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Abstract 

A Distributed Satellite System (DSS) for space weather monitoring, in which satellites are 

able to exchange data via Inter-Satellite Links (lSL) and a master node communicates with 

ground is the target of this research. As design of satellite systems is dictated by economical 

and engineering factors, the use of readily available commercial wireless terrestrial network 

technologies for ISLs is an attractive prospect in distributed satellite systems. 

This work addresses the application of wireless terrestrial networking standards to DSS 

operating in Low Earth Orbits (LEO), which are affected by orbital dynamics. All 

communication factors such as range, antenna gain, velocity, etc. vary with time, and as a 

result adaptive on-board data processing and transmission techniques are necessary to 

provide system responsiveness to orbital effects. A novel analysis of the impact of satellite 

attitude on the antenna loss is carried out and the minimum beam width that ensures ISL is 

determined. 

A high performance System-On-Chip (SoC) computing platform capable of supporting the 

adaptive MAC method has been simulated, and then implemented on hardware. The SoC 

design features a IEEE802.11 wireless transceiver core developed to support ISL, which is 

controlled by a software application running on the LEON3 32-bit RISC processor. The SOC 

is implemented on an FPGA for dynamic reconfigurability purposes, and the wireless 

transceiver is designed with the aim of extending the communication range of traditional 

wireless networks to hundreds of kilometres. The range determination mechanism can be 

hard-coded or defined in software. 

The Space Wire protocol, which is becoming the de facto standard for on-board spacecraft 

networks, is not yet defined for wireless communications. A bridge is proposed allowing 

fault-tolerant intra-spacecraft Space Wire networks to communicate via inter-satellite links. 

An analysis of the hardware requirements is presented for medium date rate systems. This 

reveals that the IEEE802.11 transceiver, implemented as a hardware accelerator, has the 

capability to support the full range of data rate provided by SpaceWire links, and adds extra 

robustness to SpaceWire networks. 
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Chapter l.Introduction 

Chapter 1 

Introduction 

Satellite systems have been omnipresent in our lives for several decades. Since the 1950' s 

they have been constantly emerging and are nowadays serving a vast amount of purposes 

from military applications, remote sensing for disaster mitigation to providing television and 

Internet all over the globe. There are currently thousands of satellites orbiting the Earth and 

the number is constantly increasing. Due to their wide-area coverage satellites have been 

used to extend terrestrial networks to the realm of space. This enhancement has added greater 

flexibility to the information flow, for example for broadband Internet. Recently, satellites 

have benefited from the miniaturisation of components. Their size and mass have 

considerably been reduced, and they can now even be implemented on a single board [1]. 

The use of Commercial Off-The-Shelf (COTS) components has considerably aided a 

reduction in size and cost of satellites. 

Distributed Satellite Systems (DSS) have come into use since the 1960s. The term refers to a 

number of satellites cooperating to perform a common mission goal. One of the most widely 

known examples is the Global Positioning System (GPS), using 24 collaborating satellites for 

ground navigation purposes [2]. Recent research shows a focus on DSS for small satellites, 

they offer the opportunity to perform tasks that are not practical with large satellites. Surrey 

Satellite Technology's (SSTL) Disaster Monitoring Constellation (DMC) [3] is an example 

of a distributed satellite system employing small remote sensing spacecraft to provide images 

for disaster relief. It is composed of 5 satellites and provides daily coverage of the Earth. 

DSSs development led to an expansion into new domains of space missions, using not only 

communication with ground stations, but recently also among the satellites themselves as 

shown in Figure 1-1. This concept is generally referred to as Inter-Satellite Link (lSL) and is 

essential to build large networks of distributed spacecraft. ISL offers big potential in the 

sense that it enables bypassing ground stations and autonomous system reconfiguration. 
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Figure 1-1 : Distributed satellite systems wirelessly connected [4]. 

The trend to use COTS components for satellites has led to the idea of adopting terrestrially 

well established wireless networking technologies for DSS. The practical implementation of 

this concept poses a number of challenges. First of all , orbital dynamics playa large role in 

satellite systems in general, however, their influence on communication is greatly magnified 

when using terrestrial technologies that are not targeted at a space environment. 

Secondly, the new network topologies lead to extended requirements for On-Board data 

Processing (OBP), such as different methods for repartitioning data between ground station 

and spacecraft. Last but not least, due to the limited range of standard wireless networks, 

there is a trade-off between cost reduction by minimizing the number of satellites in a DSS 

and the achievable area of coverage. 

The fact that terrestrial wireless networks are cost effective and enJoy commercial and 

technological success, and that they are well defined in many layers of the communication 

protocol stack, makes them promising candidates for space based networks [5 ,6]. 

The future of Distributed Satellite Systems envisages the integration of di stributed computing 

platforms, large-scale self-organizing swarms of satellites, and a high level of artificial 

intelligence in mobile agent designed for satellites. Wireless network technologie can 

potentially be used for di stributed computing to support the aggregation of resource [7-8]. 
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Current research takes effort In adapting terrestrial wireless networks to the space 

environment. 

1. 1 Motivation 

Traditionally the majority of data collected by satellites was processed by ground stations due 

to the limitation in on-board-processing resources. Today the availability of powerful 

processors has increased the capabilities of OBP, changing the satellites from being only 

"bent pipes" relaying signals from one ground station to another, to more advanced nodes in 

a communication network. The future envisages dynamic DSS, whose network topology 

varies with time; as a result on board switching, data buffering and signal processing will 

become necessary. The topology's variation with time also introduces a set of new 

predicaments, mainly the processing delay and the repartition of data processing between 

ground station and spacecraft. This led to the introduction of high-speed protocols for on

board data handling and high performance computing. The on-board data handling unit 

connects the subsystems, and the on-board computing system is the heart of the data 

processIng. It is common to find the network of processors performing the on-board 

computing to be connected through an on-board data network, and increasingly a number of 

computing modules are integrated into a single chip to form a System-on-Chip (SoC) design. 

Recently a space sensor satellite network based on terrestrial wireless network standard was 

proposed in [5], which is comprised of very small satellites weighing under 1 kg -(referred to 

picosatellite)- and has a distributed computing architecture. The sensor network enables the 

computing tasks to be split between many spacecraft. However there are multiple challenges 

to overcome its realization [5], some of which are related to the system design, in particular 

the computational decentralization of a number of components physically located in different 

nodes. Some challenges relate to bus design such as the integration of the ISL module with 

the onboard data handling system, and the data processing capability of the satellite. In [5], 

the design considerations are discussed in the context of implementing a fault-tolerant space 

based sensor network from a software perspective: mobile agents are used to detect software 

and hardware errors. 

The research presented In this thesis aIms to develop a communication platform that 

incorporates the most common terrestrial wireless standard - IEEE 802.11 - to a space based 

fault-tolerant OBDH protocol (SpaceWire). The platform main purpose is to enable fault 

tolerance for a network of subsystems within the spacecraft and also between spacecraft in a 

DSS network. The implementation of the communication platform on a SoC enables a 
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reduction III cost as well as mass, which IS an important factor in the design of small 

satellites. 

This research investigates the design of an architecture capable of supporting both On-Board 

Data Handling (OBDH) and Inter-satellite communication. To the best of the author's 

knowledge, the implementation of a wireless network standard as a space-born 

communication protocol on a Field Programmable Gate Array (FPGA) chip has not been 

investigated yet. 

1.2 Objectives and Scope 

Distributed satellite systems are moving towards deploying a large number of small satellites 

to fulfil their designated missions and it is also assumed that they will be operating in low 

earth orbit (LEO). The benefits associated with LEO when it is compared to GEO range from 

coverage area to lower power requirements. While LEO satellites have low latency in 

comparison to satellites in GEO, a large number of satellites is required to provide global 

coverage. Furthermore ground tracking is required due to the high mobility of the satellites 

and the orbital dynamics lead to time-variant ISLs and high Doppler frequency. These are 

important factors in the design of a low cost, energy efficient communication platform for 

satellite networks. The scope of this thesis is constrained to small satellites, in particular 

nano-satellites (1-10 kg) and pico-satellites (less than 1 kg), which can be used in space 

sensor networks operating in LEO. In particular, the focus in this thesis is on the design of 

the hardware enabling inter-satellite communication based on the IEEE802.11 standard. 

The antenna requirements for DSS are examined, in particular the impact of satellite attitude 

on the antenna loss. In this thesis, the use of COTS terrestrial based wireless technologies 

such as the IEEE802.11 standard intends to allow interoperability between spacecraft in a 

standardised manner. Analogous to that, the interfacing of on-board data handling protocols 

with wireless network technologies contributes to the effort in standardising the interface of 

on-board hardware. This is in order to reduce the development cost and risks for on-board 

sub-systems as described in Spacecraft Onboard Interface (SOIP) standard [6]. 

The research aims to advance the state of the art in ISL connectivity. The main goal is to 

design a communication platform enabling inter-satellite communication based on terrestrial 

technologies. This makes possibles a low-cost re-usable ISL solution for different types of 

missions. Minimum resources requirements will be determined in this context. 

The objectives of this research are defined as follows: 
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• Review existing distributed satellite systems networks based on terrestrial protocols, 

and the adaptation of these protocols to the space environment 

• Study the impact of orbit dynamics on the physical layer of ISL 

• Analyse the effect of relative motion on ISL utilising a directional antenna 

• Develop a IEEES02.11 transceiver on a System-on-Chip(SoC) using the LEON-3 32-

bit RISC processor 

• Review a set of optimisation techniques enabling the improvement of the processing 

speed of the transceiver 

• Propose a translation mechanism between IEEES02.11 and Space Wire 

• Extend the SoC designs so it incorporates the OBDH and the wireless transceiver 

1.3 Contribution 

The research undertaken for this thesis has led to the following novelty contributions: 

1) The determination of the impact of satellite relative attitude on the ISL transmission 

power loss. In an unscheduled communications the scaling up of the range and the 

connectivity for inter-satellite link design in distributed satellite systems, based on terrestrial 

technologies using directional antennas are shown not to be valid, as a result of an in-depth 

analysis of relative satellite motion. A theoretical maximum error in the estimation of the 

antenna pointing requirements is described in chapter 3. Three cases are studied: 

• Circular orbit constellation 

• Flower constellations 

• 2-1 Ellipse 

2) The first IEEES02.lla transceiver based on a SoC design and targeting space missions is 

developed. In particular: 

• The newly developed IEEES02.11 transceiver core is interfaced with an ESA 

developed processor. 

• The capabilities of a high-speed on board data handling protocol - Space Wire - are 

extended to support a new wireless communications application. 

3) The first connection between WiFi and a space-based OBDH protocols on a dynamically 

reconfigurable hardware is achieved. 
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1.4 Thesis Outline 
Chapter 2: This chapter investigates current distributed systems with ISL. The aim is to 

identify the issues associated with the deployment terrestrial protocols in DSS and the 

optimisation solutions that can be used in the development of a wireless transceiver for space 

applications. This chapter highlights the need to use reconfigurable hardware in future 

distributed satellite systems based on terrestrial wireless network standards. 

Chapter 3: This chapter looks at the impact of orbits dynamic on antenna with a given 

beamwidth. An analysis of the ISL using state vectors is used to determine the optimal 

antenna beamwidth for unscheduled communication. 

Chapter 4: This chapter discusses the implementation of the IEEE802.11 standard on 

embedded systems. An investigation carried out to determine the embedded devices best 

suited to the execution of each of the IEEE802.11 layers shows that the standard could be 

implemented on a single chip. 

ChapterS: This chapter describes the process of implementing the physical layer of 

IEEE802.11 on reconfigurable hardware. The speedup of the data computation is discussed in 

the context of improving the wireless transceiver throughput. The hardware resources and the 

processing speed are presented. 

Chapter 6: This chapter focuses on the implementation and simulations of the new SoC 

design. MAC layer timing issues and design considerations are worked out for the software 

and hardware interfacing. Simulations of the transceiver communications with the processor 

are presented. 

Chapter 7: This chapter focuses on the integration of the Space Wire router to the SoC. 

Design considerations for the interfacing with the router are presented with respect to the 

memory requirements, data encapsulation and data rate synchronisation. To allow efficient 

data transfer between the two standards, IEEE802.11 and SpaceWire, Common features are 

examined. A testbed for the design is presented and the results are analysed to determine the 

potential applications of the SoC / Space Wire communication platform 

Chapter 8: This chapter summarises the work presented in this thesis. The contributions to 

the state of the art are high-lighted and potential directions of research are suggested in order 

to extend the work and explore future applications. 
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Chapter 2 

Networking in Distributed Satellite Systems 

This chapter reviews the related work on satellite networks in an effort to overview the 

implementation of networking in Distributed Satellite Systems (DSS). 

Section 2.1 introduces DSS. Section 2.2 discusses DSS with networking capabilities, and 

their needs and requirements are highlighted. An overview on the application of the internet 

protocol in space is presented in Section 2.3, its limitations as well as possible mitigations are 

discussed. The medium access protocols that are suitable for space are examined in Section 

2.4. The impact of orbital dynamics on satellite communication links is outlined in Section 

2.5. The computing platform designed to support networking in distributed satellite systems 

is presented in Section 2.6. Section 2.7 looks at the trends and the architectures that support 

onboard data handling. 

2. 1 Distributed Satellite Systems 
Distributed Satellite Systems (DSS) are defined as systems of multiple satellites designed to 

work together in a coordinated fashion to perform a mission [7]. The term DSS is still a 

loosely based classification for satellite missions, however, DSS fall broadly in two 

categories: constellation and formation flying. A constellation is a group of satellites located 

in similar orbits and with no active control to maintain their relative position. When a 

mUltiple spacecraft system is operating with a desired orientation to target it is called a 

formation. Formation flying is the term used for maintenance and tracking of a formation. 

The mission objectives determine the level of accuracy required for the active control to 

maintain the formation in a prescribed geometrical configuration. Spacecraft in formation 

flying exchange their position via ISL to help ensure that the formation conforms to the 

mission objectives. Each spacecraft must have exact knowledge of all nodes participating in 

the formation and an attitude control system that allows for orientation in any arbitrary plane 

with respect to the local reference plane. Furthermore a satellite may be designated to 

established communication with the ground station while the formation maintains its 

configuration. This creates requirements for the propulsion system as well as autonomous 

onboard control system. Therefore the on-board computing should be sufficiently powerful to 

meet the requirements [8]. 

8 



Chapter 2. Networking in Distributed Satellite Systems 

2.1.1 Current DSS Constellation Missions 

2.1.1.1 Military Strategic and Tactical Relay (Milstar) 

Military Strategic and Tactical Relay (Milstar) is a constellation of satellites launched in 

1994 by the United Sates Air Force to provide worldwide, secure, reliable data links for US 

tactical war fighters and other military purposes [9]. Milstar is a network consisting of 6 

satellites placed in geostationary earth orbit (GEO), using data packets at low data rate (75 

bps to 2.4 kbps) and medium data rate (4.8kps to 1.544 Mbps). 

2.1.1.2 Space Technology 5 (ST5) 

NASA's Space Technology 5 (ST5) is a constellation of 3 nanosatellites designed to measure 

solar electromagnetic fields and particles. The spacecraft were launched on the 22nd of March 

2006 into an elliptic Geostationary Transfer Orbit (GTO). The project's main requirements 

were to demonstrate the ability of one spacecraft to adjust data acquisition of its companion, 

and the validation of eight technologies [l0]. The spacecraft demonstrated simultaneous 

multi-point measurements of the Earth's magnetic field, and the use of small satellites to 

perform coordinated tasks. 

2.1.1.3 GPS, GLONASS and Iridium 

Though not strictly classified as DSS, the navigation satellite systems called Global 

Positioning System (GPS) and its corresponding Russian system GLONASS (GLObal'naya 

NAvigatsionnaya Sputnikovaya Sistema; "GLObal NAvigation Satellite System") as well as 

the Iridium communications satellite systems can be considered to be a DSS. Iridium is the 

first commercial satellite system to offer global coverage providing voice communications 

with 2.4 kbps data rate to users on the ground. It is a constellation of 66 satellites operating in 

low Earth orbit (LEO), enjoying technical, but not commercial success by demonstrating the 

use of ISL. 

2.1.2 Current Formation Flying Missions 

2.1.2.1 Gravity Recovery and Climate Experiment (GRACE) 

The Gravity Recovery and Climate Experiment (GRACE) was launched in March 2002 to 

measure the Earth's gravity field [11]. It comprises two spacecraft separated by 250 km, with 

the Earth's gravity field varying the distance between the satellites. Areas of strong gravity 

force the lead satellite to accelerate away from the chasing satellite, whereas areas of low 

gravity cause it to slow down and approach the chasing satellite .. The satellites have a Ka-
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band ISL to make the spacecraft operate in unison as an instrument, and GPS receivers to 

determine their position. The information gathered by GPS is then forwarded to the ground 

station for subsequent map generation. GRACE was able to generate a gravity field over 100 

times more accurate than maps generated by other satellites and ground-based measurements 

[12]. 

2.1.2.2 TerraSAR-X and TanDEM-X 

The TerraSAR-X Earth observation satellite was launched in 2007 and accompanied on 17th 

May 2010 by the TanDEM-X satellite for formation flying with the aim of generating a 

Digital Elevation Model (DEM) of the Earth. The satellites use Synthetic Aperture Radar 

(SAR) working in controlled distances between 250 and 500 m to provide high accuracy 

mapping of the Earth. Information such as phase and timing reference are exchanged between 

the satellites with X-band RF transceivers operating at 9.65 GHz [13]. The orbital parameters 

such as line angle, angle between perigees and the orbit eccentricities are collected to 

perform orbit maintenance and formation flying. The orbital information exchanged between 

the satellites is gathered via along-track interferometry. The satellites work in tandem to 

either operate as a mono-static or a bi-static SAR, thus enabling innovative technologies. An 

illustration of TerraSAR -X and TanDEM -X in formation flight can be seen in Figure 2.1. 

2.1.2.3 Prototype Research Instruments and Space Mission Technology 
Advancement (PRISMA) 

The Swedish Space Corporation and other European partners developed the Prototype 

Research Instruments and Space Mission Technology Advancement (PRISMA) to 

demonstrate formation flying and rendez-vous [14]. For this purpose, two satellites use GPS 

and RF-based sensors for the monitoring of their relative motion. Two ISLs of up to 12 kbps 

are provided, of which one is used as the RF sensor and the second one is used for 

telecommand and telemetry. Launched on 15th June 2010, PRISMA demonstrated rendez

vous on the 7th September 2010. PRISMA is the first autonomous formation flying DSS with 

its RF sensing based in the S-band. 

2.1.2.4 TECHSAT21 

TECHSAT21 is a space based radar employing a cluster of free floating satellites [15]. The 

program was designed to demonstrate key enabling technologies for distributed satellite 

systems, and to test the concept of virtual satellites. The formation should have been able to 
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change configuration as mission requirements change. However due to escalatin a cost and 
b 

technical challenges the program did not materialise. 

Figure 2-1:TerraSAR-X and TanDEM-X in formation flight [14]. 

2.2 Distributed Satellite Systems with Networking Capabilities 
In [16], Barnhart compiled a li st of emerging DSS as well as their main characteristics. 

Among the future DSS, the U.S Defense Advanced Research Projects Agency (DARPA) F6 

program is the most serious and comprehensive effort for satellite cluster modules 

performing distributed tasks while wirelessly connected. The DARPA awarded $38 million 

to four teams with the goal of demonstrating that a large monolithic satellite can be replaced 

by smaller satellites operating in a DSS. The fractionated spacecraft allows each module to 

be specialised for a specific function , and the findings from this initiative can serve as a 

framework for future DSS . 

Surrey Space Centre has also proposed to merge DSS with terres trial wireless network 

technologies to [onTI space sensor networks [6,18,19] . The resulting networks are envi aged 

as autonomous DSS, in which the spacecraft are equipped with advanced on-board 
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computing capabilities and wireless network modules. The proposed DSS architectures are 

moving away from traditional constellations concepts and instead new architectures are 

explored in order to integrate highly connected heterogeneous networks. An architecture for 

the integration of terrestrial network standards with the on-board subsystems is shown Figure 

2-2. The architecture is an effort to interconnect devices and subsystems on-board a 

spacecraft using the SOIF standard [6]. It addresses the electrical, mechanical and software 

characteristics of the interface. As can be seen in the figure a network management service is 

proposed to control and configure each layer of the SOIP communication stack. The 

objective is to design a network of satellites with a high level of autonomous control. In 

addition to a desired long lifetime, the following requirements need to be taken into account: 

• Flexibility to support full range of operations and missions, 

• Interoperability to integrate with other networks, 

• Scalability to allow network expansion without modifications to existing hardware and 

software. 

Though the satellite networks will share many concepts with terrestrial networks, there are 

specific technical problems associated with satellite networking [17]: 

• Propagation delay, 

• Propagation loss and power limitations, 

• Limitation of bandwidth and coverage, 

• Operational complexity associated with LEOs, such as the satellite speed increase at 

poles. 

In terrestrial networks, the communication process between two nodes can be partitioned into 

layers, starting from the application initiating communication to the medium transporting the 

information. The process closely follows the hierarchical model defined in the Open System 

Interconnect (OSI) basic reference model [18]. OSI was created in 1982 to standardise 

networking and to allow multi vendor interoperability. The OSI reference breaks down 

communication into seven layers as shown in Figure 2-3 and their functions are described in 

Table 2-1. 
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Figure 2-2: Node system architecture based on SOIF [6]. 

Though some protocols do not fit well with the OSI seven-layer model, the model serves as a 

basic illustration of networking concepts . With the success of the internet, the OSI model has 

been eclipsed by the TCP/IP protocol suite in current network communications. This protocol 

suite is primarily the combination of two protocols: Internet Protocol (IP) and Transmission 

Control Protocol (TCP). Table 2-2 shows some of the most widely known protocols uti li sed 

in the transport and network layers of the TCP/IP protocol suite. 

IP has become the de facto standard for network communication infrastructures. The protocol 

came into widespread use in networks because it provides a basic standardi sed mechani sm 

for end-to-end communications between applications across a network [19]. Thi s led to the 

ex tensive use of COTS networking devices, often referred to as routers, to deli ver IP packets 

to destination addresses [20]. By using off-the-shelf, low-cost dev ices, networks have 

ex panded at a fast rate and as a result the internet has become a nearly global infras tructure. 
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Figure 2-3 : OSI reference model used for network communications. 

Table 2-1: OSI seven layers and their functions. 

Layer Function 
Application User interface management 

Application programming 
Presentation Format conversion 

Data conversion 
Session Control of dialogue between computers 
Transport Provides reliable end to end connection 
Network Routing via logical addresses 
Data link Creates frames, error checking 
Physical Defines electrical and physical specifications for devices 

Table 2-2: Commonly used protocols in the TCP/IP protocol suite. 

Layer Protocol 

Application FTP,HTTP 

Transport TCP 1UDP 

Network IP 

Data link Not defined 

Physical Not defined 

2.3 Internet Applications in Space 
The layered model approach to TCP/IP allows everything in and above the network layer to 

operate independently of the physical medium (layers 1 and 2) used. In the same way 

everything below the network layer can be replaced without affecting applications at the 

upper layers. Results have shown that when an optimised routing algorithm is implemented, 

the traffic is independent of distance and cost is almost independent [21]. As current space 
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missions have not yet adopted a standard network layer protocol, IP can be readily adopted as 

network layer protocol on satellites to allow seamless integration of satellite and terrestrial 

networks. Some of the projects that have implemented this concept as described in the 

following section. 

2.3.1 IP Technology Demonstrations 

Operation Missions as Nodes on the Internet (OMNI) was a NASA project where missions 

are seen as nodes on an IP network [22]. The drive in this project was the use of COTS to 

implement IP in space so that the ground section is fully integrated with the space section. 

OMNI was an effort to demonstrate that space missions can be carried out without the use of 

space-specific hardware and protocols. Since more than 80 satellites communicating with the 

ground employ the High-Level Data Link Control (HDLC) as their link layer protocol, 

OMNI opted for it too. In January 2003 a set of experiments were carried out with IP 

between the ground and space segments, demonstrating the use of IP in space. 

Global Information Grid (GIG) is a project of the United States Department of Defense 

(DoD). It is a globally interconnected IP based project using COTS components to provide 

information on demand to spacecraft, remote control platforms and Unmanned Aerial 

Vehicles (UAV). Although GIG has already been used in battlefields, the project is still at an 

early stage and said to be net-centric [23]. The DoD defines net-centric as a robust, secure 

and comprehensive networked force with high level interoperability. 

2.3.2 Standardisation of Mobile IP 

LEO satellite networks can become an integral part of the global information infrastructure 

providing connectivity to terrestrial networks through ISLs. Porting IP to space is not without 

a difficulty, as the dynamic nature of satellite networks makes mapping to terrestrial 

networks challenging. It is especially challenging to achieve an efficient routing of data. As 

LEO constellations are time varying in nature, routing data from source to the destination 

through LEO networks, constitutes a complex challenge [24]. At this stage the network's 

topology plays a crucial role in the routing efficiency. The routing software makes decisions 

based on routing metrics such as the number of hops, jitters etc. In order to make forwarding 

decision the routing algorithm needs to know the network's topology. Although satellites 

constellations are time-varying, a node's location is still predictable by the orbital geometry. 

As a result the routing algorithm can create a database with the location of the node in the 

networks. 

15 



Chapter 2. Networking in Distributed Satellite Systems 

As the routing table keeps hierarchical network address entries, this is a hindrance in a time

varying LEO networks because keeping a stable hierarchy in the networks is difficult. For 

instance, existing constellations ISLs are virtual circuit-switched networks, this means the 

packets bandwidth and path along the network are determined prior to transmission. Though 

orbital geometry is predictable, variable delay in packet delivery will lead to out of order 

packets, and retransmissions. Link failure will also lead to packet rerouting from one satellite 

to another satellite in different orbit for example. In the two cases mentioned above the 

routing table will have to be updated accordingly. 

The implementation of IP in LEO is hindered by two factors. The first one is due to the fact 

that IP networks have also hierarchical addresses, as a result an efficient routing mechanism 

needs to be adopted. The second factor is related to the connection to networks. When a 

satellite is crossing a network it needs to ensure that is complies with the network traffic 

strategy, for instance of service purposes the network may adopt its own routing policy. 

Furthermore the network needs to support mobililty for IP packets. 

The Internet Engineering Task Force (IETF) developed a routing standard called Mobile IP 

(MIP) to deal with mobile nodes in IP networks (RFC 2002) [25-26]. The IETF is an 

organisation formed of network designers, operators, vendors, and researchers with the aim 

of developing and supporting internet standards. The IETF has contributed to the evolution of 

the internet by forming working groups to deal with specific topics such as routing, transport, 

security etc. The IETF publishes technical specifications and policy documents in the form of 

Request for Comments (RFC). 

MIP identifies nodes by home address, and provides home agents to be used as care-of when 

the nodes are away from home. Home agents tunnel IP datagrams to their destination, 

conversely foreign agents detunnel IP datagrams to mobile nodes. Handover management in 

LEO communication systems is challenging [37], this is because complicated tracking and 

switching equipment is required for service coverage. MIP is widely used in mobiles nodes, it 

is used to provide mobility support to the IEEE802.11 wireless network [27] and to provide 

service to mobile phones in current cellular CDMA networks [28]. In [29] it is claimed that 

MIP is the only protocol that offers seamless roaming to mobile nodes on the 

internet.computers on however it experiences latency and high packet loss and the routing is 

inefficient. Another method of mobility management routing algorithm for IP on LEO 

satellites called IPILEO is proposed in [38]. Where the algorithm is based on geographical 
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location for LEO satellite and is handover-independent. IPILEO was shown to outperform 

MIP with regard to memory management. 

2.3.3 Limitations of TCP in Space 

With regard to the transport layer, transport protocols are responsible for delivering data to 

the appropriate application process on the host computers. This involves multiplexing data 

from different application processes. Source and destination IP addresses are placed with port 

numbers in the packet headers to form network sockets. In the TCP/IP protocol suite there are 

two commonly used transport protocols: User Datagram Protocol (UDP) and TCP. UDP's 

main role is to multiplex processes and provide error detection, and does not guarantee the 

delivery or order of packets. For this reason UDP is a connection-less protocol. In contrast 

TCP is a connection-oriented transport protocol in the sense that it provides end-to-end 

reliable connection by forming virtual circuits. An acknowledgement (ACK) packet is sent 

from the recipient after reception of each packet, thus the packet provides feedback to the 

sender. Though TCP is more complex than UDP, it is the most widely used transport protocol 

on the internet. 

Transport protocols were originally designed to address the problems of stability and satisfy 

the transport goals of wired networks [30]. There are communication challenges inherent to 

the space environment that need to be addressed for the efficient use of TCP in space, such as 

a higher bit error rate than for wired networks, intermittent communication links and dynamic 

network topology. 

An extensive list of challenges associated with porting the internet to space is presented in 

[31] and a list of limitations of TCP over satellites is outlined by IETF in [32] and RFC 2488 

[33]. The most important limitations of TCP over satellite communications are as follows: 

1) Error rate: TCP is sensitive to errors. High error rates result in frequent packet drops [30]. 

Consequently, TCP assumes that the network is congested and the congestion window 

mechanisms reduce the sliding window size. This leads to a reduced throughput. 

2) Asymmetric links: Satellites have limited bandwidth, with uplinks usually having a 

capacity typically of one fiftieth that of the downlink. The asymmetry can affect the 

performance of TCP if there is a congestion on the downlink by disrupting the transmission 

of ACK packets. The sender congestion window size and and transmission rate increase with 

the receipt of ACK packets. Thus the sender counts the number of ACKs for the growth of 

17 



Chapter 2. Networking in Distributed Satellite Systems 

the congestion window. If there is a decrease in the rate at which ACKs are sent on the 

uplink the performance of the dowlnlink also degrades [34]. 

3) Long delay: TCP uses the bandwidth delay product in the feedback to measure congestion 

on the link. There may be substantial delay variation due to satellite motion or routing 

changes, and even a very moderate level of congestion in the internet will drastically impair 

the performance of otherwise well configured TCP. This potentially leads to the shutting out 

of links [35] or reduced throughput. 

4) Intermittent link connectivity: Satellites have limited visibility to ground stations~ this 

imposes strict constraints on the scheduling of data delivery and requires full use of the 

available bandwidth [36]. With TCP there may be packet loss associated with intermittent 

link connectivity. 

2.3.4 Transport Protocols for Space 

New IP enabled LEO satellites have been launched, where existing transport layer protocols 

such as TCP and UDP have been adapted to the space environment. Satellite transport 

protocol (STP) was proposed by Henderson et al. [35] to overcome high latency, bandwidth 

and path symmetry, and high error rates. STP is a modified version of a link layer protocol 

called Service-Specific Connection Oriented Protocol (SSCOP). In contrast to positive 

acknowledgement used in TCP, STP uses selective negative acknowledgement. With this 

approach packets are retransmitted only when they are explicitly requested by the receiver. 

ACKs of data are sent periodically to the transmitter as opposed to the traditional ACK 

transmission for every packet received. This allows asymmetry on the link. 

Other transport protocols have been developed and implemented in space communications. 

The Consultative Committee for Space Data Systems (CCSDS) developed the Space 

Communications Protocol Standards (SCPS), a protocol stack designed to allow integration 

with internet enabled devices [37]. The transport layer protocol in SCPS is called SCPS-TP, 

and the application layer protocol is called CCSDS file transfer protocol (CFfP). SCPS 

provides reliability at the application layer through CFfP. The protocol was designed to take 

advantage of the good error encoding features of CCSDS protocols. 

De Cola and Marchese compared the performance of TCP, a transport layer splitting 

architecture and SCPS where the file delivery is performed through CCSDS file delivery 

protocol (CFDP) [36]. The splitting architecture used STP as transport layer protocol. 

Experiments were conducted on a link between a ground station and a LEO satellite called 
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DA VID, and on another communications transit link using an ISL between DAVID and 

ARTEMIS. DAVID is a video on demand project with high data rate capacity. The return 

link between the ground stations was not always available, thus continuous feedback could 

not be provided. Results showed that CFDP performed slightly better than STP at a BER of 

10-6 with throughput around 70%, whereas TCP provided throughput around 15%. For a 

BER of 10-7 STP and CFDP had a throughput above 90%, and TCP 55%. For a BER lower 

than 10-9 the three transport protocols performed comparably. This proves that STP works 

well in the space environment and TCP is sensitive to bit-error. 

Surrey Satellite Technology Limited (SSTL) has developed a UDP based transport protocol 

called Saratoga to transmit images from the Disaster Monitoring Constellation (DMC) 

remote-sensing satellites to a ground station [38]. SSTL replaced CFDP with Saratoga 

because of its smaller code footprint and faster performance [39]. A Cisco in Low Earth Orbit 

(CLEO) router was placed on board one of the satellite as test bed. CLEO is a radiation 

hardened embedded router running on a space-qualified processor in the Power PC. CLEO 

proved that the IP protocol stack footprint is small enough to be implemented on embedded 

processors. This means that existing hardware on board spacecraft is sufficient to implement 

IP in space. 

2.4 Data Link Layer Protocols 
The internet protocol needs complementing at the layers below its protocol stack to form a 

complete communication platform. There is a vast amount of data link protocols in terrestrial 

networks, some of which are well defined to support space based communication and others 

requiring adaptation for the space environment. 

2.4.1 Data Link Layer Protocols for Space Communications 

Existing terrestrial commercial link layer protocols have been considered for space missions 

[37, 40]. In [37], the authors present a list of existing commercial lower layer protocols and 

their functionality for the design of ISL for autonomous constellations. A summary is 

presented in Table 2-3. 
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Table 2-3: Protocols stack from existing commercial standards suitable for ISL [37]. 

OSI model HDLC TCP/IP ATM IEEE 802.11 
Transport layer TCPIUDP 
Network layer X.25 IP IP or X.25 

Data link layer LAP-B PP or ATM LLC 802.2 
IEEE802.X MAC 802.11 

Physical layer X.21 Physical SONET 802.11 

2.4.1.1 Asynchronous Transfer Mode 

Iridium, which is to date the only LEO satellite constellation with ISL in operation, uses an 

ATM-like proprietary protocol as link layer protocol. Asynchronous Transfer Mode (ATM) 

is a connection-oriented packet switched local area network (LAN) technology developed by 

the computer industry for high speed switching systems [18]. ATM networks seek to provide 

end-to-end connection of fixed size packets over a logical pathway by point-to-point links 

called virtual circuits and with guaranteed Quality Of Service (QOS). The QOS is a 

preferential service for the delivery of applications and is typical defined in terms of 

guaranteed bandwidth, packet delay and packet loss. ATM networks were originally designed 

to support data transmission for both real time applications such as voice and video and 

typical non-real time functions such as email and file transfer. Data are packaged in cells with 

a size of 53 bytes, in which 5 bytes are used for the header. A TM can carry any type of 

information, through any number of nodes. 

As ATM is a connection-connected protocol, the nodes establish establish end-to-end 

connection before communication take place. ATM is difficult to implement multicasting and 

broadcast. Kusza and Paluszek [20] concluded that an ATM is not suitable for multiple 

access and will not be able to perform in missions like autonomous flying or formation 

flying. When IP is used over ATM, the framing overhead is large because IP packets are 

broken down to fit in cells of 53 bytes. Due to these limitations, the deployment of ATM 

would be detrimental to future integration of satellite and terrestrial networks. 

2.4.1.2 Proximity-l and HDLC 
Several link layer protocols for wireless communications are currently deployed in space 

missions. The two most common protocols are Proximity-l, and High-Level Data Link 

Control (HDLC). Proximityl was developed by CCSDS for short haul two way space 

communications link, and reliable data delivery [37]. Proximity-l performs encapsulation, 

framing operations, synchronisation and channel coding [41]. The protocol supports fixed 
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and variable length data units, and operates at both the physical and data link layers. Contrary 

to other link layer protocols Proximity-l 's data layer has five sub-layers instead of two. 

Proximity-l uses forward error coding (FEC) techniques such as convolution coding and 

Reed-Solomon coding in order to operate in weak signal environments. The protocol 

supports data rates between 2 kbps and 2 Mbps in synchronous or asynchronous modes and 

allows Doppler tracking [37]. From an IP standpoint the protocol can handle both UDP and 

TCP; Proximity-l has the features necessary to facilitate the integration of ground and space 

networks. Proximity-l has been implemented on a network of Mars orbiters called the 

NASA Mars Network, and Mars Exploration Rovers (MER), and was shown to work well for 

communication between the rovers and the orbiters [42]. The link consisted of a Ultra high 

frequency (UHF) transceiver and the maximum data rate was registered at 256 kps. In 

another scenario Proximity-l was also used for data transfer between a MER and the ESA 

Mars Express (MEX) orbiter. This is a milestone as the mission also helped to establish the 

first working international communications network around a planet other than Earth [43]. 

HDLC is the most used data link protocol in long haul communications; it was designed to 

perform synchronous and asynchronous code transparent transmission [37]. Variants of 

HDLC have been implemented on satellite to ground links. The most common one is 

balanced link access procedure (LAP-B). It is used with a network protocol called X.25 and a 

physical layer protocol called X.21. SSTL used HDLC on Surrey Nanosatellite Applications 

Platform-l (SNAP-I) for ISL with Tsinghua, a satellite in the DMC constellation. The 

primary goal for SNAP-l was to demonstrate ISL, GPS ranging between two satellites and 

formation flying. Unfortunately, the experimental propulsion system on SNAP exhausted its 

propellant tank before the rendez-vous could take place and there was no longer any means 

of sustaining SNAP-l 's orbit. The differential drag then caused SNAP-l's altitude to drop 

relative to that of Tsinghua and the satellites started once again to recede from each other. 

HDLC was shown to support IP on UoSat-12, launched by SSTL in May 1999 [44]. Tests 

were designed to demonstrate the use of IP in space, and HDLC was chosen because of its 

legacy on space missions. Ground stations successfully sent ping packets to the satellites and 

received a reply via the return channel. The on-board clock was then changed, and again an 

IP clock synchronization protocol called Network Time Protocol (NTP) was used on the 

ground to successfully reset the clock onboard the satellite. This successfully demonstrated 

the use of IP in space, and SSTL subsequently integrated HDLC with IP into all five DMC 

spacecraft. 
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A direct comparison is not possible between HDLC and Proximity-l because they are not 

targeting the same communication ranges. Proximity-l is better than HDLC with respect to 

error corrections, however HDLC shows superior performance due to higher data rate and 

flight heritage. 

2.4.2 Multiple Access Schemes 

Due to bandwidth scarcity, a common approach is to use a multiple access scheme to share 

the bandwidth of a communication link between several nodes. The link layer delimits groups 

of bits to form frames, and switches are used to dispatch frames to the correct node. A control 

mechanism called Medium Access Control (MAC) is used to manage the communication 

link. The MAC layer ensures that frames are delivered error free, and adds addressing 

information to the transmitted frames. 

MAC layer multiple access can be divided into five categories [45]: 

• Fixed assignment multiple access (F AMA), 

• Demand assignment multiple access (DAMA), 

• Random multiple access (RMA), 

• Reservation random multiple access (RRMA). 

• Code Division Multiple Access (CDMA) 

An overview of different multiple access families is provided in [32]. FAMA does not 

support burst and dynamic traffic as found on the internet. This is a scheduled mechanism 

and cannot handle a large number of IP based users. In contrast DAMA is suited for network 

variation of traffic; however DAMA protocols introduce extra delay for the reservation 

process, making it unfit for real time applications. 

Most of today's networks have bursty traffic and use RMA as multiple access scheme. 

Carrier Sense Multiple Access (CSMA) is the most commonly used RAM, and is contention 

based. CSMA can be used for Collision Detection (CD) or Collision Avoidance (CA). In both 

cases nodes probe the medium to ensure that it is free before they start transmitting. The 

methods differ greatly in medium access. For CD, if two nodes transmit simultaneously the 

collision will be detected by all the other nodes listening. The collided nodes are given a 

random time to retransmit. In CA, if a node wants to send data and the channel is free it 

computes a random back off time to check if the channel is still free before sending data. RA 

is more effective for networks with light traffic, and has a throughput around 50%. The low 
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throughput is a major drawback because a large portion of the data is used for control 

purposes and results in the inefficient use of bandwidth. Existing satellite random access 

schemes offer very poor channel utilisation and are limited to small packet transmission. 

CDMA is a channel access mechanism, in which each node is given a code to transmit. Only 

nodes with the same code can participate in the communication, the others see the data as 

noise. At the physical layer, the data is XOR-ed with a pseudo-random number (PSN) 

running at a higher frequency. As a result the bandwidth for CDMA data transmission 

increases: this is called spread spectrum. Since each user has its own PSN, a correlator it used 

at the receiver to decode the data. CDMA allows multiple users to simultaneously use a 

single channel, each user is able to receive data by correlating the CDMA signal with a 

locally generated code. CDMA can combat narrowband multipath because the delayed 

versions of a signal will do not correlate well with the local user's PSN [46]. 

2.4.3 Wireless Networks 

Over the past decade the deployment of wireless networks has exploded; they are truly a 

technological success and have become pervasive. There are several standards defined for 

different ranges, data rate and applications [47]. The wireless network standards can be 

categorised into four sections: 

• Wireless Personal Area Network (WPAN) with a maximum range typically below 

100m; 

• Wireless Local Area Network (WLAN) with a maximum range around 300 m; 

• Wireless Metropolitan Area Network (WMAN) with the range in the order of 50 

km' , 

• Wireless Wide Area Network (WW AN), which is supported by satellites. 

A summary of the current terrestrial wireless network standards is presented in Table 2-4. As 

it can be seen, with the exception of the IEEES02.16 standard, often referred to WiMaX, the 

standards have a maximum communication range in the order of hundred of metres. 

However, it was shown that the IEEES02.11 standard's[4S] range can be extended to tens of 

kilometers by redefining its timing parameters [55-56]. This would make the IEEES02.11 's 

range comparable to that of WiMaX. In [47], a comparison between WiMaX and the 

IEEES02.11 standards in terms of range, QoS and spectral utilization is presented. It was 

found that the two standards differ significantly in the access to the channel. WiMaX has also 

QOS to support various service levels. The authors in [47] concluded that the two standards 
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can supplement each other in order to form network wireless webs. The work presented in 

this thesis focuses only on the IEEE802.11 a standard. Note that the IEEE802.11 is referred to 

WiFi, in the rest of the thesis the standard's commercial will be used extensively. 

