
Loughborough University
Institutional Repository

Identi�cation of networked
tunnelled applications

This item was submitted to Loughborough University's Institutional Repository
by the/an author.

Additional Information:

• A Doctoral Thesis. Submitted in partial ful�llment of the requirements
for the award of Doctor of Philosophy of Loughborough University.

Metadata Record: https://dspace.lboro.ac.uk/2134/8423

Publisher: c© Ghulam Mujtaba

Please cite the published version.

https://dspace.lboro.ac.uk/2134/8423


 
 
 

This item was submitted to Loughborough’s Institutional Repository 
(https://dspace.lboro.ac.uk/) by the author and is made available under the 

following Creative Commons Licence conditions. 
 
 

 
 
 

For the full text of this licence, please go to: 
http://creativecommons.org/licenses/by-nc-nd/2.5/ 

 



i 

 

 

 

 

 

Identification of Networked Tunnelled Applications 

 

by 

Ghulam Mujtaba 

 

 

 

 

 

A Doctoral Thesis 

Submitted in partial fulfilment of the requirements 
for the award of Doctor of Philosophy of Loughborough University 

 

 

 

 

May, 2011 

 

© by Ghulam Mujtaba 2011 

 



ii 

 

Abstract  

In protocol tunnelling, one application protocol is encapsulated within another 

carrier protocol in an unusual way to circumvent firewall policy. Application-layer 

tunnels are a significant security  and resource abuse threat for networks because 

those applications which are restricted by firewalls such as high data-rate games, 

peer-to-peer file sharing, video and audio streaming, and chat are carried through 

via allowed protocols like HTTP, HTTPS  and the firewall security policy is 

thwarted. Protocols such as HTTP and HTTPS are indispensable today for any 

network which has to be connected to the Internet; hence these become a high value 

target for running restricted applications via tunnelling. The identification of the 

actual application running across a network is important for network management, 

optimization, security and abuse prevention. The existing techniques for 

identification of applications running across the network, for example port number 

based identification, and packet data analysis techniques are not always successful, 

especially for applications which use encrypted tunnels. This work describes a 

statistical approach to detect applications which are running using application layer 

tunnels. Previous work has shown the packet size distribution to be an effective 

metric for detecting most network applications, both UDP and TCP based 

applications.  In this work it is shown how packet stream statistics including packet 

size distributions can be used to differentiate and identify networked tunnelled 

applications successfully. Tunnelled applications are identifiable using the traffic 

statistical parameters. Traffic trace files of the applications were captured, statistical 

parameters were derived from the trace files, and then these parameters were used 

for training machine learning algorithms. The trained machine learning algorithm is 

then able to classify the other packet trace data as belonging to an application. Five 

different machine learning algorithms have been applied, and their performance 

accuracy is discussed. The entropy distance based Nearest Neighbour machine 

learning algorithm and the Euclidean Distance based Nearest Neighbour classifier 

had better results than others. This method of identification of tunnelled applications 

can be complimentary to other network security systems such as firewalls and 

Intrusion Detection Systems. 



iii 

 

 

 

 

Acknowledgements 

 

I am thankful to God, first and foremost for creating me, bestowing me with 

countless blessings, capabilities and guiding me.  

I would express many thanks to my supervisor Professor David J Parish for his 

guidance, encouragement, time, inspiration and reflection throughout my PhD. The 

kind and insightful advice from David has always motivated me and helped me 

achieve the objectives of this work. I am grateful to my mother, brothers, sisters, 

wife and children for their support, encouragement and sacrifices.  

I am thankful to my research colleagues in the High Speed Networks (HSN) group 

for their support and for sharing their knowledge. These include Xiaoming Wang, 

Yaqoob Juma Yaqoob Al-Raisi, Konstantinos Kyriakopoulos, Dr. Akhtar H. Khalil, 

Dr. Li Bo, Dr. Mark Withall, Dr. Marcelline Shirantha de Silva, Dr. John Whitley, 

Roshdi, Rye, and Jin Fan.  

 

 

 

 

 

 

 

 

 



iv 

 

Table of contents 

CHAPTER 1 INTRODUCTION----------------------------------------------------------------------------------------------------- 1 

1.1 NETWORKED TUNNELLED APPLICATIONS ------------------------------------------------------------------------------------- 2 

1.2 APPLICATION IDENTIFICATION: AN OVERVIEW ------------------------------------------------------------------------ 3 

1.3 ORIGINAL CONTRIBUTIONS OF THIS RESEARCH ------------------------------------------------------------------------- 5 

1.4 LIST OF APPLICATIONS IDENTIFIED -------------------------------------------------------------------------------------- 6 

1.5 THESIS OVERVIEW ------------------------------------------------------------------------------------------------------- 7 

CHAPTER 2 FIREWALLS AND TUNNELS REVIEW --------------------------------------------------------------------------- 8 

2.1. FIREWALLS --------------------------------------------------------------------------------------------------------------- 8 

2.1.1 Packet-filtering Firewalls ---------------------------------------------------------------------------------------- 10 

2.1.2 Application Gateway/Proxy Firewalls ------------------------------------------------------------------------ 10 

2.1.3 Weaknesses of Firewalls: ---------------------------------------------------------------------------------------- 11 

2.2. TUNNELLING: INTRODUCTION ----------------------------------------------------------------------------------------- 11 

2.3. HTTP TUNNELLING EXAMPLE ---------------------------------------------------------------------------------------- 12 

2.4. VARIOUS TUNNELLING PROTOCOLS: --------------------------------------------------------------------------------- 15 

2.4.1 DNS tunnelling ------------------------------------------------------------------------------------------------------ 15 

2.4.2 HTTP tunnels -------------------------------------------------------------------------------------------------------- 15 

2.4.3 Encrypted Tunnel -------------------------------------------------------------------------------------------------- 16 

2.5. MOTIVATIONS FOR TUNNELLING: ------------------------------------------------------------------------------------ 17 

2.6. TUNNELLING SOFTWARE: --------------------------------------------------------------------------------------------- 19 

2.7. APPLICATIONS BEING USED IN TUNNELLING: ------------------------------------------------------------------------- 22 

2.8. TUNNELLED APPLICATION DETECTION: A REVIEW OF PREVIOUS WORK ------------------------------------------- 23 

CHAPTER 3 INVESTIGATING THE PACKET SIZE DISTRIBUTION FOR TUNNELLED APPLICATION 

DETECTION ------------------------------------------------------------------------------------------------------------------------- 29 

3.1. STATISTICAL TECHNIQUES --------------------------------------------------------------------------------------------- 29 

3.2 GENERATING APPLICATION TRACES ---------------------------------------------------------------------------------- 31 

3.3. GRAPHS OF PACKET SIZE DISTRIBUTIONS ---------------------------------------------------------------------------- 33 

3.4. STATISTICAL CHI-SQUARE GOODNESS-OF-FIT TEST ------------------------------------------------------------------ 41 

3.5. RESULT OF CHI SQUARE TESTS FOR PSDS ---------------------------------------------------------------------------- 42 

CHAPTER 4 METHODOLOGY FOR TUNNELLED APPLICATION DETECTION--------------------------------------- 49 

4.1  CAPTURING PCAP TRACES OF TUNNELLED APPLICATIONS: ---------------------------------------------------------- 51 

4.2  PROCESSING OF THE CAPTUREDTRACE FILES: ------------------------------------------------------------------------ 51 

4.3  EXTRACTING METRICS FROM CAPTURED TRAFFIC: ------------------------------------------------------------------ 54 

4.4  TRAINING OR LEARNING PHASE: -------------------------------------------------------------------------------------- 56 

4.5  APPLYING MACHINE LEARNING ALGORITHMS ----------------------------------------------------------------------- 57 



v 

 

CHAPTER 5 APPLICATION PREDICTIONS USING MACHINE LEARNING ------------------------------------------- 59 

5.1  USING 27 METRICS FOR IDENTIFICATION ----------------------------------------------------------------------------- 60 

5.1.1 Classification with Naïve Bayes Algorithm: ----------------------------------------------------------------- 62 

5.1.2 Results of C 4.5 Decision Tree Classifier: --------------------------------------------------------------------- 68 

5.1.3 Results of Neural Network classifier (Multilayer Perceptron): ----------------------------------------- 70 

5.1.4 Results of Nearest Neighbour, IB1 Classifier:--------------------------------------------------------------- 74 

5.1.5 Results of K* Nearest Neighbour, IBK*: ---------------------------------------------------------------------- 75 

5.1.6 Results of OneR classifier: --------------------------------------------------------------------------------------- 77 

5.2 USING PACKET SIZE DISTRIBUTIONS ALONE FOR IDENTIFICATION --------------------------------------------------------- 80 

5.3 USING 12 METRICS EXCLUDING PACKET SIZE DISTRIBUTION FOR IDENTIFICATION -------------------------------------- 82 

5.4 EXCLUDING TEMPORAL ATTRIBUTES FOR IDENTIFICATION ---------------------------------------------------------------- 85 

5.5 USING 30 BINS OF PACKET SIZE DISTRIBUTION FOR IDENTIFICATION ----------------------------------------------------- 87 

5.6 USING 50 BINS OF PACKET SIZE DISTRIBUTION FOR IDENTIFICATION ----------------------------------------------------- 92 

5.7 TESTING ON PREVIOUSLY UNSEEN DATA ----------------------------------------------------------------------------------- 95 

5.8 VALIDATION OF THE WEKA RESULTS: --------------------------------------------------------------------------------------- 97 

5.9 SCALABILITY ----------------------------------------------------------------------------------------------------------------- 100 

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ----------------------------------------------------------------------- 104 

6.1 CONCLUSIONS --------------------------------------------------------------------------------------------------------------- 105 

6.2 FUTURE WORK -------------------------------------------------------------------------------------------------------------- 108 

REFERENCES ---------------------------------------------------------------------------------------------------------------------- 111 

APPENDIX A: THE MATLAB CODE ------------------------------------------------------------------------------------------ 119 

APPENDIX B: THE OSI AND TCP/IP INTERNET MODELS -------------------------------------------------------------- 128 

APPENDIX C: THE TEST DATA SET USED FOR VALIDATION OF WEKA RESULTS ------------------------------- 134 

  



vi 

 

List of Figures 

FIGURE 2-1: A VIEW OF THE LOCATION OF FIREWALL IN A NETWORK, ADAPTED FROM [21] ............................................. 9 

FIGURE 2-2: NORMAL SSH CLIENT/SERVER [26] .................................................................................................. 13 

FIGURE 2-3: FIREWALL BLOCKING SSH TRAFFIC[26] .............................................................................................. 13 

FIGURE 2-4: FIREDRILL TUNNELLING SSH TRAFFIC[26] .......................................................................................... 14 

FIGURE 2-5:  A SNAPSHOT OF HTTPS PACKETS CAPTURED ...................................................................................... 17 

 FIGURE 2-6:   THE HTTP-TUNNEL SNAPSHOT [35] ................................................................................................. 20 

FIGURE 2-7:  THE HTTP-TUNNEL SERVER CONFIGURATION [35] ............................................................................... 21 

FIGURE 2-8:  ANOTHER TUNNELLING TOOL SNAPSHOT [36] .................................................................................... 22 

FIGURE 3-1 PACKET SIZE DISTRIBUTION FOR WORLD OF WARCRAFT RESOLUTION IS 30 BINS, BIN SIZE = 50 BYTES .............. 34 

FIGURE 3-2 PACKET SIZE DISTRIBUTION FOR RUNESCAPE, RESOLUTION IS 100 BINS, BIN SIZE IS 15 BYTES. ....................... 35 

FIGURE 3-3: PACKET SIZE DISTRIBUTION FOR VOIP RAIDER. RESOLUTION IS 50 BINS, BIN SIZE IS 30 BYTES ........................ 35 

FIGURE 3-4 PACKET SIZE DISTRIBUTION FOR CAMFROG. RESOLUTION IS 30 BINS, BIN SIZE IS 50 BYTES ............................ 36 

FIGURE 3-5 SKYPE PACKET SIZE DISTRIBUTIONS WITHOUT NORMALIZATION, RESOLUTION IS 50 BINS, BIN SIZE IS 30 BYTES. . 37 

FIGURE 3-6 SKYPE PACKET SIZE DISTRIBUTION GRAPHS WITH NORMALIZED FREQUENCIES, RESOLUTION IS 50 BINS, BIN SIZE IS 

30 BYTES .............................................................................................................................................. 37 

FIGURE 3-7  PACKET SIZE DISTRIBUTION FOR QUAKELIVE, RESOLUTION IS 50 BINS, BIN SIZE IS 30 BYTES ......................... 38 

FIGURE 3-8 IVISIT WITH 50 BINS RESOLUTION, BIN SIZE IS 30 BYTES .......................................................................... 39 

FIGURE 3-9 IVISIT WITH 150 BINS RESOLUTION, BIN SIZE IS 10 BYTES ........................................................................ 39 

FIGURE 3-10 X-LITE PSD WITH 30 BINS (NORMALIZED FREQUENCY), BIN SIZE IS 50 BYTES ........................................... 40 

FIGURE 3-11 X-LITE PSD WITH 150 BINS (NORMALIZED FREQUENCY), BIN SIZE IS 10 BYTES ......................................... 40 

FIGURE 3-12 RESULT OF CHI SQUARED GOODNESS-OF-FIT (GOF) TEST FOR TRACES OF SAME APPLICATIONS WITH RESOLUTION 

OF 50 BINS AND BIN SIZE = 30 BYTES.......................................................................................................... 43 

FIGURE 3-13 RESULT OF CHI SQUARED GOF TEST FOR TRACES OF SAME APPLICATIONS WITH RESOLUTION OF 30BINS, AND BIN 

SIZE OF 50 BYTES .................................................................................................................................... 44 

FIGURE 3-14 RESULT OF CHI SQUARED GOF TEST FOR TRACES OF SAME APPLICATIONS WITH BIN RESOLUTION = 100 BINS, AND 

BIN SIZE IS 15 BYTES ................................................................................................................................ 44 

FIGURE 3-15. RESULT OF CHI SQUARED GOF TEST BETWEEN TRACEFILES OF SAME APPLICATIONS WITH BIN RESOLUTION = 150 

BINS, AND BIN SIZE IS 10 BYTES ................................................................................................................. 44 

FIGURE 3-16 I : PART 1 OF CHI SQUARED GOF TEST VALUES FOR COMPARISON OF TRACES OF TWO DIFFERENT APPLICATIONS. 

RESOLUTION IS 50 BINS, BIN SIZE IS 30 BYTES .............................................................................................. 45 

FIGURE 4-1 FLOWCHART OF THE TUNNELLED APPLICATION IDENTIFICATION METHODOLOGY ......................................... 50 

FIGURE 4-2 THE TEXT FILE CONTAINING PACKET INFORMATION ................................................................................ 53 

FIGURE 5-1PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES    AND CORRECT ONES AS ‘×’ FOR THE NAÏVE BAYES 

TESTING ON TRAINING DATA. .................................................................................................................... 63 

FIGURE 5-2 PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES   AND CORRECT ONES AS ‘×’ FOR THE NAÏVE BAYES 

TESTING ON 10 FOLD CROSS VALIDATION. ................................................................................................... 65 



vii 

 

FIGURE 5-3 PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES   AND CORRECT ONES AS ‘×’USING NAÏVE BAYES WITH 

66% TRAINING, 33% TEST DATA. .............................................................................................................. 67 

FIGURE 5-4  PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES   AND CORRECT ONES AS ‘×’  FOR THE J48 DECISION 

TREE TESTING ON 10 FOLD CROSS VALIDATION. ............................................................................................ 70 

FIGURE 5-5  THE NEURAL NETWORK WITH ONE HIDDEN LAYER, ONE INPUT AND ONE OUTPUT LAYER. .............................. 71 

FIGURE 5-6  PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES  AND CORRECT ONES AS ‘X’ FOR THE MULTILAYER 

PERCEPTRON TESTED ON 10 FOLD CROSS VALIDATION. .................................................................................. 73 

FIGURE 5-7  COMPARING THE % ACCURACY USING 27 ATTRIBUTES AND 15 ATTRIBUTES (PSD ONLY) ............................... 82 

FIGURE 5-8  COMPARING THE ACCURACY USING 27 ATTRIBUTES AND 12 ATTRIBUTES (EXCLUDING PSD) .......................... 84 

FIGURE 5-9  COMPARING THE % ACCURACY USING 27, 15 (PSD ONLY) AND 12 ATTRIBUTES. ....................................... 85 

FIGURE 5-10  COMPARING THE % ACCURACY USING 27 ATTRIBUTES AND 23 ATTRIBUTES (EXCLUDING IAT ATTRIBUTES) .... 87 

FIGURE 5-11  PERFORMANCE COMPARISON OF THE ML CLASSIFIERS FOR THE 30 BIN PSD AND 15 BIN PSD .................... 89 

FIGURE 5-12  COMPARISON OF PERFORMANCE OF ML ALGORITHMS WITH 23 ATTRIBUTES AND 38 ATTRIBUTES ............... 91 

FIGURE 5-13  COMPARISON IN 10 FOLD CROSS VALIDATION CASE ONLY ..................................................................... 91 

FIGURE 5-14  COMPARING 38 ATTRIBUTES CLASSIFICATIONS AND THE 30 BINS PSD ONLY ............................................ 92 

FIGURE 5-15   CLASSIFICATIONS USING 38 ATTRIBUTES AND 58 ATTRIBUTES .............................................................. 94 

FIGURE 5-16  PREDICTIONS IN FRESH DATA AND IN 10 FOLD CROSS VALIDATION ......................................................... 96 

FIGURE 5-17  PREDICTIONS ON FRESH DATA AND PREDICTIONS ON THE TRAINING SET .................................................. 96 

FIGURE 5-18 PLOT VISUALIZING ERRONEOUS PREDICTIONS AS BOXES   AND CORRECT ONES AS ‘×’ FOR THE IB K* 

ALGORITHM FOR 15 APPLICATIONS ON 10 FOLD CROSS VALIDATION. .............................................................. 102 

FIGURE B-1 OSI AND TCP/IP  MODELS AND ASSOCIATED PROTOCOLS .................................................................... 128 

FIGURE B-2 UDP PACKET STRUCTURE. ............................................................................................................. 131 

FIGURE B-3   TCP SEGMENT STRUCTURE [17] ................................................................................................... 133 

 

 

  



viii 

 

Acronyms 

ATM Asynchronous Transfer Mode 

DNS  Domain Name Service  

HTTPS Hypertext Transfer Protocol Secure 

FTP File Transfer Protocol 

HTTP Hypertext Transfer Protocol 

IANA Internet Assigned Numbers Authority 

IETF Internet Engineering Task Force 

IP Internet Protocol 

PDU Protocol Data Unit 

ssh Secure shell 

TLS Transport Layer Security 

SSL Secure Sockets Layer 

MTU Maximum Transmission Unit 

OSI Open Systems Interconnection 

PC Personal Computer 

RFC Request For Comments 

RPC Remote Procedure Call  

RTP Real Time Transport Protocol 

NBayes Naïve Bayes 

SMTP Simple Mail Transfer Protocol 

HTTPS Hyper Text Transfer Protocol Secure 

TCP Transmission Control Protocol 

UDP User Datagram Protocol 

PSD Packet Size Distribution 

NN or IB1 Nearest Neighbour Euclidean 

MLP Multilayer Perceptron 

NN K*, or 

IBK* 

Nearest Neighbour based on Entropy 

 



1 

 

 

Chapter 1 Introduction 

 

The Internet is one of the greatest developments of the twentieth century. It has 

penetrated into almost all aspects of a modern man‘s life, i.e. entertainment, 

communications, telephony, video conferencing, commerce, education, research, 

telemedicine, gaming, etc. Unparalleled advancements in processing powers and the 

pervasive usage of the computers in homes and offices have led to the development 

of a large number of new applications, utilizing the enormous computational 

resources. Internet bandwidth is a finite and expensive resource for an organisation 

and needs to be protected from spammers, criminals, hackers, time-wasters and 

employee misuse. It is expensive, limited and a vital business tool [1]. There has 

been an enormous growth of some new bandwidth-hungry applications, such as 

networking games, video/audio on demand, voice over IP, video conferencing, peer 

to peer file sharing and so on, and traditional applications like email and file transfer 

have also increased in usage [2].  

The network administration in an organisation at times does not want a certain class 

of applications to run on their network.  These applications may be conflicting with 

the acceptable usage policy of the organisation. Almost every organisation, school, 

university, ISP has nowadays its own acceptable internet usage policy, which needs 

to be policed [3]. The network administrators want to shape or block some of the 

traffic, because of the enormous bandwidth consumption of these applications or 

because of the policies. The misuse of an organisation‘s internet facilities for non-

work related purposes is of greater concern for most employers. Problems are not 

limited to information security violations alone. Many organizations are losing a lot 

of money through uncontrolled internet access or network abuse. A survey of nearly 

200 international companies carried out by Infosec, Netpartners and Secure 

Computing Magazine estimated that a typical large company (1,000 employees) 

could be losing £2.5 million per year through employees‘ use of Internet for non-

business purposes – an average loss of £2,500 per employee [2]. One-third of time 



2 

 

spent online at work is non-work-related [4]. 75% of companies cited employees as 

a likely source of hacking attacks. There are more than 43 million users of consumer 

IM (Instant Messengers) at work. 44 per cent of corporate employees actively use 

streaming media [4]. Game playing on office computers actually costs businesses 

about $50 billion a year [3]. When these applications are blocked using firewalls or 

other filtering programs, tunnelling techniques are employed to breach the filtering. 

1.1 Networked Tunnelled Applications 

Application layer tunnels are employed by malicious network users to access 

prohibited applications after bypassing the firewall restrictions. Tunnelling is a way 

of hiding one application‘s packets as the payload of another protocol‘s packets 

which can then be called a carrier. The protocol of the carrier is one which is not 

restricted by the firewall. In tunnelling, the firewall policy is circumvented and 

restricted/unwanted applications are run behind a protocol which is allowed over the 

network, such as HTTP [5]. In other words it is the process of putting one packet 

inside another [24]. Those applications which employ this technique across the 

network are Networked Tunnelled Applications.  

The identification of the actual application running inside a protocol tunnel across 

the internet or a local area network (LAN) in an attempt to avoid detection is the 

objective of this thesis. This identification information is attractive to network 

administrators, network service providers and security systems. Traditional uses of 

this information include activities such as network policing and network 

management [2]. This information can be useful in preventing improper network use 

which may include illegal activities, consuming a large amount of bandwidth or 

violation of network usage policies of an organisation. For this purpose an efficient 

mechanism for identification of the application generating a traffic stream is 

required for security and network abuse detection, where a network operator may 

wish to be made aware if certain applications are invoked, or even to stop them from 

operating. Depending on policies and legal obligations, blocking some applications 

is also a security issue which becomes more important for schools, colleges, 

universities and enterprises. Many businesses and government institutions use 



3 

 

filtering programs such as Websense [90], in addition to the firewall to keep 

employees from visiting certain websites while at work. These programs can either 

prohibit the use of certain websites or monitor all of the sites that employees do visit 

while in the office. For example, Websense is designed to block internet traffic in 

several categories, such as adult material, entertainment, drugs, games, sports, 

internet communication, peer-to-peer file sharing, gambling, instant messaging, 

health, shopping, job search, internet telephony, special events, travel, violence, 

advertisements, freeware and software download, pay-to-surf, malicious websites, 

and many more [90]. HTTP Tunnelling programs are employed to bypass the 

firewall and the filtering programs such as Websense. An HTTP Tunnel is often 

used as a means for communication from network locations with restricted 

connectivity to access blocked sites applications (games/IM clients/browsers). The 

examples of such tunnelling software are VPNTunnel, http-tunnel [91]. 

Today the number of tunnelling tools being used to hide the exact application 

information is on the rise. There are encrypted tunnels which use HTTPS [6] 

protocol and hence cannot be detected by even Deep Packet Inspection [7]. This 

thesis attempts to detect applications running in tunnels both encrypted or 

unencrypted using the statistical properties of the application trace files. 

 

1.2 Application Identification: An Overview 

Traditionally, networking applications were identified through the TCP or UDP port 

number. The port number is a numerical figure used for identity of the process at the 

transport layer of the network architecture. This approach worked well for 

traditional applications because applications generally had uniquely identifiable and 

well know port numbers that were registered internationally.  Hence, knowing the 

port number held in a packet header of any of the packets from the data stream 

generated by the application uniquely identified that application. Many such 

applications use the TCP protocol for their Transport Layer, such as the web 

protocol HTTP, which is uniquely identified by the port number 80. 



4 

 

However, gradually the number of applications which do not use registered port 

numbers increased because it was not binding to use the registered port and 

applications started using unregistered port numbers. Examples of these applications 

include real time applications, such as network games, and audio/video transfer 

applications such as video conferencing.  

A more reliable method for application detection is that of ―Deep Packet Analysis‖. 

This method attempts to look at the data held in the packets, and usually it is based 

on searching certain unique identification patterns or signatures held in the data. 

Mostly Deep Packet Analysis requires capturing the packets of session 

establishment and session initiation phase, because these are the packets which are 

likely to contain the unique signature pertaining to the application protocol. This 

technique is also used in Intrusion Detection Systems, for example Snort [37] and 

Bro [38]. The captured packets are searched for unique identifiers and keywords 

which are kept in a fairly large database. The detector in such a case would fail to 

detect if it is initiated after the session has been established, or the network is 

heavily loaded with capturing becoming difficult. Deep Packet Analysis or Deep 

Packet Inspection requires more processing power too as it has to operate with faster 

networks and the process itself is computationally quite intensive. Then in case of 

encryption, this technique cannot work.  

In [48], the author presents a different approach to the problem of detecting non-

registered UDP based applications, which is based on packet statistics. The author 

showed empirically that the packet size distribution follows an application specific 

profile, and this statistic is now considered as a detection metric. Hence the process 

takes a sample of the data stream generated by an application, and performs 

detection based on or over that sample, rather than an individual packet.  The Packet 

Size Distribution based detection mechanism can also operate on encrypted 

applications. The scheme uses significantly less information than the previous Deep 

packet analysis techniques, reducing the storage and processing requirements. Then, 

the work of Li Bo et al [49] applied the same principles and used packet size 

distribution in identification of TCP based applications which form the bulk of 

traffic over the internet today. Based on this research and other work described in 



5 

 

later chapters, the identification of covert applications inside tunnels is undertaken 

in this thesis. 

