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Abstract 

 

Background 

 

Prolonged recovery after tendon injury has given rise to the need for innovative 

therapy including tendon engineering and cell based therapies. The role of cells in 

grafted or engineered tendon is poorly understood. Clarifying the persistence of 

grafted tissue is fundamentally important to ensure that tissue engineering strategies 

are fit for clinical application. We have devised a murine model for tendon grafting 

that allows for cell tracking and the assessment of tendon integration and 

engineered construct integration. 

 

Materials and methods 

 

We studied the macroscopic and microscopic architecture of the mouse Achilles 

tendon to investigate its properties as a study model. Using microsurgical 

techniques, transgenic tendon grafting procedures were then carried out 

between C57B/L6 wild type and GFP (Green Fluorescent Protein) mice Achilles 

tendon. The temporal and spatial fate of the cells in the graft was assessed using 

quantitative serial histology and immunohistochemistry with Three Dimensional 

reconstruction. Markers for proliferation, collagen synthesis, cell death and 

inflammatory infiltrate were used. The Achilles tendon model was also applied to 

test its applicability to investigate tissue engineered tendon constructs developed 

in vitro. 

 

Results 

 

GFP positive graft cells were seen at Day 3 and Day 21 but disappeared by Day 90. At 

Day 21both graft cells and the cells of the recipient tendon showed intense collagen 

synthetic activity. At the same time both graft and host tendon cells began to show 
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signs of apoptosis which continued till Day 90. Subcutaneous tissue and paratenon 

maintained a much higher level of cellularity, cell proliferation, collagen synthesis and 

apoptosis at all time. The interplay between cell activity and cell death appear to play 

central role in the integration of the tendon graft. 

 

The persistence of tissue engineered tendon constructs was far less than syngenic 

or autografts. The Achilles tendon model proved to be a robust and economically 

viable model for testing of biomaterials particularly at the early stage of their 

development. 

 

Conclusion 

 

The cells of tendon grafts persist only for a finite time before being repopulated 

by host cells. Tissue engineered cell-based constructs do not provide sufficient 

persistence to substitute in place of syngenic or autologous graft options. Future 

designs of engineered tendon should facilitate tendon integration and aim to 

persist for longer periods of time in order to participate in the healing process.  
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1.1 Background- Tendon Injury and disease 

 

With increase in the popularity of sporting activities, sport and activity related tendon 

injuries are increasing rapidly (Hess, 2010; Nyyssonen et al., 2008). A survey 

conducted across UK found that around 22 million sports injuries were sustained each 

year   and 42% of these were tendon/ligament injuries (Barclays Space for sport 2005 

survey data http://www.personal.barclays.co.uk). In 2008-2009, 9.3% of   all A&E 

attendances involved tendon injuries (Hospital Episode Statistics- 

http://www.hesonline.nhs.uk) which show the common involvement of these 

structures in accident and injuries. The tendons commonly involved in injuries are the 

tendons of the digits, Achilles tendon of the ankle, the Rotator cuff of the shoulder, 

the tendons in the elbow and wrist. Flexor and extensor tendons of the limbs are 

prone to accidental cuts and lacerations. 

 

Tendons can also be affected by systemic disease like Rheumatoid Arthritis (Ertel, 

1989; Sivakumar et al., 2008), Diabetes Mellitus (Grant et al., 1997) and various 

autoimmune diseases (e.g. SLE, scleroderma) (Furie and Chartash, 1988; Hanly and 

Urowitz, 1986), leading to severe disability.  

 

Tendon injury is also common in athletic animals. 43% of National Hunt horses show 

evidence of tendon disease (Pickersgill et al., 2001) and 14.8% of all horses in flat 

racing in Japan in 1999 suffered injury to the  digital flexor tendons (Takahashi et al., 

2004). 

 

The treatment of tendon injury may involves direct repair (Strickland, 1983) of the 

defect or a more conservative approach of non-operative treatment with or without 

physiotherapy (Seida et al., 2010) may be adapted. The incidence of tendon surgery in 

the NHS is gradually increasing (Figure 1.1). Outcome of tendon surgery is 

unpredictable due to adhesion formation, re-rupture and inadequate functional 

recovery (Taras et al., 1994). During recovery there is   restriction in acts of daily living 

and there is likely to be a   long period of time off work. 

http://www.hesonline.nhs.uk/
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Figure 1.1- Graphical representation of trend in tendon surgery in the NHS (HES) showing gradual 

increase in primary tendon repair (Blue) and number of tendon harvested (Green) each year between 

1999 and 2005.The number of secondary repair of tendon remain low. Of note is the higher number 

tendon harvest compared to secondary tendon repair indicating the use of tendon graft for other 

clinical indications. 
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When the tendon injury is more severe, leading to loss of a segment of tendon, more 

complex surgery may be required. The defect may occasionally need to be 

reconstructed with a free segment of tendon known as a tendon graft. Often 

tendons can rupture or undergo segmental degeneration. Tendon grafts can be used 

to bridge these defects in tendons or ligaments. Potential sources of tendon grafts 

are autograft (Patient’s own tendon such as the Palmaris Longus in the wrist, 

Plantaris in the leg, Patellar tendon in the knee) (Figure-1.2), allograft (taken from 

another member of the same species, i.e.- cadaveric grafts) and xenograft (harvested 

from a different species such as bovine, porcine etc.). Autograft harvest may leave 

patients with additional scars and residual donor site weakness (Comley and 

Krishnan, 1999; Mastrokalos et al., 2005) while allograft carry risk of disease 

transmission (Kealey, 1997). Both allograft and xenograft carry immunogenic 

implications and can only be transplanted from either an immunocompatible donor 

or after donor graft has received special treatment to render it acellular. 

 

 

Figure 1.2- Tendons that can be used as autografts- (i) Palmaris Longus at the wrist, (ii) Plantaris at the 

back of the leg and (iii) Patellar tendon at the knee joint 

 



19 

 

1.2 Tendon architecture      

 

1.2.1   Microscopic structure 

 

Tendon is a highly organised structure from the molecular level to gross architecture 

(Figure 1.3), a property which allows it to withstand high tensile forces. The 

hierarchical organisation of tendon has been demonstrated at light microscopic, 

ultrastructural and molecular level (Birk and Trelstad, 1986; Oryan and Shoushtari, 

2008; Rowe, 1985).   

                                                                                                               

Figure 1.3 - The organization of tendon structure from collagen molecules to the entire tendon (Towler 

and Gelberman, 2006)- Three polypeptide chains combine together to form a helical tropocollagen 

molecule, five tropocollagens constitute a microfibril, and microfibrils aggregate together to form 

fibrils. Fibrils are then grouped into fibres, fibres into fibre bundles and fibre bundles into fascicles. A 

thin film of loose connective tissue (‘endotenon’) is present between fascicles and/or fibre bundles. 

The endotenon is continuous with a further sheet of connective tissue (epitenon) that surrounds the 

tendon as a whole. 
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The organised architecture of the tendon makes it an ideal structure to investigate 

complex biological events such as grafting and allows for study of cellular trafficking.  

The cells are distributed in parallel rows in between longitudinal fibers and the 

homogeneity allows cellular reorganisation to be studied relatively easily compared 

to heterogeneous structures like skin. 

 

1.2.2 Cells of tendon 

 

The majority of cells of adult tendons display a thin layer of cytoplasm around a large 

heterochromatic nucleus and have been named as “tenocytes” or “tendon 

fibroblasts”. The more active cells, found in immature (Ippolito et al., 1980) or healing 

tendons containing prominent nucleoli, rough endoplasmic reticulum and golgi 

apparatus which produce collagen, have been called “tenoblasts” .  Several studies 

have shown that immature developing tendon is hypercellular and cellularity 

gradually reduces through ageing (Holmes, 1971; Moore and De Beaux, 1987; Oryan 

and Shoushtari, 2008) indicating a relatively quiescent metabolic state of a mature 

tendon in comparison to developing tendon. During healing, tendon cells of a more 

active phenotype are found. 

 

Using cytoplasmic  staining  McNeilly et al.  (McNeilly et al., 1996) demonstrated that 

tenocytes form a three-dimensional network of cells in contact between collagen 

bundles by their long cytoplasmic processes. Immunolabelling for connexin 43 

showed presence of gap junctions on the cytoplasmic processes which suggests that 

they may be involved in load sensing and coordination of response to load. 

  

 A morphological and functional difference between surface cells and internal cells 

described in earlier histological experiment has been re-established through 

immunohistochemical studies. Khan (Khan et al., 1996) described tendon cell 

populations as an outer layer of specialised  fibroblasts and macrophages, (often 

termed epitenon although this term is confusing  as it has different meaning in 

different publications). The tendon core has a different population of fibroblasts. 
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Each cell has a unique response to injury. Banes described tendon cells as synovial 

fibroblast and internal fibroblasts on the basis of sequential enzymatic digestion 

(Banes et al., 1988). More recently a stem cell population has also been identified in 

the tendon, though its role is yet to be characterised. Bi et al.  performed invitro 

studies (Cell culture, RT-PCR, FACS, transplant studies, immunocytochemistry) and 

isolated a cell population from both human and mouse tendons that showed 

increased adherence, could be pushed towards several lineages, expressed both 

tendon specific and stem cell specific markers  and were  named tendon 

stem/progenitor cells (TSPCs) (Bi et al., 2007).This group of cells constituted 6% of the 

cell population in culture and the  authors demonstrated a  similar percentage of slow 

cycling BrdU labeled cells in vivo which they considered homologous to the TSPCs 

identified in culture experiments.  

 

1.2.3 Extracellular Matrix 

 

Tendon matrix is   composed of collagens and proteoglycans (Kjaer 2004). Collagen 

accounts for 65-80% and elastin approximately 1-2% of the dry mass of the tendon 

(Kannus, 2000). Type I collagen is the dominant collagen found in tendon through 

immunofluorescent localization (Williams et al., 1984), electron microscopy (Birk and 

Mayne, 1997), RT-PCR (Heinemeier et al., 2007) and in culture conditions (Gungormus 

and Kolankaya, 2008) but other collagens (e.g. II, III, V, VI, IX, XI) are also present 

(Fukuta et al. 1998; Ottani et al. 2002; Kjaer, 2004). Collagen is responsible for the 

tensile strength of the tendon while proteoglycans provide the viscoelastic 

properties of tendons (Puxkandl et al. 2002; Robinson et al. 2004).Histological, 

immunohistochemical and ultrastructural  studies have shown that injured tendons 

heals by fibrillogenesis (Gigante et al., 1996) and the deposition of new collagen can 

be labelled  by HSP47, a molecular chaperone to procollagen synthesis (Hu et al., 

1995). 

 

Tendons are of two major types based on the presence or absence of their covering 

sheath- intrasynovial and extrasynovial. An intrasynovial tendon has a double layered 
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synovial membrane containing synovial fluid such as the flexor tendons of the hand. 

Tendon sheath fluid assay has shown hyaluronic acid and protein concentrations 

similar to those in normal joint fluid, indicating that flexor tendon sheath fluid has a 

character similar to synovial fluid of joint (Hagberg et al., 1992). This fluid  has been 

shown to be involved in specific functions such as tendon gliding and nutrition of 

tendon tissue (Lundborg et al., 1980). 

 

 An extrasynovial tendon such as the Achilles tendon has no such membrane but is 

covered by a layer of loose connective tissue called paratenon (Graf et al., 1990). The 

two types of tendons have been shown to heal by different mechanism following 

division and also when used as free graft (Gelberman et al., 1992b) and this is 

discussed in more detail in later sections.  

 

1.2.4  Tendon  Vasculature 

 

Blood supply to the tendon has been widely studied using various different 

techniques. Intrasynovial tendons receive nutrition from both synovial fluid bathing 

them as well as from segmental blood vessels (Lundborg et al., 1980). Extrasynovial 

tendons receive blood supply from ossoetendinous and myotendinous  junctions as 

well as blood vessels coming through the mesotenon from the paratenon (Mayer, 

1916). 

 

A substantial number of work has been done on the blood supply of Achilles tendon 

using various different techniques (Reviewed by Fenwick et al., 2002) Injection 

studies in fresh cadavers demonstrated numerous  evenly distributed vessels in the 

paratenon from which vessels ran towards the tendon via the mesotenon  (Carr and 

Norris, 1989). 

 

Cadaveric angiographic testing and light microscopic histological study  showed that 

the blood supply of the Achilles tendon comes from three different areas: the 

musculotendinous and osseotendinous junctions and the paratenon (Ahmed et al., 
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1998) The vessels of the epitenon are chiefly derived proximally from the muscular 

branches and distally from vessels in the region of the heel. The vessels in the 

paratenon are thought to be derived from the main arteries of the leg and that the 

two systems communicate via the mesotenon (Kannus 1997).  

 

Gross anatomy of the mouse leg vasculature follows nomenclature similar to human 

blood vessels. The leg is supplied by two deep vascular bundles-  anterior tibial and 

posterior tibial vessels and the two superficial vascular bundles- sural and saphenous 

vessels (Figure 1.4).The peroneal vessels which contribute to the blood supply of the 

human Achilles tendon in the leg has not been described in the mouse.  

 

 

Figure 1.4 -Blood vessels of the mouse leg showing the posterior tibial vessels lying deep to the 

gastrocnemius muscle while the saphenous and sural vessels lie superficial to the muscle (The 

Anatomy of the Laboratory Mouse, Margaret J. Cook, 1965) 
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1.3 Anatomy of the Achilles tendon  

 

 The Achilles tendon is considered to be the thickest and strongest tendon in the 

human body. The tendon is consistently formed by the tendons of soleus and 

gastrocnemius muscle (Cummins et al., 1946) (Figure 1.5).  The fibres converge as 

they descend but at the same time rotate toward the lateral side. The tendon then 

flattens out before insertion.  

 

The tendon inserts on the posterior surface of the calcaneum bone. The distal tendon 

is protected from the calcaneum during dorsiflexion by the retrocalcaneal bursa 

(Rufai et al., 1995). One of the very few anatomical studies of mice shows that the 

bony anatomy is slightly different from mammalian bony skeleton and the tibia and 

fibula are fused together at the distal end (The Anatomy of the Laboratory Mouse, 

Margaret J. Cook, 1965). The arrangement of the calcaneum and talus appear similar 

to human skeleton (Figure 1.5-1.6). 

 

Using immunohistochemical labelling for type II collagen and routine histology with 

toluidine blue has shown that there are interlocking pieces of calcified fibrocartilage 

and bone at the enthesis region of human Achilles tendon (Milz et al., 2002). 

Fibrocartilage is found in tendon in areas subjected to compression (Benjamin and 

Ralphs, 1998) and this can be visualised with histological  cell morphology, Alcian blue 

stain (Tilman & Schünke 1991) or the presence of type II collagen by 

immunohistochemistry (Peterson et al 1999). 

 

The tendon is covered by a thick layer of paratenon, lying deep to which is a shiny 

vascular membrane, the epitenon (Nisbet, 1960). In between these two layers is a 

thin film of fluid, which gave the tendon a close resemblance to synovial tendons.  

 

In a comparative anatomy study  Holmes demonstrated that 90% of cells in adult dog, 

cat, and monkey Achilles tendon were tenocytes  (Holmes, 1971). The study also 

showed that the percentage of tenocytes increased with weight and age of the rat. 
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In a 50 gm rat 90% of the cells were tenoblasts whereas in a 65 gm rat (older) 71% of 

the cells were tenocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5- Formation of human Achilles tendon by the soleus  and the gastrocnemius muscle in the 

human and inserting into the back of the calcaneum bone; AT- Achilles Tendon 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6--Bony skeleton of mice hind limb and hind foot showing fused tibia and fibula in the leg and 

projecting calcaneum in the foot, where the Achilles tendon inserts (The Anatomy of the Laboratory 

Mouse, Margaret J. Cook, 1965) 
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1.4 Biology of Tendon Healing 

 

In the early twentieth century tendon grafting was considered the recommended 

treatment for all digital tendon injuries (Bunnell's Surgery of the Hand. 5th Edition. 

Philadelphia and Montreal, J. B. Lippincott Company). Over the years tendon grafting 

has become a less popular method for primary tendon repair and today direct repair 

is considered the best treatment for acute  injuries (Strickland, 1983) of flexor and 

extensor tendons. Tendon grafting has remained of interest due to its applicability in 

delayed trauma management or severe injuries (Freilich and Chhabra, 2007; Moore et 

al., 2010) Tendon grafting is also used for reconstruction of ligaments (Victor et al., 

1997) and to replace defective segments of tendon (Maffulli and Leadbetter, 2005).  

 

1.4.1 Current concepts in Tendon healing  

 

Tendon healing follows the general paradigm of healing tissues (Broughton et al., 

2006) and has three chronologically overlapping stages- inflammatory phase, 

proliferative phase (fibroplasia) and remodeling phase (Sharma and Maffulli, 2006; 

Wong et al., 2009).  Classic concepts of tendon healing are of extrinsic healing and 

intrinsic healing. Extrinsic healing denotes healing by cells extrinsic to the tendon, 

such as cells from the sheath, synovium and neighbouring tissues. Fibroblasts are 

thought to arrive to the injury site by vascular adhesions (Gelberman et al., 1984; 

Potenza, 1962). Intrinsic healing is described as healing by cells intrinsic to the 

tendon, more specifically by the tenocytes of the cut ends (Manske and Lesker, 1984; 

Matthews and Richards, 1975). Recent evidence suggest that the process is far more 

complex and cells from inside the tendon and cells from outside the tendon 

contribute to tendon healing (Wong et al., 2009). 
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1.4.2 Cellular activity during tendon healing 

 

During the early period of healing Wu et al.  have shown greater cellularity in both 

epitenon and endotenon areas (Wu et al., 2010). Using immunohistochemical 

techniques on chicken flexor tendon repair model, Wu showed that the total number 

of cells peaked at day 3, while the number of proliferating cells peaked at days 7 and 

21. Apoptotic TUNEL positive cells peaked at day 3 and decreased after day 21 but 

remained greater than baseline levels. Based on Bcl-2 immunostaining the study also 

reported an inhibition of apoptosis between 2-4 weeks. In a patellar longitudinal 

incision model Lui reported that both TUNEL   positive apoptotic cells and   PCNA 

positive proliferative fibroblast like cells peaked at day 28 (Lui et al., 2007; Wu et al., 

2010).  The differences reported in the studies may be due to the differences in the 

types of the wound and types of repair used in each study. 

 

On the basis of immunohistological studies in an intrasynovial mouse flexor tendon 

injury /adhesion model Wong et al (Wong et al., 2009) reported an early inflammatory 

reaction in the subcutaneous tissue surrounding the tendon followed by a peak of 

collagen synthetic activity inside the tendon substance at 21 days. The study showed 

that both the tendon and the surrounding tissue have a dynamic role in intrasynovial 

tendon healing.
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Table 1.1 - Cellular activity in tendon healing as   reported by Wong et al.  (2009) in a 

Murine Flexor Tendon partial injury model 

 

 Tendon Subcutaneous tissue 

CD45(Pan leukocyte 

marker) 

Minimal at early time 

period, peaked at day 14 

and 21 and reduced 

thereafter 

Peaked at 24 hours and 

remained elevated till 

day14 

Ly6G(neutrophil) Minimal expression at all 

times with small peak at 

day3 

Peaked at 24 hours and 

rapidly reduced thereafter 

F480(Macrophage) Marked increase at day 21 Remained high up to day 7 

BrdU(Cell proliferation) High levels between day 

7 to day 28 but activity 

significantly lower than 

surrounding tissue 

Remained high from Day3 

to day21 

Hsp47(Collagen 

synthesis) 

Peaked at day 21 and was 

significantly higher than 

subcutaneous tissue 

Peaked at day 10 

Alpha-SMA (Pericyte and 

myofibroblast) 

No expression in tendon Remained high throughout 

experiment up to day 112 

with peak at day 7  

TUNEL(apoptosis) Gradual increase 

reaching a peak at day 

84, but at a reduced level 

than subcutaneous tissue 

at all times 

Gradual increase reaching 

peak at day 84 
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An emerging concept of tendon healing is the biphasic healing modality where the 

blood and bone marrow derived cells are responsible for the early stages of tendon 

healing and the tendon derived cells contribute to the later stages of healing 

(Kajikawa et al., 2007). Both Kajikawa and Wong report a delayed but active 

involvement of the tendon cells in the healing process, supporting a bimodal healing 

pattern. 

