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ABSTRACT 
 
Highway runoff, as a nonpoint source, may exert significant pollutant load on the catchment. 

Finding ways to mitigate nonpoint sources of pollutants is a matter of great concern for improving 

water quality. It was cited by the Environment Agency in 2005 that “… more than 80% of English 

rivers were at risk of failing to achieve Water Framework Directive (WFD) objectives through diffuse 

pollution…” (Faram, 2007; p.14). 

 

The presence and behaviour of metals were analysed and compared through seasonal sampling 

from one of the most trafficked roads in the Midlands, M1. These were compared with other 

sources: local streams and sewage works. The concentration of metals in stormwater from the M1, 

three neighbouring rural brooks and three local sewage works, all in the same catchment, were 

sampled. Three metals (Fe, Cu and Zn) were used as an indicator because of their predominance 

and potential harmful effect on biodiversity. The data was analysed to establish any links between 

the total and dissolved metals and standard water quality parameters. The thesis also examines 

the performance of a standard highway treatment system of interceptor and lagoon for removing 

metals.  

 

The results indicate that evaporation and de-icer salts had the strongest effect on metal 

concentrations and their solubility in the runoff from the M1. As additional factors, rainfall intensity 

and antecedent dry weather period (ADWP) had the most important influence on metal 

concentrations. Fe was always at the highest concentrations for all weather conditions (total and 

dissolved) and all sampling locations. The results also showed that Fe was affiliated with the 

particulate matter; however, it was also suggested that it was solubilised by anaerobic conditions. 

Zntot during wet weather exceeded the environmental quality standards (EQS) both on the M1 and 

in Woodbrook. The sewage work effluent did not exceed the EQS at any time of sampling.  It was 

also found that Zn solubility was increased by the presence of de-icer salts which released it from 

the sediment by a process of ion-exchange, as suggested by the literature. Cu concentrations had 

the most erratic values and varied widely but were in the lowest concentrations compared to other 

metals. During wet weather Cudis from the M1 runoff exceeded the EQS. It was also concluded that 

the analytical and sample preservation methods chosen could have an effect on the concentrations 

of copper. 

 

Filtration with recycled glass and pea-gravel was able to remove particles down to 5 μm, but at the 

typical flow rate (5 m/hr), and solids loading the filters would need regular washing. The adsorption 

studies showed that metals are more effectively removed by alkaline conditions than acid 

conditions which release metals into the environment. 

 

Key words: heavy metals; highway runoff; residential runoff; sewage works discharges; SUDS; 

filtration 
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CHAPTER 1 
 
INTRODUCTION 
 

Roads and highways may represent a small part of the impermeable urban 

catchment area (from 10 to 20%), but road runoff could, according to some, 

contribute between 35 and 75% of total metal and 50% of the TSS loads to 

receiving waters (USGS, 2000). The problems associated with urban stormwater 

treatment and disposal have acquired increased importance due to recent flooding 

problems and the introduction of the Water Framework Directive (UK Government, 

2007). Globally, vehicular traffic is growing very fast and thus it is assumed and 

suggested that pollutants from vehicular traffic could be more of a problem in 

future than other urban pollutants because they are diffuse, increasing quantities 

are being produced and because of their potential persistence and toxicity 

(Crabtree et al., 2008; Gnecco et al., 2005). This thesis investigates this issue. 

 

Rainfall in England varies widely and the Lake District is the wettest part of the 

country, with average annual totals exceeding 2000 mm. Rainfall characteristics, 

such as rainfall intensity and duration, can vary widely from year to year and in 

November 2009, part of the sampling period, this was demonstrated by the 

314.4mm of rain which fell in Cockermouth, Cumbria on 20/11/09 over 24 hours, a 

once-in-500 years event (Simons, 2009).   However, all of East Anglia, much of 

the Midlands, eastern and north-eastern England and parts of the south-east 

receive less than 700 mm a year. The East Midlands, the sampling area, 

experienced high rainfall throughout November 2009 with 145.8mm of rain falling 

over the whole month (metoffice.gov.uk, 2009; see also Appendix 1 for details. 

Thus rainfall trends are changing and the impact this could have on highway runoff 

needs research. 

 

The usual indicator metals are Cu and Zn, since Cu is released from brake linings 

and Zn from tyres. Moreover, extreme weather events or the accumulation of 

pollutants in sediments or biota could cause chronic environmental problems. 

Even in low concentrations, the release of these metals could, given the high 

traffic volumes, be an important source of metals which impact on aquatic 
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biodiversity. There have therefore been a number of studies which have attempted 

quantitative analysis of this mass of pollutant and its impact on the chemical and 

ecological status of receiving waters. Typical factors included in these previous 

models were rainfall intensity and duration, traffic flow, climate, antecedent dry 

weather period (ADWP) and first flush characteristics (Novotny and Witte, 1997; 

Lee et al., 2004; Davis and McCuen, 2005; Herngren et al., 2005; Kim et al., 2005; 

Crabtree et al., 2006; Li et al., 2006). However, little information about correlations 

among these factors was found and universally accepted definitions of them may 

not even exist. 

 

There is little information about Fe, due to its low toxicity, even though it is 

suggested that Fe will occur in high concentrations in urban runoff as a result of 

both general usage and vehicle wear (Davis and McCuen, 2005). Iron, despite its 

low toxicity, is a good model of insoluble materials and of interactions with other 

metals. Its poor solubility also means that there is the potential for interaction with 

other metals and solids. 

 

The polluting behaviour of metals will depend on their solubility and therefore their 

ability to affiliate with, and the amounts of, particulate matter in the runoff. It is 

suggested that this binding will be affected by factors such as pH, ionic strength, 

temperature, hardness (base cations), anions, oxidation-reduction potential 

(redox), and the presence of other elements (USGS, 2000).  

 

Few researchers have attempted to explore these fundamental interactions which 

will affect the release of metals into the water environment. Much of the literature 

reviewed fails to indicate whether metals are measured as total or soluble metal, 

although often this can be assumed to be soluble because of the analytical 

methods used. This could be a major flaw in the models because of the 

equilibrium between solid and liquid phases. There is also little previous work 

attempting to establish links with seasonal rainfall characteristics other than 

ADWP. 
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The adverse effect of stormwater pollution in the receiving water bodies and the 

necessity for treatment was recognised in the 1960s (Hallberg, 2007). A number of 

different treatment techniques are commonly used for stormwater treatment. For 

example, detention or retention basins can be used not only for decreasing the 

pollutant concentration but also for managing stormwater discharge flow rates. 

Other devices which are based on gravity separation include sediment traps and 

basins. They will not be effective in the removal of dissolved pollutants. This 

aspect is especially important for metal removal because a significant fraction of 

them remains dissolved. For the removal of dissolved and colloidal fractions of 

organics in highway runoff different types of filter fabric have been used. There are 

a number of different types of filter media that are used for stormwater treatment. 

These include sand, coated sand, gravel, crushed glass, perlite, peat, leaf 

compost, mulch, zeolite, granular activated carbon and other media (Moller et al., 

2002; Datry et al., 2003; Liu et al., 2004; Liu et al., 2005; Baltrenas and Brannvall, 

2006; Ray et al., 2006). Nonetheless, there are a number of problems and 

questions which have been raised recently which can be summarised as follows: 

there are few comparative tests between different media (McLaughlan, 2004). 

Moreover, runoff generated from different sources is likely to have different 

physical and chemical properties which might affect the efficiency of the media 

(Clark et al., 2005). 

 
Thus the objectives of this thesis are: to assess the effects of the seasonal 

variation, rainfall intensity and ADWP on the metal concentrations in runoff; to 

analyse the factors affecting their solubility in the runoff and to perform a case 

study on the treatment SUDS lagoon at a busy test site (J24 M1). These were 

compared with the metal concentrations found in other natural, agricultural 

sources and sewage work discharges.  

 

The literature review is in two chapters: Chapter Two presents a review of 

previously published material related to sources of metals, their concentration and 

behaviour. Past observations and findings of metal concentrations obtained from 

highways and residential areas are described but it is shown that such factors as 

rainfall intensity and duration, traffic flow, climate, antecedent dry weather period 

(ADWP) and first flush characteristics have no scientific correlations and 
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coordination. The chapter closes with a summary of the knowledge gaps and their 

impact on the objectives of this research programme.  

 

Chapter Three is devoted to evaluating the potential of filter treatment processes 

for the enhanced removal of metals from stormwater. The performance of 

commonly available commercial media, their properties and effectiveness of the 

treatment are presented. Specific attention has been paid to crushed recycled 

glass as a potential material for filtration because of its ready availability, which 

was then investigated later in the thesis. The chapter closes with a summary of 

these findings of previous research, and gaps and unanswered questions with 

respect to the concentration and behaviour of metals in stormwater, which arise as 

a result of the review, are considered. This leads to the objectives, with the 

intention of answering some of these questions, which then form the basis for 

designing a research methodology to obtain new data.  

 

Chapter Four presents the methodology of sampling and analysing metals from 

the different field sites (highway, rural brooks and sewage works). Chapter Five 

describes the design of the filter unit, followed by the experimental protocol for 

sampling and analysing metals. Details of the media adsorption studies are also 

presented. 

 

Chapter Six presents and discusses the results which have been obtained during 

field work as well as by laboratory study, including filtration and adsorption. The 

chapter begins with a description of difficulties encountered with experiments. 

Comparison and contrasts are made with the findings of previous related research 

as reviewed in Chapter Two. 

 

Chapter Seven presents the conclusions of the study and proposes a plan for 

future research in this field. Appendices and References are attached at the end of 

the thesis. 
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CHAPTER 2  
 
LITERATURE REVIEW ON THE PRESENCE AND BEHAVIOUR OF METALS IN 
STORMWATER RUNOFF 
 

2.1 INTRODUCTION 
 
Stormwater road runoff contains contaminants that are both dissolved and bound 

to particulates. Many of these contaminants are potentially hazardous and are 

likely to have adverse effects on the receiving water bodies. Some previous 

literature, for example, has suggested that road runoff could contribute up to 75% 

of total metals to a receiving water body (USEPA, 1996). In future there will be 

increased attention paid to pollutants derived from road transport, both as a result 

of the Water Frame Directive (WFD) and as a result of the awareness of 

transport‟s major contribution to total environmental emissions.  

 

This review is divided into two subsections: one to cover the sources of metals and 

the second to examine the reactions and behaviour of metals once in the 

environment. The major influences on metal concentrations reported in the 

literature are: season, rainfall intensity, the duration of the antecedent dry weather 

period (ADWP) and first flush. These data are compared and contrasted between 

papers and reports. 

 
2.2 SOURCES OF METALS 
 
Urban activities generate pollutants which build up on surfaces throughout the 

watershed. When rain is precipitated, the pollutants that have accumulated on the 

surface wash off and flow via the drainage system into the nearest water body. 

Stormwater runoff volumes in urban areas are higher than in rural areas because 

of the impervious surfaces.  There will be variable amounts of dilution and 

therefore different environmental effects. Stormwater pollution also comes from 

point and non-point (diffuse) sources. This study is concerned with diffuse-source 

pollution from vehicles and roads but data has been presented comparing this with 

sewage work discharges to compare the relative environmental impact. 
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Over the past two decades, the term “heavy metals” has been widely used by 

different authors in their publications and even in legislation related to their 

potential harmful effects (toxicity and ecotoxicity). These metals have included 

cadmium (Cd), chromium (Cr), lead (Pb), copper (Cu), mercury (Hg), nickel (Ni) 

and zinc (Zn). There is no authoritative definition of heavy metals to be found in 

the ISO, EU, Environment Agency or Highway Agency environmental codes. As a 

consequence, this term has been used inconsistently, which has resulted in 

confusion about the meaning and therefore difficulty in accessing relevant papers 

through their titles. For example, the term “heavy metals” has also been applied to 

semi-metals (metalloids) such as arsenic (As). 

 

Duffus (2002) conducted a thorough review of current usage of the term “heavy 

metals”. His detailed list of 38 definitions, taken from different sources, was 

compiled in order to demonstrate that those definitions had no precise chemical 

meaning. He concluded that “… the term “heavy metals” is both meaningless and 

misleading” (Duffus, 2002, p.794) and “…the term “heavy metal” has never been 

defined by any authoritative body such as IUPAC” (Duffus, 2002, p. 804). To avoid 

this confusion he suggested classifying the impact of metals on the environment 

on the basis of their chemical properties. This could help to indicate the toxicity of 

metal species. The experimental studies conducted by Duffus were focused on the 

potential toxicity of metals and their compounds, which could be understood and 

assessed by their solubility and consequently bioavailability. The latter, however, 

also depends on biological factors such as take-up mechanisms and also on the 

interactions in surface waters to form, for example, organic ligands.  Metallic 

elements were then simply classified by their position in the periodic table.   

 

It is now widely recognised that highway runoff is one of the main contributors of 

metals to the environment. The toxicity of trace elements to a given species may 

vary according to the water hardness. The toxicity of metals varies over a wide 

range depending on the concentration of Ca. Appendix 2 contains a table with 

different concentration limits for zinc, copper and iron for different levels of water 

hardness.  

 



 23 

Table 2.1 summarises some current, general information about vehicular sources 

of metals. The data in the table suggests that the primary sources of these key 

metals are the friction components, namely brakes and tyres. It is also possible to 

make other suggestions. One is that vehicle corrosion is not an important source 

of pollution although another explanation is that few have investigated these 

metals; iron, for example, has not been of interest because of its low toxicity. 

 
  Table2.1 Vehicular sources of selected metals (number refers to reference source) 

 Pb Zn Cu Cr Cd Ni Fe 

Wear of vehicles‟ tyres and 
brake pads 

2; 3; 6  1; 2; 3;  
4; 5; 6 

 

1; 2; 3;   
4; 5; 6; 7 

 1; 3 7 6 

Corrosion of metal objects        

Petrol additives 1       

Lubrication oil  5   1   

Metal processing industry    1 1 1 1  

Hydrocarbon combustion 2    2   

Catalytic converter   2     

Diesel  2; 4 4  4 4  

1 - Makepeace (cited in Nouh, 2001); 2 - Chocat (cited in Dechesne et al., 2004); 3 - Davis et al., 
2001; 4 - Weckwerth ,2001; 5 – Harrison et al., 2003; 6 - Davis and McCuen, 2005; 7 - Prestes et 
al., 2006. 

 

A second conclusion from this summary of the literature is that little work has been 

done on spills and leaks of fuels and fluids. Lead in petrol is the exception. There 

has been no lead in petrol in Europe since 1990 but it is still allowed in other 

regions of the world. A number of studies (Makepeace [cited in Nouh, 2001]; 

Menkes and Fawcett, 1997; [Lead in gasoline – international pattern of use, n.d.]) 

present data about lead in petrol including the extent of use and sales. Studies 

between 1960 and 1970 (see Menkes and Fawcett, 1997) had demonstrated that 

the lead contained in gasoline was released into the environment, which was 

potentially hazardous, and policies were developed to reduce and eliminate lead in 

fuel. Hence, the amount of lead released into the atmosphere in Europe and USA 

has decreased sharply (O‟Neill, 1998; Weckwerth, 2001; Harrison et al., 2003).  

 

Similar results have been reported for water bodies. For example, Mosley and 

Peake (2001) have noted and concluded that Pb levels are continuing to decline in 

urban stormwater because of its exclusion from petrol. Lead salts are poorly 

soluble and the rate of decline in storm water could be a potential indicator of the 
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importance of solids and their size in flushing pollutants from the environment. 

Nonetheless, this problem still exists in some developing countries. For example, it 

has been concluded that in Curitiba (Brazil) the annual load of Pb derived from 

highways was greater than some other metals (0.5 kg/ha•year), compared to 

copper (Cu) (0.31 kg/ha•year) and cadmium (Cd) (0.008 kg/ha•year) (Prestes et al., 

2006).  Unfortunately this study did not provide any information about other, non-

vehicular sources of lead.  

 

 When studying pollution problems in Lagos, Nigeria, Ajibola et al. (2005) observed 

Pb inputs from a range of anthropogenic sources such as industrial and sewage 

effluents but they excluded traffic and highways. Unfortunately, the paper does not 

include enough information about either phase to which Pb was analysed or the 

analytical technique applied in this study, all of which makes further interpretation 

of their results unconvincing.  Leaded petrol is still sold in Nigeria (Asia et al., 2006) 

and, taking into account the data from Brazil, for example, it is likely that traffic is a 

major source of lead.  

 

Hardiyanto and Guzman (2008) found both Pb and Cd in white cabbage grown 

along a main road in Indonesia and pointed out that the source of these metals 

could be leaded petrol. Pb can accumulate in the soil and in the roots of 

vegetables, which is also attributable to the use of Pb-contaminated water for 

irrigation purposes (in this study the level of the total Pb in irrigation water was 

0.12 mg/l). The maximum concentration (rather than mean values) of Cd in the two 

studied areas was 0.42 µg/g of d.w. and 0.75 µg/g of d.w. with 7680 vehicles per 

day. The same opinion about the various origins of Pb was expressed by 

Muwanga and Barifaijo (2006). Moreover, they also ascribed the presence of Pb to 

other sources, such as slag used as a sub-base for road buildings and left on 

industrial sites. Cd and Pb are two of the most toxic metals used in vehicles but 

other less toxic metal emissions are also present (Table 2.1) and these may still 

represent a hazard if they accumulate.  

 

Fig. 2.1 represents the proportions of the metals reportedly derived from each of 

the three major sources: tyre wear, brake wear and the roofs of buildings: 
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a) 

 

b) 

 
                                       c) 

 
Fig. 2.1 Sources of metals (adapted from Davis et al., 2001) 

 

From these figures it is apparent that brake emissions from vehicles were the 

major source of copper. Brake linings were indicated as the major contributor of 

both particulate and soluble copper (Weckwerth, 2001). 

 

Zinc was deposited as a result of tyre wear. By simultaneously measuring the size 

of copper and zinc particles in the aerosol samples (Weckwerth, 2001) it was 

shown that that the Zn concentration in the fine fraction (< 2.5 um) was 2-3 times 

higher compared to the coarse fraction. It was concluded therefore that the main 

proportion of Zn was derived from the condensation and re-precipitation of volatile 

fine particles containing Zn rather than directly from tyre debris. Another study was 

conducted by Harrison et al. (2003) which suggested that the fine particles of Zn 

arose from engine exhaust or from other high-temperature non-traffic sources, 

rather than tyres. Washoff from roofs and street furniture was also found to be a 

major contributor to zinc and copper levels (Davis and McCuen, 2005). 
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2.3 POLLUTANT LEVEL DETERMINATION IN RUNOFF 
 

Interpretation of pollution concentration data from highway runoff is a complex 

problem involving as it does weather conditions, environmental interactions and 

the type of highway. Some previous work has addressed this problem of obtaining 

representative and reproducible samples (Lee et al., 2010). The results reported in 

the literature are also based on a number of different measurement and analytical 

techniques. However, numerical modelling of the input can be more difficult 

because of the variability and unpredictability in the magnitude and frequency of 

rainfall events. This, therefore, complicates calculations of mass in the runoff.  

 
2.3.1 Grab Sample Measurements 
 
The most convenient, simplest and least costly water quality measurements have 

been conducted through „grab samples‟ taken at various times during a rainfall 

event. Grab samples provide only an instantaneous measurement, but a series of 

grab samples can be used to obtain a pollutograph, i.e. to plot a curve that 

represents the pollutant concentration during a whole rainfall event.  For example, 

this type of sampling programme has been used to identify the „first flush‟ (Lee et 

al., 2004).  Lee et al. (2004) hypothesised that when metal behaviour was being 

studied, such as the distribution between dissolved and particulate forms of a 

metal, then composite samples may age and disguise the original speciation 

present at sample collection. Grab samples were also shown to be useful in 

describing flow behaviour and concentration dynamics (pattern) by Wong et al. 

(1997).  

 

Some authors consider that a limited number of grab samples may be used when 

providing an indication of pollutant concentration during dry weather when 

conditions are at steady state. They can also be useful for investigating long-term 

water quality trends, when it would be possible to take a large number of samples 

over several years and seasons. One of the main drawbacks of collecting grab 

samples, however, is that a large number of samples may be needed to provide 

adequate statistical information about the pollutant load carried by runoff (Davis 

and McCuen, 2005).  
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2.3.2 Composite Sample Measurements 
 
Flow composite sampling enables more precise analysis to be conducted and a 

better understanding of the mass of pollutants transported in runoff to be achieved. 

In this way, it is not only the concentrations of pollutants that are measured (as in 

the case of grab samples), but information is also obtained about the variations in 

flow rate. This composite parameter, which is known as event mean concentration 

(EMC), is defined as the pollutant load washed off by a rainfall event divided by 

the event runoff volume (Davis and McCuen, 2005): 

 














n

i

ii

n

i

iii

tQ

tQC

EMC

1

1                                                                   (2.1) 

where iC  is the individual measurement of the concentration; iQ  is the flow rate at the 

time concentration iC  was measured and it  denotes the time intervals associated with 

iC measurements. 

 

There are also automatic samplers which can be programmed not at flow intervals 

but at time-based intervals. However, Poissant and Beron (1992), analysing 

rainfall events in Montreal, found that while observing rainfalls with low intensities, 

there is a risk that the time between two samples might be too small to collect a 

sufficient volume for chemical analysis. On the other hand, with rainfalls of high 

intensities, bottles might easily overflow. 

One of the conclusions of this thesis (see Chapter 7.0) is devoted to sampling 

procedure and it is inferred that for the analysis of metals, especially in their 

dissolved forms, grab sampling could be more effective, although it is laborious. 

     
2.4 METALS IN HIGHWAY AND URBAN RUNOFF 
 
Table 2.2 summarises some previous work selected to demonstrate metal 

concentrations found in highway and urban runoff. The shaded rows represent 

runoff from residential and commercial areas as opposed to trunk roads. Analysis 

of the data in the table suggests that the level of metals will depend on a number 

of key factors which are summarised in Table 2.3 and described in detail in this 

chapter.
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Table 2.2 Concentrations of some metals in highway and urban runoff and digestion procedure for total metal recovery  
Metal Ctot,  ppm Cdis,  ppm fdis TSS, ppm Number of 

vehicles/day 
Catchment area 
description 

Sampling 
technique 

 Digestion 
procedure 

Metals’ 
analyser 

Reference 

Fe 0.1 Not defined - Not clearly 
defined 

Not defined Three sites with area 
936; 1.120; 1.170 m

2
.  

Grab samples Not defined ICP-MS Maniquiz et 
al., 2009

 

3.419 0.211 0.064 86.9 Urban runoff 170 ha Grab samples were 
collected by hand 

Hot plate (2mL 
of HNO3) 

GFAAS; 
ICP-AES 

Mosley and 
Peake, 2001 

8.0 Not defined - Not 
defined 

450-45000 Residential and 
commercial areas 

Self-sealing sampler 
fixed next to  a road 

Acid digestion ICP-OES Apul et al., 
2010 

summer 1.03 – 19.3  0.017 – 0.058 0.017 -0.003 14 - 520 120000 13,700 m
2
; 9 events Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3 

Not defined ICP-SFMS Hallberg et al., 
2007 

winter 0.41 – 226  0.01 – 0.017 0.024 -8*10
-5 

13 - 4800 

Pb 0.02 Not defined -  Not defined Three sites with area 
936; 1.120; 1.170 m

2
 

 Not defined ICP-MS Maniquiz et 
al., 2009

*
 

~ 0.030 ~ 0.0008 0.027 ~ 50 9000 1.300 m
2
. Grab samples were 

collected by hand 
Microwave 
digestion 

DPASV Prestes et al., 
2006 

0.023 Not defined - 114.58 23647 – 83579 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Crabtree et 
al., 2006 

0.038 0.0038 0.1 243.87 5000 - 200000 30 sites; 340 events Not defined Not defined Not defined Crabtree et 
al., 2008 

0.016/0.154 0.0008/0.0009 0.05/0.006 61/517 20000 2000 m
2
; winter/thawing Not defined Not defined Not defined Frimmel et al., 

2007 

0.042 0.002 0.048 226.9 Runoff from the site 
for handling and 
storage oil products 

1200 m
2
 covered by 

asphalt 

Samples were 
collected at 5 min 
frequency  

Not defined Not defined Berretta et al., 
2008 

0.113 Not defined - 425 18000 2300 m
2 Samples were taken 

both by sampler and 
manually. Bubbler 
flow meter was 
installed. 

Not defined Not defined Dierkes et al., 
2008 

0.036 0.003 0.08 86.9 Urban runoff 170 ha Grab samples were 
collected by hand 

Hot plate (2mL 
of HNO3) 

GFAAS; 
ICP-AES 

Mosley and 
Peake, 2001 

Not defined 0.013/0.005 - 140/19 Road runoff/ roof 
runoff  

 University of Genoa; 
2800 m

2 

Automatic sampler; 
samples were collected 
at 5 min intervals 

- Not defined Gnecco et al., 
2005 

0.12 Not defined - Not 
defined 

6240 - 7680 Road along white 
cabbage plantation  

Grab samples Hot plate (5 mL 
of HNO3) 

AAS Hardiyanto 
and Guzman, 
2008 

0.08 Not defined - Not 
defined 

450-45000 Residential and 
commercial areas 

Self-sealing sampler 
fixed next to  a road 

Acid digestion ICP-OES Apul et al., 
2010 
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Continuation of Table 2.2 

Metal Ctot,  ppm Cdis,  ppm fdis TSS, ppm Number of 
vehicles/day 

Catchment area 
description 

Sampling 
technique 

Digestion 
procedure 

Metals’ 
analyser 

Reference 

Pb 0.14 Not defined - 762 25755 14184 m
2
  

kerb and gully;  
42 events 

Samples were collected 
proportionally to volume 
of runoff passing the 
measuring section 
which was determined 
experimentally 

Not defined AAS Desta et al., 
2007 

summer 0.002 – 0.05 9*10
-5

 – 2*10
-4 0.045 –0.004 14 - 520 120000 13,700 m

2 
; 9 events Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3
 

Not defined ICP-SFMS Hallberg et al., 
2007 winter 0.001 – 0.296 9*10

-5
 – 1.7*10

-4
 0.09 - 6*10

-4 
13 - 4800 

Cd 0.003 Not defined -  Not defined Three sites with area 
936; 1.120; 1.170 m

2
 

Grab samples Not defined ICP-MS Maniquiz et 
al., 2009 

~ 0.0015 traces - ~ 50 9000 1.300 m
2
. Grab samples were 

collected by hand 
Microwave 
digestion 

DPASV Prestes et al., 
2006 

0.0005 Not defined - 114.58 23647 – 83579 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Crabtree et 
al., 2006 

0.00063 0.00026 0.41 243.87 5000 - 200000 30 sites; 340 events Not defined Not defined Not defined Crabtree et 
al., 2008 

summer 4*10
-5
 – 2*10

-4 
3*10

-5
 – 5*10

-5 
0.85 – 0.25 14 - 520 120000 13,700 m

2 
; 9 events Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3 

Not defined ICP-SFMS Hallberg et al., 
2007 

winter 6*10
-4
 – 0.002 1.5*10

-4
 – 2*10

-4 
0.25 – 0.1 13 - 4800 

Cu 0.12 Not defined - 762 25755 14184 m
2
  

kerb and gully;  
42 events 

Samples were collected 
proportionally to volume 
of runoff passing the 
measuring section 
which was determined 
experimentally 

Not defined AAS Desta et al., 
2007 

0.1 Not defined - Not defined 450 – 45000  Residential and 
commercial areas 

Self-sealing sampler 
fixed next to  a road 

Acid digestion ICP-OES Apul et al. 
2010 

summer 0.006 – 0.221 0.002 – 0.023 0.34 – 0.104 14 - 520 120000 13,700 m
2
 Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3
 

Not defined ICP-SFMS Hallberg et al., 
2007 winter 0.005 – 1.216 0.002  - 0.023   0.4 – 0.019 13 - 4800 
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Continuation of Table 2.2  
Metal Ctot,  ppm Cdis,  ppm fdis TSS, ppm Number of 

vehicles/day 
Catchment area 
description 

Sampling 
technique 

Digestion 
procedure 

Metals’ 
analyser 

Reference 

Cu 0.2 Not defined - Not clearly 
defined 

Not defined Three sites with area 
936; 1.120; 1.170 m

2
 

Grab samples Not defined ICP-MS Maniquiz et 
al., 2009 

0.041 0.021 0.51 114.58 23647 – 83579 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Crabtree et 
al., 2006 

0.091 0.031 0.34 243.87 5000 - 200000 30 sites; 340 events Not defined Not defined Not defined Crabtree et 
al., 2008 

Not defined 0.011 - 32 More than 30000 A74 (M) Not defined - Not defined McNeill and 
Olley, 1998 

0.153/0.83 0.023/0.064 0.15/0.08 61/517 20000 2000 m
2 

Not defined Not defined Not defined Frimmel et 
al., 2007 

0.072 0.025 0.35 226.9 Runoff from the site 
for handling and 
storage oil products 

1200 m
2
 covered by 

asphalt 
Samples were 
collected at 5 min 
frequency 

Not defined Not defined Berretta et 
al., 2008 

0.279 Not defined - 425 18000 2300 m
2 Samples were 

taken both by 
sampler and 
manually. Bubbler 
flow meter was 
installed. 

Not defined Not defined Dierkes et al., 
2008 

0.023 0.01 0.43 86.9 Urban runoff 170 ha Grab samples were 
collected by hand 

Hot plate  
(2mL of HNO3) 

GFAAS; ICP-
AES 

Mosley and 
Peake,2001 

Not defined 0.019/0.010 - 140/19 Road runoff/ roof 
runoff 

University of Genoa; 
2800 m

2
 

Automatic sampler; 
samples were 
collected at 5 min 
intervals 

- Not defined Gnecco et 
al., 2005 

Ni 0.025 Not defined - Not clearly 
defined 

Not defined Three sites with area 
936; 1.120; 1.170 m

2
 

Grab samples Not defined ICP-MS Maniquiz et 
al., 2009

*
 

0.005 Not defined - 114.58 23647 – 83579 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Crabtree et 
al.,2006 

0.010 Not defined - 243.87 5000 - 200000 340 events; 30 sites Not defined Not defined Not defined Crabtree et 
al.,2008 

0.011/0.042 0.0083/0.0067 0.75/0.16 61/517 20000 2000 m
2
; 

winter/thawing 
Not defined Not defined Not defined Frimmel et 

al., 2007 
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Continuation of Table   2.2 

Metal Ctot,  ppm Cdis,  ppm fdis TSS, ppm Number of 
vehicles/day 

Catchment area 
description 

Sampling 
technique 

Digestion 
procedure 

Metals’ 
analyser 

Reference 

Ni 0.256 0.075 0.29 226.9 Runoff from the site 
for handling and 
storage oil products 

1200 m
2
 covered by 

asphalt 
Samples were 
collected at 5 min 
frequency 

Not defined Not defined Berretta et al. 
(2008) 

0.03 Not defined - Not 
defined 

450 – 45000  Residential and 
commercial 

Self-sealing 
sampler fixed next 
to  a road 

Acid digestion ICP-OES Apul et al. 
2010 

summer 10
-4

 – 0.015 Not clearly 
defined 

- 14 - 520 120000 13,700 m
2
; 9 events Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3 

Not defined ICP-SFMS Hallberg et 
al. (2007) 

winter 7*10
-4
 – 0.151 Not clearly 

defined 
- 13 - 4800 

Cr 0.006 Not defined - Not clearly 
defined 

Not defined Three sites with area 
936; 1.120; 1.170 m

2
 

Grab samples Not defined ICP-MS Maniquiz et 
al. 2009 

0.007 Not defined - 243.87 5000 - 200000 340 events; 30 sites Not defined Not defined Not defined Crabtree et 
al. (2008) 

0.011/0.071 0.0016/0.0104 0.15/0.15 61/517 20000 2000 m
2
; 

winter/thawing 
Not defined Not defined Not defined Frimmel et 

al., 2007 

summer 0.0016 - 0.045 Not clearly 
defined 

- 14 - 520 120000 13,700 m
2
; 9 events Samples were 

collected when the 
flow exceeded 1 
m

3
/hr for every 

volume of 4 m
3 

Not defined ICP-SFMS Hallberg et 
al. (2007) 

winter 0.057 – 0.366 Not clearly 
defined 

- 13 - 4800 

Pt 0.004 Not defined - 114.58 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Not defined Crabtree et 
al. (2006) 

Pl 0.0004 Not defined - 114.58 6 sites; 60 events: 
4133 – 58600 m

2
. 

Not defined Not defined Not defined Not defined Crabtree et 
al. (2006) 
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Continuation of Table 2.2 
Metal Ctot,  ppm Cdis,  ppm fdis TSS, ppm Number of 

vehicles/day 
Catchment area 
description 

Sampling 
technique 

Digestion 
procedure 

Metals’ 
analyser 

Reference 

Zn 0.2 Not defined - Not clearly 
defined 

Not defined Three sites with 
area 936; 1.120; 
1.170 m

2
 

Grab samples Not defined ICP-MS Maniquiz et al. 
2009

*
 

0.140 0.057 0.41 114.58 23647 - 83579 6 sites; 60 events: 
4133 – 58600 m

2 
Not defined Not defined Not defined Crabtree et al. 

(2006) 

0.352 0.112 0.32 243.87 5000 - 200000 340 events; 30 
sites 

Not defined Not defined Not defined Crabtree et al. 
(2008) 

0.029 Not defined - 32 More than 30000 A 74 (M) Not defined Not defined Not defined McNeill and 
Olley (1998) 

0.296/1.721 0.231/0.288 0.78/0.16 61/517 20000 2000 m
2
; 

winter/thawing 

Not defined Not defined Not defined Frimmel et al., 
2007 

0.68 Not defined - 425 18000 2300 m
2 Samples were taken both 

by sampler and 
manually. Bubbler flow 
meter was installed. 

Not defined Not defined Dierkes et al. 
(2008) 

0.415 0.055 0.13 226.9 Runoff from the site for 
handling and storage oil 
products 

1200 m
2
 covered by 

asphalt 

Samples were collected 
at 5 min frequency 

Not defined Not defined Berretta et al. 
(2008) 

0.279 0.131 0.47 86.9 Urban runoff 170 ha Grab samples were 
collected by hand 

Hot plate  
(2mL of HNO3) 

GFAAS; ICP-
AES 

Mosley and 
Peake (2001) 

Not defined 0.081/0.447 - 140/19 Road runoff/ roof runoff University of 
Genoa; 2800 m

2
 

Automatic sampler; 
samples were collected 
at 5 min intervals 

- Not defined Gnecco et al 
(2005) 

0.12 Not defined - Not defined 450 - 45000 Residential and 
commercial  

Self-sealing sampler 
fixed next to  a road 

Acid digestion ICP-OES Apul et al. 
(2010) 

0.66/0.07 0.04/0.05 0.061/0.72 762/49 25755/18429 14184 m
2
 (kerb and 

gully)/ 9600 m
2
 (filter 

drain); 42 events 

Samples were collected 
proportionally to volume 
of runoff passing the 
measuring section which 
was determined 
experimentally 

Not defined AAS Desta et al. 
(2007) 

summer 0.023 – 0.643 0.008 – 0.12 0.35 – 0.19 14 - 520 120000 13,700 m
2
;  

9 events 

Samples were collected 
when the flow exceeded 
1 m

3
/hr for every volume 

of 4 m
3
 

Not defined ICP-SFMS Hallberg et al. 
(2007) winter 0.021 – 5.71 0.008 – 0.12 0.35 – 0.02 13 - 4800 
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The UK Highways Agency suggests that the main factors affecting metal 

concentration in runoff are traffic flow, climate, antecedent dry weather periods 

(ADWP) and rainfall characteristics (Crabtree et al., 2006; Crabtree et al.,2008). 

Analysis of the literature presented here suggested that the sampling procedures 

and analytical techniques employed are also important. Our research data (see 

section 6.1) confirmed this by showing that the digestion procedure used for metal 

recovery affected total metal concentrations and consequently the ratio of the 

dissolved fraction of the metals fdis. This had not been discussed in the literature 

previously and it is analysed further in this chapter (section 2.7.2).  

 

Most of the studies also failed to define precisely the methods used for sample 

collection or the preparation and analysis of metals. In the majority of studies a hot 

plate was used for total metal recovery, apart from Prestes et al. (2006), where 

microwave digestion was used. One of the conclusions of this thesis (Chapter 7.0) 

is that this could potentially be a problem when chemical and eco-toxicity data are 

interpreted. An objective of this thesis was thus to identify suitable analytical 

methods for measuring the concentration of metals in relation to their mobility in 

the environment (soluble and total speciation).   

 

Table 2.2 also shows that there is little information about Fe, due to its low toxicity 

(EQS for Fedis = 1mg/l) (Council of European Communities, 1976), even though 

the literature has suggested that Fe will occur in comparatively high concentrations 

in urban runoff compared to copper and zinc as a result of vehicle wear and its 

general usage (Davis and McCuen, 2005). 

Table 2.3 Key factors affecting metal analysis results 

Rainfall 
characteristics  

Type of area Digestion procedure Metal analyser 

• ADWP 

• rainfall intensity and 
duration 

• highway 
  
• urban  

• hot plate 

•microwave digestion 

• ICP; ICP-MS 

• GFAAS 

 

The toxicity of the other metals listed is more of a problem. They will be toxic at 

lower concentrations to humans, plants or invertebrates. For example, the usual 

indicators of metals in highway runoff are Cu and Zn, as noted above (section 2.2). 

One can see (Table 2.2) that the concentration ranges for these metals are wide 
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(Crabtree et al., 2006; Crabtree et al., 2008; Dierkes et al., 2008). The study 

conducted by Frimmel et al. (2007) showed that snow and the consequent runoff 

as it thawed gave the highest metal concentrations by comparison with rain runoff, 

even though the area under investigation did not experience a high level of 

automobile use (20,000 vehicles per day, compared to 120,000 at the M1 test 

site). A possible explanation, as suggested by this thesis (section 6.2), is that the 

de-icers or the high temperature fluctuations cause accelerated corrosion but 

neither of these was noted by the author.  

 

It can be noted from Table 2.2 that the values of pollutants reported in these works 

depended on the location of the sampling points. Thus, in some cases, pollutant 

concentrations were measured after the runoff had passed through a pre-

treatment system (Mosley and Peake, 2001; Prestes et al., 2006), although the 

type of system was not always clearly defined. In some cases, the values quoted 

pertain to runoff after it had undergone more complex treatment, such as in an 

interceptor and lagoon (CIRIA, 2000; Crabtree et al., 2006). Crabtree et al. (2006) 

made a comparison of metals, relating PAH and TSS removal to different types of 

treatment system, including oil separator/lagoon, oil separator/dry balancing pond 

or ditch with filter drain and oil trap manhole/sedimentation tank. The best pollution 

removal efficiency was observed with a combination of a bypass oil separator and 

a lagoon. Thus, for example, TSS values decreased 37% after the oil separator 

and 36% after the wet balancing pond. The oil trap manhole did not show any 

effectiveness in TSS removal, while the sedimentation tank provided 41% removal 

of metals affiliated with TSS particles. However, the sedimentation tank did not 

perform well in terms of PAHs removal. The dry balancing pond demonstrated 

poor reduction of metals (only 12%). This paper was the only one which showed 

the importance of defining the place of sampling as well as the type of treatment 

system used.        

 

The data obtained (Gnecco et al., 2005) from road runoff indicated higher metal 

concentrations than other diffuse sources of stormwater, for example, roof runoff.  

The exception to this could be zinc, which on occasions had a much higher 

concentration in roof runoff compared to road runoff. Gnecco et al. (2005) reported 
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the highest concentration of Zn of all the reported studies and this was due to the 

wash-off of corrosion particles from galvanised roofs or zinc gutters.  

 
2.5 METALS IN TREATED SEWAGE 
 
Estimates of all the metal inputs into an environmental area or catchment are 

rarely found in the literature. Within most catchments sewage or industrial effluent 

treatment works represent an identifiable point source, even though the sewage 

work effluents will integrate contributions from a number of sources in the 

catchment. For example, in the UK, at least, the contents of most sewerage 

systems are combined with runoff from urban roads, industrial effluents and 

domestic waste water. Therefore, sewage work effluents have been studied more 

than the other potential inputs; for example, no literature was found on metals from 

diffuse agricultural sources, even though artificial fertilizer and animal wastes are 

known to contain metals. Most work is confined to sludges and slurry. There is 

also very little information on the inputs from minor rural roads and navigation 

canals, although problems with the tin and copper used to protect boats have been 

reported (Matthiessen et al., 1999). Discharges to sewers from industrial 

processing are regulated, monitored and reported but an analysis of this 

contribution was beyond the scope of this thesis.  

 

Bubb and Lester (1995), for example, suggested that under normal flow conditions 

sewage effluent could average between 2 and 20% of the total volume of many 

UK rivers but under dry weather flow conditions sewage effluent can constitute up 

to 100% of the flow. This dilution is crucial to the toxicity and the achievement of 

the EQS (Veen et al., 2002). This literature review, therefore, has shown that there 

is a scarcity of data concerning the amount (proportion) of metals in surface 

waters that is derived from the following three sources: sewage work effluents, 

urban and agricultural runoff. An objective of this thesis was thus to compare metal 

concentrations in treated sewage with the concentrations obtained from the M1 in 

order to identify the major source of metals in the catchment. The same opinion 

about the lack of data was expressed by Sweeney and Saundo-Wilhelmy (2004) 

who noted that there had been almost no previous information on the sources of 

metals in sewage effluent in the USA. They reported that the most recent studies, 
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conducted before their own research, had been devoted to Hg levels in the New 

York catchment area. No measurements of the other potentially hazardous metals 

had been obtained prior to theirs.  

 

Table 2.4 summarises selected, relevant findings from recent works on metals 

found in treated sewage. On analysing the table some trends become apparent. 

The ranges of key metals, i.e. Fetot (0 – 0.4 mg/l), Cutot (0.008 – 0.33 mg/l) and 

Zntot (0.01 – 0.27 mg/l), are quite similar to those reported from highway runoff 

(Table 2.2). There is usually a combination of sources of metal pollutants in natural 

water. Matthiessen et al. (1999), for example, conducted research on the potential 

sources and effects of copper and zinc in Essex and Suffolk river estuaries. It was 

concluded that some sewage work effluents contributed a significant proportion of 

these metals, although the largest source was always the boating traffic. In this 

case antifouling paints were responsible for copper and sacrificial anodes for zinc. 

However, it was also recognised in the paper that it was a challenge to define the 

precise share of the pollutants deriving from sewage treatment works because of 

the coincidence of urban sampling stations (sources). Many sewage work outfalls 

were in the same vicinity as harbours and boat moorings and direct surface runoff 

drains.  

Karvelas et al. (2003) also attempted to analyse possible sources of metals in 

sewage. They found that Fe was in the highest concentration, followed by Zn, 

which might have implied specific sources of these elements (e.g. pipe work, 

corrosion protection and cosmetics). The authors concluded that the proportion of 

metals removed during the different stages of the treatment process depended on 

their solubility. The distribution of metals between their total and dissolved forms 

varied according to the metal in question; for example, more than 80% of Ni was in 

its dissolved form and more than 90% of Pb in its bound, insoluble form. Karvelas 

et al. (2003) also concluded that most of the Cu ended up in the sludge (~70%), 

whereas 63% of Fe remained in the treated effluent. The other metals analysed 

showed a more even distribution, with 50% of their daily input to the sewage works 

being present in the sludge and the other 50% being released with the final 

effluent. However, the calculations were made on the assumption that there were 

no losses by volatilization. This work would have been even more valuable to the 
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Table 2.4 Concentrations of some pollutants in treated sewage  
Pollutant, 

mg/l 
Measured values, mg/l 

Karvelas et 
al.,2003 

Kim et al., 
2002 

Matthiessen 
et al., 1999 

Emongor et al., 
2005 

Bond, 2001 Bubb and 
Lester, 1995 

Sweeney and Sanudo-
Wilhelmy, 2004 

Muwanga and 
Barifaijo, 2006 

TSS 12.0 < 30 No data 56.0
 

< 25
 

4.2 No data  
 

No data
 

3.6 

Cu tot 0.033
 

0.07 – 0.33
 

No data
 

No data 0.008 – 0.036 0.0173 No data   No data 

0.029 

Cu dis 0.010 No data 0.005 – 0.02 No data No data 0.0146 0.0014 0.01 

0.009 0.02 

Cr tot 0.02
 

0 – 0.064
 

No data No data 0.005 – 0.009 No data No data   No data 

Cr dis 0.002 No data No data No data No data No data No data   Less than 0.01 

Less than 0.01 

Fe tot 0.38
 

0 – 0.116 No data 0.623 No data 0.06 No data   No data 

0.14 

Fe dis 0.152 No data No data No data No data 0.041 No data   No data 

0.042 

Ni tot 0.043
 

0.42 – 0.87
 

No data
 

No data <0.005 No data No data   No data 

Ni dis 0.034 No data No data No data No data No data No data   0.05 

0.13 

Pb tot 0.027 No data No data No data No data 0.00185 No data   No data 

0.00245 

Pb dis 0.002 No data No data No data No data 0.000075 4x10
-5 

0.22 

0.000087 0.26 

Zn tot 0.27
 

0.10 – 0.56
 

No data
 

0.25 0.01 – 0.037
 

No data
 

No data  
 

No data
 

Zn dis 0.054 No data 0.01– 0.04 No data No data No data No data   0.02 

0.06 
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Continuation of Table 2.4 

 Karvelas et 
al.,2003 

Kim et al., 2002 Matthiessen 
et al., 1999 

Emongor et al., 
2005 

Bond, 2001 Bubb and Lester, 1995 Sweeney and 
Sanudo-

Wilhelmy, 2004  

Muwanga and 
Barifaijo, 2006 

Sewage work 
capacity, 
m

3
/day 

120000 – 
150000 

Not defined 500 – 53000 40000 343 – 2881 11124 (mean)/9500 (DWF) 18 WWTP 
4.4x10

6
 

Not defined 

5566 (mean)/4700 (DWF) 

Sources of 
metals 

Up to 10% - 
small 
enterpr.; 
traffic related 
pollution 

70% - industrial 
wastewater  

Boat traffic; industrial 
sources 

industrial Not defined Domestic waste water;  
metal processing  

Domestic wastes 
and some 
industrial 

discharges 

Skin and hides 
factory; spillage 
from leaded fuel 

Treatment 
process 

Activated 
sludge 

Activated sludge Not defined Activated sludge Activated 
sludge; 

biological 
filter; oxidation 

ditch 

Primary sedimentation 
Percolating filter 

Not defined Not defined 

Primary sedimentation 
Activated sludge treatment 

Discharging 
area 

Thermaikos 
Gulf  

(sea water) 

Not defined Estuaries (mainly sea 
water) 

For irrigation 
purposes 

Not defined Pix Brook (tribut. of River 
Ivel) 

East River 
 (sea water) 

Lake Victoria 
basin 

River Ivel (tribute. of River 
Ouse) 

Country Greece Singapore UK Botswana UK UK USA Uganda 

Digestion 
technique 

Aqua regia 
(APHA, 
1989) 

Not defined Not defined 5 ml of distilled 
water and HCl 
followed by 5 ml 
of HNO3 (pre-
treatment) Water 
bath ~ 80°C            

Not defined Not defined Organic 
extraction 

Not applicable 

Metals’ 
analyser 

AAS and 
GFA 

Perkin-Elmer ICP Not defined Microprocessor 
controlled LED 
sourced filter 
photometer 

Not defined AAS AAS AAS 
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objectives of this thesis if the sampling procedure had included information on flow 

or weather conditions. The observation that the proportion of metals was 

increased by the first flush of stormwater, as noted later in this chapter, needs to 

be supported by information from a wider variety of sources.  

 

Bubb and Lester (1995) studied the influence of sewage work effluents on the 

aquatic environment. Their paper refers to metal concentration data obtained 

upstream and downstream of the discharge as well as the flow rates of the 

receiving water. This enabled the analysis of the effect of treated sewage on the 

river to be performed, taking account of a dilution factor. The average flow rate in 

the stream (Pix Brook, Letchworth) was obtained from a mass balance equation 

calculated from the quantity of chloride in the sewage effluent, which was known 

as a „conservative tracer‟. The results showed that the Letchworth STW 

constituted 82.6% of the Pix Brook flow and that it was therefore the major 

contributor of Cu and Fe. In another case study, however, the dilution capacity of 

the River Ivel below a STW (Poppy Hill) was impossible to calculate because of a 

range of tributaries that formed a confluence near the STW. Nevertheless, the 

data showed that the Poppy Hill STW effluent had a much lower impact on the 

water environment than the Pix Brook and Letchworth STW. This was explained 

by the large degree of dilution available in the river compared to the stream. The 

actual data from this paper is included for comparison with our data in the 

Discussion section. 

 

The same conclusion concerning dilution can be drawn from the study conducted 

by Sweeney and Saundo-Wilhelmy (2004). The concentration data presented in 

their work (see Table 2.4) are low by comparison with previous work, which 

implies an enormous dilution even in the heavily urbanised area of the East River, 

New York. The data for Pb concentration showed a distinct high-to-low trend in the 

East River when compared to the river in the less densely populated area of Long 

Island Sound (LIS). Other metals such as Cd and Cu did not show this pattern, 

which suggests that sewage effluents were not the only source of these metals in 

the relatively suburban LIS. However, the metals measured in this paper were 

collected from sea water and analysed using liquid-liquid organic extraction, which, 
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as the literature review has suggested, could be another explanation for such low 

values, apart from massive dilution. These sea water matrices would be expected 

to demonstrate the effects of a different environment from fresh water and are 

really beyond the scope of this thesis.  

 

Veen et al. (2002) conducted research into the fate, behaviour and toxicity of 

copper in sewage effluent after its discharge. Receiving waters were chosen with 

different levels of hardness (from 100 to 340 mg/l CaCO3) according to the EQS, 

which allows the permissible level of metals to increase in proportion to water 

hardness. It was found that the total metal concentration was correlated to the 

organic matter (DOC concentrations) which was thought to generate ligands for 

metal binding.  Upstream of the sewage work discharge, where the DOC 

concentration was also lower, such a relationship was not evident. The authors 

also noted that even after mixing with river water the ligands present in the 

sewage effluents were resistant to degradation within a 10-day test period. Most 

rivers in the UK have retention times of less than 5 days. Unfortunately, this paper 

does not contain any information about the relative flow rates of the receiving 

water bodies compared to the flow rates of the STWs. If this data had been 

available, then it would have been possible to calculate the relative contribution by 

the sewage effluent to the total metal content of the receiving waters. The DOC 

was conserved and augmented the bioavailability of the copper. Dissolved copper, 

because of its low reactivity, would be a good tracer for modelling mass balance of 

dissolved metals in the river.  

 

Another problem encountered with most of the literature reviewed (Bond, 2001; 

Kim et al., 2002) was that it  usually fails to indicate whether the value is measured 

as total or soluble metal, although in some cases this can be deduced from the 

analytical techniques reported. Most frequently it was found to be soluble metal 

because its analysis is much easier to perform. This could be a major flaw in the 

respective models because in the natural environment there could be a re-

adjustment of the equilibrium between the solid and liquid phases.   
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Despite these limits to the data analysis, the results reported (Table 2.4) 

demonstrated that given the total volume of sewage discharged (which is 20 M 

tonnes/day in the UK) and the general similarity in the range of concentrations, 

those effluents could contribute greater amounts of metals than highway runoff. 

The environmental impact of the urban sewage works will depend on the dilution 

available (which itself depends on the location of the sewage works), as well as 

the proportion of industrial and urban runoff. Kim et al. (2002), for example, 

reported on sewage which consisted of 70% industrial wastewater (see Table 2.4). 

The Ni concentration was the highest concentration found in all the literature 

reviewed of either the treated sewage (Table 2.4) or highway runoff (Table 2.2). 

The Nitot was between 0.42 and 0.87 mg/l, which compared with that derived from 

the runoff from a contaminated industrial site which handled and stored oil 

products (Berretta et al., 2008; Table 2.2). These results could be anticipated, 

since the source of these relatively high metal inputs was industry. Total Zn 

concentrations ranged from 0.10 to 0.56 mg/l (Kim et al., 2002) and, again, these 

concentrations are typical of industrial activity and result from galvanisation and 

the presence of cleaning products. The exception to the mean tabulated data from 

highway runoff was found in the previously mentioned paper by Frimmel et al. 

(2007) where the thawing snow and ice runoff gave a high total Zn concentration 

(1.721 mg/l) together with a high TSS of 517 mg/l. 