1.3 Original Contributions of this research 

In this thesis, the objective was to show that the applications running inside 

encrypted or unencrypted tunnels are differentiable, identifiable based on the 

statistical properties of their traffic traces. 

Traditional application detection techniques heavily relied upon the content inside 

the traffic. The work by Parish [48] and Li Bo [49] proposed the Packet size 

distribution as an identification metric for a large number of UDP and TCP based 

applications. In this thesis the realm of application identification has been extended 

to the covert channel applications running inside protocol tunnels. Recently protocol 

tunnels have become popular with network abusers to circumvent security and 

monitoring policies by hiding the applications inside allowed protocols such as 

HTTP. Even the use of encrypted tunnels which use secure protocols like SSL, TLS 

or SSH is observed which further complicates detection. There are some other 

statistical based identification techniques in the research literature which will be 

described in later chapters, but the packet size distribution based statistic with a 

combination of other traffic parameters is investigated in this thesis. The use of 

packet size distribution, along with a number of other statistical metrics to 

successfully identify tunnelled applications, is shown. 

The other discriminant statistics/metrics are included which have been proposed in 

several research works and these are used in combination and also in separation with 

the packet size distribution. These metrics are Data rates (bytes/sec) for the 

upstream direction, Data rates (bytes/sec) for downstream direction, Data packet 

ratio, ByteRatio, Ratio of large and small packets, time spent idle downstream, and 

time spent idle upstream. Some temporal (time related) metrics were also 

investigated such as maximum Interarrival time, minimum interarrival time etc., but 

it was shown that these don‘t behave in a consistent and reliable manner and should 

be discarded. The best performance is obtained when the parameters are used in 

combination with the packet size distribution. Thus the identification of suitable 



6 

 

parameters‘ combination which can perform the detection of applications running 

inside a tunnel is another contribution. 

A key feature of this work is that this detection mechanism is able to identify the 

actual application which is being run inside an application layer tunnel. There is 

other work in which researchers have tried to detect tunnelling activities in a 

network; however their focus was mostly to identify whenever one protocol is 

tunnelled inside another protocol. That is not as desirable as the detection of the 

application, since several times tunnelling traffic is quite legitimate. This will be 

explained in later chapters in detail. This work aims at the identification of the 

application which is being tunnelled. 

The use of machine learning algorithms for the purpose of application identification 

with the training parameters containing Packet Size Distribution as the key 

parameter is also a novel aspect of this work. The work of Li Bo [49] and Parish 

[48] were based on Packet Size Distribution bins only, and they used simple 

statistical tests like Chi Squared Test for the purpose of identification of 

applications. The number of statistical metrics/discriminators was increased in this 

work as described already; and five different machine learning algorithms have been 

used for the identification of tunnelled applications and the performance and 

efficiency of these algorithms is compared.  

1.4 List of Applications Identified 

The methodology introduced in this work was tested to identify the following 

applications when running inside protocol tunnelling. More applications can be 

added following the same procedures.   

World of Warcraft (abbreviated WW), VoipRaider (abbreviated VR),iVisit 

(abbreviated IV), QuakeLive (abbreviated QL), Skype  (abbreviated SK), Lord of 

Ultima (abbreviated LU), Quake3Arena (abbreviated QA), Xlite (abbreviated XL), 

Medal of Honour Allied Assault (abbreviated MA), Camfrog (abbreviated CF), 

Zattoo (abbreviated ZT), RealPlayer (abbreviated RP), Remote Desktop 



7 

 

(abbreviated RD), GuildWars (also abbreviated GW), Unreal Tournament  

(abbreviated UT), Runescape (also abbreviated RE). 

1.5 Thesis Overview 

The rest of the thesis contents briefly are described below: 

Chapter 2 introduces the main concepts related to the work in this thesis starting 

from firewalls; the purpose and types of firewalls. Then it explains how application 

layer tunnels are used to sneak through firewalls. An overview of the main tunnel 

protocols is also given. Then the previous work in the area of tunnelling detection is 

critically analysed, the traditional and current popular application detection 

techniques, and their characteristics are briefly discussed.  

Chapter 3 describes the background and rationale for the packet size distribution to 

be used as application identification metric, since it is the most important statistical 

property used in this work. Here the packet size distribution of tunnelled 

applications is obtained and analysed using the Chi Squared test and it is established 

that the packet size distributions of the same application are statistically similar 

whereas those of different applications are significantly different.  

Chapter 4 describes the methodology used for the detection of the tunnelled 

applications from captured trace files to obtaining the training data and applying the 

machine learning tools. 

Chapter 5 gives the results obtained by applying different machine learning 

algorithms for the purpose of detection and with various combinations of statistical 

parameters obtained from the training data. The results are discussed, and an 

optimal combination of parameters is outlined. 

Chapter 6 concludes the work by summarising the key findings, discussing 

limitations of the approach and recommendations about the further work in the same 

area.  



8 

 

 

Chapter 2 Firewalls and Tunnels Review 

 

This chapter introduces the concept of tunnelling and the reasons protocol tunnelling 

is performed for. First the firewall is explained, including their purpose and types. 

Then, with the example of HTTP tunnelling, firewall breaching via tunnelling is 

elaborated. The protocols which are commonly used in tunnelling are described. The 

motivation behind tunnelling, and some of the popular software tools used for 

tunnelling, are presented, including the common programs used in tunnelling. In the 

last section, previous work in the area of tunnelling detection and traffic 

classification is summarised.  

2.1. Firewalls 

The internet is a huge resource of information which is made available to the user 

via a home pc or at work all the time. The access to the internet has become an 

integral necessity of everyday life. Nevertheless, connecting a computer or a private 

network to the public internet opens a door of access to critical and confidential data 

for malicious attackers from anywhere. Therefore it is very important to be aware of 

these threats and have protection against them. Firewalls are one of several 

strategies to serve this purpose. 

Firewalls are commonly in practice to secure private networks, home or corporate, 

from malicious intrusions from the Internet. These intrusions can harm in a number 

of ways causing data loss or denial of service. The firewall can be either a hardware 

device or software running on a secure computer. The firewall is located at the 

periphery of the private network, usually at the junction between private and the 

public network, as depicted in the figure 2-1.  



9 

 

 

Figure 2-1: A view of the location of firewall in a network, adapted from [21]  

The firewall performs the functions of monitoring all incoming and outgoing 

packets going between the two networks it is connected to. The criteria for 

monitoring are set by the network administrator, and only traffic conforming to the 

criteria is delivered, otherwise, it is discarded. 

Firewalls can perform packet filtering for example, based on their source and 

destination addresses and ports. In a TCP/IP environment, usually the corporate 

firewall is configured to block all incoming and outgoing data, and gives access to 

the internet only through an HTTP proxy. The proxy usually has filtering 

capabilities and access to the proxy often requires credentials (login/password). This 

gives greater control to the network administrator over what and who is going in and 

out of the network.  

Firewalls can be divided into two fundamental types: 

1.     Packet Filtering firewalls. 

2.     Application gateway or proxy firewalls. 

 



10 

 

2.1.1 Packet-filtering Firewalls 

The fundamental function of packet filtering firewalls is to selectively discard 

network traffic packets or allow them through based on the security policy. Packet 

filters use the network layer header (IP) and the transport layer header (TCP or 

UDP) in order to filter packets. The information used can be packet type, i.e.  

protocols and port addresses of sources and/or destinations. Another function 

usually performed by such firewalls is Network Address Translation (NAT), a 

method used to hide the network‘s architecture inside of the firewall, blocked from 

the outside world, and to conserve routable Internet Protocol (IP) addresses. 

Different methods of packet filtering have developed over the years.  However, 90 

per cent or more of today‘s firewalls are still only performing these two main 

functions [22]. 

This kind of firewall provides little or no protection to the application layer.  For 

example, an FTP [18] service can go through HTTP (a web service) with most of 

today‘s firewalls, and there is nothing that most packet-filtering firewalls can do 

about it. In summary, packet-filtering firewalls, while providing basic protection to 

the internal network, is not fully able to protect internet applications [22]. 

2.1.2 Application Gateway/Proxy Firewalls 

An application gateway is a firewall system that uses the application layer data in 

order to filter packets. The main idea that stands behind an application gateway is 

not to allow direct connection between programs running on an external computer to 

the programs of the internal network. All the packets are intercepted at the firewall 

or proxy server/gateway. Then packets are inspected for different criteria. Usually 

the packets are checked for their sources and destination addresses, type of protocols 

and port numbers, sometimes even the contents of the payloads and commands. If 

the packets pass the inspection criteria, they are reframed and sent out to their 

original destinations. Since all original packets are destroyed before being 

forwarded to their destinations, this type of firewalls prevent attacks based on the 

weaknesses of the TCP/IP protocols, which were never designed with security in 



11 

 

mind. Moreover, this method allows the firewall to perform deep inspection that the 

packet-filtering method cannot. [22] 

2.1.3 Weaknesses of Firewalls: 

Even the second type of firewall is quite vulnerable. Firstly, not all application 

proxy firewalls implement 100 per cent of the application proxy functionalities as 

described above for each protocol and application.  Even with well-known protocols 

like HTTP, type two firewalls don‘t always cover all applications that could tunnel 

through the HTTP protocol.  Mostly this is because many applications are being 

developed using HTTP.  HTTP is now used to transfer much more than the ordinary 

web site content which includes audio and video as well as VPN tunnels and peer-

to-peer file exchange and other applications which could be against the 

organisation‘s network usage policy. Another issue is that not all traffic is clear text, 

on which the firewall can conduct deep inspection.  Firewalls can‘t inspect what is 

inside encrypted HTTP traffic.  Sometimes other services are being tunnelled 

through the encrypted protocols, such as HTTPS, SSH through these firewalls.  [22] 

2.2. Tunnelling: Introduction 

Application layer tunnels are nowadays getting significant attention by malicious 

network users trying to access prohibited applications after bypassing the firewall 

restrictions. Tunnelling is a way of hiding one application‘s packets as the payload 

of another carrier protocol. The protocol of the carrier is one which is not restricted 

by the firewall or application-level gateway. In a firewall, security is implemented 

by listing the allowed application layer protocols and sometimes by mentioning the 

allowed destination addresses which can be contacted through these applications. In 

tunnelling, however, the blocked protocol is wrapped inside the legitimate protocol, 

such as HTTP [23], and thus the firewall is breached. Those applications which 

employ this technique across the network are Networked Tunnelled Applications. 

There are numerous examples where this kind of technique is applied.  



12 

 

Tunnelling is different from the usual layered protocol model such as those of OSI 

or TCP/IP. Protocols describe the rules that control conversations between processes 

that run at corresponding layers within the OSI Reference Model or TCP/IP model. 

The messages used in communicating information between protocols, are 

called protocol data units (PDUs). Each PDU has a specific format that implements 

the features and requirements of the protocol. The communication between layers 

above the physical layer is logical; the only hardware connection is at the physical 

layer. In order for a protocol to communicate, it passes down its PDU to the next 

lower layer for transmission. At any particular layer N, a PDU is a complete 

message that implements the protocol at that layer. However, when this layer N 

PDU is passed down to layer N-1, it becomes the data that the layer N-1 protocol is 

supposed to service. Thus, the layer N protocol data unit (PDU) is called the layer 

N-1 service data unit (SDU). Layer N-1 transports this SDU by placing the layer N 

SDU into its own PDU format, preceding the SDU with its own headers and 

appending footers as necessary. This process is called encapsulation, as the entire 

contents of the higher-layer message are encapsulated as the payload of the message 

at the lower layer. 

The tunnel protocol is usually (but not always) at a higher level than the payload 

protocol, or at the same level. Protocol encapsulation that is carried out by 

conventional layered protocols, in accordance with the OSI model or TCP/IP model, 

for example HTTP over TCP over IP over Ethernet protocols, should not be 

considered as tunnelling [25]. 

2.3. HTTP Tunnelling Example   

To illustrate http tunnelling, consider an example, as shown in the following figure 

2-2:  

 



13 

 

Figure 2-2: Normal SSH client/server [26] 

In this figure an SSH client application running on a host is successfully 

communicating with a remote SSH server located somewhere over the Internet. The 

SSH protocol runs above the TCP and its purpose is to ensure confidentiality and 

integrity of data between two systems over a network. This protocol is normally 

used for command execution through a secure shell and file copy between peers 

[28]. In another scenario there is a firewall at the client machine and only outgoing 

HTTP traffic is let through the firewall. This case is shown in Figure 2-3.  

 

 

Figure 2-3: Firewall blocking SSH traffic[26] 

 

Here the SSH server is not accessible because the firewall is not allowing its access. 

The SSH client program is trying to communicate with the SSH server, but this 

cannot occur. The firewall (possibly in combination with an HTTP proxy) however 

does allow HTTP traffic through from the client.  

The Tunnelling software when employed utilizes the allowance of outgoing HTTP 

traffic from the firewall, and it creates an HTTP tunnel out to an external Tunnel 

server (Firedrill, in figure 2-4) over which all normal TCP communications can take 

place. The Server side of the tunnel software can then unwrap the original client 

TCP data and forward it on to the ultimate destination [26].  



14 

 

This scenario is shown below in Figure 2-4, where an SSH client makes a tunnel 

through the firewall:  

 

 

Figure 2-4: Firedrill tunnelling SSH traffic[26] 

This tunnelling system is called an HTTP tunnelling proxy. It consists of two 

components; a client (software) installed on a local PC, and a server part which can 

be remote over the Internet.  

The client software acts as a Socks proxy [27] to any application running on the 

users local PC that is trying to connect to the internet. It reads data from that 

application, encapsulates that data in HTTP, and tunnels it out to a corresponding 

tunnel server [26].  

The server takes the HTTP data sent from the client and conversely unwraps the 

original data, and forwards it on to the actual destination to which communication 

was intended. Any response from there is also conveyed back to the client wrapped 

in HTTP which unwraps it and transfers it to the original application.  

In this manner, using the HTTP protocol for encapsulating data from desired 

applications the communication is achieved through restrictive firewalls and web 

proxies which now allow those connections through which might have been blocked 

before.  



15 

 

2.4. Various Tunnelling Protocols: 

Although theoretically tunnelling can be done using a host of protocols, in practice 

the following kinds of tunnelling tools are utilized at the application layer: 

2.4.1 DNS tunnelling 

Application-layer tunnels are possible using the Domain Name Service (DNS) 

protocol by just utilizing the way regular DNS requests for a given domain are 

forwarded to its servers. DNS Tunnelling works by abusing DNS records to traffic 

data in and out of a network. Since the DNS protocol is not usually blocked on the 

Internet, this technique can be very successful, and people have tried to implement it 

as in [28] and [29]. ―Due to the mechanism‘s complexity, however, DNS tunnels 

can rarely achieve throughputs higher than a few kb/s, and are therefore seldom 

used.‖ [28]. So in this thesis,  the focus has  been on rather more practical and 

efficient tunnelling implementations which exploit the common protocols of HTTP 

and SSL to tunnel TCP and UDP based application data. 

2.4.2 HTTP tunnels 

The HTTP (Hypertext Transfer Protocol) is the protocol defining rules for 

transferring files (text, graphic images, sound, video, and other multimedia files) on 

the World Wide Web. HTTP is an extensively used protocol for internet traffic and 

thus there is a widespread potential for misuse of HTTP for tunnelling data. In [30] 

the Internet traffic of a large enterprise was monitored for a one week period and it 

was found that over 40% of all incoming and over 90% of all outgoing data 

consisted of HTTP traffic.    The HTTP traffic is mostly allowed to pass all network 

peripheries and application layer proxy firewalls. If internet access is allowed 

through an HTTP proxy or firewall, it is possible to use HTTP tunnels to connect to 

a computer outside the firewall.  These policies are violated for running restricted 

applications through the http tunnel as explained in the previous section with the 

Firedrill tunnelling system example. There are many tools available on the Internet, 

which for  little cost, help users bypass proxy servers and firewalls to run 

applications that use either TCP or UDP as their communication protocol, for 



16 

 

example,  World of Warcraft, X-Lite, Final Fantasy XI, Everquest II, TeamSpeak, 

Camfrog, MSN Messenger, Yahoo Messenger, ICQ, Trillian, Skype etc. [31]. 

2.4.3 Encrypted Tunnel 

There are tunnels which run through encryption capable protocols such as the 

Transport Layer Security (TLS) protocol, or its predecessor, the Secure Sockets 

Layer (SSL) protocol, or even the Secure Shell (SSH) protocol. TLS is an IETF 

standard protocol described in RFC 5246 based on SSL [32]. These cryptographic 

protocols provide security and data integrity for data transport over networks by 

encrypting the network connections at the Transport Layer, end-to-end. The 

combination of HTTP and TLS/SSL is known as Hyper-Text Transfer Protocol 

Secure (HTTPS). The HTTP protocol uses port 80, normally whereas HTTPS use 

port 443 by default. Several versions of the TLS/SSL protocols are used widely in 

many applications, a frequent example being a secured login webpage of email 

clients, like Hotmail, Yahoo mail etc. The firewall administrators open outbound 

HTTPS to selected users so that they can go to secure Web sites. However, using 

tunnelling tools, the same HTTPS (SSL) is used to run applications which normally 

would be blocked by the firewall or application layer gateway, and since the 

application runs in an SSL tunnel, virtually no firewall can inspect the contents of 

the SSL stream [33]. Secure (HTTPS) tunnelling works in exactly the same way as 

standard tunnelling, except that all data between the HTTPS tunnel client and the 

server is encrypted. Since data is encrypted, any firewall security policy that utilizes 

the Deep Packet Inspection (DPI) is totally circumvented. The SSH protocol runs 

above the TCP and its purpose is to ensure confidentiality and integrity of data 

between two systems over a network. This protocol is normally used for command 

execution through a secure shell and file copy between peers [28].  With the 

ordinary HTTP tunnels there is some possibility that using advanced Application 

Layer Gateways based on DPI the exact nature of the tunnelled traffic could be 

identifiable. However, in the case of an encrypted tunnel using HTTPS or SSH, the 

deep packet inspection and signature-based identification are thwarted because of 

cryptographic encryption. Today security and encryption have become essential in 

many applications, therefore for the administrators blocking all encrypted traffic is 



17 

 

not an option. Thus, any application data can be tunnelled in and out of the network 

using encrypted tunnels. Figure 2-5 shows the packet capture details of an 

application running in an HTTPS tunnel with the Secure Sockets Layer protocol in 

operation. 

 

 

 

Figure 2-5:  A snapshot of HTTPS packets captured 

2.5. Motivations for Tunnelling: 

There are numerous motivations to use tunnelling in a network environment. The 

technique could be used for mischievous purposes, to bypass a firewall and run 

restricted applications. 

At the network layer, tunnelling provides a solution to use the existing IPv4 routing 

infrastructure to carry IPv6 traffic, which makes the new IPv6 compatible with the 

existing IPv4 hosts and routers. This is very helpful in the seamless transitioning to 

IPv6 of the internet, letting the existing IPv4 to remain functional where it prevails.  

IPv6 or IPv4 hosts and routers can tunnel IPv6 datagrams over areas of IPv4 routing 

topology by encapsulating them within IPv4 packets.  The entry node of the tunnel 



18 

 

creates an encapsulating IPv4 header and sends the encapsulated packet. The exit 

node of the tunnel receives the encapsulated packet, removes the IPv4 header, 

updates the IPv6 header, and processes the received IPv6 packet [34]. This work 

does not relate to the tunnelling employed at the network layer. The applications 

which make use of tunnels in malicious ways are at the application layer, and the 

focus of this work is also application layer tunnels. At the application layer, 

tunnelling techniques have several motivations which could possibly be illegal or 

not accord with the network usage policy. These tools can enable a user to perform 

several of the following functions, depending on the capabilities of the particular 

tool: 

 To bypass the existing firewalls. 

 To bypass proxy servers in place for stopping users‘ access to certain 

websites.  

 To perform anonymous surfing of the Internet (Hide IP while browsing).  

 To circumvent traffic shaping that affects users‘ online gaming experience. 

 To prevent snooping on the users Internet activities.  

 To chat and use Instant Messengers like MSN, Yahoo messenger etc. in a 

restrictive environment. 

 To communicate using VoIP programs in spite of restrictions.[31] 

  To play online games without being known.  

 To have unlimited data transfer despite policing.  

 To use restricted programs without being monitored by work, school, ISP or 

government [35]. 

Certain countries‘ governments sternly censor the internet, so people are inclined to 

this kind of firewall/proxy bypassing to have more freedom. Also, some of the 

tunnelling tool developers claim to believe in the concept of fully open, free and 

uncensored communications for all [74]. For example, a user who experiences 

internet applications censorship can create a tunnelled connection to a location 

which is outside the censorship periphery, and run the applications as if he were 



19 

 

situated in that location. Some services are offered for a monthly fee, others are ad-

supported. 

Then tunnelling can be used in a positive way as well to provide VPN solutions and 

secure communications, to provide additional security for financial transactions and 

to secure internet browsing sessions. For example HTTP-Tunnel Corp, which 

provide tunnelling services, have agreement to provide Citi Bank with their VCM 

solution for secure communication between bank employees. Also HTTP-Tunnel 

Corp. provides Toshiba, Japan a custom secure solution of Remote Anywhere 

software for communication between the Asian regions to the head office in Minato-

ku. [35] 

 So the usefulness and harmfulness of the tunnelling is relative depending on the 

context in which it is employed and the environment in which it is used.  

2.6. Tunnelling Software: 

There are numerous software tools available on the internet which provide 

tunnelling service for HTTP and SSL or SSH protocols. Usually they allow the 

client to be freely downloaded, and when installed it can behave as a tunnelling 

client on the host machine. The tunnelling servers are maintained by the providers, 

for which a subscription can be purchased. The cost of subscription for a year varies 

for different types of services and is usually not very high, ranging from $ 60 to a 

few hundred dollars per user per year. Some providers allow the server software to 

be downloaded as well, and then the user can have its own server machine to be 

located outside the intranet. In the list below, some of the tools the author has come 

across are mentioned. This is by no means an exhaustive list, and there are many 

other tools available, but mostly they are very similar in their purpose and operation, 

although the number and type of applications supported and bandwidth provided 

may vary from one provider to another. Most of these tools also give the user the 

choice of whether to use HTTP tunnelling or encrypted tunnelling. Some however, 

like PingFu Iris [31] always provide encrypted tunnelling: 



20 

 

 http-tunnel (www.http-tunnel.com): provides HTTP and HTTPS 

tunnelling [35]. 

 Gnu Http tunnel (www.nocrew.org/software/httptunnel.html)  provides 

http tunnelling [19] 

 Firedrill (www.fire-drill.com): provides http tunnelling 

 Pingfu Iris, Pingfu UDP (www.artofping.com): provides https tunnelling 

 Super network tunnel (http://www.networktunnel.net): http tunnelling 

 Jhttp tunnel (www.jcraft.com/jhttptunnel): http tunnelling 

 Tunnelier (http://www.bitvise.com/tunnelier): ssh tunnelling 

 Secure Tunnel (https://secure-tunnel.com/index.cfm): https tunnelling 

 

Figure 2-6:   the http-tunnel snapshot [35] 



21 

 

In Figure 2-6 a snapshot of HTTP-tunnel is given which is the popular tunnelling 

tool.  

 

 

Figure 2-7:  The http-tunnel server configuration [35] 

 

Figure 2-7 is a depiction of the configuration used by the http-tunnel team provided 

by them. They have their own servers which are connected to by the http-tunnel 

client sitting on host machine. Then the http-tunnel servers communicate with the 

servers which the host machine wanted to access, but could not do so directly for 

security or other reasons. 



22 

 

 

Figure 2-8:  Another Tunnelling tool snapshot [36] 

The software shown in figure 2-8, i.e. Super Network tunnel, is available in server 

and client mode as well. The user can start his own server on a machine, and use the 

client to tunnel data from the host machine. 

2.7. Applications being used in Tunnelling: 

The following are some of the applications supported by the above mentioned 

tunneling software. Some of these applications were used in this research as well.  

Games  

World Of WarCraft, Steam, EveOnline, RuneScape, QuakeLive, Need for Speed 

online, EverQuest, America‘s Army, Lord of Ultima etc. 



23 

 

Voip & IM clients 

Skype, VoipRaider, Camfrog, Google Talk, MSN messenger, etc. 

P2P clients 

Azeurus, utorrent, Bitspirit, emule, etc. 

2.8. Tunnelled Application Detection: A Review of Previous Work  

The most basic approach for application identification is by looking at the port 

number used by the application packet because some applications use special port 

numbers e.g.  HTTP uses port 80, HTTPS used port 443, FTP uses port 21, 22 is 

used for SSH etc. The ports 0-1023 are well known ports, and each is used by a 

known application. However, there are many more applications not using these 

ports.  The registered port numbers could be used for arbitrary applications too. 

Hence the port number cannot be reliably used for identifying applications, and it is 

completely misleading in tunnelled applications. When it comes to tunnelled 

applications, the port number will always show the carrier protocol port number, 

and not the port number generated by the application inside the carrier. For example 

if a network game is run inside an HTTP tunnel, all the packets would have the 

same port number 80 for normal HTTP traffic, and in an HTTPS tunnel all 

applications would have 443 as the port number. So, the port number would give no 

clue about the application inside. 