 

In their elegant and innovative study Kajikawa (Kajikawa et al., 2007) investigated the 

spatiotemporal distribution of reparative mesenchymal cells in patellar tendon using 

two types of GFP chimeric rat (Figure 1.7). One of the chimeric rats expressed GFP 

cells only in the patellar tendon and the other one expressed GFP in the bone marrow 

derived cells. In the study a perpendicular wound was made in both types of chimeric   

rat and fibroblast like GFP positive cells were measured in the wounds at various time 

points. 

 

The GFP positive tendon-derived cells were observed in the wounded area from day 3 

and their proliferative activity remained high till day 7. The authors therefore 

concluded that the circulation-derived cells primarily contribute to the healing 

process with the role of the tendon-derived cells increasing with time. A further study 

by the same group (Kajikawa et al., 2008) reported that marrow derived cells did not 

show any collagen synthetic activity (Hsp47) suggesting that these cells do not 

participate in forming neo-tendon. Therefore, despite wide interest in bone marrow 

derived cells in tendon healing their role remains yet undetermined.  The studies 

suggest that cells from the tendon may play the major role in neo-tendon formation. 
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Figure 1.7 - Development of Bone marrow chimeric rat and tendon chimeric rat. Bone marrow chimeric 

rats were developed by irradiating the bone marrow of wild type rat followed by bone marrow 

transplantation from GFP transgenic rat (Left side). These rats therefore expressed GFP in the bone 

marrow derived cells. Tendon chimeric rats were developed by transplanting the patellar tendon from 

GFP rat to the wild type rat (Right side) of the figure. The tendon chimeric rats only expressed GFP in 

their patellar tendon. Both groups of animals received a longitudinal wound to the tendon and the 

studied at 24hours, 3, and 7 days. Modified from Kajikawa et al. (Kajikawa et al., 2007) 
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1.5 Biology of graft healing 

 

The healing of grafts follows a more complex pathway than normal wound healing as 

the grafts need to reestablish their source of nutrition. The biology of graft healing 

has been widely studied for skin graft which is   a common reconstructive surgical 

procedure. Studies of skin graft healing has shown that the graft is initially adhered 

to the recipient site through formation of a fibrin layer and undergoes diffusion of 

nutrients by capillary action from the recipient bed by a process known as plasmatic 

imbibition (Maeda et al., 1999).  The next phase involves the process of inosculation, 

in which there is early anastomosis between donor and recipient vessels (O'Ceallaigh 

et al., 2006). Revascularization of the graft is accomplished through these capillaries 

as well as by neovascularisation which occurs by influx of host cells into the graft in a 

perivascular fashion (O'Ceallaigh et al., 2007).  

 

Remodelling and repopulation of skin grafts is a relatively complex biological process. 

Using antibodies against GFP Matsuo et al (Matsuo et al., 2007) demonstrated that 6 

months after full thickness skin graft transplantation from GFP to wild type mice, GFP 

positive grafted cells survived in the epidermis, hair follicle and sebaceous glands and 

only in part of the dermis, blood vessels, and nerves.  

 

Stem cells of the epidermis localized in the bulge region of the hair follicles have been 

shown to contribute to the formation of   the epidermal structures (Oshima et al 

2001) and authors suggest that graft cell survival is dependent upon the presence of 

stem cells in grafted tissues.  

 

The complex architecture of the skin makes it difficult to separate the role of various 

cells in graft healing. The role of graft derived stem cells in graft survival presents a 

new concept in graft healing and requires further investigation.   
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1.5.1 Biology of Tendon graft healing 

 

The fate of tendon graft has been widely studied in the bone tunnel  where it is 

frequently used for Anterior Cruciate Ligament Reconstruction.  Arnoczky described 

the following stages of tendon autograft healing in the bone tunnel- -avascular 

necrosis, revascularisation, cellular proliferation and remodelling (Arnoczky et al., 

1982).  Amiel & co-workers (Amiel et al., 1986a; Amiel et al., 1986b; Kleiner et al., 

1989) showed that autogenous patellar tendon grafts underwent rapid necrosis and 

repopulation occurred from cells of extra-graft origin. 

 

The mechanism of tendon graft healing outside bone tunnels follows a slightly 

different pathway. Mason and Shearon used canine Extensor Carpi Radialis tendon as 

an autologous end to end graft and performed daily analysis of cellular events from 

day 3 to day 100 (Mason and Shearon, 1932).  The authors grouped their results in 

two overlapping phases. The first phase compromised of events of   the first two 

weeks and the second phase commenced from the second week. In the first phase 

tendon stump and graft is held together by proliferating tissue from the sheath and 

peritendinous area and by the end of this phase the sheath tissue appear to have 

organized into well aligned dense connective tissue.  At this time the sheath has 

many leukocytic cells. In the second phase, the tendon and graft stump starts to 

show mitotic figures (as early as day 4) and cells gradually infiltrates the scar tissue 

situated between the graft and the tendon. The authors reported that on the basis of 

gross and histological criteria the graft remained alive throughout the healing 

process and its appearance was very similar to the rest of the tendon. One of the 

main limitations of the study was the huge number of variables in terms of 

immobilization, suture, use of sheath and the number of animals harvested each day. 
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Table 1.2 -Temporal events in tendon graft healing (Mason and Shearon 

1932) 

 

Days Events 

4-7 days Tendon graft alive 

No sign of cell proliferation (Based on mitotic 

figures) 

Necrosis around silk suture 

8-10  days Graft held together by disorganised tissue of the 

stump and dense relatively more organised tissue of 

the stump  

WBC in sheath still present. Numerous oval shaped 

nuclei in the sheath 

Graft show some proliferative activity 

Areas of necrosis in the centre of the graft 

12-14 days Increased proliferative activity form the stump 

Union of graft and stump appear primarily by 

sheath proliferative activity 

 

3 weeks 

Graft and stump begins to regain uniformity of 

structure 

Reorganisation of cells and collagen fibre bundles 

4-5 weeks Tissue appearance begins to match normal adult 

tendon structure with parallel rows of cells in 

between parallel rows of collagen fibres 

Tendon strength  improved 

100 days Histologically tendon graft inseparable from the 

rest of the tendon 

Stump still slightly wider than the rest of the tendon 
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Later studies (Potenza., 1964; Skoog and Persson., 1954) supported the argument 

that tendon graft remains alive by histological criteria. Potenza used intrasynovial 

flexor tendon grafts to reconstruct the flexor tendons but in order to minimise 

trauma he sutured the graft without displacing it. The graft therefore maintained its 

blood supply inside the flexor sheath area and was in most part undisturbed in its 

anatomical bed, a situation which is unlikely in the clinical setting. Potenza used inert 

stainless steel sutures which was in contrast to earlier grafting studies all of which 

used the highly reactive silk suture(Flynn et al., 1960; Mason and Shearon, 1932) . 

Potenza reported that the tendon cells did not participate in the healing process and 

the reparative cells at the stumps arrived from either the synovial sheath (distal 

stump) or the paratenon (Proximal stump). 

 

Canine studies by Flynn et al (Flynn et al., 1960) also reported early healing by sheath 

tissue followed by healing from stump cells but reported that necrosis occurred in 

whole of the graft and that the transplant was completely replaced by tenoblasts 

from the stump. Use of silk suture, extrasynovial tendon graft and trauma to 

surrounding tissue may be some of the factors involved in Flynn’s contradictory 

evidence. 

 

The healing of tendon graft   has also been shown to be affected by the type of donor 

tendon used as a graft. Canine studies (Seiler et al., 1997) showed that while both 

intrasynovial and extrasynovial tendons remain viable by histological criteria, the 

intrasynovial tendon grafts did not form adhesion. They hypothesized that where an 

intrasynovial tendon graft has been used, healing occurs from the stumps and cells 

migrate into the graft from the apposed ends whereas extrasynovial tendon grafts 

heal by cells invading from all directions through vascular adhesions. Whether the 

cells migrate into the graft or out of the graft is yet to be determined. Table 1.3 

summarises the evidence provided by Gelberman’s group in support of their 

hypothesis (Abrahamsson et al., 1995; Amiel et al., 1995; Ark et al., 1994; Gelberman 

et al., 1992b; Seiler et al., 1993a; Seiler et al., 1997). 
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Table 1.3 - Differences in healing of Extrasynovial and Intrasynovial  

tendon graft 

 

Characteristics Method Intrasynovial Extrasynovial 

Tissue architecture Light microscopy Viable, normal appearing 

surface and internal 

fibroblast at all time points 

Dense circumferential 

adhesion formation 

At 3 weeks degenerative 

changes in the endotenon 

and at 6 weeks 

hypercellular graft 

Collagen 

alignment 

Transmission 

Electron Microscopy 

Well aligned collagen fibres 

through 6 weeks 

Areas of thin, 

disorganised collagen 

fibres with high amplitude 

crimps 

C2ellular survival 

and proliferation 

Intravital 

fluorescent stain 

Ethidium Bromide 

and Calcein and 

confocal microscopy 

Uniform viable surface layer Predominantly nonviable 

fibroblast at   3 weeks 

Increase number of viable 

cells with repopulation 

Neovascularisation  Microangiography Blood vessels visualised at 

proximal and distal repair 

sites 

Blood vessels all around 

the graft-vascular 

adhesions 

Cellular 

productivity 

mRNA for Type I 

procollagen - Insitu 

Hybridisation 

No areas of increase mRNA Areas of increased mRNA 

seen at 2 and 4 weeks in 

the fibroblasts of 

peritendinous adhesion  

DNA synthesis Exvivo 3H thymidine 

uptake and DNA 

content(Biochemical 

method) 

Modest increase Significantly higher than 

intrasynovial tendon 

Mechanical 

strength 

Mechanical testing 

device 

Significantly increased 

angular rotation 

Much lower angular 

rotation 
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Though intrasynovial tendons appear to be better candidates for tendon grafting, 

their low availability as grafts limit their use in the clinical setting and the commonly 

used tendon grafts remain of extrasynovial type (plantaris, palmaris, hamstring, 

patellar tendon etc). 

 

1.5.2 Cellular repopulation in tendon graft 

 

Recent studies on murine flexor tendon   showed that  acellular freeze dried 

allografts were repopulated by 42 days (Hasslund et al., 2008)  (Figure 1.8).  

 

 

Figure 1.8 - Representative histologic sections of the middle segment of the FDL tendon autografts (A–

C) and allografts (D–F) at 14, 28, and 42 days post-surgery. Sections were stained with Orange G/Alcian 

Blue (Scale bar-500µm). Hypercellular fibrotic scar (*) surrounding 14-day and 28-day autografts (A, B) 

that appears to be minimal around the acellular allografts (C, D). By 42 days, the scar tissue appears to 

have significantly remodeled in both autografts (E) and allografts (F). Graft tissue is marked G 

(Hasslund et al., 2008) 

 

Confocal microscopic studies using GFP rat have shown that tendon grafts used for 

both rotator cuff tears (Iwata et al., 2008) and Anterior Cruciate Ligament (Kobayashi 

et al., 2005) reconstruction are replaced by host cells by 28 days. Iwata (Iwata et al., 

2008) reported infiltration of GFP positive host cells into the grafted rotator cuff 

tendon as early as Day 1 day after transplantation and found that host cell invasion 
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occurred from neighbouring synovium, tendon and bone. The study could not 

comment whether the graft acted only as a scaffold or whether viable graft cells are 

required during the remodelling process. Insitu hybridization study of sex 

mismatched animals showed that reseeded cells of acellular tendon grafts persist up 

to 12 weeks and in a small number of animals up to 30 weeks (Thorfinn et al., 2009). 

The mechanism of repopulation and the source of cellular repopulation have not yet 

been established. 

 

1.5.3 Role of other cells in tendon graft 

 

1.5.3.1 Bone marrow derived cells 

 

Apart from tendon and sheath cells other cells may influence graft healing. Much of 

the interest has been centred on the role of marrow derived cells in tendon/graft 

healing. Using GFPBMT mice Zantop showed that bone marrow derived cells 

accumulate in the wound in the early part of graft (both autologous and bioscaffold) 

healing and are predominantly associated with areas of inflammation and 

angiogenesis (Zantop et al., 2006). A reparative role of these cells is yet to be 

established. 

 

1.5.3.2 Inflammatory cells 

 

During  tendon healing in a rat partial tenotomy model,  tendons were seen to be 

filled with a neutrophilic  infiltrate within 6 hours of injury followed by  an influx of 

monocyte and macrophages  within 24 hours (Iwuagwu and McGrouther, 1998).  

Further experiments in the same model showed  that Cd45 positive leukocytes 

comprised of  18 % of the cells at 6 hours of tendon injury  but  reduced to 4% by 72 

hours (Zavahir et al., 2001). In a rat Achilles tendon injury model neutrophil and ED1 

positive systemic macrophages were found to be increased after 24 hours. 

Neutrophils reduced by 70% while the concentration of ED1 positive macrophages 

remained constant at day 3 post-injury (Marsolais et al., 2001).  Neutrophils and ED1 
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positive macrophages returned to control values after 7 and 14 days, respectively. 

ED2 positive macrophages showed a tendency to increase at day 28 suggesting a very 

different role of these macrophages in the healing cascade. Similar results were 

reported for tendon graft healing in the bone tunnel. Immunohistochemical studies 

of rat autografts used for  Anterior Cruciate Ligament reconstruction (Kawamura et 

al., 2005) found that mature tissue macrophages (ED2 positive) show increased 

proliferative activity (PCNA) at day 14 suggesting that a change in phenotype from 

proinflammmatory to pro-regenerative as healing progresses. In  a c57Bl/6 mice 

Achilles tendon injury model  liposomal clodronate induced macrophage depletion 

has also shown a reduction in  the density of proliferative cells (BrdU positive) in 

tendons by 36%  (Godbout et al., 2010). On the other hand a recent study (Hays et al., 

2008) has shown that a reduction in liposomal clodronate induced macrophage 

depletion during rat ACL reconstruction led to better morphologic and biomechanical 

healing at the bone-tendon interface of such repairs. In culture conditions human 

monocytes and macrophages have been reported to express virtually all known 

collagen and collagen-related mRNAs (Schnoor et al., 2008). The macrophages 

secreted a large amount of type VI collagen which is known to be involved in 

modulation of cell-cell and cell-matrix interactions. The authors suggest that the 

production of type VI collagen is a marker for a nondestructive, matrix-conserving 

macrophage phenotype which may be involved in physiological and pathological 

conditions in vivo. It is possible that different macrophage play completely or even 

opposing functions and may therefore be an important player  in tendon healing and 

graft integration than was previously thought and this possibility requires further 

investigation. 

 

1.5.4 Cytokines and growth factors in graft healing 

 

Histology, biomechanical and molecular testing of freeze dried allograft and 

autografts in murine model showed that adhesion reduced after 28 days and this 

peak in remodelling directly corresponded to high GDF-5 (Growth and Differentiation 

Factor- 5) level (Hasslund et al., 2008). The authors also report that live autografts 
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significantly upregulated   VEGFa in 28-day autografts but the TGFβ1 expression levels 

were not increased. A further study by the group (Basile et al., 2008) tested the 

effect of GDF-5 gene delivery to the healing site and found limited efficacy due to the 

short duration of its action. It is likely that the cytokine and growth factor profile 

during tendon graft healing closely resembles that of tendon healing and  the many 

growth factor, cytokines and other exogenous substances  currently under 

investigation to improve tendon healing  (Reviewed by Doure et al.,2008) may also 

be useful in improving tendon graft and construct integration. 

  

1.5.5 Apoptosis in graft healing 

 

Apoptosis has been shown to be a part of the healing process of wounded tendons. 

Lui  (Lui et al., 2007) reported that TUNEL positive cells peaked at 28 days following 

tendon wounding while Wong  (Wong et al., 2009) reported a peak at 84 days in a 

mice tendon adhesion model. A recent study reports a much earlier peak in apoptosis 

in the healing tendons at day 3, followed about 10 days later by the peak proliferation 

period (Wu et al., 2010). Using Bcl-2 immunohistochemistry, Wu also found that 

apoptosis was inhibited between 2 and 4 weeks. Apoptosis may be triggered by loss 

of mechanical integrity and the need for realignment by the neotendon cells. 

Apoptosis has been shown to be induced  both by  mechanical loading of  intact 

tendon (Scott et al., 2005) or by the lack of it (Egerbacher et al., 2008).   In terms of 

healing of transplanted tissue, apoptosis has been shown to contributes to both graft 

rejection and the establishment of graft tolerance  (Zavazava and Kabelitz, 2000). 

The role of apoptosis in tendon graft healing has not been investigated. 
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1.5.6 Vascularisation of tendon grafts 

 

Though tendons have been designated as relatively avascular tissue, 

neovascularisation has been shown to be an integral part of both tendon and tendon 

graft healing. Earlier work by Peacock showed a profuse vascular network during 

healing and maturation of graft (Peacock, 1959). Peacock injected a radioactive dye 

into the hind leg and measured the radioactivity over the various parts of the tendon 

20 minutes after injection. His study showed that blood vessels entering long 

tendons from the muscular origin and periosteal insertion are able to nourish only the 

proximal and distal third of the tendon. Circulation to the central third of long 

tendons is by intermediate vessels entering through disorganised paratenon or a 

definite volar mesentery. In free grafts this portion of the circulation is restored 

through postoperative adhesions, which appeared vital for the survival of the graft. 

 

Chaplin (1973) used microangiographic studies with barium sulphate injections 

(Chaplin, 1973). Chaplin’s studies demonstrated a difference in both the basic vascular 

pattern of intrasynovial and extrasynovial tendons and also in the pattern of 

revascularisation of these tendons. Following simple division intrasynovial parts of 

flexor tendons had no significant revascularisation. When used as free grafts all 

extrasynovial tendons showed good revascularisation and adhesion formation while 

intrasynovial tendon grafts retained their avascularity and adhesion occurred only at 

either ends of the graft. Chaplin concluded that extrasynovial grafts were inferior to 

intrasynovial grafts when used to repair damaged flexor tendons, as the vascularity 

seems to support adhesion formation. 

 

Sckell et al.  assessed the role of peritendinous tissue in the revascularisation of 

patellar tendon graft in a murine model using intravital microscopy (Sckell et al., 

1999). The peritendinous connective tissue envelope of the graft was completely 

removed, partially removed or not stripped at all. Intravital microscopy showed that 

grafts with intact peritendinous tissue showed accelerated vascularisation and 

histology confirmed higher viability compared to the other two groups. The authors 
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suggested that the intact connective tissue are either able to produce angiogenic 

factors or to stimulate host cells to generate and release these factors. 

 

Perfusion studies with India ink showed neovascularisation of extrasynovial tendon 

grafts through vascular adhesions by two weeks (Gelberman et al., 1992a). In 

contrast, the flexor tendon grafts of intrasynovial origin healed without ingrowths of 

vascular adhesions and neovascularisation took place from the proximal and distal 

sites of the sutures. Cross sections extrasynovial tendon showed obliquely oriented 

intratendinous vessel while intrasynovial tendons showed vessels extending through 

the surface layer of the tendon graft. 

