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70 80 90 100

F
0.

5
(p

er
 c

en
t)

Size of trianining dataset (per cent)

Effects of the size of training dataset on the F0.5 of Model 2

F0.5

(b) Data effect on F0.5

Figure A.1: Effects of the size of the training dataset on the prediction of model 2.
Figure A.1(a) plots the effects of training dataset on the precision of model 2 with
error bars, whilst Figure A.1(b) presents the effects on the F0.5.

Dependency on data window ∆td

Figure A.2 presents the effects of ∆td. For the experiment, values of 1 minute, 5 min-
utes, 10 minutes and 15 minutes for ∆td are considered. For the effects on precision
and F0.5, shown in Figure A.2(a) and Figure A.2(b), respectively, the charts show that
accuracy first decreases when ∆td changes from 1 minute to 5 minutes, then increases
as a long-term trend.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
re

ci
si

on
 (

pe
r

ce
nt

)

Data window size ∆td (Minute)

Effects of the data window size ∆td on the prediction of Model 2

Precision

(a) Effect on precision

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

F
0.

5
(p

er
 c

en
t)

Data window size ∆td (Minute)

Effects of the data window size ∆td on the prediction of Model 2

F0.5

(b) Effect on F0.5

Figure A.2: Effects of the length of data window ∆td on the prediction of model
2. Figure A.2(a) demonstrates the changes of the precision over three values of ∆td,
whilst, Figure A.2(b) presents the effects of ∆td on the F0.5.

APPENDIX A. EXPERIMENTS ON PREDICTION MODEL 2 158

Dependency on lead time ∆tl

Figure A.3 presents the effects of the length of ∆tl in terms of precision and F0.5,
shown in Figure A.3(a) and Figure A.3(b), respectively. Precisely, experiments with
lengths of 5 minutes, 10 minutes, 15 minutes, 20 minutes, 25 minutes and 30 minutes
on ∆tl have been performed. It can be concluded from the charts that both precision
and F0.5 fluctuate according to ∆tl. Similarly, they decrease with ∆tl ranging from
5 minutes to 10 minutes, then increase in the middle and later decrease again as ∆tl

ranges from 20 minutes to 30 minutes. They both show a decline as a long-term trend.

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

P
re

ci
si

on
 (

pe
r

ce
nt

)

Lead time ∆tl (Minute)

Effects of the lead time ∆tl on the prediction of Model 2

Precision

(a) Effect on precision

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35

F
0.

5
(p

er
 c

en
t)

Lead time ∆tl (Minute)

Effects of the lead time ∆tl on the prediction of Model 2

F0.5

(b) Effect on F0.5

Figure A.3: Effects of the length of lead time ∆tl on the prediction of model 2. Fig-
ure A.3(a) presents the relationship between precision and ∆tl, whilst, Figure A.3(b)
shows the effects on F0.5.