Deep Packet Inspection or Deep Packet Analysis is the alternative technique for 

application identification as explained in the previous chapter. This method attempts 

to look at the data held in the packets, and usually it is based on searching certain 

unique identification patterns or signatures held in the data. This technique mostly 

requires capturing the packets of the session establishment and session initiation 

phase, because these are the packets which are likely to contain the unique signature 

pertaining to the application protocol. This technique is also used in Intrusion 

Detection Systems, for example Snort [37] and Bro [38]. Snort is a free and open 

source and network intrusion detection (NIDS) which performs intrusion detection 

by packet logging and real-time traffic analysis on IP networks. Snort performs 



24 

 

protocol analysis, and content searching/matching, it is commonly used to block or 

detect different types of attacks, such as buffer overflows, stealth port scans, web 

application attacks, etc. The software is mostly used for intrusion prevention 

purposes, by dropping attacks as they are taking place. Bro is another open-source, 

Unix-based network intrusion detection system that monitors network traffic for 

suspicious activity. The captured packets are searched for unique identifiers and 

keywords which are kept in a fairly large database. The detector in such a case 

would fail to detect if it had been initiated after the session has been established, or 

the network was heavily loaded, with capturing becoming difficult. Deep Packet 

Analysis or Deep Packet Inspection requires more processing power too as it has to 

keep up with faster networks and the process itself is very intensive. Then in the 

case of encryption, this technique cannot work. Hence researchers are more 

interested in devising methods of application identification which merely rely on the 

statistical information held about the packets rather than digging the data portion out 

of the packets. Several attempts have been made using the statistical information of 

packet flows for detection of applications in general and tunnelled applications 

specifically too, which are described here briefly. 

The work by Daniel J. Pack et al. [30] has been one of the foremost in detection of 

the tunnelling activities. Prior to [30], some of the firewall and Intrusion Detection 

Systems (IDS) developers were aware of the possibility of illegal HTTP tunnelling, 

and simple signature matching techniques had been used in some firewalls and 

IDSes. However these techniques had the same weaknesses as described above 

already. In [30], a system to detect HTTP tunnelling activities is presented using 

behaviour profiles based on packet flow directions, packet sizes, large and small 

packet ratios, average packet size, connection duration, size of data transferred etc. 

for only three types of sessions, namely interactive tunnelling session, scripted 

session and stream session behaviour profile. So, this work can‘t go further than 

categorizing the session as one of the three sessions. Some of the metrics were 

found useful by the author, which are also included into this work, along with other 

metrics.  Borders and Prakash et al. in [39] have proposed an anomaly detection 

system that takes advantage of legitimate web request patterns to detect covert 

communication, backdoors, and spyware activity that is tunnelled through outbound 



25 

 

HTTP connections called ―Web taps‖. Web Tap uses the features at the HTTP layer, 

such as HTTP transaction rates, request regularity, bandwidth usage, interrequest 

delay time, and transaction size, transaction times, etc and can detect spyware and 

adware programs. However, it can‘t deal with encrypted tunnelled traffic. 

 In [92], Rui Wang et al. have proposed an optimized support vector machines 

model for classification of peer-to-peer traffic at the application level. They have 

used the transport layer information for four peer to peer applications which are 

Bittorrent, Kazaa, eDonkey and one peer to peer multimedia application, pplive. In 

[92] it is shown that their proposed method identifies peer-to-peer applications at 

75% accuracy at least.  However the statistical parameters chosen by Rui Wang et 

al. are only workable for peer-to-peer applications and not general applications. 

Other than the parameters containing different destinations connected with the same 

source, bytes/packets is the metric used. This metric alone would not be able to 

differentiate between other applications, as many applications could possibly have 

the same average bytes/packets. The case of http or https tunnelling of the peer-to-

peer applications is again not considered at all. They have not included udp protocol 

based peer to peer applications. Although file sharing is not done using udp but 

multimedia peer-to-peer could use the udp protocol. 

The paper [93] describes a performance comparison of five machine learning 

algorithms for IP traffic flow classification. The algorithms were compared on 

classification speed rather than classification accuracy. The C4.5 tree algorithm was 

computationally found to be faster than other four. The feature set chosen in [93] is 

containing the maximum, minimum, mean and standard deviation of inter-arrival 

time between packets as well. These features could as well be a function of the 

congestion state of the network nodes, routers and the distance between the source 

and destination along with the application producing it; hence they are unreliable in 

traffic classification. 

Moore and Zuev [46] identified 248 flow features and used them in their supervised 

Naïve Bayes classification algorithm to differentiate between different types of 

applications. These included packet size, inter- arrival times, some features derived 

by transforming others, TCP header derived features. Correlation-based feature 



26 

 

analysis was used to find the stronger features which showed that only fewer than 

20 features were required for accurate classification.   

In [94], Manuel Crotti et al. present another mechanism for traffic classification 

through simple statistical fingerprinting. The features used in their classification 

scheme are packet size, inter-arrival time and arrival order, as in the beginning stage 

of each connection; these statistical features depend mostly on the application layer 

protocol. In that case, it is a requirement to capture the initial few packets of the 

connection. The features are organized for the protocols in structures called protocol 

fingerprints and classification is done based on normalized thresholds. 

Mena et al. [95] was one of the foremost publications in the classification of 

application-specific traffic and it shows how Real Audio traffic can be detected. 

Using simple analysis of packet lengths and inter-arrival times their technique is for 

QoS deployment for audio traffic. Dewes et al. [96] uses a similar approach to 

analyze chat traffic. These works are concerning with a single type of application 

only. 

In [97] Laurent Bernaille et al. proposed a simple technique of using the first five 

packets of a TCP flow to identify the application, and only the size of the first five 

packets is used as discriminant.  Even for the nine application protocols, the results 

were of 80 % classification accuracy, which is likely to deteriorate more with 

addition of more applications. Again the tunnelled applications were not included in 

their experiments, and if used it would only give the protocol of the carrier in 

classification results. The requirement of capturing exactly the first five packets of a 

flow is quite stringent as well, and in our detection mechanism any few packets 

would be sufficient. 

Tunnel Hunter [28] is another effort where the authors have used Naïve Bayes 

classification techniques to identify protocol tunnelling in POP3, CHAT, SMTP 

protocols mainly using as discriminants packet inter-arrival time and packet size. 

Their work can tell when these protocols are being used inside tunnels, but gives no 

idea of what application is run from behind the tunnel. In [40] the same approach as 

of [28] is applied for encrypted tunnel detection. Using inter-arrival time as a 

discriminant, as in [28], [41] also looks unconvincing because interarrival time is 



27 

 

very much dependent on the networking infra-structure hardware being used. If 

routers and other network components have high processing power, the inter-arrival 

time could be variable. Also network congestion conditions can affect the behaviour 

of temporal attributes like inter-arrival time. Another issue with these approaches is 

that they can identify when protocol tunnelling is happening, but not all tunnelling is 

mischievous. Tunnelled traffic can just as well be benign or legitimate, or it can also 

be employed to make secure legitimate communications. For example, HTTP-tunnel 

[35] has deals with Toshiba and Citibank to secure their communications. HTTP 

tunnelling is also used in network management activities like remote procedure calls 

encapsulation [42]. So, it is imperative to know what application is being tunnelled 

as well.  HTTP is used in these activities because its packets are not likely to be 

blocked by a firewall in any network. Thus, these above detection mechanisms 

would be likely produce a large number of false positives in these legitimate 

activities, because they are also using tunnelling.  

Then there are several studies on analysis of traffic from a statistical point of view 

as opposed to the techniques used in DPI-based mechanisms. From the studies of 

Paxson such as [43], researchers have investigated several algorithms based on 

traditional classification techniques such Neural networks, Nearest Neighbour and 

Bayesian Machine Learning techniques [44].  In [45] a statistical chi–square- 

signatures based system is developed for internet traffic classification which is 

basically targeted at UDP traffic. The work of Andrew Moore is also quite 

significant for determining discriminants for use in the traffic classification, and 

some of the discriminants proposed by him have been used in this work as well [46], 

[51]. In [47] Tom Auld et al. have presented their traffic classifier using supervised 

machine learning based on a Bayesian trained neural network and they have used a 

large number of features of the flows. The list of statistical approaches to traffic 

classification is quite long; however it is observed that none of these techniques has 

yet been tested on tunnelled traffic with the objective of identification of the 

applications running inside tunnelled data. 

The packet size distribution, in most cases can be used as an alternative application 

signature. The main advantage of this approach over Deep Packet Inspection is that 

it does not rely on data portion examining of the packets, and it does not require all 



28 

 

packets or some specific packets to be captured. In [48] and [49], the packet size 

distributions of networked applications, especially with high data rate applications 

were observed extensively, and they followed signature profile behaviour. Hence 

this observation led to the detection of applications by storing profiles of known 

applications in a database, and comparing the captured traffic against these profiles. 

Simple statistical tests were used to perform the comparison, such as correlation 

detection; Chi-squared goodness of fit test, or Nearest Neighbour Detection.   

In this work the idea of packet size distribution, along with a few other statistical 

discriminants as an identification signature, is researched for the tunnelled 

application detection problem. First the usefulness of the packet size distribution for 

the identification is analysed in Chapter Three. Different trace files of the 

applications are collected under tunnel operation, and then different trace files are 

matched statistically for their packet size distributions using Chi squared goodness 

of fit test. The next chapter explains this in further detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 



29 

 

Chapter 3 Investigating the Packet Size 

Distribution for Tunnelled Application 

Detection 

 

In this chapter the investigation of the packet size distribution for tunnelled 

application detection and its background is given. Previously extensive research has 

been made on the use of the packet size distribution for the detection of application 

using UDP and TCP protocols. Although in this work, the author has not used just 

the PSD as done by Parish et al. [48] and Li Bo et al. [49], still the packet size 

distribution is a significant statistical parameter used for the machine learning 

approach for application detection. Therefore this chapter gives statistical analysis 

of the suitability of the Packet Size Distribution in application identification using 

the statistical Chi Squared Test. Several other metrics were used along with the 

Packet Size Distribution bins which are explained in later chapters.  

3.1. Statistical Techniques 

Content based detection techniques of Deep Packet Inspection and signature 

matching clearly have certain advantages but in some instances they will fail in their 

task as mentioned in the last chapter. In addition to these, statistical methods are 

available which can prove to be useful. Investigations into statistical techniques 

have been focussed by several researchers up to now.  If statistical properties of the 

traffic streams are sufficiently unique to a given application, identification can be 

made with very little processing overhead. One could simply match these 

parameters (measured for an unknown application) with pre-evaluated samples 

stored in a database and select the appropriate match. The tunnelled applications 

would normally run in TCP packets at the transport layer.  The statistical parameters 

can be extracted from the packet stream and saved, and the packets need not be 

saved [48]. 

 



30 

 

The temporal characteristics that one could extract from the traffic stream are: 

Packet inter-arrival time (mean, variance, max, min), packet duration. 

Clearly, any temporal characteristic will be affected by the conditions of network 

congestion. Delay in the network would affect the packet inter-arrival time [52]. 

Hence such characteristics should be avoided as they would not be consistent for the 

identification. 

The non-temporal statistical characteristic one may extract from the traffic stream 

are the packet size, ratio of large to small packets, distribution of packet sizes etc. 

The distribution of packet sizes observed over some time interval could be 

determined and since it is sufficiently consistent for a given application but different 

across different applications, one could use this as an application signature [52].  

3.1.1 Packet size distribution 

The packet size distribution, in most cases can be used as an application signature, 

and a lot of work has been done regarding this in the last few years [52]. The main 

advantages of this approach over Deep Packet Inspection is that it does not rely on 

data portion examining of the packets, and it does not require all packets or some 

specific packets to be captured. The length of packet header is known in advance 

and is a standard size. The length of the payload (the message) can be known by 

checking the transmitted packet sizes or by looking at the packet header field. While 

network applications are running, the information that they exchange would 

generally conform to a certain pattern which means the messages or, the length of 

the packets would also conform to this pattern. It is observed that many networked 

applications have their own unique packet size distributions. [51] The packet size 

distributions of most networked applications, especially with high data rate 

applications were observed extensively, and they followed signature profile 

behaviour. Hence this observation led to the detection of applications by storing 

known profiles of known applications in a database, and comparing the captured 

traffic against these profiles. Simple statistical tests are used to perform the 

comparison like correlation detection; Chi squared goodness of fit test, or Nearest 

Neighbour Detection. This method was first used for the detection of UDP based 



31 

 

applications as in [48]. Later Li Bo and David J. Parish et al. worked on utilizing the 

same technique for TCP based applications as well [49].   

In the following sections the suitability of the packet size distribution as an 

application signature is researched for the tunnelled application detection problem. 

Different trace files of the applications are collected under tunnel operation, and 

then different trace files are matched statistically for their packet size distributions 

using Chi squared goodness of fit test. 

3.2 Generating Application Traces 

Several network applications' traces were collected for analysis of the Packet size 

distributions of each application. The applications were running inside tunnelling 

software. Two tunnelling software applications were used here. An HTTP tunnelling 

application, called Cubehub HTTP Tunnel [53] and the PingFu tunnelling 

applications provided by artofping [54]. The artofping has three tunnelling tools for 

this purpose.  PingFu UDP[54] is  Gaming Tunnelling software to bypass 

Firewalls/Proxy Servers. PingFu UDP has low latency for bandwidth intensive UDP 

games and voice chat applications. It has support for a plethora of applications, 

including internet games such as SecondLife, Steam, America's Army, VoIP such as 

Camfrog, Ventrilo, Skype, MSN/Yahoo/AIM, VoipRaider, LowrateVoIP, etc. 

Applications can be added to the list by the user as well. The reasons for choosing 

PingFu tools were their automatic configuration, 32 bit security encryption of all 

tunneled data and tunnelling of any type of application including those which use 

TCP & UDP [54]. Pingfu Iris and AutoTunnel GG are the other tools by artofpoing 

[54]. The application to be run through the tunnel is installed on the host machine, 

and is run from within the tunnelling client, which first connects to the tunnelling 

servers. The subscription for tunnel servers can be free for limited use or usually 

purchased for a small fee.  

Some popular games and applications were selected for this work in order to 

demonstrate the efficacy of the Packet Size Distribution as detection metric for these 

applications. These are World of Warcraft, Runescape, QuakeLive, Camfrog, 

VOIPRaider, Quake 3 Arena, Lord of Ultima, X-Lite, IVisit, Skype, etc. Some are 



32 

 

these are very popular online games which have a widespread demand to play under 

restrictive networking environments. For example, RuneScape is a Java-based 

Massively Multiplayer Online Role-Playing Game (MMORPG) operated by Jagex 

Ltd. recognized by Guinness World Records as the world's most popular free 

MMORPG [57]. Similarly having more than 11.5 million monthly subscribers, 

World of Warcraft is currently the world's largest MMORPG, and holds the 

Guinness World Record for the most popular MMORPG [58]. In April 2008, World 

of Warcraft was holding about 62% of the massively multiplayer online game 

(MMOG) market [59]. Quake Live (formerly known as Quake Zero) is a first-

person shooter browser video game developed by id Software, which was first 

announced in 2007. Other applications include voip client Voipraider [60], and 

video chat client, Camfrog [61]. Another application Skype [62] is a highly popular 

software application for making internet telephony, i.e. voice calls using internet 

protocol. Once a user has got a registered account he can call other account holders 

free, while calls to the traditional landline telephones and cellular mobile phones can 

be made for a fee. The volume of international traffic routed via Skype is 

significant. It has become the largest international voice carrier. [63] Computer-to-

computer traffic between Skype users in 2005 was 2.9% of international carrier 

traffic in 2005 and about 4.4% of the total international traffic of 264 billion minutes 

in 2006.[64]  In 2008, about 8% of cross-border calls were carried by Skype.[63]  In 

2010, a report by TeleGeography Research stated that Skype-to-Skype calls 

accounted for 13% of all international call minutes in 2009. Out of the 406 billion 

international call minutes a total of 54 billion were used by Skype calls.[65] Another 

application used is X-Lite, a proprietary free VoIP soft phone that uses the Session 

Initiation Protocol. In 2005, the X-Lite was Internet Telephony magazine's Product 

of the Year [69]. 

These applications were run using Cubehub and Pingfu tunnelling software and their 

packet traces were collected. Several trace files of each application were taken over 

time.  Wireshark [70] was used to capture the packet traces. Wireshark is very 

similar to tcpdump, another famous command line packet capturing utility. The 

advantage over tcpdump is its graphical front-end, and many more information 

sorting and filtering options. It allows the user to capture all the traffic received by 



33 

 

putting the network interface into promiscuous mode. The format of the Wireshark‘s 

network trace file is the same libpcap format which is also supported by libpcap and 

winpcap, so it can read capture files from applications such as tcpdump which also 

uses the same format, and its captured traffic can be read by applications that use 

libpcap or winpcap to read captured files. Libpcap is unix‘s API (application 

programming interface) for capturing network traffic, and winpcap is a port of 

libpcap used by Windows. 

The packet size distributions of these traces were generated. It is observed that the 

packet size distribution profiles of these applications is significantly different from 

each other and can be used as a discriminant to identify the application. In  the 

figures in the next section, the two graphs give a visual representation of the packet 

size distribution for the applications whose trace files were collected.  While the 

packet size distribution of the same application is not exactly identical for every new 

trace file for that application, it is observed that there is similarity within an 

application, and the graphs are quite different from other applications‘ graphs, hence 

the packet size distribution can be used as an identifier statistic. 

 

3.3. Graphs of Packet Size Distributions  

Traces were taken from the applications running in protocol tunnels as mentioned 

earlier. Then the Packet size distributions were obtained from each trace file. 

Wireshark and Matlab were used for this purpose. Figure 3-1 to Figure 3-11 show 

the plots of the packet size distributions of the various trace files for the applications 

chosen. The Resolution i.e. how many bins were used for the graph are mentioned in 

the figure in a text box, along the total packets count for the graph or else it is 

mentioned below.  

In this work, results are obtained for various resolutions such as 50 bins, 30 bins, 

100 bins, 150 bins, etc. for each application. The traces were taken off Ethernet 

network, and the Maximum Transmission Unit (MTU) for Ethernet is 1500 bytes 

and Maximum Segment Size, MSS, is 1460 bytes for the Transport Layer. The 40 

bytes is the IP header. If number of bins used is 50, then each bin is around 1460/50 



34 

 

or 30 bytes approximately, and similarly for other resolutions. The number of 

packets falling in a particular bin form the frequency of the that bin. Visually it can 

be seen that there is a degree of similarity between different tracefiles of the same 

application. However the height of the histograms may appear different in some 

cases; which is also dependent on the total number of packets in the tracefile. The 

total packet count is also mentioned in the graphs. 

 

 

 

 Figure 3-1 Packet size distribution for world of warcraft Resolution is 30 bins, bin 

size = 50 bytes 

 



35 

 

 

 

Figure 3-2 Packet Size Distribution for Runescape, resolution is 100 bins, bin size is 

15 bytes. 

 

 

Figure 3-3: Packet size distribution for Voip Raider. Resolution is 50 bins, bin size 

is 30 bytes  



36 

 

 

 

Figure 3-4 Packet Size distribution for Camfrog. Resolution is 30 bins, bin size is 

50 bytes  

Here it is noteworthy that there is visible variation in the amplitudes in some of 

the lines in the two distributions for some applications. This is mainly because the 

total number of packets in the sample is different for the two distributions. 

Otherwise the shapes of the distributions are visibly similar, though they are not 

exactly identical. If the distribution is normalized, i.e. the each bin frequency is 

divided by the total number of packets in the sample, and then a better resemblance 

is obtained in the two distributions. The difference of normalized and not 

normalized distribution can be detected in the following figures with same samples 

and resolution for Skype trace files: 

 



37 

 

 

Figure 3-5 Skype Packet size distributions without normalization, resolution is 50 

bins, bin size is 30 bytes.  

 

 

Figure 3-6 Skype Packet size Distribution graphs with normalized frequencies, 

resolution is 50 bins, bin size is 30 bytes  

The normalized graphs are better in similarity of the shapes. In the Chi square test 

for the matching of distributions, the normalized distribution is used because 

otherwise the distributions cannot be consistent and would depend on the packet 

count for the sample. 

 



38 

 

 

 

Figure 3-7  Packet Size Distribution for QuakeLive, Resolution is 50 bins, bin size is 

30 bytes 

To notice the effect of varying the resolution for the same application, the following 

figures 3-8 - 3-11 should be seen which are taken from the same traces of the IVisit 

videoconferencing software and X-Lite softphone respectively. It is seen that for the 

same resolution, the Packet size distribution would have similar shapes; however the 

shape of 50 bins is different from shape of 150 bins resolution. Therefore when 

matching the trace files statistically, one must be consistent with the resolution of 

the distribution. If 50 bins is used then it should be 50 bins for all the trace files. 



39 

 

 

Figure 3-8 Ivisit with 50 bins resolution, bin size is 30 bytes 

 

 

Figure 3-9 Ivisit with 150 bins resolution, bin size is 10 bytes 



40 

 

 

Figure 3-10 X-Lite PSD with 30 bins (Normalized Frequency), bin size is 50 bytes 

 

Figure 3-11 X-Lite PSD with 150 bins (Normalized Frequency), bin size is 10 bytes 

This section has only showed that the shapes of Packet size distributions of different 

captured trace files of these applications are visually similar within the same 

application provided the resolution is kept the same for the trace files. At the same 

time the shapes are very different for the trace files of different applications. To use 

this fact for the purpose of application identification, a statistical tool is required that 

can handle this similarity mathematically, which is the statistical Chi squared Test. 



41 

 

3.4. Statistical Chi-Square goodness-of-fit Test 

The packet size distribution is a significant metric in this method for tunnelled 

application identification. First the Packet size distribution metric is investigated 

using a statistical test, known as Chi square test. Here a comparison is made 

between packet size distributions of the trace files of tunnelled applications. The 

statistical Chi square test is employed to effectively measure the goodness of fit of 

the two distributions. The reason for choosing the Chi-square test over other 

statistical test methods is that the packet size distribution is a frequency 

measurement, and the Chi-square test is particularly appropriate with variables 

expressed as frequencies [71]. In addition, when used for frequency comparisons, 

the chi-square test is a non-parametric test, since it compares entire distributions 

rather than parameters (means, variances) of distributions.  

The chi-square goodness-of-fit test is defined for the hypothesis: 

H0: The observed data follows the expected distribution (obtained from stored trace 

files of the tunnelled applications) 

Ha: The observed data does not follow the distribution specified by the store packet 

file‘s distribution. 

The data which is in the form of Packet size distribution in this case is divided into k 

bins and the test statistic is defined as 

2

2
( )

j j

j

o e

e



        (3.1) 

where 
j

o  is the observed frequency for bin i and 
j

e  is the expected frequency for bin 

j .The chi-square value (
2

 ) is an overall measure of discrepancy between the 

observed frequencies and the expected frequencies under
0

H . 



42 

 

This weighted sum of squared differences is equal to 0 if and only if every observed 

frequency is equal to the corresponding expected frequency under
0

H  , that is, if the 

fit is perfect. If there are large differences between  
j

o  and 
j

e  , then
2

 will be large, 

which in turn suggests that the null hypothesis should be rejected [72].  

Therefore, the hypothesis that the data are from a population with the specified 

distribution is rejected if  

           
  

 

where         
 is the chi-square percent point function with k - c degrees of freedom 

and a significance level of α. The     
  is the critical value from the chi-square 

distribution which can be looked up in statistical tables for a given confidence level 

and degrees of freedom. The chi-square test requires that frequency counts in all 

categories should be no less than 5 unless the number of categories is very large and 

only very few categories have frequency counts less than 5. Those categories with 

small expected frequencies can be combined with neighbour categories to meet this 

requirement in order to improve the approximation [73]. 

3.5. Result of Chi Square Tests for PSDs 

Next Chi squared analysis of the trace files using Packet size distributions is 

performed. First the test was performed over trace files of the same application, to 

find out if they are conforming with good confidence. Then the Chi square test was 

done for traces of one application with other applications to find out that they are 

differentiated from one another. 

Figure 3-13 is a graph for the observed and critical chi squared values for a bin size 

of 30 bytes of the trace files of the applications, which means that packet sizes were 

categorized by 30 bytes intervals. These are the results of the goodness of fit test 

between two profiles (distributions) of packet sizes of same application but from 

different trace files. The plot shows that for all the applications under observation, 

the Chi values were less than the critical values at 95%; hence the applications can 



43 

 

be statistically identified using their packet size distribution profiles using a simple 

statistic such as chi squared. A similar plot is given for different bin sizes of 50 in 

Figure 3-14, 100 bins in Figure 3-15, and 150 bins in Figure 3-16. Varying the bin 

size does not affect the plots too much and the notion holds in all plots that the chi 

values are well less than critical values. The results corroborate the idea that the 

packet size distributions of different traces of same application are similar enough 

that they can be put under same category by the chi squared test.  

 

Figure 3-12 Result of chi squared goodness-of-fit (gof) test for traces of same 

applications with resolution of 50 bins and bin size = 30 bytes  

 

0

10

20

30

40

50

60

70

C
h

i v
al

u
e

 

Chi value for 50 bins Critical value @ 95% confidence

0

5

10

15

20

25

30

35

40

45

C
h

i v
al

u
e

 

CHI value 30 bin Critical value  95%



44 

 

 

Figure 3-13 Result of chi squared gof test for traces of same applications with 

resolution of 30bins, and bin size of 50 bytes  

 

 

 

Figure 3-14 Result of chi squared gof test for traces of same applications with bin 

resolution = 100 bins, and bin size is 15 bytes 

 

 

Figure 3-15. Result of chi squared gof test between tracefiles of same applications 

with bin resolution = 150 bins, and bin size is 10 bytes 

 

0
10
20
30
40
50
60
70
80
90

100

C
h

i V
al

u
e

 

CHI value 100 bin Critical value  95%

0
10
20
30
40
50
60
70
80
90

C
h

i V
al

u
e 

Chi value for 150 bins Critical value @ 95%



45 

 

Figure 3-17 i, ii, iii are given for comparison of the chi squared results when 

performed for two different applications‘ trace files. The names of the applications 

are abbreviated in the lower part of the figure. Here the results are quite opposite to 

the previous plots. In these graphs, the observed Chi values are much higher than 

the critical values. These graphs are given to analyse the possibility of false 

positives or erroneous application detection. The results show that when performed 

across different application traces, the chi squared test does not place them in one 

category and tells them apart, by giving a higher Chi value than critical values. 