 

Fenwick et al. reviewed the previous studies performed on tendon graft 

neovascularisation and concluded that neovascularisation is essential for the long-

term survival of tendon graft (Fenwick et al., 2002).  
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1.6 GFP species and animal selection for tendon grafting study 

 

A number of different species has been used to study various aspects of tendon graft 

healing. Many of these studies investigated the fate of tendon graft in the bone 

tunnel for Anterior Cruciate Ligament reconstruction.  With increase use of tendon 

grafts for overuse injuries several studies recently have investigated tendon to 

tendon grafting  

 

Table 1.4 - Animal models used for tendon grafting studies 

 

Animal Tendon graft for tendon repair 

studies 

Tendon graft for ligament 

reconstruction studies 

Mice (Hasslund et al., 2008; Zantop 

et al., 2006) 

 

Rat (Iwata et al., 2008; Kajikawa et 

al., 2008; Kajikawa et al., 2007; 

Tachiiri et al., 2010) 

(Bedi et al., 2009; Hays et al., 

2008; Kobayashi et al., 2005) 

Rabbit (Murphy et al., 2008) (Karaoglu et al., 2008; Lim et 

al., 2004; Ouyang et al., 2004) 

Avian (Ashley et al., 1964; Cao et al., 

2002) 

 

Porcine  (Lee et al., 2005; Liu et al., 

1995; Milano et al., 2006; Wu 

et al., 2009) 

Dog (Potenza, 1964; Seiler et al., 

1993b) 

(Shino and Horibe, 1991; 

Yasuda et al., 2004) 

Bovine  (Teli et al., 2005) 

Primate (Singer et al., 1989)  
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Canine models are popular for studying both tendon healing and tendon grafting 

biology due to their large size and anatomical similarity to human tendons (Potenza, 

1964; Seiler et al., 1993b). Larger animal models remain popular particularly when 

mechanical studies are planned (Shin et al., 2008; Singer et al., 1989). Requirement of 

genetically manipulable models have led to the increase in the use of rodent models 

(Chhabra et al., 2003). Mice and rat (Kajikawa et al., 2007; Kobayashi et al., 2005) are 

commonly used animals for tendon grafting studies and increase in their use is also 

aided by their low housing cost, large number of available antibodies, comparable 

properties to human tendons (Wong et al., 2006a).  

 

Transgenic species like GFP allow easy tracking of cells (Hadjantonakis and Nagy, 

2001; Kajikawa et al., 2007) in and out of grafts and has therefore become a popular 

technique to study grafting biology. (Hayashi et al., 2007; Matsuo et al., 2007; 

Muramatsu et al., 2007; Zantop et al., 2006). Some of the advantages of the GFP 

chimeric models are that they allow non invasive visualization and can be monitored 

real-time in vitro and in vivo and be quantified by flow cytometry, confocal 

microscopy and fluorometric assays (Hadjantonakis and Nagy., 2001). Moreover the 

availability of GFP BMT mice allows tracking of bone marrow derived cells in wounds, 

grafts etc therefore yielding useful information for tissue engineering (Zantop et al., 

2006 ; Kajikawa et al., 2007). GFP species has therefore become an effective tool to 

study the fate of grafted tissue and has shown tissue specific differences in grafting 

biology. 

 

The information available from various grafting studies using GFP animal models is 

summarized in table 1.5.
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Table 1.5- Use of GFP species for the study of grafting biology 

 

 

 

Author Species Specimen Tools used Main findings 

Iwata et al., 
2008 

GFP rat Achilles tendon graft 
to rotator cuff 

Confocal 
microscopy 

Graft cells disappear by 28 days and are 
replaced by host cells 

Muramatsu 
et al., 2007 

GFP rat Whole limb allograft 
and 
immunosuppression 

Fluorescent 
microscopy 

Tissue specific variation  in repopulation rate 
with skin cells repopulated first 

Kimura et al., 
2005 

GFP rat Sciatic nerve graft Fluorescent 
microscopy 

Retrograde transmigration of donor cells-
contributing to axonal regeneration in the 
recipient nerve 

Matsou et al., 
2007 

GFP 
mice 

Skin graft Immuno- 
histochemistry 

Rejection of full thickness dorsal skin graft. 
Improved viability with tail skin grafts 

Keijser et al., 
2006 

GFP rat Cornea- limbal 
isograft, sibling 
allograft and 
nonsibling allograft 

Fluorescence 
microscopy and 
Immuno- 
histochemistry for 
macrophage and 
lymphocyte 

Average transplant survival 143 days 
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1.7 Role of cells in engineered tendon 

 

Controversy surrounds the value of grafting of cell- based constructs in tendon and it is 

still unclear as to whether the cells in a tendon graft remain viable after the grafting 

procedure. It has been argued that cells are not necessary for healing of transplanted 

tendon (Hasslund et al., 2008) or construct (Badylak et al., 1999) as host cells would 

eventually repopulate them and that it  would simplify the immunogenic aspect of 

construct transplant. On the other hand cell based constructs have been reported to 

have improved mechanical function than cell free constructs (Butler et al., 2004). Liu 

reported formation of structurally disorganised neo-tendon in the scaffold only group 

and concluded that an even distribution of cells is required in donor tendon/construct 

to form a homogenous tissue (Liu et al., 2006). The precise nature of cellular traffic into 

grafts or out of grafts is still largely unknown.  

 

Tendon engineering has advanced significantly in the past 25 years. But one of the main 

limitations of engineered tendons is that their mechanical strength still remains much 

lower than that of a normal tendon (Butler et al., 2008; Liu et al., 2006). One potential 

means of improving collagen deposition and improving collagen alignment which in 

turn could influence recruitment of tendon strength would be to investigate tendon 

progenitor cells in a construct. Previous studies have shown that embryonic and 

neonatal tendon fibroblasts deposit collagen in parallel alignment through cytoplasmic 

protrusions termed “fibripositors” (Canty et al., 2004; Canty et al., 2006). These cells 

can be isolated from embryonic tendon and cultured in vitro. Furthermore, it has been 

demonstrated that these cells form a “neo-tendon” when under tension in the absence 

of a blood supply (Kapacee et al., 2008). 
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Figure 1.9 - Electron microscopy of fibripositor positive tendon construct. (a) Transverse section of a 

metatarsal tendon from a 13-day chick embryo showing fibripositors (red arrow) and a fibricarrier (blue 

arrow), (b) Embryonic tendon cells (ETC) in a construct 1-week post contraction, (c) Electron microscopy 

of ETCs on Aclar, (d) Disorganised arrays of thin filaments 1-week after severing a construct. Scale Bars - 

500 nm (Kapacee et al., 2008) 
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1.7.1 Cell-free tendon constructs 

 

Many scaffold based materials are under investigation as tendon replacement material. 

One successful biomaterial that has already been marketed is the extracellular matrix of 

porcine small intestinal submucosa (SIS-ECM).  SIS-ECM has been used to repair Achilles 

tendon (Badylak et al., 1995; Derwin et al., 2004), rotator cuff  (Dejardin et al., 2001; 

Iannotti et al., 2006)and flexor tendon (Derwin et al., 2004) and has been shown to 

regenerate neo-tendon with limited mechanical recovery.   

 

1.7.2 Cell based tendon constructs 

 

Numerous cell types have been investigated as potential cell based therapies in tendon 

grafting. Kryger investigated 4 cell lines  (epitenon tenocytes, sheath fibroblast, bone 

marrow derived mesenchymal stem cell and adipoderived stem cell) and showed that 

all grafts had been populated by cells (Kryger et al., 2007). However it was unclear from 

these studies where the cells came from, whether the graft cells undergo apoptosis or 

remained viable due to the limitations of histological staining. These findings suggest 

that more work is required to identify whether cells migrate into the tendon, or are 

replaced, and whether apoptosis or cell migration is involved.  
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1.8 Summary 

 

A review of the literature suggests that though some histological data exist regarding 

the fate of tendon grafts no   study has been done so far to identify the role of the graft 

cells.  Cell based therapy offers an exciting potential for the future of tendon healing 

and therefore a better understanding of the grafting biology may open new therapeutic 

possibilities. On the other hand it may also help us to understand and improve on 

current tendon grafting practices. A single report was found where tendon to tendon 

grafting was studied using transgenic animals (Iwata et al., 2008) to investigate 

persistence of fluorescence of grafted GFP tendon. Another study used wild type mice 

as a tendon grafting model (Hasslund et al., 2008) focussing on adhesion and growth 

factor profile during graft healing. Neither study investigated the role of the grafted 

cells in healing and the mechanism of cellular repopulation. Though earlier histology 

based experiments suggested that the graft remain alive and healing occur from the 

stump cells, newer evidence suggests that repopulation by host cells may play a major 

role in graft integration. A more detailed study looking into the activity of graft cells at 

various stages of healing will be undertaken to clarify these controversial points of 

interest. 
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1.9 Aims 

 

1) To establish a model for the study of tendon grafting  

2) To study the fate of graft cells after tendon grafting 

3) To study the chronological events of  tendon graft take 

4) To identify the applicability of the model for testing of tendon constructs 
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Chapter two 

Materials and methods 
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2.1 Experimental animals 

 

The availability of large numbers of transgenic and knockout species   makes the mouse 

a useful research model.  For this study two varieties of transgenic mice species were 

chosen- the C57BL/6J and the enhanced Green Fluorescent Protein (eGFP) expressing 

mice C57BL/6-Tg (CAG-EGFP)1 Osb/J. The C57BL/6J mice are the most widely used inbred 

strain and the first to have its genome sequenced 

(http://jaxmice.jax.org/strain/000664.html).  The GFP mice was generated in C57BL/6 

mice with an "enhanced" GFP (eGFP) cDNA under the control of a chicken beta-actin 

promoter and cytomegalovirus enhancer which makes all of the tissues, with the 

exception of erythrocytes and hair, appear green under excitation light (Ikawa et al., 

1995). C57Bl/6J mice and eGFP (commonly referred to as GFP in publications) mice were 

chosen to carry out transgenic grafting as the two strains are identical except for the 

transgene, have only a small number of reported rejections and have easily available 

antibodies for the detection of the GFP. 

 

Both the   C57 BL/6J and GFP mice were supplied by Harlan (Blackthorn, Oxfordshire) 

and housed at   the Biological Unit, in the University of Manchester. Male mice aged 8-12 

weeks were used for the study. Mice were matched on size and weight for grafting. 

Mice were housed together prior to surgery and individually after the surgical 

procedure. They were provided with mashed   feed for the first week in order to 

prevent weight bearing on operated hind limbs. Standard recommended husbandry 

was provided by the technical staff at the biological unit. 

http://jaxmice.jax.org/strain/000664.html
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 Table 2.1- Number of animals used  

 

 

 

 

 

 

 

 

 

 

 

 

 Type of study Number of mice 

Mouse Achilles tendon 

anatomy study 

C57Bl/6J 16 

GFP 8 

Transgenic grafting study C57Bl/6J 12+3 (for graft 

harvest) 

 

GFP 12+4 

Construct grafting studies C57Bl/6J 12 

 GFP 8 
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2.2 Method of anatomical characterisation of mouse Achilles tendon 

 

2.2.1 Macroscopic anatomy 

 

8 c57BL/6Jmice legs (4 left and 4 right) were viewed and dissected under a Leica MZ6 

stereomicroscope (Leica Microsystems Ltd, Switzerland) using surgical micro 

instruments Dissected samples were kept moist by regular spraying with pH neutral 

phosphate buffered saline (PBS) (Sigma-Aldrich Company Ltd, Poole, UK). 

 

2.2.2 Microscopic anatomy 

 

8 legs (4 left and 4 right) of C57BL/6J and 8 legs (4 left and 4 right)  of GFP  mice were 

collected immediately after termination and fixed in fresh Zinc fixative solution 

(Appendix) for 48 hours at 4°C prior to transfer to 50% Industrial Methylated Spirit (IMS) 

(Genta Medical, York, UK) solution for preservation.  16 legs   were then decalcified in 

20% pH 7.4 EDTA solution (Tennants Brewery, Manchester, UK) (Appendix) for 15 days 

with solution changes every 5 days. Radiographs were performed on the 15th day to 

ensure complete decalcification. This was achieved by placing samples over unexposed 

9 x 12 centimetre Industrex C radiograph film (Kodak, Rochester, New York) in black 

plastic wallets into a lead enclosed dental radiograph machine (Faxitron, Illinois, USA).  

The power settings were set to 45 kVp and the sample was exposed to 5 seconds worth 

of radiation. The radiograph machine was deactivated and the radiographic film was 

developed in a dark room with 3 minutes in Phenisol developer solution (Ilford Imaging 

ltd, Mobberley, England.) followed by 3 minutes in running cold water. The film was 

then placed in Hypam fixer solution (Ilford Imaging ltd, Mobberley, England.) for 3 

minutes then further rinsed for 3 minutes in cold running water prior to leaving to air 

dry. Following decalcification the decalcified legs were put back into 50% IMS solution 

until further processing. Remaining  8 C57BL/6J (4 left and 4 right) mice legs and  8 GFP 

(4 left+ 4 right)  legs were filleted to remove the bone from the specimen and 

immersed in 50% IMS.  
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Both the decalcified legs and filleted legs were processed in a Tissue-Tek Vacuum 

Infiltration Processor (Bayer Diagnostics, Newbury, Berkshire, UK) on a skin cycle 

program (Appendix). Following wax processing, legs were placed in wax wells that 

were filled with molten wax. Legs were positioned in either longitudinal alignment or in 

an axial alignment and left for the wax to set over 24 hours. The blocks were cut at 7 

μm sections from paraffin embedded samples using a HM 335E electronic microtome 

(Microm, Walldof, Germany) using Accu Edge low profile disposal blades (Feather 

Safety Razor Co Ltd, Japan). Sections were floated on a warm water bath (37-40˚ C) and 

mounted on coated 1% poly-l-lysine slides (Cell Path). The sections were dried briefly on 

a hot plate prior to being labelled and placed into an oven overnight at 37˚C.  

 

2.2.2.1 Basic staining-Haematoxylin and eosin 

 

Haematoxylin & Eosin staining (Appendix) was used to highlight cell nuclei purple 

(Harris alum haematoxylin) and counter stain remaining tissue pink (Eosin 

Y)(Appendix). Following dewaxing, sections were placed into filtered haematoxylin for 

4 minutes followed by a period of “bluing” which involves rinsing in running tap water 

for 5 minutes. Slides were subsequently transferred to Eosin Y for 30 seconds followed 

by rinsing in running water for 10 seconds and dehydrated through the alcohols prior to 

mounting in Pertex and glass cover slips.  

 

2.2.2.2 Alcian Blue Staining 

 

This stain highlights acid mucosubstances (Glycosaminoglycans) and acidic mucins that 

were used to highlight  fibrocartilaginous areas within tendon. Sections were dewaxed 

and hydrated then placed in Alcian Blue Solution pH 2.5 (which stains weakly sulphated 

mucins-Appendix) for 5 minutes. Samples were then washed in tap water followed by 

counterstaining in 0.1% Nuclear Fast Red (Appendix) for 5 minutes. Further washing in 

tap water was performed and slides were then dehydrated and mounted with Pertex 

and glass cover slips. 
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2.2.2.3  Miller’s Elastin 

 

This stain highlights elastin fibres. Sections were dewaxed and hydrated through 

graded alcohols and then treated in 0.5% acidified Potassium Permanganate (Appendix) 

for two minutes then rinsed in tap water prior to washing in 95% IMS. Sections were 

then placed into Miller’s Elastin Staining   solution for two hours and then washed in 

95%  IMS solution. Counterstaining was performed in Van Gieson’s stain (Appendix) for 

2 seconds prior to washing and dehydrating through the alcohols and mounting in 

Pertex and glass cover slips. 

 

2.2.2.4 Masson’s Trichrome Staining 

 

Masson’s Trichrome stain (Appendix) for collagen and other components of the 

extracellular matrix. Slides were dewaxed and rehydrated followed by submersion in 

Harris’ Haematoxyllin for 4 minutes and bluing for 5 minutes. Samples were  then 

transferred to 1 % (v/v) picric acid for 30 seconds, rinsed in running water until only a 

yellow tint remained for 1 minutes, transferred to 0.1 % (w/v) Biebrich scarlet for 2 

minutes and then quickly rinsed in water for 10 seconds.  Slides were then placed into 

50% phosphomolybdic acid/50% phosphotungstic acid (50:50 PMA/PTA) for 10 minutes 

then transferred directly to Fast Green for 5 minutes and rinsed in tap water for 10 

seconds. The slides were dehydrated and mounted with Pertex and glass cover slips. 

 

2.2.2.5 Hoechst and Phalloidin stain 

   

Slides were dewaxed, rehydrated and rinsed in 0.1% Triton X-100 in PBS three times, five 

minutes each. Sections were incubated for one hour with of TRITC-labelled phalloidin 

(1:500 dilution, Sigma, Dorset, UK). Slides were then rinsed again and incubated with 

Hoechst 33258 bisbenzimidazole nuclear counterstain (1:500 dilution) for 30 min. After 

one further rinse, sections were mounted in Gelvatol anti-fade aqueous mountant. 
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2.2.2.6  Immunohistochemistry with Alpha Smooth Muscle Actin ( Alpha 

SMA) 

 

Alpha Smooth Muscle Actin (αSMA) is expressed by pericytes which are cells present in 

the endothelium of blood vessels. Experimental  and control slides were selected  and 

rehydrated through xylene and graded alcohols (5 minutes in xylene twice, then 10 

seconds in each graded alcohol 100% -> 100% ->90% ->70% -> 50% -> PBS)  and then 

washed in PBS-Tween twice for 5 minutes each time. Sections were immersed in 3% 

H202 solution for 10 minutes and washed again in PBS- Tween (.01%) twice for 5 minutes 

each time. Sections were dried and segregated with ImmEdge Hydrophobic Barrier Pen 

(Vector Lab) and then washed in PBS tween for 5 minutes.  Horse blocking serum (2.5%) 

was added to all sections (Immpress-Vector Lab) and incubated for 30 minutes. 

Sections were washed in PBS-tween twice for 5 minutes. Primary antibody (Rabbit 

polyclonal-Abcam) were added to alternate sections and incubated at 37˚C for 1 hour. 

PBS was added to rest of the sections. The slides were washed twice in PBS-Tween and 

ImmPRESS anti-rabbit Ig (Immpress-Vector lab)) was added to all sections and 

incubated at 37°C for 30 minutes. The slides were washed in PBS twice for 5 minutes 

and then 3, 3’-diaminobenzidine (DAB -Vector Lab) solution was added to each section 

for 5 minutes minimum or until DAB precipitated, rinsed in PBS twice for five minutes, 

counter stained in Nuclear fast red for minimum of five minutes, dipped in water twice 

and dehydrated through graded alcohols and into clean xylene twice for 5 minutes and 

mounted in Pertex and dried. 
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 2.3 Tendon Grafting 

 

 2.3.1 Operative procedure for tendon grafting  

 

4 GFP and 4 C57BL/6 mice were used for each time point. Graft harvested from the GFP 

mouse was applied to a defect in the C57 BL/6 mouse Achilles tendon as an onlay or 

patch graft using one securing sutures on each end to minimise trauma and handling 

(Figure 2.1- 2.2). Similarly graft harvested from the C57 BL/6 mouse was placed into the 

GFP mouse. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1- Diagrammatical representation of design of syngenic and autologous grafting showing the 

C57BL/6 mouse receiving a  green GFP graft (above) and the green GFP mouse receiving a C57 BL/6 graft 

(below) 
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All equipment and instruments were checked thoroughly prior to surgery. Anaesthesia 

was induced by 4% Isoflurane (Abbott Laboratories, UK) and Oxygen (BOC) at 4 

litre/minute and maintained by 2% Isoflurane and Oxygen at 2 litre/minute, with an 

Oxygen drive. 

 

Achilles tendon was harvested from freshly euthanized donor mice under magnification 

(Leica Surgical microscope). The donor tendon was placed in CO₂ independent media 

(Gibco-Invitrogen) to maintain viability during transfer. 

 

 

 

 

 

 

 

 

 

   

 

 

          

Figure 2.2- Diagrammatic representation of surgical technique of tendon grafting studies showing 

placement of the graft in a 50% defect of the tendon and the placement of the proximal and distal holding 

sutures 

 

The recipient mouse was   placed in prone position on a custom made operating table 

made of thermoplastic material.  The legs were shaved and hair removed with a 

handheld vacuum cleaner. The area was cleaned with Hibiscrub (Chlorhexidine 

Gluconate 4% w/v-Molnlycke Health Care). The left leg was stretched out, immobilized 

with blue tack (Bostik, UK) underneath and over the foot( Figure 2.3- 2.4).  A tourniquet 

was applied at the thigh using elastic ribbon. A 1 cm longitudinal incision was made at 

the midposterior line on the back of the right leg from the musculotendinous junction 

       Recipient tendon 

        GFP graft 

       Autologous graft 

       Sutures 
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to just distal to the ankle joint. The direction of plantaris was confirmed by its insertion 

into the plantar aponeurosis. The plantaris was separated from the body of the Achilles 

tendon by sharp dissection of their fascial connections. A distal transverse incision was 

made in the Achilles tendon comprising 50% of the width of the tendon. The incision 

was extended longitudinally up to 4 mm and then the segment was divided proximally. 