 

Muwanga and Barifaijo (2006) investigated the impact of urban activities on the 

Lake Victoria basin and analysed metals in their dissolved forms. The 

concentrations of all the metals examined, apart from Zn, were also at high values 

compared to those found elsewhere in the literature and they are summarised 

separately in Table 2.4. The analysis of this data suggests that the STW does not 

cope with the pollutants for two possible reasons: firstly, that the STW may be 

overloaded or, secondly, that some of the units do not work as well as others 

reported on. A third explanation could be that exceptionally high concentrations of 

metals are present in the sewage as a consequence of unrestricted discharge 

from metal processing industries. The paper does not include sufficiently detailed 

information about the sewage works, for example, about its treatment process or 

industrial inputs, to make further analysis of the data convincing.  
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2.6 FACTORS AFFECTING RUNOFF QUALITY PARAMETERS 
 
 
2.6.1 The First Flush 
 
The term „first flush‟ has been widely used to describe, manage and alter the 

treatment practice design relating to stormwater. The first flush of stormwater 

generates an initial high level of pollutants which need to be dealt with in the first 

flow of the runoff (Davis and McCuen, 2005). The „first flush‟ purges pollutants 

which have accumulated during a dry weather period. The amount of pollutant in 

this initial flush is thought to be linked to the length of the dry period. 

 

Table 2.5 represents some current definitions of the term “first flush” which were 

found in the literature. Depending on the field of study, the term can be interpreted 

in different ways and “first flush” has consequently become a rather loose concept. 

This problem has arisen because much of the literature does not define the key 

parameters causing a first flush numerically with, for example, the proportion of 

total runoff volume, rainfall intensity or ADWP. The evaluation of first flush is likely 

to be unreliable and unpredictable unless it can be coordinated with the above- 

mentioned parameters. 

 

Another conclusion from this Table is that the rainfall characteristics and ADWP 

will vary depending on the region. Thus, for example, the second definition in 

Table 2.5 describes „first flush‟ as the seasonal flush experienced after an 

extended dry period. All of the above-mentioned definitions, however, are based 

on the fundamental idea that the highest level of pollutants will be observed at the 

beginning of a rainfall event linked to the amounts of pollutants precipitated during 

dry weather or low flows. It follows that rainfall intensity will also have its maximum 

effect at the beginning of rainfall events, which, in terms of obtaining 

representative samples, might be difficult to pinpoint precisely during a complex 

storm. Therefore, this may be an explanation for the fact that some authors 

reported that they had found no indication of a first flush effect for pollutants 

(Deletic [cited in Davis and McCuen, 2005]), whereas other publications (Mosley 

and Peake, 2001) provide results in which a first flush of pollutants could be 

detected. Our results (see section 6.2.1) have added to this discussion by showing 
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that not only are rainfall intensity and ADWP crucial factors affecting the 

observation of a first flush effect, but also the local conditions of the catchment 

should be taken into account as well as the phase of individual pollutants.  

 

Table 2.5 Definitions of “first flush” 

N Definition Source 

1. The delivery of a highly concentrated pollutant 
loading during the early stages of a storm due 
to the washing effect of runoff on pollutants 
that have accumulated on the land. 

Calhoun County Departments 
http://www.calhouncountymi.org/Departments/DrainCo
mmissioner/Definitions.htm 

2. The first big rain after an extended dry period 
(usually summer) which flushes out the 
accumulated pollutants in the storm drain 
system and carries them straight to the ocean. 

www.lastormwater.org/WPD/residents/glossary.htm 
Stormwater glossary 
 

3. The first flow of water into the stormwater 
drains after rain. It often contains a lot of 
pollutants that built up during the dry time 
before the rain. 

Melbourne water 
www.education.melbournewater.com.au/content/glossa
ry/ 

4. The quantity of pollutants, especially nutrients, 
in water runoff caused by rainfall is higher at 
the beginning of a storm than later 

EPA 
www.epa.nsw.gov.au/soe/95/28.htm 

5. In a storm event, a first flush (FF) 
phenomenon occurs when most of the 
pollution load is transported in the initial part of 
the event discharged volume. 

First flush pollution load of urban stormwater runoff 

Amir Taebi and Ronald L. Droste  
J. Environ. Eng. Sci./Rev. gen. sci. env. 3(4): 301-309 
(2004) 

6. 'First flush effects' refers to rapid changes in 
water quality that occur after early season 
rains or to the quality of the first flows in a 
stream. Soil and vegetation particles wash into 
the streams, sediments on the bed of the 
creek are stirred up and dissolved substances 
from soil and shallow groundwater can be 
flushed into the streams. During this time the 
electrical conductivity, turbidity and 
concentration of metals and dissolved ions are 
higher than usual, pH is often lower. The same 
type of effects can also follow intense storm 
events throughout the season. 

DEH (2005) Glossary of Terms; 

http://www.deh.gov.au/ssd/glossary/; Australian 

Government, Department of the Environment and 
Heritage  

 

7. The first flush of pollutants in a combined 
sewer flow has been defined as that part of 
storm runoff up to the maximum divergence 
between the dimensionless cumulative 
percentage of pollutants and the cumulative 
percentage of flow plotted against the 
cumulative percentage of time. 

Gupta and Saul (1996)  

 

8. The term “first flush” has been utilised to 
indicate a disproportionately high delivery of 
either concentration or mass of a constituent 
during the initial portions of a rainfall-runoff 
event. 

Sansalone and Christina (2004)  

 

 

Gnecco et al. (2005) analysed the first flush phenomenon in detail by plotting for 

each rainfall event a series of partial event mean concentrations (PEMC) versus 

time. It has been claimed that first flush occurs, when 

http://www.google.co.uk/url?sa=X&start=1&oi=define&q=http://www.lastormwater.org/WPD/residents/glossary.htm&usg=AFQjCNFrpgGCq7bI5I3yKWbvuUsQTZ9Org
http://www.google.co.uk/url?sa=X&start=2&oi=define&q=http://www.education.melbournewater.com.au/content/glossary/&usg=AFQjCNFAhWDIJtvP4jM1xvInzcHfltoT2w
http://www.google.co.uk/url?sa=X&start=2&oi=define&q=http://www.education.melbournewater.com.au/content/glossary/&usg=AFQjCNFAhWDIJtvP4jM1xvInzcHfltoT2w
http://www.google.co.uk/url?sa=X&start=3&oi=define&q=http://www.epa.nsw.gov.au/soe/95/28.htm&usg=AFQjCNFFvVmEPg4WA454vew1qfJgRsm7TQ
http://www.deh.gov.au/ssd/glossary/
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1
)(


EMC

tPEMC
                                                          (2.2) 

This approach allows a numerical comparison to be made between different 

rainfall events and wash-off processes. This formula was supported by 12 rainfall 

events observed in the course of their study, when 70% of the storms produced a 

first flush effect. However, Gnecco et al. (2005) recognised that this formula may 

be too simple and might not be sufficient if it does not completely represent the 

whole storm runoff with, for example, pollutant retention below a critical flow rate 

(the flow rate which is able to wash off the particulate matter) or the situation in the 

case of a storm with two or more peaks. It is also difficult to evaluate the 

environmental impact of runoff on receiving water bodies compared to standards: 

using the dimensionless curves expressed in the equations rather than actual 

concentration values.  

 

Another analysis was made by Kim et al. (2005) to investigate the nature of the 

“first flush” depending on storm characteristics. Eight freeway sites in Southern 

California were studied and, since the sites were small, it was possible to avoid 

problems associated with runoff travel time that would affect large watersheds. 

Storm duration, total runoff volume, average rainfall intensity and ADWP were 

included in the predictive model, which was validated for estimating runoff 

concentration, description mass loading and EMC.  During the experimental 

monitoring period the behaviour of TSS, COD, oil and grease, turbidity and total 

phosphorus was evaluated. It was discovered that the fractions of washed-off 

mass were always higher than the EMC in the first 30% of runoff, which was 

indicative of a first flush. It was also suggested that rainfall events could then be 

classified in terms of the three categories of first flush effect (Table 2.6). The main 

criterion used for first flush evaluation was the fractions of washed-off mass of 

pollutant. This information and model were useful for estimating the mass load for 

the design of stormwater treatment equipment, assuming that the traffic volumes 

can be normalised.  

 

However, despite the fact that rainfall intensity was measured, it was used simply 

as a collateral factor in the model and unfortunately it went unreported. This 
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missing data may have been useful in helping to generate a more generic 

mechanistic model. 

 

     Table 2.6 First flush categories (modified from Kim et al., 2005) 

Categories of first flush Washed-off mass of pollutants in the first 30% of flow, % 
High more than 50 
Medium 30 – 50  
Non-first flush less than 30 

 
 
In the majority of cases “first flush” has been linked to the TSS. Less information is 

available for metals or other pollutants, such as organic carbon, N or P. 

Nevertheless, one study (Prestes et al., 2006) was devoted to investigating the 

behaviour of metals, including Cu, Pb and Cd. It was found that metals behaved 

differently in a first flush effect depending on their form (particulate or dissolved). 

Metals which were associated with particulate matter (Pb and Cd) showed a first 

flush effect that was linked to TSS, whereas Cu in its total form did not correlate 

with the first flush of solids. On the contrary, the first flush behaviour was 

correlated with the dissolved form of copper. Prestes et al. (2006) concluded that 

the metal concentrations were 3-5 times higher compared with the background 

concentrations after an ADWP of 10 days or more. Unfortunately, this study did 

not present any data about rainfall characteristics, although the authors mentioned 

that there was a period within the rainfall event when runoff was too low to be 

captured, which implies that the rainfall intensity was a factor affecting the output 

of pollutants into the water body. These data are important since they are 

correlated with dissolved and total metals and therefore have implications for this 

thesis and for effective management practices. However, another problem is that 

only one rainfall event was taken into account, with the result that there is a lack of 

replicate information on the effect of different types of storms, a factor that is 

investigated in this thesis.  

 

Our data (section 6.2.2) confirm the findings from work conducted by Prestes et al. 

(2006) which support the suggestion that both metal type and solubility are 

important in first flush effects. 
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2.6.2 Antecedent Dry Weather Period  
 

An antecedent dry weather period (ADWP) is defined as the time between the end 

of one rainfall event and the beginning of another. ADWP is an important 

parameter for predicting stormwater quality. Airborne fall out will also contribute to 

the accumulated pollutants. The widespread assumption in water quality modelling 

is that pollutants build up on surfaces throughout the watershed at a constant rate 

between rainfall events. For example, one of the most common stormwater quality 

models (Nouh, 2001) estimated the surface pollutant load using the linear, power, 

exponential or Michaelis-Menton function of the number of dry days. During a 

rainfall event the accumulated pollutants are washed off from the surface and 

predicted using this exponential washoff algorithm. The other parameters used in 

the model will depend on the catchment and surface characteristics. This model 

has usually been used hitherto only for research purposes rather than for practical 

design, a limitation which can be explained because of the large number of 

parameters that are included and needed in this model. The basic principle of 

time- dependant accumulation has also been included in other simpler models. 

 

Many models have used an empirical power function to relate the pollutant load to 

the total stormwater runoff volume. The common form can be presented as follows: 

   bVaM                                                                         (2.3) 

where M  - event pollution load;  V  - event runoff volume; a and b – the coefficients 

which can usually be determined by the analysis of the concentrations following the 

plotting of the event load and runoff on a log-log scale. 
 
 It is assumed that the longer the ADWP, the greater is the quantity of pollutant 

deposition and the higher are the consequent concentrations and loadings of 

pollutants in the runoff. However, the rainfall intensity may also be influential. Thus, 

some authors did not find any correlation between pollutant load and ADWP 

(Davis and McCuen, 2005). An explanation for this could be that pollutant load 

might consist of two components: the basic build-up takes place of pollutants 

washed off from a surface by typical storms but then additional pollutants could be 

mobilised during very intensive storms because of surface wash-out (erosion) of 

the construction materials. The higher the intensity is, the greater the mobilisation 



 47 

of solids; hence, for calculating pollutant load a model may have to include the 

rainfall intensity as well as ADWP and the type of surface.  

 
2.7 PARTICULATES IN STORMWATER RUNOFF 
 
The literature review has suggested that particulates or suspended solids will be 

major components in the runoff (Table 2.2). The transport of particles would be a 

function of velocity, density and particle size distribution (PSD). The fundamental 

theory suggests that adsorption of metals onto the particle surfaces would occur. 

 
 
2.7.1 Settling velocity 
 
Most highway runoff treatment systems include a separator if only to catch 

accidental spills (Crabtree et al., 2006). 

Particle size will influence the particle settling velocity and, as a consequence, the 

efficiency of the separator during the treatment process. Table 2.7 (Faram, 2007) 

demonstrates the settling velocities for sediments with a density of 2600 kg/m3 

(inorganics such as sand and gravels) for a comparison with the Stokes equation. 

   

Table 2.7 Sediment settling velocities with densities of 2600 kg/m
3
 (Faram, 2007) 

Size Settling velocity, cm/sec Time to settle 1 m 

1 mm 12 8 sec 

100 µm 0.5 > 3 min 

63 µm 0.2 > 8 min 

10 µm 0.006 > 4 hrs 

 

Little quantitative research has been found that has investigated the particle size 

characteristics of runoff. Memon and Butler (2005) monitored rainfall conditions at 

residential areas in East London and found that predominant size fraction (65% of 

the total number of particles) was less than 50 µm. It was found, however, that the 

average particle size increased with the runoff rate. In a similar study of rainfall 

events in Los Angeles at highway sites with heavy traffic loads (greater than 

260,000 vehicles per day), Li et al. (2006) found that more than 90% of the total 

number of particles had diameters of less than 10 µm. Hergren et al. (2005), on 

the other hand, took samples from low-traffic residential, commercial and industrial 
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areas and found that the major fraction of particulates in the runoff samples 

ranged in diameter from 0.45 to 75 µm. These findings are important for the design 

of treatment facilities, since it is likely that most of the pollutants are attached to 

the finer particles (Davis and McCuen, 2005), i.e. <10 µm fraction (Table 2.7). 

Typical treatment methods for fine particle removal are via vegetation in swales 

and wetlands or by filtration, methods that are examined in this thesis, whereas for 

coarse particles interceptors, ponds and sedimentation basins can be used (Nouh, 

2001). 

 
2.7.2 Chemical Characteristics 
 
One of the important chemical characteristic of metals in the context of this thesis 

is their ability to affiliate with particulate matter. This affiliation results from sorption 

reactions between the metals and various inorganic and organic compounds at the 

surface of the solids. In effluents and receiving waters metals can be classified as 

being in either of two basic phases (USEPA, 1996), forming part of the particulates 

or being dissolved in water. These “particulates” include clays and other minerals, 

humic substances and other poorly defined organic and inorganic ligands. 

Examples are de-icers and complexes including iron, nitrogen, phosphorus and 

sulphur compounds.  

 

For example, when analysing different sources of metals (road runoff, STW 

influent and effluent), Chaminda et al. (2010) indicated that Cu and Zn 

complexation with DOM depended on the source of organics, which consisted of 

different types of binding ligands. Total normalised bound concentration had the 

highest value in samples taken from STW influent. This can be explained by the 

fact that the most complicated DOM, consisting of proteins, sulphides and other 

biological components, was found in STW influent. It was shown that Zn and Cu 

had the weakest binding with DOM originating from road runoff, although urban 

runoff is derived from road dust which may also contain some synthetic organic 

ligands.  This information has important implications for predicting metal speciation. 

There is little detailed analysis of the composition of these fine particles or their 

origin; for example, they may be the products of erosion, anthropogenic fall-out, 
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road construction materials or fluids. This needs further work since they could be 

important ligands with different affinities for metals.  

The literature review has already noted that the ratio between these forms may 

vary significantly from metal to metal. It could be an important indicator of how to 

achieve the best treatment performance. This speciation may also change with 

redox, for example. The total concentration of any metal in water, however, can be 

expressed as mass per volume and can be written by following the simple USEPA 

model (1996): 

 

disparttot CCC  ,                                                                    (2.4) 

where totC  is the concentration of total metal; partC  is the concentration of particulate 

metal and disC is the concentration of dissolved metal. 

 

The term „total metals‟ refers to the concentration of metals determined in an 

unfiltered sample after vigorous digestion of the solids. Dissolved metals comprise 

those metals in an unacidified sample that pass through a 0.45 µm membrane 

filter (APHA 2005). 

 

The distribution of a metal at equilibrium between the particulate and dissolved 

forms can be expressed by means of the partition coefficient pK : 

dis

p
C

x
K  ,                                                                            (2.5) 

where x  is the concentration of metals in the particulate phase expressed on a dry weight 

solid basis (e.g. µg/mg) (USGS, 2000 and APHA, 2005). 
 

Another useful treatability parameter is the dissolved metal fraction disf  which can 

be defined as   

tot

dis
dis

C

C
f                                                                            (2.6) 

The phase to which a particular metal will partition in a complex environment will 

depend on other solution characteristics, such as pH, ionic strength, temperature, 

hardness (base cations), anions, oxidation-reduction potential (redox), the nature 

and amount of solids and, in some cases, the presence of other elements (Bricker, 

cited in USGS, 2000). This report presents a review and suggests that metals tend 
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to partition towards the water phase (dissolved) when the following conditions can 

be observed: low pH, low Eh, low particulate loads and high concentrations of 

organic matter (Elder, cited in USGS, 2000). By contrast, high pH, high Eh, high 

particulate loads and non-uniform flow are conditions which result in the binding of 

metals with particulate matter. Understanding and including these fundamental 

parameters in a model should allow metal behaviour and the efficiency of metal 

removal to be predicted. In many natural environments there are complex and 

antagonistic cross reactions which make these basic predictions more difficult. 

 

The literature review has already noted (section 2.4) that those researchers who 

have investigated total and soluble metals in runoff obtained very different results. 

The most recent papers that report on the use of modern analytical techniques, 

such as ICP, have suggested that there may have been a bias in the earlier data. 

Duplicate or corroborated research using identical analytical methods, even from 

different locations, has been rare. In this thesis a comparison is made in section 

6.1 among analytical techniques with regard to their potential to influence the 

results. In most of the literature, for example, in Davis and McCuen (2005) copper, 

cadmium, chromium and zinc have been found to occur predominantly in the 

dissolved form, whereas metals such as lead, nickel and iron have been affiliated 

with particulate matter. 

 

Prestes et al. (2006), when investigating road runoff in a residential area in 

Curitiba (Brazil) with 9,000 vehicles per day, found a correlation between TSS and 

Cd and Pb. Cu was found mainly in the dissolved phase. The behaviour of Cd as 

reported in Prestes et al. (2006) does not agree with the findings elsewhere in the 

literature (Davis and McCuen, 2005), where the Cd was found to occur 

predominantly in the dissolved form. It was assumed that this particular 

experimental area (Curitiba, Brazil) produced its own distinctive sediment which 

could absorb cadmium or was influenced by the higher concentrations of Pb found 

in Brazil (Pb is still used in alcohol-augmented petrol). This contradictory result for 

the behaviour of Cd is important in the context of this thesis which includes a 

comparison of the potential adsorbents for highway pollutants. Potential 

adsorbates are reviewed in the next section. 
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When examining the behaviour of Cu, Fe, Pb and Zn during both dry and wet 

weather in runoff from roads in residential areas in New Zealand, Mosley and 

Peake (2001) noted the common pattern of results with their predominance of 

soluble Cu and precipitated Pb (Davis and McCuen, 2005; Prestes et al., 2006). It 

was also observed that the Fe and Pb were predominantly attached to solids, 

whereas the Zn, like Cu, was mainly soluble. Fe, like Pb, was found in the 

digested solids throughout all types of rainfall events, but Cu and Zn were found in 

fractions of less than 0.4 µm (soluble; see section 4.2.2) during both dry and wet 

weather.  

 

There are, however, some studies which show examples of the contrary behaviour. 

For example, Datry et al. (2003) demonstrated that Zn, Cu, Cr and Cd were mainly 

in the sediment even when their concentrations in the sediment were high. Datry 

et al. (2003), however, did not make it clear how mobile the sediment was or, in 

other words, over what period of time the metals had accumulated. Herngren et al. 

(2005), examined three types of sites (industrial, commercial and residential) and 

found that metals such as Al, Fe, Pb and Cr exhibited a strong relationship with 

TSS in the residential and commercial sites. Cu and Zn, on the other hand, 

correlated with DOC and TDS. Almost the same situation was observed for the 

industrial site, with the exception of Cu which showed a completely different 

behaviour and was highly correlated with TSS. The authors hypothesise that the 

degree of affiliation between metals and particles might still depend on the source 

and chemical compositions of the organic matter and competing ions. This 

complexity in Cu behaviour is very important because its chelation chemistry is 

more complex, but other studies have not reported on this point. Another important 

aspect of the work of Herngren et al. (2005) was that the authors used artificial 

rainwater at their field sites which was prepared with a standard pH and EC.  
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2.8 DISCUSSION AND RESULTING OBJECTIVES 

 

Previously published research has quantified metals in runoff from highways which 

originate from traffic activity, with sources including fuel, vehicle exhaust, 

lubricants, brake materials and tyres. The research reported shows that brake 

emissions from vehicles are a major source of copper while other metals, 

particularly zinc, are generated from tyre wear and street furniture and iron results 

from general vehicle wear. For the total zinc the concentrations in highway runoff 

varied from 0.029 mg/l (McNeill and Olley, 1998) to 0.66 mg/l (Desta et al., 2007) 

and in thawing runoff from 1.729 mg/l (Frimmel et al., 2007) to 5.71 mg/l (Hallberg 

et al., 2007). Concentrations of dissolved copper (shown to be the predominant 

form) ranged from 0.002 mg/l (Hallberg et al., 2007) to 0.031 mg/l (Crabtree et al., 

2008) and in thawing runoff from 0.023 mg/l (Hallberg et al., 2007) to 0.064 mg/l 

(Frimmel et al., 2007). Little information has been published on iron, although an 

averaged value from urban runoff established for Fetot was 3.419 mg/l and for Fedis 

it was 0.211 mg/l (Mosley and Peake, 2001), and this knowledge gap has been 

addressed in this thesis. 

 

It has been demonstrated that runoff quality is complicated because of the 

variability and unpredictability in the magnitude and frequency of rainfall events.  

Typical factors which affect stormwater quality and, consequently, the presence 

and behaviour of metals have been described in previous sections and they are 

rainfall intensity and duration, climate, ADWP and first flush characteristics. 

 

The “first flush” effect has been investigated by many researchers with 

contradictory results. Several published papers reported no strong first flush effect 

for contaminants, whereas other data provided evidence of a first flush of 

pollutants. However, much of the information reviewed was thought to be 

unreliable because in the majority of cases just a small number of rainfall events or 

even only a single one were taken into consideration rather than a series of rainfall 

events of different intensity. 
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 An important factor allowing the prediction of runoff quality is ADWP. Evidence 

has been provided and a good theoretical case made for the assumption that the 

longer the ADWP, the greater will be the concentrations and loadings of pollutants. 

While the literature contains studies that analyse first flush characteristics and the 

duration of ADWP, they did not take into account rainfall intensity, which could be 

the main parameter for a quantitative evaluation of rainfall characteristics and soil 

saturation. It can be suggested on the basis of the literature review that surveying 

a larger number of storms would overcome the potential bias which would be 

caused by an over-reliance on the ADWP and the degree of soil saturation.  

 

The literature includes data on the metal concentrations in residential and highway 

runoff from two principal sampling protocols, namely grab and composite sample 

measurements. In the case of the most common metals, Zn and Cu, most data 

consisted of the long-term averages obtained from composite samples. It was 

concluded that grab samples do not provide sufficient information to allow 

accurate calculation of the total pollutant load that runoff carries because of the 

variability in the storm cycle. Time average or flow-adjusted composite 

measurements enable the event mean concentration (EMC) and overall load on 

the catchment to be evaluated. Automatic samplers are widely used for analysing 

water quality parameters but they are difficult to use at remote sites with no 

security or power. Thus it was concluded from the literature that this research 

should include a detailed analysis of the rainfall characteristics to help with the 

analysis of ADWP. The literature review has shown that automatic composite 

sampling is the ideal method to use but this was beyond our resources and so field 

sampling included the taking of samples from a storage lagoon which could be 

expected to integrate some seasonal variability into the actual metal 

concentrations.   

 

A wide range of metals was reported in sewage effluent and most literature on 

hazardous materials is concerned with their leaching from solids during treatment. 

Summarising the data for the same indicator metals as for highway runoff, namely, 

Zn, Cu, Pb and Fe, then the range can be said to have depended on the 

catchment type, i.e. the amount of industry concentrated in that catchment. For 
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purely domestic sewage works the range of metals was narrower and the 

concentrations lower than for highway runoff. For the total zinc the range was from 

0.01 mg/l (Bond, 2001) to 0.56 mg/l (Kim et al., 2002) and for dissolved copper it 

was similar to that for highways – from 0.009 mg/l (Bubb and Lester, 1995) to 0.02 

mg/l (Matthiessen et al., 1999). This was surprising given the common use of 

copper for domestic water systems. 

 

In the case of treated sewage effluent, soluble metals are representative since 

sewage treatment includes three solid-liquid separation stages which result in very 

low TSS concentrations, typically less than 5 mg/l. The review confirms that the 

total concentrations of metals are lower than those in highway runoff because of 

this effective removal of solids. Even when the much larger volumes discharged 

are taken into account, the effect of dilution in the receiving water and the metals‟ 

limited retention in the river systems would suggest that they have no 

environmental impact. The literature review therefore suggests that metal 

concentrations derived from highways could be greater than those from other 

diffuse sources in the environment. The previous work reviewed also suggests that 

treated sewage might still contribute significant metal loads to water bodies with 

low dilution. The literature does not, however, report any studies conducted with 

the aim of comparing reliable inputs into the same catchment. Thus an objective of 

this work was to evaluate differences in metal runoff concentrations, including 

those of iron, in individual storms of different types. The site chosen, which was 

adjacent to the busiest road in the East Midlands (M1), incorporated the current 

recommended treatment design (interceptor and SUDS). In order to compare the 

potential contribution of major roads with other urban sources, the discharges of 

the local sewage works were also measured together with three local rural 

streams. A second objective was to use data derived from the fieldwork to 

evaluate the performance of the treatment SUDS lagoons at the test site on the 

M1. 

 

The previous research reviewed as well as experience gained in our own 

laboratory had indicated difficulties in the precise analysis of metals at these 

concentrations using the ISO standard methods, particularly when the metals were 
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complexed with natural materials. Therefore, an alternative, more recently 

introduced microwave technique which is safer and potentially more accurate was 

compared with the standard method. The literature discussed has shown that 

particle associations and speciation affect both the toxicity and bio-availability of 

metals. There was also little information available on differences between soluble 

and total metals. It has been argued in the environmental quality standards that 

this is justified since soluble metals are the most bio-available. It has been 

hypothesised that in the case of most treatment systems, for example, interceptors, 

lagoons and filters, this equilibrium is not fixed, which is why another objective of 

this study was to analyse the factors affecting metal solubility. 

 

Understanding the chemical properties of metals in the environment from this point 

of view will allow better models and predictions to be made regarding the 

efficiency of their removal. The findings from studies on the form in which metals 

may be present in stormwater have occasionally differed significantly, with the 

result that in the literature many of the results obtained contradict each other. 

The objectives from this chapter are summarised and presented at the end of the 

Chapter 3, the literature review on enhancing stormwater treatment by filtration. 
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CHAPTER 3  
 
LITERATURE REVIEW ON THE POTENTIAL OF FILTERS TO ENHANCE 
METAL REMOVAL FROM STORMWATER 
 

3.1 INTRODUCTION 

 

A number of different natural and artificial materials have been used as filter media 

for stormwater treatment. These include sand, coated sand, gravel, crushed glass, 

perlite, peat, leaf compost, mulch, zeolite, granular activated carbon and plastics 

(Moller et al., 2002; Datry et al., 2003; Liu et al., 2004; Liu et al., 2005; Baltrenas 

and Brannvall, 2006; Ray et al., 2006). However, there are few well controlled 

comparative tests that have been developed to study these different media outside 

the waste water treatment area (McLaughlan, 2004).  Runoff generated from 

different types of urban surfaces, as noted in the previous section, is likely to have 

different physical and chemical properties which might affect the efficiency of 

filtration, as will be discussed further below (Clark et al., 2005). This review 

includes mainly filter applications related to urban runoff. The issues related to 

drinking water treatment (backwashing and slow filtration, for example) were 

deliberately omitted. Section 3.1.5, however, is devoted to an exploration of 

recycled crushed glass as a potential new filter medium; most reports are from 

studies where recycled glass was used either for drinking or waste water treatment. 

 

3.2 FILTER MEDIA 

 

3.2.1 Sand 

 

The most common and traditional medium for filters is sand (Alexeev and 

Kurganov, 2000; Davis and McCuen, 2005). The performance of filters is a 

function of three factors: grain size, pore space between grains and contaminant 

size. Since contaminated solids accumulate in the pore space, they will eventually 

be clogged, which is why they normally include provision for backwashing. Sand 

filters have been used for stormwater treatment with a pre-treatment separating 

pond or basin. Table 3.1 summarises information about the specific surface area 
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of sand and compares it with other filter materials. These pre-detention units serve 

to extend the maintenance time of the sand filter by removing some of the larger 

particles and sediments (Davis and McCuen, 2005). All filters will accumulate 

particulate matter and are difficult to clean but excess solid accumulation has to be 

avoided to prevent captured solids from being carried over the filter during heavy 

rains or perturbations to the filter.  

 

Table 3.1 Specific surface area (SSA) of some media (modified from Davies and Wheatley, 2010) 

Type of media SSA, m
2
/g 

Glass 0.0558 

Slate 0.1873 

Drinking water sand 0.2261 

Limestone 0.2502 

Phosphorus slag 0.2803 

Pumice 0.4864 

Expanded clay 1.4685 

Steel slag 2.3300 

Furnace slag  6.6494 

Activated carbon 1000 

 

An example of data for metal removal by means of sand filters is summarised in 

Table 3.2. Barrett‟s data is based on the reduction of EMC.  

 

The literature review has noted that iron and lead are affiliated with particulate 

matter and their removal is accomplished simultaneously.  This can be seen in the 

removal of total Pb and Zn, but not of Cu which has been shown to be more 

soluble. However, it is difficult, unfortunately, to normalise the removal of 

pollutants by mass efficiency, for example, removal per kg on m2 of sand surface, 

because the initial concentrations of metals were not given in the data. It could be 

useful to know these concentrations for comparison with other materials.  

 

 

 

 



 58 

Table 3.2 Metal removal performance for sand filters (modified from Davis and McCuen, 2005) 

Pollutant Percentage removal 

Urbonas (1999) Barrett (2003) 

TSS 80 - 94 90 

Total Cu 20 - 40 50 

Dissolved Cu No data 6 

Total Zn 80 - 90 80 

Dissolved Zn No data 36 

Total Pb No data 80 

Dissolved Pb No data 39 

 

3.2.2 Hardwood mulch 

 

Organic material should be a good adsorbent for polar materials and natural fibre, 

e.g. peat and heather are established in their use for odour and VOC treatment. 

Reed beds and grass swales have been selected for highway runoff because of 

their claimed adsorbent properties. Ray et al. (2006) investigated the performance 

of common garden mulch for the removal of metals from solution. The mulch was 

made up of a mixture of shredded peat, wet straw and leaves. The hardwood 

mulch sorbed metals from a sample of copper, cadmium, chromium, lead and 

zinc- spiked stormwater.  

 

Table 3.3 summarises the results in terms of the percentages of metals sorbed as 

a function of their initial concentrations.   

 

Table 3.3 Percentage removal of metals by mulch compost and their initial concentration (adapted 

from Ray et al., 2006) 

Metal Initial concentrations (µg/l) and removal [%] 

Copper (992) [87] (496) [77] (248) [59] (124) [0] 

Cadmium (1016) [86] (508) [98] (254) [100] (127) [100] 

Chromium 

(Cr6+) 

(989) [68] (495) [42] (247) [0] (124) [0] 

Lead (996) [92] (498) [92] (249) [87] (125) [84] 

Zinc (1079) [72] (540) [81] (270) [73] (135) [43] 



 59 

The figures for the removal of the metals thought to be the most soluble, copper 

and chromium show the lowest values. This study also, unfortunately, provides 

neither information about the form of the metals (soluble or total), nor the 

concentration of TSS removal. The percentage of metals removed might have 

been different, had TSS been present in the synthetic stormwater. The spiked 

concentrations are also higher than those normally encountered in highway runoff 

(see Table 2.2). Further analysis of the solid content, in particular, but also of other 

parameters (pH and EC) would have been useful.  

 

3.2.3 Polyurethane* 

 

Synthetic media are more efficient for filtering dirty water than sand because they 

are likely to optimise surface area and voidage and so increase filtration velocity 

and the duration of filtration and decrease the need for backwashing. In Russia, for 

example, this type of medium is common for water filtration (10-15 mm with a pore 

size of 0.8 – 1.2 mm which is 10 times larger than that of drinking water sand; 

Alexeev and Kurganov, 2000). A plastic medium can achieve high porosity, for 

example, polyurethane is up to 95% porous. In waste water treatment sheet or 

rashig rings of PVC and PE are used for bio-filtration (CIWEM, 2000). These are 

specifically manufactured rather than being made from recycled waste and are 

commercially available in a range of specific surface areas (see Table 3.1).  Table 

3.4, for example, presents data for the treatment efficiency of polyurethane filter 

media for stormwater runoff depending on the filtration velocity and the height of 

the medium. The initial concentration of TSS was 200 mg/l. 

 

The contaminant capacity of polyurethane was found to be much greater than that 

of sand, for example. Depending on the filtration conditions, solid retention varied 

from 40 to 200 kg of solids per m3 of polyurethane (Alexeev and Kurganov, 2000).  

The initial head loss was 0.15 – 0.4 m per m depth and after 50 hours of filtration 

at a filtration velocity from 10 to 25 m/hr, the head loss reached values between 

* A polyurethane is any polymer consisting of a chain of organic units joined by urethane (carbamate) links. 

Polyurethane polymers are formed through step-growth polymerization by reacting a monomer containing at 

least two isocyanate functional groups with another monomer containing at least two hydroxyl (alcohol) 

groups in the presence of a catalyst. (http://en.wikipedia.org/wiki/Polyurethane)  

http://en.wikipedia.org/wiki/Polymer
http://en.wikipedia.org/wiki/Organic_chemistry
http://en.wikipedia.org/wiki/Carbamate
http://en.wikipedia.org/wiki/Step-growth_polymerization
http://en.wikipedia.org/wiki/Monomer
http://en.wikipedia.org/wiki/Isocyanate
http://en.wikipedia.org/wiki/Functional_group
http://en.wikipedia.org/wiki/Hydroxyl
http://en.wikipedia.org/wiki/Alcohol
http://en.wikipedia.org/wiki/Catalyst
http://en.wikipedia.org/wiki/Polyurethane
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0.3 and 0.9 meters.  Typical sand water filters will have a maximum velocity of 10 

m/hr and a similar head loss increase would be expected after 40 hrs but following 

the coagulation and removal of the larger solids.  

 

Table 3.4 also shows that the filter performance deteriorates, as expected, with a 

decrease in the height of the medium and/or an increase in the filtration velocity. 

 
Table 3.4 Treatment efficiency as % removal of solids at different filtration velocities and varying 
depths of the polyurethane medium (Alexeev and Kurganov, 2000) 

Filtration 

velocity, 

m/hr 

Duration of filter run, hrs 

10 20 30 40 50 60 70 80 

Depth of the polyurethane medium is 1.5 m 

10 

15 

20 

25 

30 

40 

89.0 

85.0 

81.4 

77.5 

73.5 

62.3 

89.0 

83.9 

79.6 

74.7 

69.3 

56.6 

88.4 

82.5 

77.3 

70.5 

64.0 

48.0 

87.6 

80.8 

73.8 

66.0 

57.3 

39.0 

86.6 

78.8 

70.1 

60.7 

_ 

_ 

84.8 

76.0 

66.4 

56.0 

_ 

_ 

83.0 

72.7 

62.6 

51.0 

_ 

_ 

81.2 

70.0 

58.6 

_ 

_ 

_ 

 Depth of the polyurethane medium is 1.0 m 

10 

15 

20 

25 

30 

84.6 

79.7 

74.8 

68.8 

63.0 

84.1 

78.9 

73.6 

67.0 

60.8 

83.4 

77.0 

70.6 

63.3 

_ 

81.0 

73.2 

65.0 

56.3 

_ 

77.0 

68.4 

59.4 

50.6 

_ 

71.5 

62.6 

53.6 

43.3 

_ 

65.8 

56.8 

48.0 

37.2 

_ 

60.1 

51.1 

42.2 

_ 

_ 

 Depth of the polyurethane medium is 0.5 m 

10 

15 

20 

72.0 

63.9 

59.8 

71.3 

68.2 

58.8 

69.4 

58.0 

_ 

63.5 

51.0 

_ 

56.4 

44.0 

_ 

49.3 

_ 

_ 

42.2 

_ 

_ 

_ 

_ 

_ 

- no data 

 

Unfortunately, no information was provided, however, about metal removal, 

although it was noted that this type of filter would remove metals with poor 

solubility, lead and iron, for example, in proportion to the solid removal.  
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3.2.4 Zeolites 

 

Zeolites have been used in water treatment practice as an ion exchange medium 

since the late 1800‟s and they have been tested in the laboratory for their ability to 

remove metals (CRWR, 1995). A high level of metal removal was achieved when 

using this medium together with vermiculite* (Baltrenas and Branvall, 2006). 

 

It was reported that the efficiency of metal removal from a prepared experimental 

solution was about 98.6% for Pb, 86.5% for Cu, 81.8% for Zn and Ni and 57.5% 

for Mn. This performance was obtained with a contact time of 720 minutes but the 

initial concentration of the metals was very high at 1 g/l compared to a maximum 

of about 1 mg/l to be expected in highway runoff.       

 

Clark et al. (2005) analysed three media: zeolite, peat-sand mix and compost in 

parallel upflow columns. The metal removal efficiency was examined for different 

flow rates and influent conditions. Settled stormwater runoff from two sites of 

medium-density residential development in Hoover, Alabama were used for the 

filtration study. The filtrate was analysed for Pb, Cd, Zn, Cu, Cr, Fe, Ca and Mg 

and it was reported that zeolite had the lowest metal capture capability in 

comparison with the compost and peat-sand mix. Other factors, however, such as 

the pH of the effluent, headloss and clogging were less pronounced in the zeolite 

compared with the other two media studied. The results suggest that the solid- 

bound metals were the most important. Filter runs were longest in the compost. 

The main drawback of the compost medium was the generation of additional 

colour in the effluent. The peat-sand mix medium showed the most head loss 

potential due to clogging; although it was the best medium at removing dissolved 

metals.  

 

Other studies (Allen et al., 2004; Kalmykova et al., 2008) have also demonstrated 

that peat incorporated into the filter material exhibits high adsorptive and cation  

 

_________* Vermiculite is a hydrated silicate mineral which expands on heating; it is used in 

insulation and as an agricultural medium for planting en.wiktionary.org/wiki/vermiculite 

http://www.google.co.uk/url?q=http://en.wiktionary.org/wiki/vermiculite&ei=zNfdSoCyN5iOjAfW6Ole&sa=X&oi=define&ct=&cd=1&ved=0CAsQpAMoAg&usg=AFQjCNFUKJQSm2p-MpelktO7TM6ZRXKKAQ
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exchange capacity. It is known that peat consists of carbon, nitrogen and 

phosphorus with a composition ratio of 100:10:1, respectively. This provides a 

substrate for microbial growth (CRWR, 1995) which then augments the metal 

removal. 

 

3.1.5 Crushed Glass 

 

The analysis of particle size and routine TSS analysis uses vacuum filtration 

through 1.2 and 0.7 µm glass fibre filters (APHA, 2005). 

 

During this process it was observed that these filters could produce significant 

variations in the results (see section 4.2.2). It was found that, in a number of cases, 

the metal concentrations present in non-filtered samples were lower than those of 

the filtered samples. These results suggested to us that glass was absorbing and 

then releasing metals. Recycled glass was, therefore, chosen as a filter medium. It 

is available as a low-cost waste material which is already used in construction and 

bedding materials for drainage pipes. 

 

Glass is thought to be the oldest manufactured substance in the world. It is a 

common material for making food and drink containers. Figures published by the 

EPA suggest that the USA generates 12.5 million tonnes of glass waste every 

year, whilst in Canada the comparable figure is 850,000 tons (Rutledge and 

Gagnon, 2002) and in the UK it is estimated to be about 2 million tons (Hatton and 

Ockleston, 1997). Less than half of the total glass generated is collected for 

recycling, partly because of the poor market for recycled glass. Recycled glass is 

utilised as aggregate material for concrete, roadbeds and pavements. Recycled 

glass is also used as drainage material for backfill and landscaping, for the 

production of fibreglass and as a reflective material for paint. The application of 

crushed glass as a filter medium is relatively new and information and independent 

data about its feasibility is very scarce in the literature. No single paper or article 

has been found in the refereed journals about metal removal using a glass 

medium. 
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There are reports of studies in which recycled glass has been used as a filter 

medium for waste water treatment (Anon, 2006) and, as noted, solid removal 

could be used to anticipate the removal of iron, lead and cadmium from highway 

drainage (http://www.sciencedirect.com). 

 

According to this study, glass compared well with traditional gravel for removing 

TSS and BOD, although, unfortunately, no data was provided about initial 

concentrations, effluent concentrations or how effective crushed glass was 

compared with gravel. Moreover, the article is uncorroborated.   

 

In the US, because of its low population density, more than one quarter of homes 

use some type of on-site wastewater treatment system, for example, septic tanks, 

which use gravel or crushed stone as drainfields. The figures for the UK are 

unknown but annual replacement sales for septic tanks are more than 10,000. 

Nevertheless, there are regions in the US where gravel is expensive because of its 

scarcity and there is a search for alternative materials. A study of crushed glass 

was conducted as a material for biological treatment. Two types of medium, sand 

and crushed glass were tested (Anon, 2005). Table 3.5 summarises that data on 

the performance of both filter media: 

 

Table 3.5 Performance of glass and sand used for biological treatment (Anon, 2005). 

Source BOD5, mg/l TSS, mg/l Oil and grease, 

mg/l 

pH 

Glass medium 
effluent 

7 4 6 6.4 

Sand effluent 4 3 4 5.8 

 

From these results there is no obvious statistical difference between the glass and 

a sand medium. The data set was also limited, with no information provided about 

the initial concentrations in wastewater or the range of data, flow rate or 

maintenance. Unfortunately, the size of medium was also not mentioned. 
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Slow sand filtration (SSF) was a possibility for improved metal removal (Nur 

Muhammad, 1998). In this case rapid gravity filtration was selected as the filtration 

stage to operate after the interceptor.  

 

Another study was devoted to evaluating the effectiveness of crushed, recycled 

glass and three different types of sand media, namely Stielacoom sand, Trinidad 

Pit sand and Ellensdurg sand for slow filtration (CWC, 1995). These media were 

tested in the pilot columns. The crushed glass showed the greatest rate of 

headloss compared to the other sand media. It was suggested that crushed glass 

might also have an advantage because it might fluidize at lower backflow rates 

compared to sand based on the fact that glass has a lower density than sands, 

although no confirmation of this was provided. In conclusion it was suggested that 

crushed glass could be an effective filter medium for low-rate filtration of raw water. 

The study was devoted to the treatment of drinking water with regular 

backwashing and no information concerning metal removal was found in the paper, 

even though manganese, iron and aluminium commonly give rise to problems in 

drinking water treatment.  

 

In 1998 CWC (CWC, 1998) prepared another report where recycled crushed glass 

and sand were evaluated for their performance in the high-rate filtration of drinking 

water or waste water. The glass used in this study was post-industrial plate glass 

scrap from window and door manufacture. The glass was processed through a 

series of crushers, dryers, and screens to remove contaminants and to produce a 

range of uniformly-sized filtration media. In conclusion, it was reported that 

crushed glass improved turbidity removal by 25%, needed less backwash water to 

clean the filter medium (approx. 20%) and weighed less (approx. 20%). These 

attributes could reduce both capital and running costs. The report did not provide 

any data on the removal of other parameters apart from turbidity. The report did 

not present any information about the removal of metals.   

 

Rutledge and Gagnon (2002) also evaluated the performance of a pressure filter 

utilizing crushed glass as the filter medium by comparing it with sand media. It was 

found that particle removal by the crushed glass was not as good as that of the 
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sand medium. Interesting data from the point of view of the aims of this research 

were the author‟s reporting of residual PSD. Results showed that after 6 months of 

using the crushed glass medium, the filter effluent contained 50 – 70 particles/ml 

with diameters of more than 2 µm, whereas the sand filter produced 25 – 50 

particles/ml with diameters of more than 2 µm. In other words, the sand captured 

more of the smaller 5–10 µm particles. This study, however, does not provide any 

information about metal removal. Although it is not stated, this would imply a larger 

glass media size, from basic filtration theory. 

 

As was noted, commercial information suggests that crushed glass provides 

improved water treatment efficiency by allowing lower backwash rates and it is 

cheaper, not to mention the environmental benefits of using recycled glass and so 

avoiding waste. However, there are some disadvantages of using this material for 

filtration. For example, according to the literature from the EPA 

(http://www.epa.gov/osw/nonhaz/define/pdfs/glass.pdf) the use of recycled glass 

as an alternative medium is not yet well-established and there are no long-term 

operating data available. Another disadvantage for drinking water is that since 

each batch of glass filter medium is unique, the performance may not be readily 

reproducible for new designs and neither may it be predicted when it must be 

replaced.  The glass may also be contaminated by its previous use, although this 

is not mentioned in the EPA report. One type of recycled glass has been approved 

by the UK Drinking Water Inspector (DWI) for use in water treatment 

(http://www.dwi.gov.uk/drinking-water-products/index.htm). 

 

3.2 SUMMARY AND STATEMENT OF OBJECTIVES 

 

It is known, for example, that road transport is responsible for about 30% of the 

pollution emissions to the atmosphere but it is not known what proportion of metals 

in the water catchment can be attributed to road transport (USGS, 2000). 

The present and future Environmental Quality Standards, such as WFD, suggest 

that more information on metal sources in the environment will be necessary and 

in order to meet any higher standards stormwater will have to be treated before it 

discharges into water bodies. This process has begun and there are a number of 
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systems in use for stormwater treatment from key point sources such as car parks, 

motorway services and petrol stations. These systems are mainly composed of an 

interceptor and/or SUDS (Highway Agency, 2006; Crabtree et al., 2006). They 

work by gravity separation, filtration or bio-filtration. Metals bound with TSS can be 

removed by gravity devices such as sediment traps, interceptors, swales, retention 

and detention ponds, whereas metals in the dissolved form can be more 

successfully removed by filtration. It has been shown that sand, the most 

traditional and common medium for filtration works well but requires maintenance 

because of its susceptibility to clogging. There is little information in the literature 

on the maintenance requirements of gravity and SUDS separators and therefore 

the cost of ownership of the treatment system. There was also little information on 

novel treatment systems, such as improved filter media for the removal of 

dissolved metals.  

 

There was a scarcity of data drawing comparisons among different filter media in 

terms of metal removal. Most information on recycled glass, for example, was 

commercial. There were also few well controlled and independent studies on the 

field performance of the treatment systems.  

 

In summary, the objectives derived from the literature (Chapters 2 and 3) 

were thus:  

 

a) to identify suitable analytical methods for measuring the concentration of 

metals and their mobility in the environment (soluble and total speciation); 

b) to analyse the concentrations of metals in the runoff and to assess a case 

study of the treatment SUDS lagoon at the test site on the M1; 

c) to compare metal concentrations in treated sewage with the concentrations 

obtained from the M1 in order to identify the major source of metals in the 

catchment; 

d) to evaluate the background metals in a control rural brook and compare the 

results with the concentration of metals in runoff from the highway (M1);  

e) to assess the effects of seasonal variation, rainfall intensity and ADWP on 

the metal concentrations at sampling sites; 
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f) to analyse the factors affecting metal solubility in the runoff, by measuring 

other key physical and chemical parameters in stormwater in the three 

locations; 

g) to evaluate the efficiency of crushed glass compared with standard pea-

gravel filters for enhancing the treatment of stormwater to remove metals, 

and 

h) on the basis of these studies (above) and metal characteristics, to suggest 

the most efficient combination of treatment mechanisms, that is gravity, 

adsorption and mechanical filtration. 
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CHAPTER 4 
 
 
MATERIALS AND METHODS FOR ANALYSING RUNOFF QUANTITY AND 

QUALITY 

 

4.1 EXPERIMENTAL  SITES 

 

The aim of the work, which was to increase the understanding of the behaviour of 

metals in stormwater runoff, was achieved by means of experimental work divided 

into two parts: 

1. Analysing runoff quality from a major highway and comparing it with other 

sources in the same catchment area. 

The study comprised analyses of runoff from the M1 motorway and its treatment 

by interceptor and lagoon next to this major highway (M1, junction 24), of the local 

sewage work effluents in the same catchment and of samples from a control, a 

rural local brook (Woodbrook), historically the catchment for the local water supply 

(Nanpantan). These analyses were conducted during dry and wet weather and in 

different seasons. 

2. Laboratory tests on improved stormwater treatment (see Chapter 5). 

These tests involved filtration and adsorption by different filter media.  

 

The experimental plan of this part of the research was to determine the water 

quality of runoff from different sources in the local catchment and the effect of 

seasonal wet and dry weather. J24 was chosen because it is one of the busiest 

junctions in the East Midlands and is likely to represent a worst case and it is also 

near the University (further details are noted in the motorway subsection, 4.1.1). 

The second sampling sites were representative of sewage work effluents in the 

catchment. The literature review noted that sewage effluents were a major 

contribution of metals to the catchment (Bubb and Lester, 1995). These two sites 

were compared with samples taken from an unpolluted rural brook used for 

drinking water. Details of the location of the sampling sites and other catchment 

information are given in subsections 4.1.2 and 4.1.3. 
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Sampling resources were concentrated on the motorway runoff and rural brook 

because greater buffering of storms is available in sewage works. Therefore, 

changes in metal concentrations in the sewage effluent were expected to occur 

more slowly.  

 

The locations chosen for sample collection were selected taking into consideration 

the distinctive features of the stream, such as water depth and the availability of 

engineering for access (outlets, inlets, drains). More details of these locations are 

given as follows: 

 

 

4.1.1 M1, Junction 24 

 

The location selected on the M1 was on the northbound carriageway (labelled 

junction 24A). This location is at Kegworth approximately 7 miles north of 

Loughborough. The general view of that area is shown in Figure 4.1, as well as the 

location of the lagoon.  

 

This section of the M1 motorway is one of the busiest sections, linking as it does 

the major East Midlands cities, and it has one of the highest levels of traffic in the 

UK (peak traffic flows are 30,000 vehicles an hour). The test site is located at the 

junction of the M1 with the M42 and A50 link roads. The sample junction 24A was 

rebuilt in 1996 with the construction of the A50 link road and includes an 

interceptor and SUDS lagoon.  During rainfall events the runoff flows along a ditch 

adjacent to the motorway which links up with the drainage from the A50 slipway by 

means of which runoff is channelled into an oil silt interceptor before entering a 

SUDS lagoon (Fig.4.2 a). It drains an impermeable area of around 3,000 m2. The 

volume of the lagoon is 2000 m3 and the average depth is 0.9 m. 
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Sheet 129 

 

Fig. 4.1 General view of the M1 (Junction 24) 

 

Location of sample points 

Sample points were selected to observe how water quality changed through the 

treatment train (Fig. 4.2 b). Photos 4.1 – 4.4 show the location of each sample 

point.  
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a) 

 

b) 

 
Fig. 4.2 Schematic view of the SUDS lagoon and sample points 
1 – inlet; 2 – before the oil-interceptor; 3 – after the oil-interceptor; 4 – lagoon; 5 – outlet of the 
lagoon. 
 

 

Photo 4.1 shows the inlet to the treatment system. The inlet is usually flooded 

except after an exceptionally dry period. Photo 4.2 shows the inlet to the separator 

downstream of the point shown in Photo 4.1 (about 35 m). 

         1 
 

             4 
 

Slipway 

2       3 

                                    5 

A50 
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Photo 4.1 1
st
 sample point. Inlet into the 

treatment system with the A50 above.   

 

Photo 4.2 2
nd

 sample point. Inlet to the oil-separator  
showing underflow concrete weir. Lagoon and  the  
M1 in background 

 

Photo 4.3 3
rd

 sample point. Outlet from the oil-
separator showing the reverse side of the 
concrete underflow weir shown in Photo 4.2. 
No flow during dry conditions. 

 

 
 
 
 
 
 
 
 
 
 
Photo 4.4   4

th
 sample point. The lagoon showing  

concrete outlet structure on far side of photograph.  
Sample point was taken 1/3 of the way around the  
perimeter of the lagoon. 