The MAC layer offers two forms of traffic services for Wireless LANs (WLANs), the 

mandatory Distributed Coordination Function (DCF) and the optional Point Coordination 

Function (PCF). The DCF is an asynchronous data service using best effort manner to 

transmit packets. DCF also supports broadcasting and mUlticasting. This method is suitable 

for delay-insensitive applications. The PCF on the other hand is a polling method used for 

delay-sensitive applications such as video and real-time applications. 

IEEE802.11 controls medium access with CSMAICA. A feedback mechanism is 

implemented with the acknowledgement packet (ACK), which is sent back to the sender for 

each packet transmitted. IEEE802.11 also provides optional data transmission based on a 

reservation method called Request to Send (RTS) / Clear to Send (CTS). The RTS/CTS 

method is used to mitigate the hidden node problem [49]. This occurs when two terminals 

can not hear each other because they are out of radio range and start transmitting at the same 

time. Consequently there is collision and the network's performance degrades. 

Table 2-4: Comparison of commercial wireless network standards [47]. 

Commercial Standard Theoretical data Max Frequency (GHz) 

name rates Range 

RFID ISO 14443 160 kbps 3m 0.433, 0.86-0.96, and 

2.451 

Bluetooth IEEE802.15.1 2Mbps 100m 2.4 

UWB IEEE802.15.3 Up to 50 Mbps 10m 2.4 

Zigbee IEEE802.15.4 20 and 250 kbps 10m 2.4 and 0.9 

WiFi IEEE802.11 1 to 600 Mbps Up 300 m 0.9, 2.4 and 5.5 

Wi MAX IEEE802.16 570 Mbps 50km 2.5,3.5 and 

5.8 
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IEEE802.11 uses Inter Frame Spacing (IPS) as timing interval between the packets to 

manage priority access. Three IPS have been defined: Short IPS (SIPS), Point Coordination 

Function IPS (PIPS) and Distributed Coordination Function IPS (DIPS). The SIPS is the 

shortest time interval and is used for high priority functions such as ACK, polling response 

and the RTS/CTS control mechanisms. The PIPS have medium priority and are used for 

time-bonded service using PCF, whereas the DIPS are used for the DCF and have the lowest 

priority as shown in Figure 2-4. 

DIFS DIFS ... .. - p 

PIFS 
.. 

.. 
Medium busy 

SIFS .. Next frame .. 
A .. 

t 
Direct access if medium is 

free after back-off expiration 

Figure 2-4: Different MAC layer IFS 

2.5 Wireless Networks in Space 

2.5.1.1 Wireless Sensors on Satellites 

Wireless sensors have been considered for space exploration in [50]. The limited hardware 

resources and efficient routing algorithms were found to be the main areas requiring further 

research. In [51] experiments were conducted in a reverberant environment to determine the 

impact of a confined space on wireless sensor nodes, also referred to as motes. In a 

reverberant area the energy from a transmitted impulse is present is for a relatively long time. 

Similarly, the work conducted on the characterization of electromagnetic waves within a 

spacecraft showed that the spacecraft behaves like a reverberation chamber [52]. In [51], the 

motes are placed in a cylindrical and cone platforms to analyse the electromagnetic waves in 

a reverberant area and the results showed data rates in the order of 5 Mbps can be obtained at 

a BER of 10-4 and without any form of encoding. The maximum achievable data rate in the 

reverberant chamber is superior to that of commonly used wireless sensors. Consequently 

sensor networks can be implemented onboard spacecraft without the need for signal 

processing to reject interference. 
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The implication is that the use of motes in space missions will not require more 

computational power, which is clearly an advantage with regard to power consumption in 

motes. 

As power is one of the most significant limitations of wireless sensor systems, new methods 

of power reduction were explored. In [53] the processor was found to consume up to 86% of 

the mote's energy as a result Oi and Bleakley proposed a new architecture for a mote 

processor by first identifying and describing the main sources of power consumption and 

subsequently implementing a hardware accelerator and a virtual machine to reduce power 

consumption. The analysis part of the program, which scans the code to allocate resources 

for the execution of application programs, is typically implemented on a general purpose 

processor. In [53], the analysis part of the code is instead run on a hardware accelerator and 

as a result the energy consumption is reduced. The accelerator was used to optimise 

instruction folding, which combines the execution of multiple instructions per unit time. This 

results in a reduction in the number of executed instructions and the scheduling overhead on 

the general purpose processor. Other techniques have relied on low power microcontrollers 

such as [54], in which a Bluetooth sensor was implemented on a Microchip PIC16F877, or 

software solutions capable of classifying and minimising the quantity of data that must be 

transmitted via RF [55]. 

An ESA Wireless sensor study [56] found that wireless sensors could be used for intra

satellite links, and replace actual wired sensors on spacecraft. The study also demonstrated 

the potential use of wireless sensors in close proximity formation flying. Wireless sensors are 

mainly used in static environments; in contrast formation flying is maneuvered in a dynamic 

environment. Routing messages from or to moving sensor nodes is more challenging since 

route stability becomes important in addition to other factors such as energy and bandwidth 

[57]. 

2.5.1.2 IEEE802.11 Multiple Access 

Contention-based access mechanisms are not suitable for real-time applications [58]. For 

instance since video applications require a minimum delay and quality of service (QOS), the 

MAC layer would have to be adapted by using either Time Division Multiple Access 

(TDMA)-based or collision free multiple access methods [59]. IEEE802.11 lacks these 

features which makes the standard unsuitable for time critical applications. 
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In many cases the MAC layer optimisation may not be sufficient to improve communication 

systems performance. The current trend in research with regard to IEEE802.11 is to perform 

cross-layer optimisation at both MAC and PHY layers. Time-varying channels lead to high 

bit errors and retransmissions. [60] proposed a method to dynamically change the power 

according to a cost function with channel efficiency and frame errors. Simulation results 

showed that the throughput doubled when the frame size and the data rate varied. However 

this method needs to extend the cost function to take into account the distance between the 

communicating nodes: in space the varying distance will have an impact on the path loss. 

Another cross-layer method based on channel conditions for space communications IS 

proposed by Bergamo [61]. A new MAC layer protocol called TDMA encoded CDMA 

multiple access (TCeMA) has been developed to migrate terrestrial wireless ad hoc to space. 

TCeMA offers time multiplexing and code multiplexing, and is also a multiple rate scheme, 

which could accommodate various versions of wireless technologies with different QOS. 

Frames are divided into two areas: reserved data traffic and contention data traffic. They are 

then aggregated into multi-frame formats, data are transmitted as a function of priority. 

The TCeMA multiple access technique offers to eliminate the ACK when directional antenna 

are used. This method is referred to as space diversity and the direction of receivers are used 

to optimise antennas. Agile antennas are used with the MAC layer to track neighbour 

spacecraft. This would lead to an improved efficiency in MAC layer operations. The link is 

also monitored to define the achievable throughput as a function of the bit error rate. TCeMA 

also includes frequency estimation and tracking, thus can compensate for Doppler shift. 

In a survey conducted to find suitable MAC protocols to support lunar communications, 

simulations showed that TCeMA outperforms TDMA systems by a factor of 5, and the 

throughput is 3 times greater than that found in TDMA[62]. However there is one factor in 

the disfavor of TCeMa, it is an unproven protocol. To date there is no hardware implemented 

with TCeMa nor is a mission envisaging the use of TCeMA , so that the architecture for the 

implementation can be laid out. 

As discussed in Section 2.4.1 the viability of space networks based on terrestrial network 

technologies was studied in [37]. The authors presented a list of existing commercial lower 

layer protocols and their functionality for the design of ISL for autonomous constellations. 

One of the key attributes of the protocols is to allow seamless integration of additional nodes 

into the network. Due to its error correcting mechanism IEEE802.11 was designated as a 

potential ISL protocol. It was also noted that the IEEE802.11 has inherent limitations to 
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scaling to the required data rate and range in space based communications. Further work 

conducted by Sidibeh [40] to optimise IEEE802.11 for space applications showed the use of 

smart antennas and found that a redefinition of timing parameters is key to extending the 

range of IEEE802.11. 

Though IEEE 802.11 is a terrestrial communication protocol with a range in the order of a 

few hundred metres, Sidibeh showed that the protocol could be scaled up for communications 

in the range of a few hundred kilometers [19]. He proposed to extend the IEEE802.11 

communication range by redefining the MAC layer's DIFS. Though suitable for 

environments where the nodes are fixed, in a mobile environment such as LEO the solution 

proposed is not sufficient. When extending the range the DIFS needs to take into account the 

exact distance between the nodes exchanging information, otherwise there will be a drop in 

throughput. The best scenario was calculated for DIFS set for 15 km and 100 km 

communications range. As shown in Table 2-5, it is assumed that if the nodes are 15 km 

apart, the throughput drops by a factor of 3 when the DIFS is set for 100 km (355 Jls) range 

[6]. This suggests that an adaptive DIFS is required for the targeted constellation, which was 

confirmed with real experiments undertaken in a network spanning over 100 km [63]. As a 

result the range should be known in advance, or some form of range prediction should be 

implemented. 

Table 2-5: Throughput for different DIFS settings. 

Range (km) DIFS (ps) ThrouAhJ!ut (Mbps) 
15 75 3 
15 355 0.94 

Simulations of satellite communications with the CSMA acting as channel access were 

conducted on two PCs [30]. It was shown that smaller size packets offered better throughput 

than the larger ones. This was due to the higher processing time associated with large data 

files. In particular, the large files required packet fragmentation which resulted in the 

processing time being much higher than the transmission time. This is the opposite to the file 

transfer in wired communication. In [30], the authors proposed to increase the throughput by 

decreasing the size of packets. As a result of that the amount of time used by a packet on the 

channel is reduced and the processing time is reduced noticeably. 
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2.6 Physical Layer Design Considerations 

ISL is defined as the direct communication link between two spacecraft, with the wirele 

communication media being either laser or radio frequency (RF). The MilStar and Iridium 

constellations use RF-based ISL. When compared to RF-based communications , laser li nk 

have a significantly higher date rate, which was clearly demonstrated in space with the Semi

Conductor Inter Satellite Link Experiment (SILEX) [64]. SILEX is a laser-based ISL used on 

board ARTEMIS , a relay satellite developed by the European Space Agency (ESA) to 

transfer information. In 2003 , SPOT 4 successfull y transferred images to ARTEMIS USlIlg 

SILEX at a data rate of 50 Mbps. 

The advantages of applying laser over RF in ISLs range from the required transmit power to 

the size, mass and volume. For example, an optical system antenna requires 36 dB less than 

RF systems [65]. As optical communications operate at much higher frequencies than RF 

communications, they offer higher data rates due to the carrier 's high frequency. However, 

since the beam width of optical systems is much narrower than that of RF communication 

systems, a more precise laser beam pointing structure is required . Figure 2-5 illustrates a laser 

beam implemented in the SILEX mission [66]. 

Figure 2-5: lllustration of SILEX [66]. 

Leeb et al. [65] recommend to only use laser in applications with shorter di tance and lower 

data rate, then simpli ficat ion of pointing problem wou ld be poss ible if spacecraft 

configuration is well defined and not subject to large manoeuvre or major reconfiguration . 
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This is an impediment for DSS with reconfigurability as part of their requirements; in this 

context RF would be a better option. 

Deficiencies associated with long distance RF links are best handled at the physical layer 

[19]. Most research in the literature has only focused on the data link and network layers, and 

there is little work carried out on optimising the physical layer to maintain connectivity on 

ISLs. Connectivity can be defined as the reliable data transfer mechanism that is required to 

ensure communication. Moving away from the traditional approach of considering satellite 

communication links static, Cowley [67] investigated the variations of several 

communication parameters while keeping the energy per bit to noise density Eb fixed. The 
No 

work conducted by Sidibeh and Vladimirova [40] supports this view, which is true especially 

in LEO where the orbital dynamics impact many important communication parameters. 

Simulations performed with the Satellite Tool Kit (STK) software using the parameters 

shown in Table 2-6 are illustrated in Figure 2-6. For two satellites operating in LEO the ISL 

range, the azimuth and the elevation vary over an orbital period. These parameters are used 

for the determination of the antenna power and its pointing. 

Cowley proposed adaptive communication systems for ISLs, and simulations with respect to 

the signal-to-noise ratio (SNR) of the link showed the following [67]: 

• By adapting the transmission rate while maintaining the power fixed, the throughput is 

nl2 greater than in conventional systems. 

• When the transmission rate is kept fixed and the power adjusted, only 38% of the 

conventional energy is required. 
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Figure 2-6 : ISL variation over an orbital period. 

Table 2-6: Orbital parameters in SSTL's DMC satellites [5]. 

Altitude 685 km 
Planes 2 
Inclination 98.14 deq 
Number of Satellites 8 
Separation angle 22.5° 
Orbital period 5910 s=98.5 min 
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At the physical layer further improvement could be offered by adapting and optimising the 

following parameters: 

• Signaling; 

• Modulation scheme (for instance spread spectrum, which has proven to be immune to 

noise); 

• Coding methods (such as convolution coding for efficient error correction). 

As the channel is time-varying, LEO ISLs face two major difficulties: the high Doppler 

freq uency shift and the small random shift in the signal's phase introduced by the residual 

frequency offset [68]. When a signal is transmitted, at the receiver the canier 's frequenc y 

appears to be shifted by a frequency called Doppler frequency shift , which is expressed a 

v 
I).f = f -, (2- 1) 

c 
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where f is the carrier frequency, v the spacecraft relative velocity, and c the speed of light. 

The knowledge of the Doppler frequency is necessary to select the best frequency offset 

estimator. 

In [68], Cowley and Ho proposed a modem for Doppler varying channels. The transmitter 

consists of a convolutional encoder, an interleaver, a symbol mapper and a differential 

encoder. The receiver consists of a symbol demapper, a differential decoder, a de-interleaver 

and another decoder. Blind estimators for both frequency and phase off-sets are incorporated 

to mitigate the Doppler effects and channel impairments due to orbital dynamics. The 

frequency synchronization method is not specified. It is assumed that coarse frequency 

estimation is carried out on the signal at the receiver. For fine synchronization the frequency 

estimator is followed by an FFT to locate the spectral components. Phase synchronisation is 

then performed by using the soft information provided by the differential decoder. After each 

iteration, an algorithm extracts the soft information. The use of iterative decoding is referred 

toas turbo decoding and the ensuing synchronisation is called turbo synchronization [69]. 

The impact of modulation on satellite communication links was studied in [68]. In particular, 

circular M-Phase Shift Keying (M-PSK) constellations were found not to be suitable for 

ISLs. This can be explained by the snowball effect that occurs from the successive estimators 

in Doppler varying channels. If a M-PSK constellation is used as a modulator the phase 

estimator causes phase slip. This is due to the fact that frequency estimation leads to a small 

residual frequency off-set and to incorrect phase estimation over a large amount of symbols. 

The resulting estimation lies between -M/n and +M/n and the use of a differential decoder 

will introduce a phase slip. Additionally, if the SNR decreases the M-PSK constellation blurs 

into a continuous ring over time and then it becomes almost impossible to estimate the phase. 

In [68], results show that elliptical M-PSK constellations perform better than circular M

PSK constellations, and it is recommended that the traditional M-PSK circular constellation 

should be replaced with elliptical constellations. 

Frequency and bandwidth utilisation also require careful consideration. Due to the scarcity in 

frequency spectrum and bandwidth, close attention is required to the choice of the operating 

frequency bands. Simulations for third generation GPS ISLs showed that GEO/GEO and 

LEOILEO ISLs are impacted by MEO ISLs. This can be alleviated by changing the 

inclination of the MEO satellites [70], 

32 



Chapter 2. Networking in Distributed Satellite Systems 

Sidibeh and Vladimirova [40] recommended using smart antennas with a high gain to 

minimise interference between nodes in LEO orbits. A smart antenna uses spatial resolution 

to find the receiver's location in order to establish communication. This requires a location 

finding mechanism and beam switching to track the receiver. Cowley and Green designed 

low cost phase-array antennas for ISL [71], with target frequency bands being the Ka- and V

bands. Two antennas were proposed. The first one was a linear phase-array antenna capable 

of covering an azimuth range of 30 degrees, and therefore 6 six antennas were sufficient for 

full coverage in azimuth. The antennas' gain was augmented with the help of a reflector, and 

was shown to be able to offer gain over 30 dBi. The second one was a torus of 15 cm height 

and 70 cm radius, which achieved a gain in the vicinity of 36 dBi with the reflector. 

The choice of antenna depends on many factors such as the operating frequency band, the 

satellite geometry, the required gain and pointing accuracy. While the antennas presented in 

[71] are in general suitable for ISLs, at lower frequencies such as the ISM-band the antenna 

size would have to be increased by a factor of 10. For instance, at 2.4 GHz the antenna's 

wavelength is 12.5 cm, whereas at 24 GHz the wavelength is 1.25 cm. The phase-array's size 

is a function of the wavelength. The array presented in [71] used 15 elements, which means 

designing the proposed phase-array antenna with a wavelength of 6.15 cm would translate to 

a minimum size of 90 cm, resulting in a considerable increase in antenna design cost. 

2.71SL Communication Platform 
Valdimirova et al. [46, 64, 78-79] proposed a communication platform for DSS based on 

wireless network technologies. They argue that the popularity of the COTS wireless networks 

warrants them to be ported to space. A generic System-on-Chip (SoC) was proposed and 

implemented on a Field Programmable Gate Array (FPGA), as described in [72]. The use of 

the SoC allows all the embedded microcontrollers used for the on-board computing to be 

housed in one place. To ensure that failure remains localised and temporary because of the 

high level of radiation, magnetic and electrical charging, fault-tolerance is introduced by 

attaching a memory error-detection-and-correction (EDAC) unit and a bootloader. The SoC 

also enables partial run-time reconfiguration via TCP/IP-based remote access. Furthermore 

distributed computing is proposed in which the satellite network performs collaborative 

onboard processing [6]. This work supports the use of different communication standards. 

Implementation on a reconfigurable hardware was proposed to tailor the computing platform 

to variable data processing needs [73]. This potentially has the benefit of lowering the cost 

per misslOn. 
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The work presented in [6] is an effort to standardise the interfaces between communic2.tion 

standards. By coincidence it has all the elements to enable ISL with terrestrial network 

technologies. The TCPIIP suite is the dominant model in the layers above the data-link layer. 

which is why the data link wireless networks are an obvious choice, as they 2.Ie well defined 

in the tv;o lavers of the OSI model below the network laver 
• J • 

From the discussion of porting terrestrial network standards to space in the previous Sections 

2.3 and 2.-L it can be deduced that the protocol stack of a communication platform common 

to all the spacecraft in DSS should be an amalgam of terrestrial wireless network 

technologies and the IP as the network protocol. This will allow seamless integration into 

DSS networks and reduce network management. Furthermore the communication should be 

implemented on reconfigurable hardware. Given that the reconfigurable hardware resources 

are limited it is necessary to investigate the performance trade-offs of the SOC design in [72]. 

Also power consumption needs to be minimised to prolong battery life and operating time of 

terminals in space. These are some of the requirements that the designer needs to take into 

account when developing the SOC. 

In addition to the OBDH computers, a fully functional SOC should also contain sub-blocks 

aimed at addressing specific requirements [72]. These sub-blocks include hardware 

accelerators, processors. peripherals and co-processors. Due to the impact of radiation on 

Static Random Access Memory (SRAM) based technologies. FPGAs are not used as main 

OBDH processing units [74]. Surrey Space Centre has de\'eloped a SOC integrating various 

communication protocols for the up- and down-links [75]. EDAC was provided with the 

sofiv.'are implementation of the CCSDS telecommand and telemetry standard and was 

developed to run on LEO~ [76]. a 32-bit soft SPARC V8 processor developed by the 

European Space Agency. The hurriCA. ""'e IP core, also developed by ESA, was implemented 

on the SOC as can be seen in Figure 2-7. The final implementation on the Xilinx Virtex 

XCV800-4 FPGA occupied 50% of the hardware resources (both slices and Block Rr\.c\b). 

and the maximum frequency was found to be 25 "\lliz. 
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Figure 2-7: System-on-Chip in [75]. 

In [74] the Brazilian Space Agency implemented the same EDAC with Reed-Solomon (R-S ) 

coding on an FGPA targeted at the same applications as in [75]. The R-S coding module was 

used to implement the CCSDS telecommand and telemetry standards. The R-S encoder was 

implemented on a Xilinx Virtex-II Pro FPGA device (XC2VP20) and took 48 look-up table 

(LUT), which is 0.5% of the FPGA' s capacity. 

The benefits in hardware realisation are two fold. Firstly the latency is greatly reduced, and 

secondly the power consumption is reduced when compared to a software implementation . 

The search for power-efficient solutions should be one of the driving factors in the design of 

sub-systems for space applications. 

2.8 Onboard Data Handling 
As computing power is an important parameter in space missions, being able to implement a 

new architecture on legacy processors is a desirable goal. Traditionally. on board computing 

in space miss ions has been done by microcontrollers. 
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Recently launched spacecraft showed that microcontrollers used on past missions have 

sufficient power to implement a basic form of DSS. However, this is no longer true for 

missions envisaging orbital reconfiguration, which includes autonomous control for orbit 

maintenance and self-repair as their mission objectives. Therefore the onboard computing 

system will have to be implemented on reconfigurable hardware [73], which has the 

additional benefit of providing fault-tolerance in the distributed computing system [77]. 

Computational decentralisation of a number of components physically located in different 

nodes is called distributed computing [72], and is a relatively new concept in space 

applications. Traditionally spacecraft have had limited computing resources, however recent 

developments in semiconductor and microelectronic and mechanical systems (MEMS) 

technology have led to the integration of spacecraft bus systems on a single board or even on 

a single chip [78]. In these new systems, payload data and control information are handled 

differently. A spacecraft can itself be a network of subsystems connected via switches and 

routers. The decoupling of the processing unit represents a paradigm shift in the architecture 

of on-board processing. 

Missions using this new architecture can overcome bandwidth limitations, as data can be 

collected, processed, and aggregated onboard, with the system subsequently making a 

decision as to whether to forward the data and the best way to route the signals. This modular 

approach to space based processing provides greater flexibility to missions. 

The SpaceWire OBDH protocol which forms networks by linking nodes and routers is a 

typical examples of a distributed bandwidth system, where the network's bandwidth 

increases with the number of nodes [79]. Space Wire is designed to connect high data rate 

sensors, data storage units and downlink telemetry subsystems. It is a flexible protocol for 

serial data transmission using the Low Voltage Differential Signaling (L VDS) and the 

IEEEl355 data-strobe encoding. Signals use low power transmission and have good 

electromagnetic compatibility (EMC) and provide data rates from 2 to 400 Mbps. A key 

feature in SpaceWire is its fault tolerance, which is achieved by providing redundancy to 

nodes on the network. The protocol has been used in ESA missions such as Rosetta and 

MarsExpress. SpaceWire has replaced MIL-STD-1553B, a commonly used network standard 

on spacecraft providing data rates of up to 1 Mbps. As opposed to Space Wire, MIL-STD-

1553B is a master-slave architecture, where the processor is responsible for all bus traffic by 

managing the bus time-slicing in real-time [20]. Unscheduled connections are not allowed, 
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which is a drawback in terms of flexibility, and in time critical missions the response time 

may be an issue. 

In [80-81], the authors recommend replacing wire-based OBDH bus systems with wireless 

networks. When searching for the best candidate, wireless network technologies could 

provide some answers. Firstly, the harnessing accounts for up to 10% of a spacecraft's mass 

[80-81], thus the use of wireless networks could reduce the spacecraft weight by a tenth. 

Secondly, the time of integration will be shorter and there is added flexibility in network 

management. 

To determine which wireless standard is best suitable for OBDH the authors in [72-73] 

present a survey on the characteristics of wireless networks on spacecraft. Features such as 

the suitable multiple access scheme to avoid interference between wireless nodes are 

discussed. Wireless sensor nodes power requirements give them a clear advantage over 

existing wired data handling protocols such as SpaceWire. However, the major drawback of 

using solely wireless sensors for OBDH is the level of interference. 

2.9 Space Radiation and Computing Systems 
Radiation in space can cause electronic failure on spacecraft with two major effects: 

• Malfunction due to Single Event Upsets (SEU), occuring when sub-atomic particles 

strike flip-flops or SRAM cells [82]; 

• Degradation due to Total Ionizing Dose (TID), which is the interaction between either 

trapped electrons or protons depending on the orbit. In low altitude protons dominate 

while electrons dominate in high altitudes. 

Emerging microelectronics are typically designed as digital logic devices in which data are 

moved from one unit to another using registers; the resulting data-handling unit is called a 

microprocessor. Additionally, microprocessors use memory units to store the computing 

system's configuration files. The probability of radiation-induced errors is high for 

microelectronics devices operating in space. As a result of space radiation the Data 

Processing Unit (DPU) needs to guarantee a minimum level of performance. Radiation 

mitigating techniques include selecting space qualified equipment, shielding, component 

derating and redundancy [83]. 
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Several radiation-hardened processors are available for space applications, in particular the 

ERC32 and LEON processor families. ERC32 is a 32-bit SPARC V7 radiation-tolerant 

processor developed by ATMEL for space applications. Two chipsets have been developed 

and the single-chip TSC695F with a performance of up to 20 Million Instruction per Second 

(MIPS) and 4 Millions FLoating Operation per Second (MFLOPS). The performance 

achievable with the processor makes it suitable for small applications, nevertheless the 

ERC32 was used in more than 1600 space missions [84]. 

ESA developed the LEON2-FT and LEON3-FT, which are based on a 32-bit SPARC V8 

processor Reduced Instruction Set Computer (RISC) architecture, in which memories are 

protected by using parity or EDAC [85]. The LEON processors offer high performance in the 

order of hundreds of MIPS, and can be found in ESA recent missions such as the ESA 

Project for Onboard Autonomy (Proba-2) [86]. 

FPGAs are increasingly being targeted as a platform for the development of reconfigurable 

space based SoCs. They can either be reprogrammed or are one-time programmable. 

Traditionally the one-time programmable devices were used because the logic blocks are 

connected permanently and radiation effects have minimal impact on the program's data. The 

one-time programmable device's radiation performance is on par with that of an Application 

Specific Integrated Circuit (ASIC). Actel RHI020 and RHI080 are examples of radiation 

hardened FPGAs. 

Although radiation hardened FGPAs have good performance in space they are usually low 

resource hardware with few thousands of gates, in contrast Static Random Access Memory 

(SRAM) based FPGAs can have millions of gates and can therefore house more IP cores. 

However, SRAM-based devices are susceptible to single event upsets, in particular the 

device's configuration memory can be corrupted and lead to higher power consumption. It is 

also possible for bits in the system to be simultaneously corrupted and cause erroneous data. 

In some wireless networks a synchronisation pattern is appended in the header, and a system 

upset will lead to a decrease in throughput. 

Fault-tolerance is increasingly being looked into for the implementation of microprocessors 

on reconfigurable hardware. Vladimirova et al. took advantage of the reconfiguration 

capability available on current FPGAs to provide partial run-time reconfiguration on a SoC 

[82]. Osterloh et al. proposed to implement networks of dynamic reconfigurable modules 

integrated on the chip as a network-on-a-chip (NoC) device [87-88]. The dynamic modules 

are connected to a switch based on the Space Wire protocol, and the resulting architecture is 
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called System-on-Chip Wire (SoCWire). As opposed to Space Wire networks which have a 

fixed word length of 8 bits, SoCWire is modified to support variable length words, resulting 

in a maximum data rate of 800 Mbps. The NoC is placed in the dynamic reconfiguration area 

of the FPGA and relies on the LEON3 processor to fetch its configuration file from a 

radiation hardened Programmed Read Only Memory (PROM); and just like in [82] the NoC 

offers dynamic partial reconfiguration. 

2.10 Conclusion 

There is a trend towards distributed satellite systems flying in formation in specific 

geometrical configurations. The maintenance of these configurations is dependent on the 

satellites exchanging information about their orbital parameters via inter-satellite links. 

Current research revolves around the idea of supporting formation flying ISL with terrestrial 

network technologies. This chapter summarises the state-of-the-art in satellite networks, in 

particular the lower layers of the communication protocol stack are examined. The 

development of satellite networks based on COTS show a trend towards a layered model that 

supports the TCPIIP protocol suite. Because of the challenges due to the impact of orbit 

dynamics on inter-satellite links, the adaptation of terrestrial network protocols is essential in 

order for them to operate in space. This led to adopting the same layered approach to analyze 

the issues related to wireless network standards selected for ISL. 

It was found that the multiple access scheme in the IEEE802.11 standard is suitable for 

formation flying, however it will require dynamic reconfiguration to scale up to the 

communication range. Furthermore the MAC layer should employ cross-layer optimisation to 

improve communication performance. The investigation of the ISL physical characteristics 

shows that adaptive communication systems are required to operate in time-varying channels, 

some of which include modulation and coding sub-blocks. As will be shown in chapter 5, 

these sub-blocks are already included in the IEEE802.11 physical layer. 

It was found that the throughput is also influenced by the processing capacity of the data 

handling unit. And the MAC layer reconfiguration requirements warrant it to be implemented 

on a flexible hardware. These two factors led to survey the typical requirement for the 

implementation of data-handling units on reconfigurable hardware in space applications. The 

solutions for high speed OBDH evolve around the idea of employing radiation tolerant or 

mitigated COTS. In particular, the processor, which is embedded and radiation hardened, is 
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required to configure at run time the circuit units housed on FPGA. To be reconfigurable, the 

wireless module also needs to be incorporated in the same hardware. 
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Chapter 3 

Antenna Pointing Requirements for Uncoordinated and 
Asynchronous Inter-Satellite Communications 

As discussed in section 2.2.5 the ISL based on terrestrial wireless network technologies 

require smart antennas to extend the communication range. This is valid only for point to 

point communication, the relative motion affects the pointing requirements of the antennas. 

This chapter investigates the effects of orbital dynamics on the ISL communication 

parameters for satellite antennas pointing in a desired direction. Due to the rotation of any 

point about a reference axis, the position of the target satellite needs to be determined within 

a tolerable margin for antenna-pointing purposes, otherwise the communication may be either 

disrupted or never take place. In order to determine the optimal antenna beam width the ISL 

dynamic parameters, such as range, azimuth and elevation, are investigated. 

Section 3.1 introduces the concept of pointing mismatch between satellites. The 

representation of satellite position and relative motion with state vectors is described in 

Section 3.2, the satellite orientation to its pointing direction is also analysed. Section 3.3 

presents ISL simulations for three different constellations and the pointing mismatch is also 

shown. Section 3.4 looks into the impact of pointing on the antenna gain loss. 

3. 1 Introduction 

Recent mission proposals show a trend towards breaking down large spacecraft into a 

number of smaller satellites performing coordinated tasks. In particular, wireless sensor 

networks (WSN) are being envisaged for formations that are able to position themselves in a 

particular direction, with the goal to configure themselves into LANs and ultimately have less 

reliance on the ground segment. The DARPA F6 programme advances the case for satellites 

forming a LAN with a gateway enabling communication with satellites in other LANs [87]. 

Analogous to this concept is the example of the MILST AR DSS in which satellites in 

geostationary orbits are used as a gateway for nodes on Earth [9]. The orbit as well as the 

attitude of each satellite influences their achievable relative position and orientation. These 

parameters are computed in advance to ensure that the satellites move in a predictable 

manner. In terrestrial networks, as mobile nodes are assumed to move unpredictably as result 

41 



Chapter 3. Antenna Pointing Requirements for Uncoordinated and Asynchronous Inter
Satellite Communication 

networks ad-hoc techniques are employed to ensure reliable communications. In WSN, the 

mobility between satellites raises a number of challenges. This is because a satellite 

observing another satellite's motion will find the observed satellite moving on an elliptical 

path [88]. This is true even for satellites in circular orbits. The term chaser refers to a satellite 

that either observes or initiates communication with another satellite, which is called the 

target. Their respective inertial point is the origin of a reference frame where the axes do not 

rotate [88] , Assuming that the target and chaser satellites are pointing towards their inertial 

point, the target's inertial pointing direction is tangent to the elliptical path viewed by the 

chaser as shown in Figure 3-1 . If, for instance, the chaser is placed in the centre of the ellipse 

and points its antenna towards the target, communication performance may greatly decrease 

in the following two scenarios: 

• The target pointing direction is not aligned with the chaser's pointing direction . This 

will be the case for most of the target's motion on the elliptical path. 

• The target' s antenna beam width is placed in the same direction as its inertial point 

and is not sufficiently large to compensate the pointing mismatch. 

The antenna pointing mismatch is referred to as off-angle in the remaining of thi s chapter and 

can be alleviated through the following methods : 

• The satellites employ active attitude control (spin-stabilisation) to orientate 

themsel ves in a designated direction. 

• For satellites in a LAN, the satellites are collectively oriented in a direction, ensuring 

that all of their antennas are in a line of sight of one another and each satellite antenna 

is sufficiently large to reach all the other satellites. 

Target Elliptical Path 

Chaser 

Y-Axis 

Figure 3-1: Target relative motion with respect to chaser position. 
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These two possibilities show that the knowledge of the target satellite current position as well 

as its antenna's orientation are very important for ISL, making attitude control and directional 

antennas a requirement to ensure ISL connectivity. The former suggests that scheduled 

information exchange takes place in the ISL, this is because the target will orient its beam 

width in the chaser's coverage at the appropriate time and will also place heavy burden on the 

attitude control as well as the on-board computing modules. The latter is more suitable for 

ad-hoc communications, however there has been no literature on the development of an 

algorithm to control the spatial pattern of sensor networks. This is a major impediment in the 

implementation of responsive space applications [89], in which the immediate information 

exchange between satellites is event-triggered. In terrestrial wireless networks, asynchronous 

and uncoordinated communications are initiated by using omni-directional antennas. 

However, this solution is not applicable to ISL using terrestrial wireless networks, and smart 

antennas are required to extend the communication range [40]. 

To determine whether omni-directional antennas can be replaced by a directional antenna the 

theoretical maximum value of the pointing mismatch needs to be evaluated. The following 

presents an attempt to evaluate the impact of orbital dynamics on satellite constellations, 

described in the literature, which are suitable for inter-spacecraft connectivity. This is 

however not intended to be a complete analysis of the pointing problem per se and therefore 

does not include an analysis of orbital perturbations themselves. 

3.2 ISL Modelling in State Vectors 
For satellite constellations designed to operate in LEO or aimed at deep space mISSIOns 

orbital dynamics have a major impact on communication parameters, such as the distance 

between satellites, the pointing angle, and the Doppler frequency shift [40]. An optimisation 

of ISL with respect to the variation in distance between the satellites can potentially allow 

better power utilisation. Cowley et al. conducted extensive research on ISLs, adapting the 

power and data rate according to the ISL communication range [67]. Cowley extended this 

work to examine the impact of both the constellation size and the orbit type on the mean 

throughput [90]. Simulations of a polar scenario and a scenario where ISL is formed between 

two satellites located anywhere above the surface of the earth showed that the polar 

constellation throughput is 40% higher than the non-polar scenario and its mean throughput 

increases linearly with the number of ISLs for any satellite in the constellation. For any ISL 

in these simulations, Two Axis Antennas (T AA) were used and the antenna pointing 

mechanism was defined in a local reference frame using spherical coordinates. However, the 
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work in [90] did not account for two problems: Firstly, the use of spherical coordinates lead 

to multi-point functions in which singularities can occur and the reference system uses 

computationally extensive trigonometry. Secondly, with the TAA being a mechanically 

steerable antenna, its usage in space may prove to be difficult. As a result phase array 

antennas with reflectors have been proposed to direct the antenna's beam in any azimuthal 

direction [71]. The proposed antennas operate in the Ka band, which means that if they were 

to be used for ISLs based on terrestrial wireless network standards, their size would exceed 5 

m in diameter. For these reasons it is necessary for find a more suitable phase array antenna 

for ISLs. 

3.2.1 Satellite Position Vector and Reference Frame 

In the analytical models published for ISL communication so far, the satellites are assumed to 

be in circular reference orbit and their relative motion is derived by the cosine law of a small 

triangle [40, 91]. The ISL is expressed as a function of time, the satellites respective true 

anomaly and the Right Ascension of the Ascending Node (RAAN). For circular orbits the 

pointing angles that are important for tracking are defined in [91], however, a model for 

satellites operating in elliptical orbits is not available. The relative motion described in a 

circular reference orbit can de described by the Hill-Clohessy-Wiltshire (HCW) equations 

[92-93]. Although the equations are suitable for the modelling of spacecraft moving in close 

proximity, it breaks down when the orbital perturbations and the relative eccentricity are 

taken into account [92]. Nevertheless, due to the fact the wireless networks operate in short 

range the HCW is suitable for DSS network based on terrestrial wireless standards. 

The relative eccentricity refers to the eccentricity of the elliptical path formed by the target 

spacecraft. Given that some of the constellations studied in this thesis are using elliptical 

orbits, a more general framework capable of modelling relative motion in elliptical orbits is 

chosen. In order to model ISL, information regarding the velocity and acceleration of the 

satellites has to be incorporated, which was omitted in previously published analytical ISL 

models. This requires developing satellite motion models in which the scalar magnitude and 

representation of the orbits are expressed in terms of state vectors [93]. A state vector is a 

vector containing the satellites' position and velocity and is usually composed of seven 

elements: the position and velocity vectors using 3 coordinates each, and one element 

expressing time. Dependent on the application and observation, state vectors can be used to 

determine the satellite's position and orbital elements after a certain time. The position vector 
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may change from one reference frame to another using a matri x transformation [93], however 

the relative di stance between the satellites will remain fixed after a transformation is applied. 

An orbit in the plane is defined through its eccentricity and angular momentum. All other 

parameters can be derived from these two and the classical orbital elements (COE) from the 

position vector. A step-by-step derivation of the COE is presented in [88]. Gi ven an initial 

state, the state vector can be expressed at any other time using the Lagrange coefficients; also 

allowing for an expression of the satellite relative motion . The state vector is typically 

expressed in the geocentric equatorial frame, with the position vector r and the veloci ty 

vector v as follows [88, 93]: 

-
r=XI+Yl+ZK 
- -
v=v x I+v yl + vz K 

(3 -1 ) 

(3 -2) 

The two angles required for antenna pointing - azimuth and elevation - are found by 

transforming the state vector in the topocentric horizon coordinate system as shown in Figure 

3-2. The xy-plane is the local horizontal plane. The azimuth refers to the angle between the 

north and the projection of the position vector direction onto the xy-plane. The elevation is 

the angle between the horizontal plane and the position vector's direction. 

I azimuth I 
I elevation 

I x (east) 

Figure 3-2 : Topocentric hori zon coordinate system. 
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The transformation matrix for the expression of the position vector in the local North East 

Zenith (NEZ) frame is 

x l -sin (e) 
rNEZ = Y = - sin (¢)cos(e) 

z cos(e)cos(¢) 

cos(¢ ) 

- sin (¢)sin (e) 
cos(¢ )sin (e) 

(3-3) 

where e is the local sidereal time (longitude) and ¢ is the latitude true anomaly. The RNEZ 

vector denotes the position vector in the new NEZ frame. The topocentric horizon corrdinate 

system may also be represented in the South East Zenith (SEZ). And the azimuth is still 

calculated from the North. 

The antenna pointing angles can now be defined as follows: 

el=sin-{I~ll (3-4) 

( - J • _\ X 
az = SIn __ , 

\rNEZ \ * cos(el) 
(3-5) 

az = cos -1 (I~I LS(el) l (3-6) 

where el is the elevation and az denotes the azimuth. 

Assuming that the spacecraft are oriented facing their inertial point, they will not be able to 

point to one another at the same time. This is illustrated in Figure 3-3, in which the target's 

inertial point is chosen to be the centre of the Earth. The target's relative motion is expressed 

in the non-rotating Earth Centred Inertial Frame (ECI) frame, where the x axis is the direction 

radial vector, often referred to the line of aries and y is orthogonal to x on the equatorial 

plane. The target's motion is depicted in the elliptical path passing points A, B, C and D. The 

chaser satellite at the origin of the coordinate system is denoted O. It is important to 

determine whether the spacecraft are in the same coverage area, requiring that their antenna 

radiate their energy towards each other. In other words, the relative attitude of the target 

satellite needs to be defined. 
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Figure 3-3 : Relative motion of target satellite and its pointing direction. 

In order to determine the relative attitude of the target it is first necessary to study the relative 

motion between the satellites. For ease of demonstration it is assumed that the satellites in the 

chaser's co-moving frame have the same eccentricity and the same orbital period. The 

target's relative motion then describes an ellipsoid in the xy-plane and xz-plane [93]. The 

pointing angles are found by transforming the state vector from the ECI frame to the NEZ 

frame. If the pointing is too far off the transmitting satellite's beam communication will be 

lost. The problem is more acute in the azimuthal plane, as typically the antenna is designed to 

cover the whole azimuthal plane. The relative motion of satellites is usually represented in 

the Hills-Clohessy-Wiltshire (HCW) reference frame, however this is only suitable for close 

proximity and not applicable for distances above 500 km. As a result the off-angle is in the 

satellite reference frame. 
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The relative motion is analysed in the frame's xy-plane, in which size, shape and location of 

the ellipse can be determined with the use of state vectors. The off-angle can be calculated by 

superposing a circle on the ellipse defining the path of the target as shown in Figure 3-3.The 

target's relative position in the xy-plane is represented by vector r, the target's inertial 

pointing vector is represented by rt and the target inertial point is denoted by P. The relative 

attitude -or orientation- of the target satellite is defined by the angles formed by vectors r and 

The off-angle e, which is the difference between <!>gd and <!>gc in Figure 3-3, can be calculated 

when defining the eccentricity of the ellipse in the chaser's xy-plane as 

e = ~ - ~gC - (~ - ~gd ) (3-7) 

= ¢gd - ¢gc' (3-8) 

where ¢gc is the angle between the target's pointing direction and the y-axis, and ¢gd is the 

angle between the chaser pointing direction and the y-axis. In Figure 3-3 the angle fJ is 

calculated as follows: 

(3-9) 

(3-10) 

(3-11 ) 

Note that Equations 3-9 and 3-11 are not valid when rand y are equal to zero. In such a case 

the two satellites collide, however this rarely occurs in practice. 