In the left leg, the donor tendon placed in media previously (GFP tendon graft to C57 

mice and C57 tendon graft to GFP mice) was placed into the defect and secured with 10-

0 polyamide (Braun Medical, UK) sutures proximally and distally. Fascia and plantaris 

were replaced back into position. The tendon was kept moist and well hydrated with 

regular normal saline irrigation. Skin was closed with 8-0 interrupted suture. 

Subcutaneous Buprenorphine (Reckitt Benckiser Healthcare, UK-Appendix) was 

administered to all animals for postoperative analgesia. 

 

In the left leg, a cut segment from the same tendon was put back into the defect as 

autologous graft. Mice were weighed and recovered in individual cages with standard 

animal husbandry. 

 

After the procedure mice were monitored carefully on a daily basis. Weight, ambulation 

and wounds were recorded. The mice generally had excellent postoperative recovery 

and was fully weight bearing within 24 hours. No clinical signs of rejection were noted 

at any stage. 
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Figure 2.3 -Photographic representation of surgical procedure for tendon grafting showing  i) 

Positioning of mouse leg , ii) Longitudinal incision for exposure, iii) Exposed Achilles tendon (iv) 

Achilles Tendon separated from surrounding tissue (v) Distal 50% transverse cut  and  vi) Excising a  

50% segment of tendon. Scale Bar-3 mm 

 



61 

 

 

 

Figure 2.4 -Photographic representation of surgical procedure for tendon grafting showing -i) 50% cut 

segment of the Achilles tendon, ii) Syngenic  or autologus graft placed in the defect, iii) proximal suture, 

iv) distal suture to secure graft, v) continuous suture for skin closure, vi) skin closed; Scale Bar-1 mm 

i ii 

iii iv 

v vi 
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2.3.2 Tissue Harvest 

 

4 GFP and 4C57BL/6 (n=8) mice that had underwent tendon grafting procedures were 

harvested at each of the following time point- Day 3, Day 21 and Day 90 (total n=24). The 

time points were chosen in keeping with the three classic stages of healing- 

inflammation, proliferation and remodelling. 

 

Mice were euthanized by an overdose of CO2 inhalation followed by cervical 

dislocation. The legs were removed at the knee joint. Longitudinal incisions were made 

on the medial and lateral side of the leg for better penetration of fixatives. The 

specimens were submerged in a Zinc based fixatives for a minimum of 48 hours and 

then changed into 50% IMS until further processing. 

 

Hair was removed by application of hair removal cream for 20-30 minutes and then 

washed in PBS and re-submerged in 50% IMS. The posterior compartment of the leg was 

sharply filleted. The excised specimen was carefully assessed for residual bone 

fragments. 

 

2.3.3 Tissue processing 

 

All fixed samples were processed in a Tissue-Tek Vacuum Infiltration Processor (Bayer 

Diagnostics, Newbury, Berkshire, UK) on a skin cycle program (Appendix). Following 

wax processing legs were placed in wax wells that were filled with molten wax. All legs 

were carefully positioned to allow for longitudinal sections. The wax blocks were left to 

set over 24 hours.  

                       

7μm sections were cut from paraffin embedded samples using a HM 335E electronic 

microtome (Microm, Walldof, Germany) using Accu Edge low profile disposal blades 

(Feather Safety, Japan). Sections were floated on a warm water bath (37-40˚ C) and 

mounted on 1% poly-l-lysine (Cell path, UK). The sections were dried briefly on a hot 

plate prior to being labelled and placed into an oven overnight at 37˚C. 
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2.3.4 Histology for tendon graft characterisation 

 

2.3.4.1 Dewaxing 

 

Before staining, the paraffin embedded sections were immersed in two consecutive 

xylene (Genta Medical, York, UK) baths for 5 minutes to dissolve wax. Then slides were 

transferred to consecutive solutions of 100% IMS, 100% IMS, 90% IMS, 70% IMS then 50% 

IMS for 10 seconds each to rehydrate samples. 

 

2.3.4.2 Dehydrating and slide preservation 

 

Following staining slides were transferred to consecutive solutions of 50% IMS, 70% IMS, 

90% IMS, 100% IMS, and 100% IMS for 10 seconds each. The slides were then placed into 

two consecutive xylene baths for 5 minutes each prior to coating with Pertex mounting 

media (Cellpath plc, Powys, UK) and 50mm x 22mm glass coverslips  (Scientific 

laboratory supplies Ltd, Nottingham, UK) and allowed to dry at room temperature 

before light field microscopy.  

 

2.3.4.3 Haematoxylin and eosin staining (H & E) 

 

Haematoxylin and Eosin staining was performed on every 4th slide for orientation. 
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2.3.5  Immunohistochemistry 

 

Table 2.2 shows list of antibodies that were used to identify the types of inflammatory 

cells, presence of GFP cells, collagen synthetic activity, proliferative activity, apoptosis 

and vascularisation.  

 

Table 2.2 - List of antibodies used and their targets 

 

Antibodies Function 

CD45 Pan Leukocytic marker 

Ly6G Predominantly Neutrophil  and subset of Eosinophil 

F4/80 Mature tissue macrophages and activated macrophages 

CD3 T-lymphocytes 

Alpha SMA Pericytes in blood vessels 

BrdU 5-Bromo-2-deoxyuridine-Thymidine analogue 

incorporated into newly synthesizing DNA of replicating 

cells. Antibody to BrDU can then be used to detect this 

Hsp47 Heat Shock Protein 47- A molecular chaperone that 

interacts with and stabilizes procollagen 

TUNEL Terminal-deoxynucleotidyl Transferase Biotin dUTP End 

labelling for DNA fragment-marker for apoptotic cells 

GFP GFP positive cells 
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Table 2.3 - Antibodies and their pre-treatment, primary, secondary, 

amplifier and chromogens used 

 

Antibody Pre-
treatment 

Block Primary Secon 
dary 

ABC DAB Control 

CD 45  
(BD 
Pharmingen) 

None 1% rabbit 
serum 

1:100 
Rat anti-
mouse 

1:200 
rabbit 
anti- rat 

Yes Yes Spleen 

Ly6G 
(BD 
Pharmingen) 

None 1% rabbit 
serum 

1:200 
Rat anti-
mouse 

1:200 
rabbit 
anti-rat 

Yes Yes Skin 
wound 

F4/80 
(Serotec) 

None 1% rabbit 
serum 

1:200 
Rat anti-
mouse 

1:200 
rabbit 
anti- rat 

Yes Yes Spleen 

CD3 
(BD 
Biosciences) 

None 1% rabbit 
serum 

1:200 
Rat anti-
mouse 

1:200 
rabbit 
anti- rat 

Yes Yes Spleen 

Alpha SMA 
(Abcam) 
Ab5694-100 

None 2.5% Goat 
serum 

1: 200 
Rabbit 
polyconal 

Immpress 
kit(Vector 
Lab) 

 No Yes Spleen 

Hsp 47 
(Stressgen) 

None MOM 
block 

1:200 
Mouse  
Monoclonal 

MOM kit 2 
IgG  

Yes Yes 
 

Skin 
wound 

BrdU 
(Abcam) 

10 min in 4 
M HCl, 10 
min in 
borate 
buffer 

1% rabbit 
serum 

1:200 
Rat anti- 
mouse 

1:200 
rabbit 
anti-rat 

Yes Yes Spleen 

TUNEL 
(Roche) 

 30 min in 
Tris HCl+ 
Proteniase K 

None 2:3 -enzyme: 
solution 

1:2:1 sheep 
serum: 
PBS: POD 
kit 

No Yes Large 
intestin
e 

GFP 
(Abcam) 

None 1% Rabbit 
serum 

1:200 
Rat anti-
mouse 

1:200 
rabbit 
anti-rat 

Yes Yes GFP 
spleen 
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2.3.5.1 Protocol for GFP antibody staining  

 

 Slides were dewaxed in Xylene twice for 5 minutes each  and then  rehydrated through 

descending alcohol-100%, 100%, 90%, 70% and  50%, 5 seconds in each  and then washed 

in water for 30 seconds . They were then washed in PBS-Tween (Appendix) three times 

for 5 minutes each and gently stirred on a shaker during all washes. Endogenous 

peroxidase activity was blocked by using 3% H2O2 (made from 30% H2o2-Sigma) for10 

minutes and the washed again in PBS-Tween twice for 5 minutes.  Slides were dried 

individually in between sections and sections were separated using a wax pen 

(Immedge- Vector Lab) to allow the solution to stay on the section and separate them 

from controls. The wax was allowed to dry and then washed twice again in PBS-Tween 

to remove any excess wax. 1% rabbit serum was used to block nonspecific antigens and 

35μl of blocking serum was added to each section. Alternate sections in the slide were 

used as negative control and GFP spleen was used as positive control. The slides were 

incubated with blocking serum for one hour at room temperature and then washed 

again in PBS-Tween x 2 for 5 minutes. Primary antibody (Sheep anti-mouse) was added 

to experimental sections in 1:100 dilutions and blocking serum was added to control 

sections. Slides were incubated at 4 degrees overnight and washed in PBS-Tween x 2 

for 5 minutes. Slides were gradually rewarmed to room temperature and secondary 

antibody (Rabbit anti-sheep) at 1:200 dilutions were applied to all sections and 

incubated at 37 degrees for one hour. Slides were then washed in PBS twice for 5 

minutes, ABC was (Avidin Biotin Complex) added to all sections and incubated for 30 

minutes in room temperature and then washed in PBS for 5 minutes twice. DAB (Vector 

Lab) was added for 5-8 minutes or until change of colour and then washed in PBS twice 

for 5 minutes each. The slides were counterstained with nuclear fast red for 10 minutes, 

then dipped in water, dehydrated through ascending alcohol 5 seconds each in 50%, 

70%, 90%, 100%, 100% alcohol and in  Xylene twice for 5 minutes. All slides were mounted 

in Pertex with coverslip and left overnight to air-dry.  

 

 



67 

 

 

2.3.5.2 Immunostaining for Inflammatory markers 

 

A similar protocol was followed for inflammatory marker immunostaining with the 

exception of application of primary antibodies (Figure 2.5) and a rabbit anti-rat 

secondary. Three of the four sections of the slide were incubated with a different 

primary antibody at 37˚ overnight while the 4th control section received no primary. 

 

 

                   

                             

 

          

 

 

 

 

 

 Figure 2.5 - Diagrammatic representation of   a slide showing immunostaining   for inflammatory markers 

using serial sections of the same slide 

 

 

       CD45 

       F4/80 

       Ly6G 

       Control 
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2.3.5.3 Immunostaining for Cellular activity markers- Proliferation, 

collagen synthesis, apoptosis, vascularisation (Pericyte) 

 

Experimental  and control slides were selected  and rehydrated through xylene and 

graded alcohols (5 minutes in xylene twice, then 10 seconds in each graded alcohol 100% 

-> 100% ->90% ->70% -> 50% -> PBS)  and then washed in PBS-Tween twice for 5 minutes 

each time. Sections were immersed in 3%H202 solution for 10 minutes and washed again 

in PBS- Tween twice for 5 minutes each time. All slides had a minimum of four sections 

on them. Sections were dried and segregated with a wax pen and then washed in PBS-

Tween for 5 minutes.  

 

 

       

 

 

 

 

 

 

 

 

Figure 2.6 - Diagrammatic representation of a slide showing immunostaining for proliferation, synthesis, 

apoptosis and vascularisation using serial sections of the same slide 

 

Slides were placed in the incubator and two drops of 4M HCL were added to the top 

section only and left for 10 minutes. PBS was added to the rest of the sections. Slides 

were quickly rinsed in PBS and then two drops of borate buffer were applied to the   

top section of each slide only and left for 5 minutes. Slides were washed again twice in 

PBS-Tween for 5 minutes. Blocking solution was added to BrdU (1% Rabbit serum), Hsp 

47 (MOM Blocking agent) and Alpha-SMA (ImmPRESS) sections and PBS to TUNEL 

sections and left for30 minutes. After 30 minutes proteinase k (Roche, UK) in Tris HCL 

       BrdU 

       Hsp47 

       α-SMA 

       TUNEL 
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solution was added to TUNEL sections. Sections were washed in PBS-Tween twice for 5 

minutes. Primary antibodies were added to the sections (Figure 2.6) and incubated at 

37˚C for 1 hour. The slides were washed twice in PBS-Tween and secondary antibody 

was added firstly to BrdU (Rabbit anti-rat) and Hsp47 (MOM secondary) for 30minutes 

and kept at room temperature. Sections were washed in PBS-Tween twice for 5 

minutes and ABC was added to BrdU and Hsp 47 sections, ImmPRESS to SMA sections 

and POD development kit to TUNEL and incubated at 30°C for 30 minutes. The slides 

were washed in PBS twice for 5 minutes and then DAB solution was added to each 

section for 5 minutes minimum or until DAB precipitated, rinsed in PBS twice for five 

minutes, counter stained in Nuclear fast red for minimum of five minutes, dipped in 

water twice and dehydrated through graded alcohols and into clean xylene twice for 5 

minutes and mounted in Pertex and dried. 

 

2.3.6 Image capture 

 

Gross anatomical structures were captured using a Nikon Coolpix 4500 digital camera 

(Nikon, Japan) mounted on Leica M650 operating microscope (Leica, Germany). Files 

were captured at 2272 x 1704 pixels of resolution and saved as uncompressed .tiff files.  

Histological images were captured on a Leica DMRB microscope for direct transmission 

brightfield microscopy with a mounted Spot RT digital camera. Images were captured 

using Spot advanced capture software version 3.1 (Diagnostic Instruments, Inc., MI, 

USA) on a Silicon graphics Pentium III 230 mhz PC and saved as uncompressed .tiff files 

prior to transfer to external hard drives. 5x and 10x   objectives were used to magnify 

images.  
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2.3.7 Image analysis 

 

All images were montaged and aligned in Adobe Photoshop CS5 (Adobe Systems Inc. 

USA). Standard sized areas were selected in the graft tendon, host tendon and in the 

subcutaneous tissue using adobe Photoshop (n=3 slide/mouse/ stain).  A total of 12 (3 

slides/mice x 4 mice/time point) slides per time point were analysed for each stain. For 

quantitative analysis, Individual cells showing markers of inflammation, proliferation, 

synthesis or apoptosis were counted using the cell counter in the Image J software 

(http://rsbweb.nih.gov/ij). Data was put into Microsoft excel data sheet and analysed 

using SPSS version 16 (SPSS Inc. Chicago, USA). Three dimensional reconstructions of 

serial sections were done using “Reconstruct” software (“Reconstruct” by John C. 

Fiala). 

 

2.3.8 Statistics 

 

Mean values were calculated using SPSS version 16 (SPSS Inc. Chicago, USA) and 

expressed with the standard error of means following “±” symbol. The Kolgomorov-

Smirov test was used to show that the data were normally distributed.  Independent T 

testing was used to analyse differences between autogenic and syngenic grafting 

biology. Differences in cellular biology between control and different time points were 

assessed by analysis of means using one-way ANOVA and post hoc Tukey test. In all 

cases p value was considered significant if below 0.05. Significance was recorded with * 

in the graph if p-value was   less than 0.05 and   ** if p was less than 0.001. 

 

 

 



71 

 

2.4 Application of The mouse Achilles Tendon   model for Biomaterial 

Testing 

 

Two different varieties of engineered tendon constructs were   investigated using the 

mouse Achilles tendon model. One was a GFP positive  cell based construct developed 

by a collaborative group using techniques described by Kapacee et al (Kapacee et al., 

2008). The second construct was   Polycaprolactone 3D electrospun bundles, an 

acellular biocompatible construct developed by Downes Lab at the material Science 

centre  at the University of Manchester. 

 

2.4.1 Cell Based  Fibrin Construct 

 

Cells were extracted from 3 weeks old GFP mouse tail tendon with trypsin (37,000 U) 

and bacterial collagenase. Each well   of a six well plate was coated with a 2 mm-thick 

layer (1.5 ml) of SYLGARD In each well. Fixed-position posts were created by pinning 

minutiens insect pins. Cells were suspended in fibrinogen and thrombin and incubated 

at 37 °C in DMEM4 supplemented with penicillin (100 U/ml), streptomycin (100 μg/ml), L-

glutamine (2 mM), L-ascorbic acid 2-phosphate (200 mM), and 10% fetal calf serum. The 

plates were scored every 2 days to release fibrin gel that had adhered to the SYLGARD. 

The Cells   contracted   the fibrin gel during   6 days and formed a tendon like structure 

(Figure 2.7). 
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Figure 2.7 Formation of a construct from embryonic tendon cells. (a) plan view of a fibrin gel during 

contraction. The black arrow shows the outer edge of the gel. (b) plan view of a fully-contracted gel 

(black arrow), White arrows point to short lengths of suture material attached by minutien pins (c) 

transverse section of a construct 1-week post contraction stained with toluidine blue (d) longitudinal 

section of a construct 1-week post-contraction stained with haematoxylin-eosin showing the parallel 

alignment of cells. Scale Bar- 50 µm (Kapacee et al., 2008). 
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2.4.2 Acellular Construct  Polycaprolactone  3D electrospun bundles  

 

Acellular Polycaprolactone 3D electrospun (PCL) bundles were supplied by a 

collaborative group. The material has previously been tested as a peripheral nerve 

conduit (Sun et al., 2010). 

 

The bundles had a low melting point of 50˚C and therefore attempts at testing them 

with wax sections failed. The specimens were tested with Scanning Electron 

Microscopy (SEM) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8 – Scanning Electron Micrograph demonstrating the structural morphologies of 3D fibrous 

bundles fabricated by the techniques described in the appendix – fine mandrel. ( Magnification x 500). 

Photpgraph by Lucy Bosworth 
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2.4.3  Surgical Procedure for in vivo contsruct testing 

 

The recipient mouse was placed in prone position in the operating board. The legs were 

shaved and hair removed with a handheld vacuum cleaner. The area was cleaned with 

Hibiscrub (Chlorhexidine Gluconate 4% w/v-Molnlycke Health Care). The left leg was 

stretched out, immobilized with blue tac (Bostik, UK) underneath and over the foot. 

Tourniquet was applied at the thigh using elastic ribbon. A 2 cm longitudinal incision 

was made at the midposterior line on the back of the right leg from the 

musculotendinious junction to just distal to the ankle joint. The direction of plantaris 

was confirmed by its insertion into the plantar aponeurosis. The plantaris was 

separated from the body of the Achilles tendon by sharp dissection of their fascial 

connections. A distal transverse incision was made in the tendon comprising 50% of the 

width of the tendon. The incision was extended longitudinally up to 4 mm and then the 

segment was divided proximally.  

  

The cell based fibrin construct was cut at both ends, lifted from its culture media and 

was trimmed to the size of the defect. Either a fibrin construct or an a acellular PCL 

construct was  placed  into the defect and secured with 10-0 polyamide (Braun Medical, 

UK) sutures proximally and distally. Remaining part of the surgery was carried out as 

described for tendon grafting surgery.  

 

In the PCL construct study mice (n=6, 2 mice/time point) were harvested at the 

following time points- Day 0, Day 3 and Day 21. At the time of harvest, mice were 

euthanized and the left leg dissected with the Achilles tendon removed from the bone. 

The tissue was stored in zinc fixative. The initial and final time-points were analysed by 

variable pressure SEM (VPSEM) (Zeiss), which allowed tissue samples to be viewed 

without dehydration and gold sputter-coating. An accelerating voltage of 5 keV was 

used to scan the tissue surface. 
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In the fibrin construct study a shorter time course was chosen to determine persistence 

of construct. Mice were harvested at Day 0, Day 3 and Day 7 (n=2/time point). The legs 

were processed using the same methodology described for syngenic grafting studies. 