 

Runoff comes through the perforated drainage kerbstones and surface drains of 

the A50 and travels through a standard concrete drain under the A50 where it 

mixes with runoff from the northbound M1 and enters a ditch where the first 

sample point is situated (Photo 4.1).The first sample point was from a shallow 

ditch (Photo 4.1) and during prolonged dry weather conditions (> 10 days without 

rain) there was either no water in the ditch or the water was completely stagnant, 

having been retained from previous rainfalls. Throughout the monitoring period 

covered by this thesis it was noted that this retained water, even though stagnant, 

was always turbid. This was assumed to be due to the small particle sizes and 

there was a suggestion that particles from the sediment might be re-suspended as 

a result of activity in the ditch. During rainfall events the stormwater from both the 
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A50 and the M1 mixes with any stagnant water present and then passes into the 

oil-separator (2nd sample point). Table 4.1 shows the dimensions of the oil-

separator and Fig. 4.3 represents the oil-separator diagrammatically. 

 

Table 4.1 Dimensions of the oil-separator 

Length, m Width, m Operating depth, m 

3.0 3.5 0.7 

  

 

Fig. 4.3 Diagram of the oil-separator 

 

Subsequently, following the underflow weir in the interceptor, the stormwater 

passes into the lagoon itself (3rd sample point). Samples were taken from the 

same locations in the lagoon as close to the outlet as safety permitted. Other 

samples were periodically taken from the lagoon in order to understand how water 

quality could vary depending on the retention time in the lagoon (4th sample point). 

The lagoon is large (2000 m2) and it was anticipated that water quality in the outlet 

area of the lagoon would not vary to a great extent during dry and normal or 

average stormy wet weather. In the beginning of the experimental work the 
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discharge from the lagoon was also sampled at the inlet (sample point 5, Fig. 4.2 b) 

to confirm this. However, it was abandoned later on since the water quality at that 

point was not different from that at sample point 4 (Fig. 4.2 b and Photo 4.4).  

 

The size of the lagoon, which serves about 3000 m2 of impervious area according 

to the construction drawings (Scott Wilson), was a surprise (annual average 

rainfall is ~ 50 mm/month; see Appendix 1 for details). It is suggested from this 

data that the design was based on the area available rather than anticipated 

volumes. It may have been intended to connect with more of the northbound 

surface drainage in the future. Another explanation for having such a big area of 

lagoon could be the conservation of wildlife and it could also be attributed to 

climate change issues. 

 

Photo 4.5 shows the outflow control structure (hydraulic brake) which controls the 

water level in the system. When the lagoon is completely flooded, the water flows 

through the drain pipe illustrated and enters another ditch running along the M1 

(Photo 4.6) from where it discharges into a natural water course.  

 

Photo 4.5 Outflow control structure Photo 4.6 Ditch running alongside the M1 
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 Flow Rate Measurement 
 
To measure the discharge from the motorway catchment into the inlet a 

“STARFLOW” Ultrasonic Doppler Instrument (Starflow Model 6526B) was used 

(Photo 4.7). The instrument measures water velocity, depth and temperature 

integrated into a single unit. Water velocity is measured acoustically by recording 

the Doppler shift from particles and air bubbles carried in the water. Water depth is 

measured by a pressure transducer which records the hydrostatic pressure of the 

water above the instrument. Temperature is measured in order to refine the 

acoustic recordings, which are affected by the temperature. The STARFLOW was 

installed in the inlet pipe with a diameter of 1000 mm (Photo 4.7) near the 

downstream end so as to maximise non-turbulent flow conditions and it was 

positioned with the sensor pointing upstream. 

 

 

                                Photo 4.7 Flow meter in the inlet during dry weather period 

 

Photo 4.7 shows the flow meter during a dry weather period when no water was in 

the inlet. Table 4.2 summarises some important characteristics of the flow meter.  

 

Measuring Water Velocity 

 

This was carried out by measuring the cross section of the inlet pipe and the 

average velocity during a certain period of time. Starflow measures velocity with 

the use of the Doppler shift which occurs when sound is reflected from a moving 
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target; its frequency then varies according to the velocity of that target. The flow 

meter let out a continuous signal (incoherent) and the mean velocity of all passing 

particles was calculated to gain the most accurate data possible.  

 
 Table 4.2 Specifications, factory settings and performance of the flow meter 

  

 

Fig. 4.4 shows one of the velocity histograms which could be seen on the laptop 

screen when the STARFLOW was operating. This diagram represents the 

STARFLOW‟s view of the inlet pipe. Normally, the screen will cycle continuously, 

refreshing the plot and summaries each time a new set of data is acquired. The 

statistical parameters are continuously averaged and an example is tabulated 

below in Fig. 4.4. 

 

From Fig. 4.4 one can see that the x axis represents the velocity in mm/s. The y 

axis indicates the relative number of times a particular velocity has been received. 

The centre of this peak is the mean of all echoes received. As the velocity 

changes, the peak will be seen to move back and forth along the x axis.  The width 

of the peak indicates the range of particle velocities that are being measured with 

each reading. The narrower the peaks in Fig. 4.4, the lower the standard deviation, 

and in practice, the closer to laminar (mean velocities from 50 to 100 mm/s). In 

Size, (LxBxH), mm 290x70x25 

Velocity, mm/sec:  

accuracy 2% of measured velocity 

signal path 30° above horizontal 

range 21mm/s to 4500mm/s bidirectional 

resolution 1 mm/s 

Depth, mm:  

accuracy +/- 0.25% of calibrated lower range 

minimum depth 25 mm 

type Hydrostatic pressure sensor 

Temperature Range -17°C to 60°C  

Scan Rate, sec Frequency of STARFLOW measurement cycle, 60 sec 

Log Interval, min Frequency of STARFLOW recordings 15 minutes 

Maximum Sampling 
Duration 

10 seconds (factory settings 2 sec) 

Maximum Samples  200 

Quartile 300% (factory settings 100) 

Cross-sectional area Calculated by STARFLOW  using the measured depth, m
2 

Flow rate, l/s Instantaneous flow rate, calculated by STARFLOW as the product 
of Velocity and Area  
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fast turbulent water the peak can be 500 mm/s or more wide because of the range 

of velocities present in eddies and swirls.  

 

 

 

 

Median, mm/s The computed median 
of all the Doppler shifts 
detected. 

Quartile, % A ratio of the width of 
the peak to the height. 
This provides an 
indication of the quality 
of the histogram. Normal 
values are from 20% to 
50%. If the transducer is 
buried in silt, the values 
will be from 100% to 
200% (factory settings).  

Average, mm/s The mathematical 
average of all measured 
velocities. This can be 
unacceptably biased by 
signal noise. 

Maximum, mm/s The Doppler shift of the 
peak of the histogram. 

 

Fig. 4.4 Velocity histograms of the operating flow meter 

 

From the data presented in Appendix 3, one can see that in most cases the flow 

regime was uniform with the velocity ranging from 20 to 60 mm/s. When the 

velocity was less than 20 mm/s, the flow rate data were not taken into 

consideration. 

 

The site was visited at least weekly to ensure that the flow meter had not been 

disrupted and was safe and these inspections were carried out at the same time 

as sampling. Data for flow rates during the week were downloaded during these 

visits. Photo 4.8 shows the laptop linked to the logger. The flow meter was re-

programmed before leaving the site.  

 

The Starflow cable contained a tube to vent the depth pressure sensor to air. 

Inspections of this tube were necessary at each visit to ensure that no moisture or 

insects entered the vent tube, as this would have caused erratic depth 

measurements. 
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                          Photo 4.8 The laptop connected to the logger 

 

Depth Measurement 

Water pressure was ascertained via a pressure manifold. The manifold‟s shape 

helped reduce the effects of velocity on the pressure sensor so that a more 

accurate measurement could be taken in relation to depth. 

 

Factors Affecting Data Accuracy 

The accuracy of the measured velocity depended on the flow and cross-sectional 

characteristics of the site. Smooth and uniform is desired, which was mostly the 

case at the test site, along with a constant cross-section, which the pipe at the site 

provided.  

 

One of the factors which affects the data from the flow meter is variations arising in 

the velocity distribution across the channel when averaged velocity is used as 

opposed to instantaneous measurement. This occurs when particles (on velocity 

streams) wander from side to side as they move along the channel, which can 

cause 10% differences from some of the averaged particle velocities. There is 

nothing which can be done about this and it is part of the overall error that occurs 

when analysing data from this type of flow meter.  
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Another influence on accuracy is the conversion of the logged velocity data into a 

mean velocity. The larger the channel, the smaller the number of representative 

particles the Starflow will measure. As the outlet pipe is not large, this factor 

should not have had a significant effect on flow.  

 

Flow Meter Problems 

Initially the field work encountered unexpected difficulties because of the poor 

reproducibility experienced from the unit. The unit was found to be sensitive to 

debris and silt deposits on the sensors, as well as the nocturnal activities of 

animals. This was recognised from the erratic data produced (see Appendix 3). To 

improve the situation, some settings were changed to reduce the range of values 

included for better interpretation of the data. Table 4.3 shows both the default 

settings set by the software and those which were changed. 

 
Table 4.3 Factory settings and later adjustments 

Settings Factory settings Changed to 
Max Quartile settings, % 100 300 
Min samples to analyse 20 10 
Max sampling time 2 10 

 

As was mentioned above, a Max Quartile value equal to 100% indicates that the 

unit was buried under the silt (Fig. 4.4), which could not have been avoided, 

especially after a prolonged spell of dry weather. Hence, the setting of the quartile 

reading was changed from 100 to 300, thereby spreading the Doppler shifts wider 

and resulting in a better performance, as the unit was forced to perform in more 

severe and unfavourable conditions. The changes in the quartile settings meant 

that the frequency of sampling needed to be adjusted (Table 4.3). It has to be 

noted that all these changes affected the accuracy of the data, since the number 

of particles counted was reduced by half. 

 

4.1.2 Woodbrook 

 

This brook rises in the Charnwood hills to the South West of Loughborough (see 

Fig. 4.5). The brook flows through the centre of Loughborough to join the river 
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Soar. Woodbrook was originally impounded upstream of Loughborough (1895) to 

supply drinking water for the town (but it is now redundant in this function). 

Sheet 129 

 

Fig. 4.5 The location map shows the source catchment upstream of the sampling point of 
Woodbrook, its proximity to the M1 and the University 
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It is an overflow stream from the water works reservoir and it has an average flow 

rate during dry weather flow of 50 l/s in Loughborough. The area upstream of the 

sampling point flows through agricultural land, family gardens, allotments adjacent 

to houses, minor residential roads and their grass verges (see Fig. 4.5). The area 

enclosed by the catchment boundary is approximately 25.5 km2. The sampling site 

can be seen in Fig. 4.6 and Photo 4.9. 

 

 

                       Fig. 4.6 Woodbrook sample point 
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Photo 4.9  Woodbrook sample point 

 

The main criterion for choosing a sampling location was safety of access and 

finding a place in the brook where samples could be assumed to be representative 

of the average quality of brook particulates. The place was chosen while taking 

into consideration erosion, transportation and deposition of sediment. An area of 

the bed of the brook was chosen with a substantial proportion of silt but so as to 

be free from coarse material (pebbles and gravel), except under extreme weather 

conditions. Sampling was not carried out during very low-flow periods and, 

consequently, always included TSS, inputs from silt and land erosion. In order to 

investigate the effects of season on residential runoff on the quality of the 

otherwise rural Woodbrook, sampling was differentiated according to rainy and dry 

periods. Pollutants were classified as derived either from soil (N and P) or urban 

sources (EC & metals). 

 

4.1.3 Sewage treatment works 

 
Table 4.4 summarises information about STW flow and sources of pollutants. 
 
Table 4.4 STW (type of treatment)  

Name of STW Type of treatment 
Loughborough Standard A/S 
Osgathorpe (Coalville) Filters 
Shepshed Oxidation ditch 
Leicester Standard A/S 



 83 

The location area of the STW is represented by Fig. 4.7 and the sampling site of 

the Osgathorpe STW (final effluent) (SW1) can be seen in Photo 4.10. 

 

Fig. 4.7 Location area of the sewage works sampling sites. SW1 – Osgathorpe sewage works and  

* - sampling point of the final effluent; SW2 – Shepshed sewage works. 
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Photo 4.10 Final effluent of the Osgathorpe sewage works 

 

Only the final effluent was sampled and thus it might be expected that any 

insoluble pollutants would have been removed by the settlement stages of sewage 

treatment.  

 

4.2 SAMPLE COLLECTION AND PREPARATION FOR ANALYSIS 

 

4.2.1 Sampling Procedure 

 

Treatment lagoon 

Samples were collected both during dry and wet weather from the M1 treatment 

lagoon and in different seasons. During dry weather, single grab samples were 

collected and the water depth at the sampling points was recorded. To observe 

dynamic fluctuations of the pollutant concentrations during wet weather, a number 

of grab samples were taken during storms, depending on the rainfall 

characteristics, to take into account the variability.  

 

The amount of rainfall was recorded by a rain gauge which was used only during 

sample collection and linked to the volume of runoff and frequencies of sample 
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collection. The area for rain gauge installation was selected to be free from trees, 

bushes and long grass. The rain gauge was set up on the moss surface adjacent 

to the interceptor.  

 

In the course of the study a portable flow meter was purchased which enabled 

measurements to be taken of the flow rate and, consequently, of mass pollutants 

over a rainfall event. 

 

Rural brook 
Grab samples were also collected both during dry and wet weather and in different 

seasons from a local brook (Fig 4.6). Two attempts were made to install a rain 

gauge in the vicinity of the brook sample point, both of which ended up with the 

loss of the rain gauges: one of them was probably stolen and the other was blown 

or washed away.  

 

Sewage treatment works 

It was reasoned that there was buffering in the sewage system and samples of the 

STW effluent were therefore collected according to resources rather than specific 

weather conditions. 

 

Limitations 

The two limitations that were encountered during the research which required 

change were problems relating to the monitoring or measuring of the flow rate (the 

flow monitoring problems are described in section 4.1.1); and the need to improve 

the analytical technique on the basis of experience gained. After March 2008 the 

microwave digestion technique was used exclusively and the details are shown in 

Table 4.5  

 

4.2.2 Sample preparation 

 

Samples were collected by hand using pre-washed polyethylene bottles which 

were kept stored and soaked in a 50% solution of HNO3. Before sample collection,  
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Table 4.5 Samples affected by the change in analytical technique 

Term of 
sampling 

M1 

(J24) 

Woodbrook Sewage Treatment Works 

Loughborough Osgathorpe Shepshed Leicester 

Oct. 2006  ■ ■     

Nov. 2006 ■ ■     

Dec. 2006 ■ ■     

Jan. 2007 ■ ■     

Feb. 2007 ■ ■     

March 2007 ■ ■     

Apr. 2007 ■ ■     

May 2007 ■ ■     

June 2007 ■ ■     

July 2007 ■ ■     

Aug. 2007       

 Sept. 2007 ■ ■     

Oct. 2007 ■ ■     

Nov.2007    ■ ■ ■ ■ 

Dec. 2007 ■ ■ ■ ■ ■  

Jan. 2008 ■ ■ ■ ■  ■ 

Feb. 2008       

March 2008   ●    

Apr. 2008 ● ●     

May 2008 ● ● ●    

June 2008 ● ●     

July 2008 ● ● ●    

Aug. 2008       

Sept. 2008 ● ●     

Oct. 2008   ●    

Nov.2008 ● ●     

Dec. 2008 ● ●     

Jan. 2009 ● ● ●    

Feb. 2009  ●     

March 2009 ● ● ●    

Apr. 2009 ● ● ●    

May 2009 ● ● ●    

June 2009   ●    

July 2009 ● ● ●    

Aug. 2009 ● ● ●    

Sept. 2009 ● ● ●    

Oct. 2009 ● ● ●    

Nov.2009 ● ● ●    

■– Hot plate; ● – Microwave digestion; March 2008 – a microwave digester was purchased 

the bottle was rinsed twice with the sample. Subsamples for the analysis of metals 

(100ml aliquots) were acidified as soon as possible on return to the laboratory with 

concentrated HNO3 (5 ml/l). For the analysis of dissolved metals, a similar 100ml 

of sample was filtered under vacuum through a 0.45 μm pre-acid-washed 
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membrane filter and stored in an acid-washed plastic bottle. Photo 4.11 shows the 

standard commercial filtration unit for a 0.45 μm membrane filter. The filtered 

samples were also acidified with concentrated HNO3 to pH < 2. 

 

Photo 4.11 Filtration unit 0.45 μm membrane filter 

To analyse the behaviour of metals 

(affiliation with different particle sizes) 

samples were also filtered through 1.2 

and 0.7 µm pore-size filters made of 

glass fibre paper (this allows the 

proportion of attachment to organic 

solids of different sizes to be 

analysed). 

Samples for analysing 

3NO  were 

collected in other plastic bottles 

without soaking in the solution of 



3NO .  

Samples for other analyses (see section 4.2.4) were stored at 4°C until the 

analyses could be performed, usually within 24 hours.  

 

 Total metal analysis with hot plates 

Total metals were analysed by means of two digestion techniques: the APHA 

2005, Standard method and the Aqua Regia method. According to the APHA, 

digestion is carried out in three stages. For stage 1, 100 ml of sample was 

transferred to a flask, acidified with concentrated HNO3 (3 ml) and heated on a hot 

plate to evaporate and reduce the volume to less than 5 ml. At the second stage 

the sample was acidified with a further 5 ml of HNO3 and heated until digestion 

was complete (a standard indicator of completion of digestion was a light-coloured 

solid-free sample). For the third stage it is necessary to dissolve any remaining 

precipitate or residue which might be left after the previous stages. For this 

purpose, 10 ml of 50% dilution of concentrated HCl and 15 ml of metal-free RO 

water were added and heated for an additional 15 minutes. The samples were 

then cooled and filtered (Whatman no. 1) to remove insoluble material that could 

have clogged ICP‟s nebuliser.  
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The Aqua Regia method is a less rigorous procedure but it is quicker as it is 

carried out in one stage. 100 ml of sample was acidified with 2 ml of concentrated 

HNO3 and 5 ml of concentrated HCl and then heated on a hot plate until the 

volume was reduced to approximately 25 ml. 

 

In both cases (Standard methods and Aqua Regia) it is undesirable to boil the 

samples because at high temperatures metals tend to break their bonds with 

particulate matter and boiling is likely to be a cause of the formation of new bonds 

and complexes. Moreover, some more volatile metals might be evaporated off, so 

the temperature during evaporation should be 90 - 95˚C (APHA 2005). 

 

 Total metal analysis with microwave digestion 

During the course of the study a microwave digester was purchased which 

enabled the third method of total metal recovery to be implemented. Microwave 

digestion was performed in a commercial CEM Mars Xpress microwave, using 30 

ml of sample which was acidified with 2 ml of concentrated HNO3 and 5 ml of 

concentrated HCl. When the samples were cooled, they were filtered through 

Whatman no.1 and diluted with distilled deionised water to 50 ml in volumetric 

flasks.  

 

Total and dissolved metals were then tested from all samples using an Inductively 

Coupled Plasma (ICP) analyser (Thermo Jarrel Ash Atom Scan 16). The ICP‟s 

detection limit for each of the tested elements is dependent on its wavelength and 

is presented in Table 4.6. 

 
  Table 4.6 ICP‟s detection limit  

Element Wavelength, 
nm 

Detection  
limit, mg/l 

Element Wavelength, 
nm 

Detection  
limit, mg/l 

Fe 259.940 0.002 Ni 221.647 0.005 

Cr 283.563 0.004 Pb 220.353 0.025 

Cu 324.754 0.002 Zn 213.856 0.002 
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4.2.3 Particle size distribution (PSD) 

 

This analysis was carried out with samples from the M1 collected during wet 

weather to evaluate the settlement characteristics and performance of the lagoon. 

Samples for PSD were also taken before passing through the oil-separator and 

after it. Analysis was carried out by means of a “Mastersizer” 2000 analyser 

(Malvern Instruments) which allows particles to be measured in a range from 0.02 

µm to 2000 µm with a degree of reproducibility that depends on the obscuration 

factor, i.e. the particle concentration from 10 to 20%. 

 

In the course of the study PSD was also carried out for the second part of the 

experimental programme (column experiment), i.e. while determining the efficiency 

of the filter materials. In this case samples were taken from the feed to the column 

and the effluents were sampled at various stages of filtration. The analysis had to 

be carried out using the Mastersizer below its recommended obscuration level, 

which could have resulted in an error in the final effluent values. This type of 

analysis was easier to reproduce than the alternative image analysis. The water 

after filtration (column experiment) had a TSS concentration of up to 10 mg/l. 

 

4.2.4 Other physico-chemical analysis 

 

These were all carried out in accordance with international standard methods 

(APHA 2005). 

 

pH, TDS and Electro conductivity. These parameters were measured by using a 

pH-EC-TDS meter Hanna HI 9812. The detection range of the equipment for TDS 

and EC measurements was 0 to 2000 in ppm or μS/cm but during winter, because 

of the presence of de-icer salts, the samples needed to be diluted. 

 

The pH meter was buffered before use and the EC/TDS required calibration only 1 

– 2 times a year according to the manufacturer.  
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Total Suspended Solids (TSS) were determined by filtration of a water sample 

using a 1.2 µm grade GFC, 7 cm discs. The discs were weighed before and after 

filtration and the results were expressed so as to give the suspended solid 

concentration in mg/l. The volume of water to be used for filtration was determined 

by visual inspection of the solid load (see Table 4.7). 

 

Table 4.7 Volume of water samples for TSS determination from sampling sites 

Name of sample Volume of sample, ml 

Sewage treatment works 250 – 300 

Woodbrook ( dry weather) 

M1 (J24) (dry weather) 100 

M1 (J24) (wet weather) 50 – 100 

Woodbrook ( wet weather) 

 

Samples were dried in an oven at 105ºC for 1 hr, cooled in a desiccator and 

reweighed after a second hour to ensure constant weight. 

 

Total organic carbon (TOC) was determined by the high-temperature combustion 

method using a Total Organic Carbon analyser Rosemount Dohrmman DC 190. 

The samples were settled but not filtered prior to the analysis.  

 

The analyses of Nitrate and Phosphate were carried out by means of the ion-

chromatographic method Dionex ICS – 1000, using 10 ml of samples which were 

occasionally filtered to avoid clogging the column.   

 

Total hardness was determined utilising a commercial test kit tablet test with 

Palintest Photometer 5000. 
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CHAPTER 5 

 

EXPERIMENTAL SET-UP FOR FILTRATION AND ADSORPTION STUDY 

 

5.1 THE DESIGN OF THE FILTER UNIT AND ITS DESCRIPTION 

 

It has been shown in the literature review that the quantity and type of metals and 

other water parameters of highway runoff can vary widely depending on the 

sampling point, as well as both within and between storm events (Crabtree et al., 

2006; Prestes et al., 2006). Moreover, from the literature review it can be seen that 

the amount of suspended solids in highway runoff is significant and influential on 

the total metal concentration. This is recognised and particularly important for Zn 

since the EQS is expressed as a total. Following the literature survey and previous 

work at Loughborough (Nur Muhammad, 1998), it was uncertain how well the 

recommended highway runoff treatments (interceptor and SUDS) would perform in 

achieving the EQS under all conditions. Thus, a series of experiments were 

carried out to explore the effects of augmenting separator performance with a filter 

as recommended in PPS 25 and the CIRIA guide (2000).The opportunity was also 

taken to evaluate the efficiency of recycled crushed glass as a sustainable 

substitute for gravel.   

 This work may also be useful to guide the maintenance of filter drains which are 

known to collect a substantial portion of solids together with metals. According to 

Rowlands (2007), the road network in England is around 7,500 km in length and 

filter drains cover around 50% of the network and could be making an important 

contribution to water quality. Santhalingham (2008) of the Highways Agency 

highlighted the fact that the provision of effective maintenance of sub-surface 

drainage was a major part of their strategy to minimise the impact on the aquatic 

environment. 

 

The experiment was performed in standard laboratory-scale adsorption columns 

made of perspex.  The height of the column was 2.0 metres with an internal 

diameter of 150 mm. In order to assess the performance of crushed recycled glass, 

an identical column filled with standard highway drainage pea-gravel was used as 
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a control (see Photo 5.1). There were two layers of media: a layer of crushed glass 

or pea-gravel (6 – 10 mm) supported on a layer of larger gravel (10 – 12 mm).  

 

 

Photo 5.1 Photograph of the two units 

  

 

 

Fig. 5.1 Schematic diagram of the column  

11  --  ffiilltteerr  ffiilllleedd  wwiitthh  ccrruusshheedd  ggllaassss  aanndd  ppeeaa--ggrraavveell;;  

22--ssaammppllee  ppooiinntt;;    33  ––  ppiieezzoommeetteerr;;  44  ––  ttaannkk  ffoorr  

ssuuppppllyyiinngg  ffiilltteerr  wwiitthh  wwaatteerr;;  55  ––  ttaannkk  ttoo  pprroovviiddee  

ccoonnssttaanntt  lleevveell;;    66––ppuummpp;;  77  ––  rraaww  wwaatteerr  ffoorr  
filtration; 8 – final effluent. 

Filtered water was discharged through the base of the column. Along the column 

height there were also several intermediate sample points so as to evaluate the 

breakthrough curve (Photo 5.1 and Fig. 5.1). The first outlet is 45 cm from the 

bottom of the column and the rest are spaced 40 cm from each other for its full 

height. The filter was of a standard gravity design and it utilised a downflow 

velocity of between 3 and 10 m/hr to enable a comparison to be made with 

previous work on drinking water treatment units. Experience showed that 

reproducing the exact concentration of suspended solids was impossible. This was 

attributed to the real and variable nature of the sediment taken from the M1 and 

the lagoon and solid accumulation in the apparatus. In the event this simulated the 

likely variability in storm flows from a highway which would not be at a steady 

velocity or encounter a clean filter bed. 
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There would be changes in filtration velocity, even under the same storm 

conditions, caused by a combination of factors: variation in the ditch cross-section, 

bed gradient and the presence of the interceptor. 

For metal analysis the microwave technique described in section 4.4.2 was used. 

 

Based on experience gained when using GF filter papers (section 4.2.2), it was 

assumed that on delivery the crushed glass would initially be contaminated with 

metals. Accordingly, the medium was washed and soaked using a 10% dilution of 

concentrated HNO3 until the concentrations of leached metal were negligible. The 

medium was tested for metals before and after being soaked. Table 5.1 compares 

the results of glass testing before and after soaking. Next the crushed glass was 

put into the column and the medium was then washed further until negligible 

measurements of metal concentrations were achieved (Table 5.2).  

 

Table 5.1 Comparison of recycled glass for the presence of total metals before and after being 
soaked  

 Fe, ppm Cu, ppm Zn, ppm Pb, ppm Cr, ppm Ni, ppm Mo, ppm Cd, ppm 

Glass 
before 

soaking 

5.967 0.414 0.111 0.030 0.081 0.047 0.006 0.007 

Glass 
after 

soaking 

0.162 0.032 0.016 No data Less than 
detected 

limit of the 
ICP 

0.022 No data No data 

 
Table 5.2 Recycled glass in the column. (Column was filled with tap water.  
Digested samples) 

Name of 
the 

sample 

Fe, ppm Cu, ppm Zn, ppm 

Tap1 0.015 0.005 0.008 

Tap 2 0.019 0.007 0.008 

Tap 3 0.020 0.008 0.009 

Tap 4 0.022 0.01 0.009 

 

5.2 FILTRATION AND SAMPLE COLLECTION 

 

An experimental stock solution of 450 l was prepared with approximately 100 mg/l 

of TSS made up by re-suspending the sediment collected from the inlet of the 

lagoon at the field station on the M1 (see Fig. 4.2 b). Water was supplied to the top 
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of the filter by a centrifugal pump (Fig. 5.1). The filter rate was 5 m/hr, which is 

typical of a gravity filter (Hendricks, 2006). Grab samples were collected from each 

sample point every hour using pre-washed 400 ml polyethylene beakers. Sub-

samples for the analysis of metals (100 ml aliquots) were immediately acidified 

with concentrated HNO3 (5 ml/l), as noted. For the analysis of metals the method 

was that which is described in section 4.2.2. 

 

5.3 SURFACE AREA MEASUREMENT 

 

The measurement used is commonly employed, although it has not been 

confirmed as an international standard (Cerato and Lutenegger, 2002). The 

technique uses weight gain from ethylene glycol adsorption to assess surface area. 

The analysis was carried out in duplicate. Aluminium sample dishes are pre-

weighed (m1) and then filled with the filter media as a blank (m2) before being dried 

in a desiccator containing phosphorus pentoxide as a desiccant (70 grams of 

anhydrous phosphorus pentoxide). The aluminium dishes with their contents were 

arranged around the circumference of the desiccator and, after the desiccator had 

been evacuated for 45 minutes, they were then allowed to stand for 4 hours. The 

pump air-inlet was then opened slowly to gradually release the vacuum. The initial 

dry mass of the dishes was then recorded as m3 and the dishes were returned to 

the desiccator immediately. It was then evacuated again for another 45 minutes 

before being allowed to stand overnight under vacuum. Then, on the following day, 

the vacuum was released gradually, the dishes were immediately re-weighed and 

the lowest recorded value of m3 was noted. Sufficient volumes of ethylene glycol 

were then added to each dish to submerge the surfaces of the filter media and the 

anhydrous phosphorus pentoxide was replaced with anhydrous calcium chloride. 

The desiccator lid was replaced and the dessicator was allowed to equilibrate for 2 

hours. The pump was then switched on for 15 minutes with the air-ballast setting 

of the pump open to remove the non-adsorbed ethylene glycol and subsequently 

the desiccator was left for 45 minutes with the air-ballast setting switched off, on 

the assumption that by then no residual ethylene glycol would remain. The whole 

system was then allowed to stand overnight under vacuum. The following morning, 
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the vacuum was released gradually and the dishes weighed immediately, with the 

weights recorded as m4. 

 

The surface areas of the samples were then calculated from the following equation: 

 

Surface Area = 
Gmm

mm

Lowest

Lowest 1

13

34 













,                                                            (5.1) 

where m1 is the weight of the empty dish; m2 is the weight of the dish plus sample; m3 (1
st) 

and m3 (2
nd) are air-evacuated weights; m4 is the weight of the dish, sample and ethylene 

glycol; G is the weight of Ethylene glycol required to form a mono-layer over 1.0 m2 of a 
solid surface = 2.8 x 10-4 gm/m2, used as recommended by Cerato and Lutenegger (2002). 

 

5.4 EQUILIBRIUM ADSORPTION 

 

In order to understand more about the adsorption properties of the glass and 

control, a gravel standard test using methylene blue and copper solutions. (ASTM 

C837 – 99; 2003) was used. Copper was expected to be the most important 

soluble metal and methylene blue is a standard organic absorbate 

(http://chemistrylaboratoryreports.blogspot.com/2010/04/adsorption-of-methylene-

blue-by.html). Crushed glass or pea-gravel with weights between 1 gr and 5 gr 

were put into the conical flasks with a known concentration of either methylene 

blue or of copper solution. The initial concentrations of the adsorbate were 

measured using ICP for copper and the UV-spectrophotometer calibrated curve for 

methylene blue. The flasks were put in an orbital fixed-temperature shaker for 

measured time intervals between 10 and 120 min. After the reaction times the 

concentration of adsorbate was measured again.     

 

The adsorption capacity expressed as mg/mg was then calculated from the 

following equation: 

Adsorption capacity =
 

M

VCC ii 0 ,                                          (5.2) 

where iC0  is the initial concentration of adsorbate, mg/l; iC  is the concentration of 

adsorbate after shaking, mg/l; V  is the volume of the adsorbate solution taken for the 

experiment, ml; M is the weight of the adsorbent, mg. 
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CHAPTER 6 

  

RESULTS AND DISCUSSION 

 

6.1 DIGESTION TECHNIQUE 

 

It has already been shown that the variation in the dissolved fraction of the metals 

depends on the variability of storm events, the time of sampling (in wet or dry 

weather, although it is always greater in dry weather; see the data of Mosley and 

Peake, 2001), the type of urban area and the digestion procedure. This makes the 

interpretation of the analysis complex. From Table 2.2 it can also be seen that the 

solubility of each metal is different, which makes the interpretation of the effects of 

applying different digestive techniques (microwave digestion and traditional hot 

plate) as well as different combinations of acids more difficult.   

 

Of specific concern in our research was the method of metal recovery applied, 

since  microwave digestion is quicker and safer than the traditional method which 

uses hot plate aqua regia whereby the water samples are digested on hot plates 

with acidic mixtures of HCl and HNO3 (APHA, 2005). This digestion procedure has 

been widely used for metal recovery from solid materials but it is a slow operation   

because of the need to evaporate off the acids. Moreover, open systems are used 

during the digestion process, which might result in atmospheric contamination and 

losses of volatile metal derivates during the oxidation of organic substances 

contained in the samples (Wong et al., 1997; Chen and Ma, 2001; Sun et al., 

2001). 

 

The microwave digestion method, which became available in 1980, is quicker, 

safer and more efficient and it is not susceptible to losses of volatile metals. Our 

results which were obtained from applying the two digestion methods to 10 

samples in a dirty water matrix are shown in Table 6.1. 

 

From Table 6.1 one can see that the hot plate aqua regia method gave recoveries 

in the range of 52 - 85%, which agreed well with a study by Chen and Ma (2001), 
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where recovery of metals by aqua regia was approximately 80%. The microwave 

digestion method is more rigorous (since it acts at a higher temperature and uses  

 

Table 6.1 Metal recovery by the two digestion methods  
Pollutant Percentage of metal recovery from 

calibration standards, % 

Hot plate aqua 
regia 

Microwave aqua regia 

Fe 70 – 85   102 – 117 

Cu 52 – 68  90 – 95 

Zn 55 – 66  92 – 96 

Pb 48 – 63  Not analysed 

Cr 62 – 78  77 – 84 

Ni 58 – 70  41 – 43 

 

sealed tubes) than the hot plate method, therefore it produced a better recovery of 

metals, apart from nickel. The amount of iron measured was also greater than the 

concentration found in the spiked samples (Table 6.2). This data agrees with that 

obtained by both Chen and Ma (2001) and Somer and Unlu (2006). Somer and 

Unlu (2006) suggested that for the determination of nickel, HNO3 could not be 

used because of the volatility of its nitrates. Instead of HNO3, it was suggested that 

HClO4 and H2SO4 were better acids for the digestion of biological materials 

containing nickel. Our results are ambiguous on this point since the microwave is 

sealed but if volatile nitrates are generated these may be released on opening. 

Recovery from the microwave digestion method for Ni was worse than for the hot 

plate and this requires further research. Similarly, when analysing chromium, 

Somer and Unlu (2006) suggested that HCl was unsuitable because of the 

volatility of CrCl3 and thus the evaporation time for Cr should be as short as 

possible. Tursic et al. (2008), however, also observed poor recovery of Cr (24%) 

when using HNO3 and H2O2, but in contrast to Somer and Unlu (2006) their 

recovery of Cr was higher (81%) when they used HNO3 and HCl together with HF. 

Sun et al. (2001) demonstrated that the use of different combinations of acid 

influenced the decomposition of sample matrices. Good recovery of Cr, Cu, Fe, Ni 

and Zn (96 –113%) was achieved using the microwave digestion method and 

combinations of different acids but, like Tursic et al. (2008),  Sun et al. (2001) 

found that HF gave greater accuracy.  Only small differences were found 

compared to open hot plate digestion (92 – 104%), where recovery was slightly 
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lower. Wong et al. (1997) reported similar findings, namely that HF improved the 

recovery of metals from soil, especially if the soil contained a strong silicate matrix. 

Thus there is a consensus in the literature which suggests that HF is an important 

acid which can overcome the difficulties associated with metal volatility during 

boiling. Unfortunately, HF is very difficult to handle and is best avoided if possible, 

which was why we decided not to use it. 

 

Fig. 6.1 and Table 6.2 represent the results of the dissolved fraction for metals as 

well as their total concentrations obtained from the two digestion methods for the 

M1 and Loughborough sewage effluent (LSW). The results with basic statistics are 

also shown in Table 6.2. 

 

a) 

 

b) 

 
Fig. 6.1 Average values of metal recovery by the two digestion techniques 
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It can be seen (Table 6.2) that the fdis in all cases for microwave digestion is a 

smaller fraction than that for the hot plate method, which supports the previous 

work where it was suggested that volatility losses do occur. 

 

Table 6.2 Comparison of average dissolved metal fraction fdis by the two digestion methods 

Location Fe Cu Zn 

I II I 
 

II I II 
 

M1(dry) 0.17 0.11 0.56 0.26 0.49 0.34 

LSW 0.5 0.18 0.8 0.4 0.83 0.6 
I - hot plate; II - microwave digestion. 
LSW (hot plates) – 8 samples (TSS 9.0 mg/l); LSW (m/wave) – 19 samples (TSS = 9.4 mg/l);  
M1 (hot plates) – 32 samples (TSS = 38 mg/l); M1 (m/wave) – 40 samples (TSS = 33 mg/l) 

 

Another feature of this data is that the metal concentrations obtained from the 

lagoon (M1) have a lower solubility compared to the sewage work effluent. This 

can be attributed to the TSS value, which was 3 times higher than that recorded in 

samples from the sewage works (see footnote, Table 6.2). This confirms our 

results, which will be described later in section 6.4 (Woodbrook), where it is shown 

that TSS plays an important role in metal binding. This was surprising at first since 

the average retention time in the lagoon is more than 20 days. It could, however, 

be accounted for by algal growth in the lagoon increasing the TSS, which is 

reported for sewage treatment (Camargo Valero and Mara, 2007). 

 

Comparing the evidence from the two digestion methods, in application it is 

demonstrated that microwave digestion gives a better recovery of total metals than 

hot plate digestion. Microwave aqua regia digestion increased elemental recovery 

for iron, copper and zinc as expected, but microwave digestion recovers less 

chromium and nickel. This will require deeper investigation but by that particular 

stage in our work it had become apparent that Cr and Ni were very minor 

components in the runoff and their analysis was therefore suspended.  

 
6.2 M1 (Rainfall characteristics and metals) 
 
6.2.1 First Flush Behaviour 
 

Figure 6.2 shows a hydrograph and a pollutograph of Fetot for two complete rainfall 

events at the M1 for sampling point 1 (see Fig. 4.2 b). The period which was 
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sampled for the hydrographs is shown in bold, whereas the unsampled tail of the 

storms is shown in the thin line, which represents flow only.  

 

The Fetot concentration for storm 1 (Figure 6.2 a) was 3.76 mg/l at the beginning of 

the rainfall event but it decreased as a result of dilution as the flow rate rose during 

the storm, reaching 1.2 mg/l after 120 min. In the second event (Fig. 6.2 b) the 

concentration was lower at the start of the rainfall event (0.6 mg/l) and it was 

unaffected by the increase in flow rate. 

 

a) 

 

b) 

 

Fig.6.2 Hydrograph, pollutograph and mass-pollutant graph for two rainfall events obtained for Fetot 
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A mass balance of the pollutants in the first 30% of the runoff volume is 

summarised in Table 6.3.  

 
Table 6.3 Pollutant mass in the first 30% of the runoff volume 

Pollutants Pollutant mass, % 

21/11/2009 (peak flow 3.2 l/s) 07/12/2009 (peak flow 12.1 l/s) 

TSS 39.7 19 

TOC 29.5 17.4 

Fetot 45.3 17.3 

Fedis 73.6 19.5 

Zntot 43.3 14.8 

Zndis 28.8 14.1 

Na 29.5 15.4 

 

In the case of the first storm (Fig. 6.2 a) the rainfall was 2 mm and followed a 2- 

day dry period. The second storm (Fig. 6.2 b) was 2 mm and occurred in a period 

of continuous rainfall. The peak flow for storm 1 (Fig. 6.2 a) was a quarter of that 

for storm 2 (Fig. 6.2 b). The time of entry for both storms was about 75 minutes but 

with different peak times (Fig. 6.2), suggesting the importance of rainfall intensity. 

When integrating the mass of iron discharged, an example indicated 16.2 grams 

for storm 1 (Fig. 6.2 a) and 15.6 grams for storm 2 (Fig. 6.2 b).  

 

On the basis of their data, Wanielista and Yousef (1993) (cited in Davis and 

McCuen, 2005) suggest a definition of „first flush‟ as occurring when 50% of the 

mass is present in the first 25% of volume. Bertrand-Krajevski et al. (1998), on the 

other hand, propose a definition of „first flush‟ as occurring when 80% of the mass 

pollutants are present in the first 30% of runoff volume. 

 

Figure 6.3 shows the same data as a cumulative mass fraction for both events. 

The first flush effect was pronounced in the 21/11/09 event. The pollutants which 

displayed these characteristics most strongly were TSS, Fetot, Fedis and Zntot which  

is represented by the non-linear graph  as shown in Figure 6.3 b, c, d and e.  

 

The 21/11/2009 rainfall event showed more than 40% of Fetot, Zntot and TSS 

discharging within the first 30% of the runoff volume (see Table 6.3). The Fedis 

showed its highest level of mass, 73.6%, in the first 30% of the runoff volume. This  
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Fig. 6.3 First flush characteristics of selected parameters 
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was the only pollutant which met the criteria for a first flush that were suggested by 

Wanielista and Yousef (1993) or Bertrand-Krajevski et al. (1998).  Other dissolved 

components (Na, TOC and Zndis) did not demonstrate these first flush 

characteristics. 

 

These data (Fig. 6.3) confirm that TSS and associated metals behave differently 

compared to dissolved pollutants, as might be anticipated from basic transport 

theory. Prestes et al. (2006) also reported on the effects of storm duration on 

levels of TSS, which diminished as the event progressed. They deduced from their 

analysis that a 10-day ADWP yielded a more than 30-fold increase in TSS levels 

in urban runoff. 

 

The second event observed on 07/12/09 showed linear characteristics, the 

concentration of the pollutant having been directly proportional to the volume, and 

there was no indication of first flush. The only parameter which appears to be non-

linear from this event is TOC, as shown in Fig. 6.3 a and Appendix 4. 

 

Berretta et al. (2008) found some signs of first flush behaviour when measuring 

TOC (mainly soluble), but this was not linear. In a similar way to our study, TSS 

also exhibited first flush characteristics but Zndis did not. Giulianelli (1988) 

suggested that first flush levels for TSS were more pronounced in urban areas due 

to the runoff‟s washing roof tops and the greater road area. The other components, 

TOC and Zndis did not display these characteristics. 

 

Thus, it can be concluded that ADWP, rainfall intensity and the phase of the 

pollutants all influence the outcome as to whether a first flush of contaminant is 

observed. 

 

As noted, an accumulation of sediments was observed in the inlet and drains at 

the sampling site. During dry weather, because of evaporation, TSS concentration 

increases as well as total metals. More complicated equilibria and re-solubilisation 

may take place and are suggested for iron in particular, which is more soluble 
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anaerobically. This may enhance the „first flush‟ effect for Fedis following ADWP, as 

seen in Fig. 6.3. 

 

6.2.2 Metals 

 

Table 6.4 is a summary of the data obtained from the lagoon during dry weather 

(April 2008 – December 2009) and Table 6.5 summarises the corresponding data 

during wet weather (7 events), limited by or defined as when there was sufficient 

rainfall to cause actual discharge from the separator into the lagoon itself. Raw 

data of metal concentrations and other water quality parameters are presented in 

Appendices 5 and 6.  

 

Dry weather samples were taken from the lagoon itself as close to the inlet as 

possible and wet samples were taken from the inlet as it flowed into the lagoon [as 

noted in the Methodology section (4.1.1)]. Comparing these tables it can be seen 

that the concentrations of TSS and Fetot, in some cases, were higher during dry 

weather than those obtained during rainfall events. This can be explained by 

evaporation: for example, in May 2008 samples were taken during an extended 

dry-weather period (ADWP 16 days). September 2008 was also an unusually dry 

month (22.4 mm) and samples were taken within the dry period. The most striking 

results were those obtained in September 2009 when the water levels in the SuDS 

lagoon were the lowest observed because of evaporation. Table 6.6 shows a 

selection of the dry weather parameters from which the extreme (unusual) data 

has been excluded. The mean values of Fetot, TSS, Turbidity, 
3

4PO and 


3NO  then 

decrease by more than half. This improves both the SD and coefficient of variation, 

but SD is still greater than the mean values. Thus, with this long dry weather data 

removed, the common pollutants are approximately 3 times greater in wet weather, 

which is similar to the level suggested from the literature and predictive models. 

 

During November and December 2009 there was very wet weather with 

continuous rain (which coincided with widespread flooding in the North West). On 

the 20/11/2009 the amount of rainfall that fell in Cockermouth, Cumbria was 316.4 

mm over 24 hours with a total rainfall for November of 1024 mm  
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Table 6.4 Data from the lagoon during dry weather conditions 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C
 

Iron (total) (59 samples) 0.112 – 7.386 1.119 1.577 1.41 

Iron (dissolved)  
(59 samples) 

0.004 – 0.321 0.103 0.071 0.689 

Copper (total)  
(59 samples) 

Traces – 0.041 0.005 0.009 1.8 

Copper (dissolved)  
(59 samples) 

Traces –  0.016 0.002 0.003 1.5 

Zinc (total) (59 samples) Traces – 0.215 0.057 0.045 0.789 

Zinc (dissolved)  
(59 samples) 

Traces – 0.098 0.012 0.019 1.583 

Na(59 samples) 26 – 936.2 139.28 171.74 1.23 

pH(59 samples) 6.7 – 8.42 7.27 0.38 0.053 

TSS(59 samples) 3 – 341 32.19 55.21 1.715 

Turbidity, NTU 
(59 samples) 

0.188 – 146 18.41 26.43 1.436 

TDS (59 samples) 80 – 3480 492.9 631.8 1.282 

EC, µS/cm (59 samples) 150 – 8500 942.5 1330.7 1.412 

TOC (59 samples) 2.51 – 62.98 10.76 8.19 0.761 

Hardness (56 samples) 70 – 500 138.7 84.7 0.611 
3

4PO , as P  

(45 samples) 

Traces – 7.831 0.88 2.01 2.284 



3NO (45 samples) 
Traces – 23.8 2.87 4.24 1.477 

 

Table 6.5 Stormwater data from the M1 during storm flow (rainfall events) conditions 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C
 

Iron (total)  
(36 samples) 

0.498 – 6.162 2.104 1.726 0.82 

Iron (dissolved)  
(36 samples) 

0.04 – 0.397 0.124 0.155 1.25 

Copper (total)  
(36 samples) 

Traces – 0.253 0.045 0.058 1.29 

Copper (dissolved) 
(36 samples) 

Traces – 0.042 0.008 0.010 1.25 

Zinc (total) 
(36 samples) 

0.068 – 0.312 0.141 0.065 0.461 

Zinc (dissolved) 
(36 samples) 

0.018 – 0.074 0.037 0.012 0.324 

Na (34 samples) 26 - 655 86.17 117.2 1.36 

pH (34 samples) 6.9 – 7.63 7.17 0.21 0.029 

TSS (34 samples) 6 – 179 54 50.33 0.93 

Turbidity, NTU  
(34 samples) 

10.1 – 221 60 50.64 0.844 

TDS (34 samples) 110 – 1980 340 354.9 1.044 

EC, µS/cm (34 samples) 230 – 3760 675 707.2 1.047 

TOC (31 samples) 2.79 – 82.86 17.19 19.615 1.141 

Hardness (26 samples) 85 – 355 175 60.3 0.345 
3

4PO , as P  

(25 samples) 

Traces – 7.79 1.33 2.79 2.09 



3NO  (25 samples) 
Traces – 16.205 3.74 4.68 1.25 

 



 106 

(www.environment-agency.gov.uk/). In our case, because of the prolonged wet 

weather, some unusual data were obtained.    

 

The pollutants measured in those samples were very low, since November and 

December 2009 were exceptionally wet. Rainfall at the M1 site for the equivalent 

November period was 70.4 mm (see Appendix 1 for details). These conditions 

kept the M1 flushed of pollutants and dilution within the lagoon.   Thus, the rainfall 

event observed on December 7th (8 samples) had very low TSS and metal 

concentration, which affected the whole set of wet weather results. Table 6.7 

represents the data without this event. Thus, analysing the differences between 

Tables 6.4 and 6.6 and Tables 6.5 and 6.7 one can see that extreme weather 

conditions affect statistical means and the reliability of the interpretation of the 

results. 

 
Table 6.6 Data from the lagoon during dry weather conditions (excluding the continuously dry days 
during September 2009) 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C
 

Iron (total) (52 samples) 0.112 – 4.87 0.77 0.852 1.106 

Zinc (total) (58 samples) Traces – 0.188 0.054 0.013 0.241 

TSS (52 samples) 3 – 82 16.097 13.9 0.863 

Turbidity, NTU 
(52 samples) 

0.188 – 98.8 14.26 18.69 1.311 

TOC (58 samples) 2.51 – 20.569 9.86 4.52 0.458 
3

4PO , as P  

(41 samples) 

Traces – 1.567 0.3 0.672 2.24 



3NO (42 samples) 
Traces – 5.67 1.89 1.54 0.815 

 

Table 6.7 Data from the M1 during wet weather conditions (excluding the rainfall event on 
December 7

th
 2009) 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C  

Iron (total) (28 samples) 0.498 – 6.162 2.505 1.763 0.704 

Zinc (total) (28 samples) 0.079 – 0.312 0.157 0.067 0.427 

Cu (total) (28 samples) Traces – 0.253 0.058 0.06 1.034 

Cu (dissolved) (28 

samples) 
Traces – 0.042 0.011 0.011 1.0 

TSS (26 samples) 6 – 179 67.305 50.599 0.752 

Turbidity, NTU (26 

samples) 
10.1 – 221 71.67 52.707 0.735 

TOC (23 samples) 5.85 – 82.86 21.135 21.252 1.01 
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Tables 6.4 and 6.5 show that the coefficient of variation C
of measured water 

quality data has a much wider value than in Tables 6.6 and 6.7, from which the 

extreme events have been excluded.  

 

Wu et al. (1998) presented results of variance in samples of pollutant loading for 

runoff from three highways in the City of Charlotte (North Carolina). Table 6.8 

summarises the information about site characteristics as well as the coefficients of 

variation of some pollutants. In this study traffic flow values are less than 2% of 

those on the M1 but the C  values are similar. 

Table 6.8 Characteristics of highway runoff testing sites and coefficient of variation C  with mean 

values X  * 

Site Type ADT Road 
surface Coefficient of variation C

 

Mean X  

TSS TDS NO3+2-N NH3-N TP Cu 

I urban 25,000 concrete/
asphalt 

0.76 0.93 1.84 0.45 1.04 0.7 

283 157 2.25 0.83 0.43 0.024 

II urban 21,500 asphalt 0.69 0.54 0.62 0.28 0.82 0.5 

93 88 0.22 0.76 0.52 0.012 

III urban 5,500 asphalt 1.07 1.26 1.15 0.63 0.86 0.6 

30 216 0.14 0.52 0.47 0.005 

* modified from Wu et al. (1998) 

 

From this table one can see that the coefficients of variation were in the range 

from 0.28 to 1.84. Such wide fluctuations of C
 can be explained by the fact that 

samples during wet weather were collected at different times during the rainfall 

events and the latter had different characteristics (ADWP; rainfall intensity and 

duration). Our data for C
  for Cutot, for example, was two times higher ( C

 = 1.29; 

Table 6.5) compared to Wu et al. (1998) (site I). One possible explanation is the 

number of observed events: 10 events in their case and 5 in our case, which 

means that the C
 would be biased by unusual storm events. The concentration 

values in their case were half those found in our data (Cutot = 0.45 mg/l; Table 6.5), 

which can be explained by either the lower traffic flow, even at site I, or our use of 
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microwave digestion. Comparing the C
 for TSS one can see that Wu‟s data 

corroborate those found from the M1, although the concentration values were 

much higher, implying that the sampling location as well as the local catchment 

conditions are important when interpreting the results. 

 

Gunderson et al. (2001) have also noted that the time of sampling within the storm 

event was crucial to the result because of both the first flush effects and the 

reverse, where samples taken after long steady rain diluted the concentration.  

Therefore the time of sampling and method of sampling is an important influence 

on the result. If climate change gives rise to more extreme weather then the EQS 

may need to take into account the effect of, for example, a prolonged dry period. 

 

 Taking the mean values (Tables 6.4 – 6.7), for all conditions and species, then Fe 

was always found to be present at the highest concentrations, as the most 

ubiquitous element in both soil and the urban environment. The Fe solubility was 

the lowest among the metals during both dry and wet weather, i.e.  9.2% and 5.89 % 

respectively (Fig. 6.4).  

 

 

Fig. 6.4 The solubility of the indication metals 

 

There is little information to compare with the literature (see section 2.4) because 

the toxicity of Fe is low and it occurs in amounts which are still small compared to 
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reported that the concentration of Fedis during wet weather was 0.211 mg/l and 

during dry weather (background concentrations) 0.243 mg/l. The average 

concentration from the M1 during wet weather was 0.124 mg/l (Table 6.5) and 

0.103 mg/l during dry weather (Table 6.4). 