The relative eccentricity vector e is a function of both the position vector and the vector's 

velocity: 

(3-12) 
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Where J1 is the gravitational constant and r is the projection of the position vector onto the xy_ 

plane. Once the relative eccentricity of the ellipse is defined, ¢Jgc can be determined from the 

following equation [93]: 

(3-13) 

When the relative position between the satellites is close, the HCW frame can be used to 

express the relative attitude. In the HCW frame the derivation of the off-angle 8 requires 

determining two angles 

(3-14) 

and 

(3-15) 

t/Jrd denotes the angle between the semi-major axis and r, and can be extracted as 

(3-16) 

Assuming that the off-angle is symmetrical about the y axis its maximum and minimum will 

be observed within half of the orbital period. This suggests that the off-angle can 

theoretically attain ±90° for a quarter cycle. 

3.3 Pointing Error Simulations 
The off-angle was simulated using a set of published constellations. It is assumed that there is 

an angle "'C of link cut-off [90] that is dependent on the satellite's attitude. The link-cut-off 

refers to the instant where the satellites are no longer in sight of another. This means that 

communication cannot take place between two satellites when the angle from the centre of 

the Earth by the satellites, it is referred to the angle of separation, is greater than "'c· 
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In this section the orbit simulations are performed using the Matlab software package. It is 

difficult to predict realistically the motion of objects in space without analysing the orbit 

perturbations. In particular, they are needed to accurately calculate the position of satellites 

over time. Perturbations, such as the effects of the Earth's oblateness, atmospheric drag 

impact the spaceacraft acceleration, and the long term effect is the reduction of the argument 

of the spacecraft's latitude [88]. The inclusion of perturbations over time requires to perform 

an analytical integration, which is computationally intensive. The accuracy of the developed 

orbit propagator depends on the integrator and the step size. If the initial step size is chosen 

wrongly, there may be an error in the order of kms in a LEO satellite's position over an 

oribital period [93]. 

In this chapter the satellite positions are determined from computing the initial COE and the 

Lagrange coefficients for the orbit propagation over time. The error accuracy is set to 10-6, 

however the perturbations are omitted. Given their impact on the satellite motion, the off

angle is only evaluated over one orbital period. Thus the results are valid only for the first 

orbital period. The simulations were conducted on a PC equipped with a Intel Dual Core 

processor running at 3 GHz and with a RAM size of 2 GB. 

3.3.1 Circular Orbits 

The state vectors are used to simulate ISL between satellites in a circular polar constellation. 

The orbital parameters are taken from SSTL's DMC as shown in Table 3-1. The aim is to 

replicate the simulation on ISL in [94] to specifically study the off-angle between the 

satellites. To ensure that communication is established, the satellites need to be in line of 

sight. Furthermore, the angle formed by the satellite positions and the Earth centre needs to 

be smaller than the cut-off value. Therefore, it is assumed in the simulation that the two 

satellites, communicating over the ISL, form an angle smaller than 'IIc. Their orbital 

parameters are given in Table 3-2. 

Table 3-1: Orbital parameters in SSTL's DMC satellites [94]. 

Altitude 685 km 
Planes 2 
Inclination 98.14 deg 
Number of Satellites 8 
Separation angle 22.5° 
Orbital period 5910 s=98.5 min 
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Table 3-2 : Orbital parameters of selected satellites. 

h e 1 RAAN ill 8 
Sat A 53091.1 0 98.14 0 0 0 
Sat B 53091.1 0 98.14 10 0 0 
SatC 53091.1 0 98.14 350 0 0 

A summary of the resulting off-angles is presented in Table 3-3. The variation in range is 

slightly different to that of [94], this is due to the omission of the orbital pertubations. The 

mean off-angles for both satellites are close to zero, however the satellites point towards each 

other only 4 times during an orbital period. This suggests that the pointing mismatch is 

prevalent for most of an orbital period. The off-angle standard deviation is the same for both 

ISLs: 19.87 degrees . Figures 3-4 and 3-5 show that the off-angle is symmetrical about the y

axis. This result was found in the other simulation between satellites A and C, note that are 

satellites Band C are symmetrical to each other. Thus being able to predict the range in 

pointing error in one satellite, it is also possible to predict the off-angle of a satellite 

symmetrical about a reference orbit. 

Table 3-3 : ISL simulation results for a constellation in circular orbits. 

ISL range (lan) Pointing error Mean error Error standard 
(degrees) deviation 

Sat A - Sat B 174-1231.1 -40.98 to 40.98 9*10-14 19.87 

Sat A - Sat C 174.3-1231.1 -40.98 to 40.98 7*10-14 19.87 

Figures 3-6 and 3-7 show the orientation of the target relative motion, which has its trajectory 

forming an ellipse, confirming the observation of [88, 93]. The green lines are directed to the 

centre (the chaser's observation point), the red lines represent the pointing of the target's 

inertial reference point. The figures show that over an orbital period the two pointing vectors 

rarely meet. It can also be observed that the target elliptical path has its semi-major axis 

shifted towards the x-axis, meaning that there is an along-track drift that will vary with every 

orbital period. The pointing mismatch and the drift represent an impediment with regard to 

tracking, which requires constant re-adjusting of the antenna. 
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Figure 3-4 : Off-angle between Sat A and Sat B over one orbital period. 
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Figure 3-5 : Off-angle between Sat A and Sat C over one orbital period. 
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3.3.2 Flower Constellations 
This gives the fl ower constellation a distinct advantage over the Walker constellations, where 

the along- track drift needs to be accounted for in communications. Due to the vanou 
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configurations possible as well as their ability to keep a formation fixed, FCs fit well into the 

concept of fractionated satellites, where a single function can be split into different tasks 

performed by individual satellites. FCs have applications in telemedicine, science missions, 

telecommunications, navigation, Earth science and interferometric radar. Wilkins et al. 

described a set of Flower constellations that are generic in the sense that a given constellation 

has a particular shape such as 8, flowers etc .. [95], however they have not proposed missions 

suitable for the application of FCs. The parameters of a constellation of eight satellites are 

used in the following to verify the off-angle value between the communicating satellites. The 

orbital parameters are summarised in Table 3-4. 

Table 3-4 : Orbital parameters of a flower constellation of eight satellites [95]. 

h e 1 RAAN co e 
Sat A 59488.023 0.1577554 63.4 0 270 0 

Sat B 59488.023 0.1577554 63.4 40 270 53.54 

SatC 59488.023 0.1577554 63.4 80 270 98.12 

SatD 59488.023 0.1577554 63.4 120 270 134.10 

SatE 59488.023 0.1577554 63.4 160 270 165.20 

SatF 59488.023 0.1577554 63.4 200 270 194.12 

SatG 59488.023 0.1577554 63.4 240 270 225.90 

Sat H 59488.023 0.1577554 63.4 280 270 261.88 

Sat I 59488.023 0.1577554 63.4 320 270 306.46 

The ISL between Sat A and Sat B over the constellation's periodic path is presented in Figure 

3-8. It can be seen that the spatial representation of the relative motion of Sat B is a closed 

loop, which confirms the repeatability of the constellation. Further insight is provided in 

Figure 3-9, there is a rate that increases and decreases over the ISL's period. 

The results are summarised in Table 3-5. It can be observed that the range of pointing error is 

smaller than that of the circular orbit constellation, as a result the off-angIe'S standard 

deviation is also smaller. It was found that the off-angle is periodic over one orbital period, 

which illustrated in Figures 3-10 and 3-11 for the two ISLs described in Table 3-5. Compared 

to the circular orbit simulation, the semi-major axis of the path describing the relative motion 

is aligned with the chaser's y-axis as shown in Figures 3-12 and 3-13. As a result there is no 

drift and therefore the off-angle variation will remain constant over time. 
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Table 3-5 : Results of ISL simulation for a flower constellation. 

ISL range (km) Poiting error Mean error Error standard 
(degrees) (degrees) deviation 

(degree) 
Sat A - Sat B 8131-10104 -22.20 to 21.898 -0.5 16.31 
Sat A - Sat C 8130-10105 --22.0 to 21.59 -1 16.15 

3.3.3 Safety Ellipses 

Vallado demonstrated that the semi-minor axis is half the semi-major axis for relative motion 

described in the HCW frame; the ellipse formed by the motion path is a passive stable orbit 

[93]. The relative path is often referred to as 2-1 ellipse. The HCW is suitable for a short time 

formation flying, in which the perturbations are not taken into account [96]. This is because 

the differential equations that describe the relative motion are linearised, with the assumption 

that the reference orbit is circular and the earth is spherical. Since the reference orbit's 

eccentricity is zero, the relative motion between the satellites will not be affected by the 

perturbations. The HCW frame is suitable for space missions, in which satellites are 

relatively close. As a result the HCW frame has been used in manned operated close 

proximity formation flying such as rendez-vous and docking. 

Tillerson et al. studied a set of formations with three satellites each, finding that the 

formation of satellites orbiting around a virtual centre in 2-1 ellipses is fuel optimal. The 

control system was able to maintain the formation at a fuel cost of 2-8 mmls per orbit [97]. 

For the following experiment with the 2-1 ellipse, the parameters were set as follows: The 

minimum distance allowed between the satellites is 1 km and the satellites' altitude is 500 

km. 

Figure 3-14 shows the off-angle variation over one orbital period. This value remams 

constant for any altitude. Also there is no along-track drift as shown Figure 3-15, as a result, 

in the absence of orbital perturbations the secular drift will be minimal the and therefore the 

error correction per orbit will be negligible. Just like the flower constellation simulation there 

is no drift in the x-axis. The mean error is zero and the standard deviation is 27.04 degrees. 

If a DSS network based on terrestrial wireless standard uses the HCW, it will have 

deterministic range of off-angle values and will therefore be able to set a maXImum 

beamwidth for the antennas. 
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3.4 Effect of Pointing Angle Errors on ISLs 

Antenna pointing issues between a ground segment and satellites have been studied in [98], 

however the pointing errors occurring in ISL have not been analysed in the literature. In order 

to determine whether the recommendations proposed in [98] are applicable to ISL, the 

antenna's minimum beamwidth is set to twice the standard deviation of the pointing error 

reported. Drawing from [98], where the pointing error is assumed to be Gaussian distributed, 

the pointing error 8 in this work is also assumed to be Gaussian distributed. Then the 

probability density function (pdf) of both angles can be expressed as 

(3-17) 

where E and a denote the Gaussian distribution's mean and standard deviation, respectively. 

The standard deviation is made a function of the receiver's antenna beamwidth. Chen et al. 

derived a truncated Gaussian distribution and set the maximum pointing error to 2a so that 

the pointing error would have a 0.9542 probability of lining with the receiver antenna 

aperture. In order to meet the communication link budget, the standard deviation can be 

defined as a function of the receiver's antenna beamwidth r as 

(3-18) 

This suggests that the standard deviation can be set to a half of the receiver's antenna 
beamwidth. 

As discussed in Section 3.2.2, the variation in pointing error is periodic, however the off

angle changes signs each half a cycle and it was determined to be ±90°. This suggests that the 

theoretical maximum beamwidth is 90° and it should be observed to meet the link budget 

requirements. As a result the half of the standard deviation maximum needed to cover ISL of 

the satellite is 45°. 

3.4.1 Power Loss as a Function of Painting Error 

The ISL throughput is optimised with adaptive data rate and adaptive power in [73, 127]. In 

the former it is assumed that the satellite trajectories are fixed lines, whereas in the latter 

uncoordinated ISLs are considered in which the satellites are in circular orbits. Both models 

do not take into account the moving frame's angular velocity when the two satellites forming 

the ISL operate in different orbits. If the relative motion of the chaser is considered to be 
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circular, this can result in the target antenna pointing being far off the chaser 's beam and 

communication may be lost. The power link budget needs to take the off-angle into account. 

The work presented in the rest of this section analyses the power loss due to the off-angle. 

Furthermore a strategy to minimise the loss is proposed. 

Using the standard method of depointing power loss [99], the antenna power loss Le is related 

to the pointing error e through the following: 

(8)2 
L() = -12 r (3 -1 9) 

Figure 3-16 shows the loss according to the beamwidth. It can be seen that the greater the 

beamwidth the smaller the loss for a given pointing error. Furthermore the loss only starts to 

increase from a pointing error of 10 degrees onwards. As discussed in Section 3.4.3, the off

angle's theoretical range is ±90°, and the maximum beamwidth required for communication 

is 90°. 
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The basic communication link budget is important in estimating the capacity of the 

communication link and the power absorbed by the receiver's antenna on a radio 

communication link is given by the Frii's free space equation [100]: 

(3-20) 

(3-21) 

where PR is the power absorbed by the receiver, PT is the power at the transmitter, GT is the 

transmitter antenna's gain, GR is the receiver antenna's gain, L is the distance separating the 

transmitter and receiver, and A denotes the carrier's wavelength. 

In order to evaluate the impact of the off-angle on the ISL, the receiver's antenna gain can be 

made a function of the pointing error. The evaluation of the impact can be done using a 

simple linear phase array antenna [101]. The antenna gain and directivity are a function of the 

number of elements used. The directivity is proportional to the number of elements, thus to 

increase the communication range the number of arrays needs to be increased. The 

relationship between the directivity and the number of elements is given as follows: 

(3-22) 

Where DO is the directivity, N denotes the number of element and d refers to the distance 

between the elements. Note that the half-power beamwidth is inversely proportional to the 

number of elements, thus small beamwidth will require more elements than a larger 

beamwidth. This will in tum increase the size of the phase array antenna. 

The most common way to use an antenna is to place the array in the x-axis, and place the 

beam so that its maximum is perpendicular to the x-axis which is called the boresight. Five 

cases are considered for the simulations of the antenna gain loss in sections 3.4.2, 3.4.3 and 

3.4.4 as follows: 

• Case I: Twice the standard deviation as suggested in [98] and the pointing angle set 

by the angle defined by azimuth and elevation as done in satellite tracking 

• Case II: 4 beamwidth, each of 90 degrees. The chaser is pointing towards the target 

and the pointing angle set by the angle defined by azimuth and elevation as done in 

satellite tracking. 
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• Case III: Beam with its maximum set in boresight with a beamwidth twice the 

standard deviation of pointing error. The boresight is used as the inertial pointing 

direction. 

• Case IV: Beam with its maximum set in boresight with a beamwidth of 60 degrees. 

• Case V: Beam with its maximum set in boresight with a beamwidth of 90 degrees. 

3.4.2 Impact of Pointing Error on Communication Parameters in a 
Circular Orbit 

For simulations of the antenna loss as a function of the beam width for Sat A-Sat B ISL 

communication in Section 3.2.1, the results show that with case I, the antenna loss can be as 

high as 34 dB as shown in Figure 3-17. Therefore correct tracking by the chaser satellite will 

result in high power loss at the target's antenna. This is expected, as shown in Figure 3-5 the 

target spacecraft's inertial point is seldom in the same direction as the chaser. In fact the 

chaser sometimes points in the stop-band region of the target's antenna, where the attenuation 

is greater than a minimum gain determined during antenna synthesis. For the simulation of 

the antenna gain in this chapter, the basic Fourier series antenna synthesis method is used and 

the stop-band angle is set to 40 dB. The high loss in Figure 3.17 represents the attenuation 

observed in the stop-band region.The other schemes performances are close, however upon 

closer inspection the Case II performs worse and the loss can reach 3.5 dB, as shown in 

Figure 3-18. This is undesirable as the receiver low-noise amplifier (LNA) would be pushed 

to operate in its non-linear region. The 3dB represents a loss of half the power, another LNA 

would have to be put in cascade with the first to compensate the loss. Antennas show 

identical performance in Case III and Case IV. Their losses vary from 0 to 2 dB, which can 

be considered good performance. Case V exhibits the most linear performance with loss 

variation between 0.4 and 0.75 dB. 

In Section 3.3.it was shown that the off-angle variation was the same for the ISLs - SatA / 

Sat Band SatAi SatC. However the pointing requirements are not totally symmetrical, the 

radial drift is in the opposite direction, it is therefore important to evaluate the impact of the 

off-angle on the antenna and determine whether the same set of antennas could be used for 

this ISL. 
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different antenna patterns. 
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The simul ations for the Sat A-Sat C ISLs show that the loss in Case I is even greater th an in 

Figure 3-19. Additionally the spread is greater between 220 and 600 km . The 10 in Ca. e II 
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reaches 4 dB, this will impact the LNA and therefore should be discarded for this ISL. For 

the other cases, assuming that the performance off-angle of are symmetric with respect to the 

boresight, the antenna loss is expected to be the same of the Sat A-Sat B link. This is 

confirmed in Figure 3-20, the same set of antenna could be used for the two ISLs. 
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3.4.3 Impact of pointing error on communications parameters flower 
constellation 

The simulation results of the Sat A-Sat B ISL in the flower constellation are shown in Figures 

3-21 and 3-22. The antenna performing worse is still the one in Case I, Case II performs with 

variation between 0 and 1 dB , and constrasting to the circular orbit simulations the losses 

over the whole ISL range. Again Cases III and IV have similar performance, their losses vary 

between 1 and 2 dB. Case V has an almost flat loss of 0.75 dB over the ISL range. As 

opposed to the circular orbits, the 
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Figure 3-21 : Antenna loss as a function of off-angle between Sat A and Sat B over one orbital period in a 
flower constellation (part 1). 
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Figure 3-23 shows that the second ISL in the flower constellation show similar performance 

to the fi rst one for antenna in the broadside. For cases III and IV the loss varies from 1 to 2 

dB , whereas Case I varies from 0 to 1 dB and Case V has little fl uctuations (see Figure 3-24). 
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Figure 3-23 : Antenna loss as a function of off-angle between Sat D and Sat E over one orbital period in a 
flower constellation (part 1). 
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3.4.4 Impact of Pointing Error on Communication Parameters in Safety 
Ellipse 
Simulations of the antenna performance in safety ellipse show th at fo r a large porti on of the 

ISL the loss is above 30 dB in case I depicted in Figure 3-25. For th e antenn a u ed in ca e II, 
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the losses reaches 4 dB-5 dB , thi s would have an effect on the LNA . The antenna case V has 

the most linear in performance as shown figure 3-26 . Note that this is performance for any 

size 2-1 ellipse. 
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Figure 3-26: Zoom of the antenna performance in 2-1 ellipse 

A DSS operating in Sh0l1 range, in which the HeW frame can be used for the satellite 

relative motion , will require antenna of 90 beam width to get good performance. Assuming 

the ISL is based on wireless network standard, the results in Figure 3-26 suggest that an 

omni-directional is not required, instead a directional antenna with a beamwidth of at least 

twice 54 (twice the size of the off-angle standard deviation) is sufficient. 
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3.5 Conclusion 

There has been little effort into the study of relative attitude on between satellites in a DSS. 

In this chapter a novel analysis is proposed to study the impact of the satellite orientation on 

the antenna performance for unscheduled ISL. It was shown that the orbital dynamics cause a 

mismatch in the pointing direction for satellites in co-moving frames. From the antenna 

simulations in this chapter, it was observed that ,over the ISL range, an antenna with 90 

degree beamwidth set in the inertial pointing direction has almost constant loss in mitigating 

the off-angle in the chosen constellation. The linearity in an antenna is important for the 

receiver's ability to amplify the received signal. However if a power loss variation of 2 dB is 

tolerated, the recommendation of a beamwidth of 2*pointing error standard deviation can 

also be applied to ISL. This would allow a greater communication range compared to the 90 

degree antenna. 

The gain of a 4-elements phase array antenna is half that of a parabolic antenna of 40 em 

diameter, and therefore has a shorter range. However it would require two parabolic antennas 

to cover the whole azimuthal plane of the satellite, which would lead to a doubling of the area 

of each of them. Thus using one linear phase array antenna of 90 degrees beamwidth instead 

is more attractive from a cost perspective. 

It is proposed that two 90 degree antennas covering the whole azimuthal plane are used in 

order to mitigate the impact of the off-angle variation. And if a 2 dB loss is tolerated 

uncoordinated communication in WSN can be supported if the antenna beamwidth is set to at 

least twice the off-angle standard deviation. Consequently the setting of a minimum 

beamwidth constrains the range. Since the range is related to the directivity of the antenna, 

which in tum is a function of the beamwidth, the key finding is that the maximum range of 

the ISL is set by the maximum off-angle variation, which to the best of our knowledge is 

validated for the first time through Matlab simulations. Due to the orbital perturbations being 

disregarded during simulation, the results are valid for only over one orbital period. If the 

proposed model is to be applied over a longer time, it has to be upgraded to account for orbit 

perturbations. 

69 



Chapter 4. IEEE802.11 Implementation Approaches and Architectures 

Chapter 4 

IEEES02.11 Implementation Approaches and Architectures 

The specifications of the IEEE802.11 standard set timing constraints with regard to the 

operation of the IEEE802.11 MAC layer. Establishing the parameters needed to be adapted 

for ISL leave the designer with a set of performance criteria that include the hardware 

resources, the power consumption, and processing speed. Because of the different type of 

hardware required by the MAC layer and physical layers different architectures are required. 

An investigation is carried out into current embedded devices best suited for each layer. 

The characteristics of embedded systems are outlined in Section 4.1. The design challenges 

of the implementation of the IEEE802.11 MAC layer are discussed in Section 4.2. This 

followed by a review of the current design practice of the physical layer on embedded 

hardware in section 4.3. 

4. 1 Overview of the IEEEB02. 11 Implementation in Embedded 
Systems 
As of the 1990s logic synthesis tools appeared on the market, which facilitated electronic 

design automation (EDA). This has enabled the automatic conversion of designs captured in 

hardware description languages (HDL) such as Very High Speed Integrated Circuit Hardware 

Description Language (VHDL) and Verilog into gate level representations. ASICs are 

typically compact designs that utilise low hardware resources and have low power 

consumption. They can be used to develop components such as microprocessors, memory 

units or even SoC. The major drawback of embedded ASICs is that they have a long time-to

market and incur high start-up costs. In addition the hardware structure cannot be modified 

after the chips are manufactured [102]. In contrast to ASICs, FPGAs are designed so that 

they can be reconfigured. Although they use a similar design approach and implement the 

same functions as ASICs, they allow the designer greater flexibility and the possibility to re

use existing solutions in developing new products. FPGAs owe their reconfigurations 

capabilities to gate arrays that are organised in logic blocks, programmable rows and colums, 

and reconfigurable interconnect (Figure 4-1). A typical block contains several rows of logic 

elements. The basic logic element contains a look up table (LUT) to implement combinatorial 
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functions or to be used as memory storage element, an adder and a flip -flop as shown in 

Figure 4-2. The reconfigurable interconnects enables the connection with other blocks. 

FPGAs have low resource density when compared to ASICs. The synthesis tools map 

inefficiently to the FPGA 's logic blocks, the routing usually takes more than 80 % of 

hardware resources [103] . Furthermore due to the high level of flexibility found in FPGAs, 

the full connectivity leads to high power consumption. Thus FPGA are less attractive then 

ASICs for the implementation of embedded solutions from a power consumption and 

hardware resources perspectives. However due to their inherent parallelism, FPGAs are 

commonly being used to perform computationally intensive digital signal processing 

functions such as Fast Fourier Transform. 
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Figure 4-1: Gate array layout on a FPGA [104]. 
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In most commercial wireless network devices the MAC layer time critical function s are 

performed in hardware whereas the non-timing critical functions are carried out on a general 

purpose processor. As explained in [105] and [106-107] , the MAC layer is essentiall y 

composed of control-flow dominated tasks and, as opposed to data-flow dominated tasks, 

does not map well into hardware. This makes MAC layer better suited for software 

implementation. In [105] , Nabi presents a survey of different commercial wireless solutions, 

the study demonstrates that as the amount of the MAC functionalities implemented in 

software increases so does the power consumption. As a result manufacturers of wireless 

devices have opted for the design trade-offs that give the best performance with regard to 

softwarelhardware partition, in which the MAC layer is typically implemented on a dedicated 

hardware such as an ASIC. On the other hand, the PHY is computationally ex tensive, and it 

was found that the data-flow dominated tasks in the PHY map well in the LUT found in 

FPGAs. It because of the contradicting requirements between the MAC and physical layers , 

it is common to find that the IEEE802.1 1 standard is implemented in two cooperating 

embedded hardware, one consists of a SoC working with a software for the execution of 

MAC layer operations and another peIiorming the PHY. 
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The MAC layer only requires a subset of the functions found in microprocessors, and the 

device designed to perform those few dedicated functions is often referred to as the 

embedded system. The term applies to systems implemented either on ASIC or FPGA. The 

MAC layer is typically implemented on ASIC, in fact there are very few designs that make 

use of the IEEES02.11 MAC layer running on a general purpose processor implemented on 

FPGA rather than on custom ASICs. However there is a recent trend in the development of 

WiFi systems following the Software Defined Radio (SDR) approach, in which the radio 

interface can be reconfigured by software running on a computer or on an embedded system 

[lOS]. Reconfigurable components typically implemented in hardware may include filter, 

modulation, data encoding or more complicated tasks such as the implementation of a 

wireless communication standard on SDR. In the case of the dedicated hardware used to run 

the general processor it may either be a Digital Signal Processor (DSP) or a FPGA. This 

hardware Isoftware (HW ISW) co-design approach allows software based signal processing 

and reconfigurability. 

The idea of implementing the IEEES02.11 in SDR was first explored in [109], in which the 

MAC layer was partitioned in order for the most time critical functions such as CRC check to 

be performed on a FPGA and the ARM7 processor runs the converted IEEES02.11 

specifications from Specification and Description Language (SDL) to a higher level 

language such as C. Rice University's Wireless Open Access Research Platform (WARP) 

took the concept further by offering a IEEES02.11 n development board for education and 

research purposes. The Physical layer is implemented on the Xilinx Virtex-II Pro and the 

MAC layer as well as the upper layer are written in C and run on the PowerPC processor 

incorporated on the FGPA. The development allows users to modify, to design and to test 

their own MAC layer [110]. WARP has high power consumption and requires a power 

supply of 30 W. Given that the available FPGA-based IEEES02.11 solutions with a general 

purpose processor so far involves some signal processing implemented in software, thus the 

reason for high power consumption in WARP has not been established and as a result the 

complete implementation of both layers of the IEEES02.11 standard on FPGA requires 

investigation to determine whether the cost of power is associated with the hardware or the 

software. 

The contrast between the power consumption of FPGA and ASIC designs is typically 

exemplified by Calradio, an SDR proposed by the University of California in San Diego. 

Calradio is a development board designed with similar functions to WARP but with a power 

73 



Chapter 4. IEEE802.11 Implementation Approaches and Architectures 

consumption at a fraction of WARP's [111]. Calradio is claimed to consume 3 W of power, 

which is a tenth of WARP's power consumption, and allows the user to investigate the 

performance of the IEEE802.11 b MAC layer. Signal processing is performed on a Texas 

Instruments TMS320VC5471 dual-core chip, which contains both an ARM7 core and a 5471 

DSP core; this enables the cores to communicate with each other via off-chip memory. The 

IEEE802.11 Mac layer operation, which is written in C is handled by the DSP, upper layer 

applications such as FTP are performed on the ARM7 processor. 

Because of their internal structures, FPGA and ASICs impact on embedded systems in 

different ways, for example, FPGAs are known to be less power efficient in comparison to 

ASICs. This emphasises the need for efficient implementation of low power wireless network 

transceivers on reconfigurable devices. 

4.2 Implementation of IEEEB02. 11 MAC Layer on Embedded 
Systems 

This section describes the evolution in the hardware architecture for the implementation of 

the MAC layer. 

4.2.1 Implementation of IEEEB02.11 MAC Layer on ASIC 

The MAC layer is essentially a controller for accessing the communication channel. It is 

dominated by control operations, which require a hardware block capable of implementing 

efficiently control-oriented tasks. Sequential tasks can be easily implemented on a software 

running on a general purpose processor. However due to the strict time requirements, the 

IEEE802.11 MAC layer implementation in software can not achieve real-time in a typical 

embedded system. It was found that a processor would need to run at 1 GHz to meet real

time requirements in the IEEE802.11 MAC layer [107]. Most embedded processors run at a 

fraction of this clock frequency, this suggests that the MAC layer would have poor 

performance on an embedded general purpose processor if implemented in software, further 

the design would not be power efficient. 

Due to the dominance of control-flow oriented tasks and the fact the most updates in the 

standard are done at the MAC layer, in [112] it is argued that the MAC layer is most suited 

for reconfiguration. This is counter-intuitive to the idea that reconfigurable hardware is most 

suited to data-flow oriented tasks. As result a common practice in the design of IEEE802.11, 
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is to partition the MAC layer into two parts: the control-flow oriented tasks are perfonned in 

software, and the data-flow oriented are performed in hardware accelerators. This is a thesis 

also advanced in [113] with regard to software application running on general purpose 

processors, where it is observed that the Central Processing Unit (CPU) is time-shared with 

multiple applications, the bus has a limited access time and the operating system can lead to 

overhead on the CPU. 

To lower the power consumption a dedicated hardware with slower computing resources and 

little intervention from the CPU is proposed in [113]. This approach has been used for the 

development of different MAC layer protocols such as the one shown in [114]. A design 

methodology to implement the MAC layer on a general purpose processor and general 

parameterized architecture is proposed as shown in Figure 4-3. Common functions of the 

IEEES02.11 MAC layer's such as Cyclic Redundancy Check (CRC)-32, XOR for 

encryption/decryption and timing-critical functions are all implemented in hardware. The 

control functions interact with the CPU and events coming from the network, and therefore 

they are implemented in software and communicate with the CPU through a control interface. 

It was found that the strict time requirements could only be met by extending the HW/SW 

partition to include frame reception functions such as address filtering and acknowledgement 

generation [107]. Samadi et al propose another HW/SW partition with a Xilinx Virtex-II 

Virtex2vp30 FFl152 FPGA and a TMS320VC5416 DSP [115]. Only non critical-timing 

functions such as frame formatting, fragmentation, frame buffering and network management 

are implemented in software and run on the DSP. This solution requires an operating system 

(OS) capable of computing parallel processes, it was found that ThreadX offers the best 

solution at the expense of memory usage; the OS occupies 13% of memory. In conclusion the 

HW ISW) co-design approach has become a de facto practice to improve power-efficiency 

and systems perfonnance in embedded systems. 

4.2.2 Implementation of IEEES02.11 MAC Layer on Reconfigurable 
Hardware 

As discussed in section 4.1, the reconfigurable nature of FPGA is very attractive for 

implementation of the IEEES02.11 MAC layer. However this may come at the expense of 

increased power consumption. 
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Figure 4-3: Customised Network Architecture for IEEES02.11 MAC implementation [114]. 

In constrast, ASICs are low-power solutions but lack in flexibility, as a result the current 

implementation approach of HW /SW partitioning the IEEE 802.11 MAC layer is geared 

towards providing optimal performance for ease of reconfiguration while keeping the power 

consumption minimal. This is to ensure that new update to the MAC layer are easil y 

implemented, software reconfiguration efforts may take only a few weeks. 

Contrasting, is the case of implementing updates of the PHY solely on "reconfigurable" 

hardware such as FPGAs. The design implementation would takes weeks or months of effort 

before it is made available. Thus the updates in wireless network standards usuall y take place 

on the MAC layer, and the reconfigurable part is usually executed in software that runs on a 

hi gh performance General Purpose Processor (GPP). 
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The HW/SW partitioning leads to an inefficient use of the processor resources [1l2], as there 

is no dedicated attempt to design hardware specially for the MAC layer. This can be 

alleviated by exploiting the granularity of an architecture, which is being explored to design 

specific functions. The granularity of an architecture is defined by the width of the 

component that it can support, an architecture that routes data at bit-level is called fine

grained architecture. A coarse-grained architecture in contrast have data-path wider than 1 

bit, and generally contains units that process data at word level. A coarse-grained architecture 

may contain Arithmetic Logic Units (ALU), word-level multipliers and memory devices, 

which are the basic components required for the implementation of a CPU [116]. A trend that 

is emerging in the implementation is to use coarse-grained to design Reconfigurable 

Function-Unit (RFU), which is the connection of the coarse-grained architecture and other 

units with a reconfigurable routing structure. 

Pionteck et al [103] propose reconfigurable processors to increase the processing efficiency 

of control-flow oriented tasks. A RFU architecture design was used to demonstrate the 

implementation of Advanced Encryption Standard (AES), CRC, and Reed-Solomon coding 

as a coarse grained reconfigurable architecture as part of a RISC. The function-specific unit 

increased processing rate by a factor of 11 when compared to the same implementation on 

the RISC processor. Heysters et al developed a HYPERLAN12 PHY receiver with 3 16-bit 

reconfigurable architectures called Montium [117]. A Matlab reference model was 

implemented using 64-bit floating-point numbers and compared to the 16-bit fixed-point 

Montium model. The difference between the Montium receiver's performance and the 

Matlab model was in the order 0.5%, which is below the tolerated simulation error. This 

demonstrates that the Montium design can implement accurately the HYPERLAN12 receiver. 

The receiver achieved clock frequency from 25 to 72 MHz, which is sufficient to meet the 

standard performance; however the authors in [117] did not extend their work to the MAC 

layer. 

Typically FPGAs are a combination of coarse and fine grained architectures, and compensate 

the inherent limitations of both architectures. That is coarse-grained units do not perform 

efficiently bit-level algorithms[l1S] and fine-grained architecture are less efficient in word

level operations. Thus designs combining both the coarse-grained and fine-grained could be 

efficiently be implemented on a FPGA. The Xilinx Virtex-IV FPGA family are examples of 

FPGAs providing both fine-grained and coarse-grained architectures [119]. 
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There has been no implementation of the IEEE802.11 MAC layer with RFU per say, 

however work conducted on other wireless standards with similar functioning could be 

extending to the IEEE802.11 standard. The first coarse-grained reconfigurable architecture 

implemented in FPGA to support the MAC layer of a wireless network standard is reported 

in [120], the architecture is designed for Bluetooth wireless sensors in a mobile environment. 

The aim is to integrate an energy-efficient coarse grained RFU on a RISC processor in order 

for the RFU to perform control-oriented tasks and speed up the MAC processing. The RFU 

and the processor are both masters on the on-chip bus system and interface with the 

peripherals. The RFU interacts with the processor via 8-bit registers and the architecture is 

implemented on CMOS, however details of its performance were not included. 

An extension of the work can be found in [121], in which a multi-tasking RFU is integrated 

with the LEON-2 RISC reconfigurable processor developed by ESA. The RFU's 

configuration is stored in a table, which allows the RFU to be reconfigurable by the 

processor. With regard to multitasking, a task manager is employed to monitor the execution 

of processes, as result the processor has more time for other applications. In this work the 

performance was measured by multitasking the CRC and the AES, it was found that the 

preemptive delay was 1.5 /lS. Again there is no detail about the complete MAC performance, 

nevertheless the endeavor highlights the possible gain in processing that be obtained by 

implementing the MAC layer and the processor on the same hardware. 

The first implementation of a complete wireless sensor with a RFU running on a soft core 

processor is found in [122], the sensor which is a 8-bit MICA comprises a RFU integrated 

with the NIOS soft core processor and is implemented on a Cyclone II FPGA as shown in 

Figure 4-4. The design aims to provide low energy device to detect and predict real-time 

forest fires, once data is gathered it is sent to a base-station. Experiments show that for a 

distance of 10m, the transmitter consumes an average of 480 mJ and the receiver consumes 

400 mJ. 

The foundations for a RFU specially designed for the IEEE802.11 MAC has been laid out 

[6,98,99]. Stamenkovic et al developed a wireless engine to support all the functionalities of 

the IEEE802.11a standard on a single chip. Additionally the TCP/IP protocol stack is 

implemented, this gives the wireless engine a complete communication protocol stack [123]. 

A management core running on the LEON-2 processor is used to control the engines 

designed to support the protocol of each layer. The design which is implemented on an ASIC 

consumes 530 m W. and is capable of running up to 85 MHz. Further the design meets timing 
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requirements, the authors claim that the SoC is reusable and is easily integrated with larger 

designs . 

Preliminary work on the MAC 's execution on a reconfigurable processor implemented on a 

FPGA can be found in [124] , Xiao et al The HW/SW partitioned the design so that the 

software runs on the NiOS-II soft-core processor. The implementation was ported on the 

Altera EP2C20 Cyclone FPGA and the MicroCIOS-II Real-Time Operating System (RTOS ). 

The design methodology as well the architecture are put in place for the realization of a SoC 

supporting the IEEES02.11 standard, however none of the performance metrics are listed . 
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Figure 4-4: Node Architecture diagram in [122]. 

Nab i also proposes a reconfigurable SoC architecture that supports 3 different wireless 

network MAC layers [105] as shown in Figure 4-5 . WiMax, WiFi and BlueTooth are the 

supported standards, and the platform switches between the 3 MACs depending on the 

communication needs. It is implemented so as to allow swi tching on a packet-by-packet basis 

and it i ajmed at consumer portable and handheld devices. The MAC is implemented as a set 
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of RFUs, however has two major di stinctions with respect to other the RFUs based MAC 

implementation. Firstly on the parts that are common to the 3 MAC layers are implemented 

in hardware and a software application is still used to managed some of the control-flow 

oriented tasks. Secondly it is a low power system targeted at ASIC with a common interface 

set for all the MACs, as such the interfaces will not change when new updates are available . 

As a result the SoC becomes transparent to the user or the calling system. Nabi [lOS] did not 

manage to implement the SoC on hardware and instead the architecture was modelled in 

Matlab and Simulink. The model was evaluated at a high-abstraction level assuming that IP 

cores are available commercially and novel parts of the design need to be implemented. As a 

result a development environment capable of simulating differerent levels of abstraction was 

proposed. The model was used to evaluate several candidate architectures. 

4.3 Implementation of IEEEB02.11a Physical Layer in Embedded 
Systems 

This section describes current research effort in the design of the IEEES02.11 in embedded 

systems. The IEEES02.11 a is the focus, the reason will be presented in chapter 5. 

II 
II 
~ III 

SOC for a Multi-Standard Portable Device 

Other SoC Peripherals 

Figure 4-5: reconflgurable SoC for 3 different MACs [105]. 

4.3.1 Implementation of IEEES02.11 a Physical Layer on Reconfigurable 
Hardware 

The reali zation of IEEES02.11 baseband essentially employs a number of digital signal 

processing techniques, the (b) standard employs Code division multiple access (CDMA) as 

physical layer modul ation , the other prevalent standards in the market use orthogonal 

freq uency divi sion multiplex (OFDM) at the physical layer. These techniques are 

computationally ex tensive and as a result , require computational platfonns either speciali zed 
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for the physical functionalities such as DSP or are programmable. In the past, only specially 

designed ASIC, which are optimised for performance, could be used for real-time 

applications [5]. 

Although the ASIC-based solution is the most cost-effective in terms of power and area, 

when it comes to updating possible signal processing (OFDM) parameters FPGAs are 

preferred. As a result IEEE802.11 transceivers are increasingly being implemented on 

FPGAs. The advantage of using FPGAs is as follows: They can operate at high speeds and 

have built-in reconfigurable digital signal processing blocks such as multipliers and memory. 

As a result they are a suitable implementation medium for modulation techniques employed 

in IEEE802.11 such as OFDM. 

4.3.1.1 OFDM Systems 

In Frequency division multiplexing (FDM) systems the total transmission bandwidth is 

divided into a number of non-overlapping frequency sub-channels often referred to 

subcarriers [125] , as shown in Figure 4-6. U sing non-overlapping channels has the 

advantage of avoiding spectral overlap, and by the same process eliminates inter-channel 

interference (lCI). The data is transmitted by dividing the data stream into parallel bit 

streams, as a result each subcarrier transmits data at a lower data rate. This multi-carrier 

transmission method has the benefit of increasing the robustness against distortion caused by 

frequency selective channels. If there is interference only a portion of the subcarriers will be 

affected. In contrast in a single carrier transmission, when there are channel impairments 

such as ICI the entire link can fail. 

In order to increase spectral efficiency the subcarriers can overlap, however the overlapping 

introduces cross-talk between subcarriers [125]. If the subcarriers are orthogonal to one 

another the receiver will be able to perform frequency multiplexing to separate the sub

carriers. It is recommended to choose equally spaced subcarrier to ensure orthogonality. The 

subcarriers signals are transmitted together in the same band. 

The representation of the Fourier Transform with discrete-time signals is called (Discrete 

Fourier Transform). Similarly the amplitude of a signal in the time domain can be extracted 

from signals in the frequency domain using the Inverse Fourier Transform. The discrete-time 

representation of a signal can be extracted with the Inverse Discrete Fourier Transform 

(lDFf) using N sub-carriers and it is given by the following equation: 
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1 N-l j2Ji~n 
x{n) = -I X{k ~ N n=O,1, ... , N-l 

N k=O 

(3-1) 

Where X(k) is the modulated complex frequency component, n is the resulting time index 

and k is the frequency index. In an OFDM system, at the receiver side, the data is recovered 

by performing the Discrete Fourier Transform (DFT) on the received signal: 

N-J - j2Ji~k 

X{k)= Ix{n~ N (3-2) 

k=O 

A particular ODFM system would require a large number of oscillators, however OFDM 

relies on Inverse Fast Fourier Transform (IFFT) to map the input binary information into a 

set of orthogonal subcarriers. The IFFT is an algorithm used to implement the IDFf. This is 

due to the fact the IDFT computation is too slow, for example a 64 points transform is 

completed in 4096 operations using the IDFT whereas the same transform takes 448 

operations when the IFFT is used. This gain in computation makes the IFFf the algorithm of 

choice for the implementation of the IDFT in hardware. 

The OFDM modulation/demodulation consists of taking sub-carriers which are in the 

frequency domain and transforming them into the time domain using the Inverse Fast Fourier 

Transform (IFFT) at the transmitter and transformed back to frequency-domain using the 

FFf at the receiver. 