 

 

 

 

 

 

Figure 2.9 -Fibrin construct  in vivo testing- (i) Construct lifted from culture into the wound, (ii) 

Construct being secured with a proximal suture and (iii) a distal suture (iv) Construct secured in 

tendon defect; Scale Bar- 1 mm. 
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Figure 2.10 -Acellular PCL construct  in vivo testing- (i) Defect being created in the wound, (ii) PCL 

Construct placed into the wound (iii) Construct being secured with a proximal suture and (iv) a distal 

suture, Scale Bar= 1 mm 
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Chapter Three 

Results 
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3.1 Results- Anatomical characteristics of Mouse Achilles tendon 

 

3.1.1. Macroscopic Anatomy  

 

The Achilles tendon is formed by the union of the tendons of gastrocnemius and soleus 

(Figure 3.1). The average length of the tendon (from musculotendinous junction to 

calcaneal insertion) is 0.63 ±0.10 mm. The tendon is closely related on its posterior and 

medial aspect to the tendon of plantaris which travels from the medial side of the 

tendon to lie at its posterior aspect and passes over the posterior surface of the ankle 

to insert into the plantar fascia in the sole (Figure 3.2). The plantaris tendon was found 

to be present in all experimental animals and cadavers. The Achilles tendon spirals in its 

long axis and the medial fibers become posterior distally. The tendon consistently 

received contribution from both the soleus and the gastrocnemius muscles and 

tendons. 

 

Anteriorly there is an obvious plane of demarcation between the superficial and deep 

group of muscles of the posterior compartment and the muscle belly of gastrocnemius 

can be easily separated from the deep flexor compartment by either sharp or blunt 

dissection. The flexor compartment lies in close proximity to the tibia proximally and 

distally to the united tibia and fibula. In the distal one-third of the leg the Achilles 

tendon is separated from the tibia and the flexor tendons by a constant presence of 

loose areolar tissue.  Neurovascular bundles are seen to run in the loose areolar tissue 

close to the anterior aspect of the Achilles tendon. The tendon is inserted into the 

posterior aspect of the calcaneum. It is surrounded by a layer of paratenon which can 

be dissected away. The tendon is round in cross section at its waist but flattens out at 

insertion. 

 

The tendon is subcutaneous and is easily accessible through a midline incision at the 

back of the leg. The plantaris tendon is separated from the body of the Achilles tendon 

by gentle dissection so as to prevent bleeding from the fragile vessels in the paratenon 
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particularly near the ankle region. The plantaris is retracted to one side and the tendon 

is ready for manipulation.  

 

 

 

 

     

 

 

 

 

 

 

 

 

 

Figure 3.1 - Macroscopic anatomy of Achilles tendon by cadaveric dissection- a) and b) Fascial plane 

between superficial and deep compartment, c) and d) Formation of Achilles tendon with blood vessels 

lying anterior to the tendon 
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Figure 3.2 -Transverse  serial  section through Decalcified mouse leg from Proximal to Distal (Top to 

Bottom) – 2mm segments, image captured from above and below the cuts, AT-Achilles tendon, S0-

Soleus, GC- gastrocnemius. Scale Bar- 1 mm 
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The Achilles tendon is covered by a thin layer of fascial covering which is commonly 

termed the paratenon. Fascial extensions are seen passing from the skin to the 

paratenon. The paratenon is continuous anteriorly with a fascial sleeve, commonly 

termed the mesotenon where blood vessels could be visualised with the naked eye. 

Individual components of the tendon (soleus and gastrocnemius) can be stripped 

separately as they each have their own fascial sheath. 

 

 

 

Figure 3.3 - Fascial extensions of the Achilles tendon sheath showing gradual separation of the skin from the tendon 

(i) and (ii)  and thin fascial extensions(iii) (Black arrow) passing from the skin into the tendon sheath /paratenon 
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3.1.2 Microscopic anatomy  

 

Transverse and longitudinal sections of the decalcified leg showed the relationship of 

Achilles tendon to other structures in the leg. The tendon is seen to be formed  by the 

union of two separate tendons of soleus and gastrocnemius (Figure  3.4 and Figure 3.5). 

It flattens out to insert into the calcaneum. The thin plantaris tendon is seen passing 

into the foot and continuing into the plantar fascia. Three dimensional reconstruction of 

the mouse leg was done using H&E stained serial sections. The reconstruction shows 

the relationship of the Achilles tendon to its surrounding structures (Figure 3.4). 

 

 Hoechst and TRIT-C Phalloidin stain demonstrated the parallel distribution of cells 

along the long axis of the tendon (Figure 3.6). Alcian blue staining did not reveal any 

areas of fibrocartilage in the main body of the tendon but   showed increased blue hue 

and rounded cells at the enthesis region adjacent to calcaneal insertion (Figure 3.7). 

There was also an increase in proteoglycan content at the region where soleus and 

gastrocnemius tendons join to form the Achilles Tendon(Figure 3.9).  The collagenous 

and elastic component of Achilles tendon was demonstrated by Masson’s Trichrome 

stain (Figure 3.10) and Miller’s Elastin stain resepectively (Figure 3.11). 
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Figure 3.4 -Three dimensional reconstruction of the posterior compartment of mouse leg using H&E 

stained serial section showing relative relationship of structures. Scale Bar 1mm 
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Figure 3.5 - Histological study of Achilles tendon in serial cross section from proximal to distal (stained 

with H&E) showing formation, rotation and insertion of the tendon  
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Figure 3.6 - (a) and (b) Longitudinal Section of filleted Achilles tendon , (a) H&E stain ; (b) Hoechst and 

TRITC Phalloidin  stain showing Cellular arrangement in parallel rows and.   Magnification x5; ScaleBar- 

500 µm 

 (c-e) Cross section of the Achilles tendon showing intercellular cytoplasmic projections,(c)  H&E and(d) 

and (e)  Hoechst and TRITC Phalloidin stain on the right, (c) and (d)   Magnification x5 ; Scale Bar-200 µm, 

(e) Magnification x10;  scale bar- 50 µm 
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Alcian blue staining showed that the fascial envelope is high in proteoglycans and has a 

loose areolar distribution (Figure 3.8). An increase in proetoglycans at the region of 

union of soleus and gastrocnemius was seen and this could be demonstrated both in 

longitudinal and cross sections of the tendon. The tendon proper shows no obvious 

areas of fibrocartilaginous zones. Cellular morphology changed from oval to rhomboid 

as the tendon approached the bony insertion (Figure 3.7).  

 

 

 

Figure 3.7- Longitudinal Section of the enthesis region showing change in cell morphology from 

elongated to rounded with cells of fibrocartilage staining blue x10 (Alcian blue stain), Fibrocartilage  

shown with Black Arrow, Magnification x 10 ;  Scale Bar-500µm 
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Figure 3.8 - The gliding fascia around Achilles tendon. Black arrow in (a) denotes fascial layer between 

Achilles tendon and plantaris.  (b) Black arrow indicates space between Achilles tendon and paratenon 

and Red arrow indicates paratenon, Magnification -x5 - alcian blue stain 

 

 

 

 

 

                                                    

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 - Alcian blue staining showing increase bluish hue where the soleus and the gastrocnemius 

tendons join together to form the Achilles tendon (Black arrow). This is demonstrated both in 

longitudinal (a and b) and cross sections (c) of the Achilles tendon Magnification x 5; Scale Bar- 500 µm 
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Figure 3.10- Serial longitudinal sections of mouse leg stained with Masson’s Trichrome stain showing 

collagenous content of Achilles tendon.  Magnification x 5, Scale Bar- 1 mm 
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Figure 3.11- Serial sagittal section of the mouse leg (Decalcified sections) stained with Miller’s elastin 

showing the highly elastic nature of the Achilles tendon. Magnification x 5;  Scale Bar- 1mmm 
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3.1.3 Study of vascular architecture with Alpha-SMA immunostaining 

 

Alpha SMA staining showed that the tendon substance was avascular (Figure 3.12 - 

3.14). In transverse sections   abundant blood vessels were seen in the loose areolar 

tissue anterior to the tendon. The mesotenon appears to bring the blood vessels to the 

tendon as demonstrated by serial cross section immunohistochemistry (Figure 3.14). At 

the musculotendinous junction blood vessels were seen in the connective tissue 

between soleus and gastrocnemius muscle/tendon. Two sets of vessels were seen on 

either side of the tendon but only one of these appears to be contributing to the 

vessels supplying the tendon through the mesotenon (Figure 3.14). Nonlumen related 

Alpha-SMA staining was found in the epitenon areas of the Achilles tendon (Figure 

3.13b). 

 

 

Figure 3.12 - Longitudinal section of the leg showing large calibre lumen related Alpha-SMA stain in the 

paratenon  proximal to the tendon proper likely to represent the Posterior Tibial vessels Magnification x5 

;  Scale Bar 200 µm 
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Figure 3.13- Longitudinal section of the Achilles tendon with Alpha SMA Stain showing (b) non-lumen 

related Alpha- SMA positive cells (Myofibroblasts) in the epitenon and (c) lumen related Alpha- SMA 

positive cells in the paratenon and skin and; (a) Scale Bar- 500 µm (b) and (c) Scale bar-50 µm 
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Figure 3.14- Serial transverse section, top left proximal to bottom right distal, of the Mouse Achilles 

tendon (Filleted off the bone) showing blood vessels present in the loose areolar tissue- anterior(Orange 

arrow) and lateral (Green arrow)to the Achilles tendon and in the dermis of the skin (Blue arrow). Small 

blood vessels are also seen in the epitenon and endotenon (red arrow). GC- Gastrocnemius, So-Soleus. 

Distance between sections shown are 70 um, captured at x5; Scale Bar-500 µm 
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3.2 Results of tendon grafting studies  

 

3.2.1 Summary  

 

At   Day 3   the transgenic tendon graft was intact (GFP staining) and was separated 

from the main tendon by a fibrin clot. No obvious sign of necrosis was seen. No cellular 

invasion was apparent. The sheath was hypercellular with predominantly neutrophils 

(Ly6G staining) and macrophages (F4/80 staining). The recipient tendons also appeared 

intact showing no cellular invasion from the sheath. 

 

At Day 21 the GFP positive graft continued to express GFP and both graft tendon cells 

and host tendon cells show marked collagen synthetic activity (Hsp47). By this time 

sheath hypercellularity had reduced. Staining with apoptotic marker (Tunel) showed a 

number of apoptotic cells both in the graft and in the host tendon. 

 

At Day 90 the grafts appeared almost completely integrated to host tissue and GFP 

positive cells were no longer present in the GFP graft. There was a moderate amount of 

collagen synthetic activity in the tendon and sheath and a number of cells continued to 

show signs of apoptosis. 

 

Autologous grafts showed similar cellular events with a slightly lower neutrophilic 

response. Control unwounded tendons showed almost no synthetic or apoptotic 

activity at any point. 
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3.2.2 Staining for inflammatory cells- CD45, Ly6G and F4/80 

 

The pattern of the cellular changes following grafting was similar between autografts 

and syngenic grafts however the amount of cellular activity did differ between certain 

aspects of the healing process. The pattern of inflammation following grafting showed 

an intense inflammatory reaction in the subcutaneous tissue at Day 3, followed by an 

increase in inflammatory cells in the host tendon and grafted tendon at Day 21, which 

gradually diminished but never quite reached baseline levels in all tissues at Day 90 

(Figure 3.15).  The initial inflammatory response (Day 3) as measured by CD45 and Ly6G 

was greater in syngenic grafting subcutaneous tissue when compared with the 

subcutaneous tissue of autografts (CD45 2075 ±181 vs. 1211 ±81 cells/mm2 and Ly6G 1587 

±65 vs. 1050 ±52 cells/mm2) (Figure 3.15-  Figure 3.22). However F480 expression was 

greater in autograft subcutaneous tissue when compared with syngenic subcutaneous 

tissue (autogenous 1355 ±50 vs. syngenic 1044 ±30 cells/mm2) at Day 3 (Figure 3.23-

Figure 3.26). These findings were shown to be statistically significant (p < 0.001).  

 

Figure 3.15 - Graphical representation of inflammatory cells in the graft, host tendon and in the 

subcutaneous tissue at Day 3, Day 21 and Day 90.  Inflammation in the tendon lags behind subcutaneous 

tissue and only reaches similar activity at Day 21. 
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3.2.2.1 CD45 Staining 

 

Tendon grafting invoked a marked inflammatory response in the subcutaneous tissue 

surrounding the grafted tendon with a large number of CD45 positive cells found 

homogeneously distributed in dermis, epidermis and paratenon (1211± 81 in autograft 

and 2075 ± 181 in syngenic graft). The number of CD45 positive cells in the subcutaneous 

tissue reduced significantly by Day 21 and only a very small number of these cells were 

present at Day 90. At Day 3, there were insignificant numbers of CD45 positive cells in 

both the donor and the host tendons. The small number of cells present in the tendon 

was found in the epitenon and around the sutures. By Day 21 the core of the tendon 

graft was invaded by a large number of CD45 positive cells (445 ± 53 in autograft and 

757 ± 118 in syngenic graft).  The host tendon remained unaffected and only a few cells 

were found inside it (199 ± 21 in autograft and 238 ± 58 in syngenic graft). At Day 90, the 

inflammatory influxes were reduced from all areas of the leg but a small number 

remained in the graft and the paratenon (Table 3.1). 

 

Table 3.1- CD45 Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

CD45 Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0 83.32 757.81 406.25 0 21.35 118.31 53.90 

Syngenic 
Host Tendon 

21.87 36.40 238.28 180.98 7.95 9.48 58.28 34.68 

Syngenic 
Subcutaneous 
tissue 

206.25 2075 489.53 496.09 42.33 181.87 40.78 79.06 

Autograft 
Tendon Graft 

0 45.45 445.31 281.25 0 13.71 53.06 47.21 

Autograft 
Host Tendon 

21.87 62.5 199.21 209.63 7.96 14.73 21.93 29.93 

Autograft 
Subcutaneous 
tissue 

206.25 1211.56 407.55 253.90 42.32 81.06 44.5 27.53 
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Figure 3.16 -Graphical Representation of the Chronological events after syngenic and autologous Tendon 

grafting- CD45 Stain for panleukocytes. The initial inflammatory response (Day 3) as measured by CD45 

was greater in syngenic grafting subcutaneous tissue when compared with the subcutaneous tissue of 

autografts (CD45 2075 ±181 vs 1211 ±81 cells/mm2). Significance recorded with * in the graph if p-value was   

less than 0.05 and   **  if  p was less than 0.001. 
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Figure 3.17 - Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 3 showing staining for 

leukocytes with CD45 Magnification x5; Bar-500 µm.  (b) and (c) Subcutaneous tissue in both grafts show 

massive influx of CD45 positive cells; Magnification x 10; Bar-100 µm 
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Figure 3.18- Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 21 showing staining for 

leukocytes with CD45. Magnification x5; Bar-500 µm Subcutaneous tissue in both grafts show infiltration 

of  Cd45 positive cells inside the tendon graft in (b) Syngenic and (c) Autologus grafts; Magnification x10; 

Bar-100 µm  
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Figure 3.19 - Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 90 showing staining for 

leukocytes with CD45. Magnification x5; Bar-500 µm Subcutaneous tissue in both grafts show very few 

Cd45 positive cells; Only a small number of Cd45 cells remained in the(b)  syngenic and (c) autologous 

tendon; Magnification x10; Bar-100 µm 
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3.2.2.2 Ly6G Staining 

 

At Day 3, many of the cells in the subcutaneous tissue were positive for Ly6G, indicating 

a significant neutrophilic infiltration (1050 ± 52 in autograft and 1587 ± 64 in syngenic 

graft) . The number of Ly6 positive cells in the subcutaneous tissue reduced significantly 

by Day 21 and  remained  at a  similar  level of activity at Day 90. 

 

At   Day 3, there were very few Ly6G positive cells in both the donor and the host 

tendon. The majority of the inflammatory cells were seen at the periphery of the 

tendons near the epitenon.  By Day 21, the core of the tendon graft had a significantly 

large number of Ly6G positive cells (433 ± 37  in autograft and 725 ± 70).  The host 

tendons were not invaded by   the neutrophils at any time point and only a few cells 

were found inside it from Day 3 to Day 90 (Table 3.2). 

  

Table 3.2- Ly6G Stain- Number of cells/mm2 and corresponding SEM (n=4, 3 slides/mice) 

 

Ly6G Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0.00 110.68 725.16 136.72 0.00 29.56 70.47 23.72 

Syngenic 
Host Tendon 

15.63 35.16 109.38 28.59 4.94 18.55 26.41 10.68 

Syngenic 
Subcutaneous 
tissue 

131.25 1587.19 489.53 153.64 25.48 64.80 31.74 27.26 

Autograft 
Tendon Graft 

0.00 39.06 433.59 225.16 0.00 8.92 37.19 35.47 

Autograft 
Host Tendon 

15.63 27.34 285.16 208.28 4.94 8.63 39.69 21.78 

Autograft 
Subcutaneous 
tissue 

131.25 1050.78 486.97 404.84 25.47 52.14 27.11 35.16 
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Figure 3.20- Graphical representations of chronological events after syngenic and autologus grafting  

with Ly6G stain. The initial inflammatory response (Day 3) as measured by Ly6G was greater in syngenic 

grafting subcutaneous tissue when compared with the subcutaneous tissue of autografts (1587 ±65 vs 

1050 ±52 cells/mm2). Significance   recorded with * in the graph if p-value was   less than 0.05 and   **  if  p 

was less than 0.001. 
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Figure 3.21 -Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 3 showing staining for 

neutrophils with Ly6G. Magnification x5; Bar-500 µm Subcutaneous tissue show large number of Ly6G 

positive cells in both (b)  syngenic and (c) autologous tendon; Magnification x10; Bar-100 µm  
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Figure 3.22 - Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 21 showing staining for 

neutrophils with Ly6G. Magnification x5; Bar-500 µm. Grafts show infiltration with Ly6G  positive cells 

both in the(b)  syngenic and (c) autologous tendon; Magnification x10; Bar-100 µm 
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Figure  3.23 -Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 90 showing staining for 

neutrophils with Ly6G. Magnification x5; Bar-500 µm Subcutaneous tissue in both grafts show very few 

Ly6G positive cells; Only a small number of Ly6G positive cells remained in the(b)  syngenic and (c) 

autologous tendon; Magnification x10; Bar-100 µm 
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3.2.2.3 F4/80 Staining 

 

At day 3, the subcutaneous tissue was hyper cellular and the presence of large numbers 

of F4/80 positive cells was indicative of   accumulation of macrophages in this area (1355 

± 50 in autograft and 1044 ± 29 in syngenic graft). The number of F4/80 positive cells in 

the subcutaneous tissue reduced gradually by Day 21 and remained higher than normal 

at day 90.  

  

At Day 3, there were very few F4/80 positive cells in both the donor and the host 

tendon. By Day 21 the core of the tendon graft was highly cellular with whirling patterns 

of cells, many of which were positive forF4/80 (385 ± 42 in autograft and 445 ± 40 in 

syngenic graft).  The host tendon also showed a small rise in the numbers of 

macrophages at Day 21.  At Day 90, macrophages had reduced from all areas of the leg 

but a small number remained in the graft and the paratenon (Table 3.3). 

 

Table 3.3- F4/80 Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

F480 Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0.00 57.30 445.31 143.13 0.00 15.30 40.22 23.69 

Syngenic 
Host Tendon 

28.13 31.25 190.10 52.08 14.31 12.16 44.38 14.81 

Syngenic 
Subcutaneous 
tissue 

193.75 1044.22 523.44 207.03 13.62 29.97 62.66 29.53 

Autograft 
Tendon Graft 

0.00 67.70 385.41 342.44 0.00 12.36 42.89 63.83 

Autograft 
Host Tendon 

28.13 55.94 231.72 196.61 14.32 14.19 26.25 27.09 

Autograft 
Subcutaneous 
tissue 

193.75 1355.47 395.78 265.63 13.62 50.00 45.47 30.64 
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Figure 3.24 - Graphical representations of chronological events after syngenic and autologus grafting 

with F4/80 stain. Significance   recorded with * in the graph if p-value was   less than 0.05 and   **  if  p 

was less than 0.001. 