 

Hallberg et al. (2007) found the same order in metal concentrations (as shown in 

Tables 6.4 and 6.5), that is Fe>Zn>Cu, from their study of the seasonal variations 

of metals in highway runoff from a trunk road in Stockholm. Their values are much 

higher than ours because of the different drainage systems and the more extreme 

cold weather. For example, in winter the TSS concentration in runoff in Stockholm 

reached 1500 mg/l, with a maximum value of around 5000 mg/l and Fetot of 226 

mg/l, as a result of applications of de-icer.  The average for Fetot in our results 

during wet weather was 2.104 mg/l (Table 6.5). Despite these large values of Fetot, 

and in common with our results, the Fedis in their study did not exceed 1 mg/l (with 

a maximum value 0.57 mg/l), confirming its very low solubility and therefore low 

toxicity.  

 

Potential chemical mechanism to explain the reduction in hardness 

Throughout the period of study it was observed that the release of Fedis in the 

lagoon was coupled with a decrease in the level of hardness and TDS, compared 

to the inlet (see Fig 6.5). 

 

 

Fig. 6.5 Metals and hardness profile (average results from the period of October-December 2009) 
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Another observation made on site during the sampling was the fluctuation of water 

levels in the treatment system because of the dry and wet weather periods. It is 

suggested that this could result in alternating aerobic and anaerobic conditions 

and therefore iron reduction and oxidation (ferrolysis) in particular, which was 

reflected in the measured hardness. 

 

During wet periods, Fe (OH)3 undergoes reduction, with organic matter supplying 

the electrons: 

   
233 HCOFeOHFe e



                                                 (6.1) 

The above-written reaction takes place both in the inlet and in the lagoon, thereby 

reducing the hardness.  

Once the surface drains, aerobic conditions prevail again, oxygen is in excess, 

and Fe2+ re-oxidises and generates acidity: 

    HOHFeFe
O

23

2

2

                                                 (6.2)       

When the  
23HCOFe has been formed, the spatial separation of Fe2+ might be 

more soluble, as can be seen from Fig. 6.5 which links the release of the Fedis with 

the decrease in the hardness. This process will probably take place only if the 

conditions permit the HCO3 formed from atmospheric CO2 to filtrate through the 

sediment profile, which was not possible in the inlet because of the concrete site. 

Schematically the process of iron release is diagrammed in Table 6.9. 

 

However, this needs more study, specifically by means of a well-controlled 

laboratory experiment to monitor HCO3 and redox potential.  

 

Table 6.9 Iron release process 

Inlet Lagoon 

    HOHFeFe
O

23

2

2

 

   
233 HCOFeOHFe e



 

    HOHFeFe
O

23

2

2

 

  leachingHCOFeOHFe e  


3

2

3  

 

The next commonest metal was Zn and its solubility during wet weather was 

slightly higher than during dry weather (26.24% and 21.1%, respectively). It is 

suggested that the solubility of Zn depends on the presence of salts, which 
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releases it from the sediment particles (sludge, silt) by an ion exchange 

mechanism. A similar principle is used in the sequential speciation analysis for the 

analysis of metals from soils (Stover et al., 1976). Figure 6.6, as an example, 

shows the percentage of dissolved Zn and Fe with Na concentration in samples 

taken during dry weather, from the three separate chambers of the interceptor. 

 

 
Fig. 6.6 Metal profile through the SUDS system during a cold winter storm, 13/01/2009 (single samples 

Zntot is 0.155 mg/l in the holding chamber with 9.0 mg/l TSS) 
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The peak in salt was likely to be as a result of de-icer applications. The dissolved 

Fe does not follow the Na pattern and it is suggested that this is because of iron‟s 
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This behaviour was taken as further evidence that a disturbance to the equilibrium 
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solubilisation of some metals. In this case the disturbance was by high 

concentrations of dissolved salts (sodium), indicating an ion release mechanism 

rather than redox as suggested with iron. The Zndis concentration was 98% of the 

total (Zntot 0.155 mg/l in the chamber [Figure 6.6] with 9.0 mg/l TSS). For a 

comparison, “after the chamber of the interceptor” without flow the dissolved zinc 

concentration was 30% of the total with 7.0 mg/l TSS. 
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Another example event (Fig. 6.7) shows that the increase in Zn solubility from 50 

to 80% was linked to the Na concentration during a storm rather than snap grab, 

illustrating a long-term pollutant input.  Nelson et al. (2009) also reported that the 

presence of NaCl resulted in a large release from copper, but in our study there 

was no effect on the Cu, probably because Cu concentrations were too low. 

Nelson et al. (2009) suggested a number of mechanisms for mobilisation, such as 

cation exchange, chloride complex formation and colloid breakdown or dispersion, 

with released organic matter and/or clay complexes.   

 

 

Fig. 6.7 Dissolved Zn profile during the rainfall event on the 07/12/09 and during dry weather on 
the 09/12/09 (1

st
 sampling point [see section 4.1.1]). 
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wet weather to 40% during dry weather. Copper is generated during braking and 

greater values were reported by Hulscotte et al. (2007) from an urban environment.  

There are other reasons for the instability of Cu: its mid-position in the transition 

table enables it to form more complexes. It has been reported, for example, that 

copper changes during storage probably by adsorption and this is explored further 

in the adsorption section (see section 6.6). Special sample preservation for copper, 

therefore, is needed (APHA, 2005). Samples were not filtered and acidified 

immediately (at the field sample points). This was excluded because of safety 

considerations, lack of power and also to avoid sample contamination during field-

filtration. It is now recommended that this decision be reviewed.  

 

Fig. 6.8 shows the water quality parameters together with the water level in the 

separator chamber for samples taken during September 2009 (which was 

exceptionally dry) from the chamber and the lagoon. As the depth decreased, so 

the Na increased (Fig. 6.8 a) due to evaporation from the large surface area (2000 

m2).The water level in the separator also decreased by evaporation. This was 

calibrated in the separator since the volume was known accurately. So, if the 

water level dropped from 85 cm to 40 cm, for example, the expected increase in 

Na concentration would be from 58 mg/l to around 120 mg/l, rather than the 

measured 85 mg/l, but this simply suggests that the model is more complex and 

should take account not only of evaporation but also adsorption and complexation. 

A similar increase in TSS and total metal concentrations (Fig. 6.8 b and c) can be 

seen in the data but in this case the TSS increase as a consequence of algal 

growth. The dissolved metals also increase as a result of evaporation (Fig. 6.8 d 

and e). However, this can be explained by the observed algal growth. The 

prolonged dry and sunny weather and evaporation also resulted in an 

accumulation of nutrients (


3NO  and P , at 16.2 mg/l and 7.8 mg/l respectively 

occurred in their maximum observed concentrations). 

 

This caused eutrophication when the water became turbid because of the algae, 

giving a green and brown colour to the water. So, at that time towards the end of  
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a) 

 
 
b) 

 
 
c) 

 
 
Fig. 6.8 (a; b; c) Water quality parameter changes with water level decrease  

0

20

40

60

80

100

0

30

60

90

120

150

03-Sep 07-Sep 09-Sep 14-Sep 16-Sep 25-Sep 29-Sep

cmmg/l Na

chamber

lagoon

depth in chamber

0

20

40

60

80

100

0

40

80

120

160

200

03-Sep 07-Sep 09-Sep 14-Sep 16-Sep 25-Sep 29-Sep

cm
mg/l

TSS

chamber

lagoon

depth in chamber

0

20

40

60

80

100

0

0.02

0.04

0.06

0.08

0.1

03-Sep 07-Sep 09-Sep 14-Sep 16-Sep 25-Sep 29-Sep

cmmg/l
Zn tot

chamber

lagoon

depth in chamber



 115 

 
d) 

 
 
e) 

 
 
f) 

 
 
Fig. 6.8 (d; e; f) Water quality parameter changes with water level decrease  
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September a significant proportion of TSS in the lagoon and separator was due to 

algal biomass which must therefore show different adsorption behaviour compared 

to the TSS from dust, silt and soil particles from the highways. It was observed that 

biomass did not settle as dust particles did. Algae are buoyant because of their 

active gas production. The concentration of the algal cells increased with 

temperature and sunlight but then decreased at the end of the month, probably 

because of grazing activity and the onset of autumn rains.   

 

Fig. 6.9 investigates possible correlations between TSS and total metals (Fe, Zn 

and Cu). Figs. 6.9 a, c, e show the wet weather samples taken from the M1, 

whereas Figs. 6.9 b, d, f show both the M1 and the Woodbrook wet weather 

samples added together. 

 

Comparing the two sets of data, it can be seen that a better correlation was 

obtained from the same site, rather than mixing together data from two sites. This 

provides a potential explanation for the results reported by Crabtree et al. (2008) 

(see also section 2.4), who were mainly interested in copper and reported the only 

link between Cutot and TSS. Crabtree et al. (2008) put together 30 different sites 

around the UK with different characteristics. Their reported R2 value was 0.2828 

between TSS and Cutot, for example.  Our equivalent data show that Cutot has the 

poorest correlation with TSS among other metals, from the M1 (R2 = 0.54), but the 

correlation became even worse when the M1 and the Woodbrook data were put 

together (R2 = 0.095). Copper was the worst link and iron the strongest and, as 

already noted, this reflects the reactivity and low concentrations of copper. In 

contrast, Desta et al. (2007) sampled only 3 sites from the Dublin ring road and 

analysed 42 rainfall events. They found good correlations between TSS and Cu 

and Zn (R2 = 0.92 and 0.94 respectively). It is suggested that a good correlation 

was achieved due to the fact that the mean values for Cu and Zn from one of the 

sampling sites were 0.12 and 0.66 mg/l, respectively, which was much higher than 

our data (0.045 and 0.141 mg/l, respectively). These were caused by the urban 

characteristics of the Dublin ring road, particularly its stop/start junctions. Our 

results for the TSS and total metal correlation, when supported by Desta et al. 
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(2007), demonstrate the importance of achieving solid separation in stormwater 

management.   

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig. 6.9 Correlation between TSS and metals 
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In order to investigate further the influence of solids on metal load, two additional 

experiments were conducted. One experiment was designed to monitor the links 

between solids and metals during a storm and the second experiment was aimed 

at monitoring the performance of the interceptor.   

Links between solids and total and dissolved metals 

These data are shown in Fig. 6.10 and they not only support the existence of the 

trend between total metals and TSS but also show the changes in metals and TSS 

entering the M1 lagoon after the interceptor during the 09/09/08 storm event. The 

rainfall characteristics of that event are shown in Table 6.10.  

                             a) 

 

                             b) 

 

                             c) 

 

                           Fig. 6.10 TSS and total metal concentrations flowing into the lagoon 
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The correlation with TSS follows the sequence Fe > Zn > Cu.  

 

Fig. 6.11 represents the same event but in terms of dissolved metals which were 

not predictable in terms of their behaviour (with time, flow rate or solids). Dissolved 

copper and zinc attained their highest values at the same time (10.45 am) as 

dissolved iron, although the profile of their concentration increase is much 

smoother. 

           a) 

 

 

             b) 

 

             Fig. 6.11 Concentration of dissolved metals flowing into the lagoon 
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Interceptor performance monitoring 

Interceptor performance was analysed on the basis of three observed rainfall 

events and samples were tested for PSD using the Mastersizer (see section 4.2.3). 

The events each had different characteristics and these are shown in Table 6.10. 

The first storm in July (03/07/09), by contrast with those observed on the 11/07/08 

and 09/09/08, followed a prolonged dry weather period. The actual discharge into 

the lagoon took place only after the interceptor had been refilled, which was after 

the rain had stopped (Table 6.10, 4th and 5th columns). 

 

Photo 6.1 a shows the conditions in the inlet channel from the motorway junction 

prior to the storm event and Photo 6.1 b those during the storm event. Photo 6.1 c 

shows the ditch from the inlet channel to the interceptor (Photo 6.1 d). Photo 6.1 d 

shows the outlet from the separator and inlet into the lagoon during the storm itself. 

Photos 6.1 b, c and d were taken at the same time, from which it can be seen that 

the connecting channel before the interceptor was flooded, while the outlet and 

inlet to the lagoon were still dry with no discharge.   

 

Water accumulation within the chambers of the interceptor from the beginning of 

the rainfall event till the beginning of the discharge (when the chamber was full) is 

shown in Fig. 6.12. 

 

In contrast, the event observed in September (09/09/08) happened during an 

extended wet weather period and the rainfall pattern from the beginning of 

September till the sampling day is shown in Fig. 6.14. The separator was therefore 

already full (because of these overall weather conditions, the rain had already 

begun by the time sampling started). The total amount of rainfall in September 

2008 up to 09/09/08 was 69.8 mm. In comparison, the amount of precipitation in 

September 2007 was 23.2 mm and in September 2009 it was 22.4 mm (see 

Appendix 1). 

 

The discharge into the lagoon took place approximately 1.5 hrs after the rain had 

started (Table 6.10, columns 4 and 5), which confirmed that the water level in the 
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Table 6.10 Overall interceptor performance linked to some characteristics of the observed rainfall 
events  

Date 
observed 
storm 
event 

ADWP Observed amount of 
precipitation, mm 

 Weather description Time of taking 
samples for 
PSD and TSS 
concentration  

TSS* 

1 2 3 4 5 6 

11/07/08 None 
(ground 
saturated) 

6 

 
12.50-13.50 – 4 mm 
14.00-14.20 – 2 mm. 

There were heavy 
and light showers 
throughout this week. 
There were 2 
showers during the 
survey.  

 
 

 

I – 2.50 pm; 
 

42/7 

II – 3.00 pm 45/12 

09/09/08 None 
(ground 
saturated) 

1.7 

 
9.30-9.45 – 1mm 

9.45-10.00 –few drops 
10.00 – rain stopped 
10.35 rain started 
again. 
10.35-11.00 – drizzle 
(few drops) 
11-11.15 – 0.5 mm 
11.15-11.25 – 0.2 mm 

Rain started approx. 
at 8 am. Rain gauge 
was installed upon 
arrival in the lagoon 
at 9.30 am. 

 
 

I – 9.30 am; 13.75/4.75 

II – 9.45 am; 45/10.25 

III – 10.00 am; 76.43/22.5 

IV – 10.20 am 105.95/41 

03/07/09 1 day
** 

14.1 

 

 Period of dry weather 
with very high 
temperature (~30). 
 
Inlet into the lagoon 
was dry. The water 
depth in the chamber 
of the interceptor was 
48 cm 

 

I – 2.00 pm; 86/10.5 

II – 2.15 pm; 118/49 

III – 2.30 pm. 121/41 

* Inlet of interceptor/ outlet of interceptor 
** The amount of precipitation was negligible (0.2 mm on 01/07/2009 [see Fig.6.13]). Taking into account high 
ambient temperature, it was assumed that the rainfall did not produce runoff.  

 

 

time mm 

8.44  

9.00 0.5 

9.15 1.9 

9.30 2.9 

9.45 4.0 

10.00 5.0 

10.15 6.0 

10.30 6.5 

10.45 7.0 

11.00 7.5 

11.15 8.0 

11.30 9.0 

11.45 9.1 

12.45 
b/w’=57 

Started 
again 

12.55  

13.10 12 

13.25 14 

13.40 
Wind 

b/w’=70 
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a) 

 

 Inlet prior to the storm 

b) 

 

Inlet during the storm 

c) 

 

Flooded ditch linking motorway runoff to 
the inlet to the separator was flooded 

d) 

 

Inlet into the lagoon was still dry  
 
Photo 6.1 Rainfall event on the 03/07/2009 after a prolonged dry period, showing the moment 
when the area before the interceptor was flooded but not after it. 

 

 

Fig. 6.12 Water accumulation within the interceptor. 

- prior to storm (48 cm);              - 4 hours after the storm started (57 cm);            - overflowing point 

(70 cm) 

1  2      
3 
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system (interceptor) was already high. Precipitations for the month and the event 

(09/09/08) which was observed within the wet weather period are shown in Fig. 

6.14.  

 

Fig. 6.13 Summer precipitation from 16
th
 of June to 03

rd
 of July 2009 

 

 

Fig. 6.14 Daily precipitation from 1
st
 September to 9

th
 of September 2008 
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although the discharge from the interceptor would have started long before the 

sample was taken, bearing in mind the wet conditions during that period. 

 

Fig. 6.15 Summer precipitation from 28
th
 of June to 11

th
 of July 2008 

 

It should be noted that the amount of precipitation observed by us on that day (on 

the 11th July 2008; Table 6.10) (6 mm) was different from the official weather 

station at Leicester, where only 0.2 mm was recorded (see Appendix 1 and 

http://www.stormtrack.co.uk/ for details). 

 

PSD analysis 

 

These three storm events representing two dry periods in July and a wet month, 

September, were analysed in some more detail with regard to PSD and solid 

removal performance by the interceptor.  

 

The particle size distribution in and out of the separator is shown in Figures 6.16 – 

6.19 for the three detailed events. A shift to the left suggests a reduction in particle 

size, as might be expected if the interceptor selectively removes the larger 

particles. 

 

Thus, for example, looking at the September 2008 storm first (an extended period 

of wet weather, see Fig. 6.14) the PSD noted at 9.30 am (Fig. 6.16 a) is as would  
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                a) 

 

                b) 

 

                c) 

 

               d) 

 

               Fig. 6.16 PSD of the rainfall event on 09
th
 of September 2008 
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be expected. There is a shift in particle size to the smaller sizes from the inlet to 

the outlet and this is because the larger particles are retained by the separator 

(TSS removal is 66%, Table 6.10). 

 

At 9.30 am the median particle size of the effluent (d50) (after the interceptor) is 

11.5 μm compared to that found at the inlet (d50) (before the interceptor) of 17 μm. 

15 minutes later, however, the pattern has changed (Fig. 6.16 b): the median 

particle size in the outlet is ~ 11 μm, as before, but the inlet median particle size 

has fallen to 9.5 μm, presumably due to dilution. The TSS in the feed and outlet 

from the interceptor increase during the storm (Table 6.10) and the solid removal 

efficiency also decreases, as might be expected as the PSD in the feed gets 

smaller. 

 

The Mastersizer (see section 4.2.3) adjusts the PSD to the total volume of 

particles it analyses, so the reduction in particle size in the feed (Fig. 6.16) must 

therefore be combined with the increase in the number of particles to give a 

greater mass of TSS (Table 6.10).  

 

The study of these three storm events pre-dates the purchase of the flow meter 

(see section 4.1.1) which would therefore have confirmed the greater flow and 

number of particles. The retention time of the separator may be estimated from the 

water level at the start of the storm (ADWP causing evaporation) and the time to 

overflow. 

 

Analysing the readings from the flow meter recordings (see Appendix 3), it can be 

seen that the max retention time is 28 min at Qmin 6 l/s and the min. retention time 

is 5 min at Qmax 36 l/s (with the volume of the chamber being 10.5 m3). Referring 

back to Table 2.7, this means that inorganic particles greater than 100 μm in size 

should be removed by the separator. Therefore, the suggested interpretation of 

this data is that it is dilution which causes the reduction in particle size but the 

increase in flow mobilises a greater concentration as the storm progresses. Larger 

particles of sediment are present in the initial stages of the storm but these are 

captured by the separator down to a critical particle size (~10 μm). Thus the data 
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is evidence of first flush effects. This is summarised in Fig. 6.17 a and b which 

shows after the first sample 9.30 am at the start of the storm that the PSDs are all 

very similar.  

                   a) 

 

 

                   b) 

 

Fig. 6.17 Comparison of PSD before and after interceptor on 09
th

 of September 2008 
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The ADWP effect on PSD should be magnified in the storm event investigated on 

the 3rd July 2009 since this occurred after a 17-day dry period. In this case the 

average particle size (d50) in the feed (Fig. 6.18 a) is smaller than those in the  

             a) 

 

             b) 

 

             c) 

 

              Fig. 6.18 PSD of the rainfall event on 03
rd

 of July 2009 
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outlet, which must reflect the extended holdup time in the interceptor between inlet 

and outlet. The inlet flow in this storm does include some larger particles (> 100 

um) of d90, as predicted from the 1st example storm because of the longer ADWP 

and, as suggested from Table 2.7, these were effectively removed by the 

interceptor. 

 

The TSS concentration in the inlet (at 2.15 pm [Table 6.10]) is greater than in the 

first sample, as would be predicted from the previous literature and results on 

ADWP. The TSS concentrations increased in both the inlet and outlet, as in 

previous storms, suggesting an increase in both particle numbers and flow rate. By 

the end of the storm (Fig. 6.18 c), then, most of the larger particles had been 

flushed through and captured by the interceptor. Although the particle size profile 

in the effluent is larger than in the inlet, this can again be attributed to the hold-up 

time in the interceptor. The PSD in the effluent is constant throughout the storm as 

in the  first example storm, showing that the interceptor is successful in removing 

all the particles over the critical size (10 – 30 μm), but the increases in the number 

of particles at or below this size  are indicative of an increase in TSS in the treated 

flow (Table 6.10). 

 

The  third example storm of 11th July 2008 was selected as a typical or average 

rainfall event (20 mm for the month) and the rainfall on the previous day  gave a 

comparison between above-average and typical ADWP. The particle size profile in 

both the separated effluent samples was larger than that in the influent (Fig. 6.19). 

The PSD in both the treated samples were therefore also larger than in the 

previous storms. The rainfall was low but it followed a preceding wet day which, as 

suggested previously, had led to dilution and flush through of the larger particles. 

  

The TSS removal during this case study storm were similar to those predicted 

(Table 6.10) by previous measurements, that is between 70 – 80% which were 

typical of the particle settlement velocity and retention time in the separator.    

 

Table 6.11 summarises PSD for the three rainfall events of 10, 50 and 90 µm 

respectively. This data suggests that most of the particles had sizes of less than 
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a) 

 
 
b) 

 
  

  Fig. 6.19 PSD of the rainfall event on 11
th
 of July 2008 

 

100 µm. Given the size of the interceptor (10.5 m3), most of the particles (< 50µm) 

would be expected to be removed and this was the case except for the storm 

event observed on 11/07/2008. The storm on 11/07/2008 produced a typical 6 mm 

of rain and, therefore, a possible explanation is that at this point in the storm 

particles were being re-suspended or were floating within the separator. More 

work is needed to gain a better understanding of particle size distribution based on 

their settling properties.  
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Table 6.11 Percentile of particles smaller than 10; 50 and 90 μm for three rainfall events 

 
Time of 
sampling 

Before interceptor  After interceptor  

10 

 

50 90 10 50 90 

                                       11/07/08 

2.50 pm 39.9 90.13 94.13 19.74 49.51 55.82 

3.00 pm 40.06 76.86 81.25 19.82 71.85 82.5 

03/07/09 

2.00 pm 42.66 78.23 83.52 19.64 92.13 98.82 

2.15 pm 36.04 55.89 61.48 35.95 92.94 97.89 

2.30 pm 61.45 97.47 98.10 28.71 91.16 98.3 

09/09/08 

9.30 am 30.31 80.27 88.51 44.45 90.59 96.1 

9.45 am 52.84 96.25 98.15 44.89 89.36 93.68 

10.00 am 58.28 96.97 99.92 54.95 94.84 98.09 

10.20 am 64.6 97.93 99.46 60.49 97.52 99.48 

 

Fig. 6.20 and Table 6.12 show another set of PSD but only in the inlet, where they 

were taken on 21/11/09 during prolonged wet weather. This event was not put 

together with others for comparison because the discharge into the lagoon was not 

analysed and only data taken before the interceptor was available. Another reason 

for its exclusion from the direct comparison was the availability of flow rate velocity 

data which enabled us to calculate the actual HRT. 

 

 

Fig. 6.20 PSD of the rainfall event on 21
st
 of November 2009 
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Table 6.12 Percentile of particles smaller than 10; 50 and 90 μm for 21/11/09 rainfall event  

Time of 
sampling 

Before interceptor  (Inlet) 

10 50 90 

5.30 pm 60.0 99.78 100.0 

5.45 pm 58.01 98.85 99.9 

6.00 pm 70.11 100.0 100.0 

6.15 pm 65.04 98.31 100.0 

6.30 pm 69.45 97.92 99.95 

6.45 pm 61.25 94.34 99.94 

 

In this case the feed median particle size was 9 μm which was typical of the 

previous wet weather. The retention time was calculated accurately as being 28 

minutes, which should have removed all particles of more than 50 μm, assuming 

an SG of 2.5. 

 

Thus, in conclusion the separator successfully removes on average 70 % of the 

TSS and almost all particles above 50 μm in size and therefore it provides 

protection or a reduction in solid load entering the lagoon, which is   more difficult 

to maintain. 

 

These measurements and observations made on site suggested an increase in 

turbidity in the separated runoff and sludge accumulation in the separator.  As far 

as is known, with the site having been monitored for 15 years, the separator has 

not been discharged and the sludge depth was 8 cm or 20% of the available depth. 

 

Soluble metals 

 

Fig. 6.21 compares the concentrations of soluble/totals for the indicator metals in 

the treatment system for 7 observed rainfall events together with TSS and TOC as 

potential solids and dissolved mobilising ligands. TSS concentrations are again 

included before and after the interceptor to observe potential links between total 

metals and solid size (Fig. 6.21 a, c, e). From the analysis of the mean values in 

Fig. 6.21 a, c, e it can be seen that in most cases the interceptor removed TSS as 

well as total metals (see Table 6.10). The data from two storm events (13/11/2009  
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a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Fig. 6.21 Total and dissolved metals with TSS and TOC before and after interceptor during wet 
weather 

 

and 07/12/09) showed that solid separation by the interceptor could be 

compromised by types of rainfall event and sampling when TSS were greater in 

the outlet of the interceptor. On the 13/11/09 (when the runoff duration was 390 

min. with a peak flow of 31.93 l/s; see Appendix 3) the amount of precipitation 

noted from the nearest weather station was 4.0 mm (see Appendix 1) and only the 

“tail” of the rainfall event was sampled. At this point in the storm cycle the influent 

to the interceptor was highly diluted compared to the effluent because of the long 

storm and retention time or sediment was re-suspended from the bottom of the 

chamber. As has already been mentioned, the second rainfall event observed on 

07/12/2009 happened during an extremely wet period with great dilution in the 

system and the TSS in the feed to the interceptor were the lowest recorded. 
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Fig. 6.21 b, d, f show the dissolved metals for these three observed rainfall events 

together with TOC as a potential soluble indicator of binding agents which could 

correlate with soluble metals. The data show no evidence of a link between TOC 

and soluble metals. This stands in contrast to some previous work which has 

suggested that soluble metals are complexed with the dissolved organic matter 

(Prestes et al. 2006). 

 

For example, Prestes et al. (2006) observed a relationship between dissolved Cu, 

Pb and Cd and the concentration of DOC (see section 2.7.2). The best correlation 

between metals and DOC was reported for Cu, confirming that the latter has the 

potential to form more ligands with organic carbon in its dissolved form. In our data 

there may be a trend between TOC and dissolved Cu (Fig. 6.21  f), but because 

the samples are taken from the free-flowing traffic the total copper concentrations 

are lower than those reported by Prestes et al. (2006). In urban areas the 

dissolved copper concentrations are reported to be in the range 0.01 – 0.025 mg/l 

(Mosley and Peake, 2001; Gnecco et al., 2005; Berretta et al., 2008) and in Fig. 18 

f they peak at 0.022 mg/l.    

 

Comparing Fig. 6.21 a, c, e with 6.21 b, d, f it can be seen that dissolved metals 

do not follow the simple solid separation pattern, which provides  supporting 

evidence for the inference that these metals are truly dissolved.  

  

One of the objectives of the research identified by the literature review and these 

data was to determine whether a stronger adsorption (charge) was needed to 

reach both the EQS and background concentration. All the samples taken in our 

study achieved the EQS but these data were from free-moving traffic. These 

experiments are described in section 6.6. 

 

Table 6.13 compares the indicator metals in the treatment system for the M1 (all 

samples being wet and dry) with a similar treatment system for the M40 monitored 

by Crabtree et al. (2006). The results show that on average this recommended 

treatment system, composed of separator and lagoon (Highways Agency, 2006), 

achieved background concentrations of metals (see section 2.4). 
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Table 6.13 Comparison of pollutant removal  
Sample points Average concentrations and range of pollutants, mg/l 

M1 M40/Souldern Brook** 
Zn tot Zn dis Cu tot Cu dis TSS Zn tot Zn dis Cu tot Cu dis TSS 

Highway runoff  
 
 
 

0.175 0.035 0.061 0.012 75.7 0.1 0.025 0.025 0.01 75 

(range of 7 
samples)* 
 
 
 
 
 
 
 
 
 
7samples)* 

0.127-
0.312 

0.025-
0.048 

0.014-
0.167 

0.005-
0.042 

22-
179 

Runoff after the 
oil interceptor 

0.175 0.044 0.084 0.012 47.1 0.09 0.012 0.02 0.01 75 

(range of 30 
samples)* 
 
 

0.079-
0.261 

0.005-
0.054 

0.004-
0.161 

0.002-
0.021 

4.8-81 

Discharging to 
water body  

0.048 0.020            0.016 0.004 11.6 0.04 0.006 0.008 0.005 25 

(range of 22 
samples)* 

0.009-
0.153 

0.002-
0.069 

0.003-
0.041 

0.002-
0.009 

3.2-
39.5 

* number of samples in brackets are related to the M1 only                                                         ** modified from Crabtree et al. 2006  

 

The average concentrations of the metals from the M1 are higher (see Table 6.13) 

than those found at the M40 site, which can be explained by the greater traffic flow 

on the M1 (30,000 and 7,000 vehicles per hour, respectively). The TSS and range 

of metal concentrations are similar from both sites. Another possibility for 

explaining the difference could be the use of different analytical techniques 

(microwave digestion was used for the M1 samples; see method development 

section 4.2.2). There were also differences between the two sites with respect to 

the removal of suspended solids. During sampling visits to the M1 when there was 

intense prolonged rainfall it was perceptible,  as discussed (see PSD section), that 

TSS were being re-suspended in the interceptor and this possibility is recognised 

by the inclusion of by-pass systems in the design guide (Highway Agency, 2006). 

Further work will be needed, however, to monitor and develop methods for 

identifying when interceptors need emptying. The results also indicate that the 

standard combination of interceptor and lagoon did not always achieve the current 

EQS for total Zn. The Zn standard is unusual since it is expressed as totals.  
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6.3 SEWAGE WORKS 

 

Taking the mean values for all the sewage works, then the total Fe was always at 

the highest concentration (Table 6.14). For the dissolved metals the highest 

concentration was that of Fe for Shepshed and Osgathorpe, whereas Zn was the 

highest dissolved metal for Loughborough and Leicester. Copper, both in total and 

dissolved forms, had the highest concentration from Osgathorpe. As would be 

expected, all the metals apart from Fe and Cu at Leicester were found 

predominantly in the dissolved form. The percentage of soluble metals is displayed 

in Fig. 6.22.  

 

 

Fig. 6.22 Percentage of Fe, Zn and Cu from different sewage works 

 

The percentage of soluble Zn is consistently high for all sewage works, indicating 

that most of the Zn was found in the dissolved from. The behaviour of Fe and Cu 

was more variable than that of zinc. The percentage of dissolved Cu found in 

Leicester sewage works was relatively small (33.4%), which could simply be 

related to the small number of samples. Copper obtained from the rest of the 

works was mainly in the dissolved form. The highway samples suggested a 

greater proportion of insoluble iron but at the sewage works most insoluble 

materials are removed (turbidity value is less than 2 NTU). The data from 

Leicester and Shepshed sewage works cannot be reliable because of the small 

number of samples taken (2 and 3 respectively).  
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Table 6.14 Data from the sewage works*  
Contaminant, 
mg/l except 
turbidity and 

EC 

Sewage works 

Shepshed (3 samples) Leicester (2 samples) Loughborough (8 samples) Osgathorpe (6 samples) 

range range range 
X  S  

C  
range 

X  S  
C  

Fe tot 0.073 – 0.23 0.109 – 0.139 0.047 – 0.082 0.060 0.012 0.202 0.108 – 0.126 0.118 0.008 0.066 

dis 0.034 – 0.049 0.038 – 0.044 0.026 – 0.039 0.033 0.004 0.112 0.059 – 0.094 0.077 0.015 0.196 

Cu tot 0.003 – 0.011 0.003 – 0.009 0.002 – 0.01 0.005 0.003 0.562 0.002 – 0.067 0.017 0.025 1.471 

dis 0.002 – 0.007 0.002 0.002 – 0.008 0.004 0.002 0.608 0.002 – 0.058 0.013 0.022 1.67 

Zn tot 0.032 – 0.049 0.079 – 0.093 0.039 – 0.069 0.060 0.015 0.250 0.025 – 0.081 0.054 0.020 0.365 

dis 0.024 - 0.031 0.064 – 0.072 0.029 – 0.07 0.051 0.017 0.323 0.018 – 0.065 0.046 0.017 0.358 

TDS 410 - 480 550 - 680 460 – 550 490 39.37 0.081 370 – 570 447 68.61 0.153 

pH 7.3 – 7.4 7.1 -7.2 7 – 7.5 7.26 0.23 0.032 7.2 – 7.4 7.3 0.089 0.012 

EC, µS/cm 810 – 940 1080 - 1380 920 – 1140 996 88.49 0.089 800 - 1120 915 114.3 0.125 

TOC 7.44 – 8.01 3.67 – 10.6 4.6 – 8.29 6.522 1.49 0.229 12.29 – 19.26 14.903 3.79 0.254 

Hardness 210 – 280 235 - 325 235 – 425 309 78.93 0.255 185 – 280 238.3 48.563 0.204 

TSS 8 – 15 11 - 14 8 – 11 9.4 1.517 0.161 10 – 20 14 4.54 0.324 

Turbidity, NTU 1.56 – 2.05 1.52 – 3.16 0.733 – 1.77 1.26 0.405 0.321 2.53 – 4.76 3.45 0.869 0.252 

 
*- total metals were recovered by hot plates 
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According to previous studies (Davis and McCuen, 2005) and our results for Fe in 

highway and urban runoff, Fe was predominantly insoluble. The concentration 

varied depending on the weather conditions. Data from these sewage works for Fe 

solubility (see Table 2.4) are different (Bubb and Lester, 1995), for example. A 

possible reason for the greater solubility of Fe in sewage work effluents could be 

the different types of organic matter present in sewage effluent compared to 

highway and urban runoff. Figs. 6.23 and 6.24 show potential links between 

organic matter (expressed in TOC) and solids (TSS) linked to soluble metals from 

Loughborough and Osgathorpe sewage works. They indicate that there is no 

evidence of a link between total organic matter, expressed by TOC, that would 

allow us to predict soluble metals. There are two potential reasons.  Firstly, the 

range of TOC from Loughborough sewage works was from 4.6 to 8.29 mg/l, which 

is possibly too small compared to the highway and urban runoff for finding a good 

correlation. Another reason for the poor or even negative correlation is that a 

larger number of samples is needed to be statistically significant.  

 

There was some support for this suggestion in the sewage work effluent too. The 

concentrations of Fetot, Cutot and Zntot were higher in the microwave digestion 

samples (Figure 6.25 d – f). 

 

Another feature of the data is that there is no correlation between organic matter 

and TSS, which again can be explained by the small range of both TOC and TSS 

(Fig. 6.27). 

 

Figs. 6.25 and 6.26 represent potential links between metals in their total forms 

and TSS. Evidence was sought from these Figures for the supposition that the 

method of analysis applied for metal recovery was an important factor in defining 

total metal concentrations, as was discussed in section 6.1. 

 

Another aim of the sewage work study was to assess if sewage effluent affects 

metal concentration and their availability within the receiving water bodies. This 

was analysed with regard to the samples from Osgathorpe sewage works which 

discharges its treated effluent into the Grace Dieu Brook draining the National and 

Charnwood Forests. 
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a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

 

 
Fig. 6.23 Correlation between dissolved metals and TOC found from Loughborough sewage works. 
a); b); c) – hot plates – 8 samples; d); e); f) – microwave digestion – 19 samples 
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a) 

 

b) 

 

                               c) 

 

Fig. 6.24 Correlation between dissolved metals and TOC found from Osgathorpe sewage works 

 

This was compared with research conducted by Bubb and Lester (1995) (see 

section 2.5), whose main interest was the effect of metals in sewage effluent on 

the receiving water. The data were also compared with the treated runoff from the 

M1 and Woodbrook. 

 

The results from Bubb and Lester (1995) are presented in Table 6.15, while 

comparative data from our results are shown in Table 6.16. The shaded column 

(Table 6.16) represents the concentrations of metals and other water quality 

parameters calculated from the mass balance equation (Warn and Brew, 1980) 

used by Bubb and Lester (1995) for estimating river quality downstream of an 

effluent discharge: 
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a) 

 

d) 

 

b) 

 

e) 

 

c) 

 

f) 

 

 
Fig. 6.25 Correlation between total metals and TSS found from Loughborough sewage works.  
a); b); c) – hot plates – 8 samples; d); e); f) – microwave digestion – 19 samples 
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a) 

 

b) 

 

                                    c) 

 
 

Fig. 6.26 Correlation between total metals and TSS found from Osgathorpe sewage works (hot 
plates) 

a) 

 
 

b) 

 

Fig. 6.27 Correlation between TOC and TSS found from a) Loughborough sewage works (27 
samples) and b) Osgathorpe sewage works (6 samples) 
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where downstrC  - concentration of river water downstream of discharge; Q  - river flow rate 

upstream; upstrC  - concentration of pollutants in river water upstream; q  - flow rate effluent 

discharge; c  - concentration of pollutants in the effluent discharge. 
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Our data reveal an increase in Cu and Zn loadings below the sewage works on the 

Grace Dieu Brook. This is not obvious in the Bubb and Lester analysis. The 

concentrations of Fe, both total and dissolved, decreased below the sewage work 

outfall in our study as a result of dilution by the sewage work effluent. Other 

parameters increase: TSS, for example, rises from 8.39 to 11.85 mg/l, TOC from 

8.08 to 16.67 mg/l and NO3 from 23.99 to 90.29 mg/l.  

 

Table 6.15 Concentrations of some metals and water quality parameters in samples taken from Pix 
Brook and Letchworth Treatment Works* 

Pollutant, 
mg/l, apart 
from pH 

Upstream river 
water 

Letchworth 
Treatment 
Works 

Downstream 
river water 

Predicted 
conc. 
below 
outfall** 

Absolute 
error in 
model, % 

TSS 1.1 4.2 6.7 3.66 45.3 

TDS 443 688 627 645 2.8 

TOC 2.3 7.85 7 6.9 1.43 

pH 8 7.46 7.65 7.55 1.31 

Hardness 288 286 273 286 4.5 

NO3 (N) 0.04 0.15 0.25 0.13 48.0 

Fetot 0.06 0.06 0.293 0.06 59.0 

Fedis 0.025 0.041 0.041 0.037 9.8 

Cutot 0.00165 0.00173 0.00146 0.00145 0.68 

Cudis 0.001 0.00146 0.00123 0.00123 0 
* - modified from Bubb and Lester, 1995 
** - using the equation of Warn and Brew, 1980 
 

 

The results indicate that Zn, both in total and dissolved, and Fedis were the only 

metals that behaved according to the predictions of the mass hydraulic balance 

model.  

 

The measured value of Fetot was 1.7 times higher than that predicted by the 

equation (6.3). This might be explained due to the bias from particulate matter re-

suspended from the stream bed. The value for soluble Fe does agree well with the 

predicted value, which is understandable, bearing in mind that Fe has a poor 

solubility in water. The chosen sample point was immediately after the sewage 

work outfall and the surge in flow provoked turbulence, which resulted in the 

disturbance of particulate matter into suspension. Bubb and Lester (1995) reported 

the same fact in their study (see Table 6.15 for Fetot and TSS) and they attributed 

this to the channel morphology, which is therefore important in predictions of 

concentration.  
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Table 6.16 Concentrations of some metals and water quality parameters in samples taken from 
Grace Dieu Brook 

Pollutant, 
mg/l, apart 
from 
Turbidity; 
EC and pH 

Grace Dieu 
Upstream of outfall 

Osgathorpe 
Treatment 
Works 

Grace Dieu 
Downstream of 
outfall 

Predicted 
conc. 
below 
outfall* 

Absolute 
error, % 

TSS 8.39 14 11.85 13.17 11.1 

Turbidity, 
NTU 

5.09 3.45 4.83 3.69 23.6 

EC, µS/cm 640 915 905 875 3.3 

TDS 320 445 452 430 4.9 

TOC 8.08 14.9 16.67 13.89 16.7 

pH 7.46 7.3 7.28 7.32 0.5 

Hardness 210 238 210 233 10.9 

NO3 23.99 106.72 90.29 94.79 4.7 

Fetot 0.28 0.118 0.248 0.142 42.7 

Fedis 0.119 0.077 0.079 0.083 5.06 

Cutot 0.006 0.017 0.008 0.015 87.5 

Cudis 0.003 0.013 0.005 0.012 140 

Zntot 0.026 0.054 0.056 0.049 14.3 

Zndis 0.018 0.046 0.048 0.042 9.5 

Q = 20 l/s; q = 10,000 m3/day 
* - using the equation of Warn and Brew, 1980 
 

The behaviour of Cu (both soluble and total) was erratic, with differences between 

the measured and predicted values. Concentrations of Cutot and Cudis were much 

less than those predicted, thereby demonstrating that the behaviour of Cu was 

complex, as noted earlier (see section M1, dry and wet). Bubb and Lester (1995) 

suggested that the discrepancy for metals was likely to be 20 – 30% because of 

the crude nature of the mass calculations and average flow conditions. In their 

study the dilution ratio was calculated from dissolved chloride and it was 

suggested that sewage works contributed 82.6% of the Pix Brook flow 

downstream. Our sewage works make a lower contribution to the Grace Dieu 

Brook. The partitioning of Cu and Zn changed below the Osgathorpe sewage 

works. It is noticeable that the proportion of soluble Zn increased from 71.6% to 

85.4%, which suggests an effect of organic matter, temperature or household 

products with solubilised zinc. The percentage of soluble copper also increased 

from 55.7 to 66.7%.  

The discharge of sewage effluent changed the chemical composition of the Grace 

Dieu Brook. Enrichments were evident in EC, TDS and TOC. There was a 

significant increase in NO3 after the sewage work outfall. This is mainly a trickling 

filter works which has only recently been modified to denitrify. The mass balance 
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calculations showed that most of the water quality parameters (EC, TDS, pH, 

hardness, NO3, TSS, turbidity) behaved conservatively.   

 

The data obtained from Grace Dieu Brook before and after the sewage outfall 

during dry and wet weather are compared in Figures 6.28 and 6.29 (9 dry weather 

and 3 wet weather samples). From Fig. 6.28 the results show that for dry weather  

 

 

Fig. 6.28 The mean value of metals during dry weather: I – before sewage outfall; II – after sewage 
outfall 
 

 

Fig. 6.29 The mean value of metals during wet weather: I – before sewage outfall; II – after sewage 
outfall 
 

there is an increase in the concentration of all metals due to the sewage outfall (as 

Table 6.16). During wet weather the quality and quantity of flow from the sewage 

works is a smaller proportion of the total flow in the brook. Consequently there is a 
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diluting effect and there is no impact on the Brook, which now has elevated metals 

as a result of the wet weather. 

 

Comparing Figs. 6.28 and 6.29 as well as Table 6.16, it can be concluded that in 

dry weather metal concentrations are increased by sewage work final effluents, 

but in wet weather they have no effect. The same opinion was given by Bubb and 

Lester (1995), who concluded that during dry weather flow for Letchworth STW 

was a source of metals (Table 6.15). However, the picture might be different 

depending on the receiving water flow rate and upstream water quality together 

with the rainfall characteristics (rainfall intensity and duration). Bakri and Rahman 

(2008), for example, found that the share of stormwater runoff and sewage works 

heavily depended on the runoff coefficient, which was itself linked to ADWP. 

Rainfall in our measurements increased the background concentrations of metals.  

 

6.4 WOODBROOK 

 

The data obtained from Woodbrook during dry weather is shown in Table 6.17 and 

in wet weather in Table 6.18 (see Appendices 5 and 6 for details). A comparison 

with the metal content of two other local brooks is shown in Table 6.19. The 

percentage of metals in their soluble form is displayed in Fig. 6.30.  

 

There was a wide range of concentrations for most parameters but an increase in 

iron and TSS was observed during wet weather, as might be predicted from the 

previous results and from the M1 data. 

 

Taking the mean values (from Tables 6.17 and 6.18) for all conditions and species, 

then Fe was always at the highest concentrations, as might be expected and as 

noted from the M1. There was dilution or reduction in the concentration of the 

other key indicators, such as Zn, P and NO3, by the rain. Further work linking these 

pollutants to flow could reveal a model to predict their behaviour. Similar 

concentrations of Fe values during wet weather were reported by Mosley and 

Peake (2001) (Table 2.2), which were 3.419 mg/l and 0.211 mg/l for Fetot and Fedis, 

respectively. 
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Table 6.17 Data from Woodbrook during dry weather conditions (21 samples) 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C
 

Iron (total) Traces – 0.528 0.192 0.139 0.722 

Iron (dissolved) Traces – 0.222 0.046 0.058 1.26 

Copper (total)  Traces – 0.022 0.008 0.008 1.0 

Copper (dissolved) Traces – 0.012 0.002 0.003 1.63 

Zinc (total) Traces – 0.109 0.035 0.031 0.868 

Zinc (dissolved) Traces – 0.019 0.005 0.007 1.42 

Na 9 – 117.74 21.629 22.206 1.03 

pH 7 – 8.17 7.69 0.396 0.052 

TSS 2.45 – 29.0 7.7 6.524 0.845 

Turbidity, NTU 0.198 – 15.5 3.31 3.585 1.08 

TDS 200 – 510 280 66.153 0.239 

EC, µS/cm 420 – 1010 545 124.68 0.229 

TOC 3.45 – 19.08 8.15 3.975 0.488 

Hardness 165 – 465 300 77.289 0.258 
3

4PO , as P  
Traces – 1.339 0.316 0.434 1.37 



3NO  
15.792 – 28.081 21.859 4.069 0.186 

 

Table 6.18 Data from Woodbrook during stormflow (rainfall events) conditions (12 samples) 

Contaminant, mg/L 
except pH, turbidity 

and EC 

Range X  S  C
 

Iron (total) 0.122 – 10.96 2.65 3.36 1.27 

Iron (dissolved) 0.028 – 0.832 0.167 0.245 1.47 

Copper (total)  Traces – 0.103 0.027 0.029 1.1 

Copper (dissolved) Traces – 0.006 0.002 0.002 1.0 

Zinc (total) 0.012 – 0.202 0.079 0.049 0.62 

Zinc (dissolved) 0.002 – 0.066 0.025 0.025 1.0 

Na 9.35 – 52.92 21.21 12.387 0.584 

pH 6.9 – 7.57  7.29 0.292 0.041 

TSS 8 – 295  84.45 108.25 1.28 

Turbidity, NTU 2.55 – 215 48.1 63.82 1.328 

TDS 130 – 280  199 54.66 0.275 

EC, µS/cm 260 – 550  397 102.96 0.259 

TOC 5.85 – 69.4 22.45 19.385 0.852 

Hardness 235 – 300  275 32.85 0.119 
3

4PO , as P  
Traces – 2.467 0.559 0.734 1.322 



3NO  
8.28 – 22.881 16.09 5.358 0.333 

 

During dry weather the Fe concentrations reported by Mosley and Peake were 

higher (Fetot = 0.674 mg/l and Fedis = 0.243 mg/l) compared to our data in Table 

6.17 (0.19 and 0.046 mg/l, respectively), even though the TSS concentrations 

were almost the same, namely 6 mg/l for Mosley and Peake and 7.7 mg/l for our 

data. It is not surprising that iron is in the highest concentration, considering that 

Fe is the most abundant element in soil in a number of different types of minerals 



 148 

(O‟Neill, 1998) and is a common material for land drains. Mosley and Peake 

admitted that an additional source of iron in their case might have been the 

corrosion of metallic iron drainage pipes, though the studied catchment was 

deliberately chosen as one consisting  predominantly of residential housing land  

with little industrial activity. The proportion of Fe in the dissolved form is relatively 

small compared to the total metal concentration, indicating that most of the Fe is 

affiliated with particulate matter (Fig. 6.30). The dissolved metal fraction fdis 

obtained from the Fe values during wet weather (Fig. 6.30 and Table 6.18) is 6.3%, 

which is the same as Mosley and Peake‟s result, which was 6.4%. During dry 

weather the fdis was 36% for Mosley and Peake and 23.9% for our data 

 

Table 6.19 Average concentrations of the indicator metals in three local brooks in the M1 
catchment 

Metal, mg/l Grace Dieu Brook   
(12 samples) 

Black Brook 
(10 samples) 

Woodbrook 
(21 samples) 

EQS, 
mg/l 

Iron total 0.28 0.281 0.192  
dissolved 0.119 0.048 0.046 1.0 

Copper total 0.006 0.004 0.008  
dissolved 0.003 0.003 0.002 0.01 

Zinc total 0.026 0.014 0.035 0.075 
dissolved 0.018 0.008 0.005  

 

 

Fig. 6.30 Percentage of soluble metals 

 

 (Table 6.17). Wet weather flushed out solids and associated total iron, thereby 

reducing the proportion of dissolved iron fixed by its solubility. The iron 
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concentrations in Woodbrook were similar to those in the runoff from the M1, i.e. 

2.65 mg/l and 2.104 mg/l respectively, although the range in Woodbrook is greater. 

 

Zn was the next most common metal, which confirmed the results of analyses 

reviewed in the literature survey (see section 2.4, Table 2.2), and it was found with 

a high proportion in the dissolved form. The fdis for Zn during wet weather 

determined by Mosley and Peake was 0.47 (47%), which was higher again by 

comparison with our data (32 %) (see Fig. 6.30). The fdis value obtained from the 

study of Berretta et al. (2008) was 13% (see section 2.4, Table 2.2). The 

explanation as to why Beretta et al (2008) found such a low proportion of Zn in the 

soluble form can be attributed to the high TSS value of 226.9 mg/l that they 

determined, which was 2.5 times higher than either that from our data or from 

Mosley and Peake. This data implies that even though Zn has been found 

predominantly in its dissolved form, it is also bound to solids, depending on the 

TSS concentration. In dry weather the pattern is different, with 14% of the zinc 

dissolved, which is lower than the corresponding proportions for the other metals. 

This suggests that Zn shows more complex behaviour with solids and water 

chemistry (pH solids) which might be associated with the amphoteric property of 

zinc at different pH. This needs more research. These proportions are only slightly 

different for motorway runoff, in which the Zn was 21.1% soluble for dry weather 

and 26.24% for wet weather, implying that the ligands might be the same.  

 

The behaviour of Cu in this study does not agree with other research on urban and 

residential runoff because the concentrations found are much lower. The most 

likely explanation is that, in our case, Woodbrook is predominantly a rural stream 

in which the conditions are pristine. Most of the literature reviewed was focused on 

urban environments with higher copper concentrations. The fdis value for 

Woodbrook was 0.074 (Table 6.18) during wet weather, whereas Mosley and 

Peake (2001) and Beretta et al. (2008) reported the fdis as 0.43 and 0.35, 

respectively. Our data shows that Cu behaviour is similar to that of Fe, suggesting 

solid binding (see Fig. 6.30). Another possible explanation for such a difference in 

the fdis value for Cu could be the application in our case of the microwave digestion 

technique for total metal recovery. To try to decide whether the chosen control 
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brook was unusual two other brooks, though still rural, in the same overall 

catchment and a few kilometres from the M1 were also sampled. 

 

Table 6.19 compares these three local brooks in the same catchment (Woodbrook, 

Grace Dieu Brook [upstream of the sewage works] and Blackbrook) during dry 

weather. The total metal concentrations reported in this table are a comparison 

from hot plates for Grace Dieu Brook and Black Brook and from microwave 

digestion for Woodbrook. Assuming that microwave digestion recovers more total 

metals, then these values should be greater, particularly for copper (see section 

6.1). One can see that the use of microwave digestion may have increased the 

recovery of Zn and Cu but not Fe. Thus, this provides some evidence to explain 

the unexpected and variable copper results for Grace Dieu Brook and Blackbrook 

and those of other researchers. Hot plate analysis may therefore be more 

vulnerable to atmospheric contamination than volatilisation or other reactions 

occurring in the hot plate. This needs more work but it reinforces the suggestion 

stated in section 6.1 as to how important the choice of analytical technique is.  

 

Another feature of all the data is that the background concentrations of the metals 

are as expected within the EQS. Throughout the whole period of the study, 

including  wet weather, the EQS concentration of the total Zn was exceeded once 

during wet weather (15/04/2009) (Zntot = 0.202 mg/l, EQS for Zntot is 0.075 for 

hardness values from 200 to 250 mg/l). Dissolved Cu was also exceeded once 

during the storms on 15/01/2008 (Cudis = 0.022 mg/l, EQS for Cudis is 0.01 for 

hardness values from 200 to 250 mg/l). Table 6.19 shows the average data.  