Hence there is not much chance of confusion or mismatch in the tunnel application 

detection based on packet size distribution. It is observed that the Chi square 

goodness of fit test does not render the two distributions of different application 

trace files as one application. These results are summarised in the form of Table 3.1 

below: 

 

 

Figure 3-16 i : part 1 of Chi squared gof test values for comparison of traces of two 

different applications. Resolution is 50 bins, bin size is 30 bytes  

 

 

0

50

100

150

200

250

VOIP CAMFRG QUAKEL WOW QUAKEL VOIP CAMFRG CAMFRG QUAKEL

RUNESC RUNESC RUNESC RUNESC WOW WOW WOW VOIP VOIP

C
h

i V
al

u
e

 

Chi value 50 bins Critical value @ 95% confidence



46 

 

 

Figure 3-17 ii: part 2 of Chi squared gof test values for comparison of traces of two 

different applications. Resolution is 50 bins, bin size is 30 bytes  

 

Figure 3-17 iii: part 3 of Chi squared gof test values for comparison of traces of two 

different applications. Resolution is 50 bins, bin size is 30 bytes  

 

 

 

 

 

 

0

50

100

150

200

250

Q
U

A
K

EL

W
O

W

Q
U

A
K

EL

Sk
yp

e

X
lit

e

Q
U

A
K

EL

W
O

W

Q
U

A
K

EL

Lo
U

C
A

M
FR

G

V
O

IP

CAMFRG X-Lite X-Lite IVISIT IVISIT IVISIT Skype Skype Skype Skype Skype

C
h

i V
al

u
e 

Chi value 50 bins Critical Value @ 95% confidence

0

50

100

150

200

250

CAMFRG Xlite Ivisit VOIP WOW QUAKEL Ivisit RUNESC

LoU LoU LoU LoU LoU LoU VOIP X-Lite

C
h

i V
al

u
e

 

Chi value at 50 bins Critical value at 95% confidence



47 

 

Table 3.1 Results of Chi-squared tests between different application traces 

 

Application 
Chi-

Value 

Degrees 

of 

Freedom 

Critical 

value 

95% 

95% 

Critical 

value 

50% 

Next 

cloest 

app 

Chi-

Value 

Critical 

value 

95% Camfrog 4.5 7.0 14.1 6.3 
world of 

warcraft 

179.3 40.1 

world of 

warcraft 

26.2 21.0 32.7 20.3 
Runesc 

56.4 22.4 

runescape 0.0 2.0 6.0 1.4 
WoW 

56.4 22.4 

VoipRaider 1.7 7.0 14.1 6.3 
QuakeL 

183.7 45.0 

QuakeLive 32.0 37.0 52.2 36.3 
IVisit 

84.9 65.2 

Skype 1.5 4.0 9.5 3.4 
LoU 

51.1 18.3 

X-Lite 4.4 8.0 15.5 7.3 
QuakeL 

164.5 55.8 

Ivisit 11.6 47.0 64.0 46.3 
QuakeL 

84.9 65.2 

Lord of 

Ultima 

10.5 9.0 16.9 8.3 
Skype 

51.1 18.3 

Table 3.1 shows a general Chi-square summary for all application that had been 

tested. For each application, the Chi-squared value resulting from the computation 

with the pre-stored trace for that application is shown, along with the corresponding 

95% and 50% confidence value (which varied according to number of degrees of 

freedom). The lowest Chi-squared value resulting from the computation with a 

different application trace is also given, again with the corresponding 50% 

confidence value. As the computation ignores packet size probabilities of zero in 

both data sets, the confidence value varies from application to application. 

The table shows that for each of the applications, the Chi squared test resulted in 

lowest chi-squared value when the test was performed on the traces of the same 

application. In all of the cases, this Chi-square value is below the critical value for 

95% confidence value. In all cases, the next lowest Chi-squared value from a 

different application is seen to be significantly greater that the first, and much 



48 

 

greater than the associated 50% confidence value for this second choice application. 

Hence the second choice application is not to be predicted in favour of the first. 

Thus the proposed idea of tunnelled application identification works successfully for 

all practical purposes for the both the encrypted and plain tunnelled applications 

studied here. Theoretically it cannot be claimed that two applications would not 

have the same packet size distribution, in tunnel or without tunnel operation. Given 

the vast number of applications, this claim would be impossible to prove 

empirically. However for a large number of applications the approach works 

successfully. Since this is a relatively much simple computation, Packet Size 

Distribution based detection can be used as an additional security tool alongside the 

existing tools and practices. 

In this chapter, the consistency of the packet size distributions of the tunnelled 

applications was tested.  Different applications from games, real-time audio, video, 

voice over IP, etc. were selected and it is experimentally established that the packet 

size distributions of these applications even inside tunnel have a consistently unique 

form which can be statistically recorded using the Chi square goodness of fit test. 

This fact will be utilized in the next chapters where the parameters or metrics which 

are used in the identity of the application are explored. The packet size distribution 

forms a significant parameter, although some other statistics are used as well to 

further improve the detection mechanism. 

  



49 

 

Chapter 4 Methodology for Tunnelled 

Application Detection 

 

 

This chapter gives a description of the methodology employed to achieve 

identification of applications. Application traces were collected using network 

sniffing tools. The major flows were identified from the network trace file and each 

flow was treated as a connection. Following the machine learning paradigm, the 

methodology developed has two stages, a learning phase, and a classification phase. 

The objective of the learning phase is to find out a relationship in terms of the 

statistical parameters of the traffic flows/connections, including packet size 

distributions and other parameters for the applications under consideration, and 

saving the information in a usable form. The classification phase uses the learned 

parameters to find the actual application from the statistical parameters of unknown 

flows. Several machine learning algorithms are considered and their performance is 

compared in Chapter 5.  

The methodology employed in this work for identification of applications running 

inside protocol tunnels is based on analysis of application trace files from a 

statistical perspective. From the trace file the individual connections are identified. 

A connection is a tuple of Source Address, Destination Address, Source Port, and 

Destination Port and for a particular protocol. Since all application layer tunnelling 

protocols are TCP based, so the TCP connections are considered only.  For each 

connection, the traffic flow parameters are extracted. There are two key components 

in the process: a learner and a classifier. The learner arrives at a relationship 

between the connection parameters and the applications from the training data set. 

Subsequently this learned mapping is used by the classifier for classification of the 

connection. This method is also called Supervised Learning because the training 

data is fully labelled. The steps involved in the process are described below and also 

summarised in Figure 4-1 in the form of a flowchart. 



50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 Flowchart of the Tunnelled Application Identification methodology 

Capture Application Traces 

Identify TCP Flows 

Extract Packet Size 

Distribution for the Flow 

Extract Other 

Parameters/Metrics 

Add to 

Training 

Data File 

Select ML Algorithm 

Apply ML Algorithm 

Get Classification Results 

Training 

Mode? 

Yes 

No, testing 



51 

 

4.1  Capturing Pcap Traces of Tunnelled Applications: 

The network applications were run under tunnelling software. HTTP tunnelling 

software, called Cubehub HTTP Tunnel [53], pingfu UDP [54] (which provided 

HTTPS encrypted tunnell for UDP based applications like VoipRaider, Skype etc.) 

and Pingfu Iris [54] which is also HTTPS based tunnelling software for TCP based 

applications such as World of Warcraft, etc. were used. The packet traces were 

captured for the applications for several minutes of run time per application. These 

traces were processed to produce the data sets used for experimentation.  

Previous research shows that for approximately 30 seconds of application run, the 

packets should be captured for each instance so that stable and consistent statistical 

parameters including Packet size distribution could be obtained [52]. For this 

purpose, the trace files were captured using the Wireshark network sniffing and 

analysing tool [76].  

The size of each tracefile captured was of the order of a few Megabytes, and it 

contained ample packets for statistical analysis. Each file was saved in pcap format 

which is the default format for Wireshark. 

4.2  Processing of the CapturedTrace Files: 

The captured traffic was analyzed by a command line tool called tshark [77]. From 

the captured file, any connections with very few packets were filtered out and 

discarded, because packet size distributions using these connections would not be 

reliable.  TShark is a network protocol analyzer. It can capture live network traffic 

as well as read and analyse a stored trace file. TShark‘s trace files are of libpcap 

format. Tshark works very much like tcpdump and unlike Wireshark, does not have 

a Graphical User Interface. Having captured the application trace files and saving in 

the pcap format, the next step was to extract the parameters of interest from the file. 

A Matlab program was written to store the connections of each application and their 

statistical parameters. The applications running across the network were supervised 

at the capture time, i.e. only a single known application was run at a time, hence 

from the processed trace file the large connections were assigned to that application. 



52 

 

Matlab cannot directly read from the pcap format, hence tshark was used to convert 

the trace files into a format readable by the analyser program. 

The command that was used in this work is given below. This command serves the 

purpose of reading a libpcap capture file and extract it to a text file with the same 

name and obtaining the required information from each packet. Each packet forms 

one line of the text file obtained. For each packet the following information is 

obtained: Time, Source IP address, Destination IP address, source port number, 

destination port number, length of the datagram, Protocol of the packet. These are 

the destination IP and port addresses assigned by the tunnelling software to the 

connections, not the actual IP addresses the application would be communicating to 

if it were run without tunnelling. Then this detail is written to a text file for each 

packet, so that the text file can be read for further processing: 

tshark -o column.format:"No.","%m","Time","%t","Source","%s", 

"Destination","%d","srcport","%uS","dstport","%uD","len","%L", 

"Protocol","%p" -r fname > fname.txt 

 

The various options are explained below: 

 
-o <preference> :<value>  

This option is used to set a custom preference value, instead of the default 

value or any value read from a preference file. Here a format is overridden 

which contains the columns of interest. The format used in the above 

command is displaying for each packet:  ―No‖ which is an index number of 

the packet, ―Time‖, which is the time of packet capture, ―Source‖, is the 

source IP address, ―Destination‖, the destination IP address, ―srcport‖, is the 

port number used by source machine, ―dstport‖ is the port number of the 

destination machine, ―len‖, is the length of the packet in bytes, and 

―Protocol‖, is the protocol used. 

-r <file>  

Read traffic data from file, which is a pcap file in any of the supported 

capture file formats. The fname in the above command is the name of the 

pcap file which contains the captured data. 



53 

 

>fname.txt  

This is a redirection of stdout to a text file so that the output is displayed in a 

text file. The format of the output is defined previously. That text file is then 

read into the detection tool to be analyzed, and statistics are extracted from it 

for each connection. 

In the following figure 4-2, a glimpse of a portion of the generated text file is given. 

Each packet‘s information forms one line of the file. On the basis of the same 

protocol, source IP address, destination IP address, source port and destination port 

the packets are assigned to connections. The entries of the file follow this order: 

index, time, source IP, destination IP, source port, destination port, size of the 

packet, protocol. 

 

Figure 4-2 the text file containing packet information 



54 

 

4.3  Extracting Metrics from Captured Traffic: 

The Matlab program (code is given in the appendix A, ―The Matlab code‖) would 

read the text file corresponding to each pcap trace file. Every line contained the 

information from one packet. Depending on the source address, destination address, 

source port, destination port and protocol, the packets were assigned into 

connections. A connection is a tuple of these five parameters. For each connection 

the required metrics or parameters were extracted. The metrics obtained for the 

connections of each tunnelled application trace file are described below. The Packet 

Size Distribution bins are derived as described in Chapter 3, based on the work done 

by Li Bo in [51] about identification of TCP based applications using packet size 

distribution alone and earlier by Ketan Bharadia in [52]. The other metrics were 

chosen from [80], [79] where they were used for the classification of internet traffic 

because of their generality and availability in all packets. Some time based metrics 

are also included, such as maximum interarrival time in one direction to investigate 

how they affect. These metrics are described below: 

1. Data rate (bytes/sec) for upstream direction: 

This metric is a measure of the data transfer rate in the direction from local 

machine to remote machine.  This is calculated by dividing the total bytes 

transferred by the total time taken during the transmission of first till the last 

packet in the given TCP connection of the captured file [80].   

 

2. Data rate (bytes/sec) for downstream direction: 

The same metric is also obtained for the remote machine to local machine 

direction. These two parameters would give an insight into the nature of the 

application from the perspective of data transfer rates. Some applications are 

quite consistent in these rates while some are not [80]. 

 

3. Data packet ratio: dpktr:  

This is a ratio of the data packet number downstream to upstream. By data 

packets are meant the packets which contain some tcp payload data apart 

from the header. The data packet ratio is calculating by taking the ratio of 

data carrying packets from the remote to local computer direction and the 



55 

 

data carrying packets in the local computer to remote computer direction 

[79]. 

 

4. ByteRatio:  

This is another related metric which is a ratio of the total bytes transferred in 

the downstream (remote to local) to upstream (local to remote) direction 

[79]. 

 

5. Ratio of large and small packets: 

In a given direction, this is a measure of relatively large packets to small 

packets. The threshold is arbitrarily set to 300 bytes. If a packet is greater in 

payload size than 300 bytes it would be counted as a large packet, otherwise 

a small one. Then the ratio is obtained of the two counts [80]. 

 

6. maxIATds: 

This is the maximum inter-arrival time between two packets in the direction 

of the remote to local machine. 

  

7. MinIATds: 

This is minimum inter-arrival time between two packets in the downstream 

direction, i.e. remote to local. 

 

8. maxIATups:  

The maximum interarrival time in packets from the local machine to remote 

machine direction. 

 

9. minIATups: 

The minimum packet interarrival time recorded for the upstream direction, 

i.e. local to remote. 

 

10. time spent idle downstream:  



56 

 

The idle time is defined as the collection of time periods of 2s or greater 

duration in which there was no packet sent downstream. It is given as a 

percent of the total time so that the value is normalized for various length 

packets. 

 

11. time spend idle upstream:  

Similar metric for the upstream direction. 

 

12. PSD with 15 bins 

The next metrics are the bins of the packet size distribution. The number of 

bins is set to 15 for the initial experiments. However this is increased to 30 

bins or more as will be seen in later sections of the next chapter. For the sake 

of initial experiment, this is kept at 15 bins so that the effectiveness of the 

other metrics along with the packet size distribution can be learned and there 

is a broad base of statistical metrics to choose from, although for some 

applications even Packet Size Distribution bins alone are sufficient to detect 

the application correctly, as is shown in the next chapter. 

 

4.4  Training or Learning Phase: 

The training data is saved in the form of an Excel file of comma-separated values 

(.csv) format. This format was preferred because it is a widely acceptable format for 

many machine learning applications. Each row of the Excel file corresponds to the 

data procured from one pcap file for each application. Table 4.1 shows a part of the 

training data. It contains the columns for all attributes extracted. The attribute name 

is abbreviated on the top of each column. The table 4.1 doesn‘t contain all of the 

attributes, in order to keep it to a manageable size. The Packet Size Distribution bins 

are b1, b2…. For initial experimental data set there are 15 bins of Packet size 

Distributions. The last column is the abbreviated name of the application 

corresponding to the data. If more applications were added, they can be easily 

appended to the end of the file. The file was automatically generated by the Matlab 

program used to extract the attributes from the packet captured trace files. Also, for 



57 

 

the 10 applications there are 12 instances of trace files for each, so this gives 12 

rows corresponding to each application. Hence there are 120 instances in the 

database for the experimentation, but more instances can be added whenever more 

data is available. 

Table 4.1 A portion of the training data file 

4.5  Applying Machine Learning Algorithms 

Now, the machine learning algorithms can be applied to the data to obtain the results 

for the prediction accuracy of the algorithms. The data set is used to train the 

classification algorithm and then the trained algorithm is able to predict the 

application for a case when the application name is not given. The results of 

applying these algorithms are discussed in further detail in the next chapter. Some of 

drl2r drr2l  dpktratio  byteratio ratio_sl_ds  b1 b2 b3 b4 … b15 app 

59.87 494.72 1.24 8.26 0.1 0.77 0.1 0.03 0.01 … 0.01 WW 

102.06 525.15 1.7 5.11 0.03 0.8 0.14 0.02 0 … 0 WW 

116.66 526.09 1.47 4.52 0.04 0.8 0.13 0.02 0.01 … 0 WW 

115.33 483.71 1.6 4.19 0.03 0.82 0.12 0.03 0.01 … 0 WW 

66.21 368.71 1.86 5.57 0.09 0.74 0.12 0.06 0.02 … 0 WW 

113.61 314.52 1.09 2.77 0.05 0.81 0.09 0.05 0.02 … 0.01 WW 

106.63 38.6 0.87 0.36 0 0.96 0.03 0 0 … 0 WW 

69.88 733.3 2.45 10.49 0.1 0.61 0.19 0.1 0.04 … 0.01 WW 

108.26 381.16 1.1 3.52 0.11 0.8 0.05 0.04 0.02 … 0.02 WW 

84.1 655.95 1.54 7.81 0.21 0.69 0.08 0.06 0.04 … 0.01 WW 

108.54 3032.44 1 27.88 7.4 0.02 0.03 0.07 0.13 … 0.01 QL 

110.2 3448.79 0.99 31.37 5.05 0.01 0.06 0.08 0.11 … 0.01 QL 

89.21 18.27 0.05 0.2 0.01 0.01 0.02 0.01 0 … 0 QL 

88.12 2.2 0.02 0.02 0 0.02 0 0 0 … 0 QL 

109.31 3235.48 0.99 29.62 6.04 0.01 0.04 0.07 0.12 … 0.01 QL 

109.95 3355.86 0.99 30.52 7.06 0 0.04 0.07 0.14 … 0 QL 

120.53 1238.47 0.84 10.28 0.91 0.16 0.08 0.12 0.22 … 0 QL 

88.85 0.78 0.01 0.01 0 0.01 0 0 0 … 0 QL 

88.77 0 0 0 0 0 0 0 0 … 0 QL 

88.28 0 0 0 0 0 0 0 0 … 0 QL 

107.7 657.43 0.54 6.11 0.52 0.09 0.04 0.07 0.14 … 0 QL 

1496.71 8958.23 1.05 5.98 22.04 0.02 0.02 0 0.01 … 0.02 VR 

1574.65 9414.7 1.02 5.98 60.92 0.01 0.01 0 0 … 0.01 VR 

1570.4 27.16 0.54 0.02 0 1 0 0 0 … 0 VR 

1571.51 9412.8 1.02 5.98 65.93 0.01 0.01 0 0 … 0.01 VR 

1577.67 26.68 0.53 0.02 0 1 0 0 0 … 0 VR 

1577.83 26.97 0.54 0.02 0 1 0 0 0 … 0 VR 

1569.74 26.08 0.52 0.02 0 1 0 0 0 … 0 VR 

1552.76 26.71 0.54 0.02 0 1 0 0 0 … 0 VR 



58 

 

the metrics discussed previously might not be as useful as others; hence the 

performance of various combinations of the metrics was investigated as well.  



59 

 

Chapter 5 Application Predictions using 

Machine Learning 

 

This chapter contains the results of the experiments performed over the network 

application trace data captured for tunnelled applications. The previous chapter 

outlined the process of collecting applications‘ trace files and converting these into a 

more useable format and extracting metrics of interest from them.  Here the results 

of Machine Learning experiments performed on different combinations of these 

metrics are given and a few conclusions are drawn about the most useful metric 

combinations. 

 Some of these metrics might not be as useful as others; hence the difference in the 

performance of the various combinations of the metrics was investigated. 

From the last chapter, a database was obtained which contained the metrics for each 

application extracted from its trace file captured in tunnelling mode. In this chapter, 

it is empirically demonstrated that this data can be utilized for the identification of 

the same applications using machine learning classification algorithms or classifiers. 

Various classifiers were used at this stage and their performance was analysed. 

WEKA ( Waikato Environment for Knowledge Analysis) [81] machine learning 

software is used because it provides many different algorithms for data mining and 

machine learning which are easily useable by people who are not data mining 

specialists, besides being an open source and freely available software [82]. The 

validation of WEKA results is demonstrated in section 5.8. The classifiers used in 

the experiments are: naiveBayes, Nearest Neigbour (IB1) using Euclidean distance, 

C4.5 decision Tree, Neural Network (Multilayer Perceptron), K* Nearest 

Neighbour, OneR classifier. These classifiers were taken simply to be representative 

of each group/class of supervised classifiers in the WEKA software, because 

WEKA includes more than 50 different classifiers grouped into 6 classes of 

supervised classifiers. Since their performance proved satisfactory for the 

requirements of this work, investigating the use of other classifiers was left for 

future work. Also different combinations of the 27 metrics were tested, so that the 



60 

 

relative importance of various attributes, such as packet size distribution, can be 

determined.  

The Weka machine learning software was applied on various data sets, and the 

results are given in this chapter for those sets. The data sets were obtained from the 

procedure explained in Chapter 4. The test sets are a section of the complete data 

sets with all instances labelled. In Machine Learning literature a labelled instance is 

one whose class is known. Hence when Weka's machine learning algorithm 

classifies an instance as a particular application, that instance can be matched 

against its actual class label to see if the result of weka is valid or not. The Weka 

software calculates the prediction accuracy of each algorithm by comparing the 

results for the test instances by Weka's algorithms with the actual class labels of the 

same instances. In section 5.8, the results of the Weka software are validated using 

two means: First by comparing the classes identified by the Weka with the actual 

class of the same test instance, and secondly by comparing the Weka results of a 

machine learning algorithm with the results of a similar algorithm implemented in 

Matlab. This comparison has been performed for one of the experiments in this 

chapter, described in section 5.8. 

5.1  Using 27 metrics for Identification 

In this case, all the 27 statistical metrics (which were described in Chapter 4) 

extracted from the tracefiles were used in the detection process. The dataset consists 

of 120 instances. The detection predictions are also referred to as classifications 

hereafter. The performance of the classifier is naturally measured in terms of its 

error rate. The classifier predicts the class of each instance, which is actually the 

name of an application from the training data: if it is correctly predicted, this is a 

success; otherwise an error. The error rate is the ratio of errors made in a whole set 

of instances, and it measures the performance of the classifier. However, the 

desirable feature is the performance on fresh data, not on the already seen data. The 

class of the instances in the training set is already known, so the real performance is 

that on test data. In the last section, the results from fresh data are also given. Three 

different testing schemes are used for each algorithm.  



61 

 

1. Testing on the training set: In this mode, the classifier model is built from 

the training data set, and the same training data is used to test the 

performance of the classifier. This evaluation is very optimistic and will 

certainly not be the same for unseen data. However, it still is useful in a 

sense that it generally gives an upper bound to the classifier‘s performance 

on fresh instances of data. 

2. Testing on split data (1/3 for test, 2/3 for training): In this mode, 66% of 

the data is used to train the classifier and build the model, whereas one third 

(33%) is held for testing of the classifier. The test data is not used in the 

training, so it is fresh or unseen data with respect to the classifier. The 

disadvantage is that this reduces the amount of data to be used for training as 

ideally it is desired that in a limited dataset most of it to be used for training. 

Also if one is unlucky, the sample used for training or testing might not be 

representative. So there is a dilemma here, to find a good classifier, it is 

desirable to use as much of training data as possible; and to have a good error 

rate estimate of the classifier, as much of data as possible is required for 

testing.  

3.  10 fold stratified cross validation: A more general and better way to 

mitigate any bias caused by the particular sample (from training data) chosen 

for holdout is to repeat the whole process, training and testing, several times 

with different random samples from the data set.  According to Witten and 

Frank in [83], the standard way of predicting the error rate of a learning 

technique given a single, fixed sample of data is to use stratified 10-fold 

cross-validation. In this method, the available data set is divided randomly 

into 10 sections such that the application classes have similar representation 

in each section as in full dataset. In first run, one of the 10 parts is used for 

testing, and the remaining 9 parts are used for training. Then similarly in 10 

runs, all 10 parts are respectively used for testing set and other 9 used for 

training, and its error rate is calculated on the test set. Thus the learning 

procedure is executed a total of 10 times on different training sets (each of 

which have a lot in common). Finally, the 10 error estimates are averaged to 



62 

 

give an overall error estimate.  This procedure is called a stratified 10 fold 

cross-validation, which has become the standard method in practical terms. 

[83]  

The detailed results for each of these methods for the algorithms of NaiveBayes, 

C4.5, Multilayer Perceptron, IB1, IB K*, OneR are presented here. 

5.1.1 Classification with Naïve Bayes Algorithm: 

NaiveBayes in Weka implements the probabilistic Naïve Bayes classifier. A Bayes 

classifier combines prior knowledge with observed data to assign a posterior 

probability to a class based on its prior probability and its likelihood given in the 

training data. A Naive Bayes classifier assumes conditional independence between 

attributes and assigns the maximum aposterior probability (MAP) class to new 

instances. 

Results: (a) Testing on training Data: The output from running the naiveBayes 

classifier for detection of the applications is given below. Here all 120 instances of 

data were used for training the naiveBayes classifier to build a model, and the same 

dataset was used for testing it. The results are given: 

=== Summary === 

Correctly Classified Instances         115               95.8333 % 

Incorrectly Classified Instances         5                4.1667 % 

Total Number of Instances              120      

Table 5.1 Confusion Matrix for NaiveBayes classifier on training data 

a b c d e   f g h i j classified as 

12 0 0 0 0 0 0 0 0 0 a = WW 

0 11 0 0 0 1 0 0 0 0 b = QL 

0 0 12 0 0 0 0 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

4 0 0 0 0 8 0 0 0 0 f = QA 

0 0 0 0 0 0 12 0 0 0 g = XL 

0 0 0 0 0 0 0 12 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 0 0 0 0 0 0 0 12 j = Sk 



63 

 

The confusion matrix is a simple way of summarizing and displaying the results of 

the experiment.  

The columns of the matrix represent the predictions made by the algorithm, and the 

rows represent the actual class of those instances. Here from the first row it can be 

observed that 12 instances were correctly predicted as WW (World of Warcraft). 

Such cases are also called ―True Positives‖. The matrix also shows that 11 instances 

were correctly predicted as QL (QuakeLive). The correctly predicted results will 

always show on the diagonal of the matrix.   

On the other hand, in row 6 of QA (Quake3Arena) it shows that 4 instances were 

predicted as WW (World of Warcraft) when they were in fact QA. These cases are 

also referred to as ―False Positives‖ or incorrectly classified instances. The 

prediction errors can also be visualized in the following error plot: 

 

Figure 5-1Plot visualizing erroneous predictions as boxes  ‗ ‘  and correct ones as ‗×‘ 

for the Naïve Bayes testing on training data. 



64 

 

Results (b): Using 10 fold cross validation. 