By comparing Equation 3-1 and 3-2 it can be seen that the IDFT is the scale down conjugate 

of the DFT, this means that the same hardware can be used to perform the IFFT can be used 

for FFf, this require a multiplier to scale or scale down from domain to the other. The 

number of points of the IFFFIFFT used in a system depends on the number of subcarriers 

used, and the resulting N points transform is called an OFDM symbol. In IEEE802.ll a and g 

wireless LANs, the number of subcarriers is set to 64, which translates to using a 64-point 

IFFTIFFT and OFDM symbols of 64 samples. 
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A) Non-overlapping FDM Sub-channels 

f\f\f\f\f\f\ 
Frequency 

8) Overlapping FDM Sub-channels 

IVVVVV"\I Difference in bandwidth 

~ -I 
Frequency 

Figure 4-6: (a) Frequency division multiplexing, (b) OFDM. 

In practical terms the receiver will receive a signal with an amplitude that is the sum of all 

the subcarriers signals. To serve as illustration, the real and imaginary parts of two 

orthogonal signals were derived with the MATLAB software and are shown in Figures 4-7 

and 4-8. Note that in Matlab the (lIN) factor in the IFFT is replaced by a (l/--./N) in order to 

normalise the transforms. As it can be seen in Figures 4-7 and 4-8 the sum of the two 

subcarriers is multiplied by (--./2). 

4.3.1.2 Guard Insertion 

As mentioned previously OFDM divides the data stream into a number of subcarriers, the 

symbol duration is also made smaller. This results in a reduction of in the ICI, the mUlti-path 

delay spread is also reduced by a factor equal to the number of sub-carriers. In an OFDM 

symbol, the sub-carriers retain their orthogonal property when transmitted through a non

dispersive channel. Most channels of interest, however, contain significant time and/or 

frequency dispersion. These channel effects introduce inter symbol interference (lSI) and 

inter carrier interference (ICI), and can destroy the orthogonality of the sub-carriers. 
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Figure 4-7: Sum of the real part of orthogonal signals in the time domain. 
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Figure 4-8: Sum of the imaginary part of orthogonaJ signals in the time domain. 

A major advantage of OFDM, as mentioned before, is the ability to enhance the basic signal 

in ways that overcome channel impairments. 
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There are two aspects of the multi-path channel that need to be considered: 

• Signal symbols will overlap due to the delay spread 

• Frequency selective fading will occur and equalization will be required to mitigate the 

effects of multi-path fading. 

In communication the measurable response of the transmission of an electromagnetic impulse 

over the communication channel is called the channel impulse response. It is representation 

of the characteristics of the channel over spatial and time dimensions. The measurements of 

the channel response show that the channel acts as a filter that distorts the signal in space and 

in time. To mitigate time dispersion fading a guard interval equal to the channel impulse is 

inserted at the beginning of the OFDM symbols. In IEEE802.ll the guard is one quarter of 

the symbol duration (0.8 Jls). If the multipath is longer that the guard interval ICI occurs, 

when the receiver tries to demodulate a subcarrier, because it encounters interference from 

another a subcarrier. This is because the interfering sub-carriers are no longer separated by an 

integer number of cycles. By giving the OFDM symbol a cyclic extension, often referred to 

cyclic prefix (CP), the received signal appears to be periodic as shown in Figure 4-9, if the 

delay is smaller than the guard time there be will no phase transitions during the OFDM 

symbol interval and fading will not occur. However if the multipath delay is longer than the 

guard interval, phase transitions will fall within the duration of the symbol duration and will 

destroy orthogonality between subcarriers.. The main drawback in guard insertion is a 

reduction in data throughput. 

CP OFDM symbol 

t 
Copy of last portion of OFDM signal 

Figure 4-9: OFDM symbol with cyclic prefix. 

The use of ODFM transmission has the following advantages: 

• OFDM makes efficient use of the spectrum by allowing sub-carriers overlap. 

• By dividing the channel into narrowband flat fading sub-channels, OFDM is more 

resistant to frequency selective fading than single carrier systems are. 
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• lSI and IFI are eliminated via cyclic prefix. 

• Using adequate channel coding and interleaving, lost of symbols 

lost due to the frequency selectivity of the channel can be recovered 

• Channel is simpler than using adaptive equalization techniques with single 

carrier systems. 

• OFDM is computationally efficient by using FFf techniques to implement 

the modulation and demodulation functions. 

The disadvantages can be listed as follows: 

• The OFDM signal has a noise like amplitude with a very large dynamic range, 

therefore it requires RF power amplifiers with a high peak to average power ratio. 

• OFDM is more sensitive to carrier frequency offset and phase offsets than single 

carrier systems are. 

An IEEE802.11 OFDM symbol consist of 48 sub-carriers that are used for data information, 

4 sub-carriers are used as the pilot references for channel monitoring. The remaining sub

carriers are assigned with null vectors. The OFDM symbol duration, which is the bandwidth 

required to transmit the symbol, is set to 4 ~s (0.8 ~s for the cyclic prefix and 3.2 ~s for the 

data from the IFFT). This also means that the transmitter should be able to generate 250000 

symbols per second. A summary of the IEEE802.11 OFDM timing requirements is shown in 

Table 4-1. 

4.3.1.3 Performance of OFDM on Reconfigurable Hardware 

An early example of OFDM based system working in conjunction a general purpose stem 

from Trinity College Dublin is found in[126], the SDR comprised an RF front-end, ADCs, 

IF filters and the modulation/demodulation was performed in software. The SDR allows 

reconfiguration of parameters such as IFFT sub-carrier modulation scheme, carrier power 

levels via a radio XML based configuration tool called IRIS (Implementing Radio in 

Software). In essence the radio has a flexible architecture; however it comes at the expense of 

processing time. It was found that the processing varies between 771 and 831 ms, as a result 

real-time systems would have to allocate an extra processing extra time ahead of data 

transmission. 
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Subsequent research focused on the implementation of OFDM on FPGA, the objectives was 

to evaluate design trade-offs in terms of power, area, latency and ease of customisation. 

FPGAs can operate at high speeds and have built-in reconfigurable digital signal processing 

blocks such as multipliers and memory, which makes them a suitable implementation 

medium for computational intensive physical layer such as OFDM. 

Table 4-1: OFDM timing requirements [48]. 

Parameter Value 
Sampling rate 20 MHz 
Symbol duration T sym 3.2 J.1s 

Cyclic prefix duration T CP 0.8 J.1S 

Number of subcarriers 48 data subcarriers and 4 ~ilot subcarriers 
Number of FFT points 64 
Subcarrier spacing 312.5 kHz 
Spacing between the two outmost 16.25 MHz 
subcarriers spacing 

Veillcux developed an ODFM modem on a Xilinx Virtex-II XC2V6000 FPGA [127], the 

goal was to evaluate adaptive modulation and whether the modem could fit on the FPGA. To 

compute an OFDM symbol at the transmitter the modem requires a mapper, an IFFf block 

and a block that implements the guard insertion. Likewise the receiver requires an FFT 

block,a demapper and a block that removes the cylic prefix. Note that the IFFT and FFT can 

be implemented with the same hardware. In [127] The IFFTIFFT core proved to be very 

demanding in terms of most resources. It occupies 1924 slices, which represent 6% of the 

total FPGA logic resources. Furthermore the same core contains the critical path, which is the 

factor that delimits the maximum achievable clock speed. The level of performance yielded 

by the modem was also measured, this includes maximum clock frequency of 100 MHz and 

72 Mbps data rate. The receiver synchronisation was assumed to be perfect, thus channel 

impairment was not considered. The paper does not describe the methodology to designing 

the modem in VHDL. 

Several approaches to the implementation of the OFDM based transceiver have been 

considered including conversion from high-level language representation, e.g.Matlab, using 

tools such as the Xilinx System Generator and AccelDSP [128], [129]. Their primary goal 

was the demonstration of automatic synthesis with high level language for the OFDM 

transceiver implementations on FPGAs. As a result of that the verification process is greatly 

simplified, and the development time is reduced. The work presented in [8] is limited to the 
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OFDM modulation/demodulation compliant with the IEEE802.11a standard. The modem 

was designed with Xilinx System Generator, which runs under the Matlab Simulink 

simulation tool, and it was synthesised on the Xilinx Virtex-II xc2v3000-4fg676. The design 

represented 10 % of the total logical resources, and the maximum speed was estimated to be 

92 MHz. In [9] the authors present the first complete implementation of the Phyicallayer of a 

wireless network standard, three different WiMax transceivers are evaluated, the first design 

is implemented in VHDL at the Register Transfer Level (RTL), the second is implemented in 

the AcceIDSP, a software package provided by Xilinx to convert Matlab code into VHDL. 

And the third transceiver is designed with Tensilica Xtensia that transforms c/c++ code into 

VHDL codes into Application Specific Instruction Processor (ASIP). 

A comparative study of the three methods was conducted on the Xilinx Virtex-II XV2P30-

676-7c FPGA using three criteria: the logic resources, the power consumption, processing 

time and the design time. The study show there is no clear cut best performer, and that the 

choice of design methodology is depending on the performance criteria. The Tensilica 

transceiver outperforms the other two designs in power consumption by a ratio of 10 to I and 

the logical resources are at least a sixth smaller than the other implementations, but this 

comes at a cost of higher processing time. When it comes to OFDM generation the RTL 

design performs best, it computes a complete OFDM symbol in 85 ~s which is half the 

AccelDSP and one quarter of the Tensilica design. A summary of the different design 

performance is shown in Table 4-2. 

Table 4-2 : Synthesis results for Wimax implementations on FPGA [129]. 

Factor Design Approach 
CustomRTL AccelDSP Tensilica ASIP 

Max estimated frequency (MHz) 100 40 330 
Throughput (~sec/symbol) 85 177 314 
Area Occupied (Gates) 404456 733112 62931 
Total power (m W) 780 588 50.31 
Design Time (Days) 60 30 30 

The optimization capabilities of high level languages providing automatic synthesis are weak, 

this can be seen in terms of either the area occupied or the processing time in the 

table(above); this is also stated in [128], where the author claims that it would take as much 

time to optimise the OFDM modulator in System Generator as to implement it in Register 

transfer logic (RTL). 
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The first implementation of a complete IEEE802.ll physical layer on reconfigurable 

hardware can be found in [130] , in which a 4X4 IEEE802.11 n transceivers was 

implemented on FPGA, in this design there are 4 transmitters and 4 receivers, thus most of 

the sub-blocks quadruple and the complexity also increases. As a result a development board 

comprising of 5 Altera Stratix2 EP2S 180 FPGA was specially manufactured for the 

transceivers operation. The authors present synthesis results for the synchronization, FEC and 

IFFT blocks, however details are vague with regard to the total resource utilization. 

Several pipelined architectures were explored for the design of IEEE802.11a transceivers at 

RTL level on a single FPGA in [131], [132]. The aim was to speed up the processing time by 

taking advantage of the large on chip embedded memory blocks. RAM blocks are between 

the sub-blocks. In order to optimise their designs the author took advantage of the Xilinx 

intellectual property (IP) cores, this includes the Digital Clock Manager (DCM) and IFFT, 

which is the most demanding block in terms of resources and is based on a continuous stream 

processing. in addition to meeting the performance target in terms processing time, the area 

occupied compared well with the design [128]. 

4.4 Conclusion 

This chapter investigates the use of the IEEE802.11 standard in embedded systems. The 

architectures proposed to implement the standard are discussed; the power consumption, the 

utilisation of hardware resources as well processing capabilities are major criteria to measure 

the performance of embedded systems. The two lower layers of the IEEE802.11 standard are 

different in the type of functions they perform and consequently this limits the re-use of the 

same hardware to implement both layers, therefore they require different hardware 

architectures to carry out their operations. The Physical layer is data-flow dominated can 

therefore take advantage of the parallel processing capabilities of FPGAs, whereas the MAC 

layer requires an architecture that supports control-flow oriented tasks which in nature are 

sequential and therefore do not yield good performances on FPGAs. Yet the strict timing 

requirements of the MAC layer make it suitable for reconfigurable hardware capable of 

performing more complex operations other than fine-grained architectures [103]. The actual 

reconfiguration requirements include a reconfigurable processor or at the very least adaptive 

hardware in the form of RFUs developed in coarse-grained architectures, coincidentally these 

are units that can be efficiently mapped on FPGAs. 
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Since both layers need to be implemented on reconfigurable hardware, this chapter validates 

the claim that the implementation of the IEEE802.11 requires a flexible architecture such as 

an FPGA. This thesis is not concerned with the optimisation of the MAC layer with RFU, but 

rather the implementation of both layers on FPGA hardware and the connection of the MAC 

layer with a reconfigurable processor. 
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Chapter 5 

Implementation of IEEES02.11 Physical Layer 

Having defined the antenna requirements for ISL in chapter 3, the hardware realisation of the 

communication platform is looked. This chapter presents a novel implementation of the 

IEEES02.11 a physical layer, it draws from the investigation conducted in Chapter 4, where 

several design methodologies were discussed. 

Design considerations are presented in Section 5.1. The transmitter's architecture is outlined 

in section 5.2. The receiver architecture is presented in section 5.3, the implementation of the 

IEEES02.11 a synchroniser on FPGAs are also discussed. A novel synchronisation algorithm 

is proposed in section 5.4, simulations results and hardware realisation are detailed. Section 

5.5 outlines the receiver development in an FPGA and the synthesis results of two different 

designs are presented. The final physical layer core wrapper and its interfaces are described 

in section 5.6. 

5. 1 Design Considerations 

The different physical layers of the IEEES02.11 standard exhibit different electrical 

characteristics in the wireless channel. The choice of the IEEES02.11 standard extension 

depends on many criteria. In space, the IEEES02.11 requires extending its range and the 

work conducting by Sidibeh and Vladimirova suggests the IEEES02.11 b would be the most 

suited for longer transmission [133]. This partly owes to the fact that the timing parameters at 

the IEEES02.11 b MAC layer can be tuned to account for a longer propagation delay. 

Although the impact of multi path fading on communication channel of wireless systems in 

the ionosphere has not yet been studied, there is ample research pointing to the ionosphere as 

a medium that affects electromagnetic wave travelling through the ISL channel. As OFDM 

systems are designed to combat multipath effects only OFDM based IEEES02.11 standards 

are considered in his work. In particular, the WiFi transceiver design is based on the 

IEEES02.11 a standard. 

As discussed in Section 4.2 the power, area and latency are figures of merit in the 

performance of the IEEES02.11 implementation in reconfigurable hardware. The conversion 

of design models captured in high-level languages into RTL logic usually results in 

excessively high use of resources. OFDM systems have been implemented in VHDL [122-

123]. The level of parallelism offered by FPGAs permit the design of pipelined architectures 
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to increase the computation speed of OFDM signals. This is a very important attribute for 

the design of the IEEE802.11 standard because the compliance to the IEEE802.11 SIFS 

specifications requires speeding up the processing delay at both the MAC and Physical 

layers. The improvement in processing time leads to increasing clock speed and power 

consumption, two factors that are conflicting in keeping power consumption low in satellites. 

5.2 IEEEB02. 11 a Transmitter Design 
The IEEE802.ll a physical layer transmitter IS an amalgam of high performance 

communications systems. It is a high speed link with a maximum data rate of 54 Mbps. Its 

carrier frequency ranges from 5.15 to 5.825 GHz [48]. 

5.2.1 Transmitter Architecture 

The implementation of the IEEE802.ll a transmitter baseband can be partitioned into a set of 

blocks as shown in Figure 5-1. 

Scrambler 

IFFf 

Cyclic 
Prefix 

Insertion 

Cony. 
Encoder 

Mapper 

Window 
shaping 

Interleaver 

Modulation 

To Radio 

Figure 5-1: Physical layer transmitter sub-blocks. 

The interleaver reallocates the adjacent bits in non-adjacent slots in order to decrease the 

likelihood of receiving the encoded data incorrectly. A permutation pattern is specified by the 

IEEE802.11 standard to implement the interleaver. A challenge in hardware implementation 

is the conversion of mathematic expressions into a hardware description language. Direct 

translation leads to a large number of multiplexers in the design. Furthermore the design 

requires a set of RAM blocks of different size to match the different data transmission rates 

[13 1 J. The complexities in implementing the interleaver range from performing modulus 
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numbers that are not multiples of 2 to allocating RAMs with different sizes [131]. The fact 

that the complexities associated with designing the interleaver are numerous lead to the 

utilization of a large number of the hardware resources. The easiest option is to calculate the 

permutation indexes and store them in a look-up table. Interleaved data are subsequently sent 

to the modulator. 

The role of digital modulation is to map binary information into complex signals. The 

modulator converts a set of bits to convert into complex numbers representing constellation 

points. Interleaved data are mapped into real parts, called the In-phase (I) components, and 

imaginary parts, called Quadrature (Q) components. The great advantage of this method is 

that the carrier can modulate data independently, then I and Q components are added together 

to be sent over the same physical medium. 

In this design only lower data rates are of interest, as a result only BPSK and QSPK 

modulations are considered. The data from the interleaver is serially fed to the constellation 

mapper, to produce the corresponding I and Q components. Before the computation of the 

IFFT, the subcarriers are modulated using 4 modulation schemes used in the standard's 

specifications. Depending on the data rate the interleaved data is modulated into either Binary 

Phase Shift keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude 

Modulation (QAM)-16 and QAM-64 constellations. In order to keep hardware resources and 

implementation complexity of the constellations to a minimum, the I and Q components of 

each point is stored in a ROM. This method of implementation leads to using 4 ROMs for the 

support of the full range of data rates in the standard. As the IFFTIFFT core used in the 

design has 16-bit inputs, the I and Q components are stored in a look-up table (LUT) in the 

form of 16-bit fixed-point data. The values in the LUTs are already normalized by a k factor. 

Since the IEEE802.11a OFDM symbol has 48 data sub-carriers, regardless of the modulation 

used the OFDM symbol consists of 48 complex numbers representing data information. 

The role of the mapper is to translate 64 complex numbers into subcarriers. For the mapping 

an indexing structure made of combinational logic is used to combine 48 complex numbers 

with 16 complex numbers consisting of 4 pilots and null vectors. The pilots are stored in a 

LUT and are accessed by matching their indexes with the nth OFDM symbol. Given that the 

LUT has 127 values, a modulus 127 counter is also used to control indexing. 

In OFDM systems, the modulation of the subcarriers is done directly in the frequency domain 

using complex multiplications. The resulting data are transformed into the time-domain using 

a 64-point Inverse Fast Fourier Transform (lFFT) at the transmitter and transformed back to 
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frequency-domain using the 64-point FFf at the receiver. This means that each point of the 

IFFT is considered to be a frequency tone. To mitigate time dispersion fading a guard interval 

equal to the channel impulse is inserted at the beginning of the OFDM symbols. The last 16 

samples from the IFFT are appended to the beginning of the OFDM symbol to form the CPo 

Thus the OFDM symbol is formed of 80 samples of complex numbers. 

The process of the generation of the ODFM signals only involves high-complexity modules 

dealing with complex numbers: these modules consist of the mapper, the IFFT and the CPo 

The rest of the modules are less complex from an implementation stand point. The pipelining 

methods in [134, 136-137] are based on inserting RAMs between the modules used for the 

generation of OFDM signals as shown in Figure 5-2. As it can be seen the design has two 

clock domains, one at 20 MHz and the other at 72 MHz. This design still requires 

optimisation to reduce the power consumption because the increase in RAM clocking leads 

to an increase in the power requirements [134]. 
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Figure 5-2: OFDM transmitter block [132]. 

~22 .u 

Two methods that can lead to lower power consumption were identified, both of them exploit 

the internal structure of the FPGA. As the internal RAM clocking is the prime source of high 

dynamic power consumption on FPGAs [134], Tessier et al propose to make FPGA designs 

more power efficient by using clock gating on the RAMs. This requires suppressing the 

internal RAM clocking when the RAM is not accessed. 

The second method maps variables into registers as well as memory banks [135] in order to 

reduce the access to variables in memory. They are put memory in one clock cycle using 

RAMs with multiple write ports and are accessed in one read port. The implementation of 

this form of RAM in VHDL is specified in the Xilinx Synthesis Technology (XST) User 
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Guide [136]. Depending on the number of RAM ports the VDHL code may violate th e 

specifications. For instance the FPGA considered in thi s thesis has RAMs that are limited to 

80 write ports. Furthermore the use of registers will increase interconnections which are 

des igned to relax the routing maps and, as a result the utilization of multiplexers and the 

logic resources will also increase [135]. 

In order to evaluate the performance of both methods, in this thesis the RTL implementation 

of designs with the mapping of variables into registers is called Method-I , and the RTL 

implementation with RAM clock gating is called Method-2. 

5.2.2 Transmitter Implementation in Hardware 

This section details the implementation of a new IEEE 802.11 a transmitter design in 

hardware. The transmitter was implemented in VHDL, it was partitioned into different clock 

domains so that the IFFT operates at 80 MHz whereas the other blocks in the design run on a 

clock frequency of 20 MHz, thus the transmitter design has two clock domains as shown in 

Figure 5-3. 

Clock at 80 
MHz 

r , 

Convolutional .. QAM/QSPK .. Pilot Insertion ........ IFFT ... CP .. 
encoder - Modulator - Insertion -

~ ~ • 

I 

Clock at 20 
MHz 

Figure 5-3: OFDM transmitter clock domains. 

For the purpose of comparison, the proposed transmitter design is based on a pipelined 

architecture exclu sively using method 1 instead of RAM blocks as suggested in [135]. The 

transmitter output is the only register that is accessed continuously and it is done in the 

lowes t dom ain clock domain . The IFFT/FFT core used in [132] is imported from a library 

available in the Xilinx ISE 10.1 design suite [137] . It is a fixed-point design with a data and 

phase prec ision from 8 to 34 points. The transform size vmi es from 8 to 65536 po int . The 
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core is a highly optimised solution and has a clock period latency of 192 for the computation 

of a 64-point IFFTIFFT. As discussed in section 4.3.1.1 a 64-point FFf requires 448 

operations, thus the core gains 256 clock cycles in computation time. In [132] the wordlength 

is set to 16 bits. Since each point is a complex number, the IFFf transform is an array of I 

and Q components. The number of bits used to represent the I and Q components is 

dependent on the worldlength. 

In thesis, the Xillinx IFFT IP core is replaced with a public domain IFFT [138] that does not 

provide continuous stream, this should reduce access to a sub-block that operates at the 

highest speed. The overall goal is to reduce the frequency of access to the stored data and 

lower frequency of calls to the sub-block operating at the highest frequency. For this reason a 

public domain IFFT that does not provide a continuous data stream as the IFFT IP core, 

provided by Xilinx, is used. This is motivated by the need to reduce the computation time 

with respect to the state of the art methods trying to achieve real-time OFDM transmission. 

The selected VHDL IFFT core was functionally verified using the Aldec Active-HDL 8.1 

simulation tool [139], which employs the same IFFT model. In contrast to the Xilinx IFFT 

core, which has a word length variying from 8 to 34 points, the public domain IFFT core 

[138] has a fixed wordlength of 16 bits for inputs and 18 bit for outputs. The core has a 

latency of 320 clock cycles in the computation of the IFFT. This represents an increase of a 

2/3 computation time when compared to the Xilinx core. The wordlength is very important in 

the implementation of the FFT in hardware, as it impacts both the performance and the 

complexity of the design [140]. A small wordlength yields low complexity, however the 

precision suffers. The longer wordlengths are needed to increase the accuracy of the 

computed FFT, however this comes at the expense of an increase in memory size and power 

consumption and a decrease in speed. The numerical values produced by the FFT core were 

compared against 64-bit floating-points values generated by the Matlab built-in IFFT macro 

instruction. The ActiveHDL function that allows VHDL arrays to be ported to Matlab was 

used to carry out the comparison. It was found that the IP core output matched the Matlab 

results with an accuracy in the region of 10-4, which is satisfactory. 

A transmitter was designed using Method-I, with the aim of speeding-up the computation of 

an OFDM symbol. Typically the scrambler, encoder, the interleaver and the modulation 

blocks have fine-grained architectures operating on 1 bit per clock cycle. In the new 

transmitter all the fine-grained blocks are replaced by blocks with coarse grained interfaces. 

This allows blocks such as scrambler and interleaver to process a group of bits in one clock 
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cycle. The low level architecture of the blocks composing the tran smitter are found in Figure 

5-4 to 5-8. 
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Figure 5-4: Block diagram of the convolutional encoder architecture. 
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Figure 5-5: Block diagram of the convolutional interleaver architecture. 
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Table 5-1 presents a comparison between the latency (measured in clock cycles) of the 

proposed register-based transmitter, Design-2, and the RAM-based Design-l [132] when two 

different IFFY IP cores are used. The number of clocks required to produce an OFDM 

symbol with Design-l using the Xilinx IFFf IP core is provided in [132]. The number of 

clock cycles to generate an OFDM symbol with Design-2 using the public domain IFFT IP 

core is obtained from Modelsim simulation. The performance of both designs when using the 

non-native IFFT IP core is estimated. As it can be seen in Table 5-1 the proposed designed is 

able to compute an OFDM symbol in 421 clock cycles which represents a in computation 

speed of 32 % compared to the RAM based methods in [131-132]. 

Xilinx ISE 10.1 is used to synthesise the transmitter, although the design is targeted at the 

Virtex 5 FPGA family, for the purpose of the performance comparison with published work 

the design was mapped on the Xilinx Virtex-2 Pro XC2VP30-ff1152 device. 

Table 5-1 : Comparison of OFDM symbol computation latency [141]. 

Xillinx IFFT core (clock cycles) Public Domain (clock cycles) 
Design-1 583 647 (estimated) 

Design-2 310 421 
( estimated) 

Speed up 273 (45 %) 209 (32 %) 

The synthesis results gave a latency of 10.293 ns and the maximum frequency was found to 

be 97.157 MHz. This is more than sufficient for the maximum frequency requirement of 80 

MHz. Table 5-2 shows the hardware resources utlisation, the required number of slices is 

4,738 which is an increase of the area usage by 8% when compared to [132]. 

The dynamic power consumption for the register based design was estimated with the Xilinx 

XPower tool to be 150 m W. As there are no published results on power consumption of 

FPGA-based transmitter designs, it is not possible to compare the performance in terms of 

power consumption with other implementations. The design used 3 BRAMS to store data for 

the IFFT operation, whereas the design in [132] uses 10 BRAMS. The register based design 

has a 70% decrease in RAM usage. This observation supports favorably the conclusion that 

the proposed design has lower power consumption[134]. 
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Table 5-2: Transmitter resources in Virtex 2 [141]. 

Resources U sed by the Design Available Percentage 
Slices 4738 27392 34 

Slices Flips-Flops 4490 13696 16 
Number Of LUTS 5397 27392 19 

Because the final SoC design is targeted at a GR-PCI-XC5V development board from Pender 

[142], the transmitter is synthesised in the Virtex 5 FPGA. As shown in table 5-2, method I 

has a decreased latency when compared to the state-of-the-art implementation of the 

IEEE802.11 a transmitter [141]. However it is not expected to be the best solution in terms of 

resources utilization, in fact when it is compared to method 2 it typically uses as much as 

three time the resources. A summary of the different transmitter designs is shown in table 5-

3. 

Table 5-3: Transmitter resources for the design with method 2 used on Xilinx Virtex 5. 

Method I 
Resources Used by design Available on FPGA percentage 

Slices 4634 28800 16 
Number of LUTs 4621 28800 16 

Method 2 
Resources U sed by design Available on FPGA Percentage 

Slices 1545 28800 5 
Number of LUTs 2482 28800 8 

Similarly the same transmitter is synthesized using Xilinx ISE 10.1 and the design was 

mapped on the Xilinx Spartan 3-1500 used in the GR-XC3S-1500 development board [143]. 

The synsthesis results for the two designs are presented in Table 5-4, which shows that the 

ratio of the number of slices for the design based on method 1 to the one based on method 2 

has decreased. The reduction in the number of LUT is less than in the Virtex 5 device. This is 

because the synthesis tool maps inefficiently the VHDL implementation into hardware. This 

is due to the impact of user-controlled multiplexers being greater in Virtex 5 than in Spartan 

3, which have different architectures. As the number of conditional loops increases the 

utilisation of the number LUTs increases faster in Virtex 5 than in Spartan 3. 

The design with RAMs, Design-I, saw an increase in computation time by 150 ns when 

compared to the register-based Design-2. However this comes with a reduction in hardware 
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of more than half, suggesting that the RAMs-based optimization gives better performance in 

terms of area rather than processing time. 

Table 5-4: Comparison of transmitter resources in Xilinx Spartan 3. 

Method 1 
Resources U sed by design Available on FPGA percentage 

Slices 4316 13312 32 
Slices Flip-Flops 4631 26624 17 
Number of LUTs 6122 26624 22 

Method 2 
Resources U sed by design Available on FPGA percentage 

Slices 1693 13312 12 
Slices Flip-flops 1542 26624 5 
Number of LUTs 3211 26624 16 

5.3 IEEEB02.11 a Receiver Architecture 
The IEEE802.11 standard has left the receiver specifications to the designer's own choice. 

The receiver blocks perform the inverse to their corresponding transmitter blocks shown in 

Figures 5-4 to 5-8 . However, a synchroniser and channel estimation blocks are added to 

help with the synchronization and mitigation of channel impairments as shown in Figure 5-9. 

The synchroniser is used to detect the start of the IEEE802.11 frame, it is also used to correct 

the frequency and timing offsets. Once the packet is detected in the CP, the OFDM signal can 

be processed by the FFT, which uses the same hardware as the IFFT for the symbol 

transformation into the frequency domain. 

Synchronizer FFT Channel 
Estimator 

De- De- De-Mapper 

Interleaver Modulator 

Viterbi De- To MAC 
Decoder Scrambler 

Figure 5-9: Physical layer receiver sub-blocks. 
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The channel estimator is used to mitigate the effects of the channel, the receive signal 

amplitude and phase are typically altered by the channel conditions. The pilots of the OFDM 

symbol are commonly used for the equalization of the received signal. 

The equalized symbol is sent to the demapper to retrieved the 48 complex numbers generated 

by the modulator; this requires removing the pilots and null vectors inserted before the IFFT 

operation in the transmitter. The remaining complex signals are forwarded to the 

demodulator, which converts them into binary information. For thus, a look up table is used 

to determine the corresponding bit or group of bits. For BSPK signals, the I component of the 

complex number is used to determine whether a '0' or 'I 'is received. For QSPK modulated 

signals, the I component is used for the first bit and the Q component is used for the second 

bit. 

The de-interleaver permutes the received bits in a prescribed manner to reorder the sequence 

of bits that was sent by the transmitter. Due to the challenges in performing the permutation 

in hardware, the permutation indexes are computed off-line and then stored in a look up 

table. The data bit streams from the de-interleaver is decoded using the Viterbi algorithm. 

Recall that the convolutional encoder is a state machine, and the resulting encoded binary 

information is a reflection of the encoder state. The role of the Viterbi decoder is to retrace 

the encoder state transitions given as a sequence of bits. The maximum likelihood algorithm 

is used to trace back the sequence. In most implementations the trace back length is set to 35. 

The Viterbi decoder has major computation units, the path metric unit and the traceback unit. 

The path metric unit is a register that stores accumulated errors between the estimated state 

and the actual state. A path metric unit is assigned to each of the possible 2k+ I states 

possible. The encoder codes are represented by a trellis diagram, which maps the possible 

state transition for a given input and the time domain. The decoder retraces the sequence by 

eliminating the previous state with the lowest error cost. The traceback unit is a register that 

stores the surviving state. 

The receiver's added blocks and the Viterbi decoder give rise to a substantial increase in 

signal processing when compared to the transmitter. This automatically translates to more 

hardware resources. In [144] it is shown that the implementation of the synchronizer and the 

Viterbi decoder account for 70% of the receiver's power consumption. As a result, low 

power dissipation components will have to be considered for our design. 
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5.3.1 Synchroniser Design for the IEEES02.11 a Receiver 

As described in section 3.2.1.2, the wireless channel can cause degradation to system 

performance. Multipath effects, which are the combined reflections of the transmitted signal 

arriving at the receiver, has the most impact on performance degradation in wireless 

communications [l00]. In the time domain the multipath effects may manifest themselves as 

ICI , lSI or random attenuation. In OFDM systems these channel impairments result in a 

rotation of the phase of the received signal, an extra phase may be introduced by the 

misalignment between the transmitter and receiver clocks. Therefore phase rotation is 

characterized by frequency and timing offsets. An OFDM synchroniser main function is to 

correct the frequency offset and mitigate the effect of the delay spread caused by the channel. 

As OFDM is sensitive to time and frequency offsets, the IEEE802.11 standard defines a short 

preamble and a long preamble to help the synchronizer with packet detection, frequency 

correction and to determine the packet's starting position. The short preamble is the 

concatenation of 10 short training symbols (STS), the short preamble is a periodic structure 

as the STS consists of 16 samples derived from the IFFT modulation of pattern specified in 

[48]. The long preamble is composed of 2 long training symbols (L TS) with 64 samples 

each, the long symbols are preceded by a cyclic prefix which represents the last 32 samples 

of the long preamble. Both short and long preambles are of 8 ~s duration and are 160 

samples long as shown in Figure 5-10. The short preamble is used for packet detection, 

coarse frequency and time corrections; while the Long preamble is used for fine frequency 

and time correction and performs channel estimation. As a sample is a complex number, just 

like the OFDM symbol the preambles are arrays of I and Q components. A sample is a 

complex number, thus just like the OFDM symbol the preambles are arrays of I and Q 

components. 

The OFDM symbol which is an inverse Fourier transform value is viewed by the receiver as 

a complex value that can be expressed as follows: 

r(k) = s(k) * e j21ft1j (5-1) 

Where ~f is the sub-carrier spacing, k is the time index and is s(k) is the signal coming from 

the channel at time k. The preamble periodic sequence is used with the conjunction of an 

autocorrelation in order to retrieve the frequency offset caused by channel impairments and 

Doppler frequency shift. 
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Figure 5-10: Duration of IEEE802.11a short, long preambles and symbol OFDM based communication 
[48]. 

The autocorrelation of the received signal is then expressed as [145]: 

N QI'g 

J r (k) = L r * (1- k) · r(l- k - N J (5-2) 
1=0 

Where Nd is length of a delay line which is typically implemented as FIFO, Navg denotes the 

number of samples and ~f represents the sub-carlier spacing set at 312.5 kHz. The 

autocorrelation is in essence a multiplication of a signal with a delayed version of itself. 

The timing estimation is typically obtained by performing cross-correlation on the long 

preamble. This is because the long preamble has a period of 64 samples, recall that the longer 

the periodicity of the preamble the more accurate is the estimation. Also having a knowledge 

of the also preamble results in a finer estimation. And the cross-cOITelation is the 

multiplication of the incoming data with the preamble, which is stored in a memory an-ay . 

The start of the long preamble is determined by searching for the peak in the crosscon-elati on 

and moving it by a number of samples cOITesponding to the length of the delay line. Since the 

timing synchroni ser based on cross-corrleation is aided in the determination of the tart of the 

packet, cross-correlation algOIithms outperform auto-correlations algorithm in es tim ators 

[148]. Due to the large amount of multiplication between the incomin g sign al and a known 

pattern , the complexity associated with the implementati on of cross-correlat ion in hardware 
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is high. In Contrast to the cross-correlation, the auto-correlation can be implemented with an 

iterative algorithm which requires two multiplications and two additions. 

Typically in the literature synchronisation is presented in its algorithmic form rather than its 

implementation logic. This allows a rapid evaluation of an algorithm in mathematical 

simulation packages such as Matlab. The synchroniser's robustness is usually defined by its 

performance in a multipath channel derived from mathematical models. Aspects of the 

hardware architecture such as the number of bits in the incoming signal and the number of 

bits of resolution used in computation are seldom discussed. In the context of this work, the 

IEEE802.11a-based transceiver targets an FPGA implementation. Given that the hardware 

resources are limited, a trade-off between algorithm performance and resources utilization is 

required. 

Synchronisers developed for the IEEE802.11 a are typically targeted at ASICs which are by 

their very nature low power. One example of a cross-correlator implementation that reduces 

the amount of computation is found in [145]. Although there has also been work on the 

optimisation of the cross-correlator for IEEE802.11a synchronisation [106, 133], there has 

been no attempt at specifically of designing low power synchroniser on FPGA like the 

implementation method in [145]. 

In [145], Troya et al propose an ASIC low-power synchroniser implementation for the 

IEEE802.11 a standard. It uses the differentiation of the square magnitude of autocorrelation 

of both the long and short preambles for packet detection and frequency correction. The 

synchroniser's block diagram is presented in Figure 5-11. It has two auto-correlators, one is 

implemented with a length of 64 samples and the other one with a length of 16 samples. The 

autocorrelator consists of a delay line, a complex multiplier, a complex conjugate and a 

moving average of length equal to the number of samples in the autocorrelator (16 and 64). 

The moving average is implemented with a Finite Impulse Filter (FIR) with all the 

coefficients set to 1. In OFDM synchronisation a Cascasded Integrator-Comb (CIC) filter 

[146] is typically used for the implementation of moving average in autocorrelators. This is 

because the CIC only uses addition and substractions in its operations, whereas other FIR 

filters use addition, substraction and multiplication. The removal of the multiplier in the filter 

leads to lower hardware resources and to lower complexity. Note that the autocorrelator is an 

architectural representation of the hardware implementation of Equation 5-2. The 

autocorrelator of length 16 is used for coarse frequency estimation and the other 

autocorrelator of length 64 is used for fine frequency estimation. 
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Figure 5-11 : Synchroniser proposed by Troya et al for the IEEES02.11 a standard[145]. 

The block that implements the signal square magnitude of the long autocorrelator's output 

IJp(k)12 leads to two plateaus, one is detected in the short preamble and the other is detected 

in the long preamble. As it can be seen in Figure 5-12 the signallJp(k)12 has a plateau of 32 

samples. The plateau mechanism is used for the detection of an incoming frame. 
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Figure 5-12 : Signals involved in plateau detection algorithm. 
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A further differentiation is used to determine the start of the frame. The differentiator 

algorithm includes IJF(k)12 , a block performing substraction and a delay line of length 32. 

The differentatior low level architecture is depicted in Figure 5-13. Given that the plateau has 

a length of 32 samples, setting the differentiator's delay line to 32 ensures the detection of the 

start of the plateau. The differentiation leads to a triangular function as shown in Figure 5-12. 

IJF(k)12 + 
L 

Jdiff(k) .. 
r 

-

Z-32 

Figure 5-13 : Differentiator structure proposed by Troya et al[147] 

Frame detection is done by searching for the peak of the triangular function, the method 

relies on the synchroniser finding an absolute maximum. However in noisy environment this 

method is itself is not sufficient to detect the packet as can it be lead to local maxima and 

false detection. As a result a peak detector is incorporated to improve the robustness of the 

synchroniser as shown in Figure 5-6. Peak detection is done in two parallel processes, in one 

phase a counter is triggered as soon as the peak is attained. If the previous value of the 

differentiator is superior to the instantaneous value for a consecutive number of time units set 

by the counters limit, a signal will be sent to the gate. The second process smoothes the 

output of the differentiatior JdifrCk) by performing an average over 6 consecutive values and 

triggers a signal as soon as a peak is detected. Frame detection occurs when both signals from 

the intanstaneous peak and group peak detectors are activated. 

Once the peak is detected clock, gating is used for the calculation of the frequency offset. 

This is a short operation during which the synchroniser determines the frequency offset by 

calculating the phase of the short correlator and the long correlator complex values. 

Afterwards the results are combined to provide an accurate value of the frequency offset. The 

phases are calculated with the CoOrdinate Rotatation Digital Computer (CORDIC) 

algorithm. CORDIC is an efficient way to implement trigonometric, exponential, and 

hyperbolic functions. The algorithm is commonly implemented in hardware because it 

compute functions with add and shift operations rather than using complex multipliers. This 

results in the minimisation of hardware resources and power consumption. The synchroniser 
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in [148] uses a novel 16-bit CORDIC core developed to compute the arctangent block in 

Figure 5-11 . 

5.3.1.1 Frequency Correction 

The transmitter and the receiver oscillators may be operating at different frequency, 

furthermore the impairments due to the channel may result in a phase off-set. These two 

effects, often referred to as frequency offs-set, lead to the receiver decoding the received 

signal with errors. Equations like the one in 5-2 are typically used to correct the frequency 

off-set, it is assumed that two identical samples will have the same in magnitude but will 

differ in phase. This phase difference represents the frequency off-set expressed in phase 

rather than in frequency and is defined as follows [145]: 

(5-3) 

Where £ is the frequency off-set represented in phase form, and fs is the sampling frequency. 

Note that the arc-tan function is bounded by [-n, n] and therefore the frequency off-set 

estimation is also bounded. Due to the limitation related to the number of samples used for 

autocorrelation and because the ratio of the sampling frequency to the sub-carrier spacing is 

constant, £ is a normalised expression of the frequency offset. For Nd set at 16, the maximum 

normalised frequency is 0.5, if a value of 64 is used instead for Nd the maximum frequency 

off-set is 0.25. 

5.3.1.2 Timing Correction 

Troya et al propose a fine timing synchronisation method by performing the cross-correlation 

after frequency correction. For this a reference signal the retrieved from a pre-computed 

values stored in memory [145] is multiplied with the frequency corrected signal [145]. The 

reduction in computation is addressed in [145] by replacing complex multiplications with 

XNOR I-bits multipliers. Instead a multiplication is performed on the sign of the complex 

values and the sign of the reference value. The cross-correlator reduces the latency and the 

memory usage. In [145], a threshold is set at the output of the cross-correlator to determine 

the start of the long preamble, however the synchroniser yields its best performance for 

cross-correlation with 64 samples and it is not known how it performs on FPGA. 