In comparison to the samples from the M1, those from the lagoon never exceeded 

the EQS for the 3 indicator metals (sampling point 4; Fig. 4.2 b). 

  

Another feature of the data is that the values of the coefficient of correlation ( C
) 

for the TSS, and turbidity and total metals (0.62 for Zntot to 1.33 for turbidity) (Table 

6.18) are greater than those obtained from the M1 discharges. This can be 

explained by the fact that random grab samples were used during wet weather 

and collected at different times during the rainfall events. The concentrations of 

metals would be expected to vary during the storm event, as noted from the M1 
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data, and „the first flush‟ may not have been captured. The hydraulic conditions in 

natural brooks will be heterogeneous and during wet weather (depending on the 

flow rate and velocity) different particles will be re-suspended from the bottom of 

the brook, which results in a TSS increase. Determining the correlations between 

metals and flow rates as well as TSS and turbidity is the next stage in a model 

using dedicated flow measurement at the sampling site. 

Fig. 6.31 shows, as an example, 3 grab samples taken during 3 different rainfall 

events, 2 of which are in winter. This was compared with other data reported by 

Morrison and Benoit (2005), for two reasons: their study analysed the same metals 

(Fe and Cu) and they also reported information about PSD. The study describes 

two sampling sites at the Naugatuck river: one was situated below the City of 

Torrington (Connecticut) (Naugatuck River I), so that it included the runoff from the 

city itself with its industry and sewage works, and the second site was chosen 

above the city (Naugatuck River II). Data was also presented from a rain-on-snow 

event in March. The first sample point (Naugatuck River I), as noted, receives all 

the urban drainage from 147 km2, while the second one (Naugatuck River II) 

serves an area of 24 km2 upstream of the City, which is comparable with  

Woodbrook (25.5 km2). The background concentrations of pollutants upstream 

and downstream of the City (for the Naugatuck River) are presented with the 

corresponding data from Woodbrook in Table 6.20. 

 

The data obtained for Na and EC from the 12/01/2009 Woodbrook sample were 

higher compared to the two other storm events as well as the mean values from 

Table 6.18, which was caused, we suggest, by de-icer salt in runoff even though 

the catchment is rural. A similar but stronger effect can be seen from the results 

obtained by Morrison and Benoit (2005) from the Naugatuck River  where the 

presence of de-icer salt was the cause of increases in Na and EC (Fig. 6.31 a and 

b and Table 6.20). In Connecticut state the weather conditions are more severe 

and the concentrations greater. 

The measured parameters in Woodbrook and Naugatuck River upstream of the 

urban area are of a similar range (Fig. 6.31 and Table 6.20). In this data turbidity 

showed a good correlation with total metals (Fig. 6.31 g) and the storm on 

13/12/2008 showed the maximum value. 
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In our data Fe showed a good correlation with TSS Fe and turbidity among all the 

observed rainfall events throughout the studied period (Table 6.18). 

a) 

 

e) 

 
b) 

 

f) 

 
* the data Cudis for 12/01/2009 and 29/07/2009 was negligible  
** no data for Cudis from Naugatuck River II 

c) 

 
 

g) 

 

d) 

 
* no data from Naugatuck River II 

h) 

 

* no data from Naugatuck River II 

Fig. 6.31 Comparison of water parameters and pollutants from Woodbrook on the left and Naugatuck 
River during selected storm events 

 

It can be concluded that the concentration of total metals depends on TSS and 
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impact of the urban environment on the Naugatuck River is demonstrated in every 

parameter. Fig. 6.31 g shows turbidity (Naugatuck River II to Naugatuck River I) 

ranging from 20 to 400 NTU respectively. The authors concluded that this was due 

to the urban runoff. 

 
Table 6.20 Background concentrations of selected water quality parameters from urban runoff in 
Connecticut* and Woodbrook during dry weather  

Sampling 
points 

EC, µS/cm Nadis, mg/l Fetot, mg/l Cu tot, mg/l TOC, mg/l 

Naugatuck 
River I 

300 20 0.1 0.002 6 

Naugatuck 
River II 

40 10 0.19 0.002 No data 

Woodbrook 545 21.6 0.192 0.008 8.15 
 * modified from Morrison and Benoit, 2005 

 

TOC concentrations in the Naugatuck River (downstream) are comparable with 

those from the unpolluted control stream (Woodbrook) used in this study. The 

value of 9 mg/l (Fig. 6.31 h) from the Naugatuck River was similar to the overall 

average recorded in Woodbrook and it supports the similarities in catchment. 

 

Table 6.21 summarises the results of particle size distributions found in samples 

taken from Woodbrook during dry (13/02/2007) and wet weather (15/01/2008). 

From this table it can be seen that there is an increase in particles of sand (known 

as sand by BSI), for example, > 80 µm, (18.62 %) particles in the brook during the 

rainfall event compared to 6.73 in dry weather. The proportion of fine particles 

(defined as clay by BSI) during wet weather is reduced to 2.07 % (1.88 +0.19), 

compared to 4.97 % (3.86 +1.11) in dry weather, presumably due to dilution and 

flushing. 

Table 6.21 Particle classes and size ranges of Woodbrook samples 

Particle class 
 
BSCS 5930:1981 

Particle class size 
range 

Particle size distribution,% 
13/02/2007 dry 
weather 

15/01/2008 rain 

Sand > 80 µm 6.73 18.62 
Coarse silt 20 – 80 µm 42.01 30.97 
Fine silt clay 1 – 20 µm 46.29 48.34 
Clay and large 
colloids 

0.45 – 1.0 µm 3.86 1.88 

 0.45µm and less 1.11 0.19 
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Fig. 6.32 compares the results for metal solubility from the wet (15/01/2008) and 

dry weather (13/02/2007). 

a) 

 

c) 

 
b) 

 

d) 

 

 

Fig. 6.32 Particle size associations for metals from Woodbrook and the Morrison and Benoit study 

 

Morrison and Benoit (2005) also present data on the detailed analysis of Cu and 

Fe associations with particles throughout a rain-on-snow event from 13th March to 

15th March 2001 and these are shown in Fig. 6.32 c and d, Table 6.22. The four 

samples, chosen for detailed size distribution analysis, represent different times 

within the event (see the footnote to Table 6.22), i. e: I – pre-event baseflow; II – 

peak flow (first part of the storm); III – second shower event; IV – post-event flow. 

Both our Woodbrook data, shown in Fig. 6.32 a (wet weather), and the Naugatuck 

River data show that 10 – 30 % of Cu is dissolved compared to Fe, which ranges 

between 2 and 4.5 %.  

 

From Table 6.22 in the Naugatuck River one can see that in most cases Cu was 

bound with fractions which were less than 0.45 µm (from 58% to 67%) except at 
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was 30.61% (Fig. 6.32 a), which was half that reported by Morrison and Benoit 

(2005; Table 6.22). 

 

Fig.6.32 a and b show that there is almost no change in the dissolved Cu in 

Woodbrook between dry and wet weather compared to iron and zinc. Both data 

sets are from winter, but the sample taken on 13/02/2007 was taken after the 

melting of snow which had fallen on 09/02/2007. This suggests that de-icing salt 

was present (EC = 460 µS/cm, compared to 300 µS/cm) on 15/01/2008 which, 

according to the previous data, would have increased the dissolved phase metal 

concentrations. Dissolved Fe increased from 4.48 to 37.69% and Zn from 25.72% 

to 97.05%. Bubb and Lester (1995), studying the behaviour of metals in sewage 

effluent and river surface water in Bedfordshire, UK, found no correlation between 

soluble copper and chloride. Their data, however, were from steady states with no 

sudden changes in either dissolved salts or flow. 

 

Our data, supported by Morrison and Benoit (2005), imply that TSS concentration 

can play a significant role in metal behaviour, particularly that of Fe, but even in 

the cases of metals which other researchers have found predominantly in the 

dissolved form. Future research on the potential chelating chemical present in 

different types of surface water should provide information for an improved model. 

The Morrison and Benoit data, however, are unusual because they are from a cold 

region. The use of de-icer has been shown to affect the results.  

 

Table 6.22 Percentage changes in particle size distribution associated with selected metals 
Particle class and size 
range 

Copper 
(Naugatuck River I) 

Iron 
(Naugatuck River I) 

Iron 
(Naugatuck River II) 

I II III IV I II III IV I II III IV 

Sand > 80 µm 11 - 7 18 20 5 5 - 15 35 35 30 

Coarse silt 20 – 80 µm 19 72 12 17 30 86 60 49 18 15 30 34 

Fine silt clay 1 – 20 µm - 14 12 3 - 3 1-0 10 5 5 - 10 

Clay and large colloids 
0.45 – 1.0 µm 

3 3 4 4 20 4 10 15 20 15 17 8 

0.45 µm and less 67 10 65 58 30 2 10 26 42 30 18 18 

I – pre-event baseflow; II – peak flow (1
st
 part of the storm); III – second shower event; IV – post-event flow. 

 

The graph (Fig. 6.32 a) shows that during storm runoff the dissolved form of Fe 

was less than 5% of the total metal, as a consequence of the presence of 

increased solids, whereas during dry weather the soluble part of Fe was 37.69 %, 
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(Fig. 6.32 b). Similar results for iron were obtained by Morrison and Benoit (2005) 

(Fig. 6.32 c and d and Table 6.22). 

 

We hypothesise on the basis of our data that Zn behaviour (its binding to 

particulate matter) is strongly dictated by the presence of the de-icer salts. Fig. 

6.32 b shows that almost the whole Zn concentration in Woodbrook in cold 

weather was attributable to dissolved Zn (97.05 %)*. Zn values were not reported 

by Morrison and Benoit (2005). 

 

Gundersen et al. (2001), studying the seasonal variations in Zn in mine-polluted 

streams, observed several rain- and snow-melt-induced peaks which progressively 

reduced the dissolved fraction of Zn. This may be explained by the fact that ions 

(Na+) were not present.   

 
Thus, the summary of the results from this section is   presented in Table 6.23 in 

comparison with other sampled test sites (M1 and LSW), as well as the EQS.  

 

Table 6.23 Averaged results from the M1, Woodbrook and LSW  

Metals, mg/l Wet weather Dry weather LSW EQS 

M1 Woodbrook M1 Woodbrook 

Iron (total) 2.104 2.65 1.119 0.192 0.06  

Iron (dissolved) 0.124 0.167 0.103 0.046 0.033 1.0 

Copper (total)  0.045 0.027 0.005 0.008 0.005  

Copper (dissolved) 0.008 0.002 0.002 0.002 0.004 0.01 

Zinc (total) 0.141 0.079 0.057 0.035 0.06 0.075 

Zinc (dissolved) 0.037 0.025 0.012 0.005 0.051  

 

During dry weather, the concentration of Fetot and Fedis was higher compared to 

Loughborough sewage works but less than that found in the lagoon. The Cutot 

concentrations from Woodbrook had the highest value observed (0.008 mg/l), 

compared to both the lagoon and Loughborough sewage works. The explanation 

may be that the sampling point in Woodbrook was in the vicinity of the road where 

_______ 

* It should be noticed that total metal recovery was done by hot plate, which might have resulted  
in incomplete Zn digestion, and the reported “total concentration”  (see Table 4.5) is likely to be 
less than the actual value. 
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vehicles had to brake because of a traffic light. Dissolved copper had the same 

value as in the lagoon but dissolved copper in LSW was twice as abundant as in 

the brook and the lagoon. Zinc concentrations in Woodbrook had their lowest 

values, compared with the lagoon.  

 

During wet weather the concentrations in Woodbrook increased and the Fe 

concentrations were even slightly higher than those from the M1. The total zinc 

concentration was 0.079 mg/l, which was lower than that from the M1 (0.141 mg/l), 

but it exceeded the EQS for Zntot (0.075 mg/l). The total copper concentration 

increased 3.5 times but it was 2 times lower than from the M1. Dissolved copper 

remained the same as during dry weather (0.002 mg/l). 

The results also show that sub-zero temperatures affect metal solubility if de-icer 

is applied, which has been supported by data from Connecticut State (Morrison 

and Benoit, 2005). 

 

Rainfall events generate an increase in coarse particles (> 80μm) compared to dry 

weather because of the flushing or re-suspending of particles from the bottom of 

the stream. However, the percentage of smaller particles decreased during wet 

weather, possibly because of the dilution effect. 

The results obtained in this section show that wet weather has an effect on metal 

solubility (see Fig. 6.30) which might be linked with the percentage of PSD. 

However, the results also showed that weather and local conditions can confound 

this simple interpretation. Fe and Zn solubility increased for the winter conditions 

analysed (Fig. 6.32 a and b) and Cu in its dissolved phase increased for samples 

taken during wet weather. Metal solubility increased both as a result of 

evaporation (Fe) and also due to re-solubilisation from the sediment (Zn and Cu). 

 

Thus, to summarise the results from this section, it has been concluded that wet 

weather has a greater effect on background or natural water quality than treated 

urban inputs. The extent of the change in metal concentrations (and other water 

quality parameters) was shown to depend on rainfall characteristics but also on 
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sub-zero temperatures. Our studies, in common with those from Connecticut, 

suggest that NaCl from de-icer increases the Cu concentration in urban runoff. 

 

Iron was shown, as in previous work, to be in the highest concentrations in both 

pristine streams and urban runoff, typically ten times the concentration of the next 

most common metal, zinc. In dry weather the sewage work discharges of metals 

into the catchment were greater than those measured from the treated M1 runoff. 

The sewage work effluent concentrations were below the EQS (0.1 mg/l for Fedis, 

for example, compared to the EQS for Fedis 1.0 mg/l). In wet weather our results 

suggest that stream water quality is improved by the sewage work effluent. The 

results from the M1 have suggested that ADWP is the most important influence on 

metal concentration in runoff. The combination of interceptor and lagoon used at 

the M1 site to achieve these standards may be too large for some highway 

locations. Therefore, as reported in the next section of the thesis, an alternative 

combination of separator and filtration as suggested in PPS 25 was investigated.    

 

6.5 FILTRATION 

 

Throughout several groups of filtration experiments the following results were 

typical and can be summarised for the two media - glass and gravel - as follows: 

1. The lowest velocity in the experiment was 2 m/hr (the velocity of filtration in this 

study varied from 2 to 8 m/hr) and such low velocities were ineffective for 

dissolved metal removal. 

2. The first sample point (1st tap) for all periods of time and parameters (except 

dissolved metals) gave the poorest quality results, as might be expected, whereas 

the final effluent (at the bottom of the filter) almost always showed the highest 

percentage of metal removal.  

3. The results demonstrated that metal removal was linked to the removal of TSS 

which were retained in the filter and formed sediment. 

4. TSS also accumulated at the filter surface on the top layers. The concentration 

of TSS as well as total metals increased in the top of the filter first and progressed 

down the filter, following classical filtration theory (Ives, 1990).  



 159 

5. The last sample from an experimental run always had the poorest quality due to 

sediment enrichment from the tank bottom. The water quality decreased with run 

time, as expected.  

 

The sediment mass added into the system was based on an added TSS 

concentration of 100 mg/l. This concentration has never been observed during a 

wet weather sampling period at our chosen sampling points at the outlet of the 

interceptor and it was selected based on the literature for the sake of achieving 

greater reproducibility of the experiment. However, the actual measured initial 

concentration varied both throughout a filter run and from filter run to filter run so 

that, despite the use of a standard preparation, it was measured to be from 40 to 

400 mg/l. The difference between actual and estimated concentrations can be 

explained by the adhesion of the sediment to the walls of the tank as well as its 

being deposited by settlement within the system (upper tank, pipes) (see Chapter 

5, Fig. 5.1 and Photo 5.1). 

 

As an example, Figs. 6.33 – 6.39 present the results from the first filter run 

(crushed glass medium) (30/07/2008). The medium was analysed for the 

background level of pollutants and washed thoroughly prior to these, the first 

experiments (see section 5.1). 

 

From Fig. 6.33 it can be seen that the 1st sample point (the 1st tap), the upper 20 

cm of the glass, had the highest concentration of TSS, as was to be expected, 

since this received the largest amount of TSS. 

 

Solid accumulation during the first hour at the 1st  sampling point was twice as 

great as at the other sampling points (2nd tap – FE) and around 7 times higher 

during the  second and  third hours of filtration. This coincides well with the 

patterns both of turbidity and the Fetot results (Figs. 6.34 – 6.35). 

 

Figure 6.35 demonstrates that Fetot had the strongest links to TSS and 

consequently it was retained on the sediment. Total zinc and copper showed less  
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Fig. 6.33 Concentration of TSS taken from the 
sample points of the column   

 
Fig. 6.34 The values of turbidity taken from 
the sample points of the column 

Fig. 6.35 Concentration of total iron taken from the 
sample points of the column   

 
Fig. 6.36 Concentration of total copper 
taken from the sample points of the column 

 
Fig. 6.37 Concentration of dissolved copper taken 
from the sample points of the column 

 
Fig. 6.38 Concentration of total zinc taken 
from the sample points of the column 

 

Fig. 6.39 Concentration of dissolved zinc taken from the sample points of the column 
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affiliation with particles, as was shown previously in runoff and the control brook, 

while TSS decreased gradually (Fig. 6.33). 

 

These figures would also be representative of any solid-associated pollutant 

accumulation in the media surface or the top layers (to a 20 cm depth from the top 

of the media). This is normal in filtration and it is known as “cake formation”, the 

assumption being that it is due to the concentration gradient. 

 

Figures 6.37 and 6.39 show that dissolved copper and zinc concentrations 

remained the same throughout the filtration run, compared to the initial 

concentrations, which were 0.006 and 0.027 mg/l respectively. These results were 

expected  on the basis of previous experiments (see section 6.2), where it was 

shown that dissolved metals did not change significantly with changes in TSS 

during a rainfall event (equivalent retention time for a storm and in the filter run). A 

much longer retention time in the filter may be needed for dissolved metals or 

more complex chemical interactions to occur between contaminants and filter 

media, for example, as shown with salts (see section 6.2).   

 

Clark et al. (2005) compared both downflow and upflow columns and found that 

downflow columns were less effective than upflow columns. Moreover, having 

conducted the experiment with upflow filtration, it was concluded that more 

stormwater might have been treated and filtration runtime could have been 

extended before clogging. It was confirmed that the sediment that accumulated in 

the bottom of the media fell away into the sump after the flows had stopped. The 

paper does not provide any information about the velocity of filtration or the PSD of 

stormwater. 

 

Figs. 6.40 and 6.41 compare the effectiveness of total Zn removal using crushed 

glass and gravel. In both figures the bold line represents the ratio of the permitted 

concentration to the average feed concentration Cinfl, as an indicator of filtration 

performance. The permissible concentration of EQS of total Zn is 0.075 mg/l for 

hardness levels ranging from 100 to 250 mg/l CaCO3.  
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                        a) 

 

                        b) 

 

                        c) 

 

                       Fig. 6.40 Filtration performance for total Zn removal by crushed glass 
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                         a) 

 

                        b) 

 

                        c) 

 

Fig. 6.41 Filtration performance for total Zn removal by pea-gravel 

 

The Cinfl values were calculated as the sum of the feeding concentrations divided 
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From these figures one can see that the values of the line indicating filtration 

performance criteria will depend on the initial feeding concentration. The greater 

the feeding concentration, the better the filtration performance would be expected 

to be. Thus, the larger the ratio, the better the performance will be. Fig. 6.40 a, for 

example, where 72.0
infl

perm


C

C
 (average feed concentration = 0.104 mg/l), 

demonstrates that after 3 hours of filtration the quality obtained from glass filtration 

deteriorated at each sampling point (4th and 5th hours). Fig. 6.40 a, b and c 

represent the effectiveness of crushed glass during 5 hours of filtration with 

filtration velocities of 3, 4 and 5 m/hr, respectively, and an inverse relationship 

between velocity and performance is demonstrated. 

 

Fig. 6.41 a, b and c, represent the efficiency of pea-gravel during 3, 5 and 4 hours 

filtration with filtration velocities of 7, 4 and 5 m/hr, respectively. Values above the 

line show a good filtration performance, but this does not necessarily achieve the 

EQS. Values below the line indicate a poor filtration performance and deterioration 

in the water quality. 

 

This progressive accumulation was less strong in the pea-gravel media, probably 

due to their higher porosity and consequently better retention of sediment and 

deeper penetration into the medium itself. However, Fig. 6.41 a shows that the 

worst performance of a pea-gravel medium occurred at the highest rate, when the 

concentration at the 5th sample point (FE) did not achieve the EQS, which 

supports the idea of the medium clogging with time. This filter run was conducted 

on 17/03/2009, whereas the two earlier runs (Fig. 6.41 b, c) were carried out on 

19/01/2009 and 25/02/2009, respectively, and showed a better performance 

 

It can be seen that the total Zn concentration varies widely both in crushed glass 

and pea-gravel media (Figures 6.40 and 6.41) and from sample point to sample 

point. Generally, the first sample point during the run was almost always below the 

line, representing an unsatisfactory filtration performance. The final effluent (FE – 

5th sample point) was almost always both above the line and able to achieve the 

EQS. The fifth sample point for all pollutants for both glass and pea-gravel media 
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always had the highest performance. Zntot concentrations at all other sampling 

points were irregular, which can be explained by the fact that the sediment moved 

up and down the column according to small perturbations in the flow.  

 

It was expected that the total zinc concentration would increase with time, i.e. the 

performance would deteriorate with hours of run. One can see that at the 3rd 

sample point during the 3rd hour (Fig. 6.40 c) total Zn had the lowest 

concentration observed. Sediment accumulated and was left between runs, since 

backwashing columns were not included. Backwashing was avoided deliberately, 

since it would be unlikely for media backwashing of filters to act in the field.   

 

Fig. 6.42 a, b, c and d show the performance of filtration using crushed glass for 

the other pollutants (TSS, Fetot and Cutot) and they correspond with Fig. 6.40 c, 

whereas Fig. 6.43 a, b, c, d and e match the conditions shown in Fig. 6.41 b but 

using pea-gravel. The permissible level for TSS was chosen as 10 mg/l, which 

was selected as a potential initial concentration for the second step filtration after 

an interceptor. The permissible level for Fetot was chosen as the background Fetot 

concentration in the lagoon, since there is no formal standard for iron. The 

corresponding TSS concentration ranged from 7 to 14.5 mg/l (21 samples) and 

constituted 0.5 mg/l of Fetot.  

 

The permissible level for Cutot was calculated from the values corresponding to the 

EQS for Cudis (0.01 mg/l) and the corresponding values in the lagoon were 0.048 

mg/l (10 samples). 

 

Comparing these Figures one can see that the best correspondence with TSS was 

with Fetot in both glass and gravel, as might be expected, whereas the worst 

affiliation with TSS was with Cutot as would be anticipated from the previous results 

on the solubility of Fe, Zn and Cu. Clark et al. (2005) studied metal removal using 

mixtures of peat-sand, compost and zeolite media. It might have been expected 

that the organic mixes that Clark et al. (2005) used would show a better 

performance than simple glass, sand or gravel. Other work on colour removal  
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                       a) 

 
                        b) 

 

                       c) 

 

                       d) 

 

                        Fig. 6.42 Filtration performance for removal of some pollutants by glass  
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a) 

 

d) 

 
b) 

 

e) 

 

                                                 c) 

 
 

Fig. 6.43 Filtration performance for removal of some pollutants by pea-gravel 
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(Cairns et al., 2009) has indicated that a charged surface, as might be expected, 

can remove dissolved materials, NOM in particular. 

 

 Tables 6.24 (2nd filter run) and 6.25 (7th filter run) represent the data for crushed 

glass and pea-gravel for 3 hours of filtration with a filtration velocity of 7 m/hr.  

 Tables 6.26 and 6.27 present a similar comparison of glass and gravel but from a 

later run at a lower filtration rate of 4 m/hr. The initial concentration of pollutants 

was, unfortunately, different each time because of the difficulty in managing the 

feed material. The bold blue values represent the achievement of the EQS. The 

bold black values represent the deterioration in the media quality.  

 

Comparing the effectiveness of crushed glass at different velocities (7 and 4 m/hr) 

(Table 6.24 and 6.26), it can be suggested that the data shows a progressive 

accumulation of the solids in the filter bed until breakthrough. Although the final 

TSS in the second run (Table 6.26) at a lower velocity is better, in the final effluent 

the retention of metals is not as good and neither is the solid quality at other points. 

Both metals and solids show greater accumulation in the second run despite or 

because of the lower velocity. The breakthrough of solids would have been 

anticipated if the filter run had been continued. Taking into consideration the 

conditions of the experiment (the absence of backwash), it can be suggested that 

the overall effectiveness of TSS removal top to bottom improved at the lower flow 

rate (Table 6.26). The differences between the two runs were, however, 

compromised by the reduction in TSS (116.2 mg/l, run 1, to 48 mg/l, run 2), which 

could bias the result in favour of the second run.  

 

Table 6.24 shows solid accumulation and wash out in the first 0.4 m of the filter 

after 3 hours using a TSS typical of stormwater runoff. The analysis of the data 

represented in Table 6.26 suggests that solids were also accumulating from run to 

run, as might be expected, with a more rapid deterioration in the intermediate 

samples despite the lower velocity. The overall effectiveness of the pollutant 

removal increased across the whole filter, but this would also eventually be 

expected to deteriorate as the filter became full of solids.  
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Table 6.24 Pollutant treatment efficiency of artificially prepared stormwater depending on the 
medium height (glass), %. (Velocity of filtration 7 m/hr; CTSS = 116.2 mg/l; CFe = 4.1 mg/l; CCu = 0.091 mg/l; CZn = 

0.222 mg/l) 
Pollutant Efficiency of the treatment under the duration 

of the filtration 

1 hr 2 hr 3 hr 

Final effluent (sample point 5) 

TSS 79.3 69.9 76.2 

Fetot 73.1 62.9 73.5 

Zntot 55.4 42.3 61.7 

Cutot 63.7 16.5 58.2 

Medium height 1.2 m (sample point 4) 

TSS 54.7 -98 40.2 

Fetot 44.5 -87.5 40.2 

Zntot 41.9 -49.5 32.9 

Cutot 41.8 -39.5 27.5 

Medium height 0.8 m (sample point 3) 

TSS 28.6 10.9 38.1 

Fetot 49.7 19.8 46.1 

Zntot 34.7 13.1 33.8 

Cutot 47.2 14.3 27.5 

Medium height 0.4 m (sample point 2) 

TSS 28.86 32.4 -47.6 

Fetot 23.4 40.8 -76.9 

Zntot 15.3 34.7 -41.5 

Cutot 19.8 20.9 -43.9 

 
 
Table 6.25 Pollutant treatment efficiency of artificially prepared stormwater depending on the 
medium height (gravel), %. (Velocity of filtration 7 m/hr; CTSS = 80 mg/l; CFe = 2.95 mg/l; CCu = 0.065 mg/l; CZn = 0.82 

mg/l) 
Pollutant Efficiency of the treatment under the duration 

of the filtration 

1 hr 2 hr 3 hr 

Final effluent (sample point 5) 

TSS 81.8 72.5 80 

Fetot 89.2 76.4 84.8 

Zntot 67.1 36.5 40.9 

Cutot 26.2 -30.8 44.6 

Medium height 1.2 m (sample point 4) 

TSS -13.8 -60 53.8 

Fetot -29.3 -99.6 48.7 

Zntot 16.1 5 47.8 

Cutot -6.2 -12.3 41.5 

Medium height 0.8 m (sample point 3) 

TSS -21.3 -1.3 -25 

Fetot -51.5 -1.8 -51.9 

Zntot 49.8 28.6 41.7 

Cutot -4.6 9.2 0 

Medium height 0.4 m (sample point 2) 

TSS -276 -220 -370 

Fetot -276 -282 -554 

Zntot -127 -177 -307 

Cutot -149 -120 -191 

 

The data for pea-gravel (Tables 6.25 and 6.27) was better because of the higher 

porosity of the media and the effectiveness of pollutant removal was better in the 

earlier filter runs (Table 6.25), even though the velocity was lower in the 2nd run  
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Table 6.26 Pollutant treatment efficiency of artificially prepared stormwater depending on the 
medium height (glass), %; velocity of filtration 4 m/hr; CTSS = 48 mg/l; CFe = 1.23 mg/l; CCu = 0.032 
mg/l; CZn = 0.098 mg/l 

Pollutant Efficiency of the treatment under the duration of the filtration 

1 hr 2 hr 3 hr 4 hr 

Final effluent (sample point 5) 

TSS 88 87.5 69.3 80.2 

Fetot 83.9 68.3 60.9 56.4 

Zntot 34.6 22.4 36.7 26.5 

Cutot 62.5 56.3 -71.9 3.2 

Medium height 1.2 m (sample point 4) 

TSS 47.3 48.5 26.1 -20 

Fetot 40.7 30.7 19.9 1.5 

Zntot 22.4 20.4 21.4 -17.3 

Cutot 0 46.9 -175 -59.4 

Medium height 0.8 m (sample point 3) 

TSS 83.4 64.5 68.7 -286 

Fetot 78.9 57.3 23.6 -187 

Zntot 35.7 26.5 19.4 -107 

Cutot 75 50 43.8 -106 

Medium height 0.4 m (sample point 2) 

TSS 50 43.7 -19.7 -63.7 

Fetot 57.5 -4 -12.7 -24.8 

Zntot 39.8 1 -13.2 -23.5 

Cutot 46.8 -9.3 -25 -125 

 
Table 6.27 Pollutant treatment efficiency of artificially prepared stormwater depending on the 
medium height (gravel), %; velocity of filtration 4 m/Hr; CTSS = 107.5 mg/l; CFe = 2.6 mg/l; CCu = 
0.034 mg/l; CZn = 0.224 mg/l 

Pollutant Efficiency of the treatment under the duration of the filtration 

1 hr 2 hr 3 hr 4 hr 

Final effluent (sample point 5) 

TSS 94.1 95.3 94.1 90 

Fetot 85.5 86.9 85.8 82.2 

Zntot 78.5 53.6 75.9 33.9 

Cutot 67.6 52.9 58.8 17.6 

Medium height 1.2 m (sample point 4) 

TSS 84.1 80.3 75.7 29.9 

Fetot 68.8 60.6 77.8 -5.8 

Zntot 77.2 33.1 24.6 25.5 

Cutot 44.1 26.4 44.1 -61.7 

Medium height 0.8 m (sample point 3) 

TSS 84.6 75.7 62.6 14.5 

Fetot 60.7 43.9 72.9 -16.9 

Zntot 53.6 26.4 24.6 -5.8 

Cutot 41.2 -5.8 17.6 -58.8 

Medium height 0.4 m (sample point 2) 

TSS 66.3 61.7 54.2 -571 

Fetot 60.1 7.3 8.3 -766 

Zntot 58.5 40.6 47.8 -268 

Cutot 38.2 -20.6 -35.3 -741 

  

(Table 6.27), but it then still deteriorated as with glass as particles saturated the 

voidage. 

TSS removal throughout 3 hours of filtration showed a breakthrough after 3 hours 

at 0.4 m at both velocities but the system continued to achieve 80 – 90% removal 

across the whole filter depth. 
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The later run at the higher velocity and load showed a deterioration in solid 

removal from the very beginning (Table 6.25) for all hours and sampling points. At 

both of these higher velocities with glass and gravel the overall performance 

deteriorated as the run progressed (sample point 5). 

 

Fig. 6.44 represents the PSD analysis for 3 glass filter runs and Fig. 6.45 the PSD 

for 2 filter runs using pea-gravel. On analysing the results for glass one can see 

that smaller and smaller particles are removed with time. 

                          a) 

 

                         b) 

 

                        c) 

 

                       Fig. 6.44 PSD for crushed glass 
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                        a) 

 

                         b) 

 

                         Fig. 6.45 PSD for pea-gravel 
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Table 6.28 Typical PSD of influent and final effluent using crushed glass 

Size, µm Percentage below, % 

Influent 
(average) 

Effluent 

01/12/2008 12/12/2008 09/01/2009 
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20 13.16 22.55 50.58 97.2 

50 44.91 68.59 80.76  100 
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The behaviour of the pea-gravel medium was unexpected as it was assumed that 

the same sediment layer would coat its surface and improve retention. The likely 

explanation is that because of the smaller particle size the available voidage is 

filled more quickly and this leads to deterioration in performance due to 

channelling. This is supported by the earlier data (Tables 6.26 and 6.28) which 

shows a more rapid accumulation of solids for gravel than for glass (see Table 

6.33, comparing the surface area of gravel and glass). 

 
Table 6.29 Typical PSD of influent and final effluent using pea-gravel 

Size, µm Percentage below, % 

Influent 
(average) 

Effluent 

19/01/2009 25/02/2009 

10 4.1 61.6 32.9 

20 11.29 83.4 60.6 

50 44.06 96.43 88.74 

 

Table 6.30 presents a summary of the dissolved water quality parameters when 

the medium was washed. The latter was deliberately not washed immediately after 

each run in order to imitate ADWP. The minimum values in the flush column 

represent the water quality following the early filter runs and the maximum ones 

show the concentrations of the pollutants accumulated later into filter runs and not 

removed by earlier washing. The washed Fedis and Cudis concentrations increased, 

but not dramatically, during the 12 months of use, which confirms that there is little 

capacity to absorb dissolved ions. It is possible that these figures mimic the iron 

and copper concentrations that might have been found in the leachate from the 

original newly crushed glass, although these were confirmed by acid washing to 

be reduced to the background levels before the experiment was started.  Another 

factor may be the increase in TOC concentrations, which acts as a chelating agent 

for the metals.  

 

Crushed glass could be disadvantaged from potential use if it has a deleterious 

impact on water quality. Wartman et al. (2004) pointed out that the leaching of 

metals was a barrier to using recycled crushed glass in concrete or asphalt paving 

materials, although it was cheap and exhibited excellent strength and workability 

characteristics. 
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The NO3 concentrations during the medium wash increased almost 3 times and 

this was the greatest increase with sodium compared to that obtained at the 

beginning of the filter runs. It may be explained by sediment decomposition within 

the column, which resulted in the release of nitrates. This level of NO3 can be 

compared to that of Woodbrook during dry weather. 

 

Table 6.30 Some water quality parameters in flushed water after a filter run 

Pollutant, mg/l, except from pH 
and EC  

Influent (range) Column flush (range) 

Fedis 0.003 – 0.006  0.008 – 0.019 

Cudis 0.005 – 0.006 0.019 – 0.023 

Zndis 0.021 – 0.030 0.020 – 0.030 

Na 19.07 – 31.72  21.76 – 29.34  

TOC 4.17 – 5.89 11.09 – 12.39 

EC 450 – 490  450 – 470  

TDS 250 - 330 220 – 250  

pH 7.0 – 7.5  7.0 – 7.2 

NO3 14.6 – 14.8 27.18 – 34.78 

PO4 as P 0.64 – 0.68 0.716 – 0.728 

 

Another feature of the data is that the Zndis concentrations remained the same. It 

was shown in the previous section 6.2.2 that Zndis concentrations might be linked 

to ion exchange with Na which released bound zinc from the sediment. Neither the 

Zn nor the Na showed a linked change. 

 

6.6 ADSORPTION 

 

Standard equilibrium isotherms were used to analyse and experimentally 

investigate potential sorption of metals onto the filtration media. Batch tests were 

used in this study to determine equilibrium concentrations between dissolved 

methylene blue (a standard adsorbate) and copper solution (shown in the work so 

far to be the most soluble metal) and the solid phase (recycled glass and pea-

gravel adsorbent as used in filtration). The methylene blue was used in this study 

as the standard absorbent usually used to test activated carbon and would also be 

representative of organic matter present in highway runoff. The adsorption 

isotherm equations are characterised by constants whose values can be 

compared between materials, usually sand and carbon, and express the surface 

properties and affinity of the adsorbent. They can also be used to find the total 
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adsorptive capacity of the media. The Langmuir and Freundlich equilibrium models 

are the most common equations for describing adsorption equilibrium.  

 

The Langmuir adsorption isotherm has been successfully applied to many 

pollutants (McKay et al., 1985; King et al., 2007) and has been the most widely 

used sorption isotherm. The basis of the Langmuir theory is that sorption takes 

place at specific homogeneous sites on the adsorbent and the saturated 

monolayer isotherm can be expressed in its linearised form by: 

eq

L

eq
C

bbK
m

X

C 11
                                                                 (6.4) 

where X/m is the adsorption density, mg/g; Ceq is the concentration of adsorbate in solution at 
equilibrium, mg/l; b is the adsorption capacity corresponding to complete monolayer coverage, 
mg/g; KL is the Langmuir constant related to the energy of adsorption, L/mg. 

 

The linear behaviour of 

m
X

Ceq  versus eqC  yields the Langmuir constants b and KL.   

The alternative Freundlich model is an empirical isotherm and can be used for 

non-homogenous sorption and expressed by the following equation: 

n

eqFeq CKC /1                                                                (6.5) 

where KF and n are the Freundlich constants related to the adsorption capacity and adsorption 
intensity of the sorbent, respectively.  

 
It is important to note that the sorption isotherms do not provide any information 

about the mechanism of sorption, which has to be confirmed by more direct 

methods based on molecular spectroscopy. 

 

Nevertheless, the isotherms have been classified into four adsorption rate patterns, 

according to their shape, and linked to mechanisms (McBride, 1994): 

1) the L-type (logarithmic) (classic Langmuir) isotherm reflects  a relatively high 

affinity between the adsorbate and adsorbent (chemisorption); 

2) the S-type isotherm (power), suggesting “cooperative adsorption”, operates if 

inter-molecular attraction within the adsorbate-adsorbate  interactions is stronger 

than the adsorbate-adsorbent interaction. In this case adsorbate molecules bond 

more strongly with one another than with adsorbent (surface);  
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3) the C-type (linear) (constant-partitioning) isotherm, suggesting a constant 

relative affinity of the adsorbate molecules for the adsorbent,  is normally observed 

at the low range of adsorption; 

4) the H-type isotherm is a very strong adsorbate-adsorbent interaction and a 

more likely pattern than the ideal model and extreme case of the l-type adsorption.  

 The adsorption isotherms obtained in this study (Fig. 6.46) can be related to the 

C-type, being found at low concentrations.  

 
Fig. 6.46 (a; b) represents sorption isotherms for two types of crushed glass (blue 

and transparent) and pea-gravel.  

a) 

 

 
 

Transparent glass 
 

Blue glass 
 

Blue glass 

b) 

 

Fig. 6.46 Sorption isotherms for crushed glass and pea gravel 
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Fig. 6.46 a shows 2 equilibrium plots for blue glass and 1 for transparent glass. Fig. 

6.46 b represents 2 experiments for pea-gravel. The initial concentration of 

adsorbate (methylene blue) in each batch flask ranged from 0.05 to 0.6 mg/l with a 

fixed mass of adsorbent in all cases of 5 g. Each experimental point was obtained 

based on the colorimetric absorbance value (see section 5.4, Methodology) and 

then the Ci and adsorption capacity were calculated for each period of time.  

 

Table 6.31 shows, as an example, a summary of one of the data sets selected for 

discussion for both blue crushed glass and pea-gravel with an initial concentration 

of methylene blue of Cinitial = 0.24 mg/l. 

 

Table 6.31 Experimental and calculated sorption results 

 Sorbent M = 5.00 g; V = 50 ml; initialC =0.24 mg/l;  

Initial absorbance = 0.466 

Period of time 1 Hr 2 Hrs 3 Hrs 22 Hrs 24 Hrs 32 Hrs 
Absorbance  glass 0.409 0.368 0.364 0.372 0.357 0.384 

pea-
gravel 

0.225 0.137 0.106 0.025 0.03 0.033 

iC , mg/l 
glass 0.2074 0.1899 0.1879 0.1919 0.1844 n/a 
pea-

gravel 
0.1182 0.0740 0.0585 0.0178 0.0204 n/a 

Adsorption 
capacity, 
mg/mg 

glass 3x10
-7 

5x10
-7 

5.21x10
-7 

n/a n/a n/a 

pea-
gravel 

1.2x10
-6 

1.6x10
-6 

1.815x10
-6 

2.222x10
-6 

n/a n/a 

Effectiveness 
(mass 
absorbed),   
% 

glass 13.6 20.9 21.7 n/a n/a n/a 
pea-

gravel 
50.8 69.2 75.6 92.6 n/a n/a 

n/a – not applicable 

  

 The bold blue data indicate equilibrium concentration for crushed glass and the 

bold brown show that for pea-gravel. From the Table it can be seen that blue 

crushed glass achieved the equilibrium concentration in 3 hours, whereas pea-

gravel took 22 hours. Normally the equilibrium concentration for gravel was 

achieved within 22 – 24 hours, but in some cases it was prolonged up to 148 

hours (more cracks). The suggestion is that this supports the evidence for the 

transport being rate limiting. Other work (Davies and Wheatley, 2010) has shown 

that gravel has a number of small < 1 – 2 μm cracks and this could delay 

equilibrium. The surface of glass does not show this. When the initial 

concentration of the methylene blue was increased, the equilibrium concentration 

for glass was achieved faster (within 1 – 2 hours), suggesting mass transport 

limitations although the flasks were mixed. Looking at Fig. 6.46 b, one can see that 
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the pea-gravel adsorption capacity was higher than that of crushed glass (all 

types), but the behaviour of glass was less variable.  

Fig. 6.47 shows a second data set indicating the depletion of methylene blue 

(Cinitial = 0.6 mg/l) from solution by both different types of crushed glass and pea-

gravel.  

 

                             Fig. 6.47 Depletion of methylene blue 

 

It can also be concluded that the uptake of the methylene blue (amount and rate) 

was greater by pea-gravel, which lends support to the theory of a greater surface 

area.  

 

Table 6.32 summarises typical data as in Fig 6.46, but from duplicate experiments, 

where the mean and range values of both adsorption capacity and aqueous phase 

equilibrium concentration were taken. For pea-gravel the values of short-term 

adsorption were excluded (3 points). 

 

Table 6.32 Equations for obtaining adsorption capacity 

Type of adsorbent Equation R
2 

Blue glass 5 gr Y=1.7059x+0.226 0.845 

Transparent glass 5 gr Y=3.003x+0.9689 0.6463 

Pea-gravel 5 gr Y=14.27x+1.287 0.7746 

  

Despite the fact that methylene blue is a standard adsorbate for analysis and test 

work which has been investigated by a number of studies, many of these studies 

have been comparisons of adsorption capacity with activated carbon, hence, most 
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previous research has concentrated on investigating the properties of activated 

carbon (Shimada et al., 1999; Jaguaribe et al., 2005). Much greater levels of 

adsorption capacity are reported because the specific surface areas are greater 

(see Table 3.1).  

 

Table 6.33, which reports the surface area results for glass and gravel, shows that 

glass has a lower surface area in comparison with gravel. One can see that the 

values have wide fluctuations, which might be explained as resulting from the 

presence of different cracks and crevice structures in the surface of the material. 

No information was found about crushed glass being used as an adsorbent, 

although it has been used as a filter medium. 

 

Table 6.33 Surface area results 

Sample No. Area, m
2
/g 

Pea gravel semi-crushed (5-10 mm) 2.119 

Pea gravel semi-crushed (5-10 mm) 14.719 

Crushed  glass  (blue) 1.374 

Crushed  glass  (blue) 0.635 

Natural semi-crushed gravel (10-20mm) 2.977 

Natural semi-crushed gravel (10-20mm) 0.378 

Activated carbon  1000 

 

The results shown in Table 6.33 suggest that surface area is a parameter that will 

affect possible adsorption at natural pH‟s but it was also possible that the greater 

adsorption potential of gravel was attributable to the greater ionisation of the Ca 

compared to silica.  

 

Other materials have also been studied and a selected example to represent 

natural organic matter in the environment was published by Han et al. (2007). 

They studied the removal of methylene blue by leaf compost (Phoenix dactylifera) 

to find a more sustainable alternative to activated carbon with a lower running cost. 

The procedure of sorption tests used in their study was similar to ours, but the 

initial concentration of the methylene blue (MB) was 70 mg/l compared to our 0.6 

mg/l. These higher concentrations are unrealistic as representative of highway 

drainage. 
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Bestani et al. (2008) also studied the sorption characteristics of the leaves of a 

desert plant called Salsola Vermuculata using methylene blue and they found an 

impact of pH. It was observed that there was a decrease in the methylene blue 

uptake at lower pH values, probably due to competition from the protons with the 

dye molecules for the available adsorption sites. With increasing pH, the 

adsorbent becomes negatively charged which results in an enhanced attraction 

between the positively-charged dye molecules and the adsorbents‟ surface. This 

possibility was investigated for glass and gravel in our work. 

 

In order to determine whether the adsorption of the methylene blue resulted from 

either physical or chemical interaction with the surface (Fig.6.48), a second 

experiment was run under acid conditions. 10% of HNO3 was added to samples 

and shaken for 1 hour.  

                                a)   1gr of blue glass 

 

                             b)   5gr of transparent glass 

 

                                 Fig. 6.48 Adsorption of methylene blue by two types of glass 
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The adsorption to the transparent glass is enhanced by the acidic conditions and 

shows a surprising difference between the surface chemistry of blue and 

transparent glass.    

 

Under acid conditions the MB is totally ionised and adsorption would mainly be 

through chemical or electrostatic adsorption.  

 The same experiment was attempted with pea-gravel but after HNO3 was added, 

the gravel was dissolved, which could have been anticipated from these low pH 

values and can be described by the formation of soluble calcium nitrate: 

CaCO3 + 2 HNO3 = H2O + CO2 + Ca(NO3)2 

 

Fig. 6.49 shows the adsorption of Cu from blue crushed glass and pea-gravel, the 

alternative ionised tracer to model adsorption and at the two different pH values of 

6.5 and 9.5 to change the ionisation potential of copper. 

 

 

               Fig. 6.49 Depletion of copper 

                Conditions: adsorbate – copper; adsorbent – recycled blue crushed glass and pea-gravel; V  = 100 ml. 

 

Table 6.34 summarises the statistics for the data shown in the graphs above (Fig. 

6.49) after 24 hours.  
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Table 6.34 Depletion of copper after 24 hours by blue glass and pea-gravel 

Cuinitial/Cu24hours, mg/l 

Blue glass Pea-gravel 

pH = 6.5 pH = 9.5 pH = 6.5 pH = 9.5 

0.074/0.063 0.075/0.024 0.075/0.008 0.073/0.016 

 

 The pH is therefore a crucial parameter affecting the uptake. The best 

performance was shown by pea-gravel at acidic pH = 6.5. Within the first 15 

minutes the Cu concentration decreased sharply from 0.075 to 0.031 mg/l and 

continued decreasing slowly for another 15 minutes from 0.031 to 0.027 mg/l, 

which was its equilibrium concentration. The uptake of copper was linear at 

pH=9.5, and similar to the glass (Fig. 6.49) but the absorbance was half that at pH 

=6.5. One can see that the decrease was linear with time, without any fluctuations 

(Fig. 6.49). Keskinkan et al. (2004), studied  metal removal, including that of Cu, 

by biosorption using an aquatic submerged plant called Ceratophyllum demersum 

(coontail or hornwort), which is typical of treatment lagoon/ponds, and they 

showed that a contact time of 20 minutes was sufficient to achieve equilibrium 

concentration. Maximum adsorption capacity for the plant was 6.17 mg/gr for Cu(II) 

with an initial concentration of copper of 10 mg/l, which was more than 100 times 

higher than the concentration used in this study to represent highway runoff. This 

higher concentration may have avoided some of the solubilisation effects. The 

adsorption capacity obtained both for crushed glass and pea-gravel is summarized 

in Table 6.35. 

 

Table 6.35 Adsorption capacity of crushed glass and pea-gravel 

Adsorption capacity, µg of copper/g adsorbent 

Glass Pea-gravel 

pH = 6.5 pH = 9.5 pH = 6.5 pH = 9.5 Keskinkan et 
al. (2004) 
(pH= 5.9) 

0.102 (15 min) 1.02 (24 hours) 0.96 (15 minutes) 1.34 (24 hours) 6, 170 

 

Keskinkan et al. (2004), working on leaf compost, noted that pH values just below 

6 were suitable for metal adsorption, promoting ionization of the metal. Their 

results, however, did not include comparative experiments for different pH values.   
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This suggests that the acid environment does assist the speed of metal binding 

possibly by increasing the ionisation of the metal, as suggested by Keskinkan et al. 

(2004), and promoting ionic binding but also possibly by ion exchange. With an 

increase in pH from 6.5 to 9.5 Cu a standard linear uptake was observed with a 

better ultimate decrease of the Cu concentration from 0.075 mg/l to 0.035 mg/l in 

(180 min). In the cases of both glass and pea-gravel at pH=9.5 the equilibrium 

concentration was not achieved within 24 hours. It was concluded that adsorption 

was physical and therefore much slower. Another feature of this data is that the 

EQS for Cudis (0.01 mg/l) was achieved only for the pea-gravel with a pH value of 

6.5 after 24 hours (0.008 mg/l) (from an initial concentration of 0.075 mg/l or 0.1 

mg/l).  

 

The Cu removal using crushed glass showed the same linear pattern as pea-

gravel, although not at pH = 6.5. The equilibrium concentration for pH=6.5 was 

achieved within 15 minutes and was 0.069 mg/l, showing only 7% of the copper 

removal, which suggested that ion exchange and co-adsorption was more 

important than simple ionization of the metal as suggested by Keskinkan et al. 

(2004).  Glass was non-ionizing and not as effective for dissolved Cu removal in 

the natural environment.  
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CHAPTER 7  
 

CONCLUSIONS AND RECOMMENDATIONS 
 

Analytical methods 
 
The methods used for metal recovery were shown to play a significant role in a 

good correlation between metals, their standards and other water quality 

parameters. Comparing the two digestion methods, it was evident that microwave 

digestion gave better recovery of total metals than hot plate digestion, which 

affected the results of the metal partition. The microwave aqua regia digestion 

increased elemental recovery for iron, copper and zinc. It was concluded that 

microwave digestion prevented some metal volatilisation. This explained why 

copper and zinc in our study were found mostly in the attached form compared to 

previous studies, where they were mostly dissolved.  

 
M1 
 
Pollutant concentrations (metals, solids and other common parameters [see 

section 6.2]) in the runoff from a major highway were shown to depend on many 

factors but season was the main one. Evaporation during a prolonged dry period 

increased total Fe by 150 % and total Zn by 60 %. De-icer salts in the lagoon 

washed off from the road junction increased dissolved zinc by 400 % and these 

were the strongest influences on pollutant concentrations entering the catchment.  

Storm characteristics (rainfall intensity and duration) were also important but 

secondary to ADWP and cold weather.  The prolonged dry period may increase 

concentrations of pollutants in the lagoon both due to evaporation but also ion 

exchange from the sediments. There was evidence that Fedis, for example, 

increased due to dry weather because of both evaporation and re-solubilisation 

from the sediment. Further work is needed on well controlled redox experiments 

with sediments to confirm this. Prolonged rains, on the other hand, cause a diluting 

effect of the pollutants from the M1.  

 

It was concluded that evaporation and consequently pollutant concentrations 

depend on ADWP and temperature. The influence of de-icer salts and their 

concentration depended on the duration of sub-zero temperatures. 
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ADWP and rainfall intensity were confirmed as important influences on producing 

a first flush which increased pollution concentration in the runoff. However, local 

conditions of the catchment can confound these simple results.  

 

Metal concentrations in the runoff from the M1 varied widely according to these 

weather conditions. The variability in weather conditions and long-term trends 

affect the statistical reliability of the results and continued work will always be 

needed to further adjust the means and range of values published in this thesis. 

 

Similar variance was, however, found in the natural rural brooks in the catchment. 

There was much less variability in the metals from the treated sewage effluents 

entering the catchment. This was attributed to the flow buffering and complexity of 

sewage treatment.  

 

Further work is recommended to study long dry periods, providing information on 

the potential bioavailability and mobility of metals between the water, biomass and 

bottom sediment (adsorption and desorption) under the influence of storm 

characteristics, temperature and de-icer shocks.  

 

Fe was always at the highest concentrations for all weather conditions, total and 

dissolved, and in all sampling locations (Fetot was 1.119 mg/l and Fedis was 0.103 

mg/l for dry weather in the lagoon sampling point; and for wet weather Fetot was 

2.104 and Fedis was 0.127 mg/l).  

 

Cu concentrations varied even more widely and were in the lowest concentrations 

of the metals and showed the greatest solubility on average. The maximum value 

of Cudis found in the inlet during wet weather was 0.042 mg/l with an average 

hardness of 175 mg/l, which exceeded the EQS for Cudis, (0.01 mg/l) but this was 

still lower than the results from previous work. It was concluded that this was 

because copper is generated while the vehicles are braking but the M1 has 

continuously moving traffic.  The second reason for this is that the samples were 

not filtered and preserved immediately on the site, which might have resulted in 

insoluble complex formation.  