=== Summary === 

Correctly Classified Instances         111               92.5    % 

Incorrectly Classified Instances         9                7.5    % 

Total Number of Instances              120      

Table 5.2 Confusion Matrix for naiveBayes on 10 fold cross validation 

a b c d e f g h i j classified as 

11 0 0 0 0 1 0 0 0 0 a = WW 

1 10 0 0 0 1 0 0 0 0 b = QL 

0 0 11 0 0 0 1 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

3 0 0 0 0 8 0 0 0 1 f = QA 

0 0 0 0 0 0 12 0 0 0 g = XL 

0 0 0 0 0 0 0 12 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

       0     0 0 0 0 1 0 0 0 11 j = Sk 

 



65 

 

 

Figure 5-2 Plot visualizing erroneous predictions as boxes  ‗ ‘ and correct ones as 

‗×‘ for the Naïve Bayes testing on 10 fold cross validation. 

 

 

 

 

 

 

 

 

 

 



66 

 

Results C : 66 % split training set: 

=== Summary === 

Correctly Classified Instances          36               87.8049 % 

Incorrectly Classified Instances         5               12.1951 % 

Total Number of Instances               41      

Table 5.3 Confusion Matrix for naiveBayes on 33% split test set  

a b c d e f g h I j classified as 

5 0 0 0 0 0 0 0 0 0 a = WW 

0 1 0 0 0 0 0 0 0 0 b = QL 

0 0 3 0 0 0 0 0 0 0 c = VR 

0 0 0 8 0 0 0 0 0 0 d = CF 

0 0 0 0 4 0 0 0 0 0 e = MA 

4 0 0 0 0 4 0 0 0 0 f = QA 

0 0 0 0 0 0 2 0 0 0 g = XL 

0 0 0 0 0 0 0 3 0 0 h = IV 

0 0 0 0 0 0 0 0 5 0 i = LU 

0 0 0 0 0 1 0 0 0 1 j = Sk 

 

 

 



67 

 

 

 Figure 5-3 Plot visualizing erroneous predictions as boxes  ‗ ‘ and correct ones as 

‗×‘using Naïve Bayes with 66% training, 33% test data. 

The summary of the Naïve Bayes classifications for the three test cases can be given 

as:  

Table 5.4 summary of the Naïve Bayes classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Naïve 

Bayes 

Training 

data 
120 120 0.01s 

115 

95.8%) 
5 (4.2%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.01s 
111(92.5

%) 
9 (7.5%) 

Naïve 

Bayes 
66 % split 41 79 0.01s 

36 

(87.8%) 
5 (12.2%) 

 

From Table 5.4, it is observed that reducing the training instances in the 66% split 

has affected the performance of the classifier in terms of its accuracy. The upper 



68 

 

bound for this classifier has an accuracy of 96%, whereas the 10 fold cross 

validation estimate, which is the most realistic one, has an accuracy of 92.5%. Now, 

the results of a few other classification schemes are presented in the following 

sections. 

For the next classifier schemes, i.e. C4.5 Decision tree, Multilayer Perceptron, 

Nearest Neighbour only the 10 fold cross-validation results will be presented here. 

The other two cases will be only summarised in the table of results. 

5.1.2 Results of C 4.5 Decision Tree Classifier: 

The C4.5 classifier is under the trees category of the WEKA classifiers. The C 4.5 

Decision Tree was developed by Ross Quinlan [84]. 

This is a divide and conquer algorithm like the other tree based algorithms. The data 

is partitioned recursively until every leaf has only the instances of one class or until 

further partitioning is impossible, when two cases have same values for each 

attribute but their class is different. Hence, if there are no conflicting cases, the 

decision tree will be able to classify every training instance correctly, which is 

―over-fitting‖, which generally leads to loss of prediction accuracy in most 

applications. [85] The over fitting problem is overcome usually by removing some 

of the structure of the decision tree after it has been produced, also known as 

pruning or sometimes by a stopping condition that prevents some cases from being 

subdivided. ―After a decision tree is produced by the divide and conquer algorithm, 

C4.5 prunes it in a single bottom-up pass.‖ [86] Here the Weka implementation of 

C4.5 algorithm, also known as J48 decision tree is used for this data set. The result 

is given below: 

 

 

 

 

 

 



69 

 

Results: Running J48 on 10 fold cross validation: 

=== Summary === 

Correctly Classified Instances         109               90.8333 % 

Incorrectly Classified Instances        11                9.1667 % 

  Table 5.5  Confusion Matrix for J48 classifier on 10 fold cross validation test  

a b c D e    f g h I j classified as 

11 0 0 0 0 1 0 0 0 0 a = WW 

1 10 0 0 0 1 0 0 0 0 b = QL 

0 0 11 0 0 0 1 0 0 0 c = VR 

0 0 0 11 0 0 0 1 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

0 1 0 0 0 9 0 0 0 2 f = QA 

0 0 0 0 1 0 10 0 1 0 g = XL 

0 0 0 1 0 0 0 11 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 0 0 0 0 0 0 0 12 j = Sk 

 

The summary of the j48 classifications for the three test cases can be given as:  

Table 5.6 Summary of j48 Decision Tree classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Decision 

tree 

Training 

data 
120 120 0.03s 

116(96.6

%) 
4(3.3 %) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.15s 
109(90.8

%) 
11(9.2%) 

Decision 

tree 
66 % split 41 79 0.02s 

38(92.6 

%) 
3( 7.3 %) 

 



70 

 

 

Figure 5-4  Plot visualizing erroneous predictions as boxes  ‗ ‘ and correct ones as 

‗×‘  for the J48 Decision Tree testing on 10 fold cross validation. 

5.1.3 Results of Neural Network classifier (Multilayer Perceptron): 

The Multilayer Perceptron is a neural network architecture that trains using 

backpropagation and classifies instances. In [87], it is stated that ― A multilayer 

perceptron is a feedforward artificial neural network model that maps sets of input 

data onto a set of appropriate output. It is a modification of the standard linear 

perceptron in that it uses three or more layers of neurons (nodes) with nonlinear 

activation functions, and is more powerful than the perceptron in that it can 

distinguish data that is not linearly separable.‖ Feedforward means that data flows in 

one direction from input to output layer through one or more hidden layers 

(forward). This type of network is trained with the backpropagation learning 

algorithm. MLPs are extensively employed for pattern classification, prediction and 

approximation. The network used here consists of three layers, an input layer which 



71 

 

has 26 input nodes corresponding to the 26 attributes of the training data. The 27th 

‗app‘ or application name attribute is the class or output attribute. The network has 

one hidden layer and an output layer with 10 nodes. In Weka, the default value for 

hidden layers is 'a', which means one hidden layer, with the number of nodes being 

the sum of input nodes and output nodes divided by 2. So in this experiment there 

are eighteen (18) nodes in the hidden layer, because the number of input nodes is 26 

and the number of output nodes is 10 whose sum is 36. Some other default 

parameters for this network are: 

learningRate -- The amount the weights are updated is 0.3 

momentum -- Momentum applied to the weights during updating is 0.2 

No. Of epochs or passes through training data is set to 500 by default. 

The nodes in this network are all sigmoid. The details of these configuration 

parameters can be found in [83] by Witten and Frank. 

 

Figure 5-5  The neural network with one hidden layer, one input and one output 

layer. 



72 

 

Results: Running Multilayer Perceptron using 10 fold cross validation: 

=== Summary === 

Correctly Classified Instances         115               95.8333 % 

Incorrectly Classified Instances         5                4.1667 % 

Total Number of Instances              120      

Table 5.7 Confusion Matrix for MLP on 10 fold cross validation test 

a b c d e f g h i j classified as 

11 0 0 0 0 1 0 0 0 0 a = WW 

0 12 0 0 0 0 0 0 0 0 b = QL 

0 0 11 0 0 0 1 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

0 0 0 0 0 10 0 0 0 2 f = QA 

0 0 0 0 1 0 11 0 0 0 g = XL 

0 0 0 0 0 0 0 12 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 0 0 0 0 0 0 0 12 j = Sk 

 

 



73 

 

 

Figure 5-6  Plot visualizing erroneous predictions as boxes ‗ ‘ and correct ones as 

‗x‘ for the Multilayer Perceptron tested on 10 fold cross validation. 

The result of Multilayer Perceptron neural network for other schemes of test data is 

summarised in the table below:  

Table 5.8 Summary of the Multilayer Perceptron Classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Multilayer 

perceptron 

Training 

data 
120 120 8.63 s 

117(97.5

%) 
3( 2.5 %) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 9.04s 
115(95.8

%) 
5( 4.2 %) 

Multilayer 

perceptron 
66 % split 41 79 8.46s 

40( 97.5 

%) 
1( 2.5  %) 

 



74 

 

5.1.4 Results of Nearest Neighbour, IB1 Classifier: 

The nearest neighbour algorithm is in the category of lazy learners in Weka 

software. Lazy learners mean that these algorithms merely save the training 

instances and don‘t do any real processing until the classification stage, or otherwise 

they could be quite fast in building a classifier. In Weka software, ‗IB1‘ is a basic 

instance-based learner (also known as nearest neighbour classifier) which finds the 

training instance closest in Euclidean distance to the given test instance and predicts 

the same class as this training instance. If several instances have same Euclidean 

distance, the first one found is used as the predicted class. [83] 

Here the results of applying the IB1 nearest neighbour classification on the dataset 

are given: 

=== Summary === 

Correctly Classified Instances         116               96.6667 % 

Incorrectly Classified Instances         4                3.3333 % 

Total Number of Instances              120      

 

Table 5.9 Confusion Matrix for the IB1 classifier on 10 fold cross validation test 

a b c d e f g h i j classified as 

11 0 0 0 0 1 0 0 0 0 a = WW 

0 12 0 0 0 0 0 0 0 0 b = QL 

0 0 11 0 0 0 1 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

0 0 0 0 0 12 0 0 0 0 f = QA 

0 0 0 0 0 0 11 0 0 1 g = XL 

0 0 0 0 0 0 0 12 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 0 0 0 1 0 0 0 11 j = Sk 

 

 

The result of IB1 Nearest neighbour for other schemes of test data is summarised in 

the table below: 



75 

 

Table 5.10 Summary of IB1 classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Nearest 

Neighbour 

Training 

data 
120 120 <0 .01s 

120(100 

%) 
0 (0 %) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 
116(96.7

%) 
4(3.3 %) 

Nearest 

Neighbour 
66 % split 41 79 <0 .01s 41(100 %) 0( 0 %) 

 

For the case of running the classifier model on the same training set, the correct 

prediction percentage is 100%. This is because of the operational nature of the lazy 

instance base classifier Nearest Neighbour. Since it finds the training instance 

closest in Euclidean distance to the given test instance and predicts the same class as 

this training instance, so in the case when training instance is the same as test 

instances it is able to successfully classify all the test instances, because they are the 

same as it was trained on. 

5.1.5 Results of K* Nearest Neighbour, IBK*: 

IBK* is another instance-based classifier. The predicted class of a test instance is 

based upon the class of those training instances nearest to it, as determined by some 

distance function. The distance function used here is unlike that of IB1 (the 

Euclidean nearest neighbour), and is an entropy-based distance function.  

Fundamentally the distance between instances can be defined as the complexity of 

transforming one instance into another. The calculation of the complexity can be 

performed in two parts. First a finite set of transformations which map instances to 

instances is defined. A ―program‖ to transform one instance (a) to another (b) is a 

finite sequence of transformations beginning at a and ending at b. The complexity of 

a program is the length of the shortest string representing the program, and a 

Kolmogorov distance between two instances is defined to be the length of the 

shortest string connecting the two instances. The result is a distance measure from 

which K* distance is calculated by summing over all possible transformations 

between two instances [88]. 



76 

 

The results of running IBK* algorithm with the dataset in 10 fold cross validation 

are given below: 

=== Summary === 

Correctly Classified Instances         115               95.8333 % 

Incorrectly Classified Instances         5                4.1667 % 

Total Number of Instances              120      

Table 5.11 Confusion Matrix for IB K* on the 10 fold cross validation test 

a b c d e f g h i j classified as 

10 0 0 0 0 2 0 0 0 0 a = WW 

0 12 0 0 0 0 0 0 0 0 b = QL 

0 0 11 0 0 0 1 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 e = MA 

0 0 0 0 0 11 0 0 0 1 f = QA 

0 0 0 0 1 0 11 0 0 0 g = XL 

0 0 0 0 0 0 0 12 0 0 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 0 0 0 0 0 0 0 12 j = Sk 

 

The confusion matrix for K* shows the instances that were misclassified. 

The result of the K* Nearest Neighbour for other schemes of test data is summarised 

in the table below: 

Table 5.12 Summary of IBK* classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s K* 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 

120(100 

%) 
0( 0 %) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 
115(95.8

%) 
5(4.2 %) 

K*Nearest 

Neighbour 
66 % split 41 79 <0 .01s 

40( 97.5 

%) 
1(2.4%) 

 



77 

 

5.1.6 Results of OneR classifier: 

The 1R classifier uses the minimum-error attribute for prediction, discretizing 

numeric attributes. 1R is from one rule and this simple classifier generates a one-

level decision tree expressed in the form of a set of rules that all test one particular 

attribute. 1R is a simple and quick method that often produces useful rules for 

characterizing the structure in data. Simple rules frequently achieve surprisingly 

high accuracy [83] hence it was applied on this dataset and the results are 

summarised below: 

=== Summary === 

Correctly Classified Instances          67               55.8333 % 

Incorrectly Classified Instances        53               44.1667 % 

Total Number of Instances              120      

 

Table 5.13 Confusion Matrix for the 1 R classifier on the 10 fold cross validation  

a b c d e f g h i j classified as 

5 2 0 0 0 2 0 0 3 0 a = WW 

3 4 1 0 1 2 0 0 1 0 b = QL 

0 0 6 0 3 0 3 0 0 0 c = VR 

0 0 0 12 0 0 0 0 0 0 d = CF 

0 0 0 0 7 1 4 0 0 0 e = MA 

4 3 0 0 0 3 0 1 1 0 f = QA 

0 0 1 0 3 0 5 1 2 0 g = XL 

0 0 0 0 1 1 0 8 0 2 h = IV 

0 0 0 0 0 0 0 0 12 0 i = LU 

0 0 1 0 0 1 1 4 0 5 j = Sk 

 

The matrix shows that 1R classifier didn‘t achieve very accurate results here. 

The result of 1R classifier for other schemes of test data is summarised in the table 

below: 

 

 



78 

 

Table 5.14 Summary of the 1R classifications 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s 
1R 

Training 

data 
120 120 <0 .01s 83(69.2%) 37(30.8%) 

1R 
10 fold 

cross 

validation 

120 120 <0 .01s 
67(55.8 

%) 
53(44.2%) 

1R 66 % split 41 79 <0 .01s 13(31.7%) 28(68.2%) 

 

From the Table 5.15,it is observed that except for the 1R classifier which did not 

perform well on this dataset in terms of the accuracy of predictions , the other 

classifiers have fairly good prediction accuracy, with 10 fold cross-validation 

experiment accuracy ranging from 97.5% for K* nearest neighbour (IBK*), to 

90.8% for the C4.5 Decision Tree classifier. The other classifiers also lie in this 

general range with the Neural Network at 95.8% and IB1 at 96.5% being the two 

next best. However, the differences in the performances are somewhat insignificant 

in terms of only one, two, or up to five instances classified incorrectly out of 120, 

and it can be stated that their performance is statistically fairly similar. 

The training time for all the classifiers has been of the order of 0.01 seconds, except 

for the neural network, which took much more time for training i.e. 8 -9s. 

The metrics chosen for the detection of tunnelled application have proved to be 

sufficiently discriminatory so as to classify the instances to correct classes. 

 

 

 

 

 

 

 

 



79 

 

Summing up the results of all the above experiments in one table: 

Table 5.15 Summary of the 27 attributes classifications 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 120(100 %) 0(0%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 115(95.8%) 5(4.2) % 

K*Nearest 

Neighbour 
66 % split 41 79 <0 .01s 40(97.5%) 1(2.4 %) 

Nearest 

Neighbour 

Training 

data 
120 120 <0 .01s 120(100 %) 0(0%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 116(96 7%) 4(3.3%) 

Nearest 

Neighbour 
66 % split 41 79 <0 .01s 41(100%) 0(0%) 

Multilayer 

perceptron 

Training 

data 
120 120 8.63 s 117(97.5%) 3(2.5%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 9.04s 115(95.8%) 5(4.2%) 

Multilayer 

perceptron 
66 % split 41 79 8.46s 40(97.5%) 1(2.4 %) 

Decision 

tree 

Training 

data 
120 120 0.03s 116(96 7%) 4(3.3%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.15s 109(90.8%) 11(9.2%) 

Decision 

tree 
66 % split 41 79 0.02s 38(92.7%) 3(7.3%) 

Naïve 

Bayes 

Training 

data 
120 120 0.01s 115(95.8%) 5(4.2%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.01s 111(92.5%) 9(7.5%) 

Naïve 

Bayes 
66 % split 41 79 0.01s 36 (87.8%) 5 (12.2%) 

1R 
Training 

data 
120 120 <0 .01s 83(69.2%) 37(30.8%) 

1R 
10 fold 

cross 

validation 

120 120 <0 .01s 67(55.8%) 53(44.2%) 

1R 66 % split 41 79 <0 .01s 13(31.7%) 28(68.3%) 

 



80 

 

5.2 Using Packet Size Distributions alone for Identification 

In the previous section, additional discriminating metrics were added to the packet 

size distribution metric, which was previously used alone for the detection of 

network applications, UDP based applications [48], and also for TCP-based 

applications [49]. Next the data set is stripped of the newly added metrics, and only 

the bins of the packet size distribution are used so that one can observe how well 

this metric performs in the case of tunnelled application detection with the machine 

learning algorithms: 

5.2.1 Using IB1 nearest Neighbour Detection: with PSD alone 

The results for the three cases with IB1 classifier are summarised in table 5.16 

Table 5.16 Summary of IB1 classifications with only PSD bins as attributes 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Nearest 

Neighbour 

Training 

data 
120 120 <0 .01s 

106(88.3

%) 
14(11.7%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 95(79.2%) 25(20.8%) 

Nearest 

Neighbour 
66 % split 41 79 <0 .01s 

35(85.3 

%) 
6(14.6%) 

 

5.2.2 Using K* Nearest neighbour Detection: with PSD alone 

The results for the three cases with IB K* classifier are summarised in table 5.17 

Table 5.17 Summary of IB K* classifications with only PSD bins as attributes 

Algorithm Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s K*Nearest 

Neighbour 

Training 

data 
120 120 <0 .01s 

106(88.3

%) 
14(11.7%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0 .01s 
100(83.3

%) 
20(16.7%) 

K*Nearest 

Neighbour 
66 % split 41 79 <0 .01s 35(85.4%) 6(14.6%) 

 

5.2.3 Using Naïve Bayes with PSD alone 



81 

 

The results for three cases with NaïveBayes classifier are summarised in table 5.18 

Table 5.18 Summary of Naïve Bayes classifications with only PSD bins  

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Naïve 

Bayes 

Training 

data 
120 120 <0 .01s 92(76.7%) 28(23.3%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 <0 .01s 87(72.5%) 33(27.5%) 

Naïve 

Bayes 
66 % split 41 79 <0 .01s 33(80.5%) 8(19.5%) 

 

5.2.4 Using C4.5 Decision Tree with PSD alone 

The results for the three cases with C4.5 Decision Tree classifier are summarised in 

table 5.19 

Table 5.19 Summary of C4.5 Decision Tree classifications with only PSD bins  

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Decision 

tree 

Training 

data 
120 120 0.01s 

101(84.2

%) 
19(15.8%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.01s 90(75%) 30(25%)) 

Decision 

tree 
66 % split 41 79 0.01s 30(73.2%) 11(26.8%) 

 

5.2.5 Using Neural Network with PSD alone 

The results for three cases with Neural Network classifier are given in table 5.20 

Table 5.20 Summary of Neural Network classifications with only PSD bins  

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Prediction

s 

Incorrect 

Prediction

s Neural 

Network 

Training 

data 
120 120 5.13 96(80%) 24(20%) 

Neural 

Network 

10 fold 

cross 

validation 

120 120 5.18 s 91(75.8%) 29(24.2%) 

Neural 

Network 
66 % split 41 79 5.48 s 32(78%) 9(22%) 



82 

 

From the above tables if one compares with the tables of the previous dataset, in 

which all the metrics were used, the performance has degraded considerably.  The 

same comparison can be seen in the line chart below between the two sets of metrics 

used. The lines represent the accuracy of predictions for various classifier schemes 

for the both combinations of attributes or metrics. 

 

Figure 5-7  comparing the % accuracy using 27 attributes and 15 attributes (psd 

only) 

The lower line represents the accuracy of predictions for the classifiers using packet 

size distribution alone, and is significantly lower than the classifiers using 27 

attributes including packet size distribution. The 27 attributes line is above 90% 

accuracy whereas the other hovers around or below 80%. The reason for the poor 

performance when using packet size distribution alone is possibly that the 15 bins 

resolution used for representing the distribution is less than optimal [52]. Increasing 

the number of bins might have better effect on the performance. This aspect is 

explored later when packet size distribution resolution will be increased. 

5.3 Using 12 metrics excluding Packet Size Distribution for 

Identification 

Now it is known that only packet size distribution alone is not as good as when used 

in combination with the other attributes/metrics, it is worth examining how the 

classifiers would fare if the packet size distribution is completely removed from the 

0%

20%

40%

60%

80%

100%

120%

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

p
er

ce
n

ta
ge

 

Correct Predictions 27attrib Correct Predictions PSDonly



83 

 

set, and only the 12 other attributes are used in classification. Table 5.21 gives a 

summary of this for the 5 classifier schemes:  

Table 5.21 Summary of classifications with 12 attributes excluding PSD bins 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 120(100 %) 0(0%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 111(92.5%) 9(7.5%) 

K*Nearest 

Neighbour 
66 % split 41 79 <0.01 s 40(97.5%) 1(2.5%) 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 120(100 %) 0(0%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 104(86.7%) 16(13.3%) 

Nearest 

Neighbour 
66 % split 41 79 <0.01 s 35(85.4%) 6(14.6%) 

Multilayer 

perceptron 

Training 

data 
120 120 3.8 s 110(91.7%) 10(8.3%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 3.85 s 103(85.8%) 17(14.2%) 

Multilayer 

perceptron 
66 % split 41 79 3.82 s 29(70.7%)) 12(29.3%) 

Decision 

tree 

Training 

data 
120 120 0.02s 117(97.5%) 3(2.5%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.01s 105(87.5%) 15(12.5%) 

Decision 

tree 
66 % split 41 79 0.01s 37(90.2%) 4(9.8%) 

Naïve 

Bayes 

Training 

data 
120 120 0.01s 110(91.7%) 10(8.3%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.01s 105(87.5%) 15(12.5%) 

Naïve 

Bayes 
66 % split 41 79 0.01s 37(90.2%) 4(9.8%) 

 

In the table 5.21, when the time taken to build a trained model is less than 0.01s then 

it is given as 0 seconds. To make the comparison clearer, the following plot shows 

the percentages of correct predictions for the 12 attribute data sets excluding the 



84 

 

packet size distributions, and the 27 attribute one. It is again overall lower than for 

27 attributes: 

  

Figure 5-8  Comparing the accuracy using 27 attributes and 12 attributes (excluding 

psd)  

However, the difference is not as huge as the difference for the packet size 

distribution only case. The cases of coincidence can be explained easily for the 

Nearest Neighbour and K* Nearest Neighbour in the ―use training set mode‖ and in 

―split training set‖ mode because of the lazy nature of these classifiers. 

This can be seen in the Figure 5-9 which shows the three cases together. So using 

the 27 attributes, including packet size distribution bins is the appropriate 

combination of the three rather than packet size distribution alone or excluding 

packet size distribution. The case of increasing the packet size distribution 

resolution needs to be explored, however.  

0%

20%

40%

60%

80%

100%

120%

K*
NN

K*
NN

K*
NN

NN NN NN MLP MLP MLP DtreeDtreeDtreeNaïve
B

Naïve
B

Naïve
B

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

p
er

ce
n

ta
ge

 

Correct Predictions 27attrib Correct Predictions 12 attribs



85 

 

 

Figure 5-9  Comparing the % accuracy using 27, 15 (PSD only) and 12 attributes. 

5.4 Excluding Temporal Attributes for Identification 

It is questionable if the attributes which involve packet interarrival times (and there 

are 4 of them in the 27 attribute set), are consistent over varying network conditions, 

and would change according to the congestion state of the network. So these 4 

attributes are simply discarded, and then the effect on the results is observed.  Here 

the experiment is repeated with 23 attributes including the packet size distributions 

and excluding the interarrival time ones. 

 

 

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

120%

K*
NN

K*
NN

K*
NN

NN NN NN MLP MLP MLP DtreeDtreeDtreeNaïve
B

Naïve
B

Naïve
B

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

p
er

ce
n

ta
ge

 

Correct Predictions 27attrib Correct Predictions 12 attribs

Correct Predictions PSDonly



86 

 

Table 5.22 Summary of classifications with exclusion of interarrival time attributes 

 

 

 

For comparing these results with those obtained from using 27 attributes/metrics, let 

us look at the following plot: 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 120(100 %) 0(0%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 118(98.8%) 2(1.2%) 

K*Nearest 

Neighbour 
66 % split 41 79 <0.01 s 41(100 %) 0(0%) 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 120(100 %) 0(0%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 116(96.7%) 4(3.3%) 

Nearest 

Neighbour 
66 % split 41 79 <0.01 s 41(100 %) 0(0%) 

Multilayer 

perceptron 

Training 

data 
120 120 7.96 s 113(94.2%) 7(5.8%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 7.58 112(93.3%) 8(6.7%) 

Multilayer 

perceptron 
66 % split 41 79 7.1 s 39(95.1%) 2(4.9%) 

Decision 

tree 

Training 

data 
120 120 0.02s 116(96.7%) 4(3.3%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.01s 112(93.3%) 8(6.7%) 

Decision 

tree 
66 % split 41 79 0.02s 38(92.7%) 3(7.3%) 

Naïve 

Bayes 

Training 

data 
120 120 0.01s 114(95%) 6(5%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.01s 106(88.3%) 14(11.7%) 

Naïve 

Bayes 
66 % split 41 79 <0.01 s 36(87.8%) 5(12.2%) 



87 

 

 

Figure 5-10  Comparing the % accuracy using 27 attributes and 23 attributes 

(excluding IAT attributes) 

Looking at the resolution of the plot, the accuracy doesn‘t show much variation, and 

also the two lines cross each other at several places. This fact suggests that the time 

related attributes are not reliable and don‘t have a consistent effect on the 

classification predictions. Hence in further experiments the interarrival time 

attributes will not be included. 