It was shown due to multi-path effects the location of the cross-correlation peak may shift 

forward by up to 32 samples, which results in false detection [149]. The method proposed in 
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[149] is based on the product of the cross-correlation of 64 samples and 32 samples, it also 

uses the square of the cross-correlator output as timing metric. It was shown that this method 

outperforms other cross-correlators in terms of the probability of timing error. Although it 

has superior performance, the cross-correlator has high computational complexity and would 

require considerable logical resources. This means that the FPGA implementation of a timing 

synchroniser, which is robust to multi-path channels still needs to be addressed. To determine 

whether a design trade-off between robustness to multi path and ease of implementation can 

result in a low-area implementation with good performance, a timing synchroniser based on 

the short preamble needs to be evaluated. 

Wang et al implemented a low-complexity timing synchronisation on the FPGA [154] and it 

is presented in Figure 5-14. In [154], the authors removed completely the cross-correlators 

and focused instead on the auto-correlation of the short preamble [154]. Again the timing 

metric is loosely based on [147], two autocorrelators are used, one of them has a length of 16 

samples and the other is 32 samples long. The differentiation mechanism consists of 

substracting the square magnitude of the short autocorrelator from that of the long 

autocorrelator. The differentiation leads to a triangular function the maximum value of which 

is used to determine the start of the 9th short symbol. Thus if the maximum value shifts from 

the start of the 9th short symbol, the index of the peak is used to determine the timing offset. 

The peak shape of the diferrentiator is similar to that of Figure 5-12. The implementation of 

synchroniser in [154] on the Altera Stratix FPGA was shown to have low hardware 

complexity, a summary of the hardware resources is shown in Table 5-6. 

Received 
data 

correlator 

correlator 

Control signal 

ncy offset 

Frequency offset 
compensation 

Figure 5-14: Synchronisation algorithm proposed by Wang et al [154]. 
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Table 5-6: Logic utilisation in [154]. 

Logic elements 1778/100k for percentage 
RAM 4kbits 
DSP blocks 2 

While being low-complexity designs, the synchronisers in [145, 150] suffer from the same 

drawback: it was found that their performance was weak in a multi path environment. As the 

differentiator peak reaches a local maximum the peak detector is triggered and results in a 

false location of the start of the OFDM frame; if the timing offset is less than the CP then the 

receiver will be able to decode the received signal correctly. However in the event that the 

detection is outside of the CP window, the false detection leads to poor receiver performance. 

5.4 Novel Synchroniser Design for the IEEEB02. 11 a Receiver 

The performance of existing timing synchroniser FPGA implementations for OFDM signals 

in multipath channels is weak [149, 151]. And those that provide good performance require 

high-complexity architectures [151]. 

Williams et al [152] explored the idea of combining a differentiation method used in of with 

a Least Squares Fit (LSF), a median filter and an average filter to estimate the timing offset in 

multipath environment. The synchroniser is targeted at terrestrial digital video broadcast 

(DVB) systems and, its block diagrams can be seen in Figure 5-15. The synchroniser is 

specially designed for systems that do not have preamble such as DVB and are required to 

perform the timing estimation in just one OFDM symbol. The autocorelator is composed of 

the same structure such as the one discussed in section 5.3.1 and its length is set to that of the 

CP. In [152] it is argued that the output of the correlation is a triangular function. Because the 

contribution of each multi path is also a triangular function, and assuming that the expectation 

of the autocorrelation is linear, the summation of the triangular functions formed by the 

multi path components should be a triangular function. The reasoning for this argument is 

that, up until the peak of the first component all the multipath components will be added up 

and as a result the slope of the triangular function will be rising. Although the triangular 

function will remain positive, once the peak of the first multipath component is reached, it 

will start to decrease regardless of the channel power delay profile. Thus a differentiator will 

be able to detect the fall of the autocorrelation. The ideal timing point will be the point at 
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which the differentiation starts to decrease. Just like in [145] a differentiator is placed at the 

output of the correlator, however the delay line is set to 1. The differentiation output is 

averaged with a filter of length equal to half the CP. 

From 
ADC Differentiate .. Correlator -,. 

and Average 
,.. LS Fit 

Get 
Timing 

Estimate 

Timing 
Estimate Average Median ... 

Filter Filter 
... 

Figure 5-15: Block diagram of timing estimate proposed by Williams et al. [131]. 

Given that the differentiation may result in a local plateaus, which in tum will lead to an error 

in the timing estimation, further improvement is provided by the LSF. This requires a taking 

a large sample of data and fitting the set with a quadratic function. The LSF minimises the 

sum of squared residuals, which are the difference between the fitted values and the values 

from the differentiation block. To determine which values of the derivative function will be 

included in the data set, two thresholds determined empirically are used. The first threshold is 

defined for values before the expected plateau and is typically set at 40 % of the derivative 

function peak. The second threshold is placed after the plateau and its value is typically 95 % 

of the derivative function peak. The timing estimate is the intersection of the LSF curve and 

the output of the derivative function. 

As the output of the differentiatior can be affected by noise and multipath and ultimately 

result in a plateau or a local maxima, a median filter determines the current estimate. The use 

of median is justified by the fact that a spurious value from the derivative function will not 

affect the median value appreciably, as the median filter is known to be more efficient in the 
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reduction of noise when compared to an averaging filter. In other words the median filter will 

keep the estimate within a range close to the expected value. The output of the median filter 

is followed by a 16-tap FIR filter to smooth the estimate over a large number of symbols. The 

FIR filter is an average filter, and it is not specified in [152] what type of FIR filter is used 

for the implementation. However, due to its low complexity when compared to other FIR 

fliters a CIC filter is typically employed for the averaging in OFDM synchronisation. 

In [152] simulations were performed in a mobile environment where the CP was set to 64 

samples so that that the channel model represented a channel with short CP. Setting the CP to 

64 samples instead makes synchronisation more challenging. The multipath delay is 3.4 Il S 

and the Doppler spread represents 270 kmlhr. The results show that the synchroniser 

compares favourably with the van de Beek autocorrelation benchmark [153] and has a good 

performance. The timing error is of around 3 samples for EbINo over 5 dB, and when the 

EbINo is less the timing error can be around up 20 samples. A second implementation 

incorporated a second derivative function at the output of the first differentiator, it was then 

shown that the second derivative method did not improve performance in terms of mean 

timing error. However the second derivative has timing error standard deviation similar to the 

first derivative. In order to reduce the variances of estimates, a set of rules are proposed to 

enhance the synchroniser performance, also the synchroniser should perform well even when 

the lSI is outside of the CPo The rule can be summarised as follows: 

• the timing estimate should occur before the autocorrelation peak, this is because it 

occurs when the second multi path component has its peak. At this time the CP would 

have already elapsed. When the rule is broken the estimate should be advanced to 

meet the requirements. This requires replacing the estimate with one that is consistent 

with the predefined limit or the previous estimates 

• the timing estimate should be within the CP interval of the OFDM symbol 

• the timing estimate cannot be before the peak of the differentiator, when this occurs 

the timing estimate should be set to the ideal estimate. 

When an estimate breaks the rule, it is either replaced by the previous input to the estimate 

filter or by the previous output of the filter. Simulations were conducted with two different 

FIR filters, the first one has a length of 8 and the second has a length of 16. It was found that 

the synchroniser performs best when the 16-tap filter's previous estimate is selected, and the 
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timing error was on average 3 samples for the EblNo range of 1 to 20 dB. Furthermore the 

synchroniser has an almost flat performance across the EblNo range. 

The synchroniser is robust to multipath effects and has a low complexity when compared to 

other synchronisers, however it is still susceptible to high-estimation error [152]. Given its 

low latency the algorithm could be adapted and used in conjunction with the differentiation 

functions such as the ones presented in [145, 150] for timing synchronisation of the 

IEEE802.l1a standard. However there are two outstanding issues. Firstly the synchroniser is 

developed for OFDM symbols with a CP that can have up to 512 samples, and takes the 

average of estimates to correct the timing offset of new packets. It relies on reducing the 

variance of the estimates over a long period. In contrast the IEEE802.11 a short and long 

preambles are enough to estimate timing offset. It could be argued that the long preamble has 

a CP, and it is suitable for implementation based on [152]. However the IEEE802.l1a 

standard specifies that coarse timing estimation should be done on the short preamble, thus 

an adaptation of the synchroniser for the short preamble should be explored. 

Secondly the authors in [152] claim the LSF increases the complex multiplication by 1 %, yet 

the hardware complexity in terms of hardware ultilisation is not known nor its 

implementation is published. The large amount of multiplications involved in the 

determination of the LSF from a set of points may increase the hardware resources required. 

This could outweigh the benefit of using the LSF. The investigation of the amount of logical 

resources required for implementing the LSF on a FPGA would represent considerable work 

and is beyond the scope of this thesis. 

5.4.1 Novel Synchroniser Architecture for the IEEEB02.11 a Receiver 

The motivation of this thesis is to find a robust synchroniser capable of detecting the packet 

and estimating the timing offset sufficiently accurate. This should also be done on a FPGA 

and at a low area cost. Given the robust performance of the synchroniser in [152], its 

adaptation could be a suitable alternative, but it would have to offer good performance in 

multi-path channels. 

The proposed novel synchroniser is different to [152] in the following ways: 

• The short preamble is used instead of the long preamble CP for the timing estimate, 

this is to reduce the complexity and the latency of the estimation 

• The median filter is omitted from the design. In [152] it was used to reduce the 

estimate's variance and to remove the large errors due to the combination of LSF and 
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extrapolation. The new synchroniser does not make use of the LSF, which reduces 

the design complexity when implemented on FPGA. Thus the median filter is no 

longer needed for the synchronisation algorithm. 

The novel synchroniser block diagram is presented in Figure 5-16 The correlator and the 

differentiator used in [145] for packet detection have good performance in the detection of 

packet, as a result they are kept for packet detection and frequency correction. The 

mathematical modelling of the differentiator output Jdif:f{k) in Figure 5-11 is expressed as 

follows: 

(5-3) 

The timing estimate focuses on finding of the last sample of the short preamble. Once the 

autocorrelator finishes dealing with the short preamble, its input will have a combination of 

the long and short preambles. Given that the autocorrelation of the two preambles is weak 

regardless of multi path effects, this will be reflected in the differentiator as it will have a 

negative value. Thus in this work, the timing estimate is found by performing zero crossing 

detection. As it can be seen in Figure 5-16, the differentiator outputs its values to the zero 

crossing detector, which looks for the negative value representing the first value of the long 

preamble. 

Jdiff(k) -- Zero Crossing d(kl .. Detector 

From ~ 

ADC 
~ Correlator Differentiator y(k) __ Get 

Timing 

U 
~ 

Average Estimate 
I ---- Filter Jdiff(k) 

Figure 5-16: Block diagram of the proposed novel synchroniser. 

Timin g 
e Estimat 

In summary, the peak represents the last sample of the short preamble, and the first index of 

the long preamble is found by searching for the following: 
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d (k) = J diff (k ) < 0 (5-4) 

d(k) = %r(k}-'(k+Nf - %r(k+2N}r'(k+3Nf <0 (5-5) 

Where d(k) is the index of the negatives values of Jdiff{k). 

Just like in [152], to reduce the estimates variance the output of the differentiator should be 

smooth. Since the whole short preamble is used for the timing estimate, the output value of 

the differentiator can also be used over the entire short preamble in a low cost CIC filter. This 

implements the averaging of the differentiator's output As the differentiator becomes 

negative so the does the output of the filter. As a result the filter's peak will correspond to the 

last value of the short preamble autocorrelation. This method is motivated by the fact that the 

longer FIR yields lower variance estimates, the only drawback is an increase in memory 

usage. However the large amount of on-chip memory available on FPGAs makes the filter 

implementation a low complexity issue. 

The filter output is expressed as follows: 

y(k) = J diff (k) + y{k -1) - y{k -160) (5-5) 

Where y(k) is the output of the average filter. 

Unlike most timing synchroniser, a threshold need not be set, the long FIR filter will reduce 

most of the noise. 

5.4.2 Algorithm Simulations 

Two novel synchroniser designs are simulated. The first one is described in section 5.4.1 and 

the block diagram of the second one is presented in Figure 5-17. The synchroniser uses a 

LSF just like in [152], however the filters are not utilised to smooth the differentiator output. 

The omission of the filter is due to the following: IEEE802.11 a preambles are appended once 

at the beginning of the packet and the OFDM symbols are not used for timing estimation. In 

contrast the synchroniser in [152] is employed for each OFDM symbol in DVB systems, due 

to the more frequent call to the synchroniser, the filters have more samples to smooth. As the 

number of increases symbol, the accuracy of the averaging increases as well. Thus, in 

IEEE802.11 a the median will not be updated on a symbol basis like in [152]. Nevertheless, it 

is still of interest to determine the performance of the synchroniser for the IEEE802.11 a 

based on the method of [152]. The limit of the synchroniser in Figure 5-17 is that large error 

wi 11 not be removed. 
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The two synchronisers proposed in this thesis are measured against the performance cross

correlator in [149], this is because it has improved performance compared to published 

synchronisers designed for the IEEE802.ll a standard. 

From Timing 
ADC Differentiator Get Estimate 

-"" Correlator LS Fit Timing and Average 
Estimate 

Figure 5-17: Block diagram of a new LSF based timing synchroniser. 

The novel synchroniser utilising LSF as shown in Figure 5-17 is referred to as case I, the 

implementation of the design of figure 5-16 with one derivative is called case II and the 

implementation with a second derivative is called case III. The cross-correlator of [149] is 

used as the timing synchroniser benchmark and is referred to as case IV. 

The cross-correlator of [149] is used as the timing synchroniser benchmark. The synchroniser 

was simulated in Matlab in a batch of 5000 runs with most of the parameters set as in [149]. 

These parameters are used as benchmark for testing of the IEEE802.11 OFDM 

implementation. The synchroniser was simulated in Rician and Rayleigh channels with 15 

paths and a delay spread of lOOns. However only Rician channels are of interest in this work, 

the normalised Doppler frequency is 0.5, which represents 156 kHz and is the upper limit that 

is tolerated by the long autocorrelator. The Matlab code developed to perform the simulation 

is provided in Appendix E. In Figure 5-18 a comparison between the different methods is 

presented, where the red line represents case I, the black line denotes case IV, the blue line 

stands for case II and the green for case III. 

It can be seen that the average timing error is the vicinity 5 for all the methods. Upon closer 

inspection case I performs best, case II and III have similar performances, and the cross

correlation based synchroniser is the worst. However, given that the difference in 

performance between the synchronisers is in the order of a fraction of a sample, it can be 

concluded that the synchronisers have on average similar performances. 
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Figure 5-18: Timing error performance as a function of SNR. 

20 

As di scussed in [152], the LSF based method can have a high -estimation error in mUlti-path 

channels and this is shown Figure 5-19, where the LSF std-deviation of the timing elTor is 

significantly higher than the other methods. This can be explained by the fact that the 

multipath amplitude is randomised and varies greatly from one run to another, in channels 

where all the paths have close amplitudes, the mUltipath amplitude varies less. In thi s 

configuration the cross-correlation method (case IV) performs best with an average error of 

around 2 samples. 
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Figure 5-19: Standard deviat ion of timing error as function of SNR. 
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Figure 5-20 is a zoom in of the standard deviation of timing error and it shows th at case III 

varies less. As a result it can be considered to be the best synchroni ser, however the oth ers 

have standard deviations of less than one sample. Therefore the others could be used at a cos t 

of a slight degradation in performance. 
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Figure 5-20: Zoom in of standard deviation measurements. 

5.4.3 Implementation of the Novel Synchroniser on FPGA 

20 

In order to reduce design time, a prototype of the synchroniser was implemented usmg 

Matlab Simulink and the Xilinx System Generator tool. All the block composing the 

synchroniser are shown in Figures 5-20, 5-21,5 -22 and 5-23. Note the goal is not to optimise 

the design but rather get an insight into the functioning of the synchroniser in hardware. 

However, a small amount of optimisation is still necessary. This is to keep down the 

utili sation resources of the Xilinx CORDIC IP core used for arctangent in Equation 5-3 and 

Figure 5-11, which is used for the calculation of the frequency offset. In order to increase 

throughput, pipelining was inselted between stages . As a result the synchroniser throughput 

was increased and it took 3.2 ~ s to output a corrected OFDM sample. The synchroni er was 

implemented on a Xilinx Virtex 5 and Spartan 3 FPGAs. A summary of the utili za ti on of the 

hardware resources, using I 8-bit input and 19-bit precision in the CORDIC core. i shown in 

tab le 5-5. as can be seen the syhcrhoniser uses 13 % of hardware re ources in Virtex-5. whi ch 

is twice as much as the who le transmitter described in Secti on 5 .2. Thi s shows that 
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synchroniser is a high-complexity design in terms of the resources utilisation. The same 

pattern is repeated for the implementation on Spartan 3 which was found to have a 31 o/c area 

occupancy. 

Table 5-5: Synchroniser resources utilisation. 

Xilinx Spartan 3 
Resources U sed by design Available on FPGA percentage 

Slices 2904 13312 21 
Slices Flip-Flops 4231 26624 15 
Number of LUTs 4704 26624 17 

Xilinx Virtex 5 
Resources U sed by design Available Percentage 

Slices 4011 28800 13 
Number of LUTs 3977 28800 13 

5.5IEEEB02.11a Receiver Implementation on FPGA 
Most Viterbi decoder designs implemented on FPGAs are variant of [154], and when this 

approach is chosen to develop a decoder with the register binding discussed in section 5.2.1, 

the decoder RTL occupied too much area and could not be implemented on the targeted 

FPGA. In particular, during synthesis it was found that the Viterbi decoder implemented 

occupies 126 % of the FPGA. Thus the viterbi decoder could not be placed and routed in 

Xilinx 10.1 ISE. The register binding method, Method-I, used in the transmitter yields good 

result for small to medium designs, however the most common design method for the 

implementation of Viterbi on FPGA involves a large set of registers, since the decoder is a 

state machine. As the number of state increases so does hardware complexity [154], and thus 

this method is suited for small -to medium designs. 

To decode data from the de-interleaver a Viterbi decoder from Opencores website was used 

instead [155]. The core was developed by Michael Johnson of Tsinghua University in 

Beijing, China. Typically the value associated with a state is calculated using a set of basic 

elements such as ACS, BMU, PMU. The Add-Compare-Select (ACS) is used to compare the 

value of two states, thus the amount of ACS is used in the Viterbi decoder is equal to half the 

number of states. 
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Figure 5-24: Frequency correction module in System Generator. 

The Process Element (PE) is the assemblage of the basic elements that describe the value in 

each state of the decoder. For each incoming pair of bits in the decoder, the PE elements are 

updated and stored in registers. This requires a register array that has a number of rows 

corresponding to the traceback legth and a number of column corresponding to the number of 

states. In [ISS] the recursive ACS algorithm is replaced by the PE technique. It is a technique 

that takes advantage of the similarities between ACS and the computation of FFT to 

combine two or more PEs together [156]. This requires adding of an Add-Compare unit and a 

memory block . For each computation of PEs, the states are updated direc tl y. a a result the 

hardware usage is reduced . However, thi s comes at the expense of a red ucti on in the speed of 

computation lI S7]. 
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The decoder employed in IEEE82.11 has 64 states, and a low area decoder was required. The 

public domain Viterbi decoder based on RAMs in [155] was found to use just 2 9c of the 

Virtex5 FPGA area and it was optimised for parallel computing. This is an advantage for 

IEEE802.11 systems operating at high speed. 

5.5.1 Receiver Design Implementation 

After the assemblage of the optimised decoder, the novel the synchroniser and the receiver 

remaining building blocks, the synthesis of the implementation with methodl results in 35% 

of Virtex5 area occupancy and around 60 % of Spartan 3 occupancy (see Table 5-6). A 

summary of the synthesis of the receiver developed with Method-2 is shown in Table 5-7. 

Due to the excessive size of the design the proposed SoC with a IEEE802.11 a transceiver 

cannot be implemented on the GR-XC3s-1500 development board. 

Table 5-6: receivers Resources with respect to low power technique used on Xilinx Spartan 3. 

Xilinx Spartan 3 
Resources U sed by design Available on FPGA percentage 
Slices 8077 13312 60 
Slices Flip-Flops 10555 26624 39 
Number of LUTs 9835 26624 36 
Xilinx Virtex 5 
Resources U sed by design Available Percentage 
Slices 10317 28800 35 
Number of LUTs 8364 28800 29 

Table 5-7 : receiver resources with respect to low power technique used on xilinx Virtex 5. 

Xilinx Spartan 3 
Resources U sed by design Available on FPGA percentage 
Slices 5060 13312 38 
Slices Flip-Flops 6390 26624 24 
Number of LUTs 8789 26624 33 
Xilinx Virtex 
Resources U sed by design Available Percentage 

Slices 6154 28800 21 

Number of LUTs 7607 28800 26 
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5.6 High Level Architecture 

The logic symbol of completed baseband IEEE802.ll a physical layer IP core is shown in 

figure 5-17. The interfaces for the interaction between the Physical and MAC layers are 

specified in [48]. Before a frame can be sent by the transceiver the MAC layer checks if the 

channel is clear, the channel is sensed with the PMD_RSSI_ind signal, the carrier strength is 

indicated in that particular interface. The PHY_START_req signal is used by the MAC layer 

to set it in transmit state. When the the transmitter switches to the transmit state it informs the 

MAC layer with the PHY _START _con! signal. 

The transmission parameters such as data rate and the requested power level are forwarded to 

the transmitter through the TXVECTOR interface. Similarly the RXVECTOR is used to inform 

the MAC layer that the parameters are decoded by the receiver. 

Once in transmit mode, the PHY_DATA_req signal is used by the MAC layer to initiate data 

exchange, if the transmitter is ready it asserts the PHY _DATA_con! signal. The data from the 

MAC layer is presented to the physical layer on a byte by byte basis using the 

PMD_DATA_req interface. After the transmission of a complete frame the MAC module is 

informed with the packectransmitted signal. 

The MAC layer sets the transceiver in a receive state by asserting the P HY _TXEND _req 

interface, which is then acknowledged with PHY_TXEND_conf Note that the transceiver 

can only be in receiver mode if the PHY _START _req is not asserted. 

When the transceiver is in receive state, the PHY_START_ind interface is used to inform the 

MAC layer of an incoming RXVECTOR, which is decoded to set the associated demodulation 

with the data rate. 

The P HY _RXEND _ind is used to indicate that an error occurred. It is asserted when the 

channel return to IDLE before the reception of a complete frame or when the data rate 

indicated in the RXVECTOR is not supported. The signaCvalid is used in conjunction with 

RXVECTOR to indicate that the data rate is not supported. 

received_ibits and received_qbits receive the in-phase and quadrature OPDM signals, in the 

transmitter transmitted_ibits and transmitted_qbits forward the generated OPDM symbol to 

the RF module. 

The complete transceiver architecture is presented in chapter 7, where both the MAC and 

Physical layers are assembled into one unit to communicate with a general purpose processor. 
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Figure 5-25 : Physical Layer IP core. 

5.7 Conclusion 

In this chapter, two new IEEE802.11 physical layer designs are presented, the first one is 

implemented with a register binding technique and aims at speeding up the OFDM 

computation. The second one suppresses the RAM clocking so that they can be accessed only 

when required. The design with the register binding has a higher hardware cost but performs 

the OFDM symbols computation 32 % faster than the published OFDM designs. However it 

is not suited for complex designs such as the IEEE802.11 a. In comparison the RAMs-based 

method only consumes half the hardware resources utilised by the implementation with 

register binding. 

To improve the computation speed of OFDM symbols, a novel IEEE802.11 design is 

proposed using both methods while keeping the hardware cost to a minimum. The register 

binding method is used in small blocks such as the convolutional encoder and scrambler. 

Since these blocks process at bit-level, the incoming bits are grouping together and stored 

into a regi ster, the mathematical operation is performed in one clock cycle. The blocks with 

omplex numbers algorithm require word-level memory access , uch as the IFFT, therefore 

they use the RAM clock gating method. The new design ha a OFDM computati on peed 
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similar to the register binding optimisation technique and reduces the computation time by 32 

% when compared to current IEEE802.11a published OFDM designs. 

An improvement in the OFDM computation time is a contributing factor in increasing the 

throughput of the IEEE802.11 a standard, since throughput of communication systems based 

on CSMA, such as the IEEE802.11 standard, is linked to the node frame processing time. 

A novel synchroniser for the IEEE802.l1a receiver is presented section in 5.4. It is an 

algorithm based on clock gating and the derivative sum of the correlation functions. It aims at 

providing robust OFDM timing synchronisation and targets FPGA implementations. As 

opposed to current efforts it does not require heuristic rules to determine the start of a frame. 

This feature makes the new synchroniser suitable for new domains where the channel 

conditions are not known yet. Simulations of a mobile and harsh environment in a Matlab 

show that the algorithm has an almost flat performance across the range 1-20 dB Eb/No. 

Also, the synchroniser has comparable timing estimation performance to a recently published 

robust synchroniser. The synthesised synchroniser is estimated to occupy 13 % of logic 

utilisation in the target FPGA. 
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Chapter 6 

IEEES02.11 Transceiver System-en-Chip Design 

This chapter presents the implementation of a wireless transceiver based on the IEEE80211 a 

standard and its integration with other IP cores on a FPOA to provide the functionalities 

required by a communication SoC. The key aspects that permit the integration of the design 

in a wireless transceiver are outlined. The resulting design could be a communication 

platform for space based applications. Section 6.1 looks into designs concept in which the 

wireless transceiver's MAC layer is presented. The internal workings of the design are 

discussed. In order to provide integration between the physical and MAC layers IP cores, a 

synchronisation mechanism is proposed. The general working of the new synchronisation 

algorithm is described in Section 6.2. Results of the synthesis the new MAC layer on an 

FPGA design are presented in section 6.3, and the MAC layer architecture interfaces are 

described in Section 6.4. Section 6.6 looks into SoC design considerations. The SoC design is 

presented in section 6.6. In order to implement the full communication stack a software 

interface is implemented, the design issues are addressed in Section 6.7. Section 6.8 presents 

simulation results of the final SoC design, and Section 6.9 shows the results of the SoC 

synthesis on an FPGA. 

6. 1 Design Concept 

The implementation of the IEEE802.11 a based SoC requires integrating a MAC layer IP core 

with the physical layer design discussed in Chapter 5. The MAC layer is integral part of the 

IEEE802.11 a standard. It manages access to the communication channel and interfaces with 

the upper layers generally through a general purpose processor. It provides a high data rate 

wireless link to software applications running on the SoC. Figure 6-1 presents the hardware 

top level architecture of the wireless transceiver.The three main blocks depicted are the 

General Purpose Processor (OPP), the physical layer architecture (described in Chapter 5) 

and the MAC layer architecture. 
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Figure 6-1 : Wireless transceiver top-level architecture. 

The implementation of the MAC layer on reconfigurable hardware is di scussed in Section 

3.2.3. Pionteck et al. showed in [112] that, since most of the wireless standard updates 

happen in the MAC layer, some of its control-oriented tasks should be implemented on RFUs 

running on a reconfigurable processor. This would reduce the interaction with the processor. 

The two main benefits are reduced power consumption and lower latency. However, thi s 

concept has not yet been physically implemented. Although various solutions exist with the 

MAC layer either implemented on an FPGA [89, 97] or running on a processor embedded in 

the FPGA [85-86], there has been no other effort and published work apart of this work [5] 

on the integration of the MAC layer and the physical layer on the same reconfigurable 

hardware until October 2010 [158]. Current embedded processor solutions exhibit hi gh 

power consumption, such as 30 W for Rice University 's WARP design [110]. 

Although WARP is a complete solution housing a software MAC implementation and 

physical layer on the same FPGA, the level of power consumed by a WARP-based 

IEEE802.11 design is not attractive for satellite applications, where the power is a limited 

resource. An alternative would be a low-power implementation of the MAC function s 

directly on the FPGA reconfigurable fabric. This requires the design to be partitioned into 

three parts: 

• Implementation of the physical layer capable of providing better performance than 

cLlrrent so lutions in terms of power consumption and speed of process ing. 

• Development of a MAC layer prototype requiring minimal update to perform in space. 
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• Integration of a low-power embedded processor with the IEEE802.11 transceiver to form 

a complete SoC communication platform. 

The implementation of the MAC layer architecture is inspired by [159], and the IP cores used 

in [160] were added to the new design. The hardware accelerator in the MAC layer appends 

information such as the data rate, modulation type and duration of data transfer to the data 

packets. A Tx state machine selects the correct sequence of packet types (of control or data 

type) and is responsible for CRC generation and byte-by-byte forwarding of the data to the 

physical layer. There, the data bytes will be aggregated into larger groups to form OFDM 

symbols. This design differs from current MAC layers implementation in the way the data is 

forwarded to the physical layer. Typically the MAC layer passes the information data 

downstream on a frame by frame basis. By allowing data to be sent between the layers on a 

byte-by-byte basis, the physical layer gains in latency [158] and, the MAC layer is able to 

process the upstream information as they are decoded. This finding has been confirmed in a 

very recently published design that has also adopted later the same approach, Airblue a 

IEEE802.11 FPGA-based SDR [158]. 

The Rx state machine monitors the carrier and sets the Network Allocation Vector (NAV), a 

virtual carrier sensing mechanism for wireless communication protocols [48]. The NAV is a 

duration used by the stations listening to the medium, during that period they can not initiate 

communication. The NAVis retrieved from the packets transmitted across the link. 

The Rx state machine also collects the data byte by byte, performs CRC and transfers data to 

the memory. The MAC layer interacts with the physical layer through the interfaces is 

discussed in Section 5.6. This is why they will not be discussed here. 

The MAC IP core employs the CSMAICA mechanism to allow access to the channel, and its 

main functionality is included in the transmitter. Since the Tx state machine is responsible for 

packet generation, it works cooperatively with the receiver to meet the IEEE802.11 

standard's channel access specifications. For example, when a transmit packet instruction 

comes from the CPU, the hardware accelerator calls the Rx state machine to check whether 

the channel is busy or a NAVis set. Figure 6-2 shows two stations, A and B, using the 

CSMAICA contention mechanism. The other two station set their NA V to the value 

corresponding to the duration of the data transmission across the wireless link. After a DIFS 

is performed, in the event that the channel is free a back-off is initiated and the Tx state 

machine waits for the end of it. Subsequently a control packet is generated (in this case it is 

an RTS frame) and, if the packet is sent successfully, the Tx state machine will go to a wait 
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state for a duration defined by the SIFS . The state diagrams defining the protocol behaviour 

are shown in Figures 6-3 and 6-4 for the Tx and Rx state machine, respecti vely. 

GI = SIFS interval 

DIFS 
GI Back GI ~ GI GI 

Off 
RTS f--- DATA r-- I---

A 

CTS ACK 
B 

NAV 
C 

NAV 
D 

Figure 6-2 : Data exchange between Stations A and Busing CSMAICA. 

The MAC is intended to interface with a 32-bit embedded general purpose processor on an 

FPGA, and it is partitioned in HW /SW so all its time-critical functions are implemented in a 

hardware accelerator wlitten in VHDL. The aim is to ensure the execution in software of 

optional functions such as encryption/decryption, as well as management functions , such as 

authentication which are part of the Management Information Base (MIB ). All parts that 

relevant to the functioning of the MAC layer are typically stored in the MIB , this usually 

includes timing characteristics and security information important to the nodes. 

For the development of the IEEES02.11 MAC layer in this thesis, it was required to place the 

IP cores on a SoC, and investigate the design trade-off between hardware resources and 

memory size. One of key objectives throughout the design is to provide a SoC which is easi ly 

adaptable for future needs. 
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6.2 MAC Layer Timing Considerations 

The integration of both the Physical and MAC layers on a single chip is a complex 

endeavour. Current practice is to use a bus to interface the two layers, which provides a 

common interface to many types of physical layers. In commercial devices the interface bus 

is 16 bit wide and is referred to as the Media independent Interface (MIl) [161]. In the FPGA 

developments the bus width is not standardised, however it offers access to the physical layer 

internal register [110, 126, 159]. This allows the MAC layer to monitor the physical layer's 

health. As dicussed in section 6-2, the proposed novel MAC layer differs significantly from 

other implementations on FPGA because it does not provide a shared bus for the interfacing 

of the layers. Instead, as shown in figure 6-1 the MAC layer hardware accelerator 

communicates directly with the physical layer. 

The MAC layer initiates the data stream and the physical layer serves the request. Due to 

dependencies between the two cores, for example the monitoring of the channel through the 

physical layer's PMD_RSSI_ind interface (see Section 5.6 for details), scheduling is 

necessary. The interfacing with both the PHY and the GPP presents synchronisation 

challenges to the Tx state machine's send block. An important issue is the added latency 

when a byte is retrieved from the memory and is processed by the CRC. The Tx state 

machine receives the byte a few clock cycles late. Consequently the receiving node is not 

able to check the CRC sequence correctly, and forces a CRC error. As a result the correct 

sequence of control packet is not completed and the transmitting node assumes that the 

packet was lost or a collision occurred. A large number of retries will cause the packet to be 

dropped and ultimately will result in a drop in the throughput. It was found that the same 

synchronisation problem exists between the Rx state machine and the receiver CRC checking 

core. Thus, if the interfaces are implemented according to the specifications, the forwarding 

and retrieval of data to upper layers causes a latency. This is due to the hardware functions 

operating concurrently, whereas the CRC processing is sequential. 

The authors of Airblue [158] refer to this type of designs as latency-sensitivity, and propose 

to insert FIFO queues between modules. The upstream module ensures that there is enough 

data for the downstream module to compute. However this was implemented only for 

modules at the physical layer, in order to ensure that correct demodulation is employed, the 

MAC layer header is sent at different rates. The time-critical portion is sent at the lowest rate 

and the other parts are sent at a higher date rate. Also the physical layer can be configured by 

upper layers with interrupts, which requires a larger bandwidth and the latency was found to 

132 



Chapter 6. IEEE802.11 Transceiver System-on-Chip Design 

be 11.12 Jls. In our design, a MAC synchronisation algorithm is employed, and a delay of at 

least one clock cycle is inserted in the execution of the CRC. This proved to be a suitable 

solution and yields better turn around time than existing IEEE802.11 designs on FPGA as 

will be discussed below. 

In the proposed design, the discrepancy caused by the latency is mitigated with a handshake 

mechanism based on the software DATA-Pull model. The receiving block commonly 

referred to as a sink requests data from the source block when it is ready. In this case the 

hardware accelerator collects data from the memory and a counter is used to ensure that an 

extra delay occurs between the time the MAC layer receives the byte and the CRC generation 

starts. The MAC layer acts as a source for the PRY, it waits for a request before forwarding a 

byte to the physical layer. 

At the receiver, the PRY informs the MAC layer, which is now a sink, of incoming data. The 

data is processed by the CRC only when it is ready. To the best of the author's knowledge 

this method of MAC layer pulling has not been reported in the literature. The algorithm 

describing the interface synchronization in the MAC transmitter can be seen in Figure 6-5. 

The latency between the MAC layer and the PRY is arbitrarily set to 100 ns, this is also 

repeated for the interface between the MAC and the CPU. This choice represents the 

maximum latency tolerated to avoid a bottleneck, while the transceiver is operating at its 

highest data rate at a clock frequency of 20 MRz. 

It takes the physical layer 42 Jls to process 32 bits, this represents an average of 10.5 Jls per 

byte. In comparison Airblue starts the up-streams flow after 16.32 JlS [158]. Our MAC has 

better latency over a packet when compared to Airblue. A simulation performed in Modelsim 

shows the time it takes to decode a packet. (see Appendix C). 
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Figure 6-3 : MA C Tx state machine diagram. 
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Figure 6-4: MAC Rx state machine diagram. 
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Figure 6-5 : Synchronisation algorithm diagram. 

One of the key performance criteria IS the time to perform a tum around, which is the 

duration of switching from receiver mode to transmitting a packet. In IEEES02.11 
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communication ideally the tum-around time should be close to 5 IlS. However, in practice 

this is not achievable, most commercial devices have a tum-around time of 300 IlS for RTS

CTS [162]. The WARP board achieves 24 IlS and Airblue is set to 22.12 IlS. Our proposed 

MAC IP Wireless core outperforms the above with a tum-around time of 19.77 IlS, which is 

within the limit of 25 Ils of standard specifications (see Appendix C for timing diagram). As 

can be seen in Table 6-1, the proposed core is current has the lowest latency, and therefore 

computes is the computes a frame faster than the designs reported in the literature. 

Table 6-1: Comparison of turn -around time. 

Airblue WARP Proposed transceiver 
Tum-around time (Ils) 22.12 24 19.77 
Improvement in computation time (J..ls) 2.35 4.23 N/A 

6.3 MAC Layer Hardware Implementation 
The MAC layer hardware architecture respresenting the MAC tx and MAX Rx state 

machines was implemented in hardware and is described in Appendix B and its VHDL model 

was simulated as a standalone device in Modelsim, then it was implemented on a 

XC5VL50X50-1FG 1153C Xilinx Virtex 5 FPGA to verify its area cost. The key parameter is 

the maximum clock frequency allowed. The design is to be integrated with the PHY layer 

and the general purpose processor, and yet the MAC layer should operate at a minimum 

clock speed of 20 MHz, which is the lowest frequency in the PHY clock domains. It was 

found that the estimated maximum frequency attainable with the design in the Virtex 5 FPGA 

is 185 MHz, This frequency is sufficient to meet the standard requirement as the delay caused 

by the routing latency between different modules will decrease the maximum achievable 

operating frequency for the transceiver. A summary of the resource utilisation two different 

FPGA is shown in table 6-1. 

Table 6-2: MAC logic resources utilisation. 

Xilinx XC3S 1500 
Resources U sed by design A vailable on FPGA percentage 

Slices 911 13312 6 

Slices Flip-Flops 709 26624 2 

Number of LUTs 1679 26624 6 

Xilinx XC5VL50X50-1 FG 1153C 
Resources U sed by design Available Percentage 

Slices 702 28800 2 

Number of LUTs 1469 28800 5 
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6.4 High Level Architecture 

The implementation of the sequence of packets exchanges described between two stations in 

Figure 6-2 is presented in this section. The timing diagram of key events during the 

information exchange at the MAC level between the transmitting node and receiving are 

desribed in this section. The simulations presented below denote the MAC operations during 

the transfer of data from a wireless transceiver referred Node A to another wireless 

transceiver called Node B. 

The state of Node A MAC layer transmitter IS defined III the 

Itestbenchld3lwifi_transceiver _unitlmac_layerluJluJlcs signal. and node A MAC receiver 

states is denoted in the /testbench/d3/wifLtransceiver_unitlmac_Iayer/u2/u lIns signal in 

Figure 6-6. 

The RTS and CTS exchanges are described in Figure 6-6 and described as follows: 

The 

1. Node A starts a DIPS and verifies if the medium is free at time 298.8 ~s. 

2. The back-off mechanism is triggered at time = 348.8 ~s 

3. Node A sendsan RTS by setting the 

Itestbenchld3lwifi_transceiver _unitlmac_layer/packectype signal to 1011 at time = 

449 ~s 

4. The RTS transmission is finished node A enters into the SIPS mode at time = 516 

~.s.Meanwhile the Node A receiver is waiting for the RXVECTOR. This shown by 

the Itestbenchld31wifCtransceiver _unitlmac_layerlu2IuJlns signal IS set to 

WaitingJor _RXVECTOR. 

5. Node A receiver enters the waitJor _header mode at time = 577 ~s. This occurs 

when Node A MAC receiver has decoded the RXVECTOR signal. 

transfer of data IS shown Figure 6-7. The 

/testbench/d3/wifLtransceiver_unitlmac_Iayer/ullullcs signal is to send_data and the 

/testbench/d3/wifi_transceiver_unitlmac_Iayer/packet_type signal is set to 0000. 

The timing diagram of Node A states during the Data and ACK exchange is shown in Figure 

6-8 and is described as follows: 

1. The data transmission ends and Node A enters receiving mode at time= 2.64 ms 

2. The Itestbenchld3lwifi_transceiver _unitlmac_layerlu2Iack_received signal is asserted 

to indicate the MAC frame was sent successfully at time = 2.76 ms . The MAC 
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transmitter sets the Itestbenchld31wifCtransceiver _unitlmac_layerlullul!cs signal to 

idle. 

Simirlarly the MAC operations at node B, the receiving node, are shown in Figures 6-9, 6-10 

and 6-11. 

The state of the Node B MAC layer transmitter IS defined III the 

Itestbenchld3Istandalone_wifi_module!mac_layerlullul!cs signal. and Node B MAC receiver 

states is denoted in the Itestbenchld3Istandalone_wifi_module!mac_layerlu2Iullns signal. 

During the CTS exchange it can be seen that the Node B enters the receiver mode as below: 

1. The Node B receiver is waiting for the RXVECTOR signal in the MAC layer at time 

= 449 us. 

2. The RTS is received and decoded successfully at time = 513 us. Thus Node B 

switches to transmitting mode, 

3. The CTS is sent to Node A at time = 523 us. the Itestbenchld31 

standalone_wifCmodule Imac_layerlpackectype signal is set to 1100 

4. The Node B switches back to receiver mode and awaits for the information data from 

Node A at time = 579 us. 

The transfer of data is shown Figure 6-10. the MAC layer core sets the 

Itestbenchld31standalone _wifCmodule!mac _layerlu2lullns signal to receive _data. 

The timing diagram of Node B states during the Data and ACK exchange is shown in Figure 

6-11 and described below: 

3. The data transmission ends at time= 2.69 ms and Node A enters transmitting mode. 

The Node B switches to its default receiving mode at time = 2.76 ms. The Itestbenchld31 

standalone_wifCmodule Imac_layerlu2/frame_reception signal is asserted to indicate the 

MAC frame was sent successfully. The MAC transmitter set 

Itestbenchld3Istandalone_wifi_module!mac_layerlullul!cs signal to receive_data. 
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Figure 6-6 : Timing diagram of MAC operations at the transmitting node during RTS-CTS exchange. 
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Figure 6-7: Transmission of information data from the transmitting node. 
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Figure 6-8 : Timing diagram of MAC operations at the transmitting node during data and ACk 
exchange. 
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Figure 6-9: Timing diagram of MAC operations at the receiving node during RTS-CTS exchange. 
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Figure 6-10: Reception of information data from the receiving node. 
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Figure 6-11 : Timing diagram of MAC operations at the receiving node during data and ACk exchange. 
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Figure 6-6 shows the inputs and outputs of the MAC layer Ip core. The communication 

between the MAC and the physical layers are reported in section 5 .6, this why it is not 

dicussed here.When a frame is received from the upper layer tx_req signal is a se11ed, the 

channel is sensed through the CRS interface. Once the DIFS has elapsed, the parameters such 

as the data rate and modulation scheme are forwarded to the physical layer via TXVECTOR . 