 186 

It was found that while analysing metals in runoff, the results obtained from grab 

samples are likely to be both more reliable and reproducible, since it is assumed 

that metals will be analysed as soon as possible, although it is more laborious. It is 

recommended that sample aging/deterioration be investigated, including the 

preservation of samples taken automatically.  

  

Zntot concentrations in the M1 run off exceeded the EQS (0.075 mg/l) during wet 

weather (0.141 mg/l on average).  During dry weather they were 3 times lower, but 

still higher compared to the rural brooks. Throughout the period of this study we 

did not observe any exceedence of concentrations on average for any metal in the 

lagoon. However, in some cases (prolonged dry weather period) increased Zntot 

concentrations (0.215 mg/l) were found because of evaporation. It is suggested 

that further work is needed to understand the reasons for differentiating Zn from 

the other metals by defining the EQS of Zn in total. 

 

The behaviour of metals in terms of their solubility was shown to be metal -

dependant. Thus, Zn solubility was found to be increased by the presence of de-

icer salts which releases them from the sediment by an ion-exchange mechanism 

suggested by the literature. A similar process was induced artificially in laboratory 

column experiments in support of the field study.  

The results suggest that the solubility of Fe is increased anaerobically by reduction 

with organic matter to release more soluble ferrous salts.  

 

The data show the existence of a correlation between the metals in their total form 

and TSS in the following sequence (Fe = 0.853; Zn = 0.794; Cu = 0.538). The 

correlation deteriorated if all the data were added together from different parts of 

the catchment area (M1 and Woodbrook) (Fe = 0.829; Zn = 0.152; Cu = 0.095). 

Apart from iron, the links between total metals and particles in the natural streams 

and sewage effluents were not apparent, suggesting the importance of the source 

of the metals and the nature of the TSS.  

 

The combination of what has been adopted as standard treatment for sensitive 

areas and highly trafficked roads, that is interceptor and SUDS (lagoon in this 
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case), always achieved the EU EQS for metals. It is recommended that the design 

criteria used for determining the size of treatment capacity be reviewed and 

compared with other available SUDS design guides.  

 

Total metals were removed with TSS in the interceptor in most cases, whereas 

dissolved metals were not. The data of PSD shows that the interceptor did not 

always cope with smaller particle separation (< 25 μm) at the higher flows.  

 

 Further work is also suggested by the results on the need to make improvements 

to interceptors including a greater understanding of their maintenance. This may 

be necessary to meet future water quality requirements. Example design changes 

could be a cascade of chambers or additional filters, despite poor reproducibility in 

our filter experiments. Maintenance possibilities including regular de-sludging or 

inspection should be included in the design guide.  

 

Sewage works 
 

Each of the 3 different sewage works sampled contributed different concentrations 

of metals to the receiving water according to the dilution available but iron was 

always in the highest concentrations. 

 

No correlations were found between metals in their soluble form and TOC or total 

metals and TSS. The range of TOC was between 4.6 to 8.29 mg/l and TSS from 

10 to 20 mg/l. 

 

Surprisingly few recent papers were found that analysed the metals in sewage 

work discharges and it is suggested that further research using EA public register 

might give greater statistical confidence.   

 

The results from Osgathorpe sewage work discharge showed that Zn in its total 

and dissolved forms and dissolved Fe behaved conservatively (when a mass 

balance with flow was applied): Fedis varied with an error of 14.3%; and Zn with 

errors of 9.5% and 5.06%, total and dissolved respectively, between measured 

and predicted concentrations in the brook. The worst and the most erratic 
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behaviour demonstrated was that of Cu in all forms. The differences between 

measured and predicted values were: Cutot – 87.5% and for Cudis – 140%. The 

discrepancy between measured and predicted concentrations can be explained by 

the more complex speciation behaviour – it is not conserved.  

 

During dry weather metal concentrations in the receiving water were increased by 

sewage work effluents, but not during wet weather when the concentrations were 

diluted. More work is needed to exclude the bias of flow rate, upstream water 

quality and stream morphology to draw conclusions about the environmental 

effects. The concentrations of metals in the effluents were always below the EQS. 

 

Woodbrook  
 

As with the other sampling sites Fe was always at the highest concentrations for 

all weather conditions and species, probably as it is the most ubiquitous element in 

the soil. There is also still the possibility of a contribution from the iron land drains. 

The recorded concentration of Fe during dry weather in its total and dissolved form 

(Fetot/Fedis) was 0.192/0.046 mg/l and for wet weather  it was 2.65/0.167mg/l. Fe 

solubility was small (6.3% during wet weather and 23.9% during dry weather), 

indicating that most of the Fe is affiliated with particulate matter. 

 

The results of Fetot in the M1 lagoon during dry weather were greater (10 times 

higher – 1.119 mg/l). It was concluded that this was due to the continuous flow in 

the brook, whereas the lagoon was stagnant. This increased TSS both as a result 

of algal growth and evaporation. The equivalent wet weather concentration from 

the M1 was 2.104 mg/l for Fetot and 0.127 mg/l for Fedis. The average Fe 

concentrations in the sewage work effluent, which were not differentiated by dry 

and wet weather, were 0.089 mg/l for Fetot and 0.05 mg/l for Fedis. 

 

Zn was mostly found in its dissolved form, like the sewage effluent but unlike the 

M1 where more Zn was attached to solids, as noted previously. The 

concentrations of Zn during dry weather in its total and dissolved form (Zntot/Zndis) 

were 0.035/0.005 mg/l and for wet weather it was 0.079/0.025 mg/l. During wet 

weather Zntot exceeded the EQS. The similar concentrations for the M1 for wet 
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weather were 0.141 mg/l for Zntot and 0.037 mg/l for Zndis and for the sewage 

works the average concentrations were 0.057 mg/l for Zntot and 0.048 mg/l for Zndis. 

 

Copper showed the strongest association, with fractions less than 0.45 um, 

compared to Fe and Zn. This was similar to the results from the M1 and in sewage 

effluent. The dissolved fraction of Fe and Zn increased in the brooks after the 

application of de-icer salts to the roads, but the solubility of Cu remained the same. 

Wet weather generated increased concentrations of all the indicator metals: Zntot = 

0.202 mg/l (15/04/2009). EQS for Zntot = 0.075 mg/l for hardness from 200 to 250 

mg/l. Cudis = 0.022 mg/l (15/01/2008), EQS for Cudis = 0.01 mg/l for hardness from 

200 to 250 mg/l.  

 

Further work on other indicators such as biodiversity and sediment metal 

concentration could be used to determine if there was an actual environmental 

impact during wet or cold weather.  

 

Metal removal by filtration and adsorption  

 

Research to improve and intensify stormwater treatment made use of filtration and 

adsorption. Adsorption studies with recycled glass and standard pea-gravel 

indicated that gravel could remove soluble copper (the most soluble metal), 

particularly in acid conditions. It was concluded that this was due to an ion-

exchange mechanism rather than enhanced ionisation of the copper. Other 

materials such as recycled demolition waste might be better and should be 

investigated. 

 

Column filtration studies to improve on the small particle capture shown by the 

interceptor used gravel and recycled glass. Filtration was able to remove particles 

down to 5 μm but at a typical flow rate (5 m/hr) and solid loading it was concluded 

that the filters would, as with other water filters, need washing after every major 

storm. It is recommended the research be extended to include larger filter media 

than normal for natural waters to allow for the greater accumulation and turnover 

of solids.   
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Monthly amount of precipitation for 2007, 2008 and 2009 
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Monthly amount of precipitation for 2007 (Leicester Weather Station) (http:// www.stormtrack.co.uk/) 
Day January  February March April May June July August September October November December 

1 No data      7.4  0.2   0.4 

2       2.6  0.8   4.6 

3      11.8 7.0     1.6 

4   9.8    4.2   0.2   

5  0.4 0.8    5.0    0.2  

6       5.2      

7   0.2  1.4        

8  0.4     4.4    2.0  

9  4.4     0.4   9.6   

10  5.2        0.4 0.2 0.4 

11     7.2     0.2   

12  1.4   6.8  0.6      

13  0.8   11.4 1.0 3.0    1.8 0.2 

14  0.2   2.2 23.0 1.0 6.6   0.2  

15     3.2 3.8 1.4 3.2     

16  5.8   3.6  4.4 0.2 0.4 0.4   

17     2.2 3.6 8.2  3.8  0.2 0.2 

18       0.4 4.8   14.2  

19  0.6   0.2 5.4  11.8 0.6  7.0  

20  0.2    0.2 17.2 0.4 1.2  2.6  

21  1.0    5.6 10.2  2.0  0.2  

22  3.2    15.0     0.8 1.0 

23  5.0 0.6 0.2   1.0  0.2   0.2 

24  3.6    0.6 0.2  7.4 0.2 0.4 2.0 

25  0.8   0.4 0.6 1.2  4.6   4.0 

26  0.2    7.0 23.4    0.2 0.2 

27    0.8 11.6 3.6 0.2  0.2 0.4   

28     10.2  2.0  1.2 1.0 0.2 1.6 

29       1.4  0.6 0.2 0.2 1.8 

30     2.0      2.8  

31             

Total:  33.2 11.4 1.0 62.4 81.2 112.0 27.0 23.2 12.6 33.2 18.2 
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Monthly amount of precipitation for 2008 (Leicester Weather Station) (http:// www.stormtrack.co.uk/) 
Day January  February March April May June July August September October November December 

1  0.4 1.0 1.2 0.4 0.4  5.8 10.4 2.8 16.0  

2 0.2  0.2 0.2 0.6 1.0 0.2 10.8 7.0 0.4 4.2 1.0 

3  0.2 0.2   20.4 2.4  4.0 0.2 0.2 0.4 

4 2.2 7.2   0.6 0.2   2.0 4.0 1.0 5.6 

5  10.6  4.8 1.6  5.2 1.8 22.2 27.0 1.8 0.4 

6 1.8 1.6    0.6 4.8  13.4  0.6  

7 2.0  0.4   0.4 4.6 0.4 3.4 1.4 0.8 0.2 

8 2.6  1.4     1.4 0.2  15.6 6.4 

9 0.2  0.6 0.2    5.6 7.2  13.4 0.2 

10 0.6 0.2 7.8 0.2   10.4 0.8 0.2  3.6  

11 14.0  6.4 2.8   0.2 0.4 0.2  2.0  

12 1.0  0.2 2.4  1.8  13.2 2.4   0.6 

13 0.2 0.2 0.2     1.2 0.2  1.6 12.0 

14 1.2 0.2 0.2 2.4    0.4 0.2 0.2  1.0 

15 16.2  8.0 3.0      1.6 0.8  

16   8.2 0.8 1.4 0.8 2.2   1.0  1.4 

17 8.4      0.2 13.8 0.2  0.8  

18 5.6 0.2    1.2 2.2 1.6   0.6 2.2 

19 3.4     1.2  1.8   0.2  

20 4.4  0.2 2.0    2.6  3.6  3.4 

21 4.4  1.6   3.0  3.2    0.2 

22 0.2  1.4   2.6  0.8 1.6    

23   1.0 0.4 0.2    0.4 1.2 1.6  

24 0.4 0.4  2.8    4.2 0.2 1.0 0.6  

25  0.2 0.4  2.4     0.2   

26  2.6 4.8  2.4 1.6    6.8   

27   0.2 11.2 7.0 0.2    0.2 2.4  

28   3.2 1.2 15.2 0.6 3.4   2.8   

29 1.6 2.6 1.4 7.6 7.6 3.6    0.2 0.2  

30 0.2   4.4 0.8  1.0  1.8 3.6   

31 2.4  0.2     2.8  0.2   

Total: 73.2 26.6 49.2 47.6 40.2 39.6 36.8 72.6 77.2 58.4 68.0 35.0 
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Monthly amount of precipitation for 2009 (Leicester Weather Station) (http:// www.stormtrack.co.uk/) 
Day January  February March April May June July August September October November December 

1       0.2 9.0 4.2  14.6 2.2 

2 0.2 1.6       14.6  0.2 1.6 

3  4.0 7.0  0.2  12.0  3.2  7.2 1.6 

4  2.0   0.8   4.4  0.2 2.0 2.0 

5 1.8 2.4   0.6 3.8 0.2 10.6   0.2 6.0 

6  2.4    10.6 14.4 12.0 0.2 2.6 1.0 6.8 

7 1.2 1.6 0.2  0.2 13.6 6.2 8.2  11.0  1.8 

8 0.4 0.4 2.6 1.4 1.2  1.2  0.2  0.4 1.4 

9  7.0  1.0      1.4 0.2 2.2 

10  3.4  2.0  0.2  1.0   0.6 0.2 

11 0.2 0.8  0.2  0.4 3.8    1.0 0.2 

12 8.8 2.2  0.2   2.8 3.2   7.2 0.2 

13 0.2 1.4   0.2      4.0 1.4 

14 0.2   0.2 0.2  3.0    2.6 3.0 

15 0.2   3.8 13.8 23.4 1.2   1.8 0.4 0.2 

16 0.4   0.8 1.6  6.0   0.4 3.2 3.2 

17 10.6   0.4 2.0 1.2 23.4    0.2 0.2 

18 1.4 2.4   0.2     0.2 1.2  

19 4.8 0.2 0.2  1.8  6.8     0.2 

20  0.2   2.2 0.8    2.0 1.2  

21 1.0    0.6  7.6 3.4  1.0 4.4 0.2 

22 4.0          0.6  

23 4.4  1.2    1.6    2.8 3.0 

24 0.4  0.4    8.0   1.2 1.8 0.4 

25 0.8  1.6  0.2  0.2 0.6   4.2 0.8 

26     1.0 0.6 4.0 3.0   0.2 0.2 

27 0.6  0.2 9.8 0.6 0.6 2.4 0.6  0.8  0.4 

28 6.2  0.6 3.8    2.6   4.6  

29 0.2      22.2    2.8 4.6 

30    3.6   4.8 1.2  0.2 1.6 5.6 

31       0.4   1.4   

Total: 48.0 32.0 14.0 27.2 27.4 55.2 132.4 59.8 22.4 24.2 70.4 49.6 
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Appendix 2 

 

Environmental Quality Standards for some metals, EC Dangerous Substances Directive 

(76/464/EEC) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 205 

 
http://ec.europa.eu/environment/water/waterdangersub/pdf/article7ofdirective77464eec.pdf (14/12/2010) 
 

Metal EQS type All freshwater, µg/l (depending on hardness, mg/l CaCO3) Coastal and 
estuarine, 
µg/l  

0 – 50 50 – 

100 

100 – 

150 

150 – 200 200 – 250 >250 

Freshwaters, suitable for all fishlife 

Copper 
(dissolved) 

Annual 
average 

1 6 10 10 10 28 5 

Copper 
(dissolved) 

95
th

 
percentile 

5 22 40 40 40 112  

Freshwaters, suitable for Salmonid (game) fish 

Zinc 
(total) 

Annual 
average 

8 50 75 75 75 125 40 

Zinc 
(total) 

95
th

 
percentile 

30 200 300 300 300 500  

Freshwaters, suitable for Cyprind (coarse) fish 

Zinc 
(total) 

Annual 
average 

75 175 250 250 250 500  

Zinc 
(total) 

95
th

 
percentile 

300 700 1000 1000 1000 2000  

Iron 
(dissolved) 

Annual 
average 

1000 (not related to hardness) 1000 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

http://ec.europa.eu/environment/water/waterdangersub/pdf/article7ofdirective77464eec.pdf
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Appendix 3 

Erratic data from the flow meter 

Flow meter recordings for 13/11/09, 21/11/09 and 07/12/09 
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Erratic data from the flow meter 
 
Starflow ultrasonic doppler 
flow recorder models A 

 
 

  

S/N: 4375      

Time  Depth 
(AVG) 

 Velocity 
(AVG) 

 Temperature 
(AVG) 

 Battery 
(RAW) 

   Flow   
   Rate(AVG) 

   mm  mm/s  Deg C  V     l/s 

27-08-09 12:15:00 68 0 19.05 12.58 0 

27-08-09 12:30:00 68 0 19.07 12.58 0 

27-08-09 12:45:00 67 0 19.1 12.58 0 

27-08-09 13:00:00 67 0 19.1 12.58 0 

27-08-09 13:15:00 67 0 19.14 12.58 0 

27-08-09 13:30:00 67 0 19.16 12.58 0 

27-08-09 13:45:00 67 0 19.18 12.58 0 

27-08-09 14:00:00 67 0 19.27 12.58 0 

27-08-09 14:15:00 66 0 19.35 12.58 0 

27-08-09 14:30:00 66 0 19.41 12.58 0 

27-08-09 14:45:00 66 0 19.42 12.58 0 

27-08-09 15:00:00 66 0 19.41 12.58 0 

27-08-09 15:15:00 66 0 19.37 12.58 0 

27-08-09 15:30:00 66 0 19.32 12.58 0 

27-08-09 15:45:00 66 0 19.25 12.58 0 

27-08-09 16:00:00 65 0 19.18 12.58 0 

27-08-09 16:15:00 65 0 19.13 12.58 0 

27-08-09 16:30:00 65 0 19.02 12.58 0 

27-08-09 16:45:00 65 0 18.91 12.58 0 

27-08-09 17:00:00 65 0 18.78 12.58 0 

27-08-09 17:15:00 65 0 18.68 12.58 0 

27-08-09 17:30:00 65 0 18.59 12.58 0 

27-08-09 17:45:00 65 0 18.48 12.58 0 

27-08-09 18:00:00 65 0 18.39 12.58 0 

27-08-09 18:15:00 65 0 18.29 12.58 0 

27-08-09 18:30:00 66 0 18.21 12.58 0 

27-08-09 18:45:00 64 0 18.11 12.55 0 

27-08-09 19:00:00 64 0 17.97 12.58 0 

27-08-09 19:15:00 63 0 17.87 12.55 0 

27-08-09 19:30:00 62 0 17.79 12.55 0 

27-08-09 19:45:00 61 0 17.7 12.55 0 

27-08-09 20:00:00 62 0 17.58 12.55 0 

27-08-09 20:15:00 61 0 17.45 12.55 0 

27-08-09 20:30:00 61 0 17.36 12.55 0 

27-08-09 20:45:00 60 0 17.25 12.55 0 

27-08-09 21:00:00 60 0 17.16 12.55 0 

27-08-09 21:15:00 60 0 17.11 12.55 0 

27-08-09 21:30:00 60 0 17.04 12.55 0 

27-08-09 21:45:00 60 0 16.96 12.55 0 

27-08-09 22:00:00 60 0 16.89 12.55 0 

27-08-09 22:15:00 59 0 16.82 12.55 0 

27-08-09 22:30:00 59 0 16.76 12.55 0 

27-08-09 22:45:00 60 0 16.7 12.55 0 

27-08-09 23:00:00 60 0 16.65 12.55 0 

27-08-09 23:15:00 59 0 16.61 12.55 0 

27-08-09 23:30:00 59 0 16.59 12.55 0 

27-08-09 23:45:00 59 0 16.58 12.55 0 
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28-08-09 00:00:00 59 0 16.52 12.55 0 

28-08-09 00:15:00 59 0 16.44 12.55 0 

28-08-09 00:30:00 59 0 16.36 12.55 0 

28-08-09 00:45:00 59 0 16.28 12.55 0 

28-08-09 01:00:00 59 0 16.2 12.55 0 

28-08-09 01:15:00 59 0 16.1 12.55 0 

28-08-09 01:30:00 59 0 15.93 12.55 0 

28-08-09 01:45:00 59 0 15.77 12.55 0 

28-08-09 02:00:00 59 0 15.65 12.55 0 

28-08-09 02:15:00 59 0 15.54 12.55 0 

28-08-09 02:30:00 59 0 15.42 12.55 0 

28-08-09 02:45:00 59 0 15.31 12.55 0 

28-08-09 03:00:00 59 0 15.21 12.52 0 

28-08-09 03:15:00 59 0 15.12 12.52 0 

28-08-09 03:30:00 60 0 15.04 12.52 0 

28-08-09 03:45:00 59 0 14.97 12.52 0 

28-08-09 04:00:00 59 0 14.91 12.52 0 

28-08-09 04:15:00 59 0 14.84 12.52 0 

28-08-09 04:30:00 59 0 14.78 12.52 0 

28-08-09 04:45:00 59 0 14.73 12.52 0 

28-08-09 05:00:00 59 0 14.66 12.52 0 

28-08-09 05:15:00 59 0 14.61 12.52 0 

28-08-09 05:30:00 59 0 14.55 12.52 0 

28-08-09 05:45:00 59 0 14.51 12.52 0 

28-08-09 06:00:00 60 0 14.45 12.52 0 

28-08-09 06:15:00 60 0 14.41 12.52 0 

28-08-09 06:30:00 60 0 14.39 12.52 0 

28-08-09 06:45:00 60 0 14.34 12.52 0 

28-08-09 07:00:00 60 0 14.29 12.52 0 

28-08-09 07:15:00 60 0 14.28 12.52 0 

28-08-09 07:30:00 60 0 14.28 12.52 0 

28-08-09 07:45:00 60 0 14.28 12.52 0 

28-08-09 08:00:00 60 0 14.28 12.52 0 

28-08-09 08:15:00 60 0 14.35 12.52 0 

28-08-09 08:30:00 60 0 14.55 12.52 0 

28-08-09 08:45:00 60 0 14.9 12.52 0 

28-08-09 09:00:00 59 0 15.36 12.52 0 

28-08-09 09:15:00 59 0 15.92 12.52 0 

28-08-09 09:30:00 60 0 16.48 12.52 0 

28-08-09 09:45:00 60 0 17.02 12.52 0 

28-08-09 10:00:00 59 0 17.41 12.52 0 

28-08-09 10:15:00 59 0 17.32 12.52 0 

28-08-09 10:30:00 59 0 17.06 12.52 0 

28-08-09 10:45:00 59 0 16.93 12.52 0 

28-08-09 11:00:00 59 0 16.87 12.52 0 

28-08-09 11:15:00 59 0 16.8 12.52 0 

28-08-09 11:30:00 60 0 17.07 12.52 0 

28-08-09 11:45:00 60 0 17.9 12.52 0 

28-08-09 12:00:00 59 0 18.79 12.52 0 

28-08-09 12:15:00 59 0 19.08 12.55 0 

28-08-09 12:30:00 59 647 18.99 12.52 12.383 

28-08-09 12:45:00 60 971 18.64 12.52 18.811 

28-08-09 13:00:00 60 971 18.28 12.52 19.095 

28-08-09 13:15:00 60 971 18.02 12.52 19.063 
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28-08-09 13:30:00 60 971 17.8 12.52 18.998 

28-08-09 13:45:00 60 971 17.61 12.52 18.966 

28-08-09 14:00:00 60 971 17.69 12.52 18.901 

28-08-09 14:15:00 60 971 17.8 12.52 18.843 

28-08-09 14:30:00 60 971 17.63 12.52 18.998 

28-08-09 14:45:00 60 971 17.43 12.52 19.063 

28-08-09 15:00:00 61 971 17.31 12.52 19.193 

28-08-09 15:15:00 60 971 17.28 12.52 18.908 

28-08-09 15:30:00 60 971 17.2 12.52 18.849 

28-08-09 15:45:00 60 971 17.17 12.52 18.94 

28-08-09 16:00:00 60 971 17.11 12.52 18.759 

28-08-09 16:15:00 60 971 16.94 12.52 19.005 

28-08-09 16:30:00 61 971 16.77 12.52 19.128 

28-08-09 16:45:00 61 971 16.64 12.52 19.128 

28-08-09 17:00:00 60 971 16.54 12.52 18.901 

28-08-09 17:15:00 60 971 16.45 12.52 19.031 

28-08-09 17:30:00 60 971 16.4 12.52 18.934 

28-08-09 17:45:00 60 971 16.33 12.52 18.972 

28-08-09 18:00:00 60 971 16.26 12.52 18.843 

28-08-09 18:15:00 60 971 16.18 12.52 18.947 

28-08-09 18:30:00 60 971 16.07 12.52 18.765 

28-08-09 18:45:00 61 971 15.97 12.52 19.16 

28-08-09 19:00:00 61 971 15.94 12.52 19.16 

28-08-09 19:15:00 61 971 15.99 12.52 19.128 

28-08-09 19:30:00 61 971 15.94 12.52 19.29 

28-08-09 19:45:00 60 971 15.88 12.52 19.096 

28-08-09 20:00:00 61 971 15.79 12.52 19.128 

28-08-09 20:15:00 60 971 15.73 12.52 18.998 

28-08-09 20:30:00 61 971 15.66 12.52 19.322 

28-08-09 20:45:00 61 971 15.61 12.52 19.128 

28-08-09 21:00:00 61 971 15.56 12.52 19.193 

28-08-09 21:15:00 61 971 15.5 12.52 19.16 

28-08-09 21:30:00 60 971 15.43 12.52 19.031 

28-08-09 21:45:00 61 971 15.36 12.52 19.225 

28-08-09 22:00:00 61 971 15.29 12.52 19.193 

28-08-09 22:15:00 61 971 15.24 12.52 19.141 

28-08-09 22:30:00 61 971 15.15 12.52 19.251 

28-08-09 22:45:00 60 971 15.09 12.52 19.115 

28-08-09 23:00:00 60 971 15.01 12.52 18.985 

28-08-09 23:15:00 61 971 14.97 12.52 19.27 

28-08-09 23:30:00 60 971 14.89 12.52 19.018 

28-08-09 23:45:00 60 971 14.83 12.52 19.057 

29-08-09 00:00:00 60 971 14.77 12.52 18.998 

29-08-09 00:15:00 60 971 14.71 12.52 19.108 

29-08-09 00:30:00 60 971 14.67 12.52 18.882 

29-08-09 00:45:00 60 971 14.61 12.52 19.031 

29-08-09 01:00:00 59 971 14.55 12.52 18.661 

29-08-09 01:15:00 59 971 14.48 12.52 18.506 

29-08-09 01:30:00 59 971 14.42 12.52 18.629 

29-08-09 01:45:00 59 971 14.35 12.52 18.629 

29-08-09 02:00:00 59 971 14.3 12.52 18.655 

29-08-09 02:15:00 59 971 14.27 12.52 18.59 

29-08-09 02:30:00 59 971 14.21 12.5 18.577 

29-08-09 02:45:00 59 971 14.15 12.5 18.655 
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29-08-09 03:00:00 59 971 14.08 12.52 18.59 

29-08-09 03:15:00 59 971 13.99 12.5 18.552 

29-08-09 03:30:00 59 971 13.92 12.5 18.519 

29-08-09 03:45:00 58 971 13.88 12.5 18.202 

29-08-09 04:00:00 59 971 13.81 12.5 18.273 

29-08-09 04:15:00 59 971 13.76 12.5 18.241 

29-08-09 04:30:00 59 971 13.71 12.5 18.435 

29-08-09 04:45:00 59 971 13.67 12.5 18.526 

29-08-09 05:00:00 59 971 13.62 12.5 18.493 

29-08-09 05:15:00 59 971 13.6 12.5 18.37 

29-08-09 05:30:00 59 971 13.55 12.5 18.312 

29-08-09 05:45:00 59 971 13.55 12.5 18.26 

29-08-09 06:00:00 59 971 13.55 12.5 18.422 

29-08-09 06:15:00 59 971 13.55 12.5 18.338 

29-08-09 06:30:00 58 971 13.55 12.5 18.189 

29-08-09 06:45:00 58 971 13.51 12.5 18.137 

29-08-09 07:00:00 59 971 13.47 12.5 18.247 

29-08-09 07:15:00 58 971 13.42 12.5 18.176 

29-08-09 07:30:00 62 971 13.42 12.5 20.073 

29-08-09 07:45:00 63 971 13.42 12.5 20.164 

29-08-09 08:00:00 62 971 13.43 12.5 20.034 

29-08-09 08:15:00 62 971 13.49 12.5 19.937 

29-08-09 08:30:00 62 971 13.71 12.5 19.872 

29-08-09 08:45:00 62 971 14.12 12.5 19.808 

29-08-09 09:00:00 62 971 14.65 12.5 19.711 

29-08-09 09:15:00 62 971 15.29 12.5 19.743 

29-08-09 09:30:00 62 971 16.02 12.5 19.743 

29-08-09 09:45:00 62 971 16.76 12.5 19.808 

29-08-09 10:00:00 62 971 17.46 12.5 19.613 

29-08-09 10:15:00 61 971 18.12 12.5 19.516 

29-08-09 10:30:00 61 971 18.8 12.52 19.451 

29-08-09 10:45:00 61 971 19.41 12.52 19.419 

29-08-09 11:00:00 61 971 19.92 12.52 19.419 

29-08-09 11:15:00 61 971 20.46 12.52 19.231 

29-08-09 11:30:00 61 971 20.54 12.52 19.128 

29-08-09 11:45:00 61 971 20.04 12.52 19.322 

29-08-09 12:00:00 60 971 19.52 12.52 19.031 

29-08-09 12:15:00 61 971 19.31 12.52 19.128 

29-08-09 12:30:00 61 971 18.93 12.52 19.167 

29-08-09 12:45:00 61 971 18.52 12.52 19.128 

29-08-09 13:00:00 60 971 18.16 12.52 19.031 

29-08-09 13:15:00 60 971 18 12.52 18.869 

29-08-09 13:30:00 60 971 17.97 12.52 18.869 

29-08-09 13:45:00 60 1220 17.97 12.52 23.724 

29-08-09 14:00:00 60 1283 17.92 12.52 24.855 

29-08-09 14:15:00 60 1283 17.91 12.52 24.804 

29-08-09 14:30:00 60 1283 17.8 12.52 24.906 

29-08-09 14:45:00 60 1283 17.72 12.52 24.735 

29-08-09 15:00:00 60 1283 17.55 12.52 24.735 

29-08-09 15:15:00 59 1283 17.43 12.52 24.573 

29-08-09 15:30:00 59 1283 17.34 12.52 24.479 

29-08-09 15:45:00 59 1283 17.23 12.52 24.359 

29-08-09 16:00:00 59 1283 17.13 12.52 24.393 

29-08-09 16:15:00 59 1283 16.98 12.52 24.325 
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29-08-09 16:30:00 59 1283 16.83 12.52 24.342 

29-08-09 16:45:00 59 1283 16.69 12.52 24.325 

29-08-09 17:00:00 59 1283 16.56 12.52 24.256 

29-08-09 17:15:00 59 1283 16.48 12.52 24.291 

29-08-09 17:30:00 59 1283 16.42 12.52 24.222 

29-08-09 17:45:00 59 1283 16.31 12.52 24.102 

29-08-09 18:00:00 59 1283 16.19 12.52 24.188 

29-08-09 18:15:00 58 1283 16.06 12.52 24.034 

29-08-09 18:30:00 58 1283 15.89 12.52 23.965 

29-08-09 18:45:00 58 1283 15.73 12.52 23.846 

29-08-09 19:00:00 58 1283 15.59 12.52 23.888 

29-08-09 19:15:00 58 1283 15.47 12.52 23.88 

29-08-09 19:30:00 58 1283 15.36 12.52 23.906 

29-08-09 19:45:00 58 1283 15.23 12.52 23.683 

29-08-09 20:00:00 58 1283 15.11 12.52 23.846 

29-08-09 20:15:00 58 1283 15.04 12.52 23.692 

29-08-09 20:30:00 58 1283 15 12.52 23.563 

29-08-09 20:45:00 58 1283 14.96 12.52 23.965 

29-08-09 21:00:00 58 1283 14.91 12.52 23.803 

29-08-09 21:15:00 58 1283 14.87 12.52 23.829 

29-08-09 21:30:00 58 1283 14.82 12.52 23.503 

29-08-09 21:45:00 58 1283 14.8 12.52 23.632 

29-08-09 22:00:00 58 1283 14.76 12.52 23.674 

29-08-09 22:15:00 58 1283 14.74 12.52 23.658 

29-08-09 22:30:00 58 1283 14.74 12.5 23.675 

29-08-09 22:45:00 58 1283 14.74 12.52 23.623 

29-08-09 23:00:00 58 1283 14.74 12.5 23.683 

29-08-09 23:15:00 58 1283 14.74 12.5 23.623 

29-08-09 23:30:00 58 1283 14.67 12.5 23.546 

29-08-09 23:45:00 58 1283 14.67 12.5 23.658 

30-08-09 00:00:00 58 1283 14.63 12.5 23.666 

30-08-09 00:15:00 58 1283 14.6 12.5 23.709 

30-08-09 00:30:00 58 1283 14.55 12.5 23.709 

30-08-09 00:45:00 58 1283 14.54 12.5 23.555 

30-08-09 01:00:00 58 1283 14.54 12.5 23.666 

30-08-09 01:15:00 58 1283 14.54 12.5 23.581 

30-08-09 01:30:00 58 1283 14.54 12.5 23.589 

30-08-09 01:45:00 58 1283 14.54 12.5 23.598 

30-08-09 02:00:00 58 1283 14.51 12.5 23.487 

30-08-09 02:15:00 57 1283 14.47 12.5 23.358 

30-08-09 02:30:00 58 1283 14.47 12.5 23.649 

30-08-09 02:45:00 58 1283 14.44 12.5 23.487 

30-08-09 03:00:00 57 1283 14.37 12.5 23.409 

30-08-09 03:15:00 57 1283 14.3 12.5 23.435 

30-08-09 03:30:00 57 1283 14.28 12.5 23.204 

30-08-09 03:45:00 57 1283 14.29 12.5 23.093 

30-08-09 04:00:00 57 1283 14.33 12.5 23.084 

30-08-09 04:15:00 56 1283 14.34 12.5 22.768 

30-08-09 04:30:00 57 1283 14.34 12.5 23.007 

30-08-09 04:45:00 57 1283 14.34 12.5 23.007 

30-08-09 05:00:00 57 1283 14.34 12.5 22.888 

30-08-09 05:15:00 57 1283 14.35 12.5 22.99 

30-08-09 05:30:00 57 1283 14.34 12.5 22.879 

30-08-09 05:45:00 57 1283 14.34 12.5 23.127 
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30-08-09 06:00:00 57 1283 14.35 12.5 22.965 

30-08-09 06:15:00 57 1283 14.34 12.5 22.879 

30-08-09 06:30:00 56 1283 14.34 12.5 22.7 

30-08-09 06:45:00 56 1283 14.34 12.5 22.725 

30-08-09 07:00:00 57 1283 14.33 12.5 22.896 

30-08-09 07:15:00 56 1283 14.29 12.5 22.46 

30-08-09 07:30:00 56 1283 14.32 12.5 22.529 

30-08-09 07:45:00 56 1283 14.34 12.5 22.452 

30-08-09 08:00:00 56 1283 14.34 12.5 22.554 

30-08-09 08:15:00 55 1283 14.4 12.5 22.101 

30-08-09 08:30:00 55 1283 14.52 12.5 21.896 

30-08-09 08:45:00 55 1283 14.95 12.5 21.896 

30-08-09 09:00:00 55 1283 15.65 12.5 21.733 

30-08-09 09:15:00 54 1283 16.48 12.5 21.588 

30-08-09 09:30:00 54 1283 17.34 12.5 21.596 

30-08-09 09:45:00 54 1283 17.92 12.5 21.502 

30-08-09 10:00:00 54 1283 17.92 12.5 21.639 

30-08-09 10:15:00 54 1283 18.08 12.5 21.305 

30-08-09 10:30:00 54 1283 18.16 12.5 21.382 

30-08-09 10:45:00 54 1283 18.3 12.5 21.271 

30-08-09 11:00:00 53 1283 18.56 12.5 21.015 

30-08-09 11:15:00 53 1283 18.94 12.52 20.869 

30-08-09 11:30:00 53 1283 18.79 12.52 21.1 

30-08-09 11:45:00 54 1283 18.52 12.52 21.152 

30-08-09 12:00:00 53 1361 18.24 12.52 22.289 

30-08-09 12:15:00 53 1414 17.95 12.52 23.001 

30-08-09 12:30:00 53 1414 17.76 12.52 22.803 

30-08-09 12:45:00 53 1414 17.67 12.52 23.029 

30-08-09 13:00:00 53 1414 17.63 12.52 22.935 

30-08-09 13:15:00 53 1414 17.63 12.52 22.85 

30-08-09 13:30:00 53 1414 17.64 12.52 22.784 

30-08-09 13:45:00 53 1414 17.6 12.52 22.737 

30-08-09 14:00:00 52 1414 17.56 12.52 22.614 

30-08-09 14:15:00 52 1414 17.58 12.52 22.444 

30-08-09 14:30:00 52 1414 17.58 12.52 22.444 

30-08-09 14:45:00 52 1414 17.51 12.52 22.322 

30-08-09 15:00:00 52 1414 17.39 12.52 22.284 

30-08-09 15:15:00 52 1414 17.27 12.52 22.284 

30-08-09 15:30:00 52 1414 17.25 12.52 22.463 

30-08-09 15:45:00 52 1414 17.29 12.52 22.208 

30-08-09 16:00:00 52 1414 17.29 12.52 22.34 

30-08-09 16:15:00 52 1414 17.25 12.52 22.208 

30-08-09 16:30:00 52 1414 17.19 12.52 22.293 

30-08-09 16:45:00 52 1414 17.1 12.52 22.246 

30-08-09 17:00:00 52 1414 17.01 12.52 22.067 

30-08-09 17:15:00 52 1414 16.96 12.52 22.218 

30-08-09 17:30:00 52 1414 16.91 12.52 22.058 

30-08-09 17:45:00 52 1414 16.83 12.52 22.058 

30-08-09 18:00:00 51 1414 16.76 12.52 21.963 

30-08-09 18:15:00 51 1414 16.72 12.52 21.963 

30-08-09 18:30:00 52 1414 16.68 12.52 22.199 

30-08-09 18:45:00 52 1414 16.64 12.52 22.171 

30-08-09 19:00:00 52 1414 16.59 12.5 22.208 

30-08-09 19:15:00 52 1414 16.58 12.5 22.076 
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30-08-09 19:30:00 52 1414 16.53 12.52 22.246 

30-08-09 19:45:00 52 1414 16.5 12.5 22.171 

30-08-09 20:00:00 52 1414 16.45 12.5 22.407 

30-08-09 20:15:00 53 1414 16.41 12.5 22.689 

30-08-09 20:30:00 52 1414 16.39 12.5 22.454 

30-08-09 20:45:00 53 1414 16.38 12.5 22.784 

30-08-09 21:00:00 53 1414 16.36 12.5 22.784 

30-08-09 21:15:00 53 1414 16.32 12.5 22.699 

30-08-09 21:30:00 53 1414 16.32 12.5 23 

30-08-09 21:45:00 53 1414 16.31 12.5 22.868 

30-08-09 22:00:00 52 1414 16.28 12.5 22.586 

30-08-09 22:15:00 53 1414 16.28 12.5 22.887 

30-08-09 22:30:00 53 1414 16.32 12.5 22.925 

30-08-09 22:45:00 54 1414 16.31 12.5 23.33 

30-08-09 23:00:00 53 1414 16.32 12.5 23.095 

30-08-09 23:15:00 53 1414 16.32 12.5 23.17 

30-08-09 23:30:00 53 1414 16.32 12.5 23.264 

30-08-09 23:45:00 54 1414 16.32 12.5 23.274 

31-08-09 00:00:00 53 1414 16.34 12.5 22.755 

31-08-09 00:15:00 53 1414 16.39 12.5 23.085 

31-08-09 00:30:00 53 1414 16.39 12.5 23.217 

31-08-09 00:45:00 53 1414 16.39 12.5 23.104 

31-08-09 01:00:00 53 1414 16.39 12.5 23.038 

31-08-09 01:15:00 53 1414 16.39 12.5 23.113 

31-08-09 01:30:00 53 1414 16.39 12.5 23.123 

31-08-09 01:45:00 53 1414 16.39 12.5 22.915 

31-08-09 02:00:00 53 1414 16.41 12.5 22.963 

31-08-09 02:15:00 53 1414 16.44 12.5 23.085 

31-08-09 02:30:00 53 1414 16.45 12.5 23.095 

31-08-09 02:45:00 53 1414 16.45 12.5 22.887 

31-08-09 03:00:00 52 1414 16.45 12.5 22.623 

31-08-09 03:15:00 53 1414 16.45 12.5 23.057 

31-08-09 03:30:00 53 1414 16.45 12.5 22.755 

31-08-09 03:45:00 53 1414 16.45 12.5 22.915 

31-08-09 04:00:00 53 1414 16.44 12.5 22.991 

31-08-09 04:15:00 53 1414 16.42 12.5 22.783 

31-08-09 04:30:00 53 1414 16.43 12.5 22.718 

31-08-09 04:45:00 53 1414 16.45 12.5 22.661 

31-08-09 05:00:00 53 1414 16.43 12.5 23.123 

31-08-09 05:15:00 53 1414 16.39 12.5 22.896 

31-08-09 05:30:00 52 1414 16.39 12.5 22.633 

31-08-09 05:45:00 52 1414 16.39 12.5 22.416 

31-08-09 06:00:00 52 1414 16.39 12.5 22.501 

31-08-09 06:15:00 53 1414 16.4 12.5 22.746 

31-08-09 06:30:00 52 1414 16.42 12.5 22.208 

31-08-09 06:45:00 52 1414 16.42 12.5 22.076 

31-08-09 07:00:00 52 1414 16.45 12.5 22.322 

31-08-09 07:15:00 51 1414 16.45 12.5 21.85 

31-08-09 07:30:00 51 1414 16.47 12.5 21.85 

31-08-09 07:45:00 51 1414 16.53 12.5 21.473 

31-08-09 08:00:00 51 1414 16.6 12.5 21.944 

31-08-09 08:15:00 51 1414 16.65 12.5 21.765 

31-08-09 08:30:00 51 1414 16.72 12.5 21.473 

31-08-09 08:45:00 51 1414 16.77 12.5 21.633 
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31-08-09 09:00:00 51 1414 16.85 12.5 21.445 

31-08-09 09:15:00 50 1414 16.92 12.5 21.35 

31-08-09 09:30:00 51 1414 16.97 12.5 21.511 

31-08-09 09:45:00 50 1414 17.03 12.5 21.209 

31-08-09 10:00:00 50 1414 17.14 12.5 20.935 

31-08-09 10:15:00 50 1414 17.86 12.5 20.747 

31-08-09 10:30:00 49 1242 19.18 12.5 17.886 

31-08-09 10:45:00 49 1128 20.07 12.5 16.302 

31-08-09 11:00:00 49 1128 20.99 12.5 16.197 

31-08-09 11:15:00 49 1128 21.44 12.5 16.159 

31-08-09 11:30:00 49 1128 21.08 12.5 16.37 

31-08-09 11:45:00 49 1128 20.59 12.5 16.49 

31-08-09 12:00:00 50 1128 20.16 12.5 16.904 

31-08-09 12:15:00 50 1128 20.09 12.5 16.799 

31-08-09 12:30:00 50 1128 20.4 12.52 16.648 

31-08-09 12:45:00 50 1128 20.35 12.52 16.693 

31-08-09 13:00:00 49 1128 20.16 12.52 16.31 

31-08-09 13:15:00 49 1128 20.02 12.52 16.31 

31-08-09 13:30:00 49 1128 19.85 12.52 16.295 

31-08-09 13:45:00 49 1128 19.73 12.52 16.265 

31-08-09 14:00:00 49 1128 19.57 12.52 16.302 

31-08-09 14:15:00 49 1128 19.45 12.52 16.205 

31-08-09 14:30:00 49 1128 19.4 12.52 16.174 

31-08-09 14:45:00 48 1128 19.44 12.52 16.002 

31-08-09 15:00:00 48 1128 19.49 12.52 16.002 

31-08-09 15:15:00 48 1128 19.55 12.52 15.753 

31-08-09 15:30:00 48 1128 19.61 12.52 15.904 

31-08-09 15:45:00 48 1128 19.56 12.52 15.987 

31-08-09 16:00:00 48 1128 19.49 12.52 15.776 

31-08-09 16:15:00 48 1128 19.46 12.52 15.776 

31-08-09 16:30:00 48 1128 19.37 12.52 15.784 

31-08-09 16:45:00 49 1128 19.3 12.52 16.077 

31-08-09 17:00:00 48 1165 19.19 12.52 16.389 

31-08-09 17:15:00 48 1411 19.08 12.52 19.81 

31-08-09 17:30:00 48 1505 19.03 12.52 21.197 

31-08-09 17:45:00 48 1552 18.95 12.52 21.758 

31-08-09 18:00:00 48 1552 18.83 12.52 21.924 

31-08-09 18:15:00 48 1552 18.76 12.52 21.872 

31-08-09 18:30:00 49 1552 18.71 12.52 22.286 

31-08-09 18:45:00 48 1552 18.61 12.52 21.903 

31-08-09 19:00:00 48 1552 18.47 12.5 21.81 

31-08-09 19:15:00 48 1552 18.37 12.5 21.851 

31-08-09 19:30:00 48 1552 18.27 12.52 21.934 

31-08-09 19:45:00 48 1552 18.17 12.5 21.717 

31-08-09 20:00:00 48 1552 18.04 12.5 21.52 

31-08-09 20:15:00 48 1552 17.93 12.5 21.417 

31-08-09 20:30:00 47 1552 17.81 12.5 21.313 

31-08-09 20:45:00 47 1552 17.71 12.5 21.21 

31-08-09 21:00:00 48 1552 17.6 12.5 21.417 

31-08-09 21:15:00 47 1552 17.51 12.5 21.292 

31-08-09 21:30:00 47 1552 17.41 12.5 21.044 

31-08-09 21:45:00 48 1552 17.32 12.5 21.748 

31-08-09 22:00:00 47 1552 17.24 12.5 20.961 

31-08-09 22:15:00 47 1552 17.16 12.5 20.837 
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31-08-09 22:30:00 47 1552 17.09 12.5 20.92 

31-08-09 22:45:00 46 1552 16.99 12.5 20.755 

31-08-09 23:00:00 46 1552 16.85 12.5 20.465 

31-08-09 23:15:00 46 1552 16.71 12.5 20.341 

31-08-09 23:30:00 46 1552 16.61 12.5 20.465 

31-08-09 23:45:00 46 1552 16.52 12.5 20.589 

01-09-09 00:00:00 46 1552 16.45 12.5 20.682 

01-09-09 00:15:00 47 1552 16.44 12.5 20.92 

01-09-09 00:30:00 46 1552 16.41 12.5 20.424 

01-09-09 00:45:00 47 1552 16.39 12.5 20.837 

01-09-09 01:00:00 47 1552 16.38 12.5 20.92 

01-09-09 01:15:00 46 1552 16.36 12.5 20.631 

01-09-09 01:30:00 47 1552 16.33 12.5 21.013 

01-09-09 01:45:00 46 1552 16.3 12.5 20.589 

01-09-09 02:00:00 46 1552 16.23 12.5 20.672 

01-09-09 02:15:00 46 1552 16.16 12.5 20.341 

01-09-09 02:30:00 45 1552 16.08 12.5 20.093 

01-09-09 02:45:00 45 1552 16.02 12.5 20.134 

01-09-09 03:00:00 45 1552 15.99 12.5 19.844 

01-09-09 03:15:00 46 1552 15.99 12.5 20.217 

01-09-09 03:30:00 45 1552 15.97 12.5 19.834 

01-09-09 03:45:00 45 1552 15.9 12.5 19.979 

01-09-09 04:00:00 45 1552 15.79 12.47 19.875 

01-09-09 04:15:00 45 1552 15.68 12.47 20.124 

01-09-09 04:30:00 45 1552 15.61 12.47 19.73 

01-09-09 04:45:00 45 1552 15.52 12.47 19.699 

01-09-09 05:00:00 45 1552 15.46 12.47 19.544 

01-09-09 05:15:00 44 1552 15.35 12.47 19.327 

01-09-09 05:30:00 45 1552 15.21 12.47 19.555 

01-09-09 05:45:00 44 1552 15.13 12.47 19.317 

01-09-09 06:00:00 44 1552 15.13 12.47 19.255 

01-09-09 06:15:00 44 1552 15.13 12.47 19.41 

01-09-09 06:30:00 44 1552 15.12 12.47 19.079 

01-09-09 06:45:00 44 1552 15.11 12.47 19.254 

01-09-09 07:00:00 44 1552 15.09 12.47 18.985 

01-09-09 07:15:00 44 1552 15.07 12.47 18.851 

01-09-09 07:30:00 43 1552 15.09 12.47 18.737 

01-09-09 07:45:00 43 1552 15.13 12.47 18.499 

01-09-09 08:00:00 43 1552 15.2 12.47 18.406 

01-09-09 08:15:00 43 1552 15.31 12.47 18.282 

01-09-09 08:30:00 42 1552 15.67 12.47 17.868 

01-09-09 08:45:00 42 1552 16.31 12.47 17.661 

01-09-09 09:00:00 42 1552 17 12.47 17.537 

01-09-09 09:15:00 42 1552 17.74 12.47 17.702 

01-09-09 09:30:00 42 1552 18.46 12.47 17.537 

01-09-09 09:45:00 42 1552 19 12.47 17.537 

01-09-09 10:00:00 41 1552 19.45 12.47 17.412 

01-09-09 10:15:00 42 1438 19.92 12.47 16.248 

01-09-09 10:30:00 41 1362 20.37 12.47 15.135 

01-09-09 10:45:00 41 1362 20.98 12.5 15.026 

01-09-09 11:00:00 41 1362 20.98 12.5 14.917 

01-09-09 11:15:00 41 1362 20.6 12.5 15.063 

01-09-09 11:30:00 41 1362 20.19 12.5 15.026 

01-09-09 11:45:00 41 1362 20.06 12.5 14.99 
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01-09-09 12:00:00 41 1362 19.76 12.5 15.026 

01-09-09 12:15:00 41 1362 19.48 12.5 14.917 

01-09-09 12:30:00 41 1362 19.53 12.5 14.881 

01-09-09 12:45:00 41 1362 19.2 12.5 14.881 

01-09-09 13:00:00 41 1362 18.83 12.5 14.845 

01-09-09 13:15:00 40 1362 18.61 12.5 14.699 

01-09-09 13:30:00 40 1362 18.38 12.5 14.699 

01-09-09 13:45:00 40 1362 18.03 12.5 14.663 

01-09-09 14:00:00 40 1362 17.81 12.5 14.591 

01-09-09 14:15:00 40 1362 17.66 12.5 14.554 

01-09-09 14:30:00 40 1362 17.55 12.5 14.591 

01-09-09 14:45:00 40 1362 17.41 12.5 14.518 

01-09-09 15:00:00 40 1362 17.32 12.5 14.554 

01-09-09 15:15:00 40 1362 17.15 12.5 14.482 

01-09-09 15:30:00 41 1362 16.84 12.5 15.172 

01-09-09 15:45:00 43 1362 16.67 12.5 15.971 

01-09-09 16:00:00 43 1362 16.65 12.5 16.007 

01-09-09 16:15:00 43 1362 16.78 12.5 16.125 

01-09-09 16:30:00 43 1362 16.91 12.5 16.116 

01-09-09 16:45:00 43 1362 16.92 12.47 16.007 

01-09-09 17:00:00 43 1362 16.87 12.5 16.044 

01-09-09 17:15:00 43 1362 16.77 12.5 16.08 

01-09-09 17:30:00 43 1362 16.72 12.47 16.125 

01-09-09 17:45:00 43 1362 16.72 12.47 16.316 

01-09-09 18:00:00 43 1362 16.72 12.47 16.28 

01-09-09 18:15:00 43 1362 16.72 12.47 16.189 

01-09-09 18:30:00 43 1362 16.68 12.47 16.352 

01-09-09 18:45:00 43 1362 16.53 12.47 16.162 

01-09-09 19:00:00 44 1362 16.39 12.47 16.534 

01-09-09 19:15:00 43 1362 16.3 12.47 16.307 

01-09-09 19:30:00 43 1362 16.15 12.47 16.153 

01-09-09 19:45:00 43 1362 15.98 12.47 16.234 

01-09-09 20:00:00 43 1362 15.9 12.47 16.416 

01-09-09 20:15:00 43 1362 15.86 12.47 16.443 

01-09-09 20:30:00 44 1362 15.85 12.47 16.57 

01-09-09 20:45:00 44 1362 15.77 12.47 16.516 

01-09-09 21:00:00 43 1362 15.65 12.47 16.343 

01-09-09 21:15:00 44 1362 15.57 12.47 16.661 

01-09-09 21:30:00 44 1362 15.48 12.47 16.616 

01-09-09 21:45:00 44 1362 15.42 12.47 16.543 

01-09-09 22:00:00 44 1362 15.33 12.47 16.579 

01-09-09 22:15:00 43 1362 15.28 12.47 16.425 

01-09-09 22:30:00 44 1362 15.22 12.47 16.543 

01-09-09 22:45:00 44 1362 15.19 12.47 16.543 

01-09-09 23:00:00 44 1362 15.13 12.47 16.743 

01-09-09 23:15:00 43 1362 15.08 12.47 16.361 

01-09-09 23:30:00 43 1362 15.03 12.47 16.461 

01-09-09 23:45:00 43 1362 15 12.47 16.207 

02-09-09 00:00:00 43 1362 14.95 12.47 16.153 

02-09-09 00:15:00 42 1362 14.91 12.47 15.898 

02-09-09 00:30:00 42 1362 14.86 12.47 15.717 

02-09-09 00:45:00 42 1362 14.8 12.47 15.68 

02-09-09 01:00:00 42 1362 14.78 12.47 15.717 

02-09-09 01:15:00 42 1362 14.74 12.47 15.499 
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02-09-09 01:30:00 42 1362 14.7 12.47 15.499 