5.5 Using 30 bins of Packet Size Distribution for Identification 

The resolution of the packet size distribution has now been increased to 30 bins; in 

addition to that there are 8 other attributes, because the interarrival time based 

attributes have been discarded. Now the following experiments are performed using 

the 38 attribute data set: 

1. Using PSD alone 

2. Using all 38 bins  

First the results of using 30 bins Packet Size Distribution alone for the detection are 

taken and compared with 15 bins Packet Size Distribution: 

 

 

 

 

80%

85%

90%

95%

100%

105%

K*
NN

K*
NN

K*
NN

NN NN NN MLP MLP MLP DtreeDtreeDtreeNaïve
B

Naïve
B

Naïve
B

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

p
er

ce
n

ta
ge

 

Correct Predictions 27attrib Correct Predictions 23 attrib



88 

 

Table 5.23 Summary of classifications with 30 bins PSD alone 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 113(94.2%) 7(5.8%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 108(90%)) 12(10%) 

K*Nearest 

Neighbour 
66 % split 41 79 <0.01 s 36(87.8%) 5(12.2%) 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 113(94.2%) 7(5.8%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 0.01 s 105(87.5%) 15(12.5%) 

Nearest 

Neighbour 
66 % split 41 79 <0.01 s 40(97.6%) 1(2.4%) 

Multilayer 

perceptron 

Training 

data 
120 120 10.31 s 110(91.7%) 10(8.3%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 10.07 s 105(87.5%) 15(12.5%) 

Multilayer 

perceptron 
66 % split 41 79 10.31 s 40(97.6%) 1(2.4%) 

Decision 

tree 

Training 

data 
120 120 0.04 s 109(90.8%) 11(9.2%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.02 s 96(80%) 24(20%) 

Decision 

tree 
66 % split 41 79 0.03 s 32(78%) 9(22%) 

Naïve 

Bayes 

Training 

data 
120 120 0.02s 88(73.3%) 32(26.7%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.02 s 87(72.5%) 33(27.5%) 

Naïve 

Bayes 
66 % split 41 79 0.02 s 31(75.6%) 10(24.4%) 

 



89 

 

 

Figure 5-11  Performance comparison of the ML classifiers for the 30 bin PSD and 

15 bin PSD 

From Figure 5-11, the 30 bin resolution is more accurate for all the classifiers except 

the Naïve Bayes. The Naïve Bayes could not make any better results by increasing 

Packet size Distribution resolution. For other classifiers the difference is significant 

and varies from 5% to 20% improvement in performance.  

This was the comparison for the packet size distributions only. What about the 

results for the overall classification which involves all the 38 attributes including 

Packet size distribution? The following table summarises the results for the 

classifiers using all 38 attribute/metrics altogether. 

The performance of the classifiers using the 38 attributes including 30 PSD bins 

versus that of using 23 attributes with 15 PSD bins can be observed from the line 

graph in Figure 5-12. For the Nearest Neighbour classifier and K* Nearest 

Neighbour classifier, and the J48 Decision tree the performance of the classifiers in 

both cases is almost exactly the same. The neural network classifier (Multilayer 

Perceptron) and Naïve Bayes classifier have shown significant improvement in their 

performance with 38 bins case. 

 

 

0%

20%

40%

60%

80%

100%

120%
co

rr
ec

t 
p

re
d

ic
ti

o
n

s 
p

er
ce

n
ta

ge
 

15 bin PSD 30 bin PSD



90 

 

Table 5.24 Summary of classifications with 38 attributes including 30 PSD bins 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 120(100 %) 0(0%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 117(97.5%) 3(2.5%) 

K*Nearest 

Neighbour 
66 % split 41 79 <0.01 s 41(100 %) 0(0%) 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 120(100 %) 0(0%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 0.01 s 116(96.7%) 4(3.3%) 

Nearest 

Neighbour 
66 % split 41 79 <0.01 s 41(100 %) 0(0%) 

Multilayer 

perceptron 

Training 

data 
120 120 19.28 s 118(98.8%) 2(1.2%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 13.42 s 116(96.7%) 4(3.3%) 

Multilayer 

perceptron 
66 % split 41 79 12.98 s 41(100 %) 0(0%) 

Decision 

tree 

Training 

data 
120 120 0.1 s 119(99.2%) 1(0.8%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.05 s 111(92.5%) 9(7.5%) 

Decision 

tree 
66 % split 41 79 0.03 s 38(92.7%) 3(7.3%) 

Naïve 

Bayes 

Training 

data 
120 120 0.01s 114(95%) 6(5%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.01 s 112(93.3%) 8(6.7%) 

Naïve 

Bayes 
66 % split 41 79 0.01 s 39(95.1%) 2(4.9%) 

 

 

 



91 

 

 

Figure 5-12  comparison of performance of ML algorithms with 23 attributes and 38 

attributes 

For further clarity, the 10 fold cross validation results are depicted in the histogram 

in Figure 5-13. The first two classifiers namely K* Nearest Neighbour and Nearest 

Neighbour, IB1 have the same performance because their accuracy is already very 

close to 100% in both the cases. So there wasn‘t much room for improvement. The 

difference for the J48 Decision Tree is also not statistically significant. The 

difference for the neural network and Naïve Bayes classifiers shows significant 

improvement, thus overall the 38 bins has resulted in a better performance. 

 

Figure 5-13  comparison in 10 fold cross validation case only 

80%

85%

90%

95%

100%

105%
co

rr
ec

t 
p

re
d

ic
ti

o
n

s 
p

er
ce

n
ta

ge
 

Correct Predictions 23 attrib Correct Predictions 38 attrib

82%

84%

86%

88%

90%

92%

94%

96%

98%

100%

K* NN NN IB1 MLP J48 DT Nbaes

p
e
rc

e
n
ta

g
e
 c

o
rr

e
c
t 
p
re

d
ic

ti
o
n
s
 

 using 23 attrib using 38 attributes



92 

 

Now the comparison of the 38 attributes classification and the 30 bins PSD only 

classifications can be made for the classifiers in Figure 5.14: 

 

Figure 5-14  Comparing 38 attributes classifications and the 30 bins PSD only  

The performance for all the classifiers has increased in percentage accuracy using 

the 38 attributes rather than only using packet size distributions with 30 bin 

resolution. 

From the previous few sections, it was seen that the 30 bin resolution has resulted in 

better performance for the case of application identification by machine learning 

algorithms especially when used in combination with the 8 other traffic attributes. 

Next the case of 50 bin resolution is taken to see if the improvement trend still exists 

in increasing the resolution from 30 bins to 50 bins. 

5.6 Using 50 bins of Packet Size Distribution for Identification 

The resolution of the packet size distribution has been increased to 50 bins, which 

means that each bin is of 30 bytes in size. Now in all there are 58 attributes with 50 

being PSD bins, and 8 other attributes, because the inter-arrival time based attributes 

have been discarded. Here it needs to be investigated whether further increasing the 

packet size distribution bins also increases the performance in terms of correct 

predictions of the machine learning algorithms. Now the following experiments 

using the 58 attribute data set is given: 

0%

20%

40%

60%

80%

100%

120%

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

p
er

ce
n

ta
ge

 

 38 attrib  PSDonly 30bin



93 

 

 

Table 5.25 Summary of classifications with 58 attributes 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Training 

data 
120 120 <0.01 s 120(100 %) 0(0%) 

K*Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 <0.01 s 117(97.5%) 3(2.5%) 

K*Nearest 

Neighbour 
66 % split 41 79 0 .01 s 41(100 %) 0(0%) 

Nearest 

Neighbour 

Training 

data 
120 120 0.01 s 120(100 %) 0(0%) 

Nearest 

Neighbour 

10 fold 

cross 

validation 

120 120 0.01 s 117(97.5%) 3(2.5%) 

Nearest 

Neighbour 
66 % split 41 79 <0.01 s 41(100 %) 0(0%) 

Multilayer 

perceptron 

Training 

data 
120 120 24.86 s 120(100 %) 0(0%) 

Multilayer 

perceptron 

10 fold 

cross 

validation 

120 120 25.6 s 115(95.8%) 5(4.2%) 

Multilayer 

perceptron 
66 % split 41 79 25.27 s 41(100 %) 0(0%) 

Decision 

tree 

Training 

data 
120 120 0.1 s 119(99.2%) 1(0.8%) 

Decision 

tree 

10 fold 

cross 

validation 

120 120 0.06 s 110(91.7%) 10(8.3%) 

Decision 

tree 
66 % split 41 79 0.03 s 36(87.8%) 5(12.2%) 

Naïve 

Bayes 

Training 

data 
120 120 0.06s 115(95.8%) 5(4.2%) 

Naïve 

Bayes 

10 fold 

cross 

validation 

120 120 0.02 s 113(94.2%) 7(5.8%) 

Naïve 

Bayes 
66 % split 41 79 0.02 s 38(92.7%) 3(7.3%) 

 



94 

 

 

Figure 5-15   Classifications using 38 attributes and 58 attributes 

From the table 5.25 and Figure 5-15, it is clear that increasing the resolution of the 

Packet size distribution to 50 bins from 30 bins has resulted in no further 

improvement in the classifier‘s performance in terms of the percentage of correct 

predictions being made. The two lines are very much coincident, and the difference 

is not significant. Hence it can be inferred that although increasing the packet size 

distribution resolution from 15 bins to 30 bins resulted in better performance of the 

classifiers in general. Further increasing the packet size distribution resolution to 

higher levels like 50 bins or 100 bins would not improve the results of the 

classifiers. However, this would add significantly to the processing overhead, 

because the total number of attributes increasing from 38 to 58 means more 

processing requirements. For example, the Multilayer Perceptron has increased the 

training time from 13.42 seconds to 25.6 seconds in the stratified cross validation 

case only. 

Thus this provides evidence that going to higher resolutions for the Packet size 

distributions is unnecessary, because the performance does not improve. Hence it 

can be concluded that 15 bins is a bit too small a resolution for use, and 50 bins 

would be unnecessarily large, so the 30 bins of Packet size distributions are near 

optimal for use in the machine learning algorithms, along with the other 8 attributes.  

80%

85%

90%

95%

100%

105%
co

rr
ec

t 
p

re
d

ic
ti

o
n

s 
p

er
ce

n
ta

ge
 

38 attrib prediction accuracy Correct Predictions 58 attribs



95 

 

 5.7 Testing on Previously Unseen Data 

In the previous experiments, the testing of machine learning algorithms was 

performed using the same training data, although with different variants such as 

splitting 66% into training and 34% into test parts or by 10 fold cross-validation, or 

even on exactly the same training set. Statistically, it seems that these results would 

be a good estimate of the actual performance over real test data. Now these training 

data are used with unseen data for testing, i.e. not from the same dataset. This test 

data is collected from new pcap trace files. Hence, it was never used in the training. 

This would give further insight into the robustness of the methodology.  

The dataset prepared with the new tracefiles contains 33 instances to be tested from 

the same applications used in previous sections. The following table summarises the 

results of the 6 different classifier algorithms tested using the separately applied test 

data. The new trace files also have 30 bins of packet size distribution in their 

corresponding attributes files, because it has been previously shown that 30 bins is 

optimal resolution for the Packet size distributions. 

Table 5.26 Summary of classifications of fresh data using 38 attributes 

Classifier Test Mode 
Total test 

instances 

Total 

training 

instances 

Time 

taken to 

build 

model 

Correct 

Predictions 

Incorrect 

Predictions 

K* 

Nearest 

Neighbour 

Separate 

test set 
33 120 <0.01 s 33(100 %) 0(0%) 

Multilayer 

perceptron 

Separate 

test set 
33 120 17.24 s 26(78.8%) 7(21.2%) 

Decision 

tree 

Separate 

test set 
33 120 0.08 s 30(90.9%) 3(9.1%) 

Nearest 

Neighbour 

Separate 

test set 
33 120 <0.01 s 33(100 %) 0(0%) 

Naïve 

Bayes 

Separate 

test set 
33 120 0.13s 32(97%) 1(3%) 

OneR 
Separate 

test set 
33 120 0.02  s 21(63.6%) 12(36.4%) 

 

In the Figure 5-16, the performance on the fresh test data is compared with two 

cases of the previous sections, i.e. the 10 fold cross validation case in figure 5-16 

and ‗use training data for testing‘ case in figure 5-17.  



96 

 

 

Figure 5-16  Predictions in fresh data and in 10 fold cross validation  

 

 

Figure 5-17  Predictions on fresh data and predictions on the training set 

The overall results do not show much difference between the fresh data or the 10 

fold cross validation case, although the 10 fold cross validation was a little better for 

the Multilayer Perceptron, so it can be observed that Multilayer Perceptron 

performance deteriorated slightly when it was tested on unseen data. The other 

algorithms had excellent accuracy results even for unseen data. The best were the 

distance based classifiers Euclidean distance based Nearest Neighbour, or its sister 

classifier K* Nearest neighbour. With the ‗use training set for testing‘ comparison, 

0%

20%

40%

60%

80%

100%

120%

K* NN NN IB1 MLP J48 DT Nbaes

p
er

ce
n

ta
ge

 o
f 

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

Correct Predictions in 10 fold cross validation With Separate DataSet

0%

20%

40%

60%

80%

100%

120%

K* NN NN IB1 MLP J48 DT Nbaes

P
er

ce
n

ta
ge

 o
f 

co
rr

ec
t 

p
re

d
ic

ti
o

n
s 

Using training set for testing With Separate test Set



97 

 

it is just slightly higher in accuracy for MLP and Decision Tree, and for others it is 

the same, because it was already stated that this mode is an optimistic mode to test 

the algorithm. So, the key finding here is that these machine learning algorithms 

worked well, not only when tested on the training data in various combinations, but 

also on fresh test data. 

5.8 Validation of the Weka Results: 

The Weka machine learning software was used for classification of the application‘s 

distributions. The test data used in the classification experiments was already 

supervised, i.e. the classes of the test instances were known beforehand. The 

purpose of the experiments was to investigate the performance of the algorithms for 

the identification/classification of applications. In this section the results of the 

Weka software are validated using two means: 

1. By comparing the classes identified by the Weka with the actual class of the 

same test instance. 

2. By comparing the Weka results of an algorithm with the results of a similar 

algorithm in Matlab. 

This validation has been performed for one experimental case only, since it would 

be redundant to repeat it for all the other cases in this chapter. The algorithm used in 

this validation is the k-nearest neighbour based classification algorithm using 

Euclidean Distance. The data set for this validation case is the dataset used in 

section 5.5 and table 5.23 which contains the packet size distribution profiles of the 

10 applications. The 120 instances of the applications data are divided into two 

groups: 80 instances form the training set, and the remaining 40 instances are used 

as test set. The test sets are defined beforehand so that the results of the 

classification are compared with the actual application classes later. 

Results produced by Weka: 

Correctly Classified Instances          32               80      % 

Incorrectly Classified Instances         8               20      % 

Total Number of Instances               40 



98 

 

 

The confusion matrix in table 5.27 gives in detail the classification results produced 

by the Weka software. The erroneous classifications are: 3 instances of Voipraider 

are classified as X-Lite, 3 instances of Skype are classified as Voipraider and 2 

instances of Quake3 Arena classified as Skype. The rest of classifications are 

correct. 

Table 5.27 Confusion Matrix for Weka results for Euclidean Nearest Neighbor 

algorithm  

a b c d e f g h i j classified as 

1 0 3 0 0 0 0 0 0 0 a = VR 

3 0 0 0 0 0 0 0 0 0 b = Sk 

0 0 5 0 0 0 0 0 0 0 c = XL 

0 0 0 3 0 0 0 0 0 0 d = CF 

0 0 0 0 5 0 0 0 0 0 e = MA 

0 2 0 0 0 3 0 0 0 0 f = QA 

0 0 0 0 0 0 3 0 0 0 g = LoU 

0 0 0 0 0 0 0 4 0 0 h = IV 

0 0 0 0 0 0 0 0 4 0 i = WW 

0 0 0 0 0 0 0 0 0 4 j = QL 

 

1. Comparing with the Actual Classes: 

The 40 instances of application data packet size distribution are given in Appendix 

C, ―The test set for Validation of Weka Results‖. By comparing the class of the test 

set with the class produced by the weka using the Euclidean nearest neighbor 

algorithm, the results are exact and accurate.  When the ―visualize classification 

errors‖ option of the Weka is selected a new window pops up, which graphically 

shows each instance classified correctly or incorrectly in a scatter-plot. When the 



99 

 

instance is clicked, its data is popped up, for example the following information is 

shown for the first instance: 

Instance: 4 

b1 : 0.01          b2 : 0.0          b3 : 0.0         b4 : 0.01         b5 : 0.0           b6 : 0.0       

b7 : 0.0           b8 : 0.0           b9 : 0.0        b10 : 0.0        b11 : 0.0        b12 : 0.01        

b13 : 0.0         b14 : 0.0         b15 : 0.0       b16 : 0.01       b17 : 0.0        b18 : 0.0          

b19 : 0.0         b20 : 0.2         b21 : 0.0       b22 : 0.0         b23 : 0.0        b24 : 0.57          

b25 : 0.0           b26 : 0.0          b27 : 0.2         b28 : 0.0           b29 : 0.0        b30 : 0.01 

predictedapp : XLite,          app : VoipRaider 

This instance was matched against the 4th instance of the test data set as shown in 

the appendix B and its class was actually found to be VoipRaider. Similarly the rest 

of the instances classified correctly were compared with the actual class and was 

found to be the same. The instances classified incorrectly were also checked in the 

test data set to be rightfully done by Weka. 

 

2. Comparing with similar Algorithm in Matlab: 

The same training data set and test data set were used in Matlab with similar 

function for the classification using the Euclidean k nearest neighbor algorithm. The 

function was knnclassify from the bioinformatics toolbox: Class = 

knnclassify(Sample, Training, Group) classifies the rows of the data matrix 

Sample into groups, based on the grouping of the rows of Training. Care needs to 

be taken in the dimensions of the three data sets. 

The summary of the results produced by this function of Matlab are: 

 

Correctly Classified Instances          31               78% 

Incorrectly Classified Instances         9               22% 

Total Number of Instances               40 

Table 5.28 Confusion Matrix for Matlab results for Euclidean Nearest Neighbor 

algorithm  



100 

 

a b c d e f g h i j classified as 

1 0 3 0 0 0 0 0 0 0 a = VR 

3 0 0 0 0 0 0 0 0 0 b = Sk 

0 0 5 0 0 0 0 0 0 0 c = XL 

0 0 0 3 0 0 0 0 0 0 d = CF 

0 0 0 0 5 0 0 0 0 0 e = MA 

0 2 0 0 0 3 0 0 0 0 f = QA 

0 0 0 0 0 0 3 0 0 0 g = LoU 

0 0 0 0 0 0 0 4 0 0 h = IV 

0 1 0 0 0 0 0 0 3 0 i = WW 

0 0 0 0 0 0 0 0 0 4 j = QL 

 

The results are very similar to the Weka results and the same instances are 

misclassified by Matlab as are misclassified by Weka, except for one instance of 

World or Warcraft which is misclassified as Skype in table 5.28, which possibly 

arose from difference in the implementation of the algorithms in the two software 

packages. Weka produced 80% classification accuracy, and the similar algorithm 

from Matlab produced similar accuracy of 78% with only slight difference of 

misclassification of one instance. In this thesis, the actual class of the test data fed 

into Weka was already known (i.e. supervised testing), hence the Weka outputs 

could always be compared with the actual classes of the instances. 

5.9 Scalability  

The previous results have shown that the machine learning schemes are able to 

successfully identify the applications in the data set based on the statistical 

parameters of the application trace file. The data set included 10 applications. The 

issue of scalability is that would the method perform similarly if the number of 

applications is increased further. The definite answer is not possible to prove, 

because this work is based on empirical results of the applications‘ data. Here the 



101 

 

number of applications is increased from 10 to 15 applications and it is investigated 

whether the method still is able to differentiate between them.  

Here the machine learning algorithm of ―IB K*‖ i.e. the Nearest Neighbour learner 

based on entropy distance is used only. The distance is not Euclidean but entropy 

based. This has performed better in accuracy than other algorithms. The five new 

applications used are: Unreal Tournament, Zattoo which is an IP TV application, 

Real Player, Remote Desktop Application and Guild Wars, a role playing game. The 

packet size distribution resolution of the trace files is 30 bins. The test mode 

selected is 10 fold cross-validation which is explained in section 5.1. According to 

Witten and Frank in [83], the standard way of predicting the error rate of a learning 

technique given a single, fixed sample of data is to use stratified 10-fold cross-

validation.  The results of the experiment on using 15 applications are shown: 

=== Summary === 

Correctly Classified Instances         171               96.0674 % 

Incorrectly Classified Instances         7                3.9326 % 

Total Number of Instances              178      

The incorrect classifications are also shown in the figure 5.18  



102 

 

 

Figure 5-18 Plot visualizing erroneous predictions as boxes  ‗ ‘ and correct ones as 

‗×‘ for the IB K* algorithm for 15 applications on 10 fold cross validation. 

 

 

 

 

 

 

 

 

 

 

 



103 

 

Table 5.29 Confusion Matrix for IBK* classifier on 15 applications data 

a b c d e   f g h i j k l m n o classified as 

12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 a = VR 

0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 b = SK 

1 0 11 0 0 0 0 0 0 0 0 0 0 0 0 c = XL 

0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 d = CF 

0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 e = MA 

0 1 0 0 0 11 0 0 0 0 0 0 0 0 0 f = QL 

0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 g = LU 

0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 h = IV 

0 0 0 0 0 0 0 0 11 1 0 0 0 0 0 i = WW 

0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 j = QL 

0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 k = UT 

0 0 0 0 0 0 0 0 0 1 0 10 0 1 0 l = RD 

0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 m = RP 

0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 n =GW 

1 0 0 1 0 0 0 0 0 0 0 0 0 0 10 o = ZT 

 

These results suggest that addition of new applications would not affect the 

classification accuracy very much at least, as the 15 applications which have been 

tested here show an accuracy of 96.1 %. The same case of the IB K* algorithm with 

10 applications tested with 10 fold cross validation had an accuracy of 96.67% as 

given in Table 5.24. Therefore these figures suggest that the method would hold its 

utility for a considerable number of applications. However it has not been proven 

that it would work given an extremely large database of applications. The exact 

limiting number of applications is not possible to show using the empirical methods 

in this work.  



104 

 

Chapter 6 Conclusions and Future Work 

 

In this chapter, concluding remarks about this work and recommendations for future 

work are given. The main contributions of the thesis are highlighted below for a 

quick overview: 

 

 This work presents a statistical approach for tunnelled application 

identification combining PSD with other parameters. 

 The identification can be performed for the actual application being run 

inside the application layer tunnel. 

 The optimal parameters combination found out is to use 30 bins of PSD with 

8 other parameters. 

 Among the supervised machine learning algorithms, Nearest Neighbor (IB1 

and IBK*) are best in accuracy of classification. 

 Works for unencrypted HTTP as well as encrypted HTTPS tunnelled 

applications. 

 Scalability: Increasing from 10 applications to 15 applications, the 

performance did not degrade significantly. 

 

 

 

 

 

 

 



105 

 

6.1 Conclusions 

Application-layer tunnels are a significant security threat for networks because those 

applications which are restricted by firewalls like bandwidth consuming network 

games, peer-to-peer file sharing, video and audio streaming, and chat are carried 

through via the allowed protocols like HTTP,  HTTPS and the firewall security 

policy is thwarted. The identification of the actual application running across the 

network is important for network management, security and abuse prevention. The 

existing techniques for identification of applications running across the network, for 

example port number based identification, packet data analysis techniques are not 

always successful, especially for encrypted packets. This work has described a 

statistical approach to detect applications which are running using application level 

tunnels. Previous work has shown the packet size distribution to be an effective 

metric for detecting most network applications, both UDP and TCP based 

applications.  In this work packet stream statistical parameters with packet size 

distribution being an important parameter are shown to be able to identify the 

network applications successfully. The tunnelled applications are differentiable and 

identifiable based on the parameter combinations used. 

The applications running within protocol tunnels can be identified from their traffic 

statistical parameters using machine learning algorithms. The significant metrics or 

parameters for this have been found to be data packet ratio, ratio of large to small 

packets, byte ratio, percentage of time spent idle and the packet size distribution 

bins. The temporal attributes of Interarrival Times were found to be not very helpful 

in classification because of their inconsistency and the fact that they are dependent 

on the congestion state of the underlying network. The approach doesn‘t require all 

packets of a traffic stream to be saved, however there need to be enough packets to 

form a consistent packet size distribution. 

Secondly, the packet size distribution was found to be a significant component of 

the attribute set. A 30 bin resolution is the optimal one considering the accuracy of 

classification and processing requirements. The performance of the machine 

learning algorithms was compared in cases of resolution at 15 bins, 30 bins and 50 

bins. While the performance improved in the transition from 15 bin resolution to the 



106 

 

30 bin resolution, the same did not happen for the next transition from 30 bins to 50 

bins. Rather the performance for the most cases was similar or even worse in a few 

cases. It should also be considered that this increase from 30 bin resolution to 50 bin 

resolution meant adding 20 parameters to every instance of the data set for training 

or testing. This increases the training time for the classifiers as well, as can be seen 

from table 5.25 for 58 attributes and table 5.24 for 38 attributes classifications. This 

fact would be more significant when the data set size becomes much larger to 

include thousands of instances and when the analysis has to be done in real time. 

Hence it is concluded that 30 bin resolution should be used for the packet size 

distribution. The effect of smaller changes in the resolution such as changes to 35 

bins or 25 bins or 40 bins has not been considered in this work. It is assumed that 

the difference introduced by such smaller changes would still be smaller than the 

difference represented by the 30 bin to 50 bin resolution change.  It was also shown 

that in the case of the Packet size distribution not being available, or being 

manipulated, discarded, one can still have an identification of the application based 

on the other statistics as in Figure 5-9, although the confidence of prediction is 

reduced. 