Requescbyte is asserted to retrieve the frame 's data on a byte by byte basis, which is sent to 

the MAC though the txData interface. It is subsequently processed by the T x state machine 

and then forwarded to the lower layer through PMD_DA TA_req. W hen the 

packectransmitted signal is asserted, the MAC layer sets the Done interface signal to ' 1'. If a 

packet is dropped the abort signal is asserted, which will be used by the CPU or the 

application that has called the transceiver. 
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Figure 6-12: MAC Layer IP core. 
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In receive mode, the data_valid signal informs the MAC that the RXVECTOR is decoded 

otherwise the RXERROR signal is asserted. The data decoded by the receiver is forwarded to 

the MAC through the RXD interface. The data_valid is sent after the frame header is decoded 

and the frame type is recognised. Otherwise the data_with_error signal is asserted. A 

successfully received frame results in frame_reception being asserted, otherwise the 

frmError is asserted. The store_data signal is used to signal to forward the received data into 

memory. 

6.5 System-an-Chip Design Considerations 

The decision to implement the SoC on a FPGA is influenced by the fact that complex orbit 

dynamics with perturbations will cause a drift over time in the range of ISL and at one point 

communication will no longer be possible. Therefore attitude determination and propulsion 

systems are necessary to correct the orbits and help the satellites stay in range. As nodes 

initiate transmission asynchronously, they will have to take into account the high mobility 

between nodes during communications exchanges. Keeping the channel access timing 

requirements static will lead to an inefficient channel capacity and a reduction in throughput. 

The WiFi transceiver is intended to operate in a mobile environment in which an adaptive 

DIFS will be used for range extension. As discussed in section 2.4 the timing requirements 

must be adaptive to changes in network topology. Thus the need of having a wireless 

platform that allows the MAC to adapt its timing requirements is a prerequisite to porting 

IEEE802.11 in space [40]. Section 3.2 discusses the need to take a hardware/software 

partition approach to comply with the timing constraints with the MAC layer's strict timing 

requirements. As a result, in this work the MAC layer timing-critical functionalities are 

implemented in hardware. However for ease of reconfiguration an approach being considered 

is the communication range prediction via software [5], which requires programming the 

DIFS via registers. 

A SoC architecture is already developed by Surrey Space Centre for space applications. And 

the wireless transceiver needs to be integrated with it. Although the transceiver is an 

additional module to the SoC, it is a novel hardware unit in the sense that it enables WiFi 

communication on a standard SoC. 

147 



Chapter 6. IEEE802.11 Transceiver System-on-Chip Design 

6.6 System-an-Chip Design 

The SoC architecture proposed is centred around the LEON3 processor developed by ESA. 

The processor runs software applications and interfaces the upper layers of the 

communication stack with the IEEE 802.11 protocol. LEON-3 is a VHDL based SPARC V8 

compliant soft processor core which is a highly configurable general purpose processor and 

can be customized to suit the user's application [163]. The main components are the 

processing unit, memory controller, separate instruction and data caches, 16-bit I/O ports, 

debug support unit (DSU) and on-chip peripherals. ESA adopted the COTS Advanced 

Microcontroller Bus Architecture (AMBA) as the on-chip bus system. AMBA has two types 

of buses, the AHB and the APB. The AMBA Advanced High Speed Bus (AHB) connects 

high performance modules to each other and to the master that can request access to other 

slaves and the memory controller (see Figure 6-13). The Advanced Peripheral Bus (APB) is a 

slower data bus that provides access to peripherals with a lower data rate and is in a slave 

configuration. Just like the AHB, devices are connected on the APB by a plug-and-play 

method. The LEON-3 acts as the AHB master to the IEEE802.11 transceiver. The 

IEEE80211 transceiver IP core includes a slave AHB interface to communicate with LEON3. 

The SoC block-diagram is shown in Figure 6-7. The main IP cores are as follows: 

• LEON-3 processor [85] 

• I/O including JTAG [164], Ethernet [164] and UARTs [164] 

• Custom-built wireless transceiver core based on IEEE802.11a [5] 

• DMA controller [5, 167] 

Due to the asynchronous nature of communications in IEEE802.11 based networks, a 

mechanism for a direct write from the receiver to the memory is required. As a result a direct 

memory access (DMA) controller core capable of controlling data transfer between the 

memory and the wireless transceiver is added as AHB master to the design, shown in Figure 

6-13. The DMA was developed for a satellite on-board computer [165] which used the 

LEON-2 processor as its CPU. However the DMA interface was developed for the earlier 

version of AMBA AHB bus that did not support plug-and-play. As a result a partial re-design 

of the DMA interface was undertaken to connect to the AMBA plug-and-play bus. 
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Figure 6-13: System-on-a-Chip Design IP Cores. 

The DMA core has 32 channels to support up to 32 peripherals, and each channel has a 

number of registers allocated in the memory-mapped 10. An arbiter is placed within the 

DMA to give access to the component with highest priority. The registers are configured via 

the APB bus and are used to provide a set of functionalities to each component connected to 

the DMA. The registers allow to store information such as start addresses of the memory and 

the peripheral that requires exchanging data, the data transfer size, byte counter. 

In the AMBA centric design IP cores communicate via registers, to allow ease of 

configuration. The modules connected to the DMA controller can have their allocated 

registers either hardwired or programmed via software, and can bypass the processor to send 

data among themselves. In that respect the WiFi core registers are implemented to allow the 

processor to send commands to the transceiver and the transceiver uses registers to inform the 

CPU of its status. Additionally the same registers can be accessed by other modules in the 

SoC, thus another module can initiate wireless communication. In transmission mode, the 

processor sends a signal to initiate data transfer to the transceiver via a control register, and 

the data is stored in memory. If the transceiver is free it starts the contention mechanism and 

at the same time initiates communication with the DMA. The wireless transceiver 

architecture is shown in Figure 6-14. The data retrieved by the DMA controller is stored in a 

buffer until it is full. The DMA then stops data transfer until the transceiver calls it again. 

Pipelining is used to ensure that data is always ready in the transceiver buffer by the time 

back-off has expired. Thus the DMA reduces the interaction between the wireless transceiver 
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and the processor. And by the same process, the power consumption due to software 

!hardware interaction is kept to a minimal. 
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Figure 6-14: Wireless transceiver core architecture [166]. 

Also when there is an error in the transmission a status register is used to indicate to the 

processor the type of error. In summary, the registers can be used for polling to ensure 

software applications can get access to the health data of the transceiver. For example, flags 

for successful operations (transmission or reception) are included in the transceiver status 

register. Additionally an interrupt can be used to call to the processor and software 

applications. 

6.7 Software and Hardware Interface 
Though the SoC is intended for ISL, in its design there is no assumption made on the type of 

applications it will be supporting. To allow seamless integration with the upper layers of the 

communication, Application Programming Interface (API) is provided to make use of the 

WiFi transceiver core (see Figure 6-15). This enables the utilization of transport and network 

layer protocols such as UDP, IP etc. 
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Figure 6-15 : Software and hardware interfacing. 

As the DIFS needs reconfiguration for each packet, it is therefore decided to carry out 

communication range prediction via software and therefore set the time-slot value in a 

programmed register accessible to the WiFi core. 

One of the motivating factors for the implementation of WiFi in hardware is to limit the 

number of service requests from the software, in fact only the upstream data transfer to 

memory can be requested by the transceiver. This is done with an interrupt in two ways, the 

first one consist of inserting an intenupt flag to its AHB configuration regi ster ; the second 

method is to monitor the transceiver status register by polling and verifying whether the 

incoming data flag is asserted. In contrast, software applications are more flexible, as a result 

the following services are provided: 

• Data transfer: when an application calls the transceiver, it co ll ects the data to be ent 

to a particul ar destination, the address as well as the message is included in th e data. It 

is assume the destination address is already known . 
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• Transceiver health: the transceiver indicates its current status at all time in a register. 

Information such as "transceiver is idle" , "is in transmission mode" or "is receiving 

incoming data" are set with flags 

• Timeslot configuration: as the time-slot is the only parameters used to establish the 

maximum range of communication, a register allows the user to dynamically 

reconfigure the communication range. 

There are 4 32-bit registers implemented for communication between the upper layers and 

the WiFi core, and they are defined in Table 6-3. 

Table 6-3: Registers used by Wifi core. 

register ARB address offset 
Wifi data OxO 
Wifi status Ox4 
Wifi control OxS 

The data register is used to forward the message information to the MAC layer, and the 

received information is also stream to the uppers layers this register as shown in Figure 6-16. 

The OxFFFCOOOO address is chosen for the AMBA plug-ang-play memory space. 

Bits No 

31 

Data register memory address: FFFCOOOO 

Bits No 

31 

Status register memory address: FFFC0004 I :"'N~-
'------------ -

Bits No 

31 

Control register memory address: FFFC0008 Reserved 

Information 
data for MAC 

frame 

3 

THE 

6 5 4 3 

Figure 6-16: WiFi core AMBA plug-aDd-play registers. 
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The status register IS used to monitor the WifI core health, and its address space is 

OxFFFC0004. The flag consists of: 

• DR is the Data Ready bit. It is asserted when the Mac receiver is in use 

• THE is the TX Hold Register Empty bit. This flag is deasserted when the transceiver 
is used 

• BR is the Break Error bit. This flag is asserted for unexpected errors. 

• FE is the RX Framing Error bit. This is used to for collusions and frames received 

with errors. 

The control register is a used by the software API to request services from the transceiver, 

and its AMBA plug-and-play memory address is set to OxFFFC0008. 

• TE is the Enable transmit bit. 

• RE is the enable receiver bit 

• TI is the transmitter interrupt enable 

• Ri receiver interrupt enable 

• txDREQ enables data transfer from the WiFi core 

• RxDREQ enables data transfer from another core to the WiFi core 

Note that only a susbset of the MAC layer is implemented. Because of the complexity 

involved in implementing the IEEE802.11 standard, a fully-compliant implementation of 

standard is not possible in the time frame of PhD studies. Instead it is left to the user to 

implement the standard control-oriented tasks commonly found in the market place. The 

control-oriented tasks that are not implemented in software include MIB, authentication, 

association, queing of transmit data. 

6.8 Hardware Simulations 
The transceiver interfaces are shown in Figure 6-17, in which the connection to the AHB is 

done with both ABB_Slave_input and ARB_Slave_output signals. The in-phase and 

quadrature components from the RF are called received_ibits and received_qbits 

respectively. The transmitter uses the transmiCibits and transmicqbits interfaces to forward 

data to the RF module. 
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The DMA controller is called through DMA_REQ, and once the transaction is finished the 

DMA controller asserts the DMA_ACK signal. 

reset 
AHB_Sla vejnput 

clk 

transmitt 
e_output 

ed_ibits [17-0] 

received i bits [17-0] WiFi Core Wrapper 
transmitte d_qbits [17-0] 

bits [17-0] 

OM AY.CK 
OMA_R EQ 

Figure 6-17: WiFi Core Wrapper interfaces. 

The WiFi registers are accessible from other cores on the SoC by off-setting the argument 

from the transceiver core's plug-and play address as shown in Table 6-3. Although the 

transceiver is an AHB slave, it can still get access to the AMBA bus by calling the DMA 

with the txDREQ signal for the retrieval of data from memory in transmission mode or 

rxDREQ for the data transfer to memory in reception mode. However the transceiver requires 

configuring the DMA after it is called. Since parameters such data length, read and write data 

addresses location can either be hard-coded or set by C programming, to allow ease of 

utilisation the configuration of the DMA is implemented in software. 

The transfer of data between two wireless transceiver SoCs was simulated in Modelsim to 

verify the design performance, and the VDHL testbench code can be found in Appendix F. In 

Figure 6-18 the simulation shows the timing diagram of the DMA configuration via software, 

the APB address Ox80000C38 is a register that sets the maximum length of data transfer, 

address incrementing, size of data word. 
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As can be seen, it takes 665 ns to complete the configuration when the bus clock frequency is 

set at 50 MHz. Note that the bootloading precedes data storage to memory, and the 

configuration takes once the data storage is completed, and this sequence of operations may 

take approximately 300 Jls to be completed. The software sends the transmission commaned 

via the OxfftbOOOS register address as shown in figure 6-19. Once the transmitter is ready, it 

sends a command to the DMA to initiate data transfer from the memory. the transfer of 1500 

bytes is completed in 40.1 Jls. 

Assuming that the WiFi is in transmit mode, it would it take 50 JlS for the DIPS to be 

completed, thus the data arrives to transceiver's buffer before back off is enabled. This means 

that the maximum data rate can be supported in this new design. 

In transmission mode, the transceiver is constantly polled via its status register FFFC0004, to 

verify whether the frame is transmitted successfully. Figure 6-20 shows the timing diagram 

of a simulation of data transfer of 1500 bytes with the data rate set to 6 Mbps. The processor 

uses register polling for the transceiver status, the Done signal indicates that the packet is 

transmitted successfully, and the transmitter is disabled by setting the FFFcOOOS register 

value to 00000000. It can also be seen that it takes 2.77 ms to transmit a frame across the 

wireless link. This gives the transceiver a maximum throughput of 4.3 Mbps when the data 

rate is set to 6 Mbps. 
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Figure 6-18: DMA configuration. 
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Figure 6-20: Wireless transceiver status request via software. 
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6.9 Hardware Implementation 

The synthesis results of the SoC are presented in table 6-4.The new SoC design occupies 

99% of the flips-flops and LUTs. However it only occupies 56 % of the FPGA slices. 

Table: SoC hardware utilisation. 

Xilinx Virtex 5 

resources U sed by design A vailable on FPGA percentage 
Slices 16254 28800 56 

Slices Flips-Flops 28766 28800 99 
Number of LUT 28744 28800 99 

The SoC maximum frequency is set at 97.86 MHz, this is sufficient since the maximum 

frequency required by the SoC is 80 MHz . The SoC power estimate is 1.35 W (0.588 

quiescent and 0.78 W dynamic) using the Xilinx XPower tool. 

6.10 Conclusion 
The developed physical layer cores presented in chapter 5 are integrated with the MAC layer 

to form a wireless transceiver based 0 the IEEE802.11 a standard. At the time of writing the 

thesis it is the first design in which both the MAC layer and physical layers are implemented 

on the same FPGA.The design of the transceiver in the same hardware shows that the 

hardware accelerator, the most important part of the MAC layer, can not be integrated 

seamlessly with the physical layer. A handshake mechanism suitable for both the frame and 

the reception of frames is required. This is traditionally achieved by incorporating a bus 

shared two layers and using an arbiter to control the communication. A simple handshake 

mechanism is used to exchange data between the layers and reliable fashion, this method 

reduces the hardware complexity. 

This chapter discusses the method of integration of the wireless transceiver to the AMBA 

bus. A reconfigurable SoC centred on the LEON3 processor and the IEEE802.11 a standard is 

proposed to provide flight ready communication platform for future satellites networks. By 

providing a DMA controller, The WiFi core is able to transfer directly to other cores, this 

ensures a reduction in calls to the LEON3 processor and equips the transceiver with the 

ability to access the AMBA bus just like other masters. The SoC provides the incorporated 

cores and, software applications via register polling, with a high data rate wireless 

communication platform. 
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The implementation of the SoC on Virtex 5 occupies all the logic resources, and therefore a 

larger device is required to implement radiation mitigation on the design. However the SoC 

design size is directly related to the size of the IFFfIFFf cores, it can therefore be reduced. 

The power requirements are estimated to be 1.35 W, which is one third of that used by 

published IEEE802.11 design incorporating, on a single FPGA a C layer programmed MAC 

layer on embedded processor and the physical layer. 
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Chapter 7 

Integration of SpaceWire Protocol with IEEES02.11 

The need for high-speed communication between the spacecraft components has led to the 

adoption of the fault-tolerant SpaceWire on-board protocol. The subsystems in SpaceWire 

networks are connected though a high speed bus. This chapter proposes the mechanism to 

connect the wireless transceiver SoC presented in Chapter 6 to a SpaceWire network. The 

key features of the OBDH protocol are discusses in section 7.1. The proposed conversion 

mechanism is explained in section 7.2. A modified wireless transceiver SoC architecture that 

includes the interface to a SpaceWire network is described in section 7.3. Simulation results 

are shown in section 7.4. 

7. 1 Introduction 

The subsystems on a space-craft are responsible for tasks ranging from attitude control to 

power supplying to telemetry and telecommand. Traditionally the subsystems were 

connected to one another with the MIL-STD-1553 bus standard, which typical provides a 

bandwidth of less 1 Mbps. MIL-STD-1553 is a high differential voltage standard, the nodes 

peak-to-peak output voltage can reach 27 V [SO] which results a in relative high power 

consumption. Due to the high output voltage nodes require large transformers. Therefore the 

bus system is expensive from power and volume perspectives. In an effort to reduce mass, 

power and volume the IEEE 1394 and PCI COTS bus standards were proposed as part of the 

NASA X2000 program [167]. X2000 was used for deep space missions such as Pluto/Kuiper 

and Europa Orbiter. The aim was to customise the on-board computing so as to reuse it 

across several missions. The move to the new bus systems also increased the data rate when 

compared to MIL-STD-1553, and the net effect was an increase in the throughput. However 

the IEEE-1394 has a significant limitation in the sense than a single point failure results in 

the bus system being partially operational, this can be mitigated if a fault-tolerance strategy 

is put in place [79]; but this is at the expense of hardware costs. The other drawback is that 

IEEE1394 networks do not scale up well. 

As the design cost of satellite missions is gradually becoming a constraint. spacecraft 

manufactures are moving towards the adoption of low cost COTS bus systems. One of the 
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terrestrial network standards that is accepted in the space industry as on-board data bus is 

Control Area Network (CAN). It is a standard commonly used in the automotive industry 

[168]. The network has a master-slave configuration, and the nodes such as sensors and 

actuators are connected to a CAN controller and a host processor. Information is broadcast to 

all the nodes on a serial bus link, however when the bus is free, access is granted to the node 

with the highest priority. Differential encoding is used to transfer information across the 

network, this results in a high immunity to noise and constitutes a key attribute for 

automotive and industry applications operating in noisy environments. For example, SSTL 

which built its business model on manufacturing satellite with COTS products and 

subsystems, have until recently used the CAN standard for TTC with date rate up to 1 Mbps. 

For higher data rate the L VDS is used for fast data transfers between component using point 

to point links. CAN has low complexity, and this is an advantage that SSTL exploits to 

provide redundancy by increasing the links between components on the spacecraft. Due to 

the flight heritage, SSTL bus systems are being upgraded to CAN 2.0 to increase the 

throughput between components. 

New space applications such as SAR require high bandwidth and high computing resources 

for signal processing. Had it not been for the fact that IEEE1394 has inherent limitations with 

regard to fault-tolerance it would be a suitable a candidate. Instead for large data rate links 

SpaceWire is gaining widespread acceptance in the space industry. Some of the attributes that 

make the standard attractive are as follows: SpaceWires links can provide data rate in excess 

of 400 Mbps; SpaceWire networks have a large bandwidth and SpaceWire networks are 

formed of heterogeneous subsystems such as processing units, memory, down-link telemetry 

systems and sensors. 

7.1.1 The SpaceWire Standard 

SpaceWire was authored by Steve Parkes of the University of Dundee and several industrial 

and academic institution are specialising in Space Wire components, e.g Star Dundee and 4-

links, for high speed onboard data transfer. Space Wire provides a standard in order to 

facilitate systems integration and to reduce the cost associated with customisation[ 169]. All 

nodes have a full-duplex bi-directionallinks, just like IEEE-1394 the L VDS protocol is used 

the physical layer to encode signals and to reduce EMC. LVDS is found to provide 

acceptable performance against space radiation [170]. 

Data is encoded with the IEEE 1355 data-strobe encoding method combined to LVDS. which 

uses two differential signals in each direction as shown in Figure 7-1. Redundancy is inserted 
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in the network by doubling the links for each node. If a link fails, it will be rebooted in 20 ~s 

and an error token will be sent to the transmitter to help in recovering the lost packet, 

otherwise if the link is permanently down the second link is fired up to allow communication 

between the two nodes. Given that a larger amount of wire is used between the devices, a 

router is commonly used to connect SpaceWire nodes. The addition of nodes in the network 

causes the bandwidth to increase, providing distributed processing. The full-duplex links 

between the nodes is owes to the fact that on information exchange between two nodes, the 

packets can make efficient use of the bandwidth by combining the bandwidth of both nodes. 

Studies, conducted by ESA, found that for a given link the SpaceWire power consumption is 

in the vicinity of 50 mW for a transmitter-receiver pair[171]. In addition to its low-power, 

SpaceWire is a low-complexity protocol that makes its easy to implement in hardware. A 

typical SpaceWire implementation requires 5000 gates, and has a flexible packet structure 

that has no size limit. 

r Memory I l Instrument Router 
Prime I Processor I l 

Prime 

J Memory I I 
Instrument Router 
Redundant J 

I Processor I 

Redundant 

Figure 7-1: Redundancy links [169]. 

SpaceWire is a 'relatively new' protocol, some of the layers in its protocol stack are still 

under standardisation, for instance some of the standard layers are not clearly defined which 

in some cases lead to interoperability problems between devices manufactured by different 

vendors. A prime example is the SpaceWire-Plug and Play protocol. It is defined for device 

configuration and, network discovery. Any mismatch between the configurable ports on the 

node and the router results in the node not being able to access the router's configuration. 
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The SpaceWire working group revised the definition of a node so its configuration 

information is aligned with that of a router. This results in the node being also capable of 

forwarding packets [172]. 

The two transport layer protocols are proposed to run on the network to provide support to 

OBDH: Remote Memory Access Protocol (RMAP) and CCSDS Packet Transfer Protocol 

(CPTP). A remote node can be configured by directly accessing its memory or registers 

using RMAP [173]. The protocol is efficient for network administration. It is a 

connectionless protocol in the sense that read and write operations are posted operations as 

they do not require an acknowledgement to the sender. Write commands check first whether 

there is an error in the data before performing a write operation into the destination node's 

memory. If an error occurred the destination stores the error in a register that can be accessed 

later. The protocol has defined a packet format with a header and data so that error checking 

can be performed with 8-bit CRC, and can also be performed on both the header and data 

parts of the RMAP packets. The read command on the other hand places the information 

retrieved from the destination memory into a reply packet. 

The SpaceWire-CPTP is used to encapsulate CCSDS Packet Transfer Protocol packets into a 

SpaceWire packets for packet transfer across the network [174]. The protocol is also 

connectionless, and has less overhead when compared to RMAP. Although CPTP has less 

overhead than RMAP it does not provide an error checking mechanism, nor a mechanism for 

status monitoring such as packet acknowledgement. 

7.1.2 Integration of SpaceWire with Existing Protocols 

The multiple features such as high speed, fault-tolerance and low latency make SpaceWire 

very attractive for space applications. As new missions are moving towards porting terrestrial 

networks to space, a large variety of new applications could be envisioned with regard to 

connecting SpaceWire networks with legacy protocols such as Ethernet[175]. Mills et al 

first explored the idea by tunnelling SpaceWire packets over the Internet. this originated from 

the need for teams working on SpaceWire projects spread across countries to integrate their 

designs and to allow remote subsystems to be connected via the internet [176]. The concept 

revolves around the idea of building a SpaceWire virtual integration network, in which nodes 

in a location connect to a router that is in tum connected to a PC. A SpaceWire IP tunnel 

implemented in software allows the packets encapsulated in IP to travel over the internet. The 

virtual network facilitates integration before the actual components could be gathered one 

location for final integration. 
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Cook and Walker exploited the common features between Ethernet and SpaceWire to transfer 

Ethernet frames over SpaceWire networks [175]. Both standards are compared in the lower 

part of their respective protocol stacks, and the authors found that the layers are close in 

characteristics. The Ethernet frame's length is limited whereas SpaceWire packets have no 

limit in packet size, thus Cook and Walker argue that this makes SpaceWire more suitable to 

encapsulate Ethernet frames than the other way round [175]. In an Ethernet LAN, network 

discovery is done by multicasting and broadcasting, while these features are absent in 

SpaceWire. In a companion article, the authors propose new ways to use the SpaceWire 

limited broadcasting capabilities to discover networks[177], using dynamic configuration. 

When a node is probed, it should be sent a unique identifier composed of just the node's 

MAC address. In this configuration the MAC address serves for the Ethernet as well as the 

SpaceWire identifiers. The node discovers the network by probing its interfaces and switches 

help spread the probe until the last point in the network is reached. 

As discussed above, Space Wire was extended to get the same addressing structure as 

Ethernet. Parkes and Ferrer looked into sharing the channel among the nodes similarly to the 

way it is done in a multiple access mechanism [178]. SpaceWire does not respond well to 

deterministic data delivery, however in avionics this is important for real-time responses. In 

[178] traffic is scheduled by allowing slot-time to each RMAP transaction, the slot time 

should be long enough yet the packet size should be restricted to 26 bytes, this is to avoid 

fairness issues. The mechanism is essentially time division multiple access (TDMA) where a 

time-slot is set to 5 JlS, and experiments show that for links running at 200 Mbps each node's 

throughput is around 30 Mbps. Although there is a drop in the throughput the fairness 

increased when compared to asynchronous data transfer as each node has equal access to the 

channel. 

7.2 Integration of IEEEB02.11 and Space Wire 
The challenges in the connection of IEEE802.11 are evaluated, in particular the 

bridge/translator between the protocols is presented. The SpaceWire core developed by Star 

Dundee is used in this research. 
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7.2.1 Wireless Networks Data Frame and SpaceWire Data Packet 
Translation 

As shown in [177], SpaceWire is more suited for encapsulating Ethernet frames than other 

way round. Given the Space Wire limited broadcasting capabilities, it could be augmented by 

allowing SpaceWire packets to be encapsulated in terrestrial network technologies such as IP. 

The noticeable additional gain is the extension of the SpaceWire nodes' range, so that 

terrestrial wired and wireless LANs can span across many kilometres. 

Instead of removing traditional wired on-board bus systems as proposed in [80-81], assuming 

the interference is low, the wireless transceiver could interface with other modules in a 

different OBDH unit. 

To reduce harness low data rate sensors could be used as remote terminal unit. The data from 

the sensors could be aggregated and forwarded to a terminal unit located in a SpaceWire 

network and with a higher computing capacity. This in line with Parkes's suggestion with 

regard to CAN [169]. 

7.2.2 Design of a IEEEB02.11/Spacewire Bridge 

The work presented in this section is concerned with the design of a bridge to connect a 

SpaceWire router to a Wireless transceiver. A standalone bridge is proposed to evaluate the 

parameters important to enable efficient translation between IEEE802.11 and SpaceWire 

data. The overall diagram is presented in figure 7-2. It can be seen that the router is 

connected to the bridge which, is in tum connected to the WiFi transceiver. In this thesis, it 

is assume that the Space Wire router has a routing table, thus it forwards the packet to the 

appropriate port. Thus when the packet arrives at the bridge, it does not perform routing but 

rather translate the SpaceWire data in a format suitable for transmission over the wireless 

link. This releases the bridge of any management duty. 

The reason for this approach is discussed in Section 7.2.2.1, in which the design challenges 

are outlined and a solution is proposed. 

7.2.2.1 Design Issues 

A) Data rate Synchronisation 

In order to design the bridge, it is firstly required to identify the major restrictions to the 

designing a IEEE802.111SpaceWire bridge. Inter-frame timing constraints are introduced at 

the IEEE 802.11 MAC layer in order to support high data rates. Before a node is allowed to 

initiate a transmission, it senses the channel to verify whether it is free for a predefined 
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minimum period called Distributed Inter Frame Space (DIFS). If the ch annel is bu y, a 

random back-off interval is calculated to determine the wai ting time before the sendin g node 

tries to access the channel again. This is followed by a flow control mechani sm between the 

sending and receiving nodes. SpaceWire has a flo w control for link connection as we ll. 

however once the link between two nodes is established, the data transfer rate depend onl y 

on the receivi ng buffer size. A character is used to control tha flow across the link, and can 

either be a data or a control character. Typically, a SpaceWire node has a buffer able of 

storing 7 characters. Before a data transfer, the sender checks whether the receiver's buffer is 

full and a data transfer will not occur until the receiver sends an authorisation to transmit to 

the source node. 

SpaceWire Network 

SpaceWire 
Node 

~ ~ WiFi SpaceWire SpaceWire .... Bridge 
Node Router "~ ~ Transceiver 

r 

SpaceWire 
Node 

Figure 7-2: Diagram of Bridge connecting SpaceWire and WiFi. 

SpaceWire is a high-bandwidth and fast switching protocol in which link con nec ti on , as we ll 

as en'or recovery, takes 20 f-ls. The protocol is flexible in terms of network topology: there is 

no limitation in the packet size, and the data rate is onl y constrained by the recei ver' buffer 

size. In theory for SpaceWire packets larger than 8 bytes the flow mechani m could introdu ce 

bott leneck before a packet ends. The ex tent to which the bott leneck affec ts the links betwee n 

nodes is dependent of the packet size. 
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In contrast, the IEEE 802.11 standard is a contention-based network pro tocol and. depending 

on the version (a,b,g or n) , the bandwidth is limited to 20 or 40 MHz. Packet size is limited to 

23 ] 0 bytes and] the link setup between two links in IEEE 802.11 nodes takes a minimum of 

250 fl s to start. In that time a SpaceWire node could send in excess of 200 data charac ters , 

when operating at 20 MHz. Figure 7-3 shows the typical set-up time for both standard s. 

IEEE802.11 a 

20llS 250llS 

Figure 7-3: Link set-up time for SpaceWire and IEEES02.11. 

It was found that when both IEEE802.11 and Space Wire IP cores are operating at 20 MHz, 

the SpaceWire router 's maximum data rate is set at 20 Mbps and the bridge is able to gather 

SpaceWire characters with a latency of approximately 1.6 Ils out of the router. This requires 

considerable effort to align the router response to the wireless transceiver request. 

Furthermore for data rates up to 20 Mbps, the connection set up between WiFi nodes 

represent a bottleneck for spaceWire links, because buffering is required as discussed above. 

Similarly, the same 20 MHz clock frequency limits the router's ab ility to process 

IEEE802.11 data at rates higher than 20 Mbps and this is in spite of the connection delay 

introduced by the transceiver contention mechanism. In order to fully support the fu ll data 

rate of the IEEE802.11 high data rate standards the SpaceWire core needs to operate at a 

higher clock frequency. The bridge will therefore be forced to operate with two different 

clock domains, one for interfacing with the SpaceWire router and another one to support 

operations in relations to the WiFi transceiver. Consequently the increase in clock frequenc y 

leads to increasing the bridge's power requirements of the bridge. 

B) Data Encapsulation 

Data coming from the SpaceWire router are presented to the bridge in groups of 9 bits, in 

which the MSB represents the control bit, a '0 ' is used for data charac ters and a ' 1' is used 

fo r end of packet (EOP) or error end of packet (EEP) as shown in fi gure 7-4, where X 

represents data and C denotes the control bit. In contras t, the IEEE802 . 1 I req uires th e M C 
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layer to process the incoming data from th e upper layers one byte at a time , thi 

the CRC is performed on a byte by byte basis. 

x: X X X X X 

Figure 7-4: SpaceWire control character. 

because 

A bridge that manages the transfer between the router and the transceiver needs a mechani sm 

to convert the 9-bits of SpaceWire characters into 8-bits of data to the MAC layer. It should 

also be able to support conversion the other way round, which consists of taki ng 8-bits da ta 

from the Mac layer and transforming them into 9-bits charac ters for the router. The 

conversion process could be achieved in two ways: 

1. Input/output contiguous SpaceWire characters to/from the MAC layer 

2. Devise a strategy to remove the control bit when moving data characters to the 

wireless transceiver MAC layer and when in receive mode, a control bit is appended 

to the data bytes received by the wireless transceiver to form SpaceWire charac ters. 

The first method is concerned with preserving integrity of data, and looks at encapsul ating 

the SpaceWire characters into a WiFi packet/frame as it can be seen in figure 7-5. For 

illustration purposes in the Figure 7-5 the MAC header is set to the same length as a 

SpaceWire character, however in reality the M AC header is 48-bits long. In practi ce, the 

implementation would be of a minimal complexity and requires a counter to ensure th at the 

total amount of characters is a multiple of 8. Given that a WiFi packet has a maximum size of 

2346 bytes, the size of SpaceWire packets is therefore required to be li mi ted to fit in a WiFi 

packet. 

The encapsul ating method presents a major predicament in the mann er of addres ing the 

MAC frame. The WiFi M AC layer interprets the first lending 6 bytes of a data packet as the 

MAC address , if the des tination MAC address is incorporated in the SpaceWire packet a. 

data, the insertion of the contro l bit makes it impossib le for the transceiver to decode the 

destinati on address . The onl y solution is to provide a control mod ul e in the transceiver 

capable of removing the control bits inserted in the header in the WiFi packet's header. On 
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the other hand , if the header packet is treated separately, so as to en sure that the recei\' in g 

WiFi node decodes the MAC address correctly, the data in the Space Wire packet can be 

encapsulated in a WiFi frame . This solution may be desirable for the tran fer of short 

SpaceWire packets over the WiFi communication links In particul ar this approach is suitable 

for short messages such as telemetry and telecommand data as well as the aggregation of 

small SpaceWire small packets destined to mUltiple nodes connected to the receiving router. 

MAC header 

_ L 
.. 

Data packet 

II 
.\ ~ 

SpaceWire 
Router 

\/ 

WiFi Transceiver 

Encapsulated SpaceWire Packet 

CRC 

Figure 7-5: Encapsulation of a Space Wire Packet into IEEES02.11 frame with the control character 
inserted in the MAC header. 

The second method takes advantage of the fac t th at SpaceWire characters with '0' a MSB 

represent data and only a SpaceWire packet with a size li mited to the WiFi specifi cati ons can 

be transported on WiFi networks. Prov ided the SpaceWire packet size is fi xed. when data i" 

to be sent form the router to the transceiver, the bridge is just required to strip the charac ter o f 
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its MS B to be handled by the MAC layer transmitter as shown in Figure 7-6. And when a 

packet is received, the bridge j ust needs to append a '0 ' to incomin g bytes from the M C 

layer to the router. Since the packet size is defined, the bridge can be aided by a counter to re

assemble the SpaceWire packet. Once the counter reaches the packet size, then it append 

the packet with an EOP for correctly decoded WiFi frames, otherwise it add an EEP to the 

packet for erroneous frames . 

D ata packet 

SpaceWire 
Router 

Control bit 
re moval 

WiFi Transceiver 

SpaceWire Da ta 

Figure 7-6: Encapsulation of SpaceWlre Data Packet in IEEES02.11 frame with the control character 
removed. 

The second method is most suited for transfer of data with length superi or to the max imum 

size of a WiFi packet. Note that the removal of the data control bit all ows the addi ti on of data 

bits amounting to the size of the W iFi frame. For example, a WiFi frame of 1500 byte can 

carry 1500 SpaceWire data characters and 1500 extra bits. The aggrega ti on of small pacKet s 

is sti ll va li d when usi ng the second method. 
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Assuming multi-casting or broadcasting is implemented in the WiFi network, the two 

methods are equally capable of reaching the destination nodes. In that sense, broadcast via 

WiFi frames represents a good way of monitoring Space Wire networks and reconfiguring 

SpaceWire routers. 

C) Framing of Space Wire Data and Buffering 

The contention mechanism and the flow control are sources of bottleneck in WiFi 

communications. Assuming a frame is lost or is corrupted the WiFi transmitting node will 

try to resend the packet for a prescribed number of times, as a result a buffer is required for 

the storage of the transmitted frame. Similarly the flow control mechanism in SpaceWire 

causes a bottleneck, This is due to the receiver crediting the full buffer size of 8 bytes. 

In [179], Sheynin et al discuss the issues related to the framing of SpaceWire packets and 

argue that the bottleneck can be alleviated in SpaceWire networks by introducing framing at 

the Data Link layer. This would be at the expense of an increase in buffer size. Additionally 

the buffer size may be dependent to the implementation of other features commonly found in 

data link protocols. However, transmitting SpaceWire packets over WiFi automatically adds 

a practical framing structure to the data. Consequently data emanating from the router are 

still susceptible to the WiFi channel conditions and may therefore be corrupted. 

Assuming the bridge is operating on a spacecraft, the long propagation delay in space is a 

major cause for decreased throughput. This would be further exacerbated by having to 

monitor the router and initiate a data transfer once the SpaceWire link is deemed connected. 

This may not be an advantageous flow control process, as the latency involved in WiFi link 

connections would be in the order of hundreds time higher in comparison to the latency of 

SpaceWire networks. Also, a transmitting SpaceWire node can send erroneous data cross the 

wireless link in case of transient or intermittent faults [180], which would have the same 

effect as the WiFi set-up time and will result in an inefficient use of the ISL. Also channel 

impairments lead to uncorrected data in the transceiver unit, even though the data from the 

SpaceWire unit is sent correctly. Those three issues require a new data transfer strategy 

between two SpaceWire networks using WiFi as gateway. 

The proposed approach is to spoof the end to end SpaceWire connection. The link is instead 

assumed to be connected when a router is ready to send data to another router via the IEEE 

802.11 wireless transceiver. This approach presents some distinctive advantages in the sense 

that the transmission of a WiFi packet of 1500 bytes may have duration in the order of 

milliseconds and if during that period the router is still disconnected, the link can be 
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considered to be down. This is because the automatic link recovery is 20 f..1 s for transient 

faults. Checksum and CRC are recommended for fault detection on SpaceWire links lI80], 

likewise the WiFi Mac layer performs CRC for fault detection. The eRC perfonned by the 

WiFi MAC layer is able to detect failures due to channel impainnent as well as errors in 

Space Wire packets. Thus when the source node receives an ACK frame, channel effects are 

mitigated and the SpaceWire packet is error-free. 

Ensuing from the discussion above is the need for frame buffering to ensure data is delivered 

reliably across the wireless link. Thus data storage should be added in the bridge to aid with 

retransmission when the wireless link corrupts data. 

D) Address Allocation 

The structure of a WiFI frame is shown in Figure 7-7 where Address 1 represents the source 

address, Address 2 denotes the destination address. Each MAC address is unique to each 

device; any frame transmitted by WiFi is received by all nodes in the carrier sensing range of 

the transmitting node. All listening nodes will decode the incoming packet, during the 

RTS/CTS set up only the designated receiver will be decoding the message sent, the others 

will update their NA V with the value indicated by the duration portion of the frame. Note 

that the NAV represents the time during of which the transmitting node reserves the medium. 

Octets: 2 2 6 6 6 2 6 

Address 2 Address 3 Sequence Address 4 
Control 

Figure 7-7: MAC frame format. 

0-2314 2 

The SpaceWire packet format is shown in figure 7-8. The addressing is not well defined 

[175], only the first byte is used to determine the destination node port. The routing of a 

packet across many switches is done by incorporating in the packet's destination address the 

port number of each switch it traverses. Depending on the value of that byte, the packet is 

transported to different ports across a router, whereby 0 is used for devices configuration. For 

values between 1 and 31 the packet will be forwarded to the corresponding physical port, and 

for values from 32 to 255 a look up table will used to route the packet to its correct 

destination. Addresses from 32-255 are referred to logical routing and allow the router to 
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either send packets to a single port or multiple ports This process l·S c 11 d d· . a e group a aptIve 

routing (GAR) and can be used to send aggregated packets to a single port [177]. 

WiFi nodes have unique addresses and operate in half-duplex mode, in constrast SpaceWire 

links, which are full duplex and provide fault-tolerance. The simple fail over alternate path 

illustrated in [175] to allow fast recovery using GAR networks [175] cannot be replicated 

over WiFi links, thus the port, at which the WiFi transceiver is connected to the ro t u er, 

represents a point of failure in a Space Wire network. 

Destination Address 

Cargo/Data 

End of Packet marker 

Figure 7-8: SpaceWire packet format. 

As result of the absence of redundancy in the IEEE802.11 links, any fault at the wireless 

transceiver may affect the performance of a SpaceWire network. In theory, it is possible to 

connect many WiFi transceivers to SpaceWire routers, however, the effect will be an increase 

in complexity and defeats the purpose of using WiFi in the first place. 

The Ethernet nodes have a frame structure is similar to that of the IEEE802.11 standard. Each 

node has a unique 48-bit address to ensure that a packet goes to the correct node on the 

network. The frame fields consist of source address, destination address, packet length, data, 

eRC check over the frame. The mechanism for the translation of address between SpaceWire 

and Ethernet nodes is discussed in [177], Cook and Walker suggested using the devices MAC 

address of Ethernet module to implement Ethernet over SpaceWire in the following manner: 

I) Allocate logical address to each device in the network 

2) Configure a forwarding table to forward the correct address 
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3) Translate the Ethernet MAC address to a logical address 

Furthermore, Cook and Walker of 4-links, another manufacturer of SpaceWire co t mponen s. 

describe the software implementation of the network discovery mechanism in SpaceWire 

plug-and-play networks. And a crucial point is that network discovery can start at any point 

on the network, any device can probe its port and the probing will continue until all the 

switches and nodes are reached. In this work the conversion of 8-bit Space Wire addresses 

into 48-bit MAC addresses is not investigated, it is instead assumed that the software that 

implements the routing table is able to insert the destination MAC address correctly into the 

SpaceWire packet. This approach is taken to facilitate dynamic configuration and to allow a 

high degree of flexibility in the address translation mechanism. 

7.3 System Architecture 

The incorporation of the novel bridge designed to interface the two protocols in the SoC 

platform is presented in this section. The connection to the AMBA bus is discussed too. The 

SoC design provides a new functionality to SpaceWire nodes,which enables the SpaceWire 

to have a frame format across the wireless link. 