02-09-09 01:45:00 42 1362 14.67 12.44 15.462 

02-09-09 02:00:00 42 1362 14.66 12.47 15.462 

02-09-09 02:15:00 42 1362 14.61 12.44 15.462 

02-09-09 02:30:00 42 1362 14.61 12.44 15.462 

02-09-09 02:45:00 41 1362 14.54 12.44 15.317 

02-09-09 03:00:00 42 1362 14.48 12.44 15.426 

02-09-09 03:15:00 41 1362 14.46 12.44 15.281 

02-09-09 03:30:00 41 1362 14.45 12.44 15.281 

02-09-09 03:45:00 41 1362 14.46 12.44 15.208 

02-09-09 04:00:00 41 1362 14.47 12.44 15.172 

02-09-09 04:15:00 41 1362 14.46 12.44 15.172 

02-09-09 04:30:00 41 1362 14.41 12.44 15.208 

02-09-09 04:45:00 41 1362 14.36 12.44 15.208 

02-09-09 05:00:00 41 1362 14.34 12.44 15.026 

02-09-09 05:15:00 41 1362 14.3 12.44 15.208 

02-09-09 05:30:00 41 1362 14.28 12.44 14.954 

02-09-09 05:45:00 41 1362 14.24 12.44 14.954 

02-09-09 06:00:00 41 1362 14.21 12.44 14.954 

02-09-09 06:15:00 41 1362 14.21 12.44 14.881 

02-09-09 06:30:00 41 1362 14.21 12.44 14.845 

02-09-09 06:45:00 41 1362 14.21 12.44 14.881 

02-09-09 07:00:00 41 1362 14.21 12.44 14.881 

02-09-09 07:15:00 41 1362 14.24 12.44 14.917 

02-09-09 07:30:00 41 1362 14.28 12.44 14.845 

02-09-09 07:45:00 41 1362 14.32 12.44 14.845 

02-09-09 08:00:00 40 1362 14.36 12.44 14.772 

02-09-09 08:15:00 40 1362 14.43 12.44 14.663 

02-09-09 08:30:00 40 1362 14.53 12.44 14.591 

02-09-09 08:45:00 40 1362 14.61 12.44 14.663 

02-09-09 09:00:00 40 1362 14.68 12.44 14.591 

02-09-09 09:15:00 40 1362 14.75 12.44 14.409 

02-09-09 09:30:00 40 1362 14.99 12.44 14.409 
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Time  Depth  Velocity  Temperature  Battery  Flow Rate 

13/11/09 
  

(Av.) 
mm 

(Av.) 
mm/s (Av.) ºC  (RAW) V (Av.) l/s 

13-11-09 00:00:00 408 0 11.04 11.73 0 

13-11-09 00:15:00 403 0 11.04 11.73 0 

13-11-09 00:30:00 399 0 11.05 11.73 0 

13-11-09 00:45:00 395 0 11.14 11.73 0 

13-11-09 01:00:00 392 0 11.24 11.73 0 

13-11-09 01:15:00 389 0 11.09 11.73 0 

13-11-09 01:30:00 387 0 11.04 11.73 0 

13-11-09 01:45:00 384 0 11.04 11.73 0 

13-11-09 02:00:00 382 0 11.09 11.73 0 

13-11-09 02:15:00 380 0 11.11 11.73 0 

13-11-09 02:30:00 379 0 11.11 11.73 0 

13-11-09 02:45:00 377 0 11.05 11.73 0 

13-11-09 03:00:00 376 0 10.99 11.73 0 

13-11-09 03:15:00 375 0 10.99 11.73 0 

13-11-09 03:30:00 374 0 10.98 11.73 0 

13-11-09 03:45:00 372 0 10.98 11.73 0 

13-11-09 04:00:00 371 0 10.92 11.73 0 

13-11-09 04:15:00 370 0 10.95 11.7 0 

13-11-09 04:30:00 369 0 11.12 11.73 0 

13-11-09 04:45:00 368 0 10.92 11.7 0 

13-11-09 05:00:00 367 0 10.94 11.7 0 

13-11-09 05:15:00 366 0 11.05 11.7 0 

13-11-09 05:30:00 365 0 10.96 11.7 0 

13-11-09 05:45:00 363 0 10.73 11.7 0 

13-11-09 06:00:00 362 0 10.76 11.7 0 

13-11-09 06:15:00 361 0 10.79 11.7 0 

13-11-09 06:30:00 360 0 10.7 11.7 0 

13-11-09 06:45:00 359 0 10.65 11.7 0 

13-11-09 07:00:00 358 0 10.65 11.7 0 

13-11-09 07:15:00 357 0 10.66 11.7 0 

13-11-09 07:30:00 356 0 10.69 11.7 0 

13-11-09 07:45:00 355 0 10.62 11.7 0 

13-11-09 08:00:00 354 0 10.6 11.7 0 

13-11-09 08:15:00 353 0 10.58 11.7 0 

13-11-09 08:30:00 352 0 10.73 11.7 0 

13-11-09 08:45:00 351 135 10.78 11.7 33.331 

13-11-09 09:00:00 350 0 10.65 11.7 0 

13-11-09 09:15:00 349 5 10.65 11.7 1.306 

13-11-09 09:30:00 348 166 10.66 11.7 40.65 

13-11-09 09:45:00 347 0 10.72 11.7 0 

13-11-09 10:00:00 346 0 10.67 11.7 0 

13-11-09 10:15:00 345 0 10.68 11.7 0 

13-11-09 10:45:00 344 0 11.19 13.05 0 

13-11-09 11:00:00 344 0 11.2 13 0 

13-11-09 11:15:00 343 2 11.12 13 0.699 

13-11-09 11:30:00 341 0 10.91 13 0 

13-11-09 11:45:00 340 0 10.84 13 0 

13-11-09 12:00:00 339 0 10.84 13 0 
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13-11-09 12:15:00 338 0 10.83 12.97 0 

13-11-09 12:30:00 337 0 10.94 12.97 0 

13-11-09 12:45:00 336 190 10.91 12.97 44.333 

13-11-09 13:00:00 335 0 10.84 12.97 0 

13-11-09 13:15:00 334 0 10.84 12.97 0 

13-11-09 13:30:00 333 0 10.84 12.97 0 

13-11-09 13:45:00 332 0 10.84 12.95 0 

13-11-09 14:00:00 331 4 10.9 12.95 0.911 

13-11-09 14:15:00 330 0 11.07 12.95 0 

13-11-09 14:30:00 329 0 10.95 12.95 0 

13-11-09 14:45:00 328 0 10.91 12.95 0 

13-11-09 15:00:00 327 0 10.91 12.95 0 

13-11-09 15:15:00 327 0 10.92 12.95 0 

13-11-09 15:30:00 326 1 10.96 12.95 0.385 

13-11-09 15:45:00 325 353 11.15 12.95 78.163 

13-11-09 16:00:00 324 4 10.98 12.95 0.928 

13-11-09 16:15:00 323 0 10.93 12.95 0 

13-11-09 16:30:00 322 0 10.96 12.95 0 

13-11-09 16:45:00 321 0 10.91 12.95 0 

13-11-09 17:00:00 320 5 10.91 12.92 1.218 

13-11-09 17:15:00 320 0 10.91 12.92 0 

13-11-09 17:30:00 319 0 10.91 12.92 0 

13-11-09 17:45:00 318 0 10.91 12.92 0 

13-11-09 18:00:00 320 5 10.99 12.92 1.165 

13-11-09 18:15:00 327 0 11.01 12.92 0 

13-11-09 18:30:00 343 7 11 12.92 1.863 

13-11-09 18:45:00 365 1 10.99 12.92 0.437 

13-11-09 19:00:00 383 4 10.98 12.92 1.237 

13-11-09 19:15:00 395 1 11 12.92 0.505 

13-11-09 19:30:00 399 0 11.04 12.92 0 

13-11-09 19:45:00 402 4 11.04 12.92 1.33 

13-11-09 20:00:00 414 12 11.05 12.92 3.966 

13-11-09 20:15:00 422 24 11.03 12.92 7.869 

13-11-09 20:30:00 421 20 11.01 12.92 6.559 

13-11-09 20:45:00 416 25 11.04 12.92 7.884 

13-11-09 21:00:00 412 12 11.04 12.92 3.738 

13-11-09 21:15:00 407 3 11.04 12.92 1.087 

13-11-09 21:30:00 403 7 11.1 12.92 2.144 

13-11-09 21:45:00 400 8 11.1 12.92 2.35 

13-11-09 22:00:00 397 5 11.04 12.92 1.552 

13-11-09 22:15:00 394 6 11.06 12.92 1.769 

13-11-09 22:30:00 391 0 11.1 12.92 0 

13-11-09 22:45:00 389 0 11.11 12.92 0 

13-11-09 23:00:00 387 0 11.16 12.92 0 

13-11-09 23:15:00 385 3 11.17 12.92 0.966 

13-11-09 23:30:00 383 6 11.11 12.92 1.697 

13-11-09 23:45:00 382 8 11.13 12.92 2.39 
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Time  Depth  Velocity  Temperature  Battery  Flow Rate 

21/11/09 
  

(Av.) 
mm 

(Av.) 
mm/s (Av.) ºC  (RAW) V (Av.) l/s 

21-11-09 00:00:00 263 0 10.32 12.55 0 

21-11-09 00:15:00 262 0 10.31 12.55 0 

21-11-09 00:30:00 262 0 10.28 12.55 0 

21-11-09 00:45:00 261 0 10.25 12.52 0 

21-11-09 01:00:00 261 0 10.24 12.52 0 

21-11-09 01:15:00 260 0 10.18 12.52 0 

21-11-09 01:30:00 259 0 10.18 12.52 0 

21-11-09 01:45:00 259 0 10.18 12.52 0 

21-11-09 02:00:00 258 0 10.18 12.52 0 

21-11-09 02:15:00 258 0 10.18 12.52 0 

21-11-09 02:30:00 258 0 10.18 12.52 0 

21-11-09 02:45:00 257 0 10.17 12.52 0 

21-11-09 03:00:00 257 0 10.39 12.52 0 

21-11-09 03:15:00 256 0 10.51 12.52 0 

21-11-09 03:30:00 256 0 10.51 12.52 0 

21-11-09 03:45:00 255 0 10.6 12.52 0 

21-11-09 04:00:00 255 0 10.59 12.52 0 

21-11-09 04:15:00 255 0 10.58 12.52 0 

21-11-09 04:30:00 254 0 10.58 12.52 0 

21-11-09 04:45:00 254 0 10.55 12.52 0 

21-11-09 05:00:00 253 0 10.57 12.55 0 

21-11-09 05:15:00 253 0 10.63 12.55 0 

21-11-09 05:30:00 252 0 10.61 12.55 0 

21-11-09 05:45:00 252 0 10.6 12.55 0 

21-11-09 06:00:00 251 8 10.63 12.55 1.345 

21-11-09 06:15:00 251 0 10.65 12.55 0 

21-11-09 06:30:00 251 0 10.65 12.55 0 

21-11-09 06:45:00 250 0 10.68 12.55 0 

21-11-09 07:00:00 250 0 10.66 12.55 0 

21-11-09 07:15:00 249 0 10.65 12.55 0 

21-11-09 07:30:00 249 0 10.71 12.55 0 

21-11-09 07:45:00 249 0 10.71 12.55 0 

21-11-09 08:00:00 248 0 10.71 12.55 0 

21-11-09 08:15:00 248 0 10.73 12.55 0 

21-11-09 08:30:00 247 0 10.78 12.55 0 

21-11-09 08:45:00 247 0 10.78 12.55 0 

21-11-09 09:00:00 247 0 10.78 12.55 0 

21-11-09 09:15:00 246 0 10.8 12.55 0 

21-11-09 09:30:00 246 0 10.84 12.55 0 

21-11-09 09:45:00 246 0 10.82 12.55 0 

21-11-09 10:00:00 245 0 10.87 12.55 0 

21-11-09 10:15:00 245 0 10.84 12.55 0 

21-11-09 10:30:00 244 0 10.84 12.55 0 

21-11-09 10:45:00 244 0 10.9 12.55 0 

21-11-09 11:00:00 243 0 10.91 12.55 0 

21-11-09 11:15:00 243 0 10.92 12.55 0 

21-11-09 11:30:00 243 0 10.96 12.55 0 

21-11-09 11:45:00 243 0 10.91 12.55 0 
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21-11-09 12:00:00 242 0 10.91 12.55 0 

21-11-09 12:15:00 242 0 10.99 12.55 0 

21-11-09 12:30:00 242 0 10.99 12.55 0 

21-11-09 12:45:00 241 0 10.99 12.55 0 

21-11-09 13:00:00 241 0 11.03 12.55 0 

21-11-09 13:15:00 241 0 11.04 12.55 0 

21-11-09 13:30:00 240 0 11.06 12.55 0 

21-11-09 13:45:00 240 0 11.14 12.55 0 

21-11-09 14:00:00 240 0 11.17 12.55 0 

21-11-09 14:15:00 239 0 11.15 12.55 0 

21-11-09 14:30:00 239 0 11.17 12.55 0 

21-11-09 14:45:00 239 0 11.22 12.55 0 

21-11-09 15:00:00 239 1 11.25 12.55 0.24 

21-11-09 15:15:00 239 4 11.24 12.55 0.643 

21-11-09 15:30:00 239 5 11.24 12.55 0.787 

21-11-09 15:45:00 239 0 11.27 12.55 0 

21-11-09 16:00:00 239 3 11.31 12.55 0.536 

21-11-09 16:15:00 238 2 11.26 12.55 0.336 

21-11-09 16:30:00 238 8 11.29 12.55 1.17 

21-11-09 16:45:00 238 0 11.31 12.55 0 

21-11-09 17:00:00 238 5 11.32 12.55 0.768 

21-11-09 17:15:00 238 5 11.32 12.55 0.778 

21-11-09 17:30:00 239 8 11.51 12.52 1.203 

21-11-09 17:45:00 240 1 11.66 12.52 0.26 

21-11-09 18:00:00 248 6 11.7 12.52 1.022 

21-11-09 18:15:00 264 8 11.75 12.52 1.485 

21-11-09 18:30:00 287 17 11.77 12.52 3.191 

21-11-09 18:45:00 316 14 11.8 12.52 3.108 

21-11-09 19:00:00 342 26 11.84 12.52 6.288 

21-11-09 19:15:00 357 0 11.83 12.52 0 

21-11-09 19:30:00 363 17 11.83 12.52 4.616 

21-11-09 19:45:00 364 5 11.81 12.52 1.537 

21-11-09 20:00:00 365 0 11.79 12.52 0 

21-11-09 20:15:00 365 0 11.78 12.52 0 

21-11-09 20:30:00 365 0 11.77 12.52 0 

21-11-09 20:45:00 364 0 11.77 12.52 0 

21-11-09 21:00:00 363 1 11.77 12.52 0.484 

21-11-09 21:15:00 362 0 11.76 12.52 0 

21-11-09 21:30:00 361 0 11.77 12.52 0 

21-11-09 21:45:00 360 0 11.77 12.52 0 

21-11-09 22:00:00 360 0 11.77 12.52 0 

21-11-09 22:15:00 359 0 11.77 12.52 0 

21-11-09 22:30:00 358 0 11.77 12.52 0 

21-11-09 22:45:00 357 0 11.79 12.52 0 

21-11-09 23:00:00 356 0 11.78 12.52 0 

21-11-09 23:15:00 355 0 11.8 12.5 0 

21-11-09 23:30:00 354 0 11.77 12.5 0 

21-11-09 23:45:00 354 0 11.77 12.5 0 
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Time  Depth  Velocity  Temperature  Battery  Flow Rate 

07/12/09 
  

(Av.) 
mm 

(Av.) 
mm/s (Av.) ºC  (RAW) V (Av.) l/s 

07-12-09 00:00:00 387 0 9.48 11.65 0 

07-12-09 00:15:00 387 0 9.39 11.65 0 

07-12-09 00:30:00 387 0 9.39 11.65 0 

07-12-09 00:45:00 386 0 9.39 11.65 0 

07-12-09 01:00:00 387 0 9.39 11.65 0 

07-12-09 01:15:00 387 0 9.39 11.65 0 

07-12-09 01:30:00 386 0 9.39 11.65 0 

07-12-09 01:45:00 386 0 9.45 11.65 0 

07-12-09 02:00:00 386 0 9.43 11.65 0 

07-12-09 02:15:00 386 5 9.41 11.65 1.454 

07-12-09 02:30:00 386 4 9.43 11.65 1.118 

07-12-09 02:45:00 386 2 9.42 11.65 0.801 

07-12-09 03:00:00 386 0 9.45 11.65 0 

07-12-09 03:15:00 386 0 9.46 11.65 0 

07-12-09 03:30:00 386 0 9.46 11.65 0 

07-12-09 03:45:00 386 0 9.46 11.65 0 

07-12-09 04:00:00 386 0 9.46 11.65 0 

07-12-09 04:15:00 385 141 9.46 11.65 39.586 

07-12-09 04:30:00 385 0 9.46 11.65 0 

07-12-09 04:45:00 385 0 9.46 11.65 0 

07-12-09 05:00:00 385 0 9.5 11.65 0 

07-12-09 05:15:00 385 79 9.52 11.65 22.073 

07-12-09 05:30:00 385 0 9.53 11.65 0 

07-12-09 05:45:00 385 0 9.52 11.62 0 

07-12-09 06:00:00 385 0 9.52 11.62 0 

07-12-09 06:15:00 385 0 9.52 11.62 0 

07-12-09 06:30:00 385 0 9.52 11.62 0 

07-12-09 06:45:00 385 0 9.52 11.62 0 

07-12-09 07:00:00 385 0 9.52 11.62 0 

07-12-09 07:15:00 385 0 9.52 11.62 0 

07-12-09 07:30:00 385 0 9.52 11.62 0 

07-12-09 07:45:00 385 0 9.52 11.62 0 

07-12-09 08:00:00 385 3 9.5 11.62 1.077 

07-12-09 08:15:00 385 0 9.51 11.62 0 

07-12-09 08:30:00 385 0 9.49 11.62 0 

07-12-09 08:45:00 385 43 9.5 11.62 12.151 

07-12-09 09:00:00 385 0 9.49 11.62 0 

07-12-09 09:15:00 385 0 9.48 11.62 0 

07-12-09 09:30:00 385 0 9.59 11.62 0 

07-12-09 09:45:00 385 0 9.55 11.62 0 

07-12-09 10:00:00 384 0 9.53 11.62 0 

07-12-09 10:15:00 385 0 9.57 11.62 0 

07-12-09 10:30:00 385 0 9.59 11.62 0 

07-12-09 10:45:00 385 0 9.6 11.62 0 

07-12-09 11:00:00 385 314 9.66 11.62 87.697 

07-12-09 11:15:00 385 0 9.62 11.62 0 

07-12-09 11:30:00 385 0 9.68 11.62 0 

07-12-09 11:45:00 384 0 9.64 11.62 0 
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07-12-09 12:00:00 384 0 9.63 11.62 0 

07-12-09 12:15:00 385 132 9.58 11.62 36.825 

07-12-09 12:30:00 384 0 9.59 11.62 0 

07-12-09 12:45:00 384 0 9.59 11.62 0 

07-12-09 13:00:00 384 4 9.52 11.62 1.17 

07-12-09 13:30:00 385 0 9.56 12.97 0 

07-12-09 13:45:00 385 0 9.28 12.95 0 

07-12-09 14:00:00 384 0 9.22 12.92 0 

07-12-09 14:15:00 385 1 9.22 12.89 0.464 

07-12-09 14:30:00 385 3 9.14 12.89 1.077 

07-12-09 14:45:00 384 2 9.05 12.87 0.631 

07-12-09 15:00:00 385 4 9.05 12.87 1.323 

07-12-09 15:15:00 388 2 9.06 12.84 0.636 

07-12-09 15:30:00 400 31 9.04 12.84 9.335 

07-12-09 15:45:00 409 39 9 12.84 12.044 

07-12-09 16:00:00 414 6 9.06 12.81 2.072 

07-12-09 16:15:00 417 19 9.13 12.81 5.957 

07-12-09 16:30:00 419 33 9.08 12.81 10.464 

07-12-09 16:45:00 419 14 9.07 12.81 4.379 

07-12-09 17:00:00 416 2 9.17 12.81 0.659 

07-12-09 17:15:00 413 0 9.18 12.81 0 

07-12-09 17:30:00 410 3 9.18 12.81 0.915 

07-12-09 17:45:00 407 0 9.19 12.79 0 

07-12-09 18:00:00 405 0 9.25 12.79 0 

07-12-09 18:15:00 403 0 9.22 12.79 0 

07-12-09 18:30:00 401 0 9.31 12.79 0 

07-12-09 18:45:00 399 5 9.42 12.79 1.617 

07-12-09 19:00:00 398 1 9.29 12.79 0.446 

07-12-09 19:15:00 396 0 9.26 12.79 0 

07-12-09 19:30:00 395 3 9.26 12.79 0.926 

07-12-09 19:45:00 394 0 9.3 12.79 0 

07-12-09 20:00:00 393 0 9.41 12.79 0 

07-12-09 20:15:00 392 0 9.34 12.79 0 

07-12-09 20:30:00 392 0 9.36 12.79 0 

07-12-09 20:45:00 391 0 9.41 12.76 0 

07-12-09 21:00:00 390 0 9.35 12.79 0 

07-12-09 21:15:00 390 0 9.33 12.79 0 

07-12-09 21:30:00 389 2 9.33 12.76 0.586 

07-12-09 21:45:00 389 0 9.33 12.76 0 

07-12-09 22:00:00 389 179 9.51 12.76 50.811 

07-12-09 22:15:00 388 0 9.41 12.76 0 

07-12-09 22:30:00 388 0 9.47 12.76 0 

07-12-09 22:45:00 388 7 9.41 12.76 1.989 

07-12-09 23:00:00 387 0 9.38 12.76 0 

07-12-09 23:15:00 387 0 9.33 12.76 0 

07-12-09 23:30:00 387 0 9.33 12.76 0 

07-12-09 23:45:00 387 0 9.33 12.76 0 
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Appendix 4 

 
Raw data and calculation of EMC for storm 1 and storm 2 
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Storm 1 (21/11/2009) 
TSS 

Time Q, l/s TSS, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 119.5      

    0.384 59.75 20650 345 

17.00 0.768 119.5 900     

    0.773 119.5 83136 695 

17.15 0.778 119.5 900     

    0.991 67.25 59980 892 

17.30 1.203 15 900     

    0.732 10.5 6917 658 

17.45 0.26 6 900     

    0.641 11.5 6635 577 

18.00 1.022 17 900     

    1.254 30 33858 1129 

18.15 1.485 43 900     

    2.338 40 84168 2104 

18.30 3.191 37 900     

    3.150 36 102060 2835 

18.45 3.108 35 900     

    1.554 35 48951 1398 

19.00 0 35 900     

      Σ  446354 Σ 10633 

EMC  TSS = 41.98 mg/l 
 
 
TOC 

Time Q, l/s TOC, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 7.78      

    0.384 7.78 2689 345 

17.00 0.768 7.78 900     

    0.773 7.78 5413 695 

17.15 0.778 7.78 900     

    0.991 8.05 7180 892 

17.30 1.203 8.31 900     

    0.732 7.36 4849 658 

17.45 0.26 6.4 900     

    0.641 6.13 3536 577 

18.00 1.022 5.85 900     

    1.254 6.29 7099 1129 

18.15 1.485 6.72 900     

    2.338 7.03 14792 2104 

18.30 3.191 7.33 900     

    3.150 7.99 22652 2835 

18.45 3.108 8.66 900     

    1.554 8.66 12111 1398 

19.00 0 8.66 900     

      Σ 80322 Σ 10637 

EMC   TOC = 7.55 mg/l 
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Zntot 

Time Q, l/s Zntot, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 0.273      

    0.384 0.273 94.348 345 

17.00 0.768 0.273 900     

    0.773 0.273 189.926 695 

17.15 0.778 0.273 900     

    0.991 0.176 156.974 892 

17.30 1.203 0.079 900     

    0.732 0.095 62.586 658 

17.45 0.26 0.111 900     

    0.641 0.096 55.382 577 

18.00 1.022 0.081 900     

    1.254 0.093 104.96 1129 

18.15 1.485 0.105 900     

    2.338 0.105 220.941 2104 

18.30 3.191 0.105 900     

    3.150 0.098 277.83 2835 

18.45 3.108 0.091 900     

    1.554 0.091 127.27 1398 

19.00 0 0.091 900     

      Σ1290.3 Σ10635.3 

EMC   Zntot = 0.121 mg/l 
 
 

Zndis 

Time Q, l/s Zndis, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 0.025      

    0.384 0.025 8.64 345 

17.00 0.768 0.025 900     

    0.773 0.025 17.393 695 

17.15 0.778 0.025 900     

    0.991 0.025 22.298 892 

17.30 1.203 0.025 900     

    0.732 0.0245 16.141 658 

17.45 0.26 0.024 900     

    0.641 0.026 14.999 577 

18.00 1.022 0.028 900     

    1.254 0.0265 29.908 1129 

18.15 1.485 0.025 900     

    2.338 0.0255 53.657 2104 

18.30 3.191 0.026 900     

    3.150 0.0265 75.128 2835 

18.45 3.108 0.027 900     

    1.554 0.027 37.762 1398 

19.00 0 0.027 900     

      Σ 275.9 Σ 10635.3  

EMC   Zndis = 0.026 mg/l 
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Fetot 

Time Q, l/s Fetot, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 3.76      

    0.384 3.76 1299.5 345 

17.00 0.768 3.76 900     

    0.773 3.76 2615.8 695 

17.15 0.778 3.76 900     

    0.991 2.376 2119.2 892 

17.30 1.203 0.659 900     

    0.732 1.027 676.6 658 

17.45 0.26 1.395 900     

    0.641 1.089 628.2 577 

18.00 1.022 0.782 900     

    1.254 1.077 1215.5 1129 

18.15 1.485 1.371 900     

    2.338 1.311 2758.6 2104 

18.30 3.191 1.251 900     

    3.150 1.179 3342.4 2835 

18.45 3.108 1.106 900     

    1.554 1.106 1546.8 1398 

19.00 0 1.106 900     

      Σ 16202.6 Σ 10635.3 

EMC   Fetot = 1.523 mg/l 
 
 
Fedis 

Time Q, l/s Fedis, 
mg/l 

Δt, s Qav, l/s C, mg/l QCΔt QΔt 

16.45 0 0.94      

    0.384 0.94 324.8 345 

17.00 0.768 0.94 900     

    0.773 0.94 653.9 695 

17.15 0.778 0.94 900     

    0.991 0.506 451.3 892 

17.30 1.203 0.073 900     

    0.732 0.072 47.4 658 

17.45 0.26 0.07 900     

    0.641 0.071 40.9 577 

18.00 1.022 0.072 900     

    1.254 0.069 77.8 1129 

18.15 1.485 0.066 900     

    2.338 0.072 151.5 2104 

18.30 3.191 0.077 900     

    3.150 0.075 212.6 2835 

18.45 3.108 0.073 900     

    1.554 0.073 102.1 1398 

19.00 0 0.073 900     

      Σ 2062.6 Σ 10635.5 

EMC  Fedis = 0.194 mg/l 
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Na 

Time Q, l/s Na, mg/l Δt, s Qav, l/s C, mg/l QCΔt QΔt 
16.45 0 57.25      

    0.384 57.25 19786 345 

17.00 0.768 57.25 900     

    0.773 57.25 39829 695 

17.15 0.778 57.25 900     

    0.991 56.39 50294 892 

17.30 1.203 55.54 900     

    0.732 56.71 37361 658 

17.45 0.26 57.88 900     

    0.641 56.65 32681 577 

18.00 1.022 55.41 900     

    1.254 55.87 63055 1129 

18.15 1.485 56.34 900     

    2.338 55.80 117414 2104 

18.30 3.191 55.26 900     

    3.150 57.87 164062 2835 

18.45 3.108 60.49 900     

    1.554 60.49 84601 1398 

19.00 0 60.49 900     

      Σ 609083 Σ 10633 

EMC  Na = 57.28 mg/l 
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Storm 2 (07/12/2009) 
TSS 

Time Q, l/s TSS, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 14      

    0.232 12.5 2610 308 

14.15 0.464 11 900     

    0.771 11.25 7806 693 

14.30 1.077 11.5 900     

    0.854 12.0 9223 768 

14.45 0.631 12.5 900     

    0.977 11.0 9672 879 

15.00 1.323 9.5 900     

    0.980 9.25 8159 882 

15.15 0.636 9 900     

    4.986 9.25 41508 4487 

15.30 9.335 9.5 900     

    10.689 9.25 88986 9620 

15.45 12.044 9 900     

    6.022 9.0 48778 5420 

16.00 0 9 900     

      Σ 216742 Σ 22959 

EMC TSS = 9.44 mg/l 
 

 
TOC 

Time Q, l/s TOC, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 3.32      

    0.232 3.65 762.12 308 

14.15 0.464 3.98 900     

    0.771 5.775 4007.3 693 

14.30 1.077 7.57 900     

    0.854 8.94 6871.3 768 

14.45 0.631 10.31 900     

    0.977 6.55 5759.4 879 

15.00 1.323 2.79 900     

    0.980 3.15 2778.3 882 

15.15 0.636 3.51 900     

    4.986 4.52 20283 4487 

15.30 9.335 5.53 900     

    10.689 5.69 54690 9620 

15.45 12.044 5.84 900     

    6.022 5.84 31652 5420 

16.00 0 5.84 900     

      Σ 126803 Σ 22959 

EMC  TOC = 5.52 mg/l 
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Zntot 

Time Q, l/s Zntot, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 0.081      

    0.232 0.075 15.66 308 

14.15 0.464 0.068 900     

    0.771 0.071 49.27 693 

14.30 1.077 0.073 900     

    0.854 0.079 60.72 768 

14.45 0.631 0.084 900     

    0.977 0.082 72.10 879 

15.00 1.323 0.08 900     

    0.980 0.086 75.85 882 

15.15 0.636 0.092 900     

    4.986 0.097 435.28 4487 

15.30 9.335 0.102 900     

    10.689 0.096 923.53 9620 

15.45 12.044 0.09 900     

    6.022 0.09 487.78 5420 

16.00 0 0.09 900     

      Σ 2120.2 Σ 22959 

EMC  Zntot = 0.092 mg/l 
 
 
Zndis 

Time Q, l/s Zndis, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 0.04      

    0.232 0.039 8.143 308 

14.15 0.464 0.038 900     

    0.771 0.038 26.368 693 

14.30 1.077 0.039 900     

    0.854 0.042 32.281 768 

14.45 0.631 0.044 900     

    0.977 0.044 38.689 879 

15.00 1.323 0.044 900     

    0.980 0.045 39.69 882 

15.15 0.636 0.046 900     

    4.986 0.048 215.39 4487 

15.30 9.335 0.049 900     

    10.689 0.053 509.86 9620 

15.45 12.044 0.056 900     

    6.022 0.056 303.508 5420 

16.00 0 0.056 900     

      Σ 1173.9 Σ 22959 

EMC  Zndis = 0.052 mg/l 
 
 
 
 
 
 
 



 231 

Fetot 

Time Q, l/s Fetot, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 0.726      

    0.232 0.723 150.96 308 

14.15 0.464 0.719 900     

    0.771 0.716 496.8 693 

14.30 1.077 0.712 900     

    0.854 0.72 553.4 768 

14.45 0.631 0.728 900     

    0.977 0.695 611.1 879 

15.00 1.323 0.661 900     

    0.980 0.677 597.1 882 

15.15 0.636 0.692 900     

    4.986 0.662 2970.6 4487 

15.30 9.335 0.632 900     

    10.689 0.667 6406.9 9620 

15.45 12.044 0.7 900     

    6.022 0.7 3793.9 5420 

16.00 0 0.7 900     

      Σ 15580.7 Σ 22959 

EMC  Fetot = 0.679 mg/l 
 
Fedis 

Time Q, l/s Fedis, 
mg/l 

Δt, s Qav,l/s C, mg/l QCΔt QΔt 

14.00 0 0.143      

    0.232 0.12 25.06 308 

14.15 0.464 0.096 900     

    0.771 0.091 63.145 693 

14.30 1.077 0.086 900     

    0.854 0.083 63.794 768 

14.45 0.631 0.08 900     

    0.977 0.08 70.344 879 

15.00 1.323 0.079 900     

    0.980 0.082 72.324 882 

15.15 0.636 0.084 900     

    4.986 0.077 345.53 4487 

15.30 9.335 0.069 900     

    10.689 0.069 663.79 9620 

15.45 12.044 0.068 900     

    6.022 0.068 368.55 5420 

16.00 0 0.068  900     

      Σ 1672.5 Σ 22959 

EMC  Fedis = 0.073 mg/l 
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Appendix 5 
 

Raw data of metals taken from the M1 and Woodbrook 
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M1 (WET AND DRY WEATHER) 
 

date   wet      wet 

N of sample 
   Fetot    
   mg/l 

     Fedis  

      mg/ 
 

11/07/2008   

inl_1.20 pm 1.471 0.177 

inl_1.40 pm 2.677 0.155 

inl_2.00 pm 2.273 0.185 

inl_2.30 pm 2.705 0.147 

inl_2.50 pm 1.551 0.15 

a/w_2.50 pm 1.177 0.212 

a/w_3.00 pm 1.133 0.196 
 

09/09/2008   

inl_9.30 am 0.774 0.045 

inl_9.45 am 2.478 0.04 

inl_10.20 am 4.312 0.045 

b/w_9.30 am 0.498 0.039 

b/w_9.45 am 1.287 0.048 

b/w_10.00 am 3.003 0.041 

b/w_10.20 am 3.692 0.04 

a/w_9.30 am 0.369 0.065 

a/w_9.45 am 0.459 0.047 

a/w_10.00 am 0.856 0.043 

a/w_10.20 am 1.628 0.057 

a/w_10.45 am 2.647 0.226 

a/w_11.15 am 2.991 0.059 

a/w_11.35 am 3.278 0.053 

   

22/01/2009   

inl 7.09 0.147 

b/w 1.405 0.397 

ch        n/a 0.035 

Flow (ch – a/w) 3.153 0.007 

Flow (ch – a/w) 3.123 0.007 

Flow (ch – a/w) 3.209 0.006 

a/w 1.212 0.018 

3 0.174 0.026 

03/07/2009   

ch_8.45 am 0.934 0.177 

inl_11.30 am 6.162 0.101 

b/w_12.15 pm 0.962 0.171 

b/w_2 pm 3.347 0.092 

b/w_2.15 pm 5.248 0.063 

b/w_2.30 pm 5.185 0.08 

a/w_2 pm 0.597 0.171 

a/w_2.15 pm 2.204 0.14 

a/w_2.30 pm 1.617 0.152 
 
13/11/2009_after rain  

inl_10.45 am 2.109 0.141 

Inl_ 3.45 pm 1.597 0.092 

ch_10.45 am 2.844 0.103 

ch_3.45pm 2.128 0.099 

 
date     dry        dry 

N of sample 
    Fetot   
    mg/l 

      Fedis    
      mg/l 

17/12/07_3 0.735 0.04 

17/12/07_b/w 1.525 0.037 

03/01/08_3 0.228 0.022 

03/01/08_b/w 2.734 0.026 

03/01/08_a/w 1.123 0.031 

14/04/08_3 0.277 0.029 

14/04/08_b/w 0.658 0.123 

14/04/08_a/w 0.388 0.029 

14/04/08_inl 4.957 0.139 

30/05/08_inl 0.847 0.118 

30/05/08_b/w 0.943 0.077 

30/05/08_a/w 0.68 0.078 

30/05/08_3 0.526 0.066 

26/06/08_b/w 0.397 0.19 

26/06/08_a/w 0.22 0.091 

26/06/08_3 0.526 0.066 

29/07/08_ch_upper 0.234 0.091 

29/07/08_ch_low 0.831 0.12 

27/11/08_inl 1.724 0.056 

27/11/08_b/w 0.518 0.083 

27/11/08_ch_upper 0.389 0.059 

27/11/08_ch_sediment 130 n/a 

27/11/08_a/w 0.191 0.04 

27/11/08_3 0.177 0.055 

15/12/08_inl 0.899 0.018 

15/12/08_b/w 0.878 0.022 

15/12/08_ch 1.017 0.014 

15/12/08_a/w 0.194 0.041 

15/12/08_3 0.21 0.041 

13/01/09_in 3.696 0.028 

13/01/09_b/w 3.55 0.016 

13/01/09_ch 0.309 0.02 

13/01/09_a/w 0.291 0.033 

13/01/09_3 0.277 0.034 

03/03/09_inl 0.603 0.014 

03/03/09_b/w 0.8 0.008 

03/03/09_ch 0.112 0.004 

03/03/09_a/w 0.159 0.025 

03/03/09_3 0.177 0.025 

21/04/09_inl 6.02 0.065 

21/04/09_ch 0.632 0.03 

21/04/09_a/w 0.767 0.057 

21/04/09_3 0.241 0.054 

14/05/09_3 0.822 0.037 

14/05/09_b/w 2 0.044 

14/05/09_ch 0.501 0.032 

17/07/09_inl 1.519 0.067 

17/07/09_b/w 0.524 0.148 

17/07/09_ch 0.635 0.127 

17/07/09_3 0.214 0.15 
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3_3.45pm 3.378 0.17 
 

21/11/2009   

inl_5.15  pm 3.76 0.94 

inl_5.30pm 0.659 0.073 

inl_5.45pm 1.395 0.07 

inl_6.00pm 0.782 0.072 

inl_6.15pm 1.371 0.066 

inl_6.30pm 1.251 0.077 

inl_6.45pm 1.106 0.073 

ch_5.15pm 1.285 0.086 

ch_6.45pm 0.636 0.082 

3_6.45pm 0.473 0.227 
 

07/12/2009   

inl_2.00pm 0.726 0.143 

inl_2.15pm 0.719 0.096 

inl_2.30pm 0.712 0.086 

Inl_2.45pm 0.728 0.08 

inl_3 00pm 0.661 0.079 

inl_3.15pm 0.692 0.084 

inl_3.30pm 0.632 0.069 

inl_3.45pm 0.7 0.068 

a/w 2.00pm 1.021 0.079 

a/w 3.00pm 1.158 0.101 

a/w 3.45pm 1.283 0.079 
 

18/08/09_ch 0.307 0.079 

18/08/09_a/w 0.339 0.131 

18/08/09_3 0.147 0.088 

28/08/09_3 0.358 0.089 

02/09/09_ch 0.665 0.274 

02/09/09_3 0.674 0.102 

03/09/09_ch 1.14 0.187 

03/09/09_a/w 3.392 0.146 

07/09/09_ch 0.428 0.158 

07/09/09_a/w 7.386 0.091 

09/09/09_ch 0.271 0.151 

09/09/09_3 1.06 0.058 

14/09/09_ch 0.796 0.094 

14/09/09_3 1.211 0.111 

16/09/09_ch 0.945 0.125 

16/09/09_3 0.844 0.142 

25/09/09_ch 0.574 0.012 

25/09/09_3 4.076 0.091 

29/09/09_ch 0.707 0.001 

29/09/09_3 8.02 0.321 

21/10/09_inl 1.904 0.008 

21/10/09_ch 0.834 0.215 

21/10/09_3 3.08 0.083 

22/10/09_inl 2.562 0.028 

22/10/09_ch 0.865 0.181 

22/10/09_3 0.82 0.31 

29/10/09_ch 1.154 0.079 

29/10/09_3 4.87 0.024 

05/11/09_inl 5.89 0.046 

05/11/09_ch 0.821 0.124 

05/11/09_3 2.243 0.15 

09/11/09_inl 1.25 0.037 

09/11/09_ch 0.713 0.122 

09/11/09_3 2.066 0.101 

10/11/09_inl 1.439 0.038 

10/11/09_ch 0.564 0.114 

10/11/09_3 2.849 0.122 

24/11/09_inl 1.229 0.086 

24/11/09_ch 0.897 0.11 

24/11/09_3 0.419 0.214 

02/12/09_inl 0.758 0.081 

02/12/09_ch 0.819 0.074 

02/12/09_3 0.706 0.192 

09/12/09_inl 0.597 0.024 

09/12/09_ch 0.892 0.036 

09/12/09_3 0.447 0.169 
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date      wet         wet 

N of sample 
     Zntot   

     mg/l 
       Zndis  
       mg/l 

 
11/07/2008   

inl_1.20 pm 0.152 0.047 

inl_1.40 pm 0.169 0.027 

inl_2.00 pm 0.168 0.024 

inl_2.30 pm 0.177 0.023 

inl_2.50 pm 0.147 0.026 

a/w_2.50 pm 0.19 0.036 

a/w_3.00 pm 0.123 0.032 
 

09/09/2008   

inl_9.30 am 0.127 0.041 

inl_9.45 am 0.131 0.046 

inl_10.20 am 0.187 0.035 

b/w_9.30 am 0.108 0.041 

b/w_9.4 am 0.161 0.044 

b/w_10.00 am 0.157 0.047 

b/w_10.20 am 0.221 0.04 

a/w_9.30 am 0.096 0.034 

a/w_9.45 am 0.13 0.039 

a/w_10.00 am 0.104 0.042 

a/w_10.20 am 0.141 0.047 

a/w_10.45 am 0.192 0.054 

a/w_11.15 am 0.199 0.047 

a/w_11.35 am 0.261 0.043 
 

22/01/2009   

inl 0.312 0.048 

b/w 0.177 0.033 

ch 5.5 0.012 

Flow (ch – a/w) 0.205 0.051 

Flow (ch – a/w) 0.216 0.051 

Flow (ch – a/w) 0.236 0.049 

a/w 0.123 0.02 

3 0.052 0 

03/07/2009   

ch_8.45 am 0.044 0.007 

inl_11.30 am 0.308 0.074 

b/w_12.15 pm 0.046 0.019 

b/w_2pm 0.165 0.044 

b/w_2.15 pm 0.218 0.039 

b/w_2.30 pm 0.203 0.038 

a/w_2pm 0.031 0.005 

a/w_2.15 pm 0.097 0.027 

a/w_2.30 pm 0.079 0.025 
 
13/11/2009_after rain  

inl_10.45 am 0.118 0.018 

inl_3.45pm 0.098 0.058 

ch_10.45 am 0.143 0.016 

ch_3.45pm 0.12 0.012 

date       dry           dry 

N of sample 
     Zntot   

       mg/l 
       Zndis  

        mg/l 
 
17/12/07_3 0.093 0.07 

17/12/07_b/w 0.057 0.011 

03/01/08_3 0.014 0.007 

03/01/08_b/w 0.152 0.048 

03/01/08_a/w 0.07 0.016 

14/04/08_3 0.041 0.011 

14/04/08_b/w 0.13 0.025 

14/04/08_a/w 0.054 0.009 

14/04/08_inl 0.315 0.06 

30/05/08_inl 0.228 0.137 

30/05/08_b/w 0.156 0.097 

30/05/08_a/w 0.134 0.098 

30/05/08_3 0.08 0.069 

26/06/08_b/w 0.11 0.02 

26/06/08_a/w 0.081 0.012 

26/06/08_3 0.051 0.017 

29/07/08_ch_upper 0.05 0.014 

29/07/08_ch_low 0.094 0.011 

27/11/08_inl 0.165 0.069 

27/11/08_b/w 0.075 0.029 

27/11/08_ch_upper 0.127 0.099 

27/11/08_ch_sediment 9.685 0.007 

27/11/08_a/w 0.047 0.008 

27/11/08_3 0.033 0.005 

15/12/08_inl 0.076 0.038 

15/12/08_b/w 0.094 0.077 

15/12/08_ch 0.094 0.046 

15/12/08_a/w 0.037 0.011 

15/12/08_3 0.036 0.01 

13/01/09_in 0.206 0.038 

13/01/09_b/w 0.225 0.057 

13/01/09_ch 0.155 0.152 

13/01/09_a/w 0.04 0.012 

13/01/09_3 0.047 0.008 

03/03/09_inl 0.165 0.04 

03/03/09_b/w 0.166 0.028 

03/03/09_ch 0.135 0.026 

03/03/09_a/w 0.091 0.004 

03/03/09_3 0.024 0.003 

21/04/09_inl 0.438 0.015 

21/04/09_ch 0.176 0.013 

21/04/09_a/w 0.188 0.011 

21/04/09_3 0.153 0.01 

14/05/09_3 0.099 0.018 

14/05/09_b/w 0.255 0.009 

14/05/09_ch 0.127 0.013 

17/07/09_inl 0.164 0.022 

17/07/09_b/w 0.043 0.009 

17/07/09_ch 0.056 0.019 

17/07/09_3 0.009 0 
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3_3.45pm 0.108 0.014 
 

21/11/2009   

inl_5.15pm 0.273 0.025 

inl_5.30pm 0.079 0.025 

inl_5.45pm 0.111 0.024 

inl_6.00pm 0.081 0.028 

inl_6.15pm 0.105 0.025 

inl_6.30pm 0.105 0.026 

inl_6.45pm 0.091 0.027 

ch_5.15pm 0.078 0.035 

ch_6.45pm 0.074 0.034 

3_6.45pm 0.04 0.007 
 

07/12/2009   

inl_2.00pm 0.081 0.04 

inl_2.15pm 0.068 0.038 

inl_2.30pm 0.073 0.039 

Inl_2.45pm 0.084 0.044 

inl_3 00pm 0.08 0.044 

inl_3.15pm 0.092 0.046 

inl_3.30pm 0.102 0.049 

inl_3.45pm 0.09 0.056 

a/w 2.00pm 0.058 0.021 

a/w 3.00pm 0.071 0.017 

a/w 3.45pm 0.073 0.019 

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   
 
 
 
 
 
   

              

18/08/09_ch 0.019 0 

18/08/09_a/w 0.007 0 

18/08/09_3 0 0 

28/08/09_3 0 0 

02/09/09_ch 0 0 

02/09/09_3 0 0 

03/09/09_ch 0.009 0.008 

03/09/09_a/w 0.14 0 

07/09/09_ch 0 0 

07/09/09_a/w 0.215 0 

09/09/09_ch 0.033 0 

09/09/09_3 0.044 0 

14/09/09_ch 0.051 0.003 

14/09/09_3 0.035 0 

16/09/09_ch 0.047 0.003 

16/09/09_3 0.012 0 

25/09/09_ch 0.03 0 

25/09/09_3 0.039 0 

29/09/09_ch 0.064 0 

29/09/09_3 0.094 0 

21/10/09_inl 0.101 0.01 

21/10/09_ch 0.066 0.024 

21/10/09_3 0.051 0.01 

22/10/09_inl 0.124 0.01 

22/10/09_ch 0.069 0.023 

22/10/09_3 0.023 0.014 

29/10/09_ch 0.052 0.007 

29/10/09_3 0.05 0.003 

05/11/09_inl 0.264 0.019 

05/11/09_ch 0.066 0.026 

05/11/09_3 0.045 0.008 

09/11/09_inl 0.087 0.01 

09/11/09_ch 0.084 0.036 

09/11/09_3 0.049 0.002 

10/11/09_inl 0.095 0.005 

10/11/09_ch 0.073 0.031 

10/11/09_3 0.059 0 

24/11/09_inl 0.092 0.032 

24/11/09_ch 0.092 0.04 

24/11/09_3 0.048 0.014 

02/12/09_inl 0.086 0.032 

02/12/09_ch 0.061 0.033 

02/12/09_3 0.022 0.001 

09/12/09_inl 0.103 0.086 

09/12/09_ch 0.097 0.073 

09/12/09_3 0.024 0.01 
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date wet wet 