The use of Machine Learning algorithms for the purpose of application 

identification with the training parameters containing Packet Size Distribution as the 

key parameter is a novel aspect in this work. The work of Li Bo [49] and Parish [48] 

were based on Packet Size Distribution bins only and they used simple statistical 

tests like Chi Squared Test for the purpose of identification. Machine learning 

algorithms used in this research with the exception of the OneR algorithm have 

produced fairly accurate results, and any one would be a suitable candidate if a 

single algorithm detector is desired to be built. The neural network based detector 

would be a little exacting on time though compared with simpler ones. The distance 

based lazy learning algorithms , namely, the Nearest Neighbour based on Euclidean 

distance (IB1) and the Nearest Neighbour based on entropy measured distance 

(IBK*) have performed better than the rest in all cases and combinations of the 

input attributes. These two algorithms have the least time for training of the 

classifier as well. Hence it is recommended that if only one algorithm is to be used 

in the identification process, it should be either of these two. However it still would 



107 

 

be best to use a few other algorithms in addition, so that the results can be 

compared. Possibly if the training data set size becomes very large due to inclusion 

of a large number of applications, the relative accuracy of the algorithms might 

change, hence a supervised learning test for the algorithms would be advisable after 

inclusion of a few tens of applications in the training data. 

The training data preparation should be taken with care. It is important that the size 

of the connection to be put for investigation be large enough to produce statistically 

accurate results, for this it is recommended that the connection should have at least 

800 packets. 

The issue of scalability is that the method should work for large number of 

applications. This method was tried using 10 applications with various machine 

learning algorithms. The results of the nearest neighbour algorithm based on entropy 

distance, known as IB K* in the WEKA software was the best performing 

algorithm. In the 10 fold cross validation case of the 10 applications‘ data, the 

algorithms showed a classification accuracy of 96.67%as shown in Table 5.24 in the 

case of IB K* with 10 fold cross validation. Then to have an estimate of the 

scalability, five new applications were added to the applications‘ dataset. The same 

algorithm was tested again and it showed the classification accuracy of 96.1% which 

is very close to the 10 applications case. Although the dataset had increased by 50%, 

still the classification results were almost of the same accuracy. Only the results of 

the 10 fold cross validation were taken because this is a more general and better way 

to mitigate any bias caused by the particular sample (from training data) chosen for 

holdout than the other methods described in section 5.1. In 10 fold cross validation, 

the whole process of training and testing is repeated several times with different 

random samples from the data set.  According to Witten and Frank in [83], this is 

the standard way of predicting the error rate of a learning technique. The results of 

the 10 fold cross validation for the 15 application case suggests that the method 

would be scalable for addition of new applications. However since these results are 

based on empirical evidence only, there is not a definite way to prove that this 

statistical approach would work for an arbitrary increase in applications. At least the 

15 applications tested are proven to work with empirical evidence. 



108 

 

This method does not require that a specific portion of application packets stream be 

captured by the detection mechanism, unlike other approaches in traffic 

classification. Some approaches require that the beginning portion of the TCP 

connection be captured so that signature mapping can be performed over it, while 

others require the whole length of the connection be saved. This can be difficult at 

times for the reason that it requires large amounts of data to be captured and saved. 

In this technique, however the trace file could be taken from any time of the 

operation of the application as long as the size of the trace is sufficient to build the 

statistical packet size distribution and other parameters. 

An important feature of this work is that this detection mechanism is able to identify 

the actual application which is being run inside an application layer tunnel. There is 

other work in which researchers have tried to detect tunnelling activities in a 

network; however their focus was mostly to identify whenever one protocol is 

tunnelled inside another protocol. In other words most tunnelling detection work has 

tried to identify whether there is tunnelling activity going on or not. That is not as 

desirable as the approach in this work, as in some cases tunnelling traffic is quite 

legitimate. For example, in HTTPS tunnelling, several legitimate web pages use 

HTTPS encryption to communicate their login details or other secure transactions or 

VPNs. 

6.2 Future Work 

This method of identification of tunnelled applications requires that the tunnelling 

application packet traces should be saved first and then trained or tested using the 

captured pcap trace files in an offline manner. Several different tools are employed 

to perform different parts of the process including Wireshark and its command line 

counterpart ‗tshark‘ performing the packet capture and filtering work. Then a 

Matlab program is used for the extraction of the attributes for the connections, and 

saving the training data file. Machine learning is then performed from the saved 

files using the WEKA software. The next enhancement to the work which would 

require a lot of programming effort is to perform these tasks in a single process, so 

that the results can be obtained in real time while the applications are running.   



109 

 

Although the IB K* algorithm is computationally efficient in addition to having 

excellent prediction accuracy, it would be useful to investigate the machine learning 

algorithms and categorize them for computational performance as well and not just 

for classification accuracy alone. In this work the classification accuracy only was 

considered when choosing the best performing machine learning algorithm. The 

reasons why this is acceptable for this work are that firstly the methodology adopted 

is an offline analysis of packet trace files, and secondly the applications‘ dataset 

were not very large in size. However for real-time detection operation, and with a 

large number of applications in the dataset, the computational performance of the 

machine learning algorithm is also worth considering.  

In this work only the five machine learning algorithms were considered from the 

WEKA (Waikato Environment for Knowledge Analysis) software. These are: 

Naïve Bayes 

J48 Decision Tree 

Multilayer Perceptron 

Nearest Neighbour Euclidean IB1 

Nearest Neighbour Entropy based, IB K* 

The IB K* was the best algorithm in accuracy and performance of the computations. 

These algorithms gave acceptable results for the purpose of this study, however in 

future the usage of a plethora of other machine learning algorithms can also be 

undertaken to compare the performance and accuracy of the results. 

 

 

 

 

 



110 

 

Publications based on this work: 

Mujtaba, G. and Parish, D.J., ''Detection of Applications Within Encrypted Tunnels 

Using Packet Size Distributions'', ICITST 09, London, November 2009, ISSN 978-

1-4244-5647-5.  

Mujtaba, G. and Parish, D.J., ''Detection of Tunnelled Applications using Packet 

Size Distributions'', PGNet 2009, Liverpool JMU, Liverpool JMU, June 2009, pp 

53-57, ISBN 978-1-902560-22-9.  

  



111 

 

References 
[1] ―Badwidth Bandits‖, white paper, 

http://www.computerweekly.com/Articles/2010/07/09/241896/White-paper-

Bandwidth-bandits-Are-you-keeping-them-in.htm, last accessed on 14th December, 

2010. 

[2] Bo Li, ―Identification of TCP Applications‖, Doctoral Thesis, Loughborough 

University, 2006. 

[3] Siau, K., Nah, F., and Teng, J. Internet abuse and acceptable Internet 

use policy, Commun. ACM 45, 1 (Jan. 2002), 75-79.  

[4] Internet use statistics, http://www.connections-usa.com/employee-internet-

usage.html accessed last on 27th July, 2010 

[5] J. Hill, Bypassing Firewalls: Tools and Techniques, in: 12th Annual FIRST 

Conference, Chicago, IL, USA, 2000. 

[6] HTTPS, ―Secure Hypertext Transfer Protocol‖, rfc 2660,  

http://tools.ietf.org/html/rfc2660,  last accessed on 14th December, 2010 

[7] Ido Dubrawsky (2003-07-29). "Firewall Evolution - Deep Packet Inspection". 

Security Focus. http://www.securityfocus.com/infocus/1716. Retrieved 1st Oct., 

2010. 

 [8] M. Dusi, M. Crotti, F. Gringoli, L. Salgarelli, Tunnel Hunter: Detecting 

application-layer tunnels with statistical fingerprinting, Computer Networks, 

Volume 53, Issue 1, 16 January 2009, Pages 81-97, ISSN 1389-1286 

[9] OSI Reference Model — The ISO Model of Architecture for Open Systems 

Interconnection, Hubert Zimmermann, IEEE Transactions on Communications, vol. 

28, no. 4, April 1980, pp. 425 – 432 

[10] H. Clare, ―Internet and e-mail: use and abuse”, Institute of Personnel and 

Development, 2000. 

[11] Ec. Comer Computer Networks and Internets, prentice-Hall, 1999 

[12] F. Kurose W. Rose, Computer Networking, Pearson Education, 2003 

http://www.securityfocus.com/infocus/1716
http://en.wikipedia.org/w/index.php?title=Security_Focus&action=edit&redlink=1
http://www.securityfocus.com/infocus/1716


112 

 

[13] RFC 1122, Requirements for Internet Hosts -- Communication Layers, IETF, 

R. Braden, October 1989 

[14] W. Richard Stevens, TCP/IP Illustrated Volume 1, Addison-Wesley, 1994. 

[15] Z. Wang and J. Crowcroft, A new congestion control scheme: slow start and 

search, Computer Communications Rev, 1991 

[16] http://www.ietf.org/rfc/rfc0793.txt, last accessed on 14th December, 2010. 

[17] Tanenabaum, Andrew .S (2003), Computer Network, fourth edition, New 

Jersey.  

[18] RFC 959 – (Standard) File Transfer Protocol (FTP). J. Postel, J. Reynolds. 

October 1985. 

[19] Gnu Http tunnel, www.nocrew.org/software/httptunnel.html, last accessed on 

14th December, 2010. 

[20] Wireshark, the world‘s foremost network protocol analyzer, 

www.wireshark.org, accessed last on 28th July, 2010. 

[21] http://commons.wikimedia.org/wiki/File:Firewall.png, last accessed on 14th 

December, 2010. 

[22] Introduction to firewalls, http://www.tns.com/firewalls.asp, last accessed on 14th 

December, 2010. 

[23] J. Hill, Bypassing Firewalls: Tools and Techniques, in: 12th Annual FIRST 

Conference, Chicago, IL, USA, 2000. 

 [24] ‗Tunneling for Dollars: Comparing IPSec and PPTP for Extranet Security‘ By 

Julie Bort http://www.intranetjournal.com/foundation/tunneling.shtml, last accessed 

on 14th December, 2010 

[25] C. Perkins “IP Encapsulation within IP‖, RFC2003, October 1996 

[26] http://www.fire-drill.com/about.html, last accessed on 14th December, 2010 

[27] ―Socks Protocol Version 5‖ http://www.ietf.org/rfc/rfc1928.txt, last accessed on 

14th December, 2010 

http://tools.ietf.org/html/rfc959


113 

 

[28] M. Dusi, M. Crotti, F. Gringoli, L. Salgarelli, Tunnel Hunter: Detecting 

application-layer tunnels with statistical fingerprinting, Computer Networks, 

Volume 53, Issue 1, 16 January 2009, Pages 81-97, ISSN 1389-1286 

[29] http://www.dnstunnel.de last accessed: 25 July, 2010. 

 [30] Proceedings Of The 2002 IEEE Workshop On Information Assurance 

―Detecting HTTP Tunnelling Activities‖ Daniel J. Pack, , William Streilein, Seth 

Webster, and Robert Cunningham 

[31] http://www.artofping.com last accessed: 25th July, 2010 

[32] The SSL Protocol: Version 3.0 Netscape's final SSL 3.0 

draft.http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt (November 

18, 1996) 

[33] ―The evils of SSL tunneling‖, 

http://msmvps.com/blogs/shinder/pages/12268.aspx, last accessed on 14th 

December, 2010 

[34] Youngsong Mun, Hyewon K. Lee, Understanding IPv6 

Springer 2005, ISBN: 0387254293 

 [35] http://www.http-tunnel.com last accessed : 25th July, 2010 

[36] http://www.networktunnel.net last accessed : 25th July, 2010 

[37] http://www.snort.org last accessed : 25th July, 2010 

[38] http://www.bro-ids.org last accessed : 25th July, 2010 

[39] K. Borders, A. Prakash, Web tap: detecting covert web traffic, in: CCS‘04: 

Proceedings of the 11th ACM conference on Computer and Communications 

Security, Washington DC, USA, 2004, pp. 110–120. 

[40]  M. Dusi, M. Crotti, F. Gringoli, L. Salgarelli, Detection of encrypted tunnels 

across network boundaries, in: Proceedings of the 43rd IEEE International 

Conference on Communications (ICC 2008), Beijing, China, 2008. 

[41] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli, Detecting HTTP tunnels with 

statistical mechanisms, in: Proceedings of the 42nd IEEE International Conference 

on Communications (ICC 2007), Glasgow, Scotland, 2007, pp. 6162–6168. 



114 

 

[42] Using HTTP as an RPC transport," http://msdn.microsoft.com/library/psdk/rpc/ 

pv-http 7h4k.htm. 

[43] V. Paxson, Empirically derived analytic models of wide-area TCP connections, 

IEEE/ACM Transactions on Networking 2 (4) (1994) 316–336. 

[44] A.W. Moore, D. Zuev, Internet traffic classification using Bayesian analysis 

techniques, in: SIGMETRICS ‘05: Proceedings of the 2005 ACM SIGMETRICS 

International Conference on Measurement and Modeling of Computer Systems, 

Banff, Alberta, Canada, 2005, pp. 50–60. 

[45] A. Finamore, M. Mellia, M. Meo, and D. Rossi, ―Kiss: Stochastic packet 

inspection,‖ in Traffic Measurement and Analysis (TMA), Springer-Verlag 

LNCS 5537, May 2009. 

[46] A. W. Moore and D. Zuev. Discriminators for use in flow-based classification. 

Technical report, Intel Research, Cambridge, 2005. 

[47] AULD, T., MOORE, A.W. and GULL, S.F., 2007. Bayesian neural networks 

for internet traffic classification. IEEE Transaction on Neural Networks, 18, 223-

239. 

[48] D.J. Parish, K. Bharadia, A. Larkum, I. W. Phillips and M. Oliver 

―Using Packet Size Distributions to Identify Real-Time Networked Applications‖ 

Communications, IEE Proceedings, vol. 150, Aug 2003, pp. 221-227 

[49] Bo, L., Parish, D.J., Sandford, J.M. and Sandford, P., ''Using TCP Packet Size 

Distributions for Application Detection'', PGNet 2006 Proceedings, Merabiti, 

Pereira and Abuelma'atti, Liverpool John Moores University, PGNet, Liverpool 

John Moores University, June 2006, pp 184-189 

[50] IANA Port Assignments, ―Current list of well-known and registered port 

assignments, 2003‖, http://www.isi.edu/in-notes/iana/assignments/port-numbers, 

Last accessed on 14/12/2010 

[51] A. W. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt. Architecture of a 

Network Monitor, In Passive & Active Measurement Workshop, 2003, (PAM2003), 

La Jolla, CA, April 2003. 



115 

 

[52] Ketan Bharadia, ―Network Application Detection Techniques‖, Doctoral 

Thesis, Loughborough University, June 2001 

[53] Cubehub HTTP Tunnel, http://twock.com/java/cubehub. Last accessed on 

10/12/2010 

 [54] Pingfu HTTP tunnel solutions, http://www.artofping.com/ Last accessed on 

10/12/2010 

[55] L. Brinkhoff, GNU httptunnel, <http://www.nocrew.org/software/ 

httptunnel.html Last accessed on 10/12/2010 

 [56] R. Mills, The Linux Academy HTTP Tunnel, http://the-linuxacademy.co.uk 

/downloads.htm Last accessed on 10/12/2010. 

[57] RuneScape in Guinness World Records!". Jagex. 

http://news.runescape.com/newsitem.ws?id=1386. Last accessed on 2008-08-22. 

[58] Guinness World Records Gamer's Edition - Records - PC Gaming  

[59] MMOG Subscriptions Market Share April 2008". mmogchart.com, Bruce 

Sterling Woodcock. http://www.mmogchart.com/Chart7.html. Retrieved on 2008-

09-24. 

[60] www.voipraider.com, Last accessed on 14th December, 2010 

[61] www.camfrog.com, Last accessed on 14th December, 2010 

[62] Skype:  LLC Books,, General Books LLC, 2010. ISBN1155277457, 

9781155277455. 

[63] http://www.networkworld.com/news/2009/032509-skype-is-largest-

international-voice.html?tc=vc=html, Last accessed on 14th December, 2010 

[64] International carriers' traffic grows despite Skype popularity". TeleGeography 

Report and Database. 

http://www.telegeography.com/cu/article.php?article_id=15656&email=html. 

Retrieved 2006-12-07. 

[65] "Skype Commands 13 Percent of International Phone Calls." The Inquisitr. 3 

May 2010. Web. 4 May 2010. <http://www.inquisitr.com/71802/skype-commands-

13-percent-of-international-calls/>. 

[66] http://secondlife.com/ Last accessed on 14th December, 2010. 

http://www.google.co.uk/search?tbs=bks:1&tbo=p&q=+inauthor:%22Books,+LLC%22&source=gbs_metadata_r&cad=2


116 

 

[67] "Emmy Online". Emmyonline.tv., 

http://www.emmyonline.tv/mediacenter/tech_2k7_winners.html. Retrieved 2010-

02-19. 

[68]"Current user metrics for Second Life". Secondlife.com. 

http://secondlife.com/xmlhttp/secondlife.php. Retrieved 2010-02-19. 

[69] ―CounterPath(TM) Wins INTERNET TELEPHONY(R) Magazine's "Product 

of the Year" Award for 2005‖ http://goliath.ecnext.com/coms2/gi_0199-

5136616/CounterPath-TM-Wins-INTERNET-TELEPHONY.html , last accessed on 

14th December, 2010.   

[70] Angela Orebaugh, Gilbert Ramirez, Josh Burke, ―Wireshark and Ethereal 

network protocol analyzer toolkit‖, Syngress, 2007, ISBN1597490733, 

9781597490733   

[71] W. Schefler, Statistics Concepts and Applications, The Benjamin/Cummings 

Publishing Company, 1988. 

[72] J. Kitchens, Exploring Statistics: A Modern Introduction to Data Analysis and 

Inference, 2nd Edition Brooks/Cole Publishing Campany, 1996 

[73] Snedecor, George W. and Cochran, William G. (1989), Statistical Methods, 

Eighth Edition, Iowa State University Press.  

[74] How to bypass Internet censorship, http://www.zensur.freerk.com accessed last 

on 02 September, 2010. 

[75] J. Hill, Bypassing Firewalls: Tools and Techniques, in: 12th Annual FIRST 

Conference, Chicago, IL, USA, 2000. 

[76] Network Sniffer and Analyzer, www.wireshark.org, last accessed on 14th 

December, 2010 

[77] tshark - Dump and analyze network traffic, http://www.wireshark.org/docs/man-

pages/tshark.html, last accessed on 14th December, 2010 

[78] Gilat, Amos    MATLAB :   an introduction with applications /    Hoboken, N.J. 

:   Wiley ;   Chichester :   John Wiley,   2008.  

[79]. Li, Z.; Yuan, R.; Guan, X., ―Accurate classification of the internet traffic based 

on the SVM method ‖, IEEE ICC 2007, pp. 1373-1378. 

http://www.google.co.uk/search?tbs=bks:1&tbo=p&q=+inauthor:%22Angela+Orebaugh%22&source=gbs_metadata_r&cad=8
http://www.google.co.uk/search?tbs=bks:1&tbo=p&q=+inauthor:%22Gilbert+Ramirez%22&source=gbs_metadata_r&cad=8
http://www.google.co.uk/search?tbs=bks:1&tbo=p&q=+inauthor:%22Josh+Burke%22&source=gbs_metadata_r&cad=8


117 

 

[80]. PACK, D.J., STREILEIN, W., WEBSTER, S. and CUNNINGHAM, R., 2002. 

Detecting HTTP Tunneling Activities, in 2002 IEEE, Workshop on Information 

Assurance,. 2002. United States Military Academy, West Point, NY: IEEE, 2002. 

[81] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter 

Reutemann, and Ian H. Witten. 2009. The WEKA data mining software: an update. 

SIGKDD Explor. Newsl. 11, 1 (November 2009), 10-18. 

DOI=10.1145/1656274.1656278  

[82] http://www.cs.ccsu.edu/~markov/weka-tutorial.pdf, last accessed on 14th 

December, 2010 

[83] Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools and 

Techniques (Second Edition) June 2005 

[84] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann 

Publishers, 1993. 

[85] Quinlan, J. R. 1986. Induction of decision trees. Machine Learning, 1, 81-106. 

[86] Patil, Purushottam R., Revankar, Pravin and Joshi, Prashant. The Application 

of Data Mining for Direct Marketing 2009 

[87] Cybenko, G. 1989. Approximation by superpositions of a sigmoidal function 

Mathematics of Control, Signals, and Systems (MCSS), 2(4), 303–314. 

 [88] John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an 

Entropic Distance Measure. : 12th International Conference on Machine Learning, 

108-114, 1995. 

[89] AULD, T., MOORE, A.W. and GULL, S.F., 2007. Bayesian neural networks 

for internet traffic classification. IEEE Transaction on Neural Networks, 18, 223-

239. 

[90] ―Websense, Essential Information Protection‖,  

http://www.websense.com/content/home.aspx  retrieved on 11th February, 2011. 

[91] ―How to bypass Websense‖, http://www.thepicky.com/internet/how-do-i-

bypass-websense , retrieved on 4th February, 2011.  



118 

 

[92] Rui Wang, Yang Liu, Yuexiang Yang, Xiaoyong Zhou, "Solving the App-

Level Classification Problem of P2P Traffic Via Optimized Support Vector 

Machines," Intelligent Systems Design and Applications, International Conference 

on, pp. 534-539, Sixth International Conference on Intelligent Systems Design and 

Applications (ISDA'06) Volume 2, 2006  

[93] N. Williams, S. Zander, and G. Armitage, ―A preliminary performance 

comparison of five machine learning algorithms for practical IP traffic flow 

classification,‖ Special Interest Group on Data Communication (SIGCOMM) 

Computer Communication Review, vol. 36, no. 5, pp. 5– 16, 2006. 

 [94] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, ―Traffic classification 

through simple statistical fingerprinting,‖ SIGCOMM Computer Communications, 

Rev., vol. 37, no. 1, pp. 5–16, 2007.  

[95] A. Mena and J. Heidemann. An Empirical Study of Real Audio Traffic. In 

Proceedings of the IEEE Infocom, pages 101–110, Tel-Aviv, Israel, March 2000. 

[96] C. Dewes, A. Wichmann, and A. Feldmann. An analysis of Internet chat 

systems. In IMC ‘03: Proceedings of the 3rd ACM SIGCOMM conference on 

Internet measurement, pages 51–64, Miami Beach, FL, USA, October 2003. 

[97] Bernaille, L., Teixeira, R., Akodkenou, I., Soule, A., Salamatian, K.: Traffic 

classification on the fly. SIGCOMM Comput. Commun. Rev. 36 (2006) 23–26 



119 

 

Appendix A: The Matlab Code 

Matlab Code: m files 

Here the matlab code used in this work is attached. There are 4 files: 

Chi2gui.m:    the file used for chi square analysis of the PSDs from tracefiles. 

Modegui.m:   this file is used to input the pcap wireshark file 

Dostsh.m:      the code to convert the pcap to text file 

Onecon.m:    the code to obtain traffic parameters from the TCP conections 

 

1. Chi2gui.m 

2. clc 
3. close all 
4. clear all; 
5. display('observed excel file ?'); 
6.   
7.   
8.  [fname, dirpath] = uigetfile('*.xls') 
9.   
10.   

11. ob_xl_fp = xlsread([dirpath fname]); % Observed excel file 

12.   

13.  [fname2,dirpath2] = uigetfile('*.xls') 

14.   

15.   

16. exp_xl_fp = xlsread([dirpath2 fname2]); % expected excel 

file 

17.   

18.   

19. %removing zero packet sizes  

20. k = 1; 

21. for n = 1:max(ob_xl_fp(:,1)) 

22.      

23.     if(ob_xl_fp(n,2) ~= 0.0) 

24.       newobfile(k,2) = ob_xl_fp(n,2); 

25.       newobfile(k,1) = k; 

26.       k = k +1;         

27.      

28.     end 

29.      

30. end 

31.   

32. k = 1; 

33. for n = 1:max(exp_xl_fp(:,1)) 

34.      



120 

 

35.     if(exp_xl_fp(n,2) ~= 0.0) 

36.       newexfile(k,2) = exp_xl_fp(n,2); 

37.       newexfile(k,1) = k; 

38.       k = k +1;         

39.      

40.     end 

41.      

42. end 

43.   

44. %  for a = 1:4 

45.       

46.      

47. no_of_bins = input('enter the no of bins for the 

distribution   '); % no. of Bin 

48. bin_size = ceil(1460/no_of_bins) 

49.   

50.   

51. % initializing arrays for observed and expected 

distributions 

52. % clear o_distribution; 

53. % clear e_distribution; 

54. o_distribution(no_of_bins) = 0.0; 

55. e_distribution(no_of_bins) = 0.0; 

56.   

57. % Processing to bin allocations for observed file 

58. for i = 1:max(newobfile(:,1)) 

59.     binpos = ceil(newobfile(i,2)/bin_size); 

60.     o_distribution(binpos) = o_distribution(binpos)+1; 

61. end 

62.   

63. % removing the smaller frequencies 

64. for m = 1:no_of_bins 

65.      if((o_distribution(m))<=5) 

66.          o_distribution(m)=0; 

67.       end 

68. end 

69.   

70. % clear o_dist_nor; 

71. o_dist_nor = o_distribution/max(newobfile(:,1)); % 

Normalization process 

72.   

73.   

74.   

75. % Processing to bin allocations for expected file 

76. for i = 1:max(newexfile(:,1)) 

77.     binpos = ceil(newexfile(i,2)/bin_size); 

78.     e_distribution(binpos) = e_distribution(binpos)+1; 

79. end 

80.   

81. % removing the smaller frequencies  

82.   

83. for m = 1:no_of_bins 

84.     if((e_distribution(m))<=5) 



121 

 

85.         e_distribution(m) = 0; 

86.     end 

87.      

88. end 

89.   

90. % clear e_dist_nor; 

91. e_dist_nor = e_distribution/max(newexfile(:,1)); % 

Normalization process 

92.   