 



107 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.25- Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 3 showing staining for 

Macrophages with antibody against F4/80. Magnification x5; Bar-500 µm Subcutaneous tissue in both 

grafts shows huge influx of macrophages in the subcutaneous tissue both in the (b) Syngenic and (c) 

Autologous grafts; Magnification x10; Bar-100 µm 
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 Figure 3.26 - Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 21  showing staining for 

macrophages with antibody against F4/80. Magnification x5;  Bar-500 µm. Both grafts shows infiltration 

of  F4/80 positive cells inside the tendon graft in (b) Syngenic and (c) Autologous grafts; Magnification 

x10; Bar-100 µm



109 

 

Figure 3.27- Sagittal section of (a) Syngenic and (d) Autologous grafting at Day 90  showing staining for 

macrophages with F4/80. Magnification x5; Bar-500 µm. Small number of macrophages remain in the 

tendon of both (b) Syngenic and (c) Autologous grafts; Magnification x10; Bar-100 µm
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 3.2.3 Cellular repopulation- GFP Immunisation 

 

When   GFP tendon was grafted onto a C57 host, the number of GFP increased per unit 

area due to the GFP labelled cells coalescing (Figure 3.28c and Figure 3.29 a-e). However 

GFP expression rapidly disappeared by Day 90. At day 3 the cellular architecture of the 

graft appeared normal and cell nuclei were oval in shape and distributed parallel to the 

long axis of the tendon. At Day 21, the oval GFP positive tendon cells were surrounded 

by a huge number of round cells many of which stained positive for CD45 and F4/80 

confirming the inflammatory nature of the infiltrate. Though the tendon cells retained 

their shape, their longitudinal orientation was lost and a whirling   pattern was seen. 

The graft tendon was enveloped in a rim of inflammatory cells which indicated the 

previous margin of the graft. The actual outline of the graft at day 21 was indistinct. The 

placement of the suture, the rim of inflammatory tissue, the pattern of distribution of 

cells and the presence or absence of GFP stains all contributed to the identification of 

the outline of the graft.  At day 90, a few isolated GFP positive cells were present in the 

area of the graft. 

 

When a graft harvested from C57 mice was placed in the GFP host (Figure 3.28a) or a 

GFP graft in the GFP mouse was done (Figure 3.28b), at day 3 the GFP stain showed GFP 

positive cells in the subcutaneous tissue and host tendon and only a small number of 

GFP positive cells in the non GFP graft. These GFP positive cells were rounded and most 

likely inflammatory in origin. At day 21, the C57 graft had many GFP positive non tendon 

cells in the core.  At day 90, the outline of the graft could only be demarcated if sutures 

were viewed. 
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Table 3.4- GFP Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

 
 

Control Day 3 Day 21 Day 90 Control SEM Day 3 SEM Day 21 SEM Day 90 SEM 

C57 graft on 
GFP  mouse 

        

C57 Tendon 
Graft 

0.00 23.44 593.75 372.39 0.00 10.47 67.02 99.69 

GFP Host 
Tendon 

387.50 466.09 356.77 263.02 29.38 64.84 42.95 77.53 

GFP Host 
Subcutaneous 
tissue 

584.38 1653.59 575.47 520.78 37.17 252.66 101.41 110.16 

GFP graft on 
C57  mouse 

        

GFP Tendon 
Graft 

0.00 963.55 1283.75 111.98 0.00 158.19 203.58 37.92 

C57 Host 
Tendon 

0.00 13.02 18.23 0.00 29.39 13.02 18.23 0.00 

C57 Host 
Subcutaneous 
tissue 

0.00 7.81 65.09 7.81 0.00 7.81 42.66 7.81 

GFP graft on 
GFP mouse 

        

GFP 
Autograft 
Tendon Graft 

0.00 359.38 593.75 559.84 0.00 39.52 67.02 83.69 

GFP 
Autograft 
Host Tendon 

387.50 401.04 356.72 489.58 29.38 55.47 42.95 55.55 

GFP 
Autograft 
Subcutaneous 
tissue 

584.38 1596.35 575.47 604.17 37.17 252.19 101.41 49.84 
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Figure 3.28- Graphical representation of chronological events after syngenic and autologous grafting with 

GFP stain. In both( A)- C57 graft on GFP mouse and (B)- GFP autograft in GFP mouse-  GFP staining peaked 

in the subcutaneous tissue at Day 3 due the large inflammatory influx and in (C) GFP graft in C57 mouse- 

GFP staining in the graft peaked at Day 21 due to crowding of the graft cells and disappeared by Day 90. 

Significance   recorded with * in the graph if p-value was   less than 0.05 and   **   if p   was less than 

0.001. 
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Figure 3.29 -  Fate of grafted cells with GFP stain after grafting of GFP positive graft into C57 mice 

showing results at (a)  Day 3, (b) Day 21,  and (c) Day 90 . Graft is outlined in black. Arrows indicate 

securing sutures. Magnification x5, Bar- 500 µm. (d) Day 3 and (e) Day 21 GFP stained cells showing 

increaseed cell density of cells at Day 21
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3.2.4 Cellular proliferation- BrdU immunostaining 

 

The pattern of cellular proliferation showed a gradual increase in BrdU staining from 

control levels after grafting that mainly occurred in the subcutaneous tissues, whereas 

BrdU expression peaked in the host tendon and the tendon graft at Day 21 and 

gradually diminished at Day 90 (Figure 3.30- Figure 3.33). BrdU expression at Day 21 was 

significantly greater in the subcutaneous tissue in the syngenic model compared with 

the autograft (1275 ±117 vs. 843 ±139 cells/ mm2) and greater in the syngenic tendon 

graft when compared to autograft at Day 90 ( 523±117 vs. 244±37 cells/mm2) (p <0.05) 

(Table 3.5). 

 

Table 3.5- BrdU Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

BrdU Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0.00 57.29 632.81 523.44 0.00 19.21 88.59 117.03 

Syngenic 
Host Tendon 

84.38 28.64 393.23 286.45 15.30 13.02 22.61 52.34 

Syngenic 
Subcutaneous 
tissue 

425.00 734.38 1275.94 1166.56 34.02 100.47 117.97 105.94 

Autograft 
Tendon Graft 

0.00 92.44 584.63 244.69 0.00 22.81 111.17 37.48 

Autograft 
Host Tendon 

84.38 32.55 406.25 234.38 15.31 7.78 91.98 13.94 

Autograft 
Subcutaneous 
tissue 

425.00 760.42 843.75 1010.31 34.02 18.59 139.06 87.34 
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 Figure 3.30 -Graphical representation of BrdU positive cells in syngenic and autografts at Day 3, Day 21 

and Day 90. Activity in subcutaneous tissue remains much greater than tendon tissue at all time points. 

BrdU expression at Day 21 was significantly greater in the subcutaneous tissue in the syngenic model 

compared with the autograft (1275 ±117 vs 843 ±139 cells/ mm2) and greater in the syngenic tendon graft 

when compared to autograft at Day 90( 523±117 vs 244±37 cells/mm2) (p <0.05). Significance   recorded 

with * in the graph if p-value was   less than 0.05 and   **  if  p was less than 0.001. 
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Figure 3.31- (a) Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing BrdU staining at Day 3.  Graft outlined with black line, small arrows indicating the sutures used 

to secure the graft; Magnification x5, Bar-500 µm (b) The subcutaneous tissue has a large number of 

BrdU positive cells while (c) graft tendon shows only a small number of BrdU positive cells in the 

periphery, Magnification x20, Bar-100 µm 
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Figure 3.32- (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  BrdU staining at Day 21.  Graft outlined with black line, small arrows indicating the sutures used 

to secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue still  has a large number of 

BrdU positive cells while (c) graft tendon shows an increase in the number of BrdU positive cell;, 

Magnification x20, Bar-100 µm
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Figure 3.33 - (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  BrdU staining at Day 90.  Graft outlined with black line, small arrows indicating the sutures used 

to secure the graft; Magnification x5, Bar-500 µm. Proliferative activity remains higher than normal in (b) 

Graft  and host tendon and (c) Subcutaneous tissue, Magnification x20, Bar-100 µm 
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3.2.5 Collagen synthesis- Hsp47 Immunostain 

Collagen synthesis as measured by Hsp 47 expression was increased in the 

subcutaneous tissues initially at 3 days followed by increased expression in the host 

tendon and tendon graft at Day 21, reducing to baseline levels at Day 90 (Figure 3.34- 

Figure 3.37).  

 

Hsp 47 expression was significantly greater in the autografted subcutaneous tissue at 

Day 3 and Day 90 when compared with syngenic subcutaneous tissue, however 

syngenic tendon grafts showed marked significantly greater Hsp 47 expression at Day 

21 when compared to tendon autograft (1182±80 vs 839 ±77 cells/ mm2
).  

 

At Day 3 Hsp47 positive cells were seen in small numbers in all parts of the leg but there 

were significantly more cells in the subcutaneous areas than in the tendon tissue. The 

subcutaneous tissue maintained a similar level of activity at Day 21 but at day 90 this had 

reduced to a much lower level. At Day 21 the area of the graft showed a massive 

increase in Hsp47 activity which was obvious in all samples at this time point (Table 3.6).  

 

The host tendon also participated in collagen synthesis and this was more prominent in 

the areas surrounding the donor graft (Figure 3.36). Though collagen synthesis reduced 

in all parts of the sample by day 90, the area of the graft continued to show a higher 

activity than the rest of the tendon. Cell alignment was restored to normal longitudinal 

orientation (Figure 3.37). 
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Table 3.6- Hsp47 Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

 

Hsp47 Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0.00 232.97 1182.19 337.24 0.00 23.03 80.02 66.98 

Syngenic 
Host Tendon 

59.38 236.98 457.03 139.22 13.44 32.11 65.89 34.38 

Syngenic 
Subcutaneous 
tissue 

181.25 648.44 667.97 291.66 29.06 52.92 51.64 47.19 

Autograft 
Tendon Graft 

0.00 347.66 839.84 312.50 0.00 40.00 77.81 27.97 

Autograft 
Host Tendon 

59.38 286.41 524.69 179.69 13.44 33.91 54.20 20.66 

Autograft 
Subcutaneous 
tissue 

181.25 830.72 505.16 539.06 29.06 38.59 48.59 53.28 
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Figure 3.34- Graphical representation of chronological events after syngenic (above) and autologous 

(Below) grafting with Hsp47 stain. Hsp 47 expression was significantly greater in the autografted 

subcutaneous tissue at Day 3 and Day 90 when compared with syngenic subcutaneous tissue, however 

syngenic tendon grafts showed marked significantly greater Hsp 47 expression at Day 21 when compared 

to tendon autograft (1182±80 vs 839 ±77 cells/ mm2). Significance   recorded with * in the graph if p-value 

was   less than 0.05 and   **  if  p was less than 0.001. 
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Figure 3.35 - (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  Hsp47 staining at Day 3  showing collagen synthesis.  Graft outlined with black line, small arrows 

indicating the sutures used to secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue 

showing significant increase in collagen synthesis (DAB staining-Black) while (c) Graft tendon shows a 

moderate level of activity;, Magnification x20, Bar-100 µm
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Figure 3.36 - (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing intense HSP47 staining in all areas  at Day 21. Graft outlined with black line, small arrows 

indicating the sutures used to secure the graft; Magnification x5, Bar-500 µm. (b) The subcutaneous 

tissue continues to show high levels of collagen synthesis (DAB staining-Black) while (c) Graft tendon 

shows a marked rise in synthetic activity; Magnification x20, Bar-100 µm
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Figure 3.37- (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  Hsp47 staining  at Day 90. Graft outlined with black line, small arrows indicating the sutures 

used to secure the graft; Magnification x5, Bar-500 µm. (b) Only a small number of cells in  subcutaneous 

tissue and (c) Graft tendon show synthetic activity; Magnification x 20, Bar-100 µm
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3.2.6 Cellular  Apoptosis- TUNEL  Immunostain 

 

Apoptosis as measured by TUNEL expression showed a gradual increase from Day 3 

reaching a peak at Day 21 and diminishing by Day 90(Figure 3.38- Figure 4.41). Syngenic 

grafts showed a far greater expression of TUNEL at Day 21 than autograft tendon (1109± 

122 vs. 626 ±81 cells/mm2) which was significant (p < 0.001). 

 

At Day 3 TUNEL positive apoptotic cells were seen in small numbers in all parts of the 

leg but there were significantly more cells in the subcutaneous areas than in the tendon 

tissue (Figure 3.39).  The subcutaneous tissue maintained a similar level of activity at 

Day 21 through to   Day 90. At day 21 many of the cells in the area of the graft stained 

positive for TUNEL (Figure 3.40). By day 90 apoptosis has reduced to a very low level in 

all parts of the host and graft tendon (Figure 3.41). The donor tendon maintained a low 

level of apoptosis at all time points (Table 3.7). 

 

Table 3.7- TUNEL Stain- Number of cells/mm2 and corresponding SEM (n=4 mice/time 

point, 3 slides/mice) 

 

TUNEL Control Day 3 Day 21 Day 90 Control 
SEM 

Day 3 
SEM 

Day 21 
SEM 

Day 90 
SEM 

Syngenic 
Tendon Graft 

0.00 82.03 1109.38 126.41 0.00 10.38 122.80 21.42 

Syngenic 
Host Tendon 

106.25 48.17 175.78 106.53 11.47 19.66 46.72 20.41 

Syngenic 
Subcutaneous 
tissue 

337.50 516.88 688.75 570.94 37.17 53.72 75.94 66.80 

Autograft 
Tendon Graft 

0.00 147.03 626.25 199.22 0.00 23.11 81.25 44.66 

Autograft 
Host Tendon 

106.25 92.44 438.75 121.09 11.47 14.45 68.78 29.23 

Autograft 
Subcutaneous 
tissue 

337.50 524.69 658.85 451.72 37.17 64.38 73.42 47.81 
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Figure 3.38 – Graphical representation of chronological events after syngenic (top) and autologous 

(bottom) grafting with TUNEL stain showing apoptosis. TUNEL expression showed a gradual increase 

from control non injured tissues at Day 3 reaching a peak at Day 21 and diminishing by Day 90. Syngenic 

grafts showed a far greater expression of TUNEL at Day 21 than autografted tendon (1109± 122 vs 626 ±81 

cells/mm2) which was significant (p < 0.001).Significance   recorded with * in the graph if p-value was   

less than 0.05 and   **  if  p was less than 0.001. 
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Figure 3.39- (a) Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing TUNEL staining at Day 3.  Graft outlined with black line, small arrows indicating the sutures used 

to secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue  has a large number of 

TUNEL  positive cells  while (c) Graft tendon shows only a small number of TUNEL  positive cells, 

Magnification x20, Bar-100 µm 
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Figure 3.40- (a) Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  TUNEL staining at Day 21.  Graft outlined with black line, small arrows indicating the sutures 

used to secure the graft; Magnification x5, Bar-500 µm. (b) The subcutaneous tissue still has a large 

number of TUNEL positive cells while (c) Graft tendon shows a significant rise in the number of apoptotic 

cells, Magnification x20, Bar-100 µm
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Figure 3.41- (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  TUNEL staining at Day 90.  Graft outlined with black line, small arrows indicating the sutures 

used to secure the graft; Magnification x5, Bar-500 µm. (b) The subcutaneous tissue and (c) Graft tendon 

shows a small number of apoptotic cells, Magnification x20, Bar-100 µm 
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3.2.7 Staining for vascular pericytes-Alpha SMA Immunostaining 

 

 Alpha SMA staining highlighted two types of structures- one was associated with 

lumens and the other was non lumen related individual cellular stains. Lumen related 

Alpha- SMA staining showed a significant (p < 0.05) increase in the vascularity of the 

subcutaneous tissue at Day 3 (74.21± 7.72 and 53.38±6.7 cells/mm2   in syngenic and 

autografts respectively), compared to control unwounded tendons (21.875± 13.6 

cells/mm2  ). Vascularity   remained at high levels at Day 21 (66.4±9.04 in syngenic and 

55.98± 5.25 cells/mm2   in autografts) and at Day 90 (67.7±5.87in syngenic and 37.7± 7.05 

cells/mm2   in autografts) (Figure 3.42- Figure 3.45). Vessel related Alpha SMA staining 

was absent   in the control unwounded tendons and in the   tendon substances at Day 3 

.Blood vessels were seen in the tendon graft at Day 21 (29.94±11.6 and 14.32±4.88 

cells/mm2   in syngenic grafts and autografts) which reduced in number by Day 90 

(1.3±1.3 and 6.51±3.57 cells/mm2  in syngenic grafts and autografts). A very small number 

of blood vessels were also seen in the host tendon at day 21 (7.816±3.59 and 7.81±4.5 

cells/mm2 in syngenic grafts and autografts. Non lumen related Alpha SMA staining was 

present in the subcutaneous tissue at all time points and in the tendon graft at Day 21 

and Day 90. 
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Figure 3.42 - Graphical representation of chronological events after syngenic (top) and autologous 

(bottom) grafting with Alpha-SMA staining showing vascularisation. Alpha- SMA staining showed a 

significant (p < 0.05) increase in the vascularity of the subcutaneous tissue at Day 3 ( 74.21± 7.72 and 

53.38±6.7 cells/mm2  in syngenic  and autografts respectively) , compared to control unwounded tendons 

( 21.875± 13.6 cells/mm2  ). Significance   recorded with * in the graph if p-value was   less than 0.05 and   

**  if  p was less than 0.001. 
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Figure 3.43 - (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  Alpha SMA Day 3.  Graft outlined with black line, small arrows indicating the sutures used to 

secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue  has a large number of lumen 

related Alpha-SMA  positive cells  indicating  angiogenesis associated with inflammatory phase of healing 

while (c) Graft tendon shows no  lumen related Alpha SMA  staining, Magnification x20, Bar-100 µm 
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Figure 3.44- (a)  Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  Alpha SMA at Day 21.  Graft outlined with black line, small arrows indicating the sutures used to 

secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue  still shows  a large number of 

lumen related Alpha-SMA  positive cells  c) Graft tendon also shows appearance of a number of lumen 

related Alpha SMA  staining, Magnification x20, Bar-100 µm 
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Figure 3.45 - (a) Sagittal section of the Achilles tendon and surrounding skin and subcutaneous tissue 

showing  Alpha SMA at Day 90.  Graft outlined with black line, small arrows indicating the sutures used to 

secure the graft; Magnification x5, Bar-500 µm.(b) The subcutaneous tissue  continues to  show  a 

number of lumen related Alpha-SMA  positive cells  c) Graft tendon also shows a small number of lumen 

related Alpha SMA  staining, Magnification x20, Bar-100 µm 
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3.2.8 Three dimensional cell mapping 

 

In order to achieve a better spatiotemporal orientation of cellular activity three 

dimensional reconstruction were done from serial section immunohistochemistry 

(Figure 3.46- 3.48). which showed overlapping of GFP positive cells and HSp47 positive 

cells  further  proving that graft cells actively synthesize collagen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.46- Building of three dimensional reconstructions from serial section immunohistochemistry, 

First the areas are outlined and marled out with a chosen colour. In this case subcutaneous tissue is 

marked grey, graft-green and host tendon –red. Stained cells are then plotted into the image 
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3.2.8.1 Inflammatory profile 

 

Three Dimensional Reconstruction of serial sections (Figure 3. 47 a-c) showed that at 

Day 3 (Figure 3.47a) inflammatory cells (outlined with yellow dots) were abundant in 

the subcutaneous tissue (outlined in grey). At day 21 (Figure 3.37b) inflammatory cells   

overlapped the areas outlined by the host (Outlined in red) and the donor tendon 

(Outlined in green). At Day 90 (Figure 3.37c) minimal inflammatory cells were cells both 

in tendon and in the subcutaneous tissues. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.47 -Spatiotemporal distribution of Inflammatory cell -Macrophage (Blue) and CD45 positive 

cells(Yellow) at day 3(top), day 21(middle) and Day90 (Bottom). Graft Green, Host tendon red, ST-Grey 
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3.2.8.2 Collagen synthesis 

 

Three Dimensional Reconstruction of serial sections (Figure 3. 48 a-c) showed that at 

Day 3 (Figure 3.48a) collagen synthesizing cells (outlined with yellow dots) were 

present in small numbers in the subcutaneous tissue and tendon   with no collagen 

synthesis seen in GFP positive donor tendon cells (outlined with blue dots). At day 21 

(Figure 3.38b) Hsp47 positive cells   crowded the areas outlined by the host (Outlined in 

red) and the donor tendon (Outlined in green). Marked overlapping was seen between 

GFP positive and Hsp47 positive cells. At Day 90 (Figure 3.37c) minimal inflammatory 

cells were cells both in tendon and in the subcutaneous tissues. 
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Figure 3.48 -Spatiotemporal distribution of GFP positive cells (Blue) and cells synthesizing collagen 

(Yellow) at day 0) top, day21 and day90 (Bottom). Graft Green, Host tendon red, ST-Grey 
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3.2.8.9 Overall summary- tendon grafting 

The time points selected of 3 days, 21 days and 90 days related to the phases of wound 

healing corresponding to the inflammatory phase, peak synthesis phase, and end of 

remodelling phase as noted in previous tendon wounding experiments. The pattern of 

the cellular changes following grafting was similar between autografts and syngenic 

grafts however the amplitude of cellular activity did differ between certain aspects of 

the healing process. The pattern of inflammation following grafting showed an intense 

inflammatory reaction in the subcutaneous tissue at Day 3, followed by an increase in 

inflammatory cells in the host tendon and grafted tendon at Day 21, which gradually 

diminished but did not reach baseline levels in all tissues at Day 90. 