7.3.1 System Overview 

In section 8.2 it was shown that the design of a bridge for SpaceWire/ IEEE802.11 translation 

has elucidated two requirements: data storage to allow framing of SpaceWire packets across 

WiFi links and a software application to manage the routing table. Given that the SoC 

presented in chapter 6 has IP cores to support the needs of the bridge, the connection of the 

bridge to the AMBA bus is important. The new SoC equips the SpaceWire IP cores with 

more versatility and the ability to connect to another standard in a technology independent 

manner. 

In the new upgraded SoC platform presented in Figure 7-9, the bridge contains a module that 

is used to convert the SpaceWire format into IEEE802.11 packets. Synchronization is 

included to manage the flow data between the router and the bridge whilst the Gaisler GRLIB 

memory controller provides off-chip access to the SpaceWire router and modules. 

The LEON3 processor, which is used to run software applications also allows the WiFI and 

SpaceWire Cores to communicate to one another via registers. The buffer management and 

storage required to avoid bottlenecks as discussed in section 7.2, which is utilized while the 

wireless transceiver starts up a link, is provided by the off-chip memory. The DMA controller 
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is able to connect AMBA enabled devices to the memory contI"oll er th O . I . I d 
, I I S a 0 In c u e~ the 

bridge. Thus the same function s that DMA provides to the transcei ver are also provided to 

the bridge. The ability to access the core's memory space offers the bridge benefit th at \-vi II 

be discussed later. 

DMA Core 

AHB Master 
Interface 

l- Channel 
Configuration 

Registers 

Reques t 

Ack 

AMRA/AHR 

MAC and 
PHY 

Layers 

AMRA/APR 

Request 

Ack 

Interface 

Synchronisation 
and Data 

Encapsulation 

1 
SpaceWire Network 

SpaceWire Router 

Figure 7-9: Integration of SpaceWire with the IEEES02.11 standard in a SoC design. 

In the proposed design, the bridge must keep the SpaceWire router synchronised with the 

WiFi transceiver. Since the data rate of the OFDM-based IEEE 802 .11 nodes is se t at 6 Mbps 

and the bandwidth is 20 MHz, for ease of implementation , the SpaceWire router is also 

limited to 20 MHz. However the SoC main sys tem, which includes the bus and the processor, 

is clocked at 50 MHz. As a result the SoC has multiple clock domains. 

The IEEE 802.11 wireless transceiver MAC layer ensures that frames are deli ve red error 

free, and adds addressing information to the transmitted frames. It was observed that when 

the data rate is set to 6 Mbps, if a frame is received by the transceiver, the WiFi core 

forwards the 32-bits of data to the bridge at an interval of 100 ns and the SpaceWi re 

destination router ' s buffer is never full. Even at higher data rates, the MAC wou ld be 

forwarding data at the same interval which suggests that the bridge is able to effic ientl y 

transfer data between the router and a wireles s transceiver operatin g at the hi ghes t peed ror 

the IEEE 802.11 a, g , and n standards. 

7.3.2 Remote Memory Access 
The bridge communicates to the processor vIa regi sters wi th the same function .... a .... the 

tran sceivers. Assuming the same off-chip memory is used by the SpaceWire and the Soc. 
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most of RMAP's functions are already in place in the SoC design for the transceiver. Some 

of them come from the IEEE802.11 specifications and other emanate from design constraints. 

The CRC checking in the WiFi transceiver and memory access via the DMA provide the 

SpaceWire IP cores with features that present similarities to RMAP. In particular the 

SpaceWire packets are taken from the nodes write buffer and then a CRC is generated on 

them before they are sent to their destination. The receiver node performs CRC checking to 

ensure that the packet arrived error free in the destination device's memory. 

The time-out in IEEE802.11 is another feature beneficial to Space Wire packet transmission. 

In IEEE802.11 networks an Acknowledgement (ACK) packet is sent to the transmitting node 

when the destination node receives an error-free. If an ACK is not received within a duration 

specified by the transceiver's acknowledgement time, the transmitting node will assume that 

an error or a collision occurred. Unlike IEEE802.11 RMAP has no timeout mechanism 

implemented for acknowledgement, therefore timeout can only be specified by user 

applications. The ACK timeout in WiFi enables SpaceWire packets with acknowledgment 

timeout at a lower level than the user applications, thus this represents decrease in latency. 

It can be argued that only the IEEE802.11 b standard provides header error checking (HEC), 

which is a specification in RMAP. However the PLCP header in the WiFI frame has reserved 

16 bits that could be used for HEC. 

The bridge transfers data from SpaceWire nodes to the off-chip memory via the DMA. When 

an error is detected, the MAC layer informs the bridge, which in turns appends an EEP to the 

Space Wire packets. As opposed to most RMAP implementations, the CRC checking is done 

at a lower level than the application layer. This in tum reduces the latency and the complexity 

involved in implementing direct memory access into memory-mapped SpaceWire nodes. 

Note that the CRC in IEEE802.11 is longer than the one used in RMAP, thus the WiFi CRC 

operation has better correction capability than with RMAP, however this is at the expense of 

larger overhead. 

The addition of the bridge in the SoC also enables other modules connected to the AHB bus 

and the DMAC to access SpaceWire networks. This is aimed at meeting the goal of providing 

a re-usable SoC solution for many future missions that will require ISL. 
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7.4 Simulations 

The bridges interfaces are shown in Figure 7-10, in which the connection to the AHB is done 

with both AHB_Slave_input and AHB_Slave_output signals. The data emanating from the 

SpaceWire router is called dataJrom_router, and the data forward to the router is called 

data_to_router. Additional signals are added to control data flow between the bridge and the 

router. Router _send_buffer _empty signal is used to check output data is stored in the buffer, 

and the router _receiver_buffer _notJull is used to check if the data can be sent to the router. 

Reset 

Clk Data to r - - outer[8-0] 

Data from router[8-0] 
Write to Router - -

r_empty 
Wi Fi/SpaceWire Read Rou 

Router send buffe 
ter 

Bridge -

er not full AHB Sia - -Router receive buff ve_ouput 

AHB Sia ve_ouput DMA RE Q -

DMA ACK -

Figure 7-10: Bridge core interfaces. 

Permission to send data to the router is achieved by asserting write_to_router, and the 

retrieval of data from the router requires asserting the read_router signal. 

The DMA controller is called through DMA_REQ, and once the transaction is finished the 

DMA controller asserts the DMA_ACK signal. 
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7.4.1 Testbed 

The bridge is attached to the AMBA AHB bus as a slave; this enables communication 

between the bridge and the rest of the cores on the SoC to communicate in a transparent 

manner in Figure 7-9. 

The DMA is designed with the flexibility of allowing the off-chip memory access to be either 

hard-coded or set in a C program. For this implementation the WiFi and the bridge interact 

with the software. It was decided to initiate a data transfer between the cores via a C program 

as shown Figure 7-10. The hardware was tested by sending data from the SpaceWire router to 

WiFi transceiver, the transfer process can de described as follows: 

1) The software application stores the data to be sent in the bridge's off-chip memory 

space. The memory's start address, the bridge's address and the size of data are all 

used for the configuration of the DMA. 

2) The loop-back data from the router is stored in the bridge memory space and the 

software application monitors the bridge's to "data_ready" f;lag in the satus register 

signal data to be sent to the transceiver. Again the software application configures the 

DMA and initiates a data transfer from the bridge to the transceiver's memory via the 

DMA. 

3) The software instructs the wireless transceiver to send the data to the air air interface. 

4) The software monitors the WiFi status register for the completion of the frame 

transfer 

The testing consisted of transfering data between the memory and the bridge, the Modelsim 

simulation package was used to verify the design performance. In Figure 7-12 the simulation 

shows the timing diagram of the DMA configuration via software, the APB address 

Ox80000C80 is the register that selects the DMA channel for the bridge. The two successive 

assertions of the HWrite, configure the source address and the destination address. Once the 

DMA is configured, the bridge receives data via the FFFCOOOO register. Just like in the 

simulation in section section 6.8, the data length is set to 1500 bytes. 

At a data rate of 22 Mbps, it takes the router 613 ).ls to loopback the data to the bridge. And 

once the bridge's buffer is full with data emanating from the router, the value OxOOOOOOO 1 is 

set to the FFFC0004 register to indicate to the processor that data is ready for transmission. 

The DMA is then configured for transfer between two cores as shown in Figure 7-13. Note 

that the DMA increase source address option, which increments the address of the sourc~ 

179 



Chapter 7. Integration of SpaceWire Protocol with IEEE802.11 

address when fetching the data stored in memory is disabled Th' S C h ' , IS 0 as only a smgle 

memory address to store data. It can also be seen that the data I'S tr f d d' I ans erre lrect y from the 

bridge to the transceiver. 
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I Store data in bridge memory I 
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Figure 7-11 : Testbed flow chart. 

It was found that the bridge can only accomplish full-duplex if two different buffers are used, 

for i.e start a data transmission to the router while receiving data from the AMBA bus, This 

can only be accomplish if the a second buffer is added for bi-directional communication-

AMBA to bridge - and bridge to router. 

The final was synthesized in Xilinx 10.1 and it was found that the SoC has an area occupancy 

of 105 %, as a result another FPGA is required for the implementation of this design, 
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Figure 7-12: DMA configuration for data transfer from memory to Bridge. 
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Figure 7-13: DMA configuration and data transfer from bridge to WiFi core. 
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7.5 Conclusion 

This chapter discusses the translation process between the SpaceWire and IEEE802.11 

standards. It was found that, with the exception of the IEEE802.11 broadcasting capabilities, 

the two standards share similarities in the management of data flow. This was exploited to 

provide a frame-like structure to SpaceWire packets. The translation mechanism is divided 

into three categories: encapsulation, synchronization and addressing. Only the addressing was 

not investigated. 

To perform the conversion between the two protocols a novel bridge is integrated in the SoC 

described in chapter 6. The bridge enables SpaceWire nodes to read/write in the memory of 

the SoC IP cores. When coupled with the wireless transceiver, the bridge provides a low

level remote access memory, this presents similarities with a SpaceWire protocol-RMAP

used to configure nodes. 

The resulting bridge enables communication between subsystems and could potentially allow 

access to subsystems, and Space Wire network, in other spacecraft. 
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Chapter 8 

Conclusion 

This chapter reviews the work completed for the thesis. Novelty claims related to the 

realization of ISL based on wireless terrestrial networks technologies are discussed. A novel 

communication platform is proposed and prototyped. Its extension with a state-of-the-art on

board data transmission protocol is also investigated and the findings are discussed. 

The desire to design a communication platform for ISL spans from the trend towards the 

exploitation of terrestrial COTS devices in space communication. This is epitomized by the 

recent deployment of the internet to offer global communication infrastructure. This allows 

cheaper and faster development of space missions, and the envisioning of new areas of 

exploration. However the new application domains are increasing the computation and 

communication requirements. While COTS are increasing in complexity and can therefore 

meet computation needs, they are still vulnerable to radiation in the harsh space environment. 

The hardware solutions capable of tolerating radiation are small in terms of gate count and 

are not reconfigurable. As a result, data handling units with fault-tolerance capabilities are 

increasingly being used in space to detect faults. In parallel with the computation units, high 

data rate communication links based on terrestrial technologies are proposed to keep 

development cost low. 

The realisation on the ISL based on the IEEE802.11 standard is conditioned to its 

implementation on an adaptive hardware capable of reconfiguring the transceiver, and the 

speed of processing achievable by the on-board computing data computing unit. This makes 

the FPGA an ideal choice for the development for the development of low a cost 

communication platform. Although both of the IEEE802.11 layers can be executed in 

reconfigurable hardware, to make efficient use of the MAC layer, a more specialised coarse

grained architecture within the FPGA is required. Current FPGAs incorporates this type of 

the architecture in their fabric. However the design of the MAC layer on such architecture is 

still an on-going process, an intermediate solution consists of employing a reconfigurable 

processor mapped on a FPGA to meet the MAC requirements. 

Paramount to the development of a wireless transceiver for space, is the determination of the 

antenna performance for unscheduled communication. This is because the operation of 

IEEE802.11 in space requires a smart antenna to extend its range. When directional antenna 
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are used, it is always been assumed spacecraft establishing ISL know each other position and 

orientation. However it was shown that this assumption is no longer valid when the 

spacecraft are in a network based on terrestrial technologies. A mathematical model was 

developed to determine the target satellite orientation with respect to its motion. It was found 

that a minimum beamwidth is required to ensure communication between spacecraft in the 

context of unscheduled communication. This is expected in terrestrial communications, in 

particular an omni-directional antenna is used for ad-hoc networks, however in space a more 

focused antenna beam is usually applied towards the received satellites. This newly found 

relation is important in establishing antenna range, specifically the maximum value of off

angle determined also sets the maximum distance that can be covered by an antenna in ISL. 

This is counter-intuitive, because the range extension is dependent on the antenna ability to 

narrow its beam. 

In order to increase the computation speed of the IEEE802.lla physical layer, a memory 

optimisation technique is used: the mapping of variable to memory. This method was shown 

to be suited for low complexity design, if it is used instead to store data from the 

computational intensive modules such as the IFFF and Viterbi decoder, it may utilise all the 

hardware resources. The implementation yielding best results in terms of area occupancy and 

resources utilization was found to be the combination of register binding, for blocks 

operating a bit-level receive, and RAMs for blocks operating word-level data (registers). The 

effect on the area occupancy is negligible. 

Clock gating and differentiation of autocorrelation functions are employed to increase the 

robustness of timing synchronisation in ODFM receivers to improve their performamce in 

multi-path channels and noisy environments when implemented on an FPGAs. Two new 

designs are explored, one uses zero crossing at the output of the differentiator and the other 

applies a least squares fit at the output of the differentiator. The two designs show 

comparable performance in terms of mean timing error estimation. This synchroniser has an 

average timing error of 4 samples with respect to the EbINo and does not rely on the 

knowledge of the channel to provide an estimate, in this context it suitable for new 

environment with unknown channel conditions. 

The physical layer IP cores were complemented with a MAC layer design to form new a 

wireless transceiver. It was found that arbitration is required to allow synchronous 

communication between the layers. The developed wireless transceiver uses a handshake 

mechanism in order to reduce complexity in the data exchange between the MAC and 
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physical layers. Additionally the transceiver is connected to the AMBA bus to provide a SoC 

for future satellites. The new communication platform has an area occupancy of 99 C!c on a 

Xilinx XC5VLX50-lFG 1153 FPGA, and consumes 1.35 W. Therefore optimisation methods 

for power consumption need to be explored. Furthermore, due to the large area occupancy, a 

flight ready SoC can only be implemented if a larger device capable of accommodating the 

standard radiation mitigation is used. 

In order to provide fault-tolerance to subsystems across different spacecraft, the similarities 

between IEEE802.11 and SpaceWire are exploited to design a translation device-referred to 

bridge. It is in the integration of these two protocols in a SoC that the real benefit of the 

IEEE802.11/SpaceWire communication platform can be seen, in principle any IP core can 

call the wireless transceiver and initiate communication. This enables Space Wire devices to 

access other nodes on different network across a wireless link. The new SoC provides node 

management at a low level, and therefore a lower latency than software applications. 

8. 1 Contributions of Thesis 

The work undertaken in this thesis contributed can be divided into the following three areas: 

I. The determination of the maximum antenna beam width required to form ISL based 

on the IEEE802.11 a. In particular, it was shown through Matlab simulations that this 

is the most important factor in the determination of the range, and therefore goes 

against current assumptions promoting the use of directional antenna with a narrow 

beamwidth to increase the communication range. 

2. The design of a IEEE802.11a SoC for space-based applications. This is the first 

implementation housing both layers of the IEEE802.11 standard on the same FPGA 

and it is connected to the LEON-3 processor. Through its connection with the 

AMBA bus, it allows software applications and flight proven cores on the SoC to 

request transmission across the wireless link. 

3. The design of a bridge for IEEE802.1l1SpaceWire communication. This enables the 

concept of fault-tolerance for subsystems within a spacecraft or across a network 

spacecraft. The design tradeoff required for the implementation of the IEEE802.11 

on FPGA was investigated. 

4. The enablement of frame- structure to Spacewire packets represents an evolution in 

the Standard applications. 
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8.2 Future Work 

Orbit perturbations were not included in the simulations with regard to the pointing deviation 

in chapter 4, it would also be interesting to design an antenna with higher gain than the 

generic one proposed in this thesis. The analysis should also include signal interference from 

other antennas. Since the SoC uses OFDM for the ISL physical layer, the impact of multipath 

due to other spacecraft as well as the ionosphere should also be investigated. The study of 

multipath signals will greatly help with the determination of the optimal beamwidth for the 

design of the antenna. 

The MAC layer could be implemented as an RFU, specifically the timing requirements 

should be reconfigurable in hardware. Given that the distance varies with time in space, the 

DIPS could be reconfigured to take into account the communication range. A look up table 

could be used to adjust the DIPS, each entry should be carefully considered so that the DIFS 

have minimal impact on the throughput. For example for distance between 10 and 20 km, the 

20 km might be a good option. ISL with multiple wireless protocols has been proposed by 

Sidibeh and VI adimirov a, this work could be extended by implementing some of the 

protocols proposed on the same reconfigurable hardware. this would be akin to the work 

proposed by Nabi [l05], except that his proposition does not use reconfigurable hardware. 

Because of the orbital dynamics, the implementations of RFU s that allows the 

communications platform to adapt as a function of channel conditions or communication 

range would be highly beneficial to ISLs. 

To deploy the SoC in space a larger chip is required, since radiation hardening needs to be 

carried out on the FPGA. Given the large area occupied by the IEEE802.11 transceiver SoC 

on a FPGA, area optimisation techniques can be considered to reduce the size of the design. 

for radiation mitigation purposes, it is important for the design to occupy approximately one 

third of FGP A hardware resources. 

The addressing was not investigated for the SpaceWire over Wifi packets, the allocation of 

address should be the next step forward. One avenue worth considering is to give the router a 

MAC address as it is the gateway to the network, and each node would be able to advertise 

its port with Plug-and-Play, this would need the help of software to manage the routing table. 
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Appendix A : IEEEB02.11a Transmitter Sub-blocks 

The IEEE802.11 Physical layer's data rate is adaptive, the transmission rate is determined 

according to the link's condition. The data rate, which varies from 6 Mbps to 24 Mbps, is 

achieved by selecting the appropriate Modulation scheme and puncturing pattern used with 

the convolutional code. The parameters that are that influence the data rate are shown in 

Table A-I. For example transmission at 6 Mbps is accomplished by choosing BPSK and a 1/2 

rate convolutional encoder. in practical terms this means the binary information will 

forwarded to the to convolutional encoder in groups of 24 bits, and the resulting coded 

message will consist of groups of 48 bits. Thus the 6 Mps transmission rate generate OFDM 

symbols that are 48 bits long. Of which 24 bits are added for redundancy purposes. 

Table A-I: Rate dependent parameters. 

Modulation Coding Bit rate Coded bits Coded Bits per Data bits per 
Rate (Mbps) per sub- OFDM symbol OFDM symbol 

carner (NCBPS) 

BPSK V2 6 I 48 24 
BPSK % 9 I 48 36 
QPSK V2 12 2 96 48 
QPSK % 18 2 96 72 
QAM-16 V2 24 4 192 96 
QAM-16 % 36 4 192 144 
QAM-64 2/3 48 6 288 192 
QAM-64 % 54 6 288 216 

A. 1 Convolutional Encoder 
Convolutional coding is base on the idea to adding redundancy of a sequence of bits by 

spreading the sequence both in time and space. The sequence of bits is convolved with 

known polynomials. For each bit, the encoder generates a number bits corresponding to the 

. .. b·· all 0 gh space number of polynomials used. The benefIt of spreadmg the mput Its IS to owen u 

. . ·d a means for error correction. for errors to occur; as a result the transmISSIOn system proVI es 
. .. 11 d Forward Error When the error correcting mechanism is placed at the transmItter, It IS ca e 

Correction (FEC). 
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The encoder is implemented by using an m bit shift register with XOR gate t I h s 0 convo ute t e 

input bit with the n polynomials. The encoder is in fact as a Mealy state machine, with 2m 

states and a constraint length defined by k=m+ I. The encoder is said to have a code of l/n, 

where is n the number of polynomials employed and the number of outputs. In figure 3, the 

encoder recommended by the IEEE802.II standard is shown with a code rate V2, a constraint 

length k=7 and 64 states. The standard also recommend generating the polynomial G 1 = 

(133)8 and G2= (171)8, In order to set the encoder to its initial state, it is also recommended 

to append the input data with 6 zeros and "flush" the encoder. 

}---_____ • Output Data B 

Figure A-I: Convolutional encoder with k= 7, code rate 1/2., 

A.2 Data Interleaving 
The data interleaving block is used for improvement of the error correction block. The 

interleaver's block size, which is of variable length, depends on the number of bits in an 

OFDM symbol. Interleaving operates at the OFDM symbol level and is a two permutation 

steps process. The coded bits from the convolutional encoder are firstly permutated by the 

following equation: 

i = (NCBPSI16)(k mod 16) + floor(k/16), k=O,I, ... , NCBPS-l (A-I) 

Where k is the index of the coded bits, i is the position of the coded bits in the interlaver's 

data matrix row, NCBPS is in the number of coded bits per OFDM symbol. The function 

floor (.) denotes here the largest integer not exceeding the parameter, and mod is the integer 

modulo operator. 

The resulting effect is to decrease the likelihood of receiving the encoding incorrectly by 

reallocating adjacent bits to non-adjacent channels with a regular pattern. For example if 
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BPSK I used with the code rate Y2 (2 output for each input) is used the I'nte 1 'II , r eaver WI ensure 

that each bit from encoded pair is mapped in the data matrix three columsn apart, In OFDM 

this means that adjacent bits are mapped into non-adjacent subcarriers, 

The second permutation is defined by the rule: 

j = s * floor(ils) + (i + NCBPS - floor(16*ilNCBPS)) mod s i=O,I"." NCBPS-I (A-2) 

Where j is the final position of the coded bits in the interlaver's data matrix, s is determined 

by the number of coded bits per sub-carrier,( NBPSC) and the following equation: 

s = max(NBPSC/2, 1) (A-3) 

The second permutation shuffles the coded bits along the data matrix column, as a result 

coded bits are shifted in a regular pattern in a constellation map, 

A.3 Digital Modulation 

As shown in Table A-I, the transmission rate is dependant on the digital modulation scheme, 

The role of digital modulation is to map binary information into complex signals, The 

modulator converts a set of bits to convert into complex numbers representing constellation 

points. In Figure A-2, the Quadrature Phase Shift Keying (QPSK) constellation points show 

how the binary information is mapped and represented in the complex plan. The horizontal 

axis is often referred to the In-phase (I) component and the vertical axis is called the 

Quadrature (Q) component. In communication systems, I and Q components are often 

sinusoidal carriers that are orthogonal with respect to one another. The great advantage of 

this method is that the carrier can modulate data independently, then I and Q components are 

added together to be sent over the physical medium, 

IEEES02.11 recommends using a normalization factor KMOD to modulated signals to 

achieve the same average power for all the modulation schemes. The resulting normalised 

complex vector can be defined by: 

x = (I + jQ) * K MOD 
(A-4) 

Where x represents the modulated signal, jQ is the imaginary part of the complex vector, 

The KMOD value corresponding to the modulation scheme employed is shown in Table t\-2 
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Figure A-2: QPSK constellation mapping. 
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Table A-2: Normalizing factor according to the digital modulation. 

Modulation KMOD 
BPSK 1 
QPSK 1/...j2 
QAM-16 1/...j1O 
QAM-64 1/...j42 

A.4 Mapping 

The mapper aggregates groups of 64 complex numbers into a matrix for each OFDM symbol. 

48 of the complex numbers are generated by the modulator, 4 pilots retrieved from pseudo 

random binary sequence and the rest is filled null vectors. The pilots are inserted to assist the 

receiver with frame detection, frequency offset and phase noise. Each complex numbers is 

later used III the OFDM modulation as subcarrier or frequency tone [2]. 
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Appendix B . MAC layer sub-blocks 

Figure B-1 represents the flow of infonnation between the sub-bl h . ocs t at encapsulated m the 

the MAC layer IP core. The diagram shows Tx state and Rx t t h' " s a e mac mes depeclted m 

Figure 6-3 and 6-4. In order for the MAC transmitter to initate dat t " . . a ransmlSSlOn, It mom tors 

the extracted infonnation gathered through the MAC receiver whl'l 't' h e mom otmg t e channel. 

MAC Transmitter 

·1 
bckofftimer ~ ·1 Rangen 

1 

I ColICNT 1 1 
rl TXFSM 1-

r TXMUX l 1 -I 
Common blocks 

"-__ I DIFStimer 
1 I CRC 

I 

1 
SIFSTIMER 

I 

MAC Reciver 

--~~ RxProc I ·1 
addrExtract 

I 
" 

Figure B-1: MAC layer Accelerator sub-blocks. 

The low level architecture and structure of the MAC transmitter are shown in Figure B-2, 

and that of the the MAC receiver blocks are shown in figure B-3. 

The VHDL modelling that ensues from the transmit flow chart consists of the following 

blocks: 

• CRC: is a 32-bit CRC register taken from the public domain easics.com, the block 

takes the message in chunks of 1 byte and computes the corresponding CRe. The 

initial value is set to FFFFFFFF, and each byte is XORed with value stored in the 

register the final CRC value is XORED with the initial value. Note that the same 

block is used by the receiver 
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Txlencnt: this blocks count the amount of bytes sent and if the frame is bigger that the 

prescribed limit the transmission is aborted. 

TxMux: this block is used to multiplex between the MAC data, the TXVECTOR and 

the CRC. 

TXFSM: a state machine is used to perform the CSMA ICA contention method. The 

transmitter can only send data if requested and the NA V is disabled. 

• Backofftimer: access to the transmission channel is granted after the timeout of the 

back off mechanism 

• DIPStimer; the station needs to wait a DIPS before decreasing the backoff, this block 

send a signal to inform transmit state machinethat the DIPS timer has expired 

• SIPStimer: the control packets are required to be computed and sent after a SIFS, this 

block inform signals the end of the SIPS period 

• Collcnt: this block is used to count the amount of collision, it increases when the 

receivers detects a collision or when a an ACK timeout occurs 

• Randgen: this block generates random form integer values 0 to 2x-I, where x is the 

modulo 2 of the contention window size. given the contention window starts at 7, x 

was chosen to 3. 

The VHDL receiver blocks are as follows: 

• RxCRC_check: This block computes the CRC on imcomind data from the physical 

layer, it takes operates on I byte at a time. Once the whole processed it asserts a 

CRC_done signal if no error is detected otherwise if an error occurred in the 

transmission of data the CRCerror signal is asserted. 

• 

• 

RXFSM: a state machine is used to decode the packet type and instruct the transmit of 

packet transmission if it is necessary 

addrExtract: check the provenance of the packet ,and stores until the address for the 

transmitter to access it 
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Appendix 0 . WiFi Core Configuration 

S1:ruc t Chan nel 

J { vola,ile void * sa r; II OMA c h anne l sour ce address DMA Software configuration modules 
v olCi'ti l e v o i d " da r; /1 DMA c h annel destina"tion address 
volat il e void c ons l: - cs a r; II DMA c h anne l current source address 
vol a t. ~l e voi9 c o n5 ~ " cdar; /1 DMA c h anne l cur rent. de5tin,H.ion addr ess 
v ola1: ,le uns lgned :nt tc~ ; II OMA c h a n ne l terminate count limit 
v olati le c a n st: un s lgned lnt 1:C ; II DMA channel terminate c ount 
v ola1:i l e uns igned int mode; /1 OMA c ha n ne l mode 

/; 'cion r e g s 

II volatile c anst uns igne d int sta'te;// OMA c hannel state 
I v o l aTile uns igned int cmd; /1 OMA channel soft:ware cDrmI-3Ind 

II } ; 
}; 

S1:TUC't DMARegs 
J { 

}; 