93. % clear theory_dist; 

94. theory_dist = ((o_dist_nor*200)+(e_dist_nor*200))*0.5; 

95. % 

96. % clear DOF; 

97. DOF  = -1; 

98. % clear chi_val; 

99. chi_val = 0; 

100. for i = 1:no_of_bins 

101.     if (theory_dist(i) ~= 0.0) 

102.         DOF = DOF+1; 

103.         chi_val = chi_val+(((o_dist_nor(i)*200)-

(theory_dist(i)))^2)/(theory_dist(i)); 

104.     end 

105. end 

106. display('the chi value is :') 

107. display(chi_val) 

108. display('for the degree of freedom = ') 

109. display(DOF) 

110.  

 

 

2 Modegui.m : this file is used to input the pcap wireshark file 

3 function varargout = modegui(varargin) 

4 % MODEGUI M-file for modegui.fig 

5 %      MODEGUI, by itself, creates a new MODEGUI or raises the 

existing 

6 %      singleton*. 

7 % 

8 %      H = MODEGUI returns the handle to a new MODEGUI or the 

handle to 

9 %      the existing singleton*. 

10 % 
11 %      MODEGUI('CALLBACK',hObject,eventData,handles,...) calls 

the local 

12 %      function named CALLBACK in MODEGUI.M with the given input 
arguments. 

13   
14 %      instance to run (singleton)". 
15 % 
16 % See also: GUIDE, GUIDATA, GUIHANDLES 
17   
18 % Edit the above text to modify the response to help modegui 



122 

 

19   
20 % Last Modified by GUIDE v2.5 08-Mar-2010 13:59:55 
21   
22 % Begin initialization code - DO NOT EDIT 
23 gui_Singleton = 1; 
24 gui_State = struct('gui_Name',       mfilename, ... 
25                    'gui_Singleton',  gui_Singleton, ... 
26                    'gui_OpeningFcn', @modegui_OpeningFcn, ... 
27                    'gui_OutputFcn',  @modegui_OutputFcn, ... 
28                    'gui_LayoutFcn',  [] , ... 
29                    'gui_Callback',   []); 
30 if nargin && ischar(varargin{1}) 
31     gui_State.gui_Callback = str2func(varargin{1}); 
32 end 
33   
34 if nargout 
35     [varargout{1:nargout}] = gui_mainfcn(gui_State, 

varargin{:}); 

36 else 
37     gui_mainfcn(gui_State, varargin{:}); 
38 end 
39 % End initialization code - DO NOT EDIT 
40   
41   
42 % --- Executes just before modegui is made visible. 
43 function modegui_OpeningFcn(hObject, eventdata, handles, 

varargin) 

44 % This function has no output args, see OutputFcn. 
45 % hObject    handle to figure 
46 % eventdata  reserved - to be defined in a future version of 

MATLAB 

47 % handles    structure with handles and user data (see GUIDATA) 
48 % varargin   command line arguments to modegui (see VARARGIN) 
49   
50 % Choose default command line output for modegui 
51 handles.output = hObject; 
52   
53 % Update handles structure 
54 guidata(hObject, handles); 
55   
56 % UIWAIT makes modegui wait for user response (see UIRESUME) 
57 % uiwait(handles.figure1); 
58   
59   
60 % --- Outputs from this function are returned to the command 

line. 

61 function varargout = modegui_OutputFcn(hObject, eventdata, 
handles)  

62 % varargout  cell array for returning output args (see 
VARARGOUT); 

63 % hObject    handle to figure 
64 % eventdata  reserved - to be defined in a future version of 

MATLAB 

65 % handles    structure with handles and user data (see GUIDATA) 



123 

 

66   
67 % Get default command line output from handles structure 
68 varargout{1} = handles.output; 
69   
70   
71 % --- Executes on button press in pushbutton1. 
72 function pushbutton1_Callback(hObject, eventdata, handles) 
73 % hObject    handle to pushbutton1 (see GCBO) 
74 % eventdata  reserved - to be defined in a future version of 

MATLAB 

75 % handles    structure with handles and user data (see GUIDATA) 
76 %getpcapfile; 
77 [fname, dirpath] = uigetfile('*.pcap') 
78 dostsh(fname,dirpath); 
79 % --- Executes on button press in pushbutton2. 
80 function pushbutton2_Callback(hObject, eventdata, handles) 
81 % hObject    handle to pushbutton2 (see GCBO) 
82 % eventdata  reserved - to be defined in a future version of 

MATLAB 

83 % handles    structure with handles and user data (see GUIDATA) 
84   
85   
86 % --- Executes on button press in pushbutton3. 
87 function pushbutton3_Callback(hObject, eventdata, handles) 
88 % hObject    handle to pushbutton3 (see GCBO) 
89 % eventdata  reserved - to be defined in a future version of 

MATLAB 

90 % handles    structure with handles and user data (see GUIDATA) 
91   
92 exit; 
93 % --- If Enable == 'on', executes on mouse press in 5 pixel 

border. 

94 % --- Otherwise, executes on mouse press in 5 pixel border or 
over pushbutton3. 

95 function pushbutton3_ButtonDownFcn(hObject, eventdata, handles) 
96 % hObject    handle to pushbutton3 (see GCBO) 
97 % eventdata  reserved - to be defined in a future version of 

MATLAB 

98 % handles    structure with handles and user data (see GUIDATA) 
99  

 

 

3 Dostsh.m:  the code to convert the pcap to text file 

function dostsh(fname,dirpath) 
%fullname = [dirpath fname] 

 
tshcmd1 = ('tshark -o 

column.format:"No.","%m","Time","%t","Source","%s","Destination","%d",

"srcport","%uS","dstport","%uD","len","%L","Protocol","%p" -r '); 
fulln = [tshcmd1 fname '>' fname '.txt']; 

  



124 

 

%this makes the whole command complete with variable input file name. 

the resulting 
%text file will be named as fname.txt e.g voiptunnel1.pcap.txt 

  
dos(fulln) 
onecon([fname '.txt']); 
end 

 

 

 

1. onecon.m:  the code to obtain traffic parameters from the TCP 

conections 

 

 
function  g = onecon(fname) 

  
   fid = fopen(fname); 
[C] = textscan(fid, '%u %f %s %s %s %f %f %f %s'); 
fclose(fid); 
index  = C{1,1}; 
time  = C{1,2}; 
srcaddr  = C{1,3}; 
data4  = C{1,4}; 
dstaddr  = C{1,5}; 
srcport  = C{1,6}; 
dstport  = C{1,7}; 
size  = C{1,8}; % this is ip.size, not tcp.size 
prot  = C{1,9}; 
j = 0; 
k = 0; 
size = size -54; %making it tcp.size 
for i = 1:max(index) 
    if 

(strcmp(srcaddr(i),'192.168.15.104')||strcmp(srcaddr(i),'192.168.4.2')

||strcmp(srcaddr(i), ... 
            

'192.168.15.101')||strcmp(srcaddr(i),'192.168.1.5')||strcmp(srcaddr(i)

,'192.168.15.102') ... 
            

||strcmp(srcaddr(i),'192.168.1.2')||strcmp(srcaddr(i),'158.125.48.160'

) ... 
            

||strcmp(srcaddr(i),'192.168.1.6')||strcmp(srcaddr(i),'192.168.1.10')) 
      j = j+1; 
        connl2r(j).index = j; 
        connl2r(j).time = time(i); 
        connl2r(j).srcaddr = srcaddr(i); 
        connl2r(j).dstaddr = dstaddr(i); 
        connl2r(j).srcport = srcport(i); 
        connl2r(j).dstport = dstport(i); 
        connl2r(j).size = size(i); 
        connl2r(j).prot = prot(i); 

             
    else  

         
        k = k+1; 



125 

 

        connr2l(k).index = k; 
        connr2l(k).time = time(i); 
        connr2l(k).srcaddr = srcaddr(i); 
        connr2l(k).dstaddr = dstaddr(i); 
        connr2l(k).srcport = srcport(i); 
        connr2l(k).dstport = dstport(i); 
        connr2l(k).size = size(i); 
        connr2l(k).prot = prot(i); 
end 
end 

  
% other metrics for this connection 

  
%1. Data rates(bytes/sec for l2r and r2l: drl2r, drr2l 
%1.a drl2r: 
timel2r = connl2r(length(connl2r)).time - connl2r(1).time 
bytesl2r = 0; 
for m = 1:length(connl2r) 
    bytesl2r  = bytesl2r + connl2r(m).size; 
end  

  
drl2r = bytesl2r/timel2r 

  
%2 drr2l: 
timer2l = connr2l(length(connr2l)).time - connr2l(1).time 
bytesr2l = 0; 
for m = 1:length(connr2l) 
    bytesr2l  = bytesr2l + connr2l(m).size; 
end  

  
drr2l = bytesr2l/timer2l 

  
%3. data packet ratio: dpktr: ratio of data packets downstream and 

upstream 
%dpktr = dnzctr/upnzctr(downstream nonzerocounter/upstreamnonzeroctr) 

  
upnzctr = 0; 
dnzctr = 0; 
for m = 1:length(connl2r) 
    if (connl2r(m).size) 
        upnzctr  = upnzctr + 1; 
    end 
end  
for m = 1:length(connr2l) 
    if (connr2l(m).size) 
        dnzctr  = dnzctr + 1; 
    end 
end 
dpktratio = dnzctr/upnzctr 

  
%4. ByteRatio: ratio of bytes downstreamto upstream 
byteratio = bytesr2l/bytesl2r 

  
%5.Ratio of large and small packets: 
%large packets are data>300bytes 
%small packets are data<300bytes 
ctrlarge = 0; 
ctrsmall = 0; 
for m = 1:length(connr2l) 



126 

 

    if connr2l(m).size > 300 
        ctrlarge = ctrlarge+1; 
    else 
        ctrsmall = ctrsmall+1; 
    end 
end 
    if ctrsmall == 0 
        ratio_sl = ctrlarge; 
    else 
    ratio_sl_ds = ctrlarge/ctrsmall; 
    end 

  

     
  %6.maxIAT for a data packet downstream 
  % or here just maximum iat downstream. 
  for m = 2:length(connr2l) 
      iatds(m-1) = connr2l(m).time - connr2l(m-1).time;   
  end 
  maxiatds = max(iatds); 
  %8. minatds 
  miniatds = min(iatds); 
  %iatds 
  %9. max////// upstream 
  for m = 2:length(connl2r) 
      iatups(m-1) = connl2r(m).time - connl2r(m-1).time;   
  end 
  maxiatups = max(iatups); 
  %10. minatups 
  miniatups = min(iatups) 

   

   
  %10. % time spent idle downstream: idle time is 2s or more 
  %. timer2l is total time in downstream 
  sum_idle_ds = 0; 
  for m = 1: length(iatds) 
  if iatds(m)>= 2.00 
      sum_idle_ds = sum_idle_ds + iatds(m); 
  end 
  end 
 pc_idle_ds = sum_idle_ds/timer2l*100; 

  

    
  % 11 %time spend idle upSstream 
  sum_idle_ups = 0; 
  for m = 1: length(iatups) 
  if iatups(m)>= 2.00 
      sum_idle_ups = sum_idle_ups + iatups(m); 
  end 
  end 
 pc_idle_ups = sum_idle_ups/timel2r*100; 
  % PSD with 15 bins 
  %12.psd Remote to local: 
  for m = 1:length(connr2l) 
      sizesr2l(m) = connr2l(m).size; 
  end 
  %removing zero sizes 
  k = 1; 
  for g = 1: length(sizesr2l) 
      if sizesr2l(g) ~= 0 
          size_nz(k) = sizesr2l(g); 



127 

 

          k = k+1; 
      end 

       
  end 
  no_of_bins = 30; 
  bin_size = ceil(1460/no_of_bins); 

   
  distribution(no_of_bins) = 0.0; 
  % Processing to bin allocations for observed file 
try 
    for i = 1:length(size_nz) 
    binpos = ceil(size_nz(i)/bin_size); 
    distribution(binpos) = distribution(binpos)+1; 
    end 
catch %means there were no nonzero sizes  
    % don't need to do anything, distribution(nobins)=0 holds 
end 
%normalization: 
dist_nor_r2l(no_of_bins) = 0.0; 
for m = 1:no_of_bins 
    dist_nor_r2l(m) = distribution(m)/length(sizesr2l); 
end 

  
   appname = input('enter application name', 's'); 
   appncell = {appname} 

  
%load var_saved;% MAKE SURE IT EXISTs BEFORE 
%nrows = length(all_metnumeric(:,1)); 

  

  
all_metnumeric = [drl2r drr2l dpktratio byteratio ratio_sl_ds 

pc_idle_ds pc_idle_ups dist_nor_r2l] 
%save ('var_saved','all_metnumeric'); 
% Convert numeric data, T, to a cell array of doubles 
allmCell= num2cell(all_metnumeric); 
% Concatenate dataCell and Tinto one cell array 
try 
    load full_var; 
    nrows = length(outCell(:,1)); 

  
    outCell(nrows+1,:) = [allmCell appncell]; 

  

  
    save('full_var','outCell'); 
catch %means that the full_var containging outcell doesn't exist yet 
    outCell = [allmCell appncell]; 
    save('full_var','outCell'); 
end 

     
xlswrite('file2.xls',outCell); 

  

  
  

 

 

 



128 

 

Appendix B: The OSI and TCP/IP Internet 

Models 

To understand the tunnelling activity, it is useful to have a little reminder of the 

TCP/IP model of the internet, its different layers and related protocols. Hence a brief 

description of TCP/IP follows: 

 TCP/IP Reference Model 

 

 

 Figure B-1 OSI and TCP/IP  Models and associated protocols 

Figure B-1 is the hypothetical seven-layer Open Systems Interconnection OSI [9] 

model which is the foundation of the TCP/IP reference model described in the 

Internet Engineering Task Force (IETF) RFC 1122 [13], used in practice. Each layer 

has got its specific functionality and communicates directly with the layer 

immediately above and below it. The upper three layers of OSI i.e Application 

Layer, Presentation Layer and Session Layer are concerned with user services, 

applications, and activities whereas the lower four are concerned more with the 

actual transmission of information. 

http://tools.ietf.org/html/rfc1122


129 

 

The TCP/IP reference model is implemented in the worldwide Internet, which is the 

largest communication network in existence. The second column in the above figure 

is showing the correspondence between the TCP/IP Reference Model and OSI 

Model. The TCP/IP model has done away with the session or presentation layers 

and the necessary functionality is implemented in the application layer itself. TCP 

and UDP protocols have been defined at the Transport Layer, while the Internet 

Layer defines the packet format and protocol called the Internet Protocol. The 

TCP/IP model does not specify details about the layers below the Internet Layer, but 

points out that the host has to connect to the network using some protocols over 

which IP packets can be sent/received. 

Application Layer 

A survey of nearly 200 international companies carried out by Infosec, Netpartners 

and Secure Computing Magazine estimated that a typical large company (1,000 

employees) could be losing £2.5 million per year through employees‘ use of Internet 

for non-business purposes – an average loss of £2,500 per employee [10]. The 

Application layer of the TCP/IP model gives networking applications the ability to 

use the services of the other layers and defines the protocols that applications need 

to use for data communication. There are many Application layer protocols and new 

protocols are always being developed. 

Some of the widely used application layer protocols are: 

The Hypertext Transfer Protocol (HTTP) is used to transfer files in the World wide 

web and the files constitute the web pages. 

The File Transfer Protocol (FTP) is the protocol which is used for interactive file 

transfer. 

The Simple Mail Transfer Protocol (SMTP) is the application layer protocol whose 

purpose is the transfer of e-mails. 

Telnet, ssh, HTTPS etc are some other application layer protocols 

There are other application layer protocols that help facilitate the use and 

management of TCP/IP networks: 



130 

 

The Domain Name System (DNS) is used translate a host name to an IP address and 

vice versa also called host resolution. 

The Routing Information Protocol (RIP) is a routing protocol for the purpose of 

communicating routing information on an IP internetwork. 

The Simple Network Management Protocol (SNMP) is used between a network 

management console and network devices (routers, bridges, intelligent hubs) to 

collect and exchange network management information. 

Transport Layer and TCP/UDP Protocols 

The Transport layer (also known as the Host-to-Host Transport layer) is responsible 

for providing the Application layer with session and datagram communication 

services. The major transport layer protocols are TCP and UDP.  

UDP 

The User Datagram Protocol (UDP), defined by IETF RFC 768, provides a simple, 

one-to-one or one-to-many, connectionless, unreliable communications service. The 

UDP header has a source port identifier and destination port identifier, which are 

used to identify the application running on the host. By connectionless means that a 

datagram can be sent at any moment without prior negotiation or connection 

establishment [11]. The datagram is just sent and it is hoped that the receiver is able 

to handle it. There is no guarantee that the datagram will be delivered to the 

destination host. Not only could the datagram be undelivered, but it could be also 

delivered in an incorrect order. It means a packet can be received before another 

one, even if the second has been sent before the first one received. [12] 

UDP datagram has a header and a data portion. The header consists of four fields, of 

which are source port, destination port, length and checksum. The 16 bit field 

specifies the length in bytes of the entire datagram both header and data. The 

minimum length is 8 bytes since that‘s the length of the header. The field size sets a 

theoretical limit of 65,527 bytes for the data carried by a single UDP datagram. 

Checksum consists of 16 bits used for error-checking of the header and data. 



131 

 

UDP can transport many of the Internet's popular application protocols. UDP 

applications do not require reliability mechanisms and may even be hindered by 

them, including the real time applications such as audio and video.  

 

 

 

                   

Figure B-2 UDP Packet structure. 

 

TCP: 

The TCP (Transmission Control Protocol), is described in RFC-793[16]. TCP is a 

connection-oriented protocol that is responsible for reliable communication between 

two end processes [14]. A three way handshake process of connection establishment 

must be completed before actual data exchange starts. The data transfer operates in 

both directions i.e. send and receive in a single session. TCP guarantees that all data 

sent will be received without any error (reliable) and in the correct order. Should 

any error occur, it will automatically be corrected (retransmitted as needed) or the 

error will be notified if it cannot be corrected [15]. 

The TCP Protocol Data Unit PDU also has a header part and data part as shown in 

figure B-3. There are 11 fields making the header, and 10 are required for every 

pdu.  

Source port and Destination port are 16 bit fields used to identify the sending port 

and receiving port of the communicating machines respectively. Sequence Number 

 First 16 bits 16 – 31 bits 

0 Source Port Destination Port 

32 Length Checksum 

64 

  

Data 

  



132 

 

and Acknowledgement number are for ordering of packets. Data offset is a 4-bit 

field which specifies the size of the TCP header in 32-bit words. The minimum size 

header is 5 words and the maximum is 15 words thus giving the minimum size of 20 

bytes and maximum of 60 bytes. This field gets its name from the fact that it is also 

the offset from the start of the TCP packet to the data [16]. Then the 4 bits of 

reserved field are for future. The 8 bit flags are to identify different flags as: 

URG : Urgent  

ACK: Acknowledgement  

PSH: Push. 

RST: Reset the connection. 

SYN: Synchronize sequence numbers. 

FIN: No more data from sender. 

The window field signifies the number of bytes the sender is expecting to receive 

starting from the acknowledgement field value. The 16-bit checksum field is used 

for error-checking of the header and data. 

TCP is the transport protocol for many of the Internet's most popular application 

protocols including the World Wide Web, e-mail, File Transfer Protocol and Secure 

Shell.  

 

http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/E-mail
http://en.wikipedia.org/wiki/File_Transfer_Protocol
http://en.wikipedia.org/wiki/Secure_Shell
http://en.wikipedia.org/wiki/Secure_Shell


133 

 

 

                            

Figure B-3   TCP Segment Structure [17] 

Internet Layer 

The Internet layer is responsible for addressing, packaging, and routing functions. 

The core protocols of the Internet layer are IP, ARP, ICMP, and IGMP. The internet 

layer of TCP/IP is similar to the Network Layer of OSI model. 

The Internet Protocol (IP) is a protocol which performs the functions of IP 

addressing, routing of IP packets and also the fragmentation and reassembly of 

packets. 

The Address Resolution Protocol (ARP) performs the address translation between 

the IP address and the hardware address on the network. 

The Internet Control Message Protocol (ICMP) and Internet Group Management 

Protocol  IGMP protocols for diagnostic and management purposes.  

 

 

 

 

 



134 

 

Appendix C: The test Data set used for Validation of Weka Results 

 

  b1 
   
  b2 

                   
b3    b4 

    
b5 

    
b6 

    
b7 

    
b8 

    
b9 

  
b10 

  
b11 

  
b12 

  
b13 

  
b14 

  
b15 … 

0.02 0 0 0.02 0 0 0 0 0 0 0 0.01 0 0 0 … 

0.01 0 0 0.01 0 0 0 0 0 0 0 0.01 0 0 0 … 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.01 0 0 0.01 0 0 0 0 0 0 0 0.01 0 0 0 … 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.03 0 0.01 0.03 0 0 0 0.02 0 0 0 0.01 0 0 0 … 

0.16 0 0 0.05 0 0 0 0.02 0 0 0 0.02 0 0 0 … 

0.33 0 0 0.08 0 0 0 0.01 0 0 0 0 0 0 0 … 

0.22 0 0.01 0.06 0 0 0 0.02 0 0 0 0.02 0 0 0 … 

0.3 0 0 0.12 0 0 0 0.01 0 0 0 0.01 0 0 0 … 

0.02 0.03 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 … 

0.02 0.05 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 0.01 … 

0.03 0.03 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0 0.01 0.01 0.01 0.01 … 

0.77 0.19 0.01 0.01 0 0 0.02 0 0 0 0 0 0 0 0 … 

0.93 0.06 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.69 0.3 0.01 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.8 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.77 0.2 0 0.01 0 0 0.02 0 0 0 0 0 0 0 0 … 

0.56 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.55 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.56 0.44 0 0 0 0 0 0 0 0 0 0 0 0 0 … 

0.04 0.07 0.14 0.24 0.28 0.12 0.04 0.02 0.01 0.01 0.01 0 0 0 0 … 

0 0.04 0.11 0.24 0.42 0.09 0.03 0.02 0.02 0.01 0 0 0 0 0 … 

0.14 0.01 0.5 0.03 0.05 0.03 0.01 0.01 0.01 0 0 0 0 0 0 … 

0.09 0.01 0.53 0.03 0.09 0.02 0.01 0.01 0.01 0 0 0 0 0 0 … 

0.14 0.01 0.5 0.03 0.05 0.03 0.01 0.01 0.01 0 0 0 0 0 0 … 

0.19 0.04 0.07 0.07 0.03 0.03 0.02 0.02 0.01 0.01 0.02 0.02 0.01 0.02 0.01 … 

0.34 0.04 0.04 0.05 0.03 0.02 0.02 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 … 

0.18 0.06 0.06 0.07 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.02 … 

0.33 0.04 0.07 0.07 0.03 0.03 0.03 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 … 

0.49 0.2 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0 0 … 

0.73 0.07 0.02 0.03 0.01 0.03 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0 0 … 

0.59 0.23 0.05 0.04 0.03 0.02 0.01 0.01 0.01 0 0 0 0 0 0 … 

0.43 0.32 0.06 0.06 0.04 0.02 0.01 0.02 0.01 0.01 0.01 0 0 0 0.01 … 

0 0.01 0.02 0.01 0.02 0.04 0.06 0.08 0.08 0.1 0.1 0.08 0.09 0.05 0.05 … 

0.01 0.01 0.02 0.04 0.04 0.04 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.07 … 

0.01 0 0 0.02 0.01 0 0 0 0 0 0 0 0 0 0 … 

0.01 0.01 0 0 0 0 0 0 0 0 0 0 0 0 0 … 



135 

 

b16 b17 b18 b19 b20 b21 b22 b23 b24 b25 b26 b27 b28 b29 b30 app 

0.01 0 0 0 0.13 0 0 0 0.66 0 0 0.11 0 0 0.02 VoipRaider 

0.01 0 0 0 0.18 0 0 0 0.59 0 0 0.19 0 0 0.01 VoipRaider 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 VoipRaider 

0.01 0 0 0 0.2 0 0 0 0.57 0 0 0.2 0 0 0.01 VoipRaider 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Skype 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Skype 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Skype 

0.03 0 0 0 0.22 0 0 0 0.47 0 0 0.16 0 0.01 0 XLite 

0.03 0 0 0 0.2 0 0 0 0.41 0 0 0.11 0 0 0 XLite 

0.02 0 0 0 0.16 0 0 0 0.3 0 0 0.09 0 0 0 XLite 

0.03 0 0 0 0.19 0 0 0 0.36 0 0 0.08 0 0.01 0 XLite 

0.02 0 0 0 0.13 0 0 0 0.33 0 0 0.09 0 0 0 XLite 

0.02 0.02 0.02 0.03 0.03 0.03 0.05 0.02 0.03 0.03 0.15 0 0.01 0.01 0.29 Camfrog 

0.01 0.01 0.02 0.03 0.03 0.04 0.05 0.01 0.04 0.04 0.14 0.01 0.01 0.02 0.29 Camfrog 

0.02 0.01 0.02 0.02 0.03 0.03 0.06 0.02 0.03 0.03 0.14 0.01 0.01 0.01 0.3 Camfrog 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOHA 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOHA 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOHA 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOHA 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 MOHA 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quake3A 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quake3A 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quake3A 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quake3A 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Quake3A 

0 0 0 0 0 0.01 0.01 0 0 0 0 0 0.05 0.13 0 LoU 

0 0.01 0 0 0 0 0.01 0.01 0 0 0 0 0.03 0.11 0 LoU 

0 0 0 0 0 0.01 0.01 0 0 0 0 0 0.05 0.13 0 LoU 

0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.24 IVisit 

0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0.01 0.2 IVisit 

0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.2 IVisit 

0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.12 IVisit 

0.01 0 0 0.01 0 0 0 0 0 0 0 0 0 0 0.01 WOW 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.02 WOW 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.01 WOW 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 WOW 

0.04 0.04 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0 0.01 0 0 0 0.01 QuakeLive 

0.03 0.04 0.04 0.04 0.03 0.04 0.04 0.01 0.02 0.02 0.01 0.01 0.01 0 0.01 QuakeLive 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QuakeLive 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 QuakeLive 
 

 

 