 

The pattern of cellular proliferation showed a gradual increase in BrdU staining from 

control levels after grafting that mainly occurred in the subcutaneous tissues, whereas 

BrdU expression peaked in the host tendon and the tendon graft at Day 21 and 

gradually diminished at Day 90. Collagen synthesis as measured by Hsp 47 expression 

was increased in the subcutaneous tissues initially at 3 days followed by increased 

expression in the host tendon and tendon graft at Day 21, reducing to baseline levels at 

Day 90. Apoptosis as measured by TUNEL expression showed a gradual increase from 

control non injured tissues at Day 3 reaching a peak at Day 21 and diminishing by Day 90. 

Lumen related Alpha- SMA staining showed a significant increase in the vascularity of 

the subcutaneous tissue at Day 3 compared to control unwounded tendons. 

Vasculartity remained at high levels at Day 21 and at Day 90. 

 

By grafting C57 tendon onto a GFP host there was a marked increase in GFP expression 

at Day 3 which could be attributed to by host inflammatory cells. It was also evident 

that the C57 graft became populated by host GFP cells by day 21 with the GFP 

expression in grafted tendon being greater than that of host tendon. By grafting GFP 

tendon onto a C57 host, the number of GFP cells increased per unit area by Day 21. 

However GFP expression rapidly disappeared by Day 90 
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3.3 Results- Construct testing 

3.3.1 Results- Fibrin Construct Grafting 

 

The fibrin- construct disintegrated within 72 hours. GFP stain showed loss of GFP 

positive cell by Day 3 (Figure 3.50) . The construct   was encapsulated within a fibrin clot 

and the cells lost its oval tendon-fibroblast like appearance and became rounded. The 

construct and its surrounding subcutaneous tissue became hypercellular indicating an 

inflammatory infiltrate (Figure 3.49) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.49 - Day 3 of construct grafting-Top H&E stained section and bottom GFP stained section –

Construct outlined in black. Arrows indicate sutures used to secure construct. NO GFP positive cells are 

seen. Magnification.x10; Bar-200 µm 
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Figure 3.50 -GFP stained construct grafting- Day 0, Day 3 and Day 7 (Top to bottom). Construct appears to 

have disintegrated very early with loss of GFP stain within 3 days. Construct outline in black, Arrow 

indicating the securing sutures; Magnification x 5 , Scale Bar-500 µm 
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3.3.2 PCL Construct testing 

 

The PCL construct melted at 60 degrees and therefore routine wax processing could 

not be used to study their fate. SEM studies showed   that the construct acted as a 

scaffold and new tendon-like   tissue was being laid down around it by Day 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.51 - SEM micrographs of a single 3D bundle grafted into the created defect of a mouse Achilles 

tendon taken at Time Zero (top) and  3 weeks   (Bottom) after implantation. Time zero identifies the 

potential position of the bundle within the tendon (magnification x100), and at 3 weeks potentially new 

tissue which has encapsulated the bundle can be seen (magnifications x2500). Where C=Construct, T= 

tendon;  Surgery by Nawsheen Alam, SEM by Lucy Bosworth 
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Chapter Four 

Discussion 
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4.1 Anatomy of the mouse Achilles tendon 

 

Rodent models   are   commonly used mammalian models for in vivo studies due to their 

availability, size, low cost, ease of handling, and fast reproduction rate.  The availability 

of a large number of genetic species allows for identification of therapeutic targets as 

the mouse genome is similar to the human genetic map (Mouse Genome sequence 

consortium, Nature 2002). The small size of mouse tendons and ligaments has so far 

limited their use for tendon research. This trend is now changing (Chhabra et al., 2003; 

Hasslund et al., 2008; Mikic et al., 2006; Wong et al., 2009) in order to take advantage of 

the large number of inbred and outbred strains of mice (Jackson Lab, USA). The 

availability of the GFP species which offers easy tracking of cells encouraged us to 

develop a mouse model which will allow us to study cellular events following 

transplantation of tendon either in the form of a graft or an engineered construct. 

 

Recent studies have used the mouse flexor tendon to study the biology of sutures, 

flexor tendon healing and adhesion formation (Wong et al., 2006b; Wong et al., 2009).   

The mouse flexor tendon has also been used to study adhesions after   tendon grafting 

(Hasslund et al., 2008).  A larger model would provide a   technically reproducible model 

for the study of tendon and construct grafting. The flexor tendon is an intrasynovial 

tendon and the majority of the tendon grafts used in clinical practice is extrasynovial in 

origin. Therefore, the Achilles tendon of the mouse was studied to establish a new 

model for the study of   tendon grafting biology.  

 

 A number of similarities were found between the anatomy of the mouse and the 

human Achilles tendon in terms of its origin, insertion and rotation. In both mice and 

human the Achilles tendon was formed by the tendons of gastrocnemius and soleus 

and inserted into the posterior surface of the calcaneum bone. In mouse however, the 

plantaris tendon was present consistently in all animals and lay on the posterior aspect 

of the Achilles tendon. The tendon was covered by loose connective tissue, the 

paratenon. This was particularly obvious anterior to the tendon and created a plane 

between the Achilles tendon and the deep flexor compartment in which blood vessels 
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were seen to traverse.  In the distal part, the loose areolar tissue widened and 

contained an area of fatty tissue. In human, a similar   area is known as Kaegar’s pad of 

fat (Benjamin et al., 2008; Theobald et al., 2006) and is thought to contribute to 

reducing the risk of tendon kinking. In loaded Achilles tendon the fat pad slides 60% 

further into the retrocalcaneal bursa providing lubrication and preventing  friction 

injuries (Ghazzawi et al., 2009). On the posterior aspect, thin fascial extensions were 

seen passing from the skin into the connective tissue sleeve around the Achilles tendon. 

This fascial envelope and connections may play an important role in the gliding of the 

Achilles tendon. It probably represents the microvacuolar system described by 

Guimberteau (Guimberteau et al., 2010) allowing  the tendon to move without any 

distortion of the skin. Alcian blue staining showed that the fascial envelope is high in 

proteoglycans and has a loose areolar distribution. The increase in proetoglycans at the 

region of union of soleus and gastrocnemius may play a role in  lubrication of the  

bundles of adjoining collagen to move over each other as speculated by Vogel (Vogel 

and Peters, 2005). The tendon proper shows no obvious areas of fibrocartilaginous 

zones. At the insertion region of the Achilles tendon definite areas of fibrocartilage 

were seen. 

 

The insertion region of the Achilles tendon has been studied in detail in cadavers (Milz 

et al., 2002; Rufai et al., 1995). Similar to human Achilles tendon, the mice Achilles 

tendon was found to be separated from the calcaneum by the retorcalcaneal bursa just 

above its insertion. The bursa together with its fibrocartilaginous walls is thought to 

protect the distal most part of the tendon from friction injuries during dorsiflexion of 

the ankle.  Thickening of the epitenon was seen at the concave and convex surface of 

the tendon, where the tendon was in contact with the surface and changing direction 

to insert in the bone. The thickening of the epitenon or endotenon have previously 

been described for wrap- around tendons (Benjamin et al., 1995). Benjamin et al. 

speculate that the thickening in the epitenon or endotenon may play a role in 

protecting tendon vasculature. 
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Alpha-Smooth muscle actin, an isoform of actin  that is typical of smooth muscle cells 

have been demonstrated in the cytoplasm of pericytes, a cell residing in the 

endothelieal layer of blood vessels. Alpha SMA stain of the Achilles tendon showed that 

the tendon substance was avascular. Non vessel related alpha SMA positive cells were 

found in the epitenon of   normal Achilles tendon which   may   represent presence of 

myofibroblasts. These cells have previously been implicated in remodeling of injured 

tendon  (Weiler et al., 2002). Abundant blood vessels were seen in the loose areolar 

tissue anterior to the tendon.  The relatively larger caliber vessels that appear to be 

contributing to the smaller vessels passing into the mesotenon is likely to be the 

posterior tibial vessels. Human cadaveric studies have shown  that the Achilles tendon 

receives blood supply from musculotendinous and  osseotendinous junctions(Ahmed et 

al., 1998; Carr and Norris, 1989) and also receives supply from posterior tibial vessels 

(Ahmed et al., 1998) through the mesotenon.  A second large caliber vascular bundle 

was seen closely related to the tendon but did not give off   any direct branches to the 

tendon. This group of large caliber vessels could represent the saphenous vascular 

bundle. Serial cross sections showed a uniform number of blood vessels in the 

mesotenon at all levels which is in keeping with previous reports by Ahmed et al.  

(Ahmed et al., 1998). This is in contrast to intrasynovial flexor tendon which  has been 

shown to receive segmental blood supply (Peacock, 1959; Zhang et al., 1990). 
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4.2 Biology of tendon grafting 

 

The practice of tendon grafting continues to be a useful technique for the 

reconstruction of damaged segments of tendon and for the reconstruction of 

ligaments. The biology of tendon graft integration bears some similarities to healing of 

injured tendons but also follows a cellular repopulation phenomenon particular to 

grafted tissue.  

 

Our study of syngenic GFP tendon grafting showed that no graft cell was detected at 

day 90. Kubo and co-workers  performed confocal studies of GFP positive grafts that  

have yielded results similar to our study (Iwata et al., 2008; Kobayashi et al., 2005) while 

a recent study by the same group suggested that graft cells disappear by day 7 (Tachiiri 

et al., 2010). The disparity between the time lines was not explained but variation in 

surgical technique may have contributed to the earlier disappearance of the graft cells.   

 

It is also possible that some of the graft cells persist but fail to express GFP.  Insitu 

hybridization study of sex mismatched tendon grafting reported a delayed repopulation 

by recipient cells between 12 and 30 weeks (Thorfinn et al., 2009). Thorfinn used 

tendons reseeded with cells which had been expanded in vitro, therefore may be less 

immunogenic and may not respond to loss of mechanical integrity in a manner similar 

to intrinsic tendon cells. Reseeding may also have led to a residual acellular area in the 

tendon core due to lack of cell penetration which may also have contributed to the 

delay in cellular repopulation. Tendon grafting studies of mice flexor tendon have 

shown that acellular freeze dried allografts  are repopulated by 42 days (Hasslund et al., 

2008). The control autografts in Hussland’s study showed chronological events similar 

to our study with hypercellularity at day 28 but cellular repopulation could not be 

identified in the autografts. Sex mismatched syngenic studies are needed to clarify this 

point of interest. 

 

The benefit of our DAB based immunohistological study was that it allowed us to see 

the cellular events in relation to the complete architecture of the leg and draw 
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conclusions regarding the spatiotemporal orientation of cells. The position of the graft 

could be identified with some ease by the GFP stain and the presence of the proximal 

and distal suture up to Day 21. After this time point   only the position of the two sutures 

allowed for the continued verification of the area of the graft. Our study was different 

from the above studies in terms of the design as we used a  patch/ onlay  graft while the 

above studies used either a  tendon to bony insertion (Iwata et al., 2008; Kobayashi et 

al., 2005) or end to end repair (Hasslund et al., 2008). As Achilles tendon is a weight 

bearing tendon, removal and replacement of a complete segment without 

immobilisation of the whole leg, may have impaired mice ambulation leading to poor 

health. On the other hand  an onlay  graft offered a broader insight of cellular events as 

cell traffic was both from side to side and from the stumps. One of the limitations of the 

model could be   that using a patch graft excluded the role of direct mechanical forces 

on the early remodelling of the graft. Previous studies have shown that creating a 

window in extensor tendon  led to hypertrophy of the rest of the tendon until the 

window is filled with fibrillar collagen and incorporated in the tendon (Matthew et al., 

1987). The authors speculated that the nonlesional part of the tendon responded to the 

added stress by the formation of more collagen as well as the lesional part. In our study 

it is likely that the grafted tendon segment was not involved in load transmission in the 

early part of healing. At Day 3 the tendon graft appeared to be separated from the rest 

of the tendon by a fibrin clot. Around Day 21 the graft appeared to be incorporated 

inside the tendon with significant rise in collagen synthetic activity both in the graft and 

the host tendon. The boundary of the graft was indistinct. The collagen synthetic 

activity at Day 21 may represent the redistribution of load throughout the tendon in 

keeping with Matthew’s findings of the appearance of small fibrils in the non-lesion 

area between 1o-30 days.  

 

At Day 21 the graft was hypercellular and had both abundant rounded and oval cells 

which may represent inflammatory and tendon cells respectively. Positive GFP staining 

suggested that graft cells were   viable until Day 21. High level of Hsp47 activity in the 

area of the graft at Day 21 also indicates that cells are very active atleast until this stage 

of healing. The early results are similar to histological  reports by  Mason and Shearon 
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(Mason and Shearon, 1932) and Potenza (Potenza, 1964) who showed that the graft 

remained viable throughout the healing period. In our study, the disappearance of GFP 

positive cells from the GFP syngenic grafts and the number of apoptotic cells in the 

graft at Day 21 suggests that the cells of the graft have a finite life after transplantation. 

The matrix turnover of the graft was not studied and therefore cannot be commented 

upon. But Hsp 47 activity in and around the graft at Day 21 suggest deposition of new 

matrix by cells in the area of the graft. Therefore we suggest that the graft cells are 

both viable and metabolically active in the early phase of healing.  

 

The mechanism of disappearance of graft cells is not yet known. It is possible that loss 

of intercellular communication leads to  inability of the tendon graft to respond to 

stress (McNeilly et al., 1996) which then undergo a process of apoptosis (Egerbacher et 

al., 2008; Kawabata et al., 2009). Apoptosis was more marked in syngenic grafts than 

autologous grafts and this may be due to either immunogenicity of the GFP grafts or a 

disparity of size compared to autologous grafts which were perfect fits in their host 

environment as they were replaced orthotopically. Immunogenic reaction between GFP 

and their syngenic counterpart has rarely been reported. Matsuo reported rejection of 

full thickness dorsal  skin graft  between GFP and C57BL/6 mice, which was then 

avoided by using tail skin  (Matsuo et al., 2007).  The biological processes observed in 

both syngenic and autologous grafts were parallel in terms of timing. Moreover no 

signs of rejection were seen either clinically or macroscopically all of which provides 

argument against an immunogenic response to the syngenic graft. 

 

An interesting and unexplained phenomenon in the graft cells was observed at Day 21. 

The GFP stain in GFP positive syngenic graft was more intense compared to day 3 and 

the cells appeared to be crowding together. The GFP in mammalian cells is distributed 

across cytoplasm and nucleus. One explanation may be that the initiation of apoptosis 

which is marked by cell condensation increases the intensity of the GFP signal. It may 

also be possible that redistribution of mechanical load leads to graft cells trying to 

realign themselves in the line of stress. There may also be a movement of cells away 

from the sutures though this was not obvious. The sutures were put in the long axis of 
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the tendon and therefore acellular zones occurring due to the  gripping component of 

the  suture was avoided (Wong et al., 2010). Alternatively the matrix may have been 

degrading causing the cells to crowd together. 

 

The function of cells of the graft is not clear. In our study the very high level of Hsp47 

activity of   the tendon cells of the graft at Day 21 suggests that cells of the grafted 

tendon are very active and participates in neo tendon formation. Collagen synthesis 

peaked at Day 21 which is in keeping with the traditional phases of healing. Though the 

graft cells disappear after this stage, their role in the early phase of healing appears to 

be of significance for the remodelling of tendon. An earlier peak of synthetic activity at 

day 3 and day 7 post grafting has been reported for GFP chimeric rat tendon grafting 

models (Kajikawa et al., 2008; Tachiiri et al., 2010).  There may be an interspecies 

variability between mice and rat or the GFP cells in the rat model may be more 

immunogenic. The difference in the study designs may account for the difference in 

time frames with our study.  In our study we applied a   patch graft to a partial window 

model and therefore mechanical forces involved in the remodelling process were very 

different from other tendon grafting experiments and may not be comparable. 

 

Three dimensional reconstruction of serial histological sections showed overlapping of 

collagen synthetic activity with the GFP positive graft cells. This suggests that graft cells 

are not quiescent and have an active role in healing. This may explain why cellular 

autografts appear to have more strength than acellular allografts (Romanini et al., 2010; 

Scheffler et al., 2008). In sheep model of Anterior Cruciate Ligament Reconstruction 

recellularization and revascularization was significantly delayed in the allograft  at 6 and 

12 weeks of healing, while significantly lower structural and mechanical properties were 

found at 52 weeks (Scheffler et al., 2008).Chong reported  contradicting results  and 

showed no difference existed between the tensile strength of normal and acellularised 

tendons (Chong et al., 2009). Less adhesion formation was reported as an added 

advantage in acellular tendon grafts (Hasslund et al., 2008). The debate may continue 

as evidence on both sides   continues   to mount. Our study provides evidence in favour 

of cellular grafts and it is possible that if cells can be encouraged to start synthesizing 
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collagen at a higher rate and at an earlier time point, such as by the use of mechanical, 

electrical or factorial stimulation, construct and graft remodelling may be expedited. 

 

Apoptosis has been shown to be a part o f the healing process of wounded tendons. Lui 

(Lui et al., 2007) reported that TUNEL positive cells peaked at 28 days following tendon 

wounding while Wong  (Wong et al., 2009) reported a peak at 84 days in a mice tendon 

adhesion model. A recent study reports a much earlier peak in apoptosis in the healing 

tendons at day 3, followed about 10 days later by the peak proliferation period (Wu et 

al., 2010).Wu also found that apoptosis was inhibited  between 2 and 4 weeks. It 

appears that apoptosis plays a significantly greater role in tendon graft healing 

compared to healing of wounded tendons. In our study TUNEL positive cells were 

present in the tendons at day 3, increased significantly by day 21 and continued to be 

present at day 90. Apoptotic cells were present both at the area of the donor tendon 

and in the host tendon as well as surrounding peritendinous areas. Apoptosis therefore 

appears to be an integral part of cellular repopulation in tendon graft healing. 