N of sample 
     Cutot    

      mg/l 
     Cudis  

       mg/l 
 

11/07/2008   

inl_1.20 pm 0.0137 0.0127 

inl_1.40 pm 0.034 0.005 

inl_2.00 pm 0.031 0.009 

inl_2.30 pm 0.034 0.008 

inl_2.50 pm 0.025 0.0109 

a/w_2.50 pm 0 0 

a/w_3.00 pm 0 0 
 

09/09/2008   

inl_9.30 am 0.066 0.016 

inl_9.45 am 0.086 0.019 

inl_10.20 am 0.095 0.017 

b/w_9.30 am  0.047 0.015 

b/w_9.45 am  0.063 0.017 

b/w_10.00 am 0.084 0.018 

b/w_10.20 am 0.135 0.017 

a/w_9.30 am 0.048 0.012 

a/w_9.45 am 0.055 0.012 

a/w_10.00 am 0.037 0.014 

a/w_10.20 am 0.078 0.016 

a/w_10.45 am 0.095 0.021 

a/w_11.15 am 0.082 0.017 

a/w_11.35 am 0.098 0.018 
 

22/01/2009   

inl 0.167 0.008 

b/w 0.253 0.002 

ch 1.434 0 

Flow (ch – a/w) 0.134 0.007 

Flow (ch – a/w) 0.164 0.007 

Flow (ch – a/w) 0.22 0.005 

a/w 0.161 0 

3 0.077 0 
 

03/07/2009   

ch_8.45 am 0.014 0 

inlet_11.30 am 0.135 0.042 

b/w_12.15 am 0.022 0.005 

b/w_2pm 0.085 0.024 

b/w_2.15 pm 0.11 0.028 

b/w_2.30 pm 0.094 0.029 

a/w_2pm 0.004 0 

a/w_2.15 pm  0.033 0.009 

a/w_2.30 pm 0.024 0.006 
 
13/11/2009_after rain  

inl_10.45 am 0.008 0 

inl_3.45pm 0.003 0 

ch_10.45 am 0.023 0 

ch_3.45pm 0.007 0 

3_3.45pm 0 0 

   

 
date 

 
     dry 

 
          dry 

N of sample 
     Cutot  

        mg/l 
         Cudis      
         mg/l 

 
17/12/07_3 0.013 0.009 

17/12/07_b/w 0.008 0.005 

03/01/08_3 0.005 0.003 

03/01/08_b/w 0.033 0.016 

03/01/08_a/w 0.025 0.007 

14/04/08_3 0.003 0.003 

14/04/08_b/w 0.012 0.002 

14/04/08_a/w 0.016 0 

14/04/08_inl 0.076 0.013 

30/05/08_inl 0.047 0.029 

30/05/08_b/w 0.044 0.02 

30/05/08_a/w 0.035 0.016 

30/05/08_3 0.041 0.009 

26/06/08_b/w 0.025 0.002 

26/06/08_a/w 0.025 0.003 

26/06/08_3 0.029 0.006 

29/07/08_ch_upper 0.014 0.003 

29/07/08_ch_low 0.024 0.002 

27/11/08_inl 0.035 0.008 

27/11/08_b/w 0.008 0 

27/11/08_ch_upper 0.003 0 

27/11/8b/w'l 2.09 0 

27/11/08_a/w 0.002 0 

27/11/08_3 0.003 0.003 

15/12/8_inl 0.025 0.007 

15/12/8_b/w 0.023 0.007 

15/12/8b/w' 0.026 0.006 

15/12/8_a/w 0.011 0 

15/12/8_3 0.013 0.003 

13/01/9_in 0.042 0.007 

13/01/9_b/w 0.042 0.007 

13/01/9_b/w' 0 0 

13/01/9_a/w 0.002 0 

13/01/9_3 0.006 0 

3/3/9_inl 0.03 0.01 

3/3/9_b/w 0.023 0.004 

3/3/9_upper 0.007 0.002 

3/3/9_a/w 0.029 0 

3/3/9_3M1 0.01 0 

21/4/9_inl 0.096 0.028 

21/4/9_b/w' 0.009 0.007 

21/4/9_a/w 0 0 

21/4/9_3M1 0 0 

14/5/9_3M1 0.004 0 

14/5/9_b/w 0.034 0.002 

14/5/9_b/w' 0.003 0.002 

17/7_inlet 0.049 0.014 

17/7_b/w 0.012 0 

17/7_chamber 0.011 0.003 

17/7_3M1 0.006 0 

18/8_chamber 0 0 

18/8_a/w 0.003 0 
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21/11/2009 

inl_5.15pm 0.033 0.003 

inl_5.30pm 0 0 

inl_5.45pm 0 0 

inl_6.00pm 0 0 

inl_6.15pm 0 0 

inl_6.30pm 0 0 

inl_6.45pm 0 0 

ch_5.15pm 0 0 

ch_6.45pm 0 0 

3_6.45pm 0 0 
 

07/12/2009   

inl_2.00pm 0 0 

inl_2.15pm 0 0 

inl_2.30pm 0 0 

Inl_2.45pm 0 0 

inl_3 00pm 0 0 

inl_3.15pm 0 0 

inl_3.30pm 0 0 

inl_3.45pm 0 0 

a/w 2.00pm 0 0 

a/w 3.00pm 0 0 

a/w 3.45pm 0.002 0 
 

18/8_3M1 0 0 

28/8_3M1 0 0 

2/9_Chamber 0 0 

2/9_3M1 0 0 

3/9_chamber 0 0 

3/9_a/w 0.006 0 

7/9_chamber 0 0 

7/9_a/w 0.013 0 

9/9_chamber 0 0 

9/9_3M1 0 0 

14/9_chamber 0 0 

14/9_3M1 0 0 

16/9_chamber 0 0 

16/9_3M1 0 0 

25/9_chamber 0 0 

25/9_3M1 0 0 

29/9_chamber 0 0 

29/9_3M1 0.004 0 

21/10/Inlet 0.022 0.004 

21/10_chamber 0 0 

21/10_3M1 0 0 

22/10/Inlet 0.02 0.005 

22/10_chamber 0 0 

22/10_3M1 0 0 

29/10_chamber 0 0 

29/10_3M1 0 0 

05/11_Inlet 0.042 0 

05/11_chamber 0 0 

05/11_3M1 0 0 

09/11/09_Inlet 0 0 

09/11/09_chamber 0 0 

09/11/09_3M1 0 0 

10/11/09_Inlet 0 0 

10/11/09_chamber 0 0 

10/11/09_3M1 0 0 

24/11/09_inl 0 0 

24/11/09_ch 0 0 

24/11/09_3m1 0 0 

02/12/09_inl 0 0 

02/12/09_ch 0 0 

02/12/09-3m1 0 0 

09/12/09_inl 0 0 

09/12/09_ch 0 0 

09/12/09_3M1 0 0 
 

 
inl – inlet (sample point N 1, see Fig. 4.2); b/w – before weir (sample point N 2, see Fig. 4.2); a/w - 
after weir (sample point N 3, see Fig. 4.2); 3M1 (3m1) – sample point N 4 (see Fig. 4.2); ch – chamber 
(see Photo 4.3 and Fig. 4.3); n/a – not analysed. 
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WOODBROOK (WET AND DRY WEATHER) 
 

date    wet wet 

N of sample    Fetot Fedis 

28/10/7_1 6.199 0.204 

28/10/7_1 0.868 0.022 

28/10/7_2 0.402 0.026 

15/01/08_2 9.334 0.418 

16/01/08_2 4.487 0.637 

17/01/08_2 2.211 0.238 

17/05/08_2 0.178 0.028 

27/05/08_2 0.569 0.032 

28/05/08_2 3.7 0.171 

13/12/08_2 10.96 0.832 

12/01/2009 0.832 0.08 

22/01/2009 2.515 0.263 

15/04/2009 0.292 0.089 

07/07/09_morning 0.122 0.03 

07/07/09_afternoon 5.02 0.104 

29/07/2009 2.27 0.039 
 

date dry dry 

N of sample  Fetot Fedis 

5/10/7_1 0.134 0.005 

5/10/7_2 0.618 0.023 

20/10/7_1 0.079 0.04 

20/10/7_2 0.072 0.016 

21/12/7_2 0.311 0.104 

22/01/08_2 1.907 0.696 

23/01/08_2 0.715 0.232 
30/04/08_2 0.362 0.182 

30/05/08_2 0.256 0.075 

23/06/08_2 0.125 0.021 

23/07/08_2 0.321 0.011 

08/09/2008 0.528 0.222 

28/09/2008 0.143 0.063 

24/11/2008 0.277 0.04 

25/11/2008 0.165 0.028 

08/01/2009 0.479 0.025 

10/01/2009 0.132 0.048 

27/02/2009 0.16 0.092 

03/03/2009 0.168 0.016 

01/04/2009 0.064 0.017 

21/04/2009 0.261 0.005 

12/05/2009 0.099 0.006 

20/07/2009 0.168 0.063 

10/08_2009 0.114 0.042 

13/08/2009 0.121 0.014 

19/08/2009 0.071 0 

16/09/2009 0 0 

18/09/2009 0.025 0 
 

 
date wet wet 

N of sample 
W/d; Zn; 
tot 

W/d; Zn; 
dis 

28/10/2007 0.105 0.047 

28/10/2007 0.033 0.032 

28/10/2007 0.019 0.018 

15/01/2008 0.07 0.018 

16/01/2008 0.044 0.016 

17/01/2008 0.056 0.014 

17/05/2008 0.074 0.051 

27/05/2008 0.094 0.056 

28/05/2008 0.068 0.066 

13/12/2008 0.097 0.039 

12/01/2009 0.064 0.011 

22/01/2009 0.053 0.003 

15/04/2009 0.202 0.017 

07/07/09_morning 0.012 0.0043 

07/07/09_afternoon 0.081 0.003 

29/07/2009 0.051 0.002 
 

date dry dry 

N of sample 
W/d; Zn; 
tot 

W/d; Zn; 
dis 

5/10/2007 0.026 0.012 

5/10/2007 0.028 0.018 

20/10/2007 0.016 0.011 

20/10/2007 0.02 0.017 

21/12/2007 0.011 0.004 

22/01/2008 0.022 0.015 

23/01/2008 0.056 0.016 

30/04/2008 0.039 0.019 

30/05/2008 0.05 0.014 

23/06/2008 0.044 0.019 

23/07/2008 0.055 0 

08/09/2008 0.079 0.003 

28/09/2008 0.028 0.004 

24/11/2008 0.038 0.003 

25/11/2008 0.037 0.002 

08/01/2009 0.051 0.017 

10/01/2009 0.027 0 

27/02/2009 0 0 

03/03/2009 0 0 

01/04/2009 0.073 0 

21/04/2009 0.109 0.02 

12/05/2009 0.065 0.004 
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20/07/2009 0.011 0.005 

10/08/2009 0.029 0 

13/08/2009 0 0 

19/08/2009 0 0 

16/09/2009 0 0 

18/09/2009 0.003 0 
 

 

 

date wet wet 

N of sample 
W/d; Cu; 
tot 

W/d; Cu; 
dis 

28/10/2007 0.04 0.021 

28/10/2007 0.01 0.009 

28/10/2007 0.005 0.004 

15/01/2008 0.013 0.004 

16/01/2008 0.01 0.008 

17/01/2008 0.011 0.003 

17/05/2008 0.025 0.003 

27/05/2008 0.027 0.002 

28/05/2008 0.039 0.003 

13/12/2008 0.022 0.006 

12/01/2009 0.011 0 

22/01/2009 0.103 0.003 

15/04/2009 0 0 

07/07/09_morning 0.011 0.003 

07/07/09_afternoon 0.027 0 

29/07/2009 0.003 0 
 

date dry dry 

N of sample 
W/d; Cu; 
tot 

W/d; Cu; 
dis 

21/12/2007 0.006 0.003 

22/01/2008 0.003 0.002 

23/01/2008 0.006 0.005 

30/04/2008 0.017 0 

30/05/2008 0.018 0.003 

23/06/2008 0.019 0.007 

23/07/2008 0 0 

08/09/2008 0.022 0.003 

28/09/2008 0.009 0.003 

24/11/2008 0.013 0.012 

25/11/2008 0.018 0 

08/01/2009 0 0 

10/01/2009 0.006 0.004 

27/02/2009 0.018 0 

03/03/2009 0.015 0 

01/04/2009 0 0 

21/04/2009 0.005 0.005 

12/05/2009 0.003 0.003 

20/07/2009 0 0 

  10/08/2009 0 0 

13/08/2009 0 0 

19/08/2009 0 0 

16/09/2009 0 0 

18/09/2009 0 0 
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Appendix 6 

Raw data for measured water quality parameters 
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RAINWATER SAMPLES TAKEN FROM 04.10.2006 TO 27.10.2006 
Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, mg/l 

3NO  mg/l 

06.10.06 Woodbrook Drizzle 7.8 360 590 2.4 3.95 3.0 17.23 

09.10.06 M1 (J24) Dry; Twater=14.5ºC; 
Tsample=17.9 ºC 

7.3 180 210 5.9 5.01 6.0 2.27 

09.10.06 M1(J24) 
 

Dry; Twater=16.5ºC; 
Tsample=18.4 ºC 

7.6 300 420 9.4 6.52 3.0 0.8 

09.10.06 M1(J24) 
 

Dry; Twater=15.0ºC; 
Tsample=18.2 ºC 

7.3 270 380 73.5 6.38 72.0 0.68 

11.10.06 Woodbrook Heavy rain from10.00 am; 
cloudy; Tsample=18.4 ºC 

7.2 140 370 36.5 4.4 250.0 5.62 

12.10.06 Woodbrook Dry; Twater=15.6ºC; 
Tsample=15.7 ºC 

7.9 310 850 19.8 10.84 11.0 29.04 

13.10.06 Woodbrook Dry; foggy Twater=15.5ºC; 
Tsample=15.5 ºC 

8.0 350 970 4.37 5.58 5.0 25.67 

18.10.06 Woodbrook Dry; cloudy;  
Tsample=16.9 ºC 

7.8 410 1090 1.36 0.62 5.0 18.76 

3M1 
19.10.06 

M1(J24) 
 

Rain (drizzle);  
Twater=15.9ºC; 
Water depth = 23 cm. 

6.8 210 560 22.0 8.94 19.0 0.33 

3M1 
19.10.06 

M1 (J24) 

duplicate 
6.8 230 610 19.6 7.68 15.4 2.29 

20.10.06 Woodbrook Heavy rain during night; 
water depth = 20 cm; 
Twater=13.8ºC; Tair=16.0ºC. 

7.5 130 350 11.5 4.84 16.0 5.66 

20.10.06 
 

Woodbrook 
duplicate 

7.4 120 330 11.0 5.95 12.5 5.26 

3M1 
26.10.06 

M1 (J24) Drizzle; water depth = 39 
cm; Twater=13.7ºC; 
Tair=14.0ºC. 

7.2 200 550 15.5 5.23 6.5 0.69 

27.10.06 Woodbrook Dry; water depth = 13.5 cm;  
Twater=10.8ºC; Tair=13.0ºC. 

7.9 310 830 6.84 6.67 3.0 Not 
analysed 
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RAINWATER SAMPLES TAKEN FROM 07.11.2006 TO 27.11.2006 
Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO ,  mg/l 

07.11.06 Woodbrook Dry weather during two 
weeks; Tair= 9ºC; 
Twater=7.9ºC; 
depth of water = 10 cm 

7.9 380 570 1.43 3.12 3.0 29.79 

3M1 
08.11.06 

M1 (J24) 
 

Rain (drizzle); 
Twater=7.7ºC; Tair= 12ºC; 
Depth of water = 11 cm 

7.0 230 370 18.0 4.93 19.0 1.193 

11.11.06 Woodbrook Dry; windy; cloudy.  
Tair= 10ºC; 
Depth of water = 13 cm 

7.6 310 540 1.87 5.94 3.0 21.50 

* 
11.11.06 

Woodbrook * - samples were 
collected  immediately 
after rain at 9 pm.    

7.2 230 370 23.3 Not 
analysed 

36.0 14.05 

17.11.06 Woodbrook Drizzling during  the 
whole night; water depth 
= 30 cm; Twater=7.9ºC; 
Tair=10.0ºC. 

7.3 260 420 25.2 3.87 34.0 13.32 

23.11.06 Woodbrook Samples collection after 
rain; water depth = 19 
cm; Twater=8.2ºC; 
Tair=10.0ºC. 

7.2 190 310 131 17.72 126 31.82 

3M1 
23.11.06 

M1 (J24) Twater=7.7ºC; Tair= 10ºC; 7.0 240 390 15.2 6.08 17.0 2.35 

27.11.06 Woodbrook 
 

Dry; windy; cloudy.  
Tair= 10ºC; Twater=9.6ºC;  
 

7.5 270 440 9.5 7.92 2.0 Not analysed 
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RAINWATER SAMPLES TAKEN FROM 06.12.2006 TO 19.12.2006 
Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO  mg/l 

06.12.06 Woodbrook Drizzle during night; 
cumulus; Tair= 8ºC. 

7.5 210 440 38.7 6.52 33.0 27.76 

06.12.06 M1(24) 
 

Drizzle during night; 
cumulus; 
Tair= 8ºC. 

7.0 200 490 12.8 4.10 14.0 1.29 

08.12.06 Woodbrook  Rain during night;  
Tair= 9ºC. 

7.2 220 450 26.0 - 26.0 30.06 

08.12.06 M1(24) 
 

Rain during night;  
Tair= 9ºC. 

7.1 190 380 15.0 3.85 10.0 4.21 

11.12.06 Woodbrook Heavy rain; Tair= 10ºC. 7.2 120 240 134 7.91 378.0 16.60 

12.12.06 M1(24) 
 

Rain started at 1.00 pm; 
samples were collected at 
4.00 pm. Tair= 10ºC. 

7.2 210 400 15.8 3.55 16.0 1.56 

19.12.06 M1(24) 
junction 

Dry  6.9 240 480 7.28 4.01 4.0 Not analysed 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 245 

RAINWATER SAMPLES TAKEN FROM 11.01.2007 TO 23.02.2007 
Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO  mg/l 

13.02.07 Woodbrook  08.02.2007 – it was 
snowing; 
09.02.2007 – it was 
thawing; Tair= 8ºC. 

7.1 220 460 20.3 6.13 64.0 33.48 

16.02.07 Woodbrook Drizzle during night; 
Tair= 10ºC. 
 

7.3 290 600 8.5 Not 
analysed 

12.0 30.84 

20.02.07 M1 (J24) 
 

Dry  
 
 

6.8 700 1440 12.8 3.06 13.0 1.03 

Outlet of 
the 

lagoon 
22.02.07 

M1 (J24) 
 

Tair= 10ºC; 
 

7.2 670 1270 35.9 3.80 58.0 1.7 

23.02.07 Woodbrook Samples were collected at 
4.00 pm during rain 

7.3 170 360 68.8 8.82 51.0 24.01 

 

 
RAINWATER SAMPLES TAKEN FROM 09.03.2007 TO 29.03.2007 

Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO  mg/l 

3M1 
09.03.07  

 

M1 (J24) 
 

Dry, sunny. 
Tair= 10ºC; 
Twater= 8.7ºC; 
Depth of water = 74 cm 

7.0 710 1380 3.97 3.29 8.0 1.375 

3M1 
29.03.07 

M1(J24) 
 
 

Drizzling 
Twater= 9.9ºC 
Sample was taken from a 
shallow place 

7.6 710 1320 71.2 5.86 448.0 0.653 
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RAINWATER SAMPLES TAKEN FROM 11.04.2007 TO 30.04.2007 

Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO  mg/l 

3M1 
11.04.07 

M1 (J24) 
 

Samples were taken 
from places with 
different water depth 

7.5 750 1290 2.74 8.82 17.0 0.433 

32.4 200.0 

Final 
effluent 

Loughborough 
sewage works  

 7.3 920 980 2.18 5.2 3.0 85.84 

3M1 
23.04.07  

 

M1(J24) 
 

Drizzling 
 

7.4 820 1460 18.3 12.81 48.0 0.967 

24.04.07 Woodbrook Dry 8.1 270 520 2.71 4.78 5.0 18.42 

3M1 
30.04.07  

 

M1(J24) 
 

Dry, sunny. The lagoon 
started to dry. 
Twater= 14.6ºC; 
 

7.2 1350 1460 3.7 6.0 2.0 7.148 
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RAINWATER SAMPLES TAKEN FROM 08.05.2007 TO 27.05.2007 
Number 
and date 
of sample 
collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC, mg/l TSS, 
mg/l 



3NO  mg/l 

08.05.07 Woodbrook Dry. Tair = 16ºC 7.6 350 600 1.13 19.14 10.0 Problems with 
nitrates (pre-
washed bottles 
with HNO3) 

3M1 
11.05.07  

 

M1 (J24) 
 

Cloudy, windy; Tw = 
13ºC; 
depth of water = 35 cm  

7.2 820 1630 3.35 9.17 11.0 

b/w  
11.05.07  

M1(J24) 
 

 
 

7.7 1140 2560 6.71 11.29 13.0 

         

3M1 
18.05.07  

 

M1 (J24) 
 

Tw = 18.6ºC. 6.9 550 1130 3.83 8.48 9.0 0.422 

b/w 
18.05.07 

M1 (J24) 
 

 7.2 690 1270 28.5 13.51 21.0 Not analysed 

Inlet  
18.05.07 

M1 (J24) 
 

Tw = 16.8ºC. 7.4 `1000 2220 44.1 25.31 83.0 1.672 

25.05.07 Woodbrook Tair = 19ºC. Cloudy, dry 7.9 300 550 1.56 3.36 6.0 18.42 

27.05.07 Woodbrook Rain during two days – 
heavy showers. Tair = 
10ºC; Tw = 13.5ºC. 

6.9 130 260 6.75 12.6 11.0 9.89 

27.05.07 
duplicate 

Woodbrook Tw = 11.6ºC. 6.7 130 160 6.6 6.88 13.0 9.17 
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RAINWATER SAMPLES TAKEN FROM 05.10.2007 TO 28.10.2007  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 

05.10.07 Woodbrook Tw = 10ºC 7.6 330 600 1.8 2.91 30 300 23.32 

09.10.07  
Inlet  

M1 (J24) 
 

Rain during night 
and morning.  
Rain gauge was 
installed at 10.35 
am. Very 
shallow. Oil film 
on the water 
surface 

6.8 90 180 56.5 15.97 118 75 11.97 

b/w 
09.10.07  

M1 (J24) 
 

 7.2 100 210 4.47 5.69 12 60 0 

a/w 
09.10.07  

 

M1 (J24)  7.4 310 630 3.33 6.13 25 185 0.44 

20.10.07 Woodbrook Dry; shallow 7.7 280 580 1.58 3.25 6 235 21.729 

 

 
RAINWATER SAMPLES TAKEN FROM 17.12.2007 TO 21.12.2007  

Number 
and date of 

sample 
collection 

Location Weather pH TDS, 
mg/L 

EC,  
µs/cm 

Turb, 
NTU 

TOC,  
mg /L C 

SS, 
mg/L 

Hardness, 
tot, mg/L 

CaCO3 



3NO  

mg/L 

PO4 

b/w 
17.12.07 

M1(J24) 
 

The lagoon was 
frozen. Thickness 
of the ice was 4-
5 cm (3M1).  To 
collect samples it 
was necessary to 
break the ice. 

6.6 490 930 23.4 5.26 8 137 0.630 0.111 
6.7 280 630 20.6 6.02 47 115 _ 0.485 

3M1 
17.12.07 

 
M1(J24) 

 

21.12.2007 Woodbrook Tw = 3.3 ºC 7.8 290 570 5.37 1.78 16 185 30.442 0.389 

 



 249 

RAINWATER SAMPLES TAKEN FROM 03.01.2008 TO 23.01.2008  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, mg/l EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, 
mg/l 

3M1 
03.01.08 

M1 (J24) 
 

Windy; 
Tw = 3.1 ºC 

7.5 380 790 7.57 6.13 8 108 0.197 0.892 

b/w 
03.01.08 

M1(J24) 
 

Tw = 1.8 ºC 7.5 590 1250 80.1 7.417 31 130 0.785 0.240 

a/w 
03.01.08 

M1(J24) 
 

Thin cover of ice 7.6 400 820 9.25 6.35 18 155 0 0 

15.01.2008 Woodbrook Heavy shower. 7.3 150 300 183 14.91 105 425 56.491 1.272 

16.01.2008 Woodbrook  6.9 170 350 107 13.32 61 265 25.554 0.134 

17.01.2008 Woodbrook Heavy shower 7.4 200 400 35.7 6.12 55 175 25.683 0 

22.01.08 Woodbrook Dry weather. It 
was raining 
21.01.08  

7.4 220 440  10.93 14 195 24.569 0.099 

23.01.08 Woodbrook Dry 7.6 240 500 12.9 5.42 12 185 27.212 0 

 
RAINWATER SAMPLES TAKEN FROM 14.04.2008 TO 30.04.2008  

Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, mg/l, as P Na
+
, mg/l 

3M1 
14.04.08 

M1 (J 24) 
 

Dry 7.0 520 1070 2.49 2.51 14.0 185 0.438 0.208 164.46 
 

7.3 660 1290 5.42 27.37 27.0 80 0.138 0 243.49 b/w 
14.04.08 

M1 (J24) 
 7.1 440 750 2.69 11.39 14.0 122 0.284 0 173.0 

7.1 1310 3300 46.4 41.07 126.0 185 0 0 574.14 a/w 
14.04.08 

M1 (J24) 
 

Inlet 
14.04.08 

M1 (J24) 
 

30.04.08 Woodbrook During 
night 
there was 
a heavy 
shower 

7.8 210 420 15.5 14.71 12.0 165 17.131 0 21.83 
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RAINWATER SAMPLES TAKEN FROM17.05.2008 TO 30.05.2008  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, mg/l, as P Na
+
, mg/l 

17.05.08 Woodbrook Light 
drizzle  

7.8 280 550 8.42 11.79 15.0 325 20.054 0.609 26.97 

27.05.08 Woodbrook 25/05/08 
and 
26/06/08 
it was 
raining. 

7.3 160 320 4.8 10.0 8.0 235 12.961 0.158 12.80 

28.05.08 Woodbrook Heavy rain 7.3 190 400 40.0 25.3 54.0 235 19.196 0.183 17.85 

30.05.08 Woodbrook Rain 
29.05.08 

7.2 220 430 4.16 13.5 5.0 220 15.792 0.109 15.91 

3M1 
30.05.08 

M1 (J 24) Rain 
during 
night  

7.3 410 790 17.6 11.745 39.5 175 1.534 0 127.78 
6.9 190 380 52.9 14.44 31.5 130 2.995 0 63.60 
7.3 300 590 39.6 21.11 45.0 185 2.370 0 90.92 b/w 

30.05.08 
M1 (J 24) 

7.1 190 370 41.1 15.92 24.0 130 2.585 0 65.38 

a/w 
30.05.08 

M1 (J 24) 

Inlet 
30.05.08 

M1 (J 24) 

RAINWATER SAMPLES TAKEN FROM 23.06.2008 TO 30.06.2008 
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, mg/l, as P Na
+
, mg/l 

23.06.08 Woodbrook Dry  8.2 310 640 2.79 9.0 9.0 325 18.736 0 18.92 

3M1 
26.06.08 

M1 (J 24) Dry; 
shallow; 
algae 

7.7 390 740 2.29 13.01 5.0 122 0.482 0 121.8 
6.9 250 420 6.23 12.23 25.0 115 3.872 0 60.1 
7.9 400 730 2.91 12.55 11.0 102 3.437 0 112.0 b/w 

26.06.08 
M1 (J 24) 

a/w 
26.06.08 

M1 (J 24) 
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RAINWATER SAMPLES TAKEN FROM 11.07.2008 TO 29.07.2008  
Number 
and date 
of sample 
collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

Inlet 
13.20 

11.07.08 

M1 (J24) 
 

There were heavy 
and light showers 
throughout this 
week. One could 
observe 2 showers 
on this day.  

 
12.50 – 13.50 – 4 mm; 
14.00 – 14.20 – 2 mm. 

 
It was also observed 

how water flowed into 
the lagoon via the weir. 

7.0 190 390 51.7 15.91 24 145 1.948 0 46.04 
7.0 130 250 62.1 15.96 39 85 1.217 0 31.75 

Inlet 
13.40 

11.07.08 
7.0 110 230 56.7 14.283 125 95 1.244 0 26.00 
6.9 120 240 59.0 13.025 42 137 1.222 0 30.72 
6.9 130 270 59.9 14.36 45 95 1.467 0 32.63 Inlet 

14.00 
11.07.08 

6.8 160 340 12.4 12.31 7 90 0.525 0 40.72 
6.7 160 330 11.6 11.89 12 108 1.320 0 39.85 
7.9 2600 5120 2.76 19.65 Not 

analysed 
465 Due to the massive value of 

chloride (more than 450 ppm), it 
was impossible to analyse nitrates 

Not analysed Inlet 

(2
nd

shower) 

14.30 
11.07.08 

Inlet 
(2

nd
shower) 

14.50 
11.07.08 
Flowing 
into the 
lagoon 
14.50 

Flowing 
into the 
lagoon 
15.00 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, mg/l, as P Na
+
, mg/l 

23.07.08 Woodbrook Dry. 
Sunny. 

Shallow.  

7.8 290 570 1.39 6.64 5.34 265 16.612 0.123 9.00 

29.07.08 
Ch - (upper 
layers) 

M1(J 24) 
 

Dry and 
sunny. 
There was 
no water 
after the 
trap. The 
lagoon is 
drying. 
Shower in 
the 
morning.  

6.9 210 420 4.84 15.83 5.84 130 0.789 0 26.36 
6.8 210 410 21.9 13.72 36.75 102 0.130 0 45.23 

29.07.08 
Ch - (lower 
layers) 
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RAINWATER SAMPLES TAKEN FROM 08.09.2008 TO 09.09.2008  
Number 
and date 
of sample 
collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

08.09.08 Woodbrook Dry, but last night 
there was heavy 

rain.  

7.1 210 420 9.67 19.08 7.0 175 24.933 0 19.74 

Inlet 
9.30 

09.09.08 

M1 (J 24) 
 

Amount of 
precipitation 
from 01.09 to 
08.09 - 20 cm. 
 
Rain started 
approx. at 8 am. 
Rain gauge was 
installed upon 
arrival in the 
lagoon at 9.30. 
 
9.30 – 9.45 – 
1mm 
9.45 – 10.00 –few 
drops 
10.00 – rain 
stopped 
10.35 rain started 
again. 
10.35 – 11.00 – 
drizzle (few 
drops) 
11 – 11.15 – 0.5 
mm 
11.15 – 11 25 – 
0.2 mm 

7.1 590 1180 24.2 15.91 22.0 355 2.492 0 96.83 

7.0 410 800 90.3 11.72 91.3 Not 
analysed 

3.797 0 47.05 

Inlet 
9.45 

09.09.08 

7.0 230 460 102 10.38 129 Not analysed 3.070 0 38.39 

7.1 630 1240 10.1 12.32 13.75 Not analysed 1.793 0 98.16 
7.0 540 1080 39.8 13.48 45.0 Not analysed 3.323 0 80.23 Inlet 

10.20 
09.09.08 7.0 410 810 79.6 14.04 76.43 Not analysed 5.341 0 62.74 

7.0 300 590 102 13.928 105.95 235 3.844 0 44.12 

7.0 480 880 6.66 11.32 4.75 235 1.566 0 76.13 
b/w 
9.30 

09.09.08 

b/w 
9.45 

09.09.08 

b/w 
10.00 

09.09.08 

b/w 
10.20 

09.09.08 

a/w 
9.30 

09.09.08 
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Number 
and date 
of sample 
collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  

mg/l 

PO4, mg/l, as P Na
+
, mg/l 

a/w 
9.45 

09.09.08 

M1  (J 24) 
 

 7.0 560 1110 10.8 12.43 10.25 390 1.823 0 89.74 

a/w 
10.00 

09.09.08 

7.0 540 1060 27.3 9.3 22.5 355 2.535 0 89.78 

a/w 
10.20 

09.09.08 

7.0 470 930 45.1 13.51 41.0 500 6.431 0 75.83 

a/w 
10.45 

09.09.08 

7.0 390 780 63.3 13.06 37.5 Not 
analysed 

3.732 0 64.43 

a/w 
11.15 

09.09.08 

6.8 310 540 75.7 13.778 78.0 Not 
analysed 

3.568 0.080 51.76 

a/w 
11.35 

09.09.08 

6.6 310 580 79.0 19.39 81.0 425 3.294 0.409 45.54 
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RAINWATER SAMPLES TAKEN FROM 28.09.2008 TO 27.11.2008  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

28.09.08 Woodbrook Dry, shallow 7.0 280 550 1.19 4.25 4.0 325 20.69 0.39 13.48 

24.11.08 Woodbrook 23/11/08 
there was rain 

7.0 240 500 1.38 7.55 5.5 355 24.61 1.52 19.42 

25.11.08 Woodbrook Dry, chilly  7.8 240 480 1.10 5.39 3.0 300 25.34 0.12 17.89 

27.11.08 
Inlet 

M1 (J 24) 
 

Dry, windy 
 
 

7.5 1570 3600 19.46 9.73 47 500 2.642 0 448 

27.11.08 
b/w 

7.5 380 740 2.91 9.91 12.4 210 0.643 0 81.68 

27.11.08 
Ch - upper 

7.2 430 840 3.12 4.92 4.34 390 0.892 0 86.21 

27.11.08 
Ch -  lower 

7.0 430 840 100 6.51 7335 325 0.756 0.47 95.77 

27.11.08 
a/w 

7.3 190 370 1.82 4.723 3.0 122 0 0 51.72 

27.11.08 
3M1 

7.4 180 370 1.42 3.953 4.0 70 0.127 0 53.46 
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RAINWATER SAMPLES TAKEN FROM 13.12.2008 TO 15.12.2008  
Number 
and date 
of sample 
collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

13.12.08 Woodbrook Rain started 
12.12.2008 
evening 
Water was very 
turbid.  

6.9 130 260 215 25.7 295 n/a 22.881 0.586 15.15 

15.12.08 
(inlet) 

M1 (J 24) 
 

The chamber 
was full. It was 
turbid. Rain 
started 
12.12.2008 
evening and 
finished 
13.12.2008 in 
the evening.  
 
Trace of ice on 
the surface of 
the water 
  

7.4 1430 4020 34.6 5.78 22.67 250 4.950 0 519.4 

15.12.08 
Ch  

7.5 1490 2620 41.4 4.84 28.0 280 3.684 0 390.3 

15.12.08 
b/w 

7.4 970 1880 32.5 3.6 16.0 165 4.471 0 337.2 

15.12.08 
a/w 

7.2 250 490 5.3 3.57 4.5 80 2.527 0 69.83 

15.12.08 
3M1 

7.1 240 490 4.1 5.25 4.0 85 0.127 0 69.87 
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RAINWATER SAMPLES TAKEN FROM 08.01.2009 TO 27.02.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/c

m 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, 
mg/l 

Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

08.01.09 Woodbrook Last week the 
temperature 
of air was up 
to -5°C. 
07.01.09 
there was  
slight drizzle 

7.5 510 1010 7.22 9.08 6.67 425 25.672 0.090 117.74 

10.01.09 Woodbrook Cold, dry, 
frost on the 
grass 

7.9 200 500 1.18 Not 
analysed 

3.34 355 28.081 0.089 19.33 

12.01.09 Woodbrook Rain. The 
temperature 
increased up 
to 10°C 

7.5 260 520 37.2 7.7 25.0 n/a 14.549 0 52.92 

13.01.09 
(Inlet) 

M1 (J 24) The water 
was turbid in 
the inlet and 
before the 
weir. The 
depth of 
water after 
weir was 23 
cm.  

7.3 1170 1420 157 14.683 91.0 265 1.232 0 373.75 

13.01.09 
Ch  

7.2 1290 4170 3.17 6.53 9.0 425 2.02 0 722.77 

13.01.09 
b/w 

7.4 1680 3280 159 10.79 100.0 355 1.304 0 396.00 

13.01.09 
a/w 

7.3 490 950 3.3 4.06 7.0 137 0 0 142.06 

13.01.09 
3M1 

7.1 490 960 2.4 5.76 3.2 Not 
analysed 

0 0 149.96 
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Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/L 

EC,  
µs/cm 

Turb, 
NTU 

TOC,  
mg /L C 

SS, mg/L Hardness, 
tot, mg/L 

CaCO3 



3NO  mg/L 
PO4, mg/L, 
as P 

Na
+
, mg/L 

22.01.09 Woodbrook Rain started 
21.01.2009 
@ approx. 8 
pm 

7.05 200 380 66.3 n/a 64.0 Not 
analysed 

20.04 Not analysed 25.51 

22.01.09 
(inlet) 

M1 (J 24) The water 
was turbid 
in the inlet 
and before 
the weir. 
The depth 
of water 
after weir is 
25 cm.  
Water was 
flowing 
through the 
weir due to 
wind.  

7.61 1980 3760 221 n/a 164 Not 
analysed 

2.35 Not analysed 655.31 

22.01.09 
b/w 

6.92 1190 2680 53.5 n/a 31 Not 
analysed 

2.71 Not analysed 387.44 

22.01.09 
b/w’ bottom 

sample 

7.38 2560 5550 858 n/a 2716 Not 
analysed 

1.92 Not analysed n/a 

7.61 2840 5700 107 n/a 72 Not 
analysed 

2.59 Not analysed 731.79 22.01.09 
a/w I 

7.53 2200 5100 108 n/a 77 Not 
analysed 

2.17 Not analysed 730.29 22.01.09 
a/w II 

7.49 2060 3920 112 n/a 75 Not 
analysed 

2.14 Not analysed 704.57 22.01.09 
a/w III 

7.51 1190 1780 43.5 n/a 37 Not 
analysed 

1.88 Not analysed 339.85 22.01.09 
Ch  

7.44 200 1100 3.98 n/a 5 Not 
analysed 

3.99 Not analysed 173.35 22.01.09 
3M1 

27/02/09 Woodbrook Dry, windy 7.97 210 440 2.98 7.88 15.0 Not 
analysed 

25.556 0.069 14.106 
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RAINWATER SAMPLES TAKEN FROM 03.03.2009 TO 21.04.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l; 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

03.03.09 Woodbrook Light drizzle 
during 
night. 
Samples 
were taken 
in the 
morning 

8.05 280 510 4.46 3.87 3.0 280 27.178 0 16.132 

03.03.09 
(Inlet) 
10 cm 

M1 (J 24) Long period 
of dry 
weather (2 
weeks). 
Rain started 
at approx. 2 
pm. 
Samples 
were 
collected at 
3.20 pm.  

7.67 5730 11700 21.2 9.37 50.0 More than 
500 

0 0 168.34 

7.59 3040 7840 14.3 8.81 49.0 More than 
500 

3.799 0 882.43 03.03.09 
b/w 

8.23 3480 8500 3.17 5.36 16.5 More than 
500 

0 0 936.2 03.03.09 
Ch  

75 cm 7.13 4320 8600 1116 n/a n/a n/a n/a n/a 1323.98 

03.03.09 
b/w’ bottom 

sample 
15 ml/50ml 

7.28 1530 3940 5.97 9.44 6.5 195 2.327 0 550.43 

03.03.09 
a/w 

34 cm 

7.39 1520 2800 3.31 3.88 8.0 210 2.151 0 536.41 

03.03.09 
3M1 
5 cm 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

01.04.09 Woodbrook Dry , sunny, 
shallow 

8.04 290 520 2.02 10.26 18 390 24.06 0 14.154 

15.04.09 Woodbrook Rain during 
night and 
morning 

7.08 190 380 14.2 21.85 17.5 280 21.634 0.067 20.29 

21.04.09 Woodbrook Dry, 
shallow, 
sunny 

7.71 300 530 2.63 7.31 29.0 265 23.421 0.072 14.39 

21.04.09 
Inlet 
4 cm 

M1 (J 24) Dry, the 
lagoon is 
going 
down: 
shallow, 
covered 
with reeds. 

7.8 1140 2300 44.2 30.24 141.0 265 8.197 0 328.406 

21.04.09 
Ch  

7.95 1900 3220 8.67 12.64 26.0 195 7.129 0 508 

21.04.09 
a/w 
9 cm 

7.01 1800 3000 1.84 15.329 24.0 265 4.943 0 500 

7.7 1790 3540 2.31 14.246 12.0 220 4.264 0 486.97 21.04.09 
3M1 
7 cm 
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RAINWATER SAMPLES TAKEN FROM 12.05.2009 TO 14.05.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

12.05.09 Woodbrook Dry , sunny, 
shallow 

7.51 290 510 2.09 7.07 5.0 465 24.26 0.105 18.576 

14.05.09 
b/w 

M1 (J24) Cloudy. Dry. 8.46 1120 1880 20.6 15.62 25.34 165 8.09 6.03 543 

14.05.09 
Ch  

7.8 2440 4000 7.83 7.57 14.34 235 4.35 6.12 591.2 

14.05.09 
3M1 

7.46 2760 4560 2.06 8.03 11.34 250 5.66 0 667 
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RAINWATER SAMPLES TAKEN FROM 03.07.2009 TO 29.07.2009  
Number 
and date 
of sample 
collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

03.07.09 
Ch  

8.45 am 

M1(J24) Very long period of dry 
weather with very high 
temperature (~30⁰C). 

 
Inlet into the lagoon 

was dry. 
Water was only in 

chamber with the level 
of 48 cm. 

 

7.59 480 910 6.41 19.57 16.5 137 5.391 6.588 Not analysed 

7.38 190 400 162 72.063 179.0 137 13.941 6.706 Not analysed 
03.07.09 
11.30 am 

Inlet 
 7.28 420 780 23.5 33.77 20.0 115 7.274 7.799 Not analysed 

03.07.09 
12.15 am 

b/w 
 

7.58 200 380 110 50.59 86.0 145 16.205 6.773 Not analysed 

03.07.09 
b/w 
2pm 7.26 160 260 158 82.855 118.0 95 11.134 6.852 Not analysed 

03.07.09 
b/w 

2.15 pm 7.63 130 270 155 51.581 121.0 165 12.864 6.495 Not analysed 

03.07.09 
b/w 

2.30 pm 7.77 440 850 5.73 34.735 10.5 115 7.751 5.598 Not analysed 

03.07.09 
a/w 
2pm 7.6 350 690 56.1 38.51 49.0 108 10.224 5.524 Not analysed 

03.07.09 
a/w 

2.15 pm 7.55 380 720 42.8 32.35 41.0 137 47.106 1.733 Not analysed 

03.07.09 
a/w 

2.30 pm 

 

8.44  

9.00 0.5 

9.15 1.9 

9.30 2.9 

9.45 4.0 

10.00 5.0 

10.15 6.0 

10.30 6.5 

10.45 7.0 

11.00 7.5 

11.15 8.0 

11.30 9.0 

11.45 9.1 

12.45 

Ch =57 

Start. 

again 

12.55  

13.10 12 

13.25 14 

13.40 

Wind 

Ch =70 

14.1 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/L 

EC,  
µs/cm 

Turb, 
NTU 

TOC,  
mg /L C 

SS, mg/L Hardness, 
tot, mg/L 

CaCO3 



3NO  mg/L 
PO4, mg/L, 
as P 

Na
+
, mg/L 

07.07.09 
11 am 

Woodbrook 06/07/09 
heavy rain 

7.43 270 260 2.55 5.85 10.0 300 12.778 0.664 16.409 

07.07.09 
4 pm 

Woodbrook Heavy rain 
during 
sample 
collection 

6.96 130 510 74.5 69.14 273 265 8.28 0.852 9.35 

17/07/09 
Inlet 

22 cm 

M1 ( J24) Wet period 
since 03/07. 
Samples were 
collected 
during dry 
weather after 
the rain 

7.07 170 350 54.2 19.3 34 210 7.234 4.622 46.24 

17/07/09 
b/w 

7.09 110 210 12.0 9.265 11 108 7.213 4.576 28.31 

17/07/09 
Ch  

84 cm 
(nearly over 

the crest) 

7.03 140 280 18.0 29.407 11 115 4.685 5.465 35.0 

17/07/09 
3M1 

7.73 580 1160 0.188 12.3 3 175 23.799 3.7 225.54 

20/07/09 
 

Woodbrook Sample was 
collected 
during dry 
weather.  The 
day before 
there was 
some rain. 

8.17 290 560 2.27 3.69 13 300 12.423 0.521 19.2 

29/07/09 
 

Woodbrook Heavy  rain  7.57 180 390 17.8 27.13 83 280 8.58 2.467 14.85 
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RAINWATER SAMPLES TAKEN FROM 10.08.2009 TO 28.08.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

10.08.09 
 

Woodbrook Rainy 
weather 
since the 
middle of 
July. 
During 
sample the 
weather was 
dry, although 
squelch.  

7.46 250 480 3.5 9.53 4.21 235 21.445 0.846 16.04 

13.08.09 Woodbrook Dry weather 
since 10/08. 
Shallow. 

7.21 280 560 2.17 3.45 3.31 250 20.981 0.350 18.18 

18/08/09 
Chamber 

 65 cm 

M1 (J 24) Dry and 
sunny. 
Suspended 
solids are 
presented by 
algae  

7.0 220 430 6.57 7.47 16.5 130 4.493 7.569 49.98 

7.45 350 660 2.5 12.71 12.0 108 15.881 5.469 117.32 18/08/09 
a/w 

20 cm 7.5 350 640 3.9 9.47 12.5 130 9.688 7.831 111.24 
18/08/09 

3M1 

19/08/09 Woodbrook  Dry and 
shallow 

8.07 330 640 1.42 6.69 2.45 250 21.873 0.534 18.51 

28/08/09 M1 ( J24) Windy, 
cloudy 
Suspended 
solids are 
presented by 
algae  

7.5 350 630 2.06 10.928 26.5 60 3.164 0.841 109.54 
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RAINWATER SAMPLES TAKEN FROM 02.09.2009 TO 29.09.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

02/09/09 
Chamber 

65 cm 

M1 (J24) Dry;  algae 7.19 290 550 5.88 9.01 6.5 102 2.092 0 73.75 

02/09/09 
3M1 

7.29 360 690 4.96 12.275 66 85 2.477 1.566 112.05 

03/09/09 
Chamber 

85 cm 

M1(J24) There was rain 
last night. Dry;  
algae 

7.23 220 420 27 12.2 19 145 1.878 0 54.3 

03/09/09 
a/w 
6 cm 

7.27 260 500 39.1 12.85 192 175 3.277 0 69.96 

07/09/09 
Chamber 

69 cm 

M1(J24) The weather was 
dry; algae, 
shallow 

7.28 210 410 5.43 20.98 14 90 Not 
analysed 

Not analysed 51.29 

07/09/09 
a/w 
6 cm 

8.42 260 520 76.5 
 

62.98 341 115 Not 
analysed 

Not analysed 79.69 

09/09/09 
Chamber 
63.5 cm 

M1(J24) The weather is 
dry; algae, 
shallow 

7.42 210 410 3.47 6.55 14.5 108 Not 
analysed 

Not analysed 52.05 

09/09/09 
3M1 

7.95 330 650 6.65 
 

11.45 123 70 Not 
analysed 

Not analysed 103.48 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na
+
, mg/l 

14/09/09 
Chamber 

59cm 

M1 (J24) Dry;  algae 7.2 250 470 6.18 7.09 31.5 122 1.463 0 59.09 

14/09/09 
3M1 

7.00 360 690 15.7 10.94 88 56 2.81 0.98 114.86 

16/09/09 
Chamber 
56.9 cm 

M1 (J24) Dry; algae, 
shallow 
sample was 
taken from the 
middle of the 
lagoon 

7.95 250 480 9.1 15.13 39 95 1.686 0 63.49 

16/09/09 
3M1 

 

7.95 350 670 15.4 12.49 23.5 65 2.256 0 113.79 

16.09/09 
 

Woodbrook Shallow 7.95 290 580 0.209 9.13 5.34 390 20.332 0.367 15.38 

18/09/09 
 

Woodbrook Shallow. Dry  8.06 320 600 0.198 4.94 3.0 280 19.922 1.339 16.29 

25/09/09 
Chamber 

49 cm 

M1 (J24) Dry; algae, 
shallow 

7.57 300 550 5.58 7.63 15 115 1.180 0.620 82.38 

25/09/09 
3M1 

7.28 380 730 56.0 9.39 91 108 3.136 1.089 129.09 

29/09/09 
Chamber 
42.5 cm 

M1 (J24) Dry; algae, 
shallow 

7.4 320 620 6.19 7.19 14 115 Not 
analysed 

Not analysed 88.37 

29/09/09 
3M1 

7.04 400 750 146 14.36 161 3003.0 Not 
analysed 

Not analysed 131.45 
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RAINWATER SAMPLES TAKEN FROM 21.10.2009 TO 29.10.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

 M1 (J 24) 
 

Last night there 
was some rain 

          7.06 150 260 8.16 20.569 14 95 0.796 0 37.68 21/10/09 

Chamber 
52.8 cm 7.09 310 620 57.9 11.74 29 102 1.698 0 106.73 

21/10/09 
3M1 

21 cm 
(middle of 

the lagoon) 
 M1(J 24) Dry and shallow           

22/10/09 
Chamber 

52 cm 

7.3 130 250 6.54 10.898 6.5 115 1.143 0.506 36.36 

22/10/09 
3M1  

7.24 270 570 11.6 6.54 7.0 122 1.788 0.914 97.55 

29/10/09 
Chamber 

47 cm 

M1(J 24) Dry and shallow. 
The lagoon has 
gone down. No 
water in the 
“Inlet” 

7.05 210 340 9.92 5.4 25 115 0 0 43.82 

29/10/09 
3M1 

17.5 cm 
(middle of 

the lagoon) 

6.85 310 610 98.8 8.81 82 115 1.073 0.841 112.34 
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RAINWATER SAMPLES TAKEN FROM 05.11.2009 TO 24.11.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

 M1 (J 24) 
 

Heavy and light 
showers since 
01/11/09 

          
05/11/09 

Chamber 
85 cm (full) 

6.76 80 150 25.1 5.72 13 70 Not 
analysed 

Not analysed 19.74 

05/11/09 
3M1 

27 cm 
(middle of 

the lagoon) 

6.72 190 350 45.6 7.135 33 85 Not 
analysed 

Not analysed 62.94 

 M1 (J 24) 
 

Predominantly 
dry weather; few 
little showers 

          
09/11/09 
Chamber 
70.4 cm 

6.82 90 170 17.1 5.253 8.5 130 1.607 0.618 23.26 

09/11/09 
3M1 

24.4 cm 

6.81 180 350 43.4 9.141 19.5 85 3.239 0 67.70 

 M1 (J 24) 
 

Whole day on 
the lagoon. 
 
Spitting; few 
drops; rains are 
predominantly 
during night 
time. 

       n/a 
 
 

n/a 29.56 
10/11/09 
Chamber 

68 cm 

6.7 110 190 13.0 4.42 8.5 Not 
analysed 

Not 
analysed 

Not analysed Not analysed 

10/11/09 
3M1 

20 cm 

6.85 180 350 31.5 6.646 32.5 Not 
analysed 

Not 
analysed 

Not analysed 64.98 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

 M1 (J 24) 
 

Heavy and light 
showers during 
night time; 
 
 Light drizzle, 
few drops. 
Sample were 
taken twice: 
@10.45 am and 
3.45 pm.  

          
           

7.15 100 200 79.4 6.313 70 137 1.472 0 35.25 
13/11/09 

Chamber 
85 cm (full) 
10.45 am 7.0 90 190 67.0 5.592 50 95 1.471 0 32.40 

13/11/09 
Chamber 

85 cm (full) 
3.45 pm 

7.06 170 320 60.3 12.168 133 115 1.893 0 54.21 

13/11/09 
3M1 

38 cm 
(middle of 

the lagoon) 
3.45 pm 
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Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

21/11/09 
Inlet 

5.15 pm 

M1( J24) 
 

 
Rainfall intensity 

 
 

 

 

6.95 230 420 52.3 7.78 119.5 210 0 0 57.25 

21/11/09 
Inlet 

5.30 pm 

7.00 230 400 21.11 8.31 15 165 0 0 55.54 

21/11/09 
Inlet 

5.45 pm 

7.00 210 400 36.1 6.4 6 145 0 0 57.88 

21/11/09 
Inlet 

6.00 pm 

7.04 210 400 23.8 5.85 17 145 0 0 55.41 

21/11/09 
Inlet 

6.15 pm 

7.14 210 400 38.9 6.72 43 145 0 0 56.34 

21/11/09 
Inlet 

6.30 pm 

7.15 200 400 36.6 7.33 37 185 0 0 55.26 

21/11/09 
Inlet 

6.45 pm 

7.12 200 410 35.1 8.66 35 210 0 0 60.49 

21/11/09 
Chamber 
5.15 pm 
79 cm 

7.2 130 240 23.3 5.046 14 122 1.183 0 38.13 

7.15 120 240 22.9 6.836 16 115 1.117 0 32.51 
21/11/09 
Chamber 
6.45 pm 
80 cm 

7.14 150 310 10.2 5.822 12 95 0.707 0 61.59 

21/11/09 
3M1 

6.45 pm 

 

pm mm 

5.15  

5.30 0.5 

5.45 0.9 

6.00 1.0 

6.15 1.5 

6.30 1.8 

6.45 2.0 
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Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

24/11/09 
Inlet 

Oil film on 
the surface 

 

M1 (J24) Dry, windy 6.62 200 380 42.6 10.33 21 165 1.01 0 48.21 

6.71 190 360 25.6 16.99 13 145 1.03 0.067 46.28 

24/11/09 
Chamber 

86 cm 
6.71 170 340 8.74 7.824 5 80 0.630 0.373 55.83 

24/11/09 
3M1 

44 cm 
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RAINWATER SAMPLES TAKEN FROM 02.12.2009 TO 09.12.2009  
Number and 

date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

02/12/09 
Inlet 

 

M1 (J 24) Light drizzle; the 
runoff could not be 

captured; 
In the previous day 
the temp was -3°C; 
de-icer salts on the 

roads 

7.09 200 450 23.6 8.524 19 250 Not 
analysed 

Not analysed 44.56 

02/12/09 
Chamber 
850 mm 

6.9 160 360 26.0 8.932 12.5 235 Not 
analysed 

Not analysed 37.17 

02/12/09 
3M1 

6.88 150 340 10.2 9.074 9 102 Not 
analysed 

Not analysed 48.35 

07/12/09 
Inlet 2pm 

M1 (J 24) Rainfall intensity 

 

7.23 230 460 23 3.32 14 195 Not 
analysed 

Not analysed 62.26 

07/12/09 
Inlet 2.15pm 

7.35 190 390 22.3 3.98 11 155 Not 
analysed 

Not analysed 59.37 

07/12/09 
Inlet 2.30pm 

7.27 210 430 23.2 7.57 11.5 175 Not 
analysed 

Not analysed 59.09 

07/12/09 
Inlet 2.45 

pm 

7.36 240 480 21.5 10.31 12.5 175 Not 
analysed 

Not analysed 68.7 

07/12/09 
Inlet 3pm 

7.34 230 470 21.5 2.79 9.5 210 Not 
analysed 

Not analysed 65.43 

07/12/09 
Inlet 3.15pm 

7.4 260 510 21.8 3.51 9 238 Not 
analysed 

Not analysed 73.45 

07/12/09 
Inlet 3.30pm 

7.39 290 590 20.0 5.53 9.5 235 Not 
analysed 

Not analysed 83.16 

 

pm mm 

2 0 

2.15 0.1 

2.30 0.3 

2.45 0.7 

3 1.0 

3.15 1.2 

3.30 1.7 

3.45 2.0 
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Number and 
date of 
sample 

collection 

Location Weather pH TDS, 
mg/l 

EC,  
µs/cm 

Turbidity, 
NTU 

TOC,  
mg /l 

TSS, mg/l Hardness, 
tot, mg/l 

CaCO3 



3NO  mg/l 
PO4, mg/l, as 
P 

Na, mg/l 

07/12/09 
Inlet 3.45pm 

M1 (J 24)  7.39 360 720 21.9 5.84 9 265 Not 
analysed 

Not analysed 99.43 

07/12/09 
a/w 

 2 pm 

7.42 200 400 31.7 5.45 9.5 175 Not 
analysed 

Not analysed 53.19 

07/12/09 
a/w 

3 pm 

7.45 200 410 34.1 3.72 24 175 Not 
analysed 

Not analysed 57.08 

07/12/09 
a/w 

3.45 pm 

7.45 200 400 37.2 3.19 27 185 Not 
analysed 

Not analysed 53.74 

09/12/09 
Inlet 

M1(J 24) Dry 7.09 710 1360 20.9 9.72 12 500 Not 
analysed 

Not analysed 164.55 

09/12/09 
chamber 

7.33 520 1010 30.6 7.84 15.5 500 Not 
analysed 

Not analysed 117.67 

09/12/09 
3M1 

7.23 210 390 10.2 5.86 5 102 Not 
analysed 

Not analysed 63.63 

inlet (sample point N 1, see Fig. 4.2); b/w – before weir (sample point N 2, see Fig. 4.2); a/w - after weir (sample point N 3, see Fig. 4.2); 3M1 – sample point N 4 
(see Fig. 4.2); ch – chamber (see Photo 4.3 and Fig. 4.3). 

 
 