v olaTile ccns t. un s igned inl: conf; 
v o l aTi l e c anst unsigned int in'tstaTe ; 

~~~:~~~~ ~~~~~e~h!~~e~a~~~~~el [31 ]; 
,/ DMA APB address 

v olaTile s ~rUCL DMARegs * e o nst dmaregs = ( s true t DMARegs ~ con st )O~80000 c OO ; 

J { 01d eonfigureDMA(in~ channel , void * sar . v oid * da r. unsigned int t c l , unsigned int mode ) 

dmaregS- »Channel~chann e l] . sa r = s ar ; 
dmaregs->channel c hann e l]. dar "'" dar ; 
dmaregs->c hanne l c hann e l] . tel = Tc l; 
dmaregs-»channe l [ c hanne l]. c md = INITI ALISE ; 
dm a r egs->cha nn e l[c h annel ].rnod e = mode ; 

souestO 

- { 

( 
I 
I 

SoC Software API 

volatile unsigned "const mem1- (int ") Ox41000000 ;11 off -chip memory address 

volatile unsi gned int "statusJeg - (int ") Oxfffb0004 ; II tr ansceiver status register 

volatile unsigned int "controLreg - (int ") Oxfffb0008 ; II regsiter for software request 

volatile unsigned int "wi fi start - (int *) Oxfff bOOOO; II register to collect data to transmit over the wireless link 
i nt count; 
int z; 
int code[l75 ] ; 
const i nt burst - Ox04 ; 

volatil e int "codeaddr = (int ") Ox41000000 ; 

II sendingg a 376 bytes ..ni ch are equi valent to 1504 bytes (equivalent to 1 
i for (count -3; count < 376 ; count ++ ) 

{ 
code [count ]- count; 

~ode ;[O ] ~ (int ) oxcd;l ldestination 48-bit MAC address =;> first 32 bits 
code[l ] - (int ) OxOOOO;11 last 16 bi ts and zeros appended . 
code [2] = (int ) OxOOOO ;11 

for (z - 0; z < 376 ; ++z ) { 
*codeaddr = code[z]; 
' codeaddr++; 

codeaddr mem1; II store the generated data in memory 
' statusJeg = (int ) OxO ; II reset the status register 
"wifistart = (int )Ox1 ; II test data to transceiver 

conf igureDMA(O, (void') Ox41000000 , (void') OxfffbOOOO , 376 , 
i DISABLE_ON_EOP I DI SABLE_OO C I BLOCI(jIODE I Dlj~RE~EN I I NCSRCADDR I SIZU IORD I bur st); 

' contr olJeg = (int ) 0x11 ; 

whi le ("statusJeg&&O xlO ==O ) II waiting until the trancei ver sets its t rami ner ouSt f ag 
: {} 
" controlJeg = (int ) OxOO; II and cl ears its set dat a sisable the t ras mitten 

Figure D-l: API for data transmission with the wireless transceiver. 
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Figure D-2: Verification of hardware registration with GRrnon. 

DMA core AMBNAHB 
and APB Plug-and

Play registration 

WFI core AMBNAHB 
Plug-and-Play 

registration 
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Appendix E · Synchroniser M-files 

cl ear all; 
syncln1 = zeros(64,1); 
syncln1(1,1) = 1; 
syncln2 = zeros(64,1); 
syncln2(1,1) = 1; 

seed_var_end=5000; 
% seed_var_end=5000; 
snr_range=20; 

%%%%%%%error arrays initialisation 
mean_error_sync1=zeros(1,snr_range); 
mean_error_sync2=zeros(1,snr_range); 
mean_error_williams=zeros(1,snr_range); 
mean_error_xcorrelator=zeros(1,snr_range); 
prob_error_sync1=zeros(1,snr_range); 
prob_error_sync2=zeros(1,snr_range); 
prob_error_williams=zeros(1,snr_range); 
prob_error_xcorrelator=zeros(1,snr_range); 
std_dev_sync1=zeros(1,snr_range); 
std_dev_sync2=zeros(1,snr_range); 
std_dev_williams=zeros(1,snr_range); 
std_dev_xcorrelator=zeros(1,snr_range); 
std_dev_error_sync1=zeros(seed_var_end,snr_range); 
std_dev_error_sync2=zeros(seed_var_end,snr_range); 
std_dev_error_williams=zeros(seed_var_end,snr_range); 
std_dev_error_xcorrelator=zeros(seed_var_end,snr_range); 

%Preamble setting 
%shortseq= sqrt(13/6)*[ 0 0 1+j 0 0 0 -1-j 0 0 0 1+j 0 0 0 -1-j 0 0 0 -1-j 
o 0 0 1+j 0 0 0 0 0 0 0 -1-j 0 0 0 -1-j 0 0 0 1+j 0 0 0 1+j 0 0 0 1+j 0 0 
o 1+j 0 0]; 
shortseq= sqrt(13/6)*[ 0 0 1+j 0 0 0 -1-j 0 0 0 1+j 0 0 0 -1-j 0 0 0 -1-j 
o 0 0 1+j 0 0 0 0 0 0 0 -1-j 0 0 0 -1-j 0 0 0 1+j 0 0 0 1+j 0 0 0 1+j 0 0 
o 1+j 0 0]; 
shortseq_mapping=[O shortseq(27) 0 0 0 0 0 shortseq(1:26) shortseq(28:53) 
o 0 0 0 0]*32768; 
shortseq_ifft = ifft(shortseq_mapping); 

shortseq_intime=shortseq_ifft(1:16); 
short_preamble=[shortseq_intime shortseq_intime shortseq_intime 
shortseq_intime shortseq_intime shortseq_intime 

shortseq_intime shortseq_intime shortseq_intime 
shortseq_intime]; 

longseq=[1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 0 1 -
1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 111]; 
longseq_mapping= [ 0 0 0 0 0 0 longseq(28:53) longseq(27) longseq(1:26) 0 
o 0 0 0]*32768; 

longseq_ifft = (ifft(longseq_mapping)); 

long_preamble =[ longseq_ifft(33:64) longseq_ifft longseq_ifft]; 

%%%%% simulations are performed an amount of time prescribed 
%%%% by seee_var_end over an SNR range set from 1 to 20 dB 
%%%% 
for seed_var=1: seed_var_end 

for snr_index = 1:snr_range 
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% 

% script for genertin~ OFDM transmit waveform (loosely based on 
% IEEE 802.11A speciflcations) 
% 

nFFTsize = 64; 
% for each symbol bits a1 to a52 are assigned to subcarrier 
% index [-26 to -1 1 to 26J 

subcarrierIndex = [-26:-1 1:26J; 
nBit = 12000; 
ip = rand(l,nBit) > 0.5; % generating 1'5 and 0'5 
nBitpersymbol = 52; 

nsymbol = ceil (nBit/nBitPersymbol); 

% BPSK modulation 
% bitO --> -1 
% bit1 --> +1 

ipMod = 2*ip - 1; 
ipMod = 32768*[ipMod zeros(l,nBitPersymbol*nsymbol-nBit)J' 
ipMod = reshape(ipMod,nsymbol,nBitPersymbol); , 

st = [J; % empty vector 

for ii = l:nsymbol 

inputiFFT = zeros(l,nFFTSize); 

% assigning bits a1 to a52 to subcarriers [-26 to -1, 1 to 26] 
inputiFFT(subcarrierIndex+nFFTsize/2+1) = ipMod(ii,:); 

% shift subcarriers at indices [-26 to -lJ to fft input 
indices [38 to 63J 

end 

inputiFFT = fftshift(inputiFFT); 

outputiFFT = ifft(inputiFFT,nFFTsize); 

% adding cyclic prefix of 16 samples 
outputiFFT_with_cP = [outputiFFT(49:64) outputiFFT]; 

st = Est outputiFFT_with_cpJ; 

modulated_data= st; 
noise_values= zeros(1,320); 

% snr=2; 
ofd~frames1 = [short_preamble long_preamble modulated_data ]; 
ofd~frames = [short_preamble long_preamble modulated_data 

].*exp(j*2*pi*0.01*(0:18799)); 
x = [noise_values ofdm_frames noise_values]; 
tau = rand(1,15)*100*10A-9;%%%15 paths ~f 100 ns rms spread 
pbd = -20*rand(1,15);%%%average path galn 

chan = ricianchan(50*10A-9,0,4,tau,pbd); 
% chan = ricianchan(50*10A-9,0,4,tau); 

y= filter(chan,x); . 
generated_packet = awgn(y,snr_lndex); 

%%%modulated data 

temp_error_sync1=0; 
temp_error_sync2=0; 

temp_error_williams=O; 
temp_error_xcorrelator=O; 

for i = 1:19440 
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[mysync1~i),mysync2(i),williams_sync(i),xcorrelator(i) ]= 
synchronlzer_full_ofdm_frame_3methods(generated_packet(i):ij; 

if (i== 500) 
if mysync1(i)~=481 

temp_error_sync1=mysync1(i)-481; 

std_dev_error_sync1(seed_var,snr_index)=temp_error_sync1; 

mean_error_sync1(snr7 index)=temp_error_sync1+mean_error_sync1(snr index)' 
lf abs (temp_error_sync1»2 -, 

prob_error_sync1(snr_index)=prob_error_sync1(snr_index)+1' 
end ' 

end 

end 

if mysync2(i)~=511 
if (i== 530) 

temp_error_sync2=mysync2(i)-511; 
if abs (temp_error_sync2»2 

prob_error_sync2(snr_index)=prob_error_sync2(snr_index)+1; 
end 

std_dev_error_sync2(seed_var,snr_index)=temp_error_sync2; 

mean_error_sync2(snr_index)=temp_error_sync2+mean_error_sync2(snr_index); 
end 

end 

if williams_sync(i)~=448 
if i==470 

temp_error_williams=williams_sync(i)-448; 

mean_error_williams(snr_index)=temp_error_williams+mean_error_williams(snr 
_index); 

prob_error_williams(snr_index)=prob_error_williams(snr_index)+1; 
end 

end 
end 

if xcorrelator(i)~=577 
if (i== 600) . 

temp_error_xcorrelator=xcorrelator(l)-577; 

std_dev_error_xcorrelator(seed_var, snr_i ndex)=temp_err or_xcorrelator; 

mean_error_xcorrelator(snr_index)=temp_error_xcorrelator+mean_error_xcorre 
lator(snr_index); 

if abs (temp_error_xcorrelator»2 

prob_error_xcorrelator(snr_index)=prob_error_xcorrelator(snr_index)+1; 
end 

end 
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end 

end 

end %%% of snr iteration 

end %%%% end of synchronisation simulation of length = seed_var_end 

%%%%%calculation of the mean errors 
mean_error_syncl=mean_error_syncl/seed_var_end; 
mean_error_sync2=mean_error_sync2/seed_var_end· 
mean_error_williams=mean_error_williams/seed_v~r_end; 
mean_error_xcorrelator=mean_error_xcorrelator/seed_var_end; 

%%%% calcualtion of probability of error 

prob_error_syncl=prob_error_syncl/seed_var_end; 
prob_error_sync2=prob_error_sync2/seed_var_end; 
prob_error_williams=prob_error_williams/seed_var_end; 
prob_error_xcorrelator=prob_error_xcorrelator/seed_var_end; 

%%%%calculation of standard deviation 
for std_row =l:snr_range 

for std_col = l:seed_var_end 
std_dev_syncl(std_row)= 

std_dev_syncl(std_row)+std_dev_error_syncl(std_col,std_row)A2-
mean_error_syncl(std_row)A2; 

std_dev_sync2(std_row)= 
std_dev_sync2(std_row)+std_dev_error_sync2(std_col,std_row)A2-
mean_error_sync2(std_row)A2; 

std_dev_williams(std_row)= 
std_dev_williams(std_row)+std_dev_error_williams(std_col,std_row)A2-
mean_error_williams(std_row)A2; 

std_dev_xcorrelator(std_row)= 
std_dev_xcorrelator(std_row)+std_dev_error_xcorrelator(std_col,std_row)A2-
mean_error_xcorrelator(std_row)A2; 

end 
end 

std_dev_syncl=sqrt(std_dev_syncl/seed_var_end); 
std_dev_sync2=sqrt(std_dev_sync2/seed_var_end); 
std_dev_williams=sqrt(std_dev_williams/seed_var_end); 
std_dev_xcorrelator=sqrt(std_dev_xcorrelator/seed_var-end); 

%%%%%%%%%%%%%%%%%%%%%%%% 000000000000000000000000 I 

save('mean_error.dat', 'mean_error_syncl', 'mean_error_sync2 , 
'mean_error_williams', 'mean_error_xcorrelator'); 

%%%%%%%mean error calculation 

%%%%probabality of error calculation I 

save ('prob_error.dat ' , 'prob_error_syncl ' , ' prob_error_sync2 , 
'prob_error_williams','prob_error_xcorrelator'); 

% figure(l) 
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% p1ot(wi11iams_sync) 
%%%%%p1ot of the timming error failures probability 

figure(l); 
p1ot(prob_error_syncl, 'b') 
hold on 
p1ot(prob_error_sync2, 'g') 
hold 
p1ot(prob_error_wi11iams, 'r') 
hold 
p1ot(prob_error_xcorre1ator, 'k') 
tit1e('probabi1itiy of timing error vs SNR') 
x1abe1 ('SNR') 
11abe1(:probabi1itY,of timing error') 
h~~dn~}flst derlvatlve', '2nd derivative', 'lsf method', 'cross-corre1ator' ) 

saveas(gcf, 'prob_error.fig') 

figure(2); 
p1ot(mean_error_syncl, 'b') 
hold on 
p1ot(mean_error_sync2, 'g') 
p1ot(mean_error_wi11iams, 'r') 
p1ot(mean_error_xcorre1ator, 'k') 
tit1e('mean timing Error vs SNR') 
x1abe1 ('SNR') 
y1abe1('Mean timing error') 
1egend('lst derivative', '2nd derivative', 'lsf method', 'cross-corre1ator' ) 
hold off 
saveas(gcf, 'mean_error.fig') 

fi gure(3); 
p1ot(std_dev_syncl, 'b') 
hold on 
p1ot(std_dev_sync2, 'g') 
p1ot(std_dev_wi11iams, 'r') 
p1ot(std_dev_xcorre1ator, 'k') 
tit1e('standard deviation of timing error vs SNR') 
x1abe1 ('SNR') 
y1abe1('timimg error standard deviation ') 
1egend('lst derivative', '2nd derivative', 'lsf method', 'cross-corre1ator' ) 
hold off 
saveas(gcf, 'std_error.fig') 

Part 2 

function 
[position_mysincl,position_mysinc2,position_wi11iams_sync,position_xcorrel 
ator ] = ... 

synchronizer_fu11_ofdm_frame_3methods(rxbuf, input_index) 

persistent jmax jmax2 buffer2 counter_index counter_index2 counter_index3 
detected_preamb1e_index buffer_short_preamb1el ... 

buffer_short_preamb1e2 buffer_1ong_preamblel 
buffer_1ong_preamb1e2 Sn Pn In ... 

handle_index pea~index correct_corr buffer_peak-williams 
buffer_peak_jean buffer_pea~jean2... , 

group_pea~wi11iams group_peak-jean group_peak-Jean2 
peak2 temp buffer ... 

- - corrected_long_preamble long_preamble_buffered ... 
deltad de1tad_p1us_l x-lsf y_1sf ~top_lsf··· 
position_wi11iams_sync_temp posltlon_myslnc1-temp . 
position_mysinc2_temp position_x~orrela~or~temp Jmax_derlv2 

jmax-wi11iams counter_index_wi11iams buffer_lndex_wllllams k_temp;% 

if isempty(buffer_short_preamblel) 
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buffer_short_preamble1=zeros(1,32)+j*zeros(1 32)' 
buffer_short_preamble2=zeros(1,31)+j*zeros(1 3i). ' 

% bufp=zeros(1,360)+j*zeros(1,360); " 
%bufp2=zeros(1,359)+j*zeros(1,359); 

input_buffer=zeros(1,64)+j*zeros(1,64); 
detected_preamble_index= zeros(1,128)+j*zeros(1 128)' 
buffer_long_preamble1=zeros(1,128)+j*zeros(1128)' ' 
buffer_long_preamble2=zeros(1,128)+j*zeros(1'128): 
corrected_long_preamble=zeros(1,64)+j*zeros(i 64): 
long_preamble_buffered=zeros(1,64)+j*zeros(164)" 
deltad=O+j*O; , , 
buffer2 = zeros(1,32); 
buffer_peak_williams=zeros(1,32); 
buffer_index_williams=zeros(1,32); 
buffer_peak_jean=zeros(1,160); 
buffer_peak_Jean2=zeros(1,160); 
freq_sync_angle=O; 
sn=O; 
Pn=O; 
In=O; 
jfk=O; 
counter_index=O; 
counter_ink_temp=0;dex2=0; 
counter_index3=0; 
correct_corr=O; 
jmax=O; 
jamx_wiliams=O; 
jmax2=0; 
jmax_deriv2=0; 
pea!c.index=O; 
accumalator1=zeros(1,6); 
group_peak_williams=O; 
group_peak_jean=O; 
group_peak_Jean2=0; 
group_peak_xcorr=O; 
peak2_temp_buffer=0; 
error_estimate_temp1=0; 
error_estimate_temp2=0; 
!c.temp=O; 

end 

threshold1=0.004; 
threshold2=0.0095; 
if input_index==1 

position_williams_sync_temp=O; 
position_mysinc1_temp=0; 
position_mysinc2_temp=0; 
position_xcorrelator_temp=O; 
buffer_pea!c.jean2=zeros(1,160); 
buffer_peak_jean=zeros(1,160); 
group_peak_jean2=0; 
group_peak_jean=O; 
Ictemp=O; 

end 1 . 
%%%%% Long preamble replication for cross-corr=1at11~n_1 1 -1 1 1 1 1 0 1 -
longseq=[1 1 -1 -1 1 1 -1 1 -1 1 1 1 1 1 1 -1 
1 -1 1 1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 -1 -1 1 -1 1 -1 111 1]; 
longseq_mapping= [ 0 0 0 0 0 0 longseq(28:53) longseq(27) longseq(1:26) 0 
000 0]; 

longseq_ifft = (ifft(longseq_mapping)); 
if (input_index>O) 

if (i nput i ndex<481) . ~ (1 64)' 
long_preamble_buffered=zeros(1,64)+J~zeros, , 

end 

end; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%packet_detection 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

rxbuf2=rxbuf/32768; 
xn=conj(buffer~short_preamblel(l))*buffer_short_preamble1(17)" 
xn_plus_l= con)(buffer_short_preamblel(l7))* rxbuf2" I 

rn= (abs(buffer_short_preamblel(l7)))A2; I 

%%%may b~ used in future for fine sync 
~_xn=con)(buffer_long_preamblel(l))*buffer_long_preamble1(65)" % letter J 
lS for the long preamble sync I 

buffer_short_preamble2=buffer_short_preamblel(2:32); 
buffer_short_preamblel=[ buffer_short_preamble2 rxbuf2 ]; %%% correlation 
samples 

buffer_long_preamble2 = buffer_long_preamble1(2:128); 
buffer_long_preamblel = [buffer_long_preamble2 rxbuf2]; 
%%%%moving average cross-correlation for short preamble 

sn_plus_l= sn+xn_plus_l-xn; 
sn=sn_plus_l; 
%%%%moving average power for short preamble 
pn_plus_l = pn+(abs(rxbuf2))A2-rn; 
pn=pn_plus_1; 
%mormalised_timing_metric=(abs(sn_plus_1)A2)/(pn_plus_1)A2; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%time offset and frequency offset calculation 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%% moving average cross-correlation for long preamble 

In_plus_l=Jn+conj(buffer_long_preamble1(64))*rxbuf2-J_xn; 
In=Jn_plus_l; 

%%%%peak detection in long preamble for start of frame 
if input_index < 482 
detected_preamble_index= [detected_preamble_index(2:l28) sn_plus_1]; 
end 
% first differentiator 
jfk=buffer2(l); 
buffer2= [buffer2(2:32) (abs(Jn_plus_1))A2]; 
pea~detector=(abs(Jn_plus_l))A2-jfk; 

%%% output of williams running average over 32 samples 
group_pea~williams=group_peak_williams+pea~detector
buffer_peak_williams(l); 
buffer_pea~williams=[buffer_pea~williams(2:32) pea~dete~tor]; 
buffer_index-williams=[ buffer_index_williams(2:32) lnput_lndex]; 
%group_pea~output_williams=group_pea~williams/16; 

%instanteneous peak detection comparions with threshold for least sqaures 
%fit method 

if (pea~detector > jmax_williams) 
jmax_williams = pea~detector; 
counter_index_williams = 0; 

elseif (counter_index-williams < 17) 

counter_index_williams = counter_index-williams +1; 
if (counter_index_williams==l) 

if (input_index < 458) 
estimated_williams_peak = input_index-l; 

end 
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end 
if (counter_index_wi11iams==16) 

if(input_index < 480) 
estimated_pk = 

po1yfit(buffer_index_wi11iams,buffer_pea~wi11iams,1); 
% k_temp= po1yva1(estlmated_pk,buffer_index_wi11iams)" 

for lsf_counter= 1: 32 ' 

y~temp2(lsf_counter)=buffer_index_wi11iams(lsf_counter)*estimated pk(1)+es 
tlmated_pk(2); -

end 
%y_temp=find(b~ffer~ingex_wi11iams==y_temp2); 

posltlon_wl11lams_sync_temp=cei1((y temp2(16)-
estimated_pk(2))/estimated_pk(1)); -

end 
end 

end 

%%%%%% output proposed method with first derivative function 

group_pea~jean=(group_pea~jean+pea~detector-buffer_pea~jean(1)); 
buffer_peak_jean=Lbuffer_peak_jean(2:160) peak_detector]; 
%group_pea~output_jean=group_pea~jean/160; 
if (~roup_peak_jean > jmax2) 

]max2 = ~roup_peak_jean; 
counter_lndex2 = 1; 

e1seif (counter_index2 < 17) 
if(counter_index2 > 0) 

end 
end 

counter_index2 = counter_index2 +1; 
if (counter_index2==2) 

end 

if (input_index < 490) 
position_mysinc1-temp = input_index-1; 

end 

%%%%%output of proposed method with second de~ivative function. 
group_pea~jean2=group_pea~jean2+group_pea~]ean-buffer_peak_Jean(128)-
buffer_peak_jean2(96); . 
buffer_pea~jean2=[buffer_pea~jean2(2:160) group_pea~Jean]; 

if (~roup_pea~jean2 > jmax_deriv2) 
Jmax-deriv2 = group_pea~jean2; 
counter_index3 = 1; 

e1seif (counter_index3 < 17) 
if (counter_index3 > 0) 

end 
end 

counter index3 = counter_index3 +1; 
if (counter_index3==2) 

end 

if(input_index < 527) 
position_mysinc2_temp = input-index-1; 

end 

if counter_index == 2 

correct_corr=detected_preamb1e_index(14); 
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end 

sync_angle =4*(angle(correct_corr)/(2*pi)); 

%%%%% this part deals with the timing synchronisation 
corrected_data= rxbuf* exp(-j*2*pi*sync_angle*(input_index-321)/64)' 

% corrected_data= rxbuf; , 
long_preamble_buffered=[long_preambl e_buffered(2: 64) 
corrected_data/32768]; 
temp=long_preamble_buffered'; 

for i = 1:64 
reverse_corr_index(i)=longseq_ifft(65-i); 
end 
cm_times_rd=conj(reverse_corr_index)*temp; 
e1= conj(reverse_corr_index(33:64))*temp(33:64); 

e_square=(abs(cm_times_rd))A2; 
% deltad_plus_1=deltad+ conj(corr_index/32768)* ... 
% (corrected_data/32768)-cO_times_rd; 
deltad=deltad_plus_1; 

xcorrelator2=cm_times_rd; 
e1-square=(abs(e1))A2; 

xcorrelator1=e1_square*e_square; 
if (xcorrelator1> jmax) 

if (input_index> 544) 

end 

jmax = xcorrelator1; 
counter_index = 1; 

elseif (counter_index < 17) 
if(counter_index > 0) 

end 

% 

end 

counter_index = counter_index +1; 
if (counter_index==2) 

end 

if (input_index < 593) 
position_xcorrelator_temp = input_index-1; 

end 

position_wi 1 liams_sync=posi tion_wi 11 iams_sync_temp; 
position_mysinc1=position_mysinc1-temp; 
position_mysinc2=position_mysinc2_temp; 
position_xcorrelator=position_xcorrelator_temp; 

if input_index==19440 
jmax=O; 

end 

jmax2=0; 
counter_index = 0; 
counter_index2 = 0; 
counter_index3=0; 
correct_corr=O; 
jmax_deriv2=0; 
Ltemp=O; 
jmax_williams=O; 

buffer_index_williams=zeros(1,32); 
buffer_peak_williams=zeros(1,32); 

220 



Appendix F 

Appendix F : Testbench for the System-On-chip 

--------------- - ------- ------ - - - ------------------------------------------
LEON3 Demonstration design test bench 
copyright (c) 2004 Jiri Gaisler, Gai s ler Research 

-------------------------- ----- - ------------------------------------------
This file is a part of the GRLIB VHDL IP LIBRARY 
copyright (c) 2003 - 2008, Gaisler Research 
copyright (c) 2008 - 2010, Aeroflex Gaisler 

This program is free software; you can redistribute it and/or modify 
it under the terms of the GNU General Public License as publ i shed by 
the Free Software Foundation; either version 2 of the License , or 
(at your option) any later version. 

This program is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
GNU General Public License for more details. 

You should have received a copy of the GNU General Public License 
along with this program; if not, write to t he Free Software 
Foundation, Inc., 59 Temple place, Suite 330, Boston, MA 02111-1307 

USA 

library ieee ; 
use ieee . std_logic_1164 . all ; 
library gaisler ; 
use gais l er . libdcom . all ; 
use gais l er.sim . all ; 
use work .debug. all ; 
library techmap ; 
use techmap.gencomp. all ; 
library mi cron ; 
use mic ron.compo nents. all ; 

use work .config. all ; 

library dma_controlle r ; 
use dma controller. all ; 

library ma c_utils; 
use mac utils . all ; 

library wifi_MAC; 
use wifi_MAc . all ; 

configuration 

library wifi_baseband; 
use wifi_ba seband . all ; 

use wifi_baseband.wifi_trans c eiver_pkg . a ll ; 

library wi f i _transceiver ; 
use wifi transceiver . a ll ; 

entity testbe n c h i s 
generic ( 

fabt ech 
m mt ech 
padt c h 

i nteger 
integer 
intege r 

. - CFG_FABTECH ; 
CFG_MEMTECH ; 
CFG PADTECH ; 
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clktech 
disas 
dbguart 
pclow 

integer 
integer 
integer 
integer 

integer 
integer 
integer 

- CFG 
- CFG 
- CFG 
- CFG 

- 20 ; 
. - 32 ; 

16 ; 

_ CLKTECH; 
_DI SAS ; Enable disassembly to console 
_DUART ; Print UART on console 
_P CLOW ; 

system clock period 
rom data width (8/32) 
rom address depth 

c lkperiod 
romwidth 
romdepth 
sramwidth 
sramde pth 
srambanks 

integer 
integer 

32 ; 
16 ; 

ram data width (8/16/32) 
- ram address depth 

integer 2 number of ram banks 
) ; 
port ( 

pci_rst 
pci_c l k 
pci_gnt 
pci_idsel 
pci_lock 
pci_ad 
pci_cbe 
pci_frame 
pci_i rdy 
pci_trdy 
pc i_devse l 
pci_stop 
pci_perr 
pci_par 
pci_req 
pci_serr 
pci_host 
pci_66 

) ; 
end ; 

inout std_logic ; -- PCl bus 
: ins t d_ log i C ; 

in std_logic ; 
in std_logic ; 
inout std_logic ; 

inout std_logic_vecto r (31 downt o 0); 
: inout std_logic_vector (3 downto 0); 
inout std_logic ; 
: inout std_logic ; 
: inout std_logic ; 
inout std_logic ; 

inout std_logic ; 
inout std_logic ; 
inout std_logic ; 
inout std_logic ; 

inout std_logic ; 
: ins t d_ log i c : = ' 1 '; 

in std_logic : = ' 0 ' 

architecture behav of testbench 15 

component WLAN_module tb 
port ( 

) ; 

clk : in STD_LOGIC ; 
c l k_20 M_1 80 : in std_logic ; 

clk2 : in STD_LOGIC ; 
reset : in std_logic ; 
--MAC interfaces 
txData: in std_logic_vector (7 downto 0); 

tx_req : in std_logic ; 
rxData : in std_logic_vector (7 downt o 0); 
request_data : out STD_LOGIC ; 
frmErr or : out std_logic ; 
data_va lid : out std_logic ; 
Done : out std_logic ; 
Abort : out std_logic ; 

--reception from analog device 
PMD RSSI ind : in STD_LOGI C_ VECTOR (3 downto 0) ; 

- =PHY interfaces 

transmitt ed_ibits : out STD_ LOGIC_ VECTOR (17 downto O ) i 

transmi tted_qbits : out STD_LOGIC_ VECTOR (17 downto O ) i 

received_ibits in STD_ LOGI C_ VECTOR (17 downto 0) ; 
received_qbits : ln STD_LOGI~VECTOR (17 downto 0) 

end component ; 
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constant promfil e 
constant sramfil e 
constant sdramfil e 

string 
string 
string . -

"prom.srec" ; 
" s ram. s r e c " ; 
" d s ram. s r e c " ; 

signal c l k : std_logic := ' 0 '; 
signal Rst : std_logic : = ' 0 '; 
constant ct : integer := c l kperiod/ 2; 

signa 1 address std_logic_vector (27 downto 
si gna 1 data std_logic_vector (31 downto 

signa 1 ramsn s td_logic_vector (4 downto 
signal r amoen std_logic_vector (4 downto 
signal rwen std_logic_vector (3 downto 
s ignal rwenx std_logic_vector (3 downto 
signal r oms n std_logic_vector (l downto 
signal i osn std_logic ; 
signal oen std_logic ; 
si gna 1 read std_log ic ; 
signal wri ten s td_logic ; 
si gna 1 brdyn s td_ logic ; 
si gna 1 bexcn std_logi c ; 
s ignal wdogn std_log i c ; 
si gna 1 dsuen , dsutx, dsurx , dsubre , dsuact 
si gna 1 dsu rs t std_logic ; 
si gna 1 test std_logi c ; 
s i gna 1 erro r std_logic ; 

0 ) ; 
0 ) ; 

0 ) ; 
0 ) ; 
0 ) ; 
0) ; 
0) ; 

rom contents 
ram contents 
s dram contents 

-- Re set 

std_logic ; 

signa 1 gpio s td_logic_vector (CFG_GRGP IO_WID TH - l downto 0 ) ; 
s i gna 1 GND 
si gna 1 vcc 
signal NC 
signal c lk 2 

signal sdcke 
signal sdcsn 
signa 1 sdwen 
signal sdrasn 
signal sdca s n 
signa 1 sddqm 
signal sdc lk 
si gna 1 pl l l ock 
signa 1 txdl , rxdl 
signa 1 txd2, rxd2 

s td_log i c - ' 0 ' ; 
std_logic - ' I ' ; 
std_ logic - ' z ' ; 
std_logic ' 1 ' ; 

std_logic_vector 
s td_log ic_vector 
std_l ogic ; 
std_logic ; 
std_logic ; 
s td_logic_vector 
s td_logic ; 

std_logic ; 
std_logic ; 
std_ logic ; 

1 downto 0 ) ; 
1 downto 0 ); 

( 7 down to O) ; 

clk en 
chip sel 
write en 
row addr stb 
col addr stb 
data i/o mask 

signal etx_c lk , erx_c lk , erx_dv , erx_er , erx_co l : s td_log i c : = ' a '; 
signal et h_gtxc lk , erx_crs , etx_en , etx_er : std_ logi c := ' 0 '; 
signal et h_ma cc lk std_logic := ' 0 ' ; 
signal e rxd , etxd std_logic_vector (7 downto 0) := (other s :> ' a ' ) ; 
s ignal emdc , emdio std_logic ; --dummy signal for the mdc,mdlo in the phy 
which is not used 
signal emdintn std_logic ; 

signal emddis 
signal epwrdwn 
signal ereset 
si gna 1 es l eep 
signal epau se 

constant 1 sp 

std_logic ; 
std_logic ; 
std_logic ; 
std_logic ; 
std_logic ; 

boolean . - fals e ; 
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signal sa 
signa 1 sd 

std_ log ic_vector (14 downto 0 )· 
std_logic_vector (6 3 downto 0) ; 

signal pci_ 

signal can 
si gna 1 can 

arb 

txd 
rxd 

_req, pc i_arb_gnt : s td_logic_vector (O to 3) ; 

std_logi c_vecto r (O to CFG_ CAN_NUM- 1 ) ; 
std_logic_ vecto r (O t o CFG_CAN_NUM- 1 ) ; 

si gna 1 can stb std_logic ; 

signal spw_ clk std_logic - ' 0 ' ; 
si gna 1 spw_rxdp std_logic_ vector (O t o CFG_SPW_NUM- 1 ) - (others 
si gna 1 spw_ rxdn std_logic_vector (O t o CFG_ SPW_NUM- 1 ) - (other s 
si gna 1 spw_rxsp std_logic_vector (O to CFG_SPW_NUM- l ) - (others 
signal spw_rx sn std_logic_vector (O to CFG_ SPW_NUM- 1) - (ot hers 
signal spw_txdp std_logic_vector (O to CFG_ SPW_NUM- 1) ; 
signal spw_ txdn std_logic_vector (O to CFG_ SPW_NUM- 1) ; 
si gna 1 spw_txsp std_logic_vector (O to CFG_ SPW_NUM- 1) ; 
signal spw_ txsn std_logic_vector (O to CFG_SPW_ NUM- 1 ) ; 

signal usb - clkout std_logic : = ' 0 '; 
si gna 1 usb - d std_logic_vector (7 down to 0 ) ; 
s ignal usb resetn std_ulogic ; 
si gna 1 usb - nxt std_ulogic ; 
si gna 1 usb _stp std_ulogic ; 
si gna 1 usb - dir std_ulogic ; 

---signal for the transceiver 
signal PMD RSSI indl: STD_LOGIC_VECTOR ( 3 down t o 0 ) ; 
signal wifi_in_i nphase: STD_LOGIC_VECTOR (17 down t o 0 ) ; 
signal wifi_in_quadratu re: STD_ LOGIC_VECTOR (17 downt o 0 ) ; 
signal wifi_out_inphase: STD_ LOGIC_ VECTOR (17 downto 0 ) ; 
signal wifi_out_quadrature STD_ LOG IC_ VECTOR (17 down to 0 ); 
signal c lk_20M : STD_LOGIC ; 
signal c lk_80M : STD_LOGICi 
signal clk 20M_180 : STD_LOGIC i 
signal end_sim : Boolean i 

------signal for partner transceiver 
signal r st tx 2 std_logi c ; 

si gna 1 txDatal STD_LOGIC_VECTOR (7 

signal tx_reql STD_LOGIC i 

signal rxData l STD_LOGIC_VECTOR (7 

signal frmErrorl STD_ LOGIC i 

signal data_valid l : STD_ LOGIC ; 

signal Done l : STD_ LOGIC i 

signal Abort l : STD_ LOGI Ci 

down t o 0 ) ; 

down t o 0 ); 

signal transmitted_ibitsl : STD_LOGIC_VECTOR (17 downto 0 ) ; 
signal transmitted_qbitsl : STD_ LOGIC_VECTOR (17 downto 0 ) ; 
signal received ibi tsl STD_LOGIC_ VECTOR (17 downto 0 ); 
s ignal received=qbitsl : STD_LOGIC_VECTOR (17 downto 0 ) ; 

signal PMD RSS I lnd2 

signal r quest_datal 

=> ' 0 ' ) ; 
=> ' 0 ' ) ; 
=> ' 0 ' ) ; 
=> ' 0 ' ) ; 
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--signa1 for the bri dge 
------ lnterface to s pacewire router 
signal data f rom router std_l ogic_vector (8 downto 0 ) ; 
s~gnal router= send= buf f e r_empt y std_logic ; 
s~gnal r outer_ receive_ buffer_ not_full : std_logic ; 
s~gnal d a ta_to router std_logic_vector (8 downto 0 ) ; 
s~gnal wr l te_ to_ router : std_logic ; 
slgnal r e a d rou ter : std_logic ; 

begin 

-- clock and reset 

c lk <= not c l k after c t * 1 ns ; 
s pw_clk <= not spw_c lk after 10 
rst <= dsur s t ; 

ns ; 

ds u e n <= ' I '; dsubre <= ' 0 '; rxd l <= 
c an_rxd <= (others => ' H'); b excn <= 
gpio (2 downto 0 ) <= "LHL" ; 
gpi o (CFG_GRGPIO_WIDTH- 1 downto 3 ) <= 
p c i_arb_re q <= "HHHH" ; 
e th_ma cc l k <= not e th_macc lk after 4 

spacewire loop-back 

' I ' ; 
' I '; wdo gn 

(others => 

ns ; 

s pw_rxdp <= spw_txdp ; s pw_r xdn <= s p w_txdn ; 
s pw_rx s p <= s pw_tx s p ; s pw_r x sn <= s p w_ t x sn ; 

d 3 : entity work .leon 3mp 

<= ' H '; 

generic map ( fab tech , me mtech , p adtech , c lktech , d i sas , dbguart , 
p c l o w 

data , 

r xdl , 

gpi o , 

port map ( r s t , clk , s d c lk , error , wdogn , addres s (27 downto 0 ) , 

sa , sd , s dc lk, s d c k e , s d cs n , sdwen , 
sdr asn , s dca s n , s ddqm , d sutx , dsurx , dsu e n , dsubre , dsuact , txd l, 

txd2 , rxd2 , 
ramsn , ramo e n , r we n , oe n , wr i ten , read , ios n , romsn , b rdyn , bexcn , 

e mdi o , e th_ma cc lk, et x_c lk , erx_ c l k , e rxd , erx_dv , erx_er , 
e rx_co l, erx_c rs , e md i ntn , etxd , etx_en , etx_ er , emdc , 

p c i_rst , pci_c lk, p c i_gnt, p c i _idse l, pci_ l ock , pci_ad , pci_cbe , 
p c i_frame , p c i_irdy , p c i_trdy , p ci_devse l , p c i_st op , pci_perr , 

p c i_par , 
pci_req, p c i_s e rr , p c i_host , p ci_66 , pci_ arb_req , pci_arb_gnt , 
c an_txd , c an_r x d , 
spw_c lk , s pw_rxd p , s pw_r xdn , spw_rxs p , spw_ rxsn , spw_ txdp , 
s pw_txdn , spw_t xsp , s pw_txsn , 

u s b_clko ut , u s b_d , usb_nxt , usb_ stp , usb_dir , usb_ resetn , 

pmd_RSSI_indl , 
wifi_in_inphase , wifi_in_ quadrature , wifi_ out_ inphase , 
wifi_out_quadrature , dat a_f rom_ router , router_ send_ buffer_empt y , 

router_rece i ve_b u ff er_ not_ fu l l , data_ to_rou ter , write_t o_router , 

read_router 
) ; 

optional sdram 

sdO : if (CFG_MCTRL_SDEN = 1 ) and (CFG_MCTRL_SEPBUS = 0 ) generate 
uO : mt48 l c 16m1 6a2 generic map (i ndex => 0 , fname => s ram[lle) 

PORT MAP ( 
Dq => data( 31 downto 16 ) , Addr => address (14 downto 2) , 
Sa => address (16 downto 15 ) , Clk => sd lk , C e =~ SiC~L (0 ) , 
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sdwen , 
Cs_ n => sdcsn (O), Ras n => sdras n , Cas n > d = s c a s~ , We ~ => 

Dqm => sddqm( 3 downto 2)) ; 
u l: mt48lc 1 6m16a2 generic map (index => 16 , fname => sdramf lle) 

PORT MAP ( 

Dq => data (15 downto 0 ) , Addr => address (14 downto 2 ) , 
Ba => address (16 downto 15 ) , Clk => sdclk , Cke = > s dcke (O) , 
Cs_n => sdcsn( O), Ras n => sdrasn , Ca s n => sdcas n , We n => 

sdwen , 
Dqm => sddqm( 1 downto 0)); 

u2 : mt48 l c 1 6m1 6a2 generic map (index => 0, f name => sdramfile) 

sdwe n, 

PORT MAP ( 
Dq => data (31 downto 16 ) , Addr => address (14 downto 2 ) , 
Ba => address (16 downto 1 5 ) , Cl k => sdclk , Cke => sdc ke( O) , 
Cs_ n => sdcsn (I ), Ras_n => sdrasn , Cas n => sdcasn , We n => 

Dqm => sddqm (3 downto 2)); 
u 3: mt 48 l c 1 6m1 6a2 generic map (index => 16 , f name => sdramfile) 

sdwen , 

PORT MAP ( 
Dq => data( 15 downto 0 ), Addr => address (14 downto 2 ) , 
Ba => address (16 downto 15 ) , Cl k = > sdc l k , Cke => sdcke( O) , 
Cs_n => sdcsn (1 ), Ras_n => sdrasn , Cas n => sdcasn , We n => 

Dqm => sddqm( 1 downto 0)); 
end generate ; 

sd l : if (( CFG_MCTRL_SDEN 1 ) and (CFG_MCTRL_SEPBUS = 1 )) generate 
uO: mt4 8 l c 1 6m1 6a2 generic map (index => 0, f name => sdramfile) 

PORT MAP ( 
Dq => sd (31 downto 16 ), Addr => sa( 12 downto 0 ), 
Ba => sa (14 downto 13 ), Cl k => sdc lk , Cke => sdcke( O) , 
Cs_n => sdcsn (O), Ras_n => sdrasn , Cas n => sdcasn , We n => 

sdwen, 
Dqm => sddqm( 3 downto 2 )); 

u l: mt4 8lc1 6m1 6a2 generic map (i ndex => 16 , f name => sdramfile) 
PORT MAP ( 

Dq => sd (15 downto 0 ), Addr => sa( 12 down to 0) , 
Ba => sa (14 downto 13 ), Clk => sdclk , Cke => sdcke( O) , 
Cs n => sdcsn (O), Ras_n => sdrasn , Cas_ n => sdcasn , We n => 

sdwen , 
Dqm => sddqm( 1 downto 0 )); 

u 2 : mt 4 8 l c 1 6m1 6a2 generic map (i ndex => 0, fname => sdramfile) 
PORT MAP ( 

Dq => sd (31 downto 16 ), Addr => sa( 12 downto 0) , 
Ba => sa (14 downto 13 ), Clk => sdclk , Cke => sdcke( I ) , 
Cs_n => sdcsn (1 ), Ras_n => sdrasn , Cas n => sdcasn , We n => 

sdwen , 
Dqm => sddqm (3 downto 2)); 

u 3 : mt48 l c 1 6m16a2 generic map (index => 16 , fnam e => sdramfil e ) 

PORT MAP ( 
Dq => sd (15 downto 0 ) , Addr => sa (12 down to 0 ) , 
Ba => sa (14 downto 13 ) , Clk => sdclk , Cke => sdc ke (I ) , 
Cs n => sdcsn (1 ), Ra s_n => sdrasn , Cas n => sdc a sn , We n => 

sdwen , 
Dqm => sddqm( 1 downto 0)); 

sd64 if (CFG_MCTRL_SD 64 = 1 ) generate 
u4 : mt48l c 16m16a 2 generic map (index => 0 , f name => sdramflle) 

sdw n , 

PORT MAP ( 
Dq => sd (63 
Ba => sa (1 4 

downto 48 ), Addr = > sa( 12 downto 0 ), 
downto 13 ) , Clk => s d c lk , Cke =~ s cke( O) , 

Cs n => sdcsn (O), d s n Cas n => sdcasn , WE r Ras n = > s r a , 
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sdwen , 

sdwen , 

sdwe n, 

Dqm => sddqm( 7 downto 6 )) ; 
us: mt481c 1 6m16a2 gene ric map (index => 16 , fname => sdramflle) 
PORT MAP ( 

Dq => sd( 47 downto 32 ), Addr => sa( 12 downto 0 ) , 
Ba => sa( 14 downto 13 ), Clk => sdclk , Cke => sdcke( O) , 
Cs_n => sdcsn( O), Ras_n => sdrasn , Cas n = > sdcasn , We n => 

Dqm => sddqm( S downto 4 )); 
u6: mt481c 1 6m16a2 generi c map (index => 0 , fna me => sdramfile) 
PORT MAP ( 

Dq => sd (63 downto 48 ) , Addr => sa( 12 downto 0 ) , 
Ba => sa (14 downto 13 ), Clk => sdclk , Cke => sdcke( O) , 
Cs_ n => sdcsn( l ), Ras_ n => sdrasn , Cas n => sdcasn , We n => 

Dqm => sddqm (7 downto 6 )); 
u7: mt4 8 lc16m16a 2 generic map (i ndex => 16 , fnam e => sdramfile) 
PORT MAP ( 

Dq => sd (47 downto 32 ), Addr => sa (12 downto 0 ), 
Ba => sa (14 downto 13 ), Cl k => sdclk , Cke => sdcke( O) , 
Cs_ n => sdcsn (l ), Ras_n => sdrasn , Cas n => sdcasn , We n => 

Dqm => sddqm( S downto 4 )); 
end generate ; 

end ge nerate ; 

promO: for i ln 0 to (romwi dth/ 8 ) - 1 genera te 
srO : sram generic map (index => i , abits => romdepth , fname => 

promfile ) 
port map (address (romdepth +1 downto 2 ), data( 31-i* 8 downto 24-i* 8 ) , 

romsn ( 0 ) , 

r wen(i), oen ); 
end generate ; 

sramO : for i ln 0 to (sramwidth/ 8 ) - 1 gene r ate 
srO : sram generic map (i ndex => i , abits => sramdepth , fname => 

sramfil e ) 
port map (address (sramdepth +1 downto 2 ) , data( 31- i* 8 downto 24-i *8 ) , 

rams n ( 0 ) , 
rwen (O), ramoen (O)); 

end generate ; 

phyO : if (CFG_GRETH 
e mdi o <= 'H'; 
pO : phy 

1 ) generate 

generic map (address => 1 ) 
port map (rst , e mdi o , etx_clk , erx_clk , erxd , erx_ dv , 

erx_er , erx_ co l, erx_ crs , etxd , etx_ en , etx_ er , emdc , eth_ macclk) ; 

end generate ; 

usbtr : if (CFG_GRUSBHC = 1 ) generate 
uO : ulpi 

port map (usb_clk out , usb_d , usb_nxt , usb_stp , usb_dir , usb_resetn) ; 

end generate usbtr ; 

usbdevsim : if (CFG_GRUSBDC = 1 ) generate 
uO: grusbdcs im 

generic ma p (functm => 0 ) 
port map (usb_resetn , usb_clkout , usb_d , usb_ nxt , usb_stp, 

end genera t e usbdevsim ; 

rror <= ' H ' ; -- ERROR pull - up 

usb l r) ; 
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l uerr : process 
begin 

wait for 2500 ns ; 
if to_X01 (error} = ' I ' then wait on error ; end if ; 

assert (to-x01(error) = 'I') 
report ':*** Il:J in error mode, simulation halted ***" 

severlty fallure 
end process ; 

testO : grtestmod 
port map ( rst , e l k, error , address (21 downto 2) , 

iosn , oen , writen , brdyn} ; 
data , 

data <= buskeep(data) , (others => 'H') after 250 
data <= buskeep( data } after 5 ns ; 

ns; 

sd <= buskeep(sd), (others => 'H') after 250 ns; 
sd <= buskeep (sd} after 5 ns ; 

dsueom : process 
procedure dsue f g (signal dsurx : in std_logic ; signal dsutx out 

std_logic } is 
variable w32 std_logic_vector (31 downto O}; 
variable e8 std_logic_vector (7 downto O}; 
constant txp time := 160 * 1 ns ; 
begin 
dsut x <= ' 1 '; 
dsurst <= ' 0 '; 
wait for 500 ns ; 
dsurst <= ' 1 '; 
wait ; 
wait for 5000 ns ; 
txe (dsutx , 16#55#, txp }; - - sync uart 

txc(dsutx, 16#cO#, txp); 
txa(dsutx, 16#90#, 16#00#, 16#00#, 16#00#, txp); 
txa(dsutx, 16#00#, 16#00#, 16#02# , 16#ae#, txp); 
txc(dsutx, 16#cO#, txp); 
txa(dsutx, 16#91#, 16#00#, 16#00#, 16#00#, txp); 
txa(dsutx, 16#00#, 16#00#, 16#06# , 16#ae#, txp); 
txc(dsutx, 16#cO#, txp); 
txa(dsutx, 16#90#, 16#00#, 16#00#, 16#24#, txp); 
txa(dsutx, 16#00#, 16#00#, 16#06#, 16#03#, txp); 
txc(dsutx, 16#cO#, txp); 
txa(dsutx, 16#90#, 16#00#, 16#00#, 16#20#, txp); 
txa(dsutx, 16#00#, 16#00#, 16#06#, 16#fc#, txp); 

txe (ds utx , 16#cO#, txp } ; 
txa (dsu t x , 16#90#, 16#00#, 16#00#, 16#00#, txp } ; 
txa (dsutx , 16#00#, 16#00#, 16#00#, 16#2f# , txp} ; 
txe (dsutx , 16#cO#, txp } ; 
txa (dsutx , 16#91#, 16#00# , 16#00#, 16#00#, txp} ; 
txa (dsutx , 16#00#, 16#00#, 16#00#, 16#6f# , txp} ; 
txe (dsutx , 16#cO#, txp } ; 
txa (dsutx , 16#90#, 16#11#, 16#00#, 16#00#, txp} ; 
txa (dsutx , 16#00#, 16#00# , 16#00#, 16#00#, txp} ; 
txe (dsutx , 16#cO#, txp} ; 
txa (dsutx , 16#90#, 16#40# , 16#00#, 16#04#, txp} ; 
txa (dsutx , 16#00# , 16#0 2# , 16#20#, 16#01#, txp} ; 

txe (dsutx , 16#cO# , txp } ; 
txa (dsutx , 16#90# , 16#00# , 16#00#, 16#20#, txp ) ; 

txa (dsutx , 16#00# , 16#00# , 16#00#, 16#02#, txp } ; 

txe (dsutx , 16#cO# , txp } ; 
txa (dsutx , 16#90#, 16#00#, 16#00#, 16#20#, txp} ; 

xa (dsutx , 16#00#, 16#00#, 16#00#, 16#Of#, txp} ; 
J --
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t x e (dsut x , 16#cO# , t xp) ; 
txa (d s utx , 16#40# , 16#00# , 16#4 3# , 
t xa( dsutx , 16#00# , 16#00# , 16#00# , 

txe (dsutx , 16#cO#, txp) ; 
txa(ds utx , 16#91#, 16#40# , 16#00#, 
txa (d s utx , 16#00#, 16#00# , 16#00# , 
txe (dsutx , 16#cO# , txp) ; 
txa (d s utx , 16#91# , 16#70# , 16#00# , 
txa (dsutx , 16#00# , 16#00# , 16#00# , 

txe (dsutx , 16#cO# , txp ) ; 
txa (ds u tx , 16#90# , 16#00# , 16#00#, 
txa (dsutx , 16#00#, 16#00# , 16#ff# , 

txe (dsutx , 16#cO# , txp ) ; 
txa (dsutx , 16#90# , 16#40# , 16#00# , 
txa (dsutx , 16#00# , 16#00# , 16#00# , 

txe (dsutx , 16#cO# , txp ) ; 
txa (dsutx , 16#90# , 16#40# , 16#00#, 
txa (dsutx , 16#00#, 16#00# , 16#12#, 

txe (dsutx , 16#80# , txp ) ; 
txa (dsutx , 16#90# , 16#00# , 16#00#, 
rxi (dsurx , w32 , txp , lresp) ; 

txe (dsutx , 16#aO#, txp ) ; 
txa (dsut x , 16#40#, 16#00# , 16#00#, 
rxi (dsurx , w32 , txp , lre sp ) ; 

end ; 

begin 

ds u efg (dsutx , dsurx ); 

wait ; 
end process ; 

- --clock for the tranceiver 

CLOCK I : process 
begin 

if end_sim = false t hen 

else 

' 0 ' elk_2 0M <= ; 
wait fo r 25 nS i 

elk 2 OM <= ' 1 '; 

wait for 25 n s ; 

wait ; 
end if ; 

end process ; 

CLOCK2 : process 
begin 

if end sim = false then 
- '0 ' elk_80M <= ; 
wait f o r 6 .25 n s ; 

16#10# , txp) i 
16#Of# , txp) i 

16#24# , txp) i 
16#24# , txp) i 

16#00# , txp) i 
16#03#, txp) i 

16#20#, txp ) ; 
16#ff# , txp ) i 

16#48#, txp ) ; 
16#12# , txp ) i 

16#60#, txp) i 

16#10#, txp ) i 

16#00# , txp ) i 

16#00#, txp ) i 
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else 

clk 80M <= ' 1 ' . 
wait for 6 .25 n~ ; 

wait ; 
end if ; 

end process ; 

e nd_sim<=fal se ; 
rst_tx2 <= not rst ; 
c lk_20M_1 80 <= not c l k_20 M; 

transmi ss i on_CONTROL : process 
variable iterati on_variabl e : integer ; 

begin 

PMD_RSSI_indl <=x "O" ; 
PMD_RSSI_ind2 <=x "O" ; 

tx_req l <= ' 0 '; 
---wait for 100 ns' . ' ---reset <= 0" . , 
--walt for 50 ns; 

wait until wifi_out_inphase > "000000000000000000" ; 
PMD_RSSI_ind2 <=x "l" ; 

--PMD_RSSI_ind2 <=x"l"; 
--- feedind data to the Mac layer 

--wait for 43.1 us ; 
wait until (wif i _out_ inphase = "000000000000000000" and 

wifi_out_quadrature = "000000000000000000" ); 

PMD_RSS I_ind2 <=x "O" ; 
--wait for 19.4 us; 
wait until wifi_in_inphase > "000000000000000000" ; 
PMD_RSSI_indl <= x "l" ; 
--wait for 53 us; 
wai t unti 1 (wi fi_in_inphase = "000000000000000000" and 

wifi_in_quadrature = "000000000000000000" ); 
PMD_RSSI_indl <= x "O" ; 

--wait for 1.9 us; 
wait until wifi_out_inphas e > "000000000000000000" ; 
PMD_RSSI ind2 <=x "l" ; 

--wait for 18 us; 
wai t unti 1 (wif i_out_ inphase = "000000000000000000" and 

wifi_out_quadrature = "000000000000000000" ); 
PMD_RSSI_ind 2 <=x "O" ; 
wait until wifi_in_inphase > "000000000000000000" ; 
--wait for 6 us; 
PMD_RSS I_ind l <=x "l" ; 
wai t unti 1 (wif i_i n_i nphase = "000000000000000000" and 

wifi_in_quadrature = "000000000000000000" ); 
PMD_RSS I _ind l <= x "O" ; 
wait until Done l = ' 1 '; 
PMD_RSS I _indl <=x "O" ; 

x_re q l <= ' 0 ' ; 
txDatal <= x "OO" ; 

wait ; 
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end process ; 

st an da l one_wifi_modul e : WLAN_modu l e t b 
port map ( 

e l k => e lk_2 0M , 
e lk 20 M_1 SO => e lk_2 0M_1 SO , 

e lk 2 => e lk_SOM , 
reset => rst_tx2 , 
--MAC interfaces 
txDat a => txDatal , 

tx_ req = > tx_reql , 
rxData => rxDatal, 
request_data => requ e st_data l, 
frmError => frmErr o rl, 
data_va l id = > data_validl, 
Done => Donel, 
Abort => Ab ort l, 
---reception from analog device 

PMD_RSS I_ind => PMD_RSSI_i nd2 , 
--PHY interfaces 

transmi tted_ibits => wifi_in_inpha se , 
transmitted_qbi ts => wifi_in_quadrat ur e , 
reeeived_ibit s => wifi_out_inphas e , 
reeeive d_ qbits = > wifi_out_qu a d ratu re 

) ; 
end ; 
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