Apoptosis may be triggered by loss of mechanical integrity and the need for 

realignment by the tendon cells. Apoptosis has been shown to be induced both by  

mechanical loading of  intact tendon (Scott et al., 2005) or by the lack of it (Egerbacher 

et al., 2008). Egerbacher et al. suggest that loss of homeostatic tension causes an 

alteration in cell-matrix interactions leading to an in increase in apoptosis. In our study a 

slightly higher level of apoptosis was seen in syngenic grafts compared to autologous 

grafts where size and shape mismatch was minimum. The subcutaneous tissue and 

peritendinous area showed very high level of apoptotic activity from Day 3. The large 

number of inflammatory cells present in the subcutaneous tissue probably undergoes 

apoptosis leading to the high TUNEL activity in this area (Brown et al., 1997).  Some of 

the apoptotic activity in the tendon at Day 21 can also be contributed to the death of 

invading  inflammatory cells (Homburg and Roos, 1996).  

 

Several studies have reported a close association between apoptosis and cell 

proliferation (Lui et al., 2007; Wu et al., 2010). Lui reported that as well as TUNEL 

positive cells, the level of PCNA positive fibroblast like cells remained high at day 28 
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indicating a high level of cellular proliferation.  They speculate that this association may 

be suggestive of  an attempt of the cells to repair DNA during apoptosis and that cells 

undergo abortive events in the early mitotic phases, therefore staining positive for both 

TUNEL and PCNA. The results of this study are comparable to our finding of apoptotic 

and proliferative cells in tendon graft healing, both of which peaked at Day 21. The 

number of BrdU positive cells in the tendon tissue peaked at Day 21, while the number 

of BrdU positive cells was high in the subcutaneous tissue from Day 3 to Day 90, 

peaking at Day 21. At Day 3 most of the BrdU positive cells in the subcutaneous tissue 

are likely to be inflammatory in nature. In the early period the hypercellular 

subcutaneous tissue has marked positive staining for inflammatory markers-CD45, Ly6G 

and F4/80 which respectively represent pan leukocyte, neutrophils and macrophages. 

At Day 3 the number of CD45 and Ly6G positive cells are higher than the F4/80 stained 

cells. Only a very small number of inflammatory cells are seen in the tendon substance 

at this time. But by Day 21 there is a significant rise in the number of neutrophils and 

macrophages in the tendon substance and this is more marked in the area of the graft.  

Both CD45 and Ly6G positive cells are significantly greater in the syngenic graft 

compared to autografts which may be either due to early rejection of the syngenic 

graft, which could not be completely ruled out or experimental conditions such as size 

mismatch. The short interval between harvesting the syngenic graft and placing it in the 

host tendon compared to no time gap between harvesting and securing the autologous 

graft may also   have contributed to the higher inflammatory response.  

 

At Day 21 the inner tendon core appeared relatively hypocellular compared to its 

surrounding tendon tissue. The difference in the level of inflammatory cells between 

the outer and inner tendon has previously been noted in Anterior Cruciate Ligament  

reconstruction (Kawamura et al., 2005). It appears that the tendon core lags behind the 

outer tendon in terms of inflammation and remodelling. The role of the inflammatory 

cells inside the tendon substance is not obvious.  But the presence   of these cells in the 

synthetic phase of healing may be of significance.  The reported increase in ED2 positive 

mature tissue macrophages at the later stages of healing suggest that these cells may 

have a role in graft healing. In our study their presence coincided with a high synthetic 
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activity in the graft area at day 21 which is also indicative of a reparative role. F4/80 

positive macrophages were greater in autografts suggesting greater coordinated 

healing and earlier remodelling of tissues. A possible explanation may be that the 

inflammatory cells release cytokines and growth factors that stimulate apoptosis while 

also releasing factors to stimulate matrix synthesis. Macrophages  have been shown  to 

produce cytokines that can contribute to healing by induction of angiogenesis, 

fibroblast proliferation, and extracellular matrix synthesis and degradation (Nathan, 

1987). Studies of macrophage depletion following Anterior Cruciate Ligament 

reconstruction have shown  improved morphologic and biomechanical properties at the 

healing of  tendon-bone interface (Hays et al., 2008) while  also showing significant 

reduction in cellular proliferation(Godbout et al., 2010). The exact role of various 

inflammatory cells and their interaction should be investigated further.  

 

The intense inflammatory reaction in the subcutaneous tissue at Day 3 is accompanied 

by a marked increase in the number of blood vessels which is in keeping with the 

normal events of the inflammatory phase of wound healing (Wong et al., 2009). At Day 

21 the previously avascular tendon graft and host tendon show positive staining for 

lumen associated alpha-SMA indicating that the graft is vascularised and this is 

maintained even at Day 90. This suggest vascularisation is accompaniment of  graft 

healing which is in keeping with previous reports (Gelberman et al., 1992a). The blood 

vessels have been shown to be associated with bone marrow derived cells (Zantop et 

al., 2006)  and are likely to be responsible for the influx of inflammatory cells in the 

tendon at Day 21. 

 

Our study showed   that cells of tendon graft undergo cellular repopulation and this is 

associated with an influx of inflammatory cells, apoptosis, proliferation, and collagen 

synthesis.  Cellular events in the tendon lagged behind events in the subcutaneous 

tissue and only reached comparable levels around Day 21. We suggest that earlier 

repopulation may influence graft healing positively and healing time may be accelerated 

by targeted manipulation of graft cells. This hypothesis would be tested in future 

investigations. Our study also indicates that cellular grafts and constructs are likely to 
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provide earlier remodelling due to the active participation of the graft cells leading to 

earlier biomechanical recovery and future work will also focus in this area. 

 

4.3 Application of the model for testing of novel tendon constructs and 

suggestions for future work 

 

In 1999, the U.S. National Committee on Biomechanics proposed that  in vitro 

development of tissue engineered constructs should be tested in vivo to determine 

what signals cells experience in vivo as they interact (Butler et al., 2000). In vitro 

mechanical testing and cell culture assays provide key information to the improvement 

and tuning of the construct. However, experimental testing in an appropriate animal 

model remains an essential step to identify the response of the construct to the 

biological environment. 

 

If a construct contains implanted cells the viability and mobility of the implanted cells is 

of primary consideration. Outcomes of the implanted cells may  include, quiescence, 

proliferation, apoptosis and ischemic death (Carpenter and Hankenson, 2004). If the 

construct is acellular the fundamental question is that of cellular repopulation and 

biological integration.  

 

We successfully used the mouse Achilles tendon model for in vivo testing of two very 

different engineered constructs. The small nature of these constructs which are at early 

stages of their development meant that the mouse Achilles was a perfect model for 

testing these constructs. The cellular fibrin construct was developed from the tail 

tendon of GFP mouse and the viability of the cells could be followed in time using GFP 

immunohistochemistry. Unfortunately the fibrin graft disintegrated early in the 

experiments and by day 3 no GFP cells could be seen. The benefit of in vivo testing is 

that it allows for identification of such problems early in tissue engineering and leads to 

revisiting of the in vitro stages. In this case several theories were considered. Tension 

has been shown to be essential for the formation of the fibripositor positive fibrin 

construct (Kapacee et al., 2008). It may be possible that when the constructs are 

divided from their pinned attachments, the loss of tension leads to rapid disintegration 
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of the delicate construct. It may also be possible that the fibrin based construct lacked 

an enveloping cell layer around the construct. The in vivo environment may have 

recognised this as a fibrinous material and caused an early degradation. If the cells in 

the construct can be manipulated to resist the initial   invasion of the inflammatory cells, 

the fibripositor positive cells may get enough time to adapt to their new environment. 

Further in vitro experiments of the construct are currently in progress which may be 

followed by in vivo testing. 

 

The second construct was chosen to test if the model would allow us to identify 

seeding of acellular scaffolds and the timeline of events. The advantage of the 

electrospun Polycaprolactone (PCL) construct is that it has tendon- like longitudinally 

oriented fibers which are very light weight with a large surface area, allowing a greater 

degree of cell attachment to occur. Polycaprolactone (PCL) is a  biocompatible and 

bioresorbable 

 polyester that has  a slower degradation rate than other bioresorbable polymers, which  

may allow seeded cells time to generate and organise Extracellular Matrix (Bosworth et 

al., 2008).  Unfortunately the small number of animals and the low melting point of the 

construct did not allow us to carry out histological investigations. The harvested 

tendons were investigated with Scanning Electron Microscopy (SEM) and in situ, the 

architecture of the PCL construct appeared to have some similarities to normal tendon. 

At Day 21 there appeared to be potentially new tissue surrounding the scaffold 

indicating incorporation of the construct. Cellular seeding could not be determined. 

Further in vitro  manipulation of the PCL construct is in progress  and future in vivo 

experiments will be carried out using low melting point wax processed histology, 

immunohistochemistry and SEM. 

  

The investigations carried out to test a cell-based and an acellular construct yielded only 

preliminary results. But the study proved that the mouse Achilles tendon model could 

be successfully used to carry out in vivo construct testing. It also showed that in vitro 

development of engineered tissue or biomaterial should run alongside testing in an 
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appropriate animal model as this allows for problems to be detected early and changes 

to be made in study design from the early stages. 

 

The Mouse Achilles tendon offers an economic and reproducible model   for the study 

of tendon injuries. The availability of GFP species with cell tracking facilities allowed for 

the development of a versatile tendon grafting model which can also be used to test 

biomaterials. 

 

Tendon graft cells remain viable and metabolically active in the early phases of graft 

integration. The cells of the graft   appear to undergo a process of apoptosis and are 

completely replaced by host cells in the later phase.  The interaction between cell 

activity and cell death plays a significant role in the remodeling and reorganization 

of the tendon. We suggest that cellular grafts may offer advantages over acellular 

grafts in terms of earlier   remodeling leading to   a shorter recovery period. 

 

Early results of an engineered cell-based fibrin construct did not provide sufficient 

persistence, while acellular constructs showed some potential as a viable scaffold 

material.  The Mouse Achilles tendon proved to be an appropriate model for the in 

vivo testing of tendon constructs. 
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Zinc Fixation 

 

Preparation of Zinc fixative (Beckstead J.H., 1994) 

   

For 500ml of zinc fixative solution 1.322g of Tris HCl and 0.194g of Tris base was added 

to 500mls of distilled water (100mM Tris.Hcl pH 7.4) and stirred continuously until the 

salts had dissolved. Following dissolution, under continuous stirring, 0.25 g of Calcium 

acetate (0.05% Calcium acetate) is added to the solution, followed by 2.5g of Zinc 

acetate (0.5% Zinc acetate)  then followed by 2.5g of Zinc Chloride (0.5% Zinc chloride). 

Once all the salt had dissolved the fixative is stored at 4°C until use. The final pH should 

be 6.5-7.5 

 

For mice who underwent suture wounding and proximal suture immobilization mice  

samples were placed into zinc fixative and stored at 4°C for 48 hours then transferred 

to 50% IMS solution prior to tissue processing. 

 

Decalcification 

Preparation of EDTA decalcification solution 

 

For 2 litres of 20% EDTA solution add to 1000 ml of 40% EDTA liquid to 850 mls of dH20 in 

a fume cupboard and stir continuously. Add slowly approx 150-160 mls of concentrated 

HCL under pH guidance to adjust pH to 7-7.4. This procedure should be performed with 

protective eye wear in a fume cupboard. 

 

The method of EDTA decalcification was used to demineralise the bone so that paraffin 

processing and whole digit sectioning could be performed. This solution was used to 

decalcify individual digits for a total of 15 days with solution changes every 5 days. 

Radiographs of the samples were performed on the 15th day to ensure complete 

decalcification using a dental x-ray machine (Faxitron, UK.) with power settings at 

45kVp and 5 second exposure. 
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Tissue Processor Program-Paraffin wax processing 

 

Following fixation samples were placed into an automated tissue processor (Tissue Tek 

Vacuum Infiltration Processor) following a program intended for skin samples which 

best preserved tendon architecture. This protocol was selected from a number of 

programs tested which gave the least brittleness in the tendon on sectioning. The 

pressure/vacuum cycles (p/v cycles) are fixed throughout processing. The wax 

impregnated tissue was then embedded in paraffin wax blocks.  

 

Process Solution  Time  

(Hr: Min) 

Temperature 

(°C) 

P/V cycle 

(On/Off) 

 

 

 

50% IMS 0:45 - On 

 70% IMS 0:45 - On 

 90% IMS 1:00 - On 

 100% IMS 0:30 - On 

 100%IMS 0:30 - On 

 100%IMS 1:00 - On 

 50:50 

IMS/Toluene 

0:30 - On 

 100% 

Toluene 

0:30 - On 

 100% 

Toluene 

0:30 - On 

 100% 

Toluene 

1:00 50 On 

 1
st
 wax 0:30 60 On 

 2
nd

 wax 0:30 60 On 

 3
rd

 wax 0:30 60 On 

 4
th

 wax 1:00 60 On 
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Buffers 

 

PBS(0.1M) 

 1 L PBS concentrate (1M Sigma Aldrich) 

60gm NaCl 

10L ddH2O 

 

PBS-Tween 

1 L PBS concentrate (1M Sigma Aldrich) 

60gm NaCl 

10L ddH2O 

10ml Tween 

 

Tris buffer 

 

12.1 gm TRIS Base 

1M HCl 

900ml dH2O 
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General staining 

 

Harris’ Haematoxylin Solution 

 

To make approximately 500mls of haematoxylin dissolve 4 g haematoxylin 

monohydrate in 40ml IMS. Place 760 mls of distilled water into a one litre heat proof 

flask and heat until approximately 60°C then add 80 g of aluminium potassium sulfate 

dodecahydrate (Sigma). Heat to 70°C and add alcohol solution. Heat to 75°C and add 

0.8g sodium iodate which should result in solution looking like port. Remove from heat 

and place into an ice/water bath and cool for 30 minutes. Add 32 ml of glacial acetic acid 

and stir at room temperature overnight. Filter dissolved solution through Whatman 

paper, bottle and store.  

   

1% Eosin Y 

 

To make 500 ml of Eosin Y add 5 g of eosin Y to 500ml of distilled water and stir until 

dissolved. Bottle and store. 

 

Nuclear fast red 

 

To make 500mls of nuclear fast red solution dissolve 25 g of aluminium sufate in 500mls 

of dH20. Then add 0.5 g of nuclear fast red and dissolve over a hot plate at 40°C. Filter 

and add a crystal of thymol. Bottle and store 

 

Miller’s Stain 

 

Brought from BDH 
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Alcian Blue pH 2.5 

 

3% Glacial Acetic Acid 

Acetic Acid- 3ml 

Distilled water 100 ml 

 

Alcian Blue solution 

 

3% Glacial Acetic Acid 100 ml 

Alcian Blue 8Gx 1gm 

Mix and adjust pH to 2.5 using acetic acid. Filter, add a thymol crystal and store at room 

temperature 

 

Picric Acid (1%) 

 

 5 ml Picric Acid 

500 ml 70% IMS 

 

The Picric Acid (Hopkins and Williams Ltd, Essex, UK) was dissolved in the  70% IMS in 

the fume hood and stored at room temperature. 

 

Biebrich Scarlet 

 

0.5 gm biebrich scarlet 

5 gm glacial acetic acid 

495 ddH2O 

 

The glacial acetic acid was mixed with the ddH2O to make 1% acetic acid solution. The 

biebrich scarlet (Gurr, BDH Laboratory  supplies) was then added and dissolved  with 

stirring. The stain was stored at room temperature. 
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PMA/PTA (50%/50%) 

 

12.5 gm phosphomolybdic acid 

12.5 gm phosphotungstic acid 

500 ml ddH2O 

 The phosphomolybdic acid (BDH laboratory supplies) and the phosphotungstic acid 

(BDH laboratory supplies) were separately dissolved in 250 ml of ddH2O. The two 

solutions were mixed thoroughly and stored at room temperature. 

 

Fast Green 

 

12,5 gm Fast Green 

12.5 ml glacial acetic acid 

487.5 ml ddH2O 

 

A 2.5 % Glacial acetic acid solution was prepared by combining the glacial acetic acid and 

the ddH2O. The Fast Green (Gurr, BDH laboratory supplies) was added and dissolved 

with stirring. The stain was stored at room temperature. 

 

0.5 % acidified Potassium Permanganate 

 

2.5 gm Potassium Permanganate 

15 ml sulphuric acid 

 485 ml dH2O 

 

Toluidine Blue Stock solution 

 

 1 gm Toluidine Blue 

100 ml 70% alcohol 
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Van Gieson Counter Stain 

 

50 ml saturated Picric acid solution 

9ml 1% aqueous acid fuchsin solution 

50 ml dH2O 

 

Postoperative Analgesia 

 

Subcutaneous Buprenorphine 0.05 mg/kg (Vetergesic-Reckitt Benckiser Healthcare UK 

Limited) 

0.25 ml of stock solution diluted in 4.75 ml of saline (In additive free vacutainer) 

Will stay active for two weeks  30 gm mice-0.2 ml for 0.1 mg/kg and 0.1 ml for 0.05 ml/kg 

 

Poly(ε-caprolactone) 3D electrospun bundles – in vivo study 

 

3D bundles were fabricated by electrospinning a 10 % w/v PCL (Mw 80,000) in acetone 

solution with parameters; voltage 20 kV, flow-rate 0.05 ml/min and distance to collector 

15 cm. A purpose-made mandrel of aluminium with diameter 120 mm and edge 

thickness of 3 mm (Fine Mandrel – FM) was mounted on a non-conductive Tufnol rod. 

Fibres were spun onto the edge of the mandrel rotating at a speed of 500 RPM for 15 

minutes, as this was sufficient time for complete coverage of the mandrel edge. The 

mat of fibres deposited on the mandrel edge was removed as a single long strip and cut 

every 3 cm along its length into smaller 

sheets. Each sheet of fibres was then submerged in distilled water and manually twisted 

to form a three-dimensional bundle that was left to dry on the open bench. 
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Sterilisation of electrospun samples 

 

To minimise the risk of infection all electrospun samples, including random and aligned 

2D fibrous mats, and 3D bundles and plaits were sterilised prior to use. Sterilisation 

through increasing concentrations of ethanol (VWR) was conducted in the class II 

microbiological safety cabinet (University of Manchester). Ethanol concentrations used 

included; 50, 70, 90 and 100 % v/v ethanol (diluted as necessary with distilled water). 

Samples were sterilised overnight for each concentration. Following sterilisation with 

100%ethanol, samples were washed twice in PBS. 
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Abbreviations 

 

ABC Avidin Biotin Complex 

Alpha- SMA Alpha smooth muscle actin 

BMT  Bone marrow transplant 

BrdU 5-Bromo-2-deoxyuridine 

C57/BLJ C57 black mice species 

CD  Cluster Differentiation  

CD 45 Pan leukocytic marker 

CD 3 Activated T cell marker 

ECM Extracellular matrix 

ECR Extensor Carpi Radialis 

Hsp47 Heat Shock Protein 47 

GDF Growth differentiation factor 

GFP Green fluorescent protein 

GFPBMT Green Fluorescent Protein Bone Marrow Transplant 

H&E Haematoxylin and eosin Y 

LacZ Beta galactosidase reporter gene 

MSC Mesenchymal Stem Cell 

PBS Phosphate buffered saline 

SEM Scanning Electron Microscope 

SIS-ECM Small Intestinal Submucosa-Extracellular matrix 

SLE Systemic Lupus Erythematosus 

TGFβ 1 Transforming growth factor  1 

TGFβ 3 Transforming growth factor 3 

TUNEL Terminal-deoxynucleotidyl Transferase Biotin dUTP End 

labelling 
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Glossary 

 

Syngeneic Genetically identical members of the same species 

Transgenic A transgenic animal is one that carries a foreign gene that has 

been deliberately inserted into its genome. 

Autograft Tissue transplanted from one part of the body to another in the 

same individual.  

Allograft Cell/Tissue/ Organ sourced from a genetically non-identical 

member of the same species 

Xenograft Transplantation of living cells, tissues or organs from one species 

to another 

Isograft A subset of allografts in which organs or tissues are transplanted 

from a donor to a genetically identical recipient (such as an 

identical twin) 

 

 

 

http://en.wikipedia.org/wiki/Cell_%28biology%29
http://en.wikipedia.org/wiki/Biological_tissue
http://en.wikipedia.org/wiki/Organ_%28anatomy%29
http://en.wikipedia.org/wiki/Species
http://en.wikipedia.org/wiki/Identical_twin